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About MKM Research Labs 

MKM stands at the forefront of open-source innovation in banking technology, 
mainly focused on addressing the banking sector's critical challenges of physical 
risk management. Founded in January 2025 by Johnny Mattimore, David Kelly, 
and Fearghal McGoveran, MKM consolidated years of prior open-source work 
into a cohesive entity dedicated to developing and donating open-source business 
solutions for finance. 

“We are not in the weather prediction business. Rather, we quantify banking risk by 
modelling the probability distributions of extreme but plausible weather events that 

trigger floods. We focus on assigning accurate probabilities and banking impact 
severities to these tail events, enabling banks to properly assess their exposure to 

hazard-related risks.” - MKM Exco. 

The company's flagship initiative focuses on transforming flood risk management 
through open-source banking technology. Their approach applies capital 
markets technology to physical risk management, enabling flood risk to be 
packaged, priced, and traded in real-time, similar to interest rate and credit 
default swaps. Central to their work is developing a Common Domain Model 
(CDM) implementation that standardises flood and hazard risk data and models, 
including integrating fluid dynamics for flood modelling. 

 MKM leads crucial projects in Physical Risk & Resilience while spearheading the 
extension of the Common Domain Model to property and physical hazards. Their 
work extends beyond traditional risk management to include the OS-SFT (Open-
Source Sustainable Finance Taxonomy) project, which aims to harmonise 
regulatory interpretation across jurisdictions. Through their open-source 
approach under the FINOS umbrella, MKM is building a new market 
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infrastructure that promises to ensure the resilience of property finance for 
decades to come. 

MKM actively participates in the Banking Services Open-Source movement under 
the auspices of ISDA and FINOS.  

Obtaining a Copy of the Book for Free 

The book will be available at www.mrmresearchlabs.com as a free 
download. 
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Foreword 

David Kelly and I have come a long way together on the journey of integrating 
physical risk into the banking system. While this journey is quite advanced, it 

is far from over. The completion of the first edition of this book marks a meaningful 
milestone in our journey. It represents the first major publication from our new firm, 
MKM Research Labs, which was founded by the three of us - Johnny Mattimore, David 
Kelly, and Fearghal McGoveran - in January 2025 to consolidate our decades of 
experience in banking and finance. 

“This book provides a visionary guide to integrating Physical Risk 
into the banking system, at high speed, large scale and reduced cost 

for all.”- Johnny Mattimore, MKM. 

Introduction 

The motivation for writing the book is identical to that for creating the firm: to 
combine cutting-edge artificial intelligence, data, models and deep domain expertise to 
solve some of the most challenging problems in finance. One of those problems is how 
to integrate physical risk into the banking ecosystem at high speed, at large scale and at 
reduced cost for all. 

The book is crafted from many years of real-world experience and scholarly 
excellence, combined with the essential reflection and vision necessary to have a 
meaningful impact on the reader.  

Context for the Book 

Put simply, this book makes the subject of physical risk easy and accessible for 
bankers to understand. It provides bankers with what they need in order to understand 
physical risk without the need to become experts in every underlying skill. Uniquely, in 
my view, it does this as a single source, as Kelly has taken the best of current research 
and models from hundreds of sources and combined them with his individual skill and 
knowledge, into an accessible guide for bankers.  

To achieve this simplicity, it has three common threads running throughout it, 
taken from great minds of history: Newton, Aristotle and Michelangelo.All of these 
threads are familiar to us and are identifiable in all works of great success for 
humankind. 

Giants 

"If I have seen further, it is by standing on the shoulders of giants.”- 
Sir Isaac Newton, (1675). 
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In this phrase, Newton acknowledges that his discoveries were made possible by 
building on the work of great thinkers before him - such as Galileo Galilei, Johannes 
Kepler, and René Descartes.  

Following this tradition, this book illustrates how a solution for the bankers’ 
problem is only possible by building on the work of others. So, the book draws together 
many other areas of skill developed over many decades in the modern fields of physical 
risk, including: weather forecasting, hydrology, hydraulics, specialist common data 
models, artificial intelligence and the imperative of time series models for pricing risk 
in banks. Through these guiding steps, Kelly illuminates the pathway for solving the 
bankers’ problem of physical risk integration into its existing core system with minimal 
friction. 

Value 

“The whole is greater than the sum of its parts”- Aristotle, circa (340 
BC). 

While the exact wording may not appear verbatim in Aristotle’s surviving works, the 
idea reflects a key concept from his Metaphysics, where he discusses how complex 
systems and organisms have properties that cannot be explained solely by analysing 
their individual components. 

Thus, the brilliance of this book lies in Kelly’s ability to connect the many areas of 
expertise in an accessible way. Each component is demystified so that by the end, the 
reader feels confident that the formerly opaque and confusing becomes clear and lucid. 

Moreover, it then becomes evident how these individual components alone do not 
solve the bankers’ integration problem of estimating the financial risk in terms of real 
money. Instead, it shows that only by combining these components, with defined 
sequencing and coupling can one extract the required value. Thus, it delivers on the 
promise to the banker of proving that “the whole is greater than the sum of the parts”. 

Ambition 

"The greater danger for most of us lies not in setting our aim too 
high and falling short, but in setting our aim too low and achieving 

our mark.”- Michelangelo Buonarroti (1475–1564). 

While possibly apocryphal, this phrase nevertheless captures the ambitious spirit of 
Michelangelo’s life and work which gave rise to his monumentally daring projects. 
Today, it is still a powerful motivational idea associated with his legacy.  

Rephrasing this for our era and for bankers, an appropriate rewrite might be: "In 
banking, as in life, the greater danger lies not in bold targets unmet, but in modest 
goals too easily achieved." So, one could play it safe and get modest results, but as any 
financier knows, it is bold goals that drive meaningful change to deliver outsized 
growth while maintaining stability and repeatability. 
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Kelly outlines the opportunity that I coined, and which he and I have jointly 
developed for a new tradeable asset to manage, hedge and transfer physical risk: the 
Physical Risk Swap (PRS). 

We developed this idea for a capital markets PRS over the last five years. Our first 
publication was in November, 2023, as a LinkedIn post. This was where we first coined 
the term Physical Risk Swap (PRS), comparing it to a Credit Default Swap (CDS), first 
used in Collateralised Debt Obligations (CDO), and with a securitised form of a 
Parametric Insurance Contract.  

Our invention of PRS is truly ambitious: it not only transforms the 
world of physical risk into a tradeable asset, but it is predicated on 
the ambition of creating an open source architectural framework 

for the entire banking ecosystem. 

In this book, Kelly’s explanation takes a huge step forward compared with other 
related literature detailing how to achieve the ambition of PRS across a stack of models. 
In my view, the creation of a market in PRS is the pinnacle of our joint ambition and the 
ambition of our firm, MKM Research Labs. 

Kelly explains this transformational leap forward to PRS by leveraging the 
achievements of others in different domains to deliver value faster; by combining the 
sum of the parts to deliver even greater total value; and, finally, by setting the ambition 
high . In our vision, PRS creates a brand new growth opportunity while enhancing 
systemic stability. 

This combination of Giants, Value and Ambition is what makes this book a 
wonderful piece of craftsmanship and a truly outstanding contribution to banking and 
society. 

Final Comments 

Throughout reading this book, perhaps remember this one enduring fact: without a 
functioning, solvent banking system, almost all that we depend upon, and all that we 
take for granted is at risk of being taken away from us unless we protect ourselves from 
extreme physical risks. This book contributes substantially to the body of accessible 
knowledge to help us preserve all those things that we hold dear.  

Enjoy the read and then the ride as you witness how managing physical risk in 
banking will change the world for the better, for the benefit of all and forever. 

Johnny Mattimore  
CEO and Co-founder of MKM Research Labs 
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Prologue 

T he banking world stands at a critical inflexion point. A threat more insidious 
than market volatility, more persistent than credit cycles, and more 

fundamental than technological disruption is reshaping the risk landscape. Once 
considered a future concern, physical risk has evolved into an immediate crisis that 
threatens the very foundations of our banking system. 

Consider this stark reality: The US property market, valued at $52.5 trillion and 
burdened by $13.6 trillion in debt, faces an unprecedented challenge. In 2024, we 
observed a mass exodus of insurers from coastal markets, with 42% of US coastal 
insurers withdrawing from Florida and the Carolinas. This situation left $4.2 trillion in 
mortgage collateral exposed and uninsured. The reduction in available insurance is not 
a gradual shift; flood insurance premiums skyrocketed 58% yearly, pricing out 
homeowners and destabilising property valuations across entire regions. 

The scale of exposure to the UK property market is staggering. Along the Gulf and 
Atlantic Coasts alone, 7.3 million homes face the threat of storm surge flooding. 
Nationwide, 17% of all properties risk flood damage, with the highest concentrations in 
Florida, Louisiana, California, New York, and New Jersey. In California, 4.6 million 
properties stand in wildfire zones, while Texas faces approximately 137 tornadoes 
annually, affecting over 13 million people. These are not distant threats – they are 
present realities affecting properties that underpin mortgages, secure investments, and 
represent lifelong savings for millions of Americans. 

We face a fundamental mismatch in time horizons that threatens the stability of our 
banking system. Banks write mortgages with 30-year terms, while insurers underwrite 
policies annually. As physical risks intensify, insurers can and do retreat from markets 
they deem too risky, leaving banks exposed to decades-long commitments on 
potentially worthless assets. This temporal disconnect echoes the opacity that 
preceded the 2008 banking crisis, but with a crucial difference – physical risk is not a 
complex banking instrument that can be traded away. Flood risk is tied to the 
immutable realities of geography, weather patterns and infrastructure, and the risk of 
banking loss is tied to individual property value, flood resilience, and outstanding 
mortgage debt. 

More recently, banking regulators in various jurisdictions have been working on 
incorporating climate risk more explicitly into regulatory frameworks, but these are 
generally still developing and vary by region. The Basel Committee on Banking 
Supervision has published principles for the effective management and supervision of 
climate-related banking risks, but these haven't yet translated into standardised capital 
requirements. However, there are concerns that individual regulators could use their 
discretionary powers under Pillar 2 to impose capital charges of up to 15% for 
unhedged physical climate risk exposures. 

Some countries are taking more direct approaches to managing climate-related 
physical risks. For instance, the Italian government has implemented measures 
requiring all corporations to obtain specific flood-related insurance coverage, shifting 
some of this risk management responsibility directly to businesses rather than leaving it 
entirely within the banking regulatory framework. 
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Many lenders are considering such regulatory risk and exiting mortgage provisions 

backed by any property in a heightened flood-risk area. 

The traditional bank risk management playbook offers no solutions. Our banking 
systems, sophisticated in handling market and credit risk, remain primitive in their 
approach to physical risk. The tools, models, and frameworks that served us well in 
managing traditional banking risks prove inadequate in the face of this new challenge. 

Yet, within this crisis lies opportunity. The same forces driving insurance retreat 
could catalyse innovation in risk transfer, valuation, and resilience investment. When 
properly directed, the banking sector's capacity for innovation could transform 
physical risk from a threat to a frontier for new banking products, improved risk 
management, and enduring property finance. 

This book presents the MKM Framework for Physical Risk, a transformational 
approach that bridges the gap between academic-driven scientific research and 
banking mathematics, property-level analysis and systemic risk management, and 
current challenges and future solutions. The stakes could not be higher. The integrity of 
our mortgage markets, the stability of our banking system, and the resilience of our 
communities all hang in the balance. 

To provide some context, the Pew Research Centre outlines that home equity is a 
significant component of household wealth, accounting for 45% of net worth among UK 
homeowners in 2021.  While the UK and EU have slightly lower concentrations, Chinese 
households, according to East-West Property, hold 65% of real estate. 

The time for incremental solutions has passed. We need a fundamental reimagining 
of measuring, managing, and transferring physical risk. The future of finance depends 
on it. This book aims to forge a path from forecasting weather patterns to live 
revaluation of a portfolio of banking assets. 

The ultimate goal is to apply Capital Markets technology as a bridge into the 
insurance industry, triggering a recovery in insurance capacity and leading to lower 
and more available underwriting capacity. 

The Hazard Landscape  

It is noticeable in the space of Hazards that they cover. A multitude of events.  At 
this stage in the book, it is worth outlining a classification. 

Hydrological Risks (Water-Related) 

• Flooding: River, coastal, or flash floods due to heavy rainfall or storm surges. 
• Drought: Prolonged water shortages affecting agriculture and water supply. 
• Landslides: Soil and rock movement triggered by heavy rain or erosion. 

Meteorological Risks (Weather-Related) 

• Hurricanes/Typhoons/Cyclones: Strong winds, heavy rain, storm surges. 
• Tornadoes: Highly destructive rotating windstorms. 
• Extreme Heat: high temperatures with health and infrastructure issues. 
• Extreme Cold & Winter Storms: Freezing, heavy snowfall, ice storms. 
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• Hailstorms: Large hailstones causing damage to property and agriculture. 

Geological Risks (Earth-Related) 

• Earthquakes: Ground shaking causing structural damage and tsunamis. 
• Volcanic Eruptions: Lava flows, ash clouds, and toxic gases. 
• Tsunamis: ocean waves triggered by underwater earthquakes or landslides. 

Biological Risks (Ecosystem-Related) 

• Wildfires: Uncontrolled fires from dry conditions, lightning, or human activity. 
• Pest Infestations: Insects or diseases affecting agriculture and forestry. 
• Pandemics & Epidemics: diseases impacting health and economies. 

Although this book reflects physical risk as a present danger, for completeness, the 
Intergovernmental Panel on Climate Change (IPCC) of the United Nations, in its sixth 
assessment report, classifies physical risks related to climate change into three main 
categories: 

Chronic Physical Risks: are sudden, extreme weather events that cause immediate 
damage. Examples include: 

• Hurricanes and typhoons. 
• Floods and storm surges. 
• Heatwaves. 
• Wildfires. 

Chronic Physical Risks: are long-term, gradual changes in climate patterns that 
progressively impact ecosystems, economies, and societies. Examples include: 

• Rising sea levels. 
• Increasing average temperatures. 
• Changes in precipitation patterns. 
• Ocean acidification. 

Compound and Cascading Risks: occur when multiple climate hazards interact, 
intensifying their effects. Examples include: 

• A heatwave exacerbating drought and wildfires. 
• Flooding damages infrastructure, leading to economic and health crises. 
• Sea level rise increasing storm surge damage. 

About this book - A focus on flood risk 

The world of finance, meteorology, fluid dynamics, and instrument pricing is awash 
with academic articles and dense mathematical formulae. The purpose of this book is 
not to dive into the maths but to help capital markets practitioners make sense of the 
problem of flood risk in finance and forge a pathway to implementation that will need 
to straddle multiple academic expertise.  

At some point, we will introduce mathematical equations.  The author believes they 
are helpful for explanation but not essential for an overall appreciation of the concept. 
Therefore, non-mathematicians can skim through with a knowing nod, leaving it to the 
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quants to enjoy.  The sections, including mathematical equations are highlighted in 
blue. 

There are many hazards that groups like OS-Climate continue to lead with excellent 
research.  Hazards such as wildfire, soil erosion, drought and pestilence.  Maybe not 
the last.  We are focused on floods arising from weather formations to set up the 
correct framework for risk transfer within a capital markets context. To that end, there 
is some overlap with wind and coastal damage as hazards arising from cyclones. 

The author and the MKM Exco leave the modelling of potential climate changes for 
horizons out to 2100 to academic bodies under the IPCC's umbrella. MKM is dedicated 
to implementing a framework that complies with how banking market risk 
management is adopted by all banks that warehouse risk.  The management of hazard 
risk follows the same four steps currently applied to instrument pricing: Identifying 
hazard risk, Measuring hazard risk, Monitoring exposure to hazards, and building 
Control tools to affect risk transfer. 

Impact of Flood Risk on UK Properties - a Case in 
Point 

While the focus here is on the UK property sector, the underlying issues apply 
straightforwardly to the EU, US, China, and Japan. 

Flood risk has emerged as a critical factor reshaping property markets, regulatory 
frameworks, and banking stability across the UK, with profound implications for the 
broader banking sector. Recent comprehensive assessments reveal an escalating threat 
that demands urgent attention from banking institutions, policymakers, and property 
owners alike. 

Current Risk Exposure and Projections 

The latest National Assessment of Flood Risk (NaFRA) identifies 6.3 million 
properties in England currently classified as flood-prone, with 4.6 million at risk from 
surface water flooding and 2.4 million from rivers/sea flooding. This represents a 
substantial portion of the nation's housing stock, with climate change projections 
suggesting this figure could rise dramatically to 8 million properties (1 in 4) by mid-
century, driven by increasingly extreme weather patterns, heavier rainfall, and 
accelerating sea-level rise. 

Regional disparities in flood risk exposure are significant and economically 
consequential. East Anglia, the North West, and Yorkshire face the highest exposure 
rates, with 13–18% of properties in high-risk zones. Urban areas with ageing or 
inadequate drainage infrastructure, such as parts of London and Birmingham, are 
particularly vulnerable to surface water flooding, which now accounts for 57% of all 
flood insurance claims. 

Quantifiable Market Impacts 

The Bayes Business School's "Residential Property Flood Risk UK 2023" research 
report reveals that flood risk creates measurable valuation penalties in the property 
market. Properties affected by flood risk sell at an 8.14% average discount compared to 
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equivalent non-affected properties, escalating dramatically to 31.3% for very high-risk 
areas. This price differential correlates with flood probability, with each 1% increase in 
risk-reducing property values by 0.13–0.19%. 

The market dynamics reflect rational economic behaviour: high-risk homes 
experience a 50% slower price growth than properties in safer areas. Critically, the 
average flood risk of sold properties between 2006 and 2021 was 8.01%, compared to 
an unsold property's 8.63%, indicating that flood exposure significantly impacts 
marketability. Analysis shows that zero exposure to flooding can increase a property's 
saleability from 63.3% to 65.6%. 

Insurance Challenges and Banking Stability Risks 

The UK's government-backed insurance scheme, Flood Re, in their Transition Plan 
Report 2023, currently protects approximately 200,000 households in high-risk areas. 
Still, its scheduled expiration in 2039 raises serious concerns about future insurance 
affordability and availability. With the Association of British Insurers pointing out that 
the average flood claims cost £32,000 per incident, insurers are increasingly factoring 
climate projections into their risk models and pricing. 

This creates a potential systemic risk to banking stability through collateral 
devaluation. Properties in high-risk areas face growing loan defaults as declining 
property values outpace mortgage balances, potentially creating clusters of negative 
equity in vulnerable regions. JBA Risk Management estimates the annual cost of flood 
damage to UK properties at £527 million, a figure projected to rise substantially without 
significant adaptation measures. 

Regulatory Response and Adaptation Measures 

Regulatory frameworks have evolved to incorporate stricter building codes in 
response to these growing risks. New floodplain developments must now implement 
elevated foundations, flood barriers, and sustainable drainage systems (SuDS). The 
Sequential Test mandates avoiding high-risk zones for new construction unless no 
viable alternatives exist. 

In March 2025, the UK Government and Environment Agency announced a record 
£2.65bn investment in flood defences, aimed at building or repairing over 1,000 flood 
schemes and protecting 66,500 properties by 2026, focusing on vulnerable regions like 
the Thames Estuary and Humber Basin. Despite these efforts, climate projections by 
the National Assessment of Flood and Coastal Erosion Risk in England 2024 indicate 
that 637,600 properties could face high river/sea flood risk without accelerated 
adaptation by 2070 (a 73% increase), and 1.8 million may be exposed to severe surface 
water flooding (a 66% increase). 

