

The Art of Site
Reliability Engineering

(SRE) with Azure
Building and Deploying

Applications That Endure

Unai Huete Beloki
Foreword by Peter De Tender

The Art of Site Reliability Engineering (SRE) with Azure: Building and Deploying
Applications That Endure

ISBN-13 (pbk): 978-1-4842-8703-3 ISBN-13 (electronic): 978-1-4842-8704-0
https://doi.org/10.1007/978-1-4842-8704-0

Copyright © 2022 by Unai Huete Beloki

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Laura Berendson
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit http://www.
apress.com/source- code.

Printed on acid-free paper

Unai Huete Beloki
San Sebastian, Spain

https://doi.org/10.1007/978-1-4842-8704-0

iii

Table of Contents
About the Author �� vii

About the Technical Reviewer ��� ix

Acknowledgments ��� xi

Foreword ��� xiii

Introduction ���xv

Chapter 1: The Foundation of Site Reliability Engineering ��������������������������������������� 1

The History of Site Reliability Engineering �� 1

Why SRE Is Not DevOps 2�0 �� 3

Identify Best Practices Around SRE��� 6

Automate Everything ��� 7

Identify Acceptable Service Levels �� 7

Be Focused on Engineering ��� 8

Understand the Challenges of SRE ��� 9

Clarify Prerequisites to the Role of SRE �� 12

Summary��� 15

Chapter 2: Service-Level Management Definitions and Acronyms ������������������������� 17

Why It’s Not a Glossary ��� 18

Risk Assessment ��� 18

Understand Reliability ��� 23

Service-Level Metrics �� 24

Unavailability Metrics �� 30

Postmortems ��� 39

https://doi.org/10.1007/978-1-4842-8704-0_1
https://doi.org/10.1007/978-1-4842-8704-0_1#Sec1
https://doi.org/10.1007/978-1-4842-8704-0_1#Sec2
https://doi.org/10.1007/978-1-4842-8704-0_1#Sec3
https://doi.org/10.1007/978-1-4842-8704-0_1#Sec4
https://doi.org/10.1007/978-1-4842-8704-0_1#Sec5
https://doi.org/10.1007/978-1-4842-8704-0_1#Sec6
https://doi.org/10.1007/978-1-4842-8704-0_1#Sec7
https://doi.org/10.1007/978-1-4842-8704-0_1#Sec8
https://doi.org/10.1007/978-1-4842-8704-0_1#Sec9
https://doi.org/10.1007/978-1-4842-8704-0_2
https://doi.org/10.1007/978-1-4842-8704-0_2#Sec1
https://doi.org/10.1007/978-1-4842-8704-0_2#Sec2
https://doi.org/10.1007/978-1-4842-8704-0_2#Sec8
https://doi.org/10.1007/978-1-4842-8704-0_2#Sec9
https://doi.org/10.1007/978-1-4842-8704-0_2#Sec14
https://doi.org/10.1007/978-1-4842-8704-0_2#Sec22

iv

Toil ��� 40

Hierarchy of Reliability �� 41

Summary��� 43

Chapter 3: Azure Well-Architected Framework (WAF) �� 45

Understanding Well-Architected Framework (WAF) Concepts �� 46

WAF – Reliability Building Block �� 49

Reliability Checklists ��� 58

Testing Applications for Resiliency ��� 59

Well-Architected Framework Assessment �� 62

Summary��� 68

Chapter 4: Architecting Resilient Solutions in Azure�� 69

What Is Resiliency? ��� 69

Azure Platform Resiliency �� 71

Resiliency Based in Numbers �� 74

Resiliency on Application Design ��� 76

Mainly Used Components/Platform Features for Resilient Solutions ������������������������������������ 78

Resilient Architecture Examples �� 82

PaaS Resilient Architecture ��� 84

Microservices Architecture �� 86

Testing Resiliency on Azure ��� 89

Summary��� 89

Chapter 5: Automation to Enable SRE with GitHub Actions/Azure
DevOps/Azure Automation �� 91

Automation for SRE ��� 92

CI/CD Automation with DevOps ��� 93

What Is DevOps ��� 93

Modern Deployment Strategies ��� 122

Summary��� 142

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8704-0_2#Sec23
https://doi.org/10.1007/978-1-4842-8704-0_2#Sec24
https://doi.org/10.1007/978-1-4842-8704-0_2#Sec25
https://doi.org/10.1007/978-1-4842-8704-0_3
https://doi.org/10.1007/978-1-4842-8704-0_3#Sec1
https://doi.org/10.1007/978-1-4842-8704-0_3#Sec2
https://doi.org/10.1007/978-1-4842-8704-0_3#Sec8
https://doi.org/10.1007/978-1-4842-8704-0_3#Sec9
https://doi.org/10.1007/978-1-4842-8704-0_3#Sec10
https://doi.org/10.1007/978-1-4842-8704-0_3#Sec11
https://doi.org/10.1007/978-1-4842-8704-0_4
https://doi.org/10.1007/978-1-4842-8704-0_4#Sec1
https://doi.org/10.1007/978-1-4842-8704-0_4#Sec2
https://doi.org/10.1007/978-1-4842-8704-0_4#Sec6
https://doi.org/10.1007/978-1-4842-8704-0_4#Sec7
https://doi.org/10.1007/978-1-4842-8704-0_4#Sec8
https://doi.org/10.1007/978-1-4842-8704-0_4#Sec12
https://doi.org/10.1007/978-1-4842-8704-0_4#Sec14
https://doi.org/10.1007/978-1-4842-8704-0_4#Sec15
https://doi.org/10.1007/978-1-4842-8704-0_4#Sec16
https://doi.org/10.1007/978-1-4842-8704-0_4#Sec17
https://doi.org/10.1007/978-1-4842-8704-0_5
https://doi.org/10.1007/978-1-4842-8704-0_5
https://doi.org/10.1007/978-1-4842-8704-0_5#Sec1
https://doi.org/10.1007/978-1-4842-8704-0_5#Sec2
https://doi.org/10.1007/978-1-4842-8704-0_5#Sec3
https://doi.org/10.1007/978-1-4842-8704-0_5#Sec14
https://doi.org/10.1007/978-1-4842-8704-0_5#Sec22

v

Chapter 6: Monitoring As the Key to Knowledge �� 143

Operational Awareness ��� 144

SLI/SLO/SLA��� 145

Error Budget/Burn Rate ��� 147

Observability vs� Monitoring ��� 148

Azure Service Health ��� 148

Azure Monitor �� 150

Data Sources ��� 151

Visualize �� 153

Analyze �� 160

Application Insights ��� 167

Azure Monitor Alerts �� 178

[DEMO] Tracking SLI/SLO/SLA Using Application Insights and Log Analytics ���������������������� 182

Azure DevOps �� 187

GitHub ��� 189

Summary��� 192

Chapter 7: Efficiently Handle Incident Response and Blameless
Postmortems �� 193

Incident Response (IR) �� 193

Incident Response Pillars �� 196

Incident Tracking/Detection ��� 199

Communication and ChatOps �� 202

Eradication/Remediation ��� 204

Measuring Performance �� 211

[DEMO] Incident Response �� 214

Blameless Postmortems ��� 218

Best Practices/Tips �� 221

Summary��� 222

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8704-0_6
https://doi.org/10.1007/978-1-4842-8704-0_6#Sec1
https://doi.org/10.1007/978-1-4842-8704-0_6#Sec2
https://doi.org/10.1007/978-1-4842-8704-0_6#Sec3
https://doi.org/10.1007/978-1-4842-8704-0_6#Sec4
https://doi.org/10.1007/978-1-4842-8704-0_6#Sec5
https://doi.org/10.1007/978-1-4842-8704-0_6#Sec6
https://doi.org/10.1007/978-1-4842-8704-0_6#Sec7
https://doi.org/10.1007/978-1-4842-8704-0_6#Sec8
https://doi.org/10.1007/978-1-4842-8704-0_6#Sec15
https://doi.org/10.1007/978-1-4842-8704-0_6#Sec20
https://doi.org/10.1007/978-1-4842-8704-0_6#Sec35
https://doi.org/10.1007/978-1-4842-8704-0_6#Sec36
https://doi.org/10.1007/978-1-4842-8704-0_6#Sec37
https://doi.org/10.1007/978-1-4842-8704-0_6#Sec38
https://doi.org/10.1007/978-1-4842-8704-0_6#Sec39
https://doi.org/10.1007/978-1-4842-8704-0_7
https://doi.org/10.1007/978-1-4842-8704-0_7
https://doi.org/10.1007/978-1-4842-8704-0_7#Sec1
https://doi.org/10.1007/978-1-4842-8704-0_7#Sec2
https://doi.org/10.1007/978-1-4842-8704-0_7#Sec5
https://doi.org/10.1007/978-1-4842-8704-0_7#Sec6
https://doi.org/10.1007/978-1-4842-8704-0_7#Sec8
https://doi.org/10.1007/978-1-4842-8704-0_7#Sec9
https://doi.org/10.1007/978-1-4842-8704-0_7#Sec10
https://doi.org/10.1007/978-1-4842-8704-0_7#Sec11
https://doi.org/10.1007/978-1-4842-8704-0_7#Sec12
https://doi.org/10.1007/978-1-4842-8704-0_7#Sec13

vi

Chapter 8: Azure Chaos Studio (Preview) and Azure Load Testing (Preview) ������ 223

Intro to Chaos Engineering �� 224

Chaos Monkey ��� 225

Principles of Chaos (Engineering) �� 226

Azure Chaos Studio ��� 228

Load/Performance Testing �� 261

Azure Load Testing �� 262

Summary��� 271

Index ��� 273

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8704-0_8
https://doi.org/10.1007/978-1-4842-8704-0_8#Sec1
https://doi.org/10.1007/978-1-4842-8704-0_8#Sec2
https://doi.org/10.1007/978-1-4842-8704-0_8#Sec3
https://doi.org/10.1007/978-1-4842-8704-0_8#Sec4
https://doi.org/10.1007/978-1-4842-8704-0_8#Sec8
https://doi.org/10.1007/978-1-4842-8704-0_8#Sec9
https://doi.org/10.1007/978-1-4842-8704-0_8#Sec11

vii

About the Author

Unai Huete Beloki is a Microsoft Technical Trainer (MTT)

working at Microsoft, based in San Sebastian (Spain).

From February 2017 to July 2020, he worked as a PFE

(Premier Field Engineer), offering support and education as

a DevOps expert to Microsoft customers all around EMEA,

mainly focused on the following technologies: GitHub, Azure

DevOps, Azure Cloud Architecture and Monitoring, and

Azure AI/Cognitive Services.

Since July 2020, he has worked as a Microsoft Technical

Trainer (MTT) on the technologies mentioned above and

served as the MTT lead for the AZ-400 DevOps Solutions

exam, helping shape the content of the exam/course.

In his free time, he loves traveling, water sports like surfing and spearfishing, and

mountain-related activities such as MTB and snowboarding.

ix

About the Technical Reviewer

Peter De Tender has more than 20 years’ experience

in architecting and deploying Microsoft data center

technologies, having started his career on Windows NT4

Server in 1996. Since early 2012, he started shifting to cloud

technologies (Microsoft 365, Intune) and quickly moved to

the Azure platform, working as a cloud solution architect

and trainer, out of his own company. Since September 2019,

Peter has worked at Microsoft as part of the prestigious

Microsoft Technical Trainer team, providing Azure

readiness workshops to larger customers and partners across the globe. Peter recently

relocated to Redmond, WA, to continue this role in the West US team. Prior to joining

Microsoft, he was an Azure MVP for 5 years and a Microsoft Certified Trainer for more

than 12 years. He is still actively involved in the community as a speaker, technical

writer, and author. Follow Peter on Twitter at @pdtit and check his technical blog,

www.007ffflearning.com.

http://www.007ffflearning.com

xi

Acknowledgments

Writing this book has been an amazing journey. I have been talking and giving support

to customers around the mentioned topics for more than five years already, but I had

never imagined writing my first book about it would be so rewarding (and time

consuming of course , but worth it!).

I want to start with thanking my colleague and friend Peter De Tender. As mentioned

in the Foreword, Peter was the one who came up with the idea to write a book about

SRE on Azure. I was aware of it, as we have been providing DevOps/SRE education to

customers (many times together) during the last two years. Due to Visa regulations,

he was not allowed to continue and asked me to join this interesting project. He has

provided amazing help based on his extensive book-writing and Azure experience.

Finally, I also want to thank my girlfriend and family for the support and

encouragement during the last busy months.

xiii

Foreword

Thank you for being interested in the amazing world of Azure and Site Reliability

Engineering (SRE). While SRE has been around for more than a decade, most

organizations are starting to look into it and adopt it only recently. The main reason

for this, as I see it, is because public cloud is out of its infancy and finally seen as an

interesting way for running your business-critical workloads, anywhere in the world,

where your users or customers need access to it. At the same time, public cloud has

often been positioned with a slightly wrong connotation as it would solve all on-

premises challenges around security, high availability, and scalability. While those are

definitely more than valid reasons to migrate to Azure, there is still a need for properly

architecting your business-critical scenarios, deciding on what platform architecture to

use such as Infrastructure as a Service or Platform as a Service, relying on serverless and

microservices architectures such as Azure Functions, Containers with Kubernetes, etc.,

where also, once you have it running, you want to guarantee uptime.

To help you with the architectural aspects of Azure cloud onboarding and migration,

this book touches on the Microsoft Well-Architected Framework, a set of guidelines on

how to accurately map your business requirements with technical requirements and run

your applications efficiently. Next, there are a lot of technical hands-on aspects woven

into this book as well, based on several years’ experience in the field helping customers

in deploying and managing Azure-running workloads. Expanding with my passion for

cloud automation and DevOps application and infrastructure life cycle management,

this book also integrates two amazing new Azure services in preview: Azure Chaos

Studio and Azure Load Testing.

Now that you know what the book is about from a technical perspective, allow me

to add a more personal note to it. The book you have in front of you was supposed to

be my ninth in nine years and my sixth work that’s Azure related. I love talking (and

writing) about Azure, Azure DevOps, and Azure Architecting in my day-to-day job as a

Microsoft Technical Trainer at Microsoft, as well as presenting on the same topics at User

Groups and conferences over the last couple of years. Besides the technical aspects of

this, I also got the pleasure to travel across the world and meet with amazing customers

and partners. It was their input and questions around cloud reliability and resilience

xiv

that moved me into dedicating my next book to the topic of SRE and Azure. But then I

accepted an offer from Microsoft Corp., Redmond, USA, when I was about 40% into the

writing process. As per the US Visa regulations, I was not allowed to continue writing

this book.

But I also didn’t want to scrap it, as the need for writing on the complex topic was

definitely there.

Luckily, I have this awesome colleague from within my EMEA Trainer team at

Microsoft, Unai Huete Beloki, who has been a friend since he joined the team more than

two years ago (he’s a great guy, really, although I’m sure his similar passion for Azure

DevOps might have something to do with it), bringing in a lot of technical background

and expertise from his previous role at Microsoft, where he helped customers across

EMEA into using DevOps concepts. When I approached Unai and asked him if he was

interested in taking over the project, he didn’t hesitate a minute. Even more so, he

immediately came back with great suggestions to make the book even more technical,

integrating more detailed focus points, extending with his own experiences in both

Azure DevOps and GitHub Actions for CI/CD, monitoring, and so much more. Apart

from the outline structure and the high-level subject, he turned this into a great read

for anyone who’s interested in learning more about Site Reliability Engineering, in

combination with Azure public cloud, resulting in understanding how to max out the

cloud potential for your business-critical workloads. I’m actually happy not too many

scribbles and draft chapters remained, as it really is his work.

You should thank Unai when you are reading this book; he did an amazing job. I’m

sure you will enjoy the journey.

Peter De Tender

Microsoft Technical Trainer – West US team, Microsoft Corp.,

Redmond, USA

foreword

xv

Introduction

This book will help you gain a foundational understanding of SRE and learn its

basic concepts and architectural best practices for deploying Azure IaaS, PaaS, and

Microservices-based resilient architectures.

Based on Dickerson’s hierarchy of reliability, it will cover how to set up the necessary

practices by using tools provided by Azure and Microsoft.

The book starts with the basic concepts of SRE operations and developer needs,

followed by definitions and acronyms of Service-Level Agreements in a real-world

scenario. Moving forward, you will learn architecting resilient IaaS solutions, PaaS

solutions, and Microservices architecture in Azure. Here you will go through Azure

reference architecture for high-availability storage, networking, and virtual machine

computing, describing availability sets/zones and scale sets as the main features. You

will learn similar reference architectures for platform services such as App Services with

Web Apps and also touch on data solutions like Azure SQL and Azure Cosmos DB.

Next, you will learn automation to enable SRE with Azure DevOps Pipelines

and GitHub Actions, along with an understanding of how an open culture around

postmortems dramatically helps in optimizing SRE and the overall company culture.

Toward the end, you will learn incident management and monitoring practices by

making use of Azure Monitor/Log Analytics/Grafana, which forms the foundation of

monitoring Azure and Hybrid-running workloads.

As an extra, the book finishes by covering two new testing solutions: Azure Chaos

Studio and Azure Load Testing. These solutions will make it easier to test the resilience

of your services.

In terms of prerequisites, having some basic understanding of Azure platform

will help you understand the concepts covered in the book. A basic understanding of

DevOps could help you follow some demos using Azure DevOps and GitHub.

1

CHAPTER 1

The Foundation of Site
Reliability Engineering
In this first chapter, I introduce you to the foundation of Site Reliability Engineering

(SRE) as a practice, as well as what it means to be or become a Site Reliability Engineer

(SRE). Starting from the baselines set out by Google years ago already, it touches on

the core characteristics of IT operations and software development. Next, it highlights

the importance of collaboration, helping organizations in running business-critical

workloads without major downtime.

By the end of this chapter, you should be able to do the following:

• Understand the history of SRE

• Recognize DevOps vs. SRE

• Identify best practices around SRE

• Understand the challenges of SRE

• Clarify prerequisites to the role of SRE

 The History of Site Reliability Engineering
Historically, organizations relied on system administrators (sysadmins) to deploy and

manage the data center components, from storage, networking, systems, and security.

On the other side, developers were tasked to create the software and focus on the

development aspects of it. Deploying the actual application workload was often executed

by the system administrators as well.

This often created friction before, during, and after the workload got deployed

into production. Even more, when something went wrong (imagine a web application

© Unai Huete Beloki 2022
U. H. Beloki, The Art of Site Reliability Engineering (SRE) with Azure,
https://doi.org/10.1007/978-1-4842-8704-0_1

https://doi.org/10.1007/978-1-4842-8704-0_1#DOI

2

not running anymore, or a web app front end not being able to connect to a database

back end), it was frustrating and typically time-consuming to troubleshoot. Sysadmins

approached the problem from a system’s perspective, validating networking, firewalling,

system processes, etc. Developers were targeting the outage from a software perspective,

validating the code. Sounds familiar, right?

The fact that you are reading this book gives me the impression you are looking

for a better way to guarantee uptime of your application workloads. That is the

foundation of SRE.

Site Reliability Engineering (SRE), both as the reference to the practice and the job

role, brings us back to Ben Treynor Sloss, VP of engineering at Google, as the originator

of the term. The basic idea behind SRE is that technical teams who are responsible for

operational tasks – and related outages – should treat these as software problems. The

reason behind this was that Google’s technical teams were always hiring engineers for

the job, no matter if they would land in the Operations teams or the Development teams.

Google never really worked in terms of system and data center administrators, admins

are also called engineers.

Therefore, the basic principle being that dealing with an operational problem is not

different from dealing with a software problem also explains the confusion with DevOps.

I will explain more in detail later on what I mean by that.

The Site in SRE has a double meaning. Originally, when Google was mainly focused

on the Google web search engine, www.google.com (and local domains as well), Site

literally referred to making sure that this main page, “the Google site,” was always up

and running. Years later, however, it should be expanded to “Services.” Within Google,

the SRE practice is obviously being used for many more services than the search engine

website, but also used for Gmail, Google Office, and so many other services it is running.

Looking at SRE outside of Google, it is fair to say it could easily refer to “Services” as well,

reflecting on-premises data centers, as well as hybrid or public-cloud services.

Note An interesting side story I heard why Google engineers wanted to make
sure the Google search website was always available is because it was used for
so much more than search. What is the first site you try to connect to when you
connect to a public Wi-Fi hotspot or want to validate 4G mobile connectivity? If the
site would not respond, you would assume it is an issue with the connectivity, not
the site itself being down (… Google is never down, right?).

ChApter 1 the FoundAtIon oF SIte relIAbIlIty enGIneerInG

http://www.google.com

3

The last part in the term, Reliability, refers to how well an application workload is

running from a high-availability perspective. One of the IT-industry misconceptions

over the last four decades is that all applications should be always 100% highly available.

I personally like the short definition given by Microsoft for SRE (https://docs.

microsoft.com/en- us/azure/site- reliability- engineering/):

“Site reliability engineering is an engineering discipline devoted to helping an

organization sustainably achieve the appropriate level of reliability in their systems,

services, and products.”

From the definition, we can learn that the core goal of SRE is working toward an

acceptable availability for the business as a whole (or for a given application workload

in particular), which hardly reflects 100% for all workloads. Simply put, your lunch-

ordering app website where your employees can order sandwiches will be less critical

than the e-commerce website you run toward your customers to order products.

 Why SRE Is Not DevOps 2.0
It is interesting to see how the SRE acronym has gained momentum in the last few years

and is viewed as an updated version of DevOps. However, we need to take a few steps

back to really understand they are not exactly the same.

As you know, in the meantime, SRE’s primary goal is optimizing reliability and

availability of systems and running applications. DevOps, on the other hand, is a

methodology allowing organizations to deploy applications in a faster way, resulting in a

more optimized application life cycle management.

Ultimately, I would describe DevOps as a way to realize SRE. When your

application workloads can be deployed using an automated process (pipelines, actions,

tasks, jobs, etc., depending on the tooling you use), where both developers teams and

operations teams are collaborating toward the same goal, it should help in having better

uptime of your application workloads as well. Key here is “should” as it could also have

impact on the availability.

We could also reference the sentence included in the first chapter of The Site

Reliability Workbook: Practical Ways to Implement SRE:

“Class SRE implements interface DevOps.”

It explains a similar idea with different words. SRE implements the use of DevOps

(together with other practices discussed later in this book) to obtain better reliability.

ChApter 1 the FoundAtIon oF SIte relIAbIlIty enGIneerInG

https://docs.microsoft.com/en-us/azure/site-reliability-engineering/)
https://docs.microsoft.com/en-us/azure/site-reliability-engineering/)

4

Not too long ago, I had a customer using a scenario where they had an end-to-end

pipeline in place to publish a new snippet of code to a web application, across different

regions in the world. From the pipeline perspective, the deployments were running fine,

picking up source code artifacts, deploying to a validation environment, and eventually

landing in the production environment. So 100% satisfaction from a DevOps (pipeline)

perspective. However, the hosting provider was right in the middle of a maintenance

window, causing downtime of the application in a specific region, only a few seconds

after the pipeline published the new code. It was cumbersome to troubleshoot, since the

pipeline showed up green, and the website was running fine in other regions, which got

the same code published from the same pipeline.

This scenario brings me back to the motivation I used earlier, that ultimately,

DevOps is a way to realize SRE, but it’s not 100% fail-safe. But hey, didn’t you learn that

SRE is not aiming for 100% availability somewhere?

This somewhat simplified diagram (see Figure 1-1) reflects the base correlation

between both methodologies and practices.

DevOps

Systems
& Apps

SRE

Figure 1-1. SRE and DevOps

 – Start with DevOps, to optimize the deployment and release of sys-

tems and applications.

 – Validate the availability requirements for your systems and applica-

tions and aim for the best SRE results possible.

 – To realize the best SRE, you need to update/alter your DevOps

processes, which in turn results in updated deployments of your

systems and apps, which again will result in achieving a better SRE

and so on.

ChApter 1 the FoundAtIon oF SIte relIAbIlIty enGIneerInG

5

What’s important here is that SRE is a lot more than a wrong impression from the

IT industry (or its consumers) to try and replace DevOps. In fact, it is not even close to

trying to do that. The reason why the misconception is there is because the industry

is talking a lot more about SRE lately than they do about DevOps (Maybe we’ve been

talking about DevOps enough? Too much?), thus giving a false impression, if you ask

me, about how the two streams are actually a lot more complementary than conflicting

with or replacing one another. Let’s take Donovan Brown’s definition of DevOps (www.

donovanbrown.com/post/what- is- devops):

“DevOps is the union of people, process, and products to enable continuous delivery of

value to our end users.”

If we compare it with the previously mentioned SRE definition, we can clearly see a

difference between these two modern operations practices:

• DevOps focuses mainly on the continuous delivery of value.

• SRE focuses on achieving sustainable reliability for your
workloads.

DevOps will mainly base its practices on Lean-based methodologies and CI/CD

practices, whereas SRE will focus more on operational practices for your production

workloads. Both definitions will have practices that overlap, but it can clearly be

complementary in organizations nowadays.

Another important difference between SRE and DevOps is that DevOps is focused

a lot more on cultivating a culture of collaboration across teams; it could be considered

a philosophy. Even if we have DevOps engineers (personally, I consider them more

DevOps architects) as a role, I consider DevOps to be a culture organizations will have

to embrace top-down and transform bottom-up. On the other hand, SRE could be seen

as a much more technical, engineering-specific process, which is less dependent on an

organization’s culture.

Does it mean culture is not an important aspect for SRE? Not at all. If we take a look

at the typology defined by Westrum for organizational culture (see Table 1-1), we can

identify three types: pathological, bureaucratic, and generative.

ChApter 1 the FoundAtIon oF SIte relIAbIlIty enGIneerInG

http://www.donovanbrown.com/post/what-is-devops
http://www.donovanbrown.com/post/what-is-devops

6

Table 1-1. Westrum typology

Pathological

(Power Oriented)

Bureaucratic

(Rule Oriented)

Generative

(Performance Oriented)

low cooperation Modest cooperation high cooperation

Messengers shot Messengers neglected Messengers trained

responsibilities shirked narrow responsibilities risks are shared

bridging discouraged bridging tolerated bridging encouraged

Failure ➤ scapegoating Failure ➤ justice Failure ➤ inquiry

novelty crushed novelty problems novelty implemented

Taking the example of blameless postmortems (covered later in the book),as

a practice to learn from mistakes,we can clearly conclude that generative culture

environments will be more beneficial for our organization based, for example, on the

following points:

• High cooperation/bridging ➤ better collaboration, breaking silos,

cross-functional teams.

• Messengers trained/failure leads to inquiry ➤ employees will share

potential issues as soon as they identify them, messenger is not

punished, remove blame, failures lead to questions.

• Risks are shared ➤ quality, availability, reliability, and security are

everyone’s responsibilities.

 Identify Best Practices Around SRE
It’s a bit scary to write about best practices, knowing there is a full chapter following

this one, which touches on the core terminologies and definitions that make up Site

Reliability Engineering. Think of this section as my way to influence you feeling happy

about implementing SRE in your organization, as well as motivating you to read on in

this book. What better way than sharing best practices to do this, right?

ChApter 1 the FoundAtIon oF SIte relIAbIlIty enGIneerInG

7

 Automate Everything
While it’s not the ultimate goal of implementing an SRE practice, the best

recommendation I can start with is moving to automation as much as possible. Knowing

the foundation of SRE is maximizing the acceptable resiliency for a workload; it means

you need to automate. Going back to the first paragraph in the history of SRE, where I

talked about huge efforts being put in by sysadmins and developers for troubleshooting

an incident, it mainly relates to the fact that troubleshooting and analyzing an incident

typically requires manual labor. And manual labor is time-intensive and thus expensive.

What if you could rely on automation to deploy your application in a test

environment, rely on automation to run tests in the test environment, integrate

automation to redeploy to a production environment, and rely on automation to monitor

and manage the reliability of your production workloads? And last, once more bring in

automation to mitigate an outage in case of an incident? Sounds too good to be true?

Hold on tight, it is what we cover in later chapters using Azure Automation, Azure

DevOps, and GitHub Actions.

In the domain of SRE, doing any kind of work or performing a task relying on a

manual approach is known as toil. So we could summarize this topic by saying that

another goal of SRE is avoiding toil. (I’ll explain more on this in the next chapter as part

of the SRE terminology details).

 Identify Acceptable Service Levels
Knowing that I will discuss a lot more around Service Levels in the next chapter, together

with several other important terminologies in an SRE world, it’s crucial to understand

your SRE implementation can only be successful if you identify acceptable Service

Levels. Important here is the word “acceptable.” It should already be clear from the

opening paragraphs that aiming for 100% availability all the time and for all workloads

doesn’t make any sense. It never did, actually. What’s more important, however, is

mapping out what the different Service Levels are for the different services, systems,

and application workloads your organization is running. Just coming up with a generic

number still won’t do it. It will take a decent amount of time and effort to discuss this

topic with the business stakeholders, both technical (IT teams) and nontechnical.

I also refer to the rather generic term “Service Levels,” where you are probably

thinking in terms of Service-Level Agreements – SLA. Although it is probably the most

common and well-known indicator in the industry, it is actually the less technical one.

ChApter 1 the FoundAtIon oF SIte relIAbIlIty enGIneerInG

8

It is nothing more than a reference number from service providers to compensate you

financially when the SLA is not met. In reality, the actual technical Service Level (the

“real” availability) of the service might actually be even less than the foreseeable SLA.

 Be Focused on Engineering
As is clear from the SRE definition, having a focus on engineering is the key component

to integrating a successful SRE practice. What this means in real life is that a successful

SRE team has a good mix of software engineers (most would call them developers)

as well as technical engineers (senior system administrators with an affinity for

engineering). In the early Google SRE days, the technical engineers were mainly UNIX

system administrators with an expertise in networking and operating systems but also

were able to understand and write code. But not as much as being a full-time developer.

Having the developer skills as a technical engineer is beneficial, since it allows you to

integrate the automate everything we mentioned earlier in a faster and better way.

While there can be some deviation obviously, since there are so many dependencies

when forming an SRE team, Google SRE guidance always recommends having a double

50/50 guidance as the rule of thumb (see Figure 1-2).

50%
Software Engineering

50%
Technical Engineering

50%
Operations Tasks

50%
Development Tasks

Figure 1-2. Google guidance

 – 50% of the team are software engineers; 50% are technical engineers.

 – 50% of the team’s effort is spent on “Ops” work; 50% is spent on

“Dev” tasks.

ChApter 1 the FoundAtIon oF SIte relIAbIlIty enGIneerInG

9

 Understand the Challenges of SRE
Many organizations are willing to adopt SRE, but they have no clear view on where to

start, what the integration flow could look like, and when you can start seeing results.

I mentioned already that SRE comes with several dependencies, like pretty much

everything else we have and discuss in the IT industry.

The following are a set of sample starting questions I always ask customers who are

looking into embracing SRE for their workloads:

 – Where are the workloads running (on-premises, hybrid, pub-

lic cloud)?

 – What is the current level of availability seen, and what is the

expected one?

 – What is the current practice for developing, testing, deploying, and

managing applications and systems?

 – What level of automation is already in place?

 – Are you using DevOps-related planning methodologies already?

Which one? (Agile, Scrum, Kanban, etc.)?

 – What is your monitoring model like today?

 – How do you manage incidents end to end?

So depending on the answers and the maturity level expressed, this might open up

a lot more challenges to tackle first, or make moving up to an SRE integration a rather

straightforward process.

Another challenge I’ve seen in the field is that every organization is rather unique.

What works for some might not work for others. Expanding the list of questions

mentioned previously and having a “meet-and-greet” moment to learn as much as

possible about the current way(s) of working is probably worthwhile.

Implementing SRE is expensive. Whether you read this as a statement or as a

question, you probably understand there is a cost related to the learning curve of

integrating SRE into your environment. It starts with really understanding what SRE

is about, taking the time to build up your inventory of systems and applications, and

having repeatable and continuous conversations and meetings with the business to

ChApter 1 the FoundAtIon oF SIte relIAbIlIty enGIneerInG

10

gather as much information as possible. Once you have all that mapped out, the real

work can start. How do you decide on the tool to use for automation, how do you train

your existing technical teams to become ready, how large a good SRE team should

be, etc.

On the flip side of cost, I hope I don’t have to convince anyone in the IT industry that

facing incidents and outages is awfully expensive as well. I remember seeing numbers

by Gartner, going into the $300,000 range for an hour downtime (in an enterprise

environment with a business-critical workload). As I mentioned earlier, it obviously all

depends. But to me, based on the enterprise-customer space I typically work in, this

number feels fair and sometimes a bit underrated even to be honest. If you think of

organizations such as Amazon e-commerce, Netflix, Spotify, and so many others, being

active 24/7 on the Internet for reselling services and products for a few million an hour…

yeah, the numbers can go up (or down) quite fast. The trade-off comes in where you

have to estimate the cost for building an SRE team, what I talked about in the previous

paragraph, and how it relates to the cost of an outage and if the business is willing to take

that risk.

An organization will probably be more successful in adopting SRE for a specific

workload, or for a specific department, as a starting point. Build up best practices and

guidance and gain experience in a smaller capacity before expanding to the rest of the

organization or the rest of the business-critical workloads you are running. Coming in

with the big bulldozers and smashing down the present operations and development

cycles and totally overhauling them with a new practice definitely won’t work. I’ve seen

organizations trying to do that and failing miserably. Also, it’s immediately breaking

down that (DevOps-influenced) culture, which is so important to make all this work.

Try to position SRE team members as a smaller, more focused unit within the largest

IT team, but not as a SWAT team like exclusivity. I personally don’t like the idea that

SREs are “better” than other team members, like sysadmins or developers. That’s what

I like so much about the original SRE approach from Google, saying that everybody is

an engineer, everybody is equal, and there are no privileges. Because in the end, you all

need to work together, you are all equal, and when a major incident occurs, you want

everyone to look into the same direction – working toward fixing the incident. And don’t

forget about the blameless postmortems. No one is better than anybody else; no one is to

blame, besides the whole SRE team, if something goes wrong.

ChApter 1 the FoundAtIon oF SIte relIAbIlIty enGIneerInG

11

Another challenge I’ve seen, which honestly was the biggest driver for me to write

this book, is how unknown SRE still is in the field. Some of the confusing topics were

already touched on earlier, especially the DevOps-SRE relationship (or lack thereof), but

outside of that, there is a huge shortage on clear documentation, clear guidance, training

material, best practices, and the like on what it takes to implement Site Reliability

Engineering. A misconception is – since Google came up with this – that SRE is only

relevant to large-scale, multigeography-deployed workloads. But I don’t agree with this.

Any organization that takes ownership of running its own data center or controlling its

own hybrid or cloud-running services can benefit from SRE.

From what I have seen so far, the biggest SRE success comes when there is overall

support and sponsorship from the whole organization, starting from the top C-level

management, all the way down to the technical teams and application owners, extended

with streamlined communication about processes, modes of operation, and setting clear

expectations. This all sounds easy enough in a paragraph but is much harder to realize

than one would think. That’s why so many organizations are afraid of looking into SRE in

the first place.

Touching on the challenge of monitoring already, hence why we dedicate a

full chapter on that at the end of this book, it’s always a surprising one for a lot of

organizations. Simply put, you cannot manage what you do not monitor. While most

organizations have monitoring in place, not all monitoring is equal. Monitoring is more

than watching charts with CPU, memory, and disk load. One needs to work toward a

360-degree view, covering everything from the lowest level of the data center, all the way

up to the end users connecting to the application. It is no longer acceptable to validate

if the systems are up, but you should challenge your monitoring baseline to provide

a services and services-level overview of what’s going on. And always, you should be

able to detect the problem before the end user reports it. So a big responsibility of

implementing SRE will be around providing an end-to-end monitoring service to your

business stakeholders.

The last challenge I’m throwing out here is the lack of incidents, which means there

is no need for an SRE team. Yes, it does exist; organizations have been implementing

their systems and applications so well that they are hardly facing downtime. This could

actually bring in a false feeling of comfort, which could jeopardize mitigating an incident

when it is eventually occurring, since the team is not prepared for handling the incident.

Think of acts-by-surprise like the pandemic, an unexpected natural cause, a destructive

ChApter 1 the FoundAtIon oF SIte relIAbIlIty enGIneerInG

12

operation by an unhappy employee, etc. Even when your processes are that smooth and

you never really had to fight fires, always make sure your team is prepared.

I got one last example, being the opposite of the previous one. What if organizations

are that focused on hardly implementing changes, they don’t have a risk in causing

outages. And probably so many other organizational examples that fit perfectly in

between both. No matter how you look at it, any organization can and will benefit

from SRE if implemented correctly. The other extreme is facing the challenges during

a major migration shift, which might be only every couple of years, when replacing

servers or migrating data centers. Those are also typically the more traditional, super-

legacy environments we know about, also avoiding hybrid or public cloud environment

integration or extension as much as possible, all that to avoid “risk.” With the focus of this

book being on how to properly integrate and achieve SRE in Azure, I’m not sure if any of

those organizations will go through this book in the first place.

 Clarify Prerequisites to the Role of SRE
In this last section of this introductory chapter, I would like to highlight a bit more what

it takes to become, or be, an SRE, in a sense from the job role perspective, answering

questions such as

 – What does it take to become a Site Reliability Engineer?

 – How many years of experience, and what experience exactly, are

required?

