
Azure Arc-enabled
Data Services
Revealed

Deploying Azure Data Services on Any
Infrastructure
—
Second Edition
—
Ben Weissman
Anthony E. Nocentino
Foreword by Jes Schultz

Azure Arc-enabled
Data Services Revealed

Deploying Azure Data Services
on Any Infrastructure

Second Edition

Ben Weissman
Anthony E. Nocentino
Foreword by Jes Schultz

Azure Arc-enabled Data Services Revealed: Deploying Azure Data Services on Any
Infrastructure

ISBN-13 (pbk): 978-1-4842-8084-3 ISBN-13 (electronic): 978-1-4842-8085-0
https://doi.org/10.1007/978-1-4842-8085-0

Copyright © 2022 by Ben Weissman and Anthony E. Nocentino

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub at https://github.com/Apress/azure-arc-enabled-data-services-revealed-2-edition.

Printed on acid-free paper

Ben Weissman
Nürnberg, Bayern, Germany

Anthony E. Nocentino
Oxford, MS, USA

https://doi.org/10.1007/978-1-4842-8085-0

To Franzie and Gwendolyn
—Ben

To my family
—Anthony

v

Chapter 1: A Kubernetes Primer ��� 1

Introducing Kubernetes ��� 1

Benefits of Kubernetes �� 2

The Kubernetes API ��� 3

API Objects �� 4

API Server �� 5

Core Kubernetes API Primitives ��� 6

Kubernetes Cluster Components �� 13

Exploring Kubernetes Cluster Architecture �� 13

Understanding Scheduling and Resource Allocation ��� 16

Networking Fundamentals �� 20

Kubernetes Role in Azure Arc-enabled Data Services �� 23

Summary and Key Takeaways �� 23

Chapter 2: Azure Arc-enabled Data Services ��� 25

The Challenge ��� 25

Introducing Azure Arc �� 26

Azure Arc-enabled Resources ��� 27

Tooling ��� 30

Introducing Azure Arc-enabled Data Services �� 33

Azure Arc-enabled Data Services Architecture �� 33

Azure Arc Management Control Plane Layer: A Closer Look �� 36

Table of Contents

About the Authors �� ix

Acknowledgments ��� xi

Foreword ��� xiii

Introduction ���xv

vi

Data Services Layer: A Closer Look ��� 43

Deployment Sizing Considerations �� 48

Summary and Key Takeaways �� 52

Chapter 3: Getting Ready for Deployment �� 53

Prerequisites ��� 53

Chocolatey �� 54

Tools on Windows ��� 55

Tools on Ubuntu �� 56

Getting Azure Data Studio Ready �� 57

azure-cli Extensions and Providers ��� 63

Have a Resource Group in Azure ��� 63

Summary and Key Takeaways �� 64

Chapter 4: Installing Kubernetes �� 65

Installation Considerations and Methods �� 65

Where to Deploy? �� 66

Further Considerations �� 67

Installation Methods �� 67

Additional Options ��� 67

Installation Requirements ��� 68

Network Requirements �� 68

Getting Kubernetes �� 69

Building a Self-Managed Cluster �� 70

Virtual Machine-Based Kubernetes Cluster Requirements ��� 70

Getting the VMs Ready �� 70

Virtual Machine Network Configuration ��� 71

System Swap Settings ��� 72

Software Package Installation ��� 72

Creating a Control Plane �� 78

Adding Nodes to a Cluster ��� 81

Table of ConTenTs

vii

Provisioning Storage in Your Cluster ��� 83

Accessing Your Cluster with kubectl ��� 84

Renaming a kubeconfig Context �� 85

From a Windows Workstation �� 85

From a Linux Workstation �� 87

Summary��� 87

Chapter 5: Deploying a Data Controller in Indirect Mode ��������������������������������������� 89

Deciding on a Kubernetes Storage Class �� 89

Deployment Through the Command Line �� 90

Deployment Through Azure Data Studio ��� 96

Summary and Key Takeaways �� 104

Chapter 6: Deploying a Data Controller in Direct Mode �� 105

Get Your Kubernetes Cluster Azure Arc-enabled ��� 105

Get Your Azure Subscription Ready ��� 109

Deploy a Direct Mode Data Controller ��� 111

Summary and Key Takeaways �� 120

Chapter 7: Deploying an Azure Arc- enabled SQL Managed Instance ������������������� 121

Deployment Through the azure-cli �� 121

Deployment Through Azure Data Studio ��� 125

Deployment Through Kubernetes Tools ��� 129

Deployment Through the Azure Portal��� 132

Active Directory Authentication ��� 139

Getting Data into Your Instance ��� 139

Copying Backup Files into Your Instance ��� 139

Restoring Backup Files in Your Instance ��� 140

Managed Backup and Restore��� 141

Removing a Deployed Managed Instance ��� 145

Summary and Key Takeaways �� 147

Table of ConTenTs

viii

Chapter 8: Deploying Azure Arc- enabled PostgreSQL Hyperscale ������������������������ 149

Deployment Through the Command Line �� 149

Deployment Through Azure Data Studio ��� 151

Scale Up of a Server Group ��� 152

Removing a Deployed Server Group ��� 154

Summary and Key Takeaways �� 155

Chapter 9: Monitoring and Management �� 157

Monitoring Through the Data Controller �� 157

Retrieving Endpoints ��� 157

Metrics (Grafana Dashboard) ��� 158

Log Search Analytics (Kibana) ��� 159

Monitoring Through the Azure Portal �� 160

Directly Connected Mode �� 160

Indirectly Connected Mode �� 161

Monitor Your Resources in the Azure Portal �� 165

Upgrading Azure Arc-enabled Data Services �� 168

Summary and Key Takeaways �� 169

 Index ��� 171

Table of ConTenTs

ix

About the Authors

Ben Weissman is the owner and founder of Solisyon, a

consulting firm based in Germany and focused on business

intelligence, business analytics, and data warehousing. He is

a Microsoft Data Platform MVP, the first German BimlHero,

and has been working with SQL Server since SQL Server 6.5.

Ben is also an MCSE, Charter Member of the Microsoft

Professional Program for Big Data, Artificial Intelligence, and

Data Science, and a Certified Data Vault Data Modeler. If he

is not currently working with data, he is probably travelling

to explore the world.

Anthony E. Nocentino is a Principal Field Solution Architect

at Pure Storage as well as a Pluralsight Author, a Microsoft

Data Platform MVP, Linux expert, and corporate problem

solver. Anthony designs solutions, deploys the technology,

and provides expertise on business system performance,

architecture, and security. Anthony has a bachelor’s and

master’s in computer science with research publications in

high-performance/low-latency data access algorithms and

spatial database systems.

xi

Acknowledgments

Let me start by thanking Franzie – for being the best partner and most amazing mother

to me and Gwenny.

Also, thank you to my colleagues at Solisyon for all their hard work that allows me to

take the time out for fun projects like this book.

Thank you, Anthony! Not just for yet another joint project but for being an

amazing friend!

Dear #sqlfamily: thank you for being who you are. I have never seen a community

like ours, and it’s an honor to be part of it. There are way too many to call you all out – but

you know who you are.

Thank you to the entire Azure Arc-enabled Data Services Team for building an

amazing product but especially to Travis, for initially getting me hooked, and to Jes, for

taking the time to write our foreword and even more so for always being here for us when

we have questions!

—Ben Weissman

First and foremost, I need to thank my wife, Heather. She is my best friend and partner.

This year, we celebrate 22 years of marriage together. Every single day with you is better

than the previous one. I love you and thank you for all of your unwavering support,

inspiration over the years, and listening to me ramble on about tech stuff. I want to thank

my two loving daughters, Gabby and Charlotte, for “SQL Server, SQL Server, SQL Server,”

“Kubernetes is a fancy drink,” and “Sassy Sausage.” I love you. You are an endless source

of joy and pride to me.

Next, thank you to the SQL and Data Platform MVP communities. So many of

you have contributed to who I am today as a person and technologist. I want to call

out my co-author Ben Weissman, for your vision for this book and friendship; thank

you. I am truly lucky to have you as a colleague and friend. I want to also say thanks

to my container-mate Andrew Pruski, who is originally from Wales but now based in

Ireland. Andrew and I are constantly talking about all things SQL Server, containers,

and Kubernetes; thank you for helping review this book. I also want to call out Mark

xii

Wilkinson and Andrew again; we co-organized EightKB this year together, and it was a

banging success. That project, your friendship, and our endless ramblings in Slack are

what has helped me survive quarantine. Thank you!

To the many friends on the SQL Server Engineering Team that I have made over

the last few years, thank you! Jes Schultz, thank you for the fantastic foreword, being a

fantastic member of the SQL Server community, and now driving Azure Arc-enabled

Data Services forward as the PM. To Bob Ward, for being such an enormous part of the

SQL Server community, bringing excellence in engineering and education and teaching

the world how SQL Server works under the hood. You truly are an inspiration to me

and our community. To Slava Oks, for your excellence in engineering and bringing SQL

Server to Linux. It’s been a pleasure knowing you and watching your career since we ran

into each other years ago in Lisbon. To the whole SQL Server Engineering Team, thank

you for your endless technical innovations, engagement in the SQL Server community,

and replying to my emails.

To the Apress team, Jonathan, Jill, and Laura, you’ve truly made this process easy. We

couldn’t have done this without your support.

—Anthony E. Nocentino

aCknowledgmenTs

xiii

Foreword

When I started my IT career, we ran applications and databases on physical servers.

In the first few years, there was a shift to virtualization, and it was a radical

transformation with much change. What was a monumental shift then has become

commonplace – even the norm – now.

Today, there is another paradigm shift taking place – the move to containerization.

I see it in new applications being built by developers eager to have lightweight,

repeatable deployments across infrastructures. This is also affecting the world of data, as

those developers look to have their containerized applications connect to data sources

that are also lightweight and easily deployable.

This shift brings new challenges for the data professional – in a containerized world,

with companies rapidly adopting one or more clouds, how do you secure, manage,

and monitor data services across these landscapes? Microsoft has been on two parallel

journeys for many years – first to bring SQL Server to Linux and containers, and to make

Azure SQL Database the best cloud-based operational database in the world. Now, these

two roads have been merged with Azure Arc-enabled Data Services, which allow you to

run Azure Platform-as-a-Service data services on the Kubernetes distribution of your

choice, in the infrastructure of your choice.

I’m excited that two experts have collaborated to bring you this book, designed to

get you using Azure Arc-enabled Data Services as quickly as possible. They understand

the challenges that come with this new paradigm and break them down into easily

understandable chunks of knowledge.

The first time I saw Anthony Nocentino present was at a SQLSaturday in Cleveland,

Ohio, in 2020 – the last in-person event I attended before the pandemic. I had been

delving into the world of SQL Server on Linux and containers and was interested to

hear what he had to say about containers. I was delighted by his deep knowledge and

presentation style.

The first time I saw Ben Weissman present was unfortunately online, as an ocean

separates us. He was talking about a technology that I have found fascinating since

the first time I heard of it – SQL Server Big Data Clusters. Ben had a passion for the

technology, making it easy to understand, and was gracious and funny.

xiv

With this, I hope you enjoy learning about and working with this technology as much

as I do! I can’t wait to hear your stories of how you’re using Azure Arc-enabled Data

Services and how they enable you to do more as an IT professional!

—Jes Schultz

Program Manager, Azure Arc-enabled Data Services

foreword

xv

Introduction

When we first started talking about writing a book about Azure Arc-enabled Data

Services, the product was in its early private preview stages. We both were very excited

about what Azure Arc-enabled Data Services are about to become as a product: This was

where all the technology that was recently introduced – like SQL on Linux and SQL on

Kubernetes – was coming together. This was the answer to the question why Microsoft

did all this.

But, even without that background, we both saw the tremendous value that Azure

Arc- enabled Data Services were going to provide. One of the huge challenges that

companies have in cloud adoption is being locked in to a vendor’s infrastructure. Being

locked in to a software is fine – honestly, this has pretty much always been the case

from the second you chose a database platform, for example – but infrastructure is a

different challenge. You may just not be able or willing to move to the public cloud or

may already be invested in some other cloud provider’s infrastructure. With Azure Arc,

including Azure Arc-enabled Data Services, we were now able to deploy those solutions

that previously were exclusively available to Microsoft’s Azure Cloud to any cloud on any

infrastructure!

It was clear to us that with Azure Arc-enabled Data Services becoming generally

available, we just had to keep this book up to date and add all the new features that went

into the product since our first edition of this book.

This book introduces you to Azure Arc-enabled Data Services and the powerful

capabilities they provide. You’ll learn how to benefit from the centralized management

that Azure provides, the automated rolling out of patches and updates, and more.

This book is the perfect choice for anyone looking for a hybrid or multi-vendor cloud

strategy for their data estate. We will walk you step by step through the possibilities

and requirements to get services like Azure SQL Managed Instance or PostgreSQL

Hyperscale deployed outside of Azure so they become accessible to companies that

either can’t move to the cloud or don’t want to use the Microsoft cloud exclusively. The

technology described in this book will be especially useful to those who are required

to keep sensitive services such as medical databases away from the public cloud, but

who still want to benefit from the Azure Cloud and the centralized management that it

supports.

xvi

 Book Layout
We split this book into nine separate chapters that will each build on each other to give

you a full picture of what Azure Arc-enabled Data Services are:

 – Chapter 1, “A Kubernetes Primer”: Kubernetes is the architectural

backbone of every Azure Arc-enabled Data Services installation.

This chapter introduces Kubernetes, describing its role in modern

application deployment, the benefits it provides, and its architecture.

 – Chapter 2, “Azure Arc-enabled Data Services”: This chapter introduces

you to Azure Arc-enabled Data Services! We will introduce the core

Azure Arc-enabled resources, including servers, Kubernetes, SQL

Server, and Data Services. We will then dive deeper into what Azure

Arc-enabled Data Services are, its architecture, how workloads are

deployed and managed, and discuss key deployment considerations

such as compute and storage capacity planning.

 – Chapter 3, “Getting Ready for Deployment”: In this chapter, we will

walk you through the required steps that need to be taken care of

before you can start deploying your own Azure Arc-enabled Data

Services.

 – Chapter 4, “Installing Kubernetes”: In this chapter, we will guide you

through the setup process of a Kubernetes Cluster, which is required

to deploy Azure Arc-enabled Data Services.

 – Chapter 5, “Deploying a Data Controller in Indirect Mode”: Next, we

will guide you on what needs to be done – either using a graphical

user interface or the command line – to deploy an Azure Arc-enabled

Data Controller within your Kubernetes Cluster that will not be

constantly connected to the Azure Cloud.

 – Chapter 6, “Deploying a Data Controller in Direct Mode”: In this

chapter, we will guide you on how to deploy a Data Controller to a

Kubernetes Cluster that is connected to the Azure Cloud – and we’ll

even show you how to deploy this from the Azure Portal.

InTroduCTIon

xvii

 – Chapter 7, “Deploying an Azure Arc-enabled SQL Managed

Instance”: With our Data Controller ready and waiting, we can now

go ahead and start deploying a first database instance so we can start

working with our Arc instance. Similar to the deployment of a Data

Controller, we can either use the command line and the azure-cli

directly or use a wizard in Azure Data Studio for this.

 – Chapter 8, “Deploying Azure Arc-enabled PostgreSQL Hyperscale”:

While Chapter 7 was handling SQL Managed Instances, this chapter

will guide you through the necessary steps when it comes to working

with PostgreSQL Hyperscale instead.

 – Chapter 9, “Monitoring and Management”: In this last chapter, we

will focus on how to monitor and manage your Azure Arc-enabled

Data Services by leveraging both local management services and

Azure’s management capabilities.

InTroduCTIon

1
© Ben Weissman and Anthony E. Nocentino 2022
B. Weissman and A. E. Nocentino, Azure Arc-enabled Data Services Revealed,
https://doi.org/10.1007/978-1-4842-8085-0_1

CHAPTER 1

A Kubernetes Primer
Welcome to Azure Arc-enabled Data Services Revealed! This chapter introduces

Kubernetes, describing its role in modern application deployment, the benefits

it provides, and its architecture. Starting with its benefits, you will learn the value

Kubernetes provides in modern container-based application deployment. Next, you

will learn how the Kubernetes API enables you to build and deploy next-generation

applications and systems in code. In that segment, you will learn the core API primitives

Kubernetes provides to define and deploy applications and systems. Then you will learn

the key concepts of a Kubernetes Cluster and its components. To finish the chapter off,

you will learn the role of Kubernetes in Azure Arc-enabled Data Services.

 Introducing Kubernetes
Kubernetes is a container orchestrator. It has the responsibility of starting up container-

based applications on servers in a data center. To do this, Kubernetes uses API Objects

representing resources in a data center, enabling developers and system administrators

to define systems in code and use that code to deploy. Container-based applications

are deployed as Pods into a Kubernetes Cluster. A Cluster is a collection of compute

resources, either physical or virtual servers, called Nodes. Let’s dive into each of these

elements in more detail, starting with the benefits of Kubernetes and understanding the

value it provides in modern application deployment.

https://doi.org/10.1007/978-1-4842-8085-0_1#DOI

2

 Benefits of Kubernetes
The following are the important benefits that Kubernetes brings to the table:

• Workload Scheduling: Kubernetes is a container orchestrator having

the primary goal of starting up container-based applications, called

Pods, on Nodes in a Cluster. It is Kubernetes’ job to find the most

appropriate place to run a Pod in the Cluster. When scheduling Pods

on Nodes, a primary concern is determining if a Node has enough

CPU and memory resources to run the assigned workload.

• Managing State: When code is deployed into Kubernetes, defining a

workload that needs to be running, Kubernetes has the responsibility

to start up Pods and other resources in the Cluster and keep the

Cluster in the desired state. If the Cluster’s running state skews from

the desired state, Kubernetes will try to change the Cluster’s running

state to get the running state of the Cluster back into the defined

desired state. For example, if a Deployment defines having a number

of Pods running. If a Pod fails, Kubernetes will deploy a new Pod into

the Cluster, replacing the failed Pods, ensuring the number of Pods

defined by the Deployment are up and running. Further, suppose

you want to scale the number of Pods supporting an application to

add more capacity. In that case, you increase the number of replicas

in the Deployment, and Kubernetes will create additional Pods in

the Cluster ensuring the desired state is realized. More on this in the

upcoming section on Controllers.

• Consistent Deployment: Deploying applications with code

enables repeatable processes. The code defining a Deployment is

the configuration artifact and can be placed in source control. You

can also use this code to deploy identical systems in down-level

environments such as development environments or even between

on-premises systems and the cloud. More on this in the upcoming

section on the Kubernetes API.

• Speed: Kubernetes enables fast, controlled deployments, starting

Pods in a Cluster quickly. Furthermore, in Kubernetes, you can scale

applications rapidly. Expanding the number of Pods supporting an

Chapter 1 a Kubernetes primer

3

application can be as simple as changing a line of code, and this can

take as little as seconds. This speed is demonstrated in Chapter 6 by

adding additional replicas to a PostgreSQL Hyperscale deployment.

• Infrastructure Abstraction: The Kubernetes API provides an

abstraction or wrapper around the resources available in a Cluster.

When deploying applications, there is less focus on infrastructure

and more on how applications are defined, deployed, and consume

the Cluster’s resources. The code used for deployments will describe

how the deployment should look, and the Cluster will make that

happen. If applications need resources such as public IP addresses

or storage, that becomes part of the deployment, and the Cluster will

interact with underlying infrastructure to provision these resources

for the application’s use. This infrastructure abstraction is key to the

design and implementation of Azure Arc-enabled Data Services. We

will explore this concept more at the end of this chapter.

• Persistent Service Endpoints: Kubernetes provides persistent IP

and DNS naming for applications deployed in the Cluster. As Pods

can come and go due to scaling operations, life cycle operations,

or reacting to failure events, Kubernetes provides this persistent

networking abstraction for accessing these applications. Depending

upon the type of Service used, the Service can load balance

application traffic to the Pods supporting the application. As Pods

are created and destroyed, based on either scaling operations or in

response to life cycle operations or failures in the Cluster, Kubernetes

automatically updates the information on which Pods provide the

application services.

 The Kubernetes API
The Kubernetes API provides a programmatic layer representing the resources available

in a data center. The API enables you to write code to consume those resources in your

application deployments. When writing code to consume the API, you use API Objects,

which you use to define and deploy application workloads in Kubernetes.

Chapter 1 a Kubernetes primer

4

The code you write is submitted to the API Server. The API Server is the core

communication hub in a Kubernetes Cluster. It is the primary way you interact with a

Kubernetes Cluster and the only way Kubernetes components inside a Cluster exchange

information. With the new Cluster state defined, either on initial deployment or by

modifying an existing deployment, Kubernetes begins to implement the state described

in your code. The desired state of your code becomes the running state in the Cluster.

 API Objects
Kubernetes API Objects represent resources available in a Cluster. There are API Objects

for compute, storage, and networking elements, among others, available in a Cluster for

consumption by your application workloads. You will write code using these API Objects

to define the desired state of your applications and systems deployed into a Kubernetes

Cluster.

The defined API Objects communicate the desired state of the workload deployed to

the Cluster, and the Cluster has the responsibility of ensuring that desired state becomes

the running state of the Cluster.

We will now introduce the core API Objects to define workloads in a Kubernetes

Cluster. These are the core building blocks of applications deployed in Kubernetes. In

the upcoming sections, we will dive deeper into each of these individually.

• Pods: These are container-based applications. A Pod is the unit of

work in a Cluster. A Pod is an abstraction that encompasses one

or more containers and the resources and configuration it needs

to execute, including networking, storage, environment variables,

configuration files, and secrets.

• Controllers: These define and keep application workloads in the

Cluster in the desired state. Some Controllers have the responsibility

of starting Pods and keeping those Pods in the desired state. There

are several different types of Controllers for ensuring the state of

applications and systems deployed and also for the running state of

the Cluster. We introduce several Controllers in this section and more

throughout the book’s remainder, including the Deployment and

StatefulSet API Objects.

Chapter 1 a Kubernetes primer

5

• Services: These provide a networking abstraction for access to Pod-

based applications. Services are how applications consumers, such as

users and other applications, access the container-based application

services deployed in a Cluster via a network.

• Storage: This provides an abstraction for Pods to access storage

available in a Cluster. Storage is used by applications to persist data

independent of the life cycle of Pods.

• Custom Resource Definition (CRD): A CRD is an extension of the

Kubernetes API, enabling developers to encapsulate application-

specific configuration and functionality in custom API Objects. Then

that custom API Object is used to deploy that application. Using

CRD allows application developers additional control in how the

API Object is defined and functions when deployed. In Azure Arc-

enabled Data Services, you will find CRD for SQL Server Managed

Instance, PostgreSQL versions 11 and 12, and also for the Data

Controller.

In addition to the API Objects described earlier, there are many more used to craft

workloads, but these are the core API Object types focused on in this book and for

deploying SQL Server and Azure Arc-enabled Data Services.

 API Server
The API Server is the central communication hub in a Kubernetes Cluster. It is the

primary way users of Kubernetes interact with a Cluster to deploy workloads. It is also

the primary way Kubernetes exchanges information between the components inside

a Cluster. The API Server is a REST API available over HTTPS exposing API Objects as

JSON. As Cluster users define workloads and communicate the information into the API

Server, this information is serialized and persisted into the Cluster data store. Kubernetes

then will move the running state of the Cluster into the desired state defined in those API

Objects stored in the Cluster store. The Cluster data store in Kubernetes is etcd which is a

distributed key-value data store; for more information, see https://etcd.io/.

Chapter 1 a Kubernetes primer

https://etcd.io/

6

 Core Kubernetes API Primitives
Now it is time to look more closely at each of the high-level API Objects introduced in

the last section. This section introduces Pods, Controllers, Services, and Storage. You

will learn more details about each and how they enable you to deploy applications in

Kubernetes and the workloads that each API Object allows you to deploy.

 Pods

A Pod is the most basic unit of work in a Kubernetes Cluster. At its core, a Pod is an

API Object that represents one or more containers, its resources such as networking,

storage, and configuration controlling a Pod’s execution. Most commonly, a Pod API

Object definition consists of the container image(s), networking ports used to talk to the

container-based application, and, if needed, storage.

A Pod is the unit of scheduling in a Kubernetes Cluster. In Kubernetes, scheduling

determines on which Node in a Cluster to start a Pod. Once the Pod is scheduled on the

Node, a container using the specified container image is started on that Node by the

container runtime, which conventionally is the containerd container runtime. When

scheduling Pods to Nodes, Kubernetes ensures the resources like CPU and memory

required to run the Pod are available on the selected Node and, if configured in the Pod,

access to the storage.

Note Kubernetes implements the Container runtime interface (Cri), meaning
the container runtime is a pluggable resource and can use other Cri compliant
container runtimes.

A Pod is the unit of scaling. When deploying applications in Kubernetes, you can

scale an application horizontally by creating multiple copies of a Pod in a Cluster,

called replicas. Scaling Pod replicas enables applications to support larger workloads by

starting more Pods on the Nodes in a Cluster and leveraging additional Cluster capacity.

Further, running multiple replicas of a Pod in a Cluster across multiple Nodes provides

high availability in the event of Pod or Node failures.

A Pod is ephemeral. If a Pod is deleted, its container(s) on the Node are stopped

and then deleted. It is destroyed forever, including its writeable layer. A Pod is never

redeployed. Instead, Kubernetes creates a new Pod from the current Pod API Object

definition. There is no state maintained between these two deployments of a Pod.

Chapter 1 a Kubernetes primer

7

For stateless workloads, like web applications, this is OK. As new Pods are created, when

ready, they can begin accepting workload when ready. But for stateful workloads like

relational database systems, a Pod needs the ability to persist the state of the data stored

in its databases independent of the Pod life cycle. Kubernetes gives us API Objects and

constructs for persistent storage which are described later in this chapter.

 Controllers

Controllers define, monitor, and keep workloads and the running state of the Cluster in

the desired state. This section focuses on Controllers for creating and managing Pods. In

Kubernetes, it is rare to create Pods by defining and deploying a Pod Object manually.

Two common Workload API Objects are used for deploying applications in Kubernetes.

They are Deployment and StatefulSet.

A Deployment is an API Object that enables you to define an application’s desired

state in the Pod’s configuration and includes the number of Pods to create, called

replicas. The Deployment Controller creates a ReplicaSet. The ReplicaSet is responsible

for starting Pods in the Cluster, using the Pod specification from the Deployment Object.

The first frame of Figure 1-1 shows a Deployment that creates a ReplicaSet and that

ReplicaSet starts three Pods in the Cluster.

