

ABOUT THE AUTHOR

Joyjeet Banerjee works as a Solutions Architect with Amazon Web
Services, where he crafts highly scalable, flexible, and resilient cloud
architectures that address customer business needs. Joyjeet helps
organizations understand best practices around advanced cloud-based
solutions and how to migrate existing workloads to the cloud.

Before joining AWS, Joyjeet worked as an enterprise architect with
Oracle’s Engineered Systems team based at Oracle’s headquarters in
California. Before joining the Oracle Engineered Systems team, Joyjeet was
with Oracle Consulting, where he assisted customers to implement Oracle
products. During his tenure at Oracle, he wrote several books on Oracle
Database, Oracle Applications, and Exadata.

Joyjeet is a regular guest speaker at AWS re:Invent, AWS Summit, AWS
Pop-up Loft, AWS Webinars, Oracle Applications User Group (OAUG),
Collaborate, and Oracle OpenWorld. He was on the panel of Oracle
University that reviewed the course content and set up questions for the
Oracle Certification Program (OCP) for the Oracle Database, RAC, and
Oracle Applications tracks.

Joyjeet earned an MBA in systems and operations management and was
recently honored as an “Oracle Innovator.”

About the Technical Editor
Dhanraj Pondicherry leads the Database Solution Architect team at
Amazon Web Services. With a BS and MS in Computer Science, having
worked with databases and database applications for 17 years, and having
been part of the AWS journey since 2014, he is passionate about enabling
customers, partners or just anyone who’s curious, to understand and deliver
outcomes on AWS.

Copyright © 2021 by McGraw Hill. All rights reserved. Except as
permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means,
or stored in a database or retrieval system, without the prior written
permission of the publisher, with the exception that the program listings
may be entered, stored, and executed in a computer system, but they may
not be reproduced for publication.

ISBN: 978-1-26-047019-2
MHID: 1-26-047019-9

The material in this eBook also appears in the print version of this title:
ISBN: 978-1-26-047018-5, MHID: 1-26-047018-0.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a
trademark symbol after every occurrence of a trademarked name, we use
names in an editorial fashion only, and to the benefit of the trademark
owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts
to use as premiums and sales promotions or for use in corporate training
programs. To contact a representative, please visit the Contact Us page at
www.mhprofessional.com.

Information has been obtained by McGraw Hill from sources believed to be
reliable. However, because of the possibility of human or mechanical error
by our sources, McGraw Hill, or others, McGraw Hill does not guarantee
the accuracy, adequacy, or completeness of any information and is not
responsible for any errors or omissions or the results obtained from the use
of such information.

TERMS OF USE

http://www.mhprofessional.com/

This is a copyrighted work and McGraw-Hill Education and its licensors
reserve all rights in and to the work. Use of this work is subject to these
terms. Except as permitted under the Copyright Act of 1976 and the right to
store and retrieve one copy of the work, you may not decompile,
disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the
work or any part of it without McGraw-Hill Education’s prior consent. You
may use the work for your own noncommercial and personal use; any other
use of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION
AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR
RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED
THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND
EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
McGraw-Hill Education and its licensors do not warrant or guarantee that
the functions contained in the work will meet your requirements or that its
operation will be uninterrupted or error free. Neither McGraw-Hill
Education nor its licensors shall be liable to you or anyone else for any
inaccuracy, error or omission, regardless of cause, in the work or for any
damages resulting therefrom. McGraw-Hill Education has no responsibility
for the content of any information accessed through the work. Under no
circumstances shall McGraw-Hill Education and/or its licensors be liable
for any indirect, incidental, special, punitive, consequential or similar
damages that result from the use of or inability to use the work, even if any
of them has been advised of the possibility of such damages. This limitation
of liability shall apply to any claim or cause whatsoever whether such claim
or cause arises in contract, tort or otherwise.

This book is dedicated to my guru, Paramahansa Yogananda, for his
wisdom; my mom; my dad; my lovely wife, Suchismita; my sisters, Joyeeta
and Tiya; my brothers-in-law, Sagar and Riju; my little sweet niece, Saanjh;

and my lovely nephew, Manav.

CONTENTS AT A GLANCE

Chapter 1 Overview of Cloud Computing and Amazon Web Services
Chapter 2 Storage on AWS
Chapter 3 Virtual Private Cloud
Chapter 4 Introduction to Amazon Elastic Compute Cloud
Chapter 5 Identity and Access Management and Security on AWS
Chapter 6 Auto Scaling
Chapter 7 Deploying and Monitoring Applications on AWS
Chapter 8 Databases on AWS
Chapter 9 AWS Well-Architected Framework and Best Practices
Appendix A Objective Map
Appendix B Additional Resources
Appendix C About the Online Content

Acronyms and Glossary
Index

CONTENTS

Acknowledgments
Introduction

Chapter 1 Overview of Cloud Computing and Amazon Web Services
Advantages of Running Cloud Computing on AWS

Three Models of Cloud Computing
Three Cloud Computing Deployment Models

History of AWS
AWS Global Infrastructure
AWS Security and Compliance
AWS Products and Services

Compute
Networking
Security and Compliance
Storage and Content Delivery
Database
Analytics
Application Services
Developer Tools
Management Tools
Messaging
Migration
Artificial Intelligence
Internet of Things
Mobile Services

Chapter Review
Questions

Answers
Chapter 2 Storage on AWS

Amazon Simple Storage Service (S3)
Advantages of Amazon S3
Usage of Amazon S3 in Real Life
Amazon S3 Basic Concepts
Amazon S3 Data Consistency Model
Amazon S3 Performance Considerations
Reverse the Key Name String
Adding a Hex Hash Prefix to a Key Name
Encryption in Amazon S3
Amazon S3 Access Control

Access Policies
Bucket Policies
Access Control List
S3 Security Best Practices

Amazon S3 Storage Class
Versioning of Objects in Amazon S3
Amazon S3 Object Lifecycle Management
Amazon S3 Replication

Static Web Site Hosting in Amazon S3
Amazon S3 Glacier

Amazon S3 Glacier Key Terminology
Accessing Amazon S3 Glacier
Uploading Files to AmazonS3 Glacier
Retrieving Files from Amazon S3 Glacier

Amazon Elastic Block Store
Features of Amazon EBS
AWS Block Storage Offerings

Amazon Elastic File System
Using Amazon Elastic File System
Performance Mode of Amazon EFS

On-Premise Storage Integration with AWS
AWS Storage Gateway

AWS Snowball and AWS Snowball Edge
AWS Snowmobile

Chapter Review
Lab 2-1: Creating, Moving, and Deleting Objects in

Amazon S3
Lab 2-2: Using Version Control in Amazon S3
Lab 2-3: Using the Bucket Policy Generator for

Amazon S3
Questions
Answers

Chapter 3 Virtual Private Cloud
Amazon VPC Components and Terminology

Amazon VPC
Subnet
Route Table
Internet Gateway
Network Address Translation
Egress-Only Internet Gateway
Elastic Network Interface
Enhanced Networking (Linux Only)
Elastic IP Address
Network Security
Amazon VPC Peering
Amazon VPC Endpoint
Transit Gateway
DNS and VPC
DHCP Option Sets
Connecting to a VPC
VPC Flow Logs

Default VPC
Labs on VPC

Lab 3-1: Using the VPC Wizard
Lab 3-2: Creating a VPC with Public and Private

Subnets

Lab 3-3: Exploring All the Options in a Virtual Private
Cloud

Chapter Review
Questions
Answers

Chapter 4 Introduction to Amazon Elastic Compute Cloud
Benefits of Amazon EC2
Amazon EC2 Instance Types and Features

General Purpose (T3, T3a, T2, M6g, M5, M5a, M5n,
M4, and A1)
Compute Optimized (C6g, C5, C5a, C5n, and C4)
Memory Optimized (R6g, R5, R5a, R5n, R4, X1e, X1,
High Memory, and Z1d)
Storage Optimized (I3, I3en, D2, and H1)
Accelerated Computing (P3, P2, Inf1, G4, G3, and F1)
Processor Features
Network Features
Storage Features

Steps for Using Amazon EC2
Pricing for Amazon EC2

On-Demand Instance
Reserved Instance
Spot Instance

Shared Tenancy, Dedicated Hosts, and Dedicated Instances
Shared Tenancy
Dedicated Host
Dedicated Instance

Instances and AMIs
Instance Root Volume
Obtaining an AMI

Virtualization in AMI
HVM AMI
PV AMI

Instance Life Cycle

Launch
Start and Stop
Reboot
Termination
Retirement

Connecting to an Instance
Security Group
Amazon Elastic Container Service

Lab 4-1: Using EC2
Creating a New Key Pair
Launching a Web Server Instance
Browsing the Web Server
Lab 4-2: Creating an EBS Instance and Attaching It to

an EC2 Instance
Lab 4-3: Creating an Elastic File System (EFS) and

Mounting Across Two EC2 Instances in Different
AZs

Chapter Review
Questions
Answers

Chapter 5 Identity and Access Management and Security on AWS
Authentication
Authorization
Auditing
Types of Security Credentials

Temporary Security Credentials
Users
Groups
Roles
IAM Hierarchy of Privileges
IAM Best Practices

Use the IAM User
Create a Strong Password Policy
Rotate Security Credentials Regularly

Enable MFA
Manage Permissions with Groups
Grant the Least Privileges
Use IAM Roles
Use IAM Roles for Amazon EC2 Instances
Use IAM Policy Conditions for Extra Security
Enable AWS CloudTrail

AWS Compliance Program
Shared Responsibility Model

AWS Responsibility
Customer’s Responsibility

AWS Security Products and Services
Resource Access Manager
AWS Secrets Manager
Amazon GuardDuty
Amazon Inspector
Amazon Macie
AWS Certificate Manager
AWS Web Application Firewall
AWS Shield
AWS CloudHSM
AWS KMS
Lab 5-1: Creating IAM Users, Groups, and Roles
Managing IAM User Permissions and Credentials

IAM Roles for Amazon EC2
Chapter Review

Questions
Answers

Chapter 6 Auto Scaling
Benefits of Auto Scaling

Scaling Plan
Identify Scalable Resources
Specify Scaling Strategy

Using EC2 Auto Scaling

Launch Configuration
Auto Scaling Groups
Termination Policy

Elastic Load Balancing
How ELB Works
Types of Load Balancers

Load Balancer Key Concepts and Terminology
Health Check
Using Multiple AZs
Lab 6-1: Set Up Auto Scaling

Chapter Review
Questions
Answers

Chapter 7 Deploying and Monitoring Applications on AWS
AWS Lambda

Is AWS Lambda Really Serverless?
Understanding AWS Lambda

Amazon API Gateway
API Types Supported by API Gateway
Benefits of Amazon API Gateway

Amazon Kinesis
Real-Time Application Scenarios
Differences Between Batch and Stream Processing

Amazon Kinesis Data Steams
Benefits of Amazon Kinesis Data Streams

Amazon Kinesis Data Firehose
Benefits of Amazon Kinesis Data Firehose

Amazon Kinesis Data Analytics
Benefits of Amazon Kinesis Data Analytics
Use Cases for Amazon Kinesis Data Analytics

Amazon Kinesis Video Streams
Reference Architectures Using Serverless Services

Real-Time File Processing
Real-Time Stream Processing

Extract, Transformation, and Load (ETL) Processing
IoT Back Ends

Amazon CloudFront
Amazon CloudFront Key Concepts
Geo Restriction
Error Handling

Amazon Route 53
AWS Web Application Firewall
Amazon Shield

Benefits of AWS Shield
Amazon Simple Queue Service
Amazon Simple Notification Service
AWS Step Functions and Amazon Simple Workflow (SWF)
AWS Elastic Beanstalk
AWS OpsWorks
Amazon Cognito
Amazon Elastic MapReduce
AWS CloudFormation
Monitoring in AWS
Amazon CloudWatch

Metrics Collection and Tracking
Capture Real-Time Changes Using Amazon
CloudWatch Events
Monitoring and Storing Logs
Set Alarms
View Graphs and Statistics

AWS CloudTrail
AWS Config
Amazon VPC Flow Logs
AWS Trusted Advisor
AWS Organizations
Chapter Review

Questions
Answers

Chapter 8 Databases on AWS
Understanding Relational Databases
Understanding the Amazon Relational Database Service

Scenario 1: Hosting the Database in Your Data Center
On-Premises
Scenario 2: Hosting the Database on Amazon EC2
Servers
Scenario 3: Hosting the Database Using Amazon RDS

Hosting a Database in Amazon EC2 vs. Amazon RDS
High Availability on Amazon RDS

Simplest Architecture: Single-AZ Deployment
High Availability: Multiple AZs

Scaling on Amazon RDS
Changing the Instance Type
Read Replica

Security on Amazon RDS
Amazon VPC and Amazon RDS

Backups, Restores, and Snapshots
Monitoring
Amazon Aurora
Amazon Redshift

Benefits of Amazon Redshift
Amazon Redshift Architecture
Sizing Amazon Redshift Clusters
Networking for Amazon Redshift
Encryption
Security
Backup and Restore
Data Loading in Amazon Redshift
Data Distribution in Amazon Redshift

Amazon DynamoDB
Benefits of Amazon DynamoDB
Amazon DynamoDB Terminology
Secondary Index

Consistency Model
Global Table
Amazon DynamoDB Streams
Amazon DynamoDB Accelerator
Encryption and Security

Amazon ElastiCache
Amazon Neptune

Benefits of Amazon Neptune
Amazon Neptune Use Cases

Amazon DocumentDB
Benefits of Amazon DocumentDB
Amazon DocumentDB Use Cases
Lab 8-1: RDS: Creating an Amazon Aurora Database
Lab 8-2: Taking a Snapshot of a Database
Lab 8-3: Creating an Amazon Redshift Cluster
Lab 8-4: Creating an Amazon DynamoDB Table

Chapter Review
Questions
Answers

Chapter 9 AWS Well-Architected Framework and Best Practices
Operational Excellence

Prepare
Operate
Evolve

Security
Have a Strong Identity Foundation
Enable Traceability
Implement Security at All Layers
Secure the Data
Automate for Security
Plan for Security Events
Best Practices

Performance
Performance Efficiency

Reliability
Best Practices

Cost Optimization Pillar
Finding Cost-Effective Resources
Matching Supply with Demand
Being Aware of Expenditures
Optimizing Over Time

AWS Best Practices
Design for Failures
Build Security in Every Layer
Leverage Multiple Storage Options
Implement Elasticity
Think Parallel
Loosely Couple Your Architecture
There Are No Constraints in the AWS Cloud

Chapter Review
Questions
Answers

Appendix A Objective Map
Exam SAA-C02

Appendix B Additional Resources
Whitepapers
AWS re:Invent Videos

Appendix C About the Online Content
System Requirements
Your Total Seminars Training Hub Account

Privacy Notice
Single User License Terms and Conditions
TotalTester Online
Technical Support
Acronyms and Glossary
Acronyms
Glossary

Index

ACKNOWLEDGMENTS

Many people have contributed a lot to the successful completion of this
book. I would like to use this opportunity to thank all of them. Without their
help, it would have been difficult for me to finish this book.

I would like to thank Lisa McClain, senior editor at McGraw Hill, for
her enthusiastic support and motivation throughout the process, for making
adjustments to the schedule whenever there was a fire drill at my job, and
for helping me in every possible way to make this book a reality; Emily
Walters, editorial coordinator at McGraw Hill, for managing this project
and always staying on top of things; Revathi Viswanathan of
KnowledgeWorks Global Ltd. for helping me in all phases of the production
of this book; Patty Mon, editorial supervisor; Bart Reed for helping me in
editing this book; and Lisa McCoy for proofreading.

I would like to thank Dhanraj Pondicherry, senior manager at Amazon
Web Services, for the technical review of this book and for providing his
valuable feedback and advice at every step. I would also like to thank
Francessca Vasquez and Matthew Menz, both directors at Amazon Web
Services, and the Amazon legal and PR teams for providing all the
necessary approvals.

Last, but not least, I would like to thank all my friends and colleagues
who, without fail, motivated and encouraged me to make this book happen.

INTRODUCTION

Congratulations! You have made the right move by deciding to pursue AWS
certification. AWS Solutions Architect certification is one of the hottest
certifications in the industry right now, and you are just a step away from
being certified. Each year, Global Knowledge, an industry-leading training
company, publishes its IT Skills and Training Report. This is a well-
respected tool for assessing the trends and skills in high demand in the
market. A summary of the 2020 data is available online in the article “15
Top-Paying IT Certifications for 2020,” published by Global Knowledge.
As the article indicates, the AWS Certified Solutions Architect – Associate
exam ranks second among the top-paying certifications, with a yearly salary
of $149,446 (https://www.globalknowledge.com/us-en/content/articles/top-
paying-certifications/#2). Given the continued dominance of AWS in the
public cloud market, the demand for AWS professionals—especially those
with a certification—is expected to continue to grow for the foreseeable
future. The goal of this resource is to provide you with practical, hands-on
knowledge in addition to preparing you for the certification exam.

About the Exam
Amazon has recently introduced the new version of the exam AWS
Certified Solutions Architect – Associate (released in March 2020). This
version of the exam introduces a lot of new topics and service offerings.
The new exam reflects changes in the solutions architect role since the
original exam was launched six years ago. The examination contains 65
questions, and you have 130 minutes to finish it. This exam validates an
examinee’s ability to effectively demonstrate knowledge of how to architect
and deploy secure and robust applications on AWS technologies. The
examination contains multiple-choice questions; sometimes one option is a
correct one, and other times two or even three options will be correct. The
examination will tell how you many options to choose.

https://www.globalknowledge.com/us-en/content/articles/top-paying-certifications/#2

It validates an examinee’s ability to

• Define a solution using architectural design principles based on
customer requirements

• Provide implementation guidance based on best practices to the
organization throughout the life cycle of the project

As per the AWS Certification website
(https://aws.amazon.com/certification/certified-solutions-architect-
associate/), the AWS Certified Solutions Architect – Associate exam is
intended for individuals with experience designing distributed applications
and systems on the AWS platform. Exam concepts you should understand
for this exam include the following:

• One year of hands-on experience designing available, cost-effective,
fault-tolerant, and scalable distributed systems on AWS

• Hands-on experience using compute, networking, storage, and
database AWS services

• Hands-on experience with AWS deployment and management
services

• Ability to identify and define technical requirements for an AWS-
based application

• Ability to identify which AWS services meet a given technical
requirement

• Knowledge of recommended best practices for building secure and
reliable applications on the AWS platform

• An understanding of the basic architectural principles of building in
the AWS cloud

• An understanding of the AWS global infrastructure
• An understanding of network technologies as they relate to AWS
• An understanding of security features and tools that AWS provides

and how they relate to traditional services

The examination is divided into four domains. The following are the
main content domains and their weightings:

https://aws.amazon.com/certification/certified-solutions-architect-associate/

About the Book
This book was written with the March 2020 exam in mind and covers all
the topics required to pass this version of the exam. When you study the
chapters, you will find that AWS has a shared responsibility model; this
means AWS is responsible for the security of the cloud, and the customer is
responsible for the security in the cloud. To pass the exam, you also have to
follow the shared study model. The book is going to give you the theoretical
knowledge of this model, and the AWS Management console is going to
provide you with the practical knowledge of this model. You need to have
both theoretical and practical knowledge to pass this examination.

While you’re studying for the examination, the AWS management
console is going to be your best friend. You need to create an account with
the AWS management console if you don’t have one already. You can
create one by going to https://aws.amazon.com/console/. AWS offers free
cloud service for one year under the free tier, so most of the services you
will be using should fall into this category. It is important that you do all the
labs in this book to get practical, hands-on experience for each subject. In
addition to doing the labs, you should browse all the options in the console
for a particular service. The more you explore the various options, the
quicker you learn.

Amazon has 14 principles that every Amazonian uses on a daily basis.
You can learn about them on the Internet. To pass the examination, you
need to pay careful attention to two of these principles: “Learn and Be
Curious” and “Deep Dive.” For every service you learn about in this book,
go to the console and browse every possible option. Try to understand what
an option does, why it is of use, and so on. Once you do this for all the
services, nothing can stop you from passing the examination.

https://aws.amazon.com/console/

Currently, AWS has 175+ different services, and as a solutions architect
(SA), it is difficult to go deep into each one of them. There are some core
services of AWS that are needed no matter what you want to do with AWS.
These core services are also called foundational services. Examples include
regions, AZs, Amazon Virtual Private Cloud (VPC), Amazon EC2 servers,
ELB, AWS Auto Scaling, storage, networking, databases, AWS IAM, and
security. You should have in-depth knowledge about the core services.
Besides the core services, there are various other services of AWS, such as
analytics, machine learning, application services, and so on. For these other
services, you don’t need to have in-depth knowledge, but you should be
able to articulate what each service does, what the common use cases are
for that service, when to choose one service over another, and so on.

This book is divided into nine chapters. Chapter 1, “Overview of Cloud
Computing and Amazon Web Services,” gives an overview of Amazon Web
Services. It teaches you the concepts of cloud computing, the advantages of
cloud computing and AWS, and the building blocks of AWS. It also
introduces you to the various offerings of AWS.

Chapter 2, “Storage on AWS,” talks about all the storage offerings and
includes Amazon Simple Shared Storage, Glacier, Elastic Block Store,
Elastic File System, and various ways of migrating data to AWS. After
reading this chapter, you should have a deep knowledge of all the storage
offerings.

Chapter 3, “Virtual Private Cloud,” is focused on networking. It
introduces the concept of Amazon Virtual Private Cloud and covers how to
create a network in the cloud, what some of the network offerings are, and
so on. This chapter is also part of the core services.

Chapter 4, “Introduction to Amazon Elastic Compute Cloud,” introduces
Amazon Elastic Compute Cloud (EC2). In this chapter, you will learn the
various instance types that AWS supports, how to create an instance, and
how to add storage to an instance. EC2 is one of the core services of AWS.

Chapter 5, “Identity and Access Management and Security on AWS,”
focuses on the security of the cloud. You will learn about the shared
responsibility model and how to secure a cloud environment. You will also
learn about identity management, how to create a user and group, and how
to integrate your existing users to AWS using federation. IAM is also part
of the core services. You are also going to learn some of the security
offerings from AWS in this chapter.

Chapter 6, “Auto Scaling,” focuses on Elastic Load Balancer and Auto
Scaling. It talks about all the different types of load balancers AWS has,
including application, network, and classic load balancers. You will also
learn about Auto Scaling, a service that makes the cloud very scalable. Auto
Scaling is one of the reasons why customers are seamlessly able to scale up
and scale down instantly, as per their demand. This is also one of the core
services.

Chapter 7, “Deploying and Monitoring Applications on AWS,” focuses
on deploying and monitoring applications on AWS. This chapter introduces
lots of services that you need to know to build, deploy, and monitor your
application in AWS. While reading this chapter, you will find that there are
multiple ways of deploying an application. For example, you can use a
combination of EC2, RDS, EBS servers, and VPC and deploy your
application in a classic way. Another way is to use Elastic Beanstalk and
deploy your application, or you can build a totally serverless application.
You should be able to tell the pros and cons of choosing one architecture
over the other in terms of built-in resiliency, easy manageability,
performance, security, and cost. This chapter also focuses on monitoring the
applications you are going to deploy in AWS. You need to know which
monitoring tool to use for monitoring a specific aspect. You are not required
to go very deep into all these services; however, you should know what a
particular services does, what the use cases are, when to choose one over
the other, and so on. In this chapter, there are no labs since the examination
does not cover all these services in detail; that does not mean you should
not explore these services via the AWS management console. For all these
services, check out their options in the AWS management console. For
example, let’s take a look at Amazon Kinesis Firehose. Go to the console
and create a delivery stream, explore all the data input sources, and look at
all the destination sources (you will realize that there are four destinations:
Amazon S3, Amazon Redshift, Amazon Elasticsearch Service, and Splunk).
Bingo! That’s an examination question. At the end of this process, you
don’t have to create the Firehose delivery stream; you can click the Cancel
button in the last step.

Chapter 8, “Databases on AWS,” covers Amazon RDS, which is one of
the core services of AWS. You should be able to tell when to host a
database on EC2 servers and when to host a database on RDS. You should
also know about Amazon’s other database, which is Amazon Aurora. In

addition, you should know about Amazon Redshift (the data warehouse
offering), Amazon DynamoDB (the NoSQL database), and Amazon
ElastiCache (the in-memory data store offering). All the topics included in
this chapter are core services.

Chapter 9, “AWS Well-Architected Framework and Best Practices,”
covers architecture best practices. This chapter is divided into five domains,
the same domains on which this examination focuses. After going through
this chapter, you should be able to design with the five core tenets. As a
solutions architect, when you design architecture, you should design it
across these five pillars.

Using the Objective Map
The objective map included in Appendix A has been constructed to help
you cross-reference the official exam objectives from AWS with the
relevant coverage in the book. References have been provided for the exam
objectives exactly as AWS has presented them, along with the chapter
number(s) that include objective coverage.

Online Practice Exams
This book includes access to online practice exams that feature the
TotalTester Online exam test engine, which allows you to generate a
complete practice exam or to generate quizzes by chapter or by exam
domain. See Appendix C for more information and instructions on how to
access the exam tool.

CHAPTER 1
Overview of Cloud Computing and
Amazon Web Services

In this chapter, you will
• Get an overview of cloud computing
• Learn the advantages of running cloud computing on AWS
• Look at three models of cloud computing
• Look at three cloud computing deployment models
• Explore the history of AWS
• Be introduced to AWS regions and availability zones
• Learn about AWS security and compliance
• Review AWS products and services

The National Institute of Standards and Technology (NIST) defines cloud
computing as “Ubiquitous, convenient, on-demand access to shared
computing resources that can be rapidly provisioned and released with
minimal management effort.” In other words, cloud computing is the on-
demand delivery of IT resources available from the Internet with a pay-as-
you-go model. Thus, the following are the three basic characteristics of the
cloud:

• On demand Cloud computing enables you to use IT infrastructure as
a resource that is always available on demand per your needs. For
example, when you go home and switch on a light, you don’t care
from where the power is coming. You don’t generate power in your
home. You know that power is always readily available for you
irrespective of your needs, and you will be billed according to your

usage. In the same way, cloud computing allows you to provision
any IT resource on demand.

• Accessible from the Internet All the resources that you deploy in
the cloud are accessible from the Internet, which means you can spin
up resources from anywhere in the globe and have your users work
on those resources instantly from anywhere. If you want the
resources to be available only from your corporate network and not
the Internet, you have the option to do that too. You can also connect
to a cloud vendor such as Amazon Web Services (AWS) directly so
that you can bypass the public Internet. You will explore this in
subsequent chapters of the book.

• Pay-as-you-go model When you use power in your home, you pay
only for what you actually use. In the same way, when you use cloud
computing, you pay per your usage. For example, if you need a
server to run a job for two hours, you pay for the server usage for
two hours and no more. Most cloud resources are billed on an hourly
basis, but some cloud resources may be billed on a separate metric.

With cloud computing you don’t have to own or manage your own data
center or buy your own servers. You just provision the provider’s resources
—compute (server), storage, network, database, and any other service—as
per your needs. You can scale up and scale down seamlessly without
worrying about where the resources are. AWS manages and maintains the
technology and infrastructure in a secure environment, and businesses
access the resources via the Internet or via private connections. There are
many reasons for using the cloud. For example, as an enterprise, you can
run all your applications that support the business in the cloud, you can shift
existing applications to the cloud, you can build all your new applications
for the cloud, and so on. If you are a startup, you can just focus on the next
big idea and forget about purchasing and managing the hardware. Thus,
cloud computing caters to everyone’s need regardless of whether you work
as an individual, in a startup, or in an established enterprise.

You must be wondering, how exactly are the resources provisioned in
the cloud almost instantly? Well, cloud service providers such as AWS own
and maintain the hardware and keep it ready so that whenever you request
some resource, it is available. In fact, AWS keeps network-connected
hardware in multiple data centers and in multiple geographies so that you

can provision the resource in the location nearest to you to get the best user
experience. You will see this in more detail when you study regions and
availability zones later in this chapter.

Advantages of Running Cloud Computing
on AWS
The following are the advantages of running cloud computing on AWS:

• Gaining agility Say you wanted to start a new project; the first thing
you would do is provision hardware for the project. In a traditional
IT model, it can take months to provision the resources before you
can actually start the project. With the cloud, you can provision all
the resources you need almost instantly, saving months of time
procuring them. In some organizations, the procurement process is
so complex that it can take up to three to four months just to get the
hardware. By provisioning the resources in the cloud, you can
eliminate this time and start your project early. In a similar fashion,
if you want to scale up your infrastructure, you don’t have to wait;
you can do it instantly.

• Avoiding guessing about capacity In a traditional enterprise,
whenever you procure the infrastructure for any workload, the first
thing you do is to size it. You take various metrics into consideration
such as the number of users, the volume of transactions, the desired
response time, the expected growth, service level agreements
(SLAs), and so on, and come up with the hardware sizing. In some
enterprises, it takes months to size the hardware correctly. When you
purchase hardware, it sits in your data center for a minimum of three
years. In the meantime, if the application requirement changes, it is
difficult to refresh the hardware. If you oversize the hardware, you
will have unused capacity for which you have already paid but are
not using, but if you undersize, you are going to have business and
performance impacts. Say you are designing the infrastructure for a
portal where customers place orders. On Black Friday you anticipate
20 times more orders than the whole rest of the year. What do you
do? Do you provision 20 times more hardware? If you do, you have

20 times unused capacity for the entire year, and if you don’t, you
won’t be able to meet the demand on Black Friday. With the cloud,
you don’t have to worry about guessing capacity. Since the cloud is
elastic, which means you can scale up and scale down based on your
requirements at any time, you can provision only the resources that
you need at any point of time. When you need more resources, you
can quickly scale up, and when you don’t need them, you can just
scale down. For the Black Friday example, if you have to design the
architecture in the cloud, you just spin up all the resources one day
before Black Friday, and once the big day is over, you can scale
down. This way you don’t overpay for the unused resources and also
never run under capacity if your application demands additional
resources.

• Moving from capital expenses to variable/flexible expenses Cloud
computing allows you to trade all your capital expenses for variable
expenses. Whenever you purchase hardware, it always has an up-
front capital expense associated with it. The capital expense model
does not promote innovation in a company. Say you want to
experiment with something, and for that you need to procure
hardware. So, you make a huge up-front capital investment, but after
three months you realize that the project does not make any sense
and you need to stop experimenting. You just lost your huge
investment. In addition, if you want to experiment with something
else, it might require a different kind of hardware. It becomes
difficult to get approval for new hardware each time you want to
start a project. With an operational expense model, you have zero up-
front costs. As a result, you don’t have to think much before you
start a new project. Even if it does not go well, you can get rid of all
the resources just by paying the usage cost of them. The variable
expense model facilitates innovation since you can experiment as
many times as you want.

• Benefiting from massive economics of scale You might have
noticed when you go to Costco that most of the products are often 10
to 15 percent cheaper than market price. This is because Costco buys
in bulk and sells in bulk, and therefore massive economies of scale
come into the picture. In the same way, a user of cloud computing
benefits from the massive economies of scale since hundreds of

thousands of customers are aggregated in the cloud. This in turns
translates to low pay-as-you-go prices.

• Avoiding spending money on data centers The cloud computing
model allows you to stop paying for your own data center. Whenever
you manage a data center, you need to manage the heavy lifting,
racking, and powering of servers, and you have to pay for space,
staff, physical security, planning, and so on. With cloud computing
you don’t have any overhead to manage the data center, and you can
focus more on what the business needs.

• Benefiting from the pace of innovation AWS is innovating at a
startling pace. Customers can use all the new products and features
instantly, whenever they are released. There is no need to upgrade or
do anything in order to use the new features. The moment a new
feature is available, it is automatically available to you.

• Going global in minutes Say you are running all your operations
from one data center and are creating a business continuity plan and
want to set up a disaster recovery site in a different part of the
country. Or let’s say because of how well your business is doing you
have to open an additional data center in a different part of the
world. How much time do you think either of these examples is
going to take? Three months? Six months? In a traditional model, it
takes a minimum of three to six months to start operating from a
different region. With cloud computing, you don’t have to wait for
months or even days to operate from a different region. With just a
few mouse clicks and a few minutes, you can be ready to operate
from a different region. So, if you want to deploy or host your
application from a different part of the globe or if you want to have a
disaster recovery system on a different continent, you can do it
almost instantly.

Three Models of Cloud Computing
There are three models of cloud computing; when you choose to use cloud
computing, you can choose any one of them or all three of these models
depending on your business needs, how much control you want to have,
how much you want to manage, and so on. The models are Infrastructure as

a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS).

• IaaS IaaS provides the foundation for a cloud IT environment that
includes compute (server), networking, storage, and space in a data
center. IaaS lets you manage the IT resources just like the way you
manage them in your own data center. It provides you with complete
flexibility, and you have total control over all the resources you spin
off. You can visualize IaaS as your own data center in your cloud.

• PaaS With the IaaS model, you manage the overall infrastructure. If
you don’t want the overhead of managing the infrastructure but just
want to focus on deploying and managing the applications, then
PaaS is the model you need. PaaS eliminates the job of managing the
entire infrastructure layer. With the PaaS model, a cloud service
provider such as AWS manages the entire infrastructure for you. As
a result, you can be even more efficient and focus on the business
needs without worrying about infrastructure, capacity planning,
patching cycles, upgrades, and so on.

• SaaS The SaaS model is even simpler than PaaS. SaaS is a way of
delivering applications over the Internet. If you choose the SaaS
model, the SaaS provider offers a complete product that is hosted
and managed by the product vendor. With the SaaS model, you just
need to think about how you are going to use the product. You don’t
have to think about where and how the software is hosted, how to
manage the software behind the scenes, what the patching or
upgrading cycle is, what the maintenance window is, and so on. One
of the most popular examples of SaaS software today is Salesforce.

Figure 1-1 depicts the three models of cloud computing, showing your
responsibility versus the responsibility of the cloud vendor.

Figure 1-1 Three cloud models

Three Cloud Computing Deployment Models
The following are three deployment models when working in the cloud:

• All-in cloud When you design and deploy an application in a public
cloud using a cloud service provider such as AWS, this kind of
deployment is called an all-in cloud. There are two ways you can opt
for an all-in cloud. First, you can create all your new applications in
the cloud, or second, you can migrate existing applications to the
cloud to take advantage of all the features of the cloud. Cloud-based
applications either can be built on low-level infrastructure pieces or
can use higher-level services that abstract the management,
architecting, and scaling requirements of the core infrastructure. You
might have seen in the news recently that Netflix has opted for an
all-in cloud strategy, closing all its data centers and hosting all the

streaming content in AWS. Many companies these days are opting
for an all-in cloud strategy. Most startups and new-age companies
have never operated outside of this model.

• Hybrid With the hybrid deployment model, you host some of the
applications in the cloud and some of the applications at your own
premises. By seamlessly connecting them together, the cloud acts as
an extension of your own data center. This is the quickest way to
embrace the cloud. Most organizations have already made huge
investments in data centers running legacy applications, and it is not
easy to move to the cloud instantly. With a hybrid cloud strategy, you
can start deploying all your new applications to the cloud
immediately and create a road map to migrate legacy IT systems to
the cloud over a period of time. Cloud vendors such as AWS help
their customers with the hybrid cloud deployment model.

• On-premise or private cloud When you deploy the resources in
your own data center using virtualization or resource management
tools, it is often called an on-premise cloud or a private cloud. With a
private cloud, you get some of the advantages of a public cloud but
not all of them since it is impossible to mimic all the services the
public cloud vendor provides at your own data center. Using a
private cloud strategy, you can segregate your resources and can
meter them and charge back to respective business units depending
on their usage. Most customers started their migration journey from
on-premise data centers with an implementation of a private cloud;
this was about going from nonvirtualized servers to virtualization
with automated consumption and chargeback capabilities. With
virtualization, instead of assigning a full physical server to a project,
a “compute node” gets assigned. This capability has been around for
decades in various forms, such as zones/containers in Solaris, IBM’s
server partitioning, and VMware ESX. Private clouds are basically
the virtualization technology with self-service capabilities such as
provisioning, start/stop/resize, and chargebacks.

History of AWS

Amazon is famous for innovation. The pace at which Amazon innovates
amazes me sometimes. Even as a solutions architect I sometimes find it
difficult to keep up with the latest products and services because the pace at
which AWS releases them is unbelievable. The best part of Amazon’s
culture is it experiments with lots of things; of course, not all of them are
successful, but those that are successful are wonders. AWS is one example
of a successful experiment that has made history in cloud computing
technology.

Amazon.com has been around for decades now. While operating and
provisioning resources for Amazon.com, Amazon realized it had developed
a core competency in operating massive-scale technologies and data
centers. So, Amazon began offering this excess capacity to developers and
businesses to build sophisticated, modern, and scalable applications, and
that is how AWS started. AWS was officially launched in 2006. AWS has
more than 175 fully featured services for a wide range of technologies and
has been named a leader in the IaaS space by Gartner’s Magic Quadrant for
the ninth consecutive year (as of July 2019).

AWS Global Infrastructure
AWS has more than a million customers in 190 countries around the world.
AWS serves these customers via its global infrastructure, which consists of
regions, availability zones (AZs), and points of presence (POPs). AWS
maintains 24 regions spanning five continents in the world, with three
additional regions being planned. A region is a physical location in the
world that comprises clusters of highly redundant data centers. The regions
are separated geographically, which provides data sovereignty. You can
think of a region as a distinct geographical location where AWS services are
made available.

https://amazon.com/
https://amazon.com/

NOTE By default, data residing in a region never leaves a region unless
explicitly moved by AWS customers.

When you use an AWS service, you choose the region where you want
to host the services. You can also choose multiple regions depending on
where you want to store the data.

AWS also offers the GovCloud region in the United States, which is
designed for government agencies to run their workloads in the cloud.
Though it is designed for government agencies, other customers can also
use this region.

Within each region there are availability zones (AZs). An AZ consists of
one to six data centers, with redundant power supplies and networking
connectivity. As of this writing, there are 76 AZs. A single data center can
be part of only one AZ. Each AZ is located in a different floodplain; power
grids are designed in such a way that a natural calamity or disaster does not
impact multiple AZs. The AZs have redundant power supplies that come
via different power utility companies, plus backup generators to handle an
extreme power failure. The AZs are engineered to be insulated from failures
in other AZs. The networking among the AZs in a particular region is
designed in such a way that it offers inexpensive, low-latency, private,
fiber-optic network connectivity to another AZ in the same region. The
latency between the AZs within a region is less than a single digit. As a
result, you can synchronously replicate the data across the AZs. The biggest
advantage of this is that you can design an application in such a way that it
can run on multiple AZs, and since the data can be synchronously replicated
within the AZs, in the case of a disaster taking one of the AZs down, there
is no impact on your application. You can even architect an application in
such a way that it automatically fails over between different AZs without
any service interruption. You can choose which AZs you want to host your
applications.

In addition to regions and AZs, AWS also provides local zones, which
can run a few specific AWS services closer to user populations where no
AWS regions exist. The local zones are connected to the parent region via a
high-bandwidth private network, thereby enabling seamless access to rest of
the AWS series that is unavailable in these local areas. In fact, each local
zone is designed to complement an existing AWS region. Figure 1-2 shows
a local zone and an AZ within an AWS region.

Figure 1-2 AWS region, AZ, and local zone

All the AWS data centers are always hot, which means they always have
some customer using the data center. Each data center may host thousands
of servers. They use custom network equipment and servers to cater to their
customers.

In addition to regions and AZs, AWS offers edge locations, or points of
presence (POPs), to provide a better user experience to customers. These
edge locations are in most of the major cities across the globe. At the time
of this writing, there are 216 POPs. The edge locations are mainly used by
content delivery networks to distribute content to nearby end users to

reduce latency and provide fast performance. For example, when you watch
a video from Amazon Video, the video will be cached in an edge location
so that when another customer watches the same video, it will be served
from an edge location for a quick turnaround time and better user
experience. In AWS, the edge location is used to serve Amazon CloudFront
and Amazon Route 53 (which you will learn about in a little bit).

In addition to edge locations, AWS has recently added regional edge
cache locations between the main servers and the edge locations. When an
object is not accessed for a long time, it goes out of the cache, but because
the regional edge cache maintains a larger cache, the object can be stored
there for a longer amount of time. If an application accesses the object
again, it does not have to go to the main server for the access. When the
application is not able to find the object in the edge location, it looks for the
file in the regional edge cache. This helps to improve the performance for
objects that are not frequently accessed. The POPs consist of both edge
locations as well as the regional edge caches.

If you want to run AWS services in your own data center, you can use
AWS Outposts, which is discussed later in this chapter.

EXAM TIP AWS has 24 regions and 76 AZs as of this writing. Since
AWS keeps adding regions and AZs, please check the web site to get the
latest numbers.

Figure 1-3 shows the regions and Edge locations in North America.
Large circles indicate a unique region, and the smaller circles indicate the
number of Edge locations in that region.

Figure 1-3 AWS regions and Edge locations in North America

AWS Security and Compliance
AWS follows the model of shared security, which means AWS is
responsible for the security of the cloud, and customers are responsible for
the security in the cloud. In other words, AWS is responsible for the
physical security of the data centers, video surveillance, hardware, compute,
storage, virtualization, networking (including cabling, router, switches, load
balancers, and firewall), and so on, whereas customers are responsible for
securing the application, the data being hosted, and so on.

In the case of a managed service (for example, Amazon RDS, Amazon
Redshift, Amazon DynamoDB, and so on), AWS is also responsible for the
security configuration of it. Figure 1-4 depicts the shared security model.
This shared security model allows customers to choose the level of security
they need for their application, thereby giving customers more flexibility to
protect their applications and data. With the shared security model, the
customer can secure the data and applications in the same way as they
would do in a data center. You will learn more about this in Chapter 5.

Figure 1-4 AWS shared security model

AWS has earned several industries’ recognized certifications, which
provides complete peace of mind to customers since they know their data is
secured and protected in the cloud. The key ones are as follows:

• SOC 1/SSAE 16/ISAE 3402 (formerly SAS 70)
• SOC 2
• SOC 3
• FISMA, DIACAP, and FedRAMP
• DOD CSM Levels 1-5
• PCI DSS Level 1
• ISO 9001/ISO 27001

• ITAR
• FIPS 140-2
• MTCS Level 3
• Cloud Security Alliance (CSA)
• Family Educational Rights and Privacy Act (FERPA)
• Criminal Justice Information Services (CJIS)
• Health Insurance Portability and Accountability Act (HIPAA)
• Motion Picture Association of America (MPAA)

AWS Products and Services
AWS is continually expanding its services to support virtually every cloud
workload and now has more than 175 services that include compute,
storage, networking, database, analytics, application services, deployment,
management, and mobile services. In this section, you will get an overview
of the products and services, and in subsequent chapters you will learn more
about them.

Figure 1-5 summarizes the services of AWS visually. If you look at the
bottom, it shows the AWS global infrastructure, which consists of regions,
AZs, and POPs.

Figure 1-5 AWS products and services

Above that are core services. The core services are at the heart of the
AWS offerings, and almost every customer uses the core services. The core
services consist of the following.

Compute
The AWS compute services include a variety of products and services that
provide scalable computing capacity in the cloud. The compute services
include both servers and serverless configuration. The compute services
also include the tools required for automatically scaling the resources and
quickly deploying your applications on AWS. Let’s explore the products in
the compute area.

Amazon Elastic Compute Cloud
Amazon Elastic Compute Cloud (EC2) includes the virtual servers, called
instances, in the cloud. A customer can choose from a wide variety of
instances. Some of them are CPU intensive, some of them are memory
intensive, some of them are accelerated computing optimized as in GPU
optimized, some of them are storage optimized, some of them are
input/output (I/O) instances, and some of them are general-purpose
instances. Depending on the use case, the customer can choose from a
variety of instance types. For example, if you are running a database
workload that needs lots of memory, you can choose a memory-intensive
instance, and if you are planning to run machine learning, you can choose
an accelerated computing instance.

Amazon EC2 Auto Scaling
Amazon EC2 Auto Scaling helps in automatically scaling the Amazon EC2
instances up and down as per the policies you define. Combining Amazon
EC2 and Auto Scaling, you can create a high-availability architecture.
Amazon EC2 Auto Scaling also ensures that you are always running with
the desired number of instances. If for some reason an instance goes down,
Amazon EC2 Auto Scaling quickly spins up a new instance. You can define
Amazon EC2 Auto Scaling policies for various metrics and health checks.
For example, you can set the CPU utilization metric to, say, 70 percent in
Amazon EC2 Auto Scaling to add more servers to handle a load that
exceeds that amount. Similarly, if a server is not healthy, you can use the
health check metric of Amazon EC2 Auto Scaling to remove a server. There
is no additional charge for using Amazon EC2 Auto Scaling. Amazon EC2
Auto Scaling integrates with Elastic Load Balancer.

AWS Lambda
AWS Lambda enables you to run code without provisioning or managing
any servers or infrastructure. You can run any code for any kind of
application or back-end service. You simply develop code for your
application or back-end service and define the event triggers with the AWS
Lambda service. AWS Lambda then takes care of provisioning the
resources to run your code, produce the results, and tear down the code.
You can also run code in response to event triggers such as Amazon S3

uploads, Amazon DynamoDB updates, Amazon Kinesis streams, Amazon
API Gateway requests, and so on. The pricing for using AWS Lambda is
simple. You pay only for the compute time when the code is getting
executed; there is no charge when the code is not running. AWS Lambda
scales automatically. Whenever you upload your code, AWS Lambda take
cares of scaling the code automatically. When code is executed, the high
availability is also taken care of automatically; in other words, the code is
scaled with high availability as well.

Amazon EC2 Container Service
Amazon EC2 Container Service (ECS) allows you to run Docker containers
on Amazon EC2 instances. Amazon ECS is scalable and is a performance
container management service. With Amazon ECS you don’t have to
install, scale, and operate your own cluster management infrastructure. You
can launch and manage Docker-enabled applications using application
programming interface (API) calls. You can use the built-in scheduler, write
your own scheduler, or use a third-party scheduler to meet business- or
application-specific requirements. Amazon ECS integrates with other
services such as ELB and Amazon EBS. There are no separate charges for
Amazon ECS; you pay only for the AWS resources used such as Amazon
EC2 instances, Amazon Elastic Block Storage (EBS) volumes, and so on.

Amazon Elastic Kubernetes Service
Amazon Elastic Kubernetes Service (Amazon EKS) is a fully managed
Kubernetes service that makes it easy for you to run your code on AWS
without needing to install and operate your own Kubernetes control plane or
worker nodes. Kubernetes is open source software that enables you to
deploy and manage containerized applications at scale. Amazon EKS
provisions and scales the Kubernetes control plane, including the API
servers and back-end persistence layer, across multiple AWS AZs for high
availability and fault tolerance.

AWS Fargate
AWS Fargate is a serverless compute engine for containers that works with
both Amazon ECS and Amazon EKS. With AWS Fargate, you don’t have
to provision and manage servers for running containers and can simply

focus on building your applications. Both ECS and EKS use containers
provisioned by Fargate to automatically scale, load balance, and manage
scheduling of your containers for availability, providing an easier way to
build and operate containerized applications.

AWS Elastic Beanstalk
AWS Elastic Beanstalk lets you run and manage web applications without
worrying about the underlying infrastructure. You can use Amazon ECS to
deploy web applications with Java, .NET PHP, Node.js, Python, Ruby, Go,
and Docker on servers such as Apache, Nginx, and so on. You just need to
upload your code, and AWS Elastic Beanstalk automatically handles
deployment, load balancing, autoscaling, and application health monitoring.
At the same time, you have full control over the AWS resource; you can
access the underlying resources at any time using the console. There is no
additional charge for AWS Elastic Beanstalk; you pay only for the AWS
resources needed to run your applications.

Amazon Lightsail
Amazon Lightsail is the simplest way to get started with AWS for small
businesses, developers, students, and other users who need a simple virtual
private server (VPS) solution. Amazon Lightsail provides storage,
networking capacity, and compute capabilities to manage and deploy web
sites and web applications in the cloud. Lightsail includes a virtualized
compute server, DNS management, SSD-based storage, data transfer
capabilities, and a static IP address for a low, predictable monthly price. It’s
a one-stop shop to launch your project instantly.

AWS Batch
AWS Batch enables users to efficiently run hundreds of thousands of batch
computing jobs on AWS. AWS Batch dynamically provisions the optimal
type and quantity of compute resources such as memory-optimized
instances, CPU-intensive instances, or storage-optimized instances based on
the storage, capacity, throughput, and specific resource requirements of the
batch jobs submitted. There is no need to install, deploy, and manage batch
computing software or server clusters to run your jobs, enabling you to
concentrate on solving problems and analyzing results.

AWS Outposts
AWS Outposts help in extending AWS services to any data center. Using
Outposts, you can run all the AWS services, APIs, and tools at your data
center, at a partner data center, or at a colocation facility. This fully
managed AWS service offers the same hardware infrastructure and services
you need to build your applications on site and in the cloud. It is an ideal
platform to provide a hybrid experience. Outposts are connected to the
nearest AWS region and can be managed from the console exactly in the
same way you manage the cloud service. You could say that Outposts is the
on-premise version of the AWS cloud.

Networking
Networking is part of the AWS core services. AWS networking helps you to
isolate your cloud infrastructure. AWS provides you with lots of options for
networking, which helps you to architect your application in the most
optimized way. If you want an application to be Internet-facing or if you
want an application to be non-Internet-facing, you can design this using the
AWS networking tools. The following are the AWS networking products.

Amazon Virtual Private Cloud
Using an Amazon Virtual Private Cloud (VPC) you can isolate cloud
resources within your own private virtual network. You can say that an
Amazon VPC is your own data center in the cloud. You have complete
control over the networking in an Amazon VPC. You can bring your own IP
addresses, you can define the subnets as you want, and you have full control
over the route table and network gateways. You can connect an Amazon
VPC with your existing data center using Direct Connect or a virtual private
network, making it an extension of your data center in the cloud. If you
have multiple Amazon VPCs, you can connect them as well using Amazon
VPC peering.

Amazon Route 53
Amazon Route 53 is a Domain Name System (DNS) web service. It is
highly available and scalable, and its SLA is 100 percent uptime. Amazon
Route 53 is IPv4 as well as IPv6 compliant. Amazon Route 53 answers

DNS queries with low latency by using a global network of DNS servers.
Amazon Route 53 translates names like www.amazon.com into numeric IP
addresses like 192.0.1.1. Amazon Route 53 can be integrated with other
AWS services such as Amazon EC2 instances, Amazon S3 buckets, Elastic
Load Balancing, and Amazon CloudFront; it also can be used to route users
to infrastructure outside of AWS. Amazon Route 53 can also be configured
for DNS health checks, and thus traffic can be routed to a healthy endpoint.
It is often used to manage failover from primary to secondary hosted
applications. Amazon Route 53 can also be used to register domain names.

Elastic Load Balancing
Elastic Load Balancing (ELB) allows you to automatically distribute the
load across multiple Amazon EC2 instances. It supports load balancing of
HTTP, HTTPS, and TCP traffic to Amazon EC2 instances. It can be
integrated with Auto Scaling; as a result, you can automatically scale up
and down your Amazon EC2 instance and dynamically grow and shrink
your operation depending on the traffic. ELB can also do health checks so
you can remove the unhealthy/failing instances. ELB helps you to achieve
fault tolerance for your applications. An ELB can support Amazon EC2
instances across different AZs within a region.

AWS Direct Connect
Using AWS Direct Connect, you can establish private, dedicated network
connectivity from your data center to AWS. AWS Direct Connect can be
used from either your data center or your office or colocation. By setting up
AWS Direct Connect, you can reduce bandwidth costs for high-volume data
transfers and get consistent network performance. AWS Direct Connect is
compatible with all the AWS services. AWS Direct Connect provides
1Gbps and 10Gbps connections, and you can easily provision multiple
connections if you need more capacity.

AWS App Mesh
AWS App Mesh helps monitor, control, debug, and trace communications
between services. It can be used with services running on EC2 as well as
with microservice containers managed by Amazon ECS, Amazon EKS,
AWS Fargate, and Kubernetes. In addition to AWS services, App Mesh can

https://www.amazon.com/

be integrated with many popular third-party tools. AWS App Mesh is a
service mesh based on the open source Envoy service.

AWS Global Accelerator
AWS Global Accelerator improves the availability and performance of your
applications for global users. It provides a set of static IP addresses that are
anycast from the AWS edge network, which provides a fixed entry point to
your applications and eliminates the complexity of managing specific IP
addresses for different AWS regions and AZs. It routes the user traffic to
the most favorable endpoint depending on the location, application health
check, and performance, as well as any policies you configure.

Security and Compliance
The security of the cloud is the highest priority for AWS. There are lots of
safeguards at every layer in the AWS infrastructure to keep the data safe
and help protect customer privacy. In addition, AWS provides lots of
compliance programs in its infrastructure. In this section, you will learn
about the products and services related to security and compliance.

AWS Identity and Access Management
AWS Identity and Access Management (IAM) is used to create users,
groups, and roles. It is also used to manage and control access to AWS
services and resources. AWS IAM can be federated with other systems as
well as with corporate directories and corporate single sign-on, thereby
allowing existing identities (users, groups, and roles) of your enterprise to
access AWS resources.

Amazon Inspector
Amazon Inspector is an automated security assessment service that helps
you to identify the security vulnerabilities in your application when it is
being deployed as well as when it is running in a production system.
Amazon Inspector also assesses applications for deviations from best
practices, which helps the overall security of the applications deployed.
Amazon Inspector has hundreds of predefined rules that it checks against.
To use Amazon Inspector, you need to install the AWS agent on each

Amazon EC2 instance. The agent then monitors the Amazon EC2 instance,
collects all the data, and passes it on to the Amazon instance service.

AWS Certificate Manager
AWS Certificate Manager (ACM) is used to manage Secure Sockets Layer
(SSL) certificates for use with AWS services. Using ACM, you can
provision, manage, and deploy SSL/Transport Layer Security (TLS)
certificates. You can protect and secure web sites as well. You can also use
ACM to obtain, renew, and import certificates. You can use certificates
stored in ACM with Elastic Load Balancer and Amazon CloudFront. The
best part is there is no charge for the SSL/TLS certificates you manage with
AWS Certificate Manager. You only pay for the AWS resource you use for
the hosted application or web site.

AWS Directory Service
AWS Directory Service is an AWS managed directory service built on
Microsoft Active Directory. It can be used to manage directories in the
cloud. It enables single sign-on and policy management for Amazon EC2
instances and applications. It can be implemented stand-alone or integrated
with existing directories.

AWS Web Application Firewall
AWS Web Application Firewall (WAF) is a web application firewall that
detects malicious traffic targeted at the web applications. Using WAF, you
can create various rules with which you can protect against common attacks
such as SQL injection and scripting. Using these rules, you can block the
web traffic from certain IP addresses, filter certain traffic from certain
geographical locations, and so on, thus safeguarding your application.

If you want to enable AWS WAF across multiple AWS accounts and
resources from a single location, you can use AWS Firewall Manager,
which is integrated with AWS Organizations. Using AWS Firewall
Manager, you can write company-wide rules from one location and enforce
them across applications protected by AWS WAF. AWS Firewall Manager
monitors for new resources or accounts created to ensure that they comply
with a mandatory set of security policies from day one.

AWS Shield
AWS Shield is a managed service that protects against distributed denial-of-
service (DDoS) attacks targeted at the web applications. There are two tiers
of AWS Shield: Standard and Advanced. AWS Shield Standard is free and
protects against most commonly occurring DDoS attacks against web
applications. With AWS Shield Advanced, you get higher levels of
protection targeting not only against web applications but also Elastic Load
Balancer, Amazon CloudFront, and Amazon Route 53.

Amazon GuardDuty
Amazon GuardDuty is a threat-detection service that continuously monitors
your AWS accounts and workloads to protect them. It provides broad
protection of your AWS accounts, workloads, and data by helping to
identify threats such as attacker reconnaissance, instance compromise, and
account compromise. It monitors and analyzes the data generated from your
account and all the network activities from AWS CloudTrail Events,
Amazon VPC Flow Logs, and DNS logs. It also uses integrated threat
intelligence, such as known malicious IP addresses, anomaly detection, and
machine learning, to identify threats more accurately. It incorporates user
behavior analysis, machine learning, and anomaly detection to detect
threats. Amazon GuardDuty delivers detailed and actionable alerts that are
easy to integrate with existing event management and workflow systems.

Amazon Macie
Amazon Macie helps you protect your data in Amazon S3 by helping you
classify what data you have, the business value of that data, and the
behavior associated with access to that data. It uses machine learning to
discover, classify, and protect sensitive data automatically in AWS. Amazon
Macie uses machine learning to recognize sensitive data such as personally
identifiable information (PII) or intellectual property, assigns a business
value, and provides visibility into where this data is stored and how it is
being used in your organization. Amazon Macie continuously monitors data
access activity for anomalies and delivers alerts when it detects risk of
unauthorized access or inadvertent data leaks. You can use Amazon Macie
to protect against security threats by continuously monitoring your data and
account credentials. When alerts are generated, use Amazon Macie for

incident response, using Amazon CloudWatch Events to take action swiftly
to protect your data.

AWS Secrets Manager
AWS Secrets Manager is a secrets management service that helps you
protect access to your applications, services, and IT resources. Using Secret
Manager, you can manage secrets such as database credentials, on-premise
resource credentials, SaaS application credentials, third-party API keys, and
Secure Shell (SSH) keys. You can secure and manage secrets used to access
resources in the AWS cloud, on third-party services, and on premises. Using
this service, you can protect access to your applications, services, and IT
resources, without the up-front investment and ongoing maintenance costs
of operating your own infrastructure.

AWS SSO
AWS Single Sign-On (SSO) is an AWS service that enables you to use your
existing credentials from Microsoft Active Directory to access your cloud-
based applications, such as AWS accounts and business applications (Office
365, Salesforce, Box), by using SSO. With AWS SSO, you can centrally
manage SSO access and user permissions for all of your AWS accounts
managed through AWS Organizations. AWS SSO eliminates the
administrative complexity of the custom SSO solutions you use to provision
and manage identities across AWS accounts and business applications.

AWS CloudHSM
The AWS CloudHSM service provides you with a dedicated hardware
security module (HSM) in the AWS cloud. It helps you to meet all the
contractual and regulatory compliance requirements. The HSM is a tamper-
resistant hardware, which provides secure key storage and cryptographic
operations. Using this you can easily generate and manage your own keys
on the AWS cloud. It can be used for many purposes like encrypting the
database, document signing, digital rights management, and so on.

AWS KMS

AWS Key Management Service (KMS) is a managed service that helps you
create and control the keys used for cryptographic operations. AWS KMS
presents a single control point from which to manage keys and define
policies consistently across integrated AWS services and your own
applications. KMS uses hardware security modules to protect the keys.
With KMS, you can centrally manage the encryption keys that control
access to your data. It can also help developers who need to digitally sign or
verify data using asymmetric keys.

Storage and Content Delivery
AWS provides a broad set of products for storing data. You can pick a
storage solution on AWS based on your business needs. In this section, you
will explore all the options available to customers for storage and content
delivery.

Amazon Simple Shared Storage
Amazon Simple Shared Storage (S3) was one of the first services launched
by AWS in 2006. Amazon S3 is the backbone of AWS. Many AWS services
use Amazon S3 or rely on Amazon S3. It is the storage for the Internet,
which is also used as an object store. Amazon S3 lets you store and retrieve
any amount of data, at any time, from anywhere on the Web. Amazon S3 is
highly scalable, reliable, and secure. It is designed to deliver 99.999999999
percent durability. Amazon S3 supports encryption, so you can store your
objects in an encrypted manner. You can store an unlimited amount of data,
but each file size can’t exceed 5TB. With Amazon S3, you pay only for
what you use. There is no minimum fee.

Amazon Glacier
Amazon Glacier is a low-cost cloud storage that is mainly used for data
archiving and long-term backup purposes. Like Amazon S3, Amazon
Glacier is secure and durable, and there is no limit to the amount of data to
be stored. Amazon Glacier is cheaper than Amazon S3, and you pay only
for what you use. There is no minimum fee. Amazon Glacier is integrated
with Amazon S3. Through Amazon S3 lifecycle policies, you can optimize

your storage costs by moving infrequently accessed objects from Amazon
S3 to Amazon Glacier, or vice versa.

Amazon Elastic Block Storage
As the name suggests, Amazon Elastic Block Storage (EBS) provides
persistent block storage for EC2 instances. You can choose from either
magnetic or solid-state drive (SSD) disks for Amazon EBS volumes.
Amazon EBS volumes are automatically replicated within their AZ to
provide fault tolerance and high availability. Amazon EBS supports
encryption for data in rest as well as data in transit between Amazon EC2
instances and Amazon EBS volumes. You can also create snapshots of
Amazon EBS volumes in Amazon S3 at any point in time. Amazon EBS
supports provisioned input/output operations per second (IOPS), which
helps you to preprovision the IOPS based on your application needs.

Amazon Elastic File System
Amazon Elastic File System (Amazon EFS) is a fully managed service that
provides easy, scalable, shared file storage with Amazon EC2 instances in
the AWS cloud. It provides a simple file system interface and can be
accessed concurrently for up to thousands of Amazon EC2 instances.

AWS Storage Gateway
AWS Storage Gateway is a service that helps to seamlessly integrate on-
premise storage with AWS cloud storage. It is delivered as a virtual
machine installed in an on-premise data center. You can connect it as a file
server, or you can connect it as a local disk. You can also connect it as a
virtual tape library. AWS Storage Gateway can be easily integrated with
Amazon S3, Amazon EBS, and Amazon Glacier. The transfers are
optimized since compression, encryption, and bandwidth management are
built in.

Import/Export Options
AWS Import/Export is a service that helps to transfer a large amount of data
into AWS using a physical storage appliance. By doing that, you can bypass
the data transfer over the Internet. Using this option, you mail a storage

device with your data on it. AWS loads the data into the cloud and returns
your device. You can also use AWS Snowball in which case AWS ships a
physical device to your premises; you can load the data and ship it back to
AWS. This physical device is called AWS Snowball. Snowball comes in
two sizes: 80TB and 50TB. Other options to transfer data to AWS are to use
AWS Direct Connect, which is a dedicated virtual network from your
location to the AWS data center, or to use Amazon Kinesis Firehose, which
can capture and automatically load streaming data into Amazon S3.

Amazon CloudFront
Amazon CloudFront is the global content delivery network (CDN) service
of AWS. Amazon CloudFront helps to accelerate the delivery of the static
content of your web sites, including photos, videos, or any other web assets.
Amazon CloudFront can also be used to deliver all the content of your web
site, including the dynamic content. Amazon CloudFront provides advanced
CDN features such as SSL support, geographic restriction, and private
content. It can be easily integrated with other AWS products, thereby
providing businesses with an easy way to accelerate content. As of this
writing, AWS has 100-plus Amazon CloudFront locations.

Database
AWS provides fully managed relational and nonrelational (NoSQL)
database services plus fully managed data warehousing services and in-
memory caching as a service. In this section, you will learn about all the
database offerings AWS has.

Amazon Relational Database Service
Amazon Relational Database Service (RDS) is a fully managed relational
database service. With this service, you can host a variety of relational
database management system (RDBMS) engines in the cloud. It supports
both commercial and open source database engines. Amazon RDS supports
MySQL, Oracle, SQL Server, PostgreSQL, and Maria DB. In addition,
Amazon RDS supports Amazon’s own database, Aurora. AWS provides
resizable capacity, so at any time you can scale up or down depending on
your business needs. Since this is a managed database service, AWS takes

care of database management and administration tasks, including patching,
upgrading, and backups. AWS also offers a high-availability option for
Amazon RDS for fault tolerance and durability.

Amazon DynamoDB
Amazon DynamoDB is a fully managed NoSQL database service of AWS.
It is highly scalable, durable, and highly available and is capable of
handling any data volume. It delivers consistent, single-digit-millisecond
latency at any scale. It consists of SSD storage. Since this is also a managed
service, you don’t have to deal with database administration. The data is
replicated automatically in three ways, providing the high availability of
data. It supports both document and key-value models. It is a great fit for
mobile, web, gaming, Internet of Things (IoT), and many other
applications.

Amazon Redshift
Amazon Redshift is a fully managed petabyte-scale data warehouse service.
It stores the data in columnar format, thereby providing better I/O
efficiency. You should be able to spin up an Amazon Redshift cluster in
minutes. The data is continuously backed up in Amazon S3. As a result,
you don’t have to worry about backing it up. You can choose either a
magnetic or SSD-based drive to store the data. You can scale up or down an
Amazon Redshift cluster depending on your business and processing needs
and thus can process parallel operations. You can access the Amazon
Redshift cluster via ODBC or JDBC.

Amazon ElastiCache
Amazon ElastiCache is a service that helps in deploying an in-memory
cache or data store in the cloud. Amazon ElastiCache supports two open
source in-memory engines: Redis and Memcached. Using Amazon
ElastiCache, you can greatly improve the performance of your web
application. Since it is a managed service, AWS takes care of patching,
monitoring, failure recovery, and backups. Amazon ElasticCache can be
integrated with Amazon CloudWatch and Amazon SNS, which you will
learn about later in this chapter.

Amazon Aurora
Amazon Aurora is Amazon’s relational database built for the cloud. It
supports two open source RDBMS engines: MySQL and PostgreSQL. It
supports databases up to 64TB in size. It is highly available, durable, and
scalable. By default, the data is mirrored across three AZs, and six copies of
the data are kept. You can create up to 15 read replicas in an Amazon
Aurora database. It is a fully managed database service, so database
administration is taken care of by AWS. The database is constantly backed
up to Amazon S3, enabling granular point-in-time recovery.

Amazon Neptune
Amazon Neptune is a fully managed graph database service with which you
can build and run applications that work with highly connected data sets.
Using Amazon Neptune, you can use open source and popular graph query
languages to execute powerful queries that are easy to write and perform
well on connected data. Amazon Neptune supports both the open source
Apache TinkerPop Gremlin graph traversal language and the W3C standard
Resource Description Framework (RDF) SPARQL query language. It can
be used for graph use cases such as recommendation engines, knowledge
graphs, fraud detection, and network security.

Amazon QLDB
Amazon QLDB is a purpose-built ledger database that provides a complete
and cryptographically verifiable history of all changes made to your
application data. This service provides a transparent, immutable, and
cryptographically verifiable transaction log owned by a central trusted
authority. It tracks each and every application data change and maintains a
complete and verifiable history of changes over time. Data in Amazon
QLDB is written to an append-only journal, providing the developer with
full data lineage.

Amazon DocumentDB
Amazon DocumentDB is a fully managed document database service for
MongoDB. It is fast, scalable, and highly available. Using this service, you
can store, query, and index JSON data. Because DocumentDB is compatible

with MongoDB, you can use the same MongoDB application code, drivers,
and tools. In Amazon DocumentDB, the storage and compute are
decoupled, thereby allowing each one to scale independently. The data in
DocumentDB is replicated six times across three AZs, and it provides 99.99
percent availability.

Amazon Keyspaces
Amazon Keyspaces is a managed Apache Cassandra–compatible database
service. It is scalable and highly available. Using this service, you can run
your Cassandra workloads on AWS by using the same Cassandra Query
Language (CQL) code, Apache 2.0–licensed drivers, and any other tools
that you use today. Because Amazon Keyspaces is serverless, you don’t
have to manage the overhead of provisioning, patching, or managing the
server, nor do you have to install, maintain, or operate software. The tables
automatically scale up and down depending on usage.

Analytics
AWS provides a variety of ways in which companies can analyze a vast
amount of data quickly and efficiently. AWS provides analytics tools that
can scale to very large data stores efficiently and cost-effectively. In this
section, you will get an overview of these tools.

Amazon Athena
Amazon Athena is a serverless, interactive query service that enables users
to easily analyze data in Amazon S3 using standard SQL. There is no
infrastructure setup or management required for end users, and you can start
analyzing data in Amazon S3 immediately. Amazon Athena uses Presto
with full standard SQL support that works with a variety of standard data
formats, including JSON, ORC, CSV, Arvo, and Apache Parquet.

Amazon EMR
Amazon EMR is a web service that enables users, businesses, enterprises,
data analysts, researchers, and developers to easily and cost-effectively
process enormous amounts of data. It utilizes a hosted Hadoop framework
running on the web-scale infrastructure of Amazon S3 and Amazon EC2.

Amazon Elasticsearch Service
Amazon Elasticsearch Service is a fully managed web service that makes it
easy to create, operate, deploy, and scale Elasticsearch clusters in the AWS
cloud.

Amazon CloudSearch
Amazon CloudSearch is a fully managed web service in the AWS cloud that
offers a simple, cost-effective, easy-to-use way to manage and scale a
search solution for your application or web site. The Amazon CloudSearch
service supports 34 languages and popular search features such as
autocomplete, highlighting, and geospatial search.

AWS Data Pipeline
AWS Data Pipeline enables users to process, transform, and move data
between different AWS compute and storage services, as well as on-premise
data sources, at specified intervals reliably and efficiently.

Amazon Kinesis
Amazon Kinesis is a fully managed service that makes it easy to collect,
analyze, and process real-time, streaming data. This enables users to get
timely insights and react quickly to new information. Amazon Kinesis
offers capabilities to cost-effectively process streaming data at any scale,
along with the option to choose tools that best suit the requirements of your
application. With Amazon Kinesis, you can ingest real-time data such as
web site clickstreams, application logs, IoT data, and more into your
databases, data warehouses, and data lake, or you can build your own real-
time applications using this data.

AWS Glue
AWS Glue is a fully managed, extract, transform, and load (ETL) service. It
can discover your data automatically and profiles the data via its built-in
Glue Data Catalog. It not only recommends but also generates ETL code for
transforming source data into target schema. It runs ETL jobs in an Apache
Spark environment and loads the data into the target. AWS Glue Data
Catalog is a central metadata repository; an ETL engine that can

automatically generate Scala or Python code; and a flexible scheduler that
handles dependency resolution, job monitoring, and retries. It also enables
you to set up, orchestrate, and monitor complex data flows.

Amazon MSK
Amazon MSK is a managed service for managing Apache Kafka
infrastructure and operations. Apache Kafka is an open source platform for
building real-time streaming data pipelines and applications. This streaming
data store decouples applications producing streaming data (producers) into
its data store from applications consuming streaming data (consumers) from
its data store. It is mainly used for analyzing and reacting to streaming data.
Since Amazon MSK is a managed service, you don’t have to worry about
managing your Apache Kafka clusters. Amazon MSK operates and
maintains Apache Kafka clusters on your behalf, and you can quickly build
one from scratch within minutes. You can also easily migrate your existing
Apache Kafka workloads into Amazon MSK.

AWS Lake Formation
AWS Lake Formation makes it easy to set up a secure data lake in days. A
data lake is a central data repository with a large variety of data. It contains
both structured and unstructured data. Using a data lake, you can manage
the full life cycle of your data. The first step of building a data lake is
ingesting and cataloging data from a variety of sources. The ingesting of
data can be in real time (stream) or in a batch. Once the data is ingested, it
is then enriched, combined, and cleaned before analysis, which makes it
easy to discover and analyze the data with direct queries, visualization, and
machine learning. Building a data lake can be challenging, since there are
so many moving parts involved, from loading data from diverse sources, to
monitoring those data flows, setting up partitions, turning on encryption and
managing keys, defining transformation jobs and monitoring their
operation, reorganizing data into a columnar format, configuring access
control settings, deduplicating redundant data, matching linked records,
granting access to data sets, and auditing access over time. Using the AWS
Lake Formation service, you can easily set up and secure a data lake. After
you define the data sources and data access and security policies, Lake
Formation helps you collect and catalog data from databases and object

storage, move the data into your new Amazon S3 data lake, clean and
classify your data using machine learning algorithms, and secure access to
your sensitive data. Users can then leverage these data sets with their choice
of analytics and machine learning services for performing various analyses.

Amazon QuickSight
Amazon QuickSight is an easy, fast, cloud-powered, fully managed
business analytics service that makes it easy to build visualizations, perform
ad hoc analysis, and quickly get meaningful insights from your data.

Application Services
AWS provides many options for running applications in the cloud. It
provides you with the infrastructure for running the APIs, coordinating
work across distributed application components, running microservices, and
so on. In this section, you will look at the application services.

Amazon API Gateway
Amazon API Gateway is a fully managed service that provides developers
with an easy, simple, scalable, flexible, pay-as-you-go service that handles
all aspects of building, deploying, and operating robust APIs for application
back-end services such as code running on AWS Lambda, applications
running on Amazon EC2, or any web application. Amazon API Gateway
handles several tasks involved in processing and accepting up to hundreds
of thousands of concurrent API calls, including traffic management, access
control, authorization, monitoring events, and API version management.

AWS Step Functions
AWS Step Functions is a fully managed service that enables users to
efficiently and securely coordinate various components of distributed
applications and microservices using visual workflows. This service
provides a graphical interface for users to visualize and arrange the
components of their applications, making it easy to run and build multiple
layered step applications.

Amazon Simple Workflow Service

Amazon Simple Workflow Service (SWF) is a web-based cloud service that
makes it easy to coordinate work across distributed application components.
Amazon SWF enables applications for a range of use cases, including web
application back ends, media processing, business process workflows, and
data analytics pipelines, to be designed as a coordination of jobs and tasks.

Amazon Elastic Transcoder
Amazon Elastic Transcoder is an easy-to-use, highly scalable, and cost-
effective way for users and businesses to convert (or transcode) video and
audio files from their source format into the output format of their choice
that they can play back on various devices such as smartphones, desktops,
televisions, tablets, and PCs.

Developer Tools
AWS empowers you with lots of developer tools so that you can quickly
build and deploy your code without having to manage the infrastructure
running beneath. It helps you to continuously develop during the software
development life cycle. AWS provides various SDKs and tools for
developers working in various development languages and platforms. With
AWS tools you don’t have to wait on anything for deploying your code. In
this section, you will learn about the developer tools.

AWS CodeCommit
AWS CodeCommit is a fully managed source control service that makes it
easy to host highly scalable private Git repositories securely. Users no
longer need to operate their own source control system or worry about
scaling their infrastructure.

AWS CodePipeline
AWS CodePipeline is a fully managed continuous integration and
continuous delivery service for quick, reliable application and infrastructure
updates. AWS CodePipeline builds, tests, and deploys code every time the
code is modified, updated, and checked in based on the release process
models you define.

AWS CodeBuild
AWS CodeBuild is a fully managed build service that builds and compiles
source code, runs tests, and produces software packages that are ready to
deploy, eliminating the need to provision, manage, and scale build servers.

AWS CodeDeploy
AWS CodeDeploy is a fully managed service that automates code
deployments to any instance or servers, including Amazon EC2 instances
and servers running on-premises. AWS CodeDeploy makes releasing new
features quick and easy, helping you avoid downtime during application
deployment.

Management Tools
AWS provides a broad set of services that help system administrators, IT
administrators, and developers more easily manage and monitor their
hybrid and cloud infrastructure resources. These fully managed services
help to automatically provision, operate, configure, and manage AWS or
on-premises resources at scale. They also provide capabilities to monitor
infrastructure logs and metrics using real-time dashboards and alarms and
to enforce compliance and security. In this section, you will look at the
management tools at a very high level.

AWS CloudFormation
AWS CloudFormation helps automate resource provisioning using
declarative templates and deploying resource stacks. It gives developers and
systems administrators an easy way to create and manage a collection of
related AWS resources, provisioning and updating them in an orderly and
predictable fashion. You can use AWS’s sample CloudFormation templates,
or you can create your own template to describe AWS resources. AWS
CloudFormation helps to keep the infrastructure as code, and you can spin
them off wherever needed. You can even use AWS CloudFormation
templates to deploy resources in a different AZ or region.

AWS Service Catalog

AWS Service Catalog allows IT administrators to create, manage, and
distribute catalogs of approved products to end users, who can then access
the products they need in a personalized portal. Administrators can control
which users have access to each product to enforce compliance with
organizational business policies. Administrators can also set up adopted
roles so that end users only require IAM access to AWS Service Catalog to
deploy approved resources. AWS Service Catalog allows your organization
to benefit from increased agility and reduced costs because end users can
find and launch only the products they need from a catalog that you control.

AWS OpsWorks
AWS OpsWorks for Chef Automate provides a fully managed Chef server
and suite of automation tools that give you workflow automation for
continuous deployment, automated testing for compliance and security, and
a user interface that gives you visibility into your nodes and their status.
The Chef server gives you full stack automation by handling operational
tasks such as software and operating system configurations, package
installations, database setups, and more. The Chef server centrally stores
your configuration tasks and provides them to each node in your compute
environment at any scale, from a few nodes to thousands of nodes. AWS
OpsWorks for Chef Automate is completely compatible with tooling and
cookbooks from the Chef community and automatically registers new nodes
with your Chef server.

AWS OpsWorks Stacks let you manage applications and servers on AWS
and on-premises. With AWS OpsWorks Stacks, you can model your
application as a stack containing different layers, such as load balancing,
database, and application server layers. You can deploy and configure
Amazon EC2 instances in each layer or connect other resources such as an
Amazon RDS database.

Amazon CloudWatch
Amazon CloudWatch is a monitoring service for AWS cloud resources and
the applications you run on AWS. You can use Amazon CloudWatch to
collect and track metrics, collect and monitor log files, and set alarms.
Amazon CloudWatch can monitor AWS resources such as Amazon EC2
instances, Amazon DynamoDB tables, and Amazon RDS DB instances, as

well as custom metrics generated by your applications and services and any
log files your applications generate. You can use Amazon CloudWatch to
gain systemwide visibility into resource utilization, application
performance, and operational health. You can use these insights to react and
keep your application running smoothly.

AWS Config
AWS Config is a fully managed service that provides you with an AWS
resource inventory, configuration history, and configuration change
notifications to enable security and governance. With AWS Config, you can
discover existing AWS resources, export a complete inventory of your AWS
resources with all configuration details, and determine how a resource was
configured at any point in time. These capabilities enable compliance
auditing, security analysis, resource change tracking, and troubleshooting.

AWS CloudTrail
AWS CloudTrail is a managed web service that records AWS API calls and
user activity in your account and delivers log files to you via Amazon S3.
AWS CloudTrail provides visibility into user activity by recording API calls
made on your account. AWS CloudTrail records important information
about each API call, including the name of the API, the identity of the
caller, the time of the API call, the request parameters, and the response
elements returned by the AWS service.

Messaging
AWS has offerings that help you receive notifications from the cloud,
publish messages from applications and deliver them to subscribers, and
manage the message queues to store messages to be processed. In this
section, you will look at these offerings from a high level.

Amazon Simple Notification Service
Amazon Simple Notification Service (SNS) is a highly scalable, flexible,
and cost-effective web service that makes it easy to configure, operate, and
send notifications from the cloud. It provides developers with a highly
scalable, flexible, and cost-effective capability to publish messages from an

application and immediately deliver them to subscribers or other
applications.

Amazon Simple Email Service
Amazon Simple Email Service (SES) provides developers with a highly
scalable, flexible, and cost-effective capability to publish messages from an
application and immediately deliver them to subscribers or other
applications. Amazon SES is an e-mail platform that provides an efficient
and reliable platform to send and receive e-mail using your own e-mail
addresses and domains.

Amazon Simple Queue Service
Amazon Simple Queue Service (SQS) is a managed web service that gives
you access to message queues to store messages waiting to be processed.
Amazon SQS enables you to quickly build message queuing applications
that can run on any computer. Amazon SQS offers a reliable, scalable,
messaging queue service for storing messages in transit between computers.

Migration
AWS provides a variety of ways in which you can migrate your existing
applications, databases, workloads, and data into AWS. In this section, you
will learn all the migration services provided by AWS.

AWS Application Discovery Service
AWS Application Discovery Service enables you to quickly and reliably
plan application migration projects by automatically identifying
applications running in on-premise data centers and mapping their
associated dependencies and their performance profiles.

AWS Database Migration Service
AWS Database Migration Service helps you to migrate databases to AWS
reliably and securely. The source database remains fully operational during
the migration, minimizing downtime. AWS Database Migration Service can

migrate your data homogenously or heterogeneously to and from most
widely used enterprise and open source databases.

AWS Snowball
AWS Snowball helps you transport a petabyte-scale amount of data into and
out of the AWS cloud. AWS Snowball eliminates common challenges with
large-scale data transfer such as high network costs, security concerns, and
long transfer time. Transferring data with AWS Snowball is easy, efficient,
fast, and secure, and it can cost as little as one-fifth of high-speed Internet.

AWS Server Migration Service
AWS Server Migration Service (SMS) is an agentless service that helps
coordinate, automate, schedule, and track large-scale server migrations. It
makes it easier and faster for you to migrate thousands of on-premise
workloads to AWS.

Artificial Intelligence
Amazon provides four services for artificial intelligence. As of now, the
examination does not cover these services, but it is good to know the
offerings from AWS for artificial intelligence.

Amazon Lex
Amazon Lex is a fully managed service for building conversational chatbot
interfaces using voice and text. Amazon Lex provides high-quality
language-understanding capabilities and speech recognition.

Amazon Polly
Amazon Polly is a fully managed service that converts text into lifelike
speech. Amazon Polly enables existing applications to speak and creates the
opportunity for entirely new categories of speech-enabled products,
including chatbots, cars, mobile apps, devices, and web appliances.

Amazon Rekognition

Amazon Rekognition is a fully managed, easy-to-use, reliable, and efficient
image recognition service powered by deep learning. Amazon Rekognition
has been built by Amazon’s Computer Vision teams over several years and
analyzes billions of images every day. Amazon Rekognition’s API detects
thousands of scenes and objects, analyzes faces, compares faces to measure
similarity, and identifies faces in a collection of faces.

Amazon SageMaker
Amazon SageMaker is a fully managed machine service that enables you to
build, train, and deploy machine learning models very quickly. It provides
managed instances of TensorFlow and Apache MXNet, where users can
create their own machine learning algorithms.

Internet of Things
The Internet of Things (IoT) is a term coined by Kevin Ashton, a British
technology pioneer working on radio-frequency identification (RFID) who
conceived a system of ubiquitous sensors connecting the physical world to
the Internet. Although things, Internet, and connectivity are the three core
components of IoT, the value is in closing the gap between the physical and
digital worlds in self-reinforcing and self-improving systems. The following
is the overview of AWS’s offerings in IoT. This topic is not required from
an examination perspective.

AWS IoT Platform
The AWS IoT platform is a fully managed cloud platform that lets
connected devices interact with cloud applications and other devices
securely and efficiently. AWS IoT can support trillions of messages and
billions of devices and can process and route those messages to AWS
endpoints and to other devices reliably and securely.

AWS Greengrass
AWS Greengrass is a software solution that lets you run local compute,
messaging, and data caching for connected IoT devices in an efficient and
secure way. AWS Greengrass enables devices to run AWS Lambda

functions, keep data in sync, and communicate with other devices securely,
even when Internet connectivity is not possible.

AWS IoT Button
AWS IoT Button is a programmable button based on the Amazon Dash
Button hardware. This simple Wi-Fi device is easy to configure and
designed for developers to get started with AWS IoT, AWS Lambda,
Amazon DynamoDB, Amazon SNS, and many other Amazon web services
without writing device-specific code.

You can code the button’s logic in the cloud to configure button clicks to
count or track items, call or alert someone, start or stop something, order
services, or even provide feedback. For example, you can use this button to
do a variety of stuff such as control the temperature of your room, open the
garage door, order food, remotely control all the electrical appliances at
your home, and so on.

Mobile Services
AWS has offerings in the mobile space as well. In this section, you will
learn about the services at a very high level. The examination does not
cover these services.

Amazon Cognito
The Amazon Cognito web service lets you add users to sign up and sign in
to your mobile and web apps fast and reliably. Amazon Cognito lets you
authenticate users through social identity providers such as Twitter,
Facebook, or Amazon, along with other SAML identity solutions, or by
using a custom identity system. Amazon Cognito also allows your
applications to work when the devices are offline, as it lets you save data
locally on users’ devices.

AWS Mobile Hub
AWS Mobile Hub is a web service that provides an integrated experience
for configuring, discovering, and accessing AWS cloud services for
creating, testing, deploying, and monitoring usage of mobile applications.
In AWS Mobile Hub, you can select and configure features to add to your

mobile app. AWS Mobile Hub features help integrate various AWS
services, client SDKs, and client integration code to quickly and easily add
new features and capabilities to your mobile app.

AWS Device Farm
AWS Device Farm lets you test mobile apps on real mobile devices and
tablets. It is an app testing web service where users can interact and test
their iOS, web, and Android apps on several device platforms at once.

Amazon Mobile Analytics
Amazon Mobile Analytics is a web service that enables you to measure the
app usage and revenue. It helps to track key trends and patterns such as new
users versus returning users, user retention, app revenue, and custom in-app
behavior events.

Chapter Review
In this chapter, you learned that cloud computing is the on-demand delivery
of IT resources available from the Internet with a pay-as-you-go model.

You also learned that the following are advantages of running cloud
computing on AWS:

• Gaining agility
• Avoiding guessing about capacity
• Moving from capital expenses to variable/flexible expenses
• Benefiting from massive economics of scale
• Avoiding spending money on data centers
• Benefiting from the pace of innovation
• Going global in minutes

You learned about the three models of cloud computing.

• Infrastructure as a Service
• Platform as a Service
• Software as a Service

There are three ways in which you can deploy on the cloud.

• “All-in” cloud
• Hybrid cloud
• On-premises or private cloud

AWS has more than a million customers in 190 countries across the
globe. To serve these customers, AWS maintains 24 regions spanning five
continents. Within each region there are availability zones. An AZ consists
of one to six data centers, with redundant power supplies and networking
connectivity.

AWS follows the model of shared security, which means AWS is
responsible for the security of the cloud and customers are responsible for
security in the cloud.

AWS has been continually expanding its services to support virtually any
cloud workload and now has more than 175 services that include compute,
storage, networking, database, analytics, application services, deployment,
management, and mobile services.

Questions
1. If you want to run your relational database in the AWS cloud, which

service would you choose?
A. Amazon DynamoDB
B. Amazon Redshift
C. Amazon RDS
D. Amazon ElastiCache

2. If you want to speed up the distribution of your static and dynamic web
content such as HTML, CSS, image, and PHP files, which service
would you consider?
A. Amazon S3
B. Amazon EC2
C. Amazon Glacier
D. Amazon CloudFront

3. What is a way of connecting your data center with AWS?
A. AWS Direct Connect
B. Optical fiber
C. Using an Infiniband cable
D. Using a popular Internet service from a vendor such as Comcast

or AT&T
4. What is each unique location in the world where AWS has a cluster of

data centers called?
A. Region
B. Availability zone
C. Point of presence
D. Content delivery network

5. You want to deploy your applications in AWS, but you don’t want to
host them on any servers. Which service would you choose for doing
this? (Choose two.)
A. Amazon ElastiCache
B. AWS Lambda
C. Amazon API Gateway
D. Amazon EC2

6. You want to be notified for any failure happening in the cloud. Which
service would you leverage for receiving the notifications?
A. Amazon SNS
B. Amazon SQS
C. Amazon CloudWatch
D. AWS Config

7. How can you get visibility of user activity by recording the API calls
made to your account?
A. By using Amazon API Gateway
B. By using Amazon CloudWatch
C. By using AWS CloudTrail
D. By using Amazon Inspector

8. You have been tasked with moving petabytes of data to the AWS
cloud. What is the most efficient way of doing this?
A. Upload them to Amazon S3
B. Use AWS Snowball
C. Use AWS Server Migration Service
D. Use AWS Database Migration Service

9. How do you integrate AWS with the directories running on-premise in
your organization?
A. By using AWS Direct Connect
B. By using a VPN
C. By using AWS Directory Service
D. Directly via the Internet

10. How can you have a shared file system across multiple Amazon EC2
instances?
A. By using Amazon S3
B. By mounting Elastic Block Storage across multiple Amazon EC2

servers
C. By using Amazon EFS
D. By using Amazon Glacier

Answers
1. C. Amazon DynamoDB is a NoSQL offering, Amazon Redshift is a

data warehouse offering, and Amazon ElastiCache is used to deploy
Redis or Memcached protocol–compliant server nodes in the cloud.

2. D. Amazon S3 can be used to store objects; it can’t speed up the
operations. Amazon EC2 provides the compute. Amazon Glacier is the
archive storage.

3. A. Your colocation or MPLS provider may use an optical fiber or
Infiniband cable behind the scenes. If you want to connect over the
Internet, then you need a VPN.

4. A. AZs are inside a region, so they are not unique. POP and content
delivery both serve the purpose of speeding up distribution.

5. B, C. Amazon ElastiCache is used to deploy Redis or Memcached
protocol–compliant server nodes in the cloud, and Amazon EC2 is a
server.

6. A. Amazon SQS is the queue service; Amazon CloudWatch is used to
monitor cloud resources; and AWS Config is used to assess, audit, and
evaluate the configurations of your AWS resources.

7. C. Amazon API Gateway is a fully managed service that makes it easy
for developers to create, publish, maintain, monitor, and secure APIs at
any scale. Amazon CloudWatch is used to monitor cloud resources.
AWS Config is used to assess, audit, and evaluate the configurations of
your AWS resources, and Amazon Inspector is an automated security
assessment service that helps improve the security and compliance of
applications deployed on AWS.

8. B. You can also upload data to Amazon S3, but if you have petabytes
of data and want to upload it to Amazon S3, it is going to take a lot of
time. The quickest way would be to leverage AWS Snowball. AWS
Server Migration Service is an agentless service that helps coordinate,
automate, schedule, and track large-scale server migrations, whereas
AWS Database Migration Service is used to migrate the data of the
relational database or data warehouse.

9. C. AWS Direct Connect and a VPN are used to connect your corporate
data center with AWS. You cannot use the Internet directly to integrate
directories; you need a service to integrate your on-premise directory
to AWS.

10. C. Amazon S3 is an object store, Amazon EBS can’t be mounted
across multiple servers, and Amazon Glacier is an extension of
Amazon S3.

CHAPTER 2
Storage on AWS

In this chapter, you will
• Learn the storage offerings of AWS
• Learn to use Amazon S3
• Learn to use Amazon S3 Glacier
• Learn to use Amazon Elastic Block Store
• Learn to use Amazon Elastic File System
• Learn how to move a large amount of data to AWS

The storage offerings of AWS can be divided into three major categories, as
shown in Figure 2-1.

Figure 2-1 AWS storage platform

• Object storage An object is a piece of data, like a document, image,
or video, that is stored with some metadata in a flat structure. It
provides that data to applications via APIs over the Internet. It is
simple to build anything on top of an object store. For example, you

can easily develop a web application on top of Amazon S3 that
delivers content to users by making API calls over the Internet.

• Block storage In block storage, data is presented to your instance as
a disk volume. It provides low, single-digit-latency access to single
Amazon EC2 instances. Elastic Block Store is popular, for example,
for boot volumes and databases.

• File storage In file storage, data is presented via a file system
interface and with file system semantics to instances. When attached
to an instance, it acts just like a local file system. Amazon Elastic
File System (EFS) provides shared access to data via multiple
Amazon EC2 instances, with low latencies.

Amazon Simple Storage Service (S3)
Amazon launched S3 in 2006. Amazon S3 is an object store and is the
backbone for many other services used at Amazon. It has a nice web
interface to store and retrieve any amount of data from anywhere around the
world. The capacity of S3 is unlimited, which means there is no limit to the
amount of data you can store in S3. It is highly durable and has
99.99999999999 percent durability. According to Amazon, this durability
level corresponds to an average annual expected loss of 0.000000001
percent of objects. For example, if you store 10,000 objects with Amazon
S3, you can on average expect to incur a loss of a single object once every
10,000,000 years. In addition, Amazon S3 is designed to sustain the
concurrent loss of data in two facilities.

It is fundamentally different from other file repositories because it does
not have a file system. All objects are stored in a flat namespace organized
by buckets. It is a regional service; that is, content is automatically
replicated within a region for durability. It is one of the most popular object
stores available on the Internet today. In this chapter, you’ll first evaluate
some of the advantages of Amazon S3, which makes it uniquely popular
among customers.