Future Outlook and Banking Sector Implications 

The banking sector is responding through market innovations, including mandatory 
climate risk disclosures for mortgages and the development of parametric insurance 
models that provide rapid payouts based on predetermined trigger events rather than 
assessed damage. Property flood resilience (PFR) measures are increasingly demanded 
in the valuation during property assessments, with buyers willing to pay premiums for 
homes with implemented flood mitigation features. 
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Physical Risk resilience has become a cornerstone of long-term investment 
decisions in the property sector, with valuation models increasingly incorporating 
sophisticated flood risk metrics. This evolution represents both a challenge and an 
opportunity for banking institutions to develop physical risk, dependent lending 
practices and innovative banking products that incentivise adaptation. 

The comprehensive data indicates that flood risk is not merely an environmental 
concern but a material banking risk that requires integrated assessment within 
investment, lending, and insurance frameworks. As the impact of physical risk 
develops with increased urbanisation, the property sector's ability to price and mitigate 
these risks accurately will be critical to maintaining banking stability and market 
efficiency. 

 

Figure 1: MKM Solution Overview 
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Overview of Solution Evolution 

History and evolution of the solution 

The approach proposed by MKM Research Labs addresses the double jeopardy of 
increased insurance payouts due to hazard risks and their impact on assets, notably 
properties and mortgages. The insurance industry's response is to retreat capacity and 
only focus on low-risk areas. The challenge for banks and mortgage providers is 
exasperated by vendor solutions that don't really work for them. 

The response is, therefore, to increase capacity for underwriting such risk by 
working from capital markets under the auspices of ISDA and FINOS, which provide a 
collective legal and data framework from upon which the industry can build models 
that accurately cost (as exemplified in this book) flood risk and transfer risk through 
new derivative instruments such as physical risk swaps. 

The efficiency of risk transfer will enable a higher degree of assurance around 
underwriting hazard (flood) risk and its impact on the current portfolio of assets.  With 
capital markets technology that understands how to manage derivative-type exposure, 
the increase in capacity will lead to lower insurance premiums. 

A critical societal side effect of improved hazard risk discipline thanks to ISDA and 
the standardisation of data through FINOS CDM is the drive for a more effective 
causality between resilience investment and lower mortgage and insurance costs.  

“Wouldn’t it be nice if the mortgage provider, insurance 
underwriter, and local government spoke the same language based 
on common data?  Crazy, I know, but we have to start somewhere, 
and all great journeys start with a single step.” - David Kelly, MKM 

and Author of that single step. 
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Chapter 1 - Physical Risk in Finance 

The banking sector's challenge is to enhance risk measurement and develop 
new frameworks for understanding how physical risks propagate through 
banking networks. We require innovative ways to model the relationship 

between weather events and asset values, new data standards to capture physical risk 
exposure, and novel banking instruments to effectively transfer and manage these 
risks. This transformation necessitates bridging multiple disciplines, from weather 
prediction through hydrology and loss modelling to banking mathematics and machine 
learning. 

This chapter investigates the key dimensions of physical risk in finance and 
examines why traditional approaches are inadequate. We analyse how emerging 
technologies and methodologies facilitate a more sophisticated understanding of 
physical risk and why this evolution is crucial for ensuring banking stability in an era of 
evolving physical risks. Most importantly, we delineate a pathway for transforming 
physical risk from an unquantified threat into a manageable, transferable element of 
banking risk management. 

“The banking world's approach to physical risk is undergoing a 
fundamental transformation - from a future consideration to an 

immediate driver of value, from an unquantified threat to a 
tradable asset, from a peripheral concern to a core determinant of 

banking stability.” - David Kelly, MKM. 

Overview of Physical Risk Challenge 

Physical risk in the banking sector has evolved from a peripheral concern to a 
central challenge in modern risk management. The landscape of physical risk has 
transformed dramatically, characterised by the increasing frequency and severity of 
chronic physical events on regional and global scales. What was once considered 
idiosyncratic risks are now manifesting as systemic challenges, fundamentally altering 
how we approach risk assessment and management. 

The Swiss Re Institute sigma No. 1/2024 report highlights that the number of 
medium-sized natural catastrophe events has grown by an average of 7.5% annually 
since 1994, with severe convective storms (SCS) showing the most significant increase 
in insured losses, rising by 9.7% annually in inflation-adjusted terms. 

The Swiss Re Institute sigma No. 1/2023 report also notes a long-term upward trend 
in insured losses from natural catastrophes, driven by economic growth, urbanisation, 
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and increased storm activity. Insured losses have grown 5–7% annually since 1992, with 
severe weather events being a key driver. 

The complexity of physical risk assessment demands increasingly granular analysis 
at the asset level. Banking institutions must now evaluate thousands or millions of 
assets in their portfolios, considering precise physical locations and projecting 
expected losses across multiple physical hazards. This granular approach represents a 
significant departure from traditional portfolio-level risk assessment methods. 

The data requirements for such detailed 
analysis present substantial challenges. 
Banking institutions require robust data on 
asset locations, hazard projections, and 
potential damage functions. Significant 
uncertainties and knowledge gaps in weather 
projections and impact modelling complicate 
these data needs. Integrating diverse data 
sources, from high-resolution terrain models to 
real-time weather measurements, demands 
new data management and standardisation 
approaches. 

The banking sector is exploring innovative risk 
transfer mechanisms in response to these 
challenges. New securities, derivatives, and 
risk transfer products are being developed, 
including specialised mortgage-backed 
securities (MBS) and physical risk swaps (PRS). 
These instruments aim to provide more 
effective means of managing and transferring 
physical risks analogous to specialised 
Collateralised Debt Obligations (CDO) and 
Credit Default Swaps (CDS). 

The industry's response to these challenges 
requires a fundamental evolution in risk 
management approaches. Traditional 
frameworks, built on historical data and 
statistical relationships, struggle to capture the 
changing nature of physical risks. The non-
linear characteristics of weather patterns, 
feedback loops, and fractal-esq interactions 
necessitate new modelling paradigms that can 
handle these complexities while remaining 
viable for practical implementation. 

Figure 2: Basel III Eligibility Framework 

Modern risk management requires banks to connect the science of physical risk 
with banking risk assessment to be practical in daily situations. This involves 
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integrating advanced statistical methods, including domain-specific AI and Bayesian 
approaches, to better capture the complexity of weather patterns and their 
implications for banking.  

Developing standardised data frameworks and robust governance structures is 
essential to supporting consistent risk assessment across institutions. 

Implementing these new approaches presents significant operational challenges. 
Banks are required to develop and validate complex models while managing vast 
amounts of data. The computational demands of physical risk assessment require 
scalable technological solutions that can handle increasingly sophisticated analysis 
requirements. 

As we move forward, the industry needs a comprehensive approach to addressing 
these interrelated challenges.  Given that physical risk presents a present issue for 
banks, a key aspect of any solution is to decide on the mix between the level of 
collaboration through groups such as FINOS, where the output is open source, and 
what is considered proprietary.  The need for two counterparties to operate under the 
same legal, data and model framework encourages market liquidity, whereas 
proprietary intelligence provides a profitability edge. 

This book offers an approach that progresses from fundamental weather prediction 
to banking impact assessment while prioritising practical implementation 
considerations. We start by exploring the elements of physical risk assessment and then 
create an integrated framework that merges these elements into a cohesive whole 
suitable for application in modern banking institutions. 

Current Approaches and Limitations 

The banking sector's traditional approach to physical risk assessment has evolved 
from catastrophe modelling developed for the insurance industry. This heritage reveals 
both the strengths and limitations of current methodologies. Insurance companies 
have invested decades in developing sophisticated models to price annual policies' 
flood, fire, and storm risks. However, they did not design these models to address the 
broader needs of banking institutions managing long-term exposures through 
mortgages, infrastructure investments, and structured products. 

Current approaches typically follow a four-step process: 

• Hazard identification. 
• Exposure analysis. 
• Vulnerability assessment. 
• Loss calculation.  

Hazard identification relies heavily on historical data. Exposure analysis focuses on 
asset location and characteristics, while vulnerability assessment examines the 
relationship between hazard intensity and potential damage. Finally, loss calculation 
combines these elements to estimate possible banking impacts. However, this 
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seemingly 
straightforward 
process masks 
significant 
methodological 
weaknesses that 
limit its 
effectiveness for 
modern risk 
management. 

A fundamental 
limitation lies in 
how these models 
handle risk 
quantification. 
Many existing 
models do not 
explicitly separate 
frequency and 
severity 
modelling, 
departing from 
established best 
practices in 
property 
insurance. 
Furthermore, 
they often 
produce 
deterministic 
expected loss 
values rather than 
complete 
probability 
distributions, 
severely limiting 
their utility for 
sophisticated risk 
management 
applications.  

Figure 3: Physical Risk CDM Overview  
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Specifically, the vulnerability models that map hazard characteristics to potential 
damage typically employ deterministic rather than probabilistic approaches, failing to 
capture the full spectrum of uncertainty inherent in physical risk assessment. 

This approach, while logical, faces significant limitations when applied to modern 
banking risk management. Relying on historical data becomes increasingly problematic 
as weather patterns’ frequency and severity of extreme events follow random paths. 
The assumption of stationarity—that past patterns reliably indicate future risks—no 
longer holds. 

The current models struggle with the temporal mismatch between insurance and 
banking time horizons. Insurance models are calibrated for annual policy terms, 
making them ill-suited for assessing the decades-long exposure of a mortgage portfolio. 
The models cannot adequately capture how physical risks might evolve over a 30-year 
mortgage term, nor how these risks interact with property values, insurance 
availability, and mortgage affordability. 

“Existing approaches fail to capture how physical events trigger 
cascading effects through banking networks. When insurers retreat 
from high-risk areas, they leave properties uninsured and impact 
property values, mortgage default probabilities, and, ultimately, 

the stability of mortgage-backed securities markets.  

This limitation is exacerbated by the lack of clear attribution 
between risk factors and their economic consequences, making it 

difficult to conduct meaningful stress testing or design optimal 
insurance solutions.” - David Kelly, MKM. 

The Challenge of Model Governance 

The most frustrating aspect of the vendor landscape, regarding weather and 
physical risk, is the afterthought considerations for model governance. These 
considerations compound these issues and make bank adoption under the auspices of 
OCC SR 11-7 and other regulatory requirements problematic.  

Quick Introduction to OCC SR 11-7 

SR 11-7, formerly known as the “Supervisory Guidance on Model Risk Management,” 
was introduced in April 2011 by the U.S. Federal Reserve and the Office of the 
Comptroller of the Currency (OCC) to address the growing reliance on quantitative 
models in banking institutions.  

SR 11-7 establishes comprehensive standards for managing risks from flawed model 
design, implementation errors, or misuse, which could lead to banking losses, poor 
decision-making, or reputational harm. It defines a model as a quantitative method that 
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processes inputs into estimates using statistical, economic, or mathematical 
techniques, emphasising three core components: 

  
• Input Data. 
• Processing Logic. 
• Output Reporting. 

The guidance mandates rigorous model validation, governance policies, 
documentation standards, and ongoing monitoring to ensure models perform as 
intended while aligning with an institution’s risk tolerance. By requiring "effective 
challenge" through independent review and structured accountability, SR 11-7 aims to 
balance innovation with risk mitigation across the model lifecycle. 

Physical risk models shortfall against SR 11-7 

Many current models in physical risk are academic in their nature and outlook and 
thus function as "black boxes" without clear documentation of their methodologies and 
assumptions. This lack of transparency makes thorough model validation nearly 
impossible. Such behaviour contradicts the banking industry, where the model engines 
are similar, and the intellectual property is embedded in their implementation. In all 
areas of physical risk, the underlying models originate from academia and are publicly 
accessible.  For instance, fluid dynamics is covered in the first semester of a physics 
degree.  The lack of transparency regarding applications or benchmarks for flood risk 
modelling further complicates the situation, hindering coherent comparison and 
systematic improvement of various modelling approaches. 

Different vendors use varying assumptions, are very guarded about their 
methodologies, and use public and private data sources differently, making it difficult 
for banks to compare and aggregate risk assessments. This fragmentation hampers the 
development of market-based solutions for transferring and managing physical risk. 

The limitations become particularly chronic when examining flood risk, which 
exemplifies the complexity of modern physical risk assessment. Flood models are 
required to integrate high-resolution terrain data, precipitation forecasts, infrastructure 
conditions, and property characteristics. To be remotely accurate, they must account 
for gradual changes in flood patterns and sudden shifts in insurance market behaviour. 
The recent exodus of insurers from Florida and the Carolinas demonstrates how 
quickly risk assessments can become outdated when market conditions change. 

Basel III/IV regulations now explicitly require banks to account for physical risk in 
their capital calculations, but the tools for doing so remain primitive. Current 
approaches often resort to simple overlays or adjustment factors rather than an 
integrated assessment of how physical risks affect the probability of default, loss-given 
default, and other key risk metrics. 

A particularly problematic aspect of current approaches is their origin outside the 
insurance domain. Many existing models were initially developed for land-use planning 
or other purposes, making adapting to insurance pricing and risk management 
applications problematic. This misalignment between the original design and the 
current application creates fundamental model reliability and appropriateness 
challenges. 
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These limitations indicate the fundamental need to reimagine physical risk 
assessment in banking. We need frameworks that can: 

• Bridge multiple time horizons, from weather events to mortgage terms. 

• Integrate physical and banking risk metrics. 

• Support standardisation in particular market risk data. 

• Develop streamlined processes to support secondary market-making activities. 

• Enable dynamic updating as conditions change. 

• Facilitate risk transfer and management. 

The following chapters present such a framework, building from weather prediction 
to banking impact assessment while addressing the limitations of current approaches. 
The goal is not to replace existing catastrophe models but to extend and adapt their 
capabilities to the broader needs of modern banking risk management. 

Common Domain Model: The Cornerstone of Physical 
Risk Management 

The Common Domain Model (CDM) originated as a collaborative effort by three 
significant banking trade associations: the International Swaps and Derivatives 
Association (ISDA), the International Capital Market Association (ICMA), and the 
International Securities Lending Association (ISLA). These organisations developed the 
CDM to standardise the representation of banking products, lifecycle events, and 
processes, aiming to streamline operational efficiency, enhance data consistency, and 
reduce costs and fragmentation within the banking markets. 

In September 2022, ISDA, ICMA, and ISLA selected the Fintech Open Source 
Foundation (FINOS) to host and manage the CDM as an open-source project, marking a 
critical shift towards fostering community-driven innovation and widespread industry 
adoption. The transition to FINOS included creating a centralised repository under the 
Community Specification Licence to allow banking institutions and other stakeholders 
to collaborate transparently and inclusively. 

FINOS officially launched the CDM project in February 2023, integrating it fully into 
its ecosystem. This collaboration aligns with FINOS's broader mission to promote open-
source standards for interoperability, regulatory alignment, and innovation in banking 
services. The CDM has since evolved into a key tool for automating trade processing, 
managing banking transactions, and supporting digital frameworks like smart contracts 
and regulatory reporting.Core Components of the CDM 

The CDM defines and organises the banking transaction lifecycle into the following 
hierarchical models to ensure efficiency, transparency, and standardisation: 

• Product Model: Describes banking instruments like contracts used to transfer 
banking risk. 
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•Event Model: Represents lifecycle 
events such as trade executions and 
modifications. 

•Process Model: Lays the 
groundwork for automating and 
standardising industry processes. 

•Reference Data Model: Captures 
foundational details such as parties, 
legal entities, and rate indexes 
essential for modelling trades and 
agreements. 

Purpose and Benefits 

The introduction of the CDM 
addresses several challenges in the 
banking markets: 

•Interoperability and Automation: 
By creating a common language, the 
CDM reduces the variations in how 
firms record trade lifecycle events, 
enabling straight-through processing 
and minimising operational 
inefficiencies. 

•Regulatory Compliance: The 
standardised model promotes 
consistency and transparency in 
regulatory reporting, easing 
compliance and increasing alignment 
between banking institutions and 
regulators. 

•Innovation Acceleration: The CDM 
provides a robust foundation for 
integrating emerging technologies 
like distributed ledger technology 
(DLT), smart contracts, and artificial 
intelligence into banking markets. 

Figure 4: Weather to Risk Transfer via CDM 
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Scope of CDM Application 

The development of CDM capability operates under Fino's governance, which is 
developed through a “community-driven governance model”; the CDM is openly 
accessible under the Community Specification Licence. 

  
Working groups of industry practitioners and experts oversee its development and 

evolution, ensuring the model remains adaptable and relevant to industry needs. 

The CDM is implemented across various use cases, including: 

• Processing OTC derivatives, cash securities, commodities, and securities financing 
(e.g., repos and securities lending). 

• Serving as the backbone for ISDA's Digital Regulatory Reporting (DRR), 
streamlining the creation of human-readable and machine-executable rules for 
regulatory compliance. 

• Enhancing efficiency in post-trade processes such as collateral management and 
lifecycle management of banking products. 

The CDM represents an industry-wide effort to establish a standardised operational 
framework that reduces manual processes while introducing clarity and efficiency in 
banking markets.  This leads to solutions with the following critical positive features. 

• Transparency: Open structure and standardisation ensure clarity in data 
representation. 

• Scalability: Designed to handle vast transaction volumes efficiently. 

• Technology Agnostic: Supports integration into various systems and platforms. 

The MKM Framework and the CDM 

The first layer handles weather pattern prediction. Whether using AI-enhanced 
forecasting models or traditional meteorological approaches, all weather events must 
conform to the Weather Events CDM structure. This standardisation enables consistent 
interpretation of weather predictions across different modelling platforms and 
institutions. 

The second layer translates weather patterns into flood events through hydrological 
modelling. Here, the Flood Events and Flood Gauges CDM structures ensure that the 
outputs are consistently structured and interpretable regardless of the specific model 
used, such as open-source LISFLOOD or any proprietary alternatives. This 
standardisation is particularly crucial for calibration against historical gauge 
measurements. 

The third layer maps physical events to banking impacts using: 

• Property = property characteristics. 
• Mortgage = collateralise loan terms. 
• Insurance = property insurance. 
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This standardisation ensures that vulnerability assessments and damage 
calculations can be consistently applied across portfolios and institutions, even when 
using different underlying models for damage estimation. 

The fourth layer enables risk transfer through the Physical Risk Swap CDM 
structure. This standardisation is essential for developing liquid markets in physical 
risk transfer instruments, ensuring all participants understand the underlying risk 
measures and transfer mechanisms, primarily through derivatives. 

Derivatives serve as powerful banking instruments in capital markets, enabling the 
efficient transfer of risk between parties. By allowing businesses, investors, and 
institutions to hedge or speculate on price movements, interest rates, credit defaults, 
and other banking variables such as physical risk, derivatives redistribute risk to those 
more willing or capable of managing it.  

The key benefits of derivatives, which are well-established in debt markets under 
CDO/CDS structures, make the transition to MBS/PPRS structures entirely natural for 
the banking market. The management of physical risk can follow this natural 
progression and reap the following benefits from the outset: 

•  Risk Allocation: Transfers risk to those most capable of managing it (e.g., 
insurers, hedge funds) at a competitive price. Only insurers cover physical risk. 