 – I’m a 100% developer, can I become an SRE?

 – I’m a 100% sysadmin, can I become an SRE?

 – My organization is not using cloud. Do we need an SRE?

 – We think we have a solid DevOps methodology in place. Why should

we turn into becoming SREs?

 – I haven’t done anything with DevOps. Can I become an SRE?

ChApter 1 the FoundAtIon oF SIte relIAbIlIty enGIneerInG

13

A Site Reliability Engineer switches caps all the time. At least 50% of an SRE’s time

should be spent on developer tasks, while the other 50% should be spent on operations

and incidents work. Apart from the expertise-level technical skills in both domains, an

SRE must have outstanding communication skills as well.

A good estimate for me is any person who mainly has a developer background,

with notions of systems and networking – or an experienced system administrator

who understands enough about software development. The expertise level is hard

to define, but I would say that it takes you at least five years in either role before you

should even consider moving into an SRE position. Please don’t take this negatively;

don’t feel offended if you are currently working in the SRE field and not having a five-

year experience. While ideally, an SRE team does not make a distinction in the work the

whole team is doing, I’ve seen some specialization or focus domains within SRE teams.

Taking containers and Kubernetes as a popular target environment for SRE, it is a rather

locked-down scenario and touching on one specific architecture, while in reality, an

organization is probably using so many more services, systems, and applications outside

of the Kubernetes environment. I know a few individuals who are excellent in their role

as an SRE for the Kubernetes clusters the customer is running, but they don’t touch on

the network side of things, they don’t run operations against the identity solution in

place, etc., which is totally fine in itself, since again, SRE is a team sport.

I’m confident a lot of you are interested in this book because you want to move into

an SRE role within your organization or elsewhere and learn what it takes to get there.

What I brought up earlier already is that there is no clear path nor a clear readiness

trajectory on how to “become a Site Reliability Engineer.” That’s what makes the role and

responsibilities of an SRE so diverse.

In the core, an SRE should feel super-comfortable in the systems world,

understanding operating systems, TCP/IP networking, routing, firewalling, DNS, and

the like as a starting point. Next, being familiar with at least one development language

(Python, Java, C#, etc.) is definitely beneficial. Having a good understanding of the data

center or cloud environment your organization is using is also key. Know how servers are

communicating with each other, know how identity and governance are arranged, and

identify incoming and outgoing communications toward and from the prime-running

workloads. Understand the full application workload topology, end to end. Recognize

the characteristics of scalability, performance, and high availability.

ChApter 1 the FoundAtIon oF SIte relIAbIlIty enGIneerInG

14

Preferably, you have built up experience in fixing incidents. I’m still convinced that

the best way to learn is being with your boots on the ground, or maybe in the mud. If

you never experienced the stress during an outage, the C-level executives asking every

couple of minutes how much longer the workload will be down while you are doing your

utmost best to get it up and running again, etc., you won’t have the bandwidth or muscle

to know how to respond during this kind of situation.

Taking it further, an SRE should have a good understanding of monitoring and

observability, both from the general concepts of what logging, metrics, and tracing are

about, but also a more in-depth understanding of the monitoring solutions you have in

place within your organization, both running on-premises or in a cloud service. In the

end, all systems and application workloads are connected at some point. So knowing

where to go for which component could be crucial during the hours of the fire.

Lastly, become familiar (or an expert) with the DevOps practices, as well as the

DevOps tooling being used within your organization. Know how to run automation

pipelines to deploy workloads to different environments, and understand how approval

processes are put in place, what is the fallback strategy when a deployment fails, etc.

Apart from the technical skills listed up here, allow me to go back to the more soft

skills side of the SRE role. Being a good communicator is key, which I think is obvious.

If you are locking yourself up behind a screen, hammering buttons during an outage to

try and fix it, but you are not communicating what you are doing, it will only increase

the stress level within the team and outside. An ideal SRE is self-confident (although

not too confident) and well-organized and is used to handle mission-critical workloads

(and corresponding outages). It’s like being the secretary (organizational skills), the ER

medical doctor (emergency), the firefighter (emergency with risk), and the nurse (calm)

all in one person at the same time.

Lastly, having good presentation skills is definitely a benefit. As an experienced SRE,

you typically need to present regular feedback to your teams (standup or retro calls), to

the business stakeholders (crisis meetings and postmortems), as well as to “outsiders.”

This could be at a conference or symposium around SRE and could be at meetings with

like-minded businesses or technical teams, where you are presenting your success

as an SRE.

ChApter 1 the FoundAtIon oF SIte relIAbIlIty enGIneerInG

15

 Summary
In this chapter, I introduced you to Site Reliability Engineering as a practice, as well

as a role. Starting from positioning some of the SRE history, you learned about the

challenges and benefits of integrating SRE into your organization. We briefly touched on

the confusing aspects of how SRE is different from DevOps, but not a replacement of it.

Lastly, I tried to list some of the characteristics and prerequisites skills that make a good

Site Reliability Engineer.

In the next chapter, we will spend a lot of time clarifying a lot of the typical and

crucial terminology used within the Site Reliability Engineering domain.

ChApter 1 the FoundAtIon oF SIte relIAbIlIty enGIneerInG

45

CHAPTER 3

Azure Well-Architected
Framework (WAF)
The two previous chapters primarily introduced you to the concepts of Site Reliability

Engineering (SRE) and service-level definitions. Although this book is targeting how to

apply and achieve SRE in an Azure environment, most of the information shared in the

previous chapters is applicable to any data center scenario, whether running on Azure,

Amazon AWS, Google GCP, on-premises, or hybrid. The following chapters will reiterate

those concepts whenever needed.

From this chapter on, the focus on Azure will become much more apparent, starting

with Azure Well-Architected Framework (WAF), a set of best practices from the Microsoft

Azure Architecting teams, helping customers and partners in the journey and challenges

of what it takes to establish a rock-solid baseline of Azure Services, and optimizing the

application and service-layer workloads they are running on the platform.

While I touch on a lot of technical details in this chapter, it won’t be that “hands-on”

yet, but rather explaining the concepts from a “how-to-design” perspective. It’s only in

the following chapters that I will guide you through the actual scenarios, step by step,

and a lot of examples on how to actually deploy resources, outline architectures, and

integrate DevOps CI/CD pipelines as automation, and I will close with monitoring and

observability.

By going through this chapter, you will learn the following:

• Understand Well-Architected Framework (WAF) concepts

• Recognize the Well-Architected Framework (WAF) building blocks

• Perform an assessment of an existing Azure environment using WAF

• Analyze a Well-Architected Framework (WAF) assessment and

optimize Azure environments

© Unai Huete Beloki 2022
U. H. Beloki, The Art of Site Reliability Engineering (SRE) with Azure,
https://doi.org/10.1007/978-1-4842-8704-0_3

https://doi.org/10.1007/978-1-4842-8704-0_3#DOI

46

 Understanding Well-Architected Framework
(WAF) Concepts
The Azure Well-Architected Framework provides Azure customers with a set of

guidelines and best practices on how to implement their Azure workloads “by the book.”

The framework focuses on five core objectives, which should be part of any proper

Azure architectural design, no matter what workload or service will be deployed on the

platform:

 – Reliability

 – Security

 – Cost

 – Operations

 – Performance

The mindset behind the WAF is that it becomes the center of an Azure deployment

plan, taking each of the objectives into account. Once all points of each objective have

been touched on in the cloud solution architectural design, you are ready to deploy.

Once the solution is deployed, the work is not done, however, as you can reapply the

guidance and best practices of WAF for both new deployments, as well as already

running workloads on Azure.

Ultimately, within your organization, you want to provide value to your business. The

money the organization spends on Azure consumption to run their business workloads

(critical and noncritical such as dev/test scenarios and disaster/recovery environments)

is better well-spent. That’s the prime goal of the Well-Architected Framework, maxing

out the characteristics and potential of each of the core five objectives (see Figure 3-1) to

provide the maximum value back to the business.

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

47

Figure 3-1. WAF objectives

 – Reliability: How healthy is your system running, and how fast can it

recover from a failure?

 – Security: Integrating threat protection to guarantee the security of

your workload

 – Cost: Managing the cost aspect without breaking down the quality of

the architecture, but also without overspending

 – Operations: Management tasks to keep systems running as healthy as

possible

 – Performance: Can your systems flexibly adapt to changes in behavior

such as peak load and idle times without compromising the quality of

the application?

Each of these WAF building blocks is equally important in the overall scope of

integrating your Azure environments. However, given the SRE subject we emphasize in

this chapter and the book overall, there will obviously be more focus on the reliability

component. This chapter will cover the reliability topic in more conceptual way (what),

while Chapter 4 covers how to implement it with Azure platform features (how).

Looking at the diagram, it seems like a linear flow from each of these objectives,

where they are equally important. I guess that makes sense to a certain extent. Each

objective is definitely as important as any other one. However, based on, or depending

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

https://doi.org/10.1007/978-1-4842-8704-0_4

48

on the workload type, the Azure resource as well as both technical and business

requirements, the weight of each of the objectives might change.

For example, in the early days of onboarding a workload to Azure, organizations

might be OK to see a higher consumption spent. There are additional costs in play for

setting up a proof-of-concept (POC) environment; your DevOps teams might need more

time to run multiple deployment cycles in a dev/test or staging environment before they

land into production.

Once you have mapped your business case against each of the five objective

categories (Microsoft calls them pillars), you most probably also need to identify the

trade-offs. This might sound weird as it almost feels like I’m telling you to sacrifice

certain objectives in favor of others. While not 100% true, it is actually what I see

happening in a lot of organizations, and I have already seen this over the course of my

career for both on-premises and cloud-based organizations.

Remember, I used the word “ultimately” in an earlier paragraph. In the most ideal

and perfect world, you would emphasize each of these objectives in an equal way.

Budget control is as important as reliability, as well as security and performance. This

will all lead to operational excellence in the end. However, applications, systems, and,

hey, business objectives overall are not always that clear. As a cloud solution architect,

you can come up with the nicest, most-robust, best-performing architectural design, but

if the business is not willing to pay for it, it's “bye-bye” design (or partial design), right?

Or what if there are unknown factors in place that neither you as the technical cloud

team nor the business itself could foresee? One example coming to mind here is the

COVID-19 pandemic that hit all continents in early March 2020. In several countries

across Europe, physical stores, restaurants, bars, and other public places had to shut

down. Literally overnight. Employees couldn’t go to the office anymore, as they were

not allowed to get to the office. Schools were closed for weeks (sometimes months),

brick-and-mortar shops and stores were forced to close, etc. It’s also where I remember

seeing a huge cloud-adoption wave happening, resulting in a performance decrease

of the Azure West Europe region, as well as other Azure regions quickly following,

since organizations tried deploying their needed Azure resources somewhere else, or

were executing disaster/recovery failovers across regions. Organizations were quickly

migrating workloads to cloud, deploying new workload scenarios such as Virtual

Desktop solutions, and building out Azure VPN to allow sysadmins and developers to

still be able to connect to systems, where before it was going through a site-to-site or

ExpressRoute tunnel from the corporate headquarters or branch offices, where now you

were forced to work from home.

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

49

That’s where a lot of organizations, including Microsoft as the Azure service provider,

had to agree on some trade-offs to make the workloads running on Azure. Even now,

two years after the start of the pandemic, I’m still hearing customers saying their newly

deployed workloads are not 100% highly available yet in cloud, because they need to

focus on other priorities such as security, or meet performance demand as a higher

priority. Other teams are struggling with readiness, where they had to ramp up on

Azure skills that fast; it was almost impossible to keep up with all the different services,

architectural options, and management aspects that are part of running a workload on

Azure. (It’s also another motivator for me to write this book, helping you where possible.)

 WAF – Reliability Building Block
The reliability building block is the one that’s closest to the overall topic of this book,

since it extends the concept of Site Reliability Engineering. Remember, though, there

are a lot of dynamics in place to decide which of the objectives are more important than

others; and ultimately, they would all be equally important in the overall designing of

your Azure Architecture designs.

Deploying reliable workloads involves the following concepts:

 – On-premises architecture is (way) different from cloud architectures.

 – Cloud platforms are not 100% reliable.

 – Observability is key.

 – DevOps and automation.

 – Self-remediation of workloads.

When an application workload is reliable, it means it is running healthy, with no,

or minimal, downtime. Sometimes, this is also mixed with resilient. However, it’s not

exactly the same. Resiliency typically refers to how fast a workload can be recovered in

case of an outage. The more resilient, the shorter the recovery time. However, the more

reliable, the lesser the downtime, which means you don’t have to worry that much about

resiliency. See, slightly different meaning, but crucially important for any workload.

Both will heavily determine the success factor of your SRE processes as well as the

success of the SRE team in general. Chapter 4 will focus on showing some examples to

achieve reliability/resiliency. Other chapters like Chapter 6 will also give some tips on

how incident response practices can be applied for auto-recovery.

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

https://doi.org/10.1007/978-1-4842-8704-0_4
https://doi.org/10.1007/978-1-4842-8704-0_6

50

 On-Premises Is (Way) Different Than Cloud Architecture

Establishing a reliable cloud architecture is different from building a similar reliable

architecture in your own on-premises data centers. What organizations have been doing

over the last 40 years was typically investing in redundant physical components, starting

from the physical storage that was typically equipped with intelligent storage replication

features built in on the physical layer (anyone remembers disk mirror, stripe sets, RAID

sets, etc.), physical servers with redundant power supplies, hot-swappable memory,

and the like. From a software perspective, business-critical applications were deployed

in a cluster, typically reflecting two or more servers running the same application, in an

active/passive or active/active scenario.

Hypervisor solutions such as VMware and Microsoft Hyper-V were a welcome

technology around 2003, where the IT industry noticed a shift from investing in

redundant physical data center components into a more logical highly available software

layer. Technologies such as VMWare vMotion and Hyper-V Live Migration – by which

you could easily move your virtual machine workload from one physical host to another

with minimal downtime – contributed a lot to how organizations looked into high

availability and disaster recovery.

The preceding slide (see Figure 3-2) highlights what a typical data center disaster/

recovery architecture looked like around 2008. One might think a lot has changed in

13 years, but actually it still looks rather familiar I’m sure to a lot of on-premises data

center admins.

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

51

Figure 3-2. High-availability data center architecture with disaster recovery
solutions

Switching to typical reliable cloud architectures today – which will be the core

of what will be explained in the next chapter – is partly still identical, depending on

whether you are using Infrastructure as a Service (IAAS) or Platform as a Service (PAAS).

In the case of the first, from an Azure perspective, Microsoft takes ownership of providing

you the redundant, physical data center components, up to the hypervisor (Hyper-V

for Azure Virtual Machines), where you as the customer are hugely responsible for

keeping your systems running, making the workloads highly available and redundant,

and integrating backup and disaster/recovery as part of the solutioning, to name just a

few core aspects. If you look at Platform Services such as Azure App Service, Azure SQL

Database, Azure Cosmos DB, Azure Service Bus, and so many others, Microsoft is also

taking responsibility for hosting the actual underlying services’ layer, such as the Web

App services, the SQL database server instances, and the like. For you as the customer,

the responsibility comes in to deploy the actual application layer (web app source code

or container), as well as the database layer (the actual database tables and content).

Furthermore, cloud environments are more dynamic than on-premises ones. In

on-premises solutions, as a sysadmin, you could connect through remote desktop to the

machines and diagnose possible issues by checking logs/events/performance metrics.

On the contrary, in a cloud environment, especially a PaaS offering–based environment,

the VM/Server instances used in the back end may change anytime; troubleshooting

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

52

is not based on connecting to the underlying infrastructure (not possible); you need to

leverage tools like Application Insights, Log Analytics, and Metric Explorer to export and

analyze those logs/metrics instead (covered in Chapter 6).

 Cloud Is Not 100% Highly Available

A big mind-shift that I always emphasize to customers is understanding and accepting

that cloud platforms are not 100% highly available (although the marketing pitch is

typically telling a different story sometimes). So instead of focusing on building the

ultimate high availability, you should shift to minimizing damage in case of an outage.

From a high-level perspective, this means relying on the redundant architectural

components on all levels possible. This would start with deploying your workloads

in at least two separate Azure regions, leveraging virtual machine high-availability

architectures such as availability sets and zones (see the next chapter), enabling Azure

SQL Failover Groups, and configuring Cosmos DB multiregion database replication

(see Figure 3-3), to name a few out-of-the-box capabilities for different Azure platform

capabilities.

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

https://doi.org/10.1007/978-1-4842-8704-0_6

53

Figure 3-3. Configuration of Cosmos DB global data replication

Following on the same mindset of cloud (Azure, but also Amazon AWS, Google GCP,

and other public cloud providers) not being 100% highly available, is where you need

to validate the contractual SLAs (Service-Level Agreements) for the different services

offered, as briefly touched on already in the previous chapters.

Some examples:

 – Azure App Services: Microsoft guarantees that Apps running in a

customer subscription will be available 99.95% of the time. No SLA is

provided for Apps under either the Free or Shared tiers.

 – Azure SQL Database: Offers multiple SLAs to choose from, depend-

ing on the business criticality of your back-end tier. Azure SQL

Database Business Critical or Premium tiers configured as Zone

Redundant Deployments have an availability guarantee of at least

99.995%, where the non-Zone Redundant Deployments have an

availability guarantee of at least 99.99%.

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

54

 – Azure Kubernetes Service: For customers who have purchased an

Azure Kubernetes Service (AKS) Uptime SLA, Microsoft guarantees

uptime of 99.95% for the Kubernetes API Server for AKS Clusters that

use Azure Availability Zones and 99.9% for AKS Clusters that do not

use Azure Availability Zones. The availability of the agent nodes in

your AKS Cluster is covered by the Virtual Machines SLA.

See https://azure.microsoft.com/en- us/support/legal/sla/ for all Azure

services and their corresponding Service-Level Agreements.

So the key takeaway here is, as an Azure Cloud Solution architect, you need to know

and understand the different SLA implications in order to choose the correct Azure

platform target to deploy. As an SRE, you will need to work together with cloud architects

to emphasize the importance these choices have on the reliability of the solutions.

Equally important is understanding and knowing the business uptime requirements

from your organization before you can map them with the Azure service of choice.

A business-critical e-commerce application requiring an SLA of 99.999% requires a

different collection and architecture of Azure services than a less-business-critical HR

application, requiring an SLA of 95% for example.

Chapter 4 will provide a lot more technical insights on several common Azure

services, both Infrastructure as a Service (IAAS) and Platform as a Service (PAAS), and

how to design them from a reliable state perspective using Azure Product Team Reference

Architectures as the main guideline, together with my own observations from designing,

architecting, and deploying Azure environments at customers over the last few years.

And remember, don't forget about the decision implication trade-offs around cost,

security, and performance as well when considering reliability. A more reliable topology

typically entails a more complex architecture, spread across different Azure regions.

More services within the topology also mean more potential security threats and risks

to take into account, more components that can fail, latency might occur in this kind of

architecture more frequently than in a less complex scenario, etc.

 Observability Is Key

Apart from exploring a redundant cloud services architecture, following the outlined

SLAs from the platform, together with the required SLAs from the business, there

are other tactics needed that will optimize reliability. One of them is observability,

sometimes referred to as monitoring in a more traditional context (difference explained

in Chapter 6).

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

https://azure.microsoft.com/en-us/support/legal/sla/
https://doi.org/10.1007/978-1-4842-8704-0_4
https://doi.org/10.1007/978-1-4842-8704-0_6

55

Monitoring is what gets covered in Chapter 6 later on, but in short, it helps IT

Operations teams to not only identify how healthy a workload is running (or not

running) but also how outages can be predicted or foreseen. Without a decent

monitoring solution in place, IT teams have no means of identifying issues or incidents,

besides waiting for an end user or customer to tell you the workload is not available

or not responding as it should be. Interestingly enough, by relying on your monitoring

metrics and logs, IT Operations and DevOps teams could often also detect and mitigate

issues a lot faster, or even better, avoiding outages at all.

Built-in Azure solutions such as Azure Monitor, Azure Log Analytics, and Application

Insights are able to provide you with all necessary details about your Azure services

(and often hybrid as well for virtual machines running Windows or Linux). For specific

workload scenarios like Azure Kubernetes Services (AKS), there is full supportability for

third-party observability solutions like Prometheus and Grafana (see Figure 3-4).

Figure 3-4. Observability using Prometheus and Grafana (source: https://
prometheus.io)

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

https://doi.org/10.1007/978-1-4842-8704-0_6
https://prometheus.io
https://grafana.com
https://prometheus.io
https://prometheus.io

56

 DevOps and Automation

While it’s not the only factor for outages, the human being (your DevOps teams) is often

the root cause of issues in an IT environment. Scenarios such as patching, monthly

maintenance, disaster/recovery testing, and the like often start with good intentions

(keeping systems healthy) but often lead to a more severe outage than what was planned

for (or not planned for at all).

The more automation can be brought into the workload’s life span, the more reliable

it should run. Starting from a DevOps practice, where application source code gets

stored in a source control system such as Azure DevOps Repos or GitHub Repositories,

relying on feature branches, pull requests, and peer reviewing will contribute to the

success and quality of the application code. Next, integrating adequate testing workloads

as part of your Continuous Integration/Continuous Delivery (CI/CD) pipelines is

another important aspect. No one wants to publish failing code, and definitely not

finding out after the application workload got published. Talking about releasing

workloads, nothing should be allowed to get published to production environments if it

does not pass through Dev and Test and/or Staging environments first.

In Chapter 5, I’ll guide you through several common CI/CD pipeline scenarios, both

using Azure DevOps solutions as well as GitHub Actions.

Deploying the different environments should be done using Infrastructure as Code;

think of Azure ARM Templates or Azure Bicep, or multicloud tools such as Terraform and

Pulumi. Instead of manually (the human is the weak link) deploying your workloads,

which is not only time-intensive but particularly error-prone, switching to automated

deployments from scripts, Azure CLI or Azure PowerShell, would be a good step forward.

Yet there are additional advantages when using Infrastructure as Code. Instead of going

through your resource’s deployment from a “this is what I’m going to deploy next”

approach, IaC allows you to focus on the “this is what my end state should look like”

characteristic of deploying resources. By using automation, deployments are also easily

reproducible and repeatable, allowing IT teams to quickly run deployments across

different environments but also relying on automation to redeploy a specific workload in

case of a disaster. If you know you can deploy your virtual machine architecture, starting

from the virtual machine resource and a fully patched operating system, integrating

virtual network settings and network security group definitions, all the way to injecting

automated software deployments using Custom Scripts or Configuration as Code, why

would you not do that? Or, if the same deployment takes you 30 minutes to run, why

would you spend 60 minutes troubleshooting a failing runtime?

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

https://doi.org/10.1007/978-1-4842-8704-0_5

57

That’s the efficiency that DevOps and Automation can bring into your reliability

objective.

 Self-Remediation

Self-remediation is where you rely on the automation aspect of a platform to fix itself in

case of outages. This can be done in two different ways:

 a) Combine automation and observability: In this scenario, you

rely on monitoring capabilities of the platform and cloud services,

together with alerts and notifications, to trigger an automated

action, which fixes the issue. A simple example is capturing an

alert when a service is down in a specific region and triggering

an Azure deployment in a different region because of this. Also

covered in Chapter 6.

 b) Use self-healing services: I’m not sure if this is a 100% correct

definition, but containerized workload scenarios such as Azure

Container Instances (ACI) and Azure Kubernetes Services (AKS)

are pretty close. One of the default settings of ACI is that – when

a container runtime is failing – it stops the container and starts

up a new instance. A similar behavior is what makes Kubernetes

awesome, relying on its intelligent orchestration to detect failures

in PODs (container runtimes in Kubernetes), starting them again

when needed, all the way to spreading PODs across healthy nodes

in case of an outage of a running node within the Kubernetes

cluster. Even probes (liveness/readiness) could be defined to

automatically check the health of your container workloads

and heal.

The remaining chapters in this book extensively come back on each of these

concepts, with much more practical examples and several hands-on scenarios for you to

follow along.

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

https://doi.org/10.1007/978-1-4842-8704-0_6

58

 Reliability Checklists
In order to identify an application workload as reliable, it must meet the following

requirements:

 – Availability: What is the possible and required uptime in SLA terms?

 – High resiliency: How quickly can the workload be restored or

recovered in case of an outage?

 – Cost: What is the additional cost to take to make the workload more

highly available and reliable?

To be able to do that, one should start with a reliability checklist, for example:

• Identify availability as well as recovery targets to meet business

requirements. This could include backup, data replication, Azure

regions, availability zones, and the like.

• Integrate application resiliency and high availability by gathering

requirements. Map both technical and business requirements to have

a full view.

• Don’t approve a go-to-production if the application and

data platforms are not meeting your organization’s reliability

requirements.

• Establish redundant connectivity paths to guarantee cloud

availability using Azure ExpressRoute and Site-to-Site VPN as

fallback scenarios. Extend with VNet peering relying on the Microsoft

Backbone across different regions.

• Use availability zones where applicable to improve reliability and

optimize costs. Availability zones are supported for virtual machines

but also for Azure Web Apps and other Azure services.

• Guarantee that your workload architecture is resilient to failures,

following the Microsoft Azure Reference Architectures, as well as

Well-Architected Framework guidelines.

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

59

• Establish a fallback scenario when the technical or business

requirements of the available Service-Level Agreements are not met.

Identify both the business risks, costs, and processes to get them in

order as part of the solutioning.

• Identify potential weakness or failure points in the workload to

enable resiliency. Scenarios such as Chaos Engineering, which we

touch on in Chapter 8, could be a great tool to do this.

• Ensure that systems, data, and applications can still function during

the absence of one or more of their dependencies. Architectures

relying on serverless or Microservices could make this possible,

together with load balancers and deploying workloads across

multiple regions.

 Testing Applications for Resiliency
Once the architectural design is in place and the actual workload has been deployed

according to the synergy of both technical and business requirements, preferably

in a dev/test or staging environment, it is time to go through your testing scenarios,

validating the level of resiliency (and reliability) one can achieve with the deployed

architecture.

There is a strong opinion across different organizations on how and when

application testing should be performed. In my opinion, the more testing you can

execute, the better. Shift left testing, moving your testing practices the earliest possible

in your application life cycle, has gained some momentum lately (more in Chapter 5).

The process starts already during the DevOps cycle, by running unit/integration

testing of a component of an application during the build stage. However, this typically

only runs code validation but doesn’t check how reliable the workload will run once it is

published.

Next to that, testing applications has the misunderstanding it should explicitly and

exclusively occur in a dev/test environment (I know, I mentioned this myself only two

paragraphs back). More and more, thanks to automated deployments such as Azure

ARM Templates or Bicep, Terraform – Infrastructure as Code – as well as Configuration

as Code with Chef, Puppet, Ansible, or PowerShell DSC, it allows organizations to run

more testing in a faster way and makes this process far more repetitive. Remember, I

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

https://doi.org/10.1007/978-1-4842-8704-0_8
https://doi.org/10.1007/978-1-4842-8704-0_5

60

already highlighted the upcoming next wave of Chaos Engineering, which I explain in

more depth in Chapter 8. While not really built as a testing scenario anymore – Chaos

Engineering is really coming in, hammering your production-running workloads and

bringing them down – it is still accepted as a testing scenario. And honestly, nothing

would block you from running Chaos Engineering practices against your nonproduction

workloads too (especially useful in preproduction, architectures as close as possible to

your production design).

Another question is how frequently tests like Chaos or Load testing should occur

(compared to unit/integration/UI tests that should run in an automated way many times

per day on the defined CI/CD pipelines).

As Chaos/Load testing workloads may be more expensive and results may not

vary that often, an option could be that at every intersection of a major change, such

as an architectural change, a version or application upgrade, a migration to a new

environment, etc., testing should be performed. Even if all looks fine in a dev/test or

staging environment, we all know that there is always a (slight or big) difference between

production environments. Make sure you go through detailed and thorough testing

when deploying your workloads.

For some organizations and applications, it would be interesting to integrate a ring-

based deployment strategy, slowly increasing the change-impacted user number by

leveraging Canary/Early Adopter/General Availability groups/rings. Think, for example,

what Microsoft is doing with Edge Browser or Windows 11 Preview. The benefit of this

scenario is that you allocate a certain number of users (mainly voluntary) to get feedback

(bugs/features) before reaching the general audience.

Another concept is Blue/Green deployment, where you typically deploy two

identical environments at the same time. All users will connect to one environment, and

when major changes are happening or new releases are getting introduced, they will get

deployed to the other environment first. From there, they get tested and validated and

eventually will be the endpoint for all users. In this time, the original environment gets

typically scrapped and becomes the new location for updates, after which the users get

redirected back to and so on.

In Chapter 5, I will explain a bit more on those concepts and how to integrate them

from a DevOps perspective.

This brings me to the next question to answer: What kind of reliability tests should

be performed?

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

https://doi.org/10.1007/978-1-4842-8704-0_8
https://doi.org/10.1007/978-1-4842-8704-0_5

61

There could be several tests positioned here (not including functional ones),

depending on what you want to get out of it. In short, the following tests are common:

 – Performance testing: This is where your application gets validated

under user load and monitors its behavior. In relation to it, you could

find load testing or stress testing practices; performance testing

could combine both.

Load testing is mainly used for triggering scalability

under certain expected user loads (try to simulate possible

scenarios).

Stress testing is often used to validate the maximum

load an application or system can withstand before it

breaks (tries to find the system’s limits). Think of CPU

overclocking on gamers’ PCs, to find out what the maximum

performance is that can be reached by the computer under

heavy load and displaying optimal graphics.

 – Fault injection testing: This is the testing scenario where small faults

are getting introduced to identify the weakinesses of the application

architecture, or to bring it down. Fault injection is the basis of Chaos
Engineering, although it typically takes it further by combining

multiple failures and causing major outages. Easy scenarios here can

be bringing down a virtual machine in an Azure VM Scale Set or

Availability Set to see its impact, changing an access key to Azure

Storage to validate if your application falls back on the secondary

access key, changing the credentials of a Service Principal, discon-

necting disks, interrupting networking connectivity, and the like.

 – Disaster/recovery testing: This is probably the more complex of

testing. In this scenario, your test or production environment will be

restored from backup or data replication, typically in a completely

new environment. Services such as Azure Backup and Azure Site

Recovery (for virtual machines only) can be used here. The goal is to

validate if your backup and disaster recovery solution is adequate to

bring your production environment back up and running by relying

on a backup or recovery process. It helps confirm metrics like

Recovery Time Objective (RTO) and Recovery Point Objective (RPO)

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

62

defined for your solutions (covered in the next chapter). While this all

seems obvious, I do remember several scenarios where a customer

was running backup jobs, only to find out during an outage, nothing

was actually stored on backup tapes.

 Well-Architected Framework Assessment
You should have a very good understanding of reliability and resilience of application

architectures by now, as well as being able to identify how to thoroughly test your

applications against failures and prevent outages.

In this last part of the chapter, I want to take you back to the start of the process,

mapping out what level of Well-Architected Framework maturity your organization has.

Microsoft provides several different assessment tools and practices for you to go

through, where the Well-Architected Framework is only one of them.

The following assessments exist at this link: https://docs.microsoft.com/en- us/

assessments/ (see Figure 3-5):

 – App and Data Modernization Readiness Tool

 – Azure Landing Zone Review

 – Azure Well-Architected Review

 – Cloud Adoption Strategy Evaluator

 – Cloud Journey Tracker

 – Data Services – Well-Architected Review

 – Developer Velocity

 – DevOps Capability Assessment

 – Governance Benchmark

 – Microsoft Cloud for Healthcare Learner (Preview)

 – Power Platform Adoption Assessment

 – Strategic Migration Assessment and Readiness Tool

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

https://docs.microsoft.com/en-us/assessments/
https://docs.microsoft.com/en-us/assessments/

63

Figure 3-5. Microsoft assessments

I wish we had the time and page resources to discuss each of these, as several are

actually relevant to the scope of this book. But as you can imagine, I will walk you

through the Azure Well-Architected Review.

 1. Click the Azure Well-Architected Review from the available

assessments.

 2. Provide a descriptive name for the assessment or accept the

default one (see Figure 3-6).

Figure 3-6. Assessment name

 3. Click Start to continue and start the WAF assessment. The first

question covers the WAF Configuration, asking what workload you

want to evaluate. Select Core-Architected Review (see Figure 3-7).

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

64

Figure 3-7. Workload type

 4. Click Next. In the next question (see Figure 3-8), select the

Reliability pillar (although feel free to repeat the assessment for

the other WAF pillars as appropriate for your organization).

Figure 3-8. Evaluation options

 5. From here, you are presented with several more specific questions

(see Figure 3-9), where each question offers multiple choice

answers.

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

65

Figure 3-9. Assessment questionnaire

Each question provides a detailed description of the context, as well as multiple

answers to choose from. Make sure you can identify the most accurate answer(s) for

your specific scenario. The more accurate the answers given, the more useful the WAF

assessment outcomes will be for your organization.

Note You will be reminded of these recovery targets/metrics in Chapter 4.

 6. We recommend you not to try and skip any of the questions, as it

will obviously influence the accuracy of the results.

Note that for the ease of this chapter, we only copy the
remaining questions as a reference here, in case you want
to learn more about the WAF assessment for now, without
spending time on actually going through the assessment.

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

https://doi.org/10.1007/978-1-4842-8704-0_4

66

What reliability targets and metrics have you defined for your

application?

How have you ensured that your application architecture is resilient

to failures?

How have you ensured required capacity and services are available

in targeted regions?

How are you handling disaster recovery for this workload?

What decisions have been taken to ensure the application platform

meets your reliability requirements?

What decisions have been taken to ensure the data platform meets

your reliability requirements?

How does your application logic handle exceptions and errors?

What decisions have been taken to ensure networking and

connectivity meet your reliability requirements?

What reliability allowances for scalability and performance have

you made?

What reliability allowances for security have you made?

What reliability allowances for operations have you made?

How do you test the application to ensure it is fault tolerant?

How do you monitor and measure application health?

 7. After completing the assessment questions, a summary of

recommendations is presented (see Figure 3-10).

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

67

Figure 3-10. Assessment result

 8. There is also an overview of Next Steps (see Figure 3-11) to

improve the results (outcome depends on the answers you

provided).

Figure 3-11. Recommended actions

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

68

 9. Where for each of the Recommended actions, a link is provided

to the official Microsoft Docs, Well-Architected Framework

section. For example, the outcome of the “Perform a failure mode

analysis” recommendation refers to this Microsoft Docs article:

https://docs.microsoft.com/en- us/azure/architecture/

resiliency/failure- mode- analysis

 10. When you sign in with a Microsoft account, it is possible to store

the assessment details for later retrieval. This will also allow you to

go back and revise several of the questions, the answers, and how

they impact on your overall reliability of your Azure workloads.

 Summary
In this chapter, you were introduced to the Azure Well-Architected Framework. Microsoft

offers Azure customers and partners a set of guidelines, approached from five different

pillars: Reliability, Security, Cost Optimization, Performance, and Operation Excellence.

This chapter mainly focused on the Reliability pillar, detailing the best practices of

making your Azure-running workloads more reliable and resilient. After touching on

several aspects of the Well-Architected Framework concepts, we guided you through the

WAF assessment and how to interpret the outcome of the assessment.

Chapter 3 azure Well-arChiteCted FrameWork (WaF)

https://docs.microsoft.com/en-us/azure/architecture/resiliency/failure-mode-analysis
https://docs.microsoft.com/en-us/azure/architecture/resiliency/failure-mode-analysis

69

CHAPTER 4

Architecting Resilient
Solutions in Azure
While Chapter 3 reviews the main five pillars of Azure Well-Architected Framework,

with a focus on the reliability pillar, on a conceptual way, this chapter focuses on the

resiliency topic in a more practical way. It shows the main features Azure offers to make

your solutions more resilient.

By the end of this chapter, you should be able to understand the following:

• What is resiliency

• Resiliency on Azure

• Availability sets

• Availability zones

• Region pairs

• Resiliency based on numbers

• Resiliency on application design

• Mainly used Azure components and features for resiliency

• Resilient architecture examples

• IaaS, PaaS/Serverless, and Microservices

 What Is Resiliency?
Nowadays, everyone expects applications to be available 24/7 with instant access to their

services. The previous chapter defined a reliable service as a solution that minimizes

© Unai Huete Beloki 2022
U. H. Beloki, The Art of Site Reliability Engineering (SRE) with Azure,
https://doi.org/10.1007/978-1-4842-8704-0_4

https://doi.org/10.1007/978-1-4842-8704-0_3
https://doi.org/10.1007/978-1-4842-8704-0_4#DOI

70

downtime. Trying to achieve no incidents is an impossible task in cloud environments

due to their complexity: dependency on external components, distributed systems

cascade issues across components, hardware failures that cannot be avoided, etc.

As a result, a shift of mindset is needed. Temporary or large-scale failures should be

expected, and solutions should be designed to recover from them. You need to design

resilient architectures, resiliency defined as “the ability to recover from failures.”

Previous chapters mentioned Dickerson’s hierarchy of reliability as a base of practices

to include on your day-to-day SRE activities. There is no directly linked topic on the

pyramid related to resiliency; “capacity planning” would be the closest one, but it is

mainly related to scalability, just one of the scenarios covered in this chapter. Personally,

I would consider architecture design as the base of the pyramid (see Figure 4-1), putting

together ideas covered in both Chapters 3 and 4, as this is an activity you can execute

from the very beginning of a solutions life cycle (planning/design phase).