Advantages of Amazon S3
The following are the advantages of using Amazon S3:

• Simple Amazon S3 is really easy to use. It has an intuitive graphical
web-based console in which the data can be uploaded, downloaded,
and managed. S3 also has a mobile app in which it can be managed.
For easy integration with third parties, S3 provides REST APIs and
SDKs. You can also easily access S3 via the AWS CLI, which offers
a familiar Linux-like interface.

• Scalable Amazon S3 is infinity scalable. You can store unlimited
data in it without worrying about storage needs. You don’t have to
do any kind of capacity planning to store data in S3. If your business
needs petabytes of data, you should be able to store that in S3 easily
and quickly. You can scale up or scale down anytime as per your
business requirements. S3 is designed to scale infinitely.

• Durable Amazon S3 is the only service that provides 99.999999999
percent durability of the objects stored in it. The underlying
infrastructure is designed in such a way that this durability is
achieved. The data is stored across multiple data centers and in
multiple devices in a redundant manner. Amazon S3 is designed to
sustain concurrent data loss in two facilities.

• Secured Amazon S3 supports encryption, and the data can be
automatically encrypted once it is uploaded. S3 also supports data
transfer over SSL. Using AWS Identity and Access Management
(IAM), you should be able to manage granular permissions and
access to an S3 bucket.

• High performance Amazon S3 supports multipart uploads to help
maximize network throughput and resiliency and lets you choose the
AWS region to store your data close to the end user and minimize
network latency. Also, Amazon S3 is integrated with Amazon
CloudFront, a content delivery web service that distributes content to
end users with low latency, high data transfer speeds, and no
minimum usage commitments.

• Available Amazon S3 is designed to provide 99.99 percent
availability of the objects annually. The SLA level of 99.99 percent
uptime/availability gives the following periods of potential
downtime/unavailability:
Daily: 8.6 seconds
Weekly: 1 minute and 0.5 seconds

Monthly: 4 minutes and 23.0 seconds
Yearly: 52 minutes and 35.7 seconds

• Low cost Amazon S3 is very cost-effective and allows you to store a
large amount of data at a low cost. There is no minimum cost
associated with S3, and you pay only for what you need. Also, there
are no up-front costs associated with S3. With the volume discount,
the more data you store, the cheaper it becomes. You can further
lower the cost by storing the data in a different class of S3 such as
infrequent access or reduced redundancy or by creating a lifecycle
policy in which you can archive old files to Amazon S3 Glacier to
further reduce the cost.

• Easy to manage The Amazon S3 storage management feature
allows you to take a data-driven approach to storage optimization
data security and management efficiency. As a result, you have
better intel about your data and can manage the data based on
personalized metadata.

• Easy integration Amazon S3 can be easily integrated with third-
party tools. As a result, it is easy to build an application on top of S3.
S3 is also integrated with other AWS services. As a result, S3 can be
used in conjunction with lots of AWS products.

Usage of Amazon S3 in Real Life
You can use S3 in the following ways:

• Backup Amazon S3 is popular for storing backup files among
enterprises. Since the durability of S3 is 99.999999999 percent,
losing data is rare. For S3 Standard, S3 Standard-Infrequent Access,
and S3 Glacier storage classes, data is distributed in three copies for
each file between multiple availability zones (AZs) within an AWS
region. As a result, the data cannot be destroyed by a disaster in one
AZ. S3 also provides versioning capacity; as a result, you can further
protect your data against human error.

• Tape replacement Another popular use case of S3 these days is
magnetic tape replacement. Many organizations have started
replacing their tape drives or tape infrastructures with S3.

• Static web site hosting If you need to host a static web site, you get
everything just by using Amazon S3. There is no need to procure
web servers or worry about storage. Since S3 is scalable, it can
handle any amount of traffic, and you can store unlimited data. For
example, if you put a *.html file in S3, you can access it from a web
browser without the need for a web server. This is a great option for
getting read-only information.

• Application hosting Since Amazon S3 provides highly available
storage, many customers use it for hosting mobile and Internet-based
apps. Since S3 is accessible from anywhere in the world, you can
access and deploy your applications from anywhere.

• Disaster recovery Amazon S3 is also used as a disaster recovery
solution. Using cross-region replication, you can automatically
replicate each S3 object to a different bucket in a different region.

• Content distribution Amazon S3 is often used to distribute the
content over the Internet. It allows you to offload your entire storage
infrastructure into the cloud, where you can take advantage of
Amazon S3’s scalability and pay-as-you-go pricing to handle your
growing storage needs. The content can be anything such as files, or
you can host media such as photos, videos, and so on. You can also
use it as a software delivery platform where customers can download
your software. These contents can be distributed either directly from
S3 or via Amazon CloudFront.

• Data lake Amazon S3 is becoming extremely popular as a data lake
solution. A data lake is a central place for storing massive amounts
of data that can be processed, analyzed, and consumed by different
business units in an organization. Any raw, semiprocessed, or
processed data can be stored in S3. It is extremely popular in the
world of big data as a big data store to keep all kinds of data.
Whether you’re storing pharmaceutical or financial data or
multimedia files such as photos and videos, Amazon S3 can be used
as your big data object store. Amazon Web Services offers a
comprehensive portfolio of services to help you manage big data by
reducing costs, scaling to meet demand, and increasing the speed of
innovation. S3 is often used with EMR, Redshift, Redshift Spectrum,
Athena, Glue, and QuickSight for running big data analytics.

• Private repository Using Amazon S3 you can create your own
private repository like with Git, Yum, or Maven.

Amazon S3 Basic Concepts
This section covers some Amazon S3 basic terminology and concepts that
you will learn about throughout this chapter.

Just like you store water in a bucket, in the cloud you store the objects of
the object store in a bucket. So, a bucket is actually a container for storing
objects in Amazon S3. You can compare a bucket to a folder on a computer
where you store various files. You can create multiple folders inside a
folder, and in an S3 bucket you can create multiple folders. The name of the
bucket must be unique, which means you cannot have two buckets with the
same name even across multiple regions. Any object can be uniquely
accessible from the bucket using a URL. For example, say an object name
is ringtone.mp3, and it has been stored in the bucket newringtones. The
file will be accessible using the URL
http://newringtones.s3.amazonaws.com/ringtone.mp3. The bucket serves
the following purposes:

• Organizes the Amazon S3 namespace at the highest level
• Identifies the account responsible for charges
• Plays a role in access control
• Serves as the unit of aggregation for usage reporting

You can create buckets in any region you want. By default, the data of a
bucket is not replicated to any other region unless you do it manually or by
using cross-region replication. S3 buckets allow versioning. If you use
versioning, whenever an object is added to a bucket, a unique version ID is
assigned to the object.

Objects are the fundamental entries stored in Amazon S3. Put simply,
anything you store in an S3 bucket is called an object, and an object
consists of data and metadata. The data portion stores the actual data in
Amazon S3. Metadata is a set of name-value pairs describing the object.
The metadata also includes additional information such as last-modified

http://newringtones.s3.amazonaws.com/ringtone.mp3

date, file type, and so on. An object is uniquely identified within a bucket
by a name or key and by a version ID.

Using a key, you can uniquely identify an object in a bucket, which
means that every object in a bucket has only one key. You can identify any
object in an S3 bucket with a unique combination of bucket, key, and
version ID. For example, to understand how you can use a key to identify
an object, say the URL of the object of S3 bucket is
http://s3.amazonaws.com/2017-02/pictures/photo1.gif. In this case, the
name of the key is 2017-02/pictures/photo1.gif. When you combine the
key with the version of the file (photo1.gif), you can uniquely define the
particular object.

You can create an S3 bucket in any region where the service is available.
You may want to create an object in a region that is near to you to optimize
the latency and get a better user experience. You can also choose a region
for data compliance purposes or to minimize the cost. Note that the object
stored in the region never leaves the region unless you explicitly transfer it
to a different region. For example, if you store a file in the region US East,
the file will never leave the region US East unless you move the file
manually or use cross-region replication and move the file to another
region, say, US West. As of this writing, Amazon S3 supports the following
regions:

• The US East (N. Virginia) region uses Amazon S3 servers in
Northern Virginia.

• The US East (Ohio) region uses Amazon S3 servers in Columbus,
Ohio.

• The US West (N. California) region uses Amazon S3 servers in
Northern California.

• The US West (Oregon) region uses Amazon S3 servers in Oregon.
• The Canada (Central) region uses Amazon S3 servers in Canada.
• The Asia Pacific (Mumbai) region uses Amazon S3 servers in

Mumbai.
• The Asia Pacific (Seoul) region uses Amazon S3 servers in Seoul.
• The Asia Pacific (Singapore) region uses Amazon S3 servers in

Singapore.

http://s3.amazonaws.com/2017-02/pictures/photo1.gif

• The Asia Pacific (Sydney) region uses Amazon S3 servers in
Sydney.

• The Asia Pacific (Tokyo) region uses Amazon S3 servers in Tokyo.
• The EU (Frankfurt) region uses Amazon S3 servers in Frankfurt.
• The EU (Ireland) region uses Amazon S3 servers in Ireland.
• The EU (London) region uses Amazon S3 servers in London.
• The EU (Paris) region uses Amazon S3 servers in Paris.
• The EU (Stockholm) region uses Amazon S3 servers in Stockholm.
• The South America (São Paulo) region uses Amazon S3 servers in

São Paulo.

S3 is accessible from an application programming interface (API), which
allows developers to write applications on top of S3. The fundamental
interface for S3 is a Representational State Transfer (REST) API. Although
S3 supports the Simple Object Access Protocol (SOAP) in HTTPS mode
only, SOAP support over Hypertext Transfer Protocol (HTTP) is
deprecated. It is recommended that you use REST over SOAP since new
Amazon S3 features will not be supported for SOAP.

REST APIs rely on a stateless, client-server, cacheable communications
protocol, and in virtually all cases, the HTTP protocol is used. Using a
REST API, you should be able to perform all kinds of operations in an S3
bucket, including create, read, update, delete, and list. The REST API
allows you to perform all operations in an S3 bucket with standard
HTTP/HTTPS requests. Since HTTPS is more secure than HTTP, whenever
using an API request with S3, always prefer HTTPS over HTTP to make
sure that your request and data are secure.

The primary or most commonly used HTTP verbs (or methods, as they
are properly called) are POST, GET, PUT, PATCH, and DELETE. These
correspond to create, read, update, and delete (CRUD) operations,
respectively. You can use these HTTP verbs with the corresponding actions
in S3, as shown in Table 2-1.

Table 2-1 HTTP Verbs and Their Corresponding Actions in Amazon S3
Using the REST API

In addition to APIs, lots of SDKs are available in various platforms,
including in browsers, on mobile devices (Android and iOS), and in
multiple programming languages (Java, .NET, Node.js, PHP, Python, Ruby,
Go, C++). A mobile SDK and IoT device SDK are also available. You can
use these SDKs with the combination APIs as per your programming
language to simplify using AWS services in your applications.

The AWS command-line interface (CLI) is a unified tool to manage all
your AWS services. Using the AWS CLI, you can control multiple AWS
services from the command line and automate them through scripts. The
AWS CLI is often used by Amazon S3 in conjunction with REST APIs and
SDKs. The CLI gives you the ability to perform all the S3 operations from a
command line. The AWS CLI can be invoked by using aws from the
command line. (Of course, you have to install and configure the AWS CLI
before you can start using it.) S3 operations via the AWS CLI can be
performed by using the aws s3 command. For example, if you want to
create a bucket, the command is aws s3 mb. Similarly, to remove a bucket,
you can use aws s3 rb.

The AWS CLI can be installed on Linux, Windows, Docker platform,
and macOS. You should download and install the latest version of the AWS
CLI.

Amazon S3 Data Consistency Model
It must be noted that Amazon S3 is a web store and not a file system. The
S3 service is intended to be a “write once, read many” use case. Therefore,
the architecture is a little bit different from a traditional file system or
storage area network (SAN) architecture.

The S3 infrastructure consists of multiple load balancers, web servers,
and storage across multiple availability zones. The entire architecture is
redundant, and the data is stored in multiple storage locations across
multiple availability zones (AZs) to provide durability. Figure 2-2 shows
the S3 infrastructure.

Figure 2-2 Amazon S3 infrastructure

Figure 2-2 shows how a file is written in S3. This example shows only
two AZs, whereas in real life there could be more than that. For example
Amazon S3 Standard uses a minimum of three AZ’s to store the data.
Similarly, there could be multiple load balancers and storage. Now when
you write an object, you first connect to one of the load balancers. From
there you connect to one of the API endpoints on the web server, and then
the data is stored in a redundant fashion in multiple AZs across multiple
storages, which makes sure your data is protected. The exception to this is
Amazon S3-One Zone Infrequent Access, where the data is stored in a
single AZ. Once that is done, indexing will happen, and the indexes are also
stored in multiple storage locations across multiple AZs. If for any reason a
load balancer goes down or if a web server goes down, the S3 request will
choose a different load balancer or web server to process the request.
Similarly, if a storage unit goes down or the storage containing the index
goes down, the data or the index will be served from a redundant storage
unit. If the whole AZ goes down, failover will take place, and therefore the
content will be served from a different AZ since the entire system is
replicated across multiple AZs. This is the “write once, read many”
architecture at work.

Let’s explore the consistency model of S3. Whenever you write a new
object, the data will be synchronously stored across multiple facilities
before returning success. This provides read-after-write consistency.

For all other objects (apart from new ones), S3 is an eventually
consistent system. In an eventually consistent system, the data is
automatically replicated and propagated across multiple systems and across
multiple AZs within a region, so sometimes you will have a situation where
you won’t be able to see the updates or changes instantly, or if you try to
read the data immediately after update, you may not be able to see all the
changes. If a PUT request is successful, your data is safely stored, and
therefore there is no need to worry about the data since after a while you
will be able to see it. Here are some examples of this:

• A process writes a new object to Amazon S3 and immediately
attempts to read it. Until the change is fully propagated, Amazon S3
might report “key does not exist.”

• A process writes a new object to Amazon S3 and immediately lists
keys within its bucket. Until the change is fully propagated, the
object might not appear in the list.

• A process replaces an existing object and immediately attempts to
read it. Until the change is fully propagated, Amazon S3 might
return the prior data.

• A process deletes an existing object and immediately attempts to
read it. Until the deletion is fully propagated, Amazon S3 might
return the deleted data.

• A process deletes an existing object and immediately lists keys
within its bucket. Until the deletion is fully propagated, Amazon S3
might list the deleted object.

In the case of an update, updates to a single key are atomic. For example,
if you PUT to an existing key, a subsequent read might return the old data
or the updated data, but it will never write corrupted or partial data. Also, it
should be noted that Amazon S3 does not support object locking, which
means if there are requests to update the same file concurrently (PUT
request), the request with the latest time stamp wins. Though this
functionality is not available in S3, you can achieve this by building an
object-locking mechanism into your application.

Data lag may comprise a few seconds, not minutes or hours. So it is
recommended that you have your applications retry or use other strategies
such as leveraging DynamoDB as an application-level metadata store to
ensure that your application is accessing all the current information from
S3. For example, if you’re building a photo app and you need to display all
the photos uploaded by a user, you’ll want to maintain the list of photos in
DynamoDB and store the photos themselves in S3. That way, when you
need to display the user’s photos, your app will first get the names of all
files from DynamoDB and retrieve them from S3.

Amazon S3 Performance Considerations
It is important to understand the best practice for partitioning if the
workload you are planning to run on an Amazon S3 bucket is going to
exceed 100 PUT/LIST/DELETE requests per second or 300 GET requests

per second. In this case, you need to make sure you follow the partitioning
guidelines so you don’t end up with any performance bottleneck. You want
to able to provide users with a better experience and be able to scale as you
grow. Amazon S3 scales to support very high request rates. To do so,
internally S3 automatically partitions all your buckets.

As you studied earlier, the name of an S3 bucket is unique, and by
combining the bucket name and object name (key), every object can be
identified uniquely across the globe. Moreover, the object key is unique
within a bucket, and the object keys are stored in UTF-8 binary, with a
maximum size of 1,024 bytes. Let’s say you have a bucket named awsbook
and you have the image image2.1.jpg in it in the folder chapter2/image. In
this case, this is how it will look:

Please note that the object key is chapter2/image/image2.1.jpg and
not just the name of the file, which is image2.1.jpg. S3 automatically
partitions based on the key prefix.

Say you have 20 objects in the bucket awsbook, as shown next. In this
scenario, S3 is going to do the partitioning based on the key prefix. In this
case, it is c, the first word of the key chapter, which is shown in bold in the
following example:

In this case, everything falls under the same partition, here awsbook/c,
since the partitioning key is c. Now imagine a scenario where you have
millions of objects. The performance of the objects in this bucket is
definitely going to take a hit. In this scenario, a better way would be to
partition the objects with a different key so that you get better performance.

To address this problem, you can change the chapter name to start with a
number such as 2chapter, 3chapter, 4chapter, and so on, as shown next.
What you have done here is to simply change one character, which changes
the partitioning strategy.

By doing this, you have distributed your objects into the following
partitions instead of just one partition:

A few other ways of implementing the partitioning for performance
would be to reverse the key name string and to add a hex hash prefix to the
key name. Let’s see an example of each approach.

Reverse the Key Name String
Say you are doing massive uploads from your application, and with every
set of uploads, the sequence of the application IDs increases by 1. This is a

common scenario at many organizations.

In this case, since the application ID starts with 5, everything will fall
under the same partition, which is applicationid/5. Now you are simply
going to reverse the key to solve the partitioning issue.

By simply reversing the keys, S3 will create multiple partitions in this
case, thereby improving the performance.

Adding a Hex Hash Prefix to a Key Name
In many scenarios, you will notice that by reversing the key or by changing
a few characters, you will not get an optimal partitioning strategy. In that
case, you can add a hash string as a prefix to the key name to introduce
some randomness. You can compute an MD5 hash of the character
sequence, pick a specific number of characters, and assign them as the

prefix to the key name. For example, instead of reversing the keys this time,
you will use a hex hash prefix. The hash prefix is shown in bold.

If you are planning to use a hash key, you may want to do it carefully
because of randomness in the algorithm. If you have too many objects, you
will end up with too many partition keys. For example, if you use a 4-
character hex hash, there are 65,536 possible character combinations, so
you will be sending 65,536 list bucket requests with each specific prefix,
which is a combination of a four-digit hash and the date. In fact, you don’t
need more than two or three prefix characters in your hash. Say you are
targeting 100 operations per second and have 25 million objects stored per
partition; a 4-character hex has a partition that could support millions of
operations per second. This is a pretty big number, and in most cases you
probably do not need to support this big of a number.

Encryption in Amazon S3
Let’s talk about the encryption features of Amazon S3. There are two main
ways of securing the data: encryption of data in transit and encryption of
data at rest. Encryption of data in transit means securing the data when it is
moving from one point to other, and encryption of data at rest means
securing the data or the objects in S3 buckets when the objects remain idle
in the S3 bucket and there is no activity going on with them.

If you upload the data using HTTPS and use SSL-encrypted endpoints,
the data is automatically secured for all the uploads and downloads, and the
data remains encrypted during transit.

If the data is encrypted before being uploaded to an S3 bucket using an
S3-encrypted client, the data will already be encrypted in transit. An
Amazon S3 encryption client is used to perform client-side encryption for

storing data securely in S3. Data encryption is done using a one-time
randomly generated content encryption key (CEK) per S3 object. The
encryption materials specified in the constructor will be used to protect the
CEK, which is then stored alongside the S3 object. You can obtain the
Amazon S3 encryption client from
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws
/services/s3/AmazonS3EncryptionClient.html.

Let’s talk about securing the data at rest.
With Amazon S3 Server Side Encryption (SSE), Amazon S3 will

automatically encrypt your data on write and decrypt your data on retrieval.
This uses Advanced Encryption Standard (AES) 256-bit symmetric keys,
and there are three different ways to manage those keys.

• SSE with Amazon S3 Key Management (SSE-SE) In this case,
Amazon S3 will encrypt your data at rest and manage the encryption
keys for you. Each object is encrypted using a per-object key. The
per-object key is encrypted using a master key, and the master key is
managed using S3 key management. The master key is rotated on a
monthly basis. You can turn on that option from the S3 console or
from the command line or via the SDK, and you don’t have to do
anything other than that for key management. Everything else is
taken care of by Amazon.

• SSE with customer-provided keys (SSE-C) With SSE-C, Amazon
S3 will encrypt your data at rest using the custom encryption keys
that you provide. To use SSE-C, simply include your custom
encryption key in your upload request, and Amazon S3 encrypts the
object using that key and securely stores the encrypted data at rest.
Similarly, to retrieve an encrypted object, provide your custom
encryption key, and Amazon S3 decrypts the object as part of the
retrieval. Amazon S3 doesn’t store your encryption key anywhere;
the key is immediately discarded after Amazon S3 completes your
requests.

• SSE with AWS Key Management Service KMS (SSE-KMS) With
SSE-KMS, Amazon S3 will encrypt your data at rest using keys that
you manage in AWS KMS. Using AWS KMS for key management
provides several benefits. With AWS KMS, there are separate
permissions for the use of the master key, providing an additional

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/s3/AmazonS3EncryptionClient.html

layer of control as well as protection against unauthorized access to
your object stored in Amazon S3. AWS KMS provides an audit trail
so you can see who used your key to access which object and when,
as well as view failed attempts to access data from users without
permission to decrypt the data. Additionally, AWS KMS provides
additional security controls to support customer efforts to comply
with PCI-DSS, HIPAA/HITECH, and FedRAMP industry
requirements.

Amazon S3 Access Control
Access control defines who is going to have what access in an S3 bucket.
There are several ways to provide access to an S3 bucket, and access
control is all about managing the access. You can define various rules
specifying who can access which aspects of your S3 service, and by doing
that you have total control over S3. In addition, by using access control, you
have very fine manual control over the objects stored in S3. You will see a
few examples in this chapter, but first let’s discuss all the ways of managing
the access control in an S3 bucket. There are three main ways of using
access control.

Access Policies
By creating an Identity and Access Management policy, you can provide
fine-grained control over objects in S3 because an IAM policy helps you
control who can access your data stored in S3. You can create an IAM
policy and assign that policy to either a user, a group, or a role. You will
explore more about users, groups, and roles in Chapter 5. Say you create an
S3 full access policy and assign it to a particular group that has ten
members. Now all ten users of that particular group will have full access to
the S3 bucket. There are a lot of other things that can be done using IAM
and S3; for example, you can choose which S3 bucket can be shared with
which IAM user, you can allow a particular user to access a particular
bucket, you can allow a specific user or all the users to read objects from a
specific bucket or from a few buckets, and you can have a policy to allow
your customers or partners to drop objects in a particular bucket.

Let’s see a few examples of what these policies look like. It is assumed
you have a working knowledge of JavaScript Object Notation (JSON).
Before you can start writing a policy, you need to know what an Amazon
resource name (ARN) is. ARNs uniquely identify AWS resources. An ARN
is needed to specify a resource unambiguously across all of AWS, such as
in IAM policies, API calls, and so on. This is what an ARN looks like:

partition is the partition that the resource is in. For standard AWS
regions, the partition is aws. If you have resources in other partitions, the
partition is aws-partitionname. For example, the partition for resources in
the China (Beijing) region is aws-cn.

service is the service namespace that identifies the AWS product (for
example, Amazon S3, IAM, or Amazon RDS). For Amazon S3, the service
will be s3.

region is the region the resource resides in. This is optional; some
ARNs do not require a region, so you can omit it in that case.

account is the ID of the AWS account that owns the resource, without
the hyphens. For example, it can be 331983991. This is optional; some
ARNs do not require an account.

resource, resourcetype:resource, or resourcetype/resource is the
content; this part of the ARN varies by service. It often includes an
indicator of the type of resource—for example, an IAM user or Amazon
RDS database—followed by a slash (/) or a colon (:), followed by the
resource name itself.

Let’s see a few examples of how an S3 ARN looks. Please note that S3
does not require an account number or region in ARNs.

TIP You can also use a policy variable to make things simpler. For
example, instead of manually putting in the username, you can use the
variable ${aws:username}, so when the policy is executed, the username is
replaced with the actual username. This is helpful when you want to assign
a policy to a group.

Now let’s see an example of how a policy looks. Say you want to
provide put and get permission to the S3 bucket my_bucket_forawsbook.
The policy looks something similar to this:

In this example, Effect is the effect of the policy, Allow or Deny. Action
lists the actions allowed or denied by this policy. Resource is the AWS
resource that this policy applies to.

In Lab 2-3, you will generate a bucket policy using the AWS Policy
Generator (https://awspolicygen.s3.amazonaws.com/policygen.html).

Bucket Policies

https://awspolicygen.s3.amazonaws.com/policygen.html

You can also create policies at the bucket level, which is called a bucket
policy. Bucket policies also allow fine-grained control over S3 buckets.
Using a bucket policy, you can incorporate user restrictions without using
IAM. You can even grant other AWS accounts or IAM user permissions for
buckets or any folders or objects inside it. When you create a bucket policy,
any object permissions apply only to the objects that the bucket owner
creates. A very common use case of a bucket policy would be that you can
grant read-only permission to an anonymous user to access any object from
a particular bucket. This is useful if you are planning to host a static web
site in S3 and want everyone to be able to access the web site; you simply
grant GetObject access. In the following example, you are giving access to
all users for the S3 bucket staticwebsite. You will learn more about static
web site hosting in S3 later in this chapter.

In the previous example, by specifying the principal with a wildcard (*),
the policy grants anonymous access. You can even do some fine-grained
control using a bucket policy. For example, if for your S3 bucket you want
to allow access from only from a particular region and want to deny access
from another region, you can do this by specifying a condition to include
and not include an IP address range.

A few other real-life uses of bucket policies would be granting
permissions to multiple accounts with more conditions, making MFA
authentication mandatory by using a policy, granting permission only when
the origin is Amazon CloudFront, restricting access to a specific HTTP
referrer just like you restricted access for a particular IP access in the
previous example, and granting cross-account permissions to upload objects
while ensuring the bucket owner has full control.

Access Control List
The third option is to use an access control list (ACL). Each bucket and
object inside the bucket has an ACL associated with it. ACLs apply access
control rules at the bucket or object level in S3. Unlike an IAM policy or
bucket policy, an ACL does not allow fine-grained control. Rather, it allows
coarse-grained control. An ACL is a list of grants identifying the grantee
and permission granted. For example, you can grant permissions such as
basic read-write permissions only to other AWS accounts, not users in your
account.

Please note that bucket policies and access control lists are called
resource-based policies since you attach them to your Amazon S3
resources.

S3 Security Best Practices
Because Amazon S3 contains all sorts of data, it is important that the data is
secure. Following are some of the practices that will ensure data security:

• Ensure that S3 buckets are not publicly accessible. If a bucket is
publicly accessible, anyone can access the file. Use the Amazon S3
Block Public Access feature to limit the public access to S3 buckets.

• Use least privilege access. Ensure that only those who need
permission to access S3 buckets are given access. Those who don’t
need to access S3 buckets should be denied access. By default, the
permission should be denied unless someone needs it.

• Enable multifactor authentication (MFA). You can set up MFA
Delete to ensure that anyone who is not authorized to delete a file
cannot delete it.

• Audit the S3 bucket. Make sure you audit the S3 buckets regularly.
This will help in identifying the security gaps. You can also look at
using AWS Trusted Advisor to audit bucket permissions (see
Chapter 9).

• Use IAM roles. Use IAM roles to manage credentials. Roles are
covered in detail in Chapter 5.

Amazon S3 Storage Class
Amazon S3 offers a variety of storage class designs to cater to different use
cases. Depending on your use case and needs, you can choose the
appropriate storage class in an S3 bucket to store the data. You can also
move the files from one storage class to another storage class. You can also
configure lifecycle policies and rules to automatically move files from one
storage class to other. Once you create a policy and enable it, the files will
be moved from one storage class to the other automatically.

These are storage classes offered by Amazon S3.

• Amazon S3 Standard Amazon S3 Standard is the default storage. It
offers high durability, availability, and performance and is used for
frequently accessed data. This is the most common use case of S3
and is used for a variety of purposes, including web sites, content

storage, big data analytics, mobile applications, and so on. The S3
Standard is designed for durability of 99.999999999 percent (11
nines) of objects and 99.99 percent availability over a given year and
comes with the S3 SLA for availability. It supports SSL encryption
of data in transit and at rest, data lifecycle policies, cross-region
replication, and event notifications. The files in Amazon S3 Standard
are synchronously copied across three facilities and designed to
sustain the loss of data in two facilities.

• Amazon S3 Standard Infrequent Access (IA) IA is an Amazon S3
storage class that is often used for storing data that is accessed less
frequently. It provides the same durability over a given year
(99.999999999 percent) and inherits all the S3 features, including
concurrent facility fault tolerance, SSL encryption of data in transit
and at rest, data lifecycle policies, cross-region replication, and event
notifications. This storage class provides 99.9 percent availability
over a given year. The price of this storage class is much cheaper
than Amazon S3 Standard, which makes it economical for long-term
storage, backups, and disaster recovery use cases. Using lifecycle
policies, you can move the files from Amazon S3 Standard to IA.

TIP The storage class is simply one of several attributes associated with
each Amazon S3 object. The objects stay in the same S3 bucket (Standard
versus IA) and are accessed from the same URLs when they transition from
Standard to IA, and vice versa. There is no need to change the application
code or point to a different URL when you move the files from one storage
class to the other.

• Amazon S3 One Zone-Infrequent Access (S3 One Zone-IA)
Amazon S3 One Zone-IA is a new storage class for storing data that
is accessed less frequently but requires rapid access when needed.
Amazon S3 One Zone-IA stores data in a single AZ and not like S3
Standard where the data is stored in a minimum of three availability

zones (AZs). S3 One Zone-IA offers the same high durability, high
throughput, and low latency of Amazon S3 Standard and S3
Standard-IA but it costs 20 percent less than storing it in S3
Standard-IA. The S3 One Zone-IA storage class is set at the object
level and can exist in the same bucket as S3 Standard and S3
Standard-IA, allowing you to use S3 Lifecycle Policies to
automatically transition objects between storage classes without any
application changes.

NOTE Amazon keeps reducing the prices of its services. With the latest
price cut, the cost of Amazon S3 RRS is now almost similar to Amazon S3
Standard. Therefore, instead of storing files in Amazon S3 RRS, you may
want to store them in Amazon IA, which is much cheaper than Amazon S3
RRS.

• Amazon S3 Intelligent-Tiering Amazon S3 Intelligent-Tiering is
designed to optimize costs by automatically moving data from one
storage class to another based on the access pattern. With this
feature, Amazon S3 monitors the access pattern and moves the
objects from one storage class to another automatically. Let’s say, for
example, that an object is not accessed for more than 30 days. S3
Intelligent-Tiering automatically moves the file to a lower tier. Once
the file is accessed again, it is moved back to the higher tier.

• Amazon S3 Glacier Amazon S3 Glacier is the storage class mainly
used for data archiving. This also provides 99.999999999 percent
durability of objects and supports SSL encryption of data in transit
and at rest, and so on. Since it is mainly used for archiving the data,
there are three main options for retrieving data with varying access
times and cost. These are expedited, standard, and bulk retrievals.
The expedited retrievals allow for very quick retrieval of data in the
range of one to five minutes. Standard takes about three to five hours

to retrieve the data, and bulk enables you to retrieve large amounts of
data such as petabytes of data in a day (five to twelve hours).
Amazon S3 Glacier is much cheaper than all the other storage
classes. You will study Amazon S3 Glacier in more detail later in
this chapter.

• Amazon S3 Glacier Deep Archive Amazon S3 Glacier Deep
Archive is used for long-term archival storage. Suppose, for
example, that you have a compliance requirement to retain all data
for seven to ten years. You may be accessing this data only once or
twice a year. Glacier Deep Archive is the ideal solution, a
replacement for magnetic tape drives. The S3 Glacier Deep Archive
also provides 99.999999999 percent durability, because the data is
stored across three different AZs. With S3 Glacier Deep Archive,
data can be restored within 12 hours.

Table 2-2 shows the performance characteristics across all the different
storage classes of Amazon S3.

Table 2-2 Performance Characteristics Across S3 Storage Class

You can move the files from one storage class to another in a couple of
ways:

• By creating a lifecycle policy
• By running the S3 copy (aws s3 cp) command from the AWS CLI
• From the Amazon S3 console
• From an SDK

Versioning of Objects in Amazon S3
Versioning allows you to maintain multiple versions of the same file. Say
you have enabled versioning and then upload ten different versions of the

same file. All those files will be stored in an S3 bucket, and every file will
be assigned a unique version number. When you look at the S3 bucket, you
will see only one file name and won’t see all ten versions since all ten
different versions of the file have the same name. But behind the scenes, S3
stores all the different versions, and with the version option, you can
actually look at and download each version of the file. This is really helpful
if you accidentally delete a file or if you accidentally update a file and want
to go back to a previous version. Versioning is like an insurance policy; you
know that regardless of what happens, your files are safe. With versioning,
not only can you preserve the files and retrieve them, but you also can
restore every version. Amazon S3 starts preserving the existing files in a
bucket anytime you perform a PUT, POST, COPY, or DELETE operation
on them with versioning enabled.

By default, GET requests will retrieve the most recently written version,
or if you download a file directly from the console by default, it will show
you only the latest version of the file. If you want to retrieve the older
version of a file, you need to specify the version of the file in the GET
request.

You can use versioning in conjunction with lifecycle rules to move the
old versions of the files to a different class of storage. For example, you can
write a rule to move all the old version files to Glacier after 30 days and
then have them deleted from Glacier after an additional 30 days. Now you
have a total of 60 days to roll back any change. Once you enable
versioning, you can’t disable it. However, you can suspend versioning to
stop the versioning of objects.

TIP Versioning is always done at the bucket level. Say you have
thousands of objects in an Amazon S3 bucket and you want to enable
versioning for only a few files. In that case, create a separate bucket with
only the files for which you want to enable versioning. This way you will
avoid versioning thousands of files from your previous S3 bucket.

Amazon S3 Object Lifecycle Management
Using lifecycle management, you can get the best out of S3 in terms of
performance as well as cost. You can create various policies according to
your needs and can move the files that are stored in Amazon S3 from one
storage class to another. You can perform two main kinds of actions with a
lifecycle policy.

• Transition action This means you can define when the objects can
be transitioned to another storage class. For example, you may want
to copy all older log files after seven days to S3-IA.

• Expiration action In this case, you define what is going to happen
when the objects expire. For example, if you delete a file from S3,
what are you going to do with that file?

There are several reasons why you need to have a lifecycle policy in
place. For example, you may have a compliance requirement to store all the
data that is older than seven years in an archival storage, you may have a
rule to archive all the financial and healthcare records, or you may want to
create an archive with all the database backups that must be retained for a
compliance reason for n number of years. You can also create policies to
move the files from one storage class to another. For example, after a week,
you could move all the log files from Amazon S3 to Amazon S3-IA; then
after a month, move all the log files from Amazon S3-IA to Amazon S3
Glacier; and finally after a year, move all the log files from Amazon S3
Glacier to Amazon S3 Glacier Deep Archive.

TIP Lifecycle rules are attached to a bucket. If you want to apply the
rules to a few files, prefix the files with a unique prefix and then enable the
lifecycle rule on the prefix.

Amazon S3 Replication

S3 replication enables you to copy all the files from your S3 bucket to
another bucket automatically. Then, whenever a new file is added to the
bucket, it is automatically replicated to the other bucket. Replication can be
done from one account to another account, from one storage class to
another, and from one region to another or within the same region. S3
replication happens behind the scenes, and the data is copied in an
asynchronous fashion. To set up S3 replication, you need the details of the
source bucket and the target bucket and you should have the role
permissions to perform the replication.

AWS offers two types of S3 replication:

• Cross-region replication (CRR) This is used to copy the objects
across different regions.

• Same-region replication (SRR) This is used to copy the files within
the same region.

Cross-Region Replication (CRR) and Same-Region Replication
(SRR)
Many organizations need to keep copies of critical data in locations that are
hundreds of miles apart. This is often because of a mandatory compliance
requirement and disaster recovery considerations. To do this, you can make
copies of your S3 bucket in a different AWS region. Using CRR, you can
automatically copy all the files from one region to another. Every object
uploaded to a particular S3 bucket can be automatically replicated to the
destination bucket, which is located in a different AWS region. CRR allows
asynchronous copying of objects. This helps to minimize latency if you
have users from different parts of the world. You can set up S3 CRR to
copy the data to a region near to the users to provide a better user
experience.

By using SRR, you can automatically replicate the objects residing in an
S3 bucket to a different bucket in the same region. This feature is very
helpful if you need a copy of the data, if want to set up a replication from
production to test or development environments, if you want to store the
files under multiple accounts, or if you want to consolidate objects from
multiple buckets into one bucket. SRR is a very useful feature, especially
when you’re building a data lake, because you want to keep a golden copy

of your log files and always use a copy of the log files on which to run the
analytics.

As an example, say you have a bucket called jbawsbook and you want to
enable CRR on it. Before you can set up CRR, you need to ensure a few
things:

• The versioning must be enabled in the source and target buckets. If
you don’t enable versioning, you won’t be able to do the CRR.

• In CRR, the source bucket owner must have the target region
enabled where the replication needs to be set up. This doesn’t apply
if the replication is being set up within the same region (SRR).

• Amazon S3 must have the permission to replicate the files.
• In some cases, the bucket owner may not own the objects. In those

cases, the object owner must grant READ and READ_ACP
permission to the objects using an object access control list (ACL).

• If the source bucket has Object Lock enabled, the destination bucket
should also have Object Lock enabled. With S3 Object Lock, you
can store objects using a write once read many (WORM) model. You
can use this to prevent an object from being deleted or overwritten
for a fixed amount of time, or indefinitely.

• If your source and target buckets are owned by different accounts,
the target owner must grant permission to the source bucket to
replicate the objects.

Let’s see how to set up replication from the console.
1. Go to the console and select the S3 bucket.
2. Then open the Management tab and click Replication. You will notice

that you can configure CRR and SRR from the same screen. Click the
Get Started button, as shown in Figure 2-3.

Figure 2-3 Getting started

3. Then in the next screen, as shown in Figure 2-4, the Set Source screen,
you’ll see two options: Whole Bucket, which means that all the objects
of the bucket will be replicated, and Prefix Or Tags, which means you
can restrict replication to a subset of the objects in the bucket using a
prefix. If you want to replicate the objects that are encrypted with
AWS KMS, select Replicate Objects Encrypted With AWS KMS.

Figure 2-4 Setting the source in the Replication Rule screen

4. Create or choose the destination bucket where you want to replicate the
files, as shown in Figure 2-5. You can choose the destination bucket in
same region or in a different region. You also have the option of
selecting a different class of storage for replicating the files. By
default, the files are replicated to the same storage class, but from the
console you can choose one of the following storage classes: Standard,
Intelligent-Tiering, Standard-IA, One Zone-IA, or Glacier and Glacier

Deep Archive. The bucket can be either in this account or in another
account. Select Object Ownership to change the object ownership. To
do this, you must provide the account ID and bucket name.

Figure 2-5 Choosing a destination bucket and setting time control

5. The last option is S3 Replication Time Control. Using this feature, you
can replicate your data in a predictable time frame. S3 Replication
Time Control replicates 99.99 percent of new objects stored in
Amazon S3 within 15 minutes. Select this option if you want to enable
S3 Replication Time Control. Then click Next.

6. Choose an IAM role and Rule Name so that S3 can list and retrieve
objects from the source bucket and replicate them to the destination
bucket. Using roles, you can also replicate objects owned by separate
AWS accounts. Select the IAM role and rule name, as shown in Figure
2-6. (We will explore IAM in detail in Chapter 5.) Then click Next.

Figure 2-6 Configuring IAM details

7. In the next screen, shown in Figure 2-7, you can review all the options
you have configured. If things look good, click Save. Or click Edit to
make the changes.

Figure 2-7 Review your configuration

8. If you clicked Save, a confirmation screen, shown in Figure 2-8,
informs you that your replication configuration updated successfully.
The details of your replication are also displayed here.

Figure 2-8 Confirmation screen

NOTE The replication copies only the new objects. If you have
preexisting files in the bucket, you must copy them manually from the
source to the destination using an S3 copy or via the CLI or SDK.

If you want to monitor the replication status, you can do so by using the
HEAD operation on a source object. The HEAD operation retrieves
metadata from an object without returning the object itself. This operation
is useful if you are interested only in an object’s metadata. To use HEAD,
you must have read access to the object. Covering the HEAD operation in

more detail is beyond the certification objective; however, if you want to
learn more about it, refer to the Amazon S3 API guide.

Static Web Site Hosting in Amazon S3
You can host a static web site on Amazon S3. A static web site is one where
the content does not change and remains static. A static web site may
contain some client-side scripts, but the content of the web site is almost
stagnant all the time. By contrast, a dynamic web site is one where the
content changes frequently, and a lot of server-side processing happens by
running scripts built on PHP, JSP, and so on. Amazon S3 does not support
server-side scripting.

It is easy to host a static web site on Amazon S3. Using the following
steps, you should be able to host your static web site on Amazon S3 in a
few minutes:

1. Sign in to the AWS management console and open the Amazon S3
console at https://console.aws.amazon.com/s3/.

2. In the Bucket Name list, choose the name of the bucket that you want
to enable static web site hosting for.

3. Choose Properties.
4. Choose Static Web Site Hosting. After you enable your bucket for

static web site hosting, web browsers can access all of your content
through the Amazon S3 web site endpoint for your bucket.

5. Choose Use This Bucket To Host A Website, as shown in Figure 2-9.
For Index Document, type the name of the index document, which is
typically index.html. When you configure a bucket for web site
hosting, you must specify an index document. Amazon S3 returns this
index document when requests are made to the root domain or any of
the subfolders. When you’re done, click Save.

https://console.aws.amazon.com/s3/

Figure 2-9 Choosing static website hosting

6. Add a bucket policy to the web site bucket that grants everyone access
to the objects in the bucket. When you configure a bucket as a web
site, you must make the objects that you want to serve publicly
readable. To do so, you write a bucket policy that grants everyone
s3:GetObject permission. You will create this bucket policy as part of
Lab 2-3.

Amazon S3 Glacier
Amazon S3 Glacier is a low-cost cloud storage service that is mainly used
for data archiving and long-term backup. Just like S3, Amazon S3 Glacier
is extremely secure and durable and provides the same security and

durability as S3. The best part about Amazon S3 Glacier is it is extremely
low in cost. You can store data in Amazon S3 Glacier for as little as $1 per
terabyte per month, which is another reason why it’s becoming popular
these days. As discussed previously, Amazon S3 Glacier has two flavors:
Amazon S3 Glacier and Amazon S3 Glacier Deep Archive.

Following are the most common use cases of Amazon S3 Glacier in the
industry currently:

• Magnetic tape replacement Managing tape archives is a pretty
painful activity, and if you have a compliance requirement to archive
all old data, you end up maintaining a library of magnetic tape
drives. Creating a tape library needs a huge capital investment and of
course specialized maintenance. Often customers ship the tape
archives to a different location to create a redundant backup. The
shipping costs also add to the cost of managing the tape libraries and
are often overlooked. Sometimes when restoring the magnetic tape
you realize the tape has gone bad and you can’t retrieve the data
from it. Amazon S3 Glacier has zero up-front costs, so you don’t
have to incur a huge capital expenditure to use it. In addition, there is
no maintenance overhead like with magnetic tape, and you get the
same durability as S3. Therefore, customers are replacing their table
library footprint with Amazon S3 Glacier Deep Archive.

• Healthcare/life sciences/scientific data storage With the
advancement in life sciences such as genomic data, a single
sequence of genomes can take up to a terabyte of data. Also, if more
data is available for running the analytics, the better results scientists
will get to run their research. The same applies to scientists in other
areas. They need to generate, analyze, and archive all the data, and
Glacier is the best place to store all of it. In addition, even hospitals
have to meet compliance requirements; they need to keep all the
patients’ records, which sometimes can be petabytes of data.
Amazon S3 Glacier helps you to achieve this at a low cost.

• Media assets archiving/digital preservation Media assets such as
video of news coverage and game coverage can grow to several
petabytes quickly. Amazon S3 Glacier is the best place to archive all
these media assets. If you need to redistribute/rebroadcast them, you

can quickly move them to Amazon S3. Similarly, you can use
Amazon S3 Glacier to archive audio, e-books, and so on.

• Compliance archiving/long-term backup Many organizations have
a compliance requirement to archive all the data that is x years old.
Similarly, many organizations have an internal policy to keep a long-
term backup of several files, though it may not be a compliance
requirement. Amazon S3 Glacier Vault Lock helps you set
compliance controls to meet your compliance objectives. You will
learn more about Amazon S3 Glacier Vault Lock in the next section.

Amazon S3 Glacier Key Terminology
This section will define some key terminology used in Amazon S3 Glacier.

When you upload data in Amazon S3 Glacier, you store it as an archive.
Even if you store one file, that will still be an archive with a single file. It is
recommended that you aggregate your files and then upload them to
Amazon S3 Glacier. You can use popular tools such as TAR or ZIP to do
this. By consolidating your data into a single file as an archive, your cost
will be much lower than storing single files as separate archives. Like with
Amazon S3, there is no limit to how many files you can store in Amazon S3
Glacier. A single Amazon S3 Glacier archive can be anything from 1 byte
to 40TB, and there is no limit on how many of these you can upload. Please
note that archives are write-once, which means once you create an archive,
you won’t be able to modify the files in it. Therefore, the data stored in an
archive is immutable, meaning that after an archive is created, it cannot be
updated. If you want to update or edit the contents, you need to download
them and modify and re-upload them in Amazon S3 Glacier. If you are
planning to upload large archives (100MB or bigger), it is recommended
that you use the multipart upload capability where the files are broken into
smaller chunks and uploaded individually. Once all the smaller chunks are
successfully uploaded, they are combined to make a single archive. The
max archive size that can be uploaded in a single upload request is 4GB.

Every vault has a unique address. The format looks like the following:

Archives are stored in a vault, which is like a safe deposit box or locker.
You can think of a vault as being similar to a bucket in S3. You can group
multiple archives and put them in a vault. You can say a vault is like a
container for an archive. A vault gives you the ability to organize your data
residing in Amazon S3 Glacier. You can set different access policies for
each vault, thereby allowing different people to access different vaults. You
can use IAM and create the vault-level access policies. You can create up to
1,000 vaults per account per region. For the ease of managing your vault,
AWS provides you with the ability to tag your vault. If you want to delete a
vault, it should not contain any archive. If it contains an archive, then you
need to delete the archive first before deleting the vault.

Amazon S3 Glacier Vault Lock allows you to easily deploy and enforce
compliance controls on individual Amazon S3 Glacier vaults via a lockable
policy. You can specify controls such as Write Once Read Many (WORM)
in a Vault Lock policy and lock the policy from future edits. Once locked,
the policy becomes immutable, and Amazon S3 Glacier will enforce the
prescribed controls to help achieve your compliance objectives.

Amazon S3 Glacier maintains a cold index of archives refreshed every
24 hours, which is known as an inventory or vault inventory.

Whenever you want to retrieve an archive and vault inventory, you need
to submit an Amazon S3 Glacier job, which is going to run behind the
scenes to deliver you the files requested. This operation is an asynchronous
operation in Amazon S3 Glacier. For each job, Amazon S3 Glacier
maintains all the information related to the job such as type of the job,
creation date, status of the job, completion date, and so on. As soon as the
job is finished, you should be able to download the job output, which is
your files. Amazon S3 Glacier also supports notifications; therefore, when
the job is finished, you can be notified. You can configure Amazon Simple
Notification Service with Amazon S3 Glacier, which allows you to create
notifications once a job is finished. When you want to retrieve one or more
archives from your vault, you need to submit a job, which runs behind the
scenes.

Accessing Amazon S3 Glacier
There are three ways to access Amazon S3 Glacier:

• You can access it directly via the Amazon S3 Glacier API or SDK.
• You can access it via Amazon S3 lifecycle integration. You can

create various lifecycle policies to move the files to Amazon S3
Glacier. For example, you can write a policy that says to move any
file residing in S3 that is more than one year old to Amazon S3
Glacier, move any file that is more than three months old to Amazon
S3 Glacier, and so on.

• You can access it via various third-party tools and gateways.

Uploading Files to AmazonS3 Glacier
Uploading files to Amazon S3 Glacier is pretty simple. You can use the
Internet directly to upload the files. You can also upload the files to S3
Glacier from your corporate data center using AWS Direct Connect. If you
have a large number of files or a huge data set, you can use AWS Snowball
to ship your files and then upload them to S3 Glacier.

To upload a file in Amazon S3 Glacier first, you need to create a vault,
which is the container where your data will be stored. You can visualize this
vault as a safety deposit box that you often see in a bank. Vault names must
be unique within an account and within the region in which the vault is
being created. During the creation of a vault, you can also enable
notifications.

Then you need to create an access policy that you can attach directly to
your S3 Glacier vault (the resource) to specify who has access to the vault
and what actions they can perform on it.

The next step is to create the archives and upload them to the vault. For
large archives, S3 Glacier provides a multipart upload API that enables you
to upload an archive in parts. Amazon also provides you with SDKs for
Java and .NET to upload files to S3 Glacier. Whenever you upload an
archive, Amazon internally creates an archive ID to uniquely identify the
archive.

Retrieving Files from Amazon S3 Glacier
There are three ways to retrieve data from Amazon S3 Glacier:

• Standard This is a low-cost option for retrieving data in just a few
hours. Typically it takes about three to five hours to retrieve the data.
The standard retrieval cost is $0.01 per gigabyte.

• Expedited This is designed for occasional urgent access to a small
number of archives. Using expedited retrieval, the data can be
accessed almost instantly within one to five minutes. The expedited
retrieval cost is $0.03 per gigabyte.

• Bulk This is the lowest-cost option optimized for large retrievals, up
to petabytes of data. It takes between five and twelve hours to
retrieve the data. The bulk retrieval cost is $0.0025 per gigabyte.

Retrieving files from Amazon S3 Glacier is simple. All the jobs are done
in a four-step process.

1. You submit a retrieval job. While submitting the retrieval job, you can
specify whether it is standard, expedited, or bulk retrieval. The
moment you submit the retrieval job, you get a unique job ID that you
can use to track the retrieval job.

2. Depending on the type of job you have submitted, it can take from a
few minutes to a few hours to complete the job.

3. Once the job is completed, you get a notification that the job has been
completed.

4. You can now download the output.

If you have enabled the lifecycle policy of S3, you can also restore the
data using lifecycle management.

Amazon Elastic Block Store
Amazon Elastic Block Store (EBS) offers persistent storage for Amazon
EC2 instances. A persistent storage means the storage is independent
outside the life span of an EC2 instance. EBS volumes provide durable
block-level storage for use with Amazon EC2 instances. Amazon EBS
volumes are network-attached and continue independently after the life of
an instance. Amazon EBS volumes are highly available, highly reliable
volumes that can be leveraged as an Amazon EC2 instance’s boot partition

or attached to a running Amazon EC2 instance as a standard block device.
Once you attach an EBS volume to an EC2 instance, the EBS volume can
be used as a physical hard drive of a server (of course, you may have to
format the volume before using it). You can attach multiple EBS volumes to
an EC2 instance. This gives you a great advantage since you can separate
the boot volumes from the data volume. You can have one EBS volume for
the data and another EBS volume for the boot volume and attach both of
them to the same EC2 instance. An EBS volume can be attached to only
one EC2 server at a time. You cannot attach or mount the same EBS volume
to multiple EC2 instances. The only exception to this is using EBS volume
with Multi-Attach. Amazon EBS Multi-Attach enables you to attach a
single Provisioned IOPS SSD (io1) volume to up to 16 Nitro-based
instances that are in the same AZ. But at any point in time you can detach
an EBS volume from an EC2 instance and can mount it to a different EC2
instance. Since EBS volumes are part of a particular AZ, you can detach
and reattach an EBS volume between instances within the same AZ. You
can’t detach and reattach EBS volumes across different AZs.

Once you attach the EBS volume to the EC2 instance, you can create a
file system on top of that. After creating the file system, you can run any
kind of workload you want to run on those servers. You can run any type of
workload on EBS volumes such as databases, applications, big data
workloads, NoSQL databases, web sites, and so on.

EBS volumes can also be used as a boot partition. When EBS volumes
are used as a boot partition, then Amazon EC2 instances can be stopped and
subsequently restarted, enabling you to pay only for the storage resources
used while maintaining your instance’s state. Also, since the EBS volumes
persist after the restart, all the data that you store in the EBS volume stays
as is. Amazon EBS volumes offer greatly improved durability over local
Amazon EC2 instance stores.

Amazon EBS provides the ability to create point-in-time consistent
snapshots of your volumes that are then stored in Amazon S3 and
automatically replicated across multiple availability zones. These snapshots
can be used as the starting point for new Amazon EBS volumes and can
protect your data for long-term durability. You can also easily share these
snapshots with co-workers and other AWS developers or to another
account. The snapshot can also be copied across multiple regions.
Therefore, if you are planning for disaster recovery, data center migration,

or geographical expansion or you want to leverage multiple AWS regions,
you can use EBS snapshots to get your data quickly and provision the
infrastructure.

Features of Amazon EBS
The following are the main features of Amazon EBS:

• Persistent storage As discussed previously, the volume’s lifetime is
independent of any particular Amazon EC2 instance.

• General purpose Amazon EBS volumes are raw, unformatted block
devices that can be used from any operating system.

• High availability and reliability Amazon EBS volumes provide
99.999 percent availability and automatically replicate within their
availability zones to protect your applications from component
failure. It is important to note that EBS volumes are not replicated
across multiple AZs; rather, they are replicated within different
facilities within the same AZ.

• Encryption Amazon EBS encryption provides support for the
encryption of data at rest and data in transit between EC2 instances
and EBS volumes.

• Variable size Volume sizes range from 1GB to 16TB and are
allocated in 1GB increments.

• Easy to use Amazon EBS volumes can be easily created, attached,
backed up, restored, and deleted.

• Designed for resiliency The annual failure rate (AFR) of Amazon
EBS is between 0.1 percent and 0.2 percent.

AWS Block Storage Offerings
There are three types of block storage offerings that AWS provides:

• Amazon EC2 instance store
• Amazon EBS SSD-backed volume
• Amazon EBS HDD-backed volume

Amazon EC2 Instance Store
An Amazon EC2 instance store is the local storage of an EC2 instance. It is
local to the instance, and unlike EBS volumes, it can’t be mounted into
different servers. The instance store is ephemeral, which means all the data
stored in the instance store is gone the moment the EC2 instance is shut
down. The data neither persists nor is replicated in the instance store. Also,
there is no snapshot support for the instance store, which means you won’t
be able to take a snapshot of the instance store. The instance store is
available in a solid-state drive (SSD) or hybrid hard drive (HDD).

Amazon EBS Volumes
Amazon EBS provides multiple options that allow you to optimize storage
performance and cost for any workload you would like to run. These
options are divided into two major categories: SSD-backed storage, which
is mainly used for transactional workloads such as databases and boot
volumes, and HDD-backed storage, which is for throughput-intensive
workloads such as log processing and MapReduce.

Amazon EBS-Backed Volume Elastic volumes are a feature of Amazon
EBS that allow you to dynamically increase capacity, tune performance, and
change the type of live volumes with no downtime or performance impact.
You can simply use a metric from CloudWatch and write a Lambda function
to automate it. (You will learn about CloudWatch and Lambda later in this
book.) This allows you to easily right-size your deployment and adapt to
performance changes.

Amazon EBS SSD-Backed Volume The SSD-backed volumes are of two
types, General-Purpose SSD (gp2) and Provisioned IOPS SSD (io1). SSD-
backed volumes include the highest performance io1 for latency-sensitive
transactional workloads and gp2, which balances price and performance for
a wide variety of transactional data.

Before going deep into the types of volume, it is important to understand
the concept of IOPS. The performance of a block storage device is
commonly measured and quoted in a unit called IOPS, short for
input/output operations per second. A drive spinning at 7,200 RPM can
perform at 75 to 100 IOPS, whereas a drive spinning at 15,000 RPM will

deliver 175 to 210. The exact number will depend on a number of factors,
including the access pattern (random or sequential) and the amount of data
transferred per read or write operation.

General-Purpose SSD General-Purpose SSD delivers single-digit-
millisecond latencies, which is actually a good use case for the majority of
workloads. gp2s can deliver between 100 and 16,000 IOPS. gp2 provides
great performance for a broad set of workloads, all at a low cost. They
reliably deliver three sustained IOPS for every gigabyte of configured
storage. For example, a 100GB volume will reliably deliver 300 IOPS. The
volume size for gp2 can be anything from 1GB to 16TB. It provides the
maximum throughput of 160Mb per volume. You can run any kind of
workload in gp2; however, some use cases that are a good fit for gp2 are
system boot volumes, applications requiring low latency, virtual desktops,
development and test environments, and so on.

The General-Purpose SSDs under 1TB have the ability to burst the IO.
This means if you are not using the IOPS, they will get accumulated as IO
credit and will be used as IO during peak loads. Let’s see an example to
understand this. Say you have a 100GB EBS volume; at 3 IOPS per
gigabyte you can expect a total of 300 IOPS. Now whenever you are not
using 300 IOPS, the system accumulates the unused IO and keeps it as IO
credits. When you are running a peak workload or when there is a heavy
activity, it will use the IO credits that it has accumulated, and you will see a
lot more IO. The IO can burst up to 3,000 IOPS. When all the IO credits are
over, it is going to revert to 300 IOPS. Since the max limit for burst is 3,000
IOPS, volumes more than 1TB in size won’t get the benefit of it. By the
way, each volume receives an initial IO credit balance of 5.4 million IO
credits, which is good enough to sustain the maximum burst performance of
3,000 IOPS for 30 minutes. This initial credit balance provides a fast initial
boot cycle for boot volumes and provides a better bootstrapping experience.

Provisioned IOPS SSD If you have an IO-intense workload such as
databases, then you need predictable and consistence IO performance.
Provisioned IOPS is designed to cater to that requirement. When you create
an EBS volume with Provisioned IOPS, you can specify the IOPS rate, and
EBS volumes deliver within 10 percent of the Provisioned IOPS
performance 99.9 percent of the time in a given year. You can create an io1

volume between 4GB and 16TB and can specify anything between 100 and
20,000 IOPS per volume. The ratio for volume versus Provisioned IOPS is
1:50. For example, if you have a volume of 100GB, then the IOPS you can
provision with that will be 100*50, which is 5,000 IOPS. Since there is a
limit of 20,000 IOPS per volume, even if the size of the volume is 1TB, the
maximum IOPS you can provision with that volume would be 20,000 only.
If you need more Provisioned IOPS, then you should distribute your
workload on multiple EBS volumes. You can also use technologies such as
RAID on top of multiple EBS volumes to stripe and mirror the data across
multiple volumes. (Please note that RAID is irrespective of the type of EBS
volume.) The maximum throughput per volume you will get is 320MB per
second, and the maximum IOPS an instance can have is 75,000.
Provisioned costs more than the general-purpose version, and it is based on
the volume size as well as the amount of IOPS reserved. It can be used for
database workloads such as Oracle, PostgreSQL, MySQL, Microsoft SQL
Server, Mongo DB, and Cassandra; running mission-critical applications; or
running production databases, which need sustained IO performance and so
on.

Amazon EBS HDD-Backed Volume HDD-backed volumes include
Throughput Optimized HDD (st1), which can be used for frequently
accessed, throughput-intensive workloads; and HDD (sc1), which is for less
frequently accessed data that has the lowest cost.

Throughput-Optimized HDD Throughput-Optimized HDD (st1) is good
when the workload you are going to run defines the performance metrics in
terms of throughput instead of IOPS. The hard drives are based on magnetic
drives. There are lots of workloads that can leverage this EBS volume such
as data warehouses, ETL, log processing, MapReduce jobs, and so on. This
volume is ideal for any workload that involves sequential IO. Any workload
that has a requirement for random IO should be run either on general-
purpose or on Provisioned IOPS depending on the price/performance need.

Like the General-Purpose SSDs, Throughput-Optimized HDD also uses
a burst-bucket model for performance. In this case, it is the volume size that
determines the baseline for the throughput of the volume. It bursts 250MB
per second per terabyte up to 500Mb per second. The capacity of the
volume ranges from 500GB to 16TB.

Cold HDD Just like st1, Cold HDD (sc1) also defines performance in terms
of throughput instead of IOPS. The throughput capacity is less compared to
sc1; therefore, the prices are also very cheap for sc1. This is a great use case
for noncritical, cold data workloads and is designed to support infrequently
accessed data. Similar to st1, sc1 uses a burst-bucket model, but in this case
the burst capacity is less since overall throughput is less.

EBS offers snapshot capabilities that can be used to back up EBS
volumes. You can take a snapshot at any point in time when a volume is in
use without any outages. The snapshot will back up the data that resides on
the EBS volume, so if you have any data cached in the application, the
snapshot won’t be able to take the backup. To ensure a consistent snapshot,
it is recommended that you detach the EBS volume from the EC2 instance,
issue the snapshot command, and then reattach the EBS volume to the
instance. You can take a snapshot of the root volume as well. In that case, it
is recommended that you shut down the machine first and then take it. You
can store the snapshots in Amazon S3. There is no limit to the number of
snapshots you can take. Each snapshot is uniquely identified by name.

Amazon Elastic File System
As the name suggests, Amazon Elastic File System (EFS) provides a file
system interface and file system semantics to Amazon EC2 instances. When
EFS is attached to an EC2 instance, it acts just like a local file system. EFS
is also a shared file system, which means you can mount the same file
system across multiple EC2 instances, and EFS shares access to the data
between multiple EC2 instances, with low latencies.

The following are the attributes of EFS:

• Fully managed It is a fully managed file system, and you don’t have
to maintain any hardware or software. There is no overhead of
managing the file system since it is a managed service.

• File system access semantics You get what you would expect from
a regular file system, including read-after-write consistency, locking,
the ability to have a hierarchical directory structure, file operations
like appends, atomic renames, the ability to write to a particular
block in the middle of a file, and so on.

• File system interface It exposes a file system interface that works
with standard operating system APIs. EFS appears like any other file
system to your operating system. Applications that leverage standard
OS APIs to work with files will work with EFS.

• Shared storage It is a shared file system. It can be shared across
thousands of instances. When an EFS is shared across multiple EC2
instances, all the EC2 instances have access to the same data set.

• Elastic and scalable EFS elastically grows to petabyte scale. You
don’t have to specify a provisioned size up front. You just create a
file system, and it grows and shrinks automatically as you add and
remove data.

• Performance It is built for performance across a wide variety of
workloads. It provides consistent, low latencies, high throughput,
and high IOPS.

• Highly available and durable The data in EFS is automatically
replicated across AZs within a region. As a result, your files are
highly available, accessible from multiple AZs, and also well
protected from data loss.

Figure 2-10 shows the foundation on which EFS is built. As you can see,
it aims to be highly durable and highly available. Since your data is
automatically available in multiple AZs, EFS is designed to sustain AZ
offline conditions. It is superior to traditional NAS availability models since
the data is mirrored across multiple AZs. Therefore, it is appropriate for
running mission-critical production workloads.

Figure 2-10 Foundation on which Amazon EFS is built

Simplicity is the foundation of EFS. You can create an EFS instance in
seconds. There are no file layers or hardware to manage. EFS eliminates
ongoing maintenance and the constant upgrade/refresh cycle. It can be
seamlessly integrated with existing tools and apps. It works with the NFS
protocol. Using a direct connect and VPC, you can also mount EFS on your
on-premise servers via the NFS 4.1 protocol. It is a great use case if you
want to transfer a large number of data from the servers running on your
premise to the AWS cloud. Also, if you have a workload on your premise
that needs additional compute, you can leverage EFS and EC2 servers to
offload some of the application workload processing to the cloud. You can
even use EFS to back up files to the cloud.

Since EFS is elastic, the file system grows and shrinks automatically as
you add or remove files. You don’t have to specify any capacity up front or
provision anything, and there is no limit to the number of files you can add
in the file system. You just pay for the storage space you use. There are no
minimum fees or minimum commitment.

Since EFS is scalable, the throughput and IOPS scale automatically as
file systems grow. There is no need to reprovision, adjust performance
settings, or do anything in order for your file system to grow to petabyte-
scale. The performance aspect is taken care of automatically as you add
files. EFS has been designed in such a way that with each gigabyte of stored
files you get a particular amount of throughput and IOPS, and as a result,
you get consistent performance and are able get low latencies. EFS supports
thousands of concurrent NFS connections.

Using Amazon Elastic File System
The first step in using Amazon EFS is to create a file system. The file
system is the primary resource in EFS where you store files and directories.
You can create ten file systems per account. Of course, like any other AWS
service, you can increase this limit by raising a support ticket. To access
your file system from instances in a VPC, you create mount targets in the
VPC. A mount target is an NFS v4 endpoint in your VPC. A mount target
has an IP address and a DNS name you use in your mount command. You
need to create a separate mount target from each AZ. Now you can run the
mount command on the file system’s DNS name to mount the EFS on your

EC2 instance. When the EFS is mounted, the file system appears like a
local set of directories and files.

To summarize, these are the steps:

1. Create a file system.
2. Create a mount target in each AZ from which you want to access the

file system.
3. Run the mount command from the EC2 instance on the DNS name of

the mount of EFS.
4. Start using the EFS.

Figure 2-11 shows the process of creating an EFS instance.

Figure 2-11 Amazon EFS creation

The EFS instance can be administered via the AWS management console
or via the AWS command-line interface (CLI) or AWS software
development kit (SDK), which provides EFS support for Java, Python, PHP,
.NET, and others. AWS also provides APIs that allow you to administer
your EFS file systems via the three options mentioned.

Since EFS provides predictive performance, it serves the vast majority of
file workloads, covering a wide spectrum of performance needs from big

data applications that are massively parallelized and require the highest
possible throughput to single-threaded, latency-sensitive workloads.

There are a lot of places where it can be used. Some of the most common
use cases of EFS are genomics, big data analytics, web serving, home
directories, content management, media-intensive jobs, and so on.

Performance Mode of Amazon EFS
General-purpose mode is the default for Amazon EFS. It is optimized for
latency-sensitive applications and general-purpose file-based workloads.
This mode is the best option for the majority of use cases.

Max I/O mode is optimized for large-scale and data-heavy applications
where tens, hundreds, or thousands of EC2 instances are accessing the file
system. It scales to higher levels of aggregate throughput and operations per
second with a trade-off of slightly higher latencies for file operation.

You can use Amazon CloudWatch metrics to get visibility into EFS’s
performance. You can use CloudWatch to determine whether your
application can benefit from the maximum I/O. If not, you’ll get the best
performance in general-purpose mode.

On-Premise Storage Integration with AWS
If you have to transfer a large amount of data from your data centers,
uploading it to S3 might not be a good choice. When you are planning to
transfer more than 10TB of data, you can integrate your on-premise storage
with AWS. AWS offers a couple of options through which you can move
your data to the cloud. From a certification point of view, this topic is not
important, but as a solutions architect, you should know about these
offerings.

AWS Storage Gateway
The AWS Storage Gateway (SGW) service is deployed as a virtual machine
in your existing environment. This VM is called a storage gateway, and you
connect your existing applications, storage systems, or devices to this
storage gateway. The storage gateway provides standard storage protocol
interfaces so apps can connect to it without changes. The gateway in turn

connects to AWS so you can store data securely and durably in Amazon S3
Glacier.

The gateway optimizes data transfer from on-premises to AWS. It also
provides low-latency access through a local cache so your apps can access
frequently used data locally. The service is also integrated with other AWS
services such as CloudWatch, CloudTrail, and IAM. Therefore, you can
leverage these services within the storage gateway running on-premise. The
storage gateway supports three storage interfaces, as described here:

• The file gateway enables you to store and retrieve objects in Amazon
S3 using industry-standard file protocols. Files are stored as objects
in your S3 buckets and accessed through a Network File System
(NFS) mount point. Ownership, permissions, and time stamps are
durably stored in S3 in the user metadata of the object associated
with the file. Once objects are transferred to S3, they can be
managed as native S3 objects, and bucket policies such as
versioning, lifecycle management, and cross-region replication apply
directly to objects stored in your bucket. It also supports Server
Message Block (SMB) and NFS file shares.

• The volume gateway presents your applications with disk volumes
using the iSCSI block protocol. Data written to these volumes can be
asynchronously backed up as point-in-time snapshots of your
volumes and stored in the cloud as Amazon EBS snapshots. You can
set the schedule for when snapshots occur or create them via the
AWS Management Console or service API. Snapshots are
incremental backups that capture only changed blocks. All snapshot
storage is also compressed to minimize your storage charges. When
connecting with the block interface, you can run the gateway in two
modes: cached and stored. In cached mode, you store your primary
data in Amazon S3 and retain your frequently accessed data locally.
With this mode, you can achieve substantial cost savings on the
primary storage, minimizing the need to scale your storage on-
premises, while retaining low-latency access to your frequently
accessed data. You can configure up to 32 volumes of 32TB each,
for a total 1PB storage per gateway. In stored mode, you store your
entire data set locally while performing asynchronous backups of
this data in Amazon S3. This mode provides durable and

inexpensive off-site backups that you can recover locally or from
Amazon EC2.

• The tape gateway presents the storage gateway to your existing
backup application as an industry-standard iSCSI-based virtual tape
library (VTL), consisting of a virtual media changer and virtual tape
drives. You can continue to use your existing backup applications
and workflows while writing to a nearly limitless collection of
virtual tapes. Each virtual tape is stored in Amazon S3. When you no
longer require immediate or frequent access to data contained on a
virtual tape, you can have your backup application archive it from
the virtual tape library into Amazon S3 Glacier, further reducing
storage costs.

AWS Snowball and AWS Snowball Edge
Snowball is an AWS import/export tool that provides a petabyte-scale data
transfer service that uses Amazon-provided storage devices for transport.
Previously, customers had to purchase their own portable storage devices
and use these devices to ship their data. With Snowball, customers are now
able to use highly secure, rugged, Amazon-owned network-attached storage
(NAS) devices, called Snowballs, to ship their data. Once the Snowballs are
received and set up, customers are able to copy up to 80TB data from their
on-premises file system to the Snowball via the Snowball client software
and a 10Gbps network interface. Snowballs come with two storage sizes:
50TB and 80TB. Prior to transfer to the Snowball, all the data is encrypted
by 256-bit GSM encryption by the client. When customers finish
transferring their data to the device, they simply ship the Snowball back to
an AWS facility where the data is ingested at high speed into Amazon S3.

AWS Snowball Edge, like the original Snowball, is a petabyte-scale data
transfer solution, but it transports more data, up to 100TB of data, and
retains the same embedded cryptography and security as the original
Snowball. Snowball Edge comes in two flavors: Snowball Edge Compute
Optimized and Snowball Edge Storage Optimized. In addition, Snowball
Edge hosts a file server and an S3-compatible endpoint that allows you to
use the NFS protocol, S3 SDK, or S3 CLI to transfer data directly to the
device without specialized client software. Multiple units may be clustered
together, forming a temporary data collection storage tier in your data

center so you can work as data is generated without managing copies. As
your storage needs scale up and down, you can easily add or remove
devices to/from the local cluster and return them to AWS.

AWS Snowmobile
AWS Snowmobile is a secure, exabyte-scale data transfer service used to
transfer large amounts of data into and out of AWS. Each Snowmobile
instance can transfer up to 100PB. When you order a Snowmobile, it comes
to your site, and AWS personnel connect a removable, high-speed network
switch from Snowmobile to your local network. This makes Snowmobile
appear as a network-attached data store. Once it is connected, the secure,
high-speed data transfer can begin. After your data is transferred to
Snowmobile, it is driven back to AWS where the data is loaded into the
AWS service you select, including S3, Amazon S3 Glacier, Redshift, and
others.

Chapter Review
In this chapter, you learned about the various storage offerings from AWS.

Amazon S3 is the object store that has 99.99999999999 percent
durability. S3 can be used for a variety of purposes. The objects are stored
in a bucket in S3, and the name of the bucket must be unique. S3 has
different classes of storage. Amazon S3 Standard is the default storage. IA
is an Amazon S3 storage class that is often used for storing data that is
accessed less frequently. Amazon S3 Intelligent Tiering is a storage class
which moves the data back and forth from one storage class to other based
on the access patterns. S3 One Zone-IA stores data in a single AZ Amazon
S3 Glacier is the storage class mainly used for data archiving. Amazon S3
Glacier Deep Archive is used for long-term retention and can be used as a
replacement for magnetic tape drives.

Amazon Elastic Block Store (EBS) offers persistent storage for Amazon
EC2 instances. It is the block storage that can be used in AWS. EBS can be
based on SSD or HDD. The SSD-backed volumes are of two types:
General-Purpose SSD (gp2) and Provisioned IOPS SSD (io1). HDD-backed
volumes include Throughput Optimized HDD (st1), which can be used for
frequently accessed, throughput-intensive workloads; and HDD (sc1),

which is for less frequently accessed data that has the lowest cost. Some
EC2 instances also have a local storage built in that is called the instance
store. The instance store is ephemeral, and it is gone whenever you
terminate the instance.

Amazon Elastic File System provides a shared file system across many
EC2 instances. EFS shares access to the data between multiple EC2
instances, with low latencies. If you need a shared file system for your
applications, you can use EFS.

Amazon Storage Gateway can be integrated with your applications
running on-premise to the storage on AWS so you can transfer the data
from your data center to AWS.

AWS Snowball and AWS Snowball Edge are devices that can be used to
ship a large amount of data to AWS. AWS Snowball has a capacity of either
50TB or 80TB, whereas Snowball Edge has a capacity of up to 100TB. As
mentioned, Snowball Edge can be Compute Optimized or Storage
Optimized.

Amazon Snowmobile is an exabyte-scale data transfer service. Each
Snowmobile can transfer up to 100PB. It is delivered to your site container.

Lab 2-1: Creating, Moving, and Deleting
Objects in Amazon S3

This lab helps you navigate the AWS console and use the Amazon S3
service using the AWS management console. In this lab, you will do the
following:

• Create a bucket in Amazon S3
• Add an object in Amazon S3
• View an object in Amazon S3
• Cut, copy, and paste the file from one bucket to another
• Make an object public and access the object from a URL
• Download the object from Amazon S3 to a local machine
• Delete an object in Amazon S3

If you don’t have an account with AWS, you need to open one before
you can start working on the labs. To create an account, go to
https://aws.amazon.com/console/ and in the top-right corner click Create
An AWS Account. You can sign up using your e-mail address or phone
number. You will require a credit card to sign up for an AWS account. AWS
offers most of its service for free for one year under the Free Tier category.
Please read the terms and conditions of the Free Tier to understand what is
included for free and what is not. You should be up and running with an
AWS account in a couple of minutes.

1. Log in to your AWS account. Once you log in to your account, you
will notice at the top-right side your default AWS region. Click the
region; you will notice a drop-down list. Choose the region of choice
where you want to host your bucket.

2. From the console, choose S3 from AWS Service.
3. Click Create Bucket.
4. In Bucket Name, put a unique name for your bucket. To create a

bucket, you are not charged anything. It’s only when you upload stuff
in your bucket that you are charged (you won’t be charged if you are
within the Free Tier limit).

5. In Region, choose US East (N. Virginia).
6. In Copy Settings From An Existing Bucket, don’t type anything. Click

Next.

https://aws.amazon.com/console/

7. Leave the defaults for Versioning, Logging, and Tags; then click Next.

8. On the next screen, called Manage Users, leave Manage Public
Permissions and Manage System Permissions at the defaults and click
Next.

9. Click Create Bucket. Now the bucket will be created for you. Next,
you will add an object in the newly created bucket.

10. You should be able to see the newly created bucket; click it. You will
see a couple of options such as Upload, Create Folder, More, and so
on.

11. Click Upload and upload a few files. Keep everything at the defaults in
the next three screens and upload the files.

12. Click Create Folder and create a folder with a name of your choice.

13. Go to the folder and upload a few files.
14. Go to your S3 bucket and select a file that you have uploaded. Notice

the pop-up on the right once the file is selected. It has all the
information related to the object you have uploaded.

15. With the file selected, click More on the top and browse all the
options.

16. Do the same for the files you have created under the folder.
17. Now go to the original file you have created (the first file), select the

file, and click More. Click the Copy option. Go to the new folder you
have created, click More, and click Paste. You will notice the file is
now copied to the new folder.

18. In the same way, try Cut and Paste. By cutting and pasting, you can
copy the files from one bucket to other.

19. Go to the new folder, select the file, click More | Download, and save
the file to your local machine. The file will be stored in your local
machine.

20. Again, from the new folder, select the file from the S3 bucket, and
click More | Make Public.

21. Reselect the file, and from the right side on the Object tab, select the
URL for the file. Now you have made your file publicly accessible
from anywhere in the world.

22. Copy the URL and paste it in a different browser window. You will
notice that now you can download the file without even logging into
S3. Since the file is public, anyone who has this URL can download
the file.

23. Keep the file selected, and from S3 bucket click More | Delete.

The file will be deleted from the S3 bucket.
Congratulations! You have finished the first lab on S3.

Lab 2-2: Using Version Control in Amazon S3

In this lab, you will do the following:

• Create an Amazon S3 bucket and enable versioning
• Upload multiple versions of the same file
• Delete a file
• Restore the file after deletion

Log in to the AWS admin console, and from Services select Amazon S3.

1. Repeat steps 1 to 6 from Lab 2-1.
2. In the Versioning window, click the Versioning box. A window will

appear asking you to select Enable Versioning or Suspend Versioning.
3. Choose Enable Versioning and click Save; then click Next.

4. Leave everything at the defaults on the next two screens.
5. Click Create Bucket. Now you will have the newly created bucket with

versioning on. By the way, you can enable versioning on existing
buckets as well. Try that and see how it works.

6. Now create a text file called s3versiontest.text and insert some text in
it. For simplicity insert California in the text file and save it.

7. Upload the file in the newly created bucket.
8. From your local machine, replace the word California with Texas in

the s3versiontest.text file.
9. Upload the file again.

10. Repeat steps 8 and 9 a couple of times, every time replacing the text
with a new state name.

11. Go to the S3 bucket; you will see there is only one file called
s3versiontext.text.

12. Select the file. On the right you will notice a button called Latest
Version. Click it, and you will notice all the file versions.

13. Download the files with different versions to your local machine.
Download them with different names and don’t overwrite the files on
your local machine since the file name will be the same. Compare the
files; you will notice that file with the text California, Texas, and other
states all are there.

14. Select the file and click More | Delete.
15. Go to the S3 bucket, and you will see a button called Deleted Objects.
16. Click Deleted Objects, and you will notice your deleted file is there.
17. Select the file and click More | Undo Delete. You have now restored

the deleted file successfully.
18. Create another S3 bucket without enabling versioning.
19. Repeat steps 6 to 8.
20. Download the file. You will notice that the file has been overwritten,

and there is no option to download the previous version of the file.

21. Repeat step 10, and download each file; you will notice each time the
file gets overwritten.

22. Try to repeat steps 14 to 17.

You will realize that the button Deleted Objects does not exist, which
means you can no longer restore a deleted file if versioning is not enabled.

This completes the second lab.

Lab 2-3: Using the Bucket Policy Generator for
Amazon S3

In this lab, you will generate a bucket policy using the AWS Policy
Generator. The AWS Policy Generator is a tool that enables you to create
various policies and use them to control access to AWS products and
resources.

1. Go to the URL
https://awspolicygen.s3.amazonaws.com/policygen.html.

2. In the Select Policy Type drop-down list, select S3 Bucket Policy.
3. In Add Statement(s), do the following:

A. Set Effect to Allow.
B. Set Principal to * (this gives access to everyone).
C. Set AWS Service to Amazon S3.
D. In Actions, select GetObject.
E. In ARN, enter arn:aws:s3:::staticweb site/*.

4. Click the button Add Statement.
5. Click Generate Policy. You will notice that the system has generated

the following policy for you. You can use this policy to grant
anonymous access to your static web site.

https://awspolicygen.s3.amazonaws.com/policygen.html

Questions
1. What is the main purpose of Amazon S3 Glacier? (Choose all that

apply.)
A. Storing hot, frequently used data
B. Storing archival data
C. Storing historical or infrequently accessed data
D. Storing the static content of a web site
E. Creating a cross-region replication bucket for Amazon S3

2. What is the best way to protect a file in Amazon S3 against accidental
delete?
A. Upload the files in multiple buckets so that you can restore from

another when a file is deleted
B. Back up the files regularly to a different bucket or in a different

region
C. Enable versioning on the S3 bucket
D. Use MFA for deletion
E. Use cross-region replication

3. Amazon S3 provides 99.999999999 percent durability. Which of the
following are true statements? (Choose all that apply.)
A. The data is mirrored across multiple AZs within a region.
B. The data is mirrored across multiple regions to provide the

durability SLA.
C. The data in Amazon S3 Standard is designed to handle the

concurrent loss of two facilities.
D. The data is regularly backed up to AWS Snowball to provide the

durability SLA.
E. The data is automatically mirrored to Amazon S3 Glacier to

achieve high availability.
4. To set up a cross-region replication, what statements are true? (Choose

all that apply.)
A. The source and target bucket should be in a same region.
B. The source and target bucket should be in different region.
C. You must choose different storage classes across different

regions.
D. You need to enable versioning and must have an IAM policy in

place to replicate.
E. You must have at least ten files in a bucket.

5. You want to move all the files older than a month to S3 IA. What is the
best way of doing this?
A. Copy all the files using the S3 copy command
B. Set up a lifecycle rule to move all the files to S3 IA after a month
C. Download the files after a month and re-upload them to another

S3 bucket with IA
D. Copy all the files to Amazon S3 Glacier and from Amazon S3

Glacier copy them to S3 IA
6. What are the various way you can control access to the data stored in

S3? (Choose all that apply.)
A. By using an IAM policy
B. By creating ACLs

C. By encrypting the files in a bucket
D. By making all the files public
E. By creating a separate folder for the secure files

7. How much data can you store on S3?
A. 1 petabyte per account
B. 1 exabyte per account
C. 1 petabyte per region
D. 1 exabyte per region
E. Unlimited

8. What are the different storage classes that Amazon S3 offers? (Choose
all that apply.)
A. S3 Standard
B. S3 Global
C. S3 CloudFront
D. S3 US East
E. S3 IA

9. What is the best way to delete multiple objects from S3?
A. Delete the files manually using a console
B. Use multi-object delete
C. Create a policy to delete multiple files
D. Delete all the S3 buckets to delete the files

10. What is the best way to get better performance for storing several files
in S3?
A. Create a separate folder for each file
B. Create separate buckets in different regions
C. Use a partitioning strategy for storing the files
D. Use the formula of keeping a maximum of 100 files in the same

bucket
11. The data across the EBS volume is mirrored across which of the

following?

A. Multiple AZs
B. Multiple regions
C. The same AZ
D. EFS volumes mounted to EC2 instances

12. I shut down my EC2 instance, and when I started it, I lost all my data.
What could be the reason for this?
A. The data was stored in the local instance store.
B. The data was stored in EBS but was not backed up to S3.
C. I used an HDD-backed EBS volume instead of an SSD-backed

EBS volume.
D. I forgot to take a snapshot of the instance store.

13. I am running an Oracle database that is very I/O intense. My database
administrator needs a minimum of 3,600 IOPS. If my system is not
able to meet that number, my application won’t perform optimally.
How can I make sure my application always performs optimally?
A. Use Elastic File System since it automatically handles the

performance
B. Use Provisioned IOPS SSD to meet the IOPS number
C. Use your database files in an SSD-based EBS volume and your

other files in an HDD-based EBS volume
D. Use a general-purpose SSD under a terabyte that has a burst

capability
14. Your application needs a shared file system that can be accessed from

multiple EC2 instances across different AZs. How would you
provision it?
A. Mount the EBS volume across multiple EC2 instances
B. Use an EFS instance and mount the EFS across multiple EC2

instances across multiple AZs
C. Access S3 from multiple EC2 instances
D. Use EBS with Provisioned IOPS

15. You want to run a MapReduce job (a part of the big data workload) for
a noncritical task. Your main goal is to process it in the most cost-

effective way. The task is throughput sensitive but not at all mission
critical and can take a longer time. Which type of storage would you
choose?
A. Throughput Optimized HDD (st1)
B. Cold HDD (sc1)
C. General-Purpose SSD (gp2)
D. Provisioned IOPS (io1)

Answers
1. B, C. Hot and frequently used data needs to be stored in Amazon S3;

you can also use Amazon CloudFront to cache the frequently used
data. Amazon S3 Glacier is used to store the archive copies of the data
or historical data or infrequent data. You can make lifecycle rules to
move all the infrequently accessed data to Amazon S3 Glacier. The
static content of the web site can be stored in Amazon CloudFront in
conjunction with Amazon S3. You can’t use Amazon S3 Glacier for a
cross-region replication bucket of Amazon S3; however, you can use
S3 IA or S3 RRS in addition to S3 Standard as a replication bucket for
CRR.

2. C. You can definitely upload the file in multiple buckets, but the cost
will increase the number of times you are going to store the files. Also,
now you need to manage three or four times more files. What about
mapping files to applications? This does not make sense. Backing up
files regularly to a different bucket can help you to restore the file to
some extent. What if you have uploaded a new file just after taking the
backup? The correct answer is versioning since enabling versioning
maintains all the versions of the file and you can restore from any
version even if you have deleted the file. You can definitely use MFA
for delete, but what if even with MFA you delete a wrong file? With
CRR, if a DELETE request is made without specifying an object
version ID, Amazon S3 adds a delete marker, which cross-region
replication replicates to the destination bucket. If a DELETE request
specifies a particular object version ID to delete, Amazon S3 deletes
that object version in the source bucket, but it does not replicate the
deletion in the destination bucket.

3. A, C. By default the data never leaves a region. If you have created an
S3 bucket in a global region, it will always stay there unless you
manually move the data to a different region. Amazon does not back
up data residing in S3 to anywhere else since the data is automatically
mirrored across multiple facilities. However, customers can replicate
the data to a different region for additional safety. AWS Snowball is
used to migrate on-premises data to S3. Amazon S3 Glacier is the
archival storage of S3, and an automatic mirror of regular Amazon S3
data does not make sense. However, you can write lifecycle rules to
move historical data from Amazon S3 to Amazon S3 Glacier.

4. B, D. Cross-region replication can’t be used to replicate the objects in
the same region. However, you can use the S3 copy command or copy
the files from the console to move the objects from one bucket to
another in the same region. You can choose a different class of storage
for CRR; however, this option is not mandatory, and you can use the
same class of storage as the source bucket as well. There is no
minimum number of file restriction to enable cross-region replication.
You can even use CRR when there is only one file in an Amazon S3
bucket.

5. B. Copying all the files using the S3 copy command is going to be a
painful activity if you have millions of objects. Doing this when you
can do the same thing by automatically downloading and re-uploading
the files does not make any sense and wastes a lot of bandwidth and
manpower. Amazon S3 Glacier is used mainly for archival storage.
You should not copy anything into Amazon S3 Glacier unless you
want to archive the files.

6. A, B. By encrypting the files in the bucket, you can make them secure,
but it does not help in controlling the access. By making the files
public, you are providing universal access to everyone. Creating a
separate folder for secure files won’t help because, again, you need to
control the access of the separate folder.

7. E. Since the capacity of S3 is unlimited, you can store as much data as
you want there.

8. A, E. S3 Global is a region and not a storage class. Amazon
CloudFront is a CDN and not a storage class. US East is a region and
not a storage class.

9. B. Manually deleting the files from the console is going to take a lot of
time. You can’t create a policy to delete multiple files. Deleting
buckets in order to delete files is not a recommended option. What if
you need some files from the bucket?

10. C. Creating a separate folder does not improve performance. What if
you need to store millions of files in these separate folders? Similarly,
creating separate folders in a different region does not improve the
performance. There is no such rule of storing 100 files per bucket.

11. C. Data stored in Amazon EBS volumes is redundantly stored in
multiple physical locations in the same AZ. Amazon EBS replication is
stored within the same availability zone, not across multiple zones.

12. A. The only possible reason is that the data was stored in a local
instance store that is not persisted once the server is shut down. If the
data stays in EBS, then it does not matter if you have taken the backup
or not; the data will always persist. Similarly, it does not matter if it is
an HDD- or SSD-backed EBS volume. You can’t take a snapshot of
the instance store.

13. B. If your workload needs a certain number of workloads, the best way
would be is to use a Provisioned IOPS. That way, you can ensure the
application or the workload always meets the performance metric you
are looking for.

14. B. Use an EFS. The same EBS volume can’t be mounted across
multiple EC2 instances.

15. B. Since the workload is not critical and you want to process it in the
most cost-effective way, you should choose Cold HDD. Though the
workload is throughput sensitive, it is not critical and is low priority;
therefore, you should not choose st1. gp2 and io1 are more expensive
than other options like st1.

CHAPTER 3
Virtual Private Cloud

In this chapter, you will
• Understand what a virtual private cloud is
• Find out what components make up a virtual private cloud
• Learn how to connect multiple virtual private clouds
• Learn how to connect Amazon Virtual Public Cloud (VPC) with

your corporate data center

In real life, customers have lots of data centers, and in those data centers
they run lots of applications. Sometimes these applications are integrated
with lots of other things, and they often talk to each other. For example, a
typical three-tier application may have a web tier, an app tier, and a
database tier. All three tiers will talk with each other but also with all the
connected applications. An Online Transactions Processing (OLTP) system
may interact with a data warehouse system; similarly, an OLTP system may
have a reporting system, and so on. Some of the applications may be behind
a firewall, and some of them may be directly exposed to the Internet. For
example, the database tier will always be inside a private subnet, and no one
from the Internet will be able to access it, whereas some applications such
as corporate web servers or Internet suppliers (i-suppliers) can be accessed
from the Internet. Similarly, networking plays an important role in how
applications are going to talk to each other. If you change the IP address of
one server, it may not be able to talk with another server. This raises these
important questions: How do you start to migrate to the cloud? What
happens to the networking? How do some of the applications sitting on
your corporate data center connect/interact with the applications running on
the cloud? How do you segregate networking in the cloud? How do you
make sure that some of the applications running in the cloud have Internet

connectivity while others run in the private subnet with no Internet
connectivity? How do you make sure that you can extend the same IP range
to the cloud? When you launch an EC2 instance, you get a 32-bit random
number as an IP address. How do you make sure that the IP address is close
to the IP address of your data center? Well, Amazon VPC tries to answer all
these questions. So, what exactly is Amazon VPC?

Amazon VPC allows you to create your own virtual private cloud. In
other words, it allows you to logically isolate a section of the cloud. You
can provision any resource in this logically isolated region, and you have
complete control over the networking. You can also say that Amazon VPC
is your own data center in the cloud, and when you connect your data center
and Amazon VPC with either a virtual private network (VPN) or Direct
Connect, or both, it becomes an extension of your data center in the cloud.
In Amazon VPC you have complete control over how you want to
configure the networking. You can use your IP address, select your own IP
range, create multiple subnets however you want, carve out private subnets
and public subnets, and configure route tables and network gateways
however you’d like.

Thus, Amazon VPC solves all the problems discussed previously. It
gives you complete freedom to host your applications in the cloud and at
the same time lets them talk with the applications running in your data
center seamlessly. In the previous example of a three-tier application, you
can have the web tier running in a public subnet within Amazon VPC and
can have the app and the database tiers running on a private subnet in the
same VPC. You can have an additional layer of control by using security
groups and network access control lists, which you will learn about in this
chapter.

Let’s examine what you can do using VPC.
By connecting your data center with Amazon VPC, it becomes your own

data center in the cloud. You can treat it the same way you treat the data
centers on your company’s premises. You can have Amazon VPC connect
with the Internet or just have it talk to your own data center. You can bring
your own network, create your own subnets, and configure customer
routing rules in VPC. In short, you can do the following things by having a
virtual private network:

• You can have some of the applications running in the cloud within
VPC and some of the applications running on-premise.

• You can create multiple subnets within VPC. You can create a public
subnet by providing it with Internet access and can keep the resource
isolated from the Internet by creating a private subnet.

• You can have dedicated connectivity between your corporate data
center and VPN by using Direct Connect. You can also connect your
data center using a hardware virtual private network via an encrypted
IPsec connection.

• If you need more than one VPC, you can create multiple VPCs and
can connect each one of them by VPC peering. This way you can
share the resources across multiple VPCs and accounts.

• You can connect to resources such as S3 using a VPC endpoint.