Figure 1-1. ReplicaSet Operations

Controllers are responsible for keeping the running state of the Cluster in the desired

state, so let’s see that in action. In the second frame of Figure 1-1, let’s say one of those Pods

fails for any reason. Perhaps the application crashed, or maybe even the Node that Pod is

running on is no longer available. In the third frame, the ReplicaSet Controller senses that the

running state has deviated from desired state and initiates the creation of a new Pod, ensuring

the ReplicaSet, or the application, stays in the desired state of three Pods running at all times.

Chapter 1 a Kubernetes primer

8

You might be asking, why does the Deployment Controller create a ReplicaSet

rather than the Deployment creating the Pods directly? The Deployment Controller

defines both the number of Pods to create and also the Pod’s configuration. When a

Deployment configuration is updated, Pods in the old ReplicaSet shut down, and Pods

in a new ReplicaSet are created. This enables the rollout of new container images or Pod

configuration. A single Deployment Object still exists, and it manages the declarative

updating and transitioning between ReplicaSets. If you want to dig deeper into this topic,

check out the Pluralsight course “Managing Kubernetes Controllers and Deployments.”

Deployment Controllers do not guarantee order or persistent naming of Pods.

A Deployment consists of a collection of Pods, each of which is an exact copy of an

application. However, the Pods’ names are not persistent if a Pod is destroyed, and a new

Pod is created in its place. Applications such as database systems often distribute data

across multiple compute elements and then have to keep track of the data’s location in

the system for subsequent retrieval. Using a Deployment Controller can be problematic

for stateful applications that require knowing the precise location of data in a collection

of named compute resources.

To allow Kubernetes to support these types of stateful applications, the StatefulSet

Controller creates Pods, each with unique, persistent, and ordered names. So,

applications that need to control the placement of data across multiple Pods can do

that as Pod names are ordered and persist independent of that Pod’s life cycle. Further,

StatefulSets provide stable storage for applications, ensuring the mapping of the correct

storage object to the same named Pod if it has to be created again for any reason.

Figure 1-2 shows an example of a running StatefulSet. This example StatefulSet

is defined as having three replicas and creates three Pods. Each Pod it creates has a

unique ordered name, sql-0, sql-1, and sql-2. The first Pod created in a StatefulSet

always starts with an index of 0. In this example, that’s sql-0. For each Pod added to the

StatefulSet, the index is increased by one. So, the next Pod is sql-1, followed by sql-2.

If the StatefulSet is scaled up to add one more Pod, the next Pod is named sql-3. If the

StatefulSet is scaled down, then the highest numbered Pod is removed first. In this

example, sql-3 is removed. These ordered creation and scaling operations are essential

to stateful applications that place data on named compute resources enabling the

stateful applications to know the location of data at any point in time.

Chapter 1 a Kubernetes primer

9

Figure 1-2. An example StatefulSet – each Pod has a unique, ordered, and
persistent name. Each Pod also has persistent storage associated

In Azure Arc-enabled Data Services, you will find that both SQL Server Managed

Instance and PostgreSQL HyperScale use the StatefulSet API Object to provide

consistent, ordered naming of Pods and the associated persistent storage.

There are many more Controllers available in Kubernetes. This book focuses on

Deployments, ReplicaSets, and StatefulSets and how they are used to deploy Azure

Arc-enabled Data Services. There are Controllers to help craft many different types of

application workloads in Kubernetes. For more information on different controller types

and their functions, check out the Kubernetes documentation at https://kubernetes.

io/docs/concepts/workloads/.

 Services

As we introduced earlier, no Pod is ever recreated. Every time a Pod is created, either

during its initial creation or when replacing an existing Pod, that new Pod is assigned a

new IP at startup. With Controllers creating and deleting Pods based on configuration, or

responding to failures, and affecting the desired state, this leaves us with the challenge

of which IP address should be used to access application services provided by Pods

running in a Cluster since Pods are assigned an IP address during startup.

Kubernetes provides a networking abstraction for access to Pod-based applications

deployed in a Cluster called a Service. A Service is a persistent IP address and optionally

a DNS name for access into an application running on Pods in a Cluster. Generally

speaking, you will have one Service per application deployed in a Cluster. Application

traffic received on the Service’s IP is load balanced to the underlying Pod IP addresses.

As Pods are created and destroyed by Controllers, such as a ReplicaSet Controller, the

network information is automatically updated to represent the application’s current

state. Let’s look at an example of this.

Chapter 1 a Kubernetes primer

https://kubernetes.io/docs/concepts/workloads/
https://kubernetes.io/docs/concepts/workloads/

10

In Figure 1-3, let’s say a Deployment creates a ReplicaSet, and the ReplicaSet creates

three Pods. Each of those Pods has a unique IP address on the network. For users or

applications to access the applications in those Pods, a Service is defined. A Service

exposes the applications running in a collection of Pods on a persistent IP address and

Port, port 80 for HTTP. Users or other applications can access the application provided

by that Service by connecting to the Service IP address or DNS name. The Service then

load balances that traffic among the Pods that are part of the Service.

Figure 1-3. ReplicaSet and Services

In the second frame of Figure 1-3, let’s say one of the Pods in the ReplicaSet fails. The

ReplicaSet Controller senses this and deploys a new Pod and registers that new Pod’s

IP address in the Service and starts load balancing to the new Pod. The Pod that fails is

deleted, and its IP address is removed from the Service, and traffic is no longer sent to

that IP. This all happens automatically without any user interaction.

Further, when scaling an application up and adding more Pods or scaling an

application down by removing some Pods, the Pod IPs are added or removed from the

Service accordingly. It truly is a fantastic piece of technology, and we get very excited

when we see this in action.

There are three types of Services available in Kubernetes, all of which can be used

by Azure Arc-enabled Data Services to access applications running in Kubernetes.

The service types are ClusterIP, NodePort, and LoadBalancer. Let’s look at each in

more detail:

• ClusterIP: ClusterIP Services are available only inside the Cluster.

This type of Service is used when an application does not need to be

exposed outside the Cluster.

Chapter 1 a Kubernetes primer

11

• NodePort: A NodePort Service exposes your application on each

Node’s real IP address in your Cluster on a fixed port. NodePort

Services are accessed using the real network IP addresses of Cluster

Nodes combined with the service port. Received traffic is routed to

the appropriate Pods supporting the Service. NodePort Services are

used when Cluster-based applications need to be accessed outside

the Cluster or integrated with external load balancers.

• LoadBalancer: This service type integrates cloud provider’s load

balancer service, or a Cluster external load balancer deployed on-

premises such as an F5. A Service of type LoadBalancer is used in

cloud-based scenarios when Cluster-based applications need to be

accessed outside the Cluster.

 Storage

As data professionals, our number one job is keeping data around. And Kubernetes has

API Objects to enable the Deployment of stateful applications, like relational database

systems. There are two primary API Objects available to help with this, Persistent

Volumes and Persistent Volume Claims.

A Persistent Volume is a storage device available in a Cluster defined by a Cluster

administrator available for Pods’ consumption. There are many different types of storage

available as Persistent Volumes such as virtual disks from cloud providers, iSCSI, NFS,

and many more. The implementation details are in the Persistent Volume object. The

specific implementation details depend upon the type of storage you want to access. For

example, if you want to configure access to an NFS share, you will specify the IP address

and export name of the NFS share in the Persistent Volume object.

Pods do not access the Persistent Volume object directly. A Pod uses a Persistent

Volume Claim in the Pod Object definition to request Persistent Volume access and

capacity. The Persistent Volume Claim will request storage from the Cluster, and then

the Persistent Volume Claim will make a claim on the Persistent Volume and mount the

Persistent Volume into the Pod file system. This extra layer of abstraction decouples

the Pod from the storage implementation details of the Persistent Volume. This has the

primary benefit of not having storage implementation details, such as infrastructure-

specific storage parameters, as part of the Pod’s definition.

Chapter 1 a Kubernetes primer

12

 Storage Provisioning

There are two different techniques for provisioning storage in a Cluster, static

provisioning and dynamic provisioning.

In static provisioning, a Cluster administrator will define a collection of Persistent

Volume Objects in the Cluster. Each object will be a unique storage object that defines

the storage device’s physical implementation details, such as the location of the storage

device on the network and the exact storage volume needed. The Persistent Volume

can then be mapped to a Persistent Volume Claim and then allocated to a Pod for use.

The key concept here is the Cluster administrator defines each Persistent Volume object

and its implementation. This can be cumbersome in large-scale deployments. There’s a

better way.

Before we get into dynamic provisioning, let us introduce the concept of a Storage

Class first. A Storage Class gives Cluster administrators the ability to define storage

groups based on the attributes of that storage. Some common groupings include

the storage subsystem’s performance profile, for example, high-speed storage vs.

slower, perhaps less-expensive storage or even from several different types of storage

subsystems. Cluster administrators can group types of storage into Storage Classes, and

then Persistent Volumes for Pods are dynamically provisioned from a Storage Class.

In dynamic provisioning, there is software installed in your Cluster called a storage

provisioner. The provisioner works with your storage infrastructure to dynamically

create the Persistent Volume Objects in response to a Persistent Volume Claim created

in the Cluster. In the Persistent Volume Claim, you specify the Storage Class you would

like to have a Persistent Volume dynamically provisioned from and any configuration

parameters required by the storage provisioner.

The key idea in dynamic provisioning is that a Persistent Volume is created

dynamically, on demand, in response to the creation of a Persistent Volume Claim rather

than being pre-created by an administrator as it is in static provisioning.

From a design standpoint, you can create several Storage Classes in your Cluster,

each of which can allocate Persistent Volumes from different types and tiers of storage

that is available to your Cluster. You will see later in the book that Azure Arc-enabled

Data Services allow you to provision storage from Storage Classes based on the type of

data. You will see options to specify a different Storage Class for databases, transaction

logs, backups, and also application logs.

Chapter 1 a Kubernetes primer

13

 Kubernetes Cluster Components
The first part of this chapter introduced Kubernetes concepts and the core API Objects

used to build and deploy workloads in a Kubernetes Cluster. Now it is time to dive into

what a Kubernetes Cluster is, looking closely at each of the major components.

 Exploring Kubernetes Cluster Architecture
A Kubernetes Cluster is a collection of servers (physical or virtual) called Nodes that

provide a platform for running container-based applications in Pods. There are two

types of Nodes in a Cluster. Control Plane Nodes are the controller of the Cluster itself,

the brains behind the operations. Worker Nodes are the compute devices used to run

Pods. Let’s look at each more closely, starting with the Control Plane Nodes. Figure 1-4

provides us an overview of the Cluster components.

Figure 1-4. Kubernetes Cluster components

 Control Plane Nodes

Control Plane Nodes operate the Control Plane Services. The Control Plane Services

implement the core functions of a Kubernetes Cluster, such as managing the Cluster

itself, its resources, and controlling workload. The Control Plane consists of four

components, each with a specific responsibility in the Cluster. They are the API Server,

etcd, the Scheduler, and the Controller Manager. The Control Plane Services and its

components are most commonly deployed as Pods that can run on a single Control

Plane Node or run on several Control Plane Nodes for high availability. For more

information on building highly available Clusters and their configuration, check out

Chapter 1 a Kubernetes primer

14

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-

availability/ and https://kubernetes.io/docs/setup/production-environment/

tools/kubeadm/ha-topology/.

Let’s look at each of the Control Plane Services and their functions and responsibility

in the Cluster in more detail:

• API Server: The API Server is the main communication hub in a

Cluster. All Cluster components communicate through the API

Server to exchange information and state. It is a simple, stateless,

REST API that implements and exposes the Kubernetes API for access

to users and other Cluster components. As API Objects are created,

modified, or deleted, those objects’ state is committed to the Cluster.

Multiple replicas of the API Server can be deployed across several

Control Plane Nodes, and API traffic can be load balanced for high

availability.

• etcd: etcd is a key-value data store used to persist the state of the

Cluster. The API Server itself is stateless but serializes and stores

object data in etcd. Since it does persist data, this needs to be

protected for both recovery and availability. Backups of etcd should

occur frequently, and if high availability is required, multiple replicas

are configured in a highly available configuration.

• Controller Manager: The Controller Manager implements and

ensures the desired state of the Cluster and its workloads. It uses

control loops to monitor the running condition continually, compare

it with the desired state, and make the changes needed to get the

Cluster back into the desired state. To do this, the Controller Manager

watches and updates the API Server. Earlier in this chapter, we

introduced the Controllers’ concept and how they enable you to tell

the Kubernetes API what the desired state is. The Controller Manager

implements that state. When it comes to Pods and application

workloads, if a Deployment defines that three Pod replicas of an

application need to be online, the Controller Manager has the

responsibility to ensure that those Pods are always online and ready

reconciling the defined state with the Cluster’s running state by

creating new Pods if needed.

Chapter 1 a Kubernetes primer

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/

15

• Scheduler: The Scheduler decides which Node in a Cluster to start

a Pod on. It monitors the API Server looking for any unscheduled

Pods. If the Scheduler finds any unscheduled Pods, it determines the

best place to run those Pods in the Cluster. The scheduling decision

is based on the resources available in the Cluster, the requirements

defined for each Pod, and potentially any administrative policy

constraints. We will explore the scheduling process in more detail

later in this chapter.

 Worker Node

Worker Nodes run user application workloads. A Cluster consists of a Control Plane Node

and a collection of Worker Nodes. Each Worker Node contributes some amount of CPU

and memory resources to the overall available resources in a Cluster. You will need enough

CPU and memory resources to run your application workload in a Cluster, ensuring

enough capacity for applications and also in the event of Node failures and even growth.

Note a primary concern for the Control plane node is ensuring availability. Check
out this link for more information on high-availability Control plane topologies:
https://kubernetes.io/docs/setup/production-environment/
tools/kubeadm/ha-topology/.

All Nodes in a Cluster, either Control Plane or Worker, consist of three components,

the kubelet which communicates with the API Server for Cluster operations, the kube-

proxy which exposes containers running on that Node to the local network, and the

container runtime which starts and runs the containers on the Node:

• kubelet: The kubelet is a service running on a Node and is

responsible for communicating with the API Server, starting Pods on a

Node, and ensuring that the Pods on that Node are in a healthy state.

The kubelet monitors the API Server for Pod workload state, telling

the container runtime to start and stop containers. It also reports

back to the API Server the current state of Pods running on a Node

and implements health checks on Pods in the form of liveness probes

and readiness probes. The kubelet reports back to the API Server the

Node’s current state and the resources available on that Node.

Chapter 1 a Kubernetes primer

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/

16

• kube-proxy: kube-proxy is a container running on all Nodes in a

Cluster and functions as a network proxy responsible for routing

traffic from the network the Node is on to the Pods running on

that Node.

• Container Runtime: The container runtime is responsible for pulling

container images and running containers on the Node. Today,

containerd is the most commonly used container runtime used in

Kubernetes Clusters. But the Kubernetes container runtime space

has moved to using the Container Runtime Interface standard; this

enables different container runtimes to be used as the container

runtime on Kubernetes Nodes. In this book, the container runtime

used is containerd. See https://kubernetes.io/docs/setup/

production-environment/container-runtimes/ for more

information on the container runtimes supported in Kubernetes.

 Understanding Scheduling and Resource Allocation
Crucial to successfully deploying workloads in Kubernetes is understanding how Pods

are scheduled to Nodes in the Cluster and also how resources are allocated to Pods

running on Nodes in a Cluster. In this section, we will dive deeper into each of these

topics; let’s start off with scheduling.

 Scheduling in Kubernetes

In Kubernetes, scheduling is the process of selecting a Node in a Cluster to run a Pod.

The Scheduler is a process that runs on the Control Plane Node in a Kubernetes Cluster.

When a Pod is created, the Scheduler assigns the created Pod to start on a specific Node

in the Cluster. When finding a Node to run a Pod, the Scheduler considers the resources

available, the resource requirements defined on the Pod, and any defined administrative

policies. If the Scheduler cannot find an appropriate Node to start a Pod on, the Pod’s

status is changed to Pending and the Pod is not able to start.

In terms of resources, the Scheduler tries to find the best Node in a Cluster to run a

Pod needing to be scheduled. It will look to find a Node in the Cluster that has enough

resources to run the Pod. Extending that, if a Node is already running some other

number of Pods in its workload, that Node may not have enough resources to run a Pod.

Further, if there are no Nodes remaining in the Cluster with any available capacity,

Chapter 1 a Kubernetes primer

https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/

17

then Pods that need to be started will not be able to be scheduled to a Node since no

Node with enough available resources is available. In this condition, the status of the Pod

changes to Pending and the Pod is not started.

The other element that can influence scheduling is administrative policy.

Kubernetes gives Cluster administrators and application developers several tools to

influence the scheduling of Pods to Nodes in a Cluster. If the Scheduler cannot find an

appropriate Node to start a Pod on based on the defined administrative policies, the

Pod’s status changes to Pending and the Pod is not started. Let’s look closely at several

of the tools Cluster administrators and developers can use to influence Pod scheduling;

first up is Requests:

• Requests: Requests are resource guarantees. Using Requests, when

defining a workload, you specify an exact amount of CPU or memory

a Pod needs to run, and that amount of CPU or memory must be met

in order to deploy the Pod on a Node in the Cluster. The Scheduler

uses this information to find an appropriate Node to run the Pod.

If it is not available, the Pod will not be scheduled and thus not

started. We will discuss Requests further in the context of resource

management in the next section.

• Node Selectors: When defining workloads in Kubernetes, Node

Selectors are used to help the Scheduler better understand your

physical environment when selecting a Node to run a Pod. For

example, if a subset of Nodes in a Cluster has access to specialized

hardware resources, perhaps as a high-speed SSD or a GPU, you

can use Node Selectors to help the Scheduler understand this

configuration, and it can then schedule Pods on only those Nodes. To

use Node Selectors, you first assign Labels to those Nodes to identify

the fact that they have access to that hardware. Then when defining

your Pod, you define a Node Selector looking for Nodes with the

assigned Labels. When the Scheduler tries to schedule this workload,

it will match the Node Selector to the Node with the desired Label

and schedule the newly created Pod to a Node that satisfies the

defined Node Selector. In our scenario here, the Pod is scheduled to a

Node with the specialized hardware and the application running can

then use that hardware. Node Selectors can also be used for physical

Chapter 1 a Kubernetes primer

18

location targeting which is valuable to ensure Pods can be scheduled

across fault domains in a cloud or data center. For more information

on Node Selectors, see https://kubernetes.io/docs/concepts/

scheduling-eviction/assign-pod-node/.

• Affinity and Anti-affinity: Another way to influence which Nodes

Pods are scheduled to is Affinity and Anti-affinity. When defining

workloads, this technique can give you a greater level of control in

how Pods are scheduled. In its most basic implementation, Affinity

tells the Scheduler that Pods are to be scheduled on some mutual

resource such as a Node or perhaps a fault domain within a cloud or

data center. Affinity is often used to ensure the co-location of Pods

for applications that require high-performance communications

between the Pods. Anti-affinity is the opposite. Anti-affinity ensures

that Pods are not co-located on the same resource such as a Node or

a fault domain. Anti-affinity is often used to ensure Pods are running

on separate resources for either performance or availability reasons.

For more information on Affinity and Anti-affinity, see https://

kubernetes.io/docs/concepts/scheduling-eviction/assign-

pod-node/#affinity-and-anti-affinity.

• Taints and Tolerations: This is yet another technique for helping the

Scheduler decide which Nodes to schedule Pods. Affinity and Anti-

affinity and Node Selectors are used to attract Pods to a Node. Taints

and Tolerations are used to repel Pods from Nodes. When a Taint is

applied to a Node, no Pods can be scheduled to that Node. A Pod can

define a Toleration to a Taint. When a Pod has a Toleration matching

a Node’s Taint, it can be scheduled to a Node that has a Taint defined.

The previously introduced techniques to influence scheduling all

require the user deploying the Pod to define constructs in their

Deployment to influence the Scheduler. Taints and Tolerations

are useful in scenarios where the Cluster administrator needs to

influence scheduling without depending on the user deploying the

workload. For more information and additional example scenarios,

check out https://kubernetes.io/docs/concepts/scheduling-

eviction/taint-and-toleration/.

Chapter 1 a Kubernetes primer

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

19

For a deeper dive into storage and scheduling in Kubernetes, check out the

Pluralsight course “Configuring and Managing Kubernetes Storage and Scheduling”

where we cover all of these scenarios in great detail and also with worked examples at

www.pluralsight.com.

 Resource Consumption

By default, Pods will have access to all of the resources available on the Node they are

scheduled on. For example, if you have a Node with four cores and 32GB of RAM and

SQL Server Pod starts on that Node, the SQL Server process running in that Pod will

have access to all four cores and all 32GB of RAM. Due to the nature of how SQL Server

allocates and consumes memory, it is possible that a single SQL Server Pod could

consume all of the memory available on the Node, especially if Max Server Memory is

not set. SQL Server will also be able to schedule workload across all four cores This can

lead to resource contention when running multiple Pods on a Node. Kubernetes gives us

some configuration parameters to help manage resource consumption in Pods. When

defining workloads in Kubernetes, two configuration properties in the Pod spec can help

you control resource allocation in Pods deployed in Kubernetes: Limits and Requests.

Let’s look at each in more detail:

• Limits: For an individual Pod, a Limit is an upper boundary for

memory or CPU. Limits are used to ensure that a Pod cannot

consume more resources than is appropriate for its workload. When

a Limit is set for a Pod, it can only see that amount of memory or

CPU. If you create a SQL Server Pod with a memory limit of 16GB of

RAM, the SQL Server Pod will see only 16GB of RAM. If you define

a CPU limit of two, the SQL Server process will see only two CPUs.

Limits are critical for capacity planning. They ensure that you are

allocating your Cluster’s resources appropriately and not allowing

Pods to consume all of the resources on a Node. In our example, if

our Nodes have only 32GB of RAM, setting memory and CPU Limits

on the Pod will ensure that this Pod will not consume all of the

available memory and CPUs on that Node.

• Requests: In the previous section, we introduced Requests in the

context of scheduling. Let’s look more closely at them in the context

of resource management. Requests are resource guarantees. With

Chapter 1 a Kubernetes primer

http://www.pluralsight.com

20

Requests, we can define the exact amount of CPU or memory a Pod

needs to run properly, and that amount of CPU or memory must be

available on a Node in the Cluster for that Pod to start. The Scheduler

uses this information to find an appropriate Node to run the Pod.

If it is not available, the Pod will neither be scheduled nor started.

Requests are used to ensure that a Pod has the appropriate amount of

resources to run its workload and never any less.

Using Limits and Requests gives you the ability to ensure workloads running share

the resources of the Cluster using appropriate resources and also ensure your workloads

have access to the resource needed. When defining workloads with Azure Arc-enabled

Data Services, both SQL Managed Instance and PostgreSQL Hyperscale deployments

give you the ability to set both Limits and Requests on the Pods created. It is

recommended that you always set both a Limit and a Request when defining workloads

to help ensure a well-performing and well-balanced workload in your Cluster.

Tip For a closer look at how sQL server and Kubernetes memory management
works, check out www.centinosystems.com/blog/sql/memory-settings-
for-running-sql-server-in-kubernetes/.

 Networking Fundamentals
The final major topic in our Kubernetes primer chapter is networking. The Kubernetes

networking model enables workloads to be deployed in Kubernetes while abstracting

away network complexities. This simplifies application configuration and service

discovery in a Cluster and increases the portability of deployment code by removing

infrastructure-specific code. This section introduces the Kubernetes networking model

and example Cluster communication patterns.

Three rules govern Kubernetes’ networking. These rules enable the simplicity

described earlier. These rules are from https://kubernetes.io/docs/concepts/

cluster-administration/networking/.

Chapter 1 a Kubernetes primer

https://www.centinosystems.com/blog/sql/memory-settings-for-running-sql-server-in-kubernetes/
https://www.centinosystems.com/blog/sql/memory-settings-for-running-sql-server-in-kubernetes/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/

21

 Kubernetes Network Model Rules

 1. All Pods can communicate with each other on all Nodes without

Network Address Translation (NAT).

 2. All agents, such as system daemons and the kubelet, on a Node,

can communicate with all Pods on that Node.

 3. Pods in the host network of a Node can communicate with all

Pods on all Nodes without NAT.

The preceding rules simplify networking and application configuration by ensuring

Pods are talking to each other on the actual Pod IPs and container ports rather than

having them translated to an IP scheme dependent upon the network infrastructure

where they are deployed.

In Kubernetes, a Pod Network is the network Pods are attached to when the

container runtime starts them on a Node. Each Pod deployed is given a unique IP

address on the Pod Network. Pod Networks must follow the rules defined earlier, which

result in Pods using their real IP addresses. When implementing Pod Networks, there

are many solutions to ensure adherence to the Kubernetes networking model rule. A

common solution is overlay networking, which uses a tunneling protocol to exchange

packets between Nodes independent of the underlying physical infrastructure’s

network. This enables the overlay network to use a layer 3 IP scheme independent of

the data center’s physical infrastructure, enabling simpler adherence to the Kubernetes

networking model.

Another option is to build a Pod Network as part of a data center infrastructure as

part of a bare-metal approach. This will require the coordination of the Kubernetes

Cluster administrator and the network engineering team responsible for the network.

The following are common communication patterns used in a Kubernetes Cluster

showing Pods accessing each other and also accessing the Services provided by Pods.

Chapter 4 introduces Pod Networks during the Cluster installation process, and Chapter 6

will dive into Services and how traffic is routed to Pods in the Pod Network.

Chapter 1 a Kubernetes primer

22

 Communication Patterns

Figure 1-5 shows some example communication patterns in a Kubernetes Cluster. Let’s

walk through each of those together:

 1. Inside a Pod.
Multiple containers within a Pod share the same container

Namespace. These containers can communicate with each other

over localhost on unique ports.

 2. Pod to Pod within a Node.
When Pods on the same Node need to communicate over the

network, they do so over a local software bridge defined on the

Node and use the Pod IP.

 3. Pod to Pod on another Node.
When Pods on different Nodes need to communicate over the network,

they do so over the local layer 2 or layer 3 network using the Pod IP.

 4. Services.
When accessing Services in a Cluster, traffic is routed to the

kube-proxy implementing that Service and then routed to the

Pod providing that application service. As introduced earlier in

this chapter, Services will be your most common interaction with

applications deployed in a Cluster.

Figure 1-5. Kubernetes networking

Chapter 1 a Kubernetes primer

23

 Kubernetes Role in Azure Arc-enabled
Data Services
Over the last few years, the SQL Server Engineering Team has released some exciting

technologies and innovations – SQL Server on Linux, SQL Server on containers, SQL

Server on Kubernetes, and Azure Data Studio – and we couldn’t help but wonder, why?

What’s the big picture on all of these seemingly disparate technologies? The first time

we saw the SQL Server Product Team demonstrate Azure Arc-enabled Data Services

is when we had that a-ha! moment. It’s not the cool factor of each of these individual

technologies, but what bringing all of these technologies together enables. Running any

Data Service, anywhere you have Kubernetes.