• Capital Relief: Banks reduce regulatory capital requirements by transferring 
credit risk via derivatives. 

• Diversification: Investors access exposures (e.g., the concentration of mortgages 
in flood-prone areas) that would otherwise be difficult to obtain.  

Throughout all layers, model risk governance is paramount. Compliance with SR 
11-7 principles ensures that models are: 

• Properly validated and documented. 
• Based on sound theoretical foundations. 
• Regularly reviewed and updated. 
• Subject to appropriate controls and oversight. 
• Transparent in their assumptions and limitations 

The MKM framework Key principles: 

• Model Independence: While requiring compliance with CDM structures and 
governance standards, the framework remains model-agnostic. Institutions can 
choose or develop models that best suit their needs, provided they interface 
correctly with the CDM structures. 

• Data Standardisation: The CDM defines all critical attributes across the seven 
key components. This standardisation enables consistent data collection, validation, 
and exchange across institutions. 

• Governance Integration: Model risk governance is built into the framework 
rather than added as an afterthought. Compliance with standards like SR 11-7 is 
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inherent in the framework's design; otherwise, adoption by banking firms is a non-
starter. 

• Market Development: The standardised CDM structures, particularly for 
Physical Risk Swaps, provide the foundation for developing liquid markets in physical 
risk transfer instruments. 

• Implementation Flexibility: While the CDM structures are standardised, 
practitioners can tailor their implementation to specific institutional needs and 
regulatory requirements. This flexibility ensures the framework can adapt to 
different contexts while maintaining consistency. 

This integrated approach transforms physical risk management from disparate 
models and approaches into a coherent, governed framework built on standard 
definitions and structures. This foundation enables the banking sector to develop more 
sophisticated approaches to measuring, managing, and transferring physical risk. 

The following chapters examine each framework component in detail, from the 
specific attributes defined in each CDM structure to the practical implementation of 
compliant models. We focus on how standardisation and governance enable more 
effective risk management while supporting market development. 
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Chapter 2 - Data Framework 

T he banking industry's approach to physical risk assessment stands at a 
critical juncture where the need for standardised data models intersects with 

increasingly complex environmental challenges. The Common Domain Model 
(CDM) emerges as a crucial framework for addressing this complexity, particularly 
in the context of flood risk assessment and management, one of the most 
significant physical risks facing banking institutions today. 

“The Common Domain Model represents more than a technical 
standard - it bridges weather time series creation and banking 

markets, physical reality and banking value, data and decision. 
Without this bridge, we cannot build the market infrastructure 

needed for managing physical risk in the decades to come.” - David 
Kelly, MKM. 

Traditional approaches to physical risk assessment have been fragmented, with 
different institutions developing proprietary models and data structures. This 
fragmentation has created inconsistent risk evaluations across institutions, made it 
challenging to aggregate and compare risk assessments, increased operational costs, 
and limited the ability to share and validate models across the industry. The CDM 
addresses these challenges by providing a standardised framework that enables 
consistent representation of physical risk data and models across the banking sector. 

The CDM's extension into physical risk assessment builds upon established flood 
damage modelling frameworks, demonstrating the critical importance of standardised 
approaches. Recent research has shown that flood damage models require the 
integration of hazard parameters, exposure data, and vulnerability information - all of 
which align closely with CDM principles. By standardising the representation of 
environmental data, asset characteristics, and susceptibility to damage, the CDM 
creates a common language for physical risk assessment. 

Modern risk assessment through the CDM framework offers significant advantages 
for banking institutions. It enables consistent modelling of physical risk parameters and 
facilitates integration with existing economic models. The framework supports 
regulatory reporting requirements while seamlessly integrating national and local-scale 
models.  

Perhaps most importantly, it improves risk aggregation and analysis capabilities, 
supporting more accurate pricing of physical risk in banking instruments and 
facilitating the development of new risk transfer mechanisms. 
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The evolution of CDM in physical risk assessment will support integration with 
advanced AI and machine learning techniques, the development of standardised risk 
transfer instruments, and improved collaboration between banking institutions and 
climate science organisations. As physical risks continue to intensify and reshape 
banking markets, the CDM provides the foundation for a more resilient and adaptable 
approach to risk management. 

The following sections explore these aspects in detail, providing practical 
implementations and case studies demonstrating the CDM's application in physical risk 
assessment and management. We will examine how banking institutions can leverage 
the CDM to bridge the gap between physical science and banking mathematics, 
between property-level analysis and systemic risk management, and between current 
challenges and future solutions. 

A Quick History of ISDA 

Given that ISDA will be referenced frequently, this is an opportune moment to 
provide an introduction to this industry body and its current form, including outreach. 

The International Swaps and Derivatives Association (ISDA) has a rich history that 
dates back to its foundation in 1985. It was established to standardise and streamline 
the over-the-counter (OTC) derivatives market, addressing the risks and inefficiencies 
associated with bespoke and unregulated transactions. 

ISDA was initially formed to provide a framework for the growing derivatives 
market, publishing its first industry document, the Code of Standard Wording, 
Assumptions, and Provisions for Swaps (SWAPS Code). 

The organisation released its first standardised agreements in 1987, such as the 
Interest Rate and Currency Exchange Agreement and the Interest Rate Swap 
Agreement. These documents established consistent terms for single-currency and 
multi-currency derivatives. 

The 1992 ISDA Master Agreement significantly evolved the banking industry, 
creating a comprehensive framework for Over-The-Counter (OTC) derivatives 
transactions. This was followed by an updated 2002 ISDA Master Agreement 
incorporating lessons from market crises in the late 1990s. 

ISDA played a central role in resolving risks during the Russian banking crisis, the 
Asia banking meltdown, and the collapse of firms like Lehman Brothers. Its 
documentation provisions, such as close-out netting and collateral management, 
helped stabilise the market during these crises. 

Beyond contracts, ISDA introduced initiatives like the banking products markup 
language (FpML) for efficient data exchange in derivatives trading and protocols for 
handling specific market changes (e.g., credit events). 

Today, ISDA serves over 1,000 member institutions across 76 countries, including 
banks, asset managers, corporations, and government entities. ISDA collaborates with 
regulators and policymakers to promote market transparency and risk reduction. 
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ISDA continues to adapt to global banking changes. For example, it introduced 
updated terminology with the 2014 ISDA Credit Derivatives Definitions and has been a 
proponent of centralised clearing to manage counterparty risk. 

Origins of the Common Domain Model (CDM)  

The Common Domain Model (CDM) represents one of modern banking technology's 
most significant collaborative efforts. Spearheaded by the International Swaps and 
Derivatives Association (ISDA) and developed in partnership with key industry bodies, 
including ICMA, ISLA, and FINOS, the CDM has emerged as a transformative force in 
banking data standardisation. 

At its core, the CDM provides an open-source data model that creates standardised 
digital representations of events and processes throughout the lifecycle of banking 
products. What began as an initiative focused on derivatives has evolved into a 
comprehensive framework encompassing bonds, loans, and an expanding array of 
banking instruments. The 2022 release of CDM Version 5.0 marked a significant 
expansion of this coverage, incorporating sophisticated modelling capabilities for 
interest rate derivatives, equity derivatives, credit derivatives, bonds, repos, and 
securities lending. 

The development of the CDM follows a unique collaborative approach. Through 
GitHub, ISDA members, market infrastructures, and third-party vendors work together 
to evolve and refine the model. This open-source methodology ensures that the CDM 
remains responsive to industry needs while fostering innovation and adaptation. The 
result is a living framework that grows with the industry rather than a static standard 
imposed from above. 

The International Swaps and Derivatives Association (ISDA) initiated the Common 
Domain Model (CDM) project. 

ISDA launched the CDM to standardise how banking products, notably derivatives, 
are represented and processed. The goal was to create a machine-readable, open-
source model that ensures consistency across trading, risk management, and 
regulatory reporting. 

The project was first introduced around 2017, and ISDA has been collaborating with 
technology firms, banking institutions, and regulators to refine and expand its use. The 
CDM is particularly relevant for smart contracts, distributed ledger technology (DLT), 
and automation in banking markets. 

The International Capital Market Association (ICMA) and the International Securities 
Lending Association (ISLA) joined ISDA’s Common Domain Model (CDM) initiative in 
2020. 

• ICMA joined in June 2020 to extend the CDM’s coverage to repo and bond 
markets. 

• ISLA joined in October 2020 to bring securities lending into the CDM framework. 

Their participation helped expand the CDM beyond derivatives, creating a 
standardised digital representation of transactions across repo, securities lending, and 
bond markets. 
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The MKM founders recognised early on that the adoption of CDM from the outset 
was critical to facilitate the integration of these non-traditional datasets into the bank's 
risk architecture.  For the first time since CDM’s inception, we have data considerations 
(alongside model governance), including standardisation from the outset. 

The Power of CDM 

The CDM's true power lies in its ability to create a common language for banking 
institutions, market infrastructures, and regulators. By establishing standardised ways 
to represent trade and transactional lifecycle events and processes, the CDM enables 
seamless communication across different platforms and organisations. This 
standardisation drives operational efficiency, reduces data translation and 
reconciliation costs, and creates new opportunities for automation and innovation. 

The adoption of CDM is voluntary, yet its value proposition has driven significant 
uptake among major banking institutions, including JP Morgan, Morgan Stanley, 
Goldman Sachs, and BNP Paribas. While implementation remains optional, CDM's 
influence across the industry continues to expand as organisations recognise its 
benefits: streamlined data management, enhanced automation capabilities, and 
simplified regulatory reporting. Success in traditional banking products has established 
a foundation for CDM's extension into emerging domains, including physical risk 
assessment. 

Looking ahead, the CDM's role in physical risk modelling promises to be 
transformative. By providing a standardised framework for representing physical risk 
data, the CDM can help bridge the gap between climate academic research and banking 
markets, enabling more efficient risk transfer mechanisms and supporting the 
development of new banking products designed to manage physical risk exposure. 

Risk Disclosure and the Headache for Banks 

Risk Disclosure, as required by the regulators and supervisory bodies, has expanded 
in the years after the 2008 market disruption.  The direction of travel is set, and no 
regulator will get promoted by reducing the burden of disclosure reporting. The cost of 
compliance is a significant drain on all banks and presents a barrier to entry for new 
asset classes such as banks.  Dealing with the cost of regulation is another aspect of the 
MKM Framework for physical risk. 

Banks' disclosure reporting costs encompass direct banking expenditures and 
indirect operational challenges driven by regulatory complexity, technological 
demands, and evolving compliance requirements. These costs arise from mandatory 
reporting standards, data management infrastructure, personnel expertise, and 
potential penalties for non-compliance. Key findings from industry studies and 
regulatory sources highlight several critical dimensions: 

Direct Costs of Compliance 
    
• Banks face rising costs due to increasingly granular reporting requirements. For 

example, the SEC’s 2020 overhaul of bank disclosure rules introduced new demands 
for detailed metrics like loan maturity distributions and allowance for credit losses, 
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requiring system upgrades and data validation processes. Similarly, the EU’s IReF 
framework mandates extensive parallel reporting runs, doubling infrastructure costs 
during transitional phases. 

• Modernising legacy systems to handle large-scale data processing (e.g., Basel III’s 
standardised disclosure templates) incurs significant upfront costs. Investments in 
cloud infrastructure, automated workflows, and tools for data lineage tracking are 
critical but costly. 

• Skilled compliance teams and IT specialists are essential for interpreting 
regulations and ensuring reporting accuracy. The FDIC estimates that preparing 
mandatory banking disclosures alone requires banks, as noted in Ruth Picker's " 
Applying IFRS Standards," to pass on an estimated 1.5% in higher loan spreads to 
cover the labour and technical costs of compliance. Additionally, third-party legal 
and audit services further amplify expenses. 

• Disclosure mandates can distort lending behaviour. For instance, banks exempted 
from Community Reinvestment Act (CRA) reporting after 2005 reduced small-
business lending in low-income areas, prioritising affluent markets to avoid 
reputational risks. 

• Failure to meet standards like GDPR or Dodd-Frank triggers fines and legal fees. 
For example, Equifax’s 2017 data breach resulted in $700 million in settlements and 
lost customer trust. 

CDM and Regulatory Disclosure 

Integrating new datasets into existing bank systems has historically been complex 
and enormously costly, especially when the motivation is to satisfy supervisory bodies. 
Physical risk data presents particular challenges, requiring institutions to connect 
diverse and fragmented data sources, ranging from weather pattern models to property 
specifications.  

However, the CDM's structured approach to data representation offers a solution 
that extends beyond mere standardisation—it creates a direct path to regulatory 
compliance through the FINOS Digital Disclosure Reporting framework. 

The power of this approach lies in its end-to-end workflow design. The CDM enables 
a comprehensive data flow from initial event simulation to final risk valuation for 
physical risk assessment. The workflow begins with Event_CDM, which standardises the 
representation of extreme weather event pathways, leveraging advanced AI platform 
components. Weather pattern parameters such as temperature, pressure and 
precipitation feed into terrain modelling through standardised digital elevation models, 
followed by flood event creation based on elevated gauge levels. 

Standardising Critical Datasets 

The CDM standardises damage and vulnerability curves at the property level, 
enabling consistent valuation impacts across immediate property valuation loss, 
mortgage valuation impairment, heightened insurance premiums, and triggering 
events for physical risk swap payments. This standardisation ensures that all risk-
relevant data flows seamlessly into regulatory reporting frameworks. 
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The substantial efficiency gains come from how this standardised data structure 
aligns with existing regulatory regimes. By implementing the CDM correctly, 
institutions can automatically feed their physical risk assessments into: 

• Basel III requirements. 
• BCBS 239 Risk Principles. 
• SA-CCR for derivatives and long-term settlement. 
• BCBS 530 Physical/Climate Risk Principles. 

This alignment means that once physical risk data is represented in CDM form, 
regulatory disclosures become a natural extension of existing processes rather than a 
separate compliance burden. The CDM acts as a bridge between new physical risk data 
and established regulatory frameworks, ensuring that data integration investments 
serve risk management and compliance needs. 

Integrating with Credit Risk Flow Process 

In the credit risk workflow that is notoriously complex, the CDM acts as a HUB to 
the spoke of 100s of legacy systems and thus decouples the integration of new, often 
incompatible  Physical risk data from 100s of separate data integration headaches that 
paths the way to methodological integration of physical risk factors into core banking 
systems. This systematic approach allows banks to calculate the delta between 
traditional risk metrics and those incorporating physical risk data, providing 
transparent justification for risk adjustments that regulators increasingly demand. 

“The FINOS and their open-source framework further amplify these 
benefits by allowing institutions to leverage shared effort, knowledge 
and interpretations. Rather than each bank developing its mapping 

between physical risk data and regulatory requirements, the 
industry can collaborate on standardised approaches, mutualising 

development costs and ensuring consistency in regulatory 
submissions.” - Johnny Mattimore, MKM. 

This integration framework demonstrates why getting the CDM implementation 
right from the start is crucial. A well-structured CDM implementation solves today's 
data integration challenges and creates a foundation for efficient regulatory reporting 
that can evolve with changing requirements and expanding physical risk datasets. 

Regulatory Framework and Climate Risk Disclosure 

While physical risk represents an immediate challenge rather than a future climate 
consideration, banking institutions must navigate an evolving regulatory landscape 
focused on various disclosure drivers across multiple jurisdictions - from immediate 
hazard events to long-dated weather and climate scenarios. The CDM framework 
provides a structured approach to meeting these regulatory requirements while 
addressing current physical risk challenges. 
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Central Banks and Stress Testing 

Central banks and banking regulators have responded to political pressure and have 
developed comprehensive frameworks for assessing and managing climate-related 
risks. The Bank of England exemplifies this approach and provides insight into how 
regulators consider climate risk and their demand on banks for further disclosure 
reporting. 

The Author believes that Physical risk has created a present issue for banking and, 
therefore, does not need to participate in the climate discussions. The reality is that the 
narrative that the future will create more severe and frequent flood events prevails with 
politicians and their regulators, so all disclosure reporting for physical risk comes 
under climate risk. 

The Climate Biennial Exploratory Scenario (CBES) is a stress-testing exercise 
conducted by the Bank of England to assess how climate change might impact the UK 
banking system. First implemented in 2021, it evaluates banks' and insurers' resilience 
to transition risks (economic shifts toward a low-carbon economy) and physical risks 
(direct consequences of climate change like floods and fires).  

The CBES examines three potential scenarios over a 30-year horizon: Early Action 
(immediate policy implementation limiting warming to 1.8°C by 2050), Late Action 
(delayed implementation causing disorderly transitions), and No Additional Action 
(leading to 3.3°C warming and severe physical consequences). 

Key findings reveal that climate risks could reduce banking institutions' profits by 
10-15% annually, with the No Additional Action scenario projecting cumulative losses of 
up to £334 billion by 2050. Under this worst-case scenario, approximately 7% of UK 
households could become uninsurable due to escalating climate risks. 

While banking institutions are progressing in climate risk management, significant 
improvements in modelling capabilities and data collection are needed. The Bank of 
England plans to refine future CBES exercises to understand the banking system's 
vulnerabilities better and support the transition to a low-carbon economy. 

Extension of CDM to Physical Risk and Physical Risk 
Swaps 

Standardisation is the foundation of effective physical risk management in banking 
markets. The Common Domain Model (CDM) is core to this framework, which provides 
standardised definitions and structures for seven key components: Weather Events, 
Flood Events, Flood Gauges, Properties, Mortgages, Insurance, and Physical Risk 
Swaps. This standardisation is not merely a technical convenience—it is the bedrock 
upon which banking practitioners can build all subsequent risk measurement and 
management capabilities. 

Consider a property, for example. The CDM defines the critical attributes for any 
property assessment beyond valuation: location and physical characteristics and their 
relationship to terrain, flood defence structures, and historical events. This 
standardised definition ensures that whether a bank uses the model for mortgage 
valuation or an insurer for policy pricing, they work with consistent, comparable data 
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structures.  This standardisation reaches the first stage of the ultimate risk transfer 
mechanism in the form of Physical Risk Swaps, which are recognised by all actors in 
the banking markets. 

Based on this CDM foundation, the framework supports a variety of modelling 
approaches, both public and proprietary. For instance, institutions might decide to 
implement the public Joint Research Centre ( JRC) spatially distributed hydrological 
model, LISFLOOD, to simulate hydrological processes such as rainfall-runoff, flood 
forecasting, and water resource assessments over large transnational river catchments. 

The crucial point is not which specific models are used but that they interface with 
the standardised CDM structures and comply with model risk governance 
requirements, particularly the principles outlined in SR 11-7. 

•  Property-level: risk assessment requirements demand a granular analysis of 
physical risk exposure. The CDM's Property structure standardises this assessment, 
ensuring consistent evaluation and reporting of risk factors such as elevation, flood 
defence characteristics, and historical exposure. 

• Regulatory Stress: testing scenarios increasingly examine mortgage portfolio 
vulnerability. The CDM's Mortgage component enables institutions to model how 
physical risks affect property values and default probabilities, providing the detailed 
analysis regulators demand. 

• Insurance Availability: and pricing are emerging as critical regulatory concerns. 
The CDM's Insurance structure standardises the representation of coverage, 
premiums, and market capacity, facilitating the reporting of insurance-related risks. 

Developing Physical Risk Swaps through the CDM framework also anticipates 
regulatory needs for risk transfer mechanisms. By structuring these instruments 
similarly to Credit Default Swaps (CDS), the framework leverages existing regulatory 
frameworks while addressing new risk transfer requirements. 