Amazon VPC Components and
Terminology
Amazon VPC consists of multiple objects and concepts. Before discussing
them, I’ll cover why VPC was created in the first place. Without VPC, there
would be no way to isolate your resources running on the cloud. For
example, if you have deployed thousands of servers in the cloud, you need
to manage IP namespaces more diligently so that there is no overlap
between the IP addresses and so that you can seamlessly connect them from
the resources running on your premises. Without VPC, it becomes difficult
to manage the IP namespaces for thousands of servers.

Amazon VPC
As discussed, Amazon VPC gives you your own private space in the cloud.
When you create a VPC, you have the option of carving out your own data
center in the cloud. The first step of creating a VPC is deciding the IP range
by providing a Classless Inter-Domain Routing (CIDR) block. VPC now
supports both IPv4 and IPv6, so you can have both IP ranges as part of your
VPC. When you choose an IPv4 CIDR range, you can choose anything
between /16, which corresponds to 65,536 IP addresses (for example
10.0.0.0/16), and /28, which corresponds to 16 IP addresses. If you select

IPv6, you can choose an Amazon-provided IPv6 CIDR block or you can
bring the IPv6 CIDR block owned by you. If you choose an Amazon-
provided CIDR block, the size of the IPv6 CIDR block is fixed to /56 and
the range of IPv6 addresses is automatically allocated from Amazon’s pool
of IPv6 addresses. As of now, having a CIDR block for IPv6 is optional;
however, you need an IPv4 CIDR block. It is important to note that once
you create a VPC, you can’t alter the size of it. If you create a VPC with a
small size and later realize that you need more IP addresses, you can create
a new VPC with a bigger IP address range and then migrate your
applications from the old VPC to the new one.

A VPC is limited to a region, which means you can’t have a VPC
spanning regions. Within a VPC, you have all the AZs that are part of the
region where the VPC belongs. Figure 3-1 shows a VPC spanning three
AZs within a region with a CIDR block of /16. This figure also shows the
main route table of the virtual private cloud. You will study route tables
later in this chapter.

Figure 3-1 Virtual private cloud consisting of three AZs

Subnet
Subnet is short for subnetwork, which is a logical subdivision of an IP
network. With subnetting you can divide a network into multiple networks.
With VPC you can create various subnets as per your needs. The most
common ones are public subnets, private subnets, and VPN-only subnets. A
public subnet is created for resources that need to be connected to the
Internet. A private subnet is created for resources that do not need to be
connected to the Internet, and a VPN-only subnet is created when you want
to connect your virtual private cloud with your corporate data center. You
can also create different subnets to isolate the type of workload, such as a
subnet for the development environment, a subnet for the production
environment, and so on.

EXAM TIP There will be a few questions about Amazon VPC, private
subnets, and public subnets. You should be able to articulate which
workload is a good fit for which subnet; for example, the web tier goes to a
public subnet, the database tier goes to a private subnet, and so on.

With VPC you can define a subnet using a CIDR block. The smallest
subnet you can create within VPC is /28, which corresponds to 16 available
IP addresses. If you use IPv6 and create a subnet using /64 as the CIDR
block, you get 18,446,744,073,709,551,616 IP addresses. It must be noted
that a subnet is tied to only one availability zone. You cannot have a subnet

span multiple AZs; however, a VPC can span multiple AZs in a region. If
you have three AZs in a VPC, for example, you need to create a separate
subnet in each AZ, such as Subnet 1 for AZ1, Subnet 2 for AZ2, and Subnet
3 for AZ3. Of course, within an AZ you can have multiple subnets. A
virtual private cloud is tied to a region, which means you can’t have the
same VPC spanning multiple regions. The following are the key takeaways
about subnets:

• Subnets are AZ specific. For multiple AZs, create multiple subnets.
• VPC are region specific. For multiple regions, create different VPCs.

When you create a VPC, you need to provide a CIDR block for the IP
address range for the VPC. It can be as big as /16, which can have 65,536
IP addresses. Now when you create multiple subnets, you must take into
account the CIDR block of the VPC. Say you create the VPC with /16, and
within the VPC you create three subnets with /18, which has 16,384 IP
addresses each. By doing this you have exhausted 49,152 IP addresses.
Now you have only 65,536 to 49,152 IP addresses left for creating new
subnets. At this point, you won’t be able to create a new subnet with /17,
which has 32,768 IP addresses; however, you should be able to create new
subnets between /19 and /28. If you create more than one subnet in a VPC,
the CIDR blocks of the subnets cannot overlap. There are lots of tools
available to calculate the subnets of the CIDR block; for example, see
www.subnet-calculator.com/cidr.php.

Table 3-1 contains the CIDR block and number of IP addresses
available.

https://www.subnet-calculator.com/cidr.php

Table 3-1 CIDR Block and Available IP Addresses

NOTE From any subnet AWS reserves, the first four IP addresses and the
last IP address are for internal networking purposes, and they are not
available for your usage. Always keep this in mind while calculating the
number of IP addresses in a subnet. For example, in a subnet with a CIDR
block of 10.0.0.0/24, the following five IP address are reserved: 10.0.0.0,
10.0.0.1, 10.0.0.2, 10.0.0.3, and 10.0.0.255.

Route Table
A route table is a table consisting of certain rules known as routes that
determine where the traffic is directed. A route table contains all the
information necessary to forward a packet along the best path toward its
destination. A route table can be compared to a real-life router. For
example, if you want to go to San Jose from San Francisco, which route
would you take? A route table will provide that information. Every subnet
should have a route table. For example, if the subnet of a VPC contains an
Internet gateway in the route table, that subnet has access to the Internet.
Similarly, if a subnet does not have an Internet gateway in the route table,
any servers that are part of that subnet won’t be able to access the Internet.
Each subnet must have a route table at any time. However, you can
associate multiple subnets with the same route table. Whenever you create a
subnet, it is automatically associated with the main route table of the VPC if
you don’t associate it with any other route table. If you look at Figure 3-1,
you will see the entry from the route table as 10.0.0.0/16 local. This is the
VPC’s route table, and it will be automatically added in all the subnets’
route tables you create within the VPC. (Please note 10.0.0.0/16 is an
example; your IP address range will be different in real life.) This VPC’s
default route table (known as the main route table) is created automatically,
and you can’t modify it. VPC comes with an implicit router that is not
visible. Since the CIDR blocks for IPv4 and IPv6 are different, the
corresponding routes are also treated separately. Thus, a route with a
destination of, say, 0.0.0.0/0 for all IPv4 addresses won’t cater the
destination of all IPv6 addresses; you must add another entry with a
destination of CIDR ::/0 for all IPv6 addresses.

As discussed previously, when you create a VPC, Amazon VPC
automatically creates the main route table. If you do not want to use the
main route table, you can create your own custom route tables and use one
of them instead of using the main route table. A best practice would be to
keep the main route table of the VPC in an original state with only the local
route and assign a custom route table for each subnet you have created.
That way, you can have better control over the routes of outgoing traffic.

If you later add a virtual private gateway, Internet gateway, NAT device,
or anything like that in your VPC, you must update the route table

accordingly so that any subnet that wants to use these gateways can take
advantage of them and have a route defined for them.

Table 3-2 shows what an entry in the route table looks like for a VPC.

Table 3-2 Entry in Route Table for a VPC

If you look at the routing table, you will notice there are only two
columns: Destination and Target. The target is where the traffic is directed,
and the destination specifies the IP range that can be directed to the target.
As shown in Table 3-2, the first two entries are Local, which indicates
internal routing within the VPC for IPv4 and IPv6 for the CIDR block. The
third one is the routing option for VPC peering, which means the traffic can
go to another VPC with the CIDR block 172.31.0.0/16. The fourth one
represents the Internet gateway. By allocating an IP range of 0.0.0.0/0, you
are allowing all the traffic (IPv4) to go to the Internet gateway. (It also
means that you can have a public subnet in your virtual private cloud.) The
last line means you are again allowing all traffic, this time IPv6, to go to an
egress-only Internet gateway. Similarly, you can add the entries for any
destination and target where you want the traffic to go. For example, if you
want to allow the traffic of the private subnet to access the NAT gateway,
then just add the entry in the route table of the private subnet to route the
traffic to the NAT gateway, as shown in this example:

Internet Gateway

An Internet gateway (IG) is a component of a VPC that allows your VPC to
communicate with the Internet. When you attach an IG in your VPC, you
can connect directly to the Internet from the subnets where you have added
the IG in the route table. It must be noted that an IG is a horizontally scaled,
redundant, and highly available component in VPC. An IG supports both
IPv4 and IPv6 traffic. It’s simple to attach an IG; you just add the entry for
the IG in the routing table and you are all set. In the previous example of a
routing table, the entry 0.0.0.0/0 igw-11aa33cc shows how an entry for the
IG is added in the routing table. When you add an IG in your VPC, then
you can make any of the subnets inside that VPC accessible to the Internet
just by adding the IG in the subnet’s route table. If Amazon VPC does not
have an IG in the route table, then you won’t be able to make any of the
subnets accessible to the Internet.

For example, say the CIDR block for the virtual private cloud is
10.0.0.0/16 (IPv4) and 2600:1f14:880:f400 (IPv6), and the CIDR block for
the subnet where you would like to enable the Internet access is 10.0.0.0/24.
In this case, you want to provide Internet access to only the IPv4 traffic and
not the IPv6 traffic within the subnet. The entries from the route table will
look like Tables 3-3 and 3-4.

Table 3-3 Route Table for VPC

Table 3-4 Route Table for Subnet

Say now you have another subnet, a private subnet, with the CIDR block
10.0.1.0/24 and you don’t want to provide Internet access to any IP address
residing in this subnet. So, the entry in the route table for the private subnet
will look something like Table 3-5.

Table 3-5 Route Table Entry for Private Subnet

A target of “local” means only local traffic can flow within the virtual
private cloud and no other traffic is allowed.

Deleting an Internet gateway is pretty simple; you just delete the IG via
the console. From the list of services, select VPC, choose the Internet
gateway from the left pane, select the IG you want to delete, and click the
Delete button. If you want to restrict Internet access from a subnet where
you allowed access previously, simply remove the routing table entry for
the IG for that subnet.

Network Address Translation
In real life, you will be creating multiple subnets for different use cases,
some public and some private. Say you have created a database inside a
private subnet, which means there is no way the database server can access
the Internet. It remains completely secluded. If you want to do some
firmware updates in the database server or if you want to download some
database patches, how do you download them? Network Address
Translation (NAT) tries to solve that problem. Using a NAT device, you can
enable any instance in a private subnet to connect to the Internet, but this
does not mean the Internet can initiate a connection to the instance. The
reverse is not true. This is how a NAT device works. A NAT device
forwards traffic from the instances in the private subnet to the Internet and
then sends the response to the instances. When traffic goes to the Internet,

the source IPv4 address is replaced with the NAT device’s address;
similarly, when the response traffic goes to those instances, the NAT device
translates the address back to those instances’ private IPv4 addresses. This
is another reason why it is called address translation. Please note that NAT
devices can be used only for IPv4 traffic; they can’t be used for IPv6. There
are two types of NAT devices available within AWS:

• NAT instances

• NAT gateways

NAT Instances
By using a NAT instance in a public subnet (when you create a NAT
instance in a public subnet, it needs to have either a public IP address or an
elastic IP address, discussed later in this book), you can have the instance
running in the private subnet initiate outbound traffic to the Internet or to
some other AWS service. Let’s see an example to understand it better. Say
you have two subnets: public and private. You are running the web servers
in the public subnet and the database server in the private subnet. Now if
you want to provide Internet access to the database server because you want
to download database patches, you need to create a NAT instance in the
public subnet and route the database server’s Internet traffic via the NAT
instance running in the public subnet. By doing that, the database server
will be able to initiate the connection to the Internet, but the reverse is not
allowed (meaning no one will be able to connect to the database server from
the Internet using NAT). Say you have created the VPC with the CIDR
block 10.0.0.0/16, so the routing table for the VPC will look something like
Table 3-6. As you can see, you have attached an Internet gateway to the
VPC.

Table 3-6 Route Table with Entry for Internet Gateway

Say you have created the public subnet 10.0.0.0/24 and have two web
servers with the IP addresses 10.0.0.5 and 10.0.0.6. You have created a
private subnet with subnet 10.0.1.0/24, which is running a database server
with the IP address 10.0.1.5. Now you have to create a NAT instance in the
public subnet to provide Internet access to the database. Say you have
created the NAT instance with the IP address 10.0.0.7 and it has an instance
ID of nat-0093abx. The routing tables in the private and public subnets will
look something like Tables 3-7 and 3-8. To run a NAT instance, you also
need an elastic IP address and need to associate it with the NAT instance.

Table 3-7 Routing Table in Public Subnet

Table 3-8 Routing Table in Private Subnet

Now the routing table in the public subnet (Table 3-7) will be the same
since you are allowing Internet traffic to everything running in the public
subnet. Since you are attaching the Internet gateway to 0.0.0.0/16, both the
web servers 10.0.0.5 and 10.0.0.6 and the NAT instance 10.0.0.7 will be
able to connect to the Internet.

The routing table in the private subnet won’t have the Internet gateway
but will have the NAT gateway attached to it. The entries should look like
Table 3-8.

If you look carefully, you will find that you have been given the instance
ID of the NAT instance, which is nat-0093abx and is mapped to 10.0.0.7.
What happens if the NAT instance goes down? Yes, the database server
won’t be able to connect to the Internet since the NAT instance is a single
point of failure. To solve this problem, customers do a variety of things

such as have redundant NAT instances in different AZs, use NAT instances
in an active-passive manner across different AZs, use a script to monitor the
NAT instance, start a new one if an existing one fails, and so on. But
sometimes these options involve a lot of administration overhead and the
solution is not easy. To make life simpler, AWS came up with NAT
gateways to address all the previously mentioned problems.

NAT Gateways
A NAT gateway performs the same function as that of a NAT instance, but
it does not have the same limitations as a NAT instance. Moreover, it is a
managed service and therefore does not require administration overhead. If
you plan to use a NAT gateway, then you must specify an elastic IP address
(to associate it with the NAT gateway while creating it). When a NAT
gateway is created, it is created in a specific AZ in a redundant fashion. In
the previous example of a NAT instance, the database server will now
access the Internet via the NAT gateway instead of the NAT instance;
similarly, the routing table in the private subnet will reflect the entry for the
NAT gateway instead of the NAT instance.

A NAT gateway is preferred over a NAT instance since it provides better
availability and bandwidth. If today you are using a NAT instance, you can
replace that with a NAT gateway. If you want to use the same elastic IP
address for a NAT gateway, you need to de-associate it first from the NAT
instance and then re-associate it with the NAT gateway.

EXAM TIP You should be familiar with when to use a NAT gateway
over a NAT instance.

Egress-Only Internet Gateway
Similar to NAT gateways, an egress-only IG is a component of your VPC,
which allows Amazon VPC to communicate with the Internet for IPv6

traffic. Please note it’s egress only, which means outbound only, and it
prevents the Internet from initiating an IPv6 connection with your instances.
The use case for a NAT gateway and an egress-only gateway is the same,
and both of them serve the same purpose. The only difference is that a NAT
gateway handles IPv4 traffic, and an egress-only gateway handles the IPv6
traffic. When you use an egress-only Internet gateway, you put the entry of
the egress-only Internet gateway in the routing table (Table 3-9).

Table 3-9 Routing Table with Egress-Only IG

TIP Please note that NAT instances, NAT gateways, and egress-only
Internet gateways are stateful. They forward traffic from the instances in the
subnet to the Internet or other AWS services and then send the response to
the instances. You will learn about stateful and stateless later in the
“Security Group” and “Network Access Control List” sections.

Elastic Network Interface
During the course of your journey to the cloud, there are going to be many
use cases where you need to create a network interface or multiple network
interfaces and attach them to an instance. You might have to create a
management network, use a security or network appliance in your VPC, or
create a high-availability solution. The Elastic Network Interface (ENI)
gives you the ability to create one or more network interfaces and attach
them to your instance. At any time, you can detach the network interface
from the instance and re-attach to either the same one or a different

instance. Again, when you move a network interface from one instance to
another, network traffic is redirected to the new instance. This ENI is a
virtual network interface that you can attach to an instance in Amazon VPC.
An ENI can have the following attributes:

• A MAC addresses
• One public IPv4 address
• One or more IPv6 addresses
• A primary private IPv4 address
• One or more secondary private IPv4 addresses
• One elastic IP address (IPv4) per private IPv4 address
• One public IPv4 address, which can be auto-assigned to the network

interface for eth0 when you launch an instance
• One or more security groups
• A source/destination check flag and description

As the name suggests, they are elastic; therefore, you can attach or
detach them from an instance anytime, and you can reattach the ENI to a
different instance. Whenever you move the ENI from one instance to the
other, all the traffic is redirected to the new instance. Also, the attributes of
the ENI follow along with it, which means when you assign an ENI to an
instance, all the attributes of the ENI are propagated to that instance, and
when you detach, they are gone. Again, when you reattach the ENI to a new
instance, the new instance gets all the attributes of the ENI.

You cannot change the default network interface of any instance, which
is also known as a primary network interface (eth0). You can create an
additional network interface. The number of ENIs you can attach to a
particular instance varies from instance to instance type. ENI doesn’t
impact the network bandwidth to the instance. For example, adding an ENI
cannot be used as a method to increase or double the network bandwidth.

Enhanced Networking (Linux Only)
In some use cases, you need very low latency, higher bandwidth, and higher
packet-per-second (PPS) performance for running your application. In those
use cases, you can leverage Enhanced Networking, which uses single-root

I/O virtualization (SR-IOV) to provide high-performance networking
capabilities for the instance type where enhanced networking is available.
SR-IOV is a technique of device virtualization that provides higher I/O
performance and lower CPU utilization when compared to traditional
virtualized network interfaces. Enhanced Networking can be enabled in the
following two ways depending on the instance type:

• Using Elastic Network Adapter (ENA) ENA supports network
speeds of up to 100Gbps for supported instance types. As of this
writing, the following instance types support enhanced networking:
A1, C5, C5a, C5d, C5n, F1, G3, G4, H1, I3, I3en, Inf1, m4.16xlarge,
M5, M5a, M5ad, M5d, M5dn, M5n, M6g, P2, P3, R4, R5, R5a,
R5ad, R5d, R5dn, R5n, T3, T3a, u-6tb1.metal, u-9tb1.metal, u-
12tb1.metal, u-18tb1.metal, u-24tb1.metal, X1, X1e, and z1d.

• Using the Intel 82599 Virtual Function (VF) interface This
interface supports network speeds of up to 10Gbps for supported
instance types. As of this writing, C3, C4, D2, I2, M4 (excluding
m4.16xlarge), and R3 instances use the Intel 82599 VF interface for
enhanced networking.

Elastic IP Address
An elastic IP (EIP) address is designed for applications running on the
cloud. Every time you launch a new EC2 instance in AWS, you get a new
IP address. Sometimes it becomes a challenge since you need to update all
the applications every time there is an IP address change. There could be
several reasons you would be spinning up a new instance. For example, you
might be upgrading to a different instance type, you might be shutting down
the instances at night when there is no activity, and so on. So, instead of
changing the IP address for all applications every time, what you need to do
is obtain an EIP and associate that with the EC2 instance and map the EIP
with the application. Now whenever the IP address of the EC2 instance
changes, you just need to repoint the new EC2 instance to the EIP, and
applications can connect using the same EIP. Another benefit is if the
instance running the application fails, you can quickly start another instance
and remap the EIP to the new instance.

Thus, an EIP is a static IP address. If your application has a need for a
static IP address, an EIP addresses that issue. Please note at this moment
that an EIP supports only IPv4 and does not support IPv6. Also note an EIP
is a public IPv4 IP address, which means it is reachable from the Internet.
For example, say your instance does not have a public IP address; you can
simply map it to an EIP and have the instance talk with the Internet. The
following are the three steps to use an EIP:

1. Allocate one EIP to your account from the console.
2. Associate the EIP either with your instance or with a network interface.
3. Start using it.

EXAM TIP You should know when to use an EIP versus when to use a
public IP address.

Since EIP can be easily transferred from one instance to other, at any
point of time you can disassociate an elastic IP address from a resource and
re-associate it with a different resource. When you disassociate an EIP and
don’t re-associate it with any other resource, it continues to remain in your
account until you explicitly release it from your account.

NOTE There is no charge for using an EIP so long you associate the EIP
with a running instance. If you allocate one EIP in your account and don’t
associate it with any active instance, you may be charged a fee. This is
because IPv4 IP addresses are limited and currently are scarce public

resources. This ensures a fair usage of EIPs. An elastic IP address is for use
in a specific region only.

Network Security
It is important to secure the resources running in a VPC via networking.
This can be done by using a security group or by using a network access
control list (NACL).

Security Group
A security group is like a virtual firewall that can be assigned to any
instance running in a virtual private cloud. A security group defines what
traffic can flow inside and outside a particular instance. Since it is instance
specific, you can have different security groups for different instances. The
security group is applied at the instance level and not at the subnet level.
Therefore, even within a subnet, you can have different security groups for
different instances. You can attach up to five different security groups to
each instance. You can even attach the same security group to a different
instance. A security group is stateful and consists of IP addresses, ports, and
protocols via which you can provide the inbound and outbound rules for the
traffic.

Let’s see an example to understand this. Say you have a database
running on an EC2 instance inside the private subnet and you have two web
servers running in two EC2 instances in a public subnet. You also have a
load balancer on top of the web servers that balances the traffic across both
web servers. Now when the users log into the application, they go to the
URL of the load balancer, and the load balancer decides which web server it
should direct the traffic to. In this scenario, only the load balancer should
have access to the web servers; you may also want to open an SSH port for
the admins to log into the web server for doing operational work. Thus, for
the web servers you are going to create a security group and assign it to
both the EC2 instances hosting the web servers. In this security group, you
will add entries only for the load balancer and SSH port. Now any traffic
flowing to/from the web servers will be filtered using the security group.
The traffic that is not coming from the load balancer or from the SSH port
that you have open will be denied. Similarly, you can create a security
group for the database server allowing it to access traffic from the web

servers. You can similarly configure the security group for the load
balancer, allowing it to access traffic from anywhere.

At any time, you can modify the rules of the security group and can
allow/block traffic. You can specify only allow rules. There are no deny
rules, so the only way to block traffic is to not allow it. You can have
separate rules for incoming and outgoing traffic. Whenever you make any
changes to a security group, the changes are reflected in the instance
immediately and automatically.

Security groups are stateful. This means if you send a request from your
instance, and vice versa, traffic is allowed. For example, if you allow
incoming traffic via SSH on port 22, the outgoing traffic via SSH on port 22
will be allowed. When you create a security group, by default no incoming
traffic is allowed there because you need to add the entry for whatever
traffic you want inbound. By default all the outbound traffic is allowed, so
if you want to block certain outbound traffic, you need to put an entry in the
security group for it. Or if you want to allow only certain outbound traffic,
you can remove the default rule, which allows all outgoing traffic and adds
a rule to send only the desired traffic. Even if you allow two instances as
part of the same security group, they won’t be able to talk to each other
unless you explicitly add the rules to allow the traffic. The only exception is
the default security group.

NOTE Security groups are always associated with the network interface,
which means if you change the security group of an instance, it’s going to
change the security group of the primary network associated with it.

Amazon VPC always comes with a default security group. If you don’t
attach any security group to your EC2 instance, it is automatically
associated with the security group of the VPC. You can’t delete the default
security group; however, you can change the rules for the default security
group.

Table 3-10 shows what the default security group looks like.

Table 3-10 Default Security Groups

Let’s see an example of how the security group of the web server should
look. The web server accepts incoming traffic from the Internet. It also
connects to the database server on the back end and accepts incoming traffic
from there. You also need to allow SSH access to the administrator for
maintenance activities. So, in this case, you will give the following access:

Inbound

• HTTP on port 80 from anywhere, since this is a web server and
running on a public domain

• SSH on port 22 only from the corporate network, so you need to
provide the CIDR block of the network’s IP address range

• MYSQL/Aurora on port 3306, since the web server needs to accept
incoming traffic from the database server so that the IP address is in
the CIDR block of the network’s IP address range

Outbound

• HTTP on port 80 to anywhere, so 0.0.0.0/0
• Only to the database tier, so MySQL Aurora on 3306 on corporate

network

Figure 3-2 shows the console.

Figure 3-2 Security group

Network Access Control List
In the previous section, you learned about security groups. You saw that
security groups can be applied at the instance level, but what if you want to
have an additional firewall at a subnet level for your VPC? What if you
want to have an additional layer of control? A network access control list
(NACL) solves that problem. An NACL is a layer of security that acts as a
firewall at the subnet level. Since an NACL is optional, you have the option
of configuring it or not.

Put simply, an NACL is stateless and a combination of IP address, port,
protocol, and allow/deny for a subnet.

Amazon VPC comes with a default NACL that can be modified. It
allows all inbound and outbound IPv4 and IPv6 traffic (if applicable). You

can create a custom NACL and associate it with a subnet. By default, each
custom NACL denies all inbound and outbound traffic until you add rules.
Since ACLs are associated with subnets, each subnet in your VPC must be
assigned an NACL. If you don’t explicitly associate a subnet with an
NACL, the subnet is automatically associated with the default NACL. You
can associate an NACL with multiple subnets; however, a subnet can be
associated with only one NACL at a time. When you associate an NACL
with a subnet, the previous association is removed. If you remember, you
can attach multiple instances to the same security group.

NACLs contain a numbered list of rules that are evaluated in order to
decide whether the traffic is allowed to a particular subnet associated with
the NACL. Rules are evaluated starting with the lowest numbered rule. As
soon as a rule matches traffic, it’s applied regardless of any higher-
numbered rule that may contradict it. The highest number that you can use
for a rule is 32766. It is recommended that you create rules with numbers
that are multiples of 100 so that you can insert new rules if you need to do
so later.

NACLs are stateless; responses to allowed inbound traffic are subject to
the rules for outbound traffic (and vice versa). An NACL has separate
inbound and outbound rules, and each rule can either allow or deny traffic.
If you remember correctly, security groups are stateful.

In addition to the rule number, NACL supports protocols, which means
you can specify any protocol that has a standard protocol number, and you
can choose to allow or deny specific traffic. Figure 3-3 shows the
relationship between the security group and the NACL.

Figure 3-3 Security groups and network access control lists within a VPC

Let’s quickly compare NACLs and security groups so that you
understand the differences:

• A security group can be applied only at the instance level, whereas
an NACL can be applied at the subnet level. So, if you have ten
instances within a subnet, NACL rules are going to be applied for all
ten instances.

• A security group is stateful (return traffic is allowed by default),
whereas an NACL is stateless (return traffic is not allowed by
default).

• A security group supports allow rules only; you can’t specify a deny
rule explicitly. An NACL allows both allow and deny rules.

• In a security group, all the rules are evaluated before deciding
whether to allow the traffic, whereas in NACLs the rule number gets
precedence.

EXAM TIP It is important to understand the difference between security
groups and NACLs. You should be able to articulate when to use a security
group over an NACL and vice versa.

There are some limits on the number of security groups you can have.
But again, these limits are not hard limits and can be raised by a support
request.

• You can have 500 security groups per VPC per region.
• You can have 50 inbound and 50 outbound rules in each security

group.
• The maximum security groups you can have per network interface is

5; however, you can raise the number to 16 by contacting AWS
Support.

Note that Amazon keeps increasing the limit; the limits are as of this
writing. Please check the Amazon web site for the current numbers.

Amazon VPC Peering
There are many scenarios where you will need to create multiple VPCs for
different purposes. For example, you may have different VPCs for running
your production and nonproduction workloads, or you may want to create a
separate management virtual private cloud. If there are different AWS
accounts in your organization, then there will be multiple virtual private
clouds. How do you connect the different virtual private clouds so that
resources running inside the separate VPCs can talk to each other? VPC
peering helps to connect one virtual private cloud to another and route the
traffic across the virtual private clouds using a private IPv4 or IPv6 address.
Once you establish VPC peering, the instances running on both the VPCs
communicate with each other as if they were in the same network. VPC
peering can be done for virtual private clouds within a region as well as
across different regions. Not only can you peer multiple VPCs running in
your account, but you can also peer VPCs running across different
accounts. Figure 3-4 shows two VPCs being peered.

Figure 3-4 VPC peering

Internally AWS uses its infrastructure of a VPC to create a VPC peering
connection. VPC peering is not any kind of gateway or a VPN connection;
it relies on special hardware. Since AWS uses the internal infrastructure to
peer VPCs, there is no single point of failure or throttling of bandwidth
when the traffic flows across multiple virtual private clouds.

Here are the steps to peer a VPC:

1. Say you want to peer VPC A and VPC B. The first step is that the
owner of VPC A sends a request to VPC B to create the VPC. VPC A
and VPC B can be part of the same account or a different account. If
you are planning to peer two VPCs, then you can’t have a CIDR block
that overlaps with the requester’s VPC CIDR block since it’s going to
cause a conflict in the IP address. Once the owner of VPC B gets the
request, the owner needs to accept the VPC peering connection to
activate the VPC peering connection.

2. The owner of each VPC, in this case VPC A and VPC B, needs to add
a route to one or more of their VPC’s route tables that point to the IP
address range of the other VPC (the peer VPC). VPC peering
connectivity is also controlled via route tables referencing the peering
connection as a target for routes. Figure 3-5 shows how the entries in
the route table look for VPC peering.

Figure 3-5 Route table entries for peered VPC

3. Optionally you might be required to update the security group rules
associated with your instance to make sure the traffic from the peered
VPC can reach your instance. Similarly, you may have to modify your
VPC connection to enable DNS hostname resolution. By default, if
instances on either side of a VPC peering connection address each
other using a public DNS hostname, the hostname resolves to the
instance’s public IP address.

A VPC peering connection is a one-to-one relationship between two
VPCs. You can create multiple VPC peering connections for each VPC that
you own, but transitive peering relationships are not supported. Say you
have three VPCs such as A, B, and C. Now say VPC A is paired with VPC
B and VPC A is again paired with VPC C. Now if you want to establish a
connection between VPC B and VPC C, you need to explicitly peer them.
You can’t use VPC A as a transit point for peering between VPC B and
VPC C. Figure 3-6 shows the three VPCs.

Figure 3-6 Three VPCs for peering

Amazon VPC Endpoint
There are many services of AWS that run outside VPC. For example, S3 is
a regional service and doesn’t run inside the VPC. Now if you want your
VPC to connect to S3, you need to connect it either via the Internet or via
your corporate data center. A VPC endpoint gives you the ability to connect
to VPC and supported AWS services directly using a private connection.
Therefore, the traffic never leaves the Amazon network. The VPC endpoint

is actually a virtual device that scales horizontally and is redundant,
providing high availability. To use a VPC endpoint, you don’t need a public
address or Internet gateway, NAT device/gateway, or virtual private
gateway in your VPC.

VPC uses AWS PrivateLink. Let’s take a look at AWS PrivateLink so
you can better understand it. AWS PrivateLink is designed to enable
customers to access and scale AWS services quickly, while keeping all the
network traffic within the AWS network. When you create endpoints for
AWS services that use PrivateLink; these service endpoints appear in your
VPCs as an Elastic Network Interface (ENI) with private IPs. With
PrivateLink, you do not need to whitelist public IPs or manage Internet
connectivity using an Internet gateway, Network Address Translation
(NAT) devices, or firewall proxies to connect to AWS services. AWS
services available on PrivateLink also support private connectivity over
AWS Direct Connect so that applications in corporate data centers can
connect to AWS services. AWS PrivateLink uses network load balancers to
connect interface endpoints to services. A network load balancer functions
at the network transport layer (layer 4) and can handle millions of requests
per second. In the case of AWS PrivateLink, it is represented inside the
consumer Amazon VPC as an endpoint network interface. Customers can
specify multiple subnets in different availability zones (AZs) to ensure that
their service is resilient to an AZ service disruption. To achieve this, they
can create endpoint network interfaces in multiple subnets mapping to
multiple AZs. AWS PrivateLink also allows customers to create an
application in their Amazon VPC, referred to as a service provider VPC,
and offers that application as an AWS PrivateLink–enabled service or VPC
endpoint service.

The two types of VPC endpoints are interface endpoints and gateway
endpoints. An interface endpoint is an Elastic Network Interface with a
private IP address from the IP address range of your subnet that serves as an
entry point for traffic destined to a supported service. Over 50 different
services are supported using interface endpoints. These services include
some AWS-managed services, services hosted by other AWS customers and
partners in their own Amazon VPCs (referred to as endpoint services), and
supported AWS Marketplace partner services.

A gateway endpoint is a gateway that you specify as a target for a route
in your route table for traffic destined to a supported AWS service. As of

this writing, S3 and DynamoDB are the services supported by gateway
endpoints.

It’s easy to configure a VPC endpoint. These are the steps:

1. To create an endpoint, you must specify the VPC in which you want to
create the endpoint and the service to which you want to establish the
connection. You can also attach a policy to the endpoint and specify
the route tables that will be used by the endpoint. (You will learn more
about policies in Chapter 5.)

2. Specify one or more route tables to control the routing of traffic
between your VPC and the other service.

Let’s look at an example to understand the use of VPC endpoints. Say
inside the VPC you have two subnets: a private subnet and a public subnet.
The public subnet has access to the Internet. Now if you want to connect to
S3 from the private subnet, the only way to do this would be to access S3
via the public subnet that is attached to the Internet gateway. Now if you
have a VPC endpoint, you can simply add an entry for that in the routing
table of the private subnet and directly communicate with it, as shown in
Figure 3-7. Table 3-11 shows what the entry for the VPC endpoint will look
like in the routing table of the private subnet.

Figure 3-7 VPC endpoint for S3

Table 3-11 VPC Endpoin

EXAM TIP You should know the use cases for using VPC endpoints.

By using VPC endpoints, you save a lot of money. For example, if you
have an EC2 instance in a private subnet and it has to access S3, with a
VPC endpoint you can directly connect the EC2 instance running in a
private subnet to S3, and since EC2 and S3 are connected via the endpoints,
there are no data transfer charges. If there is no endpoint, the EC2 instance
running in a private subnet needs to reach S3 via a bastion host running on
the public subnet. The traffic has to leave VPC to access S3 since S3 is a
regional service and is accessible via the Internet. There will be some data
transfer charges for the traffic entering VPC, which you can completely
save by using the endpoint.

Transit Gateway
If you have multiple VPCs and the number continues to grow, it can
become difficult to manage the peering across those VPCs. On top of that,
if you have applications running on premises, then managing the entire
network topology can become complicated. AWS Transit Gateway solves
that problem. Using a Transit Gateway, you can connect VPCs and an on-
premise network using a network transit hub. This helps in simplifying the
network architecture, and you don’t have to manage complex multiple-VPC
peering anymore. The Transit Gateway acts as a cloud router for traffic
flowing between your virtual private clouds (VPCs) and VPN connections.
It scales automatically, depending on the traffic volume, and you don’t have
to do anything manually. The routing using a Transit Gateway operates at
layer 3, where the packets are sent to a specific next-hop attachment based
on their destination IP addresses.

Figure 3-8 shows a network topology without Transit Gateway, and
Figure 3-9 shows the network topology after the Transit Gateway.

Figure 3-8 Network topology without Transit Gateway

Figure 3-9 Using Transit Gateway

Using a Transit Gateway, you can build and deploy applications globally,
spanning thousands of VPCs. When you deploy your applications in several
regions globally, Inter-Region Peering connects AWS Transit Gateways
using the AWS global network. By doing this, your data is automatically
encrypted and never travels over the public network.

You can attach the following resources to your Transit Gateway:

• One or more VPCs
• One or more VPN connections
• One or more AWS Direct Connect gateways
• One or more Transit Gateway peering connections

DNS and VPC
The Domain Name System (DNS) is the equivalent of the phone book of
the Internet. DNS servers maintain a directory of domain names and
translate them to IP addresses. People don’t always remember an IP
address; rather, most of the time they use a domain name, so DNS servers
are absolute necessary. A DNS hostname is a name that uniquely names a
computer; it’s composed of a hostname and a domain name.

Amazon provides DNS servers that are used to resolve the address of
any instance running inside VPC. Public IPv4 addresses enable
communication over the Internet, and private IPv4 addresses enable
communication within an internal network (within VPC). Whenever you
launch an instance into the default VPC, you will notice that the instance
will have a public DNS hostname that corresponds to the public IPv4
address and a private DNS hostname that corresponds to the private IPv4
address of the instance. If you launch an instance in a custom VPC or
nondefault VPC, then the instance will have a private DNS hostname, and
the instance may have a public DNS hostname depending on the DNS
attributes specified in VPC. There are two main DNS attributes that define
whether an instance can have a public DNS hostname. If both the attributes
are true, then the instance gets a public DNS hostname. If one of the
attributes is not true, it doesn’t get a public DNS hostname.

If this attribute is false, the Amazon-provided DNS server in VPC that
resolves public DNS hostnames to IP addresses is not enabled. If this
attribute is true, queries to the Amazon-provided DNS server at the
169.254.169.253 IP address, or the reserved IP address at the base of the
VPC IPv4 network range plus two, will succeed. The attributes are from
VPC, and you should be able to see them at the summary page of the VPC.

A public DNS hostname looks like ec2-public-ipv4-address.compute-
1.amazonaws.com for the us-east-1 region, and it looks like ec2-public-
ipv4-address.region.amazonaws.com for other regions. A private DNS
hostname looks like ip-private-ipv4-address.ec2.internal for the us-east-1
region and like ip-private-ipv4-address.region.compute.internal for other
regions. At this time, Amazon does not provide the DNS hostnames for
IPv6 addresses.

You can also use your own DNS server and create a new set of DHCP
options for your VPC. Let’s look at what the DHCP options mean.

DHCP Option Sets
Dynamic Host Configuration Protocol (DHCP) option sets are used to
specify host configurations for instances in your VPC, including the default
domain name and DNS server for your instances. AWS recommends that
you create a DHCP options set for your AWS Directory Service directory
and assign the DHCP options set to the VPC that your directory is in. This
allows any instances in that VPC to point to the specified domain and DNS
servers to resolve their domain names.

For your VPC, Amazon automatically creates and associates a DHCP
option set. It also sets two options in it that are domain name servers
defaulted to AmazonProvidedDNS (which is an Amazon DNS server) and

the domain name for your region. Please note that every VPC must have
only one DHCP option set assigned to it. Once you create a DHCP option
set, you can’t modify it. If you need to specify different DHCP options,
you’ll need to create a new DHCP option set. Once you’ve associated a new
DHCP option set, new instances launched in VPC will automatically start
using the settings in the newer DHCP option set. Instances that are already
running in VPC will pick up the new options when their DHCP lease is
renewed.

For assigning your own domain name to your instances, you need to
create a custom DHCP option set and assign it to your Amazon VPC. Using
the standards of DHCP, you can pass configuration information to hosts on
a TCP/IP network. The option field of DHCP contains the configuration
parameters; you can provide the following values to them:

• domain-name-servers The IP addresses of domain name servers (up
to four when specifying multiple domain name servers, separated by
commas) or AmazonProvidedDNS. The default DHCP option set
specifies AmazonProvidedDNS. If you want your instance to use a
custom DNS hostname as specified in domain-name, you must set
domain-name-servers to a custom DNS server.

• domain-name The domain name. If you’re using
AmazonProvidedDNS in us-east-1, specify ec2.internal. If you’re
using AmazonProvidedDNS in another region, specify
region.compute.internal (for example, ap-northeast-
1.compute.internal). Otherwise, specify a custom domain name (for
example, amazon.com).

• ntp-servers The IP addresses of up to four Network Time Protocol
(NTP) servers.

• netbios-name-servers The IP addresses of NetBIOS name servers
(you can provide up to four of them).

• netbios-node-type The NetBIOS node type (1, 2, 4, or 8). It is
recommended that you specify two. At this time, broadcast and
multicast are not supported.

Connecting to a VPC

https://amazon.com/

Once you have created a VPC in the cloud, the next step is to connect your
corporate data center to VPC. Once you connect your corporate data center
with VPC, VPC becomes an extension to your data, and traffic can easily
move in and out between the corporate data center and VPC. There are
multiple ways via which you can connect to VPC.

In this section, you will learn various ways of connecting to VPC. Before
digging into this, you need to be aware of two terms that will be used when
discussing how to connect to VPC:

• Virtual private gateway By default, instances that you launch in a
virtual private cloud can’t communicate with a corporate data center
on your own network. Since there is no way the corporate data
center can reach the VPC (the exception is if you have any instance
running in a public subnet, then you can reach it via the Internet),
you can enable access to your network from your VPC by attaching
a virtual private gateway to the VPC and then creating a custom
route table, updating your security group rules, and so on. A virtual
private gateway is the VPN concentrator on the Amazon side of the
VPN connection. A virtual private gateway take cares of the
Amazon side, but what about your own data center? The customer
gateway takes care of that.

• Customer gateway A customer gateway is a physical device, or it
could be a software application on your corporate data center on
your side of the VPN connection. It is the anchor on your side of that
connection.

There are four main private connectivity options for a VPC and your
corporate data center:

• AWS hardware VPN You can create an IPsec, hardware VPN
connection between your VPC and your remote network. Internet
Protocol Security (IPsec) is a protocol suite for securing IP
communications by authenticating and encrypting each IP packet of
a communication session. On the AWS side of the VPN connection,
a virtual private gateway provides two VPN endpoints for automatic
failover. You configure your customer gateway, which is the physical
device or software application on the remote side of the VPN

connection. AWS supports both static and dynamic BGP-based and
VPN connections. (Border Gateway Protocol [BGP] is the protocol
used to exchange routing information on the Internet.) If you decide
to use a static VPN connection, you will need to manually specify
the routes to the remote corporate network. However, if your
equipment supports BGP, I highly recommend that it’s used. This
would mean that the IP routes, called prefixes, are advertised
dynamically over BGP and maintained automatically if they change
in the corporate environment. If BGP is used, you should be aware
that it has a maximum prefix limit of 100. Therefore, if you have
more than that within your network, then you can aggregate them or
alternatively simply announce a default route. Every VPN
connection is actually provisioned as two IPsec tunnels, terminating
in two different availability zones.

• AWS Direct Connect AWS Direct Connect provides a dedicated
private connection from your corporate data center to your VPC.
Direct Connect consists of dedicated, private pipes into AWS. Each
AWS region is associated with at least one Direct Connect location.
These locations are large colocation facilities such as Equinix or
Coresite with large concentrations of customers. AWS has private
connectivity with these colocations. If you have a footprint in these
locations, it’s an easy cross-connect into Direct Connect to hook up
with AWS. If you don’t have a footprint in the colocation, then you
can work with one of AWS’s telco partners to establish last-mile
connectivity. Using Direct Connect, you get consistent network
performance. You can combine this connection with an AWS
hardware VPN connection to create an IPsec-encrypted connection.

• VPN CloudHub If you have more than one remote network (for
example, multiple branch offices), you can create multiple AWS
hardware VPN connections via your VPC to enable communication
between these networks. If you use the AWS VPN CloudHub
configuration, multiple sites can access your VPC or securely access
each other using a simple hub-and-spoke model. You configure each
customer gateway to advertise a site-specific prefix (such as
10.0.0.0/24, 10.0.1.0/24) to the virtual private gateway. The virtual
private gateway routes traffic to the appropriate site and advertises
the reachability of one site to all other sites.

• Software VPN You can create a VPN connection to your remote
network by using an Amazon EC2 instance in your VPC that’s
running a software VPN appliance. AWS does not provide or
maintain software VPN appliances; however, you can choose from a
range of products provided by partners and open source
communities. You can also purchase a software VPN from the
marketplace.

Most of the enterprises establish a direct connection to an AWS network.
By doing this, you can have greater bandwidth and a bigger pipe between
your data center and the AWS network. To get redundancy, customers often
use two direct connections. If you can’t start with two direct connections,
you can start with one direct connection and one VPN connection for
failover purposes. Many customers initially start with a virtual private
network and gradually establish a direct connection when their traffic
increases.

VPC Flow Logs
Amazon VPC flow logs enable you to capture information about the IP
traffic going to and from network interfaces in your VPC. Flow log data is
stored using Amazon CloudWatch logs. After you’ve created a flow log,
you can view and retrieve its data in Amazon CloudWatch logs.

Flow logs can help you with a number of tasks such as troubleshooting
why specific traffic is not reaching an instance, which in turn can help you
diagnose overly restrictive security group rules. You can also use flow logs
as a security tool to monitor the traffic that is reaching your instance.

There is no additional charge for using flow logs; however, standard
CloudWatch Logs charges apply.

Flow logs can be created for network interfaces, subnets, and VPCs.

Default VPC
In every account, a VPC is created in each region by default. This is called
the default VPC. This is created to provide simplicity and convenience and
to help you jumpstart to AWS. You may or may not want a default VPC.
Even if you don’t want to use the default VPC, AWS recommends not

deleting it since that can create problems later. If you accidentally delete the
default VPC, you can re-create it by logging a support ticket. The default
VPC comes pre-created with the following features:

• Dynamic private IP
• Dynamic public IP
• AWS-provided DNS names
• Private DNS name
• Public DNS name

You can also do the following in the default VPC:

• Create additional subnets and change routing rules
• Create additional network controls (security groups, NACLs,

routing)
• Set hardware VPN options between corporate networks

In a default VPC, instances in default subnets have security
group−controlled public and private IPs.

Labs on VPC
In this section, you will do a few hands-on labs on VPC.

Lab 3-1: Using the VPC Wizard

In this lab, you will use the VPC Wizard to create a VPC. Using the VPC
Wizard, you can create four different types of virtual private clouds:

• A virtual private cloud with a single public subnet
• A virtual private cloud with public and private subnets
• A virtual private cloud with public and private subnets and hardware

VPC access

• A virtual private cloud with a private subnet only and hardware VPN
access

If you want a VPC with a single public subnet, then choose the first
option. Once you create a VPC using the VPC Wizard, you can always
modify it as per your requirements. For example, if you have created a VPC
using the first option and then later want to add a public subnet, you can do
it, or if you want to add a private subnet, you can do that. Choose the
second option if you want to create a VPC with public and private subnets.
The wizard creates one subnet for each, and you can always add more
subnets when you need them. If you want to connect your data center using
a hardware-based VPN and need a VPC with a private and public subnet,
choose the third option. If you want to connect your data center using a
hardware-based VPN but need a VPC with only a private subnet, choose the
fourth option.

You can always create a VPC manually if your needs are different from
the options provided in the wizard. The VPC Wizard just helps you get
started quickly. In this lab, you will create a VPC with the VPC Wizard
using the first two options.

To start, log into the AWS console and select the region where you want
to create the VPC. From Services, choose VPC. Click Launch VPC Wizard
to start the VPC Wizard.

Select the first option on the left called VPC with a Single Public Subnet
and click Select.

The next screen prompts you for a lot of inputs and shows all the
options. Let’s examine them one by one.

The first option prompts you for the CIDR block for the VPC. Please
enter 10.0.0.0/16, as shown in this example. Though the total number of IP
addresses is /16, which is 65,536, AWS reserves five IP addresses for
internal usage, as discussed previously. That’s why the screen displays that
65,531 IP addresses are available to you.

The next option is for the IPv6 CIDR block. You can choose either an
Amazon-provided IPv6 CIDR block or an IPv6 CIDR you own. Since we
are going with the Amazon-provided CIDR block, choose the second
option.

The next option is for the VPC name; you can enter any desired name for
the VPC. In this example, I have chosen the name VPC_Wizard_Public.

The next option is for the CIDR block for the IPv4 public subnet. Please
enter 10.0.0.0/24 for this.

The next option is for the CIDR block for the IPv6 public subnet. This
field is optional. Optionally you can have IPv6’s CIDR in a public subnet.

If you choose to have an Amazon-provided IPv6 CIDR for a public
subnet, you won’t be able to provide the CIDR number manually. Amazon
will automatically allocate the CIDR block for you.

The next option is to select an availability zone. If you don’t choose an
AZ (No Preference), the VPC will span all the AZs in that region. You can
manually choose an AZ where you want to create the VPC, but the VPC
will be restricted only to that AZ. This is not recommended since the VPC
will become a single point of failure; you may still do this if you have a
special requirement, however.

For this example, don’t choose an AZ. Select No Preference.
The next option is for the subnet name. Choose Public Subnet for this

option.
The next option is for the service endpoint. This screen is only for a

gateway endpoint. You can add an S3 endpoint or a DynamoDB endpoint to
your VPC to enable direct connectivity from this screen. If you want to add
an interface endpoint, you can do it once you create the VPC. In this
example, let’s add an S3 endpoint. Click the Add Endpoint button. Select
Add Endpoint.

The next option is Enable DNS Hostnames; click Yes for this option.
The last option is Hardware Tenancy. You can choose either Default or

Dedicated. You can run instances in your VPC on single-tenant dedicated
hardware. Select Dedicated to ensure that instances launched in this VPC
are dedicated tenancy instances regardless of the tenancy attribute specified
at launch. Select Default to ensure that instances launched in this VPC use
the tenancy attribute specified at launch. You will learn more about
dedicated instances in Chapter 4. For now, choose Default and click Create
VPC. Within a few minutes, the VPC will be created for you, and you will
get a confirmation stating this. Click OK.

Now go back to the console, and click VPC on the left side of the menu.
Select your VPCs; you can now see the newly created VPC from the
console.

Before looking at various options of the newly created VPC, let’s work
through the second lab exercise.

Lab 3-2: Creating a VPC with Public and
Private Subnets

For this lab, you will invoke the VPC Wizard again. Start the VPC Wizard,
choose the second option from the left (VPC With Public And Private
Subnets), and click Select.

The next screen prompts you to fill out the options. In this example, you
won’t use IPv6; therefore, you won’t choose the IPv6 option. You will also
notice that the wizard then prompts you for the private subnet details as
well as the public subnet details. Input all the information shown here.

Since I have already discussed all the options in the previous lab, I won’t
repeat myself here. You will notice that the wizard prompts you for the
elastic IP allocation ID. As discussed in this chapter, if you want the
instances running in the private subnet to communicate with the Internet for

downloading patches and firmware updates, you need to have either a NAT
gateway or a NAT instance. If you want to use a NAT gateway (which is
always preferred over a NAT instance), you need to provide an elastic IP.
Since you don’t have any elastic ID associated, the wizard will show “No
results found.” when you click Elastic IP Allocation ID.

So, let’s allocate an EIP and then come back to this VPC Wizard. On a
separate browser tab, go to the VPC Dashboard and then choose Elastic IPs
from the left menu.

Then click Allocate New Address.

The console displays an additional message. Click Allocate.

The system allocates an EIP for you and shows you the IP address of the
EIP. In this example, the system has allocated 13.59.15.253.

Click OK, which will take you back to the screen for the EIP. Now from
the console you will be able to see the new EIP and the allocation ID
mapped to it.

Note the EIP and the allocation ID. Now go back to the VPC Wizard in
the other browser window. You will notice that when you click Elastic IP
Allocation ID, the system will display the newly created EIP along with its
allocation ID.

Make sure the EIP being displayed matches with the one you have
created.

You can also use a NAT instance in lieu of a NAT gateway. If you choose
to do so, click Use A NAT Instance Instead. The system will prompt you for
the instance type for running the NAT instance and the key pair name (you
will learn about key pairs in Chapter 4).

In this example, you will use a NAT gateway and not a NAT instance.
Don’t select the NAT instance option; stick with the NAT gateway for this
example.

For the rest of the options, keep the defaults. Now the filled options
should look similar to this:

Click Create VPC. Once the VPC has been created, you will get a
success screen.

Now let’s explore all the options of the VPC in the final lab of this
chapter.

Lab 3-3: Exploring All the Options in a Virtual
Private Cloud

Once your VPCs are created, you may notice that several things have been
created for you. The next set of steps will walk you through the various
VPC objects and components that were created for you by the VPC Wizard.

Click VPCs. This will show you all the VPCs you have created.

Clicking the VPCs link lists your VPCs and is a good location to obtain
the VPC IDs for your VPCs. If you create multiple VPCs, they will be
listed here. You will see the VPC_Wizard_Public and VPC_Public_Private
instances, which are the ones you created in Lab 3-1 and Lab 3-2. Clicking
a VPC will bring up details about the VPC such as the IP address block
(CIDR), DHCP options set, route table, network ACL, hardware tenancy
(whether VPC physical hardware will be shared [default] or dedicated to
you), and DNS configuration information.

Also note the presence of a default VPC listed in the Your VPCs list. The
last one shows the default VPC. As of December 2013, AWS creates a
default VPC in each region. The default VPC includes one subnet per
availability zone, a default security group, an Internet gateway, and other
networking elements.

Let’s now focus on the VPCs created and look at the components. First
select the VPC VPC_Wizard_Public from Lab 3-1. If you remember
correctly, this VPC has only one public subnet. Once you select the VPC,
you will notice the bottom portion of the page shows all the details about it.

If you look at the Summary tab, you will see details about the newly
created VPC. Similarly, you will see one of the VPCs you created in Lab 3-
2. Do you notice any difference?

Now click Subnets on the left. Clicking the Subnets link lists all of your
VPC subnets and allows you to create additional subnets within your VPC
with the Create Subnets button. Clicking a subnet will bring up the subnet
details, including its subnet address range (CIDR), availability zone, and
associated route table and NACLs. Clicking the tabs underneath brings up
relevant information about the subnet. Click the public subnet from the
VPC VPC_Wizard_Public created by the VPC Wizard.

Now click the tab Route Table. You will see the route table.

You will notice that this subnet’s default route of (0.0.0.0) IPv4 and ::/0
IPv6 is the Internet gateway. Internet gateways can be identified by the
“igw” prefix in their IDs; in this example, it’s igw-ac69a5c4. This route
makes this subnet your public subnet because it is publicly routable through

the Internet gateway. You will also notice that this subnet has a VPC
endpoint attached with S3 vpce-e6c5038f. Of course, it has the local route
for the VPC as well.

Now look at the route table of the public subnet of VPC
VPC_Public_Private.

You will notice that it has just the subnet’s default route of 0.0.0.0 as the
Internet gateway and, of course, the local route for the VPC. Can you now
figure out the difference between the two? While creating the second VPC
with the VPC Wizard, you selected the public subnet, but you didn’t select
the IPv6 and VPC endpoint. That’s the reason those components are
missing from this routing table.

Now let’s look at the routing table of the private subnet of the VPC
VPC_Public_Private.

You will notice the routing table has just a NAT gateway assigned to it in
addition to the local route. This subnet’s default route (0.0.0.0) is the NAT
gateway identified by the “nat-” prefix in its ID. In this example, it is nat-
0502466cccd46cfdc. This route makes this subnet your private subnet
because it is not routing through the Internet gateway. Instead, all client
connections to the Internet are directed to, and proxied by, your NAT
gateway in the public subnet.

When you created the VPC in the second lab, you created a public
subnet and a private subnet. Let’s note the routing table ID for both. In this
case, they are rtb-ebbda283 and rtb-08b8a760 for public and private,
respectively.

Now from the left side of the menu of the main VPC page in the console,
click Route Tables. Clicking the Route Tables link lists all of your VPC
route tables, allows you to modify and associate the route tables to subnets,
and allows you to create additional route tables within your VPC with the
Create Route Table button. Notice that two route tables were created by the
VPC Wizard, and these are the same route tables that were displayed in the
subnet details in the previous section. Notice the “Main” and “Explicitly
Associated With” columns.

The subnet designated as the Main subnet (Main = Yes) is the default
route table for the listed VPC. This means that all subnets that are not
explicitly associated with a more specific route table will use this route
table by default. The Explicitly Associated With column displays the
number of subnets explicitly associated with the route table. In this
example, you can see that the routing table specified as rtb-ebbda283 has
(Main = No) and the routing table specified as rtb-08b8a760 has (Main =
Yes), which means the routing table in the public subnet has Main = No and
the routing table in the private subnet has Main = Yes.

Notice that the selected route table is not the Main route table (Main =
No) and its default route (0.0.0.0) is the Internet gateway. This means your
public subnet is explicitly associated with this route table (click the Subnet
Associations tab to verify this). Notice there is another route table
associated with the VPC; you will see the default route (0.0.0.0) is your
NAT gateway.

So, what does all this mean? By default, the VPC Wizard created two
subnets and two route tables. The public subnet is associated with a route
table that directs traffic by default out to the Internet. The private subnet is
not associated with a specific route table and therefore inherits the Main
route table rules, which direct traffic by default to the NAT gateway in the
“public” subnet.

Also note that the rules in the Main route table determine how subnets
will be treated by default. Since the Main route table is a private route table
(it does not route any traffic to the Internet gateway), all new subnets
created in this VPC will be private subnets by default. They will remain
private until they are explicitly associated with a public route table (e.g.,
one that routes traffic directly to the Internet gateway).

The Internet gateway that is created by the VPC Wizard can also be
viewed from the VPC Dashboard by clicking the Internet Gateway link at
the left. The Internet gateways associated with their respective VPCs are
shown here.

Internet gateways can also be independently created, attached to, and
detached from VPCs on this page. This page allows you to add or remove
the Internet gateway capabilities to/from your VPCs after the VPC has been
created.

The DHCP Options Sets link in the VPC Dashboard allows you to
control some DHCP options that the VPC-provided DHCP service will
present to your instances when they boot. By default, the VPC Wizard
created a DHCP options set that tells your VPCs to use the AWS-provided
DNS service for domain name resolution.

VPC allows you to create and attach new DHCP options to your VPCs,
including setting your domain name, DNS servers, time (NTP) servers, and
Microsoft Windows NetBIOS name servers and node types. If you want to
create a new one, click the Create DHCP Options Set button. You’ll see a
screen where you can configure a new DHCP options set.

Remember that during the first lab you added an S3 endpoint. From the
VPC Dashboard page you should be able to view the S3 endpoint attached
to the VPC. If you forgot to attach a VPC endpoint during the VPC creation
and want to attach it later, you can do so by clicking the button Create
Endpoint at the top.

The VPC Wizard has also created a NAT gateway for you. As previously
mentioned, a NAT gateway is a managed service that enables EC2 instances
in private subnets to reach the Internet without publicly exposing the
instances. It uses NAT to map the private IP address of an EC2 instance to
the shared public IP address of the NAT gateway and remaps return traffic
to the instance. NAT gateways have built-in redundancy and automatically
scale capacity up to 10Gbps based on demand. You can view the NAT
gateways assigned to your VPC by clicking the NAT gateway in the VPC
Dashboard.

Similarly, from the VPC Dashboard, you should be able to create an
egress-only Internet gateway, elastic IPs, and VPC peering connection. You
can also view the network ACLs and the security group that have been
created by running the VPC Wizard.

Chapter Review
In this chapter, you learned what Amazon VPC is. VPC allows you to have
your own virtual private cloud and logically isolate a section in the cloud.
You can provision any resource in this logically isolated region, and you
have complete control over the networking.

You can connect to a VPC either with a virtual private network or with
Direct Connect. By subnetting you can divide a network into multiple
networks. Inside a VPC, you can create various subnets per your needs. The
most common configuration consists of a public subnet, a private subnet,
and a VPN-only subnet. Route tables are tables consisting of certain rules
known as routes that determine where the traffic is directed. An Internet
gateway is a component of your VPC that allows your VPC to
communicate with the Internet. By using a network address translator, you
can enable any instance in a private subnet to connect to the Internet. There

are two types of NAT devices available within AWS: NAT instances and
NAT gateways. Similar to a NAT gateway, an egress-only Internet gateway
is a component of your VPC that allows your VPC to communicate with the
Internet for IPv6 traffic. The Elastic Network Interface gives you the ability
to create network interfaces and attach them to your instance. There are
some use cases where you need very low latency and higher bandwidth for
running your applications. In those use cases, you can leverage Enhanced
Networking. An EIP gives you a static public IP address. A security group
is like a virtual firewall that can be assigned to any instance running in a
virtual private client. An NACL is a layer of security that acts as a firewall
at the subnet level. VPC peering can be used to connect multiple VPCs. A
VPC endpoint gives you the ability to connect to VPC and supported AWS
services directly using a private connection. Using a Transit Gateway, you
can connect VPCs and an on-premise network using a network transit hub.
Amazon VPC flow logs enable you to capture information about the IP
traffic going to and from network interfaces in your VPC. In every account,
a VPC is created in each region by default. This is called the default VPC.
This is created to provide simplicity and convenience and to help you get
started with AWS. You can connect to a VPC from your corporate data
center in one of four ways:

• AWS hardware VPN
• AWS Direct Connect
• VPN CloudHub
• Software VPN

Questions
1. You have created a VPC with two subnets. The web servers are

running in a public subnet, and the database server is running in a
private subnet. You need to download an operating system patch to
update the database server. How you are going to download the patch?
A. By attaching the Internet gateway to the private subnet

temporarily
B. By using a NAT gateway
C. By using peering to another VPC

D. By changing the security group of the database server and
allowing Internet access

2. What is the maximum size of the CIDR block you can have for a
VPC?
A. 16
B. 32
C. 28
D. 10

3. How many IP addresses are reserved by AWS for internal purposes in
a CIDR block that you can’t use?
A. 5
B. 2
C. 3
D. 4

4. You have a web server and an app server running. You often reboot
your app server for maintenance activities. Every time you reboot the
app server, you need to update the connect string for the web server
since the IP address of the app server changes. How do you fix this
issue?
A. Allocate an IPv6 IP address to the app server
B. Allocate an Elastic Network Interface to the app server
C. Allocate an elastic IP address to the app server
D. Run a script to change the connection

5. To connect your corporate data center to AWS, you need at least which
of the following components? (Choose two.)
A. Internet gateway
B. Virtual private gateway
C. NAT gateway
D. Customer gateway

6. You want to explicitly “deny” certain traffic to the instance running in
your VPC. How do you achieve this?

A. By using a security group
B. By adding an entry in the route table
C. By putting the instance in the private subnet
D. By using a network access control list

7. You have created a web server in the public subnet, and now anyone
can access the web server from the Internet. You want to change this
behavior and just have the load balancer talk with the web server and
no one else. How do you achieve this?
A. By removing the Internet gateway
B. By adding the load balancer in the route table
C. By allowing the load balancer access in the NACL of the public

subnet
D. By modifying the security group of the instance and just having

the load balancer talk with the web server
8. How can your VPC talk with DynamoDB directly?

A. By using a direct connection
B. By using a VPN connection
C. By using a VPN endpoint
D. By using an instance in the public subnet

9. The local route table in the VPC allows which of the following?
A. So that all the instances running in different subnets within a VPC

can communicate to each other
B. So that only the traffic to the Internet can be routed
C. So that multiple VPCs can talk with each other
D. So that an instance can use the local route and talk to the Internet

10. What happens to the EIP address when you stop and start an instance?
A. The EIP is released to the pool and you need to re-attach.
B. The EIP is released temporarily during the stop and start.
C. The EIP remains associated with the instance.
D. The EIP is available for any other customer.

Answers
1. B. The database server is running in a private subnet. Anything

running in a private subnet should never face the Internet directly.
Even if you peer to another VPC, you can’t really connect to the
Internet without using a NAT instance or a NAT gateway. Even if you
change the security group of the database server and allow all
incoming traffic, it still won’t be able to connect to the Internet
because the database server is running in the private subnet and the
private subnet is not attached to the Internet gateway.

2. A. The maximum size of a VPC you can have is /16, which
corresponds to 65,536 IP addresses.

3. A. AWS reserves five IP addresses for internal purposes, the first four
and the last one.

4. C. Allocating an IPv6 IP address won’t be of any use because
whenever the server comes back, it is going to get assigned another
new IPv6 IP address. Also, if your VPC doesn’t support IPv6 and if
you did not select the IPv6 option while creating the instance, you may
not be able to allocate one. The Elastic Network Interface helps you
add multiple network interfaces but won’t get you a static IP address.
You can run a script to change the connection, but unfortunately you
have to run it every time you are done with any maintenance activities.
You can even automate the running of the script, but why add so much
complexity when you can solve the problem simply by allocating an
EIP?

5. A, C. To connect to AWS from your data center, you need a customer
gateway, which is the customer side of a connection, and a virtual
private gateway, which is the AWS side of the connection. An Internet
gateway is used to connect a VPC with the Internet, whereas a NAT
gateway connects to the servers running in the private subnet in order
to connect to the Internet.

6. D. By using a security group, you can allow and disallow certain
traffic, but you can’t explicitly deny traffic since the deny option does
not exist for security groups. There is no option for denying particular
traffic via a route table. By putting an instance in the private subnet,

you are just removing the Internet accessibility of this instance, which
is not going to deny any particular traffic.

7. D. By removing the Internet gateway, a web connection via the load
balancer won’t be able to reach the instance. You can add the route for
a load balancer in the route table. NACL can allow or block certain
traffic. In this scenario, you won’t be able to use NACL.

8. C. Direct Connect and VPN are used to connect your corporate data
center to AWS. DynamoDB is a service running in AWS. Even if you
use an instance in a public subnet to connect with DynamoDB, it is
still going to use the Internet. In this case, you won’t be able to connect
to DynamoDB, bypassing the Internet.

9. A. The traffic to the Internet is routed via the Internet gateway.
Multiple VPCs can talk to each other via VPC peering.

10. C. Even during the stop and start of the instance, the EIP is associated
with the instance. It gets detached when you explicitly terminate an
instance.

CHAPTER 4
Introduction to Amazon Elastic
Compute Cloud

In this chapter, you will
• Learn the benefits of Amazon EC2
• Go through the Amazon EC2 instance types and features
• Walk through the steps for using Amazon EC2
• See the pricing for Amazon EC2
• Understand what shared tenancy, dedicated hosts, and dedicated

instances are
• Explore instances and Amazon machine images (AMIs)
• Learn about virtualization in an AMI
• Go through the instance life cycle
• Learn how to connect to an instance
• Learn about security groups

Amazon Elastic Compute Cloud (EC2) provides almost infinite compute
capability in the cloud, and it is not only reliable but secure. You can run
any kind of workload in the Amazon cloud and don’t have to invest a lot of
capital expenditures to get computing resources. The model for cloud
computing is pay as you go, which means you pay just for the resources that
you are going use on an hourly basis or per second basis depending on
instance type. Therefore, to procure new servers, you don’t really have to
wait months to get a budget approved. As a result, you can deploy your
applications faster as well as innovate quickly. Amazon’s EC2 ecosystem is
designed to scale; as a result, whenever there is a spike in the traffic of your
workload, you can quickly spin off additional servers almost instantly, and
when the traffic reduces, you can get rid of those servers. For example, say

for your normal business during weekdays you need a server with 16 CPUs,
but on the weekend you are expecting twice that traffic. You can provision
an extra 16 CPUs only for the weekend, and when Monday comes, you can
get rid of that server. You have to pay for the additional server only for the
hours on Saturday and Sunday.

Benefits of Amazon EC2
When you deploy a new application or a new workload on your data center
(in other words, on-premise), it takes a few months just to provision the
hardware, whereas if you decide to host your workload on Amazon EC2, it
is almost instant. Similarly, you get several benefits when you choose to
host your application or workload on Amazon EC2.

The following are the benefits of EC2:

• Time to market The biggest advantage of running an EC2 server is
the time to market. You can deploy any server almost instantly, and
as a result you don’t have to wait for weeks or months to get a new
server. This also facilitates innovation because you can quickly get
the resources for your new project. If the project ends, you can
simply get rid of the servers and start a new project with new
resources.

• Scalability Another benefit of running EC2 is scalability; you can
scale up and scale down at any point of time depending on your
workload. In the past, you always had to over-provision the
resources just to make sure that you would be able to support the
peak demand. But with EC2 servers you don’t have to over-
provision the resources; you just provision the resources that are
needed for your business, and whenever there is additional growth or
a spike, you can quickly deploy additional servers that can take care
of the additional demand. EC2 Auto Scaling technologies allow you
to automatically scale up or scale down applications depending on
the needs. In this way, you get the best of both worlds. You not only
maximize the performance but also minimize the cost.

• Control You have complete control over the servers just like you
have control over the servers in your data center. You can start and

stop the service at any point of time, and you have the root access to
the servers. You can interact with the servers just like you interact
with any other machine. You can control or reboot the servers
remotely using web service APIs, and you can also access them
using the Amazon console.

• Reliable EC2 offers a reliable environment where replacement
instances can be rapidly and predictably commissioned. EC2’s
service level agreement is 99.95 percent availability for each region.

• Secure The entire infrastructure of Amazon is secure; in fact,
security is a highest-priority job for Amazon. Everything that
operates under the EC2 cloud is secure. You can create an EC2
resource in conjunction with Amazon VPC to provide security and
networking functionality for your compute resources.

• Multiple instance type Amazon EC2 allows you to select from a
variety of instances. You can choose the instance on the basis of
operating system, software package, CPU storage size or memory,
and so on. You can also choose an instance from the Amazon
Marketplace where various third-party vendors offer their
prepackaged servers.

• Integration Amazon EC2 is integrated with most of the AWS
services such as S3, VPC, Lambda Redshift, RDS, EMR, and so on.
Using EC2 and the other services of AWS, you can get a complete
solution for all of your IT needs.

• Cost-effective Since you pay only for the usage of the server on an
hourly basis or per second depending on which instance you run, you
don’t really have to pay a huge capital expense when you provision
servers on EC2.

When you spin off servers in Amazon EC2, you have complete control
over the type of storage you use, the network configurations, the security
configuration, and so on. The EC2 web interface allows you to configure a
server in a minimal amount of time. Imagine a traditional deployment
model where you have to provision a server. The operating system
installation takes a couple of hours, not including the time it takes to
configure the storage and network. If you add all this time together, it would
be a couple of days of effort. With Amazon EC2, the time required to obtain

and boot the new server is a matter of minutes. Since now it takes only a
few minutes to deploy a server, you can actually deploy hundreds or
thousands of servers almost instantly, and since this model is very scalable,
you can quickly scale up or scale down, depending on your workload or
traffic volume.

You have the choice of multiple instance types, operating systems, and
software packages. Amazon EC2 allows you to select a configuration of
memory, CPU, instance storage, and boot partition size that is optimal for
your choice of operating system and application. For example, your choice
of operating systems includes numerous Linux distributions and Microsoft
Windows Server.

The following are the operating systems supported by EC2:

• Windows
• Amazon Linux
• Debian
• SUSE
• CentOS
• Red Hat Enterprise Linux
• Ubuntu

Amazon EC2 Instance Types and Features
Amazon EC2 offers a variety of instance types to choose from, which can
fit any type of workload depending on the use case. You can choose from
various combinations of CPU, memory, networking, and storage to deploy
your server. When you create a new instance, the instance type that you
specify determines the hardware of the host computer used for your
instance. There are various instance types offered by Amazon, and each
instance type offers different types of compute, memory, and storage
capabilities grouped into an instance family. You can choose an instance
depending on your workload. For example, if your workload is compute
intense, you can choose a compute-optimized EC2 instance, and if your
workload is memory intense, you can choose a memory-optimized instance.

You will notice that there are two types of instances that are available
within the EC2 ecosystem: current-generation instances and previous-

generation instances. Current-generation instances contain the latest of
everything (for example, the latest version of chipsets, memory, processor,
and so on), whereas the previous generation consists of the machines that
are one or two generations older than the current one. Amazon still supports
them because of backward compatibility, and there are many users who
have optimized their applications around the previous-generation machines.
The current-generation instance will always have a higher number than a
previous-generation instance.

Let’s examine the various types of instances offered by Amazon EC2.
The instance types are broadly divided into the following categories:

• General purpose
• Compute optimized
• Memory optimized
• Storage optimized
• Advanced computing

General Purpose (T3, T3a, T2, M6g, M5, M5a,
M5n, M4, and A1)
The general-purpose instances provide a balance of computer memory and
network resources and are a pretty good choice for many applications.
Some of the general-purpose instances, such as T3 and T2, provide
burstable performance, which means these instances provide a baseline
level of CPU performance with the ability to burst above the baseline. The
way it works is that T3 and T2 instances accrue CPU credits when they are
idle and use the CPU credits when they are active. The instance provides
burstable performance depending on how many CPU credits it has accrued
over a period of time. Let’s look at how the burstable performance works.
The standard EC2 instance type provides fixed CPU utilization, which
means you will not get any credit for not utilizing the unused CPU. For
example, if you are running an EC2 instance with one core and in a minute
your CPU utilization is 40 percent, you won’t get any credit for the un-
utilized 60 percent of the CPU. On the other hand, the burstable instances
provide the ability to burst CPU utilization above baseline level. The CPU
credits are measured in units of 100 percent utilization of a full CPU core

for one minute. A burstable performance instance provides the ability to
burst the CPU utilization for the unused portion. In the previous example, in
a burstable performance instance the 60 percent of the unused CPU credits
are accrued in the CPU credit balance, which can be used when more CPU
utilization is needed. T3 and T2 are suitable for workloads that do not
employ full CPU utilization. Some use cases might be for web servers and
development environments. Other general-purpose instances are M5, M5n,
and M4, which can be used for a lot of things, such as building web sites,
development environments, build servers, code repositories, microservices,
test and staging environments, and so on. M5, M5n, and M4 do not provide
burstable performance like T3 and T2. In addition to this, the general-
purpose servers, including the ARM- and gravitational-based processors A1
and M6g, belong to this category. The general purpose of the servers also
includes the AMD-based processor T3a, and M5a is an example of it.

Compute Optimized (C6g, C5, C5a, C5n, and C4)
If you have an application or workload that is heavy on compute, a
compute-optimized instance is ideal for that. A compute-optimized instance
has high-performance processors, and as a result any application that needs
a lot of processing power benefits from these instances. Some good use
cases for the compute-optimized workload are media transcoding,
applications supporting a large number of concurrent users, long-running
batch jobs, high-performance computing, gaming servers, and so on.

Memory Optimized (R6g, R5, R5a, R5n, R4, X1e,
X1, High Memory, and Z1d)
The memory-optimized instances are ideal if the workload you are planning
to run has a lot of memory requirements. Any application that processes
large data sets in memory will benefit by using the memory-optimized
instance. Some good use cases for memory-optimized instances are running
in memory databases such as a SAP HANA or Oracle database in-memory,
NoSQL databases like MongoDB and Cassandra, big data processing
engines like Presto or Apache Spark, high-performance computing (HPC)
and Electronic Design Automation (EDA) applications, genome assembly
and analysis, and so on.

Storage Optimized (I3, I3en, D2, and H1)
Storage-optimized instances can be used for the workloads that require
high-sequential read and write access to very large data sets on local
storage. Since they are optimized at storage, they deliver many thousands of
low-latency, random I/O operations per second (IOPS). Some use cases for
the storage-optimized instance could be running a relational database that is
I/O bound, running an I/O-bound application, NoSQL databases, data
warehouse applications, MapReduce and Hadoop distributed caches for in-
memory databases like Redis, and so on. You can also select a high I/O
instance and dense storage instances depending on workload.

Accelerated Computing (P3, P2, Inf1, G4, G3, and
F1)
If you have high-processing computing requirements, for example, you
want to run machine learning algorithms, molecular modeling, genomics,
computation of fluid dynamics, autonomous vehicle, drug discovery,
seismic analysis, computational finance, and so on, then an advanced
computing instance is going to give you the most bang for the buck. These
advanced computing instances provide access to hardware-based
accelerators such as graphic processing units (GPUs) or field programmable
gate arrays (FPGAs), which enable parallelism and give high throughput.
The advanced computing also includes GPU compute instances and GPU
graphics instances.

Let’s discuss some of the key features of the Amazon EC2 instance.

Processor Features
The EC2 instances use an Intel processor, so they in turn use all the
processor features that Intel provides. Some of the processor features that
are often seen in the EC2 instances are as follows:

• Intel AES New Instructions (AES-NI) This encryption instruction
applies the Advanced Encryption Standard (AES) algorithm better
compared to the original one and provides faster data protection and
greater security. All the current-generation EC2 instances have this
feature.

• Intel Advanced Vector Extensions Intel AVX instructions improve
performance for applications such as image and audio/video
processing. They are available on instances launched with HVM
AMIs.

• Intel Turbo Boost Technology Intel Turbo Boost Technology
provides more performance when needed.

• Intel Deep Learning Boost These processors are designed to boost
the AI deep learning use cases.

Network Features
Whenever you launch an EC2 instance, you need to do so inside a VPC.
Amazon VPC allows customers with great control of the IP address space
the ability to segment with subnets, the ability to provide network-level
security, and so on.

You can also launch an instance in a placement group to maximize the
bandwidth and get better network performance. A placement group is a
logical grouping of instances within a single AZ. If you have an application
or workload that needs low-latency or high-network throughput, the
placement group is going to provide you with that benefit. This is also
known as cluster networking. R5, R4, X1, M5, M4, C5, C4, C3, I3, I2, P3,
P2, G3, D2, and H1 instances (and more) support cluster networking. In
addition to these are a few other instances that support placement groups.
Since AWS keeps on adding instance types, you should check the AWS web
site to find the latest on types supported. When launched in a placement
group, EC2 instances can utilize up to 10Gbps for single-flow traffic in
each direction. To use a placement group, first you need to create a
placement group and then start launching multiple instances in your
placement group. There is no charge for creating a placement group; only
when you start an instance in a placement group are you billed for the usage
of the instance. It is recommended that you use the same type of instance in
a placement group, although it is possible to use multiple instance types in
the same placement group. A placement group cannot span multiple AZs,
and also the name of a placement group must be unique within your AWS
account. You cannot move an existing or running instance in a placement
group. To get the maximum benefit for your placement group, you should
choose an instance type that supports “enhanced networking.” Enhancement

networking provides higher bandwidth, higher packet per second (PPS)
performance, and lower inter-instance latencies. It uses single root I/O
virtualization (SR-IOV), which is a method of device virtualization that
provides higher I/O performance and lower CPU utilization and thus
provides high-performance networking capabilities. Since there is no
additional cost for using enhanced networking, you should look for an
instance that supports enhanced networking and put it in a placement group.

Storage Features
Amazon provides a variety of storage that you can use along with the EC2
instance depending on your workload requirement. The block storage that
you attach along with the EC2 instance is known as Elastic Block Storage
(EBS). When you attach an EBS volume, it becomes the primary storage,
and you can use it like any other physical hard drive. The EBS volume
persists independently for the life span of the Amazon EC2 instance.
Amazon provides three types of volumes. You can choose any one of them
depending on your workload and computation requirements. This has
already been discussed in detail in Chapter 2.

• General purpose (GP2) This is the general-purpose EBS volume
backed up by solid-state drives (SSDs) and can be used for any
purpose. This is often used as the default volume for all the EC2
instances. It is also commonly called GP2 and is more cost-effective
than PIOPs, which are discussed in the next section. You can
combine multiple GP2 volumes to get better performance at lower
cost.

• Provisioned IOPS (PIOPS) If you have a computing need for a lot
of I/O, for example, running a database workload, then you can use a
provisioned IOPS-based EBS volume to maximize the I/O
throughput and get the IOPS that your application or database may
need. PIOPS costs a little bit more than the general-purpose EBS
volumes since you get more IOPS compared to a general-purpose
EBS volume.

• Magnetic Magnetic hard drives provide the lowest cost per gigabyte
for all the volume time. They are ideal for running a development

workload or a non-mission-critical workload where very high
performance is not required.

Some of the EC2 instances also include a local disk in the physical
hardware, which is also known as an instance store. The instance store is
ephemeral storage and persists only until the end of the EC2 instance’s life.
If you shut down or stop the machine, the instance store is gone; therefore,
you should not keep any important data in an instance store. If the instance
is rebooted, either intentionally or accidentally, the data in the instance store
persists. You should keep all your data in Elastic Block Store.

You will notice that some instances are EBS optimized. EBS-optimized
instances enable EC2 instances to fully use the IOPS provisioned on an
EBS volume. EBS-optimized instances deliver dedicated throughput
between Amazon EC2 and Amazon EBS, with options between 500Mbps
and 14,000Mbps depending on the instance type used. The dedicated
throughput minimizes contention between Amazon EBS I/O and other
traffic from your EC2 instance, providing the best performance for your
EBS volumes.

Some instances support a cluster networking feature. If you launch
instances that support cluster networking in a common cluster placement
group, they are placed into a logical cluster that provides high-bandwidth,
low-latency networking between all instances in the cluster.

Steps for Using Amazon EC2
It is pretty easy to spin off an EC2 instance. Using the following steps, you
should be able to launch an EC2 instance quickly:
1. Select a preconfigured Amazon Machine Image. You can also create

your custom AMI and later use that to launch an instance.
2. Configure the networking and security (virtual private cloud, public

subnet, private subnet, and so on).
3. Choose the instance type.
4. Choose the AZ, attach EBS, and optionally choose static EIP.
5. Start the instance and you are all set.

Pricing for Amazon EC2
Amazon provides multiple pricing options, depending on the duration of the
instance and your payment flexibility. The instances are divided into three
categories from a pricing perspective:

• On-demand instance
• Reserved instance
• Spot instance

On-Demand Instance
This is the most popular pricing model of an EC2 instance. In this model,
you pay just for the usage on a flat hourly rate or per-second billing. There
are no up-front costs or hidden costs or anything else. Say if you create an
instance and use it for ten hours and later discard the instance, you need to
pay only for ten hours. There is no commitment or minimum term involved;
as a result, you can scale up or down at any point in time. If you are
developing a new application and don’t know how many resources it is
going to take, an on-demand instance is a great way to start.

NOTE Effective October 2, 2017, usage of Linux instances that are
launched in the on-demand, reserved, and spot forms will be billed in 1-
second increments with a minimum of 60 seconds. Similarly, provisioned
storage for EBS volumes will be billed in 1-second increments with a
minimum of 60 seconds. This means if you use an EC2 instance for five
minutes, you will be charged only for five minutes. Before this change, the
EC2 instance was charged on an hourly basis.

Reserved Instance

A reserved instance provides up to a 75 percent discount compared to an
on-demand instance. If you already know how many resources your
workload is going to take and for how long, a reserved instance is going to
provide the maximum cost benefit. One of the best use cases of instances is
running the production workload. Say you know that your production server
is going to take 16 CPUs and you need this production server configuration
for at least a year. You can reserve the capacity for a year and get the
discount compared to an on-demand instance. A reserved instance is ideal
when you know your application has a pretty steady state or is predictable
in terms of performance. Since reserves require either a one-year or three-
year commitment, it is important to know the nature of the workload before
committing to a reserved instance. You can reserve the instance for either a
region or a specific AZ. When you reserve the instance for a region, it is
called a regional reserved instance, and when you reserve the instance for a
particular AZ, it is referred to as a zonal reserved instance. Multiple
payment options are available when you reserve an instance. You can either
pay for it in full, which is called up-front reserved, or make a partial
payment up-front, which is called partial up-front reserved. Or you can pay
nothing in advance, and everything gets billed into a monthly billing cycle
that is called no up-front reserved. Thus, you can have the following pricing
model for a reserved instance:

1 year, no up-front costs, reserved
1 year, partial up-front costs, reserved
1 year, all up-front costs, reserved
3 years, no up-front costs, reserved
3 years, partial up-front costs, reserved
3 years, all up-front costs, reserved

The reserved instance is divided into two subcategories: standard
reserved instance and convertible reserved instance. The standard reserved
instance is the regular one you have just studied. The convertible reserved
instance provides better flexibility if your compute requirement changes
over the given period of time. A convertible reserved instance provides you
with the ability and flexibility to exchange the instance from one class of
family to another class if your computing need changes. You can purchase
the reserved instance for only three years. Please note that standard and

convertible reserved instances can be purchased to apply to instances in a
specific availability zone or to instances in a region.

For convertible reserved instances, the following are the payment
options:

3 years, no up-front costs, convertible
3 years, partial up-front costs, convertible
3 years, all up-front costs, convertible

Spot Instance
As you are probably aware, AWS has the largest compute capabilities
among all the different cloud providers, and often some of the excess
compute capacity is unused. AWS gives you the ability to bid for the
unused capacity, and you can get up to a 90 percent discount compared to
on-demand pricing. This pricing model is called spot pricing, and the
instance created using the spot pricing model is called a spot instance. The
spot instance runs on the bidding model, and you can bid for the spot
pricing. The spot price fluctuates based on supply and demand, and if
someone overbids you, you then lose the instance, on very short notice.
Spot instances offer the same features you’re used to with EC2, but for a
fraction of the cost. Spot instances help you unlock the full value of EC2;
however, you must be careful when choosing the type of workload you are
going to run in the spot instance. Spot instances are great for workloads that
can restart from where they failed; in other words, they’re great for running
non-mission-critical projects. Often, customers will add a few spot
instances along with on-demand instances to provide additional horsepower.
Here are some of the use cases where spot instance can be leveraged:

• Anything containerized
• Big data frameworks like Apache Spark and Hadoop
• Batch processing
• Stateless web services
• Machine learning (PyTorch, Tensorflow, or jobs that require heavy

training)

• Continuous Integration and Continuous Deployment (CI/CD) with
Jenkins

• High-performance computing (HPC), such as for genomics
sequencing

• Anything fault-tolerant or stateless that can be instance flexible

The most common use case where spot implementations are successful is
building a fault-tolerant workload because EC2 can reclaim the spot
instance with a two-minute notification. You should architect your
workloads in such a way that they can gracefully handle interruptions. One
of the common successful spot implementation patterns is using a spot fleet,
which is a collection, or fleet, of spot instances and, optionally, on-demand
instances. You can mix and match different types of instances in a spot fleet
and, thus, if there is an interruption in a particular type of instance, other
types of instances continue to run that support your workload. When you
request spot instances, one of the best practices is to use the default
maximum price (the on-demand price). Setting the spot price to the
maximum price doesn’t mean that you will be charged the maximum price;
you will be charged only the price of the spot instance, which is current at
that particular point in time. However, setting the spot price to maximum
will make sure no one overbids you. If you don’t want to set the spot price
to the maximum value, you can also look at spot price history to get an idea
about the fluctuations in the spot price.

Shared Tenancy, Dedicated Hosts, and
Dedicated Instances
EC2 runs on a virtualized environment; therefore, it is possible that on the
same physical machine another customer might be running a different EC2
instance. AWS never over-provisions the resources, which means if you
create a server with 16 CPUs, for sure you are going to get 16 CPUs;
however, sometimes because of some compliance requirement, you may
have to segregate your instances even at the physical level. Dedicated hosts
and dedicated instances solve this problem.

Shared Tenancy
This is the default behavior when you launch an instance in EC2. In this
case, you run the EC2 instances on multitenant hardware. Dedicated
instances are the most popular in Amazon’s EC2 ecosystem.

Dedicated Host
A dedicated host means it is a physical server exclusively assigned to you.
Dedicated hosts can help you reduce costs by allowing you to use your
existing server-bound software licenses, including Windows Server, SQL
Server, and SUSE Linux Enterprise Server. If you want, you can also carve
as many virtual machines (VMs) as you want depending on the capacity of
the physical server. It can be purchased on-demand or on a reservation
basis.

Dedicated Instance
In this case, you run the EC2 instances on single-tenant hardware.
Dedicated instances are Amazon EC2 instances that run in a virtual private
cloud on hardware that’s dedicated to a single customer. Your dedicated
instances are physically isolated at the host hardware level from instances
that belong to other AWS accounts.

Using a bare-metal instance is another way of getting a dedicated
instance. As the name suggests, in a bare-metal instance, there is no
hypervisor, which means bare-metal instances provide your applications
with direct access to the processor and memory resources of the underlying
server. This instance type is a perfect fit for applications that need to run in
nonvirtualized environments for licensing or support requirements.

Instances and AMIs
An Amazon Machine Image is a blueprint that has all the details of the
software configuration of the server that you are going to launch in the
Amazon cloud (Figure 4-1). For example, an AMI may have details of the
operating system, the application server, the applications running in it, and
so on. When you launch an instance or server using an AMI, it inherits all

the qualities of the AMI. You can launch as many instances as you want
from an AMI.

Figure 4-1 Launching one or many instances from AMI

The AMI contains a blueprint about the root volume for the instance, and
the root volume contains information about the operating system and
various other software running on top of the operating system, such as
application servers or the Linux, Apache, MySQL, and PHP (LAMP) stack
or any other custom application.

It also has the launch permission information that controls what AWS
accounts can use the AMI to launch the instance. Launch permissions fall
into the following categories:

• Public The owner grants launch permissions to all AWS accounts.
• Explicit The owner grants launch permissions to specific AWS

accounts.
• Implicit The owner has implicit launch permissions for an AMI.

It has block device mapping information that specifies which volume needs
to be attached or will be attached when the instance is launched.

As discussed previously, various types of instances are available from
Amazon Web Services. You can choose from a compute-intensive instance
or an all-memory intensive instance and so on. Using a single AMI, you can
launch different types of instances. You can choose an instance type
depending on the workload you are going to run. Once you launch the
instance, you will get an EC2 server according to the specifications you
specify during the launch, and you can log into the system exactly the way
you log in to a system on your premise. You can run all the commands that
you normally run on a system that run on-premise or at your data center.
For example, if you launch a Linux server, you can connect to it by PuTTY,
and you can run all the standard Linux commands that you normally run on
a Linux server. Similarly, if you launch a Windows server, you can connect
to it using RDP, and you can run all the Windows commands that you
would on a Windows server in your data center.

Please note there is a limit on the number of instances you can start in a
particular region. The limit depends on the instance type. But again, this
limit is a soft limit, and with a support ticket you should be able to increase
the limit at any time.

Instance Root Volume
An instance root device contains the image that is used to boot the instance.
When EC2 was launched initially, all the root devices used to get launched
from S3 since the instance root used to be backed up at S3. If the instance
root device is backed up by S3, it is called an instance store–backed AMI.
After the introduction of Amazon EBS, the images are backed up by an
EBS volume because whenever an instance is launched, the root device for
the instance is launched from the EBS volume, which is created from an
EBS snapshot. It is also known as an Amazon EBS–backed AMI.

Now you can launch an instance either from an instance store–backed
AMI or from an Amazon EBS–backed AMI. If you launch an instance that
is backed up by an instance store, then when the instance is launched, the
image that is used to boot the instance is copied to the root volume. As long
as the instance is running, all the data in the instance store volume persists.
But whenever the instance is terminated, all the data is gone. Please note
instance store–backed instances do not support the stop action; therefore,
you can’t stop that instance. If an instance store–backed instance fails or

terminates, the data residing on the instance store cannot be restored.
Therefore, it is important if you are using an instance store, you should back
up your data to a persistent storage regularly and/or on your instance stores
across multiple availability zones. The only exception is when the instance
is rebooted, data in the instance store persists. Figure 4-2 shows instance
creation backed up by an instance store.

Figure 4-2 Instance creation backed by an instance store

On the other hand, if you launch an instance that is backed up any
Amazon EBS–backed instance, the data always persists. These instances
support the stop action, and the instance can be stopped and restarted
without losing any data. Even if the instance terminates or fails, you don’t
lose the data. Since the instance root volume runs out of an EBS volume,
you can even attach the root volume of your instance to a different running

instance for debugging or any other purpose, such as changing the size of
the instance or modifying the properties of the instance.

When you use an instance with an instance store, you can’t detach an
instance store volume from one instance and re-attach it to a different
instance.

It is recommended that you use an instance that is backed up by EBS,
but in case you need to use an AMI that is backed up by an instance store,
please don’t store any data in the instance store. Rather, attach an EBS
volume to it and store all your data in the EBS volume. By doing this, even
if you lose the instance, the EBS volume is going to retain all the data,
which you can again mount to any other instance and get the data. Figure 4-
3 shows instance creation backed up by an EBS volume.

Figure 4-3 Instance creation backed up EBS volume

Obtaining an AMI
There are many ways you can obtain an AMI for your use. AWS publishes
many AMIs with many common software configurations that are available
for public use. There are a lot of AMIs that are available via the community.
A lot of developers also create their own AMI and make it available for
public use; you can even use them. You can also create your own AMI and
publish it to the developer community. In the community images, you will
see a wide variety of different AMIs available. You can choose any one of
them depending on your usage. For example, if you need to pre-install
Linux, Apache, MySQL, and PHP, you can quickly search AMIs with the
LAMP stack and use that to create your EC2 instance. As soon as the
instance is created, the LAMP stack is already deployed for you. You just
need to start the web server, and then you are all set.

As discussed previously, irrespective of how you choose your AMI,
either it will be backed up by Amazon EBS or it will be backed up by the
instance store.