Running Data Services inside Kubernetes enables Microsoft to define systems

in code. You can then run that code anywhere you have Kubernetes because of the

infrastructure abstraction that it provides. The Kubernetes API is essentially a wrapper

around the resources in your data center or cloud. The code written to deploy systems

can work anywhere that API is implemented on, in any cloud, in edge sites, or even

on-premises data centers. Throughout the remainder of this book, we will show you the

value proposition of Azure Arc-enabled Data Services and how to deploy and manage

those Azure Arc-enabled Data Services anywhere you have Kubernetes.

 Summary and Key Takeaways
This chapter introduced Kubernetes and how it enables the deployment of modern

container-based applications. You learned how the Kubernetes API allows you to

build and model applications deployed into a Kubernetes Cluster. You also learned the

core API primitives for deploying workloads; Pods, your container-based application;

Controllers, keeping the Cluster and its workload in the desired state; Services, for

access to the applications; and storage, for stateful applications. Then you learned

the components of a Cluster and how they work together to ensure that your desired

state is implemented and a quick tour of scheduling, resource management, and the

Kubernetes network model. With all that theory behind us, now it’s time to move into

the next chapter where we will introduce Azure Arc-enabled Data Services discussing

the challenges it solves and dive into its architecture, core features, how workloads are

deployed and managed, and also key deployment considerations.

Chapter 1 a Kubernetes primer

25
© Ben Weissman and Anthony E. Nocentino 2022
B. Weissman and A. E. Nocentino, Azure Arc-enabled Data Services Revealed,
https://doi.org/10.1007/978-1-4842-8085-0_2

CHAPTER 2

Azure Arc-enabled
Data Services
This chapter introduces you to Azure Arc-enabled Data Services! Starting off, you will

learn some of the challenges of a modern hybrid cloud, and we will then show you how

Azure Arc addresses those challenges to provide manageability at scale in on-premises

or in any cloud. Next, we will introduce the core Azure Arc-enabled resources, including

Servers, Kubernetes, SQL Server, and Data Services. We will then dive deeper into what

Azure Arc-enabled Data Services are, its architecture, how workloads are deployed and

managed, and discuss key deployment considerations such as compute and storage

capacity planning.

 The Challenge
• Hybrid cloud is becoming the new normal in enterprise system

architectures. According to the Flexera 2020 State of the Cloud

(see www.flexera.com/about-us/press-center/flexera-

releases-2020-state-of-the-cloud-report.html) report, nearly

87% of enterprises have a hybrid cloud strategy. There are several

variations of hybrid cloud. First, organizations can adopt a hybrid

cloud strategy with assets in more than one public cloud, such as

Amazon Web Service (AWS), Google Cloud, and Microsoft Azure.

This pattern is oftentimes called “multi-cloud.” The second type

of hybrid cloud strategy is organizations having some cloud assets

https://doi.org/10.1007/978-1-4842-8085-0_2#DOI
http://www.flexera.com/about-us/press-center/flexera-releases-2020-state-of-the-cloud-report.html
http://www.flexera.com/about-us/press-center/flexera-releases-2020-state-of-the-cloud-report.html

26

and some on-premises. In these scenarios, organizations generally

will put the parts of their infrastructure that can benefit from the

cloud the most in the cloud. Primary reasons for companies to go

to the cloud include elasticity, automation, built-in monitoring and

security, and pay-as-you-go payment models.

When managing and operating a hybrid cloud environment, either multi-cloud or

on-premises and cloud, the management, security models, and tools are likely different

across each of the environments. And this begs the question, how do you manage these

environments at scale? Enabling consistency and control is challenging when you have

different management, monitoring, security, and deployment tools. The goal of Azure

Arc is to enable consistency across all of these areas, homogenizing the management,

monitoring, and security services and also the deployment tooling so that you can

leverage the benefits of cloud wherever you have resources deployed, on-premises or in

any cloud.

 Introducing Azure Arc
At its core, Microsoft Azure Arc provides Azure management services wherever you

have deployed resources on-premises or any cloud. It enables you to have consistent

management services and tooling for your organizations' core operations across

technology architectures wherever deployed. Let's look at the core features of Azure Arc:

• Unified Experience Across On-Premises and Hybrid Cloud:

Familiar tools like the Azure Portal, azure-cli, PowerShell, and REST

API are available to you to manage and deploy systems.

• Deployment and Operations: With a unified set of tools,

deployments and operations are consistent wherever you deploy, on-

premises or in any cloud. Unified tooling enables your organization

to use the same code and tools in any deployment scenario wherever

deployed. A pivotal element to operations is performance and

availability monitoring, and Azure Monitor is available to help you do

that for your Azure Arc-enabled resources.

Chapter 2 azure arC-enabled data ServiCeS

27

• Consolidated Access Controls, Security, Policy Management,
and Logging: Implementing more than one security model based

on where your resources are deployed is challenging and risky since

you potentially have to manage multiple sets of security rules and

their implementations. Azure Arc enables you to have a consolidated

security model and implementation and use tools like Azure Log

Analytics for centralized security and application logs. Additionally,

you can manage governance and control solutions with services like

Azure Policy.

• Inventory and Organization: With one set of tooling available and

key Azure constructs such as resource groups, subscription, and tags,

administrators, operators, and managers can get a complete view of

their technology estate regardless of where systems are deployed as

services and resources are registered as managed resources in Azure

irrespective of where they are deployed, on-premises or in any cloud.

Now that we've introduced you to the core features of Azure Arc, it is time to move

forward and take a closer look at the resources that you can manage and deploy using

Azure Arc.

 Azure Arc-enabled Resources
The focus of this book is Azure Arc-enabled Data Services. Azure Arc-enabled Data

Services are part of a broader strategy that provides a Control Plane over resources

wherever deployed, on-premises or in any cloud. Azure Arc achieves this goal by

extending Azure Resource Manager (ARM) to these resources. ARM is the Management

Control Plane used in the Azure Public Cloud. ARM provides deployment, organization,

and access control to resources deployed in the Azure Cloud. Azure Arc extends ARM

to wherever you have resources deployed, on-premises or in any cloud. At the time of

writing this book, there are four key resources that can be managed by Azure Arc: Azure

Arc-enabled Servers, Azure Arc-enabled Kubernetes, Azure Arc-enabled SQL Servers, and

Azure Arc-enabled Data Services. Figure 2-1 introduces the elements of Azure Arc; let's

walk through each of these core services in more detail.

Chapter 2 azure arC-enabled data ServiCeS

28

Figure 2-1. Azure Arc Architecture

 Azure Arc-enabled Servers

Azure Arc-enabled Servers provides management capabilities for both Windows and

Linux operating systems deployed on physical and virtual machines (VMs) hosted

outside of Azure. Servers connect to Azure using a locally installed agent and become

resources that are managed using standard Azure tools and management services. The

core management capabilities for Azure Arc-enabled Servers include inventory, policy,

deployment automation, configuration management, performance monitoring, security

and access controls, centralized logging, and update management. For more information

on Azure Arc-enabled Servers, visit https://docs.microsoft.com/en-us/azure/azure-

arc/servers/overview.

 Azure Arc-enabled Kubernetes

Kubernetes is the standard for deploying enterprise grade container-based applications.

Azure Arc-enabled Kubernetes enables management of Cloud Native Computing

Foundation (CNCF) certified Kubernetes Clusters wherever they are deployed including

upstream Kubernetes, RedHat OpenShift, AWS EKS, Google GKE, among others. The

key management features of Azure Arc-enabled Kubernetes are inventory management,

policy management, centralized logging, performance monitoring, application

deployment, and Cluster configuration.

A key scenario enabled by Azure Arc-enabled Kubernetes is GitOps-based

configuration management. GitOps enables application deployment and Cluster

configuration by using GitOps-based configuration management. Configuration

artifacts are checked into a Git repository, and the Arc Cluster agent monitors that Git

repository for configuration changes. As configurations are checked into the repo, the

Chapter 2 azure arC-enabled data ServiCeS

https://docs.microsoft.com/en-us/azure/azure-arc/servers/overview
https://docs.microsoft.com/en-us/azure/azure-arc/servers/overview

29

Cluster agent will deploy that change locally in the Kubernetes Cluster. This enables

strong configuration management since all configuration artifacts, for both Cluster

configuration and application deployment, are checked into the repository and source

controlled. Test, review, and approval workflows can be built around the source control

system. If the Cluster skews away from what is checked into the repository, the checked

in configuration will be asserted on the Cluster to bring it back into the desired state.

Check out https://docs.microsoft.com/en-us/azure/azure-arc/kubernetes/

overview for more information and supported Kubernetes distributions.

 Azure Arc-enabled SQL Server

The next Azure Arc-enabled service we want to introduce is Azure Arc-enabled SQL

Server. Azure Arc-enabled SQL Server enables you to extend Azure management

services to SQL Server instances wherever deployed, on-premises or in any cloud. An

agent is installed on the SQL Server instance, and the SQL Server is then registered

with Azure. The SQL Server instance is then managed using standard Azure tools and

management services. The core management features are inventory management,

policy management, centralized logging, security, and threat protection via services like

Azure Security Center and Azure Sentinel.

Further, in Azure Arc-enabled SQL Server, environment checks are implemented

using SQL Assessments. SQL Assessments are a collection of industry-standard best

practices that can be used to assess and report the overall environment health of a

SQL Server instance or a group of SQL Server instances. Azure Arc-enabled SQL Server

combined with Azure Arc-enabled Servers can give you a rich management experience

for both SQL Server and the underlying operating system. For more information on

Azure Arc-enabled SQL Server, check out https://docs.microsoft.com/en-us/sql/

sql-server/azure-arc/overview.

We want to take a moment to call out the Azure Arc-enabled SQL Server and Azure

Arc-enabled Data Services are unique offerings under the Azure Arc umbrella. Azure

Arc-enabled SQL Server extends Azure management services to traditional deployments

of installed instances of SQL Server. Azure Arc-enabled Data Services give you the ability

to deploy Azure Platform as a Service (PaaS)-based services on-premises or in any cloud.

Chapter 2 azure arC-enabled data ServiCeS

https://docs.microsoft.com/en-us/azure/azure-arc/kubernetes/overview
https://docs.microsoft.com/en-us/azure/azure-arc/kubernetes/overview
https://docs.microsoft.com/en-us/sql/sql-server/azure-arc/overview
https://docs.microsoft.com/en-us/sql/sql-server/azure-arc/overview

30

 Azure Arc-enabled Data Services

Last but not least and the likely reason you’re reading this book is Azure Arc-enabled

Data Services. Azure Arc-enabled Data Services provide you the ability to deploy

traditionally Azure Platform as a Service (PaaS)-based services on-premises or in any

cloud. The value that data services provide is an always current deployment model

delivering to you the most up-to-date, secure, and supported versions of Azure PaaS

Data Services wherever you need to deploy. The data services available at the time of this

book writing include Azure Arc-enabled SQL Managed Instance and Azure Arc-enabled

PostgreSQL Hyperscale. Additional capabilities of Azure Arc-enabled Data Services

include elastic scale, self-service provisioning, inventory management, deployment

automation, update management, managed backups, security, performance monitoring,

and centralized logging. Azure Arc-enabled Data Services are the core focus of this book,

and we will dig into the core functions throughout the remainder of this book.

 Tooling
So far, we have focused on how Azure Arc can manage resources wherever they are.

Now it’s time to focus on the tools that you can use to manage resources. First, we will

introduce Azure tools, such as the Azure Portal, azure-cli, PowerShell, and Azure Data

Studio. However, Microsoft's approach ensures that you have a choice in the tools you

can use to manage your cloud and developer experience. So, industry-standard, open

source tools that you maybe are already using in your projects. We will then introduce

how application native tools can be used to manage applications and services deployed

in Azure Arc.

 Azure Tools

One of the key challenges Azure Arc attempts to solve is consistent tooling. Azure Arc

extends Azure Resource Manager to wherever your resources are deployed, on-premises

or in any cloud. Since ARM is available, this enables you to use the standard Azure tools

you are used to using in the Azure Public Cloud. Let’s walk through a listing of the most

common Azure tools you will use in Azure Arc and Azure Arc-enabled Data Services:

• Azure Portal: Key to the Azure management experience is the Azure

Portal. Resources that are registered and managed by Azure and

Azure Arc will appear in the Azure Portal. The Azure Portal will be a

Chapter 2 azure arC-enabled data ServiCeS

31

primary way to manage your Arc-enabled resources. You can view

information collected and exposed in the Azure Portal in the various

Azure management services such as Log Analytics, Monitor, Sentinel,

Security Center, and more. For more information, visit https://

portal.azure.com.

• azure-cli: azure-cli is the command-line interface to deploy and

manage Azure Resource Manager (ARM)-enabled resources

including Azure Arc-enabled Data Service. For more information,

visit https://docs.microsoft.com/en-us/cli/azure/install-

azure-cli.

• Azure PowerShell: The Azure PowerShell Module (Az Module)

is a PowerShell module used to manage Azure Resource Manager

(ARM)-enabled resources. For more information, visit https://

docs.microsoft.com/en-us/powershell/azure/new-azureps-

module-az.

• Azure Data Studio (ADS): This is the cross-platform tool providing

modernized experiences across an array of Azure Data Services.

In ADS, you will find deployment and management experiences

for both Azure Arc-enabled Data Services and SQL Server Big

Data Clusters. Additionally, you will find a SQL Server code

editor with built-in source control integration using Git. For more

information, visit https://docs.microsoft.com/en-us/sql/azure-

data-studio/.

 Native Tools

A primary goal of Azure Arc is to homogenize the management and tools enabling your

organization to have a better cloud experience. Important to note is that you can still use

your current developer experiences as well as the tools you are using today to manage

your cloud. So, if you have existing deployment pipelines in place, this is OK; you can

still use those in Azure Arc-enabled Data Services. Leaving the choice in how you want

to manage your workloads up to you. We want to take a second to call out tools you

may already use to manage your environments. These tools, among others, form the

foundation of modern deployment pipelines:

Chapter 2 azure arC-enabled data ServiCeS

https://portal.azure.com
https://portal.azure.com
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/en-us/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/en-us/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/en-us/sql/azure-data-studio/
https://docs.microsoft.com/en-us/sql/azure-data-studio/

32

• kubectl/oc: These are the primary command-line tools for

controlling Kubernetes and RedHat OpenShift Clusters.

• helm: This is a tool for defining how to deploy complex applications

in Kubernetes using pre-configured templates called helm charts.

• Git/GitHub: Git has become a standard way to manage source code.

Key to the design of Azure Arc is enabling you to use your existing

tools for your deployment pipelines which means you are still able to

use your existing code management and deployment experiences.

• GitOps: As introduced earlier, GitOps enables you to store your

Cluster and application deployment state as configuration artifacts

in a Git repository. Kubernetes Clusters monitor the repository for

changes and affect those changes in the Cluster to maintain the

system's desired state.

The data services available in Azure Arc-enabled Data Services are SQL Managed

Instance and PostgreSQL Hyperscale. When deploying with Azure Native Tools, you will

use the appropriate portal experiences or command-line syntax to create and manage

data services deployments. These experiences are covered in great detail throughout the

remainder of the book.

For deploying and managing data services workloads with Kubernetes native tools,

the SQL Server Engineering Team has taken a cloud-native approach and created

Custom Resource Definitions for each of the Azure Arc-enabled Data Services, the

Data Controller itself, and management tasks such as database restore operations. A

Custom Resource Definition is a Kubernetes construct that allows developers to extend

the Kubernetes API and create custom API Objects. Custom Resource Definitions can

have additional configuration, data, or even controlling the behavior of the object in the

Cluster. So, when defining workloads using Kubernetes native tooling, these Custom

Resource Definition API Objects are used. Now that we have covered the tools used for

deployment, let’s move on and look more closely at the Azure Arc-enabled Data Services

that can be deployed.

Chapter 2 azure arC-enabled data ServiCeS

33

 Introducing Azure Arc-enabled Data Services
In this section, we will begin by introducing the Azure Arc-enabled Data Services

Architecture. Then next, we’ll introduce the PaaS-based Data Services available,

specifically SQL Managed Instance and PostgreSQL Hyperscale. Then to close out this

section, we will introduce the deployment techniques and deployment considerations

when designing a solution focusing on compute and storage resources.

 Azure Arc-enabled Data Services Architecture
Azure Arc-enabled Data Services Architecture is a layered architecture of hardware,

Kubernetes, Management/Control Plane, and Data Services. Figure 2-2 highlights the

architecture.

Figure 2-2. Azure Arc-enabled Data Services Architecture is a layered architecture
of hardware, Kubernetes, Management, and deployed Data Services

The foundational layer is hardware which can be either on-premises or in any cloud

and built on either physical or virtual machines. Then next, Kubernetes is deployed

on that hardware. And as we learned in the previous chapter, Kubernetes enables

you to quickly and consistently deploy applications in code in the Cluster. Then,

deployed inside the Kubernetes Cluster is the Arc Management Control Plane. The Arc

Management Control Plane is Azure Arc's brains and extends Azure Resource Manager

(ARM) to your on-premises or hybrid cloud deployments. And on top of all of that is

Chapter 2 azure arC-enabled data ServiCeS

34

Azure Arc-enabled Data Services. These are the traditionally PaaS-based offerings that

you can deploy anywhere you have Azure Arc, on-premises or in any cloud. Now, let's

look at each layer of this architecture in more detail.

 Hardware Layer

The Azure Arc Data Services Architecture is built on physical or virtual machine-

based servers. Each server contributes some amount of CPU and memory capacity

for applications to run on. As introduced in the previous chapter on Kubernetes, a

Kubernetes Cluster server is called a Node. Each Node's number and size depend on the

size requirements of the workload deployed and some additional capacity for a Node's

failure in the Kubernetes Cluster. Further, you can expand and contract the amount of

resources in a Kubernetes Cluster by adding or removing servers. We will explore this

topic in more detail later in this chapter.

Each Node must run the Linux operating system since all of the containers running in

Azure Arc-enabled Data Services are Linux-based containers.

In addition to the compute resources, persistent storage is required. Persistent

storage is allocated to workloads deployed in Azure Arc-enabled Data Services using

the storage constructs introduced in the previous chapter. Storage Classes dynamically

allocate Persistent Volumes for workloads deployed in the Kubernetes Cluster. The type

of storage provisioned can be any of the storage types supported by your version of

Kubernetes exposed as Storage Classes. Further, you can increase the allocatable storage

capacity in a Cluster or even add additional storage types by defining additional Storage

Classes.

 Kubernetes Layer

With the underlying hardware in place, the next layer in the architecture is Kubernetes.

Kubernetes, regardless of distribution, provides a consistent API for building workloads,

and because of this, Azure Arc-enabled Data Services support several Kubernetes

distributions. Supported distributions include open source/upstream Kubernetes

Clusters built with kubeadm and commercial distributions like RedHat’s OpenShift.

At the time of writing, there are several supported Kubernetes distributions based on

the deployment mechanism:

• Open source, upstream Kubernetes, deployed with kubeadm

• OpenShift Container Platform (OCP)

Chapter 2 azure arC-enabled data ServiCeS

35

Several managed service offerings are supported:

• Azure Kubernetes Service (AKS)

• Azure Kubernetes Service (AKS) on Azure Stack

• Azure Kubernetes Service (AKS) on Azure Stack HCI

• Azure RedHat OpenShift (ARO)

• AWS Elastic Kubernetes Service (EKS)

• Google Cloud Kubernetes Engine (GKE)

Note For more information on specific versions of the various Kubernetes
distributions supported, please check out this link: https://docs.microsoft.
com/en-us/azure/azure-arc/kubernetes/validation-program.

The key concept here is that you can deploy Azure Arc-enabled Data Services on

any distribution of Kubernetes anywhere you need to deploy, on-premises or in a hybrid

cloud scenario. You have the choice of using upstream/open source Kubernetes and

also many of the managed service offerings. Once you have Kubernetes up and running,

the next thing to do is extend Azure into your Cluster by deploying an Azure Arc Data

Services Data Controller.

 Azure Arc Management Control Plane Layer

With Kubernetes deployed, the next layer in the architecture is the Arc Management

Control Plane Layer which extends Azure’s management capabilities to your on-

premises or hybrid cloud environment. At this layer, in Azure Arc-enabled Data Services,

a Data Controller is deployed. The Data Controller is deployed as a Custom Resource

in Kubernetes. The Data Controller implements core functionality such as Azure Arc

Integration and management services. Let’s look closer at each of these.

The Azure Arc Integration is what sends logging, performance, and usage

information back into Azure based on the data services workloads deployed. The Data

Controller extends Azure Resource Manager to your on-premises or hybrid cloud

deployment and lights up the Azure Arc-enabled services to manage the deployed

applications and resources. The management services implemented by the Data

Controller include a Controller Service and API Endpoint, provisioning management,

Chapter 2 azure arC-enabled data ServiCeS

https://docs.microsoft.com/en-us/azure/azure-arc/kubernetes/validation-program
https://docs.microsoft.com/en-us/azure/azure-arc/kubernetes/validation-program

36

management and performance dashboards, metrics, logging, managed backup/restore,

and high-availability service coordination. We will dive deeper into the Data Controller

and its core functions in an upcoming section. With the Controller online, the next layer

in the architecture is to deploy data services workloads.

Note We want to call out that the data Controller is for managing azure
arc-enabled data Services. azure arc-enabled Servers, Kubernetes, and SQl
Servers each rely on agents installed on the azure arc-managed resources.

 Data Services Layer

The final layer in an Azure Arc-enabled Data Services Architecture is the data services

themselves. Azure Arc-enabled Data Services enable you to self-provision traditionally

Azure Public Cloud PaaS-based services like SQL Managed Instance and PostgreSQL

Hyperscale in our on-premises or hybrid cloud environments on Kubernetes. Azure

Arc-enabled SQL Managed Instance is your lift-and-shift version of SQL Server, enabling

you to move workloads seamlessly into Azure Arc-enabled Data Services as it provides

a high level of compatibility with on-premises installations of SQL Server. Next, Azure

Arc-enabled PostgreSQL Hyperscale is the leading open source database used as a data

store for mission-critical applications. PostgreSQL Hyperscale is an implementation in

Azure that enables you to horizontally scale data by sharding it across multiple instances

and allows for distributed parallel query execution. These data services are deployed as

resources in Kubernetes and are managed by the Data Controller.

To recap, essentially, wherever you have hardware and deploy Kubernetes and a

Data Controller, Azure Arc-enabled Data Services can be deployed.

 Azure Arc Management Control Plane Layer:
A Closer Look
Now it is time to take a closer look at the Azure Arc Management Control Plane. To

extend Azure Services from the cloud to on-premises or hybrid cloud environments, a

Data Controller is deployed in your Kubernetes Cluster. The Data Controller implements

Azure Arc integrations and several key on-premises management functions. This section

Chapter 2 azure arC-enabled data ServiCeS

37

will introduce the Data Controller's connectivity modes, its core functions, and how its

operations and management capabilities differ based on the connectivity mode in use.

A Data Controller’s connectivity mode defines how a Data Controller exchanges

data with the Azure Public Cloud and also defines which management services are

deployed within the Kubernetes Cluster and which Azure Services are used to manage

data services in the Cluster. There are two connectivity modes for the Data Controller,

indirectly connected and directly connected mode. Which connectivity mode you

should choose is based on your deployment’s technical and security requirements

and possibly business rules or government regulations. Let’s look more closely at each

connectivity mode.

 Indirectly Connected Mode

In indirectly connected mode, there is no direct connection from the Data Controller

in your Cluster to the Azure Public Cloud. The local Data Controller itself functions as

the primary point of management and deployment for data services in your Kubernetes

Cluster. For deploying and managing workloads, all operations are governed by the

local Data Controller in your Cluster. Additionally, all management functions are

implemented inside the local Cluster. For example, performance metrics and logging

web portals and data stores are implemented as Pods running in your local Kubernetes

Cluster. Further, critical data services managed operations such as update management,

automated backup/restore, and high-availability coordination are implemented at this

layer. Figure 2-3 highlights the architecture of indirectly connected mode where the Data

Controller does not have a persistent connection into the Azure Cloud.

Chapter 2 azure arC-enabled data ServiCeS

38

Figure 2-3. Indirectly connected mode – there is no direct connection from the
Data Controller into the Azure Cloud. Data is exchanged via an import/export
process using azure-cli

In indirectly connected mode, inventory, performance, logging, and usage data

can be exported to files and then uploaded to Azure. Once uploaded into Azure, the

deployed Azure Arc-enabled Data Services will be visible as resources in the Azure

Portal. Further, Azure Services, such as Metrics, Log Analytics, and more, can be used

to analyze the data exported from the on-premises or hybrid cloud environment. It is

possible to schedule this export/upload process at a periodic interval so that the data is

uploaded and available inside Azure, giving the appearance of continuous uploading of

data. Azure Services that require direct connectivity are not available.

In indirectly connected mode, data services deployment and configuration changes

are sent to the Kubernetes API running on the Data Controller using tools such as

Azure Data Studio; azure-cli (az); Kubernetes native tools like kubectl, helm, or oc; and

also Azure Arc-enabled Kubernetes GitOps. If Kubernetes native tools are used, these

deployments are sent directly to the Kubernetes API. In indirectly connected mode,

deployments and configuration changes cannot be made using the Azure Portal, ARM

APIs, and ARM templates. However, Azure Services such as inventory management,

metrics, and logging are available due to the export process described earlier.

Chapter 2 azure arC-enabled data ServiCeS

39

Typical scenarios for this connectivity mode are that data centers with business or

security policies do not allow for outbound connectivity or data uploads to external

services. Other deployments that can use indirectly connected mode include edge site

locations with intermittent Internet connectivity.

 Directly Connected Mode

In directly connected mode, Azure itself becomes the Control Plane for coordinating

management and deployment functions in your Azure Arc-enabled Data Services

environment. In this connectivity mode, the Kubernetes Cluster you are deploying Azure

Arc-enabled Data Services into needs to be an Azure Arc-enabled Kubernetes Cluster. By

connecting your Kubernetes Cluster to Azure, Azure Arc agents are deployed into your

Cluster. These agents have the responsibility of persisting an outbound connection to

Azure and exchanging information with Azure such as metrics, logs, and usage data as

well as enabling a richer Azure management experience with additional Azure Services

when compared with indirectly connected mode. When using directly connected mode,

a persistent network connection is initiated from the customer environment out to the

Azure Cloud over secure, encrypted channels. If there is an interruption in connectivity,

the operations are queued locally and pushed into Azure when connectivity is restored.