Technical Implementation and Core Components 

The technical implementation of the CDM framework focuses on three foundational 
components that form the basis for physical risk assessment and management: 

Property CDM: Key Utility Components 

The CDM captures critical valuation factors through: 

• Detailed property attributes (size, bedrooms, construction quality). 
• Transaction history with actual sale prices and rental income. 
• Property type and classification for comparative analysis. 
• Income generation potential (rental, holiday let status). 

Flood risk assessment: 

• Geolocation data (latitude/longitude, elevation, BNG references). 
• Environment Agency flood zone classification. 
• Distance measurements to water bodies (rivers, lakes, coasts, canals). 
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• Historical flood events with dates and severity. 
• Information around return period predictions (e.g. flood height for a one-in-100-

year event. 

Implemented resilience measures: 

• Physical barriers (flood panels, airbrick covers, waterproof walls). 
• Structural modifications (raised foundations, reinforced walls). 
• Drainage systems and water diversion measures. 
• Natural solutions (rain gardens, strategic planting, bioswales). 

Construction specifications: 

• Building materials and methods (brick/block, timber frame). 
• Foundation types and floor construction. 
• Wall construction and insulation status. 
• Age and period of construction. 
• Recent renovations and improvements. 

Energy performance data: 

• EPC and carbon ratings. 
• Annual energy consumption by source (gas, electricity, renewables). 
• Building fabric thermal performance (insulation, glazing). 
• Heating systems and renewable installations. 
• Energy costs and potential savings calculations. 

Contextualises property risk: 

• Urban/rural classification. 
• Local authority and administrative boundaries. 
• Ground conditions (soil type, subsidence risk, contamination). 
• Environmental quality indicators (air, water, noise). 
• Proximity to infrastructure and services. 

This Property CDM structure creates a standardised, interoperable data framework 
that supports accurate risk assessment, valuation modelling, and resilience planning 
across the property finance ecosystem. It provides the foundational data layer for 
mortgage risk calculations, insurance pricing, and physical risk transfer mechanisms, 
enabling more accurate climate adaptation investment decisions. 

Mortgage CDM: Key Utility Components 

Risk-adjusted Valuation Framework: 

• Loan-to-value calculations that incorporate physical risk factors. 
• Standardised property valuation methodologies accounting for resilience 

features. 
• Temporal adjustments to reflect changing risk profiles over the loan lifetime. 
• Comparative valuation benchmarks across risk categories. 

Default probability adjustments: 
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• Correlation modelling between climate events and payment delinquency. 
• Stress testing frameworks for extreme weather scenarios. 
• Risk segmentation methodologies for portfolio management. 

Insurance availability: 

• Premium escalation modelling and affordability thresholds. 
• Coverage gap identification and risk quantification. 
• Integration with Flood Re and other market-based insurance schemes. 

Collateral Risk Evaluation: 

• Repair cost estimation standardisation for common damage types. 
• Residual value calculation methodologies post-event. 
• Refinancing risk assessment due to insurance shifts. 

System Integration Standards: 

• Data exchange protocols with existing credit risk systems. 
• Reporting frameworks aligned with regulatory requirements. 
• Portfolio aggregation methods for institution-wide exposure assessment. 
• Stress testing integration with existing banking stability frameworks. 

Risk Transfer Enablement: 

• Standardised categorisation of risk profiles supporting securitisation. 
• Data requirements for creating physical risk swaps, Definitions of trigger events 

and verification methodologies, and the standardisation of settlement processes and 
documentation. 

The Mortgage CDM structure creates a robust framework for incorporating physical 
risk into mortgage finance operations. It enables more accurate pricing of climate-
related risks, supports the development of new risk transfer instruments, and facilitates 
integration with existing credit risk management systems. This standardisation helps 
banking institutions better understand their exposure to physical climate risks and 
develop appropriate mitigation strategies. 

Parametric Flood Insurance CDM: Key Utility Components 

Objective Trigger Mechanisms 

• Standardised measurement units for consistent applications. 
• Precise specification of trigger types across contracts. 
• Historical threshold exceedance tracking for frequency analysis. 

Transparent Payout Structure 

• Tiered payout levels are linked to specific trigger thresholds. 
• Predefined payout amounts eliminate subjective assessment. 
• Graduated response reflecting increasing severity of events. 
• Historical comparison data to contextualise trigger points. 

Data Source Standardisation 

46



• Detailed gauge specifications and certification status. 
• Consistent measurement frequency and methodology. 
• Clear data transmission protocols and accessibility. 
• Maintenance and operational status tracking. 

Contract Clarity and Efficiency 

• Standardised policy structures for rapid deployment. 
• Clear identification of covered properties and limits. 
• Explicit premium allocation for flood coverage. 
• Defined contract terms and status tracking 

Risk Transfer Transparency 

• Standardised format enabling easy comparison between policies. 
• Historical frequency data supporting accurate pricing. 
• Sensor reliability metrics for risk assessment. 
• Location-specific sensor data for precise risk evaluation. 

Integration Capabilities 

• Link to Property CDM through Property ID reference. 
• Connection to third-party data sources through standardised interfaces. 
• Compatibility with existing insurance documentation. 
• Support for automated claims processing. 

The Parametric Flood Insurance CDM establishes a foundation for innovative 
insurance products that significantly enhance the efficiency of flood risk transfer. 
Eliminating the subjectivity and delays associated with traditional claims assessment 
facilitates quicker payouts and more accurate risk pricing. This standardisation 
promotes the growth of insurance markets in high-risk areas where traditional coverage 
may be unaffordable or unavailable. 

The structure also facilitates integration with the broader CDM framework, enabling 
banking institutions to accurately incorporate insurance information into mortgage risk 
assessments and property valuations. This creates a complete picture of physical risk 
exposure across the banking system. 

Physical Risk Swap CDM: Key Utility Components 

Risk Transfer Framework 

• Counterparty specifications and legal entity identifiers. 
• Standardised documentation aligned with ISDA/FIA conventions. 
• Consistent reference data for physical risk exposures. 
• Compatible structure with existing derivatives infrastructure 

Trigger “Default” Definitions 

• Event classification taxonomy (flood, hurricane, wildfire, etc.). 
• Severity threshold specifications mirroring parametric insurance. 
• Duration and spatial extent parameters. 
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• Data source authentication protocols. 

Settlement Mechanisms 

• Cash settlement calculation methodologies. 
• Physical delivery specifications for applicable scenarios. 
• Collateral valuation adjustments for impaired assets. 
• Netting and aggregation rules across multiple contracts. 

Market Infrastructure Support 

• Clearing compatibility specifications. 
• Trade reporting requirements are aligned with regulatory frameworks. 
• Transaction lifecycle event processing. 
• Position reconciliation methodologies. 

Pricing Transparency 

• Pricing models and inputs. 
• Mark-to-market valuation methodologies. 
• Risk premium calculation approaches. 
• Historical data requirements for backtesting. 

Regulatory Alignment 

• Capital requirement calculation methods. 
• Risk-weighted asset determination. 
• Disclosure and reporting specifications. 
• Stress testing integration protocols. 

The Physical Risk Swap CDM creates a crucial bridge between traditional banking 
markets and physical risk management. Adopting familiar CDS-like structures reduces 
the implementation barrier for market participants and leverages existing trading 
infrastructure. This standardisation supports the development of liquid markets for 
physical risk transfer, enabling more efficient risk distribution across the banking 
system. 

The MKM framework integrates seamlessly with the Property, Mortgage, and 
Parametric Insurance CDM components to create a comprehensive physical risk 
management ecosystem. Property data feeds into risk assessment, mortgage exposure 
determines hedging requirements, and parametric triggers align with swap settlement 
conditions. 

These components interact through standardised interfaces, enabling the 
development of Physical Risk Swaps that mirror CDS structures. This approach allows 
institutions to: 

• Price physical risk transfer accurately. 
• Create standardised risk transfer documentation. 
• Have legal certainty with ISDA agreed template. 
• Establish clear trigger events and settlement processes. 
• Enable market-making and trading. 
• Support regulatory reporting requirements. 
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The implementation leverages existing banking market infrastructure while 
introducing new elements specific to physical risk. For example, the framework 
incorporates flood modelling outputs from systems like LISFLOOD while maintaining 
familiar banking product structures that facilitate market adoption. 

High-Resolution Rapid Refresh (HRRR): Advanced 
Weather Prediction for Physical Risk Assessment 

Assessing physical risks demands increasingly granular and timely weather data. 
Enter the High-Resolution Rapid Refresh (HRRR) model, a breakthrough in operational 
weather prediction that has transformed our ability to capture and analyse 
atmospheric conditions across the United States. As a cornerstone of modern weather 
forecasting infrastructure, HRRR represents a significant advancement in spatial 
resolution and update frequency, making it an invaluable tool for physical risk 
assessment. 

Technical Foundation and Capabilities 

At its core, HRRR is a convection-allowing numerical weather prediction model 
operated by the National Oceanic and Atmospheric Administration (NOAA). Its 
remarkable spatial resolution of 3 kilometres across the contiguous United States sets it 
apart, providing a level of detail that captures local weather phenomena crucial for risk 
assessment. This granularity allows risk managers to identify and evaluate location-
specific weather patterns that might affect physical assets, from individual buildings to 
entire infrastructure networks. 

The model's "rapid refresh" capability delivers frequently updated forecasts, 
enabling near-real-time risk assessment and decision-making. This combination of high-
resolution and frequent updates makes HRRR particularly valuable for analysing 
chronic physical risks, such as severe weather events that could impact property 
portfolios or infrastructure investments. 

Cloud-Native Architecture and Data Accessibility 

The evolution of HRRR data architecture reflects the broader shift toward cloud-
native computing in banking risk assessment. Through NOAA's Big Data Program, 
HRRR output is now available on Amazon Web Services (AWS) in two formats: the 
traditional GRIB2 format and the modern cloud-optimised Zarr format. 

The evolution of the High-Resolution Rapid Refresh (HRRR) data architecture 
exemplifies the broader transition toward cloud-native computing in various industries, 
including banking risk assessment.  

Through the NOAA Big Data Program (BDP), HRRR output is now available on 
Amazon Web Services (AWS) in the traditional GRIB2 and modern cloud-optimised Zarr 
formats. 
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Comparison of GRIB2 and Zarr Formats: 

GRIB2 Format 

•    A long-standing format used for compressing and distributing large numerical 
weather model outputs as two-dimensional grids. 

• While GRIB2 files are efficient for storage, they pose challenges for users needing 
frequent, high-throughput access. Files can be hundreds of megabytes and require 
substantial memory and processing resources to extract relevant data. 

• GRIB2 remains essential for applications requiring complete datasets, such as 
initialising high-resolution simulations that require all variables to be at multiple 
levels. 

Zarr Format 

•    Created to address the limitations of GRIB2, Zarr is a cloud-native, chunked, and 
compressed storage format designed for high-speed access and ease of use with 
open-source software, such as xarray 

• HRRR Zarr archives reformat GRIB2 output into smaller, optimised chunks (as 
small as 1 MB), reducing processing and access time by approximately 40 times 
compared to GRIB2 files. This primarily benefits machine learning, data analysis, or 
real-time forecasting applications. 

• Zarr data is organised hierarchically in an AWS Simple Storage Service (S3) 
bucket, allowing users to access only the necessary subdomains or variables, 
significantly reducing data transfer times and costs. 

Implications for Cloud-Native Computing 

The NOAA/AWS HRRR initiative highlights the growing reliance on cloud-native 
architectures to improve accessibility, scalability, and efficiency in handling large 
datasets: 

• Efficiency Gains: Cloud computing resources allow faster analysis and higher 
throughput, crucial in time-sensitive applications such as weather forecasting or 
banking modelling. 

• Scalability: By leveraging AWS, the HRRR architecture accommodates growing 
data volumes—currently exceeding 145 terabytes and growing daily—with minimal 
operational overhead. 

• Broader Applications: The HRRR Zarr format lends itself well to use cases 
requiring high-velocity data access, such as extreme weather event analysis and 
predictive modelling, which mirrors banking services’ adoption of cloud-native 
architectures to handle complex calculations like credit risk analysis. 

This dual-format data availability demonstrates a practical strategy for connecting 
legacy systems with modern cloud-native infrastructures, enabling various sectors to 
meet their computational and analytical needs better. 
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Efficient Graphical Subsetting 

Efficient Geographic Sub-setting refers to the process of selecting a relevant subset 
of geographic data from a larger dataset in an optimised way.  

It is commonly used in fields like geospatial analysis, geographic information 
systems (GIS), machine learning, and database management to extract only the 
necessary geographic data while minimising computational costs. 

Key Concepts & Techniques 

• Spatial Indexing: Using data structures like QuadTrees, R-Trees, or KD-Trees to 
quickly locate and extract relevant geographic regions without scanning the entire 
dataset. 

• Bounding Boxes: Defining rectangular or polygonal boundaries around the area 
of interest to filter data efficiently. 

• Grid-Based Partitioning: Dividing a geographic space into smaller cells and 
selecting only relevant ones, reducing the need to process unnecessary regions. 

• Geohashing: Converting geographic coordinates into string representations that 
allow for quick lookup and comparison. 

• Sampling & Clustering: Using techniques like k-means clustering or stratified 
sampling to extract representative geographic subsets. 

• Database Query Optimisation: Leveraging spatial databases (PostGIS, Google 
BigQuery GIS, etc.) to run optimised queries that retrieve only the required 
geographic subset. 

Applications 

• Mapping & Visualisation: Extracting only the relevant region for interactive 
maps. 

• Machine Learning on Geospatial Data: Reducing data size before training 
models. 

• Satellite & Remote Sensing: Processing only the necessary geographic area to 
save computational resources. 

• Logistics & Supply Chain: Optimising delivery routes by selecting relevant city 
or regional subsets. 

Processing of Specific Data Subsets. 

Modern data science workflows involve multiple stages—data collection, modelling, 
visualisation, and deployment. Streamlined integration ensures that each step 
seamlessly connects, reducing inefficiencies, improving performance, and enabling 
automation. 
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Traditional data processing and analysis methods require manual data cleaning and 
transformation, significantly slowing the analytical process. Streamlined integration 
allows for automated ETL (Extract, Transform, Load) pipelines, reducing time spent on 
repetitive tasks. For instance, using Apache Spark or Pandas with cloud storage 
solutions like AWS S3 or Google BigQuery enables real-time data streaming, 
dramatically accelerating the initial phases of data science work. 

Data science workflows frequently deal with big data, necessitating tools that 
efficiently query and subset information. Modern integration ensures compatibility 
between distributed storage systems such as Hadoop, Snowflake, and Delta Lake with 
machine learning frameworks like TensorFlow, PyTorch, and Scikit-Learn. A prime 
example is using SQL-based querying in Spark to preprocess large datasets before 
training machine learning models, allowing data scientists to work with volumes of 
data that would otherwise be unmanageable. 

Data scientists, engineers, and analysts are required to collaborate effectively, and 
smooth integration enables these collaborative workflows. Integration with Git, DVC 
(Data Version Control), MLflow, and Kubernetes ensures reproducibility and precise 
experiment tracking across teams. This is exemplified when using MLflow to track 
hyperparameters and model performance across different training runs, enabling 
teams to understand which approaches yield the best results and ensuring that 
successful experiments can be reproduced consistently. 

Table 1: Format Comparison 

Businesses increasingly require real-time insights, as delayed processing often leads 
to missed opportunities. Modern workflows integrate streaming analytics platforms like 
Kafka, Flink, and Kinesis with AI models, enabling automated decision-making at scale. 
A compelling example is fraud detection in banking. AI models process transactions in 
real time using event-driven architectures, allowing banking institutions to identify and 
prevent fraudulent activities before they complete rather than conducting post-hoc 
analysis of suspicious transactions. 

Scalable & Flexible Deployments, streamlined integration allows for easy model 
deployment across cloud, edge, or hybrid environments. Frameworks like Docker, 
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Represents Location (where) Time (when)

Measured in Distance area volume Seconds minutes 
days

Example Data Latitude longitude depth Timestamp event 
sequence

Common Uses Maps 3D modelling GIS Time series 
forecasting logs

Change 
Characteristics

Often fixed or slow-
changing

Continuously 
evolving



Kubernetes, FastAPI, and TensorFlow Serving significantly simplify the deployment 
process, enabling utilising the same models across diverse computing environments. 
For example, deploying a recommendation system via an API using FastAPI and serving 
models with TensorFlow Serving enables consistent, high-performance predictions 
regardless of where the system is hosted while maintaining the flexibility to scale 
resources based on demand patterns. 

Cost Optimisation and resource efficiency are other substantial benefits of 
integrated workflows, as they reduce unnecessary computation, cutting cloud 
computing costs substantially. Serverless architectures like AWS Lambda and Google 
Cloud Functions enable pay-as-you-go processing, eliminating the need for constantly 
running infrastructure that may sit idle during periods of low demand. A practical 
example is using serverless data pipelines instead of always-on virtual machines for 
preprocessing tasks, which can dramatically reduce operational costs while 
maintaining or even improving performance for sporadic or unpredictable workloads. 

Benefits 

While quite generic, the benefits are worth listing. Cost Optimisation and resource 
efficiency are music to any head of IT at any bank. 

• Saves time by automating repetitive tasks. 
• Handles big data efficiently. 
• Enables real-time AI-driven decisions. 
• Improves collaboration across teams. 
• Reduces costs by optimising cloud and compute resources. 

Forecast Data Organisation and Structure 

The HRRR-Zarr architecture employs a sophisticated organisational structure that 
balances analytical flexibility with computational efficiency. The data is systematically 
organised along multiple dimensions: 

The primary organisation follows a hierarchical structure based on: 

• Model run Datetime: Typically, this refers to the timestamp when executing a 
computational model. This timestamp is crucial for tracking, logging, and analysing 
model results over time. It is used in AI to track when a model was trained or made 
predictions. 

• Vertical Levels: The HRRR model employs 51 vertical levels, consistent with the 
Rapid Refresh (RAP) model.  These levels are hybrid, transitioning from a terrain-
following sigma coordinate near the surface to isobaric levels in the mid and upper 
atmosphere. This approach reduces numerical noise in the upper levels, particularly 
in mountainous regions. 

• Low-Level Heights: The HRRR model's lowest level is approximately 8 metres 
above ground level (AGL), with the spacing between levels increasing from about 15–
30 metres near the surface to 400 metres in the mid-troposphere and reaching about 
700 metres near the tropopause. The model also provides outputs at specific heights, 
such as 10 metres and 80 metres AGL, which are commonly used in applications like 
wind energy analysis. 
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• Forecast Adjustability: HRRR data can be interpolated to desired heights above 
ground for specific applications (e.g., wind turbine hub heights), ensuring versatility 
for various sectors like renewable energy. 

• Analyses and Forecasts: Represent the state of the atmosphere at the time of 
model initialisation. These analyses are derived using advanced data assimilation 
techniques, integrating various observational datasets with model simulations to 
provide an accurate starting point.  Forecasts are updated every hour and offer 
parameters such as precipitation, wind, temperature, and other meteorological 
variables. 

• Time-Lagged Ensemble (TLE) Approach: A unique feature of HRRR operations 
is its use in producing Time-Lag Ensembles (TLEs). Sequential model runs are treated 
as ensemble members for a given valid time, allowing evaluation of forecast 
uncertainty and consistency. TLEs help forecasters assess trends and variability in 
predictions over time. 