TIP You can convert an instance store–backed Linux AMI that you own
to an Amazon EBS–backed Linux AMI; you can’t do that with Windows-
based AMIs.

You can also create your AMI and save it as a template to launch further
instances. You can also distribute your AMIs with the developer
community. You can take a public AMI, make customizations on top of it,
and then save it as a custom AMI for your own use or distribute it to a
different team in your organization or to an external community. If you
want to keep the AMI for your own use, make sure you keep it private so
that only you can use it. When you create an AMI, you have the choice to
back it up either via EBS volume or by instance store.

The image created by the developer community is called a shared AMI.
When you share an AMI with the developer community, that will also be

called a shared AMI. Since anyone can create the AMI and share it with the
developer community, as a result Amazon does not vouch for those AMIs.
If you want to use a shared AMI, you should be careful because you don’t
know who has created the AMI and whether it has any bugs. You can also
leverage AWS forums to ask any questions about a shared AMI.

Please note an AMI is a regional resource. If you want to share an AMI
to a different region, you need to copy the AMI to a different region and
then share it. You can also share an AMI with specific accounts without
making it public (when you make an AMI public, everyone has access to
it). For example, if you want to share it to multiple friends or multiple
clients, sharing with AWS IDs is the way to go.

The AWS Marketplace is an online store where you can buy software
that runs on AWS. You can also purchase an AMI from the AWS
Marketplace. When you purchase an AMI from the AWS Marketplace, you
launch it in the same way as you would for any other AMI. The
marketplace is integrated with EC2; therefore, it is easy and simple to
launch an AMI from the marketplace. The instance is charged according to
the rates set by the owner of the AMI, as well as the standard usage fees for
the software running on top of it, if any. You can also create your own AMI
and sell it to the AWS Marketplace.

Once you’re done with the AMI, you can deregister it. Once you
deregister it, you won’t have access to it, and you will not be able to create
any instances from it.

Virtualization in AMI
Linux Amazon machine images use one of two types of virtualization:

• Hardware Virtual Machine (HVM)
• Paravirtual (PV)

The main difference between them is how they boot and how they take
advantage of the hardware extensions in the context of CPU, memory, and
storage to provide better performance.

HVM AMI

HVM AMI executes the master boot records of the root block device and
then presents a fully virtualized set of hardware to the operating system. As
a result, the operating system runs directly on top of the VM as it is without
any modification similar to the way it runs on a bare-metal hardware.

HVM AMIs are presented with a fully virtualized set of hardware and
boot by executing the master boot record of the root block device of your
image. This virtualization type provides the ability to run an operating
system directly on top of a virtual machine without any modification, as if it
were run on the bare-metal hardware. The Amazon EC2 host system
emulates some or all of the underlying hardware that is presented to the
guest. The EC2 server emulates some or all of the underlying hardware that
is presented to the guest. As a result of this, the performance becomes really
fast since HVM guests can take full advantage of all the hardware
extensions that provide fast access to the underlying hardware on the host
system.

All current-generation instance types support HVM AMIs.

PV AMI
PV AMIs boot with a boot loaded called PV-GRUB. It starts the boot cycle
and loads the kernel specified in the menu.lst file on your image.
Paravirtual guests can run on host hardware that does not have explicit
support for virtualization. But unfortunately, they can’t really take
advantage of special hardware extensions that HVM can take such as
enhanced networking or GPU processing and so on.

The following generation instance types support PV AMIs: C1, C3, HS1,
M1, M3, M2, and T1. Current-generation instance types do not support PV
AMIs.

Amazon recommends you use an HMV image to get the maximum
performance when you launch your instance. Also, you should always use a
current-generation instance over a previous-generation instance to get the
latest and greatest hardware (CPU, memory, and so on) features.

Instance Life Cycle
Since you are going to work with the instance on a day-to-day basis, it is
important for you to understand the overall life cycle for an instance. Let’s

understand all the phases of an EC2 instance.

Launch
When you launch an instance, immediately it enters into the “pending”
state. The AMI you specify at the launch is used to boot the instance. The
hardware on which it gets booted up depends on the type of hardware that
you select for the instance type. Before starting the instance, a few health
checks are performed to make sure that there are no issues with the
hardware and the instance can come online without any issues. Once the
instance is up and running and is ready for you, it enters into the “running”
state. As soon as it is in the running state, the instance is ready for all
practical purposes, and you can connect to it and start using it. At this
moment, the billing starts, and you are billed for each hour of usage. When
the instance reaches the running state, you are still liable to pay the bill,
even if you don’t connect and use it.

Start and Stop
If the health check fails, the instance does not get started. At that time, you
can either start a new instance or try to fix the issue. If there are no issues
with the health check, the instance starts normally, and you can start using it
thereafter.

You can stop an instance only if it is backed up by an EBS-backup
instance. You can’t stop an instance backed by an instance store. When you
stop your instance, it enters the stopping state and then the stopped state.
Amazon doesn’t charge you once the instance is in a stopped state or if you
stop it. Since the data resides in the EBS volumes, you are charged for the
EBS volumes. You can also modify an instance type by upgrading it to new
or bigger hardware by stopping it and then starting it on a new instance.

Reboot
You can reboot an instance that is either backed up by instance store or
backed up by EBS. A reboot is similar to rebooting an operating system. All
the data is saved after the reboot; even the data in the instance store is
saved, and nothing is lost. The IP address, machine type, and DNS name all

remain the same after the reboot. You can reboot the instance either via the
Amazon console or via CLI and API calls.

Termination
If you do not need the instance anymore, you can terminate it. As soon as
you terminate the instance, you will see that the status changes to “shutting
down” or “terminated.” The moment the instance is shut down, the billing
stops, and you don’t have to pay anything after that. If the instance has
termination protection enabled, you may have to perform an additional step,
or you may have to disable termination protection to terminate the
environment. Termination protection is a helpful feature that can protect an
instance against accidental termination. If you enable the termination
protection, then before terminating, the system will prompt you with “Do
really want to terminate the instance?”

You will notice that even after the termination of the instance, it remains
visible in the console for a little while. This is normal behavior, and after a
while the entry is automatically deleted.

You can either delete the EBS volume associated with the instance or
preserve the EBS volume associated with the instance. The Amazon EBS
volume supports the DeleteOnTermination attribute. This attribute controls
whether the volume is deleted or preserved when you terminate the
instance. The default behavior is to delete the root device volume and
preserve any other EBS volumes.

Retirement
When AWS determines there is an irreparable hardware failure that is
hosting the instance, then the instance is either retired or scheduled to be
retired. As soon as the instance reaches its retirement date, it is stopped or
terminated by AWS. If the instance is a backed EBS volume, you have all
the data stored in the EBS volume, and therefore you can start the instance
any time by choosing a different hardware. If the instance’s root volume is
backed up by the instance store, you must take the backup of all the files
stored in the instance store before it gets terminated or you will lose all the
data.

Connecting to an Instance
Once you launch an instance successfully, the next step is to connect to it.
To connect to it, you need the connection details of the instance. The same
can be obtained by logging into the console and going to the EC2 home
page. Select the instance and then click Actions | Connect. A connection
pop-up will open with all the connection details, as shown in Figure 4-4.

Figure 4-4 Connection details for an EC2 instance

If you launch the instance in the public subnet, it will be assigned a
public IP address and public DNS name via which you can reach the
instance from the Internet. Besides the public IP address, it will also be an

allocated private IP address and private DNS. If you choose the IPv6 IP
address, then it will be allocated a public IPv6 IP address as well.

Here is how all IPs look:

• Public DNS (IPv4) ec2-54-241-169-35.us-west-
1.compute.amazonaws.com

• IPv4 public IP 54.241.169.35
• Private DNS ip-172-31-10-142.us-west-1.compute.internal
• Private IPs 172.31.10.142

The public DNS name is automatically created by AWS during the
instance creation and stays with the instance for its tenure. You won’t be
able to change the public DNS associated with an instance. You can find the
public DNS from the EC2 console main page and then select the instance
for which you are querying the details, as shown in Figure 4-5.

Figure 4-5 Public DNS of an EC2 instance

The public IP address will also be assigned if you create the instance in
the public subnet. The public IP address is also unique, and you won’t be
able to modify this. The public IP address will persist for the life span of the
instance. If you terminate the instance, the public IP address will
automatically be disassociated, and you can’t associate the same public IP

address in any other server even if you terminate an instance. If you want to
associate an IP address from one server with another server, then you can
do it via an elastic IP address.

Optionally you can also assign an EIP address to an EC2 instance. I
already discussed EIP in the previous chapter, so I am not going to discuss
this again. EIP addresses can be moved from one instance to other.

If you create the instance in a private subnet, then it will be allocated a
private IP address and a private DNS.

If you look at Figure 4-4, you will notice that to connect to an instance,
the console prompts you to download a private key in your local machine
and then change the permission in it. Amazon EC2 uses the public-private
key concept used in cryptography to encrypt and decrypt the login
information. In cryptography a public key is used to encrypt the data, and
the private key associated with it is used to decrypt the data. You need the
private key to connect to an EC2 instance. There are multiple ways of
creating the key pair (a combination of public and private keys is called a
key pair). You can create it via the AWS console or via the AWS command-
line interface or by API. AWS customers can also bring their own keys and
upload them in the system. The keys that Amazon EC2 uses are 2,048-bit
SSH-2 RSA keys. You can have up to 5,000 key pairs per region.

Once you download the private key, you can connect to the EC2 instance
using the instructions shown in Figure 4-4. You must be wondering where
the public key is kept. The public key is stored inside the EC2 instance in
the ~/.ssh/authorized_keys directory.

The connect details screen will also tell which user to use to log in to the
instance. By default the user will be ec2-user for Amazon Linux, and it will
be a different user for a different Linux distribution. After the initial login
using the keys, you can configure SSO and log in via LDAP.

In the case of a Windows-based EC2 instance, the server generates a
random password for the administrator account and encrypts the password
using the public key. The first time a user logs in, the password is decrypted
using the private key, and immediately after that, the user is prompted to
change their password.

Security Group
A security group acts as a virtual firewall that controls the traffic for one or
more instances. When you launch an instance, you associate one or more
security groups with the instance. You add rules to each security group that
allow traffic to or from its associated instances. You can modify the rules
for a security group at any time; the new rules are automatically applied to
all instances that are associated with the security group. When you decide
whether to allow traffic to reach an instance, you evaluate all the rules from
all the security groups that are associated with the instance.

The rules of a security group control the inbound traffic that’s allowed to
reach the instances that are associated with the security group and the
outbound traffic that’s allowed to leave them.

The following are the characteristics of security group rules:

• By default, security groups allow all outbound traffic.
• You can’t change the outbound rules for an EC2-Classic security

group.
• Security group rules are always permissive; you can’t create rules

that deny access.
• Security groups are stateful—if you send a request from your

instance, the response traffic for that request is allowed to flow in
regardless of the inbound security group rules. For VPC security
groups, this also means that responses to allowed inbound traffic are
allowed to flow out, regardless of outbound rules.

• You can add and remove rules at any time. Your changes are
automatically applied to the instances associated with the security
group after a short period.

• When you associate multiple security groups with an instance, the
rules from each security group are effectively aggregated to create

one set of rules. You use this set of rules to determine whether to
allow access.

For each rule, you specify the following:

• Protocol This is the protocol to allow. The most common protocols
are 6 (TCP), 17 (UDP), and 1 (ICMP).

• Port range For TCP, UDP, or a custom protocol, this is the range of
ports to allow. You can specify a single port number (for example,
22) or a range of port numbers (for example, 7000 to 8000).

• ICMP type and code For ICMP, this is the ICMP type and code.
• Source or destination This is the source (inbound rules) or

destination (outbound rules) for the traffic. Specify one of these
options:
• An individual IPv4 address. You must use the /32 prefix after the

IPv4 address, for example, 203.0.113.1/32.
• (VPC only) An individual IPv6 address. You must use the /128

prefix length, for example, 2001:db8:1234:1a00::123/128.
• A range of IPv4 addresses, in CIDR block notation, for example,

203.0.113.0/24.
• (VPC only) A range of IPv6 addresses, in CIDR block notation,

for example, 2001:db8:1234:1a00::/64.
• Another security group. This allows instances associated with the

specified security group to access instances associated with this
security group. This does not add rules from the source security
group to this security group. You can specify one of the
following security groups:
• The current security group.
• EC2-Classic A different security group for EC2-Classic in

the same region.
• EC2-Classic A security group for another AWS account in

the same region (add the AWS account ID as a prefix, for
example, 111122223333/sg-edcd9784).

• EC2-VPC A different security group for the same VPC or a
peer VPC in a VPC peering connection.

When you specify a security group as the source or destination for a rule,
the rule affects all instances associated with the security group. Incoming
traffic is allowed based on the private IP addresses of the instances that are
associated with the source security group (and not the public IP or elastic IP
addresses). If your security group rule references a security group in a peer
VPC and the referenced security group or VPC peering connection is
deleted, the rule is marked as stale.

If there is more than one rule for a specific port, you apply the most
permissive rule. For example, if you have a rule that allows access to TCP
port 22 (SSH) from IP address 203.0.113.1 and another rule that allows
access to TCP port 22 from everyone, everyone has access to TCP port 22.

Amazon Elastic Container Service
Amazon Elastic Container Service (ECS) is a container management
service that allows you to manage Docker containers on a cluster of
Amazon EC2. Amazon ECS is highly scalable; it is fast; and it allows you
to start, stop, manage, and run the containers easily and seamlessly. Using
Amazon ECS, you can easily launch any container-based application with
simple API calls.

Containers are similar to hardware virtualization (like EC2), but instead
of partitioning a machine, containers isolate the processes running on a
single operating system. This is a useful concept that lets you use the OS
kernel to create multiple isolated user space processes that can have
constraints on them like CPU and memory. These isolated user space
processes are called containers. Using containers you can build your own
application, share the image with others, deploy the image quickly, and do
lots of other things quickly. Containers are portable, which makes the
development life cycle simpler. The same image can run on the developer’s
desktop as well as in the production server. The image is consistent and
immutable; therefore, no matter where it runs or whenever you start it, it’s
always the same. The entire application is self-contained, and the image is
the version that makes deployments and scaling easier because the image
includes the dependencies. Containers are very efficient. You can allocate
exactly the amount of resources (CPU, memory) you want, and at any point
in time you can increase or decrease these resources depending on your
need.

Containers enable the concept of microservices. Microservices
encourage the decomposition of an app into smaller chunks, reducing
complexity and letting teams move faster while still running the processes
on the same host. If you are planning to run a microservice architecture, a
container should be your first choice.

Often it is seen that once developers start deploying their applications on
containers, the tasks of managing and scaling the containers become
challenging. For example, if there are 200 developers and everyone is trying
to deploy the part of their code using containers, managing these 200
containers becomes really challenging. A couple of the problems often
faced are: What happens when a container dies? How do you know whether
the host where you are putting the containers has enough resources?
Managing the state of the cluster, hosting the containers is critical for the
successful deployment of the containers and applications running inside it.
Flexible scheduling is another challenge that is often faced. Amazon ECS
solves all these problems.

Amazon ECS handles the complexity of cluster and container
management so you don’t have to install and operate your own cluster
management infrastructure. Amazon has built several core distributed
systems primitives to support its needs. Amazon ECS is built on top of one
of these primitives. Amazon exposes this state management behind a simple
set of APIs that give the details about all the instances in your cluster and
all the containers running on those instances. Amazon ECS APIs respond
quickly whether you have a cluster with one instance and a few containers
or a dynamic cluster with hundreds of instances and thousands of
containers. These are some of the benefits of running containers on Amazon
ECS:

• Eliminates cluster management software. There is no need to install
any cluster management software.

• You can easily manage clusters for any scale.
• Using ECS you can design fault-tolerant cluster architecture.
• You can manage cluster state using Amazon ECS.
• You can easily control and monitor the containers seamlessly.
• You can scale from one to tens of thousands of containers almost

instantly.

• ECS gives you the ability to make good placement decisions about
where to place your containers.

• ECS gives you the intel about the availability of resources (CPU,
memory).

• At any time you can add new resources to the cluster with EC2 Auto
Scaling.

• It is integrated with other services such as Amazon Elastic Container
Registry, Elastic Load Balancing, Elastic Block Store, Elastic
Network Interfaces, Virtual Private Cloud, IAM, and CloudTrail.

Lab 4-1: Using EC2

This lab will walk you through launching, configuring, and customizing an
EC2 virtual machine to run a web server. You will successfully provision
and start an EC2 instance using the AWS Management Console.

Creating a New Key Pair
In this lab, you will need to create an EC2 instance using an SSH key pair.
The following steps outline how to create a unique SSH key pair for you to
use in this lab:

1. Sign into the AWS Management Console and open the Amazon EC2
console at https://console.aws.amazon.com/ec2.

2. In the upper-right corner of the AWS Management Console, confirm
you are in the desired AWS region (e.g., Oregon).

3. Click Key Pairs in the Network & Security section near the bottom of
the leftmost menu. This will display a page to manage your SSH key
pairs.

https://console.aws.amazon.com/ec2

4. To create a new SSH key pair, click the Create Key Pair button at the
top of the browser window.

5. In the resulting pop-up window, type [First Name]-[Last Name]-
awslab in the Key Pair Name text box and click Create.

6. The page will download the file joyjeet-banerjee-awslab.pem to the
local drive. Follow the browser instructions to save the file to the
default download location.

Remember the full path to the file.pem file you just downloaded. You
will use the key pair you just created to manage your EC2 instances for the
rest of the lab.

Launching a Web Server Instance
In this example, you will launch a default Amazon Linux instance with an
Apache/PHP web server installed on initialization.
1. Click EC2 Dashboard toward the top of the left menu.
2. Click Launch Instance.
3. In the Quick Start section, select the first Amazon Linux AMI and

click Select.
4. Select the general-purpose t2.micro instance type and click Next:

Configure Instance Details.

5. On the Configure Instance Details page, expand the Advanced Details
section at the bottom of the page, and type the following initialization
script information into the User Data field. (You can use SHIFT-ENTER to
create the necessary line break, or alternatively you could type this into

Notepad and copy and paste the results.) Then click Next: Add
Storage. This will automatically install and start the Apache web server
on launch.
#include https://s3.amazonaws.com/jbawsbook/bootstrap.sh

Click Next: Add Storage to accept the default storage device
configuration.

6. Next, on the Add Tags page choose a “friendly name” for your
instance. This name, more correctly known as a tag, will appear in the
console once the instance launches. This makes it easy to keep track of
running machines in a complex environment. Name yours according to
this format: [Name] Web Server.

https://s3.amazonaws.com/jbawsbook/bootstrap.sh

7. Then click Next: Configure Security Group.
8. You will be prompted to create a new security group, which will be

your firewall rules. On the assumption you are building out a web
server, name your new security group [Your Name] Web Tier, and
confirm an existing SSH rule exists that allows TCP port 22 from
anywhere. Click Add Rule.

9. Select HTTP from the Type drop-down menu, and confirm TCP port
80 is allowed from anywhere. Click Add Rule.

10. Click the Review And Launch button after configuring the security
group.

11. Review your choices and then click Launch.

12. Select the [YourName]-awslab key pair that you created at the
beginning of this lab from the drop-down and select the “I
acknowledge” check box. Then click the Launch Instances button.

13. Click the View Instances button in the lower-right portion of the screen
to view the list of EC2 instances. Once your instance has launched,
you will see your web server as well as the availability zone the
instance is in and the publicly routable DNS name.

14. Select the check box next to your web server name to view details
about this EC2 instance.

Browsing the Web Server
To browse the web server, follow these steps:
1. Wait for the instance to pass the status checks to finish loading.
2. Open a new browser tab and browse the web server by entering the EC2

instance’s public DNS name into the browser. The EC2 instance’s
public DNS name can be found in the console by reviewing the Public
DNS name line.

3. You should see a web site with the details of the EC2 instance, the
instance ID, and the availability zone.

Great job! You have deployed a server and launched a web site in a
matter of minutes.

Lab 4-2: Creating an EBS Instance and
Attaching It to an EC2 Instance

1. In this lab, you will create a new provisioned IOPS-based EBS volume
and then attach it to an existing EC2 instance. Go to the AWS console
and select EC2.

2. Make sure you are in the correct region.
3. In the left menu, select Volumes under Elastic Block Store.

4. Click Create Volume at the top.
5. For Volume Type, select Provisioned IOPS.
6. For Size, select 10.
7. For IOPS, select 100.
8. For Availability Zone, choose the AZ where your EC2 instance is

running. In this example, we have chosen us-east-1b.
9. Leave the defaults for the rest of the settings except Tags. Select the

Add Tags To Your Volume box.
10. Add a tag to uniquely identify this volume. In this example, we have

added Name for Key and EBSforBook for Value.

11. Click Create Volume. You will see an alert about a volume being
created successfully and with the volume ID.

12. You have successfully created the volume. Now mount it to a running
EC2 instance by clicking the EBS volume.

13. Select the new volume you have created and click Actions | Attach
Volume.

14. To attach the volume, you need the instance ID and device name. You
can obtain the instance ID from the instance detail page of the EC2
instance. The instance detail page will also show you the existing
devices that are in use. Choose a device name that is not in use. The
system will prompt you for a device name. You can use that as well.

15. The volume is already added in the EC2 instance, so go to the details
page from the EC2 instance to see the new volume.

16. Go to the EBS volume page to see the details for this volume. Look at
State; it should say that it’s in use. Now look at the attachment
information; you will see where it is attached.

17. Select this volume and take a snapshot. Click Volume | Actions |
Create Snapshot.

18. The Create Snapshot window will open; provide the description for the
snapshot. You will notice that Encrypted will show as Not Encrypted
since the EBS volume is not encrypted. Add a tag and create the
snapshot.

19. The snapshot will be created, and you will get the ID of the snapshot.

20. Now use this snapshot to create another EBS volume and then attach it
to a new EC2 instance. Try it yourself. By doing this, you should be
able to create a clone of any EBS volume and should be able to mount
it to any other EC2 instance.

Lab 4-3: Creating an Elastic File System (EFS)
and Mounting Across Two EC2 Instances in
Different AZs

1. In this lab, you will create an EFS and mount it across two EC2
instances in different AZs. Go to the AWS console and select EFS.

2. Choose the region of your choice from the top-right corner and click
Create File System.

3. Select the VPC where you want to create the EFS. You can create the
EFS across the VPC’s AZ. In this case, you will use the VPC that has
only two AZs. Therefore, you should be able to create the mount target
only in those two AZs. If you choose the default AZ in the Virginia
region, you should be able to create six mount targets since there are
six availability zones in Virginia.

4. Add tags to the file system so that you can uniquely identify it. In this
case, we have added Name for Key and EFSbook for Value.

5. Under Choose Performance Mode, select General Purpose since you
are going to attach this EFS to only two EC2 instances. When you
have many servers and you need faster input/output, choose Max I/O.

6. Deselect Enable Encryption since you are not going to encrypt the
EFS.

7. Review the details and click Create File System.

8. It will take a few minutes to create the file system. Once the file
system has been created, you will see the details on the confirmation
screen.

9. Now that the EFS has been created, the next step is to mount it across
EC2 instances. If you look at the previous illustration carefully, you
will notice it has an instructions link for mounting an Amazon EC2
instance. Click the link, and you will see the detailed instructions.

10. Log in to the EC2 instance from a terminal.
11. Install the NFS client on the EC2 instance. You can do this by running

the following command on an Amazon Linux, Red Hat Enterprise
Linux, or SUSE Linux instance:

Or you can run the following command on an Ubuntu instance:

12. Make a directory where you will mount the EFS (say efs) by running
this command:

13. Mount the EFS by running the following command:

14. Once the file system is mounted, create a file and save it.
15. Now mount the EFS from a second EC2 instance in a different AZ.

You should be able to access the file that you have created and saved in
the EFS from the first EC2 instance.

Chapter Review
In this chapter, you learned that there are five types of EC2 instances
available: general purpose, compute optimized, memory optimized, storage
optimized, and advanced computing. You learned how you can use a
placement group to reduce the latency across instances. A placement group
is a logical grouping of instances within a single AZ. You also learned that
three types of EBS volumes can be attached to the EC2 instance: a general-
purpose EBS volume backed up by solid-state drives, a provisioned IOPS-
based EBS volume to maximize the I/O throughput, and a magnetic hard
drive that provides the lowest cost per gigabyte. You learned about EBS-
optimized instances that deliver dedicated throughput between Amazon
EC2 and Amazon EBS volumes. You learned about the pricing model of
EC2, which can be either on-demand (on an hourly or a per-second basis
depending on the instance type) or a reserved instance (where you can
reserve the instance in advance) and spot instances (where you bid for the
unused compute). The default behavior of EC2 is shared tenancy, where
you run EC2 instances on multitenant hardware. You can also host the EC2
instance on a dedicated host as well as on a dedicated instance. A dedicated
host is a physical server exclusively assigned to you, and a dedicated
instance is where you run the EC2 instances on single-tenant hardware. An
Amazon machine image is a blueprint that has all the details of the software
configuration of the server that you are going to launch in the Amazon
cloud. An instance root device contains the image that is used to boot the
instance. Linux AMIs use one of two types of virtualization: paravirtual and
hardware virtual machine. Amazon Elastic Container Service is a container
management service that allows you to manage Docker containers on a
cluster of Amazon EC2 instances.

Questions

1. You know that you need 24 CPUs for your production server. You also
know that your compute capacity is going to remain fixed until next
year, so you need to keep the production server up and running during
that time. What pricing option would you go with?
A. Choose the spot instance
B. Choose the on-demand instance
C. Choose the three-year reserved instance
D. Choose the one-year reserved instance

2. You are planning to run a database on an EC2 instance. You know that
the database is pretty heavy on I/O. The DBA told you that you would
need a minimum of 8,000 IOPS. What is the storage option you should
choose?
A. EBS volume with magnetic hard drive
B. Store all the data files in the ephemeral storage of the server
C. EBS volume with provisioned IOPS
D. EBS volume with general-purpose SSD

3. You are running your application on a bunch of on-demand servers. On
weekends you have to kick off a large batch job, and you are planning
to add capacity. The batch job you are going to run over the weekend
can be restarted if it fails. What is the best way to secure additional
compute resources?
A. Use the spot instance to add compute for the weekend
B. Use the on-demand instance to add compute for the weekend
C. Use the on-demand instance plus PIOPS storage for the weekend

resource
D. Use the on-demand instance plus a general-purpose EBS volume

for the weekend resource
4. You have a compliance requirement that you should own the entire

physical hardware and no other customer should run any other instance
on the physical hardware. What option should you choose?
A. Put the hardware inside the VPC so that no other customer can

use it
B. Use a dedicated instance

C. Reserve the EC2 for one year
D. Reserve the EC2 for three years

5. You have created an instance in EC2, and you want to connect to it.
What should you do to log in to the system for the first time?
A. Use the username/password combination to log in to the server
B. Use the key pair combination (private and public keys)
C. Use your cell phone to get a text message for secure login
D. Log in via the root user

6. What are the characteristics of AMI that are backed up by the instance
store? (Choose two.)
A. The data persists even after the instance reboot.
B. The data is lost when the instance is shut down.
C. The data persists when the instance is shut down.
D. The data persists when the instance is terminated.

7. How can you make a cluster of an EC2 instance?
A. By creating all the instances within a VPC
B. By creating all the instances in a public subnet
C. By creating all the instances in a private subnet
D. By creating a placement group

8. You need to take a snapshot of the EBS volume. How long will the
EBS remain unavailable?
A. The volume will be available immediately.
B. EBS magnetic drive will take more time than SSD volumes.
C. It depends on the size of the EBS volume.
D. It depends on the actual data stored in the EBS volume.

9. What are the different ways of making an EC2 server available to the
public?
A. Create it inside a public subnet
B. Create it inside a private subnet and assign a NAT device
C. Attach an IPv6 IP address

D. Allocate that with a load balancer and expose the load balancer to
the public

10. The application workload changes constantly, and to meet that, you
keep on changing the hardware type for the application server. Because
of this, you constantly need to update the web server with the new IP
address. How can you fix this problem?
A. Add a load balancer
B. Add an IPv6 IP address
C. Add an EIP to it
D. Use a reserved EC2 instance

Answers
1. D. You won’t choose a spot instance because the spot instance can be

taken away at any time by giving notice. On-demand won’t give you
the best pricing since you know you will be running the server all the
time for the next year. Since you know the computation requirement is
only for one year, you should not go with a three-year reserved
instance. Rather, you should go for a one-year reserved instance to get
the maximum benefit.

2. C. The magnetic hard drive won’t give you the IOPS number you are
looking for. You should not put the data files in the ephemeral drives
because as soon as the server goes down, you will lose all the data. For
a database, data is the most critical component, and you can’t afford to
lose that. The provisioned IOPS will give you the desired IOPS that
your database needs. You can also run the database with general-
purpose SSD, but there is no guarantee that you will always get the
8,000 IOPS number that you are looking for. Only PIOPS will provide
you with that capacity.

3. A. Since you know the workload can be restarted from where it fails,
the spot instance is going to provide you with the additional compute
and pricing benefit as well. You can go with on-demand as well; the
only thing is you have to pay a little bit more for on-demand than for
the spot instance. You can choose a PIOPS or GP2 with the on-demand

instance. If you choose PIOPS, you have to pay much more compared
to all the other options.

4. B. You can create the instance inside a VPC, but that does not mean
other customers can’t create any other instance in the physical
hardware. Creating a dedicated instance is going to provide exactly
what you are looking for. Reserving the EC2 instance for the instance
for one or three years won’t help unless you reserve it as a dedicated
instance.

5. B. The first time you log in to an EC2 instance, you need the
combination of the private and public keys. You won’t be able to log in
using a username and password or as a root user unless you have used
the keys. You won’t be able to use multifactor authentication until you
configure it.

6. A, B. If an AMI is backed up by an instance store, you lose all the data
if the instance is shut down or terminated. However, the data persists if
the instance is rebooted.

7. D. You can create the placement group within the VPC or within the
private or public subnet.

8. A. The volumes are available irrespective of the time it takes to take
the snapshot.

9. A. If you create an EC2 instance in the public subnet, it is available
from the Internet. Creating an instance inside a private subnet and
attaching a NAT instance won’t give access from the Internet.
Attaching an IPv6 address can provide Internet accessibility provided
it is a public IPv6 and not private. Giving load balance access to the
public won’t give the EC2 access to the public.

10. C. Even if you reserve the instance, you still need to remap the IP
address. Even with IPv6 you need to remap the IP addresses. The load
balancer won’t help because the load balancer also needs to be
remapped with the new IP addresses.

CHAPTER 5
Identity and Access Management
and Security on AWS

In this chapter, you will
• Be introduced to IAM
• Learn about different types of security credentials
• Understand users, groups, and roles
• Learn some IAM best practices
• Take a look at AWS platform compliance
• Understand the shared security model

AWS Identity and Access Management (IAM) allows you to control
individual (users) and group access to all the AWS resources in a secured
way. Using IAM, you can define what each user can access in the AWS
cloud. For example, you can specify which users have administrator access,
which users have read-only access, which users can access certain AWS
services, and so on. Using the IAM service, you can choose the services
that specific users are going to use and what kind of privileges users should
have. In a nutshell, you control both authentication and authorization on the
AWS resources through identity and access management, which means
IAM is about whether you are really who you say you are as well as what
you are authorized or allowed to do. In addition, you can audit and log the
users, continuously monitor them, and review account activity.

Authentication
Authentication is about making sure you are who you say you are. IAM
offers the following authentication features:

• Managing users and their access You can create and manage users
and their security such as access keys, passwords, and multifactor
authentication. You can also manage the permissions for a user and
thus get granular control over what operations the user can perform.

• Managing federated users and their access Using IAM, you can
manage federated users. In simplest terms, federation is about
checking with a trusted third party to confirm your identity. Using
federation you can use single sign-on (SSO) to access the AWS
resources using the credentials of your corporate directory. AWS
supports Security Assertion Markup Language (SAML) as well as
non-SAML-based options such as AWS Directory Service for
Microsoft Active Directory to exchange identity and security
information between an identity provider (IdP) and an application.
Using an IdP, you don’t have to manage your own user identities or
create custom sign-in code. An IdP does that for you. Your external
users sign in through a well-known identity provider, such as Login
with Amazon, Facebook, Google, and many others, and you can give
those external identities permissions to use AWS resources in your
account.

Authorization
IAM is about making sure you’re only able to do what you’re authorized to
do. Using IAM, you can authorize with granularity who can do what. IAM
is a system that first is assigned to all AWS services. Every time a service is
set up, like an EC2 instance database, it is created with access rules that
decide which users and what operations are allowed on it. Therefore, you
can implement the concepts of least privilege and segregation of duties. In
AWS, authorization is mainly done using IAM policies. An IAM policy is a
piece of code written in JavaScript Object Notation (JSON) where you can
define one or more permissions. These permissions define which resources
and which actions or operations the IAM entity is allowed. This policy can
be attached to any IAM entity such as a user, group, or role. The policy
defines what actions an IAM entity can take, which resources to use, what
the effect will be when the user requests access to a resource, and so on. By
using an IAM policy, you can get fine-grained access control for any IAM
entity, and you can attach any number of policies to an entity. A policy can

even be attached to multiple entities. If you want to give Amazon S3 read-
only access to your developers, then you can create a policy called S3RO
and attach all the developers to this policy. Alternatively, if all your
developers are part of a particular group (which is typical), attach the IAM
policy to that group only. By doing that, you won’t have to manually attach
the policy to every developer account individually. A policy looks
something like this:

If you look at the policy, you will find that by attaching this policy to a
user, the user is going to have read-only access to S3, which means the user
can view the bucket and get an object from the bucket but can’t upload or
put anything in the bucket.

Using a policy, you can either allow or deny access to any resource for
any IAM entity. When you create a user, there are no default permissions;
all the permissions need to be explicitly given. In other words, all
permissions are implicitly denied by default, which means unless you
explicitly allow a permission, the IAM entity won’t have access to
anything. Of course, if you explicitly deny something, it will always be
denied. Figure 5-1 shows how IAM determines permissions.

Figure 5-1 How AWS IAM determines permissions

Auditing
AWS offers you tools that can help you with auditing. Auditing is about
ensuring and proving compliance with company rules and strict regulatory
guidelines. It is also about making sure only authorized persons make
requests and that all the requests are legitimate. The AWS CloudTrail
service records activity made on your account and delivers log files to your
Amazon S3 bucket. You can access these logs directly from the console or
via the command-line interface (CLI) and process them via some of the

popular third-party tools like Splunk, SumoLogic, AlertLogic, Loggly, and
DataDog. CloudTrail provides visibility into user activity by recording
actions taken on your account. CloudTrail can log every API call and
related event made. CloudTrail records important information about each
action, including the following:

• Who made the request?
• When was the request made?
• What was the request about?
• Which resources were acted upon in response to the request?
• Where was the request made from and made to?

This information helps you to track changes made to your AWS
resources and to troubleshoot operational issues. CloudTrail makes it easier
to ensure compliance with internal policies and regulatory standards.

Types of Security Credentials
When you work with the AWS ecosystem, you can have various types of
security credentials. It all depends on how you interact with the AWS
ecosystem. For example, when you log in to the AWS console, you can use
a combination of usernames and passwords, whereas when you log in to an
Amazon EC2 environment, you use a key pair. These are the security
credentials you are often going to use:

• IAM username and password This will be used mainly for
accessing the AWS Management Console.

• E-mail address and password This is associated with your root
account.

• Access keys This is often used with the CLI, APIs, and SDKs.
• Key pair This is used with Amazon EC2 for logging in to the

servers.
• Multifactor authentication This is an additional layer of security

that can be used with the root account as well.

Temporary Security Credentials
In addition to these types of security credentials, AWS offers temporary
security credentials. These security credentials are short-term and should
never be used for long-term purposes. They can be configured to last for a
few minutes to a few hours. Once the credentials expire, you won’t be able
to use them. If you are using these temporary credentials via an API, once
they expire, AWS won’t recognize the API or allow access when an API
request is made with the security credentials.

The temporary security credentials work exactly like the long-term
credentials; they are just short-lived. If you want to create and provide the
temporary security credentials to your set of trusted users to control some of
the AWS resources, you can use the AWS Security Token Service (AWS
STS). These temporary security credentials won’t be stored with a user;
rather, they will be dynamically generated whenever a user requests them.

Temporary security credentials offer lots of advantages since they are
short-lived and expire automatically; therefore, you can provide access to
your AWS resources to users without having to define an AWS identity for
them. Moreover, you do not have to distribute or embed long-term or
permanent AWS security credentials with an application.

By using IAM, you can create users and groups and then assign
permissions to the users using the least privilege principle. Let’s first
understand users, groups, and roles in detail.

Users
To log in to a laptop or an operating system, you need a username and
password. Similarly, to use the AWS service, you need a user through
which you log in to AWS and start working. A user can be an actual
physical user, or it can be an application that needs access to the AWS
service. Thus, you can say that an IAM user is an entity that you create in
AWS to uniquely represent a person or a service; this entity interacts with
AWS to do day-to-day work with AWS. An IAM user has a username and
credentials. Whenever an IAM user is created, the user does not have any
permission to do anything unless explicit permissions are granted to the
user by an administrator or via federation. It is always recommended that
you identify a few users as administrators and grant them admin privileges

to AWS. Going forward, these administrators can grant permissions to other
users via IAM. They can provide fine-grained access to each user
depending on their job role. For example, if a person needs to access only
the web servers, then the administrator can grant that user access to specific
EC2 servers. Similarly, if a developer wants to work with a database,
administrators can grant that user read-only information from RDS. When a
user is created via IAM, the user doesn’t have any security credentials
either. The administrator needs to assign the security credentials followed
by the permissions before the user can log in to the system.

These are the steps when creating a user via IAM:

1. Create a user via IAM.
2. Provide security credentials.
3. Attach permissions, roles, and responsibilities.
4. Add the user to one or more groups (covered in the next section).

The first time you create an AWS account, you create the AWS root
account, which has unrestricted access to all the resources within AWS. The
root account is a superuser account, and it can be compared to a root user of
UNIX, which is a superuser and has all the privileges. There is no way you
can restrict any privileges from the root account; therefore, it is important to
secure it. The root account also has your AWS billing information. After
creating the root account, you should create an IAM user with
administrative access and should never log in using the root account. In
other words, you should do all your day-to-day work using the
administrative account and not via the root account. Needless to say, the
root credentials should not be shared with anyone and should be kept very
secure. To sign in via root credentials, you have to use the e-mail ID
associated with the account and a password. You can also set up multifactor
authentication along with the root user to safeguard it.

Since you cannot use the root account for the day-to-day administration
of your AWS account, you need to create an IAM user with administrative
privileges. When you have hundreds or thousands of users who want to use
the service or resources of AWS within your account, you don’t share the
root privilege with them; you instead create different IAM users with
different privileges according to their job profile. These IAM users are part

of the same AWS account and not separate accounts. These IAM users have
their individual usernames and passwords to log in to the AWS console.
You can also create an individual access key for each user so that the user
can make programmatic requests to work with resources in your account. If
users want to make programmatic calls to AWS from the AWS CLI or
SDKs or API calls for individual AWS services, they need access keys,
which you can create via IAM. When you create an access key, IAM returns
the access key ID and secret access key that can be passed on to the user
associated with it. Please note for security reasons the access key is
accessible only at the time you create it. If a secret access key is lost, you
must delete the access key for the associated user and create a new key.

When you sign in as the root user, you have complete, unrestricted
access to all resources in your AWS account, including access to your
billing information and the ability to change your password. This level of
access is necessary when you initially set up the account. As mentioned,
you should not use root user credentials for everyday access or share your
root user credentials with anyone because doing so gives them unrestricted
access to your account. It is not possible to restrict the permissions that are
granted to the AWS account, so you should adhere to the best practice of
using the root user only to create your first IAM user and then securely
locking away the root user credentials.

Groups
IAM groups are similar to groups in a UNIX operating system. If you are
not familiar with UNIX groups, don’t worry. Say in your company there are
50 developers; every time a new developer joins, you give that person the
same set of roles and responsibilities just like any other developer. Say for
your organization there are 20 different roles and privileges your developer
needs. So, when the developer joins the company, you provision the user
using IAM and explicitly assign that person those 20 roles and privileges,
and you keep on doing the same thing every time a new developer joins.
However, instead of manually assigning these 20 roles and privileges every
time a developer joins, you can create a group for developers and assign the
20 roles and privileges that all the developers use to this group. Now
whenever a new developer joins, instead of explicitly assigning that person
these roles and privileges, you can just add the user to the developer group.

By doing this, the new developer will automatically inherit the 20 roles and
privileges that the group has. You can create various groups as per the job
specifications. For example, you can have a separate group for
administrators, a separate group for DBAs, a separate group for developers,
a separate group for folks from the DevOps team, and so on.

If someone is a DBA but needs developer access as well, you just need
to assign this user to both the DBA and developer groups, and by doing that
the person has access to both. Similarly, if a developer becomes a DBA,
you can simply remove that user from the developer group and add the user
to the DBA group.

These are the characteristics of IAM groups:

• A group consists of multiple roles and privileges, and you grant these
permissions using IAM.

• Any user who is added to a group inherits the group’s roles and
privileges.

• You can add multiple users in a group.
• A user can be part of multiple groups.
• You can’t add one group into another group. A group can contain

only users and not other groups.
• There is no default group that automatically includes all users in the

AWS account. However, you can create one and assign it to each and
every user.

Roles
As you have learned, there can be two types of AWS users: IAM users who
have a permanent identity in AWS and federated users who don’t have
permanent identities. Since IAM users have permanent identities associated
to permissions, they can do any task associated with their permission. Since
federated users do not have permanent identities, the way you control their
permission is by creating a role. That does not mean you cannot associate
an IAM user with a role; you can very well associate an IAM user with a
role.

Using roles you can define a set of permissions to access the resources
that a user or service needs, but the permissions are not attached to an IAM

user or group. For example, a specific application can access S3 buckets by
assuming a role. Similarly, a mobile application can access the EC2 server
in the back end by assuming a role. The role can be assumed by
applications or services during the execution or at runtime. Thus, an IAM
role is similar to a user, in that it is an AWS identity with permission
policies that determine what the identity can and cannot do in AWS.
However, instead of being uniquely associated with one person, a role is
intended to be assumable by anyone who needs it. Since a role doesn’t have
any credentials (password or access keys) associated with it, when a user is
assigned a role or when an application assumes a role, the access keys or
security credentials are created dynamically by AWS during runtime and
are provided to the user or application. The advantage of this is that you
don’t have to share the long-term security credentials to the application that
requires access to a particular resource. Therefore, you can say that a role is
an IAM entity that defines a set of permissions for making AWS service
requests.

These are some of the use cases where you would use roles:

• To delegate access to users, applications, or services that don’t
normally have access to your AWS resources

• When you don’t want to embed AWS keys within the app
• When you want to grant AWS access to users who already have

identities defined outside of AWS (for example, corporate
directories)

• To grant access to your account to third parties (such as external
auditors)

• So that applications can use other AWS services
• To request temporary credentials for performing certain tasks

When you create a role, you need to specify two policies. One policy
governs who can assume the role (in other words, the principal). This
policy is also called the trust policy. The second policy is the permission or
access policy, which defines what resources and actions the principal or
who is assuming the role is allowed access to. This principal can be anyone
who would be assuming the role. It can be a third-party user, an AWS
service such as EC2 or DynamoDB, an identity provider, and so on. The

principal can even be an IAM user from a different account; of course, it
can’t be from your account.

IAM Hierarchy of Privileges
If you have to classify the AWS users into the hierarchy of privileges, it is
going to follow this order, with the most powerful first and least powerful
last:

• AWS root user or the account owner This user has unrestricted
access to all enabled services and resources.

• AWS IAM user In this case, the user has limited permissions. The
access is restricted by group and user policies.

• Temporary security credentials Access is restricted by generating
identities and further by policies used to generate tokens.

IAM Best Practices
The following are some best practices for using IAM.

Use the IAM User
Immediately after creating the AWS account, create an IAM user for
yourself and assign admin privileges. Lock down your root user. Never use
the root user’s access key for any programmatic requests to AWS. Create
individual IAM users for anyone who needs access to your AWS account.

Create a Strong Password Policy
Set a strong password policy and make sure the password expires after 90
days. Make sure the password has at least one uppercase letter, one
lowercase letter, one symbol, and one number; it should be a minimum of
eight to ten characters.

Rotate Security Credentials Regularly

Use the Access Key Last Used to identify and deactivate credentials that
have been unused in 90 or more days. Enable credential rotation for IAM
users. Use the Credential Report to audit credential rotation.

Enable MFA
Enable MFA for root and critical accounts with superuser privileges. MFA
provides an additional layer of protection, and using it will make sure your
account is protected.

Manage Permissions with Groups
Instead of assigning permissions to individual users, create groups that
relate to job functions and attach policies to groups. The biggest advantage
of this is that it reduces the complexity of access management as the
number of users grows. It also reduces the opportunity for a user to
accidentally get excessive access. It is an easy way to reassign permissions
based on a change in responsibility and to update permissions for multiple
users.

Grant the Least Privileges
It is important to use the principle of least privilege for managing the users.
Always start with a minimum set of permissions and grant additional
permissions only as necessary. This minimizes the chances of accidentally
performing privileged actions. Since it is easier to relax than to tighten up,
you can always add privileges as and when needed.

Use IAM Roles
You should always use IAM roles to delegate cross-account access, to
delegate access within an account, and to provide access for federated users.
If you use roles, then there is no need to share security credentials or store
long-term credentials, and you have a clear idea of and have control over
who has what access.

Use IAM Roles for Amazon EC2 Instances

If you have an application that runs on an Amazon EC2 instance and it
needs to access other AWS services, you need to assign the application
credentials. The best way to provide credentials to an application running
on an EC2 instance is by using IAM roles.

Use IAM Policy Conditions for Extra Security
IAM policies allow access to a resource, but by using policy conditions,
you can set up finer-grained conditions for the access. For example, using
policy conditions, you can provide access on a particular day and time from
a specified IP address.

Enable AWS CloudTrail
It is important that you have the ability to audit in your AWS ecosystem.
You must ensure that AWS CloudTrail is enabled in all regions and that the
AWS CloudTrail log file validation is enabled. It is also important to make
sure that the Amazon S3 bucket of CloudTrail logs is not publicly
accessible.

TIP As a solutions architect, you should use these best practices on a day-
to-day basis and not just for exam preparation.

AWS Compliance Program
Amazon Web Services Compliance Program enables customers to
understand the robust controls in place at AWS to maintain security and
data protection in the cloud. As systems are built on top of the AWS
cloud infrastructure, compliance responsibilities will be shared. By tying
together governance-focused, audit-friendly service features with applicable
compliance or audit standards, AWS Compliance features build on
traditional programs, helping customers to establish and operate in an AWS

security control environment. The IT infrastructure that AWS provides to its
customers is designed and managed in alignment with security best
practices and a variety of IT security standards, including the following:

• SOC 1/SSAE 16/ISAE 3402 (formerly SAS 70)
• SOC 2
• SOC 3
• FISMA, DIACAP, and FedRAMP
• DOD CSM Levels 1–5
• PCI DSS Level 1
• ISO 9001/ISO 27001
• ITAR
• FIPS 140-2
• MTCS Level 3

In addition, the flexibility and control that the AWS platform provides
allow customers to deploy solutions that meet several industry-specific
standards, including the following:

• Criminal Justice Information Services (CJIS)
• Cloud Security Alliance (CSA)
• Family Educational Rights and Privacy Act (FERPA)
• Health Insurance Portability and Accountability Act (HIPAA)
• Motion Picture Association of America (MPAA)

Many of these reports can be downloaded directly from the admin
console from the Artifact menu in the Security, Identity & Compliance
section. Some of these artifacts may need a nondisclosure agreement
(NDA). If you need a report that needs an NDA, please work with your
sales representative to start the process.

Shared Responsibility Model
Let’s talk about how security in the cloud is slightly different than security
in your on-premises data centers. In an on-premises data center, you are

solely responsible for the overall security, which includes the physical
security of the data center as well as the security of the servers, network,
storage, databases, and applications. When you move computer systems and
data to the cloud, security responsibilities become shared between you and
your cloud service provider. In this case, AWS is responsible for securing
the underlying infrastructure that supports the cloud, and you’re responsible
for anything you put on the cloud or connect to the cloud. This shared
security responsibility model can reduce your operational burden in many
ways, and in some cases may even improve your default security posture
without additional action on your part. The infrastructure consists of the
hardware, software, networking, and data centers that run AWS services.
AWS is responsible for protecting this infrastructure. Since security is the
topmost priority for AWS, no one can visit the data centers.

AWS follows the shared security model in which there are some
elements that AWS takes responsibility for and other areas that customers
must address. As shown in Figure 5-2, AWS is responsible for the security
in the cloud, and customers are responsible for security and compliance in
the cloud.

Figure 5-2 AWS shared responsibility model

EXAM TIP You should clearly understand what your responsibility is
versus AWS’s responsibility. There are often a few questions on the shared
responsibility model.

AWS Responsibility
As discussed regarding the shared responsibility model, there are some
elements that AWS takes responsibility for and other areas that customers
must address. These are AWS’s responsibilities:

• Physical security of the data center Amazon has been building
large-scale data centers for many years. It has strict controls in place
for the physical security of the data centers. Amazon is responsible
for the physical security of the data centers, and to do that, it logs
and audits the employees who access the data center, ensures that
proper video surveillance is in place, and protects the data center
from fire by installing fire detection and suppression equipment. The
data centers are designed to be fully redundant in terms of power. In
addition, AWS has uninterruptible power supply (UPS) units that
provide backup power in the event of an electrical failure. AWS
makes sure that the data center has proper climate control in place.
AWS has segregation of duty in place, which means that any
employee with physical access doesn’t have logical privileges and
that any employee who visits the data center does not have AWS
console access.

• Amazon EC2 security AWS is responsible for securing the host
operating system where AWS has root access to the operating
system. (For example, if you deploy your database on RDS, you
don’t have access to the operating system hosting the database.)
Those administrators who have a business need to access the

management plan of the host OS are required to use multifactor
authentication to gain access. All these activities are logged and
audited. For the guest operating system, where the virtual instances
are controlled by you (the AWS customer), you have full root access
or administrative control over accounts, services, and applications.
AWS does not have any access rights to your instances or the guest
OS. In this case, AWS can’t even log in to your operating system. In
addition to this, Amazon EC2 provides a complete firewall solution.
AWS provides mandatory inbound firewalls with default deny mode
in the form of security groups. You can configure the firewall using
security groups. Multiple instances running on the same physical
machines are isolated from each other via the Xen hypervisor.

• Network security AWS is responsible for managing the network
infrastructure, and it has implemented a world-class network
infrastructure that is carefully monitored and managed. AWS has
redundant network devices, including a firewall, to monitor and
control internal and external communications. ACLs, or traffic flow
policies, are established on each managed interface, which manage
and enforce the flow of traffic. AWS also takes care of network
monitoring and protection and has implemented a variety of tools to
monitor server and network usage, port scanning activities,
application usage, and unauthorized intrusion attempts. In addition,
AWS has several strict controls in place; for example, IP spoofing is
prohibited at the host OS level, packet sniffing is ineffective
(protected at the hypervisor level), unauthorized port scanning is a
violation of TOS and is detected/blocked, and inbound ports are
blocked by default.

• Configuration management Whenever new hardware is
provisioned, configuration management software is installed. This
software runs on all UNIX machines to validate that they are
configured properly and all the software installed is in compliance
with standards determined by the role assigned to the host. This
software also makes sure that all updates are done in such a manner
that they will not impact the customer. Configuration management
makes sure that all the changes are authorized, logged, tested,
approved, and documented. In addition, AWS communicates to its
customer via e-mail or through the AWS Service Health Dashboard

(http://status.aws.amazon.com/) when there is a potential for a
service to be affected.

• Highly available data center AWS is responsible for making sure
that all the data centers are highly available at all times. All data
centers are always online and serving customers, and there is no
concept of a cold data center. As a result, all the AZs are always
active at any point in time. Every AZ has redundant architecture
built in, which provides fault-tolerant services. In addition, you
should architect your application in such a way that it is leveraging
multiple AZs.

• Disk management AWS has proprietary disk management in place,
which prevents customers from accessing each other’s data. The way
it is done is that the customer instances have no access to raw disk
devices but instead are presented with virtualized disks. The disk
virtualization layer automatically resets every block of storage used
by the customer. All the hard drives are wiped prior to use. In
addition, customers can encrypt the hard drives for additional
security.

• Storage device decommissioning Whenever a storage device comes
to the end of its life, AWS uses DoD 5220.22-M (“National
Industrial Security Program Operating Manual”) and NIST 800-88
(“Guidelines for Media Sanitization”) to wipe off all the data. Once
the data has been wiped, the disks are degaussed and then finally
physically destroyed.

Customer’s Responsibility
The customer’s responsibility differs depending on the type of services
being used from AWS. Figure 5-3 shows the responsibilities if you are
using AWS for Infrastructure as a Service (IaaS) such as EC2, VPC,
networking, and so on. In that case, you are responsible for the following:

http://status.aws.amazon.com/

Figure 5-3 Customer responsible for compliance of application

• Operating system You are responsible for the management of the
guest OS. It is your responsibility to make sure that the OS is
regularly patched and has all the security updates and bug fixes.

• Application You are responsible for managing any application that
you run on top of AWS. Management includes encrypting data,
managing application users and their privileges, and so on. You are
also responsible for all the security and compliance of the
application. For example, if your application needs to be PCI
compliant, just deploying it into AWS (since the AWS infrastructure
is PCI compliant) won’t make it PCI compliant. You need to make
sure that you deploy all the steps for being PCI compliant from the
application tier as well.

• Firewall You need to make sure the proper firewalls at the OS level
(security groups) and across the network level (NACL) are
configured.

• Network configuration VPC gives you the ability to run your own
private data center in the cloud, but you are responsible for its
configuration. Since AWS does not have access to your VPC or

anything that you run within your VPC, it is your responsibility to
make sure that it is secure and that the relevant people have the
relevant access. Similarly, you need to make sure the resources you
deploy on the VPC are configured correctly. (For example, the
database server should not be configured in a public subnet.)

• Service configuration You should have a proper service
configuration in place so that you know who is installing what on the
servers or who is making what changes in your infrastructure.

• Authentication and account management You are responsible for
the authentication and account management for both AWS users and
application users. You can use IAM to manage the AWS users, but
for managing the application users, you may have to explore this on
a case-to-case basis. For example, if you want to deploy SAP on
AWS, you need to manage all the SAP users as well.

Figure 5-4 summarizes the AWS and customer’s responsibilities to make
a fully compliant application.

Figure 5-4 AWS and customer’s responsibility for compliance

CAUTION You should pay more attention to the customer’s
responsibilities as a solutions architect because a small security glitch can
cause a big nightmare.

In addition to IaaS, you can use AWS as a Platform as a Service (PaaS).
If you host your database in RDS, or run your data warehouse in Redshift,
or run your NoSQL database in DynamoDB, all the work related to hosting
the operating system, managing OS firewalls, launching and maintaining
instances, patching the guest OS or database, or replicating databases, and
so on is taken care of by AWS. You should protect your AWS account
credentials and set up individual user accounts with Amazon IAM so that
each of your users has their own credentials and you can implement
segregation of duties. You are also responsible for the data residing in these
services such as RDS and encryption. Figure 5-5 summaries the
responsibilities when using AWS in this way.

Figure 5-5 AWS and customer’s responsibility when using PaaS

In addition to PaaS, you can use AWS like Software as a Service (SaaS).
A common example for using AWS as a SaaS is S3. In this case, you just
need to manage the data, and you are responsible for encrypting it. Figure
5-6 summaries the responsibilities when using AWS in this way. AWS
provides a foundation for partners to build SaaS solutions. Most of them are
available on the AWS Marketplace.

Figure 5-6 AWS and customer’s responsibility when using SaaS

TIP In real life as a solutions architect, wherever possible you should try
to use more and more SaaS and PaaS instead of IaaS.

The amount of security configuration work you have to do varies
depending on which services you select and how sensitive your data is.

However, there are certain security features—such as individual user
accounts and credentials, SSL/TLS for data transmissions, and user activity
logging—that you should configure no matter which AWS service you use.
This is discussed in detail in Chapter 9.

AWS Security Products and Services
In this section we are going to learn about some of the AWS security
products and services. Although many of these services are not covered in
the examination, as a solutions architect, you should know the important
security offerings; therefore, I have covered them in detail.

Resource Access Manager
Using Resource Access Manager you can share your AWS resource with
either any other AWS account or with an account through AWS
Organizations (AWS Organizations is covered later in this book). When you
share your AWS resources with Resource Access Manager, it reduces the
operational overhead since you don’t have to provision duplicate resources
in each and every account. Moreover, using policies and permissions, you
can achieve a higher level of security control and can do fine-grained
auditing on the resources as well.

In order to share an AWS resource, first you need to create a resource
share. To create a resource share, you need the details of the AWS resource
you would like to share, a name for the resource share, and with whom you
would like to share the resource. It can be a specific AWS account,
organization unit, or an entire organization from AWS Organizations. There
are no charges for creating a resource share.

AWS Secrets Manager
One of the common challenges with any organization is managing secrets,
and we often hear people saying

• I don’t want to e-mail secrets.
• I want to prevent developers from viewing or sharing secrets.
• I want visibility into who used which secret when.

• I want to enable teams to operate quickly, without waiting on the
security team to create and provision secrets.

• I want to stop secret sprawl.
• I want to roll out secrets safely.
• I want to rotate secrets without system downtime, and so on.

What if you can do all the mentioned secrets without any challenges?
AWS Secret Manger enables customers to manage, retrieve, and rotate
database credentials, API keys, and other secrets throughout their life cycle.

It helps the IT admins to store and manage access to secrets securely and
at scale, security admins to audit and monitor the use of secrets and rotate
secrets without a risk of breaking applications, and developers to avoid
dealing with secrets in their applications.

Using this service you can securely store the secrets centrally and
retrieve them programmatically; the secrets are encrypted by default using
encryption keys owned by the customer. It also supports VPC endpoints via
AWS Private Links, and this service is integrated with CloudFormation. It
is PCI, HIPAA, and ISO complaint. In order to prevent secret sprawl, you
can control access to fine-grained access control as well as audit at a
gradual level. It is also integrated with CloudTrail and CloudWatch, which
provides you better visibility. You can also rotate the secrets safely. It has
built-in integrations for rotating all Amazon Relational Database Service
database types as well as AWS Lambda.

Amazon GuardDuty
Amazon GuardDuty is an intelligent threat detection service, which
continuously monitors and protects AWS accounts, along with the
applications and services running within them. It detects both known and
unknown threats. In order to do so it uses the power of artificial intelligence
and machine learning. It is integrated with threat intelligence. The way it
works is it analyzes your account and network activity found in AWS
CloudTrail Events, Amazon VPC Flow Logs, and DNS logs and then
delivers detailed and actionable alerts that are easy to integrate with existing
event management and workflow systems. It is very simple to use Amazon
GuardDuty. It can be very easily enabled from the AWS console, and once
it’s enabled, it immediately starts analyzing all the data in real time.

Whenever a threat is detected, Amazon GuardDuty delivers a detailed
security finding to the GuardDuty console and AWS CloudWatch Event.
The finding includes category, resource affected, and metadata associated
with the resource. GuardDuty works independently, and as a result there is
no performance impact and there is no impact to your account or workload.
GuardDuty’s detection is divided into the following three categories:

• Reconnaissance This consists of any activities suggesting
reconnaissance by an attacker, which includes failed login requests,
unblocking IP ports, VPC port scanning, and very unusual API
activity.

• Instance compromise Anything to do with instance compromise is
captured here. It can be DDoS attack, bitcoin mining, denial-of-
service activity, an unusually high volume of network traffic, and so
on.

• Account compromise This consists of all the activities that try to
compromise an account, for example, login requests from an
unknown geolocation via proxy, unusual volume of API calls from
an unknown geography, unusual infrastructure launches in an
unusual region, and so on.

Amazon Inspector
Amazon Inspector is a service that analyzes your EC2 instances to identify
potential security and configuration issues. Inspector assesses your security
posture by looking at the versions, patch levels, configurations, and
operating behavior of operating systems and applications and evaluates
these against thousands of common vulnerabilities and exposures. Inspector
not only identifies where your environments may be vulnerable but
prioritizes these findings by severity level and provides recommendations
on how to fix these to secure your environment. Amazon Inspector can be
easily set up to test the security of your applications in all your
environments throughout your continuous integration and continuous
deployment (CI/CD) cycles.

These are the things that Amazon Inspector does. It discovers the
security risks in your AWS environment, identifies vulnerabilities based on
leading industry sources, checks your environment against security best

practices, and finally includes recommendations on how to remediate them.
Its built-in integrations with AWS services make it easy to run assessments
and manage issues identified on your workloads.

Amazon Inspector has a library of thousands of security checks that are
grouped into different rules packages so you can choose the type of security
analysis to perform in your assessment run. The security checks allow you
to assess your environment for common vulnerabilities and exposures, best
practice security configurations, and runtime behavior on demand.

Amazon Macie
Amazon Macie helps you protect your data in Amazon S3 by helping you
classify what data you have, the business value of that data, and the
behavior associated with access to that data. It uses machine learning to
discover, classify, and protect sensitive data automatically in AWS. Amazon
Macie uses machine learning to recognize sensitive data such as personally
identifiable information (PII) and intellectual property, assigns a business
value, and provides visibility into where this data is stored and how it is
being used in your organization. Amazon Macie continuously monitors data
access activity for anomalies and delivers alerts when it detects risk of
unauthorized access or inadvertent data leaks. You can use Amazon Macie
to protect against security threats by continuously monitoring your data and
account credentials. When alerts are generated, you can use Amazon Macie
for incident response, using Amazon CloudWatch Events to take action
swiftly to protect your data.

AWS Certificate Manager
AWS Certificate Manager (ACM) is used to manage Secure Sockets Layer
(SSL) certificates for use with AWS services. Using ACM, you can
provision, manage, and deploy SSL/Transport Layer Security (TLS)
certificates. You can protect and secure web sites as well. You can also use
ACM to obtain, renew, and import certificates. You can use certificates
stored in ACM with Elastic Load Balancer and Amazon CloudFront. The
best part is there’s no charge for the SSL/TLS certificates you manage with
AWS Certificate Manager. You only pay for the AWS resource you use for
the hosted application or web site.

AWS Web Application Firewall
AWS Web Application Firewall (WAF) is a web application firewall that
detects malicious traffic targeted at the web applications. Using WAF, you
can create various rules with which you can protect against common attacks
such as SQL injection and scripting. Using these rules, you can block the
web traffic to certain IP addresses, filter certain traffic from certain
geographical locations, and so on, thus safeguarding your application.

If you want to enable AWS WAF across multiple AWS accounts and
resources from a single location, you can use AWS Firewall Manager,
which is integrated with AWS Organizations. Using AWS Firewall
Manager, you can write company-wide rules from one location and enforce
them across applications protected by AWS WAF. AWS Firewall Manager
monitors for new resources or accounts created to ensure that they comply
with a mandatory set of security policies from day one.

AWS Shield
AWS Shield is a managed service that protects against distributed denial-of-
service (DDoS) attacks targeted at web applications. There are two tiers of
AWS Shield: Standard and Advanced. AWS Shield Standard is free and
protects against most commonly occurring DDoS attacks against web
applications. With AWS Shield Advanced, you get higher levels of
protection against attacks targeting not only web applications but also
Elastic Load Balancer, Amazon CloudFront, and Amazon Route 53.

AWS CloudHSM
The AWS CloudHSM service provides you with a dedicated hardware
security module (HSM) in the AWS cloud. It helps you to meet all your
contractual and regulatory compliance requirements. The HSM is a tamper-
resistant hardware that provides secure key storage and cryptographic
operations. Using this, you can easily generate and manage your own keys
on the AWS cloud. It can be used for many purposes, such as encrypting a
database, signing a document, digital rights management, and so on.

AWS KMS

AWS Key Management Service (KMS) is a managed service that helps you
create and control the keys used for cryptographic operations. AWS KMS
presents a single control point from which to manage keys and define
policies consistently across integrated AWS services and your own
applications. KMS uses hardware security modules to protect the keys.
With KMS, you can centrally manage the encryption keys that control
access to your data. It can also help developers who need to digitally sign or
verify data using asymmetric keys.

Lab 5-1: Creating IAM Users, Groups, and
Roles

This lab will walk you through connecting to the instance and configuring
security credentials so that you can interact with the AWS APIs and
command-line tools. This lab will cover the following topics:

• Creating an IAM group and adding an IAM user to the group
• Exploring the properties of an IAM user
• Creating an IAM role for EC2

Let’s start by creating a group first. To do that, go to the IAM dashboard
in the AWS console. Search for IAM or select IAM under Security, Identity
& Compliance.

To create a group, select Groups on the left side and then click the Create
New Group button.

Type PowerUser into the Group Name text box and click Next Step.

Type Power in the filtering text box and then select PowerUserAccess.
Click Next Step.

This will associate the PowerUserAccess IAM policy with your new
group and allow group members to perform any AWS action except IAM
management. Click Create Group.

You should be able to see the newly created group from the console.

To create a user, select Users and then click the Add User button.

Enter user1 in the first text box next to User Name. Select the check box
next to Programmatic Access and click Next: Permissions.

To add the user to the group, select Add User To Group and then click
the check box next to the PowerUser group; click Next: Review.

Click Create User.

Click Close. Your new user and group have now been created, and your
user is a member of your group.

Managing IAM User Permissions and Credentials
Now that you have created your first IAM user and group, let’s take a look
at the IAM user properties. Click the Users option in the left menu and then
select the user’s account that you just created.

Notice that user1 is a member of the PowerUser group.

Now select the Permissions tab to see the individual user and group
policies that will be applied to this account. Note that this user has only the
PowerUserAccess group policy applied to the account.

Now select the Security Credentials tab. This is where you can assign or
change a user’s console password and multifactor authentication device.

From here you can also create, rotate, or revoke a user’s API access keys
(for using the AWS command-line tools or other direct access to the AWS
APIs through custom or third-party applications).

IAM Roles for Amazon EC2
Applications or command-line tools running on Amazon EC2 instances that
make requests to AWS must sign all AWS API requests with AWS access
keys. AWS IAM roles for EC2 instances make it easier for your
applications and command-line tools to securely access AWS service APIs
from EC2 instances. An IAM role with a set of permissions can be created
and attached to an EC2 instance on launch. AWS access keys with the
specified permissions will then be automatically made available on EC2
instances that have been launched with an IAM role. IAM roles for EC2
instances manage the process of securely distributing and rotating your
AWS access keys to your EC2 instances so that you don’t have to do this.

Using IAM roles, for instance, you can securely distribute AWS access
keys to instances and define permissions that applications on those
instances use when accessing other services in AWS. Here are some things
you should know about using IAM roles for instances:

• AWS access keys for signing requests to other services in AWS are
automatically made available on running instances.

• AWS access keys on an instance are rotated automatically multiple
times a day. New access keys will be made available at least five
minutes prior to the expiration of the old access keys.

• You can assign granular service permissions for applications running
on an instance that make requests to other services in AWS.

• You can include an IAM role when you launch on-demand, spot, or
reserved instances.

• IAM roles can be used with all Windows and Linux AMIs.

CAUTION If you are using services that use instance metadata service
(IMDS) with IAM roles, you should ensure that you do not expose your
credentials when the services make HTTP calls on your behalf. Either you
should include logic to ensure that these services cannot leak information
from IMDS, or you should have the appropriate firewall rules in place so
that the services cannot access IMDS. Types of services that could expose
your credentials include the following:

• HTTP proxies
• HTML/CSS validator services
• XML processors that support XML inclusion

To create an IAM role for EC2, click the Roles link on the left menu and
click Create Role.

Select AWS Service as the type of trusted entity.

Select EC2 on the Select Your Use Case screen.

IAM supports several types of roles. Select the Amazon EC2 Service
Role for this example, but know that IAM roles can be used to grant access
to AWS services, other AWS accounts, and third-party identity providers.

You now need to set permissions for this new role. Type S3 and then
select AmazonS3FullAccess; click Next: Review.

You now have the opportunity to review the role information. Give a
name for the role you are going to create. In this case, name it EC2S3Full.
Click Create Role.

Now go to the Roles screen and search for that role. You will see that
your role exists.

You can now use the newly created IAM role when you launch an EC2
instance. For example, in the EC2 console, you can select the role as part of
the launch process. Once the instance is launched, applications and tools

that access AWS services will automatically pick up temporary credentials
made available to the instance by the infrastructure.

Congratulations! You have created your first IAM user, group, and role!

Chapter Review
In this chapter, you learned what AWS IAM is. IAM allows you to
implement a comprehensive access control on AWS resources by giving
you the ability to authenticate, authorize, and log all access. Therefore, you
can implement the concepts of least privilege and segregation of duties. You
can log every allow and deny in CloudTrail for troubleshooting or auditing
purposes.

You can use AWS IAM to securely control individual and group access
to your AWS resources. You can create and manage user identities (called
IAM users) and grant permissions for those IAM users to access your
resources. You can also grant permissions for users outside of AWS. Any
AWS customer can use IAM because the service is offered at no additional

https://aws.amazon.com/iam/details/manage-permissions/

charge. You will be charged only for the use of other AWS services by your
users.

A user is a unique identity recognized by AWS services and applications.
Similar to a login user in an operating system like Windows or UNIX, users
have unique names and can identify themselves using familiar security
credentials such as passwords or access keys.

A group is a collection of IAM users. You can manage group
membership as a simple list and add users to or remove them from a group.
A user can belong to multiple groups. Groups cannot belong to other
groups.

An IAM role is an IAM entity that defines a set of permissions for
making AWS service requests. IAM roles are not associated with a specific
user or group. Instead, trusted entities assume roles, such as IAM users,
applications, or AWS services such as EC2. IAM roles allow you to
delegate access with defined permissions to trusted entities without having
to share long-term access keys. You can use IAM roles to delegate access to
IAM users managed within your account, to IAM users under a different
AWS account, or to an AWS service such as EC2.

You also studied the shared security model in which AWS is responsible
for protecting the infrastructure that runs all of the services offered in the
AWS cloud. This infrastructure is composed of the hardware, software,
networking, and facilities that run AWS cloud services.

Customer responsibility is determined by the AWS cloud services that a
customer selects. This determines the amount of configuration work the
customer must perform as part of its security responsibilities. For example,
services such as Amazon Elastic Compute Cloud (Amazon EC2) are
categorized as Infrastructure as a Service and, as such, require the customer
to perform all of the necessary security configuration and management
tasks. If a customer deploys an Amazon EC2 instance, they are responsible
for managing the guest operating system (including updates and security
patches), any application software or utilities installed by the customer on
the instances, and the configuration of the AWS-provided firewall (called a
security group) on each instance.

Questions
1. Can you add an IAM role to an IAM group?

A. Yes
B. No
C. Yes, if there are ten members in the group
D. Yes, if the group allows adding a role

2. An IAM policy contains which of the following? (Choose two.)
A. Username
B. Action
C. Service name
D. AZ

3. What happens if you delete an IAM role that is associated with a
running EC2 instance?
A. Any application running on the instance that is using the role will

be denied access immediately.
B. The application continues to use that role until the EC2 server is

shut down.
C. The application will have the access until the session is alive.
D. The application will continue to have access.

4. For implementing security features, which of the following would you
choose?
A. Username/password
B. MFA
C. Using multiple S3 buckets
D. Login using the root user

5. Which is based on temporary security tokens? (Choose two.)
A. Amazon EC2 roles
B. Federation
C. Username and password
D. Using AWS STS

6. You want EC2 instances to give access without any username or
password to S3 buckets. What is the easiest way of doing this?
A. By using a VPC S3 endpoint

B. By using a signed URL
C. By using roles
D. By sharing the keys between S3 and EC2

7. An IAM policy takes which form?
A. Python script
B. Written in C language
C. JSON code
D. XML code

8. If an administrator who has root access leaves the company, what
should you do to protect your account? (Choose two.)
A. Add MFA to root
B. Delete all the IAM accounts
C. Change the passwords for all the IAM accounts and rotate keys
D. Delete all the EC2 instances created by the administrator

9. Using the shared security model, the customer is responsible for which
of the following? (Choose two.)
A. The security of the data running inside the database hosted in

EC2
B. Maintaining the physical security of the data center
C. Making sure the hypervisor is patched correctly
D. Making sure the operating system is patched correctly

10. In Amazon RDS, who is responsible for patching the database?
A. Customer.
B. Amazon.
C. In RDS you don’t have to patch the database.
D. RDS does not come under the shared security model.

Answers
1. B. No, you can’t add an IAM role to an IAM group.
2. B, C. A policy is not location specific and is not limited to a user.

3. A. The application will be denied access.
4. A, B. Using multiple buckets won’t help in terms of security. Similarly,

leveraging multiple regions won’t help to address the security.
5. B, D. The username and password is not a temporary security token.
6. C. A VPC endpoint is going to create a path between the EC2 instance

and the Amazon S3 bucket. A signed URL won’t help EC2 instances
from accessing S3 buckets. You cannot share the keys between S3 and
EC2.

7. C. It is written in JSON.
8. A, C. Deleting all the IAM accounts is going to be a bigger painful

task. You are going to lose all the users. Similarly, you can’t delete all
the EC2 instances; they must be running some critical application or
something meaningful.

9. A, D. The customer is responsible for the security of anything running
on the hypervisor, and therefore the operating system and the security
of data are the customer’s responsibility.

10. B. RDS does come under a shared security model. Since it is a
managed service, the patching of the database is taken care of by
Amazon.

CHAPTER 6
Auto Scaling

In this chapter, you will
• Learn what Auto Scaling is
• Understand the benefits of Auto Scaling
• Understand various Auto Scaling policies
• See how to set up Auto Scaling
• Learn what Elastic Load Balancing is
• Understand how Elastic Load Balancing works
• See the various types of load balancing

Auto Scaling is the technology that allows you to scale your workload up
and down automatically based on the rules you define. It is one of the
innovations that makes the cloud elastic and helps you customize per your
own requirements. Using Auto Scaling, you don’t have to over-provision
the resources to meet the peak demand. Auto Scaling will spin off and
configure new resources automatically and then take the resources down
when the demand goes down. In this chapter, you’ll learn all about the
advantages of Auto Scaling.

On-premise deployments require customers to go through an extensive
sizing exercise, essentially guessing at the resources required to meet peak
workloads. Experience shows that it’s almost impossible to get the sizing
estimates right. Most often customers end up with underutilized resources
while underestimating resources for peak workloads. Other times customers
plan for the peak by over-provisioning the resources. For example, you
might provision all the hardware for Black Friday at the beginning of the
year since you get your capital budget during the start of the year. So, for
the whole year those servers run only with, say, 15 to 20 percent CPU and
achieve the peak during the Black Friday sale. In this case, you have

wasted a lot of compute capacity throughout the year that could have
been used for some other purpose.

With Amazon Web Services (AWS), you have the ability to spin servers
up when your workloads require additional resources and spin them back
down when demand drops. You can set up rules with parameters to ensure
your workloads have the right resources.

You can integrate Auto Scaling with Elastic Load Balancing; by doing so
you can distribute the workload across multiple EC2 servers.

CAUTION People often think about Auto Scaling as Auto Scaling for
EC2 servers, but now Auto Scaling is available for many AWS products, so
you should not restrict your thoughts to EC2 only.

Benefits of Auto Scaling
These are the main benefits of Auto Scaling:

• Dynamic scaling The biggest advantage of Auto Scaling is the
dynamic scaling of resources based on the demand. There is no limit
to the number of servers you can scale up to. You can scale up from
two servers to hundreds or thousands or tens of thousands of servers
almost instantly. Using Auto Scaling you can make sure that your
application always performs optimally and gets additional
horsepower in terms of CPU and other resources whenever needed.
You are able to provision them in real time.

• Best user experience and performance Auto Scaling helps to
provide the best possible experience for your users because you
never run out of resources and your application always performs
optimally. You can create various rules within Auto Scaling to
provide the best user experience. For example, you can specify that
if the CPU utilization increases to more than 70 percent, a new
instance is started.

• Health check and fleet management You can monitor the health
checks of your Elastic Compute Cloud (EC2) instances using Auto
Scaling. If you are hosting your application on a bunch of EC2
servers, the collection of those EC2 servers is called a fleet. You can
configure health checks with Auto Scaling, and if a health check
detects there is a failure on an instance, it automatically replaces the
instance. It reduces a lot of burden from you because now you don’t
have to manually replace the failed instance. It also helps to maintain
the desired fleet capacity. For example, if your application is running
on six EC2 servers, you will be able to maintain the fleet of six EC2
servers no matter how many times there is an issue with an EC2
server. Alternatively, if one or more servers go down, Auto Scaling
will start additional servers to make sure you always have six
instances running. When you configure Auto Scaling with Elastic
Load Balancing (ELB), it is capable of doing ELB health checks as
well. There are various kinds of health checks ELB can do, such as
for hardware failure, system performance degradation, and so on.
Detecting these failures on the fly while always managing a constant
fleet of resources is really painful in the on-premise world. With
AWS, everything is taken care of for you automatically.

• Load balancing Since Auto Scaling is used to dynamically scale up
and down the resources, it can take care of balancing the workload
across multiple EC2 instances when you use Auto Scaling along
with ELB. Auto Scaling also automatically balances the EC2
instances across multiple AZs when multiple AZs are configured.
Auto Scaling makes sure that there is a uniform balance of EC2
instances across multiple AZs that you define.

• Target tracking You can use Auto Scaling to run on a particular
target, and Auto Scaling adjusts the number of EC2 instances for you
in order to meet that target. The target can be a scaling metric that
Auto Scaling supports. For example, if you always want the CPU’s
utilization of your application server to remain at 65 percent, Auto
Scaling will increase and decrease the number of EC2 instances
automatically to meet the 65 percent CPU utilization metric.

• Cost control Using Auto Scaling, you can also automatically
remove the resources you don’t need in order to avoid overspending.
For example, in the evening when the users leave, Auto Scaling will

remove the excess resources automatically. This helps in keeping the
budget under control.

• Predictive scaling Auto Scaling is now integrated with machine
learning (ML), and by using ML Auto Scaling, you can
automatically scale your compute capacity in advance based on
predicted increase in demand. The way it works is Auto Scaling
collects the data from your actual usage of EC2 and then uses the
machine learning models to predict your daily and weekly expected
traffic. The data is evaluated every 24 hours to create a forecast for
the next 48 hours.

Auto Scaling is most popular for EC2, but in addition to EC2, Auto
Scaling can be used to scale up some other services. You can use
application Auto Scaling to define scaling policies to scale up and down
these resources. Here are the other services where Auto Scaling can be
used:

• EC2 spot instances
• EC2 Container Service (ECS)
• Elastic Map Reducer (EMR) clusters
• AppStream 2.0 instances
• Amazon Aurora Replicas
• DynamoDB

Let’s see how Auto Scaling works in real life. Say you have an
application that consists of two web servers that are hosted in two separate
EC2 instances. To maintain the high availability, you have placed the web
servers in different availability zones. You have integrated both the web
servers with ELB, and the users connect to the ELB. The architecture will
look something like Figure 6-1.

Figure 6-1 Application with two web servers in two different AZs

Everything is going well when all of a sudden you notice that there is an
increase in the web traffic. To meet the additional traffic, you provision
additional two web servers and integrate them with ELB, as shown in
Figure 6-2. Up to this point you are doing everything manually, which
includes adding web servers and integrating them with ELB. Also, if your
traffic goes down, you need to bring down the instances manually since
keeping them is going to cost you more. This is fine and manageable when
you have a smaller number of servers to manage and you can predict the
traffic. What if you have hundreds or thousands of servers hosting the
application? What if the traffic is totally unpredictable? Can you still add
hundreds and thousands of servers almost instantly and then integrate each
one of them with ELB? What about taking those servers down? Can you do
it quickly? Not really. Auto Scaling solves this problem for you.

Figure 6-2 Adding two additional web servers to the application

When you use Auto Scaling, you simply add the EC2 instances to an
Auto Scaling group, define the minimum and maximum number of servers,
and then define the scaling policy. Auto Scaling takes care of adding and
deleting the servers and integrating them with ELB based on the usage.
When you integrate Auto Scaling, the architecture looks something like
Figure 6-3.

Figure 6-3 Adding all four web servers as part of Auto Scaling

Scaling Plan
The first step in using Auto Scaling is to create a scaling plan. By using a
scaling plan, you can configure and manage the scaling for the AWS
resources you are going to use along with Auto Scaling. The scaling plan
can be applied to all the supported Auto Scaling resources. The following
sections outline the steps to create a scaling plan.

Identify Scalable Resources
You can automatically discover or manually choose the resources you want
to use with your Auto Scaling plan. This can be done in three different
ways:

• Search via CloudFormation stack You can select an existing AWS
CloudFormation stack to have AWS Auto Scaling scan it for
resources that can be configured for automatic scaling. AWS Auto
Scaling only finds resources that are defined in the selected stack. It

does not traverse through nested stacks. The stack must be
successfully created and cannot have an operation in progress.

• Search by tag You can also use tags to find the following resources:
• Aurora DB clusters
• Auto Scaling groups
• DynamoDB tables and global secondary indexes
When you search by more than one tag, each resource must have all
of the listed tags to be discovered.

• EC2 Auto Scaling groups You can choose one or more Auto
Scaling groups to add to your scaling plan. The EC2 Auto Scaling is
covered in detail in the next section. Figure 6-4 shows all the options
for finding a scalable resource from the console.

Figure 6-4 Finding a scalable resource

Specify Scaling Strategy
Once you identify the resource you are going to use with Auto Scaling, the
next step is to specify a scaling strategy by which the resource will scale up
and down. There are four different ways by which you can create a scaling
strategy:

• Optimize for Availability When you choose this option, Auto
Scaling automatically scales the resources in and out to make sure

they are always available. When you choose this option, the
CPU/resource utilization is kept at 40 percent.

• Balance Availability and Cost This option keeps a uniform balance
between the availability and the cost. Here, the CPU/resource
utilization is kept at 50 percent in order to maintain the perfect
balance between the availability and cost.

• Optimize for Cost As the name suggests, the goal of this option is to
lower the cost; hence, the CPU/resource utilization is kept at 70
percent. This feature is very useful for low-level environments where
performance is not critical.

• Custom Scaling Strategy Using this option, you can choose your
own scaling metric if the off-the-shelf strategy doesn’t meet your
requirements. Here, you can decide your own CPU/resource
utilization value. The various options related to scaling strategy from
the AWS console are shown in Figure 6-5.

Figure 6-5 Choosing a scaling strategy

TIP As a solutions architect, you will be dealing with various kinds of
workloads. You will notice that scaling strategies for one particular
workload will be different from another workload. Therefore, you should

experiment with scaling strategies for each workload and then come up with
the correct one.

While choosing a scaling strategy, you can also enable predictive scaling
and dynamic scaling. If you enable predictive scaling, machine learning is
used to analyze the historical workload and then forecast the future
workload. Predictive scaling makes sure you have the resource capacity
provisioned before your application demands it. If you enable dynamic
policy, target tracking scaling policies are created for the resources in your
scaling plan. For example, via dynamic policy, you can define that the EC2
servers run at 60 percent of CPU. Then, whenever the CPU utilization rises
above 60 percent, your scaling policy will be triggered. Thus, this scaling
policy adjusts resource capacity in response to live changes in resource
utilization.

Using EC2 Auto Scaling
Auto Scaling is most popular with EC2 instances. In this section, we are
going to cover in detail how to set up Auto Scaling with an EC2 instance.
The concepts for Auto Scaling we have discussed previously apply here as
well. In the case of EC2 Auto Scaling, the resource is an EC2 server only.
Let’s look in detail at all the steps required to use EC2 Auto Scaling. The
first step in this process is to create a launch configuration.

Launch Configuration
When you use Auto Scaling to scale up your instances, it needs to know
what kind of server to use. You can define this by creating a launch
configuration. A launch configuration is a template that stores all the
information about the instance, such as the AMI (Amazon machine image)
details, instance type, key pair, security group, IAM (Identity and Access
Management) instance profile, user data, storage attached, and so on.

Once you create a launch configuration, you can link it with an Auto
Scaling group. You can use the same launch configuration with multiple
Auto Scaling groups as well, but an Auto Scaling group always has only
one launch configuration attached to it. You will learn about Auto Scaling
groups in the next section. Once you create an Auto Scaling group, you

can’t edit the launch configuration tied up with it; the only way to do this is
to create a new launch configuration and associate the Auto Scaling group
with the new launch configuration. The subsequent instances will be
launched as per the new Auto Scaling group settings. For example, in your
Auto Scaling group, say you have created a launch configuration with C4
large instances. You launch four C4 large instances as part of the initial
launch. Then you remove the old configuration, create a new configuration,
and add the new configuration as part of your Auto Scaling group. In your
new configuration, you specify C4 extra-large instances. Now when the
new instances are going to spin off, they will be C4 extra-large. Say the new
Auto Scaling rule kicks in and the Auto Scaling group starts two more
instances; the additional two new instances will be C4 extra-large. Now you
will be running the fleet with four C4 large and two C4 extra-large
instances. If one of the C4 large instances goes down because of a hardware
fault, the replacement instance that the Auto Scaling group will launch will
be a C4 extra-large and not C4 large since there is no entry of C4 large
instances in the launch configuration anymore.

TIP You can save and reuse the launch configuration. (For example, you
can use the launch configuration of the production environment for building
a test environment.)

Auto Scaling Groups
An Auto Scaling group is the place where you define the logic for scaling
up and scaling down. It has all the rules and policies that govern how the
EC2 instances will be terminated or started. Auto Scaling groups are the
collection of all the EC2 servers running together as a group and
dynamically going up or down as per your definitions. When you create an
Auto Scaling group, first you need to provide the launch configuration that
has the details of the instance type, and then you need to choose the scaling
plan or scaling policy. You can scale in the following ways:

• Maintaining the instance level This is also known as the default
scaling plan. In this scaling policy, you define the number of
instances you will always operate with. You define the minimum or
the specified number of servers that will be running all the time.
Auto Scaling groups make sure you are always running with that
many instances. For example, if you define that you are always
going to run six instances, whenever the instance goes down because
of hardware failure or any issues, the Auto Scaling group is going to
spin off new servers, making sure you are always operating with a
fleet of six servers.

• Manual scaling You can also scale up or down manually either via
the console or the API or CLI. When you do the manual scaling, you
manually add or terminate the instances. Manually scaling should be
the last thing you would be doing since Auto Scaling provides so
many ways of automating your scaling. If you still scale it manually,
you are defying the Auto Scaling setup.

• Scaling as per the demand Another usage of Auto Scaling is to
scale to meet the demand. You can scale according to various
CloudWatch metrics such as an increase in CPU, disk reads, disk
writes, network in, network out, and so on. For example, you can
have a rule that says if there is a spike of 80 percent and it lasts for
more than five minutes, then Auto Scaling will spin off a new server
for you. When you are defining the scaling policies, you must define
two policies, one for scaling up and the other for scaling down.

• Scaling as per schedule If your traffic is predictable and you know
that you are going to have an increase in traffic during certain hours,
you can have a scaling policy as per the schedule. For example, your
application may have heaviest usage during the day and hardly any
activity at night. You can scale the application to have more web
servers during the day and scale down during the night. To create an
Auto Scaling policy for scheduled scaling, you need to create a
scheduled action that tells the Auto Scaling group to perform the
scaling action at the specified time.

To create an Auto Scaling group, you need to provide the minimum
number of instances running at any time. You also need to set the maximum
number of servers to which the instances can scale. In some cases, you can

set a desired number of instances that is the optimal number of instances the
system should be. Therefore, you tell Auto Scaling the following:

• If the desired capacity is greater than the current capacity, then
launch instances.

• If the desired capacity is less than the current capacity, then
terminate instances.

It is important that you know when the Auto Scaling group is increasing
or decreasing the number of servers for your application. To do so, you can
configure Amazon Simple Notification Service (SNS) to send an SNS
notification whenever your Auto Scaling group scales up or down. Amazon
SNS can deliver notifications as HTTP or HTTPS POST, as an e-mail, or as
a message posted to an Amazon SQS queue.

There are some limits to how many Auto Scaling groups you can have.
Since the number keeps on changing, it is recommended that you check the
AWS web site for the latest numbers. All these numbers are soft limits,
which can be increased with a support ticket.

Please note that an Auto Scaling group cannot span regions; it can be
part of only one region. However, it can span multiple AZs within a region.
By doing so, you can achieve a high-availability architecture.

It is recommended that you use the same instance type in an Auto
Scaling group since you are going to have effective load distribution when
the instances are of the same type. However, if you change the launch
configuration with different instance types, all the new instances that will be
started will be of different types.

Let’s talk about the scaling policy types in more detail. You can have
three types of scaling policies.

Simple Scaling
Using simple scaling, you can scale up or down on the basis of only one
scaling adjustment. In this mechanism, you select an alarm, which can be
CPU utilization, disk read, disk write, network in or network out, and so on,
and then scale up or down the instances on the occurrence of that particular
alarm. For example, if the CPU utilization is 80 percent, you can add one
more instance, or if the CPU utilization is less than 40 percent, you can take

one instance down. You can also define how long to wait before starting or
stopping a new instance. This waiting period is also called the cooldown
period. When you create a simple scaling policy, you need to create two
policies, one for scaling up or increasing the group size and another for
scaling down or decreasing the group size. Figure 6-6 shows what a simple
scaling policy looks like.

Figure 6-6 Simple scaling policy

If you look at Figure 6-6, you will notice the policy is executed when the
alarm occurs, so the first step is to create an alarm. By clicking Add New
Alarm, you can create a new alarm from where you can specify whom to
notify and the scaling conditions. Figure 6-7 shows an alarm created that
sends a notification to the admin when the CPU goes up by 50 percent after
one occurrence of five minutes.

Figure 6-7 Creating an alarm

Once you create the alarm, you need to define the action that adds an
EC2 instance for scaling up and decreases an EC2 instance for scaling
down; then you input the time before the next scale-up or scale-down
activity happens, as shown in Figure 6-8. If you look at the top of Figure 6-
8, you will see that I have chosen from one to six instances; therefore, the
maximum instances I can scale up to is six.

Figure 6-8 Simple scaling policy with all the parameters

Simple Scaling with Steps
With simple scaling, as we have discussed, you can scale up or down based
on the occurrence of an event, and every time Auto Scaling does the same
action. Sometimes you might need to have even finer-grained control. For
example, let’s say you have defined a policy that says when the CPU
utilization is more than 50 percent, add another instance. However, you can
have even more control. Specifically, you can specify that when the CPU
utilization is between 50 percent and 60 percent, add two more instances,
and when the CPU utilization is 60 percent or more, add four more
instances. If you want to do this kind of advanced configuration, simple
scaling with steps is the solution. With simple scaling with steps, you do
everything just like simple scaling, but in the end you add a few more steps.
Figure 6-8 showed the option Creating A Scaling Policy With Steps. Once
you click this, the Add Step button is enabled, and from there you can
define the additional steps, as shown in Figure 6-9.

Figure 6-9 Simple scaling with steps

When you are doing the scaling up or down using simple scaling or
simple scaling with steps, you can change the capacity in the following
ways:

• Exact capacity You can provide the exact capacity to increase or
decrease. For example, if the current capacity of the group is two
instances and the adjustment is four, Auto Scaling changes the
capacity to four instances when the policy is executed.

• Change in capacity You can increase or decrease the current
capacity by providing a specific number. For example, if the current
capacity of the group is two instances and the adjustment is four,
Auto Scaling changes the capacity to six instances when the policy is
executed.

• Percentage change in capacity You can also increase or decrease
the current capacity by providing a certain percentage of capacity.
For example, if your current capacity is 10 instances and the
adjustment is 20 percent when the policy runs, Auto Scaling adds
two more instances, making it a total of 12. Please note that since in
this case it is a percentage, the resulting number will not always be
an integer, and Auto Scaling will round off the number to the nearest
digit. Values greater than 1 are rounded down. For example, 13.5 is
rounded to 13. Values between 0 and 1 are rounded to 1. For
example, .77 is rounded to 1. Values between 0 and –1 are rounded
to –1. For, example, –.72 is rounded to –1. Values less than –1 are
rounded up. For example, –8.87 is rounded to –8.