In directly connected mode, deployment and configuration changes can be created

using the Azure Portal, ARM APIs, azure-cli, Azure PowerShell, and ARM templates

as addition to the tools used in indirectly connected mode. Figure 2-4 highlights the

architecture of directly connected mode where the Azure Arc-enabled Kubernetes agent

has a direct, sustained connection into the Azure Cloud and is constantly uploading

metrics, logs, and usage data as well as enabling a richer Azure management experience

with additional Azure Services. Common scenarios for this connectivity mode are for

managing deployments in other public clouds, edge site locations, and corporate data

centers that have policies that allow such connectivity.

Chapter 2 azure arC-enabled data ServiCeS

40

Figure 2-4. Directly connected mode – the Azure Arc-enabled Kubernetes agent
maintains a persistent, secure connection into the Azure Cloud for exchanging
configuration state and monitoring and logging data

When using directly connected mode, in addition to Azure Arc-enabling your

Kubernetes Cluster, you will need the Azure Arc-enabled Data Services Cluster Extension

deployed into your Cluster. A Cluster Extension controls the Azure capabilities of your

Kubernetes Cluster such as the Azure Services it offers as well as the version and life

cycle of those services. The Azure Arc-enabled Data Services Cluster Extension is used

to create the Custom Resource Definitions for the Azure Arc-enabled Data Services and

their capabilities and bootstrapping Cluster deployment.

When working with Azure Resources, traditionally you deploy resources in a region.

To extend that concept into a hybrid scenario, reaching compute resources outside of

Azure, you need to define a custom location. A custom location is a pointer from Azure

to a Kubernetes Namespace defined in an Azure Arc-enabled Kubernetes Cluster (see

Figure 2-5).

Chapter 2 azure arC-enabled data ServiCeS

41

Figure 2-5. Concept of custom locations

This custom location is used by administrators as target locations for the deployment

of Azure Arc-enabled Data Services on your local compute resources. The process of

Azure Arc enabling your Kubernetes Cluster is covered in detail in Chapter 6 as part

of the process of creating a directly connected Azure Arc-enabled Data Services Data

Controller.

Note For more details on the management services and the network
connectivity, such as internet addresses, ports, and proxy server support, check
out https://docs.microsoft.com/en-us/azure/azure-arc/data/
connectivity.

 Azure Arc-enabled Data Services Management Functions

Inside the Arc Management Control Plane, a Data Controller and locally available

management functions are deployed. In this section, we will walk you through each of

those core elements. Figure 2-6 highlights these management functions as deployed

inside a local Kubernetes Cluster.

• Controller Service: This is the management endpoint available

in your Kubernetes Cluster responsible for handling management

operations.

• API: The Data Controller exposes an API that can interact with your

Kubernetes Cluster for management operations such as exporting

performance, logging, or usage data to upload to Azure. Deployment

operations are done via the Kubernetes API directly or using the

Chapter 2 azure arC-enabled data ServiCeS

https://docs.microsoft.com/en-us/azure/azure-arc/data/connectivity
https://docs.microsoft.com/en-us/azure/azure-arc/data/connectivity

42

deployment tools described earlier which in turn interact with the

Kubernetes API.

• Provisioning: The Data Controller coordinates provisioning

operations with the Kubernetes API. When working with Kubernetes

native tools or Azure Data Services tools such as Azure Data Studio

and azure-cli, provisioning operations are submitted directly to the

Kubernetes API and then sent into the underlying Kubernetes Cluster

to deploy new workloads and configuration state changes. The Data

Controller monitors provisioning requests for Custom Resources,

such as SQL Managed Instance and Postgres, and coordinates with

the Kubernetes API to provision the supporting Kubernetes native

objects such as StatefulSets, Services, and others that make up the

Custom Resource being deployed.

• Dashboards: Management dashboards are available in Azure Data

Studio. These dashboards provide information on the current state of

the data services deployed and the Data Controller itself.

• Metrics: Grafana is used to expose key performance metrics at

several layers in your Cluster, including PostgreSQL Hyperscale

and SQL Server Managed Instance-specific dashboards. Grafana is

available as a web portal deployed in your Cluster.

• Logging: Kibana is used to aggregate and provide search capabilities

for logs emitted in the Cluster. Several resources are streaming log

data into Kibana including SQL Managed and PostgreSQL Hyperscale

instances deployed. Kibana is available as a web portal deployed in

your Cluster.

• Managed Backup and Restore: Backup and restore automation

are controlled by the Data Controller. Every Azure Arc-enabled SQL

Managed Instance comes with a built-in automatic backup feature

which is enabled by default. This means that every single database

that gets created or restored will automatically receive an initial

full backup followed by scheduled differential and transaction log

backups. This concept is very similar to the managed backup in an

Azure SQL Managed Instance and allows you to perform a point-in-

time restore to any specific timestamp within your retention period.

Chapter 2 azure arC-enabled data ServiCeS

43

• High Availability: Kubernetes provides basic high availability

for workloads managed by Controllers such as ReplicaSets and

StatefulSets. If a Pod controlled by one of these controllers fails, the

new Pod will be created in the Cluster replacing the failed Pod. For

more advanced scenarios that might require coordinated failover

events for Pods inside the Cluster, the Data Controller can facilitate

this application-aware failover event.

Figure 2-6. Azure Arc Management Control Plane implements many of core
management and operations functions in your local Kubernetes Cluster

 Data Services Layer: A Closer Look
With all of the required infrastructure in place, hardware, Kubernetes, and a Data

Controller, it is now time to focus on the data services layer. This layer is where you

deploy traditionally PaaS-based Data Services, such as those that you see in the Azure

Cloud, in your environment wherever it is on-premises or in any cloud. This section

digs deeper into each of the currently available data services, Azure Arc-enabled SQL

Managed Instance and Azure Arc-enabled PostgreSQL Hyperscale, looking at their

capabilities and value.

 Azure Arc-enabled SQL Managed Instance

Azure Arc-enabled SQL Managed Instance is your lift-and-shift version of SQL Server.

It enables you to move workloads seamlessly into Azure Arc as it provides a high level

of compatibility with on-premises installations of SQL Server, which is documented as

nearly 100% compatible. This means that to move your databases from their current

Chapter 2 azure arC-enabled data ServiCeS

44

on-premises implementations into Azure Arc-enabled SQL Managed Instance will

require little to no database changes. When deploying an Azure Arc-enabled SQL

Managed Instance, you can take a backup from an on-premises version of SQL Server

and restore that backup directly to an Azure Arc-enabled SQL Managed Instance.

Tip Following https://docs.microsoft.com/en-us/azure/azure-arc/
data/managed-instance-features#Unsupported, you will find the list of
unsupported features and services for azure arc-enabled SQl Managed instance.

A feature of Azure Arc-enabled SQL Managed Instance is that it is always current.

(You may also see the term “evergreen SQL” used.) Similar to the always current or

evergreen SQL offerings available in Azure PaaS Services such as Azure SQL Managed

Instance in Azure Cloud-hosted deployments, Microsoft will continuously publish

updated SQL Managed Instance container images to the Microsoft Container Registry

for Azure Arc-enabled SQL Managed Instance. Then, based on update policies defined

in your deployment, you can specify how often and when the updates are applied to

your environment. In traditional implementations of SQL Server, managing updates is

a challenging and time-consuming process. Kubernetes provides the ability to absorb

updates and change quickly and roll it out into the Cluster. This is the updated model

used in Azure Arc-enabled Data Services.

Azure Arc-enabled SQL Managed Instance comes in two service tiers, General

Purpose and Business Critical. As defined in Microsoft’s documentation, General

Purpose is a budget-friendly tier designed for most workloads with basic performance

and availability. The Business-Critical tier is designed for performance-sensitive

workloads with higher-availability requirements.

The General-Purpose service tier is now generally available. Its SQL Server feature

set is the same as the standard edition with limitations on the number of cores and the

amount of addressable memory an Azure Arc-enabled SQL Managed Instance can use –

a maximum of up 24 CPU cores and 128GB of memory. This also this leads us to the

next key point about Azure Arc-enabled SQL Managed Instance, high availability. In the

General-Purpose service tier, Azure Arc-enabled SQL Managed Instance is deployed as

a single SQL Server instance running in a Pod controlled by a StatefulSet. As discussed

previously, a StatefulSet provides basic failover capabilities in an application or Node

failure event. If there is a failure, the previous Pod is deleted, and a new Pod is created in

its place. The recovery time for these failure scenarios can be very short.

Chapter 2 azure arC-enabled data ServiCeS

https://docs.microsoft.com/en-us/azure/azure-arc/data/managed-instance-features#Unsupported
https://docs.microsoft.com/en-us/azure/azure-arc/data/managed-instance-features#Unsupported

45

Tip When a pod running SQl Server Managed instance is created, it must
run crash recovery on startup. Consider using accelerated data recovery to
reduce SQl Server Managed instance startup time. For more details, go to
https://docs.microsoft.com/en-us/sql/relational-databases/
accelerated-database-recovery-concepts.

To ensure high availability in this single-instance implementation, external, shared

storage should be used and made available to all Nodes in the Cluster. In the event of a

Node failure, they can be started elsewhere in the Cluster, and the Persistent Volume can

then be mounted and made available to the new Pod.

Azure Arc-enabled SQL Managed Instance uses Kubernetes Services for a persistent

access endpoint. As highlighted in Figure 2-7, applications and users that need access

to the SQL Managed Instance deployed in Kubernetes will point to the IP or DNS Name

and the defined Port for access into the database instance. This Service is independent of

the life cycle of the Pod, and if the Pod dies and is created again elsewhere in the Cluster,

the Service is updated and will send the traffic to the new Pod automatically.

Figure 2-7. A typical deployment of an Azure Arc-enabled SQL Managed Instance
running in a Kubernetes Cluster

In Kubernetes, when you update a container image or make a Pod configuration

change, the current Pods are deleted and new Pods are created using the updated container

image or updated configuration. This is a very quick operation, but this can result in a small

downtime, which may be unacceptable in some scenarios. In Azure Arc-enabled Data

Services, the data services deployed are updated using this same model, so there is a small

period of downtime when an update is rolled out for a deployed data service.

The Business-Critical service tier as shown in Figure 2-8 provides the SQL Server

feature set of the enterprise edition with OS limits for the number of cores and the

Chapter 2 azure arC-enabled data ServiCeS

https://docs.microsoft.com/en-us/sql/relational-databases/accelerated-database-recovery-concepts
https://docs.microsoft.com/en-us/sql/relational-databases/accelerated-database-recovery-concepts

46

amount of addressable memory. In this service tier, high availability is provided by

an Availability Group, where there are replicated copies of databases across multiple

Nodes in the Kubernetes Cluster. The downtime is limited to the duration of the failover.

Further, this Availability Group can be used for read scale-out operations.

Figure 2-8. Business-Critical service tier: collocated compute and storage

For more information on the service tiers, please see this link: https://docs.

microsoft.com/en-us/azure/azure-arc/data/service-tiers.

A benefit of the cloud is elastic scale enabling you to add capacity to an environment

on demand and take advantage of that additional capacity as quickly as possible. Azure

Arc-enabled SQL Managed Instance deployments are no different. If needed, you

can add additional compute and memory capacity to a deployment of SQL Managed

Instance by adjusting the assigned CPU and memory resources assigned to that

deployment. Further, using the basic high-availability constructs of Kubernetes, this

change is rolled out nearly immediately. The deployment is updated, and it creates

a new Pod with this new configuration, and the SQL Managed Instance can use this

additional scale-up capacity.

 Azure Arc-enabled PostgreSQL Hyperscale

The second Azure Arc-enabled Data Service we want to introduce to you is Azure Arc-

enabled PostgreSQL Hyperscale. Azure Arc-enabled PostgreSQL Hyperscale is a leading

open source database used as a data store for mission-critical applications. PostgreSQL

Hyperscale is an implementation in the Azure Cloud that enables you to horizontally

scale data by sharding it across multiple instances and allows for distributed parallel

Chapter 2 azure arC-enabled data ServiCeS

https://docs.microsoft.com/en-us/azure/azure-arc/data/service-tiers
https://docs.microsoft.com/en-us/azure/azure-arc/data/service-tiers

47

query execution. A key element of Hyperscale's success is that it works with existing

versions of Postgres database, so databases and their applications can use these benefits

with little to no changes.

Azure Arc-enabled PostgreSQL Hyperscale also uses the always current or evergreen

SQL model described in the previous section. Microsoft will continuously update the

container image for PostgreSQL Hyperscale, and you can decide how often and when

that image is rolled out into your environment.

As mentioned previously, a vital benefit of the cloud is elastic scale, being able to

add capacity to your environment on demand and being able to take advantage of that

additional capacity as quickly as possible. Azure Arc-enabled PostgreSQL Hyperscale

highlights this elastic scale since it can scale out in terms of the number of Postgres

Worker Nodes supporting the database and also shard the data across those Worker

Nodes and their underlying storage. This enables both parallel query execution and also

distributed I/O which can increase database capacity and performance.

Note We want to call out that there is an overlap in terms used. a postgres
Worker node is an individual compute unit in a hyperscale Server Group. this is
not the same as a Kubernetes node, a compute resource in a Kubernetes Cluster.

When executing a scaling operation in Azure Arc-enabled PostgreSQL, additional

Postgres Worker Nodes are added to the pool of Postgres Worker Nodes supporting

the PostgreSQL Hyperscale Server Group. In Figure 2-9, you will see a PostgreSQL

Hyperscale Server Group scaled from two Worker Nodes to three Worker Nodes. The

data is then rebalanced across the three Worker Nodes in the Server Group. Scaling out is

an online operation, and the sharded data is automatically rebalanced across the Worker

Nodes in the current Server Group.

Chapter 2 azure arC-enabled data ServiCeS

48

Figure 2-9. A PostgreSQL Hyperscale Server Group scaled from two Worker Nodes
to three Worker Nodes and data being rebalanced across the Worker Nodes

In addition to scale-out, you can also scale up individual Postgres Worker Nodes by

adding CPU and memory capacity to the deployments. Doing this will cause the Pods

supporting the Postgres Workers to be restarted due to the new Pod configuration. At the

time of this publication, scale-back operations are not supported. If you need to scale

down, you can create a new instance, back up the data in the old instance, and restore

it into the new instance. For more information on data placement and sharding data,

check out https://docs.microsoft.com/en-us/azure/azure-arc/data/concepts-

distributed-postgres-hyperscale.

 Deployment Sizing Considerations
Azure Arc-enabled Data Services are deployed on Kubernetes. Kubernetes provides an

abstraction over the hardware available in your on-premises data center or cloud. In this

section, we want to introduce you to sizing considerations when designing your Azure

Arc-enabled Data Services and the supporting Kubernetes Cluster. The specific topics we

are going to cover are compute and storage. First up, let's look at compute.

Chapter 2 azure arC-enabled data ServiCeS

https://docs.microsoft.com/en-us/azure/azure-arc/data/concepts-distributed-postgres-hyperscale
https://docs.microsoft.com/en-us/azure/azure-arc/data/concepts-distributed-postgres-hyperscale

49

 Compute

Each Node in a Kubernetes Cluster contributes both CPU and memory capacity to the

collection of overall available resources that can be allocated workloads deployed in

the Cluster. The number and size of the Nodes deployed is a function of the required

capacity needed to run the workload deployed in the Cluster and also any Cluster

system functions. If additional capacity is required in a Cluster, the additional Nodes

can be added, contributing to more CPU and memory capacity allocated to workload.

If needed, larger Nodes can be added or used to replace smaller Nodes increasing the

overall capacity of the Cluster. This concept of adding additional capacity as needed is

key to the elasticity of cloud-based architectures.

When deploying Azure Arc-enabled Data Services, several components contribute

to the overall footprint of the resources required to run a Cluster and support deployed

workloads. This includes the resources needed by the Arc Management Control

Plane and the resources required by the actual data services workload deployed and

potentially any other workload that is deployed in the Cluster. Let’s look at each of these

in more detail:

• Arc Management Control Plane: Consisting of the Data Controller,

Metrics, and Logging Pods. Each one of these services consumes

both CPU and memory in the Cluster. For more information on the

required resources for each, check out https://docs.microsoft.

com/en-us/azure/azure-arc/data/sizing-guidance#data-

controller-sizing-details.

• Data Services Workload: Each instance of a data service deployed

in the Cluster will consume some amount of CPU, memory, and disk.

How much of each of those resources depends on the workload that

is running in each of those data services. For more information on

workload sizing and minimum requirements for each of the data

services available, check out https://docs.microsoft.com/en-us/

azure/azure-arc/data/sizing-guidance.

• Kubernetes System Pods: On each Node in a Kubernetes Cluster,

there is a collection of system Pods and services which perform

critical Cluster functions, each of which consumes some amount of

system resources. Resources are reserved for critical operations, and

in scenarios when resources are scarce, user Pods can be evicted

Chapter 2 azure arC-enabled data ServiCeS

https://docs.microsoft.com/en-us/azure/azure-arc/data/sizing-guidance#data-controller-sizing-details
https://docs.microsoft.com/en-us/azure/azure-arc/data/sizing-guidance#data-controller-sizing-details
https://docs.microsoft.com/en-us/azure/azure-arc/data/sizing-guidance#data-controller-sizing-details
https://docs.microsoft.com/en-us/azure/azure-arc/data/sizing-guidance
https://docs.microsoft.com/en-us/azure/azure-arc/data/sizing-guidance

50

from a Node. More information about Reserved Compute Resources

is available on https://kubernetes.io/docs/tasks/administer-

cluster/reserve-compute-resources/.

• Other Workloads: If your Cluster is not dedicated to data services,

don't forget to take that workload into your sizing calculations.

After getting a feel for how much workload needs to be deployed in the Cluster,

the next thing you will need to do is determine the size of your Cluster Nodes and the

number of Cluster Nodes required to run your workload efficiently and with Node-level

redundancy.

• Individual Node Size: When sizing Nodes, CPU and memory cannot

be overallocated. For example, if your Nodes have two cores and

16GB of RAM, you cannot create a database instance that is four

cores and 32GB of RAM. Kubernetes will not be able to start that Pod

up. So, you have to add a larger Node or reduce the allocation to that

Pod. Microsoft documentation recommends leaving at least 25% of

available resources on each Node in the Cluster to allow for growth

and redundancy.

• High Availability: When sizing a Cluster for the amount of resources

needed, ensure that you are provisioning enough Nodes with enough

resources collectively to allow for at least one Node to fail or for

planned maintenance. For critical systems, it is recommended that

customers have an N+2 model, where two Nodes can be offline, and

the Cluster will still function with no performance degradation or

interruption in workload. On a Node failure, Pods running on the

failed Node are moved onto the Cluster's remaining Nodes. There

needs to be sufficient capacity for these Pods to run.

The key takeaway here is: ensure that you have enough Nodes to support the

required amount of CPU and memory needed to run the desired workload in a Cluster

even in the event of a Node failure. Further, make sure that an individual deployment

of a data service does not require more resources than are available on a single Node

in the Cluster. Otherwise, the Pods supporting that deployment will not be able to be

started on a Node in the Cluster since no Nodes have enough resources to support that

configuration. Further, you want to ensure that you leave at least 25% capacity available

on each Node in the Cluster for growth and redundancy.

Chapter 2 azure arC-enabled data ServiCeS

https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/
https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/

51

 Storage

Now let's move on to planning for storage in Azure Arc-enabled Data Services Clusters.

The amount of storage capacity and what type is needed depends on the workload being

deployed. Fundamentally, the performance profile of a SQL Server instance running as

a SQL Managed Instance in Arc-enabled Data Services is no different than you would

see when SQL Server instance is deployed in any other platform, such as Azure or even

on-premises. What is unique is how access to storage is configured and allocated to your

data services workloads. Let's dig into each of those topics now.

As introduced earlier, in Kubernetes, storage is allocated dynamically from Storage

Classes. When a data service instance, such as SQL Managed Instance or PostgreSQL

Hyperscale, is deployed, you define which Storage Class you want to use for the different

types of data in the deployment. Currently, the options available are database data files,

database backup files, and application log files and, if using SQL Managed Instance, a

location for the database transaction log files. If no Storage Class is specified when a data

service instance is defined, the default Storage Class is used. Defining which Storage

Class is used by which type of data is surfaced as a configuration parameter when

defining an instance. This will be covered in much more detail later in the book.

When designing an Azure Arc-enabled Data Services Cluster, you will want to create

Storage Classes that map back to the storage types needed in your Cluster based on the

workload profile required. For example, you may need an individual Storage Class for

each type of data in a data service instance such as database files, transaction log files,

application log files, and backups. Each one of these Storage Classes potentially can map

to a different storage subsystem, each having the required performance profile for that

data being stored in that Storage Class.

Storage Classes can be configured to allocate storage from both local Node storage

and remote shared storage. Local storage has the potential to be very fast if the high-

speed disks are deployed inside the Node. But local Node storage provides no durability

in the event of a Node failure. If a Node fails, then the data on that Node is at risk of

data loss. A common pattern for using local Node storage is ensuring that the data in

the applications using that type of storage is replicated between multiple Nodes for

redundancy and availability. Replication combined with local high-speed disks is viable

deployment option in some scenarios. Local storage is a viable option for the Business-

Critical service tier which uses Availability Groups to replicate data between replicas.

Chapter 2 azure arC-enabled data ServiCeS

52

When using remote shared storage, Nodes in the Cluster map storage from the

remote storage system. This could be a SAN, NAS, or Cloud Files-based system.

Provisioning storage using this architecture decouples the dependency of the local Node.

If there is a Node failure, the Pod that was running on that Node can be scheduled onto

another Node in the Cluster. The storage is mounted and exposed into the Pod, and the

database instance can be back up and running quickly. The I/O interconnect from the

Node to the shared storage environment should be provisioned with multiple paths for

redundancy and also be of sufficient capacity to support the desired workload. Also,

instances that require high I/O should be spread out across the Nodes in the Cluster

using advanced Kubernetes scheduling techniques. For a deeper dive into storage and

scheduling in Kubernetes, check out the Pluralsight course “Configuring and Managing

Kubernetes Storage and Scheduling” at www.pluralsight.com.

 Summary and Key Takeaways
This chapter introduced you to Azure Arc-enabled Data Services. It started with the

challenges of modern hybrid cloud strategies. It then showed you how Azure Arc

addresses those challenges to provide manageability at scale by extending the Azure

Resource Manager to your on-premises or hybrid cloud environments. Next, we

introduced the core Azure Arc-enabled resources, including Servers, Kubernetes, SQL

Server, and Data Services. Then we dove deeper into what Azure Arc-enabled Data

Services are, its architecture, how workloads are deployed and managed, and also

discussed vital deployment considerations such as compute and storage capacity

planning. In the next chapter, we will shift from theory into action and learn how to

deploy an Arc Data Controller in a Kubernetes Cluster.

Chapter 2 azure arC-enabled data ServiCeS

http://www.pluralsight.com

53
© Ben Weissman and Anthony E. Nocentino 2022
B. Weissman and A. E. Nocentino, Azure Arc-enabled Data Services Revealed,
https://doi.org/10.1007/978-1-4842-8085-0_3

CHAPTER 3

Getting Ready
for Deployment
In the previous chapter, we’ve talked about the theoretical concepts and components of

Azure Arc-enabled Data Services.

Now it’s time to get ready for a first deployment. Before we can get to the actual

deployment of a Data Controller and subsequently database instances managed by that

Data Controller, we do need some prerequisites as well as a Kubernetes Cluster in place.

All these steps will guide you through what is necessary to start working with Azure Arc-

enabled Data Services and make sure you’re fully ready to go.

Note You will need an Azure account and subscription to complete these steps
and to start a deployment. There are other deployment options available if Azure
is not an option for you. Microsoft provides a Jumpstart site to make it easy to
get going on-premises, in AWS, or Google’s cloud. For more information, visit
https://azurearcjumpstart.io/.

 Prerequisites
Let us begin by looking at the prerequisites. While doing so, we’ll point out some very

useful helpers which – even though technically not necessary – will make our lives much

easier. All the code that we’ll be using here is available on this book’s GitHub repository,

and we’re giving you the choice between deploying from a Linux and a Windows client

depending on your preferences. We will not be going into details of an installation on

MacOS, but the required tools including Azure Data Studio are available on this book’s

GitHub repository, too.

https://doi.org/10.1007/978-1-4842-8085-0_3#DOI
https://azurearcjumpstart.io/

54

 Chocolatey
Before we get started, if you plan to deploy from a Windows client, we’d like to point your

attention to Chocolatey or “choco.” In case you haven’t heard about it, choco is a free

package manager for Windows which will allow us to install many of our prerequisites

with a single line in PowerShell or a command prompt. Given that Windows Servers do

not come with an easy-to-use built-in package manager, it just makes life much easier.

You can find more information on http://chocolatey.org (see Figure 3-1), and you can

even create an account and provide your own packages there.

Figure 3-1. Home page of Chocolatey

From a simple user perspective though, there is no need to create an account or to

download any installer.

To make choco available on your system, open a PowerShell window in

administrative mode, and run the script shown in Listing 3-1.

ChApTer 3 GeTTinG reAdY For deploYMenT

http://chocolatey.org

55

Listing 3-1. Install Script for Chocolatey in PowerShell

[Net.ServicePointManager]::SecurityProtocol = [Net.ServicePointManager]::Se

curityProtocol -bor [Net.SecurityProtocolType]::Tls12

Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object System.

Net.WebClient).DownloadString('https://chocolatey.org/install.ps1'))

Once the respective command has completed, choco is installed and ready to

be used.

 Tools on Windows
Let us start with a few little helpers that come with Linux by default, but are either

missing or limited on Windows by default. By running the code in Listing 3-2, we’ll

install curl (to interact with websites), grep (to filter output on the command line), and

putty (which also comes with pscp, a tool that will allow us to copy data from a Linux

machine).

Listing 3-2. Install script for recommended tools

choco install curl -y

choco install grep -y

choco install putty -y

The first official prerequisite is the kubernetes-cli, which can be installed through the

command in Listing 3-3.

Listing 3-3. Install script for kubectl

choco install kubernetes-cli -y

The last official requirement is the Azure command-line interface, which can also be

installed through choco as shown in Listing 3-4.

Listing 3-4. Install script for the azure-cli

choco install azure-cli -y

ChApTer 3 GeTTinG reAdY For deploYMenT

56

That’s it already for the official prerequisites. Despite that, we’ll also install Azure

Data Studio through the code in Listing 3-5, which will allow us to try out the graphical

deployment experience.

Listing 3-5. Install script for Azure Data Studio

choco install azure-data-studio -y

Finally, let’s create a directory and download a backup file of the

AdventureWorks2017 database so we have something to restore later using the

commands in Listing 3-6.

Listing 3-6. Download script for AdventureWorks2017

mkdir C:\Files

curl -L -o C:\Files\AdventureWorks2017.bak https://github.com/Microsoft/

sql-server-samples/releases/download/adventureworks/AdventureWorks2017.bak

Depending on the platform that you’ll be deploying to, some of these tools may not

be required. Given that they’re all rather lightweight, we’d recommend installing them

all anyway.