Figure 4-1. Customized hierarchy of reliability

Resiliency practices should be applied at many levels of your architecture, like

retrying mechanisms on your application code or global replicas for your data stores. In

other words, building resilient architectures is everyone’s responsibility. It is critical

to fully understand the cloud platform before digging deeper into the topic. Chapter 3

was focused on explaining the basic pillars of the Azure Well-Architected Framework.

This chapter will focus on practical examples and deeper details of the reliability pillar.

Let’s review some important aspects of Azure-provided services by analyzing the nature

of Azure cloud platform.

Chapter 4 arChiteCting resilient solutions in azure

https://doi.org/10.1007/978-1-4842-8704-0_3
https://doi.org/10.1007/978-1-4842-8704-0_4
https://doi.org/10.1007/978-1-4842-8704-0_3

71

 Azure Platform Resiliency
If we try to explain the Azure cloud platform in a simplistic way, Azure is composed of

the following elements:

• Geographical regions offered to customers

• Data centers composing those regions

• Racks grouping physical server and storage resources used for the

offered cloud services

Microsoft is running physical servers in the data centers; these ones may fail too!

Take a virtual tour of the data center here: https://news.microsoft.com/stories/

microsoft-datacenter-tour/. The good news is that Microsoft will offer you options

you can easily implement to protect against them. What kind of issues? Mainly two:

updates and hardware-related ones. These bring two important concepts to mind (see

Figure 4-2).

Figure 4-2. Update and fault domains

Chapter 4 arChiteCting resilient solutions in azure

https://news.microsoft.com/stories/microsoft-datacenter-tour/
https://news.microsoft.com/stories/microsoft-datacenter-tour/

72

• Fault domain: A group of hardware components with a single point

of failure (power or network). For example, if a rack fails, all server/

storage (and services running on them) would fail with it.

• Update domain: A group of machines that are updated on the same

cycle and cause problems in case it doesn’t go the expected way.

Azure platform will offer the following setups to overcome platform-related issues.

 Availability Sets

They are an offering mainly related to Azure VMs, but services based on VMs like AKS

and VMSS also offer them. They are a logical grouping of two or more VMs hosted in a

way to provide higher availability. Two VMs on the same availability set (with two fault

domains and two update domains) will be placed in a way where no updates of hardware

failures will affect both at the same time (see Figure 4-3). Each availability set can be set

up with a maximum of 3 fault domains and 20 update domains. Azure never updates two

update domains at the same time, so you may want to go for a lower number than 20 (the

maximum). Imagine your web solution will be running in ten instances and you need

to have at least eight running while performing upgrades the fastest way possible. How

many update domains would you need? The answer is five; machines would be placed

the following way, only two being unavailable during updates: UD0 (VM1, VM6), UD1

(VM2, VM7), UD2 (VM3, VM8), UD3(VM4, VM9), and UD4(VM5, VM10).

Chapter 4 arChiteCting resilient solutions in azure

73

Figure 4-3. Availability set

 Availability Zones

While availability sets let you protect against update and hardware-related issues,

Availability zones take another step; they place your VMs in different data centers within

the same regions, protecting your workloads against data center downtimes. Also known

as zone redundancy, each zone has a distinct power source, network, and cooling

system, highly connected between them, offering a latency of less than 2ms between

zones. Proximity Placement Groups can be leveraged to offer even lower latencies.

 Region Pairs and Azure Site Recovery

Previous options could give you SLAs up to 99.99% (https://azure.microsoft.com/

en-us/support/legal/sla/virtual-machines/v1_9/), but what about regional disaster?

You can leverage Azure VMs deployed in multiple regions together with storage

solutions like geo-redundant storage (GRS) for storage accounts to ensure business

continuity. You can use Azure Site Recovery for it.

For regional replication, try to leverage Azure region pairs. Each region is paired

with another region within the same geography, prioritizing one in case of broad outages

and never updating services in both regions at the same time to avoid downtime.

Normally, region pairs are placed in the same geography to meet data residency

requirements. For example, East US-West US or North Europe-West Europe. You can see

Chapter 4 arChiteCting resilient solutions in azure

https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_9/
https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_9/

74

the full list here: https://docs.microsoft.com/en-us/azure/availability-zones/

cross-region-replication-azure#azure-cross-region-replication-pairings-for-

all-geographies

 Resiliency Based in Numbers
There will always be a trade-off between the level of resilience desired and the budget

assigned to the solution. As an SRE, your job is to define the resilience requirements to

have an estimation of the budget needed to achieve your business goals.

Recall that Chapter 2 explained the most frequently used service-level metrics: SLI,

SLO, and SLA (SLI being the tracked indicator, SLO being the objective defined for it, and

SLA being the contract agreement signed with your customers).

If the SLA provided to our customers is 99.95% (21.6 minutes downtime per month),

your workloads should be designed to always keep the SLI indicators above those

numbers (normally defining a more demanding SLO for your teams, SLO>SLA, making

sure there is some error budget before contract is violated).

Look at the related downtimes for the SLAs shown in Table 4-1.

The table clearly shows that for demanding SLAs, you cannot rely on fixing issues

manually. You need to provide efficient incident-resolving and self-healing solutions.

Normally, SLAs are not only defined for the architectural availability perspective;

when defining SLOs on your solution, you do it from the customer perspective (customer

experience). For example, for an e-commerce website, you could define the following

SLO: “for the payment API, customers should get 99.9% of successful transactions during

the last 30 days.” These metrics are not only affected by the architectural/infrastructure

components (e.g., zone and regional replicas) resulting in a composite SLA (as seen

in Chapter 2); how your application code handles those transactions (e.g., using retry

mechanisms) will also be critical to the success.

Table 4-1. SLA/downtime

SLA Downtime per week Downtime per month Downtime per year

99% 1.68 hours 7.2 hours 3.65 days

99.9% 10.1 minutes 43.2 minutes 8.76 hours

99.99% 1.01 minutes 4.32 minutes 52.56 minutes

Chapter 4 arChiteCting resilient solutions in azure

https://docs.microsoft.com/en-us/azure/availability-zones/cross-region-replication-azure#azure-cross-region-replication-pairings-for-all-geographies
https://docs.microsoft.com/en-us/azure/availability-zones/cross-region-replication-azure#azure-cross-region-replication-pairings-for-all-geographies
https://docs.microsoft.com/en-us/azure/availability-zones/cross-region-replication-azure#azure-cross-region-replication-pairings-for-all-geographies
https://doi.org/10.1007/978-1-4842-8704-0_2
https://doi.org/10.1007/978-1-4842-8704-0_2

75

Decomposing critical and noncritical workloads will be a recommended exercise

for your organization; many use tiers to logically separate workload requirements. Most

probably not all workloads will have the highest resiliency needs and need for expensive

globally replicated solutions. It is obvious if we say that an e-commerce website (money

income) will not have the same requirements (tier) as the internally used HR website.

There are also two recovery metrics frequently used to define the requirements for

workloads:

• Recovery Time Objective (RTO): Maximum time application/

service can be unavailable after incidents.

• Recovery Point Objective (RPO): Maximum duration of data loss

during a disaster.

These metrics will help you shape your needs in terms of resiliency of your solutions.

RPO is focused more on data loss (prevented by data replication/backups/point-in-

time restores), while RTO is more focused on availability (prevented by zone/regionally

replicated services). For example, for RPO objectives, Azure VM disks recovery points

can be created frequently by using Site Recovery offering.

Recall that Chapter 2 also covered the importance of availability metrics like MTTR,

MTTF, and MTBF. In the previous case, if your Mean Time to Recover (MTTR) metric

exceeds RTO, that could cause dangerous business disruption (money compensation

defined in contracts) as it would not meet the promised restoring time (RTO).

When defining tiers for your workloads, your tiers will have SLA, RPO, and RTO

metrics defined for each. For example, Microsoft for Azure SQL databases using zone

redundancy offers an SLA of 99.995%, an RTO of 30 seconds, and an RPO of 5 seconds,

giving you back 100% credit if SLA is not met! (https://azure.microsoft.com/en-in/

blog/understanding-and-leveraging-azure-sql-database-sla/#:~:text=That%20

SLA%20comes%20with%20very%20strong%20guarantees%20of,in%20the%20

industry%20offering%20a%20business%20continuity%20SLA).

It is also important to remember the shared responsibility model (see Figure 4-4).

On every cloud platform, depending on the selected offering, the provider will be

responsible for certain layers of the solution, while others will be your responsibility,

compared to on-premises solutions where full responsibility falls on the customer.

Resiliency requirements will also depend on the chosen model: IaaS, PaaS, or SaaS. For

example, for an Azure VM (IaaS), you will need to define the replication options

mentioned before (availability sets/zones or global replicas), whereas for Azure DevOps

(SaaS), the resiliency of the solution is taken care of by Microsoft.

Chapter 4 arChiteCting resilient solutions in azure

https://doi.org/10.1007/978-1-4842-8704-0_2
https://azure.microsoft.com/en-in/blog/understanding-and-leveraging-azure-sql-database-sla/#:~:text=That SLA comes with very strong guarantees of,in the industry offering a business continuity SLA
https://azure.microsoft.com/en-in/blog/understanding-and-leveraging-azure-sql-database-sla/#:~:text=That SLA comes with very strong guarantees of,in the industry offering a business continuity SLA
https://azure.microsoft.com/en-in/blog/understanding-and-leveraging-azure-sql-database-sla/#:~:text=That SLA comes with very strong guarantees of,in the industry offering a business continuity SLA
https://azure.microsoft.com/en-in/blog/understanding-and-leveraging-azure-sql-database-sla/#:~:text=That SLA comes with very strong guarantees of,in the industry offering a business continuity SLA

76

Figure 4-4. Shared responsibility model

 Resiliency on Application Design
Most times, when thinking about resiliency, people tend to think of ways to replicate

data or add redundancy to infrastructure components. But what about application

architecture? Incidents could happen at any layer of your solution.

Showing how to design application architecture is not the aim of the book, but as

an SRE in an organization, you should make developers aware of this responsibility

and encourage them to implement application patterns like the ones mentioned in the

following:

• Retry/circuit breaker pattern: Complex architectures are composed

of multiple dependencies. The microservices running your solution

may need to be calling external dependencies constantly, and

transient issues are common. Your application should be able to

handle those transient issues by implementing retry mechanisms.

For example, if a service needs to call Azure Cosmos DB to read

some objects and the reply you get is HTTP 429 (throttled request,

not enough capacity), it may work retrying after a delay. If a reply like

HTTP 401 authorized is received after the first call, retrying without

changing the authentication properties may not get you the answer.

Chapter 4 arChiteCting resilient solutions in azure

77

• Retry mechanisms should evaluate the response codes and

implement retry operations for codes that reflect temporary issues.

Implement timeouts to avoid blocking operations. Circuit breakers

will avoid executing calls that are likely to fail (open circuit), testing

out the endpoint after a delay and reclosing if successful

• Many built-in libraries support retry mechanisms: https://docs.

microsoft.com/en-us/dotnet/architecture/cloud-native/

infrastructure-resiliency-azure#built-in-retry-in-services.

• Endpoint monitoring: Use functional check to evaluate the health

of services offered and needed by other parts of your solution.

Kubernetes, for example, restarts pods based on health probes:

https://kubernetes.io/docs/tasks/configure-pod-container/

configure-liveness-readiness-startup-probes/. Azure load

balancers (many of them covered later) can also distribute traffic

based on the health of endpoints.

• Queue based, publisher/subscriber pattern: Components of the

system should use asynchronous communication based on queues;

it will help in load leveling (a producer faster than a consumer)

and also in making sure messages are correctly processed by the

consumer (e.g., using “peek and lock” mechanism used by Azure

Service Bus queue, you can make sure the message is correctly

processed before deleting).

• Throttling: It is a pattern to make sure clients only are allowed to use

resources up to a limit, limiting the autoscaling up to some point. For

example, hosting your APIs behind Azure API Management will let

your apply throttling limits using policies.

• Idempotent task: Duplicated tasks should produce the same result.

If a consumer is executed the same task, it should not lead to invalid

results.

• Fail back to different services: For example, if your application is

trying to store some data in Azure SQL and after some retries, it does

not work, keep it temporarily in an Azure Cache for Redis (providing

a replay for later writes).

Chapter 4 arChiteCting resilient solutions in azure

https://docs.microsoft.com/en-us/dotnet/architecture/cloud-native/infrastructure-resiliency-azure#built-in-retry-in-services
https://docs.microsoft.com/en-us/dotnet/architecture/cloud-native/infrastructure-resiliency-azure#built-in-retry-in-services
https://docs.microsoft.com/en-us/dotnet/architecture/cloud-native/infrastructure-resiliency-azure#built-in-retry-in-services
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

78

• Avoid affinity: Avoid “sticky sessions,” as they may give problems in

dynamic environments like the autoscaled solutions mentioned. Use

services like Azure Cache for Redis to persist state.

• And many more that can be found, for example, here: https://docs.

microsoft.com/en-us/azure/architecture/patterns/.

 Mainly Used Components/Platform Features
for Resilient Solutions
Before checking some resilient architecture examples, it may be helpful to review the

most frequently used Azure platform resiliency features and services. Most resilient

architectures will share these capabilities; responsibilities will vary depending on what

solution types you choose (IaaS, PaaS, or SaaS).

 Autoscaling

It is one of the most obvious measures you think about when trying to increase

resiliency. There are two ways to scale services:

• Vertical scaling (up/down): Related to changing the capacity of the

chosen resource, or simply put, changing the chosen pricing tier. For

example, scaling up an Azure App Service Plan for B1 to S1. It often

makes your solution unavailable!

• Horizontal scaling (out/in): Means adding or removing instance

replicas. This is the scaling mode used by autoscaling services. It is

mainly related to computing resources.

Autoscaling allows you to set up the correct amount of resource instances based on

collected metrics/schedule. But it varies across resource types. Resources like Virtual

Machine Scale Sets (VMSS) or App Service Plans let you define the minimum/maximum

number of instances to run based on rules.

Other resources like Cosmos DB or Event Hub (auto-inflate) offer autoscaling

options where rules are not chosen/defined (they are managed by the platform);

only a maximum number of resources are defined (RU/s for Cosmos DB and TU for

Event Hubs).

Chapter 4 arChiteCting resilient solutions in azure

https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/

79

Azure Monitor (covered in Chapter 7) also offers a unified experience where all

“scalable” (horizontal scaling) resources are shown, giving you the option to set up rules

and monitor instance count (see Figure 4-5).

Figure 4-5. Azure Monitor autoscale

 Load Balancer

Traffic load balancers are critical resources in resilient architectures. They give you the

capability to distribute traffic across those regional (and cross-regional) replicas.

Many PaaS services such as Azure App Services implement a load balancer that does

not need to be configured. Azure platform takes care of load balancing based on the

autoscaling rules. For example, for an Azure App Service called SREUnaiWebapp, a client

would use a URL of https://SREUnaiWebapp.azurewebsites.net to call it, without

bothering if one App Service Plan instance or multiple are used in the background.

App Services even give you the option to distribute traffic balancing to slots, without

requiring managing a load balancer as such.

Chapter 4 arChiteCting resilient solutions in azure

https://doi.org/10.1007/978-1-4842-8704-0_7
https://sreunaiwebapp.azurewebsites.net

80

When you want to have control over the load-balancing techniques that should be

applied, Azure offers the following four load-balancing services:

• Application Gateway

• Front Door

• Load Balancer

• Traffic Manager

The easiest way to categorize these services is by two dimensions: global/regional

and HTTP(S)/non-HTTP(S) (see Table 4-2).

The portal also offers a section based on a questionnaire (see Figure 4-6) that

provides a recommended service. Additionally, a more complete comparison table is

provided.

Table 4-2. Azure load-balancing services

Service Global/regional Protocols

Azure Front Door global http(s)

Traffic Manager global non-http(s)

Application Gateway regional http(s)

Azure Load Balancer regional* (cross-regional in preview) non-http(s)

Chapter 4 arChiteCting resilient solutions in azure

81

Figure 4-6. Azure portal helper

As mentioned before, resilient architecture will frequently use the mentioned

services to load-balance traffic across the deployed regional and cross-regional replicas,

keeping track of the health of those endpoints for failover scenarios.

It is important to point out that your load balancer could also fail, leaving your

replicated solution “useless.” Review the SLA offered by the load balancer service and

determine if you may need to add another load balancer instance/solution as a failback,

updating CNAME records in DNS when failing.

Chapter 4 arChiteCting resilient solutions in azure

82

 Replication/Redundancy

The Azure platform offers many ways to create redundant workloads, which vary

depending on the service chosen. Remember from the first sections in the chapter,

replicas can be running in different data centers by choosing availability zone features.

Some services, mainly data-related ones, offer geo-redundancy features.

For example, when working with Azure App Services, the default experience places

the App Service Plan VMs in a single zone. Optionally (available for premium plan v2

and v3), availability zone features can be enabled, distributing the VM instances across

three zones in a selected region. In this case, geo-redundancy would have to be managed

by the customer, placing one solution in each region and leveraging the previously

mentioned load balancer.

Other data solutions like Azure Cosmos DB or Azure SQL provide geo-redundancy

that can be set up easily with a “few clicks.”

When deploying solutions across regions, which may considerably increase costs,

you will need to choose an active-active or active-passive configuration, depending on

your defined RTO:

• Active-active: Both regions’ active and load-balancing requests.

• Active-passive (hot standby): Traffic is sent to the active region but

secondary has allocated instances in case it needs to get requests.

• Active-passive (cold standby): Traffic sent to the active region and

secondary regions’ instances not allocated until failover is needed. It

decreases costs but increases recovery time.

 Resilient Architecture Examples
To provide practical ideas for the concepts explained previously, this section will provide

some resilient architecture examples (focused mainly on infrastructure design) for

different types of workloads grouped by different categories: IaaS, PaaS/Serverless, and

Microservices.

Chapter 4 arChiteCting resilient solutions in azure

83

 IaaS Resilient Architecture

Let’s imagine the following IaaS-based scenario (see Figure 4-7). Let’s analyze the

components that make this architecture resilient:

• Azure Virtual Machines: The VMs in these solutions use the

following capabilities:

• Multiregion: The solution leverages multiple regions. Choosing

region pairs is recommended. Azure Site Recovery lets you

replicate VMs to another region.

• Availability zone: Provides protection against data center

failures.

• Virtual Machine Scale Set (VMSS): Can be used to autoscale

your VM instances based on metrics or schedule.

• SQL server in VMs: Leverage Always On Availability Groups

for database mirroring. It provides high availability and disaster

recovery. VNET peering is needed for replicas hosted in different

regions (addresses should not overlap).

• Azure Traffic Manager: You can implement either active-active or

active-passive scenarios and use this service to load traffic. On this

example, you could use priority-based traffic routing for primary

and secondary regions. Health probes can be used to monitor each

regional solution and failover automatically. The example does not

use a backup solution for Traffic Manager; consider setting another

load-balancing instance based on SLA and RTO metrics, changing

the CNAME records in Azure DNS when failing.

• Azure Load Balancer: External (public) load balancer is used to

distribute traffic to the front-end VMSS and internal (private) load

balancer for the SQL back end.

Chapter 4 arChiteCting resilient solutions in azure

84

Web (VMSS + Availability
Zone)

SQL Always On

Traffic Manager

Primary region

Secondary region

PeeringSite Recovery
Internet

Azure DNS

Figure 4-7. IaaS resilient architecture

 PaaS Resilient Architecture
When moving from on-premises solutions to cloud, most organizations start moving

their workloads to IaaS solutions, as they offer a more familiar way to manage their

solutions and lift-shifting on-premises VM images to the cloud seems more natural. But

the “real” power of cloud providers resides on PaaS/Serverless offerings, as the provider

takes care of more responsibility layers, offering easier ways to create resilient solutions.

Let’s decompose the following architecture example (see Figure 4-8):

• Azure WebApp/App Service: Confusing for many, WebApp=App

Service. The service is composed of an App Service Plan (underlaying

VM) and the App Services hosted inside. An App Service Plan offers

99.95% of SLA (except for Free and Shared Tiers). Autoscaling

rules should be defined to adjust instances to the load the WebApp

Chapter 4 arChiteCting resilient solutions in azure

85

receives. Default autoscaling rules changes the number of App

Service Plan instances, per app scaling could be defined if only

selected WebApps should be affected. The proposed solution deploys

the service in two regions for increased availability.

• Azure Service Bus: This is a premium messaging service offered by

Azure. A Service Bus namespace can use an availability zone for even

data center failures, and it also offers geo-disaster recovery for almost

instantaneous failover (it does not replicate existing messages; for

active-active configurations, check this guidance: https://docs.

microsoft.com/en-us/azure/service-bus-messaging/service-

bus-federation-overview). In this solution, the Web APIs delegate

background tasks to the Azure Functions, and the queue helps in

load leveling.

• Azure Functions Apps: This is a serverless service used to run

“pieces of code,” letting Microsoft handle the rest, infrastructure

setup, maintenance, and scaling. It offers three main hosting options:

Consumption, Premium, and Dedicated (using an App Service

Plan). Premium and Dedicated are the only options offering zone

redundancy (data center failure protection). With the Premium

option, the solution will also automatically scale (no rules needed).

The example shown deploys our Function Apps in two regions for

higher availability.

• Azure Cosmos DB: This is a fully managed NoSQL database. The

SLA offered by the service can go up to 99.999% for multiregion (with

writes) and availability zones setups. It offers an easy experience to

set up multiple global replicas that can be used for both reads and

writes. The service can be set up to automatically scale based on load.

When using Cosmos DB with availability zones, it provides RTO=0

and RPO=0 even in zone outages!

• Azure Cache for Redis: This is an in-memory data store offered

by Azure that is based on Redis open source software. Moving your

Redis solutions has many advantages in terms of maintenance,

scalability, and high availability. It is offered on multiple tiers and

memory sizes, being the Premium and Enterprise ones, the ones

Chapter 4 arChiteCting resilient solutions in azure

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-federation-overview
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-federation-overview
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-federation-overview

86

offering geo-replication and zone redundancy for higher availability.

In this solution, it provides a faster mechanism to read database

objects (cached data), offloading repetitive activity like frequent

queries against the Cosmos DB, and it could also be used as a backup

in case Cosmos DB writes do not work temporarily (will need to

implement some rewrite mechanisms).

• Azure Front Door: This is the load-balancing solution chosen for

this example. It also offers CDN capabilities to cache web static

content that increases performance and protects websites from

threats using the Web Application Firewall (WAF) feature. Similarly

to the previous example, based on RTO/SLAs, duplicated load-

balancing solutions could be set up, changing DNS when failed over

to backup.

Internet

Azure DNS Azure Front
Door

Primary region

Azure Cache
For Redis

Azure App
Service

Web app

Geo
replication

Azure
Functions

Azure
Cosmos DB

Secondary region

Azure Cache
For Redis

Azure App
Service

Web app

Azure
Functions

Azure
Cosmos DB

Service Bus
Queue

Service Bus
Queue

Figure 4-8. PaaS/Serverless resilient architecture

 Microservices Architecture
Complex architectures designed nowadays usually encapsulate business logic using

microservices. Cloud Native Applications have gained popularity, and there are many

solutions offered in the IT space, Docker being the most popular one for containerizing

those services and Kubernetes being the most famous orchestrator in the market. Most

of you would expect to see a Kubernetes-based architecture in this example, but I am

Chapter 4 arChiteCting resilient solutions in azure

87

going to take another step. During the last months of 2021, Microsoft announced a new

service called Azure Container Apps (https://docs.microsoft.com/en-us/azure/
container-apps/overview). Azure Container Apps significantly reduces the complexity

brought by solutions based on technologies like Kubernetes. It lets you forget about

the underlying VMs and orchestrator and simplifies the cluster configuration, making

it easier to update hosted microservices, define networking properties, or design

autoscalable workloads.

Let’s decompose the architecture shown in Figure 4-9.

Internet

Azure DNS Azure Front
Door

App Configura�on

Microservice 1

Container Environment – Region 1

Microservice 2

Microservice 3 Microservice 4

Azure
Cosmos DB

Azure Key Vault

Container Apps

Container Apps Container Apps

Container Apps

Container Registry

Microservice 1

Container Environment – Region 1

Microservice 2

Microservice 3 Microservice 4

Azure
Cosmos DB

Azure Key Vault

Container Apps

Container Apps Container Apps

Container Apps

App Configura�on

Geo-Replica�on

Figure 4-9. Microservices resilient architecture

• Azure Container Apps: As mentioned before, this service not only

simplifies working on Kubernetes-based solutions by providing

an infrastructure management layer (done by Azure Kubernetes

Service – AKS) but also takes care of the Kubernetes configuration to

apply: deployment and update of containers, networking properties,

scaling, or secret management. No Kubernetes manifest files are

needed; all can be done from ARM/Bicep files.

Chapter 4 arChiteCting resilient solutions in azure

https://docs.microsoft.com/en-us/azure/container-apps/overview
https://docs.microsoft.com/en-us/azure/container-apps/overview

88

• Environment: Isolation boundary around a collection of

container apps. Apps in different environments do not share

resources (computing and networking) and cannot communicate

with each other using DAPR. It takes care of the VNET setup

(external/internal), but it also allows to use existing VNETs.

• Container App: This manages orchestration details for you

(connection to container registry, container image to use, secrets,

or traffic distribution). For scalability, it supports automatic scaling

rules based on HTTP request, CPU/memory usage, or event-based

rules using KEDA scalers. Health probes are also supported.

• Azure Cosmos DB: Explained in the previous section. It supports

zone redundancy and geo-replication.

• Azure Container Registry (ACR): This is used for keeping the

container images created by your Dev teams (using DevOps tools as

shown in Chapter 5) and distributing those images (and updates)

to the target environments, in this case, Azure Container Apps. The

service also supports zone redundancy and geo-replication for

higher resiliency and availability (only for Premium tier).

• Azure App Configuration: This is a service for centralizing

configuration settings and being able to dynamically change

application behavior without needing to restart/redeploy. It is also

used for Feature Flags (covered in Chapter 5). The solution does not

offer geo-replication, but you can deploy two instances (one in each

region) and automatically sync both replicas using Azure Functions

and Azure Event Grid: https://docs.microsoft.com/en-us/azure/

azure-app-configuration/howto-backup-config-store.

• Azure Key Vault: This is the best place for securely storing and

accessing secrets like passwords, certificates, or cryptographic keys.

Key Vault content is automatically (no setup) replicated within the

region and also in the Azure region pair. The service automatically

fails over to another local or regional replica when an instance fails.

• Azure Front Door and Azure DNS: Covered previously, this is one of

the load balancers that could be used.

Chapter 4 arChiteCting resilient solutions in azure

https://doi.org/10.1007/978-1-4842-8704-0_5
https://doi.org/10.1007/978-1-4842-8704-0_5
https://docs.microsoft.com/en-us/azure/azure-app-configuration/howto-backup-config-store
https://docs.microsoft.com/en-us/azure/azure-app-configuration/howto-backup-config-store

89

 Testing Resiliency on Azure
The focus of the chapter was explaining the main ideas to design resilient architectures

on Azure. But as you may imagine, resiliency and availability are not proven until tested.

Remember, availability ensures uptime and resiliency measures how quickly your

solution recovers.

Testing should happen on a regular basis; nothing should be just assumed. You

don´t want to have surprises on your production workloads.

The last chapter of the book will focus on showing some of the latest (both preview

at the moment) Azure tools for resiliency testing: Azure Chaos Studio and Azure Load

Testing.

 Summary
This chapter focused on explaining resiliency concepts based on Azure as the cloud

provider. It covered the main resiliency patterns to include on both your infrastructure

and application design, focusing mainly on infrastructure capabilities offered by Azure.

In addition, it covered the most frequently used recovery and resiliency metrics,

which should be aligned with your business requirements.

Finally, it showed some architecture examples based on different service categories

like IaaS, PaaS/Serverless, and Microservices.

Chapter 4 arChiteCting resilient solutions in azure

91

CHAPTER 5

Automation to Enable
SRE with GitHub Actions/
Azure DevOps/Azure
Automation
In this chapter, I will focus on the fourth pillar of Dickerson’s hierarchy of reliability:

automation (releases/testing). It will be a topic where SREs will need to work hand

in hand with DevOps engineers in the organization. DevOps engineers will focus on

continuous experimentation, whereas SREs will focus on the reliability of the solution,

both by using shared tools and practices.

By the end of this chapter, you should be able to understand the following:

 3 What is DevOps and main concepts

• CI and CD

• Infrastructure and Configuration as Code

• Shift-left testing

• Secure DevOps

 3 Basics of GitHub Actions and Azure DevOps

 3 Modern deployment practices and tools

© Unai Huete Beloki 2022
U. H. Beloki, The Art of Site Reliability Engineering (SRE) with Azure,
https://doi.org/10.1007/978-1-4842-8704-0_5

https://doi.org/10.1007/978-1-4842-8704-0_5#DOI

92

 Automation for SRE
This chapter will be covering the most important automation-related practices you

need to at least “understand” as an SRE. Why such an emphasis on “understanding”?

As discussed in the first chapter, DevOps and SRE practices sometimes do overlap, as

this is the practice where the overlap happens more often. Your responsibilities as an

SRE will vary from understanding to advising (or fully implementing) these automation

approaches depending on your organization.

Organizations that are mature on DevOps practices will probably need the help of an

SRE to focus more on the reliability of the releasing process (more complete automated

testing approach or better deployment practices). On the other hand, nonmature

DevOps organizations will require more help from the SRE of automation practices.

Remember, this chapter will mainly focus on the testing/releasing pillar of

Dickerson’s hierarchy of reliability (see Figure 5-1).

UX

Development

Capacity Planning

Test/Release processes

Blameless Postmortems

Incident Response

Monitoring

Figure 5-1. Dickerson’s hierarchy of reliability

This chapter will focus on the three main areas of automation:

• CI/CD DevOps processes: How are the changes continuously built,

tested (functional testing, quality, and security), and deployed to our

services

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

93

• Operational/desired state automation: Covering options for

executing runbooks and managing the desired state of virtual

machines

• Modern deployment practices: Which will provide experimentation

tools to DevOps teams as well as zero-downtime deployments (and

more control) to SREs

 CI/CD Automation with DevOps
 What Is DevOps
DevOps has been one of the hottest topics in the last years. Development practices have

been slowly moving from monthly (even yearly) releases to a few weeks. Even more, after

all those months of effort, many times teams struggled by not meeting user expectations.

Deployment of new code was “painful.”

Scrum, Agile, Kanban, and similar methodologies have completely shifted the way

you develop software, enabling engineering teams to add incremental value very rapidly.

In order to be able to deploy value to our product before the competition, you need a

new way of deploying code changes.

DevOps shows us there is a better/faster/more reliable way of building/testing/

deploying our code changes.

 Continuous Integration (CI)

Continuous Integration is the process that focuses on validation of code changes. Every

time a change (new experimentation) is applied to your source code, you build, test

(mainly unit testing at this point), and publish new code artifacts.

One of the pillars of Continuous Integration is your Version control (or Version

Control) setup, defining the way we track and manage changes to software code.

Choosing a proper branching strategy will be the key to experiment faster in a controlled

way and move your proposed changes forward to more stable branches (and using CI/

CD ➤ automatically deploy for validating in different environments).

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

94

Even if Source Control and Continuous Integration have been popular practices

for developers and application code, nowadays, many IT professionals are encouraged

to work with them. Any aspect that defines your running solution is encouraged to use

Version Control and CI practices, for example:

• Application code

• Infrastructure

• Configuration

• Documentation

• Pipelines (mainly YAML)

Any change applied to any of these components could modify (or even break) your

running solutions. Having a proper version control architecture is the key to experiment

faster in a controlled way, with the help of version control technologies like Git and CI

systems like Azure DevOps and GitHub.

 Continuous Delivery/Deployment (CD)

CD is the process focused on deployment practices and later testing practices like

integration tests, UI testing, E2E testing, performance testing, etc. But what does CD

really stand for?

One of the first question I used to ask my customers during their DevOps

transformation was the following:

“Are you looking forward to implement CD practices?”

Of course, the answer was mostly “Yes.” Then, my next question was the following:

“Do you want to implement Continuous Deployment or Continuous Delivery?”

A confused expression crossed their face. I am sure many were thinking “Isn’t it the

same?” The answer is “No.” Let’s take the simple example shown in Figure 5-2.

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

95

Figure 5-2. Continuous Delivery vs. Deployment

• Continuous Delivery: The process that takes care of deploying newly

created artifacts (mainly CI outcome) to desired environments. It will

include some manual step in the process before the code change

reaches the Production environment.

• Continuous Deployment: Full automation from a code change

(commit) to production. It is more demanding as you will need to

have proper automated testing mechanisms (unit, integration, UI

tests, etc.) and modern releasing strategies in order to make sure

code changes reach production work properly.

Warning Some organizations/teams switch the definition of these practices,
making Continuous Delivery the full automation one. the most important outcome
from this topic should be the following:

• Document the definition for your team/organization (common

understanding).

• Clearly define the objective, as you have seen, going for the full

automation will be more demanding.

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

96

 Shift-Left Testing in DevOps

Testing is a huge topic inside DevOps practices. Dickerson’s hierarchy of reliability

mentions testing as one of the pillars for obvious reasons: it ensures code works as

expected. Testing helps us identify bugs on our code before deploying it to production.

Then, what is “shift-left testing”?

Shift-left testing means moving your testing efforts earlier on the life cycle, writing

your test at the lowest level possible. Why? The following are the main reasons:

• The lower the level of the test ➤ the lower the impact (a bug is found

earlier).

• Lower-level tests are more stable and run faster, the easiest way to get

feedback around new functionality.

• Most testing is done before merging changes with the “main” branch.

A research from Ponemon Institute shows that early found vulnerabilities cost an

average of $80, compared to an average of $7600 in Production. These numbers indicate

the power of investing your testing efforts in unit/integration testing, rather than huge

manual testing suites by the end of the life cycle (not fitting properly within fast-paced

Agile/Scrum teams).

Take a look at the shift-left testing transformation taken by the Azure DevOps

product team at Microsoft: https://docs.microsoft.com/en-us/devops/develop/

shift-left-make-testing-fast-reliable#a-case-study-in-shifting-left.

Your team will need to define a proper testing taxonomy that specifies the right types

of test to use in each scenario (CI/CD pipeline), based on dependencies or running time

required. Take a look at this example taxonomy: https://docs.microsoft.com/en-us/

devops/develop/shift-left-make-testing-fast-reliable#test-taxonomy.

Now let’s take a look at two different services you can use for fulfilling your CI/

CD needs.

 Secure DevOps

Secure DevOps (also called Rugged DevOps or DevSecOps) is a practice that ensures

security activities will be implemented through the full life cycle of your application.

It focuses on bringing security practices the earliest possible on the life cycle of your

solutions (shift-left security).

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://docs.microsoft.com/en-us/devops/develop/shift-left-make-testing-fast-reliable#a-case-study-in-shifting-left
https://docs.microsoft.com/en-us/devops/develop/shift-left-make-testing-fast-reliable#a-case-study-in-shifting-left
https://docs.microsoft.com/en-us/devops/develop/shift-left-make-testing-fast-reliable#test-taxonomy
https://docs.microsoft.com/en-us/devops/develop/shift-left-make-testing-fast-reliable#test-taxonomy

97

As a Site Reliability Engineer, this should be a practice you have to understand

and encourage. In the end, catching vulnerabilities before they reach production will

increase the reliability of our solutions, and that is something you need to fight for.

There are many different practices related to Secure DevOps; here, I include some

of them:

• Thread modelling: An activity where the architecture of your

solution is drawn and potential thread is analyzed, mitigated, and

validated. It can be run from the planning phase; your solution

could even be in the design phase (not even existing yet). Microsoft

offers a free thread modelling tool: www.microsoft.com/en-us/

securityengineering/sdl/threatmodeling

• Automation-related tools:

• CI: During continuous integration, two main types of tools can

be used:

• Software Composition Analyzers (SCA): Will help in

analyzing vulnerabilities and licensing restriction (for

open source components) related to the libraries used by

your application code (NuGet, Maven, npm, etc.). Tools

like WhiteSource and Dependabot can be used with Azure

DevOps and GitHub.

• Static Analyzers: Will help in identifying vulnerabilities,

bad practices, and duplicated code and even measuring

the technical debt of your application code. Tools like

SonarCloud/SonarQube and CodeQL can be used with

Azure DevOps and GitHub.

• CD: During the deployment phase, we can also run dynamic

analyzers that will identify potential threads on your running

environments. Tools like OWASP ZAP can be used to identify

threads based on the Open Web Application Security Project

(OWASP)-based recommendations.

• Monitoring/operation: During the last phase, Azure tools like

Microsoft Defender for Cloud can be used to detect and mitigate

threads. It can be used in two different ways:

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

http://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
http://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://www.whitesourcesoftware.com/free-developer-tools/bolt/?msclkid=2e46b117d09611ecb83548b95bc2432d
https://docs.github.com/en/code-security/dependabot/dependabot-alerts/about-dependabot-alerts?msclkid=a17638e9d09611ec8778b1b46aa43c24
https://sonarcloud.io/
https://codeql.github.com/?msclkid=fbc15fcfd09611ecacc7162b516d8aa3
https://www.zaproxy.org/
https://docs.microsoft.com/en-us/azure/defender-for-cloud/defender-for-cloud-introduction

98

• Reactive approach: Resolving detected threads.