Target-Tracking Scaling Policies
You can configure dynamic scaling using target-tracking scaling policies. In
this policy, either you can select a predetermined metric or you choose your
own metric and then set it to a target value. For example, you can choose a
metric of CPU utilization and set the target value to 50 percent. When you
create a policy like this, Auto Scaling will automatically scale up or scale
down the EC2 instances to maintain a 40 percent CPU utilization.
Internally, Auto Scaling creates and monitors the CloudWatch alarm that
triggers the Auto Scaling policy. Once the alarm is triggered, Auto Scaling
calculates the number of instances it needs to increase or decrease to meet
the desired metric, and it automatically does what you need.

Termination Policy

Auto Scaling allows you to scale up as well as scale down. When you scale
down, your EC2 instances are terminated; therefore, it is important to shut
down in a graceful manner so that you have better control. You can decide
how exactly you are going to terminate the EC2 servers when you have to
scale down. Say, for example, that you are running a total of six EC2
instances across two AZs. In other words, there are three instances in each
AZ. Now you want to terminate one AZ. Since in this case the instances are
pretty much balanced across these two AZs, terminating any one of them
from any one of the AZs should be fine. If you have to terminate two
instances, it is important to shut down instances from each AZ so that you
can have a balanced configuration. It should not happen that you are going
to terminate two servers from a single AZ; then you would have three
servers running from one AZ and one server running from a second AZ,
making it an unbalanced configuration.

You can configure termination policies to terminate an instance. The
termination policy determines which EC2 instance you are going to shut
down first. When you terminate a machine, it deregisters itself from the
load balancer, if any, and then it waits for the grace period, if any, so that
any connections opened to that instance will be drained. Then the policy
terminates the instance.

There could be multiple ways you can write down termination policies.
One way would be to determine what is the longest-running server you
have in your fleet and then terminate it. The advantage of this is that since
you’re running the server for the longest time, it may be possible the server
might not have been patched, or there might be some memory leaks
happening on the server and so on.

You can also terminate the servers that are close to billing an hour. By
terminating these servers, you are going to extract the maximum benefit
from the Auto Scaling feature. For example, if you have two servers and
one of them has been running for just 5 minutes and another one has been
running for around 54 minutes, terminating the one that has been running
for 54 minutes gives you more value for the money.

NOTE AWS has now moved to a new billing model that is based on
paying per second for certain instance types along with paying per hour.
You should be aware of both concepts.

You can also terminate the oldest launch configuration. If you are
running servers with some older version of AMIs and you were thinking of
changing them, then it makes sense to get rid of the launch configuration
and create a new launch configuration with the latest version of AMIs. Of
course, if you remove the launch configuration, there is no impact on the
running servers; only the new servers are going to reflect the change.

Elastic Load Balancing
As you are probably aware, in an on-premise environment, the load
balancer is a physical hardware that is responsible for routing the traffic and
balancing the workload across multiple servers. Many applications use a
load balancer in front of web servers to route the traffic, balance the
workload, and provide the elasticity. But it is often seen that sometimes the
load balancer itself becomes a single point of failure. What happens when
your physical load balancer fails? Of course, the underlying application
goes down until the load balancer is replaced. Also, there are some
additional challenges for managing the traditional load balancer. For
example, you need to manually add or remove a server from the load
balancer. The traditional load balancer is not capable of adding a new server
dynamically if the traffic goes up. AWS Elastic Load Balancing is a fully
managed service that solves all these problems for you. Elastic Load
Balancing automatically distributes incoming application traffic across the
multiple applications, microservices, and containers hosted on Amazon
EC2 instances.

These are the advantages of Elastic Load Balancing:

• Elastic The biggest advantage of ELB is it is automatically scalable.
You don’t have to do anything manually when you are adding or
deleting the instances; there is no manual intervention at all. In the
traditional on-premise environment, when you deploy a load
balancer you always have to configure it manually. For example, if
you’re planning to hook up the load balancer to ten different servers,
you have to configure every server with the load balancer. Similarly,
when you have to take a server down from the load balancer, you
need to do that manually.

• Integrated ELB is integrated with various AWS services. As
discussed previously in this chapter, ELB’s integration with Auto
Scaling helps to scale the EC2 instances and workload distribution.
The integration plays a vital role since ELB and Auto Scaling are
integrated; therefore, whenever a new server is started by Auto
Scaling, it automatically gets registered with Elastic Load Balancing,
and whenever the instance is terminated by Auto Scaling, it gets
deregistered with Elastic Load Balancing. ELB can also be
integrated with CloudWatch from where it gets all the metrics and
decides whether to take an instance up or down or what other action
to take. ELB can also be integrated with Route 53 for DNS failover.

• Secured ELB provides a lot of security features such as integrated
certificate management and SSL decryption, port forwarding, and so
on. These days, web site operators are expanding encryption across
their applications and are often using HTTPS by default to secure all
web traffic. ELB is capable of terminating HTTPS/SSL traffic at the
load balancer to avoid having to run the CPU-intensive decryption
process on their EC2 instances. This can also help in mitigating a
DDoS attack. In addition to this, ELB provides lots of predefined
security policies that you can directly use. Just like an EC2 instance,
you can also configure security groups for ELB that allows you to
control incoming and outgoing traffic for ELB.

• Highly available ELB helps you to create the most highly available
architecture. Using ELB you can distribute the traffic across Amazon
EC2 instances, containers, and IP addresses. Using Elastic Load
Balancing, you can deploy applications across multiple AZs and
have ELB distribute the traffic across the multiple AZs. By doing
this, if one of the AZs goes down, your application continues to run.

• Cheap ELB is cheap and cost-effective. If you have to deploy a load
balancer in your own premises or even if you’re planning to deploy a
load balancer across multiple EC2 servers, it is going to cost you a
lot. You also save some money on hiring people since a lot of stuff
can be automated; for example, Auto Scaling saves network
administrators a lot of time.

How ELB Works
Let’s understand how a load balancer works. You might be wondering how
a load balancer offers high availability. Is there a possibility of ELB going
down? Internally, every single Elastic Load Balancing instance utilizes
multiple AZs. Even if you do not deploy your application or workload
across multiple AZs (which is always recommended), the load balancers
that you are going to use will be always deployed across multiple AZs.

In Figure 6-10, you will notice that in the customer VPC, the EC2
instances are deployed in two different AZs. The customer also hooked up
an ELB with both the EC2 instances. Internally, there will be multiple load
balancers deployed in a separate ELB VPC, spanning multiple AZs to
provide a highly available architecture. This part will be transparent to you;
you don’t have to do anything to configure the high availability for the load
balancer. AWS will manage everything for you automatically, and there is
no separate charge for that. As a result, you get highly available load
balancers with zero overhead of manageability.

Figure 6-10 High availability for ELB

Types of Load Balancers
There are three main load balancers that you can leverage using Amazon
Web Services, covered next.

Network Load Balancer
The network load balancer (NLB), or the TCP load balancer, acts in layer 4
of the OSI model. This is basically a connection-based load balancing
model. It can handle connections across Amazon EC2 instances, containers,
and IP addresses based on IP data. In all cases, all the requests flow through
the load balancer; then the load balancer handles those packets and
forwards them to the back end as they are received. It does not look inside
the packets. It supports both TCP and SSL. In a network load
balancer, the client connection is always bound to a server connection,
which means whenever a request comes, it will always be bound to a back-
end instance. There is no header modification done, which means the load
balancer does not make any changes or touch the packet. The network load
balancer preserves the client-side source IP address, allowing the back end
to see the IP address of the client. There are no X-Forwarded-For headers,
proxy protocol prepends, source or destination IP addresses, or ports to
request.

Application Load Balancer
The application load balancer (ALB) works on layer 7 of the OSI model. It
supports HTTP and HTTPS. Whenever a package comes from an
application, it looks at its header and then decides the course of action. The
connection is terminated at the load balancer and pooled to the server.
Multiple connections are opened in the server, and whenever the load
balancer receives the requests, it forwards them using the connection pool.
In the case of an application load balancer, the headers might be modified.
For example, a header might be inserted, such as the X-Forwarded-For
header containing the client IP address. The ALB is capable of doing
content-based routing, which means if your application consists of multiple
services, it can route to a specific service as per the content of the request.
You can also do host-based routing, where you route a client request based
on the Host field of the HTTP header, and path-based routing, where you
can route a client request based on the URL path of the HTTP header.

Classic Load Balancer
The classic load balancer supports the classic EC2 instances. It supports
both network and application load balancing. In other words, it operates on
layer 4 as well as on layer 7 of the OSI model. If you are not using the
classic EC2 instances, then you should use either an application or a
network load balancer depending on your use case.

The X-Forwarded-For request header helps you identify the IP address
of a client when you use an HTTP or HTTPS load balancer. Because load
balancers intercept traffic between clients and servers, your server access
logs contain only the IP address of the load balancer. To see the IP address
of the client, use the X-Forwarded-For request header. Elastic Load
Balancing stores the IP address of the client in the X-Forwarded-For request
header and passes the header to your server.

Table 6-1 compares the features of all three types of load balancers.

Table 6-1 Comparison of the Three Types of Load Balancers

You can configure a load balancer to be either external facing or internal
facing. When the load balancer is accessed from the Internet, it is called an
external load balancer. When the load balancer does not have any Internet
access and rather is used internally, say to load balance a couple of
instances running on a private subnet, then it is called an internal load
balancer. Load balancers in EC2-Classic are always Internet-facing load
balancers. When you create a load balancer within a VPC, you can either
make it external facing or internal facing. To create an external-facing load
balancer, you need to create it within the public subnet, and to create an
internal-facing load balancer, you need to configure it for the private subnet.

TIP Whenever you are creating an external load balancer, you should pay
upmost attention to its security since you are exposing the load balancer to
the external world.

Load Balancer Key Concepts and
Terminology
As discussed previously, the load balancers are fully managed, scalable, and
highly available. The application load balancer supports content-based
routing; therefore, the biggest benefit from it is that it allows for multiple
applications to be hosted behind a single load balancer. Let’s see an
example to understand this. In a classic load balancer, you can host only one
application per ELB. If you wanted to host multiple applications, you had to
use DNS. Say you have an application that takes care of all the orders on
your web site, and you have another application that takes care of all the
images of your web site. In this case, you would hook up two load
balancers: one for the orders and another for the images. Then you use DNS

to resolve. So, when you go to orders.example.com from a web browser, the
DNS routes it to the application hosting the orders, and when you go to
images.example.com in your browser, the application routes it to the
application hosting the images. In this case, you have managed to load
balance, as well as pay for two separate load balancers. See Figure 6-11.

Figure 6-11 Using two different load balancers for two applications

Now with the application load balancer in the same example, if you have
orders in part of example.com, the load balancer does path-based routing,
and it will reroute the traffic to the application hosting the orders. Similarly,
if you have images in the path, it will route you to the application hosting
the images. So, you are not using multiple load balancers here; rather, you
are using just one load balancer and routing it to the respective application
using path-based routing. This is shown in Figure 6-12.

Figure 6-12 Using one load balancer for different applications

Using path-based routing, you can have up to ten different sets of rules,
which means you can host up to ten applications using one load balancer.
The biggest benefit of this is you are paying only for one load balancer
instead of ten, and of course you’re managing only one load balancer.

The application load balancer provides native support for microservice
and container-based architectures. Instances can be registered with multiple
ports, allowing for requests to be routed to multiple containers on a single
instance. In the case of classic EC2, you register an instance with the load
balancer with an API. If you try to re-register that instance again, the
system tells you that the instance is already registered and cannot be
registered. With the application load balancer, you can register an instance
with different ports multiple times. This is really helpful when you are
running a container-based application because containers often give
dynamic ports, and you can register any of the ports with an application
load balancer. If you use Amazon ECS, it takes care of the register tasks
automatically with the load balancer using a dynamic port mapping. Even if

you are running a container but running multiple applications in multiple
ports, you can register all of them in the load balancer since the port is
different. You can even balance the load across multiple containers as well
as across multiple EC2 instances using the application load balancer. Also,
if you use containers instead of EC2 instances, you save more in terms of
cost because for many of the use cases, you may not need a T2 micro
instance; you can save the CPU cycles and don’t have to pay for it. This is
shown in Figure 6-13.

Figure 6-13 Load balancing across EC2 and ECS

Now let’s understand the core components of the load balancer.

Listeners
Listeners define the protocol and port on which the load balancer listens for
incoming connections. Each load balancer needs at least one listener to
accept incoming traffic and can support up to ten listeners. You can define
all the routing rules on the listener. In the previous example of routing,

where you used path-based routing, the routing was defined in the listener.
For application load balancing, the listener supports the HTTP and HTTPS
protocols, and for a network load balancer, the listener supports the TCP
protocol. For both ALB and NLB, the ports between 1 and 65535 are
supported. You can use WebSockets with your HTTP, HTTPS, and TCP
listeners. Application load balancers also provide native support for
HTTP/2 with HTTPS listeners. Using one HTTP/2 connection, you can
send up to 128 requests in parallel. The load balancer converts these to
individual HTTP/1.1 requests and distributes them across the healthy targets
in the target group using the round-robin routing algorithm.

Target Groups and Targets
The target groups are logical groupings of targets behind a load balancer.
Target groups can exist independently from the load balancer. You can
create a target group and keep it ready; you can keep on adding resources to
the target group and may not immediately add it with the load balancer. You
can associate it with a load balancer when needed. The target groups are
regional constructs, which means you can allocate resources from only one
region in a target group. The target group can be associated with the Auto
Scaling group as well.

The target is a logical load balancing target, which can be an EC2
instance, microservice, or container-based application for an application
load balancer and instance or an IP address for a network load balancer.
When the target type is IP, you can specify IP addresses from one of the
following CIDR blocks:

• The subnets of the VPC for the target group
• 10.0.0.0/8 (RFC 1918)
• 100.64.0.0/10 (RFC 6598)
• 172.16.0.0/12 (RFC 1918)
• 192.168.0.0/16 (RFC 1918)

EC2 instances can be registered with the same target group using
multiple ports. A single target can be registered with multiple target groups.

Rules

Rules provide the link between listeners and target groups and consist of
conditions and actions. When a request meets the condition of the rule, the
associated action is taken. Rules can forward requests to a specified target
group. In the previous example, you use a rule whenever you see an image
in the path and route it to the application hosting the image. This is called a
path-based rule. Whenever you do a path-based rule, the conditions have to
be specified in the path pattern format. A path pattern is case sensitive, can
be up to 128 characters in length, and can contain any of the following
characters:

• A–Z, a–z, 0–9
• _ - . $ / ~ " ‘@ : +
• & (using &)
• (matches zero or more characters)
• ? (matches exactly one character)

When you create a listener by default, it has a rule; however, you can
add more rules. The default rule does not have any conditions attached to it.
Each rule has a priority attached to it.

The rule with the highest priority will be executed first, and the one with
the lowest priority will be executed at the end. The default rule has the
lowest-priority value; hence, it is evaluated last. Currently, the rule supports
only one kind of action, which is forward; this forwards requests to the
target group. There are two types of rule conditions: host and path. When
the conditions for a rule are met, then its action is taken.

As of the writing of this book, load balancers can support up to ten rules.
Support for 100 rules is on the road map of AWS.

Figure 6-14 shows the relationship between the listeners, target groups,
targets, and rules.

Figure 6-14 Relationship between listeners, target groups, targets, and rules

Health Check
When you consider a load balancer, you want to make sure the application
it supports is highly available. To do so, you need to run a health check,
which is going to check the target or target group at a certain interval of
time defined by you to make sure the target or the target group is working
fine. If any of the targets have issues, then health checks allow for traffic to
be shifted away from the impaired or failed instances. For example, if your
load balancer is hooked up to four EC2 instances and one of them has a
spike in CPU usage, the health check will keep on failing. When this
happens, the instance will be taken off the load balancer, and all the traffic
will be redirected to a different EC2 instance. If the server becomes healthy,
the health check will pass, and the load balancer will redirect the traffic to
that instance. If the server does not become healthy and the health check
keeps on failing, then it will be replaced by a new EC2 instance.

For the interval at which the load balancer sent a check request switch,
the target is called HealthCheckIntervalSeconds. With the health check
request, you specify the port, protocol, and ping path. If the target responds
before the response times out, the shell check is successful. If it does not
respond and exceeds the threshold for consecutive failed responses, the load

balancer marks it as a failure and takes the target out of service. You can
customize the frequency, failure thresholds, and list of successful response
codes. If there is a failure, then the detailed reasons for health check failures
are now returned via the API and displayed in the AWS Management
Console.

The application load balancer supports HTTP and HTTPS health checks,
whereas the network load balancer supports TCP health checks.

The results of the health check can have the possible values shown in
Table 6-2.

Table 6-2 Various Health Check Statuses

Using Multiple AZs
Whenever you’re building an application with Auto Scaling and ELB, it is
recommended that you use multiple AZs whenever possible. This helps you
craft a highly available architecture. Since ELB can distribute the traffic
equally across multiple AZs, then why not leverage this feature and get the
best out of the AWS ecosystem? Internally ELB always runs from multiple
AZs, so even if one of the AZs goes down, there won’t be any impact to
Elastic Load Balancing since the traffic will be routed via a load balancer
sitting in a different AZ. The DNS will route the traffic via a different AZ.
So, if your application sits on only one AZ, if the AZ goes down, your
application will fail but not the ELB. Figure 6-15 shows the routing of the
ELB traffic via a different ELB.

Figure 6-15 Routing of ELB via a different AZ

Now let’s see an example when you run your application on a single AZ
or on multiple AZs. So, you have an application that is running on six
servers; if you run this application from a single AZ and it goes down, then
your application goes down.

If you run this application from two different AZs, then you could be
running three servers from each AZ. Now if one of the AZs goes down, you
lose 50 percent of the capacity. In that case, you can quickly use Auto
Scaling to spin off the new instance. In some cases, it can be possible that
you are running a critical application and you cannot even afford to lose 50
percent of the capacity. In that case, you will provision six servers on each
AZ to make sure even if one of the AZs goes down you are running with
100 percent of the capacity.

Now let’s say you are going to use three different AZs to build your
application. In this case, you will be running two instances from each AZ.
Now if one of the AZs goes down, you will lose 33 percent of the resources,
which means you are going to lose only two servers. In the same scenario of
high availability, where you cannot afford to have any downtime, you are
going to provision three servers at each AZ, so in the event of one of the
AZs going down, you still will be running with six instances. In this
scenario, you are deploying 9 servers across three AZs, whereas in the
previous scenario of two AZs, you have to deploy 12 servers across two

AZs. So, sometimes deploying the applications in more AZs ends up being
cheaper, as shown in Figure 6-16.

Figure 6-16 Single AZ vs. two AZs vs. three AZs

NOTE When you dynamically scale up or scale down, it is important to
maintain the state information of the session. If you maintain that in the
EC2 servers and that server goes down, you lose all the information. If you
maintain the session information in the EC2 server and even one user is
connected with that EC2 server, you can’t take it down. Therefore, it is
recommended you maintain the state information outside the EC2 servers
so that Auto Scaling can dynamically scale up and down the EC2 servers.
DynamoDB is a great way to maintain the session state that you should
consider while designing the architecture.

Sometimes using multiple AZs may have some issues or challenges such
as if you are using a Java-based application. Often the application caches

the server IP address in the DNS, and as a result, it redirects the traffic to
the same instance every time. This causes an imbalance in the instance
capacity since the proper load distribution does not happen. Cross-zone
load balancing solves that problem.

Cross-zone load balancing distributes the requests evenly across multiple
availability zones. Cross-zone load balancing is enabled by default in an
application load balancer, and you don’t have to do anything manually to
configure it. If you are using a classic load balancer, you need to configure
this manually if you are using an API or CLI to create the load balancer. If
you are using the console to create the classic load balancer, this option is
selected by default. With network load balancers, each load balancer node
distributes traffic across the registered targets in its availability zone only.
Moreover, there is no additional bandwidth charge for cross-zone traffic, so
you don’t have to pay anything extra for the data transfer across multiple
AZs. This is useful when you are using ALB across multiple AZs.

Please note the cross-zone load balancing happens across the targets and
not at the AZ level. Let’s see an example to understand this. Say you have
an imbalanced configuration with one instance running in one AZ and three
instances running in the second AZ, and you have hooked up an ALB with
both the AZs across all the four targets (instances). Now with cross-zone
load balancing, the workload will be distributed equally across the four
instances and not equally within the two AZs. This ensures that all the
instances you have get an equal share of work.

In the case of the application load balancer, when the load balancer
receives a request, it checks the priority order from the listener rule to
determine which rule to apply. Once it decides which rule to apply, it selects
a target from the target group and applies the action of the rule using a
round-robin algorithm. The routing is performed independently for each
target group, and it doesn’t matter if the target is registered with multiple
target groups.

In the case of a network load balancer, the load balancer receives a
request and selects a target from the target group for the default rule using a
flow hash algorithm, based on the protocol, source IP address, source port,
destination IP address, and destination port. This provides session stickiness
from the same source to the same destination for the traffic. With a sticky
session, you can instruct the load balancer to route repeated requests to the

same EC2 instance whenever possible. The advantage of this is that the
EC2 instance can cache the user data locally for better performance.

With classic load balancers, the load balancer node that receives the
request selects the least outstanding request’s routing algorithm for HTTP
and HTTPS listeners and selects a registered instance using the round-robin
routing algorithm for TCP listeners.

Lab 6-1: Set Up Auto Scaling

In this lab, you will be doing the following:

• Create a launch configuration
• Create an Auto Scaling group
• Configure Auto Scaling notifications that are triggered when

instance resources become too high or too low
• Create policies to scale up or scale down the number of currently

running instances in response to changes in resource utilization

1. Log in to the AWS console and select the desired region where you
want to want your instances to be started.

2. From the Services main page, select EC2.
3. In the menu on the left, scroll down until you see Auto Scaling.
4. Click Launch Configurations and then click Create Auto Scaling

Group.

5. You will see this option if you have not created any Auto Scaling
group previously. If you created an Auto Scaling group earlier, clicking
Launch Configurations will take you to a screen where you need to
click Create Launch Configuration.

6. Click Create Launch Configuration.

7. The Create Launch Configuration screen will be displayed.

8. Select the AMI from where your EC2 instances will be started. Select
Amazon Linux AMI, and on the next screen choose the t2.micro
instance since it belongs to the free tier.

9. On the next screen, you need to provide the name of the launch
configuration. Choose a unique name for your launch configuration. In

this example, the name is AWS SA Book. Leave all other fields at the
defaults and click Next. The next few screens will be exactly like that
of creating an EC2 instance. You need to provide all the other details
such as adding storage, configuring the security group, and so on.
After providing all the details, click Create Launch Configuration.

10. The system will prompt you to download the keys. If you already have
a key pair, you can reuse it, or you can create a new one from this
screen and then download it.

11. The system will now prompt you to create the Auto Scaling group. You
need to provide the unique group name and group size (which is the
number of instances the group should have at any time); this is also
known as the desired capacity. For this example, enter 2 as the value
for Start With x Instances. In the Network field, put the VPC name
where you want this Auto Scaling group to run, and in the Subnet field,
put the subnet details where you want the EC2 instances to be
launched. In this example, I have chosen two different subnets across
two different AZs. This is important because this is how you run the
EC2 instances across multiple AZs using Auto Scaling.

12. The next step is to configure the scaling policies. In this case, you will
create a simple scaling policy. Select the option Use Scaling Policies to
adjust the capacity of this group. Click Create A Simple Scaling
Policy. For the option Scale Between x And x Instances, choose
between 2 and 4. This will be the minimum size and maximum size of
your group.

13. Create an alarm, as shown in Figure 6-7, for both scaling up and
scaling down policies.

14. Now you need to create the two scaling policies. First, create the
scaling up policy, and then create the scaling down policy. For
increasing the group size, choose CPU as a metric and use a number
greater than or equal to 60 percent CPU utilization. Set to add one
instance and wait for 300 seconds before allowing another scaling
activity. Similarly, create another policy for scaling down, choose the
metric CPU, and select less than or equal to 20 percent, and set the
action of removing an instance.

15. The next step is to add a notification. In the field Send A Notification
Topic, enter the topic Auto Scale test. For these recipients, put your e-
mail address, and select all the check boxes: Launch, Terminate, Fail
To Launch, and Fail To Terminate. Click Next.

16. Now configure the tags. By using the tags, you should be able to
uniquely identify the EC2 instances created by Auto Scaling. In the
Key field, type the name, and in the Value field type
EC2AutoScaleLab.

17. Click Review. This screen will show you all the options you have
chosen. If it looks good, click Create Auto Scaling Group.

18. Once you click Create Auto Scaling Group, your Auto Scaling group
will be created for you and will start two EC2 instances as part of the
initial group.

19. Now log in to both instances and run the following command, which
will increase your CPU, from the terminal:

20. Open another terminal and monitor using the top command. Once the
CPU has spiked, keep monitoring your console. You will see that
another EC2 instance will be started by the Auto Scaling group. Also,
the moment the CPU spikes up to 60 percent, you will get an e-mail
alert that the CPU is more than 60 percent. Similarly, you will get
another e-mail notification when Auto Scaling has launched another
instance. Now kill the command, and the CPU will go down. Observe
from the console that Auto Scaling is going to shut down a server for
you, and again you will get an e-mail notification.

Chapter Review
In this chapter, you learned that Auto Scaling is the technology that allows
you to scale your workload automatically up and down based on the rules
you define. Auto Scaling can be integrated with various AWS services. The
most popular use case is with EC2. To use Auto Scaling for an EC2
instance, you need to create a launch configuration, which stores all the
information about the instance such as the AMI details, instance type, key
pair, security group, IAM instance profile, user data, storage attached, and
so on. Then you create an Auto Scaling group, where you define the logic
for scaling up and scaling down. It has all the rules and policies that govern
how the EC2 instances will be terminated or started. To create an Auto
Scaling group, you also need to define the minimum and maximum EC2
instances.

There are three types of scaling policies that you can have:

• Simple scaling Using simple scaling, you can scale up or down on
the basis of only one scaling adjustment. In this mechanism, you

select an alarm, which can be either CPU utilization, disk read, disk
write, network in, network out, and so on.

• Simple scaling with steps With simple scaling with steps, you do
everything just like simple scaling, but in the end you add a few
more steps.

• Target-tracking scaling policy In this policy, either you can select a
predetermined metric or you choose your own metric and then set it
to a target value. For example, you can choose the metric CPU
utilization and set the target value to 50 percent.

You also learned about Elastic Load Balancing. Elastic Load Balancing
balances the workload across multiple EC2 instances. There are three main
load balancers you can leverage using Amazon Web Services:

• Network load balancer This is also known as a TCP load balancer.
It acts in layer 4 of the OSI model. This is basically a connection-
based load balancing model.

• Application load balancer The application load balancer works on
layer 7 of the OSI model. It supports HTTP and HTTPS.

• Classic load balancer The classic load balancer supports the classic
EC2 instances.

Questions
1. Where do you define the details of the type of servers to be launched

when launching the servers using Auto Scaling?
A. Auto Scaling group
B. Launch configuration
C. Elastic Load Balancer
D. Application load balancer

2. What happens when the Elastic Load Balancing fails the health check?
(Choose the best answer.)
A. The Elastic Load Balancing fails over to a different load balancer.
B. The Elastic Load Balancing keeps on trying until the instance

comes back online.

C. The Elastic Load Balancing cuts off the traffic to that instance
and starts a new instance.

D. The load balancer starts a bigger instance.
3. When you create an Auto Scaling mechanism for a server, which two

things are mandatory? (Choose two.)
A. Elastic Load Balancing
B. Auto Scaling group
C. DNS resolution
D. Launch configuration

4. You have configured a rule that whenever the CPU utilization of your
EC2 goes up, Auto Scaling is going to start a new server for you.
Which tool is Auto Scaling using to monitor the CPU utilization?
A. CloudWatch metrics.
B. Output of the top command.
C. The ELB health check metric.
D. It depends on the operating system. Auto Scaling uses the OS-

native tool to capture the CPU utilization.
5. The listener within a load balancer needs two details in order to listen

to incoming traffic. What are they? (Choose two.)
A. Type of operating system
B. Port number
C. Protocol
D. IP address

6. Which load balancer is not capable of doing the health check?
A. Application load balancer
B. Network load balancer
C. Classic load balancer
D. None of the above

7. If you want your request to go to the same instance to get the benefits
of caching the content, what technology can help provide that
objective?

A. Sticky session
B. Using multiple AZs
C. Cross-zone load balancing
D. Using one ELB per instance

8. You are architecting an internal-only application. How can you make
sure the ELB does not have any Internet access?
A. You detach the Internet gateway from the ELB.
B. You create the instances in the private subnet and hook up the

ELB with that.
C. The VPC should not have any Internet gateway attached.
D. When you create the ELB from the console, you can define

whether it is internal or external.
9. Which of the following is a true statement? (Choose two.)

A. ELB can distribute traffic across multiple regions.
B. ELB can distribute across multiple AZs but not across multiple

regions.
C. ELB can distribute across multiple AZs.
D. ELB can distribute traffic across multiple regions but not across

multiple AZs.
10. How many EC2 instances can you have in an Auto Scaling group?

A. 10.
B. 20.
C. 100.
D. There is no limit to the number of EC2 instances you can have in

the Auto Scaling group.

Answers
1. B. You define the type of servers to be launched in the launch

configuration. The Auto Scaling group is used to define the scaling
policies, Elastic Load Balancing is used to distribute the traffic across

multiple instances, and the application load balancer is used to
distribute the HTTP/HTTS traffic at OSI layer 7.

2. C. When Elastic Load Balancing fails over, it is an internal
mechanism that is transparent to end users. Elastic Load
Balancing keeps on trying, but if the instance does not come back
online, it starts a new instance. It does not wait indefinitely for that
instance to come back online. The load balancer starts the new
instance, which is defined in the launch configuration. It is going to
start the same type of instance unless you have manually changed the
launch configuration to start a bigger type of instance.

3. B, D. The launch configuration and the Auto Scaling group are
mandatory.

4. A. Auto Scaling relies on the CloudWatch metrics to find the CPU
utilization. Using the top command or the native OS tools, you should
be able to identify the CPU utilization, but Auto Scaling does not use
that.

5. B, C. Listeners define the protocol and port on which the load
balancer listens for incoming connections.

6. D. All the load balancers are capable of doing a health check.
7. A. Using multiple AZs, you can distribute your load across multiple

AZs, but you can’t direct the request to go to the same instance. Cross-
zone load balancing is used to bypass caching. Using one ELB per
instance is going to complicate things.

8. D. You can’t attach or detach an Internet gateway with ELB, even if
you create the instances in a private subnet; and if you create an
external-facing ELB instance, it will have Internet connectivity. The
same applies for VPC; even if you take an IG out of the VPC but
create ELB as external facing, it will still have Internet connectivity.

9. B, C. ELB can span multiple AZs within a region. It cannot span
multiple regions.

10. D. There is no limit to the number of EC2 instances you can have in
the Auto Scaling group. However, there might an EC2 limitation in
your account that can be increased by logging a support ticket.

CHAPTER 7
Deploying and Monitoring
Applications on AWS

In this chapter, you will
• Learn about serverless applications
• Be introduced to AWS Lambda
• Learn about API Gateway
• Learn about Amazon Kinesis Data Steams, Amazon Kinesis Data

Firehose, and Amazon Kinesis Data Analytics
• Explore Amazon CloudFront, Amazon Route 53, AWS WAF, and

AWS Shield
• Learn about AWS SQS, SNS, and Step Functions
• Learn about Elastic Beanstalk and AWS OpsWorks
• Understand Amazon Cognito
• Learn about Amazon Elastic MapReduce
• Learn about AWS CloudFormation
• Learn how to monitor the AWS services by exploring the monitoring

services such as Amazon CloudWatch, AWS CloudTrail, AWS
Config, VPC Flow Logs, and AWS Trusted Advisor

• Learn how to manage multiple AWS accounts using AWS
Organizations

AWS Lambda
When you’re building applications, you want them to deliver a great
experience for your users. Maybe you want your application to generate in-
app purchase options during a gaming session, rapidly validate street
address updates, or make image thumbnails available instantly after a user

uploads photos. To make this magic happen, your application needs back-
end code that runs in response to events such as image uploads, in-app
activity, web site clicks, or censor outputs. But managing the infrastructure
to host and execute back-end code requires you to size, provision, and scale
a bunch of servers; manage operating system updates; apply security
patches; and then monitor all this infrastructure for performance and
availability. Wouldn’t it be nice if you could just focus on building great
applications without having to spend a lot of time managing servers?

AWS Lambda is a compute service that runs your back-end code in
response to events such as object uploads to Amazon S3 buckets, updates to
Amazon DynamoDB tables, data in Amazon Kinesis Data Streams, or in-
app activity. Once you upload your code to AWS Lambda, the service
handles all the capacity, scaling, patching, and administration of the
infrastructure to run your code and provides visibility into performance by
publishing real-time metrics and logs to Amazon CloudWatch. All you need
to do is write the code.

AWS Lambda is low cost and does not require any up-front investment.
When you use AWS Lambda, you’re simply charged a low fee per request
and for the time your code runs, measured in increments of 100
milliseconds. Getting started with AWS Lambda is easy; there are no new
language tools or frameworks to learn, and you can use any third-party
library and even native ones. The code you run on AWS Lambda is called a
Lambda function. You just upload your code as a ZIP file or design it in the
integrated development environment in the AWS Management Console, or
you can select prebuilt samples from a list of functions for common use
cases such as image conversion, file compression, and change notifications.
Also, built-in support for the AWS SDK makes it easy to call other AWS
services. Once your function is loaded, you select the event source to
monitor such as an Amazon S3 bucket or Amazon DynamoDB table, and
within a few seconds AWS Lambda will be ready to trigger your function
automatically when an event occurs. With Lambda, any event can trigger
your function, making it easy to build applications that respond quickly to
new information.

Is AWS Lambda Really Serverless?

AWS Lambda is a compute service, and the biggest advantage of using
AWS Lambda is you don’t have to provision or manage any infrastructure.
It is a serverless service. I’ll first explain what is meant by serverless. If the
platform is to be considered serverless, it should provide these capabilities
at a minimum:

• No infrastructure to manage As the name serverless implies, there
should not be any infrastructure to manage.

• Scalability You should be able to scale up and down your
applications built on the serverless platform seamlessly.

• Built-in redundancy The serverless platform should be highly
available at all times.

• Pay only for usage On the serverless platform, you have to pay only
when you are using the service; if you are not using the service, you
don’t have to pay anything. For example, by using Lambda, you pay
only when your code is running. If your code is not running, you
don’t pay anything. Also, the biggest savings come from the fact that
you aren’t paying for a server or the costs associated with running a
server, such as data center costs, which include power, cooling,
networking, and floor space.

If you study these four characteristics carefully, you will realize that
many AWS services that you have studied elsewhere in the book are
serverless. Specifically, these AWS services are serverless:

• Amazon S3
• Amazon DynamoDB
• Amazon API Gateway
• AWS Lambda
• Amazon SNS and SQS
• Amazon CloudWatch Events
• Amazon Kinesis

You may be wondering whether serverless is really serverless. Aren’t
there any servers running behind the scenes? You’re right; serverless does
not literally mean no servers. There are fleets of EC2 servers running

behind the scenes to support the serverless infrastructure. AWS takes care
of the provisioning, management, stability, and fault tolerance of the
underlying infrastructure. AWS keeps everything ready for you; you just
need to use the service. For example, for S3, all the infrastructure is already
provisioned; you just need to upload your content. Similarly, for Lambda,
you just need to execute your code. Since you don’t have to deal with the
server infrastructure in the back end, these services are called serverless.

Understanding AWS Lambda
By using AWS Lambda, you get all the benefits obtained via a serverless
platform. You are charged based on the number of requests for your
functions and their duration (the time it takes for your code to execute).
This cost is also based on the memory consumption. You don’t pay
anything when your code isn’t running.

With Lambda, you can run code for virtually any type of application or
back-end service. Lambda runs and scales your code with high availability.
Each Lambda function you create contains the code you want to execute,
the configuration that defines how your code is executed, and, optionally,
one or more event sources that detect events and invoke your function as
they occur.

An event source can be an Amazon SNS function that can trigger the
Lambda function, or it can be an API Gateway event (covered in the next
section of this book) that can invoke a Lambda function whenever an API
method created with API Gateway receives an HTTPS request. There are
lots of event sources that can trigger a Lambda function, such as Amazon
S3, Amazon DynamoDB, Amazon Kinesis, Amazon CloudWatch, and so
on. For the examination, you don’t have to remember all the event sources.

Figure 7-1 shows what the simplest architecture of AWS Lambda looks
like.

Figure 7-1 Architecture of a running AWS Lambda function

After you have configured an event source, as soon as the event occurs
(the event can be an image upload, in-app activity, web site click, and so
on), your code is invoked (as a Lambda function). The code can be
anything; it can be business logic or whatever end result you want. You will
look at a couple of reference architectures using Lambda in the “Reference
Architectures Using Serverless Services” section, which will give you more
exposure to various use cases.

You can run as many Lambda functions in parallel (or concurrently) as
you need; there is no limit to the number of Lambda functions you can run
at any particular point of time, and they scale on their own. Lambda
functions are “stateless,” with no affinity to the underlying infrastructure so
that Lambda can rapidly launch as many copies of the function as needed to
scale to the rate of incoming events. AWS Lambda allows you to decouple
your infrastructure since it provides you with the ability to replace servers
with microprocesses. As a result, building microservices using Lambda
functions and API Gateway is a great use case.

With AWS Lambda, you can use the normal language and operating
system features, such as creating additional threads and processes. The
resources allocated to the Lambda function, such as memory, disk, runtime,
and network usage, must be shared among all the processes the function
uses. The processes can be launched using any language supported by
Amazon Linux.

The following are the high-level overview of steps you need to take to
use AWS Lambda:

1. Upload the code to AWS Lambda in ZIP format. Alternatively, you can
author the code from scratch or browse the serverless application
repository to get some sample code.

2. Add an IAM role to the function or create a new role to run the
function.

3. Once the function is created, add a trigger to invoke the Lambda
function.

4. Configure the destination details, which send invocation records to a
destination when your function is invoked asynchronously or if your
function processes records from a stream.

5. Once the function is created, you can schedule it and specify how often
the function will run. You can also specify whether the function is
driven by an event and, if so, what the source of the event is.

6. You can specify various configurations for the Lambda function, such
as the compute resource for the event (which can be from 128MB to
3008MB of memory), the timeout period for the event, VPC details,
and so on.

Figure 7-2 summarizes how Lambda works.

Figure 7-2 How AWS Lambda works

AWS Lambda natively supports the following languages:

• Java
• Node.js
• Python
• C#
• Go
• PowerShell
• Ruby

In addition, AWS Lambda provides a runtime API that allows you to use
any additional programming languages to author your functions.

EXAM TIP Remember these languages; there might be a question on the
exam about the languages that AWS Lambda supports.

AWS
It is important to know the resource limits of AWS Lambda so that you can
find the right use case for Lambda, as shown in Table 7-1. For example, if
you want a job to run for 12 hours, you won’t be able to do that via AWS
Lambda since the maximum execution duration per request is 300 seconds,
or 5 minutes.

Table 7-1 AWS Lambda Resource Limits per Invocation

Also, there is a limit of 1,000 concurrent executions, but just like any
other AWS service, you can increase the service limit by creating a support
ticket or case.

Lambda Usage Pattern
The following are some of the most common real-life usage patterns of
Lambda. Since Lambda can be directly triggered by AWS services, such as
Amazon S3, DynamoDB, Amazon Kinesis Data Streams, Amazon Simple
Notification Service (Amazon SNS), and Amazon CloudWatch, it allows
you to build a variety of real-time data-processing systems.

• Real-time File Processing You can trigger Lambda to invoke a
process when a file has been uploaded to Amazon S3 or modified.
For example, you might change an image from color to grayscale
after it has been uploaded to Amazon S3.

• Real-time Stream Processing You can use Kinesis Data Streams
and Lambda to process streaming data for click stream analysis, log
filtering, and social media analysis.

• Extract, Transform, Load You can use Lambda to run code that
transforms data and loads that data into one data repository or
another.

• Replace Cron Use schedule expressions to run a Lambda function at
regular intervals as a cheaper and more available solution than
running cron on an EC2 instance.

• Process AWS Events You can use many other services, such as
AWS CloudTrail, to act as event sources simply by logging in to
Amazon S3 and using S3 bucket notifications to trigger Lambda
functions.

Amazon API Gateway
Architecting, deploying, maintaining, and monitoring an API are time-
consuming and challenging tasks. If you want to continuously improve as
well, this is an even bigger challenge. Often you have to run different
versions of the same APIs to maintain the backward compatibility of the

APIs for all the clients. The effort required can increase depending on
which phase of the development cycle you are in (development, testing, or
production).

Also, it is important to handle the access authorization aspect for every
API. It is a critical feature for all APIs but complex to build and involves
repetitive work. When an API is published and becomes successful, the
next challenge is to manage, monitor, and monetize the ecosystem of third-
party developers utilizing the API.

Other challenges of developing APIs are throttling requests to protect the
back end, caching API responses, transforming requests and responses, and
generating API definitions. Sometimes documentation with tools adds to
the complexity.

Amazon API Gateway not only addresses those challenges but also
reduces the operational complexity of creating and maintaining RESTful
APIs.

API Gateway is a fully managed service that makes it easy for
developers to define, publish, deploy, maintain, monitor, and secure APIs at
any scale. Clients integrate with the APIs using standard HTTPS requests.
API Gateway serves as a front door (to access data, business logic, or
functionality from your back-end services) to any web application running
on Amazon EC2, Amazon ECS, AWS Lambda, or on-premises
environment. It has specific features and qualities that result in it being a
powerful edge for your logic tier. Thus, you can use API Gateway in the
following ways:

• To create, deploy, and manage a RESTful API to expose back-end
HTTP endpoints, AWS Lambda functions, or other AWS services

• To invoke exposed API methods through the front-end HTTP
endpoints

API Gateway is capable of handling all the tasks involved in processing
hundreds of thousands of concurrent API calls. It handles the day-to-day
challenges for managing an API very well. For example, it can do traffic
management, it is able to handle the authorization and access control, it can
take care of the monitoring aspect, it can do version control, and so on. It
has a simple pay-as-you-go pricing model where you pay only for the API

calls you receive and the amount of data transferred out. There are no
minimum fees or startup costs.

API Types Supported by API Gateway
Here are the API types supported by the API Gateway:

• REST API REST APIs offer API proxy functionality and API
management features in a single solution. REST APIs offer API
management features such as usage plans, API keys, publishing, and
monetizing APIs.

• WebSocket API Using WebSocket APIs you can maintain a
persistent connection between the clients, thereby enabling real-time
message communication.

• HTTP API HTTP APIs are optimized for building APIs that proxy
to AWS Lambda functions or HTTP back ends, making them ideal
for serverless workloads.

Benefits of Amazon API Gateway
These are some of the benefits that you get by using Amazon API Gateway:

• Resiliency and performance at any scale Amazon API Gateway
can manage any amount of traffic with throttling so that back-end
operations can withstand traffic spikes. You don’t have to manage
any infrastructure for API Gateway, and the infrastructure scales on
its own depending on your needs.

• Caching API Gateway provides the ability to cache the output of
API calls to improve the performance of your API calls and reduce
the latency since you don’t have to call the back end every time. As a
result, it provides a great user experience.

• Security API Gateway provides several tools to authorize access to
your APIs and control service operation access. You can also use the
AWS native tools such as AWS Identity and Access Management
(IAM) and Amazon Cognito to authorize access to your APIs. API
Gateway also has the capability to verify signed API calls. API
Gateway leverages signature version 4 to authorize access to APIs.

• Metering API Gateway helps you define plans that meter and
restrict third-party developer access to your APIs. API Gateway
automatically meters traffic to your APIs and lets you extract
utilization data for each API key. (API keys are a great tool to
manage the community of third-party developers interacting with the
APIs.) API Gateway allows developers to create API keys through a
console interface or through an API for programmatic creation. You
can set permissions on API keys and allow access only to a set of
APIs, or stages within an API. You also have the ability to configure
throttling and quota limits on a per API key basis. Thus, API
Gateway helps developers create, monitor, and manage API keys
that they can distribute to third-party developers.

• Monitoring Once you deploy an API, API Gateway provides you
with a dashboard to view all the metrics and to monitor the calls to
your services. It is also integrated with Amazon CloudWatch, and
hence you can see all the statistics related to API calls, latency, error
rates, and so on.

• Lifecycle management API Gateway allows you to maintain and
run several versions of the same API at the same time. It also has
built-in stages. These enable developers to deploy multiple stages of
each version such as the development stage, production stage, or
beta stage.

• Integration with other AWS products API Gateway can be
integrated with AWS Lambda, which helps you to create completely
serverless APIs. Similarly, by integrating with Amazon CloudFront,
you can get protection against distributed denial-of-service (DDoS)
attacks.

• Open API specification (Swagger) support API Gateway supports
open source Swagger. Using the AWS open source Swagger
importer tool, you can import your Swagger API definitions into
Amazon API Gateway. With the Swagger importer tool, you can
create and deploy new APIs as well as update existing ones.

• SDK generation for iOS, Android, and JavaScript API Gateway
can automatically generate client SDKs based on your customer’s
API definition. This allows developers to take their APIs from
concept to integration test in a client app in a matter of hours.

EXAM TIP Amazon API Gateway recently has been added to the
associate examination; therefore, you should be able to identify the use
cases of API Gateway and articulate the benefits of using API Gateway.

Lambda can be easily integrated with API Gateway. The combination of
API Gateway and Lambda can be used to create fully serverless
applications.

Figure 7-3 shows the serverless microservices architecture with AWS
Lambda.

Figure 7-3 Microservices architecture with AWS Lambda

Amazon Kinesis

In the past few years, there has been a huge proliferation of data available to
businesses. They are now receiving an enormous amount of continuous
streams of data from a variety of sources. For example, the data might be
coming from IoT devices, online gaming data, application server log files,
application clickstream data, and so on. If you want to get insight from the
data, you should be able to quickly process and analyze it. Having the
ability to process and analyze becomes extremely important because that
governs how you are going to serve your customers. For example,
depending on a customer’s purchase patterns, you can customize the
promotions, or you can provide personal recommendations based on the
patterns of the customer.

Real-Time Application Scenarios
There are two types of use case scenarios for streaming data applications:

• Evolving from batch to streaming analytics You can perform real-
time analytics on data that has been traditionally analyzed using
batch processing in data warehouses or using Hadoop frameworks.
The most common use cases in this category include data lakes, data
science, and machine learning. You can use streaming data solutions
to continuously load real-time data into your data lakes. You can also
update machine learning models more frequently as new data
becomes available, ensuring the accuracy and reliability of the
outputs. For example, Zillow uses Amazon Kinesis Data Streams to
collect public record data and MLS listings and then provides home
buyers and sellers with the most up-to-date home value estimates in
near real time. Zillow also sends the same data to its Amazon Simple
Storage Service (S3) data lake using Kinesis Data Streams so that all
the applications work with the most recent information.

• Building real-time applications You can use streaming data
services for real-time applications such as application monitoring,
fraud detection, and live leaderboards. These use cases require
millisecond end-to-end latencies, from ingestion to processing and
all the way to emitting the results to target data stores and other
systems. For example, Netflix uses Kinesis Data Streams to monitor
the communications between all its applications so it can detect and

fix issues quickly, ensuring high service uptime and availability to its
customers. While the most commonly applicable use case is
application performance monitoring, more real-time applications in
ad tech, gaming, and IoT are falling into this category.

Differences Between Batch and Stream Processing
You need a different set of tools to collect, prepare, and process real-time
streaming data than the tools that you have traditionally used for batch
analytics. With traditional analytics, you gather the data, load it periodically
into a database, and analyze it hours, days, or weeks later. Analyzing real-
time data requires a different approach. Instead of running database queries
over stored data, stream-processing applications process data continuously
in real time, even before it is stored. Streaming data can come in at a
blistering pace, and data volumes can increase or decrease at any time.
Stream data–processing platforms have to be able to handle the speed and
variability of incoming data and process it as it arrives, meaning often
millions to hundreds of millions of events per hour.

The Amazon Kinesis family provides you with solutions to manage huge
quantities of data and gain meaningful insights from it. Amazon Kinesis
consists of the following products:

• Amazon Kinesis Data Streams
• Amazon Kinesis Data Firehose
• Amazon Kinesis Data Analytics

• Amazon Kinesis Video Streams

Amazon Kinesis Data Steams
Amazon Kinesis Data Streams enables you to build custom applications
that process or analyze streaming data for specialized needs. Kinesis Data
Streams can continuously capture and store terabytes of data per hour from
hundreds of thousands of sources such as web site clickstreams, financial
transactions, social media feeds, IT logs, and location-tracking events. With
the Kinesis Client Library (KCL), you can build Kinesis applications and
use streaming data to power real-time dashboards, generate alerts,

implement dynamic pricing and advertising, and more. You can also emit
data from Kinesis Data Streams to other AWS services such as Amazon S3,
Amazon Redshift, Amazon EMR, and AWS Lambda.

Benefits of Amazon Kinesis Data Streams
These are the benefits of Amazon Kinesis Data Streams:

• Real time Kinesis Data Streams allows for real-time data processing.
With Kinesis Data Streams, you can continuously collect data as it is
generated and promptly react to critical information about your
business and operations.

• Secure You can privately access Kinesis Data Streams APIs from
Amazon Virtual Private Cloud (VPC) by creating VPC endpoints.
You can meet your regulatory and compliance needs by encrypting
sensitive data within Kinesis Data Streams using server-side
encryption and AWS Key Management Service (KMS) master keys.

• Easy to use You can create a Kinesis stream within seconds. You can
easily put data into your stream using the Kinesis Producer Library
(KPL) and build Kinesis applications for data processing using the
Kinesis Client Library. An Amazon Kinesis Data Streams producer
is any application that puts user data records into a Kinesis data
stream (also called data ingestion). The Kinesis Producer Library
simplifies producer application development, allowing developers to
achieve high-write throughput to a Kinesis stream.

• Parallel processing Kinesis Data Streams allows you to have
multiple Kinesis applications processing the same stream
concurrently. For example, you can have one application running
real-time analytics and another sending data to Amazon S3 from the
same stream.

• Elastic The throughput of a Kinesis data stream can scale from
megabytes to terabytes per hour and from thousands to millions of
PUT records per second. You can dynamically adjust the throughput
of your stream at any time based on the volume of your input data.

• Low cost Kinesis Data Streams has no up-front cost, and you pay for
only the resources you use.

• Reliable Kinesis Data Streams synchronously replicates your
streaming data across three facilities in an AWS region and preserves
your data for up to seven days, reducing the probability of data loss
in the case of application failure, individual machine failure, or
facility failure.

Amazon Kinesis Data Firehose
Amazon Kinesis Data Firehose is the easiest way to load streaming data
into data stores and analytics tools. It can capture, transform, and load
streaming data into Amazon S3, Amazon Redshift, Amazon Elasticsearch,
and Splunk, enabling near real-time analytics with the existing business
intelligence tools and dashboards you’re already using today. It is a fully
managed service that automatically scales to match the throughput of your
data and requires no ongoing administration. It can also batch, compress,
and encrypt the data before loading it, minimizing the amount of storage
used at the destination and increasing security.

You can easily create a Firehose delivery stream from the AWS
Management Console or AWS SDK, configure it with a few clicks, and
start sending data to the stream from hundreds of thousands of data sources
to be loaded continuously to AWS—all in just a few minutes. With Amazon
Kinesis Data Firehose, you pay only for the amount of data you transmit
through the service. There is no minimum fee or setup cost.

Amazon Kinesis Data Firehose manages all underlying infrastructure,
storage, networking, and configuration needed to capture and load your data
into Amazon S3, Amazon Redshift, Amazon Elasticsearch, or Splunk. You
do not have to worry about provisioning, deployment, ongoing maintenance
of the hardware or software, or writing any other application to manage this
process. Firehose also scales elastically without requiring any intervention
or associated developer overhead. Moreover, Amazon Kinesis Data
Firehose synchronously replicates data across three facilities in an AWS
region, providing high availability and durability for the data as it is
transported to the destinations.

Figure 7-4 shows how Kinesis Data Firehose works.

Figure 7-4 How Amazon Kinesis Data Firehose works

Benefits of Amazon Kinesis Data Firehose
These are the benefits of Amazon Kinesis Data Firehose:

• Easy to use Amazon Kinesis Data Firehose provides a simple way to
capture and load streaming data with just a few clicks in the AWS
Management Console. You can simply create a Firehose delivery
stream, select the destinations, and start sending real-time data from
hundreds of thousands of data sources simultaneously. The service
takes care of stream management, including all the scaling, sharding,
and monitoring needed to continuously load the data to destinations
at the intervals you specify.

• Integrated with AWS data stores Amazon Kinesis Data Firehose is
integrated with Amazon S3, Amazon Redshift, and Amazon
Elasticsearch. From the AWS Management Console, you can point
Kinesis Data Firehose to an Amazon S3 bucket, Amazon Redshift
table, or Amazon Elasticsearch domain. You can then use your
existing analytics applications and tools to analyze streaming data.

• Serverless data transformation Amazon Kinesis Data Firehose
enables you to prepare your streaming data before it is loaded to data
stores. With Kinesis Data Firehose, you can easily convert raw
streaming data from your data sources into formats required by your
destination data stores, without having to build your own data-
processing pipelines.

• Near real time Amazon Kinesis Data Firehose captures and loads
data in near real time. It loads new data into Amazon S3, Amazon

Redshift, Amazon Elasticsearch, and Splunk within 60 seconds after
the data is sent to the service. As a result, you can access new data
sooner and react to business and operational events faster.

• No ongoing administration Amazon Kinesis Data Firehose is a
fully managed service that automatically provisions, manages, and
scales compute, memory, and network resources required to load
your streaming data. Once set up, Kinesis Data Firehose loads data
continuously as it arrives.

• Pay only for what you use With Amazon Kinesis Data Firehose,
you pay only for the volume of data you transmit through the
service. There are no minimum fees or up-front commitments.

Amazon Kinesis Data Analytics
Amazon Kinesis Data Analytics is the easiest way to process and analyze
real-time, streaming data. With Amazon Kinesis Data Analytics, you just
use standard SQL to process your data streams, so you don’t have to learn
any new programming language. Simply point Kinesis Data Analytics at an
incoming data stream, write your SQL queries, and specify where you want
to load the results. Kinesis Data Analytics takes care of running your SQL
queries continuously on data while it’s in transit and then sends the results
to the destinations.

Data is coming at us at lightning speeds because of the explosive growth
of real-time data sources. Whether it is log data coming from mobile and
web applications, purchase data from e-commerce sites, or sensor data from
IoT devices, the massive amounts of data can help companies learn about
what their customers and clients are doing. By getting visibility into this
data as it arrives, you can monitor your business in real time and quickly
leverage new business opportunities—such as making promotional offers to
customers based on where they might be at a specific time or monitoring
social sentiment and changing customer attitudes to identify and act on new
opportunities.

To take advantage of these opportunities, you need a different set of
analytics tools for collecting and analyzing real-time streaming data than
what has been available traditionally for static, stored data. With traditional
analytics, you gather the information, store it in a database, and analyze it

hours, days, or weeks later. Analyzing real-time data requires a different
approach and different tools and services. Instead of running database
queries on stored data, streaming analytics platforms process the data
continuously before the data is stored in a database. Streaming data flows at
an incredible rate that can vary up and down all the time. Streaming
analytics platforms have to be able to process this data when it arrives,
often at speeds of millions of events per hour.

Benefits of Amazon Kinesis Data Analytics
These are the benefits of Amazon Kinesis Data Analytics:

• Powerful real-time processing Amazon Kinesis Data Analytics
processes streaming data with subsecond processing latencies,
enabling you to analyze and respond in real time. It provides built-in
functions that are optimized for stream processing, such as anomaly
detection and top-K analysis, so that you can easily perform
advanced analytics.

• Fully managed Amazon Kinesis Data Analytics is a fully managed
service that runs your streaming applications without requiring you
to provision or manage any infrastructure.

• Automatic elasticity Amazon Kinesis Data Analytics automatically
scales up and down the infrastructure required to run your streaming
applications with low latency.

• Easy to use Amazon Kinesis Data Analytics provides interactive
tools including a schema editor, a SQL editor, and SQL templates to
make it easy to build and test your queries for both structured and
unstructured input data streams.

• Standard SQL Amazon Kinesis Data Analytics supports standard
SQL. There is no need to learn complex processing frameworks and
programming languages.

• Pay only for what you use With Amazon Kinesis Data Analytics,
you pay only for the processing resources your streaming application
uses. As the volume of input data changes, Amazon Kinesis Data
Analytics automatically scales resources up and down and charges
you only for the resources actually used for processing. There are no
minimum fees or up-front commitments.

Use Cases for Amazon Kinesis Data Analytics
You can use Amazon Kinesis Data Analytics in pretty much any use case
where you are collecting data continuously in real time and want to get
information and insights in seconds or minutes rather than having to wait
days or even weeks. In particular, Kinesis Data Analytics enables you to
quickly build applications that process streams from end to end for log
analytics, clickstream analytics, Internet of Things (IoT), ad tech, gaming,
and more. The three most common usage patterns are time-series analytics,
real-time dashboards, and real-time alerts and notifications.

Generate Time-Series Analytics
Time-series analytics enables you to monitor and understand how your data
is trending over time. With Amazon Kinesis Data Analytics, you can author
SQL code that continuously generates these time-series analytics over
specific time windows. For example, you can build a live leaderboard for a
mobile game by computing the top players every minute and then sending it
to Amazon S3. Or, you can track the traffic to your web site by calculating
the number of unique site visitors every five minutes and then send the
processed results to Amazon Redshift.

Feed Real-Time Dashboards
You can build applications that compute query results and emit them to a
live dashboard, enabling you to visualize the data in near real time. For
example, an application can continuously calculate business metrics such as
the number of purchases from an e-commerce site, grouped by the product
category, and then send the results to Amazon Redshift for visualization
with a business intelligence tool of your choice. Consider another example
where an application processes log data, calculates the number of
application errors, and then sends the results to the Amazon Elasticsearch
Service for visualization with Kibana.

Create Real-Time Alarms and Notifications
You can build applications that send real-time alarms or notifications when
certain metrics reach predefined thresholds or, in more advanced cases,
when your application detects anomalies using the machine learning

algorithm you provide. For example, an application can compute the
availability or success rate of a customer-facing API over time and then
send the results to Amazon CloudWatch. You can build another application
to look for events that meet certain criteria and then automatically notify the
right customers using Kinesis Data Streams and Amazon Simple
Notification Service (SNS).

Amazon Kinesis Video Streams
Kinesis Video Streams is the latest addition to the Kinesis family. Kinesis
Video Streams is not covered in the SAA examination, so we won’t cover it
in detail here. However, it is part of Kinesis family, and by using this
product you can build your applications, so it is good to know what this
product is all about and what it does.

It’s a fully managed service which can be used for ingesting, storing, and
processing media files. Using this service you can process any volume of
the media files. Since it is a managed service, you don’t have to provision
any infrastructure. This service automatically scales the infrastructure for
you depending on the requirement. The data is stored across multiple AZs
to provide durability, and you can stream your media through easy-to-use
APIs. Using this service, you can do the following:

• Stream video from millions of devices
• Build real-time vision and video-enabled apps
• Play back live and recorded video streams
• Build apps with two-way, real-time media streaming

Reference Architectures Using Serverless
Services
In this section, you will explore the reference architecture when using AWS
Lambda, Amazon API Gateway, and Amazon Kinesis. This will help you to
understand the practical implementation aspects of using serverless
architecture.

Real-Time File Processing
You can use Amazon S3 to trigger AWS Lambda to process data
immediately after an upload. For example, you can use Lambda to create
thumbnail images, transcode videos, index files, process logs, validate
content, and aggregate and filter data in real time. Figure 7-5 shows the
reference architecture for real-time file processing.

Figure 7-5 Reference architecture for real-time file processing

Real-Time Stream Processing
You can use AWS Lambda and Amazon Kinesis to process real-time
streaming data for application activity tracking, transaction order
processing, clickstream analysis, data cleansing, metrics generation, log
filtering, indexing, social media analysis, and IoT device data telemetry and
metering. Figure 7-6 shows the reference architecture for real-time stream
processing.

Figure 7-6 Reference architecture for real-time stream processing

Extract, Transformation, and Load (ETL)
Processing
You can use AWS Lambda to perform data validation, filtering, sorting, or
other transformations for every data change in a DynamoDB table and load
the transformed data into another data store. Figure 7-7 shows the reference
architecture for a data warehouse ETL.

Figure 7-7 Reference architecture for data warehouse ETL

IoT Back Ends

This example leverages a serverless architecture for back ends using AWS
Lambda to handle web, mobile, Internet of Things (IoT), and third-party
API requests. Figure 7-8 shows the IoT back end.

Figure 7-8 IoT back end

Figure 7-9 shows the reference architecture for a weather application
with API Gateway and AWS Lambda.

Figure 7-9 Reference architecture for a weather application using Amazon
API Gateway and AWS Lambda

Amazon CloudFront

Amazon CloudFront is a global content delivery network (CDN) service
that allows you to distribute content with low latency and provides high
data transfer speeds. Amazon CloudFront employs a global network of edge
locations and regional edge caches that cache copies of your content close
to your viewers. In addition to caching static content, Amazon CloudFront
accelerates dynamic content. Amazon CloudFront ensures that end-user
requests are served by the closest edge location. It routes viewers to the best
location. As a result, viewer requests travel a short distance, improving
performance for your viewers. As of the writing this book, Amazon
CloudFront has 217 points of presence (205 edge locations and 12 regional
edge caches) in 84 cities across 42 countries. When using Amazon
CloudFront, there are no minimum usage commitments; you pay only for
the data transfers and requests you actually use. Also, there is no data
transfer charges for data transferred between AWS regions and CloudFront
edge locations.

These are some of the use cases for Amazon CloudFront:

• Caching static assets This is the most common use case for Amazon
CloudFront. It helps in speeding up the delivery of your static
content such as photos, videos, style sheets, and JavaScript content
across the globe. The data is served to end users via edge locations.

• Accelerating dynamic content Amazon CloudFront has a lot of
network optimizations that accelerate the dynamic content. You can
integrate CloudFront with your application or web site running on
EC2 servers.

• Helping protect against distributed denial-of-service (DDoS)
attacks Amazon CloudFront can be integrated with AWS Shield and
WAF, which can protect layers 3 and 4 and layer 7, respectively,
against DDoS attacks. CloudFront negotiates TLS connections with
the highest security ciphers and authenticates viewers with signed
URLs.

• Improving security Amazon CloudFront can serve the content
securely with SSL (HTTPS). You can deliver your secure APIs or
applications using SSL/TLS, and advanced SSL features are enabled
automatically. CloudFront’s infrastructure and processes are all
compliant with PCI, DSS, HIPAA, and ISO to ensure the secure
delivery of your most sensitive data.

• Accelerating API calls Amazon CloudFront is integrated with
Amazon API Gateway and can be used to secure and accelerate your
API calls. CloudFront supports proxy methods such as POST, PUT,
OPTIONS, DELETE, and PATCH.

• Distributing software Amazon CloudFront is used for software
distribution. By using Amazon CloudFront for the distribution of
your software, you can provide a faster user experience since it is
going to result in faster downloads. Since Amazon CloudFront scales
automatically, you don’t have to bother about how much content it
can serve. You can make your software available right at the edge
where your users are.

• Streaming videos Amazon CloudFront can be used for video
streaming both live and on demand. It is capable of streaming 4K
video.

Amazon CloudFront Key Concepts
In this section, you will learn some Amazon CloudFront key terminology:

• Edge location CloudFront delivers your content through a
worldwide network of data centers called edge locations. These data
centers are located in major cities across the globe. It is likely that an
AWS region may not exist at a particular place where an edge
location is present.

• Regional edge location The regional edge caches are located
between your origin web server and the global edge locations that
serve content directly to your viewers. As objects become less
popular, individual edge locations may remove those objects to make
room for more popular content. Regional edge caches have a larger
cache width than any individual edge location, so objects remain in
the cache longer at the nearest regional edge caches. This helps keep
more of your content closer to your viewers, reducing the need for
CloudFront to go back to your origin web server and improving the
overall performance for viewers. This regional edge cache feature is
enabled by default, and you don’t have to do anything manually to
use this feature; it is not charged separately.

NOTE An origin web server is often referred to as an origin, which is the
location where your actual noncached data resides.

• Distribution A distribution specifies the location or locations of the
original version of your files. A distribution has a unique
CloudFront.net domain name (such as abc123.cloudfront.net) that
you can use to reference your objects through the global network of
edge locations. If you want, you can map your own domain name
(for example, www.example.com) to your distribution. You can
create distributions to either download your content using the HTTP
or HTTPS protocol or stream your content using the RTMP protocol.

• Origin CloudFront can accept any publicly addressable Amazon S3
or HTTP server, an ELB/ALB, or a custom origin server outside of
AWS as an origin. When you create an origin, you must provide the
public DNS name of the origin. For example, if you specify an EC2
server, it should be something like ec2-52-91-188-59.compute-
1.amazonaws.com.

• Behaviors Behaviors allow you to have granular control of the
CloudFront CDN, enforce certain policies, change results based on
request type, control the cacheability of objects, and more. You can
unleash the whole power of Amazon CloudFront using behaviors.
The following sections discuss the important behaviors that can be
configured with Amazon CloudFront.

Path Pattern Matching You can configure multiple cache behaviors based
on URL path patterns for the web site or application for which you are
going to use Amazon CloudFront. The pattern specifies which requests to
apply the behavior to. When CloudFront receives a viewer request, the
requested path is compared with path patterns in the order in which cache
behaviors are listed in the distribution, as in images/*.jpg and /images/*.
The CloudFront behavior is the same with or without the leading /. Based

https://www.example.com/

on the path pattern, you can route requests to specific origins, set the
HTTP/HTTPS protocol, set the header or caching options, set cookie and
query string forwarding, restrict access, and set compression.

Headers Using headers you can forward request headers to the origin cache
based on the header values. You can detect the device and take actions
accordingly. For example, you can have a different response if the user is
coming from a laptop or mobile device. Similarly, you can have a different
response based on the language; for example, a user can prefer Spanish but
will accept British. You can also have a different response based on the
protocol. For example, you can forward the request to different content
based on the connection type.

Query Strings/Cookies Some web applications use query strings to send
information to the origin. A query string is the part of a web request that
appears after a ? character; the string can contain one or more parameters
separated by & characters. For example, the following query string includes
two parameters, color=blue and size=small:

http://abc111xyz.cloudfront.net/images/image.jpg?
color=blue&size=small

Now let’s say your web site is available in three languages. The directory
structure and file names for all three versions of the web site are identical.
As a user views your web site, requests that are forwarded to CloudFront
include a language query string parameter based on the language that the
user chose. You can configure CloudFront to forward query strings to the
origin and to cache based on the language parameter. If you configure your
web server to return the version of a given page that corresponds with the
selected language, CloudFront will cache each language version separately,
based on the value of the language query string parameter.

In this example, if the main page for your web site is main.html, the
following three requests will cause CloudFront to cache main.html three
times, once for each value of the language query string parameter:

http://abc111xyz.cloudfront.net/main.html?language=en
http://abc111xyz.cloudfront.net/main.html?language=es

http://abc111xyz.cloudfront.net/main.html?language=fr

Signed URL or Signed Cookies If you move your static content to an S3
bucket, you can protect it from unauthorized access via CloudFront signed
URLs. A signed URL includes additional information, for example, an
expiration date and time, that gives you more control over access to your
content. This is how the signed URL works. The web server obtains
temporary credentials to the S3 content. It creates a signed URL based on
those credentials that allow access. It provides this link in content returned
(a signed URL) to the client, and this link is valid for a limited period of
time. This additional information appears in a policy statement, which is
based on either a canned policy or a custom policy. Via signed URLs, you
can get additional control such as restricting access to content, getting
subscriptions for your content, creating digital rights, creating custom
policies, and so on.

Signed HTTP cookies provide the same degree of control as a signed
URL by including the signature in an HTTP cookie instead. This allows you
to restrict access to multiple objects (e.g., whole-site authentication) or to a
single object without needing to change URLs. This is how it works. A Set-
Cookie header is sent to the user after they are authenticated on a web site.
That sets a cookie on the user’s device. When a user requests a restricted
object, the browser forwards the signed cookie in the request. CloudFront
then checks the cookie attributes to determine whether to allow or restrict
access.

Protocol Policy If you want CloudFront to allow viewers to access your
web content using either HTTP or HTTPS, specify HTTP and HTTPS. If
you want CloudFront to redirect all HTTP requests to HTTPS, specify
Redirect HTTP to HTTPS. If you want CloudFront to require HTTPS,
specify HTTPS Only.

Time to Live (TTL) You can control how long your objects stay in a
CloudFront cache before CloudFront forwards another request to your
origin. Reducing the duration allows you to serve dynamic content.
Increasing the duration means your users get better performance because
your objects are more likely to be served directly from the edge cache. A
longer duration also reduces the load on your origin. You can set up

minimum, maximum, and default TTL for all the objects. The time is
specified in seconds. By default, each object automatically expires after 24
hours. You can also control the cache duration for an individual object, and
you can configure your origin to add a Cache-Control max-age or Cache-
Control s-maxage directive or an expires header field to the object.

Gzip Compression Gzip compression can be enabled on distributions; your
pages can load more quickly because content will download faster, and your
CloudFront data transfer charges may be reduced as well. You can
configure Amazon CloudFront to automatically apply gzip compression
when browsers and other clients request a compressed object with text and
other compressible file formats. This means if you are already using
Amazon S3, CloudFront can transparently compress this type of content.
For origins outside S3, doing compression at the edge means you don’t
need to use resources at your origin to do compression. The resulting
smaller size of compressed objects makes downloads faster and reduces
your CloudFront data transfer charges.

You can create two types of distributions via CloudFront: web and
RTMP. Web distribution is used for speeding up the distribution of static
and dynamic content, for example, .html, .css, .php, and graphics files.
RTMP distribution is used to speed up the distribution of your streaming
media files using Adobe Flash Media Server’s RTMP protocol. An RTMP
distribution allows an end user to begin playing a media file before the file
has finished downloading from a CloudFront edge location. Most of the
behaviors mentioned earlier are applicable for web distribution, and some
of them may not be applicable for RTMP distribution.

Geo Restriction
When a user requests your content, CloudFront typically serves the
requested content regardless of where the user is located. If you need to
prevent users in specific countries from accessing your content, you can use
the CloudFront geo restriction feature to do one of the following:

• Allow your users to access your content only if they’re in one of the
countries on a whitelist of approved countries

• Prevent your users from accessing your content if they’re in one of
the countries on a blacklist of banned countries

Error Handling
You can configure CloudFront to respond to requests using a custom error
page when your origin returns an HTTP 4xx or 5xx status code. For
example, when your custom origin is unavailable and returning 5xx
responses, CloudFront can return a static error page that is hosted on
Amazon S3. You can also specify a minimum TTL to control how long
CloudFront caches errors.

Amazon Route 53
Amazon Route 53 is the managed Domain Name Service (DNS) of
Amazon. DNS translates human-readable names such as
www.example.com into the numeric IP addresses such as 192.0.0.3 that
servers/computers use to connect to each other. You can think of DNS as a
phone book that has addresses and telephone numbers. Route 53 connects
user requests to infrastructure running in AWS, such as Amazon EC2
instances, Elastic Load Balancing load balancers, or Amazon S3 buckets,
and it can also be used to route users to infrastructure outside of AWS.

It is highly available and scalable. This is the only service that has a 100
percent SLA. This service is region independent, which means you can
configure Route 53 with resources running across multiple regions. It is
capable of doing DNS resolution within multiple regions and among AWS
VPCs.

In addition to managing your public DNS record, Route 53 can be used
to register a domain, create DNS records for a new domain, or transfer DNS
records for an existing domain.

Amazon Route 53 currently supports the following DNS record types:

• A (address record)
• AAAA (IPv6 address record)
• CNAME (canonical name record)
• CAA (certification authority authorization)

https://www.example.com/

• MX (mail exchange record)
• NAPTR (name authority pointer record)
• NS (name server record)
• PTR (pointer record)
• SOA (start of authority record)
• SPF (sender policy framework)
• SRV (service locator)
• TXT (text record)

In addition, Route 53 supports alias records (also known as zone apex
support). The zone apex is the root domain of a web site (example.com,
without the www). You use CloudFront to deliver content from the root
domain, or zone apex, of your web site. In other words, you configure both
http://www.example.com and http://example.com to point at the same
CloudFront distribution. Since the DNS specification requires a zone apex
to point to an IP address (an A record), not a CNAME (such as the name
AWS provides for a CloudFront distribution, ELB, or S3 web site bucket),
you can use Route 53’s alias record to solve this problem.

Route 53 also offers health checks, which allow you to monitor the
health and performance of your application, web servers, and other
resources that leverage this service. Health checks of your resources with
Route 53 are useful when you have two or more resources that are
performing the same function. For example, you might have multiple
Amazon EC2 servers running HTTP server software responding to requests
for the example.com web site. Say you have multiple EC2 servers running
across two regions. As long as all the resources are healthy, Amazon Route
53 responds to queries using all of your example.com resource sets (using
all the EC2 servers). When a resource becomes unhealthy, Amazon Route
53 responds to queries using only the healthy resource record sets for
example.com, which means if a few EC2 servers go down, Route 53 won’t
use them, or if an AZ goes down, Route 53 won’t use the EC2 instances
from the AZ that went down for the resources. It is going to leverage only
the healthy EC2 servers from healthy AZs in a region.

Using Route 53, you can also do Traffic Flow by running multiple
endpoints around the world. Using Amazon Route 53 Traffic Flow, your
users can connect to the best endpoint based on latency, geography, and

https://example.com/
http://www.example.com/
http://example.com/

endpoint health. Using this feature, you can improve the performance and
availability of your application and thereby provide the best user
experience.

Amazon Route 53 supports the following routing policies:

• Weighted round robin When you have multiple resources that
perform the same function (for example, web servers that serve the
same web site) and you want Amazon Route 53 to route traffic to
those resources in proportions that you specify (for example, one-
quarter to one server and three-quarters to the other), you can do this
using weighted round robin. You can also use this capability to do
A/B testing, sending a small portion of traffic to a server on which
you’ve made a software change (say 10 percent of the traffic going
to the newly changed server and 90 percent of the traffic going to the
old server).

• Latency-based routing When you have resources in multiple
Amazon EC2 data centers that perform the same function and you
want Amazon Route 53 to respond to DNS queries with the
resources that provide the best latency, you can use latency-based
routing. It helps you improve your application’s performance for a
global audience. You can run applications in multiple AWS regions,
and Amazon Route 53, using dozens of edge locations worldwide,
will route end users to the AWS region that provides the lowest
latency.

• Failover routing When you want to configure active-passive
failover, in which one resource takes all traffic when it’s available
and the other resource takes all traffic when the first resource isn’t
available, you can use failover routing. For example, you may have
all your resources running from a particular region. When this region
fails, you can do failover routing and point to a static web site
running from a different region.

• Geo DNS routing When you want Amazon Route 53 to respond to
DNS queries based on the location of your users, you can use this
routing. Route 53 Geo DNS lets you balance the load by directing
requests to specific endpoints based on the geographic location from
which the request originates. Geo DNS makes it possible to

customize localized content, such as presenting detail pages in the
right language or restricting the distribution of content to only the
markets you have licensed.

AWS Web Application Firewall
AWS Web Application Firewall (WAF) is a web application firewall that
protects your web applications from various forms of attack. It helps to
protect web sites and applications against attacks that could affect
application availability, result in data breaches, cause downtime,
compromise security, or consume excessive resources. It gives you control
over which traffic to allow or block to/from your web applications by
defining customizable web security rules. The following are some of the
use cases of AWS WAF:

• Vulnerability protection You can use AWS WAF to create custom
rules that block common attack patterns, such as SQL injection or
cross-site scripting (XSS), and rules that are designed for your
specific application.

• Malicious requests Web crawlers can be used to mount attacks on a
web site. By using an army of automated crawlers, a malicious actor
can overload a web server and bring a site down. AWS WAF can
protect against those malicious requests. It can also protect from
scrapers where someone tries to extract large amounts of data from
web sites.

• DDoS mitigation (HTTP/HTTPS floods) This helps protect web
applications from attacks by allowing you to configure rules that
allow, block, or monitor (count) web requests based on conditions
that you define. These conditions include IP addresses, HTTP
headers, HTTP body, URI strings, SQL injection, and cross-site
scripting.

WAF is integrated with CloudFront. As a result, you can bring the added
distribution capacity and scalability of a CDN to WAF. It helps to decrease
the load of origin by blocking attacks close to the source, helps in
distributing sudden spikes of traffic leveraging CDNs, and avoids single
points of failures with increased redundancy of CDNs. WAF can be

integrated with application load balancers (ALBs) as well, which can
protect your origin web servers running behind the ALBs.

To use WAF with CloudFront or ALB, you need to identify the resource
that can be either an Amazon CloudFront distribution or an application load
balancer that you need to protect. You then deploy the rules and filters that
will best protect your applications. Rules are collections of WAF filter
conditions; it either can be one condition or can be a combination of two or
more conditions. Let’s understand this in detail.

Conditions define the basic characteristics that you want AWS WAF to
watch for in web requests, and these conditions specify when you want to
allow or block requests. For example, you may want to watch the script that
looks malicious. If WAF is able to find it, it is going to block it. In this case,
you create a condition that watches for the request. Let’s take a look at all
the conditions you can create using AWA WAF.

• Using cross-site scripting match conditions, you can allow or block
the requests that appear to contain malicious scripts.

• Using IP match conditions, you can allow or block requests based on
the IP addresses that they originate from.

• Using geographic match conditions, you can allow or block requests
based on the country that they originate from.

• Using size constraint conditions, you can allow or block requests
based on whether the requests exceed a specified length.

• Using SQL injection match conditions, you can allow or block
requests based on whether the requests appear to contain malicious
SQL code.

• Using string match conditions, you can allow or block requests based
on strings that appear in the requests.

• Using regex matches, you can allow or block requests based on a
regular expression pattern that appears in the requests.

Once you create the condition, you can combine these conditions into
rules to precisely target the requests that you want to allow, block, or count.

There are two types of rules in AWS WAF: regular rules and rate-based
rules. Regular rules use only conditions to target specific requests. For
example, you can create a regular rule based on the following conditions:

requests coming from 19.152.0.55 and requests that include SQL-like code.
In this case, with a regular rule, you have included two conditions. When a
rule includes multiple conditions, as in this example, AWS WAF looks for
requests that match all conditions—that is, it ANDs the conditions together.
Rate-based rules are similar to regular rules, with one addition: a rate limit
in five-minute intervals. Say you specify the rate limit as 2,000; then the
rate-based rules count the requests that arrive from a specified IP address
every five minutes. The rule can trigger an action (block all IPs) that have
more than 2,000 requests in the last five minutes.

You can combine conditions with the rate limit. In this case, if the
requests match all of the conditions and the number of requests exceeds the
rate limit in any five-minute period, the rule will trigger the action
designated in the web ACL.

Creating a web access control list (web ACL) is the first thing you need
to do to use AWS WAF. Once you combine your conditions into rules, you
combine the rules into a web ACL. This is where you define an action for
each rule. The action can be set to allow, block, or count. Now when a web
request matches all the conditions in a rule, AWS WAF can either block the
request or allow the request to be forwarded to Amazon CloudFront or an
application load balancer.

Now that you understand the concept, let’s look at the step-by-step
process to configure a WAF from the console:
1. Name the web ACL.

2. Create the conditions.

3. Create the rules.

4. Review the rules.

5. Confirm the rules.

AWS WAF resources can be managed with APIs. Therefore, you can do
all kinds of actions using APIs such as adding IPs to a list. In addition to
APIs, just like any other service, you can configure everything via the AWS
console. The previous example showed how to configure AWS WAF via the
AWS Management Console. AWS WAF configurations are propagated
globally in one minute.

You can watch the real-time metrics using Amazon CloudWatch. One-
minute metrics are available in CloudWatch. You can see how many
requests were blocked, allowed, and counted, or you can apply your rules
for analysis. You can also monitor all the changes made via APIs using
CloudWatch.

Amazon Shield
AWS Shield is a managed service that provides protection against
distributed DDoS attacks for applications running on AWS. A DoS attack is
an intentional attack on your application or website with the intention of
making it unavailable to users. The attackers target your application in
various ways such as flooding it with network traffic, simulating a huge
workload on your application, and so on. There are two types of AWS
Shield: AWS Standard and AWS Shield Advanced.

Benefits of AWS Shield
AWS Shield Standard is automatically enabled for all AWS customers at no
additional cost. AWS Shield Advanced is an optional paid service. Let’s
compare the benefits of both.

AWS Shield Standard
AWS Shield Standard protects against DDoS attacks occurring at the
network and transport layer. There are no charges for using AWS Shield
Standard, and this service is available at all AWS regions. AWS Shield
Standard monitors and baselines all the incoming traffic and then identifies
if there are any anomalies and then creates the mitigations automatically,
thereby protecting your applications.

AWS Shield Advanced
Since AWS Shield Advanced is a paid service, it comes with lots of
additional benefits when compared with AWS Shield Standard. The benefits
of AWS Shield Advanced are as follows:

• Access to the AWS Global DDoS response team for any assistance
required in mitigating against DDoS attacks

• Getting more visibility around the DDoS attack
• Access to the Global Threat Environment dashboard, which provides

a comprehensive view of the attacks
• AWS Shield Advanced users can also access AWS Web Application

Firewall (WAF) and AWS Firewall Manager free of cost

• The service level is enhanced for all AWS Shield Advanced
customers

Amazon Simple Queue Service
One of the challenges an architect faces when building new applications for
the cloud or migrating existing applications is making them distributed. You
need to address scalability, fault tolerance, and high availability, and you
need to start thinking more deeply about things such as the CAP theorem,
eventual consistency, distributed transactions, and design patterns that
support distributed systems.

NOTE The CAP theorem states that in a distributed data store it is
impossible to provide more than two guarantees out of these three:
consistency, availability, partition tolerance. This means either you can have
consistency and availability or consistency and partition tolerance or
availability and partition tolerance but not all three together.

Messaging can really help you in this case to achieve the goals. A
message queue is a form of asynchronous service-to-service communication
used in serverless and microservice architectures. Messages are stored on
the queue until they are processed and deleted. Each message is processed
only once by a single consumer. Message queues can be used to decouple
the processing of larger jobs into small parts that can be run independently
of each other. This can help in terms of performance, making the batch job
run faster, and can help during busy workloads.

When you are designing an architecture for the cloud, it is recommended
to decouple the applications to smaller, independent building blocks that are
easier to develop, deploy, and maintain. Message queues provide
communication and coordination for these distributed applications. It can
also simplify the coding of decoupled applications, at the same time
improving performance, reliability, and scalability.

Message queues allow different parts of a system to communicate and
process operations asynchronously. A message queue provides a buffer,
which temporarily stores messages, and endpoints, which allow software
components to connect to the queue to send and receive messages. You can
put messages into a queue, and you can retrieve messages from a queue.
The messages are usually small and can be things such as requests, replies,
error messages, or just plain information. The software that puts messages
into a queue is called a message producer, and the software that retrieves
messages is called a message consumer. For sending a message, the
producer adds a message to the queue. The message is stored on the queue
until the receiver of the message (the consumer) retrieves the message and
does something with it. Figure 7-10 shows the producer, queue, and
consumer.

Figure 7-10 Producer, queue, and consumer

Amazon Simple Queue Service (Amazon SQS) is a fast, reliable,
scalable, and fully managed queue service. Using Amazon SQS, you can
quickly build message queuing applications that can run on any system. It
can send, store, and receive messages between components. Like most
AWS services, it’s accessible through a web API, as well as SDKs in most
languages.

These are some of the key features of Amazon SQS:

• SQS is redundant across multiple AZs in each region. Even if an AZ
is lost, the service will be accessible.

• Multiple copies of messages are stored across multiple AZs, and
messages are retained up to 14 days.

• If your consumer or producer application fails, your messages won’t
be lost.

• Because of the distributed architecture, SQS scales without any
preprovisioning. It scales up automatically as and when more traffic
comes. Similarly, when the traffic is low, it automatically scales
down.

• The messages can contain up to 256KB of text data, including XML,
JSON, and unformatted text.

There are two types of SQS queues: standard and FIFO.

• Standard This is the default queue type of Amazon SQS. It supports
almost unlimited transactions per second. It supports at-least-once
message delivery. It provides best-effort ordering that ensures that
messages are generally delivered in the same order as they’re sent
and at nearly unlimited scale. Although a standard queue tries to
preserve the order of messages, it could be possible that sometimes a
message is delivered out of order. If your system needs order to be
preserved, then instead of choosing standard, you should choose
FIFO.

• FIFO This is the second type of queue. A first in, first out (FIFO)
queue guarantees first in, first out delivery and also exactly once
processing, ensuring that your consumer application does not need to
consider the message being delivered multiple times. In FIFO
queues, the throughput is limited to 300 transactions per second, and
FIFO queues support up to 3,000 messages per second

These are the differences between standard queues and FIFO queues:

• Standard queues support a nearly unlimited number of transactions
per second (TPS) per API action, whereas FIFO queues support up
to 300 messages per second (300 send, receive, or delete operations
per second). You can also batch 10 messages per operation
(maximum). FIFO queues can support up to 3,000 messages per
second.

• In standard queues, a message is delivered at least once, but
occasionally more than one copy of a message is delivered, whereas
in FIFO a message is delivered once and remains available until a
consumer processes and deletes it. Duplicates aren’t introduced into
the queue.

• In standard queues, occasionally messages might be delivered in an
order different from which they were sent, whereas in FIFO the
order in which messages are sent and received is strictly preserved
(i.e., first in, first out).

Let’s understand some of the terminology and parameters that you need
to know for configuring SQS.

When a producer sends a message to the queue, it is immediately
distributed to multiple SQS servers across multiple AZs for redundancy.
Whenever a consumer is ready to process the message, it processes the
message from the queue. When the message is being processed, it stays in
the queue and isn’t returned to subsequent receive requests for the duration
of visibility timeout. When the visibility timeout expires, the consumer
deletes the message from the queue to prevent the message from being
received and processed again. Thus, visibility timeout is the length of time
(in seconds) that a message received from a queue will be invisible to other
receiving components. The value must be between 0 seconds and 12 hours.

• Message retention period This is the amount of time that Amazon
SQS will retain a message if it does not get deleted. The value must
be between 1 minute and 14 days.

• Maximum message size This is the maximum message size (in
bytes) accepted by Amazon SQS. It can be between 1KB and
256KB.

• Delivery delay This is the amount of time to delay or postpone the
delivery of all messages added to the queue. It can be anywhere from
0 seconds to 15 minutes. If you create a delay queue, any messages
that you send to the queue remain invisible to consumers for the
duration of the delay period. For standard queues, the per-queue
delay setting is not retroactive—changing the setting doesn’t affect
the delay of messages already in the queue. For FIFO queues, the
per-queue delay setting is retroactive—changing the setting affects
the delay of messages already in the queue.

• Receive message wait time Using this parameter, you can specify
short polling or long polling. Short polling returns immediately, even
if the message queue being polled is empty. When you set Receive
Message Wait Time to 0 seconds, short polling is enabled. Long
polling helps reduce the cost of using Amazon SQS by eliminating
the number of empty responses (when there are no messages
available for a ReceiveMessage request) and false empty responses
(when messages are available but aren’t included in a response) and
returning messages as soon as they become available. When you
specify the parameter between 1 and 20 seconds, long polling is
enabled.

• Content-based deduplication This parameter is applicable only for
the FIFO queue. Using this parameter you use an SHA-256 hash of
the body of the message (but not the attributes of the message) to
generate the content-based message deduplication ID.

Amazon SQS supports dead-letter queues, which other queues (source
queues) can target for messages that can’t be processed (consumed)
successfully. Sometimes messages can’t be processed because of a variety
of possible issues, such as erroneous conditions within the producer or
consumer application or an unexpected state change that causes an issue
with your application code. Dead-letter queues are useful for debugging
your application or messaging system because they let you isolate
problematic messages to determine why their processing doesn’t succeed.
By checking the parameter Use Redrive Policy, you can send messages into
a dead-letter queue after exceeding the Maximum Receives setting. Using
the parameter Maximum Receives, you can specify the maximum number
of times a message can be received before it is sent to the dead-letter queue.
The value of Maximum Receives can be between 1 and 1000. You can
specify a queue name by adding one for the parameter Dead Letter Queue.

Using server-side encryption (SSE), you can transmit sensitive data in
encrypted queues. SSE protects the contents of messages in Amazon SQS
queues using keys managed in the AWS Key Management Service (AWS
KMS). SSE encrypts messages as soon as Amazon SQS receives them. The
messages are stored in encrypted form, and Amazon SQS decrypts
messages only when they are sent to an authorized consumer.

Amazon Simple Notification Service
As the name suggests, Amazon Simple Notification Service (Amazon SNS)
is a web service used to send notifications from the cloud. It is easy to set
up and operate and at the same time highly scalable, flexible, and cost-
effective. SNS has the capacity to publish a message from an application
and then immediately deliver it to subscribers. It follows the publish-
subscribe mechanism, also known as pub-sub messaging. It is a form of
asynchronous service-to-service communication used in serverless and
microservice architectures. In this model, any message published to a topic
is immediately received by all the subscribers to the topic. Just like SQS,

SNS is used to enable event-driven architectures or to decouple applications
to increase performance, reliability, and scalability.

To use SNS, you must first create a “topic” identifying a specific subject
or event type. A topic is used for publishing messages and allowing clients
to subscribe for notifications. Once a topic is created, the topic owner can
set policies for it such as limiting who can publish messages or subscribe to
notifications or specifying which notification protocols are supported. To
broadcast a message, a component called a publisher simply pushes a
message to the topic. These topics transfer messages with no or very little
queuing and push them out immediately to all subscribers. Figure 7-11
shows the publisher and subscriber model.

Figure 7-11 Publisher and subscriber model

Subscribers are clients interested in receiving notifications from topics of
interest; they can subscribe to a topic or be subscribed by the topic owner.
Subscribers specify the protocol and endpoint (URL, e-mail address, etc.)
for notifications to be delivered. All components that subscribe to the topic
will receive every message that is broadcast, unless a message filtering
policy is set by the subscriber. The publishers and subscribers can operate
independently of each other, which means publishers need not know who
has subscribed to the messages, and similarly, the subscribers don’t have to
know from where the message is coming.

These are some of the features of Amazon SNS:

• It is reliable since the messages are stored across multiple AZs by
default.

• It offers flexible message delivery over multiple transport protocols.
It can be HTTP/HTTPS, e-mail, SMS, Lambda, and SQS where the
message can be delivered.

• The messages can be delivered instantly or can be delayed. It follows
push-based delivery, which means messages are automatically sent
to subscribers.

• It provides monitoring capability. Amazon SNS and CloudWatch are
integrated, so you can collect, view, and analyze metrics for every
active Amazon SNS topic.

• It can be accessed from the AWS Management Console, AWS
Command Line Interface (CLI), AWS Tools for Windows
PowerShell, AWS SDKs, and Amazon SNS Query API.

• Amazon SNS messages can contain up to 256KB of text data with
the exception of SMS, which can contain up to 140 bytes. If you
publish a message that exceeds the size limit, Amazon SNS sends it
as multiple messages, each fitting within the size limit. Messages are
not cut off in the middle of a word but on whole-word boundaries.
The total size limit for a single SMS publish action is 1,600 bytes.

With these three simple steps, you can get started with Amazon SNS:

• Create a topic A topic is a communication channel to send messages
and subscribe to notifications. It provides an access point for
publishers and subscribers to communicate with each other.

• Subscribe to a topic To receive messages published to a topic, you
have to subscribe an endpoint to that topic. Once you subscribe an
endpoint to a topic and the subscription is confirmed, the endpoint
will receive all messages published to that topic.

• Publish to a topic Publishers send messages to topics. Once a new
message is published, Amazon SNS attempts to deliver that message
to every endpoint that is subscribed to the topic.

There are several scenarios where you use SNS and SQS together.