 Tools on Ubuntu
If you prefer to deploy from an Ubuntu machine, you can do this using Ubuntu 18.04 or

Ubuntu 20.04. Ubuntu comes with its own package manager (apt), so there is no need

for Chocolatey or something similar. Before we can install the prerequisites though, we

need to make the Microsoft repository a trusted source using the code in Listing 3-7.

Listing 3-7. apt script for basic prerequisites

sudo apt-get update

sudo apt-get install gnupg ca-certificates curl wget software-properties-

common apt-transport-https lsb-release -y

curl -sL https://packages.microsoft.com/keys/microsoft.asc |

gpg --dearmor |

sudo tee /etc/apt/trusted.gpg.d/microsoft.asc.gpg > /dev/null

ChApTer 3 GeTTinG reAdY For deploYMenT

57

Should you be using Ubuntu 18.04, run the code in Listing 3-8 to add the Microsoft

repository to the list of known sources for package installations.

Listing 3-8. apt script to add Microsoft repository (Ubuntu 18.04)

AZ_REPO=$(lsb_release -cs)

echo "deb [arch=amd64] https://packages.microsoft.com/repos/azure-cli/

$AZ_REPO main" |

 sudo tee /etc/apt/sources.list.d/azure-cli.list

sudo apt-get update

Now we’re ready to go ahead and install the Azure command-line interface and

kubectl using the code from Listing 3-9.

Listing 3-9. apt script for azure-cli and kubectl

sudo apt-get install -y azure-cli

sudo apt-get install -y kubectl

That’s it – your Ubuntu machine is ready to go to start a deployment.

If you want to use Azure Data Studio on Ubuntu as well, please follow the

instructions at https://docs.microsoft.com/en-us/sql/azure-data-studio/

download-azure-data-studio.

 Getting Azure Data Studio Ready
One of the big strengths of Azure Data Studio is its extensibility, which makes it super

flexible and lightweight at the same time. This, on the other hand, means that we’ll need

to add and enable some extensions and configurations before we can use it for Azure

Arc-enabled Data Services. While this could mostly be done “on the fly,” we’d suggest

getting everything in place so we can purely focus on the deployment afterward.

The first step is to install the Azure Arc extension. To do so, navigate to the extensions

tab as shown in Figure 3-2.

ChApTer 3 GeTTinG reAdY For deploYMenT

https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio

58

Figure 3-2. Azure Data Studio – add extension

In the extensions tab, search for “arc” and click install as shown in Figure 3-3.

Figure 3-3. Azure Arc Extension Installation

ChApTer 3 GeTTinG reAdY For deploYMenT

59

Note if you plan to use Azure data Studio with postgres, now might be a good
time to also install the postgres extension. Just search for “postgres” in the
extensions tab like you’ve searched for “arc,” and it will show up.

Next, we need to add an Azure account to Azure Data Studio. To do so, navigate to

the connections tab, expand the AZURE section, and select “Sign in to Azure…” as shown

in Figure 3-4.

Figure 3-4. Azure Data Studio – add connection

This will trigger a login dialog which will, after successfully signing in, confirm that

your account was added. Your Azure account should also show up in the linked accounts

section in Azure Data Studio as shown in Figure 3-5.

ChApTer 3 GeTTinG reAdY For deploYMenT

60

Figure 3-5. Azure Account showing in Azure Data Studio

Next, we need to enable Python in Azure Data Studio, and the easiest way to do so is

to open a new notebook as shown in Figure 3-6.

Figure 3-6. Azure Data Studio – adding notebook

In this notebook, change the Kernel to “Python 3” as shown in Figure 3-7.

Figure 3-7. Azure Data Studio - changing the kernel

This will trigger the Python runtime configuration. We suggest a new python

installation as also suggested by the wizard shown in Figure 3-8.

ChApTer 3 GeTTinG reAdY For deploYMenT

61

Figure 3-8. Configure Python in ADS

The installation can take a few minutes; once it has finished, you can see the kernel

of the notebook showing as “Python 3” (see Figure 3-9).

Figure 3-9. Azure Data Studio – kernel

The last step is to install the “pandas” package. Navigate to the python packages by

clicking the icon highlighted in Figure 3-10.

Figure 3-10. Azure Data Studio – installing pandas package

In the “Manage Packages” tab, switch to “Add new,” search for pandas, and click

“Install” as illustrated in Figure 3-11.

ChApTer 3 GeTTinG reAdY For deploYMenT

62

Figure 3-11. Azure Data Studio – managing packages

You may close this wizard. The installation status will show and confirm when it’s

done (see Figure 3-12).

Figure 3-12. Status message in ADS for successful pandas installation

That’s it for Azure Data Studio – we have installed and configured everything

we’ll need.

ChApTer 3 GeTTinG reAdY For deploYMenT

63

 azure-cli Extensions and Providers
The azure-cli, which is the central tool for most deployments as we’ll see in the

upcoming chapters, requires a few extensions and registered providers to fully support

the deployment of Azure Arc-enabled Data Services.

Those can be added/installed through the CLI itself using the code from Listing 3-10.

Listing 3-10. Command to install the required extensions and providers for the

azure-cli

az extension add --name connectedk8s

az extension add --name k8s-extension

az extension add --name customlocation

az extension add --name arcdata

az provider register -n Microsoft.Kubernetes

az provider register -n Microsoft.KubernetesConfiguration

az provider register -n Microsoft.ExtendedLocation

Note if you had installed any of these tools or extensions before, please make
sure to upgrade them to the latest versions before proceeding.

 Have a Resource Group in Azure
In Azure, we’ll need a resource group to start with. This resource group will later be used

to store your Logs and Metrics when uploading them to the Azure Portal (see Chapter 7).

You can either create this through the Portal or by simply running the command in

Listing 3-11.

Listing 3-11. azure-cli code to log in

az login

This command will open a web browser asking you to sign into your Azure account.

Once you’ve signed in, the website will confirm this, the browser can be closed, and your

azure-cli session is now authenticated. In case you have multiple subscriptions, make sure

to set the context to the correct subscription ID using the command from Listing 3-12.

ChApTer 3 GeTTinG reAdY For deploYMenT

64

Listing 3-12. azure-cli code to set the current subscription context

az account set -s <Subscription>

To create the resource group, run the code from Listing 3-13, replacing the group

name and location with suitable values for you. We will be using arcBook as our group’s

name and EastUS as our location throughout this book.

Listing 3-13. azure-cli code to create a resource group

az group create --name <groupname> --location <location>

Figure 3-13 is showing how the azure-cli will confirm the creation of this

resource group.

Figure 3-13. Resource group creation confirmation

As we’ve just created an empty resource group so far, this is not resulting in any

charges in Azure yet.

 Summary and Key Takeaways
In this chapter, we’ve guided you through the requirements to be fulfilled before starting

a deployment of Arc-enabled Data Services. Now that you’re ready, the only thing that’s

missing before we can really get started is a Kubernetes Cluster.

ChApTer 3 GeTTinG reAdY For deploYMenT

65
© Ben Weissman and Anthony E. Nocentino 2022
B. Weissman and A. E. Nocentino, Azure Arc-enabled Data Services Revealed,
https://doi.org/10.1007/978-1-4842-8085-0_4

CHAPTER 4

Installing Kubernetes
Given that – apart from the hardware – Kubernetes is the base layer of every Azure

Arc-enabled Data Services deployment, you will need at least one Kubernetes Cluster

to deploy to. Without going into too much detail, we will be showing you how to deploy

a Cluster using a kubeadm (a self-installed Kubernetes flavor running on Linux). This

is not the only option (see Chapter 2 for a list of supported options). The whole idea of

Azure Arc-enabled Data Services is to be able to deploy services to any infrastructure in

any cloud – but we want to provide you an easy option to get started. The deployment

process explained in the following chapters is the same regardless of which target

platform you choose.

This chapter will introduce how to build a Kubernetes Cluster on-premises using

virtual machines. We will begin with a discussion of the decision process of where to

install, on-premises or in the cloud, and what to consider in that process. We will then go

through building an on-premises, virtual machine-based Kubernetes Cluster using the

kubeadm installation method. This Cluster will be the foundation for all examples in the

remainder of the book.

 Installation Considerations and Methods
As with pretty much any modern software installation, the first thing you need to decide

is: Will you be installing on-premises or to a cloud?

https://doi.org/10.1007/978-1-4842-8085-0_4#DOI
https://app.pluralsight.com/course-player?clipId=5f4148df-26ef-4ce3-a052-f7c6a91da597

66

 Where to Deploy?
When deploying to a cloud, you need to choose between two major deployment options:

• Infrastructure as a Service (IaaS): In an IaaS scenario, you’re

deploying virtual machines within your cloud and then installing

Kubernetes on top of that.

• Platform as a Service (PaaS): Kubernetes is also available as a

managed service from all the big cloud providers. In a managed

service offering, you don’t have to worry about any of the underlying

infrastructure or redundancy. The cloud provider handles that

for you. One thing to consider with PaaS is that you will lose

some flexibility in versioning and other features available inside

Kubernetes and the access to the Control Plane Nodes. When

deploying on-premises, the decision comes down to installing on

virtual machines or directly on bare metal. While there are managed

offerings available on-premises, those are out of the scope of

this book.

The decision between bare metal and virtual machines as your Nodes mainly

depends on your anticipated workload. If you’re talking about many scalable

microservices, Kubernetes Nodes running on VMs will probably give you a lot of extra

flexibility. If you’re deploying one single large application, the hypervisor in between

will require unnecessary overhead. You may be wondering: If you’re only running a

single application, is Kubernetes even the best platform for this? As so often, the answer

is: it depends! While they often warrant dedicated infrastructure, they only deploy on

Kubernetes.

In this book, we will be focusing on an environment using self-managed (on-

premises or cloud-based Infrastructure-as-a-Service) virtual machines. It doesn’t matter

if you installed those machines as VMs in the cloud, on-premises, or on bare metal, as

Kubernetes abstracts the infrastructure away.

Going forward, looking at where to install a potential production Cluster, that

question should follow your organization’s general strategy. If all you do so far is still on-

premises, it might make perfect sense for your Kubernetes Cluster to live there. If, on the

other hand, you’re in the process of or already have migrated significant workloads to the

cloud, your Kubernetes Cluster probably should follow. In the end, this comes down to

your team’s skill set and the requirements of your use cases to run on Kubernetes.

Chapter 4 InstallIng Kubernetes

https://app.pluralsight.com/course-player?clipId=5f4148df-26ef-4ce3-a052-f7c6a91da597&startTime=44.92
https://app.pluralsight.com/course-player?clipId=5f4148df-26ef-4ce3-a052-f7c6a91da597&startTime=44.92
https://app.pluralsight.com/course-player?clipId=5f4148df-26ef-4ce3-a052-f7c6a91da597&startTime=47.4
https://app.pluralsight.com/course-player?clipId=5f4148df-26ef-4ce3-a052-f7c6a91da597&startTime=53.94
https://app.pluralsight.com/course-player?clipId=5f4148df-26ef-4ce3-a052-f7c6a91da597&startTime=56.1
https://app.pluralsight.com/course-player?clipId=5f4148df-26ef-4ce3-a052-f7c6a91da597&startTime=56.1

67

 Further Considerations
Besides the where question, there are, of course, other considerations of which we’ll be

talking about in more depth throughout this chapter and the remainder of the book:

• How many Worker Nodes do you need to support your workload?

• What’s the CPU and RAM configuration of those Nodes?

• Do you need a highly available solution in case the Control

Plane fails?

• What is your backup and restore strategy?

• What kind of storage(s) are you going to use?

• How are you going to manage networking between Pods and Nodes?

While we’re at the beginning of your Kubernetes journey, those are all questions that

you should have an answer to before considering a rollout of a production system.

 Installation Methods
Depending on where you’re installing, this will also, for the most part, determine your

installation method. When installing a self-managed Cluster, you can choose mainly

between kubeadm, which is a free and open source way of deploying Kubernetes on

Linux, and enterprise offerings like RedHat OpenShift. The installation itself is usually

triggered through command-line tools.

When installing a cloud-based Cluster, your cloud provider will take care of the

installation part with the exact details behind the scenes being determined by your cloud

provider. They usually offer their own command-line-based approaches and web portals

for a guided deployment.

 Additional Options
There are many additional options like using Docker Desktop to spin up a Kubernetes

Cluster on your laptop or using lightweight hardware like a Raspberry Pi as your

deployment target. While they may have valid use cases, especially in non-production

environments, we will not go into depth on these in this book.

Chapter 4 InstallIng Kubernetes

https://app.pluralsight.com/course-player?clipId=ab5f2a68-44ce-4942-b2bf-2ace5886e3f1

68

Also, while there are options to use Windows-based Worker Nodes, we will be

focusing on using Linux as our operating system.

We also will not be going through the details of deploying a Single Node Cluster. If

you only have a single Ubuntu machine available, you can use the code in Listing 4-1.

This code will spin up a Single Node Cluster, including local-storage, but this will not be

sufficient for most of the exercises in this book, except for the most basic ones.

Listing 4-1. Install Single Node Cluster

wget -q -O deploy_kubeadm.sh https://bookmark.ws/ArcDemo_Linux

chmod +x deploy_kubeadm.sh

./deploy_kubeadm.sh

 Installation Requirements
For a self-managed Kubernetes installation, we will be focusing on kubeadm on Linux,

more specifically Ubuntu. While CentOS, RHEL, and other Linux distributions are also

supported, we just had to decide on one environment, and Ubuntu seems to be the most

common choice these days.

The bare minimum system requirements are a system with two CPUs, 2GB of RAM,

and swap disabled. These are the minimum requirements for a Kubernetes cluster

to run, not accounting for the workloads running on the Cluster. In a production

environment, you must ensure that you have accounted for your workload deployed and

the scalability and redundancy.

In addition to those base system requirements, you’ll also need a CRI (Container

Runtime Interface) container runtime. The de facto standard is containerd. As Docker

has been deprecated in Kubernetes 1.20 and its support has been removed in Kubernetes

version 1.23, we will mainly focus on containerd in this book.

 Network Requirements
From a networking perspective, make sure that all machines have unique hostnames,

MAC addresses, and IP addresses. Those IP addresses should ideally be on the same

subnet, but at the very least, must be set up to reach each other.

Chapter 4 InstallIng Kubernetes

https://app.pluralsight.com/course-player?clipId=982d8f0e-d017-4f76-8bd5-c243179677d4
https://app.pluralsight.com/course-player?clipId=982d8f0e-d017-4f76-8bd5-c243179677d4&startTime=43.84
https://app.pluralsight.com/course-player?clipId=982d8f0e-d017-4f76-8bd5-c243179677d4&startTime=47.32
https://app.pluralsight.com/course-player?clipId=982d8f0e-d017-4f76-8bd5-c243179677d4&startTime=47.32

69

If you are running a firewall within your network (for the labs in this book,

we recommend not to run a firewall, simply to avoid running into unnecessary

complications with the network), Table 4-1 lists all the TCP Ports that need to be

reachable on the Control Plane.

Table 4-1. Required TCP Ports on Control Plane Node

Component TCP Port(s)

apI 6443

etcd 2379-2380

scheduler 10251

Controller Manager 10252

Kubelet 10250

The ports listed in Table 4-2 need to be open on the Nodes in your Cluster.

Table 4-2. Required TCP Ports on Worker Nodes

Component TCP Port(s)

Kubelet 10250

nodeport 30000-32767

Note the tCp ports listed here are the default ports. In case you changed those,
adjust your firewall rules accordingly.

 Getting Kubernetes
Of course, to install Kubernetes, we need to get Kubernetes. The Kubernetes software is

maintained on GitHub, so if you go to https://GitHub.com/Kubernetes/Kubernetes/,

you will find the Kubernetes project. You can also contribute your ideas and changes

to the project. This is also a precious resource to understand, in detail, how things

work since you can view the code and learn from other people’s experiences with

GitHub issues.

Chapter 4 InstallIng Kubernetes

https://app.pluralsight.com/course-player?clipId=b0f4845d-f2a5-4a1a-a790-a39ccf314435
https://GitHub.com/Kubernetes/Kubernetes/

70

In addition to the software itself, this is also where you will find additional

documentation.

While, in theory, you could get the code and compile everything on your own, we’ll

make our lives a bit easier and install Kubernetes through a package manager.

 Building a Self-Managed Cluster
With that theory in place, let’s start working on building our first Kubernetes Cluster

running on Ubuntu machines using kubeadm. We will be using the environment as

described in Chapter 1, including the prerequisites mentioned there.

 Virtual Machine-Based Kubernetes Cluster Requirements
We will need some compute and storage resources for the Kubernetes Clusters we will

build in this chapter. For our lab, we will use a set of four Linux virtual machines. The

minimum requirement to deploy a Data Controller is four cores, plus additional cores

for any workload deployed. For the labs in this book, each virtual machine will need

8 vCPUs, 16GB of RAM, and 150GB of disk space, running Ubuntu Server 18.04 as an

operating system. We have tested the code in this book on Ubuntu 18.04. Kubernetes

is supported on several operating systems. Check out https://kubernetes.io/docs/

setup/production- environment/tools/kubeadm/install- kubeadm/ for more details.

Note the system resources provisioned here, 8 vCpus and 16gb of raM, are the
bare minimum needed to bootstrap an azure arc-enabled Data services Controller
and Data services such as sQl Managed Instance and postgres. You will need
additional resources based on the workload you want to run in your data service
instances. If you are memory constrained when provisioning data service instances
in the examples throughout the book, you may consider deleting the data service
instances once you complete an exercise.

 Getting the VMs Ready
After you’ve created the virtual machines needed for the lab in this book, it’s time to

discuss the networking configuration for those virtual machines.

Chapter 4 InstallIng Kubernetes

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/

71

 Virtual Machine Network Configuration
Configure the lab VMs’ IP addresses as specified in Table 4-3. You can use different IP

addresses in your lab, but you will need to account for that in several of the labs when

building your Cluster.

Table 4-3. Virtual Machine Configuration

Name IP Address Function

control 172.16.94.10 Control plane node

node-1 172.16.94.11 Worker node

node-2 172.16.94.12 Worker node

node-3 172.16.94.13 Worker node

workstation (optional) 172.16.94.100 administrative workstation (Windows)

Next, in IT, there’s a saying, it’s always DNS. In an enterprise environment, you can

work with your networking team to provision the DNS entries defined earlier. For our lab,

we will add host entries to the /etc/hosts file on each of these systems to ensure we can

address all of the systems by name in our lab. In Listing 4-2, you will find the contents

of our /etc/hosts file. Your hosts file may have entries for localhost and possibly other

configurations.

Listing 4-2. Required additional Linux hosts file contents

172.16.94.10 control

172.16.94.11 node-1

172.16.94.12 node-2

172.16.94.13 node-3

On a Windows machine, you will find the file under C:\Windows\System32\ drivers\

etc\hosts.

Note to edit the hosts file on Windows, make sure to run your editor as
administrator.

Chapter 4 InstallIng Kubernetes

72

Before moving on, please be sure that you have console or SSH access (by using the

hostname) to all these virtual machines and that they can connect to each other over

your network.

Note all our scripts use the hostnames/Ip addresses described earlier. If you
build your lab using different settings, you will need to adjust the scripts used in
the book accordingly. We’ll not be pointing out every instance where this may be
required individually for readability purposes.

 System Swap Settings
As our last step, let’s ensure that swap is disabled on our Control Plane Node and the

three Worker Nodes, as this is a requirement of the kubelet.

Open an individual SSH connection into each virtual machine, and remove any

swap partitions from /etc/fstab using your favorite text editor. Next, run the command

in Listing 4-3, which will also use sed to comment out the swap entry in your system’s /

etc/fstab.

If no output is returned, then your swap is disabled. You should reboot your virtual

machine to ensure the setting persists on reboot.

Listing 4-3. Disable swap

swapoff -a

sudo sed -i '/swap/s/^\(.*\)$/#\1/g' /etc/fstab

 Software Package Installation
Next, we need to install both containerd and the Kubernetes packages on all virtual

machines as described in the following two paragraphs. Unless mentioned otherwise,

just run the commands as stated using a shell on each virtual machine.

 Installing and Configuring containerd

To install containerd, we need to load two modules (overlay and br_netfilter) using the

code in Listing 4-4. They are required by the OverlayFS used by the container runtime

and for networking inside the Cluster.

Chapter 4 InstallIng Kubernetes

73

Listing 4-4. Install modprobe and br_netfilter

sudo modprobe overlay

sudo modprobe br_netfilter

Using the code in Listing 4-5, we need to make sure those are also loaded on reboot.

Listing 4-5. Persist modprobe and br_netfilter

cat <<EOF | sudo tee /etc/modules-load.d/containerd.conf

overlay

br_netfilter

EOF

containerd also requires a few system parameters which we can set and persist using

the command in Listing 4-6.

Listing 4-6. Persist system parameters for containerd

cat <<EOF | sudo tee /etc/sysctl.d/99-kubernetes-cri.conf

net.bridge.bridge-nf-call-iptables = 1

net.ipv4.ip_forward = 1

net.bridge.bridge-nf-call-ip6tables = 1

EOF

Next, let’s apply those settings without rebooting using the command in Listing 4-7.

Listing 4-7. Apply sysctl changes

sudo sysctl --system

Now our prerequisites for containerd are in place, so we can install it through apt-get

as shown in Listing 4-8.

Listing 4-8. Install containerd

sudo apt-get update

sudo apt-get install -y containerd

containerd requires a configuration file, and we can use containerd itself to generate

one with default settings (Listing 4-9).

Chapter 4 InstallIng Kubernetes

74

Listing 4-9. Create containerd config

sudo mkdir -p /etc/containerd

sudo containerd config default | sudo tee /etc/containerd/config.toml

In this file, we must set the cgroup driver for containerd to systemd as this is required

for the kubelet.

Open the file /etc/containerd/config.toml in a text editor as root (e.g., through vi as

shown in Listing 4-10).

Listing 4-10. Edit containerd config

sudo vi /etc/containerd/config.toml

In this file, find the section shown in Listing 4-11.

Listing 4-11. The configuration section in the containerd config file

[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc]

Below that, look for the line SystemdCgroup = false and change the value from the

default of false to true (as in Listing 4-12).

Listing 4-12. Lines to be edited in the containerd config file, change false to true

[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc.options]

 ...

 SystemdCgroup = true

Chapter 4 InstallIng Kubernetes

75

Note Indentation matters here – this can be tabs or spaces! Make sure your file
looks like the one in Figure 4-1!

Figure 4-1. Indentation in containerd config file

to exit vi and save the file, hit ESC and then type :x!.

Based on our new settings, we can use systemctl to restart containerd as shown in

Listing 4-13.

Listing 4-13. Restart containerd

sudo systemctl restart containerd

containerd is now ready for use, and we can move on to installing the Kubernetes

packages. You can confirm the status of the service using the command in Listing 4-14.

Listing 4-14. Status of containerd

sudo systemctl status containerd

 Installing and Configuring Kubernetes Packages

As we will be installing packages from the Google Apt Repository, we will need to add

Google’s apt repository gpg key first (Listing 4-15).

Listing 4-15. Add Google gpg key

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-

key add -

Chapter 4 InstallIng Kubernetes

76

With that key in place, we next add the Kubernetes apt repository (Listing 4-16).

Listing 4-16. Add Kubernetes apt repository

sudo bash -c 'cat <<EOF >/etc/apt/sources.list.d/kubernetes.list

deb https://apt.kubernetes.io/ kubernetes-xenial main

EOF'

Let’s update the apt package list and look at the available versions for the kubelet

using the code in Listing 4-17.

Listing 4-17. Update apt package list

sudo apt-get update

apt-cache policy kubelet | head -n 20

This shows the available versions, and as you can see in Figure 4-2, at the time of

writing, the latest available version is 1.20.4.

Figure 4-2. Version list for kubelet

Chapter 4 InstallIng Kubernetes

77

We can now install kubelet, kubeadm, and kubectl as shown in Listing 4-18. If your

current machine is also the one you’ve used to install kubectl in Chapter 1, you may get a

message that it’s already installed.

Listing 4-18. Install Kubernetes packages

sudo apt-get install -y kubelet kubeadm kubectl

This will install the latest version of each of these tools. Should you wish to install a

previous version, you can specify that as shown in Listing 4-19.

Listing 4-19. Installing a specific version of Kubernetes packages

VERSION=1.22.4-00

sudo apt-get install -y kubelet=$VERSION kubeadm=$VERSION kubectl=$VERSION

To avoid automatic updates, we mark those tools (and containerd) as hold

(Listing 4-20). This gives us full control over the patching process, running it

independent from patching the base operating system.

Note the code in this book is tested against Kubernetes version 1.22.4.
please monitor the azure arc-enabled Data services release notes for supported
Kubernetes versions by visiting https://docs.microsoft.com/en- us/
azure/azure- arc/data/release- notes.

Listing 4-20. Mark Kubernetes packages and containerd as hold

sudo apt-mark hold kubelet kubeadm kubectl containerd

Let’s check the status of our kubelet and our container runtime (Listing 4-21).

Listing 4-21. Check the status of kubelet and containerd

sudo systemctl status kubelet.service

sudo systemctl status containerd.service

As you can see in Figure 4-3, the kubelet will enter a crashloop. This is normal

behavior until a Cluster is created or the Node is joined to an existing Cluster (you can

leave that process by hitting q).

Chapter 4 InstallIng Kubernetes

https://docs.microsoft.com/en-us/azure/azure-arc/data/release-notes
https://docs.microsoft.com/en-us/azure/azure-arc/data/release-notes

78

Figure 4-3. Status of kubelet and containerd

Also, make sure that both services are set to start when the system starts up. This can

be set through the commands in Listing 4-22.

Listing 4-22. Enable startup on reboot for kubelet and containerd

sudo systemctl enable kubelet.service

sudo systemctl enable containerd.service

Note remember to repeat this process and install and configure these packages
on each node, control, node-1, node-2, and node-3, individually!

 Creating a Control Plane
With our container runtime and Kubernetes packages now in place, we can move on to

create our Control Plane.

Note all commands in this section need to be executed on your control VM.

 Pod Networking

Before we initialize our Control Plane, we need to get the IP address that we will use

for our Pod Network. For Pod Networking, there are many different solutions out there,

and we have decided to keep it simple and use Flannel. While it doesn’t have all the

advanced configuration settings like Calico, another popular Pod Network, it works

without any additional configuration on local and cloud networks, which tend to restrict

IPIP packages, for example.

Download the default manifest using the wget command in Listing 4-23.

Chapter 4 InstallIng Kubernetes

79

Listing 4-23. Download flannel

wget https://raw.githubusercontent.com/flannel-io/flannel/master/

Documentation/kube-flannel.yml

There are no required changes to the file, but inside that file defines the Pod CIDR IP

range. Around line 128, you will find the network range defined. Listing 4-24 shows the

code from the file. In the network field, you will find the value 10.244.0.0/16. This is the

network range used to allocate IP addresses to Pods in the Cluster. We will not change

this value in our lab. You may need to change this value in yours if the network overlaps

with other IP ranges in your network environment.