• Proactive approach: Based on the given recommendations

for the existing architecture, create Azure Policies that

will apply those best practices to new and existing

environments.

 Infrastructure as Code (IaC)

High-performing DevOps organizations design their processes to achieve speed and

agility. They surely provide automated build and release to make sure high-quality

and consistent code gets deployed. But what about the environments where those

systems run?

Infrastructure as Code (IaC) focuses on applying software engineering practices (like

versioning, validating, or testing) to your infrastructure deployments in order to make

them consistent, repeatable, and automated.

There are two different approaches to IaC:

• Declarative: You simply define how your infrastructure should look

like (WHAT), and the cloud provider takes care of deploying the

solution with such properties. Example tools:

• Azure native: ARM templates or Bicep

• Third party: Terraform, Ansible, Chef, Puppet, Pulumi, etc.

• Imperative: You are the one defining the steps to follow (HOW) to

get the solution you are looking for. Example tools:

• Azure CLI, Azure PowerShell, Azure Rest API, and Azure SDKs

No matter the tool you use, IaC process should aim for idempotence. What is

idempotence? Simply put: the same IaC templates generate the same environments

every time they are applied. Idempotence is the most important principle of IaC, key

for automated CD pipeline succesfull execution. In other words, if the templates did not

change, your pipelines will execute successfully, keeping the environments as it is. Based

on previously mentioned tools, tools like ARM/Bicep ensure idempotency, whereas

we could have non-idempotent commands for imperative tools (your script will need

to be modified, include a condition to see if a resource/property exists, and only create/

modify if it does not).

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

99

This book will focus on mainly showing both ARM templates and Bicep during the

demos of the chapter.

• ARM templates: Azure Resource Manager is an exposed API service

built in into Azure for provisioning purposes. You simply provide a

JSON-based template with the resources (and configuration) you

would like to provide. You can find many QuickStart templates at

https://azure.microsoft.com/en-us/resources/templates/.

• Bicep: A new DSL (Domain-Specific Language) to deploy Azure

resources by using declarative syntax. It provides an easier way to

understand/create declarative templates with Azure, quite

demanded by JSON “haters” . It was designed to provide a “layer”

on top of ARM templates to make IaC with Azure more intuitive; you

can actually compile/decompile ARM⇿Bicep templates (see

Figure 5-3). Deployment can be done directly from Bicep or ARM

files, for example, using az group deployment Azure CLI command.

Figure 5-3. Bicep

In the following, we can see the difference between an Azure App Service declared

in ARM template and Bicep (see Listing 5-1). Bicep is more intuitive and easier to read

and author.

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://azure.microsoft.com/en-us/resources/templates/

100

Listing 5-1. ARM vs. Bicep

ARM Template

{

 "$schema": "https://schema.management.azure.com/schemas/2019-04-01/

deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "metadata": {

 "_generator": {

 "name": "bicep",

 "version": "0.4.1008.15138",

 "templateHash": "13829464918613725405"

 }

 },

 "parameters": {

 "webAppName": {

 "type": "string",

 "defaultValue": "[uniqueString(resourceGroup().id)]"

 },

 "sku": {

 "type": "string",

 "defaultValue": "F1"

 },

 "linuxFxVersion": {

 "type": "string",

 "defaultValue": "node|14-lts"

 },

 "location": {

 "type": "string",

 "defaultValue": "[resourceGroup().location]"

 },

 "repositoryUrl": {

 "type": "string",

 "defaultValue": "https://github.com/Azure-Samples/nodejs-docs-

hello-world"

 },

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

101

 "branch": {

 "type": "string",

 "defaultValue": "master"

 }

 },

 "functions": [],

 "variables": {

 "appServicePlanName": "[toLower(format('AppServicePlan-{0}',

parameters('webAppName')))]",

 "webSiteName": "[toLower(format('wapp-{0}',

parameters('webAppName')))]"

 },

 "resources": [

 {

 "type": "Microsoft.Web/serverfarms",

 "apiVersion": "2020-06-01",

 "name": "[variables('appServicePlanName')]",

 "location": "[parameters('location')]",

 "properties": {

 "reserved": true

 },

 "sku": {

 "name": "[parameters('sku')]"

 },

 "kind": "linux"

 },

 {

 "type": "Microsoft.Web/sites",

 "apiVersion": "2020-06-01",

 "name": "[variables('webSiteName')]",

 "location": "[parameters('location')]",

 "properties": {

 "serverFarmId": "[resourceId('Microsoft.Web/serverfarms', variables

('appServicePlanName'))]",

 "siteConfig": {

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

102

 "linuxFxVersion": "[parameters('linuxFxVersion')]"

 }

 },

 "dependsOn": [

 "[resourceId('Microsoft.Web/serverfarms', variables('appService

PlanName'))]"

]

 },

 {

 "type": "Microsoft.Web/sites/sourcecontrols",

 "apiVersion": "2021-01-01",

 "name": "[format('{0}/web', variables('webSiteName'))]",

 "properties": {

 "repoUrl": "[parameters('repositoryUrl')]",

 "branch": "[parameters('branch')]",

 "isManualIntegration": true

 },

 "dependsOn": [

 "[resourceId('Microsoft.Web/sites', variables('webSiteName'))]"

]

 }

]

}

Bicep

param webAppName string = uniqueString(resourceGroup().id) // Generate

unique String for web app name

param sku string = 'F1' // The SKU of App Service Plan

param linuxFxVersion string = 'node|14-lts' // The runtime stack of web app

param location string = resourceGroup().location // Location for all

resources

param repositoryUrl string = 'https://github.com/Azure-Samples/nodejs-docs-

hello-world'

param branch string = 'master'

var appServicePlanName = toLower('AppServicePlan-${webAppName}')

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

103

var webSiteName = toLower('wapp-${webAppName}')

resource appServicePlan 'Microsoft.Web/serverfarms@2020-06-01' = {

 name: appServicePlanName

 location: location

 properties: {

 reserved: true

 }

 sku: {

 name: sku

 }

 kind: 'linux'

}

resource appService 'Microsoft.Web/sites@2020-06-01' = {

 name: webSiteName

 location: location

 properties: {

 serverFarmId: appServicePlan.id

 siteConfig: {

 linuxFxVersion: linuxFxVersion

 }

 }

}

resource srcControls 'Microsoft.Web/sites/sourcecontrols@2021-01-01' = {

 name: '${appService.name}/web'

 properties: {

 repoUrl: repositoryUrl

 branch: branch

 isManualIntegration: true

 }

}

You can find many QuickStart templates for both at https://azure.microsoft.

com/en-us/resources/templates/. In addition, a great learning path can be found

at MS Learn for Bicep at https://docs.microsoft.com/en-us/learn/paths/

fundamentals-bicep/.

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://azure.microsoft.com/en-us/resources/templates/
https://azure.microsoft.com/en-us/resources/templates/
https://docs.microsoft.com/en-us/learn/paths/fundamentals-bicep/
https://docs.microsoft.com/en-us/learn/paths/fundamentals-bicep/

104

 Configuration as Code with DSC/Azure Automation/
Guest Configuration

The previous IaC topic was focused on deploying our desired infrastructure, but how

about the configuration of those services we created? How do we make sure our Linux

and Windows VMs have the configuration (OS settings, firewall rules, features, and

software installed) in place?

Some could propose to just run a script right after creating those machines, but what

if someone modifies the machine manually? We could be facing configuration drift: the

machine not having the configuration we desire/expect. We would need to proactively

run the same script ourselves.

Configuration as Code (CaC) consists of writing in a definition of the desired state

you want your environment to have configured. It will do frequent consistency checks to

make sure the desired state is met on a regular basis. In other words, configuration drift

is detected and solved!

As part of the Microsoft tooling, we have a CaC engine called Desired State
Configuration (DSC) as part of PowerShell (also called PowerShell DSC), available for

Windows and Linux machines. Your machine needs to have PowerShell 4.0 or above

installed. The service that will do the regular checks (based on the configuration) is

called Local Configuration Manager (LCM).

When working with DSC, we are offered two working models:

• Push model: A DSC configuration file is applied on the selected VM

(pushed), and it will take care to meet the configuration with regular

inspections.

• Pull model: It involves using the Azure Automation (https://
docs.microsoft.com/en-us/azure/automation/automation-dsc-

overview) service and its State Configuration capabilities. It would

work in the following way:

 1. Virtual machines are registered (and given a tag) on the Azure

Automation account.

 2. PowerShell DSC configuration files are uploaded to the

service and compiled. It will define the VMs (based on TAGs)

where configurations should be applied.

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://docs.microsoft.com/en-us/azure/automation/automation-dsc-overview
https://docs.microsoft.com/en-us/azure/automation/automation-dsc-overview
https://docs.microsoft.com/en-us/azure/automation/automation-dsc-overview

105

 3. Registered VMs will make sure of applying the latest

configurations and being compliant to the latest setup.

Configurations are rechecked every 15 minutes.

You can find many QuickStart DSC files on the Gallery feature of Azure Automation.

The following example makes sure web server–tagged VMs will have an IIS web server

installed (see Listing 5-2).

Listing 5-2. DSC example

configuration TestConfig

{

 Node IsWebServer

 {

 WindowsFeature IIS

 {

 Ensure = 'Present'

 Name = 'Web-Server'

 IncludeAllSubFeature = $true

 }

 }

 Node NotWebServer

 {

 WindowsFeature IIS

 {

 Ensure = 'Absent'

 Name = 'Web-Server'

 }

 }

}

Azure Automation can also be used for hosting and executing runbooks. Runbooks

are scripts based on PowerShell (Graphical and Workflow) and Python, which can

be executed based on schedule or webhook call. The runbooks should be used for

operational automation (not CI/CD), for example, running scripts every day for start/

stop of virtual machines or executing a script as a reaction to a specific alert being

triggered (using Azure alert Action Groups).

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

106

Azure Policy Guest Configuration

Azure released a new service called Guest Configuration (https://docs.microsoft.

com/en-gb/azure/governance/policy/concepts/guest-configuration), providing

audit and Configure-as-Code capabilities based on the Azure Policy service. The feature

will be able to work with Azure and Arc-enabled virtual machines, offering the option to

apply settings machine by machine or orchestrating using Azure Policy.

The service is using both PowerShell DSC and Chef InSpec on the back end to

apply configurations on the target Linux and Windows VMs. New guest assignments are

evaluated every 5 minutes and rechecked every 15 minutes. Multiple configurations can

be applied to the same machine.

A tutorial to migrate from Azure Automation to Guest Policy is provided by Microsoft

(https://docs.microsoft.com/en-gb/azure/governance/policy/how-to/guest-

configuration-azure-automation-migration).

 Azure Pipelines

Azure DevOps is a product that provides many development-related services to

customers, such as planning, collaboration, CI/CD, package management, and

testing tools.

Azure Pipelines (https://docs.microsoft.com/en-us/azure/devops/pipelines/

get-started/what-is-azure-pipelines?view=azure-devops) is the service integrated

on Azure DevOps that offers support for the Continuous Integration and delivery/

deployment of your applications. But how does it work? The service is composed of

many different components/parts; let’s try to define them in simple questions:

Where does the pipeline run?
Azure Pipelines is executed/triggered from the Azure DevOps service, but the

defined automated tasks run on agents. What is an agent?

It is the computing infrastructure (mainly VM or container) that will be used to run

pipeline jobs. It is called agent due to the software installed host machine to be able to

listen to Azure DevOps service. Jobs can run on the agent’s host machine or container.

Microsoft offers two main agent types:

• Microsoft-hosted agents: A group of agents maintained and

upgraded by Microsoft. Offered both as VM and container, you get

a fresh machine for each job. This machine comes with predefined

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://docs.microsoft.com/en-gb/azure/governance/policy/concepts/guest-configuration
https://docs.microsoft.com/en-gb/azure/governance/policy/concepts/guest-configuration
https://docs.microsoft.com/en-gb/azure/governance/policy/how-to/guest-configuration-azure-automation-migration
https://docs.microsoft.com/en-gb/azure/governance/policy/how-to/guest-configuration-azure-automation-migration
https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops

107

software installed: https://github.com/actions/virtual-

environments (first “secret,” the same “agents” are used by GitHub

Actions).

• Self-hosted agents: Due to networking, computing, or software

needs, you may prefer to use your private infrastructure hosts. This

option has been long available in the previous on-premises version

of Azure DevOps named Team Foundation Server. It is also the only

agent option in the actual on-premises Azure DevOps Server solution.

• It gives more control over networking, computing, cache, or software

needs, but you need to maintain it. The agent (software) is offered for

the three main operating systems: macOS, Linux, and Windows. You

can also install it using Docker.

Where/how do I define the automated task I want to run?
Azure DevOps offers two different ways to define your pipelines: YAML and Classic

(also called Visual). In this book, we will focus on YAML, as the new features are mainly

coming for this pipeline model.

YAML pipelines are defined in code on a file that is hosted on a GIT repository. It will

have to follow the standard practices defined for source control (branching, pull request,

etc.) and will benefit from this development practice in terms of collaboration, control,

and change tracking. It also has a great advantage in terms of modularizing (creating

templates) compared to Classic pipelines.

A pipeline is composed of the following components (a demo will be shown later)

(see Figure 5-4):

StepsStagePipeline

Trigger

Stage
Job Task

Job
Task

Task

Stage Job Task

Figure 5-4. Pipeline structure

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://github.com/actions/virtual-environments
https://github.com/actions/virtual-environments

108

• Pipeline: Context that defines the process; it can be CI, CD, or both.

Pipelines can be linked to one another; not all the process has to be

written in a single file (it could be). The pipeline will define triggers

that will execute it (branch changes, pull requests, other pipeline

successfully executed, etc.).

• Stage: It is a way of organizing the pipeline jobs. It is an optional

feature; you could have pipelines only composed of jobs. Mainly used

for separation of concerns, for example:

• infrastructure deployment ➤ Website Publish ➤ E2E testing

• build CI ➤ QA CD ➤ PRO CD

Stages and jobs do not have to be a linear process; you are free to design your flow

with conditions and dependencies, linear or not.

• Job: A series of tasks you run sequentially inside the defined agent

(explained before).

• Steps: Collection of tasks.

• Task: Prepackaged script to perform an action.

• Other generic components:

• Artifacts: A mechanism to share files between jobs (remember,

its job runs on a different agent selected from a pool) and a way to

persist a result (e.g., build artifacts for each pipeline execution).

• Variables: Variables can be defined for different scopes of

the pipeline. They can also be defined on the UI. Variable

groups can be used to make them available across pipelines.
System variables are really useful too: https://docs.

microsoft.com/en-us/azure/devops/pipelines/build/

variables?view=azure-devops&tabs=yaml.

• Environments: A reference made to your services (web apps,

containers, virtual machines, etc.). It can be used to apply

control on YAML pipelines that are referencing a predefined

environment.

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://docs.microsoft.com/en-us/azure/devops/pipelines/build/variables?view=azure-devops&tabs=yaml
https://docs.microsoft.com/en-us/azure/devops/pipelines/build/variables?view=azure-devops&tabs=yaml
https://docs.microsoft.com/en-us/azure/devops/pipelines/build/variables?view=azure-devops&tabs=yaml

109

• Service connection: Authenticated connections to external or

remote services that task needs to use. If your task want to use

tools like SonarCloud for static analysis, check out code from

GitHub or deploy/interact with Azure resources; they need

to use authenticated connections on your pipelines. Simply

put, the pipeline executed on an agent (Microsoft or private

host machine) needs to know how to authenticate against

those external components in order to be able to execute tasks

successfully.

• Checks and approvals: The way to apply control, automated or

manual, on a multistage YAML pipeline. What kind of controls?

For example:

• Manual approval (reviewer), business hours, evaluating

artifacts, invoking Rest API calls, running Azure Functions,

checking Azure alerts, or forcing the YAML template

(process) the environment needs to use

It gives us great tools to make sure the change is ready to be

applied. It can be applied in the following components:

• Agents pools

• Service connection

• Environments

Whenever one of those components is referenced on the YAML

pipeline, Azure DevOps will look for checks and approvals link

to it in order to fulfill those needs before following the execution

of tasks.

Is it free? What is the pricing model?
Azure DevOps offers the following pricing model: https://azure.microsoft.com/

en-us/pricing/details/devops/azure-devops-services/.

For Azure Pipelines, the pricing is built around parallelism (how many jobs can we

run in parallel). Private projects will get 1800 minutes/month of Microsoft-hosted agents

and single parallel pipeline for Microsoft-hosted and self-hosted agents. When more

parallel pipelines are purchased, the time limit disappears.

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://azure.microsoft.com/en-us/pricing/details/devops/azure-devops-services/
https://azure.microsoft.com/en-us/pricing/details/devops/azure-devops-services/

110

Public projects will get ten Microsoft-hosted parallel pipelines and unlimited

minutes.

Warning You may need to fill out the form mentioned in this article to get free
resources (due to a suspicious activity tracked lately on the product, mainly crypto
mining): https://devblogs.microsoft.com/devops/change-in-azure-
pipelines-grant-for-public-projects/.

[DEMO] CI/CD Multistage YAML Pipeline

The following demo will be based on the following public repository from GitHub:

https://github.com/unaihuete-org/SRE_with_azure_devops_yaml. You need to fork/

import it in your Azure DevOps project.

It contains

• A simple .NET core 3.1 website

• ARM templates to deploy Azure App Service

• Azure Pipelines YAML template

The demo will explain the previously described terms/concepts in a practical way.

As we want to deploy our solution to a target Azure subscription, we will begin by

creating a Service Principal that will be used to authenticate from our pipelines to the

target Resource Group. First, make sure you have created the Resource Group to be used

during the demo. What is a Service Principal?

It is a component offered by Azure Active Directory to offer applications (in this case,

Azure Pipelines) as a way to authenticate against Azure environments. Normally, the

Service Principal gets a role assigned (RBAC), which defines the permissions given to it

once authenticated. Let’s begin by creating a Service Principal that has a contributor role

for an empty Resource Group (created for the demo). Open the Azure Portal ➤ Cloud

Shell and run the following command:

az ad sp create-for-rbac -n ADO-pipelines --role contributor --scope /
subscriptions/<SUBSCRIPTIONID>/resourceGroups/<RESOURCEGROUP-NAME>
--sdk-auth

If the command executes successfully, it will output a JSON object with the main

properties of the Service Principal. We mainly need the following four properties:

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://devblogs.microsoft.com/devops/change-in-azure-pipelines-grant-for-public-projects/
https://devblogs.microsoft.com/devops/change-in-azure-pipelines-grant-for-public-projects/
https://github.com/unaihuete-org/SRE_with_azure_devops_yaml

111

• ClientId (also known as Service Principal Id)

• SusbcriptionId

• TenantId

• ClientSecret

Warning this information has to be treated really carefully; anyone with this
information could impersonate the app and get access to our azure environment!

Now let’s create a Service Connection in Azure DevOps (see Figure 5-5) in order to

use the recently created Service Principal in our pipelines. Go to Azure DevOps ➤ Project

Settings ➤ Service Connections (under Pipelines), and click Create Service Connection.

Choose the option Azure Resource Manager ➤ Service Principal (manual) and click Next.

Fill in the fields with the information taken from the previous JSON object (you also

need the subscription name). Give the connection a name (e.g., azure-sre-rg), and check

Grant access permission to all pipelines and Verify and Save.

Figure 5-5. Service connection

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

112

Our pipeline will also use some variables, in our case, Variable Groups (see

Figure 5-6). If we have sensitive data (like passwords, access keys, or connection strings),

we need to provide to pipelines, variables offer a linking option to Azure Key Vault.

Figure 5-6. Variable group

We will also make use of enviroments. As explained before, environments provide

features like checks and approvals for automated/manual control flows (see Figure 5-7).

Our pipeline will ask for manual approval before web app publish happens.

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

113

Figure 5-7. ADO environments

Now let’s take a look at the YAML pipeline and explain it.

• Trigger: The pipeline is automatically executed for any change

applied on the master branch.

• Variables: The pipeline will use “local” variables and the variable

group (WebApp-conf) defined before.

• Stages: It is composed of four stages (see Figure 5-8):

• Build: It takes care of building, unit testing, and publishing the

.net core website. It creates two pipeline artifacts to be used

later: ARM templates and published website. We can see in the

following the 100% test passed and 2 artifacts created.

• Release_Infrastruture_to_Azure: It downloads the ARM

templates from the first stage and deploys an Azure WebApp to

Azure based on the ARM templates used.

• The ARM deployment task uses the Service Connection

created before and overrides template parameters using

Variable Groups.

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

114

• Publish_Website_to_WebApp: It will use the environments

feature defined previously and ask for manual approval (see 1

check passed shown in Figure 5-8). When approved, it downloads

the published website artifact from the first step and publishes

the solution to the selected Azure App Service using the

previously defined Service Connection.

• Functional_Tests: It will run functional tests against the running

environment using Selenium.

Figure 5-8. Pipeline stages

Listing 5-3. Sample multi-stage YAML pipeline definition

trigger:

- master

variables:

- name: buildConfiguration

 value: Release

- group: WebApp-conf

stages:

- stage: Build

 jobs:

 - job: Build

 pool:

 vmImage: 'windows-latest'

 steps:

 - task: DotNetCoreCLI@2

 displayName: Restore

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

115

 inputs:

 command: restore

 projects: '**/*.csproj'

 - task: DotNetCoreCLI@2

 displayName: Build

 inputs:

 projects: '**/*.csproj'

 arguments: '--configuration $(BuildConfiguration)'

 - task: DotNetCoreCLI@2

 displayName: Test

 inputs:

 command: test

 projects: '**/*UnitTests/*.csproj'

 arguments: '--configuration $(BuildConfiguration)'

 - task: DotNetCoreCLI@2

 displayName: Publish

 inputs:

 command: publish

 publishWebProjects: True

 arguments: '--configuration $(BuildConfiguration) --output

"$(build.artifactstagingdirectory)"'

 zipAfterPublish: True

 - task: PublishBuildArtifacts@1

 inputs:

 PathtoPublish: '$(Build.ArtifactStagingDirectory)'

 ArtifactName: 'Website'

 publishLocation: 'Container'

 - task: PublishBuildArtifacts@1

 inputs:

 PathtoPublish: '$(System.DefaultWorkingDirectory)/ArmTemplates'

 ArtifactName: 'Templates'

 publishLocation: 'Container'

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

116

- stage: Release_Infrastructure_to_Azure

 dependsOn: Build

 jobs:

 - job: Release_Infrastructure_to_Azure

 pool:

 vmimage: 'windows-latest'

 steps:

 - checkout: none

 - download: current

 artifact: Templates

 - task: AzureResourceManagerTemplateDeployment@3

 inputs:

 deploymentScope: 'Resource Group'

 azureResourceManagerConnection: 'azure-sre-rg'

 subscriptionId: 'YOUR-SUBSCRIPTION'

 action: 'Create Or Update Resource Group'

 resourceGroupName: 'SREwithAzure-ADOYAML'

 location: 'West Europe'

 templateLocation: 'Linked artifact'

 csmFile: '$(Pipeline.Workspace)***.json'

 overrideParameters: '-webAppName $(AZURE_WEBAPP_NAME)

-hostingPlanName $(HOSTINGPLANNAME) -appInsightsLocation

$(APPINSIGHTLOCATION) -sku "$(SKU)"'

 deploymentMode: 'Incremental'

- stage: Publish_Website_to_WebApp

 dependsOn: Release_Infrastructure_to_Azure

 jobs:

 - deployment: VMDeployment

 displayName: "Publish Website to Azure App Service"

 environment:

 name: "Prod-WebApp"

 strategy:

 runOnce:

 deploy:

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

117

 steps:

 - checkout: none

 - download: current

 artifact: Website

 - task: AzureRmWebAppDeployment@4

 inputs:

 ConnectionType: 'AzureRM'

 azureSubscription: 'azure-sre-rg'

 appType: 'webApp'

 WebAppName: '$(AZURE_WEBAPP_NAME)'

 packageForLinux: '$(Pipeline.Workspace)/**/*.zip'

- stage: Functional_Tests

 dependsOn: Publish_Website_to_WebApp

 jobs:

 - job: Functional_Tests

 pool:

 vmImage: 'windows-latest'

 steps:

 - task: replacetokens@5

 inputs:

 targetFiles: '**/*.runsettings'

 encoding: 'auto'

 tokenPattern: 'rm'

 writeBOM: true

 actionOnMissing: 'warn'

 keepToken: false

 actionOnNoFiles: 'continue'

 enableTransforms: false

 enableRecursion: false

 useLegacyPattern: false

 enableTelemetry: true

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

118

 - task: DotNetCoreCLI@2

 inputs:

 command: 'test'

 projects: '$(System.DefaultWorkingDirectory)/Application/aspnet-

core-dotnet-core.FunctionalTests'

 arguments: '-s $(System.DefaultWorkingDirectory)/Application/

aspnet-core-dotnet-core.FunctionalTests/functionalTests.

runsettings'

If the pipeline is executed successfully, you should see the resources on the target

Azure Resource Group and the published WebApp/App Service (see Figure 5-9 and

Figure 5-10).

Figure 5-9. Azure Resource Group

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

119

Figure 5-10. Deployed WebApp

 GitHub Actions

During the last years, GitHub has been the home for millions of developers, mostly

famous for offering version control services for Git repositories.

Microsoft acquired GitHub in June 2018 (https://news.microsoft.

com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/), and few months

later, on the GitHub Universe event in 2018, GitHub Actions was announced as a new

automation platform (https://github.blog/2018-10-17-action-demos/).

Coincidence? I do not think so .

Azure DevOps has been a DevOps/ALM tool providing many development life cycle

services (like planning, repository hosting, testing, and CI/CD tooling) for many years

already. It started long time ago with the on-premises Team Foundation Server solutions.

GitHub has been the home for developers and especially open source communities for

years too, but it had a big gap: no CI/CD service offered.

GitHub Actions has been quickly onboarding many of the Azure Pipelines YAML

features (no classic/visual offered), and due to their similarities, I will try to explain it

with the following comparison table (see Table 5-1).

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/
https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/
https://github.blog/2018-10-17-action-demos/

120

Ta
bl

e
5-

1.
 A

zu
re

 D
ev

O
ps

 a
n

d
G

it
H

u
b

A
ct

io
n

s

Az
ur

e
De

vO
ps

Gi
tH

ub
 A

ct
io

ns

YA
M

L
an

d
Cl

as
si

c
pi

pe
lin

es
YA

M
L

w
or

kf
lo

w
s

(w
or

kf
lo

w
=

pi
pe

lin
e)

ne
ed

 to
 b

e
lo

ca
te

d
un

de
r t

he
 .g

ith
ub

/w
or

kf
lo

w
 fo

ld
er

w
or

kf
lo

w
 s

yn
ta

x:
 h
tt
ps
:/
/d
oc
s.
gi
th
ub
.c
om
/e
n/
ac
ti
on
s/
us
in
g-
wo
rk
fl
ow
s/

wo
rk
fl
ow
-s
yn
ta
x-
fo
r-
gi
th
ub
-a
ct
io
ns

Pr
ic

in
g

ba
se

d
on

 p
ar

al
le

lis
m

Pr
ic

in
g

ba
se

d
on

 e
xe

cu
tio

n
m

in
ut

es
 (h
tt
ps
:/
/g
it
hu
b.
co
m/
pr
ic
in
g/

ca
lc
ul
at
or
#a
ct
io
ns

) p
ar

al
le

l/c
on

cu
rr

en
t j

ob
s

ba
se

d
on

 li
ce

ns
e,

 s
ta

rti
ng

 w
ith

 2
0

fo
r

Fr
ee

 p
la

ns
 (h
tt
ps
:/
/d
oc
s.
gi
th
ub
.c
om
/e
n/
ac
ti
on
s/
le
ar
n-
gi
th
ub
-a
ct
io
ns
/

us
ag
e-
li
mi
ts
-b
il
li
ng
-a
nd
-a
dm
in
is
tr
at
io
n#
us
ag
e-
li
mi
ts

)

Ag
en

ts
:

 •

 m
ic

ro
so

ft-
ho

st
ed

 •

 S
el

f-
ho

st
ed

Ca
lle

d
Ru

nn
er

s
in

 G
ith

ub

•
Gi

th
ub

-h
os

te
d

•
Se

lf-
ho

st
ed

No
te

: t
he

 s
am

e
m

ac
hi

ne
s

us
ed

 fo
r b

ot
h

pl
at

fo
rm

s
on

 th
e

ba
ck

 e
nd

: G
ith

ub
 ru

nn
er

s
an

d
Az

ur
e

pi
pe

lin
es

 a
ge

nt
 re

po
: h
tt
ps
:/
/g
it
hu
b.
co
m/
ac
ti
on
s/
vi
rt
ua
l-

en
vi
ro
nm
en
ts

Pi
pe

lin
e

 •

 S
ta

ge
/s

 ◦
 J

ob
/s

 ▪

 S
te

ps

 •

 T
as

ks

Pi
pe

lin
e

•
Jo

b/
s:

 a
 m

ix
 o

f J
ob

/S
ta

ge
 fr

om
 a

zu
re

 D
ev

op
s,

 b
ot

h
vi

su
al

ly
 o

n
th

e
ui

 a
nd

 e
xe

cu
tio

n
flo

w

◦

St
ep

s:
 c

ol
le

ct
io

n
of

 a
ct

io
ns

▪

Ac
tio

ns
: t

he
 n

am
e

Gi
th

ub
 g

iv
es

 to
 ta

sk
s

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://github.com/pricing/calculator#actions
https://github.com/pricing/calculator#actions
https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration#usage-limits
https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration#usage-limits
https://github.com/actions/virtual-environments
https://github.com/actions/virtual-environments

121

Tr
ig

ge
rs

tr
ig

ge
rs

 d
ef

in
ed

 w
ith

 a
n

On
 e

le
m

en
t o

n
w

or
kf

lo
w

. o
ne

 o
f t

he
 b

ig
ge

st
 d

iff
er

en
ce

s
is

 th
at

yo
u

ne
ed

 to
 in

cl
ud

e
w

or
kf

lo
w

_d
is

pa
tc

h
on

 th
e

Ya
m

l
de

fin
iti

on
 fo

r m
an

ua
l t

rig
ge

r t
o

be

po
ss

ib
le

.

Va
ria

bl
es

na
m

ed
 E

nv
iro

nm
en

t v
ar

ia
bl

es
 in

 G
ith

ub
, i

t a
ls

o
of

fe
rs

 d
ef

au
lt

en
vi

ro
nm

en
t v

ar
ia

bl
es

(s
im

ila
r t

o
sy

st
em

 v
ar

ia
bl

es
 in

 a
zu

re
 D

ev
op

s)
: h
tt
ps
:/
/d
oc
s.
gi
th
ub
.c
om
/e
n/

ac
ti
on
s/
le
ar
n-
gi
th
ub
-a
ct
io
ns
/e
nv
ir
on
me
nt
-v
ar
ia
bl
es
#d
ef
au
lt
-

en
vi
ro
nm
en
t-
va
ri
ab
le
s

Va
ria

bl
e

Gr
ou

ps
th

er
e

is
 n

ot
hi

ng
 e

xa
ct

ly
 s

im
ila

r;
yo

u
ca

n
us

e
Gi

tH
ub

 S
ec

re
ts

 (f
or

 s
ec

re
ts

 o
r n

ot
) t

o
sh

ar
e

va
ria

bl
es

 a
t t

he
 o

rg
an

iz
at

io
n

or
 re

po
si

to
ry

 le
ve

l

En
vi

ro
nm

en
ts

al
so

 c
al

le
d

En
vi

ro
nm

en
ts

 b
ut

 it
 m

is
se

s
th

e
au

to
m

at
ed

 c
on

tro
l f

lo
w

s
of

fe
re

d
by

 a
zu

re

De
vo

ps

Ta
sk

s:
 m

ai
nl

y
fro

m
 m

ar
ke

tp
la

ce
 (a

ls
o

cu
st

om
 o

ne
s

ca
n

be
 c

re
at

ed
)

Ac
tio

ns
: t

w
o

va
ria

nt
s

of
fe

re
d

on
 th

e
Ya

m
l

te
m

pl
at

e:

•
Us

e:
 p

re
de

fin
ed

 a
ct

io
ns

 (m
ar

ke
tp

la
ce

 o
r p

riv
at

e)
. b

as
ed

 o
n

Ja
va

Sc
rip

t o
r D

oc
ke

r

•
Ru

n:
 d

ire
ct

ly
 e

xe
cu

te
s

sh
el

l c
om

m
an

ds
 o

n
ru

nn
er

 (o
n

az
ur

e
De

vo
ps

, e
.g

.,
yo

u
ne

ed
 to

us
e

th
e

sp
ec

ifi
c

ta
sk

 fo
r p

ow
er

Sh
el

l/b
as

h
)

YA
M

L
Te

m
pl

at
es

ht
tp
s:
//
do
cs
.m
ic
ro
so
ft
.c
om
/e
n-
us
/

az
ur
e/
de
vo
ps
/p
ip
el
in
es
/p
ro
ce
ss
/

te
mp
la
te
s?
vi
ew
=a
zu
re
-d
ev
op
s

Gi
th

ub
 a

ls
o

of
fe

rs
 a

 m
ec

ha
ni

sm
 to

 re
us

e
w

or
kf

lo
w

s
fo

r a
 m

od
ul

ar
iz

ed
 a

pp
ro

ac
h.

 r
eu

si
ng

w
or

kf
lo

w
s:

 h
tt
ps
:/
/d
oc
s.
gi
th
ub
.c
om
/e
n/
ac
ti
on
s/
us

in
g-
wo
rk
fl
ow
s/
re
us
in
g-

wo
rk
fl
ow
s

Pi
pe

lin
e

Ar
tif

ac
ts

Si
m

ila
r f

un
ct

io
na

lit
y

of
fe

re
d

w
ith

 W
or

kf
lo

w
 A

rt
ifa

ct
s:

 h
tt
ps
:/
/d
oc
s.
gi
th
ub
.

co
m/
en
/a
ct
io
ns
/u
si
ng
-w
or
kf
lo
ws
/s
to
ri
ng
-w
or
kf
lo
w-
da
ta
-a
s-

ar
ti
fa
ct
s#
up
lo
ad
in
g-
bu
il
d-
an
d-
te
st
-a
rt
if
ac
ts

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://docs.github.com/en/actions/learn-github-actions/environment-variables#default-environment-variables
https://docs.github.com/en/actions/learn-github-actions/environment-variables#default-environment-variables
https://docs.github.com/en/actions/learn-github-actions/environment-variables#default-environment-variables
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/templates?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/templates?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/templates?view=azure-devops
https://docs.github.com/en/actions/using-workflows/reusing-workflows
https://docs.github.com/en/actions/using-workflows/reusing-workflows
https://docs.github.com/en/actions/using-workflows/storing-workflow-data-as-artifacts#uploading-build-and-test-artifacts
https://docs.github.com/en/actions/using-workflows/storing-workflow-data-as-artifacts#uploading-build-and-test-artifacts
https://docs.github.com/en/actions/using-workflows/storing-workflow-data-as-artifacts#uploading-build-and-test-artifacts

122

These basic concepts will be demoed after the next section, as I want to be using

GitHub Actions together with some of the modern deployment practices that will be

covered next.

 Modern Deployment Strategies
Deployment strategies define the process to change/upgrade running instances of an

application. Solutions nowadays, influenced by the agility introduced by Agile/Scrum

methodologies, need to find ways to deploy updates more frequently without disrupting

end users (zero downtime deployments). Furthermore, engineering teams are constantly

striving to provide value to the end solution (remember the DevOps definition by

Donovan Brown), and testing in production will be a critical practice in order to get

valuable feedback.

On the other hand, as a Site Reliability Engineer, testing in production sounds scary,

right? I will show how the following deployment practices will provide mechanisms to

deploy updates with zero downtime and have control over the released features during

runtime. Two main objectives will be defined: zero downtime deployments and testing

in production (or production-like) in a safe way.

 Rolling Deployment

Rolling deployment is based on updating the instances of an application in an

incremental way, node by node (see Figure 5-11). It is frequently used in VM-based

solutions. Imagine our front-end solution is composed of four web server VMs. We could

define a pipeline that gradually updates instances, for example, 50% first, and test it

and the missing 50% later (modifying the load balancer to only point the selected VM

instances).

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

123

Figure 5-11. Rolling deployments

As an example, check the tutorial for rolling deployments using Azure Pipelines

YAML: https://docs.microsoft.com/en-us/azure/virtual-machines/linux/

tutorial-build-deploy-azure-pipelines?tabs=java.

 Blue-Green Deployment

Blue-green deployment is a strategy based on having two identical production-like

environments: staging (blue) and production (green).

Before any update, both instances are running the same code version, but only the

“blue” one gets user traffic. When an update wants to be released to production, the

process works in the following way (see Figure 5-12):

 1. New code version is published to “staging” instance. QA teams (or

automated E2E/UI tests) make sure the new version works fine.

 2. Once “staging” is tested, traffic is shifted. Once deployment is

successful, roles are switched too.

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-build-deploy-azure-pipelines?tabs=java
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-build-deploy-azure-pipelines?tabs=java

124

 3. Some people like to keep the “blue” one on the previous version in

case rollback is needed.