Say you have uploaded a new video to S3. The moment a video is
uploaded, it triggers a message to be published to the SNS topic and is then
replicated and sent to SQS queues. This sends the S3 event to multiple
Lambda functions to be processed independently. In this case, the
processing can be encoding the video to a different format (360p, 480p,
720p, 1080p) in parallel.

You have an order management system. Whenever someone places an
order, an SNS notification is created. It is then sent to the order queue
(SQS) and processed by EC2 servers. You can again have different SQSs
depending on the priority of the order, say, a high-priority SQS queue and a
low-priority SQS queue. When the order goes to the high-priority queue, it
will be shipped immediately, and when it goes to the low-priority queue, it
will be shipped after two or three days.

AWS Step Functions and Amazon Simple
Workflow (SWF)
AWS Step Functions is a fully managed service that makes it easy to
coordinate the components of distributed applications and microservices
using visual workflow. It is really easy to use and scales down to little one-
off shell-script equivalents and up to billions of complex multiphase tasks.
Let’s take a simple example to understand this. Say you are planning to go
to Europe for your next vacation. For your vacation, you need to do the
following three tasks in sequence: book a flight, book a hotel, and book a
rental car. For each step you are going to choose a different vendor. This is
shown in Figure 7-12.

Figure 7-12 Steps for vacation planning

Now if you are not able to reserve a rental car because of the
unavailability of it, you should be able to automatically cancel the hotel
booking and flight ticket (Figure 7-13).

Figure 7-13 Cancellation of hotel and flight

In this case, there are multiple ways of solving this problem.
You could create a function for each step and just link your functions

together. That’s not terrible, but it does not give you modular, independent
functions that each does one thing well. If you invoke one Lambda from
another and you do it synchronously, that doesn’t scale because it might
want to call another, and another, and so on, depending on how many steps
you have. So, you can do it asynchronously, which is actually a better
design, but then error handling gets hard. The more steps you add, the more
difficult it is going to become to handle the error. Alternatively, you could
keep track of your state by writing it into a database, say Amazon
DynamoDB, or you could pass your state and control around through
queues, but again both of those ideas take a lot of effort. What if you can do
this seamlessly? Thus, if you are designing a coordination solution, it must
have several characteristics:

• It needs to scale out as demand grows. You should be able to run one
execution or run thousands.

• You can never lose state.
• It deals with errors and times out and implements things like

try/catch/finally.
• It is easy to use and easy to manage.
• It keeps a record of its operation and is completely auditable.

With AWS Step Functions, you define your application as a state
machine, a series of steps that together capture the behavior of the app.
States in the state machine may be tasks, sequential steps, parallel steps,
branching paths (choice), and/or timers (wait). Tasks are units of work, and
this work may be performed by AWS Lambda functions, Amazon EC2
instances, containers, or on-premises servers; anything that can
communicate with the Step Functions API may be assigned a task. When
you start a state machine, you pass it input in the form of JSON, and each
state changes or adds to this JSON blob as output, which becomes input to
the next state. The console provides this visualization and uses it to provide
near-real-time information on your state machine execution. The
management console automatically graphs each state in the order of
execution, making it easy to design multistep applications. The console
highlights the real-time status of each step and provides a detailed history of
every execution. Step Functions operate and scale the steps of your
application and underlying compute for you to ensure your application
executes reliably under increasing demand. Figure 7-14 shows the
application lifecycle in AWS Step Functions.

Figure 7-14 Application lifecycle in AWS Step Functions

As of the writing this book, AWS Step Functions has following state
types:

• Task This is a single unit of work. Task states do your work. These
call on your application components and microservices. There are
two kinds of task states: one pushes a call to AWS Lambda
functions, and the other dispatches tasks to applications.

• Choice Using the choice states, you can use branching logic to your
state machines.

• Parallel Parallel states allow you to fork the same input across
multiple states and then join the results into a combined output. This
is really useful when you want to apply several independent
manipulations to your data, such as image processing or data
reduction.

• Wait You can delay for a specified time by specifying wait in state.
• Fail This stops an execution and marks it as a failure.
• Succeed This stops an execution successfully.
• Pass This passes its input to its output.

• Map The Map state can be used to run a set of steps for each
element of an input array.

AWS Step Functions is replacing Amazon Simple Workflow Service
(SWF). Amazon SWF continues to exist today for customers who have
already built their application using it. If you are building a new
application, then you should consider AWS Step Functions instead of SWF.
Moreover, AWS SWF is not a managed service; therefore, you need to
configure everything manually in the EC2 servers.

AWS Elastic Beanstalk
With Elastic Beanstalk, you can deploy, monitor, and scale an application
on AWS quickly and easily. Elastic Beanstalk is the simplest and fastest
way of deploying web applications. You just need to upload your code, and
Elastic Beanstalk will provision all the resources such as Amazon EC2,
Amazon Elastic Container Service (Amazon ECS), Auto Scaling, and
Elastic Load Balancing for you behind the scenes. Elastic Beanstalk lets
you focus on building applications without worrying about managing
infrastructure. Although the infrastructure is provisioned and managed by
Elastic Beanstalk, you maintain complete control over it.

If you don’t have much AWS knowledge and want to deploy an
application, you might do several tasks. You can start by creating a VPC
and then create public and private subnets in different AZs, launch EC2
instances, integrate them with Auto Scaling and ELB, provision a database,
and so on. Laying the infrastructure itself can become challenging, and on
top of that, if you have to manage everything manually, it adds to more
overhead. Elastic Beanstalk solves this problem.

An Elastic Beanstalk application consists of three key components. The
environment consists of the infrastructure supporting the application, such
as the EC2 instances, RDS, Elastic Load Balancer, Auto Scaling, and so on.
An environment runs a single application version at a time for better
scalability. You can create many different environments for an application.
For example, you can have a separate environment for production, a
separate environment for test/dev, and so on. The next component is the
application version. It is nothing but the actual application code that is
stored in Amazon S3. You can have multiple versions of an application, and

each version will be stored separately. The third component is the saved
configuration. It defines how an environment and its resources should
behave. It can be used to launch new environments quickly or roll back
configuration. An application can have many saved configurations.

AWS Elastic Beanstalk has two types of environment tiers to support
different types of web applications:

• Web servers are standard applications that listen for and then process
HTTP requests, typically over port 80.

• Workers are specialized applications that have a background
processing task that listens for messages on an Amazon SQS queue.
Worker applications post those messages to your application by
using HTTP.

It can be deployed either in a single instance or with multiple instances
with the database (optional) in both cases. When deployed with multiple
instances, Elastic Beanstalk provisions the necessary infrastructure
resources such as load balancers, Auto Scaling groups, security groups, and
databases. It also configures Amazon Route 53 and gives you a unique
domain name. The single instance is mainly used for development or testing
purposes, whereas multiple instances can be used for production workloads.

Elastic Beanstalk configures each EC2 instance in your environment
with the components necessary to run applications for the selected platform.
You don’t have to manually log in and configure EC2 instances. Elastic
Beanstalk does everything for you. You can add AWS Elastic Beanstalk
configuration files to your web application’s source code to configure your
environment and customize the AWS resources that it contains. The
configuration files can be either a JSON file or YAML. Using these
configuration files, you can customize your Auto Scaling fleet as well. You
should never manually log in and configure EC2 instances since all the
manual changes will be lost on scaling events. Figure 7-15 shows what a
deployment in Elastic Beanstalk looks like.

Figure 7-15 Deployment in AWS Elastic Beanstalk

AWS Elastic Beanstalk provides a unified user interface to monitor and
manage the health of your applications. It collects 40+ key metrics and
attributes to determine the health of your application. It has a health
dashboard in which you can monitor the application. It is also integrated
with Amazon CloudWatch.

AWS Elastic Beanstalk supports the following languages and
development stacks:

• Apache Tomcat for Java applications
• Apache HTTP Server for PHP applications
• Apache HTTP Server for Python applications
• Nginx or Apache HTTP Server for Node.js applications
• Passenger or Puma for Ruby applications
• Microsoft IIS 7.5, 8.0, and 8.5 for .NET applications
• Java SE
• Docker
• Go

AWS OpsWorks

When you’re building an application, you want to get new features out to
your users fast, but having to manage all the infrastructure that your
application needs and respond to changing conditions such as spikes in
traffic can be error prone and hard to repeat if you’re configuring
everything manually. Wouldn’t it be nice if you could automate operational
tasks like software configuration, server scaling, deployments, and database
setup so that you could focus on developing instead of doing all that heavy
lifting?

AWS OpsWorks is a configuration management service that helps you
deploy and operate applications of all shapes and sizes. OpsWorks allows
you to quickly configure, deploy, and update your applications. It even
gives you tools to automate operations such as automatic instant scaling and
health monitoring. You have a lot of flexibility in defining your
applications, architecture, and other things such as package installations,
software configurations, and the resources your application needs such as
storage databases or load balancers.

OpsWorks provides managed instances of Chef and Puppet. Chef and
Puppet are automation platforms that allow you to use code to automate the
configurations of your servers. OpsWorks lets you use Chef and Puppet to
automate how servers are configured, deployed, and managed across your
Amazon EC2 instances or on-premises compute environments.

OpsWorks offers three tools: AWS OpsWorks for Chef Automate, AWS
OpsWorks for Puppet Enterprise, and AWS OpsWorks Stacks.

AWS OpsWorks for Chef Automate provides a fully managed Chef
server and suite of automation tools that give you workflow automation for
continuous deployment, automated testing for compliance and security, and
a user interface that gives you visibility into your nodes and their status.
The Chef server gives you full stack automation by handling operational
tasks such as software and operating system configurations, package
installations, database setups, and more. The Chef server centrally stores
your configuration tasks and provides them to each node in your compute
environment at any scale, from a few nodes to thousands of nodes.
OpsWorks for Chef Automate is completely compatible with tooling and
cookbooks from the Chef community and automatically registers new nodes
with your Chef server.

AWS OpsWorks for Puppet Enterprise provides a managed Puppet
Enterprise server and suite of automation tools giving you workflow

automation for orchestration, automated provisioning, and visualization for
traceability. The Puppet Enterprise server gives you full stack automation
by handling operational tasks such as software and operating system
configurations, package installations, database setups, and more. The
Puppet Master centrally stores your configuration tasks and provides them
to each node in your compute environment at any scale.

AWS OpsWorks Stacks lets you manage applications and servers on
AWS and on-premises. Using OpsWorks Stacks, you model your entire
application as a stack consisting of various layers. Layers are like blueprints
that define how to set up and configure a set of Amazon EC2 instances and
related resources.

OpsWorks provides prebuilt layers for common components, including
Ruby, PHP, Node.js, Java, Amazon RDS, HA Proxy, MySQL, and
Memcached. It also allows you to define your own layers for practically any
technology and configure your layer however you want using Chef recipes.
After you define all the layers you need to run your application stack, you
just choose the operating system and the instance type to add. You can even
scale the number of instances running by time of day or average CPU load.
Once your stack is up and running, OpsWorks will pull the code from your
repository and deploy it on your instances, and you will have a stack up and
running based on the layers you defined earlier.

Using OpsWorks to automate, deploy, and manage applications saves
you a lot of time. Without OpsWorks, if you needed to scale up the number
of servers, you would need to manually configure everything including web
framework configurations, installation scripts, initialization tasks, and
database setups for each new instance. With OpsWorks, you set up and
configure whatever your application needs for each layer once and let
OpsWorks automatically configure all instances launched into that layer. It
lets you focus on building amazing applications and services for your users
without having to spend a lot of time manually configuring instances,
software, and databases. It helps automate your infrastructure, gets your
application to your users faster, helps you manage scale and complexity,
and protects your applications from failure and downtime.

There is no additional charge for using OpsWorks. You pay for the AWS
resources needed to store and run your applications.

Amazon Cognito
When you’re building a mobile app, you know that your users probably
have more than one device—maybe a smartphone for the work commute
and a tablet for enjoying movies later. Being able to sync your user’s profile
information, whether that’s saved game data or some other kind of
information, is really important so they can have a great experience with
your app whenever and wherever they’re using it, regardless of which
device they use. If you want to create a back end to support that kind of
storage and synchronization, it is a lot of work. You have to build it, deploy
it, and manage the infrastructure that it runs on. Wouldn’t it be great if you
could stay focused on writing your app without having to build your own
back end? You just concentrate on syncing and storing users’ data?

Amazon Cognito is a user identity and data synchronization service that
makes it really easy for you to manage user data for your apps across
multiple mobile or connected devices. You can create identities for users of
your app using public login providers such as Google, Facebook, and
Amazon, and through enterprise identity providers such as Microsoft Active
Directory using SAML. This service also supports unauthenticated
identities. Users can start off trying your app without logging in, and then
when they do create a profile using one of the public logging providers,
their profile data is seamlessly transferred. Amazon Cognito user pools
provide a secure user directory that scales to hundreds of millions of users.
User pools provide user profiles and authentication tokens for users who
sign up directly and for federated users who sign in with social and
enterprise identity providers. Amazon Cognito User Pools is a standards-
based identity provider and supports identity and access management
standards, such as OAuth 2.0, SAML 2.0, and OpenID Connect.

You can use Amazon Cognito to sync any kind of user data and key-
value pairs whether that is app preferences, game state, or anything that
makes sense for your app. By using Amazon Cognito, you don’t have to
worry about running your own back-end service and dealing with identity
network storage or sync issues. You just save the user data using the
Amazon Cognito API and sync. The user’s data is securely synced and
stored in the AWS cloud.

Amazon Cognito provides solutions to control access to AWS resources
from your app. You can define roles and map users to different roles so your

app can access only the resources that are authorized for each user.
It is really easy to use Amazon Cognito with your app. Instead of taking

months to build a solution yourself, it just takes a few lines of code to be
able to sync your users’ data. If you’re using other AWS services, Amazon
Cognito provides you with even more benefits such as delivering temporary
credentials of limited privileges that users can use to access AWS resources.
Amazon Cognito lets you focus on building your app and making sure that
your users have a consistent experience regardless of the device they’re
using without you having to worry about the heavy lifting associated with
building your own back-end solution to sync user data.

Amazon Elastic MapReduce
Whatever kind of industry you are in, being able to analyze data coming
from a wide variety of sources can help you to make transformational
decisions. To be able to make these decisions based on data of any scale,
you need to be able to access the right kind of tools to process and analyze
your data. Software frameworks like Hadoop can help you store and
process large amounts of data by distributing the data and processing across
many computers. But at the same time, deploying, configuring, and
managing Hadoop clusters can be difficult, expensive, and time-consuming.
Traditionally, you had to purchase the underlying servers and storage
hardware, provision the hardware, and then deploy and manage the
software even before you had a chance to do anything with your data.

Wouldn’t it be great if there was an easier way? Amazon Elastic
MapReduce (EMR) solves this problem. Using the elastic infrastructure of
Amazon EC2 and Amazon S3, Amazon EMR provides a managed Hadoop
framework that distributes the computation of your data over multiple
Amazon EC2 instances.

Amazon EMR is easy to use. To get started, you need to load the data
into Amazon S3; then you can launch EMR clusters in minutes. Once a
cluster is launched, it can start processing your data immediately, and you
don’t need to worry about setting up, running, or tuning clusters. Since it is
a managed service, Amazon is going to take care of the heavy lifting behind
the scenes. You just need to define how many nodes in the cluster you need,
what types of instances you need, and what applications you want to install
in the cluster. Then Amazon will provision everything for you.

Thus, you can focus on the analysis of your data. When your job is
complete, you can retrieve the output from Amazon S3. You can also feed
this data from S3 to a visualization tool or use it for reporting purposes.
Amazon EMR monitors the job. Once the job is completed, EMR can shut
down the cluster or keep it running so it is available for additional
processing queries. You could easily expand or shrink your clusters to
handle more or less data and to get the processing done more quickly.

In a Hadoop ecosystem, the data remains on the servers that process the
data. As a result, it takes some time to add or remove a server from a
cluster. In the case of EMR, the data remains decoupled between the EC2
servers and Amazon S3. EC2 only processes the data, and the actual data
resides in Amazon S3. EMRFS (EMR file system) is used by an EMR
cluster for reading and writing files from EMR directly to S3. As a result, at
any point in time, you can scale up or scale down. Say you are running an
EMR job and you have selected only one EC2 server for running the job,
and let’s say the job takes 10 hours. Let’s say this EC2 server costs $1 per
hour, so the total cost of running this job would be $10 ($1 * 10 hours), and
the amount of time it takes is 10 hours. Now instead of processing this job
with one EC2 server, if you create an EMR cluster with a 10-node EC2
server, the job is going to be finished in just one hour instead of ten since
you added 10 times more compute. Now price-wise, it is going to cost $10
($1 per server * 10 servers). In this case, you are processing the same job
ten times faster but paying the same amount of money to process the job.

When you store your data in Amazon S3, you can access it with multiple
EMR clusters simultaneously, which means users can quickly spin off as
many clusters as they need to test new ideas and can terminate clusters
when they’re no longer needed. This can help speed innovation and lower
the cost of experimentation, and you can even optimize each cluster for a
particular application.

You can have three types of nodes in an Amazon EMR cluster:

• Master node This node takes care of coordinating the distribution of
the job across core and task nodes.

• Core node This node takes care of running the task that the master
node assigns. This node also stores the data in the Hadoop
Distributed File System (HDFS) on your cluster.

• Task node This node runs only the task and does not store any data.
The task nodes are optional and provide pure compute to your
cluster.

Amazon EMR is low cost and provides a range of pricing options,
including hourly on-demand pricing, the ability to reserve capacity for a
lower hourly rate, or the ability to name your own price for the resources
you need with spot instances. Spot instances are a great use case for
Amazon EMR; you can use the spot instance for the task node since it does
not store any data and is used for pure compute. You can mix and match
different types of EC2 instance types for spot instances so that even if you
lose a particular type of EC2 instance, the other type is not impacted when
someone over bids you.

Amazon EMR automatically configures the security groups for the
cluster and makes it easy to control access. You can even launch clusters in
an Amazon Virtual Private Cloud (VPC).

With Amazon EMR you can run MapReduce and a variety of powerful
applications and frameworks, such as Hive, Pig, HBase, Impala, Cascading,
and Spark. You can also use a variety of different programming languages.
Amazon EMR supports multiple Hadoop distributions and integrates with
popular third-party tools. You can also install additional software or further
customize the clusters for your specific use case.

AWS CloudFormation
When you are managing infrastructure, you might use run books and scripts
to create and manage everything. Version controlling and keeping track of
changes can be challenging. Things get even harder when you need to
replicate your entire production stack multiple times for development and
testing purposes. If you want to provision infrastructure stacks directly from
a collection of scripts, it is not simple. Wouldn’t it be great if you could
create and manage your infrastructure and application stack in a controlled
and predictable way?

You can do the same seamlessly using AWS CloudFormation.
CloudFormation provisions and manages stacks of AWS resources based on
templates you create to model your infrastructure architecture. You can
manage anything from a single Amazon EC2 instance to a complex

multitier, multiregion application. CloudFormation can be used to define
simple things such as an Amazon VPC subnet, as well as provision services
such as AWS OpsWorks or AWS Elastic Beanstalk.

It is easy to get started with CloudFormation. You simply create a
template, which is a JSON file that serves as a blueprint to define the
configuration of all the AWS resources that make up your infrastructure and
application stack, or you can select a sample prebuilt template that
CloudFormation provides for commonly used architectures such as a
LAMP stack running on Amazon EC2 and an Amazon RDS. Next you just
upload your template to CloudFormation. You can also select parameters
such as the number of instances or instance type if necessary; then
CloudFormation will provision and configure your AWS resource stack.
You can update your CloudFormation stack at any time by uploading a
modified template through the AWS management console, CLI, or SDK.
You can also check your template into version control, so you’re able to
keep track of all changes made to your infrastructure and application stack.
With CloudFormation you can version control your infrastructure
architecture the same way you would with software code. Provisioning
infrastructure is as simple as creating and uploading a template to
CloudFormation. This makes replicating your infrastructure simple. You
can easily and quickly spin up a replica of your production stack for
development and testing with a few clicks in the AWS Management
Console. You can tear down and rebuild the replica stacks whenever you
want. Replicating production staff could have been time-consuming and
error prone if you did it manually, but with CloudFormation you can create
and manage the AWS resource stack quickly and reliably. There is no
additional charge for CloudFormation; you pay only for the AWS resources
that CloudFormation creates and your application uses. CloudFormation
allows you to treat your infrastructure as just code.

To use AWS CloudFormation, you need templates and stacks. Using
templates, you can describe your AWS resources and their properties.
Whenever you create a stack, CloudFormation provisions the resources as
per your template. A CloudFormation template is a JSON- or YAML-
formatted text file. You can create a template directly from the editor
available from the AWS Management Console or by using any text editor.
You can save the template with an extension such as .json or .yaml.txt or
.template. These templates serve as a blueprint for building all the

resources. Using a template you can specify the resource that
CloudFormation is going to build. For example, you can specify a specific
type of an EC2 instance as a resource in your CloudFormation template. All
the AWS resources collected together is called a stack. You can manage the
stack as a single unit. For example, using a stack you can create multiple
resources like an EC2 instance, VPC, or RDS database via a single
CloudFormation template. You can create, update, or delete a collection of
resources by creating, updating, or deleting stacks. Using AWS
CloudFormation templates, you can define all the resources in a stack.
Figure 7-16 shows how AWS CloudFormation works.

Figure 7-16 How AWS CloudFormation works

Whenever you have to make changes to the running resources in a stack,
such as when you want to add an ELB to the existing EC2 instances, you
need to update the existing stack. Before making the changes, you can
generate a change set that summarizes the proposed change. Using a change
set, you can foresee what is going to be the impact on your running
resources if the change is being made. Make sure you don’t run into limits;
for example, EC2 has a soft limit, and VPC has limits per region, per
account. If you think you might hit a limit, you can always increase it with a
support ticket.

Monitoring in AWS
Whenever you build or deploy your applications, you should have the
capability to monitor them from end to end. By using the right monitoring
tools, you will be able to find out whether the application is performing
well, whether there is a security vulnerability in the application, whether the
application is taking too much of your resources in terms of CPU or
memory, or whether the application is constrained in terms of resources
when you build or deploy your applications in AWS. In addition to these
questions, you may ask some additional questions such as, How do I
capture, view, and act on resource availability and state changes? How do I
track the key performance indicators across AWS resources? How can API
calls be logged within my AWS accounts? How do I track cost within my
AWS accounts? AWS provides you with lots of tools that give you this
capability. Apart from technical reasons, there are several other reasons why
you should monitor your systems. Via monitoring you can find out whether
your customers are getting a good experience or not, whether the changes
you are making in the system are impacting overall performance, whether
the same problem can be prevented in the future or not, when you need to
scale, and so on.

NOTE In AWS, resources are software defined, and changes to them are
tracked as API calls. The current and past states of your environment can be
monitored and acted on in real time. AWS scaling allows for ubiquitous
logging, which can be extended to your application logs and centralized for
analysis, audit, and mitigation purposes.

In this section, we will discuss all these tools that can be used to monitor
the AWS resources.

Amazon CloudWatch
Watching the cloud means monitoring all the resources deployed in the
AWS cloud. Amazon CloudWatch provides capabilities to gain visibility
into what’s going on with your resources. You can monitor the health
checks, look at the utilization, and view performance. Amazon CloudWatch
monitors your AWS cloud resources and your cloud-powered applications.
It tracks the metrics so that you can visualize and review them. You can also
set alarms that will fire when a metric goes beyond the limit that you
specify. CloudWatch gives you visibility into resource utilization,
application performance, and operational health.

Let’s explore what Amazon CloudWatch can do.

Metrics Collection and Tracking
Amazon CloudWatch provides metrics for all the services, and there are
more than 100 types of metrics available among all the different services.
You can look at these metrics for your EC2 instances (e.g., in an EC2
instance, you can look at CPU, Network In/Out, and so on), RDS, ELBs,
EBS volumes, DynamoDB, and so on. Apart from the default metrics
available, you can also create your own custom metrics using your
application and monitor them via Amazon CloudWatch. Please log in to the
AWS console and browse all the metrics you can monitor via CloudWatch.
You will see that you will be able to monitor almost everything via
CloudWatch, but for monitoring some components you may have to write
custom metrics. For example, in order to monitor the memory utilization,
you have to write a custom metric. Previously (before November 2016),
these metrics used to be retained for 14 days, but now the metrics are
retained depending on the metric interval.

• For the one-minute data point, the retention is 15 days.
• For the five-minute data point, the retention is 63 days.
• For the one-hour data point, the retention is 15 months or 455 days.

Capture Real-Time Changes Using Amazon
CloudWatch Events

Amazon CloudWatch Events helps you to detect any changes made to your
AWS resource. When CloudWatch Events detects a change, it delivers a
notification in almost real time to a target you choose. The target can be a
Lambda function, an SNS queue, an Amazon SNS topic, or a Kinesis
Stream or built-in target. You can set up your own rules and can take action
whenever you detect a change. There are many ways to leverage Amazon
CloudWatch Events. For example, say your company has a strict rule that
whenever someone is creating an EC2 instance, they should tag it. You can
create a CloudWatch event whenever an EC2 is created and send it to a
Lambda function. The Lambda function will check whether the newly
created instance has a tag. If it does not have a tag, it can automatically tag
the instance as per the logic you define.

Monitoring and Storing Logs
You can use CloudWatch Logs to monitor and troubleshoot your systems
and applications using your existing system, application, and custom log
files. You can send your existing log files to CloudWatch Logs and monitor
these logs in near real time. Amazon CloudWatch Logs is a managed
service to collect and keep your logs. It can aggregate and centralize logs
across multiple sources. Using the CloudWatch Logs Agent, you can stream
the log files from an EC2 instance. The CloudWatch agent is available for
both Linux and Windows. In addition to the agent, you can publish log data
using the AWS CLI, the CloudWatch Logs SDK, or the CloudWatch Logs
API. You can further export data to S3 for analytics and/or archival or
stream to the Amazon Elasticsearch Service or third-party tools like Splunk.

CloudWatch Logs can be used to monitor your logs for specific phrases,
values, or patterns. Figure 7-17 shows how you can filter a particular
pattern from CloudWatch Logs.

Figure 7-17 Filtering a particular pattern from Amazon CloudWatch Logs

For example, you could set an alarm on the number of errors that occur
in your system logs or view graphs of web request latencies from your
application logs. You can view the original log data to see the source of the
problem if needed.

Set Alarms
You can create a CloudWatch alarm that sends an Amazon Simple
Notification Service message when the alarm changes state. An alarm
watches a single metric over a time period you specify and performs one or
more actions based on the value of the metric relative to a given threshold
over a number of time periods. The action is a notification sent to an
Amazon Simple Notification Service topic or Auto Scaling policy. Alarms
invoke actions for sustained state changes only. A CloudWatch alarm will
not invoke an action just because it is in a particular state; to be invoked,
the state must have changed and been maintained for a specified period of
time. An alarm has the following possible states:

• OK This state means the metric is within the defined threshold.
• ALARM This state means the metric is outside the defined

threshold.
• INSUFFICIENT_DATA This state means the alarm has just started,

the metric is not available, or not enough data is available to
determine the alarm state.

Let’s look at an example to understand this. You have created an alarm to
alert you when the CPU runs at or above 75 percent in an EC2 instance. Say
you have set the alarm threshold to 3, which means after the third
occurrence of 75 percent CPU utilization in the EC2 instance, the alarm is
going to invoke the action associated with it. Say you have defined an
action that says when the CPU gets to more than 75 percent, start one more
EC2 instance via Auto Scaling, and after the third occurrence, Auto Scaling
should add more EC2 instances for you. Figure 7-18 shows how Amazon
CloudWatch metrics and CloudWatch alarms can be used together.

Figure 7-18 Using Amazon CloudWatch metrics and Amazon CloudWatch
alarms together

View Graphs and Statistics
You can use Amazon CloudWatch dashboards to view different types of
graphs and statistics of the resources you have deployed. You can create
your own dashboard and can have a consolidated view across your
resources. The Amazon CloudWatch dashboard is a single view for selected
metrics to help you assess the health of your resources and applications
across one or more regions. It acts as an operational playbook that provides
guidance for team members during operational events about how to respond

to specific incidents. It is a common view of critical resource and
application measurements that can be shared by team members for faster
communication flow during operational events. Figure 7-19 summarizes all
the Amazon CloudWatch capabilities.

Figure 7-19 Amazon CloudWatch capabilities

AWS CloudTrail
AWS CloudTrail is a service that logs all API calls, including console
activities and command-line instructions. It logs exactly who did what,
when, and from where. It can tell you which resources were acted upon in
the API call and where the API call was made from and to whom. That
means you have full visibility into the accesses, changes, or activity within
your AWS environment. You can save these logs into your S3 buckets.

CloudTrail can help you achieve many tasks. You can track changes to
AWS resources (for example, VPC security groups and NACLs), comply
with rules (log and understand AWS API call history), and troubleshoot
operational issues (quickly identify the most recent changes to your
environment). Different accounts can send their trails to a central account,
and then the central account can do analytics. After that, the central account
can redistribute the trails and grant access to the trails.

AWS CloudTrail shows the results of the CloudTrail event history for the
current region you are viewing for the last 90 days.

You can have the CloudTrail trail going to CloudWatch Logs and
Amazon CloudWatch Events in addition to Amazon S3. This enables you to
leverage features to help you archive, analyze, and respond to changes in
your AWS resources. You can create up to five trails in an AWS region.
Figure 7-20 shows how AWS CloudTrail works.

Figure 7-20 How AWS CloudTrail works

You can follow these AWS CloudTrail best practices for setting up
CloudTrail:

• Enable AWS CloudTrail in all regions to get logs of API calls by
setting up a trail that applies to all regions.

• Enable log file validation using industry-standard algorithms, SHA-
256 for hashing, and SHA-256 with RSA for digital signing.

• By default, the log files delivered by CloudTrail to your bucket are
encrypted by Amazon server-side encryption with Amazon S3
managed encryption keys (SSE-S3). To provide a security layer that
is directly manageable, you can instead use server-side encryption
with AWS KMS managed keys (SSE-KMS) for your CloudTrail log
files.

• Set up real-time monitoring of CloudTrail logs by sending them to
CloudWatch logs.

• If you are using multiple AWS accounts, centralize CloudTrail logs
in a single account.

• For added durability, configure cross-region replication (CRR) for
S3 buckets containing CloudTrail logs.

AWS Config
AWS Config is a fully managed service that provides you with a detailed
inventory of your AWS resources and their current configuration in an AWS
account. It continuously records configuration changes to these resources

(e.g., EC2 instance launch, ingress/egress rules of security groups, network
ACL rules for VPCs, etc.). It lets you audit the resource configuration
history and notifies you of resource configuration changes. Determine how
a resource was configured at any point in time, and get notified via Amazon
SNS when the configuration of a resource changes or when a rule becomes
noncompliant.

A config rule represents desired configurations for a resource and is
evaluated against configuration changes on the relevant resources, as
recorded by AWS Config. The results of evaluating a rule against the
configuration of a resource are available on a dashboard. Using config
rules, you can assess your overall compliance and risk status from a
configuration perspective, view compliance trends over time, and pinpoint
which configuration change caused a resource to drift out of compliance
with a rule. Figure 7-21 shows how AWS Config works.

Figure 7-21 How AWS Config works

These are the things you can do with AWS Config:

• Continuous monitoring AWS Config allows you to constantly
monitor all your AWS resources and record any configuration

changes in them. As a result, whenever there is a change, you can get
instantly notified of it. It can make an inventory of all AWS
resources and the configuration of those resources.

• Continuous assessment AWS Config provides you with the ability
to define rules for provisioning and configuring AWS resources, and
it can continuously audit and assess the overall compliance of your
AWS resource configurations with your organization’s policies and
guidelines. AWS Config constantly assesses your resources against
standard configuration, and whenever there is a deviation, it instantly
notifies you.

• Change management AWS Config helps you with change
management. It can track what was changed, when it happened, and
how the change might affect other AWS resources. This need might
arise because of an unexpected configuration change, a suspected
system failure, a compliance audit, or a possible security incident.
You can also track the relationships among resources and review
resource dependencies prior to making changes. Once you make a
change, you can look at the configuration history to find out how it
looked in the past.

• Operational troubleshooting Since AWS Config tracks all the
changes and constantly monitors all your resources, it can be used
for troubleshooting against operational issues. It helps you to find
the root cause by pointing out what change is causing the issue.
Since AWS Config can be integrated with AWS CloudTrail, you can
correlate configuration changes to particular events in your account.

• Compliance monitoring You can use AWS Config for compliance
monitoring for your entire account or across multiple accounts. If a
resource violates a rule, AWS Config flags the resource and the rule
as noncompliant. You can dive deeper to view the status for a
specific region or a specific account across regions.

Amazon VPC Flow Logs
Amazon VPC Flow Logs captures information about the IP traffic going to
and from network interfaces in your VPC. The Flow Logs data is stored

using Amazon CloudWatch Logs, which can then be integrated with
additional services, such as Elasticsearch/Kibana for visualization.

The flow logs can be used to troubleshoot why specific traffic is not
reaching an instance. Once enabled for a particular VPC, VPC subnet, or
Elastic Network Interface (ENI), relevant network traffic will be logged to
CloudWatch Logs for storage and analysis by your own applications or
third-party tools.

You can create alarms that will fire if certain types of traffic are detected;
you can also create metrics to help you to identify trends and patterns.

The information captured includes information about allowed and denied
traffic (based on security group and network ACL rules). It also includes
source and destination IP addresses, ports, the IANA protocol number,
packet and byte counts, a time interval during which the flow was observed,
and an action (ACCEPT or REJECT).

You can enable VPC Flow Logs at different levels.

• VPC This would cover all network interfaces in that VPC.
• Subnet This captures traffic on all network interfaces in that subnet.
• Network interface This captures traffic specific to a single network

interface.

Figure 7-22 shows VPC Flow Logs capture from different places.

Figure 7-22 VPC Flow Logs capture

You can enable VPC Flow Logs from the AWS Management Console or
the AWS CLI or by making calls to the EC2 API. VPC Flow Logs does not
require any agents on EC2 instances. Once you create a flow log, it takes
several minutes to begin collecting data and publishing to CloudWatch
Logs. Please note that it should not be used as a tool for capturing real-time
log streams for network interfaces. The flow logs can capture either all

flows, rejected flows, or accepted flows. VPC Flow Logs can be used both
for security monitoring and for application troubleshooting. You can create
CloudWatch metrics from VPC log data.

AWS Trusted Advisor
AWS Trusted Advisor provides best practices (or checks) in five categories:

• Cost Optimization You can save money on AWS by eliminating
unused and idle resources or making commitments to reserved
capacity.

• Security Helps you to improve the security of your application by
closing gaps, enabling various AWS security features, and
examining your permissions.

• Fault Tolerance You can increase the availability and redundancy of
your AWS application by taking advantage of Auto Scaling, health
checks, multi-AZs, and backup capabilities.

• Performance Helps you to improve the performance of your service
by checking your service limits, ensuring you take advantage of
provisioned throughput, and monitoring for overutilized instances.

• Service Limits It checks for service usage that is more than 80
percent of the service limit. Since the values are based on a snapshot,
your current usage might differ. Sometimes it may take up to 24
hours to reflect any change. For example, the default service limit
for EC2 instances is 20. If you have already created more than 16
instances it will be displayed on the dashboard.

The status of the check is shown by using color coding on the dashboard
page.

• Red means action is recommended.
• Yellow means investigation is recommended.
• Green means no problem is detected.

Figure 7-23 shows the Trusted Advisor Dashboard screen.

Figure 7-23 Trusted Advisor Dashboard

These seven Trusted Advisor checks are available to all customers under
various categories: Service Limits, S3 Bucket Permissions, Security
Groups–Specific Ports Unrestricted, IAM Use, MFA on Root Account, EBS
Public Snapshots, and RDS Public Snapshots. Customers can access the
remaining checks by upgrading to a Business or Enterprise Support plan.
Figures 7-24 and 7-25 show a few checks that Trusted Advisor does on the
Cost Optimization and Security tabs.

Figure 7-24 Checks on the Cost Optimization tab from Trusted Advisor

Figure 7-25 Checks on the Security tab from Trusted Advisor

AWS Organizations
Many AWS enterprises have found themselves managing multiple AWS
accounts as they have scaled up their use of AWS for a variety of reasons.
Some of these enterprises have added more accounts incrementally as
individual teams and divisions make the move to the cloud.

Other enterprises use different accounts for test development and
production systems or to meet strict guidelines for compliance such as
HIPAA or PCI. As the number of these accounts increases, enterprises
would like to set policies and manage billing across their accounts in a
simple, more scalable way, without requiring custom scripts and manual
processes.

Enterprises also want more efficient automated solutions for creating
new accounts with the current policies applied as they create more accounts
to meet the needs of their business.

AWS Organizations makes account management simple. It offers policy-
based management from multiple AWS accounts. You can create groups of
accounts and then apply policies to those groups that centrally control the
use of AWS services down to the API level across multiple accounts. It
enables you to centrally manage policies across multiple accounts, without
requiring custom scripts and manual processes. For example, you can create
a group of accounts that are used for production resources and then apply a
policy to this group that limits which AWS service APIs those accounts can
use. You can also use the organization’s APIs to help automate the creation
of new AWS accounts with a few simple API calls. You can create a new
account programmatically and then apply the correct policies to the new
account automatically. AWS Organizations’ service control policies (SCPs)
help you centrally control AWS service use across multiple AWS accounts
in your organization.

Using AWS Organizations, you can set up a single payment method for
all of these accounts through consolidated building. AWS Organizations is
available to all AWS customers free of cost.

Chapter Review
In this chapter, you learned about AWS Lambda, Amazon API Gateway,
and Amazon Kinesis. You also learned about Amazon CloudFront, Amazon
Route 53, AWS WAF, Amazon Simple Queue Service, Amazon Simple
Notification Service, AWS Step Functions, Elastic Beanstalk, AWS
OpsWorks, Amazon Cognito, Amazon EMR, AWS CloudFormation,
Amazon CloudWatch, CloudTrail, AWS Config, VPC Flow Logs, AWS
Trusted Advisor, and AWS Organizations.

With Lambda, you can run code for virtually any type of application or
back-end service. Lambda runs and scales your code with high availability.
Each Lambda function you create contains the code you want to execute,
the configuration that defines how your code is executed, and, optionally,
one or more event sources that detect events and invoke your function as
they occur. AWS Lambda supports Java, Node.js, Python, and C#.

API Gateway is a fully managed service that makes it easy for
developers to define, publish, deploy, maintain, monitor, and secure APIs at
any scale. Clients integrate with the APIs using standard HTTPS requests.
API Gateway serves as a front door (to access data, business logic, or

functionality from your back-end services) to any web application running
on Amazon EC2, Amazon ECS, AWS Lambda, or on-premises
environment.

Amazon Kinesis Data Streams enables you to build custom applications
that process or analyze streaming data for specialized needs. Kinesis Data
Streams can continuously capture and store terabytes of data per hour from
hundreds of thousands of sources such as web site clickstreams, financial
transactions, social media feeds, IT logs, and location-tracking events.

Amazon Kinesis Data Firehose is the easiest way to load streaming data
into data stores and analytics tools. It can capture, transform, and load
streaming data into Amazon S3, Amazon Redshift, Amazon Elasticsearch
Service, and Splunk, enabling near real-time analytics with the existing
business intelligence tools and dashboards you’re already using today. It is
a fully managed service that automatically scales to match the throughput of
your data and requires no ongoing administration. It can also batch,
compress, and encrypt the data before loading it, minimizing the amount of
storage used at the destination and increasing security.

Amazon Kinesis Data Analytics is the easiest way to process and
analyze real-time, streaming data. With Amazon Kinesis Data Analytics,
you just use standard SQL to process your data streams, so you don’t have
to learn any new programming languages. Simply point Kinesis Data
Analytics at an incoming data stream, write your SQL queries, and specify
where you want to load the results. Kinesis Data Analytics takes care of
running your SQL queries continuously on data while it’s in transit and
sends the results to the destinations.

Amazon CloudFront is a global CDN service that allows you to
distribute content with low latency and provides high data transfer speeds.
Amazon CloudFront employs a global network of edge locations and
regional edge caches that cache copies of your content close to your
viewers.

Amazon Route 53 is the managed DNS service of Amazon. DNS
translates human-readable names like www.example.com into the numeric
IP addresses like 192.0.0.3 that servers/computers use to connect to each
other. Route 53 is the only service that has 100 percent SLA. This service is
region independent.

AWS WAF is a web application firewall that protects your web
applications from various forms of attack. It helps to protect web sites and

https://www.example.com/

applications against attacks that could affect application availability, cause
data breaches, cause downtime, compromise security, or consume excessive
resources. It gives you control over which traffic to allow or block to your
web applications by defining customizable web security rules.

AWS Shield is a managed service that provides protection against
distributed denial-of-service (DDoS) attacks for applications running on
AWS. There are two types of AWS Shield: AWS Shield Standard and AWS
Shield Advanced. AWS Shield Standard is automatically enabled for all
AWS customers.

Amazon Simple Queue Service is a fast, reliable, scalable, and fully
managed queue service. Using Amazon SQS, you can quickly build
message queuing applications that can run on any system. It can send, store,
and receive messages between components. Like most AWS services, it’s
accessible through a web API, as well as SDKs in most languages.

Amazon Simple Notification Service is a web service used to send
notifications from the cloud. It is easy to set up and operate and at the same
time highly scalable, flexible, and cost-effective. SNS has the capacity to
publish messages from an application and then immediately deliver them to
subscribers. It follows the publish-subscribe mechanism.

AWS Step Functions is a fully managed service that makes it easy to
coordinate the components of distributed applications and microservices
using a visual workflow. It is really easy to use and scales down to little
one-off shell-script equivalents and up to billions of complex multiphase
tasks.

Using AWS Elastic Beanstalk, you can deploy, monitor, and scale an
application on AWS quickly and easily. Elastic Beanstalk is the simplest
and fastest way to deploy web applications. You just need to upload your
code and Elastic Beanstalk will provision all the resources like Amazon
EC2, Amazon Elastic Container Service (Amazon ECS), Auto Scaling, and
Elastic Load Balancing for you behind the scenes.

AWS OpsWorks is a configuration management service that helps you
deploy and operate applications of all shapes and sizes. OpsWorks provides
an easy way to quickly configure, deploy, and update your applications.
OpsWorks offers AWS OpsWorks for Chef Automate, AWS OpsWorks for
Puppet Enterprise, and AWS OpsWorks Stacks.

Amazon Cognito is a user identity and data synchronization service that
makes it really easy for you to manage user data for your apps across
multiple mobile or connected devices. You can create identities for users of
your app using public login providers such as Google, Facebook, Amazon,
and through enterprise identity providers such as Microsoft Active
Directory using SAML.

Amazon EMR provides a managed Hadoop framework that distributes
computation of your data over multiple Amazon EC2 instances. It
decouples the compute and storage by keeping the data in Amazon S3 and
using Amazon EC2 instances for processing the data.

AWS CloudFormation provisions and manages stacks of AWS resources
based on templates you create to model your infrastructure architecture.
You can manage anything, from a single Amazon EC2 instance to a
complex multitier, multiregion application. AWS CloudFormation allows
you to treat your infrastructure as just code.

Amazon CloudWatch is a monitoring service for AWS cloud resources
and the applications you run on AWS. You can use Amazon CloudWatch to
gain system-wide visibility into resource utilization, application
performance, and operational health. You can use these insights to react and
keep your application running smoothly. Amazon CloudWatch monitors
your AWS cloud resources and your cloud-powered applications. It tracks
the metrics so that you can visualize and review them.

AWS CloudTrail is a service that logs all API calls, including console
activities and command-line instructions. It logs exactly who did what,
when, and from where. It can tell you which resources were acted upon in
the API call and where the API call was made from and was made to. That
means you have full visibility into any accesses, changes, or activity within
your AWS environment. You can save these logs into your S3 buckets.

AWS Config is a fully managed service that provides you with a detailed
inventory of your AWS resources and their current configuration in an AWS
account. It continuously records configuration changes to these resources
(e.g., EC2 instance launch, ingress/egress rules of security groups, network
ACL rules for VPCs, etc.).

VPC Flow Logs captures information about the IP traffic going to and
from network interfaces in your VPC. The flow log data is stored using
Amazon CloudWatch Logs, which can then be integrated with additional
services, such as Elasticsearch/Kibana for visualization.

AWS Trusted Advisor provides best practices (or checks) in five
categories: cost optimization, security, fault tolerance, performance, and
service limits.

AWS Organizations offers policy-based management for multiple AWS
accounts. With Organizations, you can create groups of accounts and then
apply policies to those groups. Organizations enables you to centrally
manage policies across multiple accounts, without requiring custom scripts
and manual processes.

Questions
1. What are the languages that AWS Lambda supports? (Choose two.)

A. Perl
B. Ruby
C. Java
D. Python

2. Which product is not a good fit if you want to run a job for ten hours?
A. AWS Batch
B. EC2
C. Elastic Beanstalk
D. Lambda

3. What product should you use if you want to process a lot of streaming
data?
A. Kinesis Firehouse
B. Kinesis Data Stream
C. Kinesis Data Analytics
D. API Gateway

4. Which product should you choose if you want to have a solution for
versioning your APIs without having the pain of managing the
infrastructure?
A. Install a version control system on EC2 servers
B. Use Elastic Beanstalk

C. Use API Gateway
D. Use Kinesis Data Firehose

5. You want to transform the data while it is coming in. What is the
easiest way of doing this?
A. Use Kinesis Data Analytics
B. Spin off an EMR cluster while the data is coming in
C. Install Hadoop on EC2 servers to do the processing
D. Transform the data in S3

6. Which product is not serverless?
A. Redshift
B. DynamoDB
C. S3
D. AWS Lambda

7. You have the requirement to ingest the data in real time. What product
should you choose?
A. Upload the data directly to S3
B. Use S3 IA
C. Use S3 reduced redundancy
D. Use Kinesis Data Streams

8. You have a huge amount of data to be ingested. You don’t have a very
stringent SLA for it. Which product should you use?
A. Kinesis Data Streams
B. Kinesis Data Firehose
C. Kinesis Data Analytics
D. S3

9. What is the best way to manage RESTful APIs?
A. API Gateway
B. EC2 servers
C. Lambda
D. AWS Batch

10. To execute code in AWS Lambda, what is the size of the EC2 instance
you need to provision in the back end?
A. For code running less than one minute, use a T2 Micro.
B. For code running between one minute and three minutes, use M2.
C. For code running between three minutes and five minutes, use

M2 large.
D. There is no need to provision an EC2 instance on the back end.

11. What are the two configuration management services that AWS
OpsWorks supports? (Choose two.)
A. Chef
B. Ansible
C. Puppet
D. Java

12. You are designing an e-commerce order management web site where
your users can order different types of goods. You want to decouple the
architecture and would like to separate the ordering process from
shipping. Depending on the shipping priority, you want to have a
separate queue running for standard shipping versus priority shipping.
Which AWS service would you consider for this?
A. AWS CloudWatch
B. AWS CloudWatch Events
C. AWS API Gateway
D. AWS SQS

13. Your company has more than 20 business units, and each business unit
has its own account in AWS. Which AWS service would you choose to
manage the billing across all the different AWS accounts?
A. AWS Organizations
B. AWS Trusted Advisor
C. AWS Cost Advisor
D. AWS Billing Console

14. You are running a job in an EMR cluster, and the job is running for a
long period of time. You want to add additional horsepower to your

cluster, and at the same time you want to make sure it is cost-effective.
What is the best way of solving this problem?
A. Add more on-demand EC2 instances for your task node
B. Add more on-demand EC2 instances for your core node
C. Add more spot instances for your task node
D. Add more reserved instances for your task node

15. Your resources were running fine in AWS, and all of a sudden you
notice that something has changed. Your cloud security team told you
that some API has changed the state of your resources that were
running fine earlier. How do you track who has created the mistake?
A. By writing a Lambda function, you can find who has changed

what
B. By using AWS CloudTrail
C. By using Amazon CloudWatch Events
D. By using AWS Trusted Advisor

16. You are running a mission-critical three-tier application on AWS and
have enabled Amazon CloudWatch metrics for a one-minute data
point. How far back you can go and see the metrics?
A. One week
B. 24 hours
C. One month
D. 15 days

17. You are running all your AWS resources in the US-East region, and
you are not leveraging a second region using AWS. However, you
want to keep your infrastructure as code so that you should be able to
fail over to a different region if any DR happens. Which AWS service
will you choose to provision the resources in a second region that
looks identical to your resources in the US-East region?
A. Amazon EC2, VPC, and RDS
B. Elastic Beanstalk
C. OpsWorks
D. CloudFormation

18. What is the AWS service you are going to use to monitor the service
limit of your EC2 instance?
A. EC2 dashboard
B. AWS Trusted Advisor
C. AWS CloudWatch
D. AWS Config

19. You are a developer and want to deploy your application in AWS. You
don’t have an infrastructure background and are not sure about how to
use infrastructure within AWS. You are looking for deploying your
application in such a way that the infrastructure scales on its own, and
at the same time you don’t have to deal with managing it. Which AWS
service are you going to choose for this?
A. AWS Config
B. AWS Lambda
C. AWS Elastic Beanstalk
D. Amazon EC2 servers and Auto Scaling

20. In the past, someone made some changes to your security group, and
as a result an instance is not accessible by the users for some time. This
resulted in nasty downtime for the application. You are looking to find
out what change has been made in the system, and you want to track it.
Which AWS service are you going to use for this?
A. AWS Config
B. Amazon CloudWatch
C. AWS CloudTrail
D. AWS Trusted Advisor

Answers
1. C, D. Perl and Ruby are not supported by Lambda.
2. D. Lambda is not a good fit because the maximum execution time for

code in Lambda is five minutes. Using Batch you can run your code
for as long as you want. Similarly, you can run your code for as long as
you want on EC2 servers or by using Elastic Beanstalk.

3. B. Kinesis Data Firehose is used mainly for large amounts of
nonstreaming data, Kinesis Data Analytics is used for transforming
data, and API Gateway is used for managing APIs.

4. C. EC2 servers and Elastic Beanstalk both need you to manage some
infrastructure; Kinesis Data Firehose is used for ingesting data.

5. A. Using EC2 servers or Amazon EMR, you can transform the data,
but that is not the easiest way to do it. S3 is just the data store; it does
not have any transformation capabilities.

6. A. DynamoDB, S3, and AWS Lambda all are serverless.
7. D. You can use S3 for storing the data, but if the requirement is to

ingest the data in real time, S3 is not the right solution.
8. B. Kinesis Data Streams is used for ingesting real-time data, and

Kinesis Data Analytics is used for transformation. S3 is used to store
the data.

9. A. Theoretically EC2 servers can be used for managing the APIs, but if
you can do it easily through API Gateway, why would you even
consider EC2 servers? Lambda and Batch are used for executing the
code.

10. D. There is no need to provision EC2 servers since Lambda is
serverless.

11. A, C. AWS OpsWorks supports Chef and Puppet.
12. D. Using SQS, you can decouple the ordering and shipping processes,

and you can create separate queues for the ordering and shipping
processes.

13. A. Using AWS Organizations, you can manage the billing from
various AWS accounts.

14. C. You can add more spot instances to your task node to finish the job
early. Spot instances are the cheapest in cost, so this will make sure the
solution is cost-effective.

15. B. Using AWS CloudTrail, you can find out who has changed what via
API.

16. D. When CloudWatch is enabled for a one-minute data point, the
retention is 15 days.

17. D. Using CloudFormation, you can keep the infrastructure as code, and
you can create a CloudFormation template to mimic the setup in an
existing region and can deploy the CloudFormation template in a
different region to create the resources.

18. B. Using Trusted Advisor, you can monitor the service limits for the
EC2 instance.

19. C. AWS Elastic Beanstalk is an easy-to-use service for deploying and
scaling web applications. You can simply upload your code and Elastic
Beanstalk automatically handles the deployment, from capacity
provisioning, load balancing, and auto-scaling to application health
monitoring.

20. A. AWS Config maintains the configuration of the system and helps
you to identify what change was made in it.

CHAPTER 8
Databases on AWS

In this chapter, you will
• Learn about relational databases and Amazon Relational Database

Service (RDS)
• Understand Amazon Aurora
• Learn about Amazon Redshift
• Learn about Amazon DynamoDB
• Learn about Amazon ElastiCache
• Learn about Amazon Neptune
• Learn about Amazon Document Database

Understanding Relational Databases
A database management system (DBMS) is the software that controls the
storage, organization, and retrieval of data. A relational database
management system (RDBMS), as defined by IBM researcher Dr. E.F.
Codd, adapts to the relation model with well-defined object stores or
structures. These stores and structures, commonly known as operators and
integrity rules, are clearly defined actions meant to manipulate and govern
operations on the data and structures of the database. All the relational
databases use Structured Query Language (SQL) for querying and
managing the day-to-day operations of the database.

In a relational database, the information is stored in tables in the form of
rows and columns. Data in a table can be related according to common keys
or concepts, and the ability to retrieve related data from a table is the basis
for the term relational database. A DBMS handles the way data is stored,
maintained, and retrieved. In the case of a relational database, the RDBMS
performs these tasks. DBMS and RDBMS are often used interchangeably.

Relational databases follow certain rules to ensure data integrity and to
make sure the data is always accessible. The first integrity rule states that
the rows in an RDBMS table should be distinct. For most RDBMSs, a user
can specify that duplicate rows are not allowed, in which case the RDBMS
prevents duplicates. The second integrity rule states that column values
must not have repeating groups or arrays. The third integrity rule is about
the concept of a NULL value. In an RDBMS, there might be a situation
where the value of a column is not known, which means the data is not
available. NULL does not mean a missing value or zero.

Relational databases also have the concepts of primary keys and foreign
keys. A primary key uniquely identifies a record in the table, and the unique
column containing the unique record is called the primary key. For
example, in Table 8-1, there are five employees in an employee table.

Table 8-1 Employee Table

This employee table is a scenario that occurs in every human resource or
payroll database. In this employee table, you cannot assign the first name to
the primary key because many people can have the same first name, and the
same is true for the last name. Similarly, two employees can join the
company on the same day; therefore, the date of join also can’t be the
primary key. In addition, there are always multiple employees from a state,
and thus the state can’t be the primary key. Only the employee number is a
unique value in this table; therefore, the primary key is the
Employee_Number record. The primary key can’t contain any NULL value,
and a table can have only one primary key, which can consist of a single
field or multiple fields.

As described previously, the employee table can be maintained by the
human resource department as well as the payroll department with a
different set of columns. For example, the payroll table will have full details
of the salary information, the tax deductions, the contributions toward
retirement, and so on, whereas the employee table maintained by the human
resource department may not have the columns related to tax deductions,
and so on. Since both the tables contain the information related to the
employee, often you need to link the tables or establish a relationship
between the two tables. A foreign key is a field in one table that uniquely
identifies rows in another table or the same table. The foreign key is defined
in a second table, but it refers to the primary key or a unique key in the first
table. Let’s assume the name of the table that the HR department maintains
is employee, and the name of the table that the payroll department
maintains is employee_details. In this case, employee_number will be a
primary key for the employee table. The employee_details table will have a
foreign key that references employee_number to uniquely identify the
relationship between both tables.

Relational databases use SQL for all operations. There are a basic set of
SQL commands that can be used across all RDBMSs. For example, all
RDBMS engines use a SELECT statement to retrieve records from a
database.

SQL commands are divided into categories, the two main ones being
Data Manipulation Language (DML) commands and Data Definition
Language (DDL) commands. The DML commands deal with the
manipulation of the data such as inserting, updating, and deleting, and DDL
deals with creating, altering, and dropping (deleting) the table structure.

Some common examples of DML are

• SELECT This command is used to query and display data from a
database. Here’s an example:

SQL> SELECT First_Name, Last_Name FROM Employees WHERE
State = 'CA';

• INSERT This command adds new rows to a table. INSERT is used
to populate a newly created table or to add a new row or rows to an
existing table. Here’s an example:

SQL> INSERT INTO Customers (Customer_Name, Address, City,
PostalCode, Country) VALUES ('Tim', '55 Mowry Ave', 'berkeley',
'94701', 'USA');

• DELETE This command removes a specified row or set of rows
from a table. Here’s an example:

SQL> DELETE FROM Customers WHERE CustomerName= 'Albert
Einstein';

• UPDATE This command changes an existing value in a column or
group of columns in a table. Here’s an example:

SQL> UPDATE Customers SET City= 'Mountain View' WHERE
CustomerID = 55012;

Some common DDL commands are

• CREATE TABLE This command creates a table with the column
names given in the CREATE TABLE syntax.

• DROP TABLE This command deletes all the rows and removes the
table definition from the database.

• ALTER TABLE This command modifies the table structure. You
can add or remove a column from a table using this command. You
can also add or drop table constraints and alter column attributes.

The most common RDBMS software includes Oracle, MySQL,
PostgreSQL, MariaDB, and so on.

Understanding the Amazon Relational
Database Service
AWS provides a service for hosting and managing relational databases
called Amazon Relational Database Service (RDS). Using this service, you
can host the following seven RDBMS engines:

• Aurora MySQL
• Aurora PostgreSQL
• Oracle

• SQL Server
• MySQL
• PostgreSQL
• MariaDB

Before understanding RDS, let’s evaluate the various ways you can host
your database. The traditional method is to host the database in your data
center on-premises. Using AWS, you can host the relational database either
on EC2 servers or in RDS. Let’s understand what it takes to host a relational
database in all these scenarios.

Scenario 1: Hosting the Database in Your Data
Center On-Premises
If you host the database in your own data center, you have to take care of all
the steps shown in Figure 8-1. Specifically, you have to manage your data
center including setting up the power, configuring the networking,
configuring the server, installing the operating system, configuring the
storage, installing the RDBMS, maintaining the OS, doing OS firmware
upgrades, doing database software upgrades, backing up, patching,
configuring high availability, configuring scalability, optimizing
applications, and so on. In short, you have to take care of everything.

Figure 8-1 Hosting the database in your data center on-premises

Scenario 2: Hosting the Database on Amazon EC2
Servers
If you host the database on EC2 servers, then you need to take care of the
stuff on the left of Figure 8-2, and AWS takes care of the stuff on the right.
AWS takes care of OS installation, server maintenance, racking of the
servers, power, cooling, networking, and so on. You are responsible for
managing the OS, OS patches installation required for RDBMS installation,
database installation and maintenance, and all the other tasks related to
databases and application optimization.

Figure 8-2 Hosting the database on Amazon EC2 servers

Scenario 3: Hosting the Database Using Amazon
RDS
As shown in Figure 8-3, if you host the database using RDS, AWS does all
the heavy lifting for you. From installation to maintenance of the database
and patching to upgrading, everything is taken care of by AWS. Even high
availability and scalability are taken care of by AWS. You just need to focus
on application optimization, and that’s all. It is a managed database service
from AWS.

Figure 8-3 Hosting the database using Amazon RDS

The following are the benefits you get by running your database on
RDS:

• No infrastructure management You don’t have to manage any
infrastructure for the databases. As discussed previously, AWS takes
care of everything.

• Instant provisioning Provisioning a database on RDS is almost
instant. With a few clicks, you can deploy an RDBMS of your choice
in a few minutes. When you need to launch a new database, you can
do it instantly, without waiting for days or weeks.

• Scaling RDS is easy to scale; with a few clicks you can scale up or
scale down. You can change your configuration to meet your needs
when you want. You can scale compute and memory resources up or
down at any point in time. I will discuss various ways of scaling a
database later in this chapter.

• Cost-effective RDS is really cost-effective. You pay only for what
you use, and there are no minimum or setup fees. You are billed
based on using the following database instance hours: the storage
capacity you have provisioned to your database instance, the I/O

requests per month, the provisioned IOPS number per month (only if
you are using this feature), backup storage, and data transfer
including Internet data transfer in and out of your database instance.

• Application compatibility Since RDS supports seven engines, most
of the popular applications or your custom code, applications, and
tools you already use today with your existing databases should
work seamlessly with Amazon RDS. If you are using one of the
engines that are currently supported, then there is a good chance you
can get it working on RDS.

• Highly available Using RDS, you can provision a database in
multiple AZs. Whenever you provision the database in multiple AZs,
Amazon RDS synchronously replicates your data to a standby
instance in a different AZ.

• Security RDS supports the encryption of data both at rest and in
transit. You can encrypt the databases and manage your keys using
the AWS Key Management System. With RDS encryption, the data
stored at rest in the storage is encrypted. Amazon RDS also supports
SSL, which is used to take care of encrypting the data in transit.

Hosting a Database in Amazon EC2 vs.
Amazon RDS
If you need to decide whether to host the database in Amazon EC2 or
Amazon RDS, you should clearly understand the differences in both the
offerings so you can choose the right solution for your needs. Of course,
you should give RDS a try first because it eliminates a lot of routine work
your DBAs have to contend with, but depending on your application and
your requirements, one might be preferable over the other. RDS is a
managed service, so in some cases you cannot do everything like you might
do with a database running on EC2 or in your own data center. AWS does
some of the administration, so there are some trade-offs. It is important for
you to understand some of the limitations that exist within RDS when
making a choice.

RDS fully manages the host, operating system, and database version you
are running on. This takes a lot of burden off your hands, but you also don’t

get access to the database host operating system, you have limited ability to
modify the configuration that is normally managed on the host operating
system, and generally you get no access to functions that rely on the
configuration from the host operating system. You also don’t have
superuser privilege on the database.

All of your storage on RDS is also managed. Once again, this takes a lot
of burden off of you from an administrative standpoint, but it also means
there are some limits. There are storage limits of 16TB with MySQL, SQL
server, MariaDB, PostgreSQL, and Oracle and 64TB with Aurora. Please
note these numbers are as of the writing this book. AWS is continuing to
increase the storage limits for RDS, so please refer to the AWS
documentation to find the latest information on the storage limits.

You should choose RDS if

• You want to focus on tasks that bring value to your business
• You don’t want to manage the database
• You want to focus on high-level tuning tasks and schema

optimization
• You lack in-house expertise to manage databases
• You want push-button multi-AZ replication
• You want automated backup and recovery

You should choose EC2 if

• You need full control over the database instances
• You need operating system access
• You need full control over backups, replication, and clustering
• Your RDBMS engine features and options are not available in

Amazon RDS
• You size and performance needs exceed the Amazon RDS offering

High Availability on Amazon RDS
Amazon RDS supports high availability (HA) architectures, so if you have
a database with important data, there are many ways to configure HA. It is

important to have an HA architecture in place since the database is the heart
of everything. If the database goes down, everything goes down. For
example, if your application has HA but the database goes down, the
application won’t be usable. Let’s evaluate the various architectures for
RDS including the HA architectures.

Simplest Architecture: Single-AZ Deployment
If you just want to get started on Amazon RDS, do some sort of proof of
concept, deploy development environments, or deploy noncritical
nonproduction environments, you may not need a highly available
architecture since you can live with downtime in these scenarios. Therefore,
in the previously mentioned scenarios, you can launch the Amazon RDS
instance in a single AZ. With this you get a single RDS instance inside a
VPC with the necessary attached storage. Figure 8-4 shows this
architecture.

Figure 8-4 Amazon RDS in a single AZ

High Availability: Multiple AZs
If you are planning to run a mission-critical database, want to have an
architecture where you can’t afford to lose data, have a tight recovery point
objective, or can’t afford much downtime, you must deploy the database in
a multi-AZ architecture.

When you deploy a database in a multi-AZ architecture, you can choose
which availability zone you want your primary database instance to be in.
RDS will then choose to have a standby instance and storage in another
availability zone of the AWS region that you are operating in. The instance
running in the standby will be of the same type as your master, and the
storage will be of the same configuration and size as of your primary.

Figure 8-5 shows the HA architecture.

Figure 8-5 HA architecture in AWS

In the case of a multi-AZ architecture, the primary database, also known
as the master database, handles all the traffic. The standby database is

always kept ready and is in a state that whenever the master or the primary
goes down, it takes the role of the master or primary and supports the
application.

RDS takes responsibility for ensuring that your primary is healthy and
that your standby is in a state that you can recover to. The standby database
does not remain open when it acts as a standby database, so you can’t direct
the traffic to the primary and standby databases at the same time. This is
like having an active/passive database. Your data on the primary database is
synchronously replicated to the storage in the standby configuration. As
discussed in the previous chapter, the AZs are built in such a way that
provides the ability to synchronously replicate the data; hence, there is no
data loss.

There can be various types of failover that RDS can handle
automatically. For example, the host instance can go down, the underlying
storage can fail, the network connectivity to the primary instance is lost, the
AZ itself goes down, and so on.

When the failover happens, the standby is automatically propagated to
the master, and all the application traffic fails over to the new master. In the
multi-AZ architecture of RDS, the application connects to the database
server using a DNS endpoint that is mapped to the master and standby
instances. As a result, you don’t have to repoint the application to the new
master or change anything from the application side. In the case of failover,
RDS automatically does the DNS failover, which typically takes about 30 to
60 seconds. Once it happens, you are again up and running, and you do not
need to do anything. Figure 8-6 shows this behavior. In this figure, users
and applications are connected to the database using the endpoint
rdsdbinstance.1234.us-west-2.rds.amazonaws.com:3006. (Since this is
a MySQL database, the port is 3006.) Now this endpoint is mapped to both
the master and the slave. When the failover happens, the users and
application are reconnected to the standby that gets propagated to the
master. The application and users continue to connect to the same endpoint
(rdsdbinstance.1234.us-west-2.rds.amazonaws.com:3006). They don’t
have to change anything at their end.

Figure 8-6 DNS failover using multi-AZs on Amazon RDS

Scaling on Amazon RDS
There are multiple ways you can scale your databases running on RDS.
There could be many reasons you would like to scale up the databases
running in RDS. For example, your application workload has increased,
your users have grown up, you have started seeing performance
degradation, or your database queries are showing a wait on the CPU or in
memory. Or, when you started the application, you had no idea about the
workload and now to support the business, you need to scale up. Scaling up
always helps you to handle the additional workload.

Similarly, there could be reasons when you may want to scale down. For
example, during the weekends, there may not be much activity in the
database node, and you don’t want to pay more over the weekend; you may
want to scale down for the weekend.

Changing the Instance Type
The simplest way to scale up or down is to change the instance type. You
can change from one class of instance to another class or move up and
down between the same classes of instances. You can move up or down
between any class of instance supported by Amazon RDS. It is simple to
scale up or down the instance type in RDS. The steps are as follows:

1. Choose the Modify option from the Instance Actions menu of the RDS
console.

2. Choose what you want your new database instance class to be.
3. Determine whether you want to apply the change immediately.

If you choose to apply the change immediately, there could be some
downtime since the instance type is changed. You should make sure that the
business or application can handle the small downtime. If you can’t handle
the small outage, then don’t apply the change immediately. If you do not
apply the change immediately, then the change will be scheduled to occur
during the preferred maintenance window that you defined when creating
the database.

You can also scale up and down using the AWS CLI and AWS API. For
example, if you want to scale up to a c4 large instance for your database,
you can run the following command from AWS CLI and modify the
instance type:

You can even automate this by running a cron job in a cheap EC2
instance.

Since RDS is not integrated with Auto Scaling, you can’t use this
technology to scale up or down as you do in an EC2 instance. But you can
achieve this by writing a Lambda function. For example, you can have two
Lambda functions. The first one is for scaling down over the weekend, and
the second one is for scaling up at the end of the weekend. The Lambda
function can call the modify db instance API to either scale up or scale
down.

Similarly, you can also automate the scale-up of the instance based on
certain events. For example, if the CPU of your database instance goes up
by 75 percent, you want to automatically increase the instance size. This
can be done using a combination of Lambda, CloudWatch, and SNS
notifications. For example, from the CloudWatch metrics, you can monitor
the CPU utilization of the RDS instance. You can have an alarm that sends a
notification to SNS when the CPU goes up by 75 percent, and you can have
a Lambda function subscribed to that notification that calls the modify db

instance API and triggers the job to move the database to a higher class of
server.

Read Replica
A read replica is a read-only copy of your master database that is kept in
sync with your master database. You can have up to 15 read replicas in RDS
depending on the RDBMS engine. A read replica helps you to offload the
read-only queries to it, thereby reducing the workload on the master
database. There are several benefits of running a read replica:

• You can offload read-only traffic to the read replica and let the
master database run critical transaction-related queries.

• If you have users from different locations, you can create a read
replica in a different region and serve the read-only traffic via the
read replica.

• The read replica can also be promoted to a master database when the
master database goes down.

NOTE The read replicas are kept in sync with the master database, but
the replication is not synchronous. In a master-standby configuration, the
replication of data is always synchronous; therefore, there is zero data loss
when the standby is promoted to master. Whereas in the case of the master
and read replica configuration, the replication is asynchronous; therefore, if
you promote a read replica to a master, there could be some data loss
depending on the scenario. If you can’t afford to lose any data and you need
read replicas, then go for an architecture with master, standby, and read
replica. This way you will get the best of both worlds.

You can also use a read replica as a mechanism for high availability; for
example, if you have a master database and a read replica and the master
database goes down, the read replica can be promoted to master. The only
thing you need to be careful about with this architecture is the asynchronous
replication of data.

You can create the read replica in a different AZ in the same region, or
you can have a read replica in a different region called a cross-regional read
replica. A cross-regional read replica may or may not be available for all
the RDBMS engines. Figure 8-7 shows a cross-regional read replica.

Figure 8-7 Cross-regional read replica

An intra-region allows you to create additional read replicas within the
same AWS region, but in the same or different availability zones from your
master database. This functionality is supported by all the engines RDS
supports.

Cross-regional replication allows you to deploy the read replica into an
AWS region that is different from the region that your master is located in.
This functionality is supported by MySQL, MariaDB, PostgreSQL, Aurora
MySQL, Aurora PostgreSQL, and Oracle.

Security on Amazon RDS
There are multiple ways of securing the databases running on Amazon
RDS. In this section, you will learn all the different ways of securing the
database.

Amazon VPC and Amazon RDS
When you launch an Amazon RDS instance, it launches in Amazon Virtual
Private Cloud (VPC). I discussed VPC in Chapter 3. Since a database
always stays behind the firewall, it is recommended that you create the
database in the private subnet. Of course, you may have a legitimate reason
to create the database in a public subnet, but again, that could be a one-off
scenario. So, with your database launched inside of VPC, you get to control
which users and applications access your database and how they access it.
When the database runs in the VPC, you have multiple ways of connecting
to it:

• You can create a VPN connection from your corporate data center
into the VPC so that you can access the database in a hybrid fashion.

• You can use Direct Connect to link your data center to an AWS
region, giving you a connection with consistent performance.

• You can peer two different VPCs together, allowing applications in
one VPC to access your database in your VPC.

• You can grant public access to your database by attaching an Internet
gateway to your VPC.

• You can control the routing of your VPC using route tables that you
attach to each of the subnets in your VPC.

You can create security groups within RDS and can control the flow of
traffic using them. You have already read about security groups in Chapter
3. You can control the protocol, port range, and source of the traffic that you
allow into your database. For the source, you can restrict it to a specific IP
address, a particular CIDR block covering multiple IP addresses, or even
another security group, meaning that your RDS instance will accept traffic
only if it comes from instances in that particular security group. This gives
you the flexibility to have a multitier architecture where you grant
connections only from the parts of the tier that actually need to access the
database.

Data Encryption on Amazon RDS
Encryption is important for many customers, and Amazon RDS provides
the ability to encrypt the database. Many customers have a compliance

requirement to encrypt the entire database. RDS provides you with the
ability to encrypt the data at rest. RDS-encrypted instances provide an
additional layer of data protection by securing your data from unauthorized
access to the underlying storage. You can use Amazon RDS encryption to
increase the data protection of your applications deployed in the cloud and
to fulfill compliance requirements for data-at-rest encryption.

When you encrypt your RDS database with AWS-provided encryption, it
takes care of encrypting the following:

• The database instance storage
• Automated backups
• Read replicas associated with the master database
• Standby databases associated with the master database
• Snapshots that you generate of the database

Thus, the entire ecosystem where the data is stored is encrypted.
If you use Oracle or Microsoft SQL Server’s native encryption like

Transparent Database Encryption (TDE), you can also use it in Amazon’s
RDS. But make sure you use only one mode of encryption (either RDS or
TDE) or it will have an impact on the performance of the database.

When you choose to encrypt, the data in it uses the industry-standard
AES-256 encryption algorithm to encrypt your data on the server that hosts
your Amazon RDS instance. Once the data is encrypted, RDS automatically
handles the decryption of the data. When you create an RDS instance and
enable encryption, a default key for RDS is created in the Key Management
Service (KMS) that will be used to encrypt and decrypt the data in your
RDS instance. This key is tied to your account and controlled by you. KMS
is a managed service that provides you with the ability to create and manage
encryption keys and then encrypt and decrypt your data with those keys. All
of these keys are tied to your own AWS account and are fully managed by
you. KMS takes care of all the availability, scaling, security, and durability
that you would normally have to deal with when implementing your own
key store. When KMS is performing these management tasks, it allows you
the ability to focus on using the keys and building your application.

You can also use your own key for managing the encryption. Let’s take a
deep dive on this. As discussed, when you are launching an RDS instance

and choose to make the database encrypted, it results in an AWS managed
key for RDS. This is good if you just want encryption and don’t want to
think about anything else related to the key. Once this key is created, it can
be used only for RDS encryption and not with any other AWS service.
Therefore, the scope of this key is limited to RDS. The other option is to
create your own master key. If you create your own master key within KMS
and then reference that key while creating your RDS instance, you have
much more control over the use of that key such as when it is enabled or
disabled, when the key is rotated, and what the access policies are for the
key.

When RDS wants to encrypt data on the instance, it will make a call to
KMS using the necessary credentials. KMS will then give RDS a data key
that is actually used to encrypt the data on that instance. This data key is
encrypted using the master key that was created when you launched the
instance or using the key you created and specified during the instance
creation. This data key is specific to that RDS instance and can’t be used
with another RDS instance.

Therefore, it is a two-tiered key hierarchy using encryption:

• The unique data key encrypts customer data inside the RDS.
• The AWS KMS master keys encrypt data keys.

This is depicted in Figure 8-8.

Figure 8-8 Two-tiered key hierarchy for Amazon RDS

There are several benefits of using this approach. Encryption and
decryption are handled transparently, so you don’t have to modify your
application to access your data. There are limited risks of a compromised
data key. You get better performance for encrypting large data sets, and
there is no performance penalty for using KMS encryption with your RDS
instance. You only have to manage a few master keys and not many data
keys. You get centralized access and audit of key activity via CloudTrail so
that you can see every time a key is accessed and used from your KMS
configuration.

Let’s understand how keys are used to protect your data. This is shown
in Figure 8-9.

Figure 8-9 How keys are used to protect the data

1. The RDS instance requests an encryption key to use to encrypt data
and passes a reference to the master key in the account.

2. The client requests authentication based on the permissions set on both
the user and the key.

3. A unique data encryption key is created and encrypted under the KMS
master key.

4. The plaintext and encrypted data key is returned to the client.
5. The plaintext data key is used to encrypt data and is then deleted when

practical.
6. The encrypted data key is stored; it’s sent back to the KMS when

needed for data decryption.

Using RDS you can encrypt the traffic to and from your database using
SSL. This takes care of encrypting the data in transit. Each of the seven
RDS engines supports the ability to configure an SSL connection into your
database. The steps to implement the SSL connection to the database might
be different for different RDBMS engines.

Here are a couple of important things to note about encryption from the
examination’s point of view:

• You can encrypt only during database creation. If you already have a
database that is up and running and you want to enable encryption on
it, the only way to achieve this is to create a new encrypted database
and copy the data from the existing database to the new one.

• Once you encrypt a database, you can’t remove it. If you choose to
encrypt an RDS instance, it cannot be turned off. If you no longer
need the encryption, you need to create a new database instance that
does not have encryption enabled and copy the data to the new
database.

• The master and read replicas must be encrypted. When you create a
read replica, using RDS, the data in the master and read replicas is
going to be encrypted. The data needs to be encrypted with the same
key. Similarly, when you have a master and standby configuration,
both are going to be encrypted.

• You cannot copy those snapshots of an encrypted database to another
AWS region, as you can do with normal snapshots. (You will learn
about snapshots later in this chapter.) KMS is a regional service, so
you currently cannot copy things encrypted with KMS to another
region.

• You can migrate an encrypted database from MySQL to Aurora
MySQL. You will read about Aurora later in this chapter.

Backups, Restores, and Snapshots
For all the Amazon RDS engines, except Amazon Aurora (MySQL and
PostgreSQL), the database backup is scheduled for every day (in other
words, one backup per day). You can schedule your own backup window as
per your convenience. You can also monitor the backups to make sure they
are completing successfully. The backup includes the entire database,
transaction logs, and change logs. By default, the backups are retained for
35 days. If you want to retain a backup for a longer period of time, you can
do so by opening a support ticket. Multiple copies of the backup are kept in
each availability zone where you have an instance deployed.

In the case of Aurora, you don’t have to back up manually since
everything is automatically backed up continuously to the S3 bucket. This
also allows you to restore the database to any point in time. Alternatively,

you can also take a manual backup at any point in time. For Aurora, also the
backups are retained for 35 days, which again can be extended by a support
ticket.

When you restore a database from the backup, you create a new exact
copy of the database or a clone of a database. Using RDS, it is simple to
restore a database. Using backups, you can restore the database to any point
in time. When you restore the database, you have the ability to restore the
database to any class of server, and it doesn’t have to be the same type of
instance where the main database is running.

Restoring is pretty simple. You need to choose where to restore (your
database instance) and when (time) to restore. While restoring a database,
you define all the instance configurations just like when creating a new
instance. You can choose to restore the database up to the last restorable
time or do a custom restore time of your choosing. When you select both of
the options, the end result is a new RDS instance with all your data in it.

Creating a snapshot is another way of backing up your database.
Snapshots are not automatically scheduled, and you need to take the
snapshots manually. When you take the snapshot of a database, there is a
temporary I/O suspension that can last from a few seconds to a few
minutes. The snapshots are created in S3, and you can also use these
snapshots to restore a database. If you take the snapshot of an encrypted
database and use it for a restore, the resulting database also will be an
encrypted database. There are many reasons you would use database
snapshots. For example, you can use a snapshot to create multiple
nonproduction databases from the snapshot of the production database to
test a bug, to copy the database across multiple accounts, to create a disaster
recovery database, to keep the data before you delete the database, and so
on.

Monitoring
Amazon provides you with multiple ways of monitoring your databases
running on RDS. The basic monitoring is called standard monitoring, and if
you want fine granular details, you can opt for advanced monitoring. RDS
sends all the information for these metrics to Amazon CloudWatch, and
then you are able to view the metrics in the RDS console, in the
CloudWatch console, or via the CloudWatch APIs.

• Standard monitoring Using standard monitoring, you can access 15
to 18 metrics depending on the RDBMS engine. The common ones
are CPU utilization, storage, memory, swap usage, database
connections, I/O (read and write), latency (read and write),
throughput (read and write), replica lag, and so on. Figure 8-10
shows the standard monitoring. Using standard monitoring you can
get the metrics at one-minute intervals.

Figure 8-10 Standard monitoring

• Enhanced monitoring If you want fine granular metrics, then you
can opt for enhanced monitoring. Using enhanced monitoring, you
can access 37 more metrics in addition to standard monitoring,
making a total of more than 50 metrics. You can also get the metrics
as low as a one-second interval. The enhanced monitoring is also
available for all the RDBMS engines that RDS supports.

• Event notification Using event notifications in RDS, you can
quickly get visibility into what’s going on in your RDS instance.
These event notifications allow you to get notifications, via Amazon
SNS, when certain events occur in RDS. There are 17 different
categories of events that you can choose from such as availability,

backup, configuration change, creation, deletion, failure, failover,
maintenance, recovery, restoration, and so on. You can choose to get
notified on the occurrences of those events, for example, when the
database is running low on storage, when the master database is
failing over to the standby database, and so on.

• Performance Insights Performance Insights expands on existing
Amazon RDS monitoring features to illustrate your database’s
performance and helps you analyze any issues that impact it. With
the Performance Insights dashboard, you can visualize the database
load and filter the load by waits, SQL statements, hosts, or users.
Performance Insights is on by default for the Postgres-compatible
edition of the Aurora database engine. If you have more than one
database on the database instance, performance data for all of the
databases is aggregated for the database instance. Database
performance data is kept for 35 days.

The Performance Insights dashboard contains database performance
information to help you analyze and troubleshoot performance issues. On
the main dashboard page, you can view information about the database load
and drill into details for a particular wait state, SQL query, host, or user. By
default, the Performance Insights dashboard shows data for the last 15
minutes. You can modify it to display data for the last 60 minutes if desired.
Figure 8-11 shows the details of SQL statements from the Performance
Insights page.

Figure 8-11 Details of SQL from the Performance Insights page

Amazon Aurora
Amazon Aurora is a cloud-optimized, MySQL- and PostgreSQL-
compatible relational database. It provides the performance and availability
of commercial databases and the simplicity and cost-effectiveness of open
source databases. Amazon Aurora provides performance and durability by
implementing a fully distributed and self-healing storage system, and it
provides availability by using the elasticity and management capabilities of
the AWS cloud in the most fundamental ways.

There are two flavors of Amazon Aurora; one is compatible with
MySQL, and the other is compatible with PostgreSQL. For MySQL
currently it is compatible with version 5.6 and 5.7 using the InnoDB storage
engine, and for PostgreSQL it is compatible with the 9.6 version. This
means the code, applications, drivers, and tools you already use with your

MySQL or PostgreSQL databases can be used with Amazon Aurora with
little or no change. And you can easily migrate from MySQL or
PostgreSQL to Amazon Aurora.

With Aurora the storage is a bit different compared to regular RDS.
There is a separate storage layer that is automatically replicated across six
different storage nodes in three different availability zones. This is an
important factor since the data is mirrored at six different places at no
additional cost. All this data mirroring happens synchronously, and hence
there is zero data loss. Amazon’s Aurora uses a quorum system for reads
and writes to ensure that your data is available in multiple storage nodes. At
the same time, all the data is also continuously backed up to S3 to ensure
that you have durable and available data. With Amazon Aurora, the storage
volume automatically grows up to 64TB. Figure 8-12 shows the replication
of Aurora storage across three different AZs.

Figure 8-12 Replication of Amazon Aurora storage at three different AZs

Amazon Aurora supports up to 15 copies of read replicas. Please note in
the case of Amazon Aurora the data replication happens at the storage level
in a synchronous manner. Therefore, between the primary database node
(which is also referred as master) and the read replica, the data replication
happens in a synchronous fashion. In the case of Aurora, there is no concept
of standby database, and the read replica is prompted to a master or primary
database node when the primary node goes down. Figure 8-13 shows a
primary node and read replica for Amazon Aurora.

Figure 8-13 Primary node and read replica for Amazon Aurora

On average, you get up to a five times increase in performance by
running an Aurora MySQL database compared to a regular MySQL engine.

Amazon Redshift
Amazon Redshift is the managed data warehouse solution offered by
Amazon Web Services. A data warehouse is a database designed to enable
business intelligence activities; it exists to help users understand and
enhance their organization’s performance. It is designed for query and
analysis rather than for transaction processing and usually contains
historical data derived from transaction data but can include data from other
sources. Data warehouses are consumers of data. They are also known as

online analytical processing (OLAP) systems. The data for a data
warehouse system can come from various sources, such as OLTP systems,
enterprise resource planning (ERP) systems such as SAP, internally
developed systems, purchased applications, third-party data syndicators,
and more. The data may involve transactions, production, marketing,
human resources, and more.

Data warehouses are distinct from OLTP systems. With a data
warehouse, you separate the analytical workload from the transaction
workload. Thus, data warehouses are very much read-oriented systems.
They have a far higher amount of data reading versus writing and updating.
This enables far better analytical performance and does not impact your
transaction systems. A data warehouse system can be optimized to
consolidate data from many sources to achieve a key goal. OLTP databases
collect a lot of data quickly, but OLAP databases typically import large
amounts of data from various source systems by using batch processes and
scheduled jobs. A data warehouse environment can include an extraction,
transformation, and loading (ETL) solution, as well as statistical analysis,
reporting, data mining capabilities, client analysis tools, and other
applications that manage the process of gathering data, transforming it into
actionable information, and delivering it to business users.

Benefits of Amazon Redshift
These are the important attributes of Amazon Redshift:

• Fast Since Redshift uses columnar storage, it delivers fast query
performance. A query is parallelized by running it across several
nodes. As a result, the query runs fast, and IO efficiency is
improved.

• Cheap Redshift costs less than any other data warehouse solution on
the market. It is almost one-tenth the price of tools from other
vendors. It starts as low as $1,000 per terabyte.

• Good compression The data remains in a compressed format, which
provides three to four times more compression, which allows you to
save money.

• Managed service Since Redshift is a managed service, Amazon
takes care of all the heavy-duty work. You don’t have to manage the

underlying clusters, networking, or operating system. Amazon takes
care of patching, upgrading, backing up, and restoring. You can also
automate most of the common administrative tasks to manage,
monitor, and scale your data warehouse.

• Scalable Redshift uses a distributed, massively parallel architecture
that scales horizontally to meet throughput requirements. The cluster
size can go up and down depending on your performance and
capacity needs. You can resize the cluster either via the console or by
making API calls.

• Secure Redshift supports the encryption of data at rest and data in
transit. You can even create a cluster inside a VPC, making it
isolated. You can use the AWS Key Management Service (KMS) and
Hardware Security Modules (HSMs) to manage the keys.

• Zone map functionality Zone maps help to minimize unnecessary
IO. They track the minimum and maximum values for each block
and skip over blocks that don’t contain the data needed for a given
query.

Amazon Redshift Architecture
An Amazon Redshift cluster consists of a leader node and compute nodes.
There is only one leader node per cluster, whereas there could be several
compute nodes in a cluster. Figure 8-14 shows the Redshift architecture.

Figure 8-14 Amazon Redshift architecture

The leader node performs a few roles. It acts as a SQL endpoint for the
applications. It performs database functions and coordinates the parallel
SQL processing. Some additional metadata tables specific to Redshift also
exist in the leader node. This is where you connect to your driver; you can
use Java Database Connectivity (JDBC) and Open Database Connectivity
(ODBC). Behind the leader node are the compute nodes; you can have up to
128 of them.

The leader node communicates with the compute nodes for processing
any query. The compute nodes process the actual data. The compute nodes
also communicate with each other while processing a query. Let’s see how a
query is executed.

1. The application or SQL client submits a query.
2. The query is submitted to the leader node. The leader node parses the

query and develops an execution plan.
3. The leader node also decides which compute nodes are going to do the

work and then distributes the job across multiple compute nodes.
4. The compute nodes process the job and send the results to the leader

node.
5. The leader node aggregates the results and sends it back to the client or

the application.

The leader node does the database functions, such as encrypting the data,
compressing the data, running the routing jobs like VACUUM (covered
later in this chapter), backing up, restoring, and so on.

All the compute nodes are connected via a high-speed interconnected
network. The end client (application) can’t communicate with the compute
nodes directly. It has to communicate via the leader node. But the compute
node can talk with services such as Amazon S3. The data is ingested
directly from S3 to the compute nodes, and Amazon constantly backs up the
cluster to Amazon S3, which happens in the background.

A compute node is further divided or partitioned into multiple slices. A
slice is allocated a portion of a node’s CPU, memory, and storage.
Depending on the size of the compute node, a node can have more or fewer
slices. Figure 8-15 shows compute nodes with two slices in each one with
an equal amount of compute, memory, and storage.

Figure 8-15 Slice in a compute node

When the leader node distributes the job, it actually distributes it to the
slices, and each slice processes the job independently. Similarly, when the
data is loaded in the tables of Redshift, it is kept in the slices.

There are two types of Redshift clusters: single-node clusters and
multinode clusters. In single-node clusters, there is only one node that
performs the tasks of both the leader and compute nodes. There is only one
node in a single-node cluster, so if the node goes down, then everything
goes down, and you need to restore the cluster from the snapshot. You
should not use a single-node cluster for production environments. It can be
used for test/development environments.

In a multinode cluster, the leader node is separate from the compute
node, and there is only one leader node per cluster. During the creation of a
cluster, you can specify the number of compute nodes you need, and a
multinode cluster is created with that many compute nodes. For example, if
you choose three nodes during your cluster creation, then a cluster will be
created with one leader node and three compute nodes. In a multinode
cluster, the data is automatically replicated among the compute nodes for
the data redundancy. So, even if the compute node fails, you don’t have to

restore it from the snapshot. When a compute node fails, it is replaced
automatically, and the cluster automatically take cares of redistributing the
data. This should be used for running production workloads.

You can choose from three types of instances for Redshift clusters. The
first is RA3, which consists of solid-state drives (SSDs), and Amazon
Redshift Managed Storage (RMS). With RA3 you pay separately for
compute and storage. The second is a dense compute that has the SSD
drives, and the third is dense storage, which has magnetic hard drives. AWS
doesn’t recommend you create a cluster using the dense storage option, and
this has already gone into the legacy product category. The recommended
storage for creating a new Redshift cluster is RA3 because you have better
control over the compute and the storage. The dense compute type is called
DC, and the dense storage type is called DS. At the time of this writing,
Amazon Redshift supports the following cluster types. Redshift uses an
EC2 instance for all the cluster types.

Here is an explanation of each column in the table:

• Instance Type provides the details of the Redshift node.
• Disk Type shows the type of hard drive used in the Redshift cluster
• Size shows the storage capacity for each node.
• Memory shows the amount of memory in gigabytes (GB) for each

node.
• # of CPUs indicates the number of CPUs for each node.

• # of Slices indicates the number of slices into which a compute node
is partitioned.

Using Redshift Spectrum, you can query data residing on S3, such as an
S3 data lake, as if it were any other table locally stored in the Amazon
Redshift cluster. Using a combination of Redshift and Redshift Spectrum,
you can query data across multiple Redshift clusters as well as from S3.

Sizing Amazon Redshift Clusters
When you size an Amazon Redshift cluster, first you need to decide what
type of cluster you need. Most of the time it depends on your business
needs. Then you need to decide how much data you have, including the
predicted data growth. You may also want to consider compression. On
average, customers get about a three to four times compression ratio. Since
the compression ratio depends on the data set, you should check with your
data set to see how much compression you are getting and then size
accordingly.

Since the data mirroring is already included, you don’t have to account
for additional storage for mirroring. For example, say you have a 6TB data
warehouse and you want to run that in dense compute storage. In this case,
you can select three nodes of dc2.8xlarge. The capacity of each storage
node is 2.56TB; therefore, with three of these nodes, you can store up to
7.68TB of data. Thus, your 6TB data warehouse is easily going to fit in the
three compute nodes. The data will be mirrored as well within the three
nodes, and you don’t have to worry about additional storage for mirroring.

Networking for Amazon Redshift
An Amazon Redshift cluster can be run inside a VPC. If you are running a
cluster using EC2-Classic (legacy), then it won’t be using the VPC. A VPC
is mandatory for all new cluster installations, and by using a VPC, the
cluster remains isolated from other customers. You can choose a cluster
subnet group (a cluster subnet group consists of one or more subnets in
which Amazon Redshift can launch a cluster) for a Redshift cluster, which
can be either in the private subnet or in the public subnet. You can also
choose which AZ the cluster will be created in. When you choose it in the
public subnet, you can either provide your own public IP address (which is

EIP) or have the Redshift cluster provide an EIP for you. When you run the
cluster in a private subnet, it is not accessible from the Internet. This public
or private subnet is applicable only for the leader node. The compute node
is created in a separate VPC, and you don’t have any access to it.

A Redshift cluster provides an option called enhanced VPC routing. If
you choose to use it, then all the traffic for commands such as COPY
unload between your cluster and your data repositories are routed through
your Amazon VPC. You can also use the VPC features to manage the flow
of data between your Amazon Redshift cluster and other resources. If you
don’t choose that option, Amazon Redshift routes traffic through the
Internet, including traffic to other services within the AWS network.

To recap, when you launch a Redshift cluster, either the EC2-VPC
platform is available or the EC2-classic platform is available. (EC2-classic
is available to certain AWS accounts, depending on the date the account
was created.) You must use the EC2-VPC platform unless you need to
continue using the EC2-classic platform that is available to you. You can
access only the leader node. When running in EC-VPC, you can use the
VPC security group to define which IP address can connect to the port in
the Redshift cluster.