• Physical Organisation of Data as 2D Tiles for Analysis Files: HRRR analysis 
files (denoted as F00) are divided into 2D tiles, each covering a grid size of 150x150 
points. This segmentation facilitates efficient data retrieval and minimises overhead 
for users seeking specific regions or parameters. 

• Physical Organisation of Data as 3D Cubes for Forecast Files: Forecast files 
are stored as 3D data cubes, where the three dimensions correspond to forecast lead 
time (XX), and spatial resolutions of 150x150 grid points for latitude and longitude. 

• Initialisation Times: Times are set at 0000, 0600, 1200, and 1800 UTC, with a 
forecast duration extending to 48 hours (XX=48). For other initialisation times, the 
duration is limited to 18 hours (XX=18). This organisation supports applications that 
require temporal and spatial forecasting across varying lead times. 

Spatial vs. Temporal Dimensions in Data Analysis 

Spatial and temporal dimensions represent fundamental frameworks for organising 
and analysing data across various scientific disciplines. While they serve distinct 
purposes, their integration often yields powerful insights that neither dimension could 
provide alone. 

Understanding Spatial Dimensions 

Spatial dimensions refer to physical space, typically represented through latitude, 
longitude, and altitude coordinates. These dimensions allow us to: 

• Map geographic locations with precision. 
• Model three-dimensional objects and environments. 
• Analyse spatial relationships between different entities. 

Geographic Information Systems (GIS), physics simulations, urban planning, and 
computer graphics are typical applications. For instance, a satellite image with precise 
coordinates allows researchers to track deforestation patterns across specific regions. 
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Understanding Temporal Dimensions 

Temporal dimensions relate to time—when events occur, how long they last, and the 
sequence in which they unfold. These dimensions are crucial for: 

• Tracking changes over time. 
• Identifying patterns and cycles. 
• Predicting future trends based on historical data. 

Time series analysis, forecasting models, and historical tracking systems rely heavily 
on temporal dimensions. Stock market analysis, for example, depends on precise 
timestamps to identify trading patterns throughout the day. 

Key Differences 

The most potent analyses often emerge when spatial and temporal dimensions are 
combined, creating spatiotemporal frameworks that capture where and when 
phenomena occur. This integration enables: 

• Climate scientists to track temperature changes across regions over multiple 
decades. 

• Epidemiologists to monitor disease spread through populations and geographic 
areas. 

• Transportation planners to optimise traffic flow based on historical patterns at 
specific locations. 

• Environmental researchers to model pollution dispersion across both space and 
time. 

• Self-driving vehicles represent a cutting-edge application of spatiotemporal 
analysis, continuously processing both location data and temporal patterns to 
navigate safely through changing environments. 

By understanding how spatial and temporal dimensions interact, researchers can 
develop more comprehensive models that capture the full complexity of dynamic 
systems in our world. 

Industry Standard Parameters and Variables 

The HRRR model implements the World Meteorological Organization's (WMO) 
standardised parameter definitions, representing the foundational variables used 
throughout the weather industry as the global standard. 

 These parameters fall into several key categories: 

Atmospheric State Variables 

• Temperature (K) at multiple pressure levels and 2m above ground. 
• Pressure (Pa) from surface to upper atmosphere. 
• Relative Humidity (%) across vertical profile. 
• Specific Humidity (kg/kg) for moisture content. 
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• Wind Components (m/s) - U and V vectors at multiple levels. 
• Vertical Velocity (Pa/s) for atmospheric motion. 

Precipitation and Hydrology 

• Total Precipitation Rate (kg/m²/s). 
• Accumulated Precipitation (kg/m²). 
• Snow Water Equivalent (kg/m²). 
• Frozen Precipitation Types (snow, sleet, freezing rain, graupel, hail). 
• Precipitation Type Probabilities (%). 
• Surface Runoff (kg/m²). 

Radiative and Energy Parameters 

• Downward Short-wave Radiation (W/m²). 
• Upward Long-wave Radiation (W/m²). 
• Surface Heat Fluxes (W/m²). 
• Ground Heat Flux (W/m²). 
• Cloud Radiative Properties. 

Surface and Boundary Layer 

• Surface Temperature (K). 
• Soil Moisture Content (kg/m²). 
• Surface Roughness (m). 
• Planetary Boundary Layer Height (m). 
• Surface Wind Components (m/s). 
• Friction Velocity (m/s). 

Derived Meteorological Products 

• CAPE (Convective Available Potential Energy, J/kg). 
• CIN (Convective Inhibition, J/kg). 
• Storm Relative Helicity (m²/s²). 
• Various Stability Indices. 
• Echo Top Height (m). 
• Radar Reflectivity (dBZ). 

The Weather Industry's Universal Language 

The HRRR model speaks the universal language of operational meteorology by 
implementing standardised parameters from the World Meteorological Organisation 
(WMO). These carefully defined variables represent decades of international 
collaboration and consensus in the weather industry, forming a comprehensive 
atmospheric measurement and prediction framework.  This long-standing 
collaboration leading to standard metrics is where banks can stand on the shoulders of 
meteorological giants to advance their banking risk management. 

  
State Variables 

At the foundation of HRRR's capabilities lie the essential atmospheric state 
variables. The model tracks temperature variations across multiple pressure levels, 
from the surface to the upper atmosphere, while simultaneously monitoring pressure 
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systems and humidity patterns. Wind patterns are captured through detailed U and V 
vector components, providing a complete picture of atmospheric motion at every level. 
These fundamental measurements form the backbone of all weather prediction and 
analysis. 

  
The model's precipitation and hydrological parameters offer crucial insights for 

operational forecasting. Beyond simple rainfall measurements, HRRR provides a 
detailed analysis of precipitation rates, accumulation patterns, and precipitation type 
classifications. The system distinguishes between rain, snow, and frozen precipitation 
while tracking crucial hydrological factors like surface runoff and snow water 
equivalent. These parameters prove especially valuable for flood prediction and winter 
weather operations. 

  
Energy Transfer 

Energy transfer within the Earth's atmosphere is a dynamic process involving 
multiple pathways of radiation and surface-level exchanges. These mechanisms 
collectively govern Earth's energy balance and influence temperature regulation, 
particularly in urban and agricultural settings. 

Shortwave radiation from the sun enters Earth's atmosphere, with about 30% 
reflected due to the albedo effect from clouds and surface features, while 70% 
penetrates further. Of this penetrating energy, approximately 20% is absorbed by 
atmospheric gases, and the remainder reaches Earth's surface as direct and diffuse 
radiation. This solar energy varies regionally, with humid areas experiencing reduced 
solar heating due to cloud cover, while dry regions receive higher solar flux. 

At Earth's surface, energy interacts through multiple processes: absorption converts 
solar radiation into heat energy; sensible heat flux transfers energy between the surface 
and atmosphere through conduction and convection; latent heat flux moves energy 
through evaporation and transpiration (especially in vegetated areas); and ground heat 
flux transfers energy into or out of the subsurface depending on temperature 
differentials between the surface and ground below. 

Boundary Layer 

The surface and boundary layer parameters provide critical information about the 
interface between Earth's surface and the atmosphere. HRRR measures surface 
temperature, wind patterns, soil moisture content, and surface roughness 
characteristics. Calculating the planetary boundary layer height offers crucial insights 
into pollution dispersion and convective potential, making these parameters especially 
valuable for air quality forecasting and aviation operations. 

  
This parameter set embodies the weather industry's standardised approach to 

atmospheric science. The parameters maintain uniform definitions across different 
modelling systems worldwide, ensuring seamless integration with existing weather 
visualisation and analysis tools.  

This standardisation extends beyond mere measurement to encompass 
computation methods and quality control procedures, making HRRR data immediately 
applicable within existing weather industry workflows. HRRR maintains backward 
compatibility with historical datasets through this standardisation while pushing the 
boundaries of weather prediction capabilities. 
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Integration with Risk Assessment Workflows 

 For banking institutions and risk managers, the HRRR data architecture offers 
several key advantages: 

  
• Efficient Data Access: The ability to access data directly from specific geographic 

regions and time periods reduces storage requirements and processing overhead. 

• Scalable Analysis: The cloud-native format enables parallel processing and 
distributed computing, essential for analysing large portfolios or conducting 
systematic risk assessments. 

• Real-time Integration: The frequent update cycle of HRRR data supports near-
real-time risk monitoring and assessment workflows. 
  
• Cost-effective Operations: The ability to subset data and process it in parallel 

can significantly reduce computing costs and processing time. 

The HRRR system represents more than just a weather model; it exemplifies the 
evolution of physical risk data architecture toward cloud-native, analysis-ready formats 
that support modern risk assessment requirements. As physical risk analysis advances, 
the accessibility and efficiency of HRRR data will play an increasingly important role in 
enabling sophisticated risk assessment capabilities. 

The Case for Collaborative Physical Risk Data 
Infrastructure 

Current Challenges for Individual Banks 

Banking institutions face unprecedented challenges in assessing and managing 
physical risks from climate change. Unlike traditional banking risks, physical risks from 
events like floods, hurricanes, and wildfires present unique data challenges: 

• Geographic Data Complexity: Physical risk assessment requires integrating 
diverse geospatial datasets (flood plains, elevation models, property boundaries) 
with banking exposure data. Most banks lack in-house GIS expertise to process these 
effectively. 

• Computational Intensity: Running high-resolution weather, fluid dynamics 
models against mortgage portfolios demands significant computational resources 

• Data Acquisition Costs: High-quality terrain data from specialised providers is 
expensive, often costing millions per year for comprehensive coverage, creating 
redundant spending across the sector. 

Why Collaboration Makes Sense for Physical Risk 

Physical risk data presents an ideal case for inter-bank collaboration because: 
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• Pre-competitive Information: Raw physical risk data (flood maps, temperature 
projections) is not a source of competitive advantage—interpretation and integration 
with proprietary portfolios is where differentiation occurs. 

• Scale Economies: The fixed costs of building and maintaining physical risk data 
infrastructure can be distributed across multiple institutions, making sophisticated 
analysis accessible to smaller lenders. 

• Standardisation Benefits: A collaborative approach would foster standardised 
risk assessment methodologies, improving transparency and comparability for 
regulators and investors. 

• Reduced Duplication: Currently, multiple banks independently purchase 
identical datasets from the same vendors, creating industry-wide inefficiency. 

Practical Implementation Model 

A collaborative physical risk data service could function as: 

Table 2: Options for a Physical Risk Service 

Evidence of Feasibility 

Several precedents demonstrate this approach is viable: 

• The Insurance Development Forum has already created a shared catastrophe 
modelling platform for insurers facing similar physical risk assessment challenges. 
• The OS-Climate initiative brings together banking institutions to develop open-

source climate risk tools, showing an appetite for pre-competitive collaboration. 
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Component Description Key Benefit

Shared Data Lake
Centralized repository of climate models, 
historical event data, and geospatial 
information

Eliminates 
redundant data 
acquisition costs

Standardized 
APIs

Common interfaces for integrating 
physical risk data with proprietary 
systems

Simplifies technical 
integration

Federated 
Computation

Distributed processing allowing banks to 
run analyses against shared datasets 
without exposing portfolios

Preserves 
competitive 
information

Regulatory 
Alignment

Built-in compliance with emerging 
climate disclosure requirements (TCFD, 
ECB Guidelines)

Reduces 
compliance 
overhead



• Banking regulators like the Bank of England and ECB are promoting standardised 
climate scenario analysis, creating natural incentives for shared infrastructure. 

Addressing Potential Obstacles 

While promising, several challenges must be addressed: 

• Governance Structure: A neutral third-party or industry consortium model 
would be needed to ensure equitable access and management. 

• Cost Allocation: Usage-based pricing models could ensure institutions pay 
proportionate to their benefit from the system. 

• Data Privacy: Federated learning approaches can allow analysis without 
exposing sensitive portfolio details. 

• Integration with Legacy Systems: Standardised APIS and data formats would 
be essential to overcome the technical fragmentation highlighted in your document. 

Conclusion 

The physical risks posed by climate change present a challenge that transcends 
individual institutions, which are often ill-prepared to tackle these issues 
independently. Through collaboration on a unified data infrastructure for assessing 
physical risks, banks can conduct more sophisticated analyses at a lower cost while 
maintaining competitive advantages by applying these insights to their specific 
portfolios and business strategies. 

The rising regulatory pressure around climate risk disclosure makes this 
collaboration increasingly urgent. Banks that delay may struggle to meet reporting 
requirements and accurately price climate-related risks in their mortgage and 
commercial real estate portfolios. 
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Chapter 3 - Weather Prediction 

W eather pattern prediction lies at the heart of physical risk assessment for 
flooding events. However, banks’ needs differ fundamentally from 

traditional weather forecasting. Rather than attempting to predict specific weather 
conditions at particular times, banks need to understand and characterise the 
distribution of possible weather patterns, including tails, that could lead to flooding 
events. Such a solution requires a sophisticated framework that combines classical 
weather pattern modelling with advanced artificial intelligence and statistical 
techniques. 

"Weather prediction models for physical risk assessment must 
depart from traditional forecasting approaches. Rather than 

seeking precise predictions of specific conditions, banks require a 
framework that maps the complete probability space of weather 

pattern evolution, with particular attention to those pathways that 
could lead to extreme precipitation events. This fundamental shift in 

perspective drives every aspect of the MKM Framework and 
modelling approach.”- David Kelly, MKM. 

This chapter presents our approach to weather pattern prediction, explicitly built 
for physical risk assessment in banking systems. We begin by examining the 
fundamental principles of weather pattern modelling, which are adapted and focused 
on the bank’s particular needs in flood risk assessment. We then explore how artificial 
intelligence and Bayesian methods enhance predictive capabilities, allowing banks to 
extract more granular insights from weather data than traditional approaches allow.  

The chapter continues with the MKM Framework for modelling weather pattern 
distributions, providing a complete characterisation of possible pattern evolutions, 
with particular attention to those most relevant to flood risk. Finally, we examine the 
crucial process of transforming weather patterns into precipitation time series, which 
can drive subsequent hydrological modelling, which then drives time series in gauge 
levels. It is essential to mention that the time series of market data is at the heart of a 
bank’s risk systems. 

Throughout the chapter, we carefully balance sophisticated mathematics and 
practical utility. While the underlying techniques may be complex, we focus on 
producing results to support meaningful risk assessment. Each component of the MKM 
Framework builds upon established physical principles while leveraging modern 
computational methods to extract additional insights relevant to flood risk assessment 
for banks. 
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The methods presented here provide the foundation for all subsequent banking risk 
analysis. We develop a robust and physically consistent approach to weather pattern 
prediction to create a solid base for meaningfully assessing physical risks in banking 
systems. 

Weather Model Fundamentals 

Understanding weather system dynamics is the foundation of weather pattern 
prediction. While traditional weather pattern models excel at capturing large-scale 
atmospheric and oceanic processes, the MKM Framework requires a fundamentally 
different approach—one focused on the specific patterns and interactions that drive 
flood risk. This shift in perspective shapes how we construct and apply a new 
modelling framework to physical risk. 

The approach outlined below builds upon the fundamental physical laws governing 
atmospheric behaviour—mass, energy, and momentum conservation. These principles 
form an immutable foundation, expressed through coupled partial differential 
equations describing the evolution of key atmospheric variables. However, where 
traditional models might prioritise global-scale predictions over decades or centuries, 
our framework focuses on the regional-scale patterns and interactions most relevant to 
flood risk assessment that align with weather patterning, so out to 5 days.  This starkly 
contrasts with climate models that do not predict changes in precipitation patterns. 

The spatial resolution of our modelling framework reflects this specialised focus. We 
employ a nested grid structure that provides excellent resolution in regions of interest 
for flood risk assessment, similar to how risk managers drill down into risk datasets.  

This approach allows us to capture crucial local-scale processes - orographic 
precipitation, convective storm development, and boundary layer interactions - while 
maintaining computational efficiency. The grid structure adapts dynamically, 
concentrating computational resources that prove most valuable for risk assessment. 

Parameterisation 

Parameterisation is one of the most challenging aspects of weather modelling. Many 
crucial processes, particularly those related to cloud formation and precipitation, occur 
at scales smaller than any practical model grid. Our framework addresses this challenge 
through physical parameterisations and machine-learning approaches that capture 
sub-grid-scale processes. This hybrid approach is valuable for representing the intense, 
localised precipitation events that often drive flooding risk. 

The MKM framework demands careful attention to external forcings. Beyond the 
standard considerations of greenhouse gas concentrations and solar variations, we pay 
particular attention to factors influencing extreme precipitation events.  

Land use changes, aerosol distributions, and soil moisture conditions receive 
explicit treatment, as these factors can significantly affect the development and 
intensity of extreme weather patterns. 
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Initialisation 

Model initialisation presents unique challenges for our purposes. While traditional 
weather pattern models might initialise from long-term average conditions, our 
framework requires a precise representation of current atmospheric states. We employ 
sophisticated data assimilation techniques that combine observations from multiple 
sources - ground stations, satellites, and weather balloons - to construct initial 
conditions that capture the subtle atmospheric features that might influence weather 
pattern evolution. 

The MKM Framework places particular importance on model risk governance and 
evaluation, a regulatory requirement of the bank. Beyond traditional model skill 
metrics, we employ specialised validation approaches focused on representing extreme 
but not biblical events. Validation includes careful assessment of precipitation intensity 
distributions, spatial coherence of weather patterns, and the realistic evolution of 
atmospheric features associated with flooding events. 

The ultimate value of this model framework lies in its ability to support robust 
physical risk assessment in banking systems. While sophisticated in their treatment of 
global weather dynamics, traditional weather pattern models often prove insufficient 
for the specific needs of flood risk assessment. The MKM Framework addresses this 
limitation by maintaining physical rigour while focusing on the weather patterns and 
processes most relevant to flooding events that impact a bank’s asset and lending 
portfolio. 

This focused approach yields several crucial advantages for risk assessment. By 
capturing the full range of possible weather pattern evolutions, from industry and 
academic configurations to rare but dangerous combinations of atmospheric 
conditions, we provide a solid foundation for quantifying flood risk probabilities. The 
framework's attention to local-scale processes and extreme event precursors proves 
valuable for identifying potentially dangerous weather patterns before they fully 
develop. 

The MKM Model Framework seamlessly integrates with subsequent components of 
our bank risk assessment framework. It is physically consistent with weather patterns, 
providing ideal inputs for our AI-based pattern recognition and Bayesian analysis 
approaches.  

“This integration of the MKM Model Framework ensures that our 
more sophisticated statistical analyses build upon meteorologically 
sound foundations rather than operating in isolation from physical 

constraints”.- Johnny Mattimore, MKM. 

Perhaps most importantly, the framework maintains transparency and 
interpretability throughout its operation. While the underlying mathematics may be 
complex, the model's predictions can be traced back to fundamental physical 
principles and verified against known atmospheric dynamics. This transparency and 
explainability prove crucial for bank risk managers and regulators who are required to 
understand and justify their risk assessments. 
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This physically grounded approach will prove invaluable in later chapters as we 
examine specific applications in weather pattern prediction and flood risk assessment. 
Our framework provides a robust foundation for meaningful physical risk assessment 
by carefully balancing sophisticated mathematics with practical utility. 