Figure 5-12. Blue/green deployments

This strategy can be fulfilled in multiple ways (depending on the architecture used

for your solution), but it is mainly based on having a load balancer that routes traffic to

the two identical instances. In Azure, App Services offer a service called slots for creating

identical app services that can be easily swapped; Azure takes care of the load-balancing

needs, making it really easy to implement.

Azure App Service Slots: https://docs.microsoft.com/en-us/azure/app-service/

deploy-staging-slots?msclkid=585ad452d07811ec988c98ced902b383

 Feature Flags

Feature Flags (also called Feature Toggles, Feature Switches, or Conditional Features) are

not a deployment strategy. They are actually a tool that will enable us to run deployment

strategies mentioned in the following.

Feature Flags are a modern technique that enables you to deploy new features to

production but restricts their exposure. They will enable us to continuously deploy

changes to production but:

• Have the control to disable features if they are not executing as

expected (no immediate rollback needed!)

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots?msclkid=585ad452d07811ec988c98ced902b383
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots?msclkid=585ad452d07811ec988c98ced902b383

125

• Just enable it to specific users (other filters supported too) for

experimenting

• Disable certain features during high resource consuming periods

Feature Flags consist of two main components (see Figure 5-13):

• Feature Flag manager: The service used to decide what features

will be enabled/disabled, optionally based on filter like random

percentage of traffic, specific users, or schedule based.

• Your application code making a call to the Feature Flag manager in

order to show/hide the new feature. As you can see, developers will

need to use the SDKs provided by the Feature Flag manager tools.

Figure 5-13. Feature Flags

In Azure, a new service called Azure App Configuration (https://docs.microsoft.
com/en-us/azure/azure-app-configuration/overview) was released, offering a

centralized repository for flags (also used for centralized/dynamic configuration). It

offers SDKs for languages like .NET, Java, Python, and JavaScript. An example will be

shown in the demo of this section.

Feature Flags need to be maintained, as we can increase the technical debt of our

solutions by leaving “dead” code in place. Take a look at the following article written by

Martin Fowler: https://martinfowler.com/articles/feature-toggles.html.

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://docs.microsoft.com/en-us/azure/azure-app-configuration/overview
https://docs.microsoft.com/en-us/azure/azure-app-configuration/overview
https://martinfowler.com/articles/feature-toggles.html

126

 Canary Deployments/Ring-Based Deployment

Canary deployment strategy is based on releasing a service incrementally to a subset

of “voluntary” users in production. Users need to be aware they are going to be testing

a “bleeding” version of code; their main purpose is to give feedback about recently

exposed features in production.

Canary strategy can be fulfilled in multiple ways, depending on the architecture,

based on load-balancing techniques, deployment slots, or feature flags.

It will be cheaper than blue-green (we do not need two identical production

environments) but also more complex to implement as we are testing in production

directly.

Based on feedback given by a canary group of users, features will be exposed to

the next bigger group of users, usually called Early Adopters. Early Adopter is a group

that should be expecting more stable features to test. Ring-based deployment is the

strategy based on rolling the solution phase by phase, incrementing the amount of users

“affected” by the change and getting valuable feedback from each ring. The idea is to

slowly increment the “impact radius” (affected people) based on feedback from each

ring (see Figure 5-14).

Figure 5-14. Ring-based deployments

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

127

 Dark Launching

This strategy is based on a similar idea as the canary strategy, but in this case, the users

are not aware of “being used” to test the new features. Feedback will be gathered based

on monitoring techniques mainly.

 A/B Testing

Compared to the previous strategies, A/B testing is focused on helping us decide

between two (or more) variants of a new feature. Experiments can be implemented by

using Feature Flags (showing option A or B based on the authenticated user or random

traffic), traffic routing, or distinct deployments.

For example, let’s imagine we own an e-commerce website that only supports credit

card payment. We are thinking on either supporting Apple/Google Pay or PayPal; for

some reason, we cannot choose both. We could test the solution with both options,

showing option A to some users and option B to others. By the end of the experiment, we

should analyze the option that had a bigger impact (see Figure 5-15).

Figure 5-15. A/B testing

This strategy, compared to the other ones, is 100% focused on experimentation.

 [DEMO] Modern Deployments with GitHub Actions and Azure
App Configuration

I will be using the following demo to show some of the recently explained strategies

with GitHub Actions. The demo code can be found in the following GitHub repository:

https://github.com/unaihuete-org/SRE_with_Azure.

The demo will be using the architecture shown in Figure 5-16.

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://github.com/unaihuete-org/SRE_with_Azure

128

Figure 5-16. GitHub Actions demo architecture

• .Net 6 website: A simple .NET 6 website that will be containerized

and pushed to the Azure Container Registry by GitHub Actions.

We will pull multiple versions of the container running on Azure

Container Apps.

• GitHub Actions will be used for CI/CD. Pipeline will be explained in

the following.

• Azure Container Apps (Preview) (https://docs.microsoft.com/

en-us/azure/container-apps/overview?msclkid=0baebbe2d0881

1ec9752dd19779d46f2) will be used to run our application. It is a

service to run containerized applications on a serverless platform.

It offers an easy way of running containers, leaving behind concerns

like infrastructure management and complex orchestrators like

Kubernetes. It is composed of the following components:

• Environment: Isolation boundary around a collection

of container apps (in our case, one single app). Apps in

different environments do not share resources(computing

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://docs.microsoft.com/en-us/azure/container-apps/overview?msclkid=0baebbe2d08811ec9752dd19779d46f2
https://docs.microsoft.com/en-us/azure/container-apps/overview?msclkid=0baebbe2d08811ec9752dd19779d46f2
https://docs.microsoft.com/en-us/azure/container-apps/overview?msclkid=0baebbe2d08811ec9752dd19779d46f2

129

and networking) and cannot communicate with one another

using DAPR.

• Container App: Manages orchestration details for you

(connection to container registry, container image to use, secrets,

or traffic distribution).

• Revision: An easy way to update running container instances.

Every time the container image properties are changed, a new

revision is created. You can easily define versions that should

be active (accept traffic) and provide traffic distribution for

each revision (for easily implementing canary or blue/green

deployments).

• Azure Key Vault: Used to keep secret (sensitive) configuration values

used by the website.

• Azure App Configuration: Used for

• Configuration management: Providing the configuration to

the website (together with Key Vault). App configuration keeps

nonsensitive configuration data and references sensitive data

hosted in KV. All the configuration is given to the website from

this single service.

• Feature Flag manager: A feature will be exposed based on rules

applied to the resource.

• Azure Monitor/App Insights will be used to monitor the solution

(used on next monitoring-related chapters).

• Container registry:

You will begin the same way as you did on the Azure DevOps one. We need a Service

Principal (application identity) that will be used by GitHub Actions to interact with our

Azure environment.

az ad sp create-for-rbac -n GH-Actions --role contributor --scope /
subscriptions/<SUBSCRIPTIONID> --sdk-auth

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

130

Aside from GitHub, in this demo, you will reuse the same Service Principal (you

could also create separated ones with different roles):

• Docker Container (website code) in Container App getting access to

Azure App Configuration

• Docker Container (website code) in Container App getting access to

Key Vault

On the actual application code, we can see how the Service Principal will be used for

getting access to Azure App Configuration and Azure Key Vault: https://github.com/

unaihuete-org/SRE_with_Azure/blob/master/src/Program.cs (see Listing 5-4).

Listing 5-4. App Configuration setup in .NET

The “DefaultAzureCredential” class is able to detect Service Principal properties

like AZURE_TENANT_ID, AZURE_CLIENT_ID, and AZURE_CLIENT_SECRET on the

environment variables to authenticate. In our case, the environment variables will be

provided in the Dockerfile with the help of GitHub Actions. Those lines of code will give

your app access to both sensitive (Key Vault) and nonsensitive (App Configuration)

configuration values.

Note Give the Service principal proper access roles/permissions on the
Key vault/azure app Configuration level in order to have reading access (see
Figure 5-17 and Figure 5-18).

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://github.com/unaihuete-org/SRE_with_Azure/blob/master/src/Program.cs
https://github.com/unaihuete-org/SRE_with_Azure/blob/master/src/Program.cs

131

Figure 5-17. Key Vault access policies

Figure 5-18. App Configuration access control

Let’s take a look at the GitHub workflows now, starting with the CI (see Listing 5-5):

CI (https://github.com/unaihuete-org/SRE_with_Azure/blob/master/.github/
workflows/ci-build.yaml)

Listing 5-5. GitHub Actions CI workflow

name: CI Build App

on:

 push:

 branches: [master]

 paths:

 - "src/**"

 - "tests/**"

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://github.com/unaihuete-org/SRE_with_Azure/blob/master/.github/workflows/ci-build.yaml
https://github.com/unaihuete-org/SRE_with_Azure/blob/master/.github/workflows/ci-build.yaml

132

 - ".github/workflows/ci-build.yaml"

 pull_request:

 workflow_dispatch:

env:

 IMAGE_REG: ${{ secrets.REGISTRY_LOGIN_SERVER }}

 IMAGE_REPO: dotnet6

jobs:

 test:

 name: "Tests & Linting"

 runs-on: ubuntu-latest

 steps:

 - name: "Checkout"

 uses: actions/checkout@v2

 - name: "Run tests"

 run: make test-report

 - name: "Upload test results"

 uses: actions/upload-artifact@v2

 # Disabled when running locally with the nektos/act tool

 if: ${{ always() }}

 with:

 name: test-results

 path: tests/TestResults/

 - name: "Publish test results"

 uses: EnricoMi/publish-unit-test-result-action@v1

 if: ${{ always() }}

 with:

 files: tests/TestResults/TestResults.xml

 build:

 name: "Build & Push Image"

 needs: test

 runs-on: ubuntu-latest

 steps:

 - name: "Checkout"

 uses: actions/checkout@v2

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

133

 # Nicer than using github runid, I think, will be picked up

automatically by make

 - name: "Create datestamp image tag"

 run: echo "IMAGE_TAG=$(date +%d-%m-%Y.%H%M)" >> $GITHUB_ENV

 # Replace tokens in Dockerfile

 - uses: cschleiden/replace-tokens@v1

 with:

 tokenPrefix: '__'

 tokenSuffix: '__'

 files: '["**/Dockerfile"]'

 env:

 SP_AZURE_TENANT_ID: ${{ secrets.SP_AZURE_TENANT_ID }}

 SP_AZURE_CLIENT_ID: ${{ secrets.SP_AZURE_CLIENT_ID }}

 SP_AZURE_CLIENT_SECRET: ${{ secrets.SP_AZURE_CLIENT_SECRET }}

 - name: 'Build and push image'

 uses: azure/docker-login@v1

 with:

 login-server: ${{ secrets.REGISTRY_LOGIN_SERVER }}

 username: ${{ secrets.REGISTRY_USERNAME }}

 password: ${{ secrets.REGISTRY_PASSWORD }}

 - name: "Docker build image"

 run: make image

 # Only when pushing to default branch (e.g. master or main), then

push image to registry

 - name: Push to container registry

 # if: github.ref == 'refs/heads/master' && github.event_name

== 'push'

 run: make push

 - name: "Trigger ACA release pipeline"

 if: github.ref == 'refs/heads/master'

 uses: benc-uk/workflow-dispatch@v1

 with:

 workflow: "CD ACA"

 token: ${{ secrets.GH_PAT }}

 inputs: '{ "IMAGE_TAG": "${{ env.IMAGE_TAG }}" }'

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

134

On the CI workflow, we can see the following:

• Trigger: The workflow can be triggered, either providing changes

to specific folders on the master branch, opening a pull request, or

manually (workflow_dispatch).

• Variables (env): It defines variables, making use of the secrets

functionality to provide the endpoint of the Azure Container Registry.

• Jobs: Two jobs defined:

• Test: Makes sure unit tests run properly and upload results.

• Build:

• Replace tokens: This one will replace the Service Principal

details in the Dockerfile in order to be able to connect to Key

Vault and App Configuration. Really useful when sensitive

information needs to be replaced in a file. In this case, it will

look for strings starting/finishing with “__”, for example, “__SP_

AZURE_TENANT_ID__”, and replace it with the value kept at

GitHub Secrets.

• Login: Authenticates against the Azure Container Registry (ACR).

• Build & Push : Builds the container based on Dockerfile and

pushes it to ACR.

• Trigger CD: It will trigger the next workflow for Azure

Container Apps.

Let’s now take a look at the CD workflow for Azure Container Apps (see Listing 5-6):

https://github.com/unaihuete-org/SRE_with_Azure/blob/master/.github/

workflows/cd-containerapps.yaml

Listing 5-6. GitHub Actions CD Workflow

#

Deploy to Azure Container Apps

#

#

name: CD ACA

on:

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://github.com/unaihuete-org/SRE_with_Azure/blob/master/.github/workflows/cd-containerapps.yaml
https://github.com/unaihuete-org/SRE_with_Azure/blob/master/.github/workflows/cd-containerapps.yaml

135

 workflow_dispatch:

 inputs:

 IMAGE_TAG:

 description: "Image tag to be deployed"

 required: true

 default: "21-04-2022.1534"

env:

 LOCATION: westeurope

 ACR_REPO: srewithazureunai.azurecr.io/dotnet6

 RG: SREwithAzure

 ACA_NAME: srewithazureunai-containerapp

jobs:

 #

 # Deploy Azure Container App

 #

 deploy-azure-green:

 name: Deploy Azure Container App to Azure Resource Group

 runs-on: ubuntu-latest

 # environment:

 # name: AKS

 #output for next job

 outputs:

 LatestRevision: ${{ steps.get-latest-aca-revision.outputs.

LatestRevision }}

 FirstDeployment: ${{ steps.first-deployment.outputs.

FirstDeployment }}

 steps:

 # Checkout code

 - uses: actions/checkout@main

 # Log into Azure

 - uses: azure/login@v1

 with:

 creds: ${{ secrets.AZURE_CREDENTIALS }}

 #does the cluster exist, first deployment detect

 - name: Get first deployment BOOL

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

136

 uses: azure/CLI@v1

 id: first-deployment

 with:

 azcliversion: 2.35.0

 inlineScript: |

 az config set extension.use_dynamic_install=yes_without_prompt

 empty_answer=[]

 check=$(az containerapp list --query "[?name=='$ACA_NAME']")

 [$check==$empty_answer] && FirstDeployment=false ||

FirstDeployment=true

 echo "FirstDeployment=$FirstDeployment" >> $GITHUB_ENV

 echo "::set-output name=FirstDeployment::$FirstDeployment"

 - name: Get latest ACA REVISION

 uses: azure/CLI@v1

 id: get-latest-aca-revision

 if: steps.first-deployment.outputs.FirstDeployment != 'false'

 with:

 azcliversion: 2.35.0

 inlineScript: |

 az config set extension.use_dynamic_install=yes_without_prompt

 LatestRevision=$(az containerapp revision list -n $ACA_NAME

 -g $RG --query "[?properties.trafficWeight ==\`100\`][].name"

--output tsv)

 echo "LatestRevision=$LatestRevision" >> $GITHUB_ENV

 echo "::set-output name=LatestRevision::$LatestRevision"

 - name: ECHO previous REVISION

 if: steps.first-deployment.outputs.FirstDeployment != 'false'

 run: |

 echo "LatestRevision=$LatestRevision"

 # Deploy Bicep file (existing cluster)

 - name: deploy

 #if: github.event.inputs.SKIP_INFRA == 'No'

 uses: azure/arm-deploy@v1

 if: steps.first-deployment.outputs.FirstDeployment != 'false'

 id: deploy

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

137

 with:

 subscriptionId: ${{ secrets.AZURE_SUBSCRIPTION }}

 resourceGroupName: ${{ env.RG }}

 template: deploy/bicep/container-app.bicep

 parameters: image=${{env.ACR_REPO}}:${{ github.event.

inputs.IMAGE_TAG }} acrPassword=${{ secrets.ACR_

PASSWORD }} newRevisionNumber=${{ github.run_number }}

existingRevisionName=${{env.LatestRevision}}

 failOnStdErr: false

 # Deploy Bicep file (new cluster)

 - name: deploy NEW

 #if: github.event.inputs.SKIP_INFRA == 'No'

 uses: azure/arm-deploy@v1

 if: steps.first-deployment.outputs.FirstDeployment == 'false'

 id: deploy-new

 with:

 subscriptionId: ${{ secrets.AZURE_SUBSCRIPTION }}

 resourceGroupName: ${{ env.RG }}

 template: deploy/bicep/container-app-new.bicep

 parameters: image=${{env.ACR_REPO}}:${{ github.event.

inputs.IMAGE_TAG }} acrPassword=${{ secrets.ACR_PASSWORD

}} newRevisionNumber=${{ github.run_number }}

 failOnStdErr: false

 # check GREEN deployment and witch with BLUE if working

 switch-blue-green:

 name: switch BLUE/GREEN deployment

 runs-on: ubuntu-latest

 needs: deploy-azure-green

 if: needs.deploy-azure-green.outputs.FirstDeployment != 'false'

 environment:

 name: ACA

 steps:

 # Checkout code

 - uses: actions/checkout@main

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

138

 # Log into Azure

 - uses: azure/login@v1

 with:

 creds: ${{ secrets.AZURE_CREDENTIALS }}

 - name: ECHO REVISION

 run: echo ${{ needs.deploy-azure-green.outputs.LatestRevision }}

 # only deactivate when another revision exists (after first deployment)

 - name: Replace the BLUE/GREEN traffic and deactivate old version

 uses: azure/CLI@v1

 with:

 azcliversion: 2.35.0

 inlineScript: |

 az config set extension.use_dynamic_install=yes_without_prompt

 az containerapp ingress traffic set --name $ACA_NAME -g

$RG --traffic-weight latest=100

 az containerapp revision deactivate --revision ${{ needs.deploy-

azure-green.outputs.LatestRevision }} --resource-group $RG

The CD workflow is composed of the following components:

• Trigger: Triggered either manually or by the CI workflow

• Variables (env): Defines variables for the target Azure environment

• Jobs:

• Deploy-azure-green: This job will be executing a deploy based

on Bicep templates. I have defined two different Bicep templates

for Azure Container Apps (ACA): one for the initial deployment

(no other revisions yet) and another template that will be used for

blue/green deployment:

• The job will authenticate against Azure using GitHub Secrets.

• Running AZ CLI commands, it will detect if other

deployments exist and create a workflow variable that will

define the execution of the following actions:

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

139

• For first deployment: Deploy the infrastructure (single

container app revision) using the following template:

https://github.com/unaihuete-org/SRE_with_Azure/

blob/master/deploy/bicep/container-app-new.bicep

• For blue/green deployments (not first):

• It will identify existing ACA revision and deploy the

revision. It will still keep 100% traffic on the existing

revision and 0% on the new one until tested.

• Switch blue-green (not first):

• The job references an environment. Based on the setup, the

environment will force the user for a manual approval before

execution.

• The actions will switch traffic from the old revision to the new

one and deactivate the old revision using Azure CLI commands.

As mentioned, revisions can be validated before switching (before environment

approval), as they offer an endpoint to test it (see Figure 5-19).

Figure 5-19. Container App revision URL

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://github.com/unaihuete-org/SRE_with_Azure/blob/master/deploy/bicep/container-app-new.bicep
https://github.com/unaihuete-org/SRE_with_Azure/blob/master/deploy/bicep/container-app-new.bicep

140

The Feature Flag defined in the solution will be able to expose/hide the Weather

functionality of the website without needing to redeploy (updated in seconds, depending

on refresh cycle configured on application code) (see Figure 5-20 and Figure 5-21).

Figure 5-20. Website weather feature enabled

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

141

Figure 5-21. App Configuration feature enabled

Using the Feature Flag together with authentication libraries, we could also enable

the Feature Flag only for desired users/groups (canary/ring-based deployments):

https://docs.microsoft.com/en-us/azure/azure-app-configuration/howto-

targetingfilter-aspnet-core.

As you have seen, similar GitHub Workflow could be used, together with Feature

Flags to implement the deployment strategies explained in the chapter.

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

https://docs.microsoft.com/en-us/azure/azure-app-configuration/howto-targetingfilter-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-app-configuration/howto-targetingfilter-aspnet-core

142

 Summary
In this chapter, you were introduced to the automation topic, reviewing practices that

will make your applications’ incremental updates more safe, reliable, and efficient.

As mentioned before, an SRE will need to be able to at least understand the concepts

explained in this chapter. The implementation will depend on the DevOps maturity (and

existing roles) of the organization.

The chapter focused on explaining the basic DevOps concepts and showing

examples of how to implement them using tools like Azure DevOps and GitHub Actions.

I hope this chapter gives you a nice introduction to the topic; each concept defined

could be further explained and researched (not the focus of this book).

Chapter 5 automation to enable Sre with Github aCtionS/azure DevopS/azure automation

143

CHAPTER 6

Monitoring As the Key
to Knowledge
This chapter will cover the basics of a monitoring strategy, focusing on the concepts

related to the topic and giving an explanation of the broad amount of Azure services that

should be used for your observability goals.

By the end of this chapter, you should be able to do the following:

 3 Understand Operational Awareness and Monitoring vs. Observability

 3 Remember SRE concepts from Chapter 2: SLI/SLO/SLA and

error budget

 3 Learn about burn rate (error budget)

 3 Learn about Azure Service Health

 3 Learn about Azure Monitor and Log Analytics

 3 Learn how to use Application Insights and customize it

 3 Learn how to use Kusto (KQL) queries

 3 Learn how to use Azure Alerts

© Unai Huete Beloki 2022
U. H. Beloki, The Art of Site Reliability Engineering (SRE) with Azure,
https://doi.org/10.1007/978-1-4842-8704-0_6

https://doi.org/10.1007/978-1-4842-8704-0_2
https://doi.org/10.1007/978-1-4842-8704-0_6#DOI

144

 Operational Awareness
In order to identify possible issues, check performance, or provide proper maintenance

to your solutions, you need to be able to see what is going on in your systems. You need

to have a holistic view of a system’s health. As Dickerson’s hierarchy of reliability shows

(see Figure 6-1), defining a good monitoring strategy is the base to give you the data you

need to see how things are going and take action (incident response covered in the next

chapter).

Figure 6-1. Dickerson’s hierarchy of reliability: monitoring

It is obvious to think that understanding your solutions is critical to monitoring

them in a proper way. This idea looks simple, but it is not that easy to implement.

Solutions created nowadays have complex architectures, and the speed of change

brought by DevOps/Agile methodologies makes it challenging to understand all the

pieces that make your solutions. Operational Awareness is key to know what needs to
be monitored. There are some questions that need to be answered before defining your

monitoring strategy:

• What is it running on our environments? Understand the

infrastructure architecture.

• Where do they run? Type of service (Azure VMs, WebApps, Container

Instance, AKS, SQL DB, Cosmos DB, etc.), pricing tier, and regions.

Chapter 6 Monitoring as the Key to Knowledge

145

• What services are they composed of? Understand application

architecture.

• What are the dependencies of those services?

• How do you deploy changes to those services? Manual? CI/CD?

Is there any automated/manual testing in place? Any deployment

strategies in place? Understand DevOps processes applied.

• Who are the owners of those services? Stakeholders affected by

possible incidents?

Once the solutions are fully understood, you can also define a baseline of the

“normal” behavior of your solution based on past performance. The chapter will show

how Azure tools will offer this experience powered by machine learning algorithms (see

Application Insights Smart Detection later).

So what’s the next step? If you want to improve your solution’s reliability, you need to

have a clear idea of the reliability concept. It may be helpful to review the “Understand

Reliability” section in Chapter 2. Remember, there are many aspects related to reliability:

• Availability: Is the service “up” or “down”?

• Latency: Delay between requests and responses

• Throughput: Amount of data successfully processed

• And many others covered in Chapter 2, such as freshness, coverage,

and correctness

These are the aspects of the solution you want to monitor for the services offered.

 SLI/SLO/SLA
It may also be helpful to remember the concepts covered in the “Service-Level Metrics”

section in Chapter 2:

• Service-Level Indicator (SLI): An indicator measured to define the

health of a service. Metric that is monitored. For example, number

of successful requests (200 response and below 200ms) to an API

every hour.

Chapter 6 Monitoring as the Key to Knowledge

https://doi.org/10.1007/978-1-4842-8704-0_2
https://doi.org/10.1007/978-1-4842-8704-0_2
https://doi.org/10.1007/978-1-4842-8704-0_2

146

• Service-Level Objective (SLO): Based on the tracked indicator, the

goal set as a team. Based on the previous example, an SLO could

be 99.9% of successful requests to the API every hour. SLOs will be

composed of

• Metric to measure

• Target: Can be improved/changed over time (agreed with

stakeholders)

• Time interval/duration

• Service-Level Agreement (SLA): Contractual agreement resulting

in compensation if SLA is not met. Based on the previous example,

SLA offered to the customer could be 99% of requests. Remember the

trade-off between number of 9’s (downtime), required investment on

your services, and release velocity. The objective should always be

reaching an appropriate (or acceptable) level of reliability (as seen

in Chapter 1).

As an SRE, taking into account previously mentioned reliability aspects, reliability
should be measured from the customer’s perspective. When defining SLI/SLO/SLA,

put yourself in the shoes of the customer. What are you expecting from a product? For

example:

• Does a customer really care if the CPU load of our cluster is at 90% if

the service is performing good enough?

• Does a customer really care if one of the workload instances goes

down if our solution is running on multiple replicas and still provides

responses fluently?

Of course, you should be alerted about an unusual behavior or potential incident

in your apps; nevertheless, the defined SLI should mainly monitor metrics affecting

customer experience: successful request percentage, response time for specific services,

or freshness of data (sport events, elections, etc.).

Chapter 6 Monitoring as the Key to Knowledge

https://doi.org/10.1007/978-1-4842-8704-0_1

147

 Error Budget/Burn Rate
Remember from Chapter 2, when defining SLOs, an error budget is given (1-SLO). You

should create alerts that let you react before the error budget is consumed! When the

error budget is consumed, DevOps teams may be encouraged to slow down the change

velocity and work on stabilizing the existing solutions first.

Create alerts based on error budget/burn rate (how fast the budget is getting

consumed). For example, imagine the following situation:

• SLI ➤ calls made to an API operation should be successful and have

a response time lower than 100ms, measured the last month.

• SLO ➤ you define an objective of 98% for all monthly calls.

• Error budget = (1-SLO) ➤ 2%.

• If your API receives 100.000 calls per month, the error budget would

be 2000 failed requests a month.

• How to define alerts based on burn rate, how fast your error budget

is consumed. A burn rate of 1 for the monthy SLO period would

mean consuming all budget by the end of the month. Check Google’s

video: www.youtube.com/watch?v=t1BGo-Il1AM:

Burn rate = error budget consumed * period/alert window

*Error budget consumed being 1 for 100% used budget

• If you want to measure a 2% burn of the error budget in the last

hour (2% of 2000 ➤ 40 failed requests ➤ it would consume the

budget in 50 hours!), it will give you a burn rate of

Burn rate=0.02*(31d*24h)/1h=14.88

• Alerts should be defined when evaluated with a short and a long

window. For the preceding example, we could evaluate for both 1

hour (long) and 5 minutes (short) windows.

Then, how can we track/measure these indicators?

The aim of this chapter is to explain the tools provided by Azure to define ways to

implement them and design the best monitoring approach possible for your solution.

Chapter 6 Monitoring as the Key to Knowledge

https://doi.org/10.1007/978-1-4842-8704-0_2
https://www.youtube.com/watch?v=t1BGo-Il1AM

148

 Observability vs. Monitoring
These two terms are often used (and confused) by IT teams nowadays. Distributed

applications designed lately introduce challenges like tracing requests that may span

multiple services and infrastructure components. But are monitoring and observability

the same concept?

No. You can find many definitions in the community for these two terms, but let’s try

to explain it in the simplest way possible:

• Observability: Provides ability to understand a system internal state

based on its external outputs. It is informative.

• Monitoring: The process of collecting data, analyzing it, and taking

decisions based on the information. It is actionable.

After observability is achieved for complex solutions (full stack view), you will have

the visibility needed to create actionable alerts, reports/dashboards, or even anomaly

detection based on historical data using AIOps solutions. Three primary pillars can be

identified for observability:

• Logs: Timestamped description of an event. Logs may need to be

structured and parsed for further analysis (querying).

• Metrics: Point-in-time measurements, mainly numeric values (more

consistent than logs), used for alerts and dashboarding.

• Traces: Getting details of particular requests and how they flow

through the used components in a distrusted system.

Let’s see how to achieve our observability goals in Azure.

 Azure Service Health
Azure Service Health (https://docs.microsoft.com/en-us/azure/service-health/

overview) is a service that provides a customized view of the health of the Azure services

you are using. It gives you a view on the platform/service level and the health of

services offered by the cloud provider. It is composed of the following capabilities (see

Figure 6-2):

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/service-health/overview
https://docs.microsoft.com/en-us/azure/service-health/overview

149

• Service Issues: Offers a way to look for real-time issues. Alerts can be

defined for the issues.

• Planned Maintenance: Upcoming maintenance events information.

• Health Advisories: Changes in Azure services that may affect your

workloads.

• Security Advisories: Security-related notifications.

• Resource Health: Reports the past and current health of your Azure

services, relying on predefined signals to assess if a resource is

unhealthy.

Figure 6-2. Azure Service Health

The Azure Status (https://status.azure.com/) website can also be used to get real-

time information about service outages across regions (not only services/regions you are

using) as you can see in Figure 6-3.

Chapter 6 Monitoring as the Key to Knowledge

https://status.azure.com/

150

Figure 6-3. Azure Status website

 Azure Monitor
When you host solutions in Azure, there are multiple sources you need to take into

account for your observability approach. Azure Monitor provides a unified experience

where you can have a total visibility of the health, performance, and other aspects of the

running Azure services (also non-Azure workloads). Metrics are collected by default,

but Azure Monitor makes use of the following two tools for Logs and Traces collection

(remember observability pillars):

• Log Analytics workspaces: Solution used to hold logs offered by

many Azure (and non-Azure) services (see Figure 6-4).

• Application Insights: Provides the tools to collect data about the

performance and functionality of the application code: using traces,

application logs, and user telemetry. New Application Insights

instances use a Log Analytics workspace as the data store.

Chapter 6 Monitoring as the Key to Knowledge

151

 Data Sources
Azure Monitor, by using the previously mentioned tools, gives you a way to collect

the following sources/tiers for monitoring that can be collected and retained in a Log

Analytics workspace for further analysis/reporting (see Figure 6-4):

• Application: As mentioned before, you can track the performance

and use of your application by using Application Insights. Application

Insights gives us different options for the collection of telemetry (no-

code and SDK-based experience, covered later).

• Operating System: By using an Azure Monitor agent (AMA), we can

collect logs and metrics from a guest operating system (Azure and

non-Azure VM/servers).

• Azure Resources: Azure cloud platform offers the following data:

• Metrics: Collected by default for 93 days. They can be retained

longer if ingested in Log Analytics workspace.

Figure 6-4. Azure Monitor

Chapter 6 Monitoring as the Key to Knowledge

152

• Logs (or Resource Logs): Several resources give information

about “internal” operation; logs are created, but you need to

export them (in case you want to collect) using Diagnostic
Settings (see an example for Cosmos DB in Figure 6-5). Check

supported services and schemas at https://docs.microsoft.

com/en-us/azure/azure-monitor/essentials/resource-

logs-schema.

• Azure Subscription: You can export subscription-related data

about health and changes made to Azure resources to Log Analytics

workspace using the export functionality from Activity Logs (see

Figure 6-6).

Figure 6-5. Diagnostic setting for Cosmos DB

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/resource-logs-schema
https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/resource-logs-schema
https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/resource-logs-schema

153

Figure 6-6. Activity Logs export option

• Azure tenant: Collect data about Azure Active Directory–related

operations (set up export from Azure Active Directory ➤

Diagnostic Logs).

• Custom source: Import logs/metrics to Log Analytics workspaces

using REST APIs offered by Azure Monitor.

 Visualize
Once data has been collected, either using Application Insights, Log Analytics, or the

metrics provided by default, you should start thinking on ways to visualize your data.

These are some of the tools that can be used.

 Azure Dashboards

Azure Dashboards can be used to create an organized view of your cloud workloads.

From a dashboard, you can monitor and even define quick access to resources. Many

solutions, like Application Insights, provide default dashboards you can later customize

(see Figure 6-7).

Chapter 6 Monitoring as the Key to Knowledge

154

Figure 6-7. Application Insights default dashboard

Use Azure RBAC to allow others to see your dashboard. They can be treated as

any other Azure resource. As the dashboard is represented by a JSON file (clicking on

Export), you can also programmatically change and deploy them using, for example,

Azure CLI commands. While editing, you can include customized markdown content or

use predefined tiles from the Gallery.

 Metrics Explorer (Metrics)

It is a service used for plotting charts based on metrics that are collected from your

running services. The solutions give the option to correlate metrics coming out

of multiple Azure resources on the same chart and use filters to select the desired

properties.

The charts can be attached to Azure Dashboards, Azure workbooks, and Grafana,

and even Alert rules can be created from the tracked metrics directly from this service.

Figure 6-8 is an example of a metrics chart for correlating both WebApp and Cosmos

DB metrics.

Chapter 6 Monitoring as the Key to Knowledge

155

Figure 6-8. Metrics chart for WebApp and Cosmos DB

 Azure Workbooks

Azure workbooks (https://docs.microsoft.com/en-us/azure/azure-monitor/

visualize/workbooks-overview) provide a nice canvas that can be used for rich

visuals and analysis. Gather multiple data sources in a single interactive “page” your

engineering teams can use for monitoring.

You can combine markdown text, queries, and metrics chart, which can be

interactively modified by the consumer using parameters you specify. Workbooks can

also be treated as Azure resources; they offer a way to work with them as ARM templates

(https://docs.microsoft.com/en-us/azure/azure-monitor/visualize/workbooks-

automate).

Product teams also offer many default workbooks (see Figure 6-9) that can be

customized if desired, or you can also start from a blank page.

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/azure-monitor/visualize/workbooks-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/visualize/workbooks-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/visualize/workbooks-automate
https://docs.microsoft.com/en-us/azure/azure-monitor/visualize/workbooks-automate

156

Figure 6-9. Alert management default workbook

 Azure Monitor Insights

Both from the Azure Monitor window (see Figure 6-10) and individual Azure resources

(see Figure 6-11), you may find an Insights section. Insights provides a predefined

workbook that can be customized, offering a general workbook from the Azure

Monitor window and an individually scoped (more detailed) workbook from the Azure

resource window.

Chapter 6 Monitoring as the Key to Knowledge

157

Figure 6-10. Insights from Azure Monitor

Figure 6-11. Insights for a storage account resource

Chapter 6 Monitoring as the Key to Knowledge

158

 Grafana

Grafana is a well-known open source solution for providing analytics and interactive

visualization. Grafana can be connected to multiple data sources to act as the main

observability platform.

In the case of using Azure Monitor (Log Analytics/Application Insights) for the data

collection, you are offered the choice to connect to Grafana using the Azure Monitor

data source plug-in (https://grafana.com/docs/grafana/latest/datasources/

azuremonitor/). The plug-in will be able to retrieve the previously mentioned metrics/

logs/traces, bringing them together into a single user interface in real time.

There are two different ways to set up the Grafana server:

• Ad hoc setup (in your selected VM/server) by installing the Grafana

solution

• Grafana Cloud: managed service provided by Grafana Labs

(https://grafana.com/products/cloud/)

• Create an Azure Managed Grafana service (https://docs.

microsoft.com/en-us/azure/managed-grafana/) (in preview at the

moment of writing):

• It is fully supported by Microsoft, not dealing with setup and

hosting.

• You can share dashboards with people outside and inside the

organization.

• It uses Azure AD for authentication and access control.

• It automatically connects to Azure Monitor as a data source using

a Managed Identity for authentication.

• We can directly import charts (Metrics and Kusto Log queries)

from the Azure portal (e.g., see Figure 6-12 and Figure 6-13).

Chapter 6 Monitoring as the Key to Knowledge

https://grafana.com/docs/grafana/latest/datasources/azuremonitor/
https://grafana.com/docs/grafana/latest/datasources/azuremonitor/
https://grafana.com/products/cloud/
https://docs.microsoft.com/en-us/azure/managed-grafana/
https://docs.microsoft.com/en-us/azure/managed-grafana/

159

Figure 6-12. Export Log query chart to Grafana from Azure Portal

Figure 6-13. Exported query chart in Azure Managed Grafana

Chapter 6 Monitoring as the Key to Knowledge

160

 Power BI

Similar to the previously mentioned Grafana, if you are looking for an external

dashboarding solution, Power BI could be your choice. From Log Analytics queries, we

are offered the option to export a Power BI M query (see Figure 6-14), which can be

copy-pasted into a blank query in Power BI to create dashboards/reports in this tool.

Figure 6-14. Export M Query for Power BI

 Analyze

 Azure Monitor Logs
There has been a lot of confusion lately with the terminology associated to these

products. After consolidating many tools under the Azure Monitor scope (Log Analytics

and Application Insights), the following naming changes were introduced (https://

docs.microsoft.com/en-us/azure/azure-monitor/terminology#february-2019---

log-analytics-terminology):

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/azure-monitor/terminology#february-2019---log-analytics-terminology
https://docs.microsoft.com/en-us/azure/azure-monitor/terminology#february-2019---log-analytics-terminology
https://docs.microsoft.com/en-us/azure/azure-monitor/terminology#february-2019---log-analytics-terminology

161

• Log Analytics (before and still used) = Azure Monitor Logs (now):
Being the service in the Azure portal used to write and run Kusto

Query Language (KQL) queries against collected logs (the equivalent

to Metrics Explorer for Logs). It can be accessed from the Logs tab

offered by many resources or from the Logs tab in Azure Monitor.