Encryption
Optionally you can choose to encrypt all the data running in your Redshift
cluster. Encryption is not mandatory, and you should choose this option
only if you have a business need. If you are going to keep sensitive data in
your Redshift cluster, you must encrypt the data. You can encrypt the data
both in transit and at rest. When you launch the cluster, you can enable
encryption for a cluster. If the encryption is enabled in a cluster, it becomes
immutable, which means you can’t disable it. Similarly, if you launch a
cluster without encryption, the data remains unencrypted during the life of
the cluster. If at a later phase you decide to encrypt the data, then the only
way is to unload your data from the existing cluster and reload it in a new
cluster with the encryption setting.

You can use SSL to encrypt the connection between a client and the
cluster. For the data at rest, Redshift uses AES-256 hardware-accelerated
encryption keys to encrypt the data blocks and system metadata for the

cluster. You can manage the encryption using the AWS KMS, using the
AWS CloudHSM, or using your on-premise HSM.

NOTE If the Redshift cluster is encrypted, all the snapshots will also be
encrypted.

All Redshift cluster communications are secured by default. Redshift
always uses SSL to access other AWS services (S3, DynamoDB, EMR for
data load).

Security
Since Redshift is an RDBMS, just like with any other relational database,
you need to create database users who will have superuser or user
permissions with them. A database superuser can create a database user or
another superuser. A database user can create database objects in Redshift
depending on your privileges. In Redshift, a database contains one or more
than one schema, and each schema in turn contains tables and other objects.
The default name of a schema in a Redshift database is Public. When you
create the Redshift cluster for the first time, you need to provide a master
username and password for the database. This master username is the
superuser in which you log in to the database. You should never delete the
master user account.

To use the Redshift service, you can create IAM policies on IAM users,
roles, or groups. You can use the managed policies Redshift has to grant
either administrative access or read-only access to this service, or you can
create your own custom policy to provide fine granular permission.

Backup and Restore

Amazon Redshift takes automatic backups in the form of snapshots of your
cluster and saves them to Amazon S3. Snapshots are incremental. The
frequency of the snapshot is eight hours or 5GB of block changes. You can
turn off the automated backups. Automation is available to ensure snapshots
are taken to meet your recovery point objective (RPO). You can define the
retention period for the automated snapshots. You can also take a manual
snapshot of the cluster that can be kept as long as you want. In addition, you
can configure cross-region snapshots, and by doing so, the snapshots can be
automatically replicated to an alternate region. If you want to restore the
Redshift cluster to a different region, the quickest way would be to enable a
cross-region snapshot and restore the cluster from the snapshot.

You can restore the entire database from a snapshot. When you restore
the entire database from a snapshot, it results in a new cluster of the original
size and instance type. During the restore, your cluster is provisioned in
about ten minutes. Data is automatically streamed from the S3 snapshot.
You can also do a table-level restore from a snapshot.

Data Loading in Amazon Redshift
There can be various ways in which the data can be loaded in an Amazon
Redshift cluster. You can load the data directly from Amazon S3, which is
called file-based loading. File-based loading is the most efficient and high-
performance way to load Redshift. You can load data from CSV, JSON,
format, delimiter, shapefile, fixed-width, Avro, Parquet, and ORC files on
S3.

You can load streaming data or batch data directly to Redshift using
Kinesis Firehose. In addition, you can connect to the database and insert
data, including doing a multivalue insert.

You can load the data either via the leader node or directly from the
compute nodes. It depends on how you are going to load the data. For
example, if you are going to insert the data, insert multiple values, update
the data, or delete the data, you can do it by using a client from the leader
node. Since Redshift supports SQL commands, you can use basic SQL
statements to insert records into the table (for example, to insert into table
<table_name> values) and so on. If you want to use Redshift-specific tools
for loading or unloading the data or, for example, use the COPY or
UNLOAD command to export the data, you can do it directly from the

compute nodes. If you run CTAS (create table as select), you can run it
from the compute node. The compute node also supports loading the data
from Dynamo DB, from EMR, and via SSH commands.

The COPY command is the recommended method to load data into
Amazon Redshift since it can be used to load the data in bulk. It appends
new data to existing rows in the table.

The mandatory parameters are table name, data source, and credentials.
Other parameters you can specify are compression, encryption,
transformation, error handling, date format, and so on.

While loading the data using the COPY command, you should use
multiple input files to maximize throughput and load data in parallel. Since
each slice loads one file at a time, if you use a single input file, then only
one slice will ingest data. Depending on the size of the cluster, you will
have a specific number of slices. If your cluster has 16 slices, you can have
16 input files and thus can have slices working in parallel so that you can
maximize the throughput.

The UNLOAD command is the reverse of COPY. You can export the
data out of the Redshift cluster via the UNLOAD command. It can write
output only to S3. It can run in parallel on all compute nodes. This
command can generate more than one file per slice for all compute nodes.
The UNLOAD command supports encryption and compression.

In addition to loading and unloading the data, you need to perform some
additional maintenance tasks on a regular basis. One of the tasks you would
be doing often is running the command VACUUM. Whenever you load the
data in the Redshift cluster using the COPY command, you need to
reorganize the data and reclaim the space after the deletion. The VACUUM
command take cares of that, so ideally after every COPY command, you
should run the VACUUM command as well. Whenever you load new data
to the Redshift cluster, it is important to update the statistics so that the
optimizer can create a correct execution plan for running the query. You can

run the ANALYZE command to update the statistics. Run the ANALYZE
command whenever you’ve made a nontrivial number of changes to your
data to ensure your table statistics are current.

Data Distribution in Amazon Redshift
In Amazon Redshift, you have three options to distribute data among the
nodes in your cluster: EVEN, KEY, and ALL.

With the KEY distribution style, the slice is chosen based on a
distribution key that is a hash of the defined column.

The ALL distribution style distributes a copy of the entire table to the
first slice on each node. Though the ALL distribution helps to optimize
joins, it increases the amount of storage. This means that operations such as
LOAD, UPDATE, and INSERT can run slower than with the other
distribution styles. The ALL distribution style can be a good choice for
smaller dimension tables that are frequently joined with large fact tables in
the center of your star schemas and for tables that you don’t need to update
frequently. Table data is placed on slice 0 of each compute node.

Use the EVEN distribution style when there is no clear choice between
the KEY and ALL distribution styles. It is also recommended for small
dimension tables, tables without JOIN or GROUP BY clauses, and tables
that are not used in aggregate queries. Data is evenly distributed across all
slices using a round-robin distribution. Figure 8-16 shows each of the three
data distribution options.

Figure 8-16 Data distribution in Amazon Redshift

When you create a table, you can define one or more of its columns as
sort keys. When data is initially loaded into the empty table, the rows are
stored on disk in sorted order. Information about sort key columns is passed
to the query planner, and the planner uses this information to construct
plans that exploit the way the data is sorted. It is used like an index for a
given set of columns. It is implemented via zone maps, stored in each block
header. It increases the performance of MERGE JOIN because of a much
faster sort.

Amazon DynamoDB
Amazon DynamoDB is a fully managed NoSQL database service that
provides fast and predictable performance with seamless scalability.
NoSQL is a term used to describe high-performance, nonrelational
databases. NoSQL databases use a variety of data models, including graphs,
key-value pairs, and JSON documents. NoSQL databases are widely

recognized for ease of development, scalable performance, high availability,
and resilience.

Amazon DynamoDB supports both document and key-value data
structures, giving you the flexibility to design the best architecture that is
optimal for your application. Average service-side latencies are typically in
single-digit milliseconds. A key-value store provides support for storing,
querying, and updating collections of objects that are identified using a key
and values that contain the actual content being stored, and a document
store provides support for storing, querying, and updating items in a
document format such as JSON, XML, and HTML.

Amazon DynamoDB is a fully managed cloud NoSQL database service.
You simply create a database table, set your throughput, and let the service
handle the rest. When creating a table, simply specify how much request
capacity is required for the application. If your throughput requirements
change, simply update your table’s request capacity using the AWS
Management Console or the Amazon DynamoDB APIs. Amazon
DynamoDB manages all the scaling behind the scenes, and you are still able
to achieve your prior throughput levels while scaling is underway.

These are some common use cases for DynamoDB. It can be used in
advertising for capturing browser cookie state, in mobile applications for
storing application data and session state, in gaming applications for storing
user preferences and application state and for storing players’ game state, in
consumer “voting” applications for reality TV contests, in Super Bowl
commercials, in large-scale websites for keeping session state or for
personalization or access control, in application monitoring for storing
application log and event data or JSON data, and in Internet of Things
devices for storing sensor data and log ingestion.

Benefits of Amazon DynamoDB
These are the benefits of Amazon DynamoDB:

• Scalable NoSQL databases are designed for scale, but their
architectures are sophisticated, and there can be significant
operational overhead in running a large NoSQL cluster. DynamoDB
is scalable and can automatically scale up and down depending on
your application request. Since it is integrated with Auto Scaling,

Amazon take cares of scaling up or down as per throughput
consumption monitored via CloudWatch alarms. Auto Scaling takes
care of increasing or decreasing the throughput as per the application
behavior.

• Managed service Since this is a totally managed service, the
complexity of running a massively scalable, distributed NoSQL
database is managed by Amazon, allowing software developers to
focus on building applications rather than managing infrastructure.
Amazon take cares of all the heavy lifting behind the scenes such as
hardware or software provisioning, software patching, firmware
updates, database management, or partitioning data over multiple
instances as you scale. DynamoDB also provides point-in-time
recovery, backup, and restore for all your tables.

• Fast, consistent performance Since DynamoDB uses SSD
technologies behind the scenes, the average service-side latencies are
typically in single-digit milliseconds. As your data volumes grow,
DynamoDB automatically partitions your data to meet your
throughput requirements and deliver low latencies at any scale.

• Fine-grained access control DynamoDB is integrated with AWS
Identity and Access Management (IAM), where you can provide
fine-grained access control to all the users in your organization.

• Cost-effective DynamoDB is cost-effective. With DynamoDB, you
pay for the storage you are consuming and the IO throughput you
have provisioned. When the storage and throughput requirements of
an application are low, only a small amount of capacity needs to be
provisioned in the DynamoDB service. As the number of users of an
application grows and the required IO throughput increases,
additional capacity can be provisioned on the fly, and you need to
pay only for what you have provisioned.

• Integration with other AWS services Amazon DynamoDB is
integrated with AWS Lambda so that you can create triggers. With
triggers, you can build applications that react to data modifications
in DynamoDB tables. Similarly, Amazon DynamoDB can take care
of automatically scaling up or down your DynamoDB tables
depending on the application usage.

Amazon DynamoDB Terminology
Tables are the fundamental construct for organizing and storing data in
DynamoDB. A table consists of items just like a table in a relational
database is a collection of rows. Each table can have an infinite number of
data items. An item is composed of a primary key that uniquely identifies it
and key-value pairs called attributes. Amazon DynamoDB is schema-less,
in that the data items in a table need not have the same attributes or even the
same number of attributes. Each table must have a primary key. While an
item is similar to a row in an RDBMS table, all the items in the same
DynamoDB table need not share the same set of attributes in the way that
all rows in a relational table share the same columns. The primary key can
be a single attribute key or a “composite” attribute key that combines two
attributes. The attributes you designate as a primary key must exist for
every item as primary keys uniquely identify each item within the table.
There is no concept of a column in a DynamoDB table. Each item in the
table can be expressed as a tuple containing an arbitrary number of
elements, up to a maximum size of 400KB. This data model is well suited
for storing data in the formats commonly used for object serialization and
messaging in distributed systems.

• Item An item is composed of a primary or composite key and a
flexible number of attributes. There is no explicit limitation on the
number of attributes associated with an individual item, but the
aggregate size of an item, including all the attribute names and
attribute values, cannot exceed 400KB.

• Attribute Each attribute associated with a data item is composed of
an attribute name (for example, Name) and a value or set of values
(for example, Tim or Jack, Bill, Harry). Individual attributes have no
explicit size limit, but the total value of an item (including all
attribute names and values) cannot exceed 400KB.

Tables and items are created, updated, and deleted through the
DynamoDB API. There is no concept of a standard DML language like
there is in the relational database world. Manipulation of data in
DynamoDB is done programmatically through object-oriented code. It is
possible to query data in a DynamoDB table, but this too is done
programmatically through the API. Because there is no generic query

language like SQL, it’s important to understand your application’s data
access patterns well to make the most effective use of DynamoDB.

DynamoDB supports four scalar data types: Number, String, Binary, and
Boolean. A scalar type represents exactly one value. DynamoDB also
supports NULL values. Additionally, DynamoDB supports these collection
data types: Number Set, String Set, Binary Set, heterogeneous List, and
heterogeneous Map.

When you create a table, you must specify the primary key of the table.
A primary key is a key in a relational database that is unique for each
record. The primary key uniquely identifies each item in the table so that no
two items can have the same key.

DynamoDB supports two different kinds of primary keys.

• Partition key This is also known as a simple primary key. It consists
of one attribute known as the partition key. The partition key of an
item is also known as its hash attribute. The term hash attribute
derives from the use of an internal hash function in DynamoDB that
evenly distributes data items across partitions, based on their
partition key values. In a table that has only a partition key, no two
items can have the same partition key value.

• Partition key and sort key This is also known as a composite
primary key. This type of key is composed of two attributes. The
first attribute is the partition key, and the second attribute is the sort
key. All items with the same partition key are stored together, in
sorted order by sort key value. The sort key of an item is also known
as its range attribute. The term range attribute derives from the way
DynamoDB stores items with the same partition key physically close
together, in sorted order by the sort key value. In a table that has a
partition key and a sort key, it’s possible for two items to have the
same partition key value. However, those two items must have
different sort key values.

A primary key can be either a single-attribute partition key or a
composite partition-sort key. A composite partition-sort key is indexed as a
partition key element and a sort key element. This multipart key maintains a
hierarchy between the first and second element values.

Each primary key attribute must be a scalar. The only data types allowed
for primary key attributes are string, number, or binary. There are no such
restrictions for other, nonkey attributes.

When you create a table, the items for a table are stored across several
partitions. DynamoDB looks at the partition key to figure out which item
needs to be stored at which partition. All the items with the same partition
key are stored in the same partition. During the table creation, you need to
provide the table’s desired read and write capacity. Amazon DynamoDB
configures the table’s partition based on that information. A unit of write
capacity enables you to perform one write per second for items of up to
1KB in size. Similarly, a unit of read capacity enables you to perform one
strongly consistent read per second (or two eventually consistent reads per
second) of items up to 4KB in size. Larger items will require more capacity.
You can calculate the number of units of read and write capacity you need
by estimating the number of reads or writes you need to do per second and
multiplying by the size of your items.

• Units of capacity required for writes = Number of item writes per
second × Item size in 1KB blocks

• Units of capacity required for reads = Number of item reads per
second × Item size in 4KB blocks

NOTE If you use eventually consistent reads, you’ll get twice the
throughput in terms of reads per second.

Secondary Index
Secondary indexes are indexes that contain a partition or partition-sort keys
that can be different from the table’s primary key. For efficient access to
data in a table, Amazon DynamoDB creates and maintains indexes for the

primary key attributes. This allows applications to quickly retrieve data by
specifying primary key values. However, many applications might benefit
from having one or more secondary (or alternate) keys available to allow
efficient access to data with attributes other than the primary key. To
address this, you can create one or more secondary indexes on a table and
issue query requests against these indexes.

Amazon DynamoDB supports two types of secondary indexes:

• A local secondary index is an index that has the same partition key
as the table but a different sort key. A local secondary index is
“local” in the sense that every partition of a local secondary index is
scoped to a table partition that has the same partition key.

• A global secondary index is an index with a partition or a partition-
sort key that can be different from those on the table. A global
secondary index is considered global because queries on the index
can span all items in a table, across all partitions.

Consistency Model
Amazon DynamoDB stores three geographically distributed replicas of
each table to enable high availability and data durability. Read consistency
represents the manner and timing in which the successful write or update of
a data item is reflected in a subsequent read operation of that same item.
DynamoDB exposes logic that enables you to specify the consistency
characteristics you desire for each read request within your application.
Amazon DynamoDB supports two consistency models. When reading data
from Amazon DynamoDB, users can specify whether they want the read to
be eventually consistent or strongly consistent.

• Eventually consistent reads This is the default behavior. The
eventual consistency option maximizes your read throughput.
However, an eventually consistent read might not reflect the results
of a recently completed write. Consistency across all copies of data
is usually reached within a second. Repeating a read after a short
time should return the updated data.

• Strongly consistent reads In addition to eventual consistency,
Amazon DynamoDB also gives you the flexibility and control to
request a strongly consistent read if your application, or an element
of your application, requires it. A strongly consistent read returns a
result that reflects all writes that received a successful response prior
to the read.

Global Table
Global tables build on Amazon DynamoDB’s global footprint to provide
you with a fully managed, multiregion, and multimaster database that
provides fast, local, read and write performance for massively scaled, global
applications. Global tables replicate your DynamoDB tables automatically
across your choice of AWS regions. Global tables eliminate the difficult
work of replicating data between regions and resolving update conflicts,
enabling you to focus on your application’s business logic. In addition,
global tables enable your applications to stay highly available even in the
unlikely event of isolation or degradation of an entire region.

Global tables also ensure data redundancy across multiple regions and
allow the database to stay available even in the event of a complete regional
outage. Global tables provide cross-region replication, data access locality,
and disaster recovery for business-critical database workloads. Applications
can now perform low-latency reads and writes to DynamoDB around the
world, with a time-ordered sequence of changes propagated efficiently to
every AWS region where a table resides. With DynamoDB global tables,
you get built-in support for multimaster writes, automatic resolution of
concurrency conflicts, and CloudWatch monitoring. You simply select the
regions where data should be replicated, and DynamoDB handles the rest.

Amazon DynamoDB Streams
Using the Amazon DynamoDB Streams APIs, developers can consume
updates and receive the item-level data before and after items are changed.
This can be used to build creative extensions to your applications on top of
DynamoDB. For example, a developer building a global multiplayer game
using DynamoDB can use the DynamoDB Streams APIs to build a
multimaster topology and keep the masters in sync by consuming the

DynamoDB Streams APIs for each master and replaying the updates in the
remote masters. As another example, developers can use the DynamoDB
Streams APIs to build mobile applications that automatically notify the
mobile devices of all friends in a circle as soon as a user uploads a new
selfie. Developers could also use DynamoDB Streams to keep data
warehousing tools, such as Amazon Redshift, in sync with all changes to
their DynamoDB table to enable real-time analytics. DynamoDB also
integrates with ElasticSearch using the Amazon DynamoDB Logstash plug-
in, thus enabling developers to add free-text search for DynamoDB content.

Amazon DynamoDB Accelerator
For even more performance, Amazon DynamoDB Accelerator (DAX) is a
fully managed, highly available, in-memory cache for DynamoDB that
delivers up to a ten times performance improvement—from milliseconds to
microseconds—even at millions of requests per second. DAX does all the
heavy lifting required to add in-memory acceleration to your DynamoDB
tables, without requiring developers to manage cache invalidation, data
population, or cluster management. Now you can focus on building great
applications for your customers without worrying about performance at
scale. You do not need to modify the application logic because DAX is
compatible with existing DynamoDB API calls.

Encryption and Security
Amazon DynamoDB supports encryption at rest. It helps you secure your
Amazon DynamoDB data by using AWS managed encryption keys stored
in the AWS KMS. Encryption at rest is fully transparent to users, with all
DynamoDB queries working seamlessly on encrypted data without the need
to change the application code.

Amazon DynamoDB also offers VPC endpoints with which you can
secure the access to DynamoDB. Amazon VPC endpoints for DynamoDB
enable Amazon EC2 instances in your VPC to use their private IP addresses
to access DynamoDB with no exposure to the public Internet.

Amazon ElastiCache

Amazon ElastiCache is a web service that makes it easy to deploy, operate,
and scale an in-memory cache in the cloud. Amazon ElastiCache manages
the work involved in setting up an in-memory service, from provisioning
the AWS resources you request to installing the software. Using Amazon
ElastiCache, you can add an in-memory caching layer to your application in
a matter of minutes, with a few API calls. Amazon ElastiCache integrates
with other Amazon web services such as Amazon Elastic Compute Cloud
(Amazon EC2) and Amazon Relational Database Service (Amazon RDS),
as well as deployment management solutions such as AWS
CloudFormation, AWS Elastic Beanstalk, and AWS OpsWorks.

Since this is a managed service, you no longer need to perform
management tasks such as hardware provisioning, software patching, setup,
configuration, monitoring, failure recovery, and backups. ElastiCache
continuously monitors your clusters to keep your workloads up and running
so that you can focus on higher-value application development. Depending
on your performance needs, it can scale out and scale in to meet the
demands of your application. The memory scaling is supported with
sharding. You can also create multiple replicas to provide the read scaling.

The in-memory caching provided by Amazon ElastiCache improves
application performance by storing critical pieces of data in memory for fast
access. You can use this caching to significantly improve latency and
throughput for many read-heavy application workloads, such as social
networking, gaming, media sharing, and Q&A portals. Cached information
can include the results of database queries, computationally intensive
calculations, or even remote API calls. In addition, compute-intensive
workloads that manipulate data sets, such as recommendation engines and
high-performance computing simulations, also benefit from an in-memory
data layer. In these applications, large data sets must be accessed in real
time across clusters of machines that can span hundreds of nodes.
Manipulating this data in a disk-based store would be a significant
bottleneck for these applications.

Amazon ElastiCache currently supports two different in-memory key-
value engines. You can choose the engine you prefer when launching an
ElastiCache cache cluster.

• Memcached This is a widely adopted in-memory key store and
historically the gold standard of web caching. ElastiCache is

protocol-compliant with Memcached, so popular tools that you use
today with existing Memcached environments will work seamlessly
with the service. Memcached is also multithreaded, meaning it
makes good use of larger Amazon EC2 instance sizes with multiple
cores.

• Redis This is an increasingly popular open source key-value store
that supports more advanced data structures such as sorted sets,
hashes, and lists. Unlike Memcached, Redis has disk persistence
built in, meaning you can use it for long-lived data. Redis also
supports replication, which can be used to achieve multi-AZ
redundancy, similar to Amazon RDS.

Although both Memcached and Redis appear similar on the surface, in
that they are both in-memory key stores, they are actually quite different in
practice. Because of the replication and persistence features of Redis,
ElastiCache manages Redis more as a relational database. Redis
ElastiCache clusters are managed as stateful entities that include failover,
similar to how Amazon RDS manages database failover.

When you deploy an ElastiCache Memcached cluster, it sits in your
application as a separate tier alongside your database. Amazon ElastiCache
does not directly communicate with your database tier or indeed have any
particular knowledge of your database. You can begin with a single
ElastiCache node to test your application and then scale to additional cluster
nodes by modifying the ElastiCache cluster. As you add cache nodes, the
EC2 application instances are able to distribute cache keys across multiple
ElastiCache nodes. When you launch an ElastiCache cluster, you can
choose the availability zones that the cluster lives in. For best performance,
you should configure your cluster to use the same availability zones as your
application servers. To launch an ElastiCache cluster in a specific
availability zone, make sure to specify the Preferred Zone(s) option during
cache cluster creation. The availability zones that you specify will be where
ElastiCache will launch your cache nodes.

Figure 8-17 shows the architecture of an ElastiCache deployment in a
multi-AZ deployment with RDS engines. Similarly, you can deploy
ElastiCache with DynamoDB as well. The combination of DynamoDB and
ElastiCache is popular with mobile and game companies because

DynamoDB allows for higher write throughput at a lower cost than
traditional relational databases.

Figure 8-17 Amazon ElastiCache deployment on RDS with multi-AZs

Amazon Neptune
Amazon Neptune is a fully managed graph database service. It is used to
store and query highly connected data containing billions of nodes and

relationships. Using Amazon Neptune, you can create, store, and query
highly connected graph datasets.

With Neptune, your applications can identify and take advantage of the
rich relationships between entities in the graph. Neptune is optimized for
storing and traversing relationships; as a result, it’s better at handling rich,
highly connected data than either a traditional relational database or a
NoSQL key-value store.

Amazon Neptune supports two leading models for representing graphs—
the property graph model and the Resource Description Framework (RDF)
model—and their respective query languages, Apache TinkerPop Gremlin
and SPARQL. Using Amazon Neptune, you can implement both models
using the same scalable, fully managed service. Its query processing engine
is optimized for both the Apache TinkerPop Gremlin query language (for
property graphs) and the W3C’s RDF SPARQL query language (for RDF
graphs). Neptune provides high performance through the open and standard
APIs of these graph frameworks.

Benefits of Amazon Neptune
Amazon Neptune provides the following benefits:

• Fully managed Amazon Neptune is a fully managed service that
handles hardware provisioning, software patching, backup, recovery,
failure detection, and repair. There is no need to provision or manage
storage: Neptune automatically grows storage as needed. New
instances are preconfigured for optimal performance and provide
detailed metrics and monitoring. In addition to this, Amazon
Neptune continuously backs up the database to Amazon S3, and you
can recover the database to any point in time.

• Scalable Amazon Neptune is optimized for low-latency and high-
throughput applications. It is capable of storing billions of
relationships and querying the graph with milliseconds latency. It
supports up to 15 read replicas to scale query throughput to hundreds
of thousands of queries per second.

• High durability and availability Amazon Neptune offers greater
than 99.99 percent availability. It replicates six copies of your data
across three availability zones, and instance failover typically takes

less than 30 seconds. Amazon Neptune is designed to be highly
available and highly durable, ensuring you have the data you need,
when you need it.

• ACID compliant Neptune operates as both a system of record and
the interface for performing transactions and traversals. Updates to a
graph are performed in the context of a transaction with immediate
consistency, thereby ensuring the graph data remains consistent and
durable.

• Secure Neptune supports network security with Amazon Virtual
Private Cloud (VPC). You can encrypt the entire database using
encryption at rest, you can manage the keys via AWS Key
Management Service (KMS), and you can encrypt the data in transit
using TLS. Once the database is encrypted, all the corresponding
snapshots, replicas, and backups are automatically encrypted.

Amazon Neptune Use Cases
Graphs can be applied in many different domains. Neptune’s graph database
capabilities are particularly relevant when you want subsecond responses to
queries that require some understanding of which items are connected and
how they are connected, perhaps also taking into account the strength,
weight, or quality of each connection.

• Social networks You can add social features to your application by
storing and querying user profiles and the relationships between
users and the groups or organizations with which users are
associated.

• Recommendations Using Amazon Neptune, you can produce near-
real-time, interactive and contextualized recommendations based on
a user’s history, preferences, location, or peer relationships.

• Knowledge graphs You can connect concepts, categories, topics,
product hierarchies, entity instances, and information from many
other domains in order to provide knowledge-inferencing
capabilities and generate contextualized information for search
results, product descriptions, and media articles.

• Network/IT operations and data center management You can
store and process network events and use graph queries to detect and
understand anomalies. Interactive graph queries can enable you to
find patterns to respond quickly to events and to proactively identify
security gaps. You can model your application and IT infrastructure
in order to do top-down and bottom-up impact and root-cause
analyses.

• Life sciences You can use graph-based techniques for data
integration, management of research publications, drug discovery,
precision medicine, and cancer research.

• Route optimization You can use graph databases to identify the
shortest, fastest, or most cost-effective paths between locations in a
transport, logistics, or IT infrastructure network.

• Fraud analysis You can use the graph database for doing fraud
analysis. Since the database is flexible at any scale, it allows you to
work with a huge amount of data for analyzing fraud.

Amazon DocumentDB
Amazon DocumentDB is a fully managed document database service that
supports MongoDB workloads. Using this service, you can store, query, and
index JSON data. Document DB is MongoDB compatible, which means a
vast majority of the applications, drivers, and tools you already use today
with your MongoDB database can be used with Amazon DocumentDB,
with little or no change. Developers can use the same MongoDB
application code, drivers, and tools as they do today to run, manage, and
scale workloads on Amazon DocumentDB.

DocumentDB is mainly used to store semi-structured data as documents.
The documents in a document database are stored in key-value pairs, which
define the structure or the schema of the document database. In a relation
database, the data is normalized across multiple tables, whereas in the case
of a document database, the data is never normalized and you might see that
the data found in one document can often be repeated in another document.
A document database can store the same kind of data as well as different
types of data.

Benefits of Amazon DocumentDB
Let’s look at the benefits of DocumentDB in depth:

• Highly available Amazon DocumentDB is highly available. The
service level agreement (SLA) for DocumentDB is 99.99 percent
available. Like Amazon Aurora, the data in DocumentDB is
replicated six ways across three different AZs. The database heath
check and instance monitoring happen automatically, and whenever
a failure is detected, DocumentDB automatically fails over to its
read replica in less than 30 seconds. Like many other services, the
data in DocumentDB is constantly backed up to Amazon S3,
eliminating the need to take a manual backup.

• Performance at scale Amazon DocumentDB writes only the
database changes to the storage layer. Once the data is written to
storage, it is replicated automatically across multiple storage nodes,
and the changes do not go via the database node, eliminating the
unnecessary I/O and thereby providing faster performance. The
storage system used in DocumentDB uses a distributed architecture,
which means that the data is written across multiple hard drives that
use the SAME (stripe and mirror everything) methodology. In
Amazon DocumentDB, the compute is decoupled from storage,
which means that both compute and storage can scale independently.

• Highly secure The data in DocumentDB is highly secure, and this
service provides various different ways to secure the data. You can
encrypt all the data at rest inside the DocumentDB and can control
the keys using the KMS service; you can even encrypt the data in
transit using TLS. You can isolate DocumentDB using Amazon
VPC. If you encrypt the database, all the corresponding backups and
snapshots are automatically encrypted. If you create a read replica of
an encrypted database, it also becomes automatically encrypted.

• Fully managed Amazon DocumentDB is a managed service, which
means you don’t have spend any time in day-to-day management
and administration of the database. All the tasks related to database
management are automatically taken care of by Amazon.
Administration tasks like hardware provisioning, storage scaling,

data mirroring, providing high availability, patching the operating
system and the database, software installation and setup, backups,
and so on are taken care by Amazon.

Amazon DocumentDB Use Cases
Let’s discuss some of the real life use case for DocumentDB.

• User profiles DocumentDB is an ideal choice for storing users’
profile information. DocumentDB has a flexible schema, so it can
store documents that have different data values and attributes. In the
case of user profiles, often users keep on adding or removing
information from their profiles. Whenever this happens, their
documents can be easily replaced with new versions with
added/deleted attributes. This is very easily handled by Amazon
DocumentDB. Using DocumentDB’s document data model, you can
manage profiles and preferences of millions of users and scale to
process millions of user requests per second with millisecond
latency.

• Real-time big data DocumentDB has become immensely popular in
the world of big data. Previously, customers used to maintain two
different databases: one for operational data and the other for
analytical data. Therefore, extracting information from an
operational database was tough. Using DocumentDB, you can use
the same document database for storing the operational data as well
as for running analytics, and there is no need to have another
separate database.

• Content management One of the key requirements for a content
management solution is that you should be able to collect and
aggregate the content from a lot of different sources and then deliver
that content to your consumers. Since DocumentDB has a flexible
schema, it is perfect for collecting and storing any type of data.
Some of the popular places where DocumentDB can be used are
shopping sites, online publications, digital archives, point-of-sale
terminals, and self-service kiosks. Using Amazon DocumentDB’s
flexible document model, data types, and indexing, you can store,
query, and catalog the content using a simple database service.

• Mobile and web applications Another popular use case of Amazon
DocumentDB is building mobile and web applications that can scale
to process millions of user requests per second with millisecond
latency. It can be used as the database for the website for mobile
applications. As discussed previously, the flexible document model
for DocumentDB helps to adapt and iterate your applications
quickly, thus cutting down development time.

Lab 8-1: RDS: Creating an Amazon Aurora
Database

In this lab, you will log in to the AWS console, spin off an Amazon Aurora
database, and then connect to it.
1. Log in to the AWS console, choose your region, and select RDS.
2. From the RDS main page or dashboard, click Create Database.

3. On the Create Database screen, set the following:
a. Between Standard Create and Easy Create, choose Easy Create.
b. For Configuration, choose Amazon Aurora.
c. For Edition, choose Amazon Aurora with MySQL 5.6

compatibility.
d. For DB Instance Size, choose Dev/Test.
e. For DB Cluster Identifier, choose Aurora-Book.
f. For Master Username, enter master.
g. Uncheck the box labeled “Auto generate a password.”

h. For Master Password, enter master.
i. For Confirm Password, enter master123.

Once these steps are complete, click Create Database.

4. The system will prompt you that the database creation is in progress.
You will notice that a writer and a reader will be created.

5. Once the database has been successfully created, you will see a pop-up
stating “Successfully created database aurora-book.”

6. Click aurora-book. Under the Connectivity & Security tab, you will
notice two endpoints: one for the reader and the other for the writer.
We are going to use the writer endpoint for connecting to the database.
The endpoint for the Aurora instance in this example is aurora-
book.cluster-cnibitmu8dv8.us-east-1.rds.amazonaws.com:3306.

7. Download the mysqlworkbench tool from
https://dev.mysql.com/downloads/workbench/ and install it on your
machine.

8. Install and launch mysqlworkbench from your local machine. Click the
+ sign to create a new connection and enter all the details for the
database. For the host, put the database endpoint, excluding the port,
since the next prompt is for the port. Thus, the host will be similar to
aurora-book.cluster-cnibitmu8dv8.us-east-

1.rds.amazonaws.com. For the port, enter 3306, and for the username,
put master. Enter the password in the keychain as master123.

https://dev.mysql.com/downloads/workbench/

9. Once you are able to connect, you will see a success screen saying
the connection to the database is successful.

Lab 8-2: Taking a Snapshot of a Database

In this lab, you will take a snapshot of the database and use that snapshot to
create a new instance.

1. Expand the newly created database (step 6 from Lab 8-1). Click the
Instance Actions button, and select Take Snapshot.

2. The system will prompt for the snapshot name. Enter AWSBOOK for
the same and click Take Snapshot.

3. The console will start creating the snapshot. Once it is finished, you
will be able to view it.

4. Now you will use this snapshot for restoring it and creating a new
database. Select the snapshot and click Snapshot Actions; a pop-up
will appear. Click Restore Snapshot.

5. Now the system will ask you for details of the database as detailed in
Lab 8-1, steps 3 and 5. Input all the details and click Restore DB.

Congrats, you have successfully restored a database from the snapshot!

Lab 8-3: Creating an Amazon Redshift Cluster

In this lab, you will create and launch an Amazon Redshift cluster. The goal
is to get familiar with how to launch a cluster and the networking involved
while creating the cluster.
1. Log in to the AWS console, choose your region, and select Redshift.
2. Click Create Cluster.

3. On the Create Cluster screen, specify the following:
a. For Cluster Identifier, enter redshift-book.
b. For “What are you planning to use this cluster for?,” choose Free

Trial.

c. For Database Name, enter redshiftdb.
d. For Database Port, enter 5439.

e. For Master User Name, enter master.
f. For Master User Password, enter Master123.

4. For Additional Configurations, enable Use Defaults.

5. Click Create Cluster.
6. The system will display a notification stating “redshift-book is being

created.”

7. Once the Redshift cluster has been created, the status will change to
green, indicating “Available.”

8. Congrats! You have launched the Redshift cluster. Now go to the
dashboard and connect to it using a client. The dashboard shows the
JDBC and ODBC URLs that you can use to connect to the database.

Lab 8-4: Creating an Amazon DynamoDB Table

In this lab you will be creating an Amazon DynamoDB table. The goal is to
get familiar with the table creation process.

1. Log in to the AWS console, choose your region, and select
DynamoDB.

2. Click Create Table.

3. For Table Name, select Order.
4. For Primary Key, enter Customer ID.
5. Select the Add Sort Key box and enter OrderTimeStamp as the sort

key.
6. Select Use Default Settings.
7. Click Create.

Congrats! You have created your first DynamoDB table.
8. Go to the dashboard and select the table.

9. Look at all the options (Items, Metrics, Alarms, Capacity, Indexes, and
so on) at the top.

Chapter Review
In this chapter, you learned about all the database offerings from Amazon.

Using the RDS service, you can host the following seven RDBMS
engines:

• Aurora MySQL
• Aurora PostgreSQL
• Oracle
• SQL Server
• MySQL
• PostgreSQL
• MariaDB

For high availability, RDS allows you to deploy databases in multiple
AZs. When you deploy a database in a multi-AZ architecture, you can
choose which availability zone you want your primary database instance to
be in. RDS will then choose to have a standby instance and storage in
another availability zone. In the case of a multi-AZ architecture, the
primary database, also known as the master database, handles all the traffic.
The standby database is always kept ready and is in a state that whenever
the master or primary goes down, it takes the role of the master or primary
and supports the application.

When you host the database using RDS, AWS take cares of managing
the database. From installation to maintenance of the database and from
patching to upgrading, everything is taken care of by AWS. Even high
availability and scalability are taken care of by AWS.

RDS allows the creation of read replicas. Depending on the RDBMS
engine, it can have up to 15 read replicas. This functionality is supported by
MySQL, MariaDB, PostgreSQL, Aurora MySQL, and Aurora PostgreSQL.

Amazon Aurora is a cloud-optimized, MySQL- and PostgreSQL-
compatible relational database. It provides the performance and availability
of commercial databases and the simplicity and cost-effectiveness of open
source databases. Amazon Aurora provides performance and durability by
implementing a fully distributed and self-healing storage system, and it
provides availability by using the elasticity and management capabilities of
the AWS cloud in the most fundamental ways.

Amazon Redshift is the managed data warehouse solution offered by
Amazon Web Services. A Redshift cluster consists of a leader node and
compute nodes. There is only one leader node per cluster, whereas there
could be several compute nodes in a cluster. The leader node acts as a SQL
endpoint for the applications. It performs database functions and
coordinates the parallel SQL processing. The compute node processes the
actual data. All the compute nodes are connected via a high-speed
interconnected network. A compute node is further divided or partitioned
into multiple slices. A slice is allocated a portion of a node’s CPU, memory,
and storage. Depending on the size of the compute node, a node can have
more or fewer slices. The leader node distributes the job across multiple
compute nodes. You can create a single-node or multiple-node Redshift
cluster.

Amazon DynamoDB is a fully managed NoSQL database service that
provides fast and predictable performance with seamless scalability.
Amazon DynamoDB supports both document and key-value data structures.
A key-value store provides support for storing, querying, and updating
collections of objects that are identified using a key and values that contain
the actual content being stored, and a document store provides support for
storing, querying, and updating items in a document format such as JSON,
XML, and HTML.

Amazon ElastiCache is a web service that makes it easy to deploy,
operate, and scale an in-memory cache in the cloud. Amazon ElastiCache
currently supports two different in-memory key-value engines: Memcached
and Redis. You can choose the engine you prefer when launching an
ElastiCache cache cluster.

Amazon Neptune is a fully managed graph database service. It is used to
store and query highly connected data containing billions of nodes and
relationships. Using Amazon Neptune, you can create, store, and query
highly connected graph datasets. With Neptune, your applications can
identify and take advantage of the rich relationships between entities in the
graph.

Amazon DocumentDB is a fully managed document database service
that supports MongoDB workloads. Using this service, you can store,
query, and index JSON data. DocumentDB is MongoDB compatible, which
means a vast majority of the applications, drivers, and tools you already use
today with your MongoDB database can be used with Amazon
DocumentDB with little or no change. DocumentDB is mainly used to store
semi-structured data as documents. The documents in a document database
are stored in key-value pairs, which define the structure or the schema of
the document database.

Questions
1. You are running your MySQL database in RDS. The database is

critical for you, and you can’t afford to lose any data in the case of any
kind of failure. What kind of architecture will you go with for RDS?
A. Create the RDS across multiple regions using a cross-regional

read replica

B. Create the RDS across multiple AZs in master standby mode
C. Create the RDS and create multiple read replicas in multiple AZs

with the same region
D. Create a multimaster RDS database across multiple AZs

2. Your application is I/O bound, and your application needs around
36,000 IOPS. The application you are running is critical for the
business. How can you make sure the application always gets all the
IOPS it requests and the database is highly available?
A. Install the database in EC2 using an EBS-optimized instance, and

choose a I/O optimized instance class with an SSD-based hard
drive

B. Install the database in RDS using SSD
C. Install the database in RDS in multi-AZs using Provisioned IOPS

and select 36,000 IOPS
D. Install multiple copies of read replicas in RDS so all the workload

gets distributed across multiple read replicas and you can cater to
the I/O requirement

3. You have a legacy application that needs a file system in the database
server to write application files. Where should you install the database?
A. You can achieve this using RDS because RDS has a file system in

the database server
B. Install the database on an EC2 server to get full control
C. Install the database in RDS, mount an EFS from the RDS server,

and give the EFS mount point to the application for writing the
application files

D. Create the database using a multi-AZ architecture in RDS
4. You are running a MySQL database in RDS, and you have been tasked

with creating a disaster recovery architecture. What approach is easiest
for creating the DR instance in a different region?
A. Create an EC2 server in a different region and constantly

replicate the database over there.
B. Create an RDS database in the other region and use third-party

software to replicate the data across the database.

C. While installing the database, use multiple regions. This way,
your database gets installed into multiple regions directly.

D. Use the cross-regional replication functionality of RDS. This will
quickly spin off a read replica in a different region that can be
used for disaster recovery.

5. If you encrypt a database running in RDS, what objects are going to be
encrypted?
A. The entire database
B. The database backups and snapshot
C. The database log files
D. All of the above

6. Your company has just acquired a new company, and the number of
users who are going to use the database will double. The database is
running on Aurora. What things can you do to handle the additional
users? (Choose two.)
A. Scale up the database vertically by choosing a bigger box
B. Use a combination of Aurora and EC2 to host the database
C. Create a few read replicas to handle the additional read-only

traffic
D. Create the Aurora instance across multiple regions with a

multimaster mode
7. Which RDS engine does not support read replicas?

A. MySQL
B. Aurora MySQL
C. PostgreSQL
D. Oracle

8. What are the various ways of securing a database running in RDS?
(Choose two.)
A. Create the database in a private subnet
B. Encrypt the entire database
C. Create the database in multiple AZs
D. Change the IP address of the database every week

9. You’re running a mission-critical application, and you are hosting the
database for that application in RDS. Your IT team needs to access all
the critical OS metrics every five seconds. What approach would you
choose?
A. Write a script to capture all the key metrics and schedule the

script to run every five seconds using a cron job
B. Schedule a job every five seconds to capture the OS metrics
C. Use standard monitoring
D. Use advanced monitoring

10. Which of the following statements are true for Amazon Aurora?
(Choose three.)
A. The storage is replicated at three different AZs.
B. The data is copied at six different places.
C. It uses a quorum-based system for reads and writes.
D. Aurora supports all the commercial databases.

11. Which of the following does Amazon DynamoDB support? (Choose
two.)
A. Graph database
B. Key-value database
C. Document database
D. Relational database

12. I want to store JSON objects. Which database should I choose?
A. Amazon Aurora for MySQL
B. Oracle hosted on EC2
C. Amazon Aurora for PostgreSQL
D. Amazon DynamoDB

13. I have to run my analytics, and to optimize I want to store all the data
in columnar format. Which database serves my need?
A. Amazon Aurora for MySQL
B. Amazon Redshift
C. Amazon DynamoDB

D. Amazon Aurora for Postgres
14. What are the two in-memory key-value engines that Amazon

ElastiCache supports? (Choose two.)
A. Memcached
B. Redis
C. MySQL
D. SQL Server

15. You want to launch a copy of a Redshift cluster to a different region.
What is the easiest way to do this?
A. Create a cluster manually in a different region and load all the

data
B. Extend the existing cluster to a different region
C. Use third-party software like Golden Gate to replicate the data
D. Enable a cross-region snapshot and restore the database from the

snapshot to a different region

Answers
1. B. If you use a cross-regional replica and a read replica within the

same region, the data replication happens asynchronously, so there is a
chance of data loss. Multimaster is not supported in RDS. By creating
the master and standby architecture, the data replication happens
synchronously, so there is zero data loss.

2. C. You can choose to install the database in EC2, but if you can get all
the same benefits by installing the database in RDS, then why not? If
you install the database in SSD, you don’t know if you can meet the
36,000 IOPS requirement. A read replica is going to take care of the
read-only workload. The requirement does not say the division of read
and write IO between 36,000 IOPS.

3. B. In this example, you need access to the operating system, and RDS
does not give you access to the OS. You must install the database in an
EC2 server to get complete control.

4. D. You can achieve this by creating an EC2 server in a different region
and replicating, but when your primary site is running on RDS, why

not use RDS for the secondary site as well? You can use third-party
software for replication, but when the functionality exists out of the
box in RDS, why pay extra to any third party? You can’t install a
database using multiple regions out of the box.

5. D. When you encrypted a database, everything gets encrypted,
including the database, backups, logs, read replicas, snapshot, and so
on.

6. A, C. You can’t host Aurora on an EC2 server. Multimaster is not
supported in Aurora.

7. D. Only RDS Oracle does not support read replicas; the rest of the
engines do support it.

8. A, B. Creating the database in multiple AZs is going to provide high
availability and has nothing to do with security. Changing the IP
address every week will be a painful activity and still won’t secure the
database if you don’t encrypt it.

9. D. In RDS, you don’t have access to OS, so you can’t run a cron job.
You can’t capture the OS metrics by running a database job. Standard
monitoring provides metrics for one minute.

10. A, B, C. Amazon Aurora supports only MySQL and PostgreSQL. It
does not support commercial databases.

11. B, C. Amazon DynamoDB supports key-value and document
structures. It is not a relational database. It does not support graph
databases.

12. D. A JSON object needs to be stored in a NoSQL database. Amazon
Aurora for MySQL and PostgreSQL and Oracle are relational
databases.

13. B. Amazon Redshift stores all the data in columnar format. Amazon
Aurora for MySQL and PostgreSQL store the database in row format,
and Amazon DynamoDB is a NoSQL database.

14. A, B. MySQL and SQL Server are relational databases and not in-
memory engines.

15. D. Loading the data manually will be too much work. You can’t extend
the cluster to a different region. A Redshift cluster is specific to a
particular AZ. It can’t go beyond an AZ as of the writing this book.

Using Golden Gate is going to cost a lot, and there is no need for it
when there is an easy solution available.

CHAPTER 9
AWS Well-Architected Framework
and Best Practices

In this chapter, you will
• Learn how to secure your environment
• Learn how to make a reliable architecture
• Learn how to make sure the architecture is performing efficiently
• Learn how to make sure the architecture is cost-effective
• Learn how to make sure the architecture is excellent in terms of

operation

When you use the AWS Well-Architected Framework for building any new
architecture, you get these immediate benefits:

• Build and deploy faster By reducing firefighting, implementing
capacity management, and using automation, you can experiment
and increase value of running into cloud more often.

• Lower or mitigate risks Understand where you have risks in your
architecture and address them before they impact your business and
distract your team.

• Make informed decisions Ensure you have made active
architectural decisions that highlight how they might impact your
business outcomes.

• Implement AWS best practices Since you will be leveraging the
AWS Well-Architected Framework, the architecture you will come
up with will have all the best practices inherited in it.

In this chapter, you will learn about the AWS Well-Architected
Framework (WAF). (Note that WAF also refers to the AWS product Web

Application Firewall, but in this chapter it means the documentation and
architecture called the AWS Well-Architected Framework.) You’ll also
learn about AWS best practices and how to implement them. Whenever you
create an architecture in AWS or deploy an application in AWS, it is
important that your architecture follows all the AWS best practices. You
want the architecture to be secure, efficient, scalable, reliable, and cost-
effective. Designing an architecture using AWS best practices can help you
achieve these business goals and make your organization successful.

When you’re constructing a building, if the foundation is not done
properly, there a chance is that the building may collapse or end up
damaged in some way over time. In the same way, wherever you are
defining an architecture in AWS, you must construct the foundation
carefully, which means embedding the principles of the AWS Well-
Architected Framework into the design principles of the architecture. By
using the AWS Well-Architected Framework, you can make sure that your
architecture has all the best practices built in.

This chapter focuses on AWS WAF and the various principles behind the
WAF. It also talks about the AWS best practices and what you should be
doing when deploying an application to the cloud.

The AWS WAF has these five pillars:

• Operational excellence
• Security
• Performance
• Reliability
• Cost optimization

All these pillars follow a design principle followed by best practices for
each pillar.

Operational Excellence
Operational excellence is measured in terms of how you are able to support
the business. If you have aligned your operations team to support the
business SLAs, you are in good shape. It is important that the operations

team understands the business’s goals, priorities, and metrics so that it
delivers according to the needs of the business.

Businesses may run several kinds of applications in the cloud. Some of
those applications might be mission critical, and some of them won’t be.
The operations team should be able to prioritize critical applications over
noncritical applications and should be able to support them accordingly.

These are the design principles for achieving operational excellence in
the cloud:

• Perform operations as code In the cloud, it is possible to lay down
the entire infrastructure as code and update it with code. You can
script most of the tasks and try to automate as much as possible. For
example, you should be able to automatically trigger operating
procedures in response to events; if your CPU usage goes up, Auto
Scaling can automatically start a new server.

• Document everything Everything should be documented for all the
operations in the cloud. It does not matter if you are making small
changes or big changes in the system or in the application; you
should annotate the documentation.

• Push small changes instead of big Instead of pushing one big
change in the system, it is recommended that you push small
changes that can be reversible. The damage caused by a bigger
change going wrong will be much bigger compared to the damage
caused by small changes. Also, if the changes are reversible, you can
roll back at any point of time if it does not go well.

• Refine operating procedures often The architecture keeps on
evolving, and therefore you need to keep updating your operating
procedures. For example, say today you are using only one web
server to host an application. Whenever there is a maintenance
activity, you apply the operating system bug fixes on the one server.
But tomorrow if you expand the web server footprint to four servers,
you need to refine your operating procedures to make sure you will
apply the operating system bug fixes on four different servers and
not one. Set up regular days to review and validate your operating
procedures.

• Anticipate failure You should not wait for an actual failure to
happen. You should assume failures can happen at any point in time
and proactively simulate them. For example, in a multinode fleet of
web servers, shut down one or two nodes randomly and see what the
impact on the application is. Is the application able to resolve the
failures automatically? You should be doing all kinds of destruction
testing proactively so that when a real failure happens, your
application is prepared to handle it.

• Learn from the operational failures You should always learn from
your operational failures and make sure that the same failure does
not happen twice. You should share what you have learned with
other teams, as well as learn from the failures of other teams.

Operational excellence in the cloud is composed of three areas: prepare,
operate, and evolve. Each one is described in the following sections.

Prepare
Your operations team should be prepared to support the business. To do so,
the operations team should understand the needs of the business. Since the
operations team needs to support multiple business units, the team should
know what each business unit needs. The priorities for every business unit
might be different. Some business units may be running mission-critical
applications, and other units might be running low-priority applications.
The operations team must have a baseline of performance needed by
business applications, and it should be able to support it. For example, say
the business needs an order management system, and it is expecting an
average of 100,000 orders per day from that system. The operations team
should be prepared to provide the infrastructure that not only can host the
order management system but also support 100,000 orders per day.
Similarly, if the business is running a report and there is a performance
degradation while running that report, the operations team should be able to
handle it. In addition, the operations team should be prepared to handle
planned and unplanned downtime. If you want your operations team to be
successful, you should anticipate failures, as described earlier. This will
make sure you are prepared to handle any kind of unplanned downtime.

Operate
When you are better prepared, you can handle the operations in a much
more efficient way. Operational success is measured by the outcomes and
metrics you define. These metrics can be based on the baseline performance
for a certain application, or they can support your business in a certain way.
To operate successfully, you must constantly meet the business goals and
their SLAs, and you should be able to respond to events and take actions
accordingly. One of the keys for the operations team’s success is to have
proper communication with the business. The operations team should have
a dashboard that provides a bird’s-eye view of the status of all the
applications’ health checks. Consider the following four services when
creating the dashboard:

• Amazon CloudWatch logs Logs allow you to monitor and store
logs from EC2 instances, AWS CloudTrail, and other sources.

• Amazon ES Amazon ES makes it easy to deploy, secure, operate,
and scale Elasticsearch for log analytics and application monitoring.

• Personal Health Dashboard This dashboard provides alerts and
remediation guidance when AWS is experiencing events that may
impact you.

• Service Health Dashboard This dashboard provides up-to-the-
minute information on AWS service availability.

Automation can be your friend. To operate efficiently, you must
automate as much as possible. If you are able to take care of automating the
day-to-day operations and other pieces such as responding to certain events,
you can focus on important and mission-critical activities.

Evolve
We all learn something new every day; similarly, you should always raise
the operations team’s efficiency by taking it to the next level. You should
learn from your own experience as well as from other people’s experience.
You will often see that some people like to start with minimal viable
products and then keep on adding more functionality on top of them. In the
same way, regarding the infrastructure, they like to start small and keep

evolving depending on how critical the infrastructure becomes. Thus evolve
means start with small and continuously keep on adding new and new
functionality or keep enhancing your architecture. An example of evolving
architecture is given in the “AWS Best Practices” section of this chapter.

Security
The next pillar of the WAF is security. Needless to say, security is the heart
of everything; therefore, it must be your top priority. The security pillar
contains design principles, which are discussed in the following sections.

Have a Strong Identity Foundation
Use IAM to manage the accounts in AWS. Use the principle of least
privilege and don’t grant anyone access unless needed. There should be a
central team of users responsible for granting access across the
organization. This will make sure that access control is handled by only one
set of people and others won’t be able to override each other. The principle
of least privilege means that by default everyone should be denied access to
the system. The access should be given only when someone explicitly
requests it. This way, you will minimize unauthorized access to the system.
In addition, you should be using either IAM users or federate users. You can
use federation via SAML 2.0 or web identities. By using federation, you
can leverage the existing identities, and you won’t have to re-create the
users in IAM. It is important to define the roles and access for each user,
and employee life cycle policies should be strictly enforced. For example,
the day an employee is terminated, he should lose all access to the cloud.
You should also enforce a strong password policy with a combination of
uppercase, lowercase, and special characters, and users should change
passwords after a specified time and not be allowed to repeat any of their
last ten passwords. You can even enforce MFA when IAM users log in from
the console. In many cases, IAM users may require access to AWS APIs via
the Command Line Interface (CLI) or Software Development Kit (SDK). In
that case, sometimes federation may not work properly. In those cases, you
can use an access key and secret key in addition to or in place of a
username and password. In some cases, you might notice that IAM roles
may not be practical. For example, when you are switching from one

service to another, you should leverage AWS Security Token Service to
generate the temporary credentials.

Enable Traceability
You should be able to trace, audit, monitor, and log everything happening in
your environment in real time and should have a mechanism to get an alert
for any changes that are happening. You should also automate some of the
actions by integrating the log and alert system with the system to
automatically respond and take action in real time. It is important to enable
auditing and traceability so that if anything happens, you will be able to
quickly figure out who has logged in to the system and what action has
been taken that has caused the issue. Make sure all the changes in the
system are audited and you can account for who has made changes. You
should have a strong system of control for making the changes. You can use
AWS Config to track AWS resource inventory, configuration history, and
configuration change notifications to enable security and governance.
Without proper approvals, no change should be permissible in the system.
You can also create rules that automatically check the configuration of
AWS resources recorded by AWS Config using AWS Config rules. You can
capture the key activities via AWS CloudTrail; it provides details about the
API calls made in your account. You can also direct the CloudTrail logs to
Amazon CloudWatch logs and can view whatever is happening across
compute, storage, and applications under a single pane of glass.

Implement Security at All Layers
The security should be applied at all layers across the stack. Say you have
EC2 servers running in both private and public subnets. In this case, you
should have layers of security across the subnets by leveraging NACL,
layers of security across EC2, and a load balancer by leveraging security
groups; you also should secure the operating system, storage, and the
applications running. In short you should be able to isolate every
component of your infrastructure and secure each part. Let’s look at an
example to understand this. Say you have a three-tier architecture with a
web tier, app tier, and database tier. You should have separate security
groups for each tier, and only authorized users can access the web tier or

app tier or database tier. You should also put the Internet-facing web tier in
the public subnet and put the internal-facing database and app tiers in the
private subnet. Similarly, if you want to have a firewall, you should apply
one to all the layers; in other words, use a separate firewall for the database
tier and a separate firewall for the application tier. Also, you can use a
separate set of ACLs for a different tier. Thus, you have a security control
or firewall at every virtual server, every load balancer, and every network
subnet. Focus on securing all your systems. Since AWS provides the shared
responsibility model, as a result half of the burden of securing the data
center, physical facilities, and networking is taken care by AWS. You just
need to focus on securing your application, data, and operating systems.
Whenever possible, leverage the managed services since they take the
burden of managing the infrastructure from you. Similarly, whenever you
are designing an architecture, you should make sure that you have
leveraged all the avenues for securing the design. For example, within VPC,
use the public and private subnets to segregate the workload depending on
who can have Internet or external access. Use a bastion host to log in to
instances running on the private subnet. Always use a NAT gateway when
you want to update the servers running on a private subnet, use different
security groups depending on the workload, and use NACL to filter the
traffic at the subnet level. Use different VPCs for different workloads. For
example, create a separate VPC for the production workload, a separate
VPC for the development workload, and so on.

Secure the Data
Along with security at all layers, it is equally important to protect the data.
You should secure the data both at rest and in transit. Use all the different
technologies to encrypt the data depending on sensitivity. When the data
moves from the web tier to the app tier or from the app tier to the database
tier, make sure it is encrypted. You can use SSL or TLS to encrypt the data
in transit. If you are using APIs, make sure they are SSL/TLS enabled.
Similarly, for all communications, you should use SSL or TLS; you can
also use a VPN-based solution or Direct Connect to make sure that the
communication path is also secure. For data at rest, you can use
technologies such as Transparent Data Encryption (TDE) to encrypt the
data at rest. When you are using AWS services, you can use Amazon S3

server-side encryption, and you can encrypt the EBS volumes. If using
client-side technologies, then you can use a supported SDK or OS to make
sure it meets all the standards for security. Whenever you have been given
the task of securing the data, you need to think about the path of data flow
and secure all the points to make sure your data is secured everywhere. One
of the most common examples of data flow is from ELB to EC2 to EBS to
RDS to S3. When you know your data is going to touch these components,
you can secure every component plus ensure that the data in transit is
secure, and thus you will have an end-to-end secured solution. If you are
using keys for encryption, then you should look at the AWS Key
Management Service (KMS) for creating and controlling the keys. If you
are using SSL, then your content is delivered via HTTPS for which you can
leverage Amazon CloudFront. Using Amazon CloudFront provides lots of
advantages. You can use your own domain name and SSL certificates, or
you can use a Server Name Indication (SNI) custom SSL (older versions of
browsers do not support SNI’s custom SSL), or you can use the dedicated
IP custom SSL if your browser does not support SNI’s custom SSL.
Amazon CloudFront supports all of them.

Automate for Security
Automation can be your best friend. You can have a software-based security
mechanism to securely scale more rapidly and cost-effectively. You should
set up alerts for all important actions so that if something goes wrong, you
are immediately notified, and at the same time you should have automation
so that the system can act upon it promptly. You can also set up some
automated triggered responses to event-driven conditions. Also, it is
important to monitor and go through the logs once in a while to make sure
there are no anomalies. It is important to implement automation as a core
tenet for security best practices. You can automate a lot of things to
minimize risk and any errors. For example, you can install all the security
patches and bug fixes into a virtual machine, save that as a gold image, and
deploy this image to any server that you are going to launch. You can see by
doing a small automation that you are able to implement the security fixes
in all the VMs that you will be launching; it does not matter if it is hundreds
of VMs or a few thousand.

Plan for Security Events
Always plan for security events well in advance. Run some simulations
proactively to find gaps in your architecture and fix them before any
incident can happen. Run the testing to simulate real-life attacks and learn
from the outcome. Learn from other teams or different business units about
how they are handling the security events. In a nutshell, your system should
be ready against all kinds of attacks such as DDoS attacks and so on.

Best Practices
There are five best practices for security in the cloud: use identity and
access management, use detective controls, use infrastructure protection,
use data protection, and use incident response.

Use Identity and Access Management
IAM makes sure that only those who are authorized can access the system.
IAM can help in protecting the AWS account credentials as well as
providing fine-grained authorization. You should use this service as a best
practice. You already studied this in detail in Chapter 5.

Use Detective Controls
You can use detective controls to identify a threat or incident. One type of
detective control is to capture and analyze logs. If you want to do this in the
on-premise world, you need to install some kind of agent on all the servers
that will capture the logs and then analyze the agent. In the cloud, capturing
logs is easy since assets and instances can be described without depending
on the agent’s health. You can also use native API-driven services to collect
the logs and then analyze them directly in the AWS cloud. In AWS, you can
direct AWS CloudTrail logs to Amazon CloudWatch logs or other endpoints
so you can get details of all the events. For EC2 instances, you will still use
traditional methods involving agents to collect and route events.

Another way to use a detective control is to integrate auditing controls
with notification and workflow. A search on the logs collected can be used
to discover potential events of interest, including unauthorized access or a
certain change or activity. A best practice for building a mature security
operations team is to deeply integrate the flow of security events and

findings into a notification and workflow system such as a ticketing system,
thereby allowing you to route, escalate, and manage events or findings.

These are some of the services that help you when implementing
detective controls:

• AWS Config This is a fully managed service that provides you with
an AWS resource inventory, configuration history, and configuration
change notifications to enable security and governance. With AWS
Config, you can discover existing AWS resources, export a complete
inventory of your AWS resources with all the configuration details,
and determine how a resource was configured at any point in time.
These capabilities enable compliance auditing, security analysis,
resource change tracking, and troubleshooting.

• AWS Config rule An AWS Config rule represents the desired
configurations for a resource and is evaluated against configuration
changes on the relevant resources, as recoded by AWS Config. The
results of evaluating a rule against the configuration of a resource are
available on a dashboard. Using AWS Config rules, you can assess
your overall compliance and risk status from a configuration
perspective, view compliance trends over time, and pinpoint which
configuration change caused a resource to drift out of compliance
with a rule.

• AWS CloudTrail This is a web service that records AWS API calls
for your account and delivers logs. It can be useful in answering
these questions: Who made the API call? When was the API call
made? What was the API call? Which resources were acted upon in
the API call? Where was the API call made from, and who was it
made to?

• Amazon CloudWatch You can use Amazon CloudWatch to gain
systemwide visibility into resource utilization, application
performance, and operational health. You can use these insights to
keep your application running smoothly. The Amazon CloudWatch
API and AWS SDKs can be used to create custom events in your
own applications and inject them into CloudWatch events for rule-
based processing and routing.

• VPC flow logs to help with network monitoring Once enabled for
a particular VPC, VPC subnet, or Elastic Network Interface (ENI),
relevant network traffic will be logged to CloudWatch logs.

• Amazon Inspector This tool offers a programmatic way to find
security defects or misconfigurations in your operating systems and
applications. It can be easily integrated with CI/CD tools and can be
automated via APIs. It has the ability to generate findings.

Use Infrastructure Protection
Infrastructure protection consists of protecting your entire infrastructure. It
ensures that systems and services within your solution are protected against
unintended and unauthorized access and potential vulnerabilities. You can
protect network and host-level boundaries by applying appropriate
configurations to your virtual private cloud, subnets, routing tables, network
access control lists (NACLs), gateways, and security groups to achieve the
network routing as well as host-level protection. You can protect system
security configuration and maintenance by using AWS Systems Manager.
This gives you visibility and control of your infrastructure on AWS. With
Systems Manager, you can view detailed system configurations, operating
system patch levels, software installations, application configurations, and
other details about your environment through the Systems Manager
dashboard. The last thing in infrastructure protection is to enforce service-
level protection. The security configurations of service endpoints form the
foundation of how you will maintain secure and authorized access to these
endpoints. You can protect AWS service endpoints by defining policies
using IAM.

Use Data Protection
The data first needs to be classified according to the level of sensitivity.
Depending on the type of data, you control the level of access/protection
appropriate to the data classification. Once the data has been classified, you
can either encrypt it or tokenize it. Encryption is a way of transforming
content in a manner that makes it unreadable without a secret key necessary
to decrypt the content back into plain text. Tokenization is a process that
allows you to define a token to represent an otherwise sensitive piece of
information. For example, you can have a token to represent an SSN. You

can define your own tokenization scheme by creating a lookup table in an
encrypted Amazon Relational Database Service (Amazon RDS) database
instance. The next step would be to protect the data at rest as well as in
transit. Data at rest represents any data that you persist for any duration.
This includes block storage, object storage, databases, archives, and any
other storage medium on which data is persisted. Data in transit is any data
that gets transmitted from one system to another. The encryption of data in
transit can be done by using SSL or TLS, HTTPS, VPN/IPsec, or SSH, as
shown in Figure 9-1.

Figure 9-1 Encryption at rest and in transit

The encryption at rest can be done at the volume level, object level, and
database level; the various methods are shown in Figure 9-2. The last step
in data protection is to have backups, a disaster strategy, and replication in
place.

Figure 9-2 Encryption at rest

Use Incident Response
The last area of best practices for the security of the cloud is incident
response. Whenever an incident happens, you should be able to respond to
it quickly and act on it. Putting in place the tools and access ahead of a
security incident and then routinely practicing incident response will help
you ensure that your architecture can accommodate timely investigation and
recovery. Products such as AWS Web Application Firewall and Shield can
be leveraged to protect against SQL injection (SQLi) and cross-site
scripting (XSS); prevent web site scraping, crawlers, and bots; and mitigate
DDoS attacks (HTTP/HTTPS floods).

Performance
This pillar is all about the need for speed. It focuses on performance
efficiency and how your business can benefit from it. In this age, every
business wants to run faster, so whatever speedup you can provide will
always be helpful for running the business. In this section, you will look at
the design principles of this pillar and the best practices associated with it.

It has the following design principles:

• Go global in a few clicks AWS allows you to lay out a global
infrastructure in minutes. Depending on the business needs, you

should be able to design a highly scalable and available architecture,
which can fail over to a different region in the case of disaster
recovery. Leverage multiple AZs in your design pattern.

• Leverage new technologies such as serverless The biggest
advantage of the cloud is that for some use cases you have the
opportunity of not managing any servers but still supporting the
business. Try to leverage serverless architecture as much as possible
so that you don’t have to manage the infrastructure.

• Consume advanced technology If you are leveraging an advanced
technology, you don’t have to learn it or become an expert in it.
Leverage the managed services and just be a consumer. For example,
say on your premise you have an Oracle database and you have
migrated to Aurora in AWS; you don’t have to learn all the details of
Aurora because it is a managed service and all the DBA activities are
taken care of by Amazon.

• Leverage multiple technologies As they say, one size does not fit
all when you move to the cloud. Consider a technology approach
that aligns best to what you are trying to achieve. Say you have a
relational database running on-premise; when you move to the cloud,
evaluate how much can be offloaded to a NoSQL system, how much
can go in RDS, how much can go to Redshift, and so on. Thus,
instead of moving the relational database as it is in the cloud, you
can choose the right technology for the right data patterns and save a
lot of money.

• Experiment more often The cloud gives you the opportunity to
experiment more often, which can help the business to innovate
faster. You can quickly deploy resources in the cloud and start
executing your idea. You don’t have to wait for months to procure
new infrastructure. Even if your idea fails, it does not matter since
you pay only for the resources used. You can quickly jump to the
next idea.

Performance Efficiency
Performance efficiency in the cloud is composed of three steps: selection,
review, and monitoring.

Selection
The cloud gives you a variety of choices. Choosing the right services for
running your workload is the key. To select the right service, you need to
have a good idea about your workload. If you know the nature of your
workload, it becomes easier to choose the right solutions. Say your
application needs a lot of memory; in that case, you should go with
memory-intense EC2 instances. Similarly, if your application is I/O bound,
you should provision PIOPS-based EBS volumes along with the EC2
server. When you are selecting a complete solution, you should focus on the
following four areas:

• Compute The ideal compute for an application depends on its
design, usage patterns, and configuration settings. In AWS, compute
is available in three forms: instances, containers, and functions.
Instances are virtualized servers (EC2), and you can change their
capabilities with just a few clicks or an API call. There are different
types of EC2 instances available to choose from (general purpose,
compute, memory, storage, GPU optimized). The key is choosing the
right one for your workload. Containers are a method of operating
system virtualization that allow you to run an application and its
dependencies in resource-isolated processes. You can even choose
containers to run your workload if you are running a microservice
architecture. Functions abstract the execution environment from the
code you want to execute. For example, AWS Lambda allows you to
execute code without running an instance. When building new
applications in the cloud, you should evaluate how you can leverage
API Gateway and Lambda more instead of designing the application
in the traditional way.

• Storage AWS offers you various types of storage. You don’t have to
stick with just one kind of storage; rather, you should leverage
various types of storage. Even for the same application, you don’t
have to use only one kind of storage. You can tier the storage as per
the usage. The ideal storage solution will be based on the kind of
access method (block, file, or object), patterns of access (random or
sequential), frequency of access (online, offline, archival), frequency
of update (WORM, dynamic), throughput required, and availability

and durability constraints. This is discussed in more detail in the
“Leverage Multiple Storage Options” section of this chapter.

• Network The optimal network solution for a particular system will
vary based on latency, throughput requirements, and so on. Physical
constraints such as user or on-premises resources will drive location
options, which can be offset using edge techniques or resource
placement. In AWS, networking is virtualized and is available in a
number of different types and configurations. This makes it easier to
match your networking methods more closely with your needs. AWS
provides lots of ways to optimize networks, and you should have a
reworking solution that can support your business needs. For
example, if you need faster networking between the EC2 instance
and the EBS volume, you can use EBS-optimized instances, and
Amazon EC2 provides placement groups for networking. A
placement group is a logical grouping of instances within a single
availability zone. Using placement groups with supported instance
types enables applications to participate in a low-latency, 20Gbps
network. Placement groups are recommended for applications that
benefit from low network latency, high network throughput, or both.
Similarly, S3 transfer acceleration and Amazon CloudFront speed
things up, Direct Connect helps quickly to move data back and forth
between your data center, and Amazon VPC endpoints provide
connectivity to AWS services such as Amazon S3 without requiring
an Internet gateway or a Network Address Translation (NAT)
instance. Latency-based routing (LBR) for Route 53 helps you
improve your application’s performance for a global audience.

• Database Until a few years back, all data used to go to the relational
database by default. Every organization used to have multiple big
relational databases running with every kind of data in them. Now
you don’t have to put everything in the relational database. Only part
can remain in a relational database, and the rest can be moved to
various other types of databases such as NoSQL, a data warehouse,
and so on. Only the part of the data that needs relational access to
data sets involving complex queries that will join and aggregate data
from multiple entities can stay in a relational database, and the rest
can be moved to a different type of database. If you are putting data
in a relational database, you can either choose to host it in EC2

servers or use an RDS service to host it. Similarly, for NoSQL, you
can use DynamoDB, and for data warehouses, you can use Redshift.
In many cases, you may need to index, search, and consolidate
information on a large scale. Technologies such as search engines are
particularly efficient for these use cases. In these cases, you can use
Elasticsearch in conjunction with Kibana and document or log
aggregation with LogStash. Elasticsearch provides an easy-to-use
platform that can automatically discover and index documents at a
really large scale, and Kibana provides a simple solution for creating
dashboards and analysis on indexed data. Elasticsearch can be
deployed in EC2 instances, or you can use the Amazon Elasticsearch
service, which is the managed service of AWS.

Review
Once you make the selection, it is equally important to periodically review
the architecture and make continuous changes to the architecture as per the
business needs. The business needs can change at any point of time, and
you may have to change the underlying infrastructure. For example, the
business may want to open an internal ordering tool to all its suppliers. Now
all the performance metrics are going to change, and to support the
business, you have to make some architecture changes. Also, AWS keeps
on innovating, releasing new services, dropping the price, and adding new
geographies and edge locations. You should take advantage of them since it
is going to improve the performance efficiency of your architecture. To
reiterate, you should focus on the following from day 1:

• Define your infrastructure as code using approaches such as AWS
CloudFormation templates. This enables you to apply the same
practices you use to develop software to your infrastructure so you
can iterate rapidly.

• Use a continuous integration/continuous deployment (CI/CD)
pipeline to deploy your infrastructure. You should have well-defined
metrics, both technical and business metrics, of monitoring to
capture key performance indicators.

• Run benchmarks and do performance tests regularly to make sure
that the performance tests have passed successfully and meet the

performance metrics. During the testing, you should create a series
of test scripts that can replicate or simulate the life workload so that
you can compare apples to apples (load testing).

Monitoring
Once you deploy the application/workload, you should constantly monitor
it so that you can remediate any issues before your customers are aware of
them. You should have a way of alerting whenever there is an anomaly.
These alerts can be customized and should be able to automate action to
work around any badly performing components. CloudWatch provides the
ability to monitor and send notification alarms. You can then use these
alarms to make automation work around performance issues by triggering
actions through Amazon Kinesis, Amazon Simple Queue Service (Amazon
SQS), and AWS Lambda.

Reliability
Using this pillar you are going design the architecture as per the service
level agreements. You need to consider how the solution can recover from
various failures, how much outage a business can handle, how to work
backward from the RTO and RPO levels, and so on. The goal is to keep the
impact of any type of failure to a minimum. By preparing your system for
the worst, you can implement a variety of mitigation strategies for the
different components of your infrastructure and applications. When
designing the system you can think about various failure scenarios and
work backward. These requirements can cause long lead times because of
dependencies and therefore must be incorporated during initial planning.
With AWS, most of these foundational requirements are already
incorporated or may be addressed as needed. At the same time, you need to
make sure that your application or workload is leveraging all the aspects of
reliability. For example AWS provides multiple AZs as a foundation for
high availability. If you design your application to make use of multiple
AZs, your application is going to leverage HA in the context of reliability
automatically.

There are five design principles for reliability in the cloud:

• Test recovery procedures Simulate all the failures that you might be
encountering and try to see whether you are able to recover from
those failures. Try to automate as much as possible to simulate the
failure. You should be doing this activity often to make sure your
system can handle failures and they are always up and running.

• Automate recovery from failure You should automate the recovery
from failures as much as possible. You should proactively monitor
the system, as well as the response to an alert. By doing this, you
should always be ready to handle a failure.

• Scale horizontally Instead of scaling vertically, you should try to
scale horizontally and leverage multiple servers to minimize the
impact. For example, instead of running the workload on a 16-core
server, you can run the same workload on four different servers of 4
cores each. You can even run these servers across different AZs
within a region to provide HA within your application.

• Stop guessing capacity In the cloud, the resources are almost
infinite. In an on-premise environment, the resources are always
provisioned for peak loads; despite that, if the resources saturate, the
performance will degrade. In the cloud, there is no need to guess the
right capacity. You just need to make sure you have proper
automation in place that is going to spin off new resources for you as
per the alerts.

• Automate changes to the system All the changes to the system
should be done via automation. This minimizes the chances for error.

Best Practices
There are three best practice areas for reliability in the cloud: lay the
foundations, implement change management, and implement failure
management.

Lay the Foundation
Before architecting any system, you must lay down the foundation. The
foundation should be laid out as per the reliability needs. Find out from the
business what exactly it is looking for. For example, if the business says it
needs 99.99 percent availability, find out what exactly it is trying to do and

then work backward. Designing applications for higher levels of availability
often comes with increased costs, so it makes sense to identify the true
availability needs before starting the application design. Table 9-1 shows
availability and its corresponding downtime.

Table 9-1 Availability vs. Outage

When you are building the foundation, you can start it right from your
data center to the cloud. Do you need very large network bandwidth to your
data center from the cloud? If yes, then you can start setting up Direct
Connect instead of VPN. You can set up multiple Direct Connect options
depending on your needs. The network topology needs to be planned well
in advance, and you should also envision future growth and integration with
other systems. You should keep in mind the following:

• Allow IP address space for more than one VPC per region.
• Within a VPC, keep space for multiple subnets that span multiple

availability zones.
• Leave some unused CIDR block space within a VPC, which will

take care of any needs for the future.
• Depending on business needs, you can have cross-account

connections; in other words, each business can have their unique
account and VPC that can connect back to the shared services.

• Start thinking about all the failures and work backward. Say you
have Direct Connect. If that fails, then what happens? You can have

a second Direct Connect. If you don’t have the budget for a second
Direct Connect, you can start with a VPN for failover.

There are a few areas you should focus on when designing an application
for availability:

• Fault isolation zones AWS has the fault isolation construct of
availability zones; within a region there are two or more AZs.
Whenever you are designing your workload/application, you should
make sure that you are using at least two AZs. The more AZs you
use in the architecture, the less chance there is of your application
going down. Say you deploy your application across only one AZ. If
that AZ goes down, there is 100 percent impact to your application.
If you design the application using two AZs, it will have a 50 percent
impact on your application if that goes down.

• Redundant components One of the design principles of AWS is to
avoid single points of failure in the underlying physical
infrastructure. All the underlying physical infrastructure is built with
redundant systems, so when you are designing the applications, you
must make sure you plan for redundant components. For example,
say you want to host your database on EC2 servers. Since data is the
most critical part of the database, you can take multiple EBS
volumes and use RAID to get HA in the storage layer.

• Leveraging managed services Try to leverage managed services as
much as possible because most of them come with built-in high
availability. For example, RDS provides a multi-AZ architecture. If
the AZ where you are hosting your database goes down, it
automatically fails over to a different AZ. Similarly, if you choose to
host your data in Amazon Aurora, six copies of the data are
automatically written across three AZs.

Implement Change Management
Change management can make or break things. If you accidentally push the
wrong code into the system, it can take down the entire system. In an on-
premise environment, often the change control is a manual process and
carefully coordinated with auditing to effectively control who makes
changes and when they are made. In AWS, you can automate this whole

part. You can also automate change management in response to key
performance indicators, including fault management. When you are
deploying changes in the system, you should consider these deployment
patterns that minimize risk:

• Blue-green deployments In this case, you have two stacks of
deployment running in parallel: one stack running the old version
and the other running the new version. You start with sending small
traffic to the new deployment stack and watch out for failures, errors,
and so on, and you send the rest of the traffic to the old stack (say 10
percent to the new stack and 90 percent to the old). If there are
failures, you redirect the 10 percent traffic again to the old stack and
work on fixing the issues. If things look good, you slowly keep on
increasing the percentage of traffic to the new stack until you reach
100 percent.

• Canary deployment This is the practice of directing a small number
of your customers to the new version and scrutinizing deeply any
behavior changes or errors that are generated. This is similar to blue-
green deployment. If things look good, you can redirect more users
to the new version until you are fully deployed, and if things keep on
failing, you revert to the old version.

• Feature toggle You can deploy the software with a feature turned off
so that customers don’t see the feature. If the deployment goes fine,
you can turn on the feature so that customers can start using it. If the
deployment has problems, you keep the feature turned off without
rolling back till the next deployment.

Implement Failure Management
Your application should be able to handle the failure at every layer of the
stack. You should evaluate every stack and think, if this stack fails or if this
component goes down, how is my application going to handle it? You
should ask questions like, what if the AZ fails, what if Direct Connect fails,
what if the EC2 servers fail, or what if one of the hard drives goes down?
Once you start thinking about all the possible scenarios, you should be able
to architect your architecture in such a way that it can mitigate all types of
failures. At the same time, it is important to make sure you have the proper

backup and DR strategy in place. You should be regularly backing up your
data and test your backup files to make sure you are able to recover from
the backup. You should be running a DR simulation test to see how quickly
you can spin up your infrastructure in a different region. You should be
constantly shipping your data to a different region and automating the
deployment of infrastructure in a different region using CloudFormation.

Cost Optimization Pillar
This pillar helps you cut down on costs and provides you with the ability to
avoid or eliminate unneeded cost or suboptimal resources. You might have
noticed that AWS regularly decreases the prices of its products and services
and encourages its customers to optimize their resources so that they have
to pay less. AWS provides lots of ways to do this, which helps a business
keep its budget in check. Who does not love lower costs?

In the cloud, you can follow several principles that help you save money.
If you follow cost optimization best practices, you should have a good cost
comparison with on-premises, but it’s always possible to reduce your costs
in the cloud as your applications and environments are migrated and mature
over time. Cost optimization should never end until the cost of identifying
money-saving opportunities is more than the amount of money you are
actually going to save.

The cost optimization pillar consists of the following design principles:

• Choose the best consumption model Pay using the consumption
model that makes the most sense for your business. If you are going
with an on-demand or pay-as-you-go pricing model, you can shut
down the environments when not in use to save costs. For example,
if your developers leave for home after 5 p.m. and come to the office
the next day at 9 a.m., you can shut down the development
environment during that time. Similarly, for production workloads, if
you know that your application will need a certain number of cores
for the whole year, you can go with the reserved pricing model to
save money.

• Use managed services Leverage managed services and serverless
services as much as you can so that you don’t have to deal with the
infrastructure and can focus on running your business.

• Measure the overall efficiency If you can measure the business
output with the cost associated with it for delivery, you should be
able to figure out in the long run if you are increasing costs or
decreasing costs.

• Analyze the expenditure The cloud provides you with all the tools
to analyze the costs for running the business. You can find out which
business unit is incurring which costs for running the system and can
tie these back to the business owner. This way, you can find out
whether you are getting enough return on investments.

• Stop spending on a data center Since AWS take cares of the heavy
lifting, you don’t have to spend money on your data center. You can
just focus on innovation and on running your business rather than on
IT infrastructure.

Cost optimization in the cloud is composed of four areas: finding cost-
effective resources, matching supply with demand, being aware of
expenditures, and optimizing over time. The following sections describe
each in detail.

Finding Cost-Effective Resources
You can do lots of things to make sure the resources you are utilizing are
cost-effective. You can start with minimum resources, and after running
your workload for some time, you can modify your resources to scale up or
down to size them correctly. If you start with minimum resources, then
sometimes you may not have to scale further down. Depending on your
business needs, you can choose between various purchasing options such as
on-demand resources, spot instances, and reserved instances. You should
choose a region that is near to your end users and that meets the business
needs. For example, reduced latency can be a key factor in improving the
usage of your e-commerce or other web sites. When you architect your
solutions, a best practice is to seek to place computing resources closer to
users to provide lower latency and strong data sovereignty. As discussed
earlier, managed services or serverless services can become your best
friends to avoid unnecessary IT management costs.

AWS provides a tool called Trusted Advisor, shown in Figure 9-3, that
can help you control costs. Trusted Advisor looks at various AWS resources

and provides guidance in terms of what you can do to get additional cost
savings.

Figure 9-3 Trusted Advisor

Matching Supply with Demand
In an on-premise environment, you always need to over-provision to meet
the peak demand. Demand can be fixed or variable. In the cloud, you can
automatically provision resources to match the demand. For example, by
leveraging Auto Scaling, you can automatically scale up or down to meet

the demand. Similarly, you can start with a small instance class of RDS and
move to a higher instance class when the demand goes up. Your capacity
needs to match your needs but not substantially exceed what you need.

Being Aware of Expenditures
It is important that business is aware of underlying costs. This will help the
business to make better decisions. If the costs of operations are higher than
the revenue from the business, then it does not make sense to invest more in
infrastructure. On the other hand, if the costs of operations are much lower,
it makes sense to invest more infrastructure for the growth of business.
While determining the cost, make sure you capture all the small details such
as data transfer charges or Direct Connect charges.

Optimizing Over Time
To optimize over time, you need to constantly measure, monitor, and
improve. Measure and monitor your users and applications, and combine
the data you collect with data from monitoring. You can perform a gap
analysis that tells you how closely aligned your system utilization is to your
requirements. Say you start with an on-demand instance model. After a few
months, you realize that you are using this instance 24/7, and you are going
to use this instance for another year. At that time, you can switch to a
reserved instance plan instead of sticking with on-demand. If you are not
sure whether you might need a bigger class of instance after six months, in
that case you can choose a convertible reserved instance.

AWS Best Practices
If you want to deploy applications to the cloud, there are three different
ways you can do so:

• Lift and shift There are many applications that cannot be changed or
modified. For instance, it is difficult to modify older applications. In
that case, you have to “lift and shift” those applications to the cloud.
Say you want to deploy Oracle ERP on the cloud; however, the
application cannot be re-architected. In this case, it is important that

you use the AWS core services. For example, you can use a VPC and
subnets as a foundation and then use EC2 instances, EBS storage,
and so on.

• Cloud optimized Even if it is not possible to re-architect the
application, you can still get some benefits from the cloud by
optimizing the architecture for the cloud. For example, you can use
native services such as RDS for provisioning the database and not
EC2 servers, you can use SNS for sending the notifications, and so
on.

• Cloud-native architecture In this case, you are starting everything
from the cloud. You can leverage the full AWS portfolio and thus
truly gain all the benefits of AWS in terms of security, scalability,
cost, reliability, low operational cost, and so on.

Therefore, whenever you are architecting for the cloud, you should make
sure that your architecture inherits all the best practices built in it. The
following are the best practices you should follow for designing your
architecture for the cloud.

Design for Failures
It is important that you design for failures at all layers of the stack. For the
storage layer, you should mirror the data using RAID or some other
technology. For the database tier, you should have high availability, and for
the application tier, you should have multiple EC2 instances so that if one
of them goes down, you can fail over to the other.

Let’s look at a simple example to understand this. Say you have an EC2
server that is hosting the database and the application, as shown in Figure 9-
4. You are also using an Elastic IP address for this server, and the end users
are using Route 53 to reach the application.

Figure 9-4 Hosting a database and application in an EC2 server

If you look at Figure 9-4, do you see any problems? Yes, you have put
all the components on a single EC2 server. There is no redundancy or
failover. If this EC2 server goes down, what happens? Everything goes
down, including your database, your applications, and everything else.

Amazon.com’s CTO, Werner Vogels, has said, “Everything fails, all the
time.” If you design your architecture around that premise—specifically,
assuming that any component will eventually fail—then your application
won’t fail when an individual component does.

In this case, when designing for failure, your goal is to see your
application survive when the underlying physical hardware fails on one of
your servers.

Let’s try to work backward from this goal. In real life, you will often see
that you won’t be able to implement all the steps needed to make your
architecture well architected in one day. Sometimes, as discussed

previously, you have to evolve the design. Or you have to take small steps
to reach a final architecture.

So, in this case, you can start by separating the database and the app tier.
Thus, you are going to host the web tier in the EC2 server and put the
database in RDS, as shown in Figure 9-5. Still, the application is vulnerable
because if the database goes down, the application goes down, and if the
web server goes down, the application goes down. But at least now you
have segregated the database and the web tier.

Figure 9-5 Web server in EC2 and database in RDS

In the next phase, you can address the lack of failover and redundancy in
the infrastructure by adding another web tier EC2 instance and enabling the
multi-AZ feature of RDS (Figure 9-6), which will give you a standby
instance in a different AZ from the primary. You’ll also replace your EIP

with an elastic load balancer to share the load between your two web
instances. Now the app has redundancy and high availability built in.

Figure 9-6 High availability across web and database tiers

Therefore, the key takeaway from this is to avoid a single point of
failure. You should always assume everything fails and design backward.
Your goal should be that applications should continue to function even if
the underlying physical hardware fails or is removed/replaced. If an

individual component fails, the application should not have any impact. You
can use the following AWS tools and technologies to do so:

• Use multiple availability zones
• Use elastic load balancing
• Use elastic IP addresses
• Do real-time monitoring with CloudWatch
• Use Simple Notification Service (SNS) for real-time alarms based on

CloudWatch metrics
• Create database slaves across availability zones

Build Security in Every Layer
This was already discussed previously, but since this is such an important
aspect, it is worth recapping. You should build security in every layer. For
all important layers, you should encrypt data in transit and at rest. In
addition, you should use the Key Management Service to create and control
encryption keys used to encrypt your data. You should enforce the principle
of least privilege with IAM users, groups, roles, and policies. You should
use multifactor authentication to gain an additional layer of security. You
should use both security groups to restrict the access to the EC2 servers and
network ACLs to restrict traffic at the subnet level.

Leverage Multiple Storage Options
Since Amazon provides a wide range of storage options and one size does
not fit all, you should leverage multiple storage options for your application
to optimize. These are the storage services provided by Amazon:

• Amazon S3 Large objects
• Amazon Glacier Archive data
• Amazon CloudFront Content distribution
• Amazon DynamoDB Simple nonrelational data
• Amazon EC2 Ephemeral Storage Transient data
• Amazon EBS Persistent block storage with snapshots

• Amazon RDS Automated, managed MySQL, PostgreSQL, Oracle,
Maria DB, SQL Server

• Amazon Aurora Cloud-optimized flavors of MySQL and
PostgreSQL

• Amazon Redshift Data warehouse workloads

Let’s look at an example to understand this. Say you have built a web
site on top of EC2 servers and are leveraging EBS volumes (let’s say
multiple EC2 servers) to host your web site. The web server is running on
EC2. You are also using an RDS database instance to host the database, as
shown in Figure 9-7. In this example, you are only using the EBS volume to
store the data. To leverage multiple storage options and optimize the
architecture, you can do lots of things.

Figure 9-7 Web site running on top of EC2 and RDS

You can start by moving any static objects (images, videos, CSS,
JavaScript) from the web server (EC2 servers) to S3 and then serving those
objects via CloudFront. These files can be served via an S3 origin and then
globally cached and distributed via CloudFront. This will take some load
off your web servers and allow you to reduce your footprint in the web tier.
The next thing you can do is move the session information to a NoSQL

database like DynamoDB. If you do this, your session information won’t be
stored in the EC2 servers. Therefore, when you scale up or down the EC2
servers, you won’t lose session information, and thus it won’t impact the
users. This is called making the tier stateless. You can also use ElastiCache
to store some of the common database query results, which will prevent
hitting the database too much. Figure 9-8 displays how you can leverage
multiple storage options in this case.

Figure 9-8 Leveraging multiple storage options

Implement Elasticity
Elasticity is one of the major benefits that you get by moving to the cloud.
Gone are the days when you have to over-provision the hardware to meet
the peak demand. With the AWS cloud, you just need to provision what is
needed for now without worrying about the peak since you know that AWS
provides elasticity, and you should be able to scale up and down any time to
meet your demand. These are your best friends when implementing
elasticity:

• Auto Scaling Use Auto Scaling to automatically scale your
infrastructure by adding or removing EC2 instances to your
environment.

• Elastic load balancing Use ELB to distribute the load across EC2
instances in multiple availability zones.

• DynamoDB Use DynamoDB to maintain the user state information.

Think Parallel
AWS gives you the ability to experiment with different parallel
architectures, and you should leverage all of them to make sure whatever
you are doing will go quickly. Use SNS and SQS to build components that
run in parallel and communicate (state, workflow, job status, and so on) by
sending messages and notifications.

For example, you could publish a message to a topic every time a new
image is uploaded. Independent processes, each reading from a separate
SQS queue, could generate thumbnails, perform image recognition, and
store metadata about the image.

• Use multithreading and concurrent requests to the cloud service
Submitting multiple requests to cloud services shouldn’t be done
sequentially. Use threads to spawn simultaneous requests; a thread
waiting for a response from a cloud service is not consuming CPU
cycles, so you can spawn more threads than you have CPU cores to
parallelize and speed up a job.

• Run parallel MapReduce jobs Amazon Elastic MapReduce
automatically spins up a Hadoop implementation of the MapReduce

framework on Amazon EC2 instances, subdividing the data in a job
flow into smaller chunks so that they can be processed (the “map”
function) in parallel and eventually recombining the processed data
into the final solution (the “reduce” function). Amazon S3 serves as
the source for the data being analyzed and as the output destination
for the end results. Say you run the EMR job using just one node and
that takes ten hours. Let’s assume that the cost of running the EMR
node is $1 per hour, so if your job runs for ten hours, you are paying
$10. Now instead of running this job in one EMR node for ten hours,
you can spin ten nodes in the EMR cluster. Since you have ten times
more resources to process the job, your job will be finished in one
hour instead of ten. You will pay $1 for each server for every hour,
so that’s ten servers for one hour each, making a total cost of $10. If
you compare the prices, you will notice that they both cost $10, but
the job took ten hours previously; with MapReduce you are able to
finish the same job in just one hour. The only difference this time is
you have leveraged parallelism.

• Use elastic load balancing to distribute load Use ELB to distribute
incoming traffic across your Amazon EC2 instances in a single
availability zone or multiple availability zones. Elastic load
balancing automatically scales its request-handling capacity in
response to incoming application traffic.