AI and Bayesian Approaches to Weather Pattern 
Prediction 

Integrating artificial intelligence with Bayesian methods represents a transformative 
approach to weather pattern prediction. While traditional meteorological models excel 
at physics-based forecasting, they often struggle to capture the fine-grained patterns 
and subtle precursors that can signal the development of extreme weather events. Our 
framework addresses this limitation by combining deep learning architectures with 
Bayesian inference to extract more granular insights from High-Resolution Rapid 
Refresh (HRRR) data than conventional approaches allow. 

The cornerstone of our approach lies in treating weather pattern prediction not as a 
deterministic forecast but as a Bayesian inference problem. We begin with prior 
distributions informed by a physical understanding of atmospheric dynamics and 
climatological patterns. These priors encode fundamental constraints such as 
conservation laws and thermodynamic relationships, ensuring that our predictions 
remain physically plausible even as we push the boundaries of traditional forecasting. 

Deep learning enters our framework through carefully designed neural network 
architectures that learn to identify and track weather pattern evolution. Convolutional 
neural networks (CNNs) prove particularly valuable for recognising spatial patterns in 
atmospheric fields, while recurrent architectures capture temporal dependencies in 
weather system evolution. However, we move beyond traditional deterministic neural 
networks by employing Bayesian neural networks that provide crucial uncertainty 
quantification at each step of the prediction process. 

The Bayesian neural network approach offers several key advantages over 
conventional deep learning methods. Rather than producing single-valued predictions, 
these networks generate entire probability distributions over possible weather 
patterns.  

“This probabilistic output aligns with our broader framework for 
physical risk assessment, providing a richer characterisation of 

potential weather evolution pathways.” David Kelly, MKM 

The MKM Framework pays particular attention to the challenge of rare event 
prediction. Traditional machine learning methods often struggle with imbalanced 
datasets where extreme events are underrepresented. We address this by combining 
techniques that appropriately weigh extreme event precursors while maintaining the 
network's skill at predicting more common weather patterns. 

The power of our AI framework lies in its ability to learn from vast amounts of 
historical weather data while maintaining physical consistency. Where traditional 
numerical weather prediction models rely solely on physical equations, our approach 
combines physics-based understanding with patterns learned from millions of 
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historical weather observations. This hybrid approach proves particularly valuable for 
identifying subtle precursors to extreme weather events that conventional methods 
might miss. 

Data assimilation is one of the most crucial aspects of our framework. Weather 
prediction inherently depends on diverse data streams, including ground stations, 
weather balloons, satellite observations, and radar measurements. Our Bayesian 
approach provides a mathematically rigorous framework for combining these varied 
data sources, weighing their relative uncertainties, and accounting for spatial and 
temporal correlations in measurement errors. 

Advanced Neural Network Architecture for Weather 
Prediction 

This neural network architecture integrates three key innovations tailored for 
weather prediction challenges, addressing critical limitations in traditional approaches: 

Attention Mechanisms for Dynamic Feature Prioritisation. 

The model employs sophisticated attention mechanisms to weigh atmospheric 
variables across spatial and temporal dimensions dynamically: 

• Spatial Attention identifies critical regions, such as developing low-pressure 
systems or oceanic temperature anomalies, that disproportionately influence future 
weather patterns. 

• Temporal Attention isolates pivotal time steps, including rapid intensification 
phases in cyclones or diurnal heating cycles, enabling the model to focus on 
nonlinear transitions. 

This approach mirrors human forecasters' ability to prioritise "weather makers" but 
implements this capability quantitatively using transformer-based architectures. 

Physics-Aware Skip Connections 

The architecture maintains multi-scale information essential for physical 
consistency through specialised skip connections: 

• Variable Conservation for critical quantities like potential vorticity and moisture 
flux is preserved across layers via residual pathways, preventing degradation in deep 
networks. 

• Multi-Resolution Processing: Shallow layers retain high-resolution cloud 
microphysics details, while deeper layers capture planetary-scale Rossby wave 
interactions. 

These connections emulate the grid nesting used in numerical models like WRF, but 
in a learned, adaptive manner. 

Variational Inference for Uncertainty Quantification 

Unlike deterministic NWP ensembles requiring 50+ computational runs, this 
framework implements: 
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• Learned Priors: Bayesian layers that parametrise distributions over key variables 
using historical extremes from CMIP6/ERA5 datasets. 

• Stochasticity Injection: Monte Carlo dropout during inference that generates 100+ 
ensemble members at 1/50th the computational cost of dynamical models. 

This approach effectively captures epistemic uncertainty (model limitations) and 
aleatoric uncertainty (inherent atmospheric chaos). 

Operational Advantages Over Traditional NWP 

Combining these elements, the architecture achieves ECMWF-level skill in 72-hour 
hurricane track forecasts while resolving convective-scale features (3 km vs. 9 km in 
IFS). However, like all ML approaches, it remains constrained by training data coverage
—rare events like "bomb cyclones" still require hybrid modelling with physics 
constraints. 

Local adaptation is vital to our approach. While weather patterns operate on large 
scales, their manifestation often depends heavily on local topography, land use 
patterns, and regional weather pattern characteristics. Our framework addresses this 
through a hierarchical structure that combines global pattern recognition with locally 
trained models that capture region-specific weather behaviour. This multi-scale 
approach proves particularly valuable for flood risk assessment, where local factors can 
significantly influence precipitation patterns. 

The challenge of non-stationarity in weather patterns requires special attention. 
Traditional machine learning models often assume statistical stationarity in their 
training data—an assumption that becomes increasingly problematic if weather patterns 
shift. We address this through transfer learning techniques and continuous model 
updating, allowing our framework to adapt to evolving weather patterns while 
maintaining its foundation in historical data. 

Extreme event prediction presents particular challenges for AI-based approaches. 
The relative rarity of such events in historical data can lead traditional machine-
learning models to underestimate their probability. Our framework addresses this 
through several complementary strategies.  

Synthetic data generation leverages physical principles and catastrophe models to 
enhance the realism and diversity of training datasets for rare events like extreme 
weather. By integrating physical models of phenomena such as storm surges or wind 
patterns with statistical extreme value distributions, synthetic data algorithms produce 
artificial event footprints that preserve the spatial-temporal relationships and intensity 
profiles observed in historical records.  
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Table 3: MKM Framework and External Forcings 

For example, catastrophe models combine deterministic simulations of known 
events with probabilistic extrapolations beyond historical observations, using 
techniques like Generative Adversarial Networks (GANs) to maintain statistical fidelity 
while expanding coverage to low-frequency, high-impact scenarios. This augmentation 
helps address the inherent scarcity of extreme event data in climate modelling, 
particularly for compound hazards like coastal flooding, where physical processes 
interact nonlinearly. 

Our Bayesian framework provides a natural paradigm for quantifying uncertainties 
in rare event predictions by systematically incorporating prior scientific knowledge and 
updating probability estimates as new data emerges. Unlike frequentist methods that 
struggle with zero-event scenarios, Bayesian approaches use hierarchical models and 
empirical Bayes techniques to pool information across related hazards, enabling robust 
frequency estimates even for events with no historical precedents. 

 For tail-event weather forecasting that does not have to be extreme or biblical, this 
manifests as probabilistic predictions that account for both model structural 
uncertainties and climate variability, expressed through credible intervals rather than 
single-point estimates. By integrating physical constraints through informed priors and 
continuously assimilating observational data, Bayesian methods produce dynamically 
calibrated risk assessments essential for resilient infrastructure planning and adaptive 
climate policies. 

The computational demands of this sophisticated approach require careful 
consideration. Where possible, we employ efficient approximations and model 
compression techniques that maintain prediction quality while reducing computational 
overhead. This efficiency proves crucial for operational risk assessment, where rapid 
analysis of emerging weather patterns can distinguish between effective and ineffective 
risk mitigation strategies. 
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Aspect Traditional NWP Proposed 
Framework

Compute Cost Exascale HPC required GPU-optimized 
<10 nodes

Lead Time Hours for initialization Real-time 
streaming

Uncertainty Metrics Post-hoc calibration Native 
probabilistic 
outputs



Distribution Path Modelling 

Modelling weather pattern distributions represents a fundamental shift from 
traditional meteorological approaches. Rather than attempting to predict specific 
outcomes, we aim to characterise the complete space of possible weather pattern 
evolutions, particularly those that could lead to extreme precipitation events. The 
challenge of mapping and analysing this full probability space of weather pattern 
evolution necessitates a sophisticated mathematical framework that combines 
stochastic differential equations, copula-based dependency structures, and advanced 
clustering techniques. 

Why does Copula trump Gaussian? 

Copula-based dependency structures offer significant advantages over Gaussian 
models in characterising the probability space of weather pattern evolutions, 
particularly for extreme precipitation events. Here's why: 

Capturing Non-Gaussian Dependencies 

• Tail dependence: Copulas explicitly model dependencies in extreme values 
(e.g., simultaneous heavy rainfall and specific atmospheric conditions), which 
Gaussian models often underestimate. 

• Nonlinear relationships: Weather variables like temperature and rainfall exhibit 
complex, nonlinear interdependencies. 

Flexibility in Marginal Distributions 

• Copulas decouple marginal distributions (e.g., rainfall intensity, storm duration) 
from their dependence structure, allowing mixed distributions (e.g., gamma for 
precipitation, normal for temperature). 

• For example,  in flood risk analysis, coupling Gaussian mixture models with 
copulas improved the joint modelling of flood peak, volume, and duration. 

Robustness for Extreme Events 

• Gaussian copulas require high percentile thresholds (e.g., 0.8) to model extremes 
effectively, while copulas like Gumbel and Student’s t perform well even at lower 
percentiles (0.2–0.8)[1]. This is critical for rare but high-impact events like extreme 
precipitation. 

• Hierarchical Archimedean copulas enable asymmetric dependence modelling 
across different distribution parts, improving flood frequency projections under 
climate change. 

State Space Representation 

Our approach begins with a comprehensive state space representation of 
atmospheric conditions.  
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State space representation treats the atmosphere as a dynamical system governed 
by conservation laws for mass, momentum, energy, and moisture. Each grid point in 
the three-dimensional atmospheric grid (e.g., latitude-longitude-altitude) is assigned a 
state vector containing the variables we have observed in the HRRR data, such as:   

• Temperature. 
• Pressure.   
• Zonal and meridional wind components   
• Specific humidity   
• Ice/water content 

We model the atmosphere as a high-dimensional system where each point in state 
space captures the parameters above across a three-dimensional grid.  

“This high-dimensional system creates a substantial computational 
challenge with millions to a billion degrees of freedom in modern 
models.  We then couple this evolution with differential equations 

derived from the Navier-Stokes equations, thermodynamic 
principles, and parameterised sub-grid processes (e.g., convection, 

radiation, turbulence).” David Kelly, MKM 

This representation allows us to track the spatial relationships between variables 
and their temporal evolution through the atmosphere's complex dynamics. 

The evolution of these atmospheric states follows deterministic physical laws and 
inherently stochastic processes, which we capture through carefully constructed 
stochastic differential equations (SDEs).  

________________________________________________________________ 

Formula 1: Stochastic Atmospheric State Evolution 

These take the form: 

dX(t) = a(X(t),t)dt + b(X(t),t)dW(t) 

Where  

• X(t) represents our state vector of atmospheric variables. 

• The drift term a(X,t) encodes the deterministic physics - thermal gradients driving 
heat transfer, pressure differences generating winds, moisture transport 
mechanisms, and the crucial interactions between terrain and atmospheric flow.  

Meanwhile, the diffusion term b(X,t)dW(t) acknowledges and quantifies the 
uncertainties inherent in weather pattern evolution, from measurement errors in initial 
conditions to the fundamental limits of predictability in chaotic atmospheric systems. 

________________________________________________________________ 

The intricate dependencies between atmospheric variables demand more 
sophisticated modelling than traditional correlation measures can provide. We employ 
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a hierarchical copula framework that captures direct relationships between variables 
and their conditional dependencies. Through a vine copula structure, we decompose 
the high-dimensional dependency network into a cascade of bivariate relationships. 

Vine copulas balance flexibility with computational feasibility, making them a 
cornerstone of modern multivariate dependence modelling.  Using a vine copula 
approach addresses the limitations of traditional multivariate copulas (e.g., Gaussian or 
Archimedean), which often impose restrictive symmetry or tail dependence 
assumptions.  Vine copulas organise dependencies using a sequence of trees (called a 
“regular vine” or “R-vine”), where each tree level represents conditional relationships 
between variables. The structure includes: 

•   C-vines feature a central "root node" at each tree level, applicable when one 
variable dominates. We can choose between temperature, precipitation, or 
atmospheric pressure for weather prediction. 

• D-vines: Use a path-like structure, ideal for sequential dependencies (e.g., time-
series data) 

This approach allows us to match each relationship with the most appropriate 
copula family - using Gaussian copulas where dependencies are approximately linear, 
Student-t copulas where we see strong tail dependence, and Gumbel copulas for 
asymmetric relationships in extreme values. 

These copula relationships themselves evolve dynamically as atmospheric 
conditions change. A stable summer weather pattern exhibits different variable 
dependencies than an intense developing storm system. Our framework captures these 
shifting relationships by allowing copula parameters to vary with the underlying 
weather regime, providing crucial flexibility when modelling the transition into 
extreme event scenarios. 

Weather Pattern Distributions 

Weather pattern distributions leveraging Monte Carlo frameworks enhanced by 
importance sampling and adaptive strategies are designed to capture rare 
meteorological events while efficiently minimising computational costs. These methods 
address the challenges of traditional approaches, which often require prohibitively 
large sample sizes to resolve low-probability phenomena. 

In capital markets, we recognise this as Skew plus Kurtosis, so adjusting the 
distribution towards tail events is industry standard practice.  In the insurance 
industry, they take it a step further by adopting the modified Ornstein-Uhlenbeck 
process, which biases temperature simulations toward rare extremes, allowing for a 
non-zero estimation of events like 100-year heatwaves with far fewer simulations than 
the brute-force Monte Carlo method.  The problem for capital markets is that this 
approach looks too skewed, but it is worth considering if the Monte-Carlo is used for 
capital purposes. 

The resulting collection of weather pattern evolutions provides rich material for 
analysis through our clustering framework. Moving beyond simple distance-based 
clustering, we employ a modified DBSCAN (Density-Based Spatial Clustering of 
Applications with Noise) algorithm that considers weather patterns' spatial structure 
and temporal evolution.  
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Meteorological data often includes transient phenomena (e.g., isolated 
thunderstorms) or measurement errors. DBSCAN distinguishes these as noise, ensuring 
clusters represent meaningful weather patterns; in particular, isolated weather stations 
with anomalous readings are flagged as outliers and sporadic events such as localised 
flooding are separated from systematic trends. 

The clustering operates in a feature space, combining direct state variables with 
derived quantities like vorticity, precipitation potential, and pattern similarity 
measures grounded in atmospheric physics. 

This clustering process serves multiple crucial functions in our framework. Beyond 
identifying typical weather pattern trajectories, it reveals potential extreme event 
pathways that more traditional analysis methods might miss. The clusters provide 
natural categories for probability assignment through our Bayesian framework, which 
weighs historical frequency, physical plausibility, and risk relevance to assign 
meaningful probabilities to different evolution pathways. 

The integration of these modelling components requires careful attention to 
feedback and validation. Each generated weather pattern must satisfy fundamental 
physical constraints - conservation of mass, energy balance, and fundamental 
thermodynamic relationships. We employ continuous validation against historical 
extreme events to verify our model's ability to reproduce known patterns and to ensure 
we capture the essential physical mechanisms that drive extreme weather evolution. 

The probability assignment process represents one of the most delicate aspects of 
our framework. Traditional approaches often rely too heavily on historical frequencies, 
which can underestimate the probability of extreme events. Our Bayesian framework 
instead combines multiple streams of evidence - historical observations, physical 
constraints and pattern similarity metrics - to assign probabilities that better reflect 
current and emerging risks. 

“Energy constraints play a vital role in weather pattern evolution 
and guide much of our modelling approach. Atmospheric systems 

cannot arbitrarily transition between states; they must follow 
physically realistic paths that respect energy conservation and 

thermodynamic principles.” - Johnny Mattimore, MKM. 

Our stochastic differential equations explicitly incorporate these constraints, 
ensuring that even extreme scenarios maintain physical plausibility. 

Pattern similarity plays a crucial role in both clustering and probability assignment. 
Rather than relying on simple Euclidean distances, we employ similarity measures that 
capture meteorologically significant features—the structure of pressure gradients, the 
organisation of moisture fields, and the coherence of wind patterns. These physically 
motivated similarity metrics help ensure our clustering results reflect meaningful 
weather pattern families rather than arbitrary mathematical groupings. 
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Handling Extreme Events 

Our framework's handling of extreme events deserves particular attention. Extreme 
weather patterns often emerge from subtle interactions between multiple atmospheric 
features - interactions that more straightforward modelling approaches might miss. Our 
copula-based dependency modelling proves particularly valuable here, capturing the 
complex relationships that can align to produce severe precipitation events. Adaptive 
sampling ensures we explore these crucial edge cases thoroughly rather than treating 
them as mere statistical outliers. 

The output of this distribution path modelling feeds directly into our precipitation 
time series generation, but its value extends beyond simple inputs for the following 
modelling stage. The clustered patterns and their assigned probabilities provide insight 
into the mechanisms of extreme weather evolution, helping identify potentially 
dangerous atmospheric configurations before they manifest as flood events. This 
understanding proves invaluable for long-term risk assessment and adaptation 
planning. 

Our framework carefully balances complexity and interpretability. While the 
underlying mathematics may be sophisticated, the resulting weather pattern 
distributions and their evolution pathways must remain interpretable to meteorologists 
and risk managers. We achieve this through careful visualisation techniques and 
physically meaningful pattern classifications that bridge the gap between mathematical 
abstraction and practical risk assessment. 

Our framework's success depends heavily on efficiently exploring the vast state 
space of possible weather patterns. While robust, traditional Monte Carlo methods 
leave significant coverage gaps that might miss critical pattern evolution pathways. We 
employ sophisticated quasi-Monte Carlo (QMC) techniques that systematically explore 
the state space through carefully constructed low-discrepancy sequences to address 
this limitation. 

The advantage of QMC methods is that they achieve more uniform coverage of the 
sampling space than conventional random sampling. We primarily employ Sobol's 
sequences, chosen for their superior properties in the high-dimensional spaces 
characteristic of atmospheric systems. These sequences ensure that our sampling 
systematically explores different combinations of atmospheric variables, leaving no 
significant gaps in our coverage of possible weather pattern evolutions. 

Atmospheric systems present particular challenges due to their high dimensionality 
and discontinuous behaviour near weather fronts and other sharp transitions. We 
address these challenges through a hybrid approach that combines QMC sampling with 
targeted importance sampling in regions of particular interest for flood risk. 

Targeted importance sampling combines statistical efficiency with domain 
knowledge to better capture meaningful tail events in flood modelling without wasting 
computational resources on unlikely scenarios. 

Traditional Monte Carlo methods distribute samples uniformly throughout the 
parameter space, which is inefficient for flood modelling since certain regions of the 
parameter space (such as specific rainfall-soil moisture combinations) 
disproportionately impact outcomes. Targeted importance sampling addresses this by: 
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• Adjusting the sampling distribution to focus on regions of higher relevance, such 
as urban drainage systems and complex topography 

• Applying a higher sampling density in areas with greater uncertainty or 
sensitivity, such as rainfall intensity thresholds that trigger nonlinear responses or 
soil saturation levels near critical points. 