It should not be a surprise to see a “No data found” warning (see

Figure 6-15) if log collection to a workspace has not been configured

for the selected scope.

• Log Analytics workspace (no name changed): Still the solution

used to store the collected Logs from selected sources. Access/

permissions to workspace (and collected log tables) can be

configured using Azure RBAC (Role-Based Access Control).

A single workspace may meet the requirements of your organization.

Nevertheless, if you want to define different requirements (owners,

costs, data retention, data limits, etc.), take a look at the best practices

covered at https://docs.microsoft.com/en-us/azure/azure-

monitor/logs/workspace-design. With the proper permissions,

you will still be able to run cross-workspace queries: https://

docs.microsoft.com/en-us/azure/azure-monitor/logs/cross-

workspace-query.

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/azure-monitor/logs/workspace-design
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/workspace-design
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/cross-workspace-query
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/cross-workspace-query
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/cross-workspace-query

162

Figure 6-15. No data found warning for Logs in Storage Account

Log Analytics/Azure Monitor Logs

Log Analytics (or Azure Monitor Logs) gives the option to create and execute our own

queries. You can find it in the Logs section of many resources. From Azure Monitor or

the Log Analytics workspace resource, the Logs section will let you choose the scope to

query. From a resource’s Logs section, the scope will be limited to the related resource.

The interface shows you the following options (see Figure 6-16):

 1. Scope selected by the user.

 2. Query to be executed using the Run button. Time range can be

specified both in the query and the top option.

Chapter 6 Monitoring as the Key to Knowledge

163

 3. Results/Charts are shown for the executed query. The charts can

be modified with the options offered on the right.

 4. Sidebar offers multiple tools:

 a. Tables shows the collected data for the scope; you can expand it to show

the columns.

 b. Queries shows example queries; you can execute or access the ones you

have saved.

 c. Filter tab will help you identify the fields to use to make your query more

relevant (shown after running query).

 d. Functions is a query that can be used in other queries as a command. You

can use predefined functions or create your own to share with your team.

 5. Extra options:

 a. New alert rule lets you create an alert rule based on the results of

you query.

 b. Export gives you the option to move the query/charts to other solutions

like Azure workbooks, Azure dashboards, Power BI, or Grafana.

 6. Queries can be used to access predefined or custom-created

queries that have been saved before. Queries can be saved in

groups by using Query Packs (either the default one or custom

ones) (https://docs.microsoft.com/en-us/azure/azure-

monitor/logs/query-packs).

 7. Learning content for KQL can be found on the top-right corner of

the page.

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/azure-monitor/logs/query-packs
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/query-packs

164

Figure 6-16. Logs user interface

Kusto Query Language (KQL)

Kusto or KQL is a rich querying language designed to be easy to read and author. It is

the querying language you use for analyzing the data collected in your workspaces. It

is also used for Azure Data Explorer (https://docs.microsoft.com/en-us/azure/

data-explorer/data-explorer-overview); actually, it was created for it, and now it has

extended to Azure Monitor and other products (not all operators are supported).

For those of you having experience with SQL and Splunk, the product offers

documentation to help you understand the differences between those languages:

• SQL to Kusto: https://docs.microsoft.com/en-us/azure/data-

explorer/kusto/query/sqlcheatsheet

• Splunk to Kusto: https://docs.microsoft.com/en-us/azure/data-

explorer/kusto/query/splunk-cheat-sheet

If you do not have experience with the previously mentioned tools (and even if you

do), a lot of free documentations/tutorials are provided to learn Kusto language. A full

book could be dedicated to teaching this querying language, but it is not the focus of

the book.

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/data-explorer/data-explorer-overview
https://docs.microsoft.com/en-us/azure/data-explorer/data-explorer-overview
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/sqlcheatsheet
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/sqlcheatsheet
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/splunk-cheat-sheet
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/splunk-cheat-sheet

165

Check the materials/links shared on the following link; it includes cheat sheets,

Microsoft Learn modules, and community blogs/content: https://docs.microsoft.

com/en-us/azure/sentinel/kusto-resources. Check out the mentioned GitHub

repository maintained by Rod Trent (it points to his eBook, video channel, and even

Merch store): https://github.com/rod-trent/MustLearnKQL.

If you want to practice with KQL and you miss demo data, try this demo workspace:

https://aka.ms/LADemo

The demo explained at the end of the chapter will show some practical ways to use

this querying language.

 Azure Resource Graph

Azure Resource Graph (https://docs.microsoft.com/en-us/azure/governance/

resource-graph/overview) is a service used to help you manage your Azure cloud

environments, providing you a querying experience powered by Kusto queries (KQL).

Explore resources (and their properties) across subscriptions to help you govern your

environments. You can even query resource properties changed within the last 14 days.

Resource graph queries can be executed from tools like Azure CLI, PowerShell,

and Portal. Also, SDKs are offered for the main programming languages. You can select

the scope (see Figure 6-17) for your queries: Directory (selected tenant), Management

Group, or Subscriptions.

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/sentinel/kusto-resources
https://docs.microsoft.com/en-us/azure/sentinel/kusto-resources
https://github.com/rod-trent/MustLearnKQL
https://aka.ms/LADemo
https://docs.microsoft.com/en-us/azure/governance/resource-graph/overview
https://docs.microsoft.com/en-us/azure/governance/resource-graph/overview

166

Figure 6-17. Azure Resource Graph Explorer scopes

Check the following Azure Dashboard examples based on Resource Graph queries:

https://github.com/Azure-Samples/Governance/tree/master/src/resource-

graph/portal-dashboards. You can download the JSON files and directly import Azure

Dashboards into your environment. Clicking on the tiles given will show you the query

used (see Figure 6-18).

Chapter 6 Monitoring as the Key to Knowledge

https://github.com/Azure-Samples/Governance/tree/master/src/resource-graph/portal-dashboards
https://github.com/Azure-Samples/Governance/tree/master/src/resource-graph/portal-dashboards

167

Figure 6-18. Azure Dashboard and related Resource Graph query

 Application Insights
Application Insights (https://docs.microsoft.com/en-us/azure/azure-monitor/

app/app-insights-overview) is the tool provided by the Azure Monitor ecosystem

for Application Performance Management (APM). It will help you understand all the

moving parts of your complex application architectures.

Application Insights is a tool developers have to embrace in order to give visibility

to the actions the application code is executing. SRE/DevOps should be embracing the

cultural change that monitoring is not only the responsibility of operations engineers

but is everyone’s responsibility. When a new feature is designed for a solution, it should

come along with the SLOs/SLIs for it and the indicators that need to be measured from

code. Developers will need to use Application Insights SDK to obtain the full potential of

this powerful tool.

 Instrumentation Options/Setup

Application Insights offers different options for data collection:

• Auto-Instrumentation (No-Code): Developers can instrument

their applications with minimal effort, just by enabling automatic

telemetry collection. It will be able to collect metrics, request, or

dependency calls made by your application. You may have seen the

Application Insights tab, for example, in Azure App Services or Azure

Functions. Many environments/languages support this option; even

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview

168

on-premises apps can be instrumented using the Application Insights

agent. Check the full list here: https://docs.microsoft.com/en-

us/azure/azure-monitor/app/codeless-overview#supported-

environments-languages-and-resource-providers.

Note personally, i only recommend this option when using sdK is not an option
(e.g., development is externalized, and you do not have access to customize the
code). the sdK releases the full potential of the tool in terms of features and
customization.

• SDK: Application Insights offers SDKs for multiple programming

languages like .NET, Java, Node.js, Python, and JavaScript. It releases
the full potential of the tool, as we can completely customize “what”

telemetry will be collected, “how” it will be collected, and even how

it will be sent to the Application Insights instance in the cloud. This

section will provide some of those examples. Almost any application
written in a supported language and with connectivity to Azure,
regardless if it is front end, middleware, or back end, can be
monitored.

• OpenTelemetry (new, still in progress): The future option based

on an open source telemetry project(https://opentelemetry.

io/) used to collect telemetry data (metrics, logs, and traces).

Application Insights can be used as the data store when using

OpenTelemetry vendor-neutral instrumentation SDKs. Nowadays,

out of the three observability pillars, it only supports distributed

tracing. Metrics and logs are still in progress; as a result, the book
will focus on the SDK option. Check the website for future updates:

https://docs.microsoft.com/en-us/azure/azure-monitor/app/

opentelemetry-overview

New Application Insights instances will be using a Log Analytics workspace as the

data store (previously, classic option, used to store data on their own back end). When

an instance is created, the following options are provided to authenticate/connect to

your Application Insights instance from your application code (mainly when using SDK):

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/azure-monitor/app/codeless-overview#supported-environments-languages-and-resource-providers
https://docs.microsoft.com/en-us/azure/azure-monitor/app/codeless-overview#supported-environments-languages-and-resource-providers
https://docs.microsoft.com/en-us/azure/azure-monitor/app/codeless-overview#supported-environments-languages-and-resource-providers
https://opentelemetry.io/
https://opentelemetry.io/
https://docs.microsoft.com/en-us/azure/azure-monitor/app/opentelemetry-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/opentelemetry-overview

169

• Instrumentation key: Identifier for the Application Insights instance.

Previous SDKs of Application Insights used to allow data ingestion

just using the Application Insights instrumentation key. Migrating to
the next options is recommended (instrumentation key support
ends in 2025): https://docs.microsoft.com/en-us/azure/
azure-monitor/app/migrate-from-instrumentation-keys-to-

connection-strings#new-capabilities.

• Connection string: It defines where telemetry data has to be

sent. Connection strings can be customized for proxy redirects

(used in some on-premise solutions): https://docs.microsoft.

com/en-us/azure/azure-monitor/app/sdk-connection-

string?tabs=net#scenario-overview. Keep your connection string

as environment variable (or Azure App Configuration) with the name

APPLICATIONINSIGHTS_CONNECTION_STRING.

• Azure AD–based authentication (preview, recommended):
Used to only allow authenticated telemetry using Azure AD. You

can disable local authentication to ensure only Azure AD identities

(such as Managed Identities or Service Principals) are allowed to

ingest telemetry: https://docs.microsoft.com/en-us/azure/

azure-monitor/app/azure-ad-authentication?tabs=net.

 Features

Let’s cover some of the features offered by Application Insights.

Application Map

Get a quick representation of your application and its components to quickly detect

failures and bottlenecks. Components are mainly calls your application is making to

external solutions like APIs, SQL databases, Cosmos DB, storage queue, storage table,

etc. Even applications using different Application Insights resources could be shown

together in the map if components are related.

When clicking an external component, the most frequent errors like failed

or slowest request will be shown for further investigation. The Intelligent View

(preview) option applies ML to help you identify possible issues based on past

performance: https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-

map?tabs=net#application-map-intelligent-view-public-preview.

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/azure-monitor/app/migrate-from-instrumentation-keys-to-connection-strings#new-capabilities
https://docs.microsoft.com/en-us/azure/azure-monitor/app/migrate-from-instrumentation-keys-to-connection-strings#new-capabilities
https://docs.microsoft.com/en-us/azure/azure-monitor/app/migrate-from-instrumentation-keys-to-connection-strings#new-capabilities
https://docs.microsoft.com/en-us/azure/azure-monitor/app/sdk-connection-string?tabs=net#scenario-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/sdk-connection-string?tabs=net#scenario-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/sdk-connection-string?tabs=net#scenario-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/azure-ad-authentication?tabs=net
https://docs.microsoft.com/en-us/azure/azure-monitor/app/azure-ad-authentication?tabs=net
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-map?tabs=net#application-map-intelligent-view-public-preview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-map?tabs=net#application-map-intelligent-view-public-preview

170

Figure 6-19 shows the topology of an application, composed of various Azure

services and availability tests created with Application Insights. The role name under the

instance can be modified using SDK (covered later).

Figure 6-19. Application Map

Smart Detection

The Application Insights Smart Detection feature learns from the past behavior of your

application to detect anomalies using ML and alerts like slow responses or degradation

of services. It has its own alerting system that sends notification emails, but now you

can migrate to Azure Alerts that can use Action Groups/Action Rules for centralizing the

alert management experience (preview): https://docs.microsoft.com/en-us/azure/

azure-monitor/alerts/alerts-smart-detections-migration.

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/azure-monitor/alerts/alerts-smart-detections-migration
https://docs.microsoft.com/en-us/azure/azure-monitor/alerts/alerts-smart-detections-migration

171

Live Metrics Stream

Also known as QuickPulse, it will let you watch your application performance in real

time using its noninvasive diagnostics tool (see Figure 6-20).

Live Metrics uses a different endpoint (https://live.applicationinsights.

azure.com) compared to the data ingestion feature (https://dc.applicationinsights.

azure.com). It also behaves differently to the Metrics Explorer or Log Analytics solutions.

In the case of Live Metrics, data is only sent when the pane is opened; it is shown within

a second, and once shown, it is discarded. For Metrics Explorer and Log Analytics, data

is always collected; it is aggregated over minutes and retained for 90 days (default) up to

2 years.

Transaction Search

It is mainly used to confirm default and customized telemetry has been ingested (see

Figure 6-21). For further analysis, use KQL queries.

Figure 6-20. Live Metrics Stream

Chapter 6 Monitoring as the Key to Knowledge

https://live.applicationinsights.azure.com
https://live.applicationinsights.azure.com
https://dc.applicationinsights.azure.com
https://dc.applicationinsights.azure.com

172

Figure 6-21. Transaction search

Availability

Application Insights gives you the option to run and monitor availability test running

against your environment. The following options are offered:

• URL ping test: Simple test to validate an endpoint.

• Standard test (preview): New generation URL ping test that offers

more customization.

• Multistep web test (deprecated): Not recommended as it has to be

created with Visual Studio Enterprise 2019 and the next versions do

not offer it.

• Custom test using TrackAvailability: Use Application Insights SDK

to run your customized tests from any application and send the

results.

The first three options use predefined machines from 16 different global points. It

may not be the best option for solutions running behind firewall rules (you would have

to open traffic for all those machines). Using the TrackAvailability option, you can run

Chapter 6 Monitoring as the Key to Knowledge

173

tests from any infrastructure/application you want. For example, you could run tests

using an Azure Function: https://docs.microsoft.com/en-us/azure/azure-monitor/

app/availability-azure-functions.

Alerts can be defined for failing, and the given reports can be used to review the

executed tests. As shown in Figure 6-22, even if tests are successful, you may want to

study why completion time was bigger for specific regions (study if performance could

be improved for those users).

Figure 6-22. Availability tests

Failures/Performance

Both Failures and Performance tabs will show latest information divided by Server/

Browser views.

As part of the Performance option, a feature called Profiler can be enabled to

identify “hot” code path performing “slower.” Profiler is supported for the following

scenarios: https://docs.microsoft.com/en-us/azure/azure-monitor/profiler/

profiler-overview#supported-in-profiler.

In the case of Failures, there is a feature called Snapshot Debugger that can

automatically collect a debug snapshot when exceptions occur, giving you the

chance to see the state of the code at the moment of failure. The following scenarios

are supported: https://docs.microsoft.com/en-us/azure/azure-monitor/app/

snapshot-debugger#enable-application-insights-snapshot-debugger-for-your-

application.

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/azure-monitor/app/availability-azure-functions
https://docs.microsoft.com/en-us/azure/azure-monitor/app/availability-azure-functions
https://docs.microsoft.com/en-us/azure/azure-monitor/profiler/profiler-overview#supported-in-profiler
https://docs.microsoft.com/en-us/azure/azure-monitor/profiler/profiler-overview#supported-in-profiler
https://docs.microsoft.com/en-us/azure/azure-monitor/app/snapshot-debugger#enable-application-insights-snapshot-debugger-for-your-application
https://docs.microsoft.com/en-us/azure/azure-monitor/app/snapshot-debugger#enable-application-insights-snapshot-debugger-for-your-application
https://docs.microsoft.com/en-us/azure/azure-monitor/app/snapshot-debugger#enable-application-insights-snapshot-debugger-for-your-application

174

Troubleshooting Guides

It is a solution based on Azure workbooks where developers can host Azure workbooks

for both analyzing existing environments and documenting possible mitigations for

known issues.

Logs

The section under Monitoring (see Figure 6-23) is offered the same way as we see it in

other Azure resources (nothing specific to Application Insights). Logs service will be

scoped to the telemetry collected by Application Insights to run the desired KQL queries.

Figure 6-23. Monitoring section of Application Insights

Usage (User Behavior)

We mentioned before monitoring should always have a customer focus. The Usage

section of Application Insights provides tools to understand how users are consuming

our solution. For the best experience, both server-side and client-side code (snipped to

be included in JavaScript) should be tracked.

The solution offers many different views (based on Azure workbooks) to analyze user

behavior (cohorts can be defined to scope analysis to groups of users):

• Users/Session pages to understand where users are located and

what browser and operating systems are used. This could be critical

Chapter 6 Monitoring as the Key to Knowledge

175

information; for example, it could be used for localizing solutions

closer to users or creating automated testing efforts that target the

most frequent browser/OS combinations.

• Retention page to identity retention rates.

• Events page to analyze the most frequently used PageViews or

custom events like purchase of items (using TrackEvent API from

the SDK).

• Funnels page lets you define important workflows in your

solution and helps you analyze conversion rates (and possible

impact properties) from one step to next one. For example, if your

application is an e-commerce website, you could define the steps and

measure conversion rates: 1. Home Page ➤ 2. Product Add to Cart ➤

3. Checkout Started ➤ 4. Order Successful.

• User Flows lets you choose an initial event, and it will show how your

customers “move” around your application (see Figure 6-24).

Figure 6-24. User Flows

Chapter 6 Monitoring as the Key to Knowledge

176

 Customized Application Insights Using SDK

As mentioned before, Application Insights SDK lets you use the full potential of the

product, from behavior customization to custom telemetry options. Let’s cover some of

those options in this section.

Application Insights API

Even if Application Insights is able to collect a lot of telemetry by default, using the SDK

will be critical to collect application logic data. For example, by default, Application

Insights will be able to detect many HTTP requests or dependency calls, but it does

not really know if we are running an e-commerce website or a banking system. Using

the APIs on the following reference, you have the power to decide the telemetry that

is collected, using custom telemetry like TrackDependency() for dependencies not

detected by default: https://docs.microsoft.com/en-us/azure/azure-monitor/app/

api-custom-events-metrics#api-summary

Properties (string values) and metrics (numeric values) can be provided to the

customized telemetry, used later for creating charts and filtering. For example:

// Set up some properties and metrics:

var properties = new Dictionary <string, string>

 {{"game", currentGame.Name}, {"difficulty", currentGame.Difficulty}};

var metrics = new Dictionary <string, double>

 {{"Score", currentGame.Score}, {"Opponents", currentGame.

OpponentCount}};

// Send the event:

telemetry.TrackEvent("WinGame", properties, metrics);

Advanced Configuration for Application Insights

An Application Insights behavior can be modified using the following options given by

the SDK:

• Each language SDK will give you options to modify enabled/disabled

services in code. You can also completely delete services by deleting

modules in charge of collection automatic telemetry.

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/azure-monitor/app/api-custom-events-metrics#api-summary
https://docs.microsoft.com/en-us/azure/azure-monitor/app/api-custom-events-metrics#api-summary

177

• Sampling: Adaptative sampling is enabled by default, but fixed-

rate sampling is supported (https://docs.microsoft.com/en-us/

azure/azure-monitor/app/sampling#configuring-adaptive-

sampling-for-aspnet-core-applications).

• TelemetryInitializer: Can be used to enrich telemetry properties;

for example, you could include the application version to each

telemetry item.

• RoleName/RoleInstance: These two properties are frequently

defined on the TelemetryInitializer to identify the running

instances when using Application Map. For example, if a front

end for your solution is composed of three VMs, you could define

RoleName=app-frontend and RoleInstance=app-frontend-vm1

for VM1.

• TelemetryProcessors: After the initializer is used, telemetry is

created, and it can go through multiple processors to modify and

filter telemetry before it is sent to an Application Insights resource.

• Log Traces: For customers using diagnostics tracing logs for ASP.NET

solutions like ILogger, NLog, log4net, and System.Diagnostics.Trace,

you can collect those traces in Application Insights.

• Release Annotations: You can create release annotations on

Application Insights charts or workbooks (see Figure 6-25) by

using the script mentioned here: https://docs.microsoft.com/

en-us/azure/azure-monitor/app/annotations#create-release-

annotations-with-azure-cli. Automate it when deploying updates

using Azure DevOps or GitHub Actions Azure CLI task/action.

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/azure-monitor/app/sampling#configuring-adaptive-sampling-for-aspnet-core-applications
https://docs.microsoft.com/en-us/azure/azure-monitor/app/sampling#configuring-adaptive-sampling-for-aspnet-core-applications
https://docs.microsoft.com/en-us/azure/azure-monitor/app/sampling#configuring-adaptive-sampling-for-aspnet-core-applications
https://docs.microsoft.com/en-us/azure/azure-monitor/app/annotations#create-release-annotations-with-azure-cli
https://docs.microsoft.com/en-us/azure/azure-monitor/app/annotations#create-release-annotations-with-azure-cli
https://docs.microsoft.com/en-us/azure/azure-monitor/app/annotations#create-release-annotations-with-azure-cli

178

Figure 6-25. Release annotations in Application Insights

 Azure Monitor Alerts
Most of the monitoring tools mentioned previously are related to a “reactive” approach:

fixing issues once they have happened. On the other hand, Alerts should be used for a

“proactive” approach: getting notified before users notice those problems.

Azure offers an alert service that can be found on the Alert section of Azure Monitor

(alerts centralized here) or individual Azure resources (alerts scoped to the resource).

Alerts defined in Azure can use the following signals:

• Logs/Metrics/Traces collected by Log Analytics and Application

Insights. Also, Smart Detection or Availability test offered by

Application Insights

• Platform Metrics (default ones given for 93 days)

• Activity Log alerts

They are composed of the elements shown in Figure 6-26.

Chapter 6 Monitoring as the Key to Knowledge

179

Figure 6-26. Azure Alerts

• Alert Rule: It defines the resource, signal, and condition to monitor.

Multiple conditions can be applied to the same rule. Target

signals can be narrowed using dimensions. When defining the

threshold, two types are supported: static and dynamic. Dynamic

thresholds use ML technology to alert based on deviations, really
recommended to avoid noise and set up alerts when the threshold
to apply is not clear yet. The example shown in Figure 6-27 shows

an alert rule based on an Application Insights server request with

result code (dimension) different to 200. The threshold shows past

situations where the alert would have been triggered.

Chapter 6 Monitoring as the Key to Knowledge

180

Figure 6-27. Azure Alert rule

Chapter 6 Monitoring as the Key to Knowledge

181

• Alert Processing Rule: When the rule is met, you can modify the

expected behavior by suppressing alerts (e.g., useful for maintenance

windows) or automatically assigning Action Groups to alerts

based on filters (instead of doing it alert by alert). It helps with the

management of alerts in your organization.

• Action Group: Triggers automation or notifications once the alerts

are fired (and evaluated by processing rules):

• Notifications: Email, push notification

• Automation: Runbooks, Logic Apps, Functions, Webhooks, ITSM

integration, or event hubs

• Alert Condition: Defined by the system to “fired” when a condition

is met and moved to “resolved” when a condition clears (checkbox in

Figure 6-28 should be enabled).

Figure 6-28. Automatically resolve alerts

• User Response (state): The user can define the alert state to “New,”

“Acknowledged,” or “Closed.”

Alerts defined for our complex environment should be “actionable.” Avoid creating

alerts for successful actions/states; you just want to be notified about exceptional

situations that may be putting your SLOs at risk.

Once your organization starts getting more mature on this practice, you will be able

to filter noise (non-actionable alerts) and trigger automation that may remediate or fix

issues raised by alerts automatically.

Chapter 6 Monitoring as the Key to Knowledge

182

Resiliency helps you to recover from failures. Availability gives your users access to

your workload at all times. Design monitoring solutions that expect failures and recover

from them.

 [DEMO] Tracking SLI/SLO/SLA Using Application Insights
and Log Analytics
The example shown in this chapter is using the demo architecture used in Chapter 5

(see Figure 6-29), which hosts a containerized .NET 6 website in an Azure Container.

Let’s see how Application Insights and Log Analytics can be used to track our solution

as explained in the chapter. Demo files can be found here: https://github.com/

unaihuete-org/SRE_with_Azure.

Figure 6-29. Demo solution

The .NET 6 website is using Application Insights SDK to collect telemetry from the

running application. Application Insights is set up in the following way:

• A telemetry initializer (https://github.com/unaihuete-org/

SRE_with_Azure/blob/master/src/MyTelemetryInitializer.cs)

is used to include App version and RoleName properties in every

telemetry.

Chapter 6 Monitoring as the Key to Knowledge

https://doi.org/10.1007/978-1-4842-8704-0_5
https://github.com/unaihuete-org/SRE_with_Azure
https://github.com/unaihuete-org/SRE_with_Azure
https://github.com/unaihuete-org/SRE_with_Azure/blob/master/src/MyTelemetryInitializer.cs
https://github.com/unaihuete-org/SRE_with_Azure/blob/master/src/MyTelemetryInitializer.cs

183

• Initializer is used and Application Insights instance is connected

in (https://github.com/unaihuete-org/SRE_with_Azure/blob/

master/src/Program.cs) using the connectionString taken from an

Azure App Configuration resource.

Figures 6-30 and 6-31 show both telemetry initializer properties get exposed in the

portal (role name and appVersion).

Figure 6-30. Transaction details

Chapter 6 Monitoring as the Key to Knowledge

https://github.com/unaihuete-org/SRE_with_Azure/blob/master/src/Program.cs
https://github.com/unaihuete-org/SRE_with_Azure/blob/master/src/Program.cs

184

Figure 6-31. RoleName in Application Map

The website hosted in Azure Container App offers a tab to give the user weather

forecast information. In the ApiHelper.cs file (https://github.com/unaihuete-org/

SRE_with_Azure/blob/master/src/ApiHelper.cs), a TrackEvent() telemetry is

created to track the status of the calls made to this service, providing global position

(latitude/altitude), response code, and API key used on the weatherForecast API back-

end call.

For the service, as an SRE for the demo, the following have been defined:

• SLI: Requests made to the weather forecast feature (using the

TrackEvent mentioned before) with successful response for the user

during the last 31 days.

• SLO: 98% of those calls should be successful during the last 31 days.

• SLA: 95%. Your contract agreement is normally lower than SLO to

have some margin when things go wrong.

• Total error budget: 2% of monthly calls.

The Kusto query shown in Figure 6-32 is used to show all these metrics in a chart,

as you can see there was a heavy downtime for the service at the beginning of the

evaluation period.

Chapter 6 Monitoring as the Key to Knowledge

https://github.com/unaihuete-org/SRE_with_Azure/blob/master/src/ApiHelper.cs
https://github.com/unaihuete-org/SRE_with_Azure/blob/master/src/ApiHelper.cs

185

Figure 6-32. Kusto query for SLI/SLO/SLA

The error budget can also be measured by calculating first the total amount of calls

made during the last 31 days and see how it decreases with every failed request (see

Figure 6-33).

Chapter 6 Monitoring as the Key to Knowledge

186

Figure 6-33. Error budget Kusto query

In order to react on time, you could measure burn rate in different time windows

(to avoid noise); for example, track those burn rates above 10× in a 1-hour window (fast
burn alerts, budget would be consumed in a day) and 2× in a daily window (slow burn
alert). The query in Figure 6-34 shows how to track the 1-hour window burn rate.

Chapter 6 Monitoring as the Key to Knowledge

187

Figure 6-34. Burn rate (1-hour window) Kusto Query

 Azure DevOps
Similar to the Azure Status website, Azure DevOps also offers status information for the

different global instances of the service, link here: https://status.dev.azure.com/.

When working with Azure DevOps, you may want to monitor the status of the platform

itself when an unusual behavior is perceived (see Figure 6-35). It is recommended to get

subscribed for notifications.

Chapter 6 Monitoring as the Key to Knowledge

https://status.dev.azure.com/

188

Figure 6-35. Azure DevOps status page

It would also be interesting to create your own Azure DevOps Dashboards in order

to monitor the activity of your projects, including planning, repository, or pipeline/

tests activity (see Figure 6-36). Azure DevOps offers an extensive list of widgets you can

include: https://docs.microsoft.com/en-us/azure/devops/report/dashboards/

widget-catalog?view=azure-devops.

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/devops/report/dashboards/widget-catalog?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/dashboards/widget-catalog?view=azure-devops

189

Figure 6-36. Azure DevOps Dashboard

For more advanced reports that can be externalized to tools like Power BI, you

should take a look at the Analytics service offered by Azure DevOps. Analytics is the

reporting platform offering historical data from your ADO Projects; it includes more

advanced integrated reports on the tools and data externalizing options using Power

BI/OData queries. In the following docs you can find the data (and options) available

through the service: https://docs.microsoft.com/en-us/azure/devops/report/

powerbi/data-available-in-analytics?view=azure-devops

 GitHub
Like previous platforms, GitHub also offers a status website for the offered services

on the following link: www.githubstatus.com (see Figure 6-37). You should also get

subscribed for notifications when using this DevOps platform.

Chapter 6 Monitoring as the Key to Knowledge

https://docs.microsoft.com/en-us/azure/devops/report/powerbi/data-available-in-analytics?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/powerbi/data-available-in-analytics?view=azure-devops
http://www.githubstatus.com/

190

Figure 6-37. GitHub status page

GitHub also offers some reporting with the Insights service located on both

repository and organization levels (see Figure 6-38). Compared to Azure DevOps

Dashboards and analytics, you will see it lacks some GitHub Actions reporting

features (at least for now). You can always externalize information using REST API and

create your customized reporting solution if needed. GitHub Insights mainly shows

information related to repository planning (issues), contribution (git repository), and

dependency management data (used dependencies and security advisories).

Chapter 6 Monitoring as the Key to Knowledge

191

Figure 6-38. GitHub organization Insights

Chapter 6 Monitoring as the Key to Knowledge

192

 Summary
In this chapter, you were introduced to the base practice mentioned on Dickerson’s

hierarchy of reliability: monitoring.

The chapter was focused on explaining the basic concepts of Monitoring and

Observability and the importance of Operational Awareness on the complex solutions

organizations create nowadays. Before covering Azure monitoring technologies, it

reminded about concepts seen in Chapter 2, like SLI/SLO/SLA and the idea of error

budget/burn rate, as these metrics are critical to an SRE.

This chapter focused on explaining the Azure technology stack available to meet

your observability goals and helping you track the previously mentioned indicators.

The next chapter will focus on showing an efficient way to handle incidents and

explaining how to learn from previous experiences using blameless postmortems.

Chapter 6 Monitoring as the Key to Knowledge

https://doi.org/10.1007/978-1-4842-8704-0_2

193

CHAPTER 7

Efficiently Handle Incident
Response and Blameless
Postmortems
In this chapter, you will be introduced to incident response and blameless postmortems

practices, two of the pillars mentioned in Dickerson’s hierarchy of reliability.

Incidents cannot be avoided; there is no 100% reliable system, so your focus should

be on reducing the possible negative impact generated by these events.

By the end of this chapter, you should be able to do the following:

 3 Understand incident response (definition, life cycle/phases,

and roles)

 3 Improve communication practices and implement ChatOps using

Microsoft tools

 3 Learn how to detect incidents with Azure

 3 Learn how to diagnose incidents with Azure

 3 Learn how to remediate incidents with Azure

 3 Understand blameless postmortems

 Incident Response (IR)
As explained in previous chapters, organizations are designing architectures and

automated processes to make sure no issues will arise in their running environments.

Our CI/CD processes include branching strategies, pull requests, a great variety of

© Unai Huete Beloki 2022
U. H. Beloki, The Art of Site Reliability Engineering (SRE) with Azure,
https://doi.org/10.1007/978-1-4842-8704-0_7

https://doi.org/10.1007/978-1-4842-8704-0_7#DOI

194

testing workloads, and modern deployment practices with that objective in mind.

Nevertheless, live site incidents will always keep on happening, preventing all incidents

is unrealistic, and thinking “it will never happen to me” will not help.

Changing the mindset is the key for improvement. Organizations need to embrace

a culture where engineers think breaches/incidents will happen and act upon that.

Thinking “things will never go wrong” just leaves you unprepared for those situations.

Our main objective from previous chapters was to reduce the amount of burden

related to the issues. Incident response phase will define how we tackle live site issues.

Each organization will need to define a framework with structured guidance that will
help IT staff stop, contain, and recover from incidents in an efficient way.

This chapter will focus on showing the best practices adopted by companies for

managing incidents. But what is an incident?

There is no agreed definition for it. We could define it as a service disruption that

impacts your customers. Incidents could be security-focused (like denial-of-service

attacks) or performance-related ones (e.g., your VM not being able to handle enough

load of requests).

There are a variety of incident frameworks we can find to help define your incident

response (IR) guidance. Let’s take a look at the main characteristics of frameworks/

templates defined by some public IT organizations.

As Table 7-1 shows, most frameworks define similar logical steps:

Table 7-1. Incident response frameworks

NIST ISO SANS

Preparation Prepare Preparation

Detection and analysis Identify Identification

Containment, eradication, and recovery Assess Containment

Respond Eradication

Recovery

Postincident activity Learn Lessons learned

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

195

• Preparation/readiness: This will be the related prevention activity

(resilient architectures, automated processes, knowledge transfer,

and proactive monitoring).

• Detect/identify: Getting notified about the issue and understanding

the nature of the problem.

• Resolving phase: This phase is different between frameworks, but it

is mainly focused on the reactive activity to resolve the issue. This will

probably be the longest and most complex phase of the process.

• Response: First, we focus on containing the issue, reducing the

impact surface.

• Remediation: Then, we work on fixing/eradicating:

• Testing/validating that the issue is fixed.

• Postincident/learning/analysis: This will be the focus of the second

section of the chapter (blameless postmortems). Every issue has to be

taken as an opportunity to learn (and avoid similar problems in the

future).

Prepare

Detect

ResponseRemediate

Learn

Figure 7-1. Incident life cycle

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

196

 Incident Response Pillars
How fast our teams will be able to execute the phases mentioned will define the ability

to recover from unwanted scenarios. The best SRE teams adhere to a strict incident

response process. For example, Google’s incident response system is based on the

Incident Command System (ICS), established in 1968 by firefighters to deal with

wildfires.

The basic principles for an incident response process are composed of

• Chain of command (or clear line of command).

• Clear roles and responsibilities.

• Documentation: Recording debugging/mitigation/collaboration

activities is the key for robust postmortems and feedback to
improve our process!

• Incident identified and remediated ASAP.

SRE teams will try to catch the most common incidents with Alerts and use

automation to fix recurrent issues. For example, recurring incidents could be

automatically detected with Azure Alert rules, runbooks could be triggered in Azure

Automation to fix an issue (restart the service, scale it, change settings, etc.), and

notifications could be sent to an SRE just to validate that the issue is fixed.

Let’s take a look at the roles that need to be defined.

 Roles

Roles bring clarity to the chaotic situations incidents could create. You will clearly

define the responsibility of your team members. Different roles can be found across

organizations, but these could be commonly found:

• First/second responder:

• First: The on-call engineer is notified.

• Second: Backup for the first engineer (if unavailable or more

people needed).

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

197

• Scribe: The least technical role as the main responsibility will be

to document the incident: tracking events, activities, decisions

taken, important information, etc. Capturing the chronology of the

information will help avoid duplicated work and bring clarity to the

mitigation process.

• Communication lead/coordinator/manager: The “public face”

of the incident response team. It will keep customers informed

about the status of the incident in a periodic manner. It shares

information not only with customers but also with those stakeholders

not involved actively in the incident (e.g., sales, customer support,

marketing, etc.). It works closely with the incident commander to

share customer impact and share updates with customers. It needs

to have access to resolution plan information to correctly define

communication strategy. It may also share updates on social media

or other communication channels (product website, LinkedIn,

Twitter, etc.).

• Technical lead/subject matter expert (SME): The owner or

technical expert familiar with the investigated systems. First/second

responders will escalate problems to them if help is needed. Keep a

list of SMEs related to your solutions areas.

• Incident commander/manager: Responsible for driving the

resolution and activities during the incident. They coordinate all

efforts for incident resolution, “what is happening,” and “who’s doing

what”; it helps engineers stay focused.

During the preparation phase mentioned previously, incident

commanders will need to define the best communication

channels for all the involved stakeholders. Throughout the

resolving phase, they gather information and manage team

members. An incident commander usually does not have

the technical skills to fix issues; it collects feedback from

SMEs and manages pending work. It could be said they act as

Program Manager/Owner on an Agile team. Finally, they will

be responsible for driving improvements identified during the

postincident/postmortem phase.

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

198

 On-Call/Rotations

Now that responsibilities/roles have been defined, you need to set up a schedule to

describe the shifts for your team members. There are many factors to take into account

when defining an on-call schedule: size of the team/organization, global distribution,

service ownership, and availability.

An efficient on-call strategy will strive for balance; coverage has to be provided to

critical services, but never at the expense of the engineer’s health. For example, Google

places a 50% cap on the “ops” activities (on-call, tickets, manual tasks, etc.) for all SREs

(https://sre.google/sre-book/introduction/).