Listing 4-24. Pod CIDR Network range in kube-flannel.yaml

net-conf.json: |

 {

 "Network": "10.244.0.0/16",

 "Backend": {

 "Type": "vxlan"

 }

 }

 Bootstrapping Your Control Plane

We’re ready to initialize our Cluster using kubeadm, as shown in Listing 4-25. Take note

that we define the parameter --pod-network-cidr and set the value to the same value

from the kube-flannel.yaml manifest. If you updated the value for your Pod Network,

please edit that value here. We are using the default from the manifest.

Listing 4-25. Initialize Cluster

sudo kubeadm init --pod-network-cidr=10.244.0.0/16

Run this code on your control Node. This will take a few minutes and will output

its progress constantly. When complete, the result should look like what you see in

Figure 4-4.

Chapter 4 InstallIng Kubernetes

80

Figure 4-4. The output of kubeadm init

To ensure that we can interact with our Cluster using a non-elevated shell, we need

to create a kubeconfig file and store it in our home directory, as shown in Listing 4-26.

Listing 4-26. Create kubectl configuration

mkdir -p $HOME/.kube

sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

sudo chown $(id -u):$(id -g) $HOME/.kube/config

Note If you are using an administrative workstation, you can take this file and
copy it or its contents to .kube/config in your home directory on this workstation.
this will allow you to communicate with your Cluster from that workstation.

 Deploying a Pod Network

Before joining our Worker Nodes, we need to ensure that our Pod Network is set up.

As there are no required changes, we’ll go straight ahead and install it using kubectl

(Listing 4-27). We will be talking more about kubectl later in this chapter, so don’t

worry if this feels a bit unexplained at this point.

Chapter 4 InstallIng Kubernetes

81

Listing 4-27. Install flannel

kubectl apply -f kube-flannel.yml

Your Pod Networking with Flannel is now set up.

 Adding Nodes to a Cluster
Our Control Plane is ready, and our Pod Network is deployed, but we’re not quite ready

to join our Nodes yet. For a Node to be able to join a Cluster, we need a token. The easiest

way is to generate a join command directly using kubeadm, as shown in Listing 4-28.

Listing 4-28. Generate token and join command

kubeadm token create --print-join-command

The output looks similar to what you see in Figure 4-5.

Figure 4-5. Join command

Now, we can take this command and run it (as root, see Listing 4-29) on each of our

desired Worker Nodes, initiating the join process. Your join command will be different

because the CA certificate is unique. The join token is a ticket valid for 24 hours, so if you

want to add more Nodes later, you will need to create a new token.

Listing 4-29. kubeadm join command

sudo kubeadm join 172.16.94.10:6443 \

 --token m87vj8.i1q0t7107jhg0upp \

 --discovery-token-ca-cert-hash sha256:9df160ef427a69e12ca5d74bd

6c22249975f26e72c6d048ba8d252d577786101

Note Make sure to add sudo – the command needs to be run as root, and the
 --print-join-command does not add it for you!

The Nodes will report that they have started the join process, as shown in Figure 4-6.

Chapter 4 InstallIng Kubernetes

82

Figure 4-6. Join command

Let us list the Nodes by running kubectl on the Control Plane (see Listing 4-30).

Listing 4-30. List Nodes in Cluster

kubectl get nodes

If you run this command shortly after joining a Worker Node to the Cluster, you may

find that Nodes are showing up but are NotReady yet (see Figure 4-7).

Figure 4-7. Nodes in Cluster

Nodes will show as NotReady because the Pods that run Pod Networking and kube-

proxy are currently deploying. If you run the command again after a few minutes, the

Nodes will show as Ready. You should not proceed forward until all your Nodes are

joined to the Cluster and they each show as Ready, as in Figure 4-8.

Figure 4-8. All Nodes in Cluster showing Ready

Chapter 4 InstallIng Kubernetes

83

 Provisioning Storage in Your Cluster
The focus of this book is Azure Arc-enabled Data Services and the Data Controller, and

the data service instances deployed need access to persistent storage in the Cluster.

For our lab environment in this book, we use the local storage available on each Node

in the Cluster. While this is good for our lab scenario, this isn’t the best choice for

production workloads. You will want to use enterprise-class storage for your Clusters

and application data. Let’s dive into how to configure the dynamic provisioning of local

storage for our lab Cluster.

First, on each Node in the Cluster, you will create a set of directories used as

Persistent Volumes in your Cluster. In Listing 4-31, we define a loop that will create 80

directories used as Persistent Volumes. Pods scheduled to the Node with Persistent

Volume Claims will have Persistent Volumes provisioned for these directories on

that Node.

Listing 4-31. Creating directories for Persistent Volumes

for i in $(seq 1 80); do

 vol="vol$i"

 sudo mkdir -p /azurearc/local-storage/$vol

 sudo mount --bind /azurearc/local-storage/$vol /azurearc/local-

storage/$vol

done

Next, we will deploy the local storage provisioner. This provisioner is responsible

for binding a Persistent Volume Claim to a Persistent Volume. The code to deploy the

local storage provisioning is in Listing 4-32. This code creates a Storage Class named

local-storage.

Listing 4-32. Creating the local storage provisioner

kubectl apply -f https://raw.githubusercontent.com/microsoft/sql-server-

samples/master/samples/features/azure-arc/deployment/kubeadm/ubuntu/local-

storage- provisioner.yaml

With the local provisioner created, the next step is to set that local storage

provisioner as the default Storage Class in the Cluster. The code to set this as default is in

Listing 4-33.

Chapter 4 InstallIng Kubernetes

84

Listing 4-33. Setting the local-storage Storage Class as default

kubectl patch storageclass local-storage -p '{"metadata":

{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

With the local storage provisioner deployed in the Cluster, when we provision data

service instances, you can specify a Storage Class. In all our examples in this book,

we will use this local-storage Storage Class to provision storage. If you do not specify

a Storage Class, the default Storage Class is used, and in our Cluster, that is the local-

storage Storage Class.

Before proceeding, confirm that your Storage Class is configured and set as default.

You can do that with the code in Listing 4-34, and you should have the same output as in

Figure 4-9. Take note of the Storage Class name, which is local-storage, and that it is

marked as default since the name is suffixed with (default).

Listing 4-34. Get a listing of Storage Classes in your Cluster

kubectl get storageclass

Figure 4-9. A listing of the Storage Classes in our Cluster

 Accessing Your Cluster with kubectl
kubectl is the primary command-line tool for interacting with your Kubernetes Cluster.

We’ve used kubectl several times in this chapter during the Cluster bootstrapping

process and deploying our Pod Network, and we ran those commands while logged

in locally on the Control Plane Node.

kubectl interacts with the API Server over HTTPS. This means you can access the

API Server from over a network if the API Server is reachable from the client you’re

using, allowing you to interact with your Cluster over the network. In this section, we will

rename our context to a more user-friendly name and then copy the kubeconfig file to

both Windows and Linux machines for remote access to our Cluster. You will need to do

these steps to perform some of the exercises in the book.

Chapter 4 InstallIng Kubernetes

85

 Renaming a kubeconfig Context
A kubeconfig Cluster context is a configuration entry in a kubeconfig file that defines

a Cluster’s network location, a username for authentication, and an authentication

credential for your Cluster. You can have several Cluster contexts in a kubeconfig file. It

is often helpful to name a Cluster context a meaningful name rather than keeping the

default. So, let’s do that together.

On your Control Plane Node, let’s rename our existing kubeconfig context from the

default of kubernetes-admin@kubernetes to something more meaningful. We will name

this kubeconfig context to kubeadm to describe the Cluster we’ve created together in

this chapter. kubeadm is the common term used to describe a kubeadm-based Cluster

in Microsoft documentation and Azure Data Studio’s Azure Arc-enabled Data Services

and azure-cli deployment workflows. To rename a kubeconfig context, use the code in

Listing 4-35.

Listing 4-35. Renaming a kubeconfig context

kubectl config rename-context kubernetes-admin@kubernetes kubeadm

In Figure 4-10, you will find the output of a successful context renaming.

Figure 4-10. A listing of the Cluster configuration contexts in our kubeconfig file

With the Cluster context renamed, now let’s copy that Cluster context to a Windows

and Linux workstation for remote access to the Cluster.

 From a Windows Workstation
You can copy the kubeconfig file from the Control Plane Node to the local Windows

workstation using the pscp command. We installed pscp in Chapter 3 when we installed

the putty package. In Listing 4-36, the code first creates a .kube directory in the current

user’s profile. Then it uses pscp to copy the kubeconfig file named config file from

the home directory of the user you bootstrapped your Cluster with on the Control

Plane Node to the user profile of the current user on the Windows workstation in a

subdirectory .kube. Once copied there, kubectl can read that file for its Cluster context.

Chapter 4 InstallIng Kubernetes

86

Listing 4-36. Copying your kubeconfig file from the Control Node to your

Windows workstation

mkdir %USERPROFILE%\.kube

pscp -P 22 <login>@control:/home/<login>/.kube/config %USERPROFILE%\.kube\

Note earlier in this chapter, as part of the Cluster bootstrapping process, you
copied /etc/kubernetes/admin.conf to $HOME/.kube/config on the
Control plane node. You are copying the config from this $hOMe directory onto
your Windows workstation.

Once you have copied your Cluster context to your Windows workstation, from that

workstation, you will want to confirm that kubectl can use that file, and you can do that

by getting the current Cluster context with the code from Listing 4-37, and the output

should match the output shown in Figure 4-11.

Listing 4-37. Retrieve active Kubernetes context

kubectl config current-context

Figure 4-11. A listing of the Cluster configuration contexts in our kubeconfig file
on a Windows workstation

Once you’ve confirmed kubectl is reading the correct kubeconfig file, you will want

to test connectivity to your Cluster using the code in Listing 4-38.

Listing 4-38. Testing connectivity to your Cluster

kubectl cluster-info

Once executed, you should see output like in Figure 4-12. You can confirm that you

are pointing at the right Kubernetes Cluster by looking at the Control Plane Node’s URL,

which in our lab environment is https://172.16.94.10:6443; that’s the location of the

API Server.

Chapter 4 InstallIng Kubernetes

87

Figure 4-12. A listing of Cluster information. Confirming connectivity from our
Windows client to the remote Cluster

Now let’s move forward and copy our kubeconfig file from the Control Plane Node to

a Linux workstation.

 From a Linux Workstation
To copy a kubeconfig file from your Control Plane Node to a Linux workstation, you can

use the scp command natively installed on many Linux distributions. In Listing 4-39,

you will find the copy to copy a kubeconfig file from the Control Plane Node to a remote

Linux workstation. Log in to the Linux machine you want to copy the file to and run this

code on that system.

Note this code will overwrite your current kubeconfig file named config. You may
want to save a backup of your existing kubeconfig file.

Listing 4-39. Copying your kubeconfig file from the Control Node to your Linux

workstation

mkdir $HOME/.kube

scp aen@control:~/.kube/config $HOME/.kube/config

Like in the preceding Windows example, please use kubectl config current-

context to ensure you have the Cluster context configured properly and use kubectl

cluster-info to confirm connectivity to the remote Cluster. The output will be the same

as in the previous section.

 Summary
In this chapter, we’ve guided you on creating a Kubernetes Cluster. Now that you’re

ready, the next chapter will finally be a first hands-on Arc experience: deploying your

first Data Controller.

Chapter 4 InstallIng Kubernetes

89
© Ben Weissman and Anthony E. Nocentino 2022
B. Weissman and A. E. Nocentino, Azure Arc-enabled Data Services Revealed,
https://doi.org/10.1007/978-1-4842-8085-0_5

CHAPTER 5

Deploying a Data
Controller in Indirect
Mode
In the previous chapter, we’ve deployed a Kubernetes Cluster. Now it’s time to use this

Cluster and deploy our first Azure Arc-enabled Data Controller to it, which we will

deploy using indirectly connected – or in short, indirect – mode.

Note If you are using multiple Kubernetes Clusters, make sure your current
context – which is basically the active Kubernetes Cluster configuration – is
looking at the right one.

 Deciding on a Kubernetes Storage Class
First, double-check that your current context is the one you’re targeting with your

deployment using Listing 5-1.

Listing 5-1. Retrieve active Kubernetes context

kubectl config current-context

Our example output in Figure 5-1 shows that we currently have our kubeadm Cluster,

which we’ve previously deployed, as the active context.

https://doi.org/10.1007/978-1-4842-8085-0_5#DOI

90

Figure 5-1. Output example

As we are already connected to the correct Cluster, we will need to figure out which

Storage Classes are available within the Cluster, as this information is required later

during the deployment, even if there is just one Storage Class. The Storage Classes can be

listed using the command in Listing 5-2.

Listing 5-2. Retrieve list of Storage Classes in current Kubernetes context

kubectl get storageclass

In our example, there is only one class – local-storage – as shown in Figure 5-2.

Figure 5-2. List of Storage Classes

Write this information down or memorize it. In case you are working on a Cluster

with multiple Storage Classes available, start thinking which Storage Class you want to

use for your Cluster. You can use different Storage Classes for Kubernetes logs, data, and

database logs.

 Deployment Through the Command Line
As we’ve introduced in Chapter 2, most deployments around Azure Arc-enabled

Data Services are controlled through a tool called az – the azure-cli. Even graphical

installations from Azure Data Studio simply call this CLI in the background, which is why

we’ll start with the command-line-driven approach.

A deployment command could, for example, look like Listing 5-3.

Listing 5-3. azure-cli command to create a Data Controller

az arcdata dc create --connectivity-mode Indirect `

 --name arc-dc-local `

Chapter 5 DeployIng a Data Controller In InDIreCt MoDe

91

 --k8s-namespace arc `

 --subscription <Subscription ID> `

 -g arcBook `

 -l eastus `

 --storage-class local-storage `

 --profile-name azure-arc-kubeadm `

 --infrastructure onpremises

 --use-k8s

This would trigger a Data Controller to be deployed in the current Kubernetes

context in indirect mode, the name of the Arc Cluster would be “arc-dc-local,” and

the Namespace in Kubernetes would be “arc.” The subscription ID would need to be

replaced with your Azure subscription ID. The deployment would be linked to our

resource group “arcBook” in the “East US” region (although the deployment won’t

show up in the portal until you first upload metrics and/or logs – see Chapter 9 for more

details), and it would use the “local-storage” Storage Class.

We are providing a deployment profile name, in our case “azure-arc-kubeadm.” The

azure-cli comes with a hand full of pre-configured profiles to make it easy to deploy to

different versions of Kubernetes. The list of currently provided profiles can be retrieved

using the command in Listing 5-4.

The last two parameters will define the infrastructure (allowed values: ['aws',

'gcp', 'azure', 'alibaba', 'onpremises', 'other', 'auto']) and make the client use the local

Kubernetes tooling (triggered by the --use-k8s switch). The alternative to that would be

to use the Azure Resource Manager, which is what we’ll do for our direct connected Data

Controller in the next chapter.

There are a few more parameters, and not all of the mentioned parameters in this

example are mandatory. You will find the full reference at https://docs.microsoft.com/

en-us/cli/azure/arcdata.

Listing 5-4. Retrieve list of configuration profiles for Arc Data Controllers

az arcdata dc config list

This command will return the list of supported options as shown in Figure 5-3. Every

option will have a preset but adjustable configuration for the specific environment such

as storage, security, and network integrations.

Chapter 5 DeployIng a Data Controller In InDIreCt MoDe

https://docs.microsoft.com/en-us/cli/azure/arcdata
https://docs.microsoft.com/en-us/cli/azure/arcdata

92

Figure 5-3. List of configuration profiles for Arc Data Controllers

Should your desired platform not be on the list or you need changes to the profile’s

default, you can also start by creating a custom configuration using the code from

Listing 5-5.

Listing 5-5. azure-cli command to initialize a custom configuration

az arcdata dc config init -p customconfig --source azure-arc-kubeadm

This will create a file called control.json in a directory called “customconfig”. The file

looks similar to what we find in Listing 5-6 and can be used to control every configurable

parameter of your Data Controller deployment.

Listing 5-6. Sample “control.json” file

{

 "apiVersion": "arcdata.microsoft.com/v2",

 "kind": "DataController",

 "metadata": {

 "name": "datacontroller"

 },

Chapter 5 DeployIng a Data Controller In InDIreCt MoDe

93

 "spec": {

 "infrastructure": "",

 "credentials": {

 "serviceAccount": "sa-arc-controller",

 "dockerRegistry": "arc-private-registry",

 "domainServiceAccount": "domain-service-account-secret"

 },

 "docker": {

 "registry": "mcr.microsoft.com",

 "repository": "arcdata",

 "imageTag": "v1.1.0_2021-11-02",

 "imagePullPolicy": "Always"

 },

 "storage": {

 "data": {

 "className": "",

 "size": "15Gi",

 "accessMode": "ReadWriteOnce"

 },

 "logs": {

 "className": "",

 "size": "10Gi",

 "accessMode": "ReadWriteOnce"

 }

 },

 "security": {

 "allowDumps": true,

 "allowNodeMetricsCollection": true,

 "allowPodMetricsCollection": true

 },

 "services": [

 {

 "name": "controller",

 "serviceType": "NodePort",

 "port": 30080

 }

Chapter 5 DeployIng a Data Controller In InDIreCt MoDe

94

],

 "settings": {

 "azure": {

 "autoUploadMetrics": "false",

 "autoUploadLogs": "false"

 },

 "controller": {

 "logs.rotation.size": "5000",

 "logs.rotation.days": "7"

 },

 "ElasticSearch": {

 "vm.max_map_count": "-1"

 }

 }

 }

}

If you want to deploy using a custom configuration rather than using pre-configured

profile, you can pass the --profile-name parameter instead of a profile name to the

azure- cli as shown in Listing 5-7.

Listing 5-7. azure-cli command to create a Data Controller using a custom config

az arcdata dc create --connectivity-mode Indirect `

 --name arc-dc-local `

 --k8s-namespace arc `

 --subscription <Subscription> `

 --resource-group arcBook `

 --location eastus `

 --profile-name PATH `

 --use-k8s

Whichever way you choose, the CLI will first ask you for the username and password

to be used (potentially also to accept the license agreement) and then start with the

deployment process. The duration of the process will depend on your target machine’s

performance and Internet connection, and when done, the output should look similar to

what we see in Figure 5-4.

Chapter 5 DeployIng a Data Controller In InDIreCt MoDe

95

Figure 5-4. Output of a Data Controller deployment

If you want to avoid being prompted for EULA, usernames, and passwords, you can

also provide them in environment variables:

• ACCEPT_EULA: Set this to “Y”

• AZDATA_USERNAME: The username to be used, for example,

arcadmin

• AZDATA_PASSWORD: A strong password of your choice

• AZDATA_LOGSUI_USERNAME and AZDATA_LOGSUI_PASSWORD:

Username and password for Logs Dashboard

• AZDATA_METRICSUI_USERNAME and AZDATA_METRICSUI_

PASSWORD: Username and password for Metrics Dashboard

Note MetrICSUI and logSUI will fall back to the aZData username/password if
they aren’t provided.

This would make the azure-cli use those values instead of interactively prompting

you. When using environment variables, you can provide dedicated users for the Logs

UI, the Metrics UI, and the Controller itself. When entering them interactively, they will

all use the same credentials.

If you want to monitor the deployment on the Kubernetes end, you can run the

kubectl command in Listing 5-8 to follow the progress.

Listing 5-8. Monitor deployment status using kubectl

kubectl get pods -n arc --watch

Chapter 5 DeployIng a Data Controller In InDIreCt MoDe

96

Using the --watch switch, the output will keep updating whenever the status or

number of ready containers in a Pod changes. The output will look like Figure 5-5 and

will constantly update when a Pod’s status changes.

Figure 5-5. Output of Listing 5-8

Once the deployment has finished, you can use az to, for example, retrieve the

Controller’s endpoints using Listing 5-9.

Listing 5-9. azure-cli command to retrieve a list of endpoints

az arcdata dc endpoint list -o table -k arc

This will show you the endpoints that we can later on use to monitor our Cluster,

similar to the output in Figure 5-6.

Figure 5-6. List of Data Controller endpoints

Your first Data Controller is now ready, and we’ll show you in the upcoming chapters

how you can start using it by deploying data instances to it!

 Deployment Through Azure Data Studio
If you prefer a GUI-driven approach, you can use Azure Data Studio for that.

Chapter 5 DeployIng a Data Controller In InDIreCt MoDe

97

Note If you are using the nodeport service type, you need to ensure that
each Data Controller has different port numbers in the control.json file before
deployment. you can’t have more than one Data Controller on the same Kubernetes
Cluster using the same nodeport port numbers as they would have a conflict about
the endpoint’s ports!

Let’s begin the process of deploying a Data Controller in Azure Data Studio. You can

do that by navigating to the AZURE ARC CONTROLLERS section on the connections tab

and click “+” as shown in Figure 5-7.

Figure 5-7. Start Arc Controller Deployment Wizard

The wizard will first confirm that you want to deploy data as shown in Figure 5-8.

Chapter 5 DeployIng a Data Controller In InDIreCt MoDe

98

Figure 5-8. Arc Controller Deployment Wizard – select deployment options

It will then verify that all required tools have been installed in the correct version as

shown in Figure 5-9.

Figure 5-9. Arc Controller Deployment Wizard – prerequisites

In the next step (Figure 5-10), you will set the Kubernetes context to be used for this

deployment.

Chapter 5 DeployIng a Data Controller In InDIreCt MoDe

99

Figure 5-10. Arc Controller Deployment Wizard – step 2

This will be followed by the configuration profile to be used as shown in Figure 5-11.

Figure 5-11. Arc Controller Deployment Wizard – step 3

The fourth step, which is shown in Figure 5-12, will ask for the Azure configuration to

be used for deployment. This consists of your Azure account, subscription, and resource

group as well as the location to be used.

Chapter 5 DeployIng a Data Controller In InDIreCt MoDe

100

Figure 5-12. Arc Controller Deployment Wizard – step 4

Step 5 (see Figure 5-13) will define the controller configuration, so the Namespace

to be used within Kubernetes, the name of the Data Controller to make it recognizable

in the Azure Portal, the Storage Class and infrastructure type, a username, as well as the

password for this Controller.

Chapter 5 DeployIng a Data Controller In InDIreCt MoDe

101

Figure 5-13. Arc Controller Deployment Wizard – step 5

The final step 6 will simply provide you a summary of your chosen settings as shown

in Figure 5-14.

Chapter 5 DeployIng a Data Controller In InDIreCt MoDe

102

Figure 5-14. Arc Controller Deployment Wizard – step 6

You can confirm these settings using the “Script to notebook” button at the bottom

which will create a python-based Jupyter Notebook which can be executed using the

“Run all” button (see Figure 5-15) or deploy right away using the “Deploy” button.

Figure 5-15. Run all button for a Jupyter Notebook in Azure Data Studio

Since we already deployed a Data Controller, we can skip this part.

In Azure Data Studio, we can also add our existing Controller so it can be managed

from here. To do so, click the “Connect Controller” button as shown in Figure 5-16.

Chapter 5 DeployIng a Data Controller In InDIreCt MoDe

103

Figure 5-16. Add Arc Controller to Azure Data Studio

This will trigger a dialog that requires your Controller’s Namespace and Cluster (see

Figure 5-17).

Figure 5-17. Add Arc Controller to Azure Data Studio – connection details

Once you’ve provided these settings and added the Controller, it will show up in ADS

(see Figure 5-18).

Chapter 5 DeployIng a Data Controller In InDIreCt MoDe

104

Figure 5-18. Arc Data Controller showing in Azure Data Studio

If you right-mouse-click the Controller and select “manage,” the Controller’s settings

will be shown.

On the settings page, you will once again see its endpoint, Namespace, etc. An

example can be seen in Figure 5-19.

Figure 5-19. Arc Data Controller Management page in Azure Data Studio

You have now deployed an Arc Data Controller and added it to the inventory that can

be managed from Azure Data Studio.

 Summary and Key Takeaways
In this chapter, we’ve deployed our first Azure Arc Data Controller – in indirect mode.

The next chapter, on the other hand, will walk you through the setup of a directly

connected Cluster.

Chapter 5 DeployIng a Data Controller In InDIreCt MoDe

105
© Ben Weissman and Anthony E. Nocentino 2022
B. Weissman and A. E. Nocentino, Azure Arc-enabled Data Services Revealed,
https://doi.org/10.1007/978-1-4842-8085-0_6

CHAPTER 6

Deploying a Data
Controller in Direct Mode
While we’ve started deploying our first Data Controller in the previous chapter, where

we’ve used the indirectly connected mode, let’s also take a look at direct mode Data

Controllers. Unlike an indirectly connected Controller, a direct mode Controller will

constantly be connected to the Azure Portal, meaning that you don’t have to manually

upload any usage or log data and also can use this Controller’s data for real-time analysis

and alerting.

Note Depending on the type of Kubernetes Cluster you are using, you may not
be able to deploy this direct mode Data Controller to the same Cluster due to
conflicting ports and resources.

If you are using a kubeadm-based Cluster as described in this book, delete the
indirectly connected Data Controller first, or deploy a second Kubernetes Cluster.
While it is possible to run a direct and indirect Data Controller on the same Cluster
in parallel, this requires a few extra steps, and the use cases for this are so slim
that it’s out of scope for this book.

 Get Your Kubernetes Cluster Azure Arc-enabled
The first requirement for a Data Controller to be deployable in direct mode is for your

Kubernetes Cluster to be Azure Arc-enabled. As explained in Chapter 2, Azure Arc has a

multitude of offerings, one of them being Azure Arc-enabled Kubernetes.

https://doi.org/10.1007/978-1-4842-8085-0_6#DOI

106

To make the Cluster from your current kubectl Cluster context Arc-enabled, you can

use the command shown in Listing 6-1, providing the name for the Cluster in Azure as

well as the resource group and location where its metadata should be stored.

Listing 6-1. azure-cli command to make a Kubernetes Cluster Arc-enabled

az connectedk8s connect --name kubeadm --resource-group arcBook

 --location eastus

This results in an output similar to the one in Figure 6-1.

Figure 6-1. Output of Listing 6-1

You can also list all Arc-enabled Kubernetes Clusters in a resource group using the

command in Listing 6-2.

Listing 6-2. azure-cli command to list the Arc-enabled Kubernetes Clusters in a

resource group

az connectedk8s list --resource-group arcBook --output table

As you can see in Figure 6-2, our kubeadm Cluster has been onboarded and is

showing in the output of our command.

Figure 6-2. Output of Listing 6-2

The onboarding or Arc enablement created a Namespace called Azure Arc in our

Cluster including a variety of Deployments and Pods which we can list and verify using

the command in Listing 6-3.