• Applying temporal targeting such as seasonal patterns when antecedent 
conditions create higher risk or known weather system types that correlate with 
flooding 

“The art of target sampling is not to “do a Cat insurance” on the tail 
of the distribution and seek to maintain some statistical validity 

with just a touch of skew.”- David Kelly, MKM. 

The integration of QMC methods with our copula-based dependency structures 
requires careful attention to the mapping between uniform QMC points and the actual 
atmospheric state space. We employ dimension-reduction techniques that identify the 
most influential combinations of atmospheric variables, allowing us to focus our QMC 
sampling on these critical subspaces while handling less crucial dimensions through 
conventional methods. 

Synthesising all the elements 

Our framework concludes by synthesising all these elements - stochastic differential 
equations, copula-based dependencies, clustering analysis, and QMC sampling - into a 
coherent system for generating and analysing weather pattern distributions. The 
resulting output provides a set of possible weather patterns and a structured 
understanding of how these patterns might evolve and interact to produce conditions 
conducive to flooding events. 

This sophisticated approach to distribution path modelling forms the foundation for 
our subsequent precipitation analysis and flood risk assessment. By maintaining 
physical consistency while efficiently exploring the full range of possible weather 
pattern evolutions, we create a robust basis for quantifying and managing physical risk 
in banking systems with the benefit of complete transparency for model governance 
that banking regulators require. 

Our framework's ultimate validation comes through its practical application in risk 
assessment. The weather pattern distributions it generates must strike a careful balance 
between being comprehensive enough to capture the full range of possible outcomes 
and focused enough to provide actionable insights for risk management. Our 
framework achieves this balance through careful calibration and continuous 
refinement, providing a solid foundation for the precipitation analysis in the next 
section. 

Time Series Analysis of Precipitation Patterns 

One of the most challenging aspects of physical risk assessment is transforming 
weather pattern predictions into usable precipitation time series. Traditional 
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approaches to precipitation modelling rely heavily on a direct statistical analysis of 
historical data, but this proves insufficient for our purposes.  

We require a more sophisticated framework that can: 

• Capture the full distribution of possible precipitation patterns. 
• Include the critical tail events that are bad but not catastrophic. 
• Pay particular attention to extreme events that drive flooding risk. 

The goal is to simulate realistic precipitation scenarios, including unusual but not 
catastrophic weather events, with a special focus on the types of extreme precipitation 
that lead to flooding hazards.  The Bayesian paradigm provides the ideal foundation for 
this analysis.  

“Rather than treating precipitation as a deterministic outcome, we 
view it as an uncertain process about which we can make 

probabilistic inferences. This approach allows us to combine 
multiple sources of information - from high-resolution radar data to 
ground-based measurements - in a mathematically rigorous way.”- 

Johnny Mattimore, MKM. 

At its core, our Bayesian framework treats precipitation patterns as the outcome of 
underlying atmospheric processes about which we have incomplete information. We 
start with prior distributions based on a physical understanding of atmospheric 
dynamics and regional climatology. These priors are then updated with observational 
data through the likelihood function, leading to posterior distributions representing 
our updated beliefs about precipitation patterns. 

The power of this approach becomes particularly evident when dealing with 
extreme events. Traditional frequency-based statistics often struggle with rare events 
due to limited historical data. The Bayesian framework allows us to incorporate 
physical constraints and expert knowledge about extreme precipitation mechanisms, 
leading to more robust estimates of tail probabilities. 

Spatial correlation presents another crucial challenge in precipitation modelling. 
Rain doesn't fall uniformly across a catchment area - topography, prevailing winds, and 
other factors create complex spatial patterns. Our framework employs spatial 
correlation structures that adapt to changing weather patterns while respecting 
physical constraints. This spatial correlation ensures that our synthetic time series 
exhibit realistic spatial coherence across catchment areas. 

The temporal evolution of precipitation patterns requires equal attention. Weather 
systems don't evolve randomly - they follow physical laws and exhibit various forms of 
persistence. Our Bayesian model captures these temporal dependencies through state-
space representations that explicitly model the evolution of precipitation systems. This 
includes short-term persistence during storm events and longer-term patterns related 
to seasonal and climatic factors. 
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“The final output of our analysis consists of synthetic precipitation 
time series that serve as inputs to hydrological models. These aren't 

simple point forecasts - they represent complete probabilistic 
descriptions of possible precipitation patterns. Each synthetic series 

maintains consistency with known physical constraints while 
incorporating the uncertainties inherent in weather prediction.”- 

David Kelly, MKM. 

This comprehensive approach to time series analysis bridges the gap between 
weather pattern prediction and flood risk assessment. By maintaining physical 
consistency while properly characterising uncertainty, we provide the robust inputs 
needed for subsequent risk quantification. The Bayesian framework ensures that our 
models can adapt as new data becomes available, making them particularly valuable 
for long-term risk assessment.  

"It is this high-speed adaptation that is of huge value to banking, 
where intraday updates make meaningful differences to potential 
asset valuation and impairment decisions.”- Johnny Mattimore, 

MKM. 

The MKM Framework transforms weather prediction from a meteorological 
exercise into a critical banking risk management tool. While traditional banks may view 
weather modelling as outside their domain, our approach bridges this gap by directly 
connecting atmospheric science to financial outcomes. Banks can dynamically adjust 
collateral valuations in response to emerging weather patterns before physical damage 
occurs, accurately provide for expected losses in loan portfolios with exposure to flood-
vulnerable regions, and optimise capital reserves by replacing overly conservative 
buffer approaches with precision-targeted allocations based on scientific weather 
patterns distributions. 

Our framework provides banks with transparent model governance that satisfies 
regulatory requirements for explainability and physical basis. The adaptive risk 
recalibration capabilities respond to rapid changes in weather conditions, similar to 
how market risk systems adjust to volatility shifts. Banks gain competitive 
differentiation through superior physical risk assessment that manifests in pricing 
advantages and reduced losses across their portfolios. 

The output of this weather prediction framework—probabilistic precipitation time 
series—integrates seamlessly with banks' existing risk infrastructure. The time series 
format mirrors the market data inputs already used in banks' core systems. Uncertainty 
quantification through Bayesian methods aligns with modern market risk management 
approaches. The distributed sampling approach enables stress testing and scenario 
analysis familiar to risk managers, allowing them to work with physical risk in the same 
paradigm they apply to market and credit risk. 

By transforming complex meteorological science into usable financial decision 
inputs, the MKM Framework enables banks to incorporate physical risk into their core 
operations without requiring wholesale system redesigns or specialised meteorological 
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expertise. Weather patterns become another dimension in the risk assessment matrix 
that responds to the same rigorous quantitative approaches banks already employ for 
their traditional risk factors. 

In the following chapters, we will demonstrate how these precipitation time series 
drive hydrological models that ultimately translate into metrics directly relevant to 
banking: asset valuation impacts, expected loss adjustments, and capital requirement 
calculations that reflect the full spectrum of physical risks facing modern financial 
institutions. The bridge from atmosphere to balance sheet is now complete, allowing 
for sophisticated risk management that accounts for our physical world's increasingly 
volatile reality. 
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Chapter 4 - Hydrological Modelling 

A ssessing physical risk in water-related hazards fundamentally depends on 
our ability to understand and model how water moves through the 

environment. Hydrological modelling is the critical bridge between weather events 
and their impacts on the flood risk assessment. It translates meteorological data 
into actionable insights about flood risks, water scarcity, and other hazards. This 
chapter explores the complex world of hydrological modelling, examining how 
different approaches can simulate water movement through natural and built 
environments. 

"All hydrological models, regardless of their complexity or 
simplicity, are ultimately expressions of the same fundamental 

physical laws established by Newton. We may dress them differently, 
adapt their form to various scales and purposes, but beneath these 
surface variations lie the immutable principles of mass and energy 

conservation.” - David Kelly, MKM. 

Hydrological modelling is grounded in fundamental physical principles - primarily 
Newton's laws of motion and thermodynamics. These universal physical laws govern 
how water moves and changes state throughout its journey, from the moment it falls as 
precipitation until it reaches its ultimate destination, whether that's the ocean, 
groundwater, or the atmosphere through evaporation. 

While models may vary significantly in complexity and approach, they all ultimately 
derive from these same physical principles. This process involves multiple 
interconnected components: precipitation patterns, surface runoff, infiltration into the 
soil, groundwater movement, and channel flow dynamics. The accuracy of physical 
risk assessment depends critically on how well we can represent these processes in our 
models. 

Hydrological modelling has evolved significantly with advances in computational 
power and data availability, though all approaches - from the simplest to the most 
complex - remain fundamentally rooted in classical physics. Whether a model is 
lumped, distributed, empirical, or physically based, we can easily trace their 
underlying equations to the same core physical principles of mass, energy, and 
momentum conservation.  

Tracing back to Newton is a crucial aspect of such modelling. The intellectual 
property of those who model such outcomes for their insurance clients does not stem 
from their original creation of the models, as these originate from academia and are, 
therefore, in the public domain.  The intellectual property should align with that of 
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banks and their instrument pricing models, which is based on their implementation 
rather than solely on the accuracy and granularity of their results and scalability.  

Early models were necessarily simple, treating entire watersheds as single units 
with uniform characteristics. Modern approaches can incorporate detailed spatial 
variations in terrain, land use, and soil properties, leading to more accurate water 
movement and accumulation predictions. 

Hydrological Model Overview 

Hydrological models can be classified along several dimensions, each offering 
different advantages for specific applications: 

Spatial Representation 

• Lumped Models: These models treat the watershed as a uniform unit with 
uniform characteristics. While computationally efficient and requiring minimal data, 
they sacrifice spatial detail in favour of simplicity. They remain valuable for rapid 
assessments and preliminary analyses. 

• Semi-Distributed Models: Representing a middle ground, these models divide 
watersheds into sub-basins, each with its own characteristics. This approach 
balances computational efficiency with the need to represent spatial variability. It 
makes them particularly useful for medium—to large watersheds where some spatial 
detail is essential but complete distribution isn't necessary. 

• Fully Distributed Models: These models represent the ultimate spatial detail, 
dividing the study area into a fine grid where each cell can have unique properties. 
While computationally intensive, they provide the most detailed representation of 
spatial processes and are essential for applications requiring high spatial resolution. 

Process Representation 

The way models represent physical processes varies significantly, reflecting different 
philosophical approaches to hydrological modelling: 

• Empirical Models: Built on statistical relationships derived from observed data, 
these models excel in stability and simplicity but may struggle when conditions differ 
from their training data. They serve well in operational settings where quick, reliable 
results are needed for familiar conditions. 

• Conceptual Models: These models balance empirical and physical approaches, 
representing key processes through simplified equations. They maintain physical 
meaning while remaining computationally manageable, making them popular for 
many practical applications. 

• Physical Models: These models offer the most robust theoretical foundation. 
They demand data and computation based on fundamental water movement and 
conservation equations. Still, they provide the best framework for understanding 
process changes under novel conditions. 
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When integrating backtesting into hydrological model applications for physical risk 
assessment, it becomes critical to address the following enhanced considerations: 

• Robustness to non-stationarity: Backtesting against historical extreme floods 
helps validate model performance under shifting climatic regimes. Traditional 
backtesting assumes stationarity, so newer frameworks combine historical validation 
with stress-testing against synthetic extremes beyond observational records. 

• Uncertainty quantification: Backtesting enables empirical estimation of 
prediction intervals by analysing model predictive capability across diverse historical 
scenarios. This directly informs risk pricing through metrics like reliability, 
sharpness, and skill scores. 

• Computational efficiency: While backtesting requires intensive scenario runs, 
reduced-complexity models can maintain usability if they demonstrate consistent 
skill across validation periods, stability in parameter transferability, and scalable 
performance when applied to large portfolios of risk locations. 

• Implementation challenges: Long-term observational datasets are a 
prerequisite for meaningful backtesting, non-stationarity may render older events 
less representative of future hazards, and trade-offs exist between model complexity 
and computational demands for ensemble backtesting. 

Precipitation Modelling 

Precipitation modelling is one of the most challenging aspects of weather 
prediction, owing to the complex interplay of multiple physical processes across 
various spatial and temporal scales. The fundamental challenge is that many critical 
precipitation processes occur at scales significantly smaller than typical model grid 
cells, necessitating sophisticated parameter schemes to represent their collective 
effects. 

Modern precipitation modelling approaches encompass a rich spectrum of 
methodologies, ranging from purely statistical frameworks that leverage historical data 
patterns to entirely mechanistic models that simulate fundamental physical processes. 
At one end of this spectrum, statistical approaches treat precipitation as a stochastic 
process, using probability theory and historical observations to capture temporal and 
spatial patterns without explicitly modelling the underlying atmospheric physics.  

These methods include traditional time series analysis, which can identify cyclical 
patterns and trends, and more sophisticated machine learning techniques, which 
detect complex, nonlinear relationships in precipitation data. As we move along the 
spectrum, semi-empirical models combine statistical relationships with basic physical 
constraints, balancing computational efficiency and physical realism. At the entirely 
mechanistic end, models directly simulate atmospheric dynamics, thermodynamics, 
and microphysics, requiring substantial computational resources but providing explicit 
representations of the physical processes driving precipitation formation.  

Among these approaches, Hidden Markov Models (HMMs) have emerged as 
particularly sophisticated tools for capturing the complex temporal dynamics of 
precipitation patterns. HMMs conceptualise precipitation as a system that transitions 
between hidden weather states, each associated with distinct precipitation 

79



characteristics. These hidden states represent different atmospheric conditions or 
weather regimes that aren't directly observable but manifest in measurable 
precipitation patterns. 

The power of HMMs lies in their probabilistic framework, which comprises 
transition probabilities between weather states and emission probabilities that govern 
the likelihood of specific precipitation amounts given each state. This dual-layer 
structure allows HMMs to capture the temporal persistence of weather patterns and the 
variability in precipitation intensity. The Markov property—where the current state 
depends only on the previous state—provides a computationally tractable way to model 
the temporal evolution of weather systems. 

HMMs employ specialised algorithms, such as the Viterbi algorithm for precipitation 
modelling, which identifies the most likely sequence of weather states given observed 
precipitation patterns, and the Baum-Welch algorithm for parameter estimation from 
historical data. These algorithms enable the model to learn the underlying weather 
state dynamics and their relationship to precipitation from observational data.  This 
learning capability makes HMMs particularly valuable for regions with complex 
precipitation patterns. 

While HMMs provide sophisticated statistical frameworks for precipitation 
modelling, other approaches, such as Generalised Linear Models (GLMs) and 
mechanistic models based on radar data and physical principles, offer complementary 
capabilities. Each approach offers distinct advantages and limitations, with the choice 
often depending on the specific application and available computational resources. 

The Art of Hydrology and Hydraulic Maintenance 

"Hydrologic modelling shows us the journey of every raindrop 
across watersheds—predicting how much water arrives and when. 
Hydraulic modelling reveals how water surges through channels, 

spills across floodplains, and exerts a force on everything in its path. 
Together, they form the essential narrative of water's movement 

through our world: one tells us what's coming, the other shows us 
what happens when it gets here." 

The hydrologic and hydraulic routing field embodies the fundamental tension in 
environmental modelling between theoretical rigour and practical utility. From the 
most straightforward Muskingum calculations to the most sophisticated two-
dimensional Saint-Venant implementations, each approach balances physical realism, 
data requirements, computational feasibility, and decision-making needs. 

This balance is not merely a technical consideration but a philosophical one—it 
recognises that models serve as tools for understanding and decision-making rather 
than perfect representations of reality. The ongoing challenge of finding appropriate 
complexity for specific applications continues to drive innovation in the field, from 
methodological advances to computational techniques and uncertainty 
characterisation. 
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As weather patterns alter hydrological regimes and urbanisation transforms 
watersheds, the importance of robust routing methods only grows. Integrating 
traditional process understanding with modern computational techniques and data 
science approaches promises a future where we can better understand, predict, and 
manage water's journey through our environment – an endeavour with profound 
implications for infrastructure resilience, ecological sustainability, and human well-
being. 

Three distinct yet interconnected approaches form the foundation of our 
understanding of water's movement through landscapes: hydrological modelling, 
hydrologic routing, and hydraulic modelling. Each represents a different scale of 
analysis, a different set of simplifications, and a different perspective on water's 
journey. 

Hydrological modelling embraces the entire water cycle within a watershed. It 
begins with rain falling from the sky. As it is intercepted by vegetation, it follows that 
water infiltrates into soils, percolates to groundwater, evaporates back to the 
atmosphere, or becomes surface runoff. This holistic approach asks: Of all the water 
that falls as precipitation, how much becomes runoff, and when does it reach the 
stream network? 

The watershed resembles a canvas showcasing details of land use, soil types, 
topographic features, and vegetation patterns. Each element affects the fate of water—
urban areas shed runoff quickly, forests capture and slowly release moisture, and 
agricultural fields change with the seasons. Hydrological models integrate these 
complex interactions through a series of mathematical relationships, ranging from 
simple empirical equations to sophisticated physics-based formulations. 

Hydrology modelling connects the atmospheric drivers (precipitation, temperature, 
solar radiation) to the terrestrial response, creating the crucial link between 
meteorology and hydrologic routing. 

As water converges into channels and reservoirs, hydrologic routing takes centre 
stage. This approach focuses on how the shape and timing of flood waves change as 
they move downstream—a process fundamental to flood forecasting and reservoir 
operations. 

Hydrologic routing embraces the principle of continuity: water cannot be created or 
destroyed, only stored or released. The elegant simplicity of the continuity equation—
where the difference between inflow and outflow equals the rate of change in storage—
belies the complex interplay between channel characteristics and flow dynamics. 

Methods like the Muskingum approach represent channels as a series of natural 
reservoirs, using empirical relationships to describe how flood waves attenuate and lag 
as they travel downstream. Reservoir routing similarly tracks the balance between 
inflows, outflows, and changes in storage, enabling operators to manage releases for 
flood control, water supply, hydropower generation, and environmental flows. 

These approaches sacrifice the detailed mechanics of fluid flow for computational 
efficiency and practical applicability. They recognise that for many applications, we 
need not resolve the intricacies of hydraulics to predict the essential characteristics of 
downstream flow—the peak, timing, and volume that drive decision-making. 

81



Hydraulic modelling is a crucial next step when we need to understand not only the 
volume of water passing a point and the timing but also its depth, velocity, energy, and 
spatial distribution. Based on the principles of fluid mechanics—particularly the 
conservation of mass, momentum, and occasionally energy—these models clarify the 
detailed behaviour of water in channels, floodplains, and hydraulic structures. 

Hydraulic models address whether water will reach a gauge’s alert level, resulting in 
flooding. How effective is this proposed flood control structure? Which areas will be 
inundated during a 100-year flood event? Which bridge designs can withstand the force 
of floodwaters? The answers influence billions in infrastructure investments and 
numerous decisions impacting public safety and property. 

The MKM framework effectively blurs the distinctions, creating integrated platforms 
where rainfall-runoff processes feed seamlessly into routing methods, which in turn 
drive detailed hydraulic analyses. This integration reflects the reality of the water cycle 
itself—a continuous system where neat categorisations inevitably break down. 

This tension between the mathematical precision of our models and the chaotic 
reality of natural systems demands a particular mindset—one that balances confidence 
in scientific principles with humility about their limitations. The mindful modeler 
understands that models are not truth, but tools for approaching truth; not reality 
itself, but lenses through which we perceive reality. 