These are some of the main methods for effective/sustainable rotation schedules:

• Follow the sun shift: Define on-call shifts based on normal working

hours (used by global organizations).

• Primary/secondary: Define a solution where notifications will

be sent to a “backup” responder in case the primary one does not

acknowledge.

• Everyone’s responsibility: One of the biggest mistakes is just

involving the OPS team. Everyone should participate and “take the

pager.” Developers should participate when the application layer

is involved. “Sharing the pain” will also motivate DEV teams to

improve monitoring and reduce “toil.”

• Allow flexible schedules: Key for work-life balance. Clear schedules

defined weeks ahead and give options for changes (personal

emergencies, same as incidents, cannot be planned).

• Avoid meaningless alerts/reduce toil: Nobody likes to be woken

up at 2 a.m. for fixing the same issue you have seen during the last

months. Automation will be the answer to deal with repetitive/

meaningless issues.

All of the points discussed will help your organization perform better and increase

not only employee retention but also customer satisfaction.

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

https://sre.google/sre-book/introduction/

199

 Incident Tracking/Detection
In order to start working on an incident, it is obvious you need to be able to detect it. It

determines the first phase of an incident response process.

For incident detection, you will mainly rely on your monitoring tools/process (and

the ones offered by the cloud provider) to get notified about an unexpected behavior.

The book has a full chapter focused on monitoring Azure solutions. But just as a

reminder, an Azure Alert can be created for the following signal types:

• Metrics: Most stored by default for 93 days

• Log queries (KQL queries): Any information collected using Azure

Monitor Logs and Application Insights

• Activity log events

• Azure platform health (planned maintenance, service issues, and

health/security advisories): Azure Service Health (https://docs.

microsoft.com/en-us/azure/service-health/service-health-

overview)

• Availability test (run using Application Insights)

Remember, an Alert on Azure is composed of the elements shown in Figure 7-2.

Figure 7-2. Azure Alert structure

Review all components from Chapter 6 if needed (previously explained).

For example, you are using a Cosmos DB as part of your solution. The Cosmos DB

database has been set up with a provisioned throughput of 400 RU/s (no autoscaling

chosen), “Request Units (RU)” being the normalized metric for CPU/IOPS and memory

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

https://docs.microsoft.com/en-us/azure/service-health/service-health-overview
https://docs.microsoft.com/en-us/azure/service-health/service-health-overview
https://docs.microsoft.com/en-us/azure/service-health/service-health-overview
https://doi.org/10.1007/978-1-4842-8704-0_6

200

performance (https://docs.microsoft.com/en-us/azure/cosmos-db/request-

units). If the requests sent to the Cosmos DB require more computing power than

established by RUs, your Cosmos DB will respond with an HTTP response of 429. Let’s

create an alert based on this metric:

 1. From the Cosmos DB resource Alerts ➤ Create Alert and on

the Condition tab, select the Total Request signal and apply the

dimension StatusCode = 429. Define a threshold of Count Greater
than 0 as the criterion to get alerted, as shown in Figure 7-3.

Figure 7-3. Cosmos DB alert

 2. On the Actions tab, create an Action Group, choosing from the

available options mentioned above. For example, you could

 a. Send an email notification

 b. Trigger a Logic App to create a conversation channel on Slack/Teams

 c. Fix the incident automatically by executing Azure Automation Runbooks

using the Azure PowerShell commands (https://docs.microsoft.com/

en-us/powershell/module/az.cosmosdb/update-azcosmosdbsqldatabase

throughput?view=azps-7.5.0).

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

https://docs.microsoft.com/en-us/azure/cosmos-db/request-units
https://docs.microsoft.com/en-us/azure/cosmos-db/request-units
https://docs.microsoft.com/en-us/powershell/module/az.cosmosdb/update-azcosmosdbsqldatabasethroughput?view=azps-7.5.0
https://docs.microsoft.com/en-us/powershell/module/az.cosmosdb/update-azcosmosdbsqldatabasethroughput?view=azps-7.5.0
https://docs.microsoft.com/en-us/powershell/module/az.cosmosdb/update-azcosmosdbsqldatabasethroughput?view=azps-7.5.0

201

All of the discussed options work for anomalies detected either by the platform or

monitoring tools used. We could categorize the detected anomalies in three big groups:

• Proactive alerts: The platform or monitoring tool could alert us

about potential issues: maintenance windows, service degradation,

long response times, etc. For example, Application Insights is able to

provide proactive alerts (called Smart Detection) based on machine

learning rules.

• Reactive alerts: Most alert rules are defined by engineers; in general,

we get notified once the incident has happened.

• Not tracked alerts/customer notified: Alerts notified by our users

that for some reason our monitoring tools did not track. These

ones could be more difficult to deal with, as you may miss clear

information for response/remediation.

During the phase of detection, you don’t only want to get notified, you would like to

assess the incident to get critical information for the next phases:

• Incident firing time ➤ capture information based on the timeline to

determine cause.

• Impacted users/stakeholders.

• On-call engineer getting notified.

• Is the incident tracked in our tracking software (e.g., GitHub/Azure

DevOps/ServiceNow)?

• Related technology ➤ Do we need the help of subject matter experts?

The next section will focus on creating a standardized approach for clear

collaboration/communication and incident tracking system.

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

202

 Communication and ChatOps
Having a clear communication strategy will be critical during the incident response life

cycle (see Figure 7-1):

• Prepare: Getting new team members ready and learning from

previous outages will be extremely important. A strategy to share

response plan updates, procedure changes, and lessons learned

needs to be defined.

• Detect: Communicate detected issues to the proper stakeholders.

• Response: Communicate details about diagnosis, steps to proceed,

and distribution of tasks.

• Remediation: Openly communicate how/when service was restored.

• Analysis: Communicate lessons learned and follow up actions.

Take a look at the historical incident examples from the Azure Status website

(https://status.azure.com/en-gb/status/history/). A summary of incidents is

provided, including the following points for each of them:

• Summary of impact ➤ Detected details

• Root cause ➤ Response/detect

• Mitigation ➤ Remediation

• Next steps ➤ Analysis/Follow-up

• [EXTRA] Provide feedback: Asking affected customers how incident

communication experience could be improved

It should be obvious by now that communication is a critical pillar for incident

response. These are aspects every clear communication strategy should include:

• Use a centralized approach to keep the information accessible to

everyone in need of it. For example, you could use Azure DevOps

work items or GitHub Issues as the tracking software.

• Engineers will be able to search previously handled incidents for

getting ideas.

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

https://status.azure.com/en-gb/status/history/

203

• Document everything!

• On early stages, SREs depend on the expertise of SMEs.

Knowledge shared verbally has the risk of getting “lost” and

needing to “relearn” it.

• It will help with onboarding new members.

• Don’t trust you will remember actions/steps taken; human’s

short-term memory is not reliable enough.

• Use tools to improve the effectiveness of communication, like

dedicated channels for people working on an incident.

You will want to automate these repeatable management/creation processes as

much as possible.

 ChatOps

ChatOps is a well-known concept nowadays. It is a model that defines collaboration

workflows by connecting tools, people, and processes by using automation. As part of an

incident management framework, it brings the following benefits:

• Helps centralizing communication about:

• Detection

• Progress

• Remediation

• Breaks silos: Increases visibility and awareness. Everyone has access

to the same information.

• Helps on asynchronous conversation.

• Helps documenting everything (conversations, actions, logs, traces,

etc.), which clearly helps during postmortem and future incident

resolution.

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

204

More mature teams will make use of artificial intelligence and customized bots to

incentivize collaboration and improve remediation time. The demo at the end of the

section will give some ideas of how to implement such solutions. Some examples of

advanced ChatOps practices could be the following:

• Automatically create collaboration environment for your IT staff and

an incident status tracking item on a planning tool.

• For example: Every time an incident is detected, by using

solutions like Logic Apps/Azure Functions, you can create

a dedicated channel for discussion in Microsoft Teams and

create a work item in Azure DevOps to manage status and

incident owners.

• Create bidirectional integrations with ITSM tools like ServiceNow.

• Use machine learning and AI services (like Bots or Cognitive

Services) for creating a rich knowledge base/searching experience

that may help remediating future incidents (linking to similar issues

resolved in the past).

• For example, we could import all collected documentation

(teams’ conversations, work item comments, screenshots, etc.)

into Azure Search (https://docs.microsoft.com/en-us/azure/

search/search-what-is-azure-search) for creating the AI-

based searching experience (knowledge base).

 Eradication/Remediation
Once the thread has been identified and proper channels/collaborations are set, you

need to start the remediation activities. Incident responders may need to escalate

their concern to SMEs in case they get stuck during this phase. You should have a

clear idea of the SMEs you can rely on, based on expertise needed, to have a smooth

remediation phase.

This phase could be divided into two subphases:

• Respond: Activities to try to contain the thread during mitigation and

avoid further consequences on the system if possible. As an example,

many DevOps companies nowadays make use of feature flags (www.

martinfowler.com/articles/feature-toggles.html) to control the

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

https://docs.microsoft.com/en-us/azure/search/search-what-is-azure-search
https://docs.microsoft.com/en-us/azure/search/search-what-is-azure-search
http://www.martinfowler.com/articles/feature-toggles.html
http://www.martinfowler.com/articles/feature-toggles.html

205

runtime behavior of capabilities offered. If a new payment system by

an e-commerce website starts crashing, by using Feature Flags, you

could disable it, direct users to the previous payment solution, and

work carefully on fixing code until the next version is tested/released.

• Eradicate: Hopefully, the incident has been contained, and now you

can work on a permanent fix for the issue.

It is worth repeating that documenting every action will be critical for successful

postmortem activities and creating a knowledge base for future incidents.

Stakeholders should also be periodically updated by the communication lead/

manager by using the appropriate channels (external/internal websites, social media, or

other communication tools):

• What do you know?

• Containing/eradicating activities in progress

• Timing for the next update

Theory is great, but what about practice? How can you remediate issues using Azure-

provided tools? Let’s discuss some of the options offered. Many of these tools have been

explained in detail in the previous chapter.

Azure Service Health
Azure Service Health will help you identify if the issue is related to your system

design (code/setup) or to the cloud-offered service. As mentioned before, alerts can be

set to reduce time to detect this kind of incident.

Azure Monitor Logs and KQL
As mentioned in the previous chapter, Azure Monitor Logs lets us collect logs offered

by different Azure solution layers (subscription activity, resource logs, application logs,

etc.). Logs are mostly collected by using the Diagnostic Settings tab of Azure services

and enabling offered log export (which depends on each service) to a Log Analytics
workspace.

Once data is collected, we can use Kusto Query Language (KQL) queries from the

Logs tab (see Figure 7-4) of Azure Monitor or individual services. It can be used to

analyze information, present it in charts, or even create alert rules based on results.

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

206

Figure 7-4. Azure Monitor Logs

Azure Monitor Workbooks (or Workbooks)
Workbooks are flexible templates offered by Azure. You can combine text

(for guidance), logs (for data analysis), and charts (for visual analysis) in a single

report, which can be treated as an ARM template, giving you a more efficient way of

collaborating with reports (remember the IaC topic from the first chapter). You are to

include information from the data sources compatible with Azure Monitor.

Azure provides both predefined workbooks and empty ones (both can be edited).

It is important to remember that workbooks based on metrics (collected mostly

by default for 93 days) will show “full reports,” whereas workbooks based on logs will

be “empty” until a Log Analytics workspace has been chosen and set up to collect the

related information (see Figure 7-5).

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

207

Figure 7-5. Empty workbook

Azure Monitor Insights (or Insights)
Azure offers some predefined reports from the Insights tab (see Figure 7-6), also

offered in some individual service windows like Cosmos DB or virtual machines. Most

Insights reports are based on workbooks (which can be customized).

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

208

Figure 7-6. Insights reports

Application Insights
Application Insights, as part of the Azure Monitor offering, is the tool offered by

Azure for Application Performance Management (APM). As explained in the previous

chapter, it is a tool that will help you have a 360-degree view of your solutions and

be able to not only react to detected incidents, but also take a proactive approach by

analyzing the behavior of your services. For incident response, these are some of the

capabilities offered:

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

209

• Application Maps: Understand the impacted areas.

• Failures/Snapshot debugger: Deep dive into Server/Client Issues

and collect debug snapshots when exceptions happen to help in

diagnosing production issues.

• Alerts: Create alerts based on collected telemetry.

• Smart Detection: Azure will provide alerts for potential performance

issues and anomalies based on the “normal” (historical) data for your

solution (machine learning–powered alerts).

• Availability tests: Test your solution periodically from different

global points.

• Logs: Query collected telemetry using KQL and create customized

charts/alerts.

• Workbook/Troubleshooting guides: Create workbooks to help your

engineer analyze the running environment. Troubleshooting guides

can be created based on workbook capabilities (in preview).

• Usage: Analyze user experience and incident-related impact with the

given user experience reports (see Figure 7-7).

• Performance/Profiler: Analyze solution performance and identify

“slowest” code paths using the Profiler.

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

210

Figure 7-7. Application Insights Usage reports

As you can see, some tools are prepared for a reactive approach (once the incident

has happened); some others like Smart Detection aim to help you before the incident

has happened (proactive approach). Maximizing efforts on proactive work will reduce

production-raised incidents.

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

211

 Measuring Performance
Previously, in Chapter 2, we covered some of the metrics used by SRE teams to track the

maturity of the organization. Some of those metrics were (see Figure 7-8)

• Mean Time to Failure (MTTF)

• Mean Time to Repair (MTTR)

• Mean Time Between Failures (MTBF)

Organizations will use different metrics to track their status. Sometimes, terms and

metrics will overlap. For example, the “time to repair” is also called “time to remediate,”

“time to restore,” or “to recover.” They all refer to the time taken to bring services back to

an operational state defined by our Service-Level Objectives.

Other metrics such as “mean time to detect (MTTD)” (or discover), “mean time to

notify,” and “mean time to acknowledge” could be considered phases of the previously

mentioned MTTR (e.g., MTTD is part of the calculation for MTTR), as MTTR covers all

phases from incident happening to full mitigation (see Figure 7-9). It could be worth

monitoring to track improvement in detection and notification practices.

Figure 7-8. SRE metrics

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

https://doi.org/10.1007/978-1-4842-8704-0_2

212

Figure 7-9. Incident metrics

Defining a set of Objective and Key Results (OKRs: https://en.wikipedia.org/

wiki/OKR) based on tracked data will help your organization teams align and work

together toward the vision of the company.

OKRs should not be only service focused, customer satisfaction and employee

morale will need to be taken into account too. Check the example of OKRs defined by

the Power BI SRE team: https://docs.microsoft.com/en-us/power-bi/enterprise/

service-admin-site-reliability-engineering-model#measuring-success-through-

objective-key-results-okrs.

Which options do you have for tracking these metrics with Microsoft tools? It

will depend on the tools involved. For example, if you are using Azure Monitor alerts

together with GitHub Issues for incident tracking (as shown in a later demo), you could

use Power BI to collect and measure the mentioned metrics:

• Mean Time to Repair: Measure time difference since Alert was fired

(Azure Monitor alerts property) until GitHub Issues gets closed.

• Mean Time Between Failures: Measure the mean time between

consecutive GitHub Issues creation times.

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

https://en.wikipedia.org/wiki/OKR
https://en.wikipedia.org/wiki/OKR
https://docs.microsoft.com/en-us/power-bi/enterprise/service-admin-site-reliability-engineering-model#measuring-success-through-objective-key-results-okrs
https://docs.microsoft.com/en-us/power-bi/enterprise/service-admin-site-reliability-engineering-model#measuring-success-through-objective-key-results-okrs
https://docs.microsoft.com/en-us/power-bi/enterprise/service-admin-site-reliability-engineering-model#measuring-success-through-objective-key-results-okrs

213

• Other Metrics: These will be affected by the metadata exposing/

collecting capabilities of the tools being used. For example, GitHub

Issues does not provide much historical information on assigned

users and state changes compared to Azure DevOps.

Check the GitHub (Beta) integration for Power BI Desktop to connect to the dataset

of a repository and easily create reports for mentioned metrics (see Figure 7-10 and

Figure 7-11).

Figure 7-10. GitHub integration for Power BI

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

214

Figure 7-11. Power BI simple report

 [DEMO] Incident Response
The following demo will show a practical way of applying the concepts covered in the

last section. It looks as shown in Figure 7-12.

Figure 7-12. Demo architecture

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

215

The left side of the demo will be shown, whereas the right one shows an example of

how incident response could be taken to the next level:

• Demo: Every time an Azure alert criterion is met, it triggers a Logic
App (https://docs.microsoft.com/en-us/azure/logic-apps/
logic-apps-overview) using alert Action Groups. The Logic App

runs the following workflow (shown in Figure 7-13). A used Logic

App design can be found at https://github.com/unaihuete-org/

SREwithAzure-IncidentResponse/blob/main/logic-app.json.

• Create a Microsoft Teams channel for discussion (see Figure 7-14).

• Post an Adaptive Card (www.adaptivecards.io/designer/)

with details about the incident.

• Using Microsoft Teams Shifts (https://docs.microsoft.
com/en-us/microsoftteams/expand-teams-across-your-

org/shifts-for-teams-landing-page), we define an

On-Call schedule, and Logic App notifies the on-call engineer

with a mention in a channel message (see Figure 7-15).

• Create a GitHub Issue for incident tracking.

• Power BI reports for data extracted from the GitHub Issues

incident tracking solution.

• ADD-ON (not implemented): It shows a possible add-on to the

shown architecture. Once the incident is resolved, all the activity

information (channel posts, files, issue tracking activity, etc.) could

be collected in the following way for advanced analysis:

• Export incident data (Teams channel + GitHub Issues) to Azure
Storage Account blob. Another Logic App, GitHub Actions, or

other automation tool could be used, together with REST API

calls to export information from the mentioned tools. Microsoft
Graph API (https://docs.microsoft.com/en-us/graph/use-

the-api) is a great source to interact and get information with

Microsoft services like Teams, Outlook, OneDrive, etc.

• Use Azure Cognitive Search (https://docs.microsoft.com/

en-us/azure/search/search-what-is-azure-search), a cloud

search service that is able to ingest data, enrich it using cognitive

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-overview
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-overview
https://github.com/unaihuete-org/SREwithAzure-IncidentResponse/blob/main/logic-app.json
https://github.com/unaihuete-org/SREwithAzure-IncidentResponse/blob/main/logic-app.json
http://www.adaptivecards.io/designer/
https://docs.microsoft.com/en-us/microsoftteams/expand-teams-across-your-org/shifts-for-teams-landing-page
https://docs.microsoft.com/en-us/microsoftteams/expand-teams-across-your-org/shifts-for-teams-landing-page
https://docs.microsoft.com/en-us/microsoftteams/expand-teams-across-your-org/shifts-for-teams-landing-page
https://docs.microsoft.com/en-us/graph/use-the-api
https://docs.microsoft.com/en-us/graph/use-the-api
https://docs.microsoft.com/en-us/azure/search/search-what-is-azure-search
https://docs.microsoft.com/en-us/azure/search/search-what-is-azure-search

216

services (e.g., extract data from PDF files or screenshots you

may have used during incident resolution), index it, and offer a

powerful searching experience.

• Create an Azure Bot (https://docs.microsoft.com/en-us/
azure/bot-service/?view=azure-bot-service-4.0) that helps

you in resolving incidents by looking at historical data indexed on

Azure Search.

Figure 7-13. Incident response Logic App

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

https://docs.microsoft.com/en-us/azure/bot-service/?view=azure-bot-service-4.0
https://docs.microsoft.com/en-us/azure/bot-service/?view=azure-bot-service-4.0

217

Figure 7-14. Microsoft Teams channel and posted messages

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

218

Figure 7-15. Microsoft Teams Shifts

 Blameless Postmortems
The previous part of the chapter was focused on reducing the impact of incidents by

applying automation practices that will help you shorten the timeline of the issue. You

need to be ready for it as incidents are inevitable.

Since changes are constant, complex systems will never be 100% reliable. Incidents

are mostly perceived as a negative event; nobody likes to be in a stressful situation where

an issue is affecting your running business. Nevertheless, you should also focus on the

learning opportunity given by those incidents, as they expose unknown vulnerabilities

and give you an opportunity to prevent future recurrences. They can be seen as an

opportunity to improve our systems.

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

219

Blameless postmortem is a process composed of the following ideas and cultural

shift based on honesty, learning, and accountability:

• Building a timeline of incident remediation actions and collection

of all documentation is critical for understanding root causes and

thus creating a successful learning process (using techniques covered

in the “Incident Response (IR)” section).

• Alert details

• On-call engineers involved

• Incident tracking history and data, based on tools like Azure

DevOps work items and GitHub Actions

• Discussions, based on tools like Microsoft Teams and Slack

• No “pointing fingers.” There is no one to blame; avoid the human

natural tendency of looking for guilty engineers; it is assumed that

staff acted with the best intentions possible (based on what they

knew, skills, and abilities). Focus on the system, not the person.
This is the most difficult change for an organization, but it has the

biggest impact. Remember the Westrum organizational culture

mentioned in Chapter 1 (see Table 7-2). According to DevOps

Research and Assessment (DORA), organizational culture really

affects information flow. This idea could be applied to SRE teams too.

Table 7-2. Westrum organizational culture

Pathological
(Power Oriented)

Bureaucratic
(Rule Oriented)

Generative
(Performance Oriented)

Low cooperation modest cooperation high cooperation

messengers shot messengers neglected messengers trained

Responsibilities shirked narrow responsibilities Risks are shared

Bridging discouraged Bridging tolerated Bridging encouraged

failure ➤ scapegoating failure ➤ justice failure ➤ inquiry

novelty crushed novelty problems novelty implemented

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

https://doi.org/10.1007/978-1-4842-8704-0_1

220

From the table, it can be concluded that Generative culture environments will have

many benefits related to the postmortem activity:

• High cooperation/bridging ➤ better collaboration, breaking silos,

cross-functional teams.

• Messengers trained/failure leads to inquiry ➤ employees will

share potential issues as soon as they identify them; messenger is not

punished; remove blame; failures lead to questions.

• Risks are shared ➤ Quality, availability, reliability, and security are

everyone's responsibilities.

As you can see, “blame” is harmful to the business. It discourages engineers

from speaking up when potential issues are identified due to fear of impacting them

negatively. As a result, silence increases Mean Time to Acknowledge and Resolve

incidents, increasing the impact. Google found (www.inc.com/justin-bariso/after-

years-of-research-google-discovered-secret-weapon-to-building-a-great-team-

its-a-lesson-in-emotional-intelligence.html) that high-performance teams with

strong psychological safety had many benefits: for example, more conversation turn-

taking. If everyone shares perspective, collective intelligence increases. Furthermore,

Margaret Heffernan discusses in this TED talk (www.ted.com/talks/margaret_

heffernan_forget_the_pecking_order_at_work?language=en) an experiment around

productive teams being the ones where people participated equally and diversity

encouraging a culture of helpfulness.

During the blameless conversation, questions should be framed so that focus is on

the technology and not on the engineers (avoid indirect “point fingers” behavior). For

example:

• “Who made the change that modified the database schema?”

• Instead, “what was the reason to modify the database schema that

led to the failure?”

Learnings will be captured and shared across the organization using tools like Azure

DevOps Wiki and GitHub Wikis as a centralized repository for learning/best practices.

The postmortem could also lead to follow-up actions focused on avoiding similar

incidents in the future.

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

http://www.inc.com/justin-bariso/after-years-of-research-google-discovered-secret-weapon-to-building-a-great-team-its-a-lesson-in-emotional-intelligence.html
http://www.inc.com/justin-bariso/after-years-of-research-google-discovered-secret-weapon-to-building-a-great-team-its-a-lesson-in-emotional-intelligence.html
http://www.inc.com/justin-bariso/after-years-of-research-google-discovered-secret-weapon-to-building-a-great-team-its-a-lesson-in-emotional-intelligence.html
http://www.ted.com/talks/margaret_heffernan_forget_the_pecking_order_at_work?language=en
http://www.ted.com/talks/margaret_heffernan_forget_the_pecking_order_at_work?language=en

221

 Best Practices/Tips
The following tips could be taken into account for a successful postmortem process:

 1. Owner/roles: The incident commander/manager (defined in roles

previously) will take care of driving the discussion and providing

the collected data/feedback.

 2. Not all incidents require a postmortem activity. Only high-severity

incidents may need it or incidents that took more time than

expected (define a threshold).

 3. Ask proper questions. Remember to ask questions with a
focus on the system, not on the person. Asking “how”/‟what”

better than “why” (which tends to judge). Some organizations

like to drive Root Cause Analysis (RCA) activities using the

5 Whys technique (https://sixsigmastudyguide.com/5-

whys/#:~:text=The%205%20Whys%20is%20a%20basic%20root%20

cause,identify%20the%20root%20cause%20and%20then%20

eliminating%20it); be careful as “why” questions tend to

indirectly “finger point.”

 4. Be careful with the language used in conversations. Normative

language (e.g., “unsatisfactory” or “irresponsibly”) often is used

for judgment.

 5. Don’t focus only on things that went wrong; also focus on things
that went right; that could be used on consequent incidents

(collaborations, actions, decisions, etc.).

 6. Short meeting of around 60–90 minutes.

 7. Celebrate learnings.

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

https://sixsigmastudyguide.com/5-whys/#:~:text=The 5 Whys is a basic root cause,identify the root cause and then eliminating it
https://sixsigmastudyguide.com/5-whys/#:~:text=The 5 Whys is a basic root cause,identify the root cause and then eliminating it
https://sixsigmastudyguide.com/5-whys/#:~:text=The 5 Whys is a basic root cause,identify the root cause and then eliminating it
https://sixsigmastudyguide.com/5-whys/#:~:text=The 5 Whys is a basic root cause,identify the root cause and then eliminating it

222

 Summary
In this chapter, you were introduced to two main practices mentioned in Dickerson’s

hierarchy of reliability: incident response and blameless postmortems.

Every organization will need to define an incident response framework that will

guide the staff through the incident remediation process. The chapter defined the

phases, activities, and roles that should be included in the incident response journey.

No system is 100% reliable to define, and perfectioning the practices mentioned will help

you decrease the impact of these issues.

As incidents will always keep appearing, let’s use them as an opportunity for learning

and improving our existing solutions. Blameless postmortems will focus on finding

the root cause of incidents by driving conversation based on data collected during the

incident response process and creating a culture where engineers are not blamed for

their actions.

The next chapter will focus on showing interesting tools provided by Azure to

proactively test the resiliency of your solutions, getting prepared for real-life incident

scenarios.

ChAPtER 7 EffICIEntLy hAnDLE InCIDEnt REsPonsE AnD BLAmELEss PostmoRtEms

223

CHAPTER 8

Azure Chaos Studio
(Preview) and Azure Load
Testing (Preview)
Although this is the last chapter in the book, it doesn’t mean it’s less important. Actually,

it’s the last one because it didn’t exist in the initial outline (at least not with this topic)

and only got added because both services were announced at Microsoft Ignite in

November 2021 as public preview, where I was so excited I could finally talk about it and

somehow convinced Apress to dedicate another chapter for it.

Keep in mind this chapter is written on the Azure Chaos Studio and Azure Load

Testing preview bits as available at the time of writing, which could mean some parts (or

a lot of parts) might have changed by the time you go through them. Although the logical

concepts of Chaos Engineering (which I’ll talk about first) will remain valid.

• Understand Chaos Engineering

• Configure Azure Chaos Studio service

• Define Azure Chaos Studio chaos experiments

• Run chaos experiments against target resources

• Understand Load/Performance testing

• Configure/run Azure Load Testing service

© Unai Huete Beloki 2022
U. H. Beloki, The Art of Site Reliability Engineering (SRE) with Azure,
https://doi.org/10.1007/978-1-4842-8704-0_8

https://doi.org/10.1007/978-1-4842-8704-0_8#DOI

224

 Intro to Chaos Engineering
Chaos Engineering is the discipline of experimenting on a system in order to
build confidence in the system’s capability to withstand turbulent conditions
in production.

Source: https://principlesofchaos.org/

Chaos Engineering is all about experimenting – typically against production-running

systems – to identify and find loopholes, pitfalls if you want, in the way the system is

running, which makes the system less reliable.

The more loopholes we can identify up front, the more confidence we can have in

the system’s reliability. By introducing a series of event simulations, whether based on

real incidents happened earlier or based on simulated outages that could happen, we

target our workloads and learn from its impact.

An easy example is CPU pressure.

Imagine a workload is running fine for months, with an average CPU load that’s

keeping the system running healthy. Suddenly, a CPU spike occurs and crashes the

application. Apart from troubleshooting the root cause of the CPU spike, probably a task

for engineering or development teams, it might be equally relevant to find out why the

system reacted with a crash of the application. Even more so, if we could have simulated

a CPU spike happening, our engineering and development teams could have focused

on mitigating the problem by releasing a fix, updating the architecture to an even more

fault-tolerant setup.

Don’t get me wrong though, as Chaos Engineering is a lot more than injecting outage

triggers to bring production environments to their knees. There’s a lot more complexity

involved, especially since an outage is typically not caused by one single failure, but

more of a series of incidents.

Reusing the CPU pressure example, one could consider a scenario where CPU is

spiking, because of a latency in database operations, putting a calculation or database

update on hold. Or maybe there is a network connectivity issue, by which an operation

cannot be written to the database back end, causing so many retry operations, which

spikes CPU. So instead of just “simulating” the CPU spike, it is also important to capture

all possible side effects that could cause a CPU pressure.

Which – to me – also explains why it’s called an engineering discipline, as there

is quite some engineering involved in all the interactions across different systems,

components, and workloads.

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

https://principlesofchaos.org/

225

Now, you might think that Chaos Engineering is the next big thing (maybe even

coming after SRE and DevOps?), but yet too revolutionary for your cloud environments.

But nothing is more wrong.

In fact, Chaos Engineering has been around for more than ten years already, initiated

by software engineers from Netflix around 2008, when they started migrating from on-

premises data centers to public cloud data centers. While there are a lot of similarities

between managing your own data center and using public cloud, there are also big

differences. It was mainly those differences that forced Netflix’s engineers to create

services architectures with higher resiliency.

 Chaos Monkey
Going through the testing related to this cloud migration resulted in the creation of an

internally developed Chaos Orchestration tool around 2010, branded Chaos Monkey,

which was publicized as an open source product in 2012. More information on the tool

and how to use it is available on GitHub (see Figure 8-1): https://github.com/netflix/

chaosmonkey.

Figure 8-1. Chaos Monkey

From the README.md file:

Chaos Monkey randomly terminates virtual machine instances

and containers that run inside of your production environment.

Exposing engineers to failures more frequently incentivizes them to

build resilient services.

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

https://github.com/netflix/chaosmonkey
https://github.com/netflix/chaosmonkey

226

Chaos Monkey is an example of a tool that follows the Principles of

Chaos Engineering.

Requirements

This version of Chaos Monkey is fully integrated with Spinnaker

(https://spinnaker.io), the continuous delivery platform that we

use at Netflix. You must be managing your apps with Spinnaker to

use Chaos Monkey to terminate instances.

Chaos Monkey should work with any back end that Spinnaker

supports (AWS, Google Compute Engine, Azure, Kubernetes, Cloud

Foundry). It has been tested with AWS, GCE, and Kubernetes.

Netflix designed Chaos Monkey to allow them to validate the stability of their

production-running workloads (the Streaming Service we all use), which was running

on Amazon Web Services. The main purpose of Chaos Monkey was detecting how their

systems would respond to critical components being taken down. By intentionally

shutting down workloads, it would become clear what weaknesses are present in the

total topology and allow the engineering teams to work toward mitigation.

 Principles of Chaos (Engineering)
While it wasn’t just developed for it, I am sure I can say that offering Chaos Monkey

as an open source solution definitely helped in boosting the message around Chaos

Engineering, as defined by the Principles of Chaos (www.principlesofchaos.org).

Without literally repeating what they define as Chaos Engineering, it boils down

to this:

 – Traditional testing of failures and outages is typically focused around

one single scenario, for example, a CPU spike as mentioned earlier;

for production-running workloads, an incident is hardly ever related

to a single cause, but more a sequence of events. Chaos Engineering

tends to focus on realizing this sequence of actions against systems.

The more complex the simulations, the more confidence you get in

the reliability of your systems.

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

https://spinnaker.io
http://www.principlesofchaos.org

227

 – Weaknesses and shortcomings in systems and running workloads,

regardless if the architecture is traditional virtual machines, more

complex containerized architectures, or serverless and microservices

oriented, should be identified before they manifest while running as a

mission- or business-critical production workload. The starting point

of Chaos Monkey as an example orchestrator was mainly virtual

machine based. You can probably come up with a long list of typical

events that might hammer a virtual machine’s uptime, such as storage

latency or outage, disk crash, operating system faults, CPU pressure,

systems going down, and systems constantly rebooting. But moving

on to containerized workloads makes this process much harder. Apart

from the underlying hypervisor, you also need to identify the correla-

tion across containers, network security, storage integration, identify-

ing how, for example, Kubernetes PODs across different nodes in a

cluster are behaving, how and when are PODs restarted, and more.

Ultimately you may end up in the most “uncontrollable” scenarios,

microservices and serverless. If you don’t manage the underlying

platform, you don’t manage the network or storage interaction, almost

every layer is managed for you, there might not be too much for you to

control, but you are still responsible for making sure the microservice

(Azure Functions, AWS Lambda) is running. Maybe just because of

this, it might be much harder to actually manage and validate

the uptime.

 – Chaos Engineering is by design proactive, which means you tend to

identify weaknesses long before they – potentially – happen. First of

all, to find the weaknesses themselves and also to be better prepared

for when they happen. This might sound weird, as it should be pos-

sible to mitigate the issue before it arises, specifically thanks to the

drill exercises pushed through before. But after working in the IT

industry for 25 years, I’m sure it is quite impossible to plan for every-

thing, especially in a public cloud environment, where you don’t

manage the full stack of the architecture workload.

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

228

 Azure Chaos Studio
Chaos Monkey is a great tool, and although it is heavily integrating and relying on

Spinnaker, it also makes it platform and cloud agnostic, supporting Amazon AWS,

Google GCP, Microsoft Azure, and also Kubernetes on-premises or in a cloud scenario

for example.

Since this is a book on achieving SRE with Azure, my initial intention for this chapter

was writing about Chaos Monkey (and Chaos Mesh for Kubernetes) and using it against

an Azure reference architecture scenario, as discussed in a previous chapter.

However, at Microsoft Ignite in November 2021, the great news came that Azure

Chaos Studio would go into public preview, which means it is now available for anyone

to test from that date onward. (Note: I’ve been looking into Azure Chaos Studio for a few

months already as a Microsoft employee but wasn’t allowed to talk or share anything

publicly.)

That’s where now the remaining part of this chapter will be dedicated to Azure

Chaos Studio.

 Azure Chaos Studio Architecture

Azure Chaos Studio is provided as a service, which means you don’t have to deploy

your own infrastructure first to get it up and running. Under the hood, it is based on

the open source Chaos Mesh (A Powerful Chaos Engineering Platform for Kubernetes |

Chaos Mesh (chaos-mesh.org)) solution, which (typically) runs as a Kubernetes-based

architecture. But again, none of that is important for you to know about, as it is all

running behind the curtains.

 1. The first thing you need to check is to make sure the “Microsoft.

Chaos” Azure Resource Provider is enabled (registered) in your

subscription. To do that, open your Azure portal, and search for

Subscriptions.

 2. Select the subscription in which you want to enable Azure

Chaos Studio. From within the detailed blade, select “Resource

Providers” under the Settings pane, and search for “Chaos”, as

shown in the screenshot. Select “Microsoft.Chaos” and click

“Register” in the top menu; give it a few minutes, until the Status

column shows “Registered” (see Figure 8-2).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

https://chaos-mesh.org/
https://chaos-mesh.org/

229

Figure 8-2. Register Microsoft.Chaos

 3. You are now ready to start using Azure Chaos Studio in your

subscription.

 4. From your Azure portal, search for Chaos Studio (see Figure 8-3).

Figure 8-3. Azure Chaos Studio

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

230

 5. Next, enable resources for Chaos testing by selecting “Onboard

Resources”. This brings you to the Targets section of the blade (see

Figure 8-4).

Figure 8-4. Target section

 6. Here, you can filter for specific subscriptions or specific Resource

Groups (or both), where next, you need to select the Azure

Resource(s) you want to use as a target.

The remaining part of this chapter walks you through two common scenarios: how

to integrate Chaos Engineering with Chaos Studio for an Azure Virtual Machine (agent

based) and how to use it for an Azure Kubernetes Service (AKS) cluster.

 Onboarding an Azure VM to Chaos Studio

 1. In this example, I’m going to target an UbuntuVM1 machine,

selecting it, which unlocks the “Enable Targets” menu option (see

Figure 8-5).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

231

Figure 8-5. Enable targets

 2. Here, I can choose between service-direct targets and agent-based

targets. Since it’s a virtual machine, the agent based would be

recommended.

 3. This redirects you to the “Enable Agent-based targets” blade (see

Figure 8-6), where you need to provide additional configuration

parameters, one being a User-Managed Identity, which is

establishing the authentication integration between the target

resource and the Chaos Studio, as well as an Application Insights

resource, which provides the observability and monitoring

aspects of running Chaos Studio.