Chapter 6 DeployIng a Data Controller In DIreCt MoDe

107

Listing 6-3. kubectl command to list the Deployments and Pods in the Arc-

enabled Namespace

kubectl get deployments,pods -n azure-arc

Figure 6-3 is showing the result of that command.

Figure 6-3. Output of Listing 6-3

Once we have successfully connected the Cluster, we also need to enable the

custom-locations feature using the command from Listing 6-4. This command doesn’t

create a custom location yet – it only enables the Cluster to allow the creation of them.

A custom location is basically a pointer to our Kubernetes Cluster from Azure so we can

address this Cluster when deploying our Data Controller, and while we could create

this location from the command line as well, we’ll simply do that as part of the Data

Controller’s deployment process from the Azure Portal later.

Chapter 6 DeployIng a Data Controller In DIreCt MoDe

108

Listing 6-4. azure-cli command to enable the custom-locations feature

az connectedk8s enable-features -n kubeadm -g arcBook --features cluster-

connect custom-locations

Once the feature has been successfully enabled, the CLI will report back as shown in

Figure 6-4.

Figure 6-4. Output of Listing 6-4

The last requirement on our Cluster itself is the Arc-enabled Data Services extension

which will bring in the Custom Resource Definitions into your Kubernetes Cluster and

the bootstrapper, which can be created using the command in Listing 6-5. This step has

to happen once on every Kubernetes Cluster that you want to use directly connected

Arc-enabled Data Services on.

Listing 6-5. azure-cli command to install the Arc-enabled Data Services

Kubernetes extension

az k8s-extension create --name arc-data-location `

--extension-type microsoft.arcdataservices `

--cluster-type connectedClusters `

--cluster-name kubeadm `

--resource-group arcBook `

--scope cluster `

--release-namespace arc-direct `

--config Microsoft.CustomLocation.ServiceAccount=sa-bootstrapper `

--auto-upgrade false

It is important that this step succeeds, so double-check its status using the command

in Listing 6-6.

Chapter 6 DeployIng a Data Controller In DIreCt MoDe

109

Listing 6-6. azure-cli command to show the status of an Arc-enabled Data

Services Kubernetes extension

az k8s-extension show --name arc-data-location --cluster-type

connectedClusters -c kubeadm -g arcBook -o table

As you can see in Figure 6-5, the ProvisioningState is showing as Succeeded – do not

proceed until this is the case, which can take a few minutes.

Figure 6-5. Output of Listing 6-6

As mentioned, this also created a bootstrapper in our Cluster which we can list using

the kubectl command in Listing 6-7.

Listing 6-7. kubectl command to list all Pods in a Namespace

kubectl get pods -n arc-direct

The output, which should look similar to the one in Figure 6-6, confirms that our

bootstrapper Pod has been created and is running.

Figure 6-6. Output of Listing 6-7

Our Kubernetes Cluster is now ready for the deployment of a directly connected

Azure Arc Data Controller.

 Get Your Azure Subscription Ready
In addition to the requirements to your Kubernetes Cluster, there is also a requirement in

your Azure subscription: we need a Log Analytics Workspace. Should you already have

one, feel free to use that. Otherwise, you can create one using the command in Listing 6-8.

The important part is that the Workspace needs a unique name.

Chapter 6 DeployIng a Data Controller In DIreCt MoDe

110

Listing 6-8. azure-cli command to create a Log Analytics Workspace

az monitor log-analytics workspace create -g arcBook -n arcBookLAWS

The result, which should look similar to the one in Figure 6-7, is in JSON format.

Figure 6-7. Output of Listing 6-8

To access this workspace, we need its primary access key, which can be retrieved

through the command in Listing 6-9.

Listing 6-9. azure-cli command to retrieve a workspace’s shared keys

az monitor log-analytics workspace get-shared-keys -g arcBook -n

arcBookLAWS

The output will again be in JSON format as the one in Figure 6-8. Copy the value of

the primarySharedKey, as we’ll need it when setting up our Data Controller.

Figure 6-8. Access key for Azure Log Analytics Workspace

Our Log Analytics Workspace is now also ready to be used with our Data Controller.

Chapter 6 DeployIng a Data Controller In DIreCt MoDe

111

 Deploy a Direct Mode Data Controller
Since a directly connected Azure Arc Data Controller is basically an Azure resource like

any other (despite only its metadata residing in Azure), we could also deploy it through

the CLI or an ARM template, for example.

We’ll however focus on the approach through the Azure Portal. Feel free to reuse the

resulting ARM template from this process – we just think that it is super cool how you

can deploy a resource online in the Portal which will then show up in our on-premises

Kubernetes Cluster.

To start the deployment, navigate to the Create Azure Arc Data Controller blade in

the Portal at https://portal.azure.com/#create/Microsoft.DataController, and

select that you’re planning to use an Azure Arc-enabled Kubernetes Cluster, so direct

connectivity mode, as shown in Figure 6-9.

Figure 6-9. Create Azure Arc Data Controller in Azure Portal

Chapter 6 DeployIng a Data Controller In DIreCt MoDe

https://portal.azure.com/#create/Microsoft.DataController

112

On the next screen, as visible in Figure 6-10, you’ll start by providing a subscription

and resource group to be used for your Data Controller’s metadata as well as a name for

the Controller.

Figure 6-10. Data Controller details

On the same screen, you will need to either select the custom location to be used or

create one as shown in Figure 6-11.

Chapter 6 DeployIng a Data Controller In DIreCt MoDe

113

Figure 6-11. Create new custom location

Still on the same, first screen, we will also provide the Kubernetes configuration –

information like Storage Classes, etc., which we’ve provided through the command line

in the previous chapter as well as the service type and the credentials to be used for the

built-in dashboards for metrics and logs (Figure 6-12).

Chapter 6 DeployIng a Data Controller In DIreCt MoDe

114

Figure 6-12. Kubernetes configuration and dashboard credentials

Moving on to the next screen “Additional Settings” (see Figure 6-13), we can enable

or disable the automatic uploads of metrics and logs. It is highly recommended to keep

them both enabled to make sure you benefit from features like real-time alerts. When

activating them, you will also need to select the Log Analytics Workspace to be used and

provide its primary key which we’ve retrieved earlier through Listing 6-9.

Chapter 6 DeployIng a Data Controller In DIreCt MoDe

115

Figure 6-13. Metrics and logs upload

In the last configuration step, visible in Figure 6-14, you can provide tags for the

Data Controller which is especially helpful when using multiple Controllers in different

locations.

Chapter 6 DeployIng a Data Controller In DIreCt MoDe

116

Figure 6-14. Azure tags

From there, you can finalize the deployment and create the Data Controller which

will confirm back similarly as shown in Figure 6-15.

Chapter 6 DeployIng a Data Controller In DIreCt MoDe

117

Figure 6-15. Deployment complete

Our new Azure Arc Data Controller will also show up in our resource group

immediately as you can see in Figure 6-16.

Figure 6-16. Data Controller showing in Azure Resource Group

Chapter 6 DeployIng a Data Controller In DIreCt MoDe

118

This only means, however, that the deployment command has been sent to the

Kubernetes Cluster. We can monitor the actual deployment through kubectl using the

command in Listing 6-10.

Listing 6-10. kubectl command to list Pods in Namespace

kubectl get pods -n arc-direct

As you can see in Figure 6-17, the first few Pods have been started to create alongside

our pre-existing bootstrapper.

Figure 6-17. Pods in Arc-direct Namespace during deployment

If you rerun the command from Listing 6-10 after a while, you should see all the

Pods of a Data Controller, similar to the ones from our indirect mode deployment in the

previous chapter, shown in Figure 6-18.

Figure 6-18. Pods in Arc-direct Namespace after deployment

You can also verify the status of this Data Controller using the command from

Listing 6-11.

Chapter 6 DeployIng a Data Controller In DIreCt MoDe

119

Listing 6-11. azure-cli command to retrieve a Data Controller’s status

az arcdata dc status show --k8s-namespace arc-direct --use-k8s

As shown in Figure 6-19, the Controller is showing as ready.

Figure 6-19. Data Controller status

To add this Cluster in Azure Data Studio, simply use the same process as when

adding the indirect mode Controller and provide the Controller’s Kubernetes

Namespace as shown in Figure 6-20.

Figure 6-20. Connect existing Data Controller in ADS

In Azure Data Studio, after adding the Controller, we can also verify again that this

Controller is in direct connection mode (Figure 6-21).

Chapter 6 DeployIng a Data Controller In DIreCt MoDe

120

Figure 6-21. Data Controller details in ADS

Our direct connected Data Controller is now manageable and accessible through the

Azure Portal, the command line, and Azure Data Studio.

 Summary and Key Takeaways
This and the previous chapter got us another big step closer to working with our first

instance of Arc-enabled Data Services by deploying Data Controllers in either direct or

indirect mode.

Now, let’s bridge the last gap to get ready doing something useful with our Arc-

enabled Data Services deployment in the next chapter by deploying a SQL Managed

Instance into our Controller.

Chapter 6 DeployIng a Data Controller In DIreCt MoDe

121
© Ben Weissman and Anthony E. Nocentino 2022
B. Weissman and A. E. Nocentino, Azure Arc-enabled Data Services Revealed,
https://doi.org/10.1007/978-1-4842-8085-0_7

CHAPTER 7

Deploying an Azure
Arc- enabled SQL
Managed Instance
With our Data Controllers ready and waiting, we can now go ahead and start deploying

a first database instance so we can start working with our Arc-enabled Data Services

installation.

Similar to the deployment of the Data Controller, we can either use the command

line or a wizard in Azure Data Studio or the Azure Portal for this.

Note All our instance deployments will target an indirectly connected Data
Controller unless it’s stated otherwise.

 Deployment Through the azure-cli
A new Azure Arc-enabled SQL Managed Instance can be deployed through a simple

azure-cli command like the one in Listing 7-1. The only required parameters are the

name of the instance and the Kubernetes Namespace. The Namespace will be created

for you; if it already exists, it must be empty.

Listing 7-1. azure-cli command to create a new Azure Arc SQL MI

az sql mi-arc create -n mi-1 --k8s-namespace arc --use-k8s

https://doi.org/10.1007/978-1-4842-8085-0_7#DOI

122

If you look at the command in Listing 7-2 which would create a regular Managed

Instance, you can tell how Azure-native the Arc commands really are.

Listing 7-2. azure-cli command to create a new Azure SQL MI

az sql mi create -n mi-1 …

The azure-cli will again prompt you for a password unless you provided it through

the AZDATA_PASSWORD environment variable and then proceed with the deployment

as shown in Figure 7-1.

Figure 7-1. Output of SQL MI deployment command

Once the deployment – which should only take a few minutes – has completed, we

can run a quick az command to list all our instances, which is just this one for now, as

shown in Listing 7-3.

Listing 7-3. azure-cli command to list all SQL MIs in the current Controller

az sql mi-arc list --k8s-namespace arc --use-k8s -o table

The output (similar to Figure 7-2) will include the instance’s endpoint, name, state,

and its number of replicas.

Figure 7-2. List of SQL Managed Instances in the current Controller

If we refresh our Data Controller’s management page in Azure Data Studio as shown

in Figure 7-3, the instance will also show up.

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

123

Figure 7-3. Arc Data Controller management page in ADS

When clicking on the instance, we will be led to the instance’s dashboard which

will once again show its endpoint, status, etc., as displayed in Figure 7-4. The external

endpoint shown would also be the endpoint you’d use to connect to this instance using

any application including Azure Data Studio or SQL Server Management Studio. Since

this is a kubeadm-based Kubernetes Cluster, it will be a NodePort Service. This may

differ on other Kubernetes types. On Azure Kubernetes Services, for example, the default

would be a LoadBalancer Service.

Figure 7-4. SQL MI management page in ADS

Instead of using az or Azure Data Studio, you could also look at the Pods that have

been deployed using kubectl as shown in Listing 7-4.

Listing 7-4. kubectl command to list Pods in Namespace

kubectl get pods -n <Namespace>

The result would look similar to the one in Figure 7-5.

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

124

Figure 7-5. Pods in arc Namespace

Of course, the azure-cli also accepts additional parameters when creating a new

Azure Arc-enabled SQL Managed Instance, for example, the Storage Classes.

One of the most interesting parameters though is replicas. By default, an Arc SQL

Managed Instance will deploy using the General-Purpose tier, so with a single replica.

By providing the replicas switch, you can increase the number of replicas to two or three

which will make your instance use the Business-Critical tier and automatically deploy an

Availability Group with the given number of replicas as shown in Listing 7-5.

Listing 7-5. azure-cli command to create a new SQL Managed Instance with

parameters

az sql mi-arc create -n mi-2 --k8s-namespace arc --use-k8s

 --storage-class-logs local-storage --storage-class-data local-storage

 --storage-class-datalogs local-storage --replicas 3

With regard to picking appropriate Storage Classes, traditional DBA storage/file

layout applies here, and we’re using local-storage for the example only. As you can see

in Figure 7-6, where we ran kubectl get pods, this will create three rather than just one

Pod for your instance, each of them representing a replica. In addition, every Azure Arc-

enabled SQL Managed Instance also comes with an <name>-ha-0 Pod which controls

high availability.

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

125

Figure 7-6. Pods in Arc Namespace

 Deployment Through Azure Data Studio
Azure Data Studio can also be used to run a full deployment. On a Data Controller’s

dashboard, we can find a button “New Instance” (see Figure 7-7).

Figure 7-7. New Instance deployment button in Azure Data Studio

This triggers another wizard which will first ask us what kind of an instance we want

to create. Pick an Azure SQL Managed Instance as illustrated in Figure 7-8 and accept

the terms.

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

126

Figure 7-8. Instance deployment wizard in ADS

The following screen will ask us to accept the license agreement and check for the

prerequisites as shown in Figure 7-9.

Figure 7-9. Instance deployment wizard in ADS

This is followed by the configuration options like Storage Classes for each data type,

CPU, and memory requests and limits for this instance (see Figure 7-10). If needed, as

introduced in Chapter 2, you could assign different Storage Classes for logs, data, and

data logs (transaction logs).

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

127

Figure 7-10. Parameters for SQL MI deployment in Azure Data Studio

Completing this page will give you the option to deploy this instance immediately or

generate another notebook (just like when we created the Data Controller) which can be

run using the “Run all” button as shown in Figure 7-11.

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

128

Figure 7-11. “Run all” button to trigger SQL MI deployment

While the deployment is running, we can see the instance being created when

refreshing the Data Controller’s status page (see Figure 7-12).

Figure 7-12. New SQL MI showing as “Creating” in Azure Data Studio

Alternatively, we can also monitor the progress using kubectl get pods --watch

again (see Figure 7-13).

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

129

Figure 7-13. Output of Kubernetes Pod list

Once the deployment completes, the instance is ready for use.

 Deployment Through Kubernetes Tools
As Azure Arc-enabled Data Services aren’t only Azure but also Kubernetes native,

they can also be deployed through Kubernetes tools, for example, kubectl and a YAML

manifest.

Listing 7-6 describes a SQL Managed Instance for us in a YAML manifest.

Listing 7-6. YAML manifest for Arc SQL Managed Instance

apiVersion: sql.arcdata.microsoft.com/v2

kind: SqlManagedInstance

metadata:

 name: mi-4

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

130

spec:

 security:

 adminLoginSecret: mi-4-login-secret

 scheduling:

 default:

 resources:

 limits:

 cpu: "2"

 memory: 4Gi

 requests:

 cpu: "1"

 memory: 2Gi

 services:

 primary:

 type: NodePort

 storage:

 backups:

 volumes:

 - className: local-storage

 size: 5Gi

 data:

 volumes:

 - className: local-storage

 size: 5Gi

 datalogs:

 volumes:

 - className: local-storage

 size: 5Gi

 logs:

 volumes:

 - className: local-storage

 size: 5Gi

As we also need to authenticate against that Managed Instance, we’ll need the

username and password for it to be stored in a Kubernetes secret. We can create this

Kubernetes secret using the kubectl command in Listing 7-7.

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

131

Listing 7-7. kubectl command to create Kubernetes secret

kubectl create secret generic mi-4-login-secret `

 --from-literal=password=<pw> `

 --from-literal=username=<user> `

 -n arc

Once that has completed, we can use kubectl and our manifest to create our instance

(Listing 7-8).

Listing 7-8. kubectl command to create a SQL Managed Instance from YAML

kubectl apply -f mi-4.yaml -n arc

As you can see in Figure 7-14, this will equally create a Managed Instance for us in

our Arc Namespace.

Figure 7-14. Arc Pods in Kubernetes Namespace

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

132

 Deployment Through the Azure Portal
Another way of deploying Arc Instances is through the Azure Portal.

Note Deployment through the Azure portal requires a directly connected Cluster
as showcased in the previous chapter.

Navigate to the “Create a Resource” section in the Portal at https://portal.azure.

com/#create/hub.

From there, search for “arc sql managed instance” as shown in Figure 7-15.

Figure 7-15. Azure Portal – Create a resource

Select the only result showing up (Figure 7-16).

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

https://portal.azure.com/#create/hub
https://portal.azure.com/#create/hub

133

Figure 7-16. Azure Portal – Create Azure SQL Managed Instance - Azure Arc

And click “Create” on the subsequent screen (Figure 7-17).

Figure 7-17. Azure Portal – Create Azure SQL Managed Instance - Azure Arc

On the first screen, you will provide basic information like the subscription and

resource group to be used but also the name of the instance and the custom location

(Figure 7-18).

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

134

Figure 7-18. Azure Portal – Create Azure SQL Managed Instance - Azure
Arc – Basics

On the Configure compute + storage page (Figure 7-19), you can not only define

your Storage Classes, requests, and limits, but this is also where you’d pick the tier

and therefore decide on the number of replicas. Based on these settings, you’ll also be

provided an estimated cost.

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

135

Figure 7-19. Azure Portal – Create Azure SQL Managed Instance - Azure
Arc – Configure compute + storage

The last information that you need to key in (see Figure 7-20) are the username and

password for the admin account.

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

136

Figure 7-20. Azure Portal – Create Azure SQL Managed Instance - Azure Arc –
Administrator account

Unless you want to provide any Azure tags for this instance, you can go straight to the

Review + create screen and deploy your instance as shown in Figure 7-21.

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

137

Figure 7-21. Azure Portal – Create Azure SQL Managed Instance - Azure
Arc – Review + create

After deployment, the instance will show up in your resource group immediately

(Figure 7-22).

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

138

Figure 7-22. SQL Managed Instance in Azure Resource Group

The actual deployment however happened on our local Kubernetes Cluster of

course, so check out the Pods in your Arc Namespace using the command in Listing 7-9.

Listing 7-9. List Pods in Namespace

kubectl get pods -n arc-direct

You will see that the new Managed Instance has indeed been created on this Cluster

and in this Namespace as illustrated in Figure 7-23.

Figure 7-23. Arc Pods in Kubernetes Namespace

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

139

 Active Directory Authentication
At the time of writing, Active Directory authentication was still in preview. You can find

the most recent step-by-step guide in the official docs at https://docs.microsoft.com/

en- us/azure/azure- arc/data/active- directory- introduction.

 Getting Data into Your Instance
If you want to restore an existing database in your instance, the first step in most cases

is to copy this database’s backup into your container – or rather onto the storage behind

your container. Since Arc SQL Managed Instance is the lift-and-shift version of SQL

Server, to get data into an Arc SQL Managed Instance, you can simply use a standard

SQL Server backup.

 Copying Backup Files into Your Instance
As so often, there are multiple ways of getting your backup files into your Arc SQL

Managed Instance, and we’ll again give you some options. If you have a backup file that

can be downloaded using HTTP, you can use kubectl to trigger a download with wget in

your container (see Listing 7-10).

Listing 7-10. Code to download a file using wget within a container

kubectl exec mi-1-0 -n arc -c arc-sqlmi -- wget https://github.

com/Microsoft/sql-server-samples/releases/download/adventureworks/

AdventureWorks2019.bak -O /var/opt/mssql/data/AdventureWorks2019.bak

If you have a local backup file, on the other hand, you can also use kubectl to copy

this file to the container as shown in Listing 7-11.

Listing 7-11. Code to copy a local file to a container

kubectl cp c:\files\AdventureWorks2017.bak arc/arc-mi-01-0:var/opt/mssql/

data/AdventureWorks2017.bak -c arc-sqlmi

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

https://docs.microsoft.com/en-us/azure/azure-arc/data/active-directory-introduction
https://docs.microsoft.com/en-us/azure/azure-arc/data/active-directory-introduction

140

Both techniques lead to the backup file sitting in your container. Make sure that there

is enough disk space in the container and delete the backup file when you’re finished.

It usually depends on where your backup is originally coming from to make a decision

which way makes more sense for you.

 Restoring Backup Files in Your Instance
If you want to restore from the command line, you could either use a tool like sqlcmd

directly from your client or use kubectl once again to run sqlcmd directly on the SQL

Instance as shown in Listing 7-12.

Listing 7-12. Code to run sqlcmd within a container to restore a database

from backup

kubectl exec mi-1-0 -n arc -c arc-sqlmi -- /opt/mssql-tools/bin/

sqlcmd -S localhost -U arcadmin -P "P@ssw0rd" -Q "RESTORE DATABASE

[AdventureWorks2019] FROM DISK = N'/var/opt/mssql/data/AdventureWorks2019.

bak' WITH FILE = 1, MOVE N'AdventureWorks2017' TO N'/var/opt/mssql/data/

AdventureWorks2019.mdf', MOVE N'AdventureWorks2017_log' TO N'/var/opt/

mssql/data-log/AdventureWorks2019_log.ldf', NOUNLOAD, STATS = 5"

You could also connect to the instance in Azure Data Studio and use the restore

wizard or any other tool that can connect to a SQL endpoint.

Note When connecting to a SQl Server with a different port than the default,
when copying the endpoint, make sure to use a comma rather than a colon to
separate the ip address and the port.

One other option would of course also be to restore the database from an Azure Blob

Storage using the RESTORE FROM URL command. What you could do in addition to that

would be to add another Persistent Volume that can be an external share or a dedicated

backup disk which especially makes sense for larger backup and restore operations

without bloating the containers storage or having to copy backups around.

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

141

 Managed Backup and Restore
Every Azure Arc-enabled SQL Managed Instance comes with a built-in automatic

backup feature which is enabled by default. This means that every single database that

gets created or restored will automatically receive an initial full backup followed by

scheduled differential and transaction log backups. This concept is very similar to the

managed backup in an Azure SQL Managed Instance and allows you to perform a point-

in- time restore to any specific timestamp within your retention period.

A restore will always be performed into a new database.

At the time of writing, full backups are taken once a week, differential backups are

taken every 12 hours, and transaction log backups every 5 minutes with these settings

not being configurable.

While all backup settings can be found and controlled through both the azure-cli as

well as native Kubernetes tools, the easiest way to get started is the backup section of the

instance’s settings in Azure Data Studio as shown in Figure 7-24.

Figure 7-24. Backup settings

From there, you can change the retention time (Figure 7-25) for point-in-time

recovery backups from its default (7 days) to anything from 1 to 35 days. Backup files

older than the configured retention period are automatically deleted.

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

142

Figure 7-25. Configure retention policy

Changing the retention time to zero disables managed backups on this instance.

You could also adjust that setting by editing the instance’s YAML manifest or by

specifying the --retention-days property in the azure-cli.

You can also use Azure Data Studio or any of the other tools to trigger a restore (see

Figure 7-26).

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

143

Figure 7-26. Restore Database in Azure Data Studio

A restore requires a source database, destination database, and the restore point

(timestamp).

Alternatively, you could, for example, also use the azure-cli and a command similar

to the one in Listing 7-13 to restore your backup.

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

144

Listing 7-13. azure-cli command to restore a database from a point-in-

time backup

az sql midb-arc restore --managed-instance <SQL managed instance> --name

<source DB name> --dest-name <Name for new db> --k8s-namespace <namespace

of managed instance> --time "YYYY-MM-DDTHH:MM:SSZ" --use-k8s

The target MI must exist before running a restore. When you delete an Azure Arc SQL

Managed Instance, the backup history will be kept until its retention period has elapsed.

The output of the previous listing should look similar to the one in Figure 7-27. The

important part is the state. If this doesn’t show Completed, something went wrong with

your restore.

Figure 7-27. Output of azure-cli command to restore a database

You can get an overview of all the restore tasks in your Namespace by running the

command shown in Listing 7-14.

Listing 7-14. kubectl command to list all SQL MI Restore Tasks in a Namespace

kubectl get sqlmirestoretask -n arc

If everything worked fine, the task should appear with a status of completed as

illustrated in the example in Figure 7-28.

Figure 7-28. Status of a SQL MI Restore Task

To retrieve more details, especially in the case of a failed restore task, you can use the

command in Listing 7-15 to describe the task and analyze what made it fail.

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

145

Listing 7-15. kubectl command to describe a SQL MI Restore Task

kubectl describe sqlmirestoretask <nameoftask> -n <namespace>

Of course, the restored database also becomes visible in Azure Data Studio as visible

in Figure 7-29.

Figure 7-29. Restored Database showing up in Azure Data Studio

A restore task could of course also be created through native Kubernetes tools just

like you could also adjust settings like the retention policy from there.

 Removing a Deployed Managed Instance
If you want to remove an existing deployed Managed Instance, you can do so through its

management page in Azure Data Studio as shown in Figure 7-30.

Figure 7-30. Delete button for an existing SQL MI in ADS

Before the instance gets deleted, you will be prompted and asked to confirm by

typing the name of the instance (see Figure 7-31).

Figure 7-31. Confirmation dialog to delete an existing SQL MI in ADS

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

146

Alternatively, you can use another az command as shown in Listing 7-16.

Listing 7-16. azure-cli command to delete an existing SQL MI

az sql mi-arc delete -n <InstanceName> -k arc --use-k8s

This will be confirmed shortly after with a message similar to the one in Figure 7-32.

Figure 7-32. Output of delete command for an existing SQL MI

Note When deleting an instance through the Cli, there is no additional prompt or
warning.

When deleting an instance, this will only remove its pods but not the storage

(Persisted Volume Claims) that was used by the instance. To delete those as well, we

must first identify the affected PVCs using kubectl as shown in Listing 7-17.

Listing 7-17. kubectl command to list the PVCs of an instance based on labels

kubectl get pvc -n <Namespace> -l <label> -o name

This will return a list of the PVCs used by this instance (see Figure 7-33). This naming

scheme depends on the storage provisioner in use. The ones in our example came

from the local storage provisioner, so yours may look different if you’re using a different

storage subsystem.

Figure 7-33. List of PVCs of an instance

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

147

Using the names of those PVCs, we can then use another kubectl command (see

Listing 7-18) to delete them.