• Use Amazon Kinesis for concurrent processing of data Using
Kinesis, you can have multiple applications process a stream of data
concurrently. Have one Amazon Kinesis application running real-
time analytics and the other sending data to Amazon S3 from the
same Amazon Kinesis stream.

Lambda lets you run thousands of functions in parallel, and performance
remains consistently high regardless of the frequency of events. Use
Lambda for back-end services that perform at scale.

When uploading files in S3, you can use multipart upload and ranged
gets.

Loosely Couple Your Architecture

Always design architectures with independent components; the looser
they’re coupled, the larger they scale. Design every component as a black
box. Build separate services instead of something that is tightly interacting
with something else. Use common interfaces or common APIs between the
components. For example, if you are building an application for transcoding
the video, you can do everything in one shot or can split the steps into
multiple small processes. Don’t try to do all these tasks in one step: upload
the file, transcode the video, and send the user a mail notification. If the
transcode fails, you need to restart from the upload. Instead of that, if you
split the process into three independent steps (upload video, transcode, and
send mail notification), then even if the second step fails, you won’t have to
start from scratch.

There Are No Constraints in the AWS Cloud
If you are coming from an on-premise ecosystem, often the resources are
constrained. If your instance needs more CPU or more RAM or if your
application needs a finely tuned I/O system, it takes a long time to get that.
In AWS you don’t really have to worry about any type of constraint.
Everything is available in just a few clicks. In the cloud, since there are new
technologies available, you may try something out of the box to make the
best use of it. For example, in an on-premises environment, you can host
your web server in a bigger box, say, of 32 cores, in the cloud. Instead of
hosting your web server on one server with 32 cores, you can use four
servers of 8 cores each to host the web server. You can spread these web
servers across different AZs to minimize the risk. You should try to use
more AZs whenever possible. Here’s an example to explain this:

• First case using two AZs Say you have four web servers, and you
have deployed two in each AZ. The probability of one of the AZs
going down is 50 percent, so if one of the AZs goes down, you will
immediately lose 50 percent of your resource.

• Second case using three AZs If you use three AZs, then the
probability of one AZ going down is 33.3 percent. When this
happens, you will lose 33.3 percent of your resource, which is
always better than losing 50 percent of your resource. Similarly, if

you use four AZs, you will lose 25 percent of your resource, and if
you use five AZs, you will lose 20 percent of your resource.

In an on-premise world, whenever there is an issue with hardware, you
try to troubleshoot and fix it. For example, the memory can go bad or there
might be an issue with the disk or processor. Instead of wasting valuable
time and resources diagnosing problems and replacing components, favor a
“rip-and-replace” approach. Simply decommission the entire component
and spin up a fully functional replacement. By doing this, you don’t have to
spend any time troubleshooting the faulty part.

Chapter Review
In this chapter, you learned about the five pillars of the AWS Well-
Architected Framework.

Operations excellence is measured in terms of how you are able to
support the business. If you have aligned your operations teams to support
the business SLAs, you are in good shape. The design principles for
operational excellence in the cloud are to perform operations as code,
document everything, push small changes instead of big, refine operating
procedures often, and anticipate failure.

The security pillar makes sure that your environment is secure from all
aspects. These are the design principles for security: have a strong identity
foundation, enable traceability, implement security at all the layers, secure
the data, automate for security, and plan for security events.

The performance pillar is all about need for speed. This pillar focuses on
performance efficiency and how your business can benefit from it. It has the
following design principles: go global in a few clicks, leverage new
technologies such as serverless, consume advanced technology, leverage
multiple technologies, and experiment more often.

The reliability pillar makes sure that the solution can recover from
various failures, determines how much outage a business can handle,
determines how to work backward from the RTO and RPO levels, and so
on. These are the design principles for reliability in the cloud: test recovery
procedures, automate recovery from failure, scale horizontally, stop
guessing capacity, and automate changes to the system.

The cost optimization pillar helps you cut down on costs and provides
you with the ability to avoid or eliminate unneeded costs or suboptimal
resources. The cost optimization pillar consists of the following design
principles: choose the best consumption model, use managed services,
measure the overall efficiency, analyze the expenditure, and stop spending
on a data center.

These are the best practices in the cloud:

• Design for failures.
• Build security in every layer.
• Leverage multiple storage options.
• Implement elasticity.
• Think parallel.
• Loosely couple your architecture.

There are no constraints in the AWS cloud.

Questions
1. How do you protect access to and the use of the AWS account’s root

user credentials? (Choose two.)
A. Never use the root user
B. Use multifactor authentication (MFA) along with the root user
C. Use the root user only for important operations
D. Lock the root user

2. What AWS service can you use to manage multiple accounts?
A. Use QuickSight
B. Use Organization
C. Use IAM
D. Use roles

3. What is an important criterion when planning your network topology
in AWS?
A. Use both IPv4 and IPv6 IP addresses.

B. Use nonoverlapping IP addresses.
C. You should have the same IP address that you have on-premise.
D. Reserve as many EIP addresses as you can since IPv4 IP

addresses are limited.
4. If you want to provision your infrastructure in a different region, what

is the quickest way to mimic your current infrastructure in a different
region?
A. Use a CloudFormation template
B. Make a blueprint of the current infrastructure and provision the

same manually in the other region
C. Use CodeDeploy to deploy the code to the new region
D. Use the VPC Wizard to lay down your infrastructure in a different

region
5. Amazon Glacier is designed for which of the following? (Choose two.)

A. Active database storage
B. Infrequently accessed data
C. Data archives
D. Frequently accessed data
E. Cached session data

6. Which of the following will occur when an EC2 instance in a VPC
with an associated elastic IP is stopped and started? (Choose two.)
A. The elastic IP will be dissociated from the instance.
B. All data on instance-store devices will be lost.
C. All data on Elastic Block Store (EBS) devices will be lost.
D. The Elastic Network Interface (ENI) is detached.
E. The underlying host for the instance is changed.

7. An instance is launched into the public subnet of a VPC. Which of the
following must be done for it to be accessible from the Internet?
A. Attach an elastic IP to the instance.
B. Nothing. The instance is accessible from the Internet.
C. Launch a NAT gateway and route all traffic to it.

D. Make an entry in the route table, passing all traffic going outside
the VPC to the NAT instance.

8. To protect S3 data from both accidental deletion and accidental
overwriting, you should:
A. Enable S3 versioning on the bucket
B. Access S3 data using only signed URLs
C. Disable S3 delete using an IAM bucket policy
D. Enable S3 reduced redundancy storage
E. Enable multifactor authentication (MFA) protected access

9. Your web application front end consists of multiple EC2 instances
behind an elastic load balancer. You configured an elastic load balancer
to perform health checks on these EC2 instances. If an instance fails to
pass health checks, which statement will be true?
A. The instance is replaced automatically by the elastic load

balancer.
B. The instance gets terminated automatically by the elastic load

balancer.
C. The ELB stops sending traffic to the instance that failed its health

check.
D. The instance gets quarantined by the elastic load balancer for

root-cause analysis.
10. You are building a system to distribute confidential training videos to

employees. Using CloudFront, what method could be used to serve
content that is stored in S3 but not publicly accessible from S3
directly?
A. Create an origin access identity (OAI) for CloudFront and grant

access to the objects in your S3 bucket to that OAI
B. Add the CloudFront account security group called “amazon-

cf/amazon-cf-sg” to the appropriate S3 bucket policy
C. Create an Identity and Access Management (IAM) user for

CloudFront and grant access to the objects in your S3 bucket to
that IAM user

D. Create an S3 bucket policy that lists the CloudFront distribution
ID as the principal and the target bucket as the Amazon resource
name (ARN)

Answers
1. A, B. It is critical to keep the root user’s credentials protected, and to

this end, AWS recommends attaching MFA to the root user and
locking the credentials with the MFA in a physically secured location.
IAM allows you to create and manage other nonroot user permissions,
as well as establish access levels to resources.

2. B. QuickSight is used for visualization. IAM can be leveraged within
accounts, and roles are also within accounts.

3. B. Using IPv4 or IPv6 depends on what you are trying to do. You can’t
have the same IP address, or when you integrate the application on-
premise with the cloud, you will end up with overlapping IP addresses,
and hence your application in the cloud won’t be able to talk with the
on-premise application. You should allocate only the number of EIPs
you need. If you don’t use an EIP and allocate it, you are going to
incur a charge on it.

4. A. Creating a blueprint and working backward from there is going to
be too much effort. Why you would do that when CloudFormation can
do it for you? CodeDeploy is used for deploying code, and the VPC
Wizard is used to create VPCs.

5. B, C. Amazon Glacier is used for archival storage and for archival
purposes.

6. A, D. If you have any data in the instance store, that will also be lost,
but you should not choose this option since the question is regarding
elastic IP.

7. B. Since the instance is created in the public subnet and an Internet
gateway is already attached with a public subnet, you don’t have to do
anything explicitly.

8. A. Signed URLs won’t help, even if you disable the ability to delete.
9. C. The ELB stops sending traffic to the instance that failed its health

check.

10. A. Create an OAI for CloudFront and grant access to the objects in
your S3 bucket to that OAI.

APPENDIX A
Objective Map

Exam SAA-C02

APPENDIX B
Additional Resources

This appendix recommends valuable resources as you prepare for the AWS
Certified Solutions Architect – Associate exam or for your role as an AWS
Solutions Architect. It is arranged by whitepapers and videos from the AWS
re:Invent conference.

Whitepapers
• An Overview of the AWS Cloud Adoption Framework

https://docs.aws.amazon.com/whitepapers/latest/overview-aws-cloud-
adoption-framework/overview-aws-cloud-adoption-framework.pdf

• AWS Best Practices for DDoS Resiliency
https://d1.awsstatic.com/whitepapers/Security/DDoS_White_Paper.p
df

• AWS Storage Services Overview
https://docs.aws.amazon.com/whitepapers/latest/aws-storage-
services-overview/aws-storage-services-overview.pdf#welcome

• AWS Well-Architected Framework
https://docs.aws.amazon.com/wellarchitected/latest/framework/wellar
chitected-framework.pdf

• Big Data Analytics Options on AWS
https://d1.awsstatic.com/whitepapers/Big_Data_Analytics_Options_o
n_AWS.pdf

• Fault-Tolerant Components on AWS
https://docs.aws.amazon.com/whitepapers/latest/fault-tolerant-
components/fault-tolerant-components.pdf

https://docs.aws.amazon.com/whitepapers/latest/overview-aws-cloud-adoption-framework/overview-aws-cloud-adoption-framework.pdf
https://d1.awsstatic.com/whitepapers/Security/DDoS_White_Paper.pdf
https://docs.aws.amazon.com/whitepapers/latest/aws-storage-services-overview/aws-storage-services-overview.pdf#welcome
https://docs.aws.amazon.com/wellarchitected/latest/framework/wellarchitected-framework.pdf
https://d1.awsstatic.com/whitepapers/Big_Data_Analytics_Options_on_AWS.pdf
https://docs.aws.amazon.com/whitepapers/latest/fault-tolerant-components/fault-tolerant-components.pdf

• Infrastructure Event Readiness
https://d1.awsstatic.com/whitepapers/aws-infrastructure-event-
readiness.pdf?did=wp_card&trk=wp_card

• Overview of Deployment Options on AWS
https://d1.awsstatic.com/whitepapers/overview-of-deployment-
options-on-aws.pdf?did=wp_card&trk=wp_card

AWS re:Invent Videos
• Amazon EC2 Foundations

https://www.youtube.com/watch?v=kMMybKqC2Y0
• AWS Architecture

https://www.youtube.com/watch?v=wMsVL5Vg2BU
• AWS Networking Fundamentals

https://www.youtube.com/watch?v=hiKPPy584Mg
• AWS Purpose-Built Databases

https://www.youtube.com/watch?v=q81TVuV5u28
• AWS Security

https://www.youtube.com/watch?v=oam8FDNJhbE
• Capacity Management Made Easy with Amazon EC2 Auto

Scaling
https://www.youtube.com/watch?v=9BlsFNBnKHc

• Database and Analytics
https://www.youtube.com/watch?v=sfr4cs-avCQ

• Deep Dive on Amazon EBS
https://www.youtube.com/watch?v=wsMWANWNoqQ

• Deep Dive on Amazon EFS
https://www.youtube.com/watch?v=pCbDfTKry-c

• Getting Started with AWS Identity
https://www.youtube.com/watch?v=Zvz-qYYhvMk

• Keynote with Andy Jassy
https://www.youtube.com/watch?v=7-31KgImGgU

https://d1.awsstatic.com/whitepapers/aws-infrastructure-event-readiness.pdf?did=wp_card&trk=wp_card
https://d1.awsstatic.com/whitepapers/overview-of-deployment-options-on-aws.pdf?did=wp_card&trk=wp_card
https://www.youtube.com/watch?v=kMMybKqC2Y0
https://www.youtube.com/watch?v=wMsVL5Vg2BU
https://www.youtube.com/watch?v=hiKPPy584Mg
https://www.youtube.com/watch?v=q81TVuV5u28
https://www.youtube.com/watch?v=oam8FDNJhbE
https://www.youtube.com/watch?v=9BlsFNBnKHc
https://www.youtube.com/watch?v=sfr4cs-avCQ
https://www.youtube.com/watch?v=wsMWANWNoqQ
https://www.youtube.com/watch?v=pCbDfTKry-c
https://www.youtube.com/watch?v=Zvz-qYYhvMk
https://www.youtube.com/watch?v=7-31KgImGgU

• Monitor All Your Things: Amazon Cloud Watch in Action with
BBC

https://www.youtube.com/watch?v=uuBuc6OAcVY
• Serverless Architectural Patterns and Best Practices

https://www.youtube.com/watch?v=9IYpGTS7Jy0
• Using Containers & Serverless to Accelerate Application

Development
https://www.youtube.com/watch?v=IcXjZMRSCcU

• What’s New in Amazon Aurora
https://www.youtube.com/watch?v=QJB1vUlkmWQ

• What’s New in Amazon RDS
https://www.youtube.com/watch?v=KhxEQQOiqus

• What’s New with Amazon S3 and Amazon S3 Glacier
https://www.youtube.com/watch?v=VUFX8W8bvjo

https://www.youtube.com/watch?v=uuBuc6OAcVY
https://www.youtube.com/watch?v=9IYpGTS7Jy0
https://www.youtube.com/watch?v=IcXjZMRSCcU
https://www.youtube.com/watch?v=QJB1vUlkmWQ
https://www.youtube.com/watch?v=KhxEQQOiqus
https://www.youtube.com/watch?v=VUFX8W8bvjo

APPENDIX C
About the Online Content

This book comes complete with TotalTester Online customizable practice
exam software with 130 practice exam questions.

System Requirements
The current and previous major versions of the following desktop browsers
are recommended and supported: Chrome, Microsoft Edge, Firefox, and
Safari. These browsers update frequently, and sometimes an update may
cause compatibility issues with the TotalTester Online or other content
hosted on the Training Hub. If you run into a problem using one of these
browsers, please try using another until the problem is resolved.

Your Total Seminars Training Hub
Account
To get access to the online content, you will need to create an account on
the Total Seminars Training Hub. Registration is free, and you will be able
to track all your online content using your account. You may also opt in if
you wish to receive marketing information from McGraw Hill or Total
Seminars, but this is not required for you to gain access to the online
content.

Privacy Notice
McGraw Hill values your privacy. Please be sure to read the Privacy Notice
available during registration to see how the information you have provided

will be used. You may view our Corporate Customer Privacy Policy by
visiting the McGraw Hill Privacy Center. Visit the mheducation.com site
and click Privacy at the bottom of the page.

Single User License Terms and Conditions
Online access to the digital content included with this book is governed by
the McGraw Hill License Agreement outlined next. By using this digital
content you agree to the terms of that license.

Access To register and activate your Total Seminars Training Hub account,
simply follow these easy steps.

1. Go to hub.totalsem.com/mheclaim
2. To register and create a new Training Hub account, enter your e-mail

address, name, and password on the Register tab. No further personal
information (such as credit card number) is required to create an
account.
If you already have a Total Seminars Training Hub account, enter your
e-mail address and password on the Log in tab.

3. Enter your Product Key: 3z3t-ghx5-qcrc
4. Click to accept the user license terms.
5. For new users, click the Register and Claim button to create your

account. For existing users, click the Log in and Claim button.
You will be taken to the Training Hub and have access to the content
for this book.

Duration of License Access to your online content through the Total
Seminars Training Hub will expire one year from the date the publisher
declares the book out of print.

Your purchase of this McGraw Hill product, including its access code,
through a retail store is subject to the refund policy of that store.

The Content is a copyrighted work of McGraw Hill, and McGraw Hill
reserves all rights in and to the Content. The Work is © 2021 by McGraw
Hill.

Restrictions on Transfer The user is receiving only a limited right to use
the Content for the user’s own internal and personal use, dependent on
purchase and continued ownership of this book. The user may not
reproduce, forward, modify, create derivative works based upon, transmit,
distribute, disseminate, sell, publish, or sublicense the Content or in any
way commingle the Content with other third-party content without McGraw
Hill’s consent.

Limited Warranty The McGraw Hill Content is provided on an “as is”
basis. Neither McGraw Hill nor its licensors make any guarantees or
warranties of any kind, either express or implied, including, but not limited
to, implied warranties of merchantability or fitness for a particular purpose
or use as to any McGraw Hill Content or the information therein or any
warranties as to the accuracy, completeness, correctness, or results to be
obtained from, accessing or using the McGraw Hill Content, or any material
referenced in such Content or any information entered into licensee’s
product by users or other persons and/or any material available on or that
can be accessed through the licensee’s product (including via any hyperlink
or otherwise) or as to non-infringement of third-party rights. Any warranties
of any kind, whether express or implied, are disclaimed. Any material or
data obtained through use of the McGraw Hill Content is at your own
discretion and risk and user understands that it will be solely responsible for
any resulting damage to its computer system or loss of data.

Neither McGraw Hill nor its licensors shall be liable to any subscriber or
to any user or anyone else for any inaccuracy, delay, interruption in service,
error or omission, regardless of cause, or for any damage resulting
therefrom.

In no event will McGraw Hill or its licensors be liable for any indirect,
special or consequential damages, including but not limited to, lost time,
lost money, lost profits or good will, whether in contract, tort, strict liability
or otherwise, and whether or not such damages are foreseen or unforeseen
with respect to any use of the McGraw Hill Content.

TotalTester Online
TotalTester Online provides you with a simulation of the AWS Certified
Solutions Architect Associate (SAA-C02) exam. Exams can be taken in

Practice Mode or Exam Mode. Practice Mode provides an assistance
window with hints, references to the book, explanations of the correct and
incorrect answers, and the option to check your answer as you take the test.
Exam Mode provides a simulation of the actual exam. The number of
questions, the types of questions, and the time allowed are intended to be an
accurate representation of the exam environment. The option to customize
your quiz allows you to create custom exams from selected domains or
chapters, and you can further customize the number of questions and time
allowed.

To take a test, follow the instructions provided in the previous section to
register and activate your Total Seminars Training Hub account. When you
register, you will be taken to the Total Seminars Training Hub. From the
Training Hub Home page, select AWS Certified Solutions Architect
Assoc All-in-One 2E (SAA-C02) TotalTester from the Study drop-down
menu at the top of the page, or from the list of Your Topics on the Home
page. You can then select the option to customize your quiz and begin
testing yourself in Practice Mode or Exam Mode. All exams provide an
overall grade and a grade broken down by domain.

Technical Support
For questions regarding the TotalTester or operation of the Training Hub,
visit www.totalsem.com or e-mail support@totalsem.com.

For questions regarding book content, visit
www.mheducation.com/customerservice.

mailto:support@totalsem.com
https://www.mheducation.com/customerservice

ACRONYMS AND GLOSSARY

Acronyms
ACL Access control list

ACM AWS Certificate Manager

AES Advanced Encryption Standard

ALB Application load balancer

Amazon SWF Amazon Simple Workflow Service

AMI Amazon Machine Image

ASG Auto Scaling group

AWS Amazon Web Services

AZ Availability zone

BGP Border Gateway Protocol

CAA Certification authority authorization

CDN Content delivery network

CIDR Classless Inter-Domain Routing

CJIS Criminal justice information services

CLI Command-line interface

CNAME Canonical name record

CRR Cross-regional replication

CSA Cloud Security Alliance

CSM Cloud security model

CSV Comma-separated values

DBMS Database management system

DDL Data Definition Language

DDoS Distributed denial of service

DHCP Dynamic Host Configuration Protocol

DIACAP DoD Information Assurance Certification and Accreditation
Process

DML Data Manipulation Language

DMS Database Migration Service

DoD Department of Defense

EC2 Elastic Compute Cloud

ECS EC2 Container Service

EIP Elastic IP address

EKS Elastic Kubernetes Service

ELB Elastic load balancing

ENI Elastic Network Interface

ERP Enterprise resource planning

ETL Extract, transform, and load

FedRAMP Federal Risk and Authorization Management Program

FERPA Family Educational Rights and Privacy Act

FIFO First in, first out

FIPS Federal Information Processing Standards

FISMA Federal Information Security Management Act

GPU Graphics processing unit

HA High availability

HIPAA Health Insurance Portability and Accountability Act

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS HTTP Secure

HVM Hardware virtual machine

IaaS Infrastructure as a Service

IAM Identity and Access Management

ICMP Internet Control Message Protocol

IoT Internet of Things

IP Internet Protocol

ISAE International Standard on Assurance Engagements

ISO International Organization for Standardization

ITAR International Traffic in Arms Regulations

JDBC Java Database Connectivity

JSON JavaScript Object Notation

KMS Key Management Service

LAMP stack Linux, Apache, MySQL, and PHP (LAMP) stack

MAC Media Access Control address

MFA Multifactor authentication

MPAA Motion Picture Association of America

MTCS Multi-Tier Cloud Security

MX Mail exchange record

NAPTR Name authority pointer record

NAT Network Address Translation

NFS Network File System

NIST National Institute of Standards and Technology

NLB Network load balancer

NS Name server record

ODBC Open Database Connectivity

OLAP Online analytical processing

OLTP Online transaction processing

PaaS Platform as a Service

PCI Payment Card Industry

PHP Hypertext Preprocessor

PIOPS Provisioned input/output operations per second

PTR Pointer record

PV Paravirtual

RDBMS Relational database management system

RDS Relational Database Service

REST Representational State Transfer

RPM Revolutions per minute

S3 Simple Shared Storage

S3-IA Simple Shared Storage Infrequent Access

S3-RR Simple Shared Storage Reduced Redundancy

SaaS Software as a Service

SAML Security Assertion Markup Language

SDK Software development kit

SES Simple Email Service

SMS Server Migration Service

SNS Simple Notification Service

SOA Start of authority record

SOAP Simple Object Access Protocol

SOC Service Organization Control

SPF Sender policy framework

SQL Structured Query Language

SQLi SQL injection

SQS Simple Queue Service

SSAE Standards for Attestation Engagements

SSD Solid-state drive

SSH Secure Shell

SSL Secure Sockets Layer

SSO Single sign-on

STS Security Token Service

TCP/IP Transmission Control Protocol (TCP)/Internet Protocol (IP)

TDE Transparent Database Encryption

TLS Transport Layer Security

UDP User Datagram Protocol

VPC Virtual private cloud

VPG Virtual private gateway

VPN Virtual private network

WAF Web Application Firewall; Well-Architected Framework

webACL Web access control list

WORM Write once, read many

XML Extensible Markup Language

XSS Cross-site scripting

Glossary
AAAA An IPv6 address record.

Amazon Athena A serverless, interactive query service that enables users
to easily analyze data in Amazon S3 using standard SQL.

Amazon Aurora Amazon’s relational database built for the cloud. It
supports two open source RDBMS engines: MySQL and PostgreSQL.

Amazon CloudFront The global content delivery network (CDN) service
of AWS.

Amazon CloudSearch A fully managed web service for search solutions.

Amazon CloudWatch A monitoring service for AWS cloud resources.

Amazon Cognito A service that lets you manage users of your web and
mobile apps quickly.

Amazon DocumentDB A fully managed document database service.

Amazon DynamoDB Amazon’s NoSQL database.

Amazon ElastiCache A service that helps in deploying an in-memory
cache or data store in the cloud.

Amazon Elasticsearch Service A fully managed web service that hosts
Elasticsearch clusters in the AWS cloud.

Amazon EMR A managed hosted Hadoop framework in the cloud.

Amazon Glacier Amazon’s archival storage.

Amazon Glue A fully managed extract, transform, and load (ETL) service.

Amazon GuardDuty A threat detection service.

Amazon Inspector Identifies the security vulneraries in your application.

Amazon Keyspaces A fully managed Apache Cassandra–compatible
database service.

Amazon Kinesis A service that allows you to ingest real-time data.

Amazon Lex A full service for building chatbots.

Amazon Lightsail A simple virtual private server (VPS) solution in the
cloud.

Amazon Macie Classifies your data.

Amazon MSK A fully managed Apache Kafka infrastructure.

Amazon Neptune A fast, reliable graph database built for the cloud.

Amazon Polly A fully managed service that converts text into lifelike
speech.

Amazon QLDB A fully managed ledger database.

Amazon QuickSight A fully managed business analytics service.

Amazon Rekognition A fully managed image recognition service.

Amazon SageMaker A fully managed machine learning service.

Amazon VPC Flow Logs Used to capture information about the IP traffic
going to and from network interfaces in your VPC.

API Gateway A fully managed service to create, publish, maintain,
monitor, and secure APIs at any scale.

archive Where data is stored in Amazon Glacier.

Auto Scaling A technology used by AWS to scale up and scale down EC2
instances.

AWS App Mesh Helps monitor, control, debug, and trace communications
between services.

AWS Backup Centrally manages and automates backups across AWS
services.

AWS Batch A service that enables users to efficiently run hundreds of
thousands of batch computing jobs on AWS.

AWS CloudFormation A tool for deploying AWS resource stacks.

AWS CloudHSM A hardware-based key storage for regulatory
compliance.

AWS CloudTrail A managed service that records AWS API calls.

AWS CodeBuild A fully managed build service that builds and compiles
source code.

AWS CodeCommit A fully managed service through which you can host
any private Git repository.

AWS CodeDeploy A fully managed service that automates code
deployments to any instance.

AWS CodePipeline A fully managed continuous integration and
continuous delivery service.

AWS Config A fully managed service that helps to track configuration
change.

AWS Device Farm Service for testing mobile devices.

AWS Elastic Beanstalk A service used to run and manage web apps.

AWS Global Accelerator Improves the availability and performance of
your applications for global users.

AWS Greengrass A managed service for running IoT applications in the
AWS cloud.

AWS Lake Formation Quickly sets up data lakes in AWS.

AWS Lambda Enables you to run code without provisioning or managing
any servers or infrastructure.

AWS Marketplace An online store where you can buy software that runs
on AWS.

AWS Mobile Hub A web service for deploying mobile applications.

AWS OpsWorks A configuration management service that provides
managed instances of Chef and Puppet.

AWS Organizations Provides policy-based management for multiple AWS
accounts.

AWS Outposts Runs AWS services on premises.

AWS Personal Health Dashboard It provides a personalized view of AWS
service health.

AWS Secrets Manager Manages secrets in AWS.

AWS Shield Protects against DDoS attack.

AWS Step Functions The visual workflow service of AWS.

AWS Systems Manager Gives you visibility and control of your
infrastructure on AWS.

AWS Trusted Advisor An online resource to help you reduce cost,
increase performance, and improve security by optimizing your AWS
environment.

bucket Container for storing objects in Amazon S3.

Direct Connect Using Direct Connect you can establish private, dedicated
network connectivity from your data center to AWS.

Directory Service Directory service built on Microsoft Active Directory in
the cloud.

DLQ A dead-letter queue lets you set aside and isolate messages that can’t
be processed correctly to determine why their processing didn’t succeed.

EC2 Image Builder Builds and maintains secure images.

EC2-Classic The original release of Amazon EC2.

edge location Used to serve content to end users.

Elastic Block Storage (EBS) Provides persistent block storage for EC2
instances.

Elastic File System (EFS) Provides a shared file system for EC2.

fleet A collection of EC2 servers.

IG Internet gateway, a component of VPC that allows your VPC to
communicate with the Internet.

instance An EC2 server is also referred to as an instance.

instance store Local storage in EC2 server.

inventory List of Glacier archives.

network access control list (NACL) This acts as a firewall at the subnet
level.

point of presence (POP) This is also known as an edge location.

Redshift Amazon Redshift is a fully managed petabyte-scale data
warehouse service.

region An AWS region is a unique geography in the world where AWS data
centers are hosted.

root user Owner of the AWS account.

root volume Instance root device contains the image that is used to boot the
instance.

Route 53 Domain Name System (DNS) web service.

route table Table consisting of routes that determine where the traffic is
directed.

security group Firewall for EC2 instance.

Serverless Application Repository A managed repository for serverless
applications.

service level agreement (SLA) This is a commitment between a service
provider and a client.

Snowball/Snowball Edge Amazon-owned network-attached storage (NAS)
devices, used to ship customer data to AWS.

Snowmobile Exabyte-scale data transfer service.

SRV A service record locator.

storage gateway A service that helps to seamlessly integrate on-premise
storage with AWS cloud storage.

subnet Logical subdivision of an IP network.

TXT A text record.

vault Like a safe deposit box or locker in Amazon Glacier where archives
are stored.

VPN CloudHub Used to create multiple AWS hardware VPN connections.

INDEX

A
access control lists (ACLs), 50
access policies, Amazon S3, 47–49
account management, 300
ACM. See AWS Certificate Manager (ACM)
Advanced Encryption Standard (AES), 46
agility, on AWS, 2
alarms, 259
alias records, 267
all-in-cloud deployment model, 5–6
Amazon API Gateway, 24, 247

API types supported by, 251
benefits of, 251–253
overview, 250–251

Amazon Athena, 21–22
Amazon Aurora, 20, 327–328, 387

creating an Amazon Aurora database (lab), 348–351
Amazon CloudFront, 14, 16, 19, 387

and Amazon Route 53, 267
behaviors, 263
and bucket policies, 50
distribution, 263
edge locations, 263
error handling, 266
geo restriction, 266
Gzip compression, 265
headers, 264

origin, 263
overview, 262
path pattern matching, 264
protocol policy, 265
query strings/cookies, 264
regional edge caches, 263
signed URLs/signed cookies, 264–265
time to live (TTL), 265
using with Amazon S3, 37

Amazon CloudWatch, 26, 291, 372
and Amazon EBS–backed volumes, 67
and AWS Web Application Firewall (WAF), 273
capturing real-time changes, 291
logs, 119, 292, 368
metrics collection and tracking, 291
setting alarms, 292–293
viewing graphs and statistics, 293

Amazon CloudWatch Events, 17, 291
Amazon Cognito, 29, 286
Amazon Dash Button, 29
Amazon DocumentDB, 21, 346–348
Amazon DynamoDB, 20, 234, 377, 387, 389

and Amazon Elasticache, 343–344
attributes, 338, 339
benefits of, 337–338
consistency models, 341
creating an Amazon DynamoDB table (lab), 356–358
data types, 339
encryption and security, 342
global tables, 341
items, 339
overview, 337
primary keys, 339–340
range attributes, 339

secondary indexes, 340
tables, 338, 339
terminology, 338–340

Amazon DynamoDB Accelerator, 342
Amazon DynamoDB Logstash plug-in, 342
Amazon DynamoDB Streams API, 341–342
Amazon EC2, 12, 14, 15

and Auto Scaling, 213, 217–223
benefits of, 140–141
creating an EBS instance and attaching it to an EC2 instance (lab), 166–

170
creating an EFS instance and mounting across two EC2 instances in

different AZs (lab), 170–173
dedicated hosts, 148, 149
dedicated instances, 148, 149
on-demand instance, 146
fleet management, 212
health checks, 212, 231–232
hosting relational databases, 313–315
IAM roles for, 203–207
instance store, 67
instance types and features, 141–145
no up-front reserved instance, 147
operating systems supported by, 141
overview, 139
partial up-front reserved instance, 147
pricing, 146–148
reserved instance, 147
security, 188
shared tenancy, 148, 149
spot instance, 147–148
up-front reserved instance, 147
using, 146
using (lab), 161–166

See also Amazon Machine Images (AMIs)
Amazon EC2 Auto Scaling. See Auto Scaling
Amazon EC2 Container Service (ECS). See Amazon Elastic Container

Service (ECS)
Amazon EC2 Ephemeral Storage, 387
Amazon Elastic Block Store (EBS), 18–19, 387

Cold HDD (sc1), 69
EBS-backed volumes, 67
features of, 66–67
General-Purpose SSD (gp2), 68, 145
HDD-backed volumes, 69
Multi-Attach, 66
overview, 65–66
Provisioned IOPS SSD (io1), 68–69, 145
SSD-backed volumes, 67–69
Throughput-Optimized HDD (st1), 69
types of block storage, 67–69
volumes, 67–69

Amazon Elastic Compute Cloud (EC2). See Amazon EC2
Amazon Elastic Container Service (ECS), 12–13, 158–159
Amazon Elastic File System (Amazon EFS), 19, 35

overview, 69–71
performance mode, 72
using with Amazon S3, 71–72

Amazon Elastic Kubernetes Service (Amazon EKS), 13, 15
Amazon Elastic MapReduce (EMR), 287–288, 390
Amazon Elastic Transcoder, 24
Amazon ElastiCache, 20, 342–344
Amazon Elasticsearch Service (Amazon ES), 22, 368, 377
Amazon EMR, 22
Amazon Glacier, 18, 387
Amazon GuardDuty, 17, 193–194
Amazon Inspector, 16, 194, 372
Amazon Keyspaces, 21

Amazon Kinesis, 22, 390
overview, 253
real-time application scenarios, 253–254
real-time stream processing, 260
stream processing vs. batch processing, 254

Amazon Kinesis Data Analytics, 257–259
Amazon Kinesis Data Firehose, 255–257
Amazon Kinesis Data Streams, 254–255
Amazon Kinesis Video Streams, 259
Amazon Lex, 28
Amazon Lightsail, 13
Amazon Machine Images (AMIs), 146

Hardware Virtual Machine (HVM) AMIs, 153–154
and instances, 149–152
obtaining an AMI, 152–153
Paravirtual (PV) AMIs, 154
shared AMIs, 153

Amazon Macie, 17, 195
Amazon Mobile Analytics, 30
Amazon MSK, 23
Amazon Neptune, 21, 344–346
Amazon Polly, 28
Amazon QLDB, 21
Amazon QuickSight, 23
Amazon Redshift, 20, 387

architecture, 329–332
backup and restore, 334
benefits of, 329
creating an Amazon Redshift cluster (lab), 353–356
data distribution in, 336–337
data loading in, 335–336
encryption, 333–334
enhanced VPC routing, 333
networking for, 333

overview, 328–329
security, 334
sizing clusters, 332–334

Amazon Redshift Managed Storage (RMS), 332
Amazon Rekognition, 28
Amazon Relational Database Service (RDS), 20, 387

Amazon VPC and, 320–324
backups, 324
data encryption on, 321–324
enhanced monitoring, 325
event notification, 326
high availability (HA) architectures on, 315–317
hosting in Amazon EC2 vs. Amazon RDS, 314–315
hosting scenarios, 312–315
monitoring, 325–326
overview, 311–312
Performance Insights, 326
restores, 324
scaling on, 318–320
snapshots, 324–325, 352–353
standard monitoring, 325
taking a snapshot of a database (lab), 352–353

Amazon resource names (ARNs), 47–48
Amazon Route 53, 14, 16, 266–268
Amazon S3, 17, 18, 35, 387

access control, 47–50
access control lists (ACLs), 50
access policies, 47–49
adding a hex hash prefix to a key name, 45–46
advantages of, 36–37
for application hosting, 38
for backup, 37
basic concepts, 38–41
bucket policies, 49–50

buckets, 38–39, 43–44
content distribution, 38
costs, 52
cross-region replication (CRR), 55–60
data consistency model, 41–43
data lakes, 38
for disaster recovery, 38
encryption in, 46–47
expiration action, 54
HTTP verbs, 40
infrastructure, 41
Intelligent-Tiering, 52
keys, 39, 43–44
object lifecycle management, 54–55
objects, 39
One Zone Infrequent Access (S3 One Zone-IA), 42, 51
overview, 14, 36
performance considerations, 43–44
private repositories, 38
real-time stream processing, 260
regions, 39–40
replication, 55–60
resource-based policies, 50
REST APIs, 40
reversing the key name string, 45
same-region replication (SRR), 55–60
SDKs, 40
security best practices, 50
Server Side Encryption (SSE), 46–47
Standard, 51
Standard Infrequent Access (IA), 51
for static web hosting, 38
static web hosting, 61–62
storage classes, 50–53

for tape replacement, 37
transition action, 54
versioning of objects, 54
See also Amazon S3 Glacier; Amazon S3 Glacier Deep Archive

Amazon S3 Glacier, 52
accessing, 64
archives, 63
inventory, 64
jobs, 64
overview, 62–63
retrieving files from, 65
uploading files to, 64–65
vault inventory, 64
Vault Lock, 64
vaults, 63

Amazon S3 Glacier Deep Archive, 52
Amazon SageMaker, 28
Amazon Simple Email Service (SES), 27
Amazon Simple Notification Service (SNS), 27, 64, 278–279

and Auto Scaling, 219
Amazon Simple Queue Service (SQS), 27, 274–277
Amazon Simple Workflow Service (SWF), 24, 280–282
Amazon Step Functions, 280–282
Amazon Virtual Private Cloud (VPC), 14, 255

and Amazon RDS, 320–324
connecting to a VPC, 117–119
creating a VPC with public and private subnets (lab), 123–127
default VPC, 119
DHCP option sets, 116–117
and DNS, 115–116
elastic IP (EIP) addresses, 104–105
Elastic Network Interface (ENI), 103
endpoints, 112–114
and Enhanced Networking, 104

exploring options in a VPC (lab), 127–134
flow logs, 17, 119, 296–297, 372
Internet gateway (IG), 99–100
network access control lists (NACLs), 107–109
and Network Address Translation (NAT), 100–102
overview, 93–94, 95, 96
peering, 110–111
route tables, 98–99
security groups, 105–107
subnets, 95–97
and Transit Gateway, 114–115
using the VPC Wizard (lab), 120–123

Amazon Web Services. See AWS
Amazon.com, 6
analytics services, 21–23
analyzing expenditures, 382
Apache Kafka, 23
Apache MXNet, 28
Apache Spark, 22
Apache TinkerPop Gremlin graph traversal language, 21
API Gateway. See Amazon API Gateway
API keys, 252
APIs, 40
Application Discovery Service. See AWS Application Discovery Service
application hosting, 38
application load balancer (ALB), 269
application management, 190
application services, 23–24
architecture

cloud optimized, 384
cloud-native, 384
loosely coupling, 390–391
parallel architectures, 389–390
See also AWS Well-Architected Framework (WAF)

archiving
compliance, 63
media assets, 63

artificial intelligence services, 28
Athena. See Amazon Athena
Aurora. See Amazon Aurora
authentication, 177–178

and account management, 190
authorization, 178–179
Auto Scaling, 12, 389

and Amazon EC2, 213, 217–223
benefits of, 212–215
changing capacity, 221–222
cooldown period, 220
creating a scaling plan, 215–217
default scaling plan, 218
dynamic scaling, 212
groups, 218–219
launch configuration, 217–218, 223
manual scaling, 218
overview, 211–212
scaling as per demand, 219
scaling as per schedule, 219
scaling strategy, 216–217
setting up (lab), 235–239
simple scaling, 219–220
simple scaling with steps, 220–222
target-tracking scaling policies, 222
termination policy, 223
using multiple AZs, 232–235

availability, vs. outage, 379
availability zones (AZs)

and Amazon EFS, 70, 71
and Amazon S3, 37, 41–43

and Amazon VPC, 95–97
high availability (HA) architectures on Amazon RDS, 315–317
overview, 7, 8, 9
using multiple AZs with Auto Scaling and ELB, 232–235

AWS, 2
advantages of running cloud computing on, 2–4
analytics services, 21–23
application services, 23–24
artificial intelligence services, 28
best practices, 384–391
compute services, 11–14
database services, 19–21
developer tools, 24–25
global infrastructure, 7–9
history of, 6
Internet of Things (IoT) services, 28–29
management tools, 25–26
messaging services, 27
migration services, 27–28
mobile services, 29–30
networking services, 14–15
products and services overview, 11
security and compliance, 9–11, 15–18
storage and content delivery services, 18–19
See also specific products and services

AWS App Mesh, 15
AWS Application Discovery Service, 27
AWS Batch, 13–14
AWS Certificate Manager (ACM), 16, 195
AWS CloudFormation, 25, 215, 288–290
AWS CloudHSM, 18, 196
AWS CloudTrail, 26, 179–180, 186, 294–295, 372
AWS CloudTrail Events, 17
AWS CodeBuild, 25

AWS CodeCommit, 24
AWS CodeDeploy, 25
AWS CodePipeline, 25
AWS command-line interface (CLI), 40–41
AWS Compliance Program, 186–187
AWS Config, 26, 295–296, 372
AWS Config rule, 372
AWS Data Pipeline, 22
AWS Database Migration Service, 27
AWS Device Farm, 30
AWS Direct Connect, 15, 19, 118
AWS Directory Service, 16

and DHCP option sets, 116–117
AWS Elastic Beanstalk, 13, 282–284
AWS Elastic Load Balancing (ELB). See Elastic Load Balancing (ELB)
AWS Fargate, 13, 15
AWS Firewall Manager, 16
AWS Global Accelerator, 15
AWS Glue, 22
AWS Greengrass, 29
AWS hardware VPN, 118
AWS Identity and Access Management (IAM), 15, 177, 371

auditing, 179–180
authentication, 177–178
authorization, 178–179
best practices, 184–186
creating IAM users, groups, and roles (lab), 196–201
groups, 182–183, 185, 196–201
hierarchy of privileges, 184
managing accounts in AWS, 369
managing IAM user permissions and credentials (lab), 201–202
roles, 50, 183–184, 185, 196–201, 203–207
security credentials, 180–181, 184, 185
users, 181–182, 196–201

using with Amazon S3, 36, 47
AWS Import/Export, 19
AWS IoT Button, 29
AWS IoT Platform, 29
AWS Key Management Service (KMS), 18, 196, 255, 321–324, 371
AWS Lake Formation, 23
AWS Lambda, 12

and Amazon EBS–backed volumes, 67
extract, transform, and load (ETL) processing, 260–261
IoT back ends, 261
Lambda functions, 246, 248
languages supported, 249
overview, 245–246
real-time stream processing, 260
resource limits of, 249
serverless, 246–247
understanding, 247–250
usage pattern, 250
using, 248

AWS Management Console, 256
AWS Marketplace, 153
AWS Mobile Hub, 29
AWS OpsWorks, 26, 284–286
AWS OpsWorks Stacks, 285
AWS Organizations, 300
AWS Outposts, 9, 14
AWS Policy Generator, 49
AWS PrivateLink, 112
AWS Secrets Manager, 17, 193
AWS Security Token Service, 369
AWS Server Migration Service (SMS), 28
AWS Service Catalog, 25
AWS Shield, 16, 195, 273–274
AWS Simple Shared Storage (S3). See Amazon S3

AWS Single Sign-On (SSO), 17
AWS Snowball, 19, 28, 74
AWS Snowball Edge, 74
AWS Snowmobile, 74
AWS Step Functions, 24
AWS Storage Gateway (SGW), 19, 73
AWS Trusted Advisor, 297–299
AWS Web Application Firewall (WAF), 16, 195, 268–273
AWS Well-Architected Framework (WAF)

automating for security, 371
best practices for security, 371–374
design principles for cost optimization, 381–384
design principles for operational excellence, 366–368
design principles for performance, 374–377
design principles for reliability, 378–381
design principles for security, 368–374
implementing security at all layers, 370
maintaining a strong identity foundation, 369
overview, 365–366
planning for security events, 371
securing the data, 370–371
traceability, 369

B
backup, 37

Amazon Redshift, 334
Amazon Relational Database Service (RDS), 324
long-term, 63

best practices, 384
in AWS, 384–391
for reliability, 378–381
for security, 371–374

Black Friday, 3
block storage, 35

bucket policies, Amazon S3, 49–50
buckets, 38–39, 43–44
buffers, 275

C
caching services. See Amazon ElastiCache
caching static assets, 262
capacity, guessing about, 2–3
capital expenses, vs. variable/flexible expenses, 3
Cassandra Query Language (CQL), 21
change management, 380–381
Chef Automate, 26

and AWS OpsWorks, 284–285
CIDR blocks

and Amazon VPC, 95, 97, 98–99
and Internet gateway (IG), 99–100

cloud computing
advantages of running on AWS, 2–4
defined, 1–2
deployment models, 5–6
three models of, 4–5
See also Amazon EC2

CloudFormation. See AWS CloudFormation
CloudFront. See Amazon CloudFront
cloud-native architecture, 384
cloud-optimized architecture, 384
CloudTrail. See AWS CloudTrail
CloudWatch. See Amazon CloudWatch
CodeBuild, 25
CodeCommit, 24
CodeDeploy, 25
CodePipeline, 25
Cognito. See Amazon Cognito
Cold HDD (sc1), 69

command-line interface (CLI), 40–41, 179
compliance. See AWS Compliance Program
compute nodes, 329–331

See also Amazon Redshift
compute services, 11–14, 375–376
Config. See AWS Config
configuration management, 189

See also AWS OpsWorks
constraints, 391
consumption model, 381–382
containers, 159

See also Amazon Elastic Container Service (ECS)
content delivery network (CDN) services, 19

See also Amazon CloudFront
content distribution, 38
content encryption keys (CEKs), 46
cost control, 213

being aware of expenditures, 383
finding cost-effective resources, 382
optimizing over time, 383–384

cost optimization, 381–384
CPU credits, 142
cross-region replication (CRR), 55–60
cross-regional read replicas, 319, 320
customer gateways, 117, 118

D
data centers, 382

avoiding spending money on, 4
highly available, 189
hot, 7
physical security of, 188

Data Definition Language (DDL), 310–311
data distribution, in Amazon Redshift, 336–337

data ingestion, 255
data lakes, 23, 38
data loading, in Amazon Redshift, 335–336
Data Manipulation Language (DML), 310–311
Data Pipeline. See AWS Data Pipeline
data protection, 373–374
data warehouses, 328–329

See also Amazon Redshift
database management systems (DBMSs), 309
Database Migration Service. See AWS Database Migration Service
database services, 19–21
databases. See relational databases
DAX. See Amazon DynamoDB Accelerator
dead-letter queues, 277
demand

matching supply with, 382–383
matching with demand, 382–383

deployment
blue-green deployments, 380
canary deployment, 381
feature toggle, 381
global deployment, 4
three models of, 5–6
See also AWS Elastic Beanstalk

detective controls, 371–372
developer tools, 24–25
Device Farm. See AWS Device Farm
DHCP, option sets, 116–117
digital preservation, 63
disaster recovery, 38
disk management, 189
distributed denial-of-service (DDoS) attacks, 16, 262

AWS Shield, 273–274
mitigation, 268

DNS
Amazon Route 53, 14, 266–268
and Amazon VPC, 115–116
logs, 17

DNS hostnames, 115–116
document database services. See DocumentDB
DocumentDB, 21, 346–348
Domain Name System. See DNS
dynamic content, accelerating, 262
Dynamic Host Configuration Protocol. See DHCP
dynamic scaling, 212
DynamoDB. See Amazon DynamoDB

E
EBS. See Amazon Elastic Block Store (EBS)
EBS-backed volumes, 145
EC2. See Amazon EC2
economies of scale, 3
ECS. See Amazon Elastic Container Service (ECS)
edge locations, 8, 9, 263

See also points of presence (POPs)
efficiency, measuring, 382
egress-only Internet gateways, 102–103
Elastic Beanstalk. See AWS Elastic Beanstalk
Elastic Block Store, 35, 145

See also Amazon Elastic Block Store (EBS)
Elastic Container Service (ECS), 12–13, 158–159
Elastic File System (Amazon EFS), 19, 35

overview, 69–71
performance mode, 72
using with Amazon S3, 71–72

elastic IP (EIP) addresses, 104–105
Elastic Kubernetes Service (Amazon EKS), 13, 15
Elastic Load Balancer. See Elastic Load Balancing (ELB)

Elastic Load Balancing (ELB), 12, 14, 15, 16, 389
advantages of, 224–225
application load balancer (ALB), 226, 227, 228–229, 234
and Auto Scaling, 212
classic load balancer, 226, 227–228, 235
cross-zone load balancing, 234
external load balancer, 226–227
health checks, 231–232
how ELB works, 225
internal load balancer, 226
listeners, 230
network load balancer (NLB), 225–226, 234
overview, 223–224
path-based rules, 230–231
rules, 230–231
target groups and targets, 230
types of load balancers, 225–227
using multiple AZs, 232–235
using to distribute load, 390

Elastic MapReduce (EMR), 287–288, 390
Elastic Network Adapter (ENA), 104
Elastic Network Interface (ENI), 103, 112
Elastic Transcoder, 24
ElastiCache, 20, 342–344
elasticity, 3, 388–389
Elasticsearch (Amazon ES), 22, 368, 377
ELB. See Elastic Load Balancing (ELB)
EMR. See Amazon Elastic MapReduce (EMR)
encryption

Advanced Encryption Standard (AES), 46
Amazon DynamoDB, 342
on Amazon RDS, 321–324
Amazon Redshift, 333–334
in Amazon S3, 46–47

content encryption keys (CEKs), 46
at rest and in transit, 373–374

endpoints, 112–114, 275
Enhanced Networking, 104
ETL, 22, 328

processing, 260–261
extract, transform, and load (ETL). See ETL

F
failover routing, 268
failure, 367

designing for, 384–387
failure management, 381
fault isolation zones, 380
federated users, 178
FIFO queues, 276
file gateways, 73
file storage, 35
file-based loading, 335
firewalls, 190

See also AWS Web Application Firewall (WAF)
fleet management, 212
flexible expenses, vs. capital expenses, 3
flow logs, 119, 296–297

G
Gartner’s Magic Quadrant, 6
gateway endpoints, 112
General-Purpose SSD (gp2), 68, 145
geo DNS routing, 268
GET requests, 54
Git repositories, 24
Glacier, 18, 387

Glue. See AWS Glue
GovCloud region, 7
graph database services. See Amazon Neptune
Greengrass. See AWS Greengrass
groups, 182–183, 185

creating IAM users, groups, and roles (lab), 196–201
GuardDuty, 17, 193–194
Gzip compression, 265

H
Hadoop frameworks, 22
hardware security module (HSM), 18
Hardware Virtual Machine (HVM) AMIs, 153–154
health checks, 212, 231–232, 267
hex hash prefix, 45–46
high availability (HA) architectures, on Amazon RDS, 315–317
host-based routing, 226
HTTP, 40
HTTP verbs, 40
hybrid deployment model, 6
Hypertext Transfer Protocol. See HTTP

I
IaaS. See Infrastructure as a Service (IaaS)
IAM. See AWS Identity and Access Management (IAM)
incident response, 374
Infrastructure as a Service (IaaS), 4, 189
infrastructure management. See AWS CloudFormation
infrastructure protection, 373
innovation, benefiting from pace of, 4
Inspector, 16, 194, 372
instance root volume, 150–152
instance store-backed AMIs, 150, 151

instance stores, 145, 150–151
instance types, Amazon EC2, 141–145
instances, 12

accelerated computing, 143
and Amazon EC2, 140
and Amazon Machine Images (AMIs), 149–152
changing the instance type, 318–319
compute optimized, 143
connecting to, 156–158
creating an EBS instance and attaching it to an EC2 instance (lab), 166–

170
creating an EFS instance and mounting across two EC2 instances in

different AZs (lab), 170–173
dedicated instances, 148, 149
on-demand instances, 146
general purpose, 142
launching web server instances, 162–165
lifecycle of, 154–155
memory optimized, 143
NAT instances, 100–102, 103
network features, 144–145
processor features, 144
reserved instances, 147
spot instances, 147–148
storage features, 145
storage optimized, 143

Intel 82599 Virtual Function (VF) interface, 104
interface endpoints, 112
Internet gateway (IG), 99–100
Internet of Things (IoT) services, 28–29

IoT back ends, 261
intra-region read replicas, 319
IoT. See Internet of Things (IoT) services
IoT Button. See AWS IoT Button

IoT Platform. See AWS IoT Platform
IP addresses, 156–157

J
Java Database Connectivity (JDBC), 329
JavaScript Object Notation (JSON), 47, 178

K
Kafka. See Amazon MSK
key pairs, 157, 161–162
keys, 39, 43–44
Keyspaces, 21
Kibana, 377
Kinesis, 22, 390

overview, 253
real-time application scenarios, 253–254
real-time stream processing, 260
stream processing vs. batch processing, 254

Kinesis Data Analytics, 257–259
Kinesis Data Firehose, 255–257
Kinesis Data Streams, 254–255
Kinesis Producer Library (KPL), 255
Kinesis Video Streams, 259
KMS. See AWS Key Management Service (KMS)

L
Lake Formation. See AWS Lake Formation; data lakes
latency-based routing, 268
launch configuration, 217–218, 223
leader nodes, 329–331

See also Amazon Redshift
least privilege access, 50
Lex, 28

Linux, Enhanced Networking, 104
listeners, 230
load balancing, 213

See also Elastic Load Balancing (ELB)
local zones, overview, 7, 8
long polling, 277
long-term backup, 63

M
magnetic hard drives, 145
magnetic tape replacement, 62
malicious requests, 268
managed services, 382

leveraging, 380
management tools, 25–26
MapReduce, 287–288, 390
Maria DB, 20
Memcached, 343
message consumers, 275
message producers, 275
message queues, 274–277
messaging services, 27

See also Amazon Simple Queue Service (SQS)
methods, 40
migration services, 27–28
Mobile Analytics, 30
Mobile Hub, 29
mobile services, 29–30
MongoDB, 21
MSK, 23
multifactor authentication (MFA), 50
MySQL, 20

N
NAT gateways, 102, 103
NAT instances, 100–102, 103
National Institute of Standards and Technology, 1
Neptune, 21, 344–346
Netflix, 254
network access control lists (NACLs), 107–109
Network Address Translation (NAT), 100–102
network configuration, 190
network security, 105–109, 188–189
networking services, 14–15, 376
NIST, 1
nonrelational (NoSQL) database services, 19
NoSQL database services, 19, 20, 376, 377
notifications, 259

O
object storage, 35
objects, 39
online analytical processing (OLAP), 328
Online Transactions Processing System (OLTP), 93, 328
on-premise deployment model, 6
on-premise storage integration with AWS, 72–74
Open Database Connectivity (ODBC), 329
operating systems, responsibility for, 189
OpsWorks, 26, 284–286
OpsWorks Stacks, 285
Oracle, 20
Outposts, 9, 14

P
PaaS. See Platform as a Service (PaaS)
Paravirtual (PV) AMIs, 154

path-based routing, 226, 228
path-based rules, 230–231
peering, 110–111
performance, 374–377
permissions, 178–179

managing IAM user permissions and credentials (lab), 201–202
Personal Health Dashboard, 368
Platform as a Service (PaaS), 4, 191
points of presence (POPs), 7

overview, 8
Polly, 28
PostgreSQL, 20
predictive scaling, 213
Presto, 22
primary network interfaces (eth0), 103
private cloud deployment model, 6
private repositories, 38
private subnets, 95, 123–127
property graph model, 344
Provisioned IOPS SSD (io1), 68–69, 145
public subnets, 95, 123–127
pub-sub messaging, 278
Puppet Enterprise, and AWS OpsWorks, 284–285
PUT requests, 42–43

Q
QuickSight, 23

R
RA3, 332
RDS. See Amazon Relational Database Service (RDS)
read replicas, 319–320
real-time dashboards, 259

real-time file processing, 260
real-time stream processing, 260
recovery point objectives (RPOs), 334
Redis, 343
Redshift, 20, 387

architecture, 329–332
backup and restore, 334
benefits of, 329
creating an Amazon Redshift cluster (lab), 353–356
data distribution in, 336–337
data loading in, 335–336
encryption, 333–334
enhanced VPC routing, 333
networking for, 333
overview, 328–329
security, 334
sizing clusters, 332–334

Redshift Managed Storage (RMS), 332
redundant components, 380
regional edge cache locations, 8
regions, 39–40

overview, 7, 8, 9
Rekognition, 28
relational database management systems (RDBMSs), 309
Relational Database Service (RDS), 20, 387

Amazon VPC and, 320–324
backups, 324
data encryption on, 321–324
enhanced monitoring, 325
event notification, 326
high availability (HA) architectures on, 315–317
hosting in Amazon EC2 vs. Amazon RDS, 314–315
hosting scenarios, 312–315
monitoring, 325–326

overview, 311–312
Performance Insights, 326
restores, 324
scaling on, 318–320
snapshots, 324–325, 352–353
standard monitoring, 325
taking a snapshot of a database (lab), 352–353

relational database services, 19
relational databases, 376–377

creating an Amazon Aurora database (lab), 348–351
hosting in Amazon EC2 vs. Amazon RDS, 314–315
hosting in your data center on-premises, 312
hosting on Amazon EC2 servers, 312–313
hosting using Amazon RDS, 313–314
master databases, 316, 319
overview, 309–311
primary keys, 310
standby databases, 316–317
See also Amazon Relational Database Service (RDS)

reliability, 378–381
Resource Access Manager, 192–193
Resource Description Framework (RDF) model, 344
Resource Description Framework (RDF) SPARQL query language, 21, 344
resource monitoring in AWS, 290

Amazon CloudWatch, 291–293
Amazon VPC Flow Logs, 296–297
AWS CloudTrail, 294–295
AWS Config, 295–296
AWS Organizations, 300
AWS Trusted Advisor, 297–299

resource-based policies, 50
REST APIs, 40
roles, 50, 183–184, 185

creating IAM users, groups, and roles (lab), 196–201

IAM roles for Amazon EC2, 203–207
route tables, 98–99
rules, 230–231

S
S3, 17, 18, 35, 387

access control, 47–50
access control lists (ACLs), 50
access policies, 47–49
adding a hex hash prefix to a key name, 45–46
advantages of, 36–37
for application hosting, 38
for backup, 37
basic concepts, 38–41
bucket policies, 49–50
buckets, 38–39, 43–44
content distribution, 38
costs, 52
cross-region replication (CRR), 55–60
data consistency model, 41–43
data lakes, 38
for disaster recovery, 38
encryption in, 46–47
expiration action, 54
HTTP verbs, 40
infrastructure, 41
Intelligent-Tiering, 52
keys, 39, 43–44
object lifecycle management, 54–55
objects, 39
One Zone Infrequent Access (S3 One Zone-IA), 42, 51
overview, 14, 36
performance considerations, 43–44
private repositories, 38

real-time stream processing, 260
regions, 39–40
replication, 55–60
resource-based policies, 50
REST APIs, 40
reversing the key name string, 45
same-region replication (SRR), 55–60
SDKs, 40
security best practices, 50
Server Side Encryption (SSE), 46–47
Standard, 51
Standard Infrequent Access (IA), 51
for static web hosting, 38
static web hosting, 61–62
storage classes, 50–53
for tape replacement, 37
transition action, 54
versioning of objects, 54
See also Amazon S3 Glacier; Amazon S3 Glacier Deep Archive

SaaS. See Software as a Service (SaaS)
SageMaker, 28
same-region replication (SRR), 55–60
scalability

Amazon EC2, 140
scaling on Amazon RDS, 318–320

SDKs, 40
Secrets Manager, 17, 193
Secure Sockets Layer (SSL) certificates, 195

AWS Certificate Manager (ACM), 16
security

Amazon DynamoDB, 342
and Amazon EC2, 140
in Amazon Redshift, 334
AWS Well-Architected Framework (WAF), 368–374

best practices for Amazon S3, 50
building security in every layer, 387
certifications, 10–11
improving with Amazon CloudFront, 262
network security, 105–109
Resource Access Manager, 192–193
shared responsibility model, 187–192
shared security, 9–10

security and compliance services, 15–18
Security Assertion Markup Language (SAML), 178
security credentials, 180, 185

managing IAM user permissions and credentials (lab), 201–202
temporary, 180–181, 184

security groups, 105–107, 158–159
Server Migration Service (SMS), 28
Server Name Indication (SNI), 371
Server Side Encryption (SSE), 46–47

See also Amazon S3; encryption
server-side encryption (SSE), 277
Service Catalog. See AWS Service Catalog
service configuration, 190
Service Health Dashboard, 368
service level agreements (SLAs), 3
shared responsibility model, 187–192
shared security, 9–10
Simple Email Service (SES), 27
Simple Notification Service (SNS), 19, 27, 64, 278–279
Simple Object Access Protocol. See SOAP
Simple Queue Service (SQS), 27
Simple Storage Service. See Amazon S3
Simple Workflow Service, 24, 280–282
single-root I/O virtualization (SR-IOV), 104
Snowball. See AWS Snowball
Snowballs. See AWS Snowball; AWS Snowball Edge

SNS. See Amazon Simple Notification Service (SNS)
SOAP, 40
Software as a Service (SaaS), 4, 5, 192
software distribution, 262
software VPNs, 118
solid state drives (SSDs), 332
source queues, 277
SQL Server, 20
SQS, 27, 274-277
SSE-C, 46–47
SSE-KMS, 47
SSE-SE, 46
SSL/TLS certificates, 195
SSO, 17
standard queues, 276
static web hosting, 38

in Amazon S3, 61–62
Step Functions, 280–282
storage

in AWS, 376
block storage, 35
classes, 50–53
device decommissioning, 189
file storage, 35
gateways, 73
healthcare/life sciences/scientific data, 62
leveraging multiple storage options, 387–388
object storage, 35
on-premise storage integration with AWS, 72–74

storage and content delivery services, 18–19
subnets, 95–97
Swagger, 252
SWF, 24, 280–282

T
tape gateways, 73
tape replacement, 37
target groups, 230
target tracking, 213

scaling policies, 222
targets, 230
TensorFlow, 28
Throughput-Optimized HDD (st1), 69
time to live (TTL), 265
time-series analytics, 258
tokenization, 373
traceability, 369
Traffic Flow, 267
Transit Gateway, 114–115
Transparent Database Encryption (TDE), 321, 370
Trusted Advisor, 297–299, 382

U
user identity and data synchronization service, 286
users

creating IAM users, groups, and roles (lab), 196–201
creating using IAM, 181–182
root users, 184

V
variable expenses, vs. capital expenses, 3
video streaming, 262
virtual private clouds. See Amazon Virtual Private Cloud (VPC)
virtual private gateways, 117, 118
virtual servers. See instances
virtualization

Hardware Virtual Machine (HVM) AMIs, 153–154

Paravirtual (PV) AMIs, 154
visibility timeouts, 276
Vogels, Werner, 385
volume gateways, 73
VPC. See Amazon Virtual Private Cloud (VPC)
VPC flow logs, 17, 119, 296–297, 372
VPC Wizard

creating a VPC with public and private subnets (lab), 123–127
exploring options in a VPC (lab), 127–134
using (lab), 120–123
See also Amazon Virtual Private Cloud (VPC)

VPN CloudHub, 118
VPN-only subnets, 95
vulnerability protection, 268

W
WAF. See AWS Web Application Firewall (WAF); AWS Well-Architected

Framework (WAF)
web server

browsing, 165–166
launching web server instances, 162–165

weighted round robin, 267
write once read many (WORM) model, 56

Z
Zillow, 253
zone apex support, 267

Contents
1. Cover
2. About the Author
3. Title Page
4. Copyright Page
5. Dedication
6. Contents at a Glance
7. Contents
8. Acknowledgments
9. Introduction

10. Chapter 1 Overview of Cloud Computing and Amazon Web Services
1. Advantages of Running Cloud Computing on AWS

1. Three Models of Cloud Computing
2. Three Cloud Computing Deployment Models

2. History of AWS
3. AWS Global Infrastructure
4. AWS Security and Compliance
5. AWS Products and Services

1. Compute
2. Networking
3. Security and Compliance
4. Storage and Content Delivery
5. Database
6. Analytics
7. Application Services
8. Developer Tools
9. Management Tools

10. Messaging
11. Migration
12. Artificial Intelligence
13. Internet of Things
14. Mobile Services

6. Chapter Review
1. Questions

file:///C:/Users/pc/AppData/Local/Temp/calibre_9xkl0au9/c0ngg0_q_pdf_out/OEBPS/Images/cover.xhtml

2. Answers
11. Chapter 2 Storage on AWS

1. Amazon Simple Storage Service (S3)
2. Advantages of Amazon S3
3. Usage of Amazon S3 in Real Life
4. Amazon S3 Basic Concepts
5. Amazon S3 Data Consistency Model
6. Amazon S3 Performance Considerations
7. Reverse the Key Name String
8. Adding a Hex Hash Prefix to a Key Name
9. Encryption in Amazon S3

10. Amazon S3 Access Control
1. Access Policies
2. Bucket Policies
3. Access Control List
4. S3 Security Best Practices

11. Amazon S3 Storage Class
1. Versioning of Objects in Amazon S3
2. Amazon S3 Object Lifecycle Management
3. Amazon S3 Replication

12. Static Web Site Hosting in Amazon S3
13. Amazon S3 Glacier

1. Amazon S3 Glacier Key Terminology
2. Accessing Amazon S3 Glacier
3. Uploading Files to AmazonS3 Glacier
4. Retrieving Files from Amazon S3 Glacier

14. Amazon Elastic Block Store
1. Features of Amazon EBS
2. AWS Block Storage Offerings

15. Amazon Elastic File System
1. Using Amazon Elastic File System
2. Performance Mode of Amazon EFS

16. On-Premise Storage Integration with AWS
1. AWS Storage Gateway
2. AWS Snowball and AWS Snowball Edge
3. AWS Snowmobile

17. Chapter Review

1. Lab 2-1: Creating, Moving, and Deleting Objects in Amazon
S3

2. Lab 2-2: Using Version Control in Amazon S3
3. Lab 2-3: Using the Bucket Policy Generator for Amazon S3
4. Questions
5. Answers

12. Chapter 3 Virtual Private Cloud
1. Amazon VPC Components and Terminology

1. Amazon VPC
2. Subnet
3. Route Table
4. Internet Gateway
5. Network Address Translation
6. Egress-Only Internet Gateway
7. Elastic Network Interface
8. Enhanced Networking (Linux Only)
9. Elastic IP Address

10. Network Security
11. Amazon VPC Peering
12. Amazon VPC Endpoint
13. Transit Gateway
14. DNS and VPC
15. DHCP Option Sets
16. Connecting to a VPC
17. VPC Flow Logs

2. Default VPC
3. Labs on VPC

1. Lab 3-1: Using the VPC Wizard
2. Lab 3-2: Creating a VPC with Public and Private Subnets
3. Lab 3-3: Exploring All the Options in a Virtual Private

Cloud
4. Chapter Review

1. Questions
2. Answers

13. Chapter 4 Introduction to Amazon Elastic Compute Cloud
1. Benefits of Amazon EC2
2. Amazon EC2 Instance Types and Features

1. General Purpose (T3, T3a, T2, M6g, M5, M5a, M5n, M4,
and A1)

2. Compute Optimized (C6g, C5, C5a, C5n, and C4)
3. Memory Optimized (R6g, R5, R5a, R5n, R4, X1e, X1, High

Memory, and Z1d)
4. Storage Optimized (I3, I3en, D2, and H1)
5. Accelerated Computing (P3, P2, Inf1, G4, G3, and F1)
6. Processor Features
7. Network Features
8. Storage Features

3. Steps for Using Amazon EC2
4. Pricing for Amazon EC2

1. On-Demand Instance
2. Reserved Instance
3. Spot Instance

5. Shared Tenancy, Dedicated Hosts, and Dedicated Instances
1. Shared Tenancy
2. Dedicated Host
3. Dedicated Instance

6. Instances and AMIs
1. Instance Root Volume
2. Obtaining an AMI

7. Virtualization in AMI
1. HVM AMI
2. PV AMI

8. Instance Life Cycle
1. Launch
2. Start and Stop
3. Reboot
4. Termination
5. Retirement

9. Connecting to an Instance
10. Security Group
11. Amazon Elastic Container Service

1. Lab 4-1: Using EC2
2. Creating a New Key Pair
3. Launching a Web Server Instance

4. Browsing the Web Server
5. Lab 4-2: Creating an EBS Instance and Attaching It to an

EC2 Instance
6. Lab 4-3: Creating an Elastic File System (EFS) and

Mounting Across Two EC2 Instances in Different AZs
12. Chapter Review

1. Questions
2. Answers

14. Chapter 5 Identity and Access Management and Security on AWS
1. Authentication
2. Authorization
3. Auditing
4. Types of Security Credentials

1. Temporary Security Credentials
5. Users
6. Groups
7. Roles
8. IAM Hierarchy of Privileges
9. IAM Best Practices

1. Use the IAM User
2. Create a Strong Password Policy
3. Rotate Security Credentials Regularly
4. Enable MFA
5. Manage Permissions with Groups
6. Grant the Least Privileges
7. Use IAM Roles
8. Use IAM Roles for Amazon EC2 Instances
9. Use IAM Policy Conditions for Extra Security

10. Enable AWS CloudTrail
10. AWS Compliance Program

1. Shared Responsibility Model
1. AWS Responsibility
2. Customer’s Responsibility

2. AWS Security Products and Services
1. Resource Access Manager
2. AWS Secrets Manager
3. Amazon GuardDuty

4. Amazon Inspector
5. Amazon Macie
6. AWS Certificate Manager
7. AWS Web Application Firewall
8. AWS Shield
9. AWS CloudHSM

10. AWS KMS
11. Lab 5-1: Creating IAM Users, Groups, and Roles
12. Managing IAM User Permissions and Credentials

3. IAM Roles for Amazon EC2
4. Chapter Review

1. Questions
2. Answers

15. Chapter 6 Auto Scaling
1. Benefits of Auto Scaling
2. Scaling Plan

1. Identify Scalable Resources
2. Specify Scaling Strategy

3. Using EC2 Auto Scaling
1. Launch Configuration
2. Auto Scaling Groups
3. Termination Policy

4. Elastic Load Balancing
1. How ELB Works
2. Types of Load Balancers

5. Load Balancer Key Concepts and Terminology
1. Health Check
2. Using Multiple AZs
3. Lab 6-1: Set Up Auto Scaling

6. Chapter Review
1. Questions
2. Answers

16. Chapter 7 Deploying and Monitoring Applications on AWS
1. AWS Lambda

1. Is AWS Lambda Really Serverless?
2. Understanding AWS Lambda

2. Amazon API Gateway

1. API Types Supported by API Gateway
2. Benefits of Amazon API Gateway

3. Amazon Kinesis
1. Real-Time Application Scenarios
2. Differences Between Batch and Stream Processing

4. Amazon Kinesis Data Steams
1. Benefits of Amazon Kinesis Data Streams

5. Amazon Kinesis Data Firehose
1. Benefits of Amazon Kinesis Data Firehose

6. Amazon Kinesis Data Analytics
1. Benefits of Amazon Kinesis Data Analytics
2. Use Cases for Amazon Kinesis Data Analytics

7. Amazon Kinesis Video Streams
8. Reference Architectures Using Serverless Services

1. Real-Time File Processing
2. Real-Time Stream Processing
3. Extract, Transformation, and Load (ETL) Processing
4. IoT Back Ends

9. Amazon CloudFront
1. Amazon CloudFront Key Concepts
2. Geo Restriction
3. Error Handling

10. Amazon Route 53
11. AWS Web Application Firewall
12. Amazon Shield

1. Benefits of AWS Shield
13. Amazon Simple Queue Service
14. Amazon Simple Notification Service
15. AWS Step Functions and Amazon Simple Workflow (SWF)
16. AWS Elastic Beanstalk
17. AWS OpsWorks
18. Amazon Cognito
19. Amazon Elastic MapReduce
20. AWS CloudFormation
21. Monitoring in AWS
22. Amazon CloudWatch

1. Metrics Collection and Tracking

2. Capture Real-Time Changes Using Amazon CloudWatch
Events

3. Monitoring and Storing Logs
4. Set Alarms
5. View Graphs and Statistics

23. AWS CloudTrail
24. AWS Config
25. Amazon VPC Flow Logs
26. AWS Trusted Advisor
27. AWS Organizations
28. Chapter Review

1. Questions
2. Answers

17. Chapter 8 Databases on AWS
1. Understanding Relational Databases
2. Understanding the Amazon Relational Database Service

1. Scenario 1: Hosting the Database in Your Data Center On-
Premises

2. Scenario 2: Hosting the Database on Amazon EC2 Servers
3. Scenario 3: Hosting the Database Using Amazon RDS

3. Hosting a Database in Amazon EC2 vs. Amazon RDS
4. High Availability on Amazon RDS

1. Simplest Architecture: Single-AZ Deployment
2. High Availability: Multiple AZs

5. Scaling on Amazon RDS
1. Changing the Instance Type
2. Read Replica

6. Security on Amazon RDS
1. Amazon VPC and Amazon RDS

7. Backups, Restores, and Snapshots
8. Monitoring
9. Amazon Aurora

10. Amazon Redshift
1. Benefits of Amazon Redshift
2. Amazon Redshift Architecture
3. Sizing Amazon Redshift Clusters
4. Networking for Amazon Redshift

5. Encryption
6. Security
7. Backup and Restore
8. Data Loading in Amazon Redshift
9. Data Distribution in Amazon Redshift

11. Amazon DynamoDB
1. Benefits of Amazon DynamoDB
2. Amazon DynamoDB Terminology
3. Secondary Index
4. Consistency Model
5. Global Table
6. Amazon DynamoDB Streams
7. Amazon DynamoDB Accelerator
8. Encryption and Security

12. Amazon ElastiCache
13. Amazon Neptune

1. Benefits of Amazon Neptune
2. Amazon Neptune Use Cases

14. Amazon DocumentDB
1. Benefits of Amazon DocumentDB
2. Amazon DocumentDB Use Cases

1. Lab 8-1: RDS: Creating an Amazon Aurora Database
2. Lab 8-2: Taking a Snapshot of a Database
3. Lab 8-3: Creating an Amazon Redshift Cluster
4. Lab 8-4: Creating an Amazon DynamoDB Table

3. Chapter Review
1. Questions
2. Answers

18. Chapter 9 AWS Well-Architected Framework and Best Practices
1. Operational Excellence

1. Prepare
2. Operate
3. Evolve

2. Security
1. Have a Strong Identity Foundation
2. Enable Traceability
3. Implement Security at All Layers

4. Secure the Data
5. Automate for Security
6. Plan for Security Events
7. Best Practices

3. Performance
1. Performance Efficiency

4. Reliability
1. Best Practices

5. Cost Optimization Pillar
1. Finding Cost-Effective Resources
2. Matching Supply with Demand
3. Being Aware of Expenditures
4. Optimizing Over Time

6. AWS Best Practices
1. Design for Failures
2. Build Security in Every Layer
3. Leverage Multiple Storage Options
4. Implement Elasticity
5. Think Parallel
6. Loosely Couple Your Architecture
7. There Are No Constraints in the AWS Cloud

7. Chapter Review
1. Questions
2. Answers

19. Appendix A Objective Map
1. Exam SAA-C02

20. Appendix B Additional Resources
1. Whitepapers
2. AWS re:Invent Videos

21. Appendix C About the Online Content
1. System Requirements
2. Your Total Seminars Training Hub Account
3. Privacy Notice
4. Single User License Terms and Conditions
5. TotalTester Online
6. Technical Support

22. Acronyms and Glossary

1. Acronyms
2. Glossary

23. Index

Guide
1. Cover
2. Title Page
3. AWS Certified Solutions Architect Associate All-in-One Exam Guide,

Second Edition (Exam SAA-C02)

Page List
1. i
2. ii
3. iii
4. iv
5. v
6. vi
7. vii
8. ix
9. x

10. xi
11. xii
12. xiii
13. xiv
14. xv
15. xvi
16. xvii
17. viii
18. xviii
19. xix
20. XXI
21. xxii

file:///C:/Users/pc/AppData/Local/Temp/calibre_9xkl0au9/c0ngg0_q_pdf_out/OEBPS/Images/cover.xhtml

22. xxiii
23. xxiv
24. xx
25. 1
26. 2
27. 3
28. 4
29. 5
30. 6
31. 7
32. 8
33. 9
34. 10
35. 11
36. 12
37. 13
38. 14
39. 15
40. 16
41. 17
42. 18
43. 19
44. 20
45. 21
46. 22
47. 23
48. 24
49. 25
50. 26
51. 27
52. 28
53. 29
54. 30
55. 31
56. 32
57. 33
58. 34

59. 35
60. 36
61. 37
62. 38
63. 39
64. 40
65. 41
66. 42
67. 43
68. 44
69. 45
70. 46
71. 47
72. 48
73. 49
74. 50
75. 51
76. 52
77. 53
78. 54
79. 55
80. 56
81. 57
82. 58
83. 59
84. 60
85. 61
86. 62
87. 63
88. 64
89. 65
90. 66
91. 67
92. 68
93. 69
94. 70
95. 71

96. 72
97. 73
98. 74
99. 75

100. 76
101. 77
102. 78
103. 79
104. 80
105. 81
106. 82
107. 83
108. 84
109. 85
110. 86
111. 87
112. 88
113. 89
114. 90
115. 91
116. 92
117. 93
118. 94
119. 95
120. 97
121. 96
122. 98
123. 99
124. 100
125. 101
126. 102
127. 103
128. 104
129. 105
130. 106
131. 107
132. 108

133. 109
134. 110
135. 111
136. 112
137. 113
138. 114
139. 115
140. 116
141. 117
142. 118
143. 119
144. 120
145. 121
146. 122
147. 123
148. 124
149. 125
150. 126
151. 127
152. 128
153. 129
154. 130
155. 131
156. 132
157. 133
158. 134
159. 135
160. 136
161. 137
162. 138
163. 139
164. 140
165. 141
166. 142
167. 143
168. 144
169. 145

170. 146
171. 147
172. 148
173. 149
174. 150
175. 151
176. 152
177. 153
178. 154
179. 155
180. 156
181. 157
182. 158
183. 159
184. 160
185. 161
186. 162
187. 163
188. 164
189. 165
190. 166
191. 167
192. 168
193. 169
194. 170
195. 171
196. 172
197. 173
198. 174
199. 175
200. 176
201. 177
202. 178
203. 179
204. 180
205. 181
206. 182

207. 183
208. 184
209. 185
210. 186
211. 187
212. 188
213. 189
214. 190
215. 191
216. 192
217. 193
218. 194
219. 195
220. 196
221. 197
222. 198
223. 199
224. 200
225. 201
226. 202
227. 203
228. 204
229. 205
230. 206
231. 207
232. 208
233. 209
234. 210
235. 211
236. 212
237. 213
238. 214
239. 215
240. 216
241. 217
242. 218
243. 219

244. 220
245. 221
246. 222
247. 223
248. 224
249. 225
250. 226
251. 227
252. 228
253. 229
254. 230
255. 231
256. 232
257. 233
258. 234
259. 235
260. 236
261. 237
262. 238
263. 239
264. 240
265. 241
266. 242
267. 243
268. 244
269. 245
270. 246
271. 247
272. 248
273. 249
274. 250
275. 251
276. 252
277. 253
278. 254
279. 255
280. 256

281. 257
282. 258
283. 259
284. 260
285. 261
286. 262
287. 263
288. 264
289. 265
290. 266
291. 267
292. 268
293. 269
294. 270
295. 271
296. 272
297. 273
298. 274
299. 275
300. 276
301. 277
302. 278
303. 279
304. 280
305. 281
306. 282
307. 283
308. 284
309. 285
310. 286
311. 287
312. 288
313. 289
314. 290
315. 291
316. 292
317. 293

318. 294
319. 295
320. 296
321. 297
322. 298
323. 299
324. 300
325. 301
326. 302
327. 303
328. 304
329. 305
330. 306
331. 307
332. 308
333. 309
334. 310
335. 311
336. 312
337. 313
338. 314
339. 315
340. 316
341. 317
342. 318
343. 319
344. 320
345. 321
346. 322
347. 323
348. 324
349. 325
350. 326
351. 327
352. 328
353. 329
354. 330

355. 331
356. 332
357. 333
358. 334
359. 335
360. 336
361. 337
362. 338
363. 339
364. 340
365. 341
366. 342
367. 343
368. 344
369. 345
370. 346
371. 347
372. 348
373. 349
374. 350
375. 351
376. 352
377. 353
378. 354
379. 355
380. 356
381. 357
382. 358
383. 359
384. 360
385. 361
386. 362
387. 363
388. 364
389. 365
390. 366
391. 367

392. 368
393. 369
394. 370
395. 371
396. 372
397. 373
398. 374
399. 375
400. 376
401. 377
402. 378
403. 379
404. 380
405. 381
406. 382
407. 383
408. 384
409. 385
410. 386
411. 387
412. 388
413. 389
414. 390
415. 391
416. 392
417. 393
418. 394
419. 395
420. 396
421. 397
422. 398
423. 399
424. 400
425. 401
426. 402
427. 403
428. 404

429. 405
430. 406
431. 407
432. 408
433. 409
434. 410
435. 411
436. 412
437. 413
438. 414
439. 415
440. 416
441. 417
442. 418
443. 419
444. 420
445. 421
446. 422
447. 423
448. 424

	Cover
	About the Author
	Title Page
	Copyright Page
	Dedication
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	Chapter 1 Overview of Cloud Computing and Amazon Web Services
	Advantages of Running Cloud Computing on AWS
	Three Models of Cloud Computing
	Three Cloud Computing Deployment Models

	History of AWS
	AWS Global Infrastructure
	AWS Security and Compliance
	AWS Products and Services
	Compute
	Networking
	Security and Compliance
	Storage and Content Delivery
	Database
	Analytics
	Application Services
	Developer Tools
	Management Tools
	Messaging
	Migration
	Artificial Intelligence
	Internet of Things
	Mobile Services

	Chapter Review
	Questions
	Answers

	Chapter 2 Storage on AWS
	Amazon Simple Storage Service (S3)
	Advantages of Amazon S3
	Usage of Amazon S3 in Real Life
	Amazon S3 Basic Concepts
	Amazon S3 Data Consistency Model
	Amazon S3 Performance Considerations
	Reverse the Key Name String
	Adding a Hex Hash Prefix to a Key Name
	Encryption in Amazon S3
	Amazon S3 Access Control
	Access Policies
	Bucket Policies
	Access Control List
	S3 Security Best Practices

	Amazon S3 Storage Class
	Versioning of Objects in Amazon S3
	Amazon S3 Object Lifecycle Management
	Amazon S3 Replication

	Static Web Site Hosting in Amazon S3
	Amazon S3 Glacier
	Amazon S3 Glacier Key Terminology
	Accessing Amazon S3 Glacier
	Uploading Files to AmazonS3 Glacier
	Retrieving Files from Amazon S3 Glacier

	Amazon Elastic Block Store
	Features of Amazon EBS
	AWS Block Storage Offerings

	Amazon Elastic File System
	Using Amazon Elastic File System
	Performance Mode of Amazon EFS

	On-Premise Storage Integration with AWS
	AWS Storage Gateway
	AWS Snowball and AWS Snowball Edge
	AWS Snowmobile

	Chapter Review
	Lab 2-1: Creating, Moving, and Deleting Objects in Amazon S3
	Lab 2-2: Using Version Control in Amazon S3
	Lab 2-3: Using the Bucket Policy Generator for Amazon S3
	Questions
	Answers

	Chapter 3 Virtual Private Cloud
	Amazon VPC Components and Terminology
	Amazon VPC
	Subnet
	Route Table
	Internet Gateway
	Network Address Translation
	Egress-Only Internet Gateway
	Elastic Network Interface
	Enhanced Networking (Linux Only)
	Elastic IP Address
	Network Security
	Amazon VPC Peering
	Amazon VPC Endpoint
	Transit Gateway
	DNS and VPC
	DHCP Option Sets
	Connecting to a VPC
	VPC Flow Logs

	Default VPC
	Labs on VPC
	Lab 3-1: Using the VPC Wizard
	Lab 3-2: Creating a VPC with Public and Private Subnets
	Lab 3-3: Exploring All the Options in a Virtual Private Cloud

	Chapter Review
	Questions
	Answers

	Chapter 4 Introduction to Amazon Elastic Compute Cloud
	Benefits of Amazon EC2
	Amazon EC2 Instance Types and Features
	General Purpose (T3, T3a, T2, M6g, M5, M5a, M5n, M4, and A1)
	Compute Optimized (C6g, C5, C5a, C5n, and C4)
	Memory Optimized (R6g, R5, R5a, R5n, R4, X1e, X1, High Memory, and Z1d)
	Storage Optimized (I3, I3en, D2, and H1)
	Accelerated Computing (P3, P2, Inf1, G4, G3, and F1)
	Processor Features
	Network Features
	Storage Features

	Steps for Using Amazon EC2
	Pricing for Amazon EC2
	On-Demand Instance
	Reserved Instance
	Spot Instance

	Shared Tenancy, Dedicated Hosts, and Dedicated Instances
	Shared Tenancy
	Dedicated Host
	Dedicated Instance

	Instances and AMIs
	Instance Root Volume
	Obtaining an AMI

	Virtualization in AMI
	HVM AMI
	PV AMI

	Instance Life Cycle
	Launch
	Start and Stop
	Reboot
	Termination
	Retirement

	Connecting to an Instance
	Security Group
	Amazon Elastic Container Service
	Lab 4-1: Using EC2
	Creating a New Key Pair
	Launching a Web Server Instance
	Browsing the Web Server
	Lab 4-2: Creating an EBS Instance and Attaching It to an EC2 Instance
	Lab 4-3: Creating an Elastic File System (EFS) and Mounting Across Two EC2 Instances in Different AZs

	Chapter Review
	Questions
	Answers

	Chapter 5 Identity and Access Management and Security on AWS
	Authentication
	Authorization
	Auditing
	Types of Security Credentials
	Temporary Security Credentials

	Users
	Groups
	Roles
	IAM Hierarchy of Privileges
	IAM Best Practices
	Use the IAM User
	Create a Strong Password Policy
	Rotate Security Credentials Regularly
	Enable MFA
	Manage Permissions with Groups
	Grant the Least Privileges
	Use IAM Roles
	Use IAM Roles for Amazon EC2 Instances
	Use IAM Policy Conditions for Extra Security
	Enable AWS CloudTrail

	AWS Compliance Program
	Shared Responsibility Model
	AWS Responsibility
	Customer’s Responsibility

	AWS Security Products and Services
	Resource Access Manager
	AWS Secrets Manager
	Amazon GuardDuty
	Amazon Inspector
	Amazon Macie
	AWS Certificate Manager
	AWS Web Application Firewall
	AWS Shield
	AWS CloudHSM
	AWS KMS
	Lab 5-1: Creating IAM Users, Groups, and Roles
	Managing IAM User Permissions and Credentials

	IAM Roles for Amazon EC2
	Chapter Review
	Questions
	Answers

	Chapter 6 Auto Scaling
	Benefits of Auto Scaling
	Scaling Plan
	Identify Scalable Resources
	Specify Scaling Strategy

	Using EC2 Auto Scaling
	Launch Configuration
	Auto Scaling Groups
	Termination Policy

	Elastic Load Balancing
	How ELB Works
	Types of Load Balancers

	Load Balancer Key Concepts and Terminology
	Health Check
	Using Multiple AZs
	Lab 6-1: Set Up Auto Scaling

	Chapter Review
	Questions
	Answers

	Chapter 7 Deploying and Monitoring Applications on AWS
	AWS Lambda
	Is AWS Lambda Really Serverless?
	Understanding AWS Lambda

	Amazon API Gateway
	API Types Supported by API Gateway
	Benefits of Amazon API Gateway

	Amazon Kinesis
	Real-Time Application Scenarios
	Differences Between Batch and Stream Processing

	Amazon Kinesis Data Steams
	Benefits of Amazon Kinesis Data Streams

	Amazon Kinesis Data Firehose
	Benefits of Amazon Kinesis Data Firehose

	Amazon Kinesis Data Analytics
	Benefits of Amazon Kinesis Data Analytics
	Use Cases for Amazon Kinesis Data Analytics

	Amazon Kinesis Video Streams
	Reference Architectures Using Serverless Services
	Real-Time File Processing
	Real-Time Stream Processing
	Extract, Transformation, and Load (ETL) Processing
	IoT Back Ends

	Amazon CloudFront
	Amazon CloudFront Key Concepts
	Geo Restriction
	Error Handling

	Amazon Route 53
	AWS Web Application Firewall
	Amazon Shield
	Benefits of AWS Shield

	Amazon Simple Queue Service
	Amazon Simple Notification Service
	AWS Step Functions and Amazon Simple Workflow (SWF)
	AWS Elastic Beanstalk
	AWS OpsWorks
	Amazon Cognito
	Amazon Elastic MapReduce
	AWS CloudFormation
	Monitoring in AWS
	Amazon CloudWatch
	Metrics Collection and Tracking
	Capture Real-Time Changes Using Amazon CloudWatch Events
	Monitoring and Storing Logs
	Set Alarms
	View Graphs and Statistics

	AWS CloudTrail
	AWS Config
	Amazon VPC Flow Logs
	AWS Trusted Advisor
	AWS Organizations
	Chapter Review
	Questions
	Answers

	Chapter 8 Databases on AWS
	Understanding Relational Databases
	Understanding the Amazon Relational Database Service
	Scenario 1: Hosting the Database in Your Data Center On-Premises
	Scenario 2: Hosting the Database on Amazon EC2 Servers
	Scenario 3: Hosting the Database Using Amazon RDS

	Hosting a Database in Amazon EC2 vs. Amazon RDS
	High Availability on Amazon RDS
	Simplest Architecture: Single-AZ Deployment
	High Availability: Multiple AZs

	Scaling on Amazon RDS
	Changing the Instance Type
	Read Replica

	Security on Amazon RDS
	Amazon VPC and Amazon RDS

	Backups, Restores, and Snapshots
	Monitoring
	Amazon Aurora
	Amazon Redshift
	Benefits of Amazon Redshift
	Amazon Redshift Architecture
	Sizing Amazon Redshift Clusters
	Networking for Amazon Redshift
	Encryption
	Security
	Backup and Restore
	Data Loading in Amazon Redshift
	Data Distribution in Amazon Redshift

	Amazon DynamoDB
	Benefits of Amazon DynamoDB
	Amazon DynamoDB Terminology
	Secondary Index
	Consistency Model
	Global Table
	Amazon DynamoDB Streams
	Amazon DynamoDB Accelerator
	Encryption and Security

	Amazon ElastiCache
	Amazon Neptune
	Benefits of Amazon Neptune
	Amazon Neptune Use Cases

	Amazon DocumentDB
	Benefits of Amazon DocumentDB
	Amazon DocumentDB Use Cases
	Lab 8-1: RDS: Creating an Amazon Aurora Database
	Lab 8-2: Taking a Snapshot of a Database
	Lab 8-3: Creating an Amazon Redshift Cluster
	Lab 8-4: Creating an Amazon DynamoDB Table

	Chapter Review
	Questions
	Answers

	Chapter 9 AWS Well-Architected Framework and Best Practices
	Operational Excellence
	Prepare
	Operate
	Evolve

	Security
	Have a Strong Identity Foundation
	Enable Traceability
	Implement Security at All Layers
	Secure the Data
	Automate for Security
	Plan for Security Events
	Best Practices

	Performance
	Performance Efficiency

	Reliability
	Best Practices

	Cost Optimization Pillar
	Finding Cost-Effective Resources
	Matching Supply with Demand
	Being Aware of Expenditures
	Optimizing Over Time

	AWS Best Practices
	Design for Failures
	Build Security in Every Layer
	Leverage Multiple Storage Options
	Implement Elasticity
	Think Parallel
	Loosely Couple Your Architecture
	There Are No Constraints in the AWS Cloud

	Chapter Review
	Questions
	Answers

	Appendix A Objective Map
	Exam SAA-C02

	Appendix B Additional Resources
	Whitepapers
	AWS re:Invent Videos

	Appendix C About the Online Content
	System Requirements
	Your Total Seminars Training Hub Account
	Privacy Notice
	Single User License Terms and Conditions
	TotalTester Online
	Technical Support

	Acronyms and Glossary
	Acronyms
	Glossary

	Index