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

232

Figure 8-6. Enable agent targets

 4. Let’s start with creating the User-Managed Identity first. From the

Azure portal, search for Managed Identities, and create a new one.

 5. Define the Resource Group, Region (Make sure the Region here is

the same as where your target resources are running), and unique

name for the User-Managed Identity and confirm by clicking the

Review + Create button (see Figure 8-7).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

233

Figure 8-7. User Assigned Managed Identity

 6. Wait for the Managed Identity resource to get created (see

Figure 8-8).

Figure 8-8. User MI created

 7. Before Chaos Studio can target an Azure Resource, it should get

the User-Managed Identity assigned to it. Let’s do that for our

sample UbuntuVM1 Virtual Machine. From the Azure portal,

browse to Virtual Machines and select the UbuntuVM1 resource.

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

234

 8. From the UbuntuVM1 blade, find Identity under Settings, and

navigate to “User Assigned” (see Figure 8-9).

Figure 8-9. Assigning MI to VM

 9. Under User Assigned, click Add, and select the User Assigned

Managed Identity you created earlier.

 10. Click Add to confirm the changes.

 11. From the Azure portal search, look for Application Insights. Create

a new instance (see Figure 8-10).

Figure 8-10. Create Application Insights

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

235

 12. Provide the necessary information for Azure Resource Group,

Application Insights Service Name, the Azure Region where you

want to get the service deployed (Note: this should be the same

region as where your target resources are running), as well as

the Log Analytics Workspace you want to use to store the log

information (see Figure 8-11).

Figure 8-11. Application Insights settings

 13. Confirm the creation of this resource by clicking “Review and

Create” and wait for the service to get deployed (see Figure 8-12).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

236

Figure 8-12. Application Insights created

 14. This completes the setup of the Azure Chaos Studio prerequisites;

let’s head back to the service and continue the configuration

of our target resource. From the Azure portal, search for Chaos

Studio again, and repeat the steps from before where you select

your target, and enable it for agent-based target scenario (see

Figure 8-13).

Figure 8-13. Enable Chaos Studio Targets

 15. Once redirected to the “Enable agent-based targets” page,

complete the settings for both Managed Identity and Application

Insights, reflecting the services you created in the previous steps

(see Figure 8-14).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

237

Figure 8-14. Enable targets

 16. Click “Review + Enable” and confirm once more in the next blade.

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

238

 17. From the notification pane (upper right in the Azure portal), wait

for the updated notification messages, confirming the agent got

deployed successfully (see Figure 8-15).

Figure 8-15. Wait for agent deployment

 18. Switching back to the Chaos Studio blade in the Azure portal,

it will also show a status of “Enabled” for “Agent-based” for the

specific virtual machine selected before (see Figure 8-16).

Figure 8-16. Agent enabled

 19. Notice the “Manage actions” for the selected virtual machine.

This is where you find the different predefined agent-based Azure

Chaos actions available (see Figure 8-17).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

239

Figure 8-17. Manage actions

 20. From the Chaos Studio blade, select “Experiments” and create a

new experiment (see Figure 8-18).

Figure 8-18. Add an experiment

 21. Complete the necessary parameters allowing you to create a new

Experiment Resource, define the Resource Group, specify a name

for the Experiment (e.g., CPUStressTest), and define the Azure

Region (Note: the region should be the same as where the target

resource is running).

 22. Click Next to open the Experiment Designer (see Figure 8-19).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

240

Figure 8-19. Experiment Designer

 23. Provide a descriptive name for Step 1, for example, CPU Test;

specify a descriptive name for Branch 1, for example, CPU

Pressure. Next, click “Add Action” and select “Add Fault” from the

selection list. This opens the “Add Fault” blade, where you need

to specify some parameters for this fault simulation. First, click

the Faults drop-down list, and select “CPU Pressure”. This test will

simulate a high CPU spike for the Ubuntu VM in our example.

Next, set the Duration parameter to ten minutes, and move the

Pressure Level to 99% (see Figure 8-20).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

241

Figure 8-20. CPU pressure fault

 24. Click “Next” to specify the Target VM for this action and fault

simulation. Here, select the Ubuntu VM you used earlier (see

Figure 8-21).

Figure 8-21. Select the target

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

242

 25. Confirm the creation of the experiment by clicking “Review and

Create” (see Figure 8-22).

Figure 8-22. Confirm the experiment

 26. After a few minutes, the newly created experiment shows up in the

list of Chaos Experiments (see Figure 8-23).

Figure 8-23. Experiments tab

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

243

 27. In order to allow the Chaos Experiment to interact with the target

Resource, it needs Reader permissions from a Role-Based Access

Control (RBAC) level. In real life, I would recommend locking

this down to the individual resource level or resource group

level or any suitable level in your organization. To make this

happen, select the level you want (I’m going for that individual

UbuntuVM1 resource), and select IAM (Access Control) from the

Settings blade (see Figure 8-24).

Figure 8-24. Access Control

 28. Click “+Add” from the top menu and select “Add Role

Assignment”. From the list of Roles, select “Reader” (see

Figure 8-25).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

244

Figure 8-25. Reader role

 29. Click “Add Members”, and search for the name of the

Chaos Experiment you created before. In my case, this was

PDTCPUExperiment (see Figure 8-26).

Figure 8-26. Chaos experiment added to Reader

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

245

 30. Confirm by clicking “Select”, followed by “Review and Assign”. Wait

for this RBAC permission to get assigned to the Chaos Experiment.

 31. Return to Chaos Studio, select Experiments, and open the

experiment created earlier.

 32. From the top menu, click “Start” to kick off the CPU Pressure

Chaos Experiment (see Figure 8-27).

Figure 8-27. Start the experiment

 33. Validate the status throughout the process. Once the status

switched to “Running”, click on the “Details” link to the right of

the item line. This will show you more real-time details about the

running Chaos Experiment (see Figure 8-28).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

246

Figure 8-28. Experiment details

 34. You can also validate the CPU load from the Virtual Machine

Monitoring itself. Navigate to the virtual machine, open its details

blade, and navigate to Monitoring. Here, notice the CPU (average)

load in the first graph (see Figure 8-29).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

247

Figure 8-29. VM Overview tab

 35. And when clicking on the graph, it will open a more detailed

“Metrics view” for this resource.

 36. As you can see from the chart (see Figure 8-30), once the

Experiment kicked off, the CPU was gradually, but quite fast,

moving up to (close to) 99% and running at this level for around

ten minutes based on the parameters defined for the fault action.

Once the test is complete, you can also validate this from the same

charts (see Figure 8-31).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

248

Figure 8-30. Metric Explorer for VM

Figure 8-31. Test finished

 37. Also from the Azure Chaos Studio details, you can validate the

status of this experiment (see Figure 8-32).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

249

Figure 8-32. Experiment details

 38. This completes the configuration and walk-through of deploying

Azure Chaos Studio, allocating the correct identities, required

prerequisites such as User-Managed Identity and Application

Insights resources, as well as how to create and run a Chaos

Experiment.

Note there are a lot more fault scenarios available, and the Chaos studio team
is heavily working on even more real-life-based fault scenarios to integrate them
in the solution. i relied on the most common scenario discussed during preview
demos from the product group for now, but hopefully, by the time you are reading
this book, it will be an impressive, useful list of faults for different azure resources
and services scenarios.

 Onboarding an AKS Cluster to Chaos Studio

In this next example, I’ll detail how to integrate Chaos Engineering fault injection to

validate an Azure Kubernetes Cluster with Linux nodes scenario.

If you don’t have an AKS deployed yet, feel free to use this Microsoft QuickStart

article as a guidance:

https://docs.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-

deploy-rm-template?tabs=azure-cli

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

https://docs.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-rm-template?tabs=azure-cli
https://docs.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-rm-template?tabs=azure-cli

250

 1. One of the main differences between the previous virtual machine

scenario and Azure Kubernetes Service, is that you need to install

Chaos Mesh faults into the cluster resource before you can interact

with it from within Azure Chaos Studio. While it is possible to run

this remotely using Azure CLI from your admin workstation, it

might be easiest to run this from within Azure Cloud Shell.

 2. With a deployed Kubernetes solution, open Azure Cloud Shell and

select the Bash option. Establish connectivity to the AKS cluster by

running the following command:

az aks get-credentials -g $RESOURCE_GROUP -n $CLUSTER_NAME

replacing the variables $RESOURCE_GROUP and $CLUSTER_

NAME with the actual values of the deployed ASK environment

(see Figure 8-33).

Figure 8-33. Connect to the cluster

 3. In my example, I ran this command earlier, but it is fine to

overwrite, to make sure you get the latest credentials information.

Next, you need to install the Chaos Mesh package, which is easiest

using Kubernetes Helm package manager. Since Helm is already

part of Azure Cloud Shell, you can go ahead and run the following

commands:

helm repo add chaos-mesh https://charts.chaos-mesh.org

helm repo update

kubectl create ns chaos-testing

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

251

helm install chaos-mesh chaos-mesh/chaos-mesh --namespace=chaos-

testing --set chaosDaemon.runtime=containerd --set chaosDaemon.

socketPath=/run/containerd/containerd.sock

resulting in the following output (see Figure 8-34).

Figure 8-34. Install Chaos Mesh using Helm

 4. Next, validate that the Chaos Mesh PODs are successfully running

by executing the following command:

kubectl get pods --namespace chaos-testing -l app.kubernetes.io/

instance=chaos-mesh

Your AKS cluster is now ready for Azure Chaos Studio integration

(see Figure 8-35).

 5. From the Azure portal, browse to Chaos Studio (Preview), and

select Targets. Identify your AKS resource (see Figure 8-36).

Figure 8-35. Confirm Chaos Mesh

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

252

Figure 8-36. Select the AKS target

 6. Notice the Agent-based option is not applicable in this case, since

we’re directly connected to the service-layer of the Kubernetes

cluster.

 7. In the upper menu, select “Enable Targets”/Enable Service-Direct

targets (All Resources).

 8. Wait for the notification regarding this component installation.

Once this is done, you can continue by specifying the Chaos Studio experiment.

 1. From Chaos Studio, browse to Experiments. Click “Create

Experiment”. Complete the Azure required settings for

Subscription, Resource Group, Name for the experiment, and the

location where you want to create this. Since each experiment is

nothing more than a stand-alone Azure Resource object, it should

feel familiar to creating similar objects.

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

253

 2. Click “Next” to navigate to the Experiment Designer. This is where

you define the actual chaos testing (fault injection) you want to run

as part of your Chaos Engineering. As mentioned at the start of the

chapter, each fault is following a hierarchy of Steps and Branches,

under which you define one or more fault scenarios (Actions).

Provide a descriptive name for the Step (e.g., Simulate POD Failure) as

well as for the Branch (e.g., Branch 1: AKS Outage) (see Figure 8-37).

Figure 8-37. Experiment Designer

 3. Under the Fault section, click “+Add Action”/Add Fault (see

Figure 8-38).

Figure 8-38. Add fault

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

254

 4. From the list of faults available, select “AKS Chaos Mesh Pod

Chaos”, allowing to simulate a POD failure within the AKS cluster.

Specify the duration in minutes, and complete the jsonSpec field.

This is where I’m hoping the GA version of the product will make

this a bit easier, as for now you need to translate the Chaos Mesh

YAML syntax into a JSON syntax. Copy the following snippet

of YAML (common from the Chaos Mesh docs, stripped off the

useful information):

action: pod-failure

mode : all

duration: '600s'

selector:

 namespaces:

 - default

which should look like this in a JSON format:

{

 "action": "pod-failure",

 "mode": "all",

 "duration": "600s",

 "selector": {

 "namespaces": [

 "default"

]

 }

}

The resulting portal blade looks like the one shown in Figure 8-39.

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

255

Figure 8-39. Fault description

 5. Click “Next: Target Resources” to specify the AKS Resource (see

Figure 8-40).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

256

Figure 8-40. Select the target

 6. You are now returning to the “Create Experiment” blade, from

where you can confirm the creation. Click the “Create” button to

do this (see Figure 8-41).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

257

Figure 8-41. Create an experiment

 7. If you went through the previous UbuntuVM scenario, you already

know that this experiment will be linked to a newly created

System-Assigned Managed Identity. To allow Chaos Studio to

interact with your AKS cluster, you need to specify the correct

permissions (IAM) on the AKS cluster for this System-Assigned

Managed Identity (see Figure 8-42).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

258

Figure 8-42. AKS cluster’s access control

To do this, navigate to the AKS Service resource in the Azure portal, and select
“Access Control (IAM)”.

 8. Click “+Add/Add Role Assignment”. In the list of Roles, search for

“Azure Kubernetes Service Cluster Admin Role” and select it (see

Figure 8-43). Click “Next”.

Figure 8-43. Select the role

 9. Click the “+Members” section in the next screen, and search for

the name of the experiment you used (aks-first-experiment in my

example) (see Figure 8-44).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

259

Figure 8-44. Select experiment system MI

 10. The configuration of the Role-Based Access looks like the one

shown in Figure 8-45.

Figure 8-45. Role assignment

 11. Confirm the creation by clicking the “Review + Create” button.

Wait for the permissions to get defined. Once complete, let’s

trigger an experiment.

 12. Navigate back to Azure Chaos Studio and select “Experiments”.

Select the experiment you just created (see Figure 8-46) and click

“Start Experiment” and confirm with Yes.

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

260

Figure 8-46. Select the experiment

 13. Click on the Name of the Experiment, to see a more detailed view

of the process (see Figure 8-47).

Figure 8-47. Experiment details

 14. Wait for the process to complete or click “Details” to validate more

information regarding the ongoing process.

 15. This completes the process of how to set up Chaos Studio for

an AKS Kubernetes Services Cluster and run a POD failure

simulation.

I would encourage you to continue experimenting and playing with several of the

other scenarios available for both Azure Virtual Machines and AKS, as well as for other

Azure resources such as Azure Key Vault secret store, or injecting faults into an Azure

Network Security Group.

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

261

Where this was the original end of the Chaos Engineering topic with Azure Chaos

Studio (Preview), as mentioned earlier, Microsoft released another SRE-minded tool

allowing for load/performance testing. While not necessarily limited to SRE, the tool is

bringing in so many SRE-related features; we decided to add another quick intro on this

Preview service in this chapter. Let’s check it out.

 Load/Performance Testing
Load tests, often called (or related to) performance tests, study the behavior of your

solutions under a certain load of virtual users, analyzing metrics like response times or

how architecture adapts to load (autoscaling).

Remember from Chapter 3, performance testing could be categorized in

two groups:

• Load testing is mainly used for triggering scalability under certain

expected user loads (try to simulate possible scenarios).

• Stress testing is often used to validate the maximum load an

application or system can withstand before it breaks (tries to find the

system’s limits).

Historically, Microsoft has provided tools for performance and load testing with

Visual Studio products. However, Visual Studio 2019 is the last version that fully supports

that feature. Together with Azure DevOps, this toolset used to provide a cloud-based,

CI/CD-focused, load-testing offering until March 2020 : https://devblogs.microsoft.

com/devops/cloud-based-load-testing-service-eol/. The product team started

recommending switching to the community popular open source Apache JMeter

(https://jmeter.apache.org/) to design performance tests. Running highly scalable

Apache JMeter tests is not easy regarding infrastructure setup; people started using

Kubernetes-based architectures to create highly scalable tests (example: https://

techcommunity.microsoft.com/t5/azure-global/scalable-apache-jmeter-test-

framework-using-azure-kubernetes/ba-p/1197379).

Due to this complexity, Azure decided to release the following service, an easy to

define/configure/execute cloud-based load-testing offering.

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

https://doi.org/10.1007/978-1-4842-8704-0_3
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://jmeter.apache.org/
https://techcommunity.microsoft.com/t5/azure-global/scalable-apache-jmeter-test-framework-using-azure-kubernetes/ba-p/1197379
https://techcommunity.microsoft.com/t5/azure-global/scalable-apache-jmeter-test-framework-using-azure-kubernetes/ba-p/1197379
https://techcommunity.microsoft.com/t5/azure-global/scalable-apache-jmeter-test-framework-using-azure-kubernetes/ba-p/1197379

262

 Azure Load Testing
Additionally, at Microsoft Ignite in November 2021 (still in Preview), Microsoft also

announced a new fully managed Azure Service for load-testing scenarios. It enables

engineers to run high-scale simulations based on JMeter scripts to understand

performance bottlenecks of your solutions. Bringing many advantages like

• No complex testing infrastructure to care about

• View of client/server metrics for predefined resources

• Easy integration for CI/CD execution on Azure DevOps or GitHub

Actions pipelines

Easy load tests can be created by just providing URL to use or uploading more

advanced JMeter scripts. Let’s review the tool based on a demo scenario.

 Azure Load Testing for Azure Container App

The scenario will be based on the solution used across previous chapters: .NET 6

containerized solution running on Azure Container Apps. As mentioned in previous

chapters, Azure Container Apps lets you avoid Kubernetes management/configuration

complexities by providing an easy way to apply those Kubernetes-related features.

This demo will use autoscaling features offered to scale our container app from 0 to

20 replicas based on HTTP requests handled (many other rules based on KEDA are

supported). KEDA is a Kubernetes-based Event-Driven Autoscaler and is a simple

lightweight component that can be added to your cluster (https://keda.sh/). Azure

Container Apps already includes it.

As shown in Figure 8-48, the container app revision has an attached autoscale rule

based on HTTP requests. Each replica can handle up to 30 requests at the same time,

scaling from 0 to 20 instances based on load.

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

https://keda.sh/

263

Figure 8-48. HTTP scale rule

On Azure Load Testing (Preview), create a resource, and on the Overview tab, create

a Quick Test (URL based instead of JMeter for the demo) (see Figure 8-49).

Figure 8-49. Create Quick Test

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

264

For the test details (see Figure 8-50), the demo will be testing 1000 virtual users (on

the back end, there is a maximum of 250 per test engine, so 4 will be used), running the

test for 600 seconds and ramping up the user amount slowly during the first 500 seconds

(0 to 1000 users increasing second by second).

Figure 8-50. Load test details

Clicking on the Test tab and created test, it will take you to the settings of your testing

scenario, being able to modify extra settings or see historical execution. Clicking on

Configure ➤ Tests, it will show the JMeter file created by the service and parameters

defined for it (see Figure 8-51).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

265

Figure 8-51. Test plan

See how for 1000 users, a maximum of 250 is defined per test engine, needing a

total 4 machines in the backend (see Figure 8-52 and Figure 8-53). Secrets can be stored

in Key Vault, and managed identities can be used to provide secret values to your JMeter

scripts.

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

266

Figure 8-52. Parameters

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

267

Figure 8-53. Engine instances

Test criteria can also be defined for evaluating that the conditions are satisfying your

expected metrics (useful to break CD pipelines in case they do not) (see Figure 8-54).

Figure 8-54. Tess criteria

Finally, the testing view offers an option to link related resources so that metrics/

logs from those resources can be shown on the load-testing report. In this case, Azure

Container Apps is not a supported resource yet, but you can link it to the Application

Insights resource used to monitor it (see Figure 8-55).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

268

Figure 8-55. Monitoring

Back on the test page, clicking on Configure ➤ Metrics (see Figure 8-56) will

give you options to include metrics (related to resources attached previously) on the

execution report.

Figure 8-56. Metrics

Once the test has run, you can review the execution report given by the tool (see

Figures 8-57 and 8-58). The report shows the test criteria results, client-side charts,

and server-side charts. You can see how our Container Apps solution has been able

to incrementally handle up to 1000 virtual users; even if the server response has been

slightly affected, no failures have occurred.

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

269

Figure 8-57. Execution report part 1

Figure 8-58. Execution report part 2

As Azure Container Apps is not officially supported yet for metric tracking, if you

switch to the Metric Explorer tab of your Azure Container Apps (Log Analytics queries

could also be used), you will see how the solution has scaled the number of replicas

during the load-test execution to handle load (see Figure 8-59).

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

270

Figure 8-59. Azure Container Apps Metrics Explorer

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

271

 Summary
In this chapter, you were introduced to the concept of Chaos Engineering, allowing

organizations and their SRE teams to run simulated faults against production-running

resources. By integrating chaos testing, it allows you to identify any crucial outages when

incidents are occurring and prepare your teams to mitigate them. Overall, the more

faults are identified for your workloads, the more reliable they will be.

Chaos Engineering was somewhat founded by the Netflix Engineering team, who

moved their experience into an (now) open source tool, Chaos Monkey.

The concepts of Chaos Engineering are now also available in Azure, thanks to the

(currently in preview) service, Azure Chaos Studio. This module tried to explain and

walk you through its reason of existence, as well as guide you through a step-by-step

demonstration on how to enable Chaos Experiments such as simulating a high CPU

pressure against an Azure Ubuntu Virtual Machine.

Additionally, the chapter included a quick introduction to load/performance testing,

focusing on the recently released Azure Load Testing offering (in preview), using a demo

scenario to show its capabilities.

Chapter 8 azure Chaos studio (preview) and azure Load testing (preview)

273

Index

A
Application Performance Management

(APM), 167, 208
Automation

guest configuration, 104–106
overview, 91
reliability, 92
SRE process, 92, 93
testing/releasing, 92

Azure Container Registry (ACR), 88, 128, 134
Azure Kubernetes (AKS) cluster

access control, 258
Chaos Studio experiment, 252
command, 250
configuration, 259
connection, 250
detailed view, 260
experiment creation, 257
experiment designer, 253
fault description, 255
fault section, 253
helm package manager, 250, 251
JSON format, 254
members section, 258, 259
mesh testing, 251
navigation, 259
role selection, 258
service-direct targets, 252
target selection, 251, 252, 256
websites, 249

Azure Kubernetes Service (AKS), 54, 55, 57,
72, 87, 230, 249–255, 257, 258, 260

B
Blue-green deployment, 22, 60, 123–124,

138, 139

C
Canary deployment, 126
Chaos engineering

AKS cluster, 249–261
Chaos Monkey, 225, 226
CPU load testing, 224
definition, 224
design proactive, 227
disadvantages, 227
Netflix, 226
principles, 226, 227
studio

architecture, 228
definition, 228
target section, 230
VM onboarding process, 230

traditional testing, 226
virtual mechine process

access control, 243
agent-based targets page, 236, 238
agent targets, 231, 232
application insights, 234–236
CPU experiment, 245
CPU pressure fault, 241
details, 246, 249
experiment designer, 239, 240
fault simulation, 241

© Unai Huete Beloki 2022
U. H. Beloki, The Art of Site Reliability Engineering (SRE) with Azure,
https://doi.org/10.1007/978-1-4842-8704-0

https://doi.org/10.1007/978-1-4842-8704-0#DOI

274

manage actions, 238, 239
managed identity resource, 233
members selection, 244
menu option, 230, 231
metric explorer, 248
notification pane, 238
reader role, 243, 244
review/creation, 242
targets, 236
testing process, 248
UbuntuVM1 blade, 234
user-managed identity, 232, 233
VM overview tab, 247

Configuration as Code (CaC), 56, 59, 104
Continuous integration/continuous

delivery (CI/CD), 56
automation (see DevOps)
deployment, 94, 95
version control/CI, 93, 94

D
Deployment strategies

A/B testing, 127
app configuration, 125
blue-green, 123, 124
canary, 126
dark launching, 127
definition, 122
feature flags, 124, 125
GitHub actions

access control, 131
app configuration, 129, 130, 141
blue-green, 139
CD workflow, 134–139
CI workflow, 131–133
container applications, 128, 139

demo architecture, 127, 128
jobs, 134
key vault, 129, 130
policies, 131
principals, 130
trigger/variables, 134

ring-based deployment, 126
rolling deployment, 122, 123

Desired State Configuration
(DSC), 104–106

DevOps, 5–8
code configuration, 104–106
continuous integration, 93, 94
definition, 93
delivery/deployment, 94, 95
demo project

ADO environments, 112, 113
Cloud Shell, 110
component, 110
pipeline stages, 113, 114
properties, 110
resource group, 118
service connection, 111
variable groups, 112
WebApp deployement, 119
YAML pipeline, 110, 113–118

deployment (see Deployment
strategies)

GitHub actions, 119–122
Infrastructure as Code (IaC), 98–103
monitoring/operation, 97
monitoring strategy, 188
pipelines

agent types, 106, 107
artifacts, 108
authenticated connections, 109
checks and approvals, 109
components, 106–119

Chaos engineering (cont.)

INDEX

275

generic components, 108
pricing model, 109
stages and jobs, 108
structure, 107
system variables, 108
triggers, 108
YAML and classic types, 107

rugged DevOps/DevSecOps, 96–98
secure, 97
shift-left testing, 96
static analyzers, 97
thread modelling tool, 97
WAF reliability, 56, 57

E
Effective availability, 23

F
Fault injection testing, 61

G, H
GitHub

monitoring
insights service, 190
organization, 191
status page, 189, 190

Grafana, 55, 154, 158–160

I, J
Incident response (IR)

blameless postmortems
automation practices, 218
benefits, 220
ideas and cultural shift, 219
learning opportunity, 218

organizational culture, 219
postmortem process, 221

ChatOps, 203, 204
communication, 202, 203
definition, 193, 194
demo reports

add-on, 215
alert criterion, 215
architecture, 214
channel and posted messages, 217
cognitive services, 215
historical data, 216
logic app, 216
shifts, 218

detection/identification, 195
eradication/remediation

application insights, 208
capabilities, 208
communication, 205
empty workbook, 207
insights reports, 208
monitor logs, 206
smart detection, 210
subphases, 204
usage reports, 210
workbooks, 206

frameworks, 194
life cycle, 195
objectives, 194
performance, measurement

detection/notification, 211
GitHub integration, 213
mean time to detect (MTTD), 211
metrics, 211
Objective and Key Results, 212
Power BI, 212, 214

postincident/learning/analysis, 195
preparation/readiness, 195

INDEX

276

resolving phase, 195
response process

commander/manager, 197
on-call schedule, 198
principles, 196
roles, 196, 197
rotation schedules, 198
technical lead/SME, 197

tracking/detection
actions tab, 200
alert structure, 199
Cosmos DB alert, 200
definition, 199
metrics, 200
phases, 201
platform/monitoring tools, 201
types, 199

Infrastructure as a Service (IaaS), 42, 51,
54, 69, 75, 82–84

Infrastructure as Code (IaC), 56, 59, 104
approaches, 98
ARM template and Bicep, 99–103
definition, 98–103
templates, 99

K
Kusto Query Language (KQL), 161,

163–165, 171, 174, 199, 205

L
Load/performance testing

advantages, 262
container apps, 262, 270
definition, 261
details, 264
engine instances, 267

execution report, 269
HTTP scale rule, 263
metrics, 268
monitoring, 267, 268
parameters, 266
quick test creation, 263
tess criteria, 267
test plan, 265

Load testing, 60, 61, 261
Local Configuration Manager (LCM), 104

M, N
Mean Time Between Failure (MTBF),

30, 32, 36–39, 211, 212
causes and consequences, 38, 39
Cisco field notice, 36, 37
definition, 36
formula, 36
server hardware, 37
unavailability metrics, 39

Mean Time to Failure (MTTF), 30–33,
39, 75, 211

Mean Time to Repair (MTTR), 33–35,
211, 212

Monitoring strategy
activity logs, 153
alerts

condition clears, 181
definition, 181
elements, 178
proactive approach, 178
processing rule, 181
signals, 178
static/dynamic process, 179

application insights
availability test, 172, 173
configuration, 176–178

Incident response (IR) (cont.)

INDEX

277

connection strings, 169
customization, 176
definition, 167
e-commerce website/banking

system, 176
failures/performance tabs, 173
features, 169
instrumentation options/

setup, 168–170
live metrics stream, 171
logs service, 174
map, 169, 170
properties/metrics, 176
release annotations, 177
smart detection, 170
TelemetryInitializer, 177
transaction search, 172, 173
troubleshooting guides, 174
usage section, 174, 175

data sources, 151–153
definition, 144
demo files

application insights, 182
application map, 184
burn rate, 186, 187
definition, 184
error budget, 185, 186
Kusto query, 185
solution, 182
transaction details, 183

DevOps, 187–189
diagnostic setting, 152
export subscription, 152
GitHub, 189–191
log analytics/application insights

concepts, 160–162
dashboard, 167
Kusto, 164, 165

resource graph, 165–167
storage account, 162
user interface, 164
workspace resource, 162–164

logs/traces collection, 150
observability, 148
operational process

aspects, 145
error budget/burn rate, 147
hierarchy, 144
service health, 148–150
SLI/SLO/SLA, 145, 146
status website, 150

overview, 143
visualization, 153

dashboards, 153, 154
Grafana, 158, 159
insights section, 156, 157
metrics, 154, 155
Power BI, 160
storage account resource, 157
workbooks, 155, 156

O
Objective and Key Results (OKRs), 212
Observability, 25, 39, 49, 54, 55, 57, 148,

150, 158
OpenTelemetry, 168
Open Web Application Security Project

(OWASP), 97

P, Q
Performance testing, 61, 94, 261, See also

Load/performance testing
Platform as a Service (PaaS), 29, 42, 51, 54,

75, 79, 84–86

INDEX

278

Policy guest configuration, 106
Postmortems, 39–40, 196, 205, 220, 221

R
Recovery Point Objective (RPO),

20, 62, 75, 85
Recovery Time Objective (RTO), 20, 34,

62, 75, 82, 83, 85
Reliability, 3, 18, 22–24, 41, 46–48, 70, 92,

97, 145, 146
Resiliency, 49, 59, See also Testing

application
architecture, 70, 82
autoscaling, 78, 79
availability set, 72, 73
avoid affinity, 78
capacity planning, 70
components/services, 78
design application, 76–78
endpoint monitoring, 77
features, 69
IaaS-based scenario, 83, 84
idempotent task, 77
load balancers, 79–81
microservices, 86–88
PaaS architecture, 84–86
platform, 71, 72
portal helper, 81
queue/publisher/subscriber

pattern, 77
recovery metrics, 75
region pairs, 73
reliable service, 69
replication/redundancy, 82
requirements, 75–77
retry/circuit breaker pattern, 76
shared responsibility model, 75, 76

temporary/large-scale failures, 70
testing, 89
throttling, 77
update/fault domains, 71, 72
zone redundancy, 73

Ring-based deployment, 60, 126
Risk assessment

aggregate, 20
availability target, 19
definitions, 18
e-commerce business, 18
error budget, 22, 23
nonfunctional requirements, 20
reliability, 18
SRE metrics vs. developer

metrics, 22
tolerance level, 20, 21

Role-Based Access Control (RBAC),
154, 161, 243

Rolling deployment, 122, 123

S
Self-healing services, 57
Serverless resilient architecture, 86
Service-Level Agreement (SLA), 7, 24,

53, 54, 146
components, 28
downtime, 27
load balance, 29
metrics, 29
queue, 28, 29
WebApp and MySQL, 28
website, 26–28
workload, 30

Service-Level Indicator (SLI), 24–28, 74,
145–147, 184

Service-Level Management

INDEX

279

blameless postmortems, 42
capacity planning, 42
definitions and acronyms, 17
development process/user

experience, 42
glossary, 18
hierarchy, 41–43
metrics, 24

contractual agreement, 26–28
indicator, 25, 26
objectives, 25, 26

monitoring, 41, 43
postmortems, 39, 40
reliability, 23, 24
risk assessment (see Risk assessment)
test/release processes, 42
toil, 40
unavailability metrics

acronyms, 30
MTBF, 36–39
MTTF, 31–33
MTTR, 33–35

Service-Level Objectives (SLOs), 22,
25, 26, 146

Shift-left testing, 59, 91, 96
Site Reliability Engineering (SRE)

automation, 7, 92, 93
challenges, 9
definition, 3
DevOps, 3–6
engineering process, 8
Google guidance, 8
history, 1
implementation, 9
job role perspective, 12–14
monitoring service, 11
operational tasks, 2
organization, 10

overview, 1
pathological, bureaucratic and

generative, 5
service levels, 7
westrum typology, 6
workloads information, 9

Software Composition Analyzers
(SCA), 97

SQL Database, 51, 53, 75, 169
Stress testing, 61, 261
Subject matter expert (SME), 197, 201

T, U
Teasing misconception, 40
Testing application

blue/green deployment, 60
Chaos/Load testing, 60
definition, 59
dev/test environment, 59
disaster/recovery, 61
fault injection, 61
performance testing, 61
reliability tests, 60
ring-based deployment, 60
shift left testing, 59

V
Virtual machines (VMs), 54–56, 61, 72, 73,

75, 82–84, 87, 104–106, 122, 177,
207, 227, 230–249

W, X, Y, Z
WebApp/App Service, 28, 29, 84, 85,

154, 155
Web Application Firewall (WAF), 86

INDEX

280

Well-Architected Framework (WAF)
assessments, 62, 63

descriptive name, 63
evaluation options, 64
questionnaire, 65
recommended actions, 67
results, 65–67
workload type, 64

building blocks, 47
business workloads, 46
checklist, 58
factors, 48
learning process, 45
linear flow, 47
objectives, 46–48
POC environment, 48

reliability
building block, 49
cloud environments, 51
concepts, 49
data replication, 53
DevOps/automation, 56, 57
disaster recovery solutions, 51
high-availability, 52–54
hypervisor solutions, 50
observability, 54, 55
on-premises data centers, 50–52
self-remediation, 57

requirements, 58, 59
service provider, 49
technical details, 45
testing application, 59–62

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: The Foundation of Site Reliability Engineering
	The History of Site Reliability Engineering
	Why SRE Is Not DevOps 2.0
	Identify Best Practices Around SRE
	Automate Everything
	Identify Acceptable Service Levels
	Be Focused on Engineering

	Understand the Challenges of SRE
	Clarify Prerequisites to the Role of SRE
	Summary

	Chapter 3: Azure Well-Architected Framework (WAF)
	Understanding Well-Architected Framework (WAF) Concepts
	WAF – Reliability Building Block
	On-Premises Is (Way) Different Than Cloud Architecture
	Cloud Is Not 100% Highly Available
	Observability Is Key
	DevOps and Automation
	Self-Remediation

	Reliability Checklists
	Testing Applications for Resiliency
	Well-Architected Framework Assessment
	Summary

	Chapter 4: Architecting Resilient Solutions in Azure
	What Is Resiliency?
	Azure Platform Resiliency
	Availability Sets
	Availability Zones
	Region Pairs and Azure Site Recovery

	Resiliency Based in Numbers
	Resiliency on Application Design
	Mainly Used Components/Platform Features for Resilient Solutions
	Autoscaling
	Load Balancer
	Replication/Redundancy

	Resilient Architecture Examples
	IaaS Resilient Architecture

	PaaS Resilient Architecture
	Microservices Architecture
	Testing Resiliency on Azure

	Summary

	Chapter 5: Automation to Enable SRE with GitHub Actions/Azure DevOps/Azure Automation
	Automation for SRE
	CI/CD Automation with DevOps
	What Is DevOps
	Continuous Integration (CI)
	Continuous Delivery/Deployment (CD)
	Shift-Left Testing in DevOps
	Secure DevOps
	Infrastructure as Code (IaC)
	Configuration as Code with DSC/Azure Automation/Guest Configuration
	Azure Policy Guest Configuration

	Azure Pipelines
	[DEMO] CI/CD Multistage YAML Pipeline

	GitHub Actions

	Modern Deployment Strategies
	Rolling Deployment
	Blue-Green Deployment
	Feature Flags
	Canary Deployments/Ring-Based Deployment
	Dark Launching
	A/B Testing
	[DEMO] Modern Deployments with GitHub Actions and Azure App Configuration

	Summary

	Chapter 6: Monitoring As the Key to Knowledge
	Operational Awareness
	SLI/SLO/SLA
	Error Budget/Burn Rate

	Observability vs. Monitoring
	Azure Service Health
	Azure Monitor
	Data Sources
	Visualize
	Azure Dashboards
	Metrics Explorer (Metrics)
	Azure Workbooks
	Azure Monitor Insights
	Grafana
	Power BI

	Analyze
	Azure Monitor Logs
	Log Analytics/Azure Monitor Logs
	Kusto Query Language (KQL)

	Azure Resource Graph

	Application Insights
	Instrumentation Options/Setup
	Features
	Application Map
	Smart Detection
	Live Metrics Stream
	Transaction Search
	Availability
	Failures/Performance
	Troubleshooting Guides
	Logs
	Usage (User Behavior)

	Customized Application Insights Using SDK
	Application Insights API
	Advanced Configuration for Application Insights

	Azure Monitor Alerts
	[DEMO] Tracking SLI/SLO/SLA Using Application Insights and Log Analytics

	Azure DevOps
	GitHub
	Summary

	Chapter 7: Efficiently Handle Incident Response and Blameless Postmortems
	Incident Response (IR)
	Incident Response Pillars
	Roles
	On-Call/Rotations

	Incident Tracking/Detection
	Communication and ChatOps
	ChatOps

	Eradication/Remediation
	Measuring Performance
	[DEMO] Incident Response

	Blameless Postmortems
	Best Practices/Tips

	Summary

	Chapter 8: Azure Chaos Studio (Preview) and Azure Load Testing (Preview)
	Intro to Chaos Engineering
	Chaos Monkey
	Principles of Chaos (Engineering)
	Azure Chaos Studio
	Azure Chaos Studio Architecture
	Onboarding an Azure VM to Chaos Studio
	Onboarding an AKS Cluster to Chaos Studio

	Load/Performance Testing
	Azure Load Testing
	Azure Load Testing for Azure Container App

	Summary

	Index