Listing 7-18. kubectl command to delete a PVC based on labels

kubectl delete pvc -n <Namespace> -l <label> -o name

This deletion will also be confirmed by kubectl, and when checking back for any

remaining claims by this instance, we can tell from Figure 7-34 that none should be left.

Figure 7-34. Output of check if all PVCs have been deleted

 Summary and Key Takeaways
Over the course of this chapter, our ramp up building a Kubernetes Cluster and a Data

Controller paid off as we were able to deploy and use our first actual Data Service in Arc

using Azure Arc-enabled SQL Managed Instance.

In the next chapter, we’ll take a look at how this process looks like when deploying an

Azure Arc-enabled PostgreSQL Hyperscale instead.

ChApter 7 Deploying An Azure ArC- enAbleD SQl MAnAgeD inStAnCe

149
© Ben Weissman and Anthony E. Nocentino 2022
B. Weissman and A. E. Nocentino, Azure Arc-enabled Data Services Revealed,
https://doi.org/10.1007/978-1-4842-8085-0_8

CHAPTER 8

Deploying Azure
Arc- enabled PostgreSQL
Hyperscale
While Chapter 7 was handling Azure Arc-enabled SQL Managed Instance, this chapter

will guide us through the necessary steps when it comes to working with PostgreSQL

Hyperscale instead.

 Deployment Through the Command Line
Just like an Azure Arc-enabled SQL Managed Instance, a new PostgreSQL Hyperscale

Server Group can be deployed through a simple az command like the one in Listing 8-1.

The only required parameter is the name of the Server Group.

Listing 8-1. azure-cli command to create a new PostgreSQL Hyperscale

Server Group

az postgres arc-server create --name pg-1 --k8s-namespace arc --use-k8s

Note The same logic as with SQL Managed Instance with regard to the use of
direct vs. indirect mode and the --use-k8s switch applies here, too.

Still, you have full control of the deployment’s settings through command-line

switches if you prefer to do so, as in Listing 8-2.

https://doi.org/10.1007/978-1-4842-8085-0_8#DOI

150

Listing 8-2. azure-cli command to create a new PostgreSQL Hyperscale Server

Group with parameters

az postgres arc-server create --name pg-2 `

--k8s-namespace arc --use-k8s `

--storage-class-data local-storage `

--storage-class-logs local-storage `

--storage-class-backups local-storage `

--workers 4 --port 5432 --engine-version 12 `

--volume-size-data 5Gi --volume-size-logs 5Gi `

--volume-size-backups 5Gi

In either way, the azure-cli will prompt you for a password unless you provided it

through the AZDATA_PASSWORD environment variable and then proceed with the

deployment as shown in Figure 8-1. Every PostgreSQL Hyperscale Server Group has a

default administrative account username called postgres, which is not configurable.

Figure 8-1. Output of PostgreSQL Hyperscale Server Group deployment command

Other than that, there is no difference compared to the deployment of a SQL

Managed Instance.

The Control Node and the Worker Nodes show up as individual Pods using kubectl

(see Figure 8-2). These Nodes are independent from the Kubernetes Nodes!

Figure 8-2. Postgres Pods

ChapTer 8 DepLoyIng azure arC- enabLeD poSTgreSQL hyperSCaLe

151

 Deployment Through Azure Data Studio
Of course, deployment through Azure Data Studio is also an option again. In the wizard

as shown in Figure 8-3, simply pick the PostgreSQL option instead.

Figure 8-3. Instance deployment wizard in ADS

The following screen will check for the prerequisites again, followed by (see Figure 8-4)

collecting the PostgreSQL Hyperscale Server Group-specific settings. Just like when

deploying our SQL Managed Instance before, we will need to provide a name for this

PostgreSQL Hyperscale Server Group and a password. The username is defaulted to

postgres, so this setting won’t be required. A PostgreSQL Hyperscale Server Group

requires you to provide the number of workers. It is defaulted to 0 which would deploy

a one-Node PostgreSQL Hyperscale Server Group, the TCP Port, as well as your Storage

Classes, storage sizes, and CPU and memory requests and limits. As we’ve mentioned in

Chapter 1, these settings will define on how many resources this specific deployment will

allocate on your Kubernetes Cluster.

ChapTer 8 DepLoyIng azure arC- enabLeD poSTgreSQL hyperSCaLe

152

Figure 8-4. Postgres-specific settings

This will result in the option of deploying this right away or to create a notebook

which, when run, will create the new server group.

 Scale Up of a Server Group
If you want to scale up an existing server group by adding more workers, this can be –

you guessed it – achieved just by another small azure-cli command like the one in

Listing 8-3.

ChapTer 8 DepLoyIng azure arC- enabLeD poSTgreSQL hyperSCaLe

153

Listing 8-3. azure-cli command to modify a server group’s number of workers

az postgres arc-server edit --k8s-namespace arc --use-k8s -n pg-1 -w 8

This will update the existing server group while keeping it online, so the service

remains available for queries. Once the Postgres Worker Nodes are available, the

data will automatically be redistributed to these new Nodes by the Hyperscale Shard

Rebalancer.

While an update is running, the affected server group will show as “Updating” in the

server list (see Listing 8-4 and Figure 8-5).

Listing 8-4. azure-cli command to list all PostgreSQL Hyperscale Server Group

in the current controller

az postgres arc-server list --k8s-namespace arc --use-k8s -o table

Figure 8-5. List of PostgreSQL Hyperscale Server Group in the current Controller

The edit command used to rescale the group will report back once the update has

finished and the new workers are ready as shown in Figure 8-6.

Figure 8-6. Output of successful rescaling of a server group

The new workers show up as individual Pods using kubectl (see Figure 8-7), besides

the existing Control Node and Worker Nodes.

ChapTer 8 DepLoyIng azure arC- enabLeD poSTgreSQL hyperSCaLe

154

Figure 8-7. Postgres Worker Pods

The change is also reflected on the server group’s management page in Azure Data

Studio as shown in Figure 8-8. As you can see, this is also showing a Node configuration

of five Nodes – which are again the Controller and the four Worker Nodes within our

PostgreSQL Hyperscale Server Group.

Figure 8-8. PostgreSQL Hyperscale Server Group Management page

Note The number of Worker nodes can only be scaled up; you cannot scale
down an existing group! For this, you’d need to deploy a new server group and
back up/restore your data.

 Removing a Deployed Server Group
To remove a deployed Postgres Server Group, you can use the az command shown in

Listing 8-5.

ChapTer 8 DepLoyIng azure arC- enabLeD poSTgreSQL hyperSCaLe

155

Listing 8-5. azure-cli command to delete an existing PostgreSQL Hyperscale

Server Group

az postgres arc-server delete --k8s-namespace arc -n pg-1 --use-k8s

Alternatively, you can also delete the group from the group’s dashboard in Azure

Data Studio as shown in Figure 8-9.

Figure 8-9. Button to delete an existing PostgreSQL Hyperscale Server
Group in ADS

Both ways can be used to delete an existing instance.

Note Just like with our SQL Managed Instance, deleting the server group will not
delete its persistent Volume Claims. you will need to delete these manually through
kubectl again once you’re sure you won’t need the data anymore.

 Summary and Key Takeaways
So far, we went through the concepts and offerings of Azure Arc-enabled Data Services

and deployed different data instances to it. In our upcoming last chapter, we will look at

how to manage and monitor our services’ performance, how to analyze its log files, and

how to upgrade them to a new version.

ChapTer 8 DepLoyIng azure arC- enabLeD poSTgreSQL hyperSCaLe

157
© Ben Weissman and Anthony E. Nocentino 2022
B. Weissman and A. E. Nocentino, Azure Arc-enabled Data Services Revealed,
https://doi.org/10.1007/978-1-4842-8085-0_9

CHAPTER 9

Monitoring and
Management
So far, we have covered the architecture of Azure Arc-enabled Data Services as well as

the necessary steps to deploy them.

In this last chapter, we will focus how to monitor your Azure Arc-enabled Data

Services by leveraging both local management services as well as Azure’s management

capabilities and also how to upgrade an existing installation.

 Monitoring Through the Data Controller
One way of monitoring your Azure Arc-enabled Data Services is through two built-in

dashboards: the Grafana and the Kibana Dashboard. Using the built-in dashboards is

especially handy when you don’t have a regular or stable connection allowing you to

sync your telemetry data to the Azure Portal on a regular basis. As we’ve mentioned in

Chapter 2, those will be deployed locally to your Kubernetes Cluster while deploying

your Data Controller.

 Retrieving Endpoints
To get the URLs for the dashboards, you need to get their endpoints. You can either get

them through az using the command in Listing 9-1.

Listing 9-1. azure-cli command to retrieve a list of controller endpoints

az arcdata dc endpoint list -o table -k arc

https://doi.org/10.1007/978-1-4842-8085-0_9#DOI

158

Alternatively, every single data instance’s management page in Azure Data Studio

will have a deep link to the instance’s prefiltered dashboards as shown in Figure 9-1.

Figure 9-1. Portal endpoints for an Arc SQL Managed Instance on its
management page in ADS

 Metrics (Grafana Dashboard)
The Grafana Portal provides metrics and insights on the status of its instances. The

credentials to log in to the Portal will be the same ones you also used to connect to your

Cluster in Azure Data Studio.

The SQL Managed Instance metrics as shown in Figure 9-2 provide SQL Server-

specific performance metrics, many of which DBA are already familiar with.

Figure 9-2. Grafana Portal – SQL MI metrics

Chapter 9 Monitoring and ManageMent

159

Statistics show wait time, number of waiting tasks sorted by wait type, transactions

and requests per second, and other valuable metrics. They help to understand more

about the status of a specific SQL MI within the Cluster, which can be selected on the

upper left of the screen.

The other dashboards currently available in the pre-configured Grafana Portal are

shown in Figure 9-3.

Figure 9-3. Built-in dashboards in Grafana Portal

 Log Search Analytics (Kibana)
The Kibana Dashboard as shown in Figure 9-4, on the other hand, provides you an

insight into your Kubernetes log files of the selected instance.

Chapter 9 Monitoring and ManageMent

160

Figure 9-4. Kibana Portal – overview

Kibana is part of the elastic stack. It also provides options to create visualizations

and dashboard on top of your log files. If you want to learn more about it, its website

www.elastic.co/products/kibana is a great starting point!

 Monitoring Through the Azure Portal
With one of the advantages of Arc being the opportunity to manage your whole estate

through a single management interface, if your connectivity allows for it, we highly

recommend linking your deployment to the Azure Portal. This is not going to take away

the option to use Grafana and Kibana, so consider it a very valuable bonus.

 Directly Connected Mode
When in directly connected mode, your log files and metrics will by default be

automatically uploaded and synced to the Azure Portal.

Chapter 9 Monitoring and ManageMent

http://www.elastic.co/products/kibana

161

 Indirectly Connected Mode
In indirectly connected mode, you will first export your Cluster logs and metrics to a

file and then upload this file on a regular basis. This process can also be scheduled and

automated if needed to make sure your telemetry is regularly synchronized with the

Azure Portal.

 Preparing for Upload

The first requirement to run the upload is a service principal which you can create using

the command in Listing 9-2.

Listing 9-2. azure-cli code to create a new service principal

az ad sp create-for-rbac --name http://arc-log-analytics

Note the name of the service principal doesn’t matter. We picked “arc-log-
analytics” simply to make the name reflect its purpose.

Once your service principal has been created, you will get some JSON in return. You

will need some of these values in the subsequent steps. The output should look similar

to the one in Figure 9-5.

Figure 9-5. Output of service principal creation

Next, we need to assign this new principal to the Monitoring Metrics Publisher role

which can be done using the code in Listing 9-3. Make sure to replace the appId with the

appId value from the previous JSON and the subscription with your subscription ID.

Chapter 9 Monitoring and ManageMent

162

Listing 9-3. azure-cli code to assign a service principal to a role

az role assignment create --assignee <appId> --role "Monitoring Metrics

Publisher" --scope subscriptions/<Subscription>

This will result in a JSON output, similar to the one in Figure 9-6, again although

none of this output is required later on.

Figure 9-6. Output of Listing 9-3

In the next step, we create a Log Analytics Workspace using Listing 9-4.

Listing 9-4. azure-cli code to create a Log Analytics Workspace

az monitor log-analytics workspace create -g <ResourceGroup> -n

UniqueLogAnalytics

Note Just like with the service principal, the name doesn’t matter, but it must
be globally unique. if you have deployed a Log analytics Workspace during the
deployment of the directly connected data Controller, you can also reuse this one.
While a data Controller is either directly or indirectly connected, as many of them
as you want can share the same Log analytics Workspace.

This will again result in a JSON output (see Figure 9-7), and we will need the

customerId value from this.

Chapter 9 Monitoring and ManageMent

163

Figure 9-7. Output of Listing 9-4

In addition to the customerId, we will need the workspace’s shared keys which

are not included in the default output but can be retrieved through the command in

Listing 9-5.

Listing 9-5. azure-cli code to retrieve a Log Analytics Workspace’s shared keys

az monitor log-analytics workspace get-shared-keys

-g <ResourceGroup> -n UniqueLogAnalytics

This will return in a last JSON output as shown in Figure 9-8 from which we’ll need

the primarySharedKey.

Figure 9-8. Output of Listing 9-5

Now, you should ideally put the results of some of these values into environment

variables. You can skip this step but would then need to input them manually every

single time which would make automation basically impossible. Those variables are

• SPN_CLIENT_ID: appId from the output of Listing 9-2

• SPN_CLIENT_SECRET: password from the output of Listing 9-2

• SPN_TENANT_ID: tenant from the output of Listing 9-2

• WORKSPACE_ID: customerId from the output of Listing 9-4

Chapter 9 Monitoring and ManageMent

164

• WORKSPACE_SHARED_KEY: primarySharedKey from the output of

Listing 9-5

• SPN_AUTHORITY: https://login.microsoftonline.com

 Uploading Logs, Usage, and Metrics

As mentioned before, the process consists of two steps: first, we’re going to collect the

usage, logs, and metrics for every single deployment and write the result to a JSON

file using the commands in Listing 9-6. The --path parameter will define the name

of the output file, while the --force parameter will overwrite the target file in case it

already exists.

Listing 9-6. azure-cli command to export metrics, usage, and logs to a json file

az arcdata dc export -t metrics --path metrics.json -k arc --force --use-k8s

az arcdata dc export -t logs --path logs.json -k arc --force --use-k8s

az arcdata dc export -t usage --path usage.json -k arc --force --use-k8s

az will confirm the export for each component as you can see in Figure 9-9.

Figure 9-9. Output of Listing 9-6

In the second step, we will upload these JSON files using the commands in

Listing 9-7.

Listing 9-7. azure-cli command to upload metrics and logs from a json file

az arcdata dc upload --path metrics.json

az arcdata dc upload --path logs.json

az arcdata dc upload --path usage.json

In this case, az will confirm the upload for each component as you can see in

Figure 9-10.

Chapter 9 Monitoring and ManageMent

https://login.microsoftonline.com

165

Figure 9-10. Output of Listing 9-7

The upload is now completed. You could now go ahead, create a script file that

combines the export and the upload, and schedule it to run on a regular basis, through

cron, a windows scheduled task, or any other method of your choice to constantly get

your insights pushed and made visible in the portal.

 Monitor Your Resources in the Azure Portal
After uploading your logs and metrics for a resource for the first time, they can be found

by searching in the Azure Portal (see Figure 9-11), side by side with the resources that

were created in direct mode and therefore already showed up before.

Figure 9-11. Arc Managed Instances showing in the Azure Portal

Alternatively, every single data instance’s dashboard in Azure Data Studio will have a

deep link – just like when accessing the built-in dashboards – to the instance in the Azure

Portal as shown in Figure 9-12.

Chapter 9 Monitoring and ManageMent

166

Figure 9-12. Link to an Arc MI in the portal from ADS

In the portal, you will again see the instance’s details like which Data Controller is

managing it as well as subpages for metrics and logs (see Figure 9-13).

Figure 9-13. Single Arc Managed Instance showing in the Azure Portal

Note alerts only work for directly connected Clusters.

On the Metrics page, you can analyze the uploaded metrics, just like you could for an

instance residing in Azure, as you can see in Figure 9-14.

Chapter 9 Monitoring and ManageMent

167

Figure 9-14. Arc SQL Managed Instance showing in the Azure Portal – Metrics

The same logic applies to logs which can be analyzed using Log Analytics as shown

in Figure 9-15.

Figure 9-15. Arc Managed Instance showing in the Azure Portal – Logs

Chapter 9 Monitoring and ManageMent

168

 Upgrading Azure Arc-enabled Data Services
The first thing to check when you want to upgrade to a newer version of Arc-enabled

Data Services is which version you are currently running and which versions would be

available, which can be done using the code from Listing 9-8.

Listing 9-8. azure-cli command to list available upgrades for a Data Controller

az arcdata dc list-upgrades -k arc --use-k8s

The result will look similar to what we see in Figure 9-16.

Figure 9-16. Available upgrades for an Arc Data Controller

In this case, our current version is already the latest version, so there is no need or

even possibility to upgrade this instance.

However, if there would be, the process would be to first upgrade the Data Controller

to the desired version using the command from Listing 9-9.

Listing 9-9. azure-cli command to upgrade a Data Controller

az arcdata dc upgrade [--desired-version]

 [--dry-run]

 [--k8s-namespace]

 [--no-wait]

 [--use-k8s]

Once your Data Controller has been upgraded, you could then upgrade your

individual instances using the command in Listing 9-10.

Chapter 9 Monitoring and ManageMent

169

Listing 9-10. azure-cli command to upgrade a SQL MI

az sql mi-arc upgrade --k8s-namespace

 [--desired-version]

 [--dry-run]

 [--field-filter]

 [--force]

 [--label-filter]

 [--name]

 [--use-k8s]

 Summary and Key Takeaways
In this last chapter, we’ve explored the options of getting an overview of your Azure Arc-

enabled Data Services’ status as well as how to link your deployment to the Azure Portal

to make metrics and log files available for analysis. In our final step, we also checked out

how Azure Arc-enabled Data Services can be upgraded.

Chapter 9 Monitoring and ManageMent

171
© Ben Weissman and Anthony E. Nocentino 2022
B. Weissman and A. E. Nocentino, Azure Arc-enabled Data Services Revealed,
https://doi.org/10.1007/978-1-4842-8085-0

Index

A, B
Arc-enabled Data Services

Architecture, 33
control plane layer, 35
data services layer, 36
hardware layer, 34
Kubernetes layer, 34, 35

Azure Arc
architecture, 28
ARM (see Azure Resource

Manager (ARM))
features, 26, 27
native tools, 31, 32
tooling, 30

Azure Arc-enabled Data Controller
Azure Data Studio, 96–98, 100, 102–104
command line, 90–96
Storage Class, 89, 90

Azure Arc-enabled Data Services
azure-cli extensions/providers, 63
Azure Data Studio, 57, 60–62
compute, 49, 50
deploy, 48
resource group, 63, 64
storage, 51, 52
Ubuntu, 56, 57
Windows tools, 55, 56

Azure Arc-enabled Kubernetes, 38–40,
105, 111

Azure Arc-enabled PostgreSQL
Hyperscale, 30, 36, 46–48, 147, 149

Azure Arc-enabled SQL managed instance
Active Directory authentication, 139
Azure Data Studio, 125, 126, 128, 129
CLI, 121–125
copying backup files, 139, 140
definition, 121
deployed Managed Instance, 145–147
Kubernetes tools, 129–131, 133,

135, 138
managed backup/restore, 141, 142,

144, 145
restoring backup files, 140

Azure Arc-enabled SQL Server, 27, 29
Azure Arc Management Control Plane

data services, 41–43
directly connected mode, 39–41
indirectly connected mode, 37–39

azure-cli, 55, 63
Azure Data Studio, 23, 30, 31, 38, 42, 53, 125
Azure Resource Manager (ARM), 27, 31

C
Chocolatey or “choco,” 5, 54
Cloud Native Computing Foundation

(CNCF), 28
ClusterIP, 10
Container Runtime Interface (CRI),

6, 16, 68
Controllers, 2, 4, 6, 7
Custom Resource Definition (CRD), 5,

32, 40, 108

https://doi.org/10.1007/978-1-4842-8085-0#DOI

172

D, E, F
Data Controller

Azure subscription, 109, 110
Azure tags, 116
dashboard credentials, 114
deploy, 105–109
deploy direct mode, 111–113
metrics and logs, 115
SQL, 43–46

G, H, I, J
Grafana Portal, 158, 159

K
kubeconfig file, 80, 84, 85
Kubernetes

API
definition, 3
objects, 4, 5
primitives, 6–12
server, 5

API objects, 1
Arc-enabled Data Services, 23
benefits, 2, 3
cluster components

architecture, 13
communication patterns, 22
Control Plane Nodes, 13, 14
NAT, 21
resource consumption, 19, 20
scheduling, 16–18
Worker Nodes, 15

definition, 1
Kubernetes Cluster

additional options, 67, 68
considerations, 67

deploy, 66
installation, 67
installation requirements, 68, 69
kubeconfig, 85
kubectl, 84
Linux workstation, 87
package

adding notes, 81, 82
bootstrapping, 79, 80
Control Plane, 78
install/package, 72–75, 77
Pod Network, 78, 80

virtual machine, 70
configuration, 71
swap, 72

Windows workstation, 85–87
Kubernetes primer, 1

L
Linux operating system, 28, 34
LoadBalancer, 10, 11, 123

M
Modern container-based

applications, 1, 23
Monitoring/management

Arc-enabled Data Services, 168, 169
Azure portal, 165, 167

directly connected mode, 160
indirectly connected

mode, 161–165
Data Controller

Kubernetes Cluster, 157
log search, 159
metrics, 158
retrieving endpoints, 157, 158

INDEX

173

N, O
Network Address Translation (NAT), 21
NodePort, 10, 11, 97, 123

P, Q, R
Persistent storage, 7, 9, 34
Persistent Volumes, 11, 83, 84
Platform as a Service (PaaS), 29, 66
Pod, 2–4, 6, 7
PostgreSQL Hyperscale

Azure Data Studio, 151
remove deployed server group,

154, 155

scale up server
group, 152–154

Server Group, 149, 150

S, T, U
Services, Kubernetes, 9–11
Static provisioning/dynamic

provisioning, 12

V, W, X, Y, Z
Virtual machines (VMs), 28, 33, 65,

66, 70, 72

INDEX

	Table of Contents
	About the Authors
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: A Kubernetes Primer
	Introducing Kubernetes
	Benefits of Kubernetes

	The Kubernetes API
	API Objects
	API Server
	Core Kubernetes API Primitives
	Pods
	Controllers
	Services
	Storage
	Storage Provisioning

	Kubernetes Cluster Components
	Exploring Kubernetes Cluster Architecture
	Control Plane Nodes
	Worker Node

	Understanding Scheduling and Resource Allocation
	Scheduling in Kubernetes
	Resource Consumption

	Networking Fundamentals
	Kubernetes Network Model Rules
	Communication Patterns

	Kubernetes Role in Azure Arc-enabled Data Services
	Summary and Key Takeaways

	Chapter 2: Azure Arc-enabled Data Services
	The Challenge
	Introducing Azure Arc
	Azure Arc-enabled Resources
	Azure Arc-enabled Servers
	Azure Arc-enabled Kubernetes
	Azure Arc-enabled SQL Server
	Azure Arc-enabled Data Services

	Tooling
	Azure Tools
	Native Tools

	Introducing Azure Arc-enabled Data Services
	Azure Arc-enabled Data Services Architecture
	Hardware Layer
	Kubernetes Layer
	Azure Arc Management Control Plane Layer
	Data Services Layer

	Azure Arc Management Control Plane Layer: A Closer Look
	Indirectly Connected Mode
	Directly Connected Mode
	Azure Arc-enabled Data Services Management Functions

	Data Services Layer: A Closer Look
	Azure Arc-enabled SQL Managed Instance
	Azure Arc-enabled PostgreSQL Hyperscale

	Deployment Sizing Considerations
	Compute
	Storage

	Summary and Key Takeaways

	Chapter 3: Getting Ready for Deployment
	Prerequisites
	Chocolatey
	Tools on Windows
	Tools on Ubuntu
	Getting Azure Data Studio Ready
	azure-cli Extensions and Providers
	Have a Resource Group in Azure
	Summary and Key Takeaways

	Chapter 4: Installing Kubernetes
	Installation Considerations and Methods
	Where to Deploy?
	Further Considerations
	Installation Methods
	Additional Options

	Installation Requirements
	Network Requirements
	Getting Kubernetes

	Building a Self-Managed Cluster
	Virtual Machine-Based Kubernetes Cluster Requirements
	Getting the VMs Ready
	Virtual Machine Network Configuration
	System Swap Settings
	Software Package Installation
	Installing and Configuring containerd
	Installing and Configuring Kubernetes Packages

	Creating a Control Plane
	Pod Networking
	Bootstrapping Your Control Plane
	Deploying a Pod Network

	Adding Nodes to a Cluster

	Provisioning Storage in Your Cluster
	Accessing Your Cluster with kubectl
	Renaming a kubeconfig Context
	From a Windows Workstation
	From a Linux Workstation

	Summary

	Chapter 5: Deploying a Data Controller in Indirect Mode
	Deciding on a Kubernetes Storage Class
	Deployment Through the Command Line
	Deployment Through Azure Data Studio
	Summary and Key Takeaways

	Chapter 6: Deploying a Data Controller in Direct Mode
	Get Your Kubernetes Cluster Azure Arc-enabled
	Get Your Azure Subscription Ready
	Deploy a Direct Mode Data Controller
	Summary and Key Takeaways

	Chapter 7: Deploying an Azure Arc-enabled SQL Managed Instance
	Deployment Through the azure-cli
	Deployment Through Azure Data Studio
	Deployment Through Kubernetes Tools
	Deployment Through the Azure Portal
	Active Directory Authentication
	Getting Data into Your Instance
	Copying Backup Files into Your Instance
	Restoring Backup Files in Your Instance
	Managed Backup and Restore

	Removing a Deployed Managed Instance
	Summary and Key Takeaways

	Chapter 8: Deploying Azure Arc-enabled PostgreSQL Hyperscale
	Deployment Through the Command Line
	Deployment Through Azure Data Studio
	Scale Up of a Server Group
	Removing a Deployed Server Group
	Summary and Key Takeaways

	Chapter 9: Monitoring and Management
	Monitoring Through the Data Controller
	Retrieving Endpoints
	Metrics (Grafana Dashboard)
	Log Search Analytics (Kibana)

	Monitoring Through the Azure Portal
	Directly Connected Mode
	Indirectly Connected Mode
	Preparing for Upload
	Uploading Logs, Usage, and Metrics

	Monitor Your Resources in the Azure Portal

	Upgrading Azure Arc-enabled Data Services
	Summary and Key Takeaways

	Index