The Zen of water modelling lies in finding harmony between theoretical elegance 
and practical utility, between excessive simplification and needless complexity. 

As weather patterns alter hydrological regimes and urbanisation transforms 
watersheds, the importance of robust routing methods only grows. Integrating 
traditional process understanding with modern computational techniques and data 
science approaches promises a future where we can better understand, predict, and 
manage water's journey through our environment – an endeavour with profound 
implications for infrastructure resilience, ecological sustainability, and human well-
being. 

The following chapters will explore each element of this trinity in detail, examining 
the theoretical foundations, practical applications, and emerging frontiers of 
hydrological modelling, hydrologic routing, and hydraulic modelling. Like water itself, 
our exploration will flow from the broad watershed scale to the detailed mechanics of 
channel flow, always seeking to understand the essence of water's movement through 
our world. 

Hidden Markov Models  

________________________________________________________________ 

Formula 2: Hidden Markov Models 

The mathematical foundations of Hidden Markov Models in precipitation modelling 
can be expressed through several key equations. The model is characterised by: 

P(St|St-1) = A[i,j] 
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Where A[i,j] represents the transition probability matrix between weather states i 
and j, the emission probabilities for precipitation amounts are typically modelled using 
a mixed distribution: 

P(Rt|St) = w0(St)δ0 + (1-w0(St))γ(α(St),β(St)) 

Where w0(St) is the probability of a dry day in state St, δ0 is the Dirac delta function 
at zero (representing no rain), and γ(α,β) is the gamma distribution with shape 
parameter α and scale parameter β specific to each state. 

________________________________________________________________ 

Formula 3: Generalised Linear Models 
For Generalised Linear Models (GLMs), the precipitation process is often separated 

into occurrence and intensity components: 

logit(P(Rt > 0)) = Xβ + ε 

Where X represents predictor variables and β their coefficients. For non-zero 
precipitation: 

log(Rt|Rt > 0) = Zγ + η 

Where Z may include both atmospheric predictors and temporal dependencies. 

In physically-based models, the fundamental equations include the conservation of 
water vapour: 

∂q/∂t + v·∇q = S - C + D 

Where q is specific humidity, v is wind velocity, S represents sources (evaporation), 
C represents sinks (condensation), and D represents diffusion. 

________________________________________________________________ 

Hidden Markov Model Approach 

These are the stages the Hidden Markov Model is doing in practice: 

• Identify weather states: Define a set of hidden weather states (typically 2-5 
states) that might represent different atmospheric patterns, such as "dry," "light 
precipitation," or "heavy precipitation.” 

• Train the model: Use historical precipitation data to estimate two sets of 
probabilities, notably transition probabilities (how likely the weather is to change 
from one state to another) and emission probabilities (How much rain typically falls 
when in each state). 

• Handle zero rainfall: Create a special case for days without rainfall since 
precipitation data contains many zeros. 

• Model non-zero rainfall: For days when it does rain, use a continuous 
distribution to model the amount of rainfall 
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• Make predictions: Once trained, use the model to predict near-future 
precipitation patterns by estimating the most likely sequence of hidden states. 

The model outputs from precipitation modelling systems provide essential inputs 
for downstream risk assessment: 

Primary Outputs: 

• Precipitation intensity (mm/hr or mm/day). 
• Precipitation duration. 
• Precipitation frequency. 
• Spatial distribution of rainfall. 
• Storm movement and evolution. 

Derived Statistics: 

• Annual precipitation totals. 
• Seasonal patterns and cycles. 
• Intensity-Duration-Frequency (IDF) curves. 
• Return period precipitation depths. 
• Drought indices. 

Risk Assessment Metrics: 

• Extreme event probabilities. 
• Precipitation deficits. 
• Spatial correlation structures. 
• Seasonal forecasting indicators. 

Model Diagnostic Parameters: 

• State transition probabilities (for HMMs). 
• Parameter distributions. 
• Uncertainty bounds. 

As discussed in the following section, these outputs form crucial inputs for runoff 
modelling, creating a seamless link between precipitation processes and their 
hydrological consequences. The temporal and spatial resolution of outputs varies by 
model type: 

• Global Weather Models: Typically daily or sub-daily, at grid scales of 50-100km 

• Regional Weather Models: Hourly to daily, at 10-50km resolution 

• Statistical Models: Can be configured for various temporal scales, often focused 
on point locations 

• Radar-based Models: Sub-hourly, at kilometre or sub-kilometre resolution 

The integration of these outputs with runoff models requires careful consideration 
of: 

• Scale compatibility. 
• Uncertainty propagation. 
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• Temporal aggregation effects. 
• Spatial interpolation requirements. 

The combination of precipitation and runoff modelling creates a comprehensive 
framework for physical risk assessment, where uncertainties and biases from both 
components must be carefully managed to provide reliable risk metrics for decision-
making. 

A persistent challenge in global weather pattern models has been their tendency to 
underestimate the intensity of heavy precipitation events. This systematic bias largely 
stems from their coarse spatial resolution, limiting their ability to resolve localised 
intense precipitation events. Recent advances in computing power have enabled the 
development of higher-resolution models, particularly at regional scales, where 
improved representation of topographic effects has led to more accurate precipitation 
patterns. 

Modelling convective precipitation over land presents particular challenges, as it 
involves complex interactions between surface heating, atmospheric stability, and 
moisture transport. The daily precipitation cycle, especially in tropical regions, has 
historically been challenging to capture accurately in models. This difficulty extends to 
simulating seasonal monsoon patterns, which require an accurate representation of 
large-scale atmospheric circulation patterns and their interaction with local topography 
and surface conditions. 

An innovative development in precipitation modelling has incorporated cloud-
resolving components within larger-scale models. This approach simulates convective 
processes rather than relying on parameterisation schemes, improving precipitation 
intensity and temporal distribution representation. However, such approaches' 
computational cost often necessitates careful consideration of the resolution and 
domain size trade-offs. 

The modelling process typically separates precipitation into two distinct 
components: occurrence and intensity. The occurrence model determines whether 
precipitation occurs on a given day, while the intensity model simulates the amount of 
precipitation on wet days. This two-step approach allows for a more accurate 
representation of precipitation patterns, particularly in regions with distinct wet and 
dry seasons. 

Precipitation outputs from weather models often require additional processing for 
practical applications in hydrology and risk assessment. Statistical downscaling and 
bias correction techniques bridge the gap between model resolution and relevant 
spatial scales for impact assessment. 

Model evaluation remains a critical aspect of precipitation modelling, requiring 
careful comparison of simulated precipitation statistics against observations across 
multiple spatial and temporal scales. Key metrics include the mean precipitation and 
measures of variability, extreme events, and spatial patterns. The availability of high-
quality observational datasets, including satellite-based precipitation estimates, has 
dramatically enhanced our ability to evaluate and improve model performance. 

Current research focuses on enhancing the representation of fundamental 
processes such as convection, cloud microphysics, and land-atmosphere interactions. 
These improvements and increasing computational capabilities gradually reduce 
systematic biases in precipitation modelling. However, significant challenges remain, 
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particularly in simulating extreme precipitation events and capturing regional-scale 
precipitation patterns accurately. 

Integrating precipitation modelling with physical risk assessment requires careful 
consideration of model uncertainties and limitations. Risk managers must understand 
the capabilities and constraints of different modelling approaches to make informed 
decisions about their application in specific contexts. This understanding becomes 
particularly crucial when using precipitation models to assess future distributions, 
where the interaction between changing precipitation patterns and other variables can 
significantly impact risk profiles. 

Runoff Modelling 

The transformation of precipitation into runoff represents a critical link in the 
hydrological cycle, with profound implications for physical risk assessment. While 
conceptually straightforward, this process embodies remarkable complexity in 
practice, encompassing multiple interacting pathways through which water moves 
through a catchment system. Understanding these pathways and their relative 
importance under different conditions forms the foundation of modern runoff 
modelling approaches. 

The evolution of runoff modelling reflects a continuous tension between complexity 
and practicality, leading to diverse approaches ranging from purely empirical to 
conceptual to fully physically based frameworks.  

Empirical approaches draw purely from statistical relationships between rainfall 
inputs and runoff outputs. They offer computational efficiency but sacrifice explicit 
representation of physical processes. While limited in their transferability to conditions 
outside their calibration domain, these models continue to find practical application in 
risk assessment scenarios where rapid computation is essential. 

Moving along the spectrum of complexity, conceptual models attempt to bridge the 
gap between empirical and physical approaches by representing key hydrological 
processes through simplified mathematical frameworks. These models typically 
conceptualise catchments as collections of interconnected storage elements, each 
representing different components of the hydrological system. The popularity of 
conceptual models in practical applications stems from their ability to maintain 
physical interpretability while remaining computationally tractable. 

At the most sophisticated end of the spectrum, physically-based models attempt to 
represent the mechanics of water movement through the catchment system. These 
models solve fundamental mass, momentum, and energy conservation equations, 
providing detailed representations of infiltration, subsurface flow, and channel routing 
processes. While theoretically more robust, their practical application often faces 
challenges related to data requirements and computational demands. 

The spatial representation of catchment processes introduces another dimension of 
complexity in runoff modelling. Lumped models, treating entire catchments as single 
units, offer simplicity but may miss critical spatial variations in catchment response. 

Semi-distributed models partition catchments into hydrologically similar units, 
providing some predictive capability and a pragmatic balance between spatial detail 
and computational efficiency. 
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While fully distributed models offer the most detailed spatial representation, they 
also demand extensive data and computational resources that improvements in 
predictive capability may not always justify. 

The runoff generation process encompasses multiple mechanisms operating at 
different temporal and spatial scales. Surface runoff, generated when rainfall intensity 
exceeds soil infiltration capacity or when soil becomes fully saturated, represents the 
most rapid response component. Subsurface flow through soil layers provides a slower 
response mechanism, while groundwater contribution to streamflow represents the 
slowest component. The relative importance of these mechanisms varies with 
catchment characteristics and storm properties, necessitating careful consideration in 
model development. 

Unit Hydrograph Concept 

Within this framework, the unit hydrograph concept has emerged as a foundational 
approach to understanding and predicting catchment response to rainfall.  

A hydrograph serves as the fundamental graphical representation of a watershed's 
response to rainfall, depicting how streamflow changes over time following a 
precipitation event. Developed by Sherman in 1932, the unit hydrograph models the 
direct runoff response to a standardised rainfall input (typically 1 inch or 1 cm) 
distributed uniformly across a watershed during a specified duration. This elegant 
concept transforms the complex rainfall-runoff relationship into a predictable, 
reproducible pattern based on several key principles: time invariance (consistent 
watershed response over time), linearity (proportional relationship between rainfall 
and runoff ), and superposition (ability to combine responses from sequential rainfall 
events). 

The beauty of the unit hydrograph lies in its practicality—it establishes a watershed's 
unique "signature" or response pattern that can be scaled and applied to predict runoff 
from storms of varying intensities and durations. This makes it an invaluable tool for 
flood forecasting, water resource management, and infrastructure design.  

Despite its simplifying assumptions—uniform rainfall distribution and consistent 
watershed conditions—the unit hydrograph concept remains one of hydrology's most 
enduring and valuable tools for translating the complex interactions between 
precipitation and watershed processes into practical, quantifiable predictions. 

This method, while simplified, provides crucial insights into how catchments 
transform excess rainfall into runoff. The conventional approach derives unit 
hydrographs from observed rainfall and runoff data for single storm events, carefully 
separating baseflow from the total hydrograph to isolate the direct runoff component. 
This empirical foundation, however, faces practical limitations in ungauged 
catchments, leading to the development of synthetic unit hydrograph methods. 

SCS Dimensionless, Snyder and GUH 

Hydrologists derive unit hydrographs through various methods, including direct 
analysis of observed rainfall-runoff data, synthetic approaches like Snyder's method 
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that relate hydrograph characteristics to watershed properties, or the dimensionless 
hydrograph that standardises the shape based on peak flow timing.  

These synthetic approaches, including the widely adopted SCS Dimensionless Unit 
Hydrograph and Snyder's Method, enable hydrograph estimation without observed 
data. More sophisticated techniques, such as the Geomorphological Unit Hydrograph 
(GUH), forge explicit connections between hydrograph shape and catchment physical 
characteristics, incorporating stream order statistics and network width functions. The 
time-area method offers another perspective, conceptualising catchment response 
through isochrones representing zones of equal travel time to the outlet. 

Synthetic Unit Hydrographs: Practical Solutions for Ungauged Catchments 

The challenge of predicting hydrological responses in watersheds without gauging 
stations has driven the development of ingenious synthetic approaches. These methods 
represent different philosophical approaches to the same fundamental problem—how 
to translate watershed characteristics into expected runoff patterns without direct 
observations. 

The Soil Conservation Service (now Natural Resources Conservation Service) 
approach embodies the power of standardisation in hydrological science. Rather than 
deriving unique solutions for each watershed, the SCS method offers a standardised 
template derived from analysing numerous catchments across diverse landscapes. This 
dimensionless curvilinear shape can be scaled to fit specific watersheds using two key 
parameters: time to peak and peak discharge. 

The SCS method's enduring popularity stems from its pragmatic balance between 
simplicity and effectiveness. Assuming a consistent hydrograph shape across 
watersheds allows practitioners to focus on determining the appropriate scaling 
factors. The method relies on a Peak Rate Factor (PRF)—typically set at 484 in 
traditional units—which can be adjusted based on terrain characteristics, with higher 
values for steeper watersheds and lower values for flatter terrain. 

While often approximated as a triangular shape for calculation simplicity, the 
complete SCS dimensionless hydrograph captures the characteristic asymmetry of 
natural runoff events—a rapid rise followed by a more gradual recession. This 
standardised approach makes the SCS method accessible to practitioners with limited 
data or hydrological expertise, explaining its widespread adoption in engineering 
practice and regulatory frameworks worldwide. 

Despite its empirical nature and generalised assumptions, the SCS method 
continues to provide reasonable estimates for many practical applications. Its 
limitations primarily emerge in watersheds with unusual characteristics or situations 
requiring more nuanced representations of catchment behaviour. In these cases, 
modifications to the standard PRF value or more sophisticated methods may be 
necessary. 

Snyder's Method: Regional Empiricism in Hydrograph Synthesis 

Snyder's approach, pioneered in the late 1930s, represents an early attempt to 
codify the relationship between watershed characteristics and hydrograph shape 
through regional empirical equations. Unlike the standardised shape of the SCS 
method, Snyder's approach directly estimates key hydrograph parameters—specifically 
basin lag time and peak discharge—based on physical watershed characteristics. 
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The cornerstone of Snyder's method is the relationship between basin lag time and 
watershed geometry, particularly length and centroid distance. By incorporating these 
physical features, Snyder recognised that watershed shape fundamentally influences 
the timing and magnitude of runoff. The regional coefficients in Snyder's equations 
acknowledge that watersheds in different geographic regions respond differently to 
rainfall, even when their physical dimensions are similar. 

This regional sensitivity makes Snyder's method adaptable across diverse 
landscapes, from the original Appalachian watersheds where it was developed to 
mountainous regions and coastal plains. However, this adaptability comes with the 
challenge of determining appropriate regional coefficients, which typically requires 
calibration against observed data from similar watersheds in the region. 

Snyder's approach bridges purely empirical and physically based methods. While 
not directly derived from physical principles, it acknowledges that watershed geometry 
meaningfully influences hydrological response, creating an intuitive connection 
between watershed characteristics and hydrograph parameters. The method has 
proven particularly valuable for medium to large watersheds and continues to 
influence modern hydrological engineering, including integration into contemporary 
software like HEC-HMS. 

The practical implementation of Snyder's method involves not only calculating peak 
discharge and timing but also constructing the complete shape of the hydrograph. 
Parameters such as hydrograph width at 50% and 75% of peak flow help define this 
shape, enabling engineers to estimate not only when and how high a flood will peak 
but also how long elevated flows will persist—critical information for infrastructure 
design and emergency planning. 

Geomorphological Unit Hydrograph: Catchment Form as Hydrological 
Function 

The Geomorphological Unit Hydrograph (GUH) represents a departure from earlier 
synthetic approaches. Rather than relying primarily on empirical relationships or 
standardised shapes, GUH explicitly connects hydrograph characteristics to the 
structure of drainage networks within watersheds. This approach, pioneered by 
Rodriguez-Iturbe and Valdes in 1979, recognises that river networks encode 
information about how watersheds process rainfall. 

The GUH approach draws on Horton's stream ordering laws, which quantify river 
networks' hierarchical structure. When analysed through the lens of Horton-Strahler 
ordering, these networks reveal remarkable regularities across diverse landscapes—
patterns in how streams branch, how their lengths increase with order, and how 
drainage areas expand. The GUH approach posits that these network characteristics 
fundamentally determine how rainfall is transformed into runoff. 

Unlike other methods that treat watersheds as black boxes or simplified geometric 
shapes, GUH acknowledges the watershed as a complex system where water flows 
through a network of pathways with varying travel times. The approach models runoff 
as a probabilistic process where water particles move through different stream orders 
before reaching the watershed outlet, with each transition governed by 
geomorphological ratios derived from the stream network. 
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This statistical translation of watershed structure into runoff dynamics makes GUH 
particularly valuable for ungauged basins where traditional calibration data are 
unavailable. By extracting network characteristics from maps or digital elevation 
models, hydrologists can develop reasonably accurate hydrograph estimates without 
historical flow records—a significant advantage in data-sparse regions. 

However, the GUH approach introduces complexity in both its conception and 
application. The original formulations involve probability theory and differential 
equations, which can be challenging to implement in practice. This complexity has led 
to various simplifications and approximations, such as using equivalent Nash cascade 
models that preserve key GUH properties while enhancing computational tractability. 

The GUH approach also raises interesting theoretical questions about the linearity 
assumption inherent in unit hydrograph theory. Because GUH parameters like time to 
peak depend on flow velocity, which may vary during storm events, the method 
contains implicit non-linearities that challenge traditional unit hydrograph 
assumptions. Some hydrologists have suggested that "geomorphological response 
function" might be a more accurate term than "unit hydrograph" for this approach. 

Despite these complexities, GUH represents an essential bridge between traditional 
hydrology and the emerging field of hydrogeomorphology, recognising that watershed 
form and hydrological function are intimately connected. Modern GIS capabilities have 
made GUH implementation more accessible, allowing the extraction of network 
parameters from digital elevation models rather than laborious manual map analysis. 

In practice, these synthetic unit hydrograph approaches are not competing 
alternatives but complementary tools in the hydrologist's toolkit, each with distinct 
strengths and limitations. The SCS method offers accessibility and standardisation, 
Snyder's approach provides regional sensitivity and geometric consideration, while 
GUH establishes explicit connections to watershed structure and network properties. 

Modern hydrological practice often involves hybrid approaches that combine 
elements of different methods. For example, regionalised SCS parameters might be 
developed through GUH analysis, or Snyder's coefficients might be adjusted based on 
stream network characteristics. Digital tools and geographic information systems have 
revolutionised all these methods, enabling rapid parameter extraction and reducing 
the historical barriers to implementation. 

The evolution of synthetic unit hydrograph methods reflects a broader trend in 
hydrology toward physically based approaches that capture the underlying processes 
governing watershed response. While perfectly representing these complex processes 
remains challenging, each generation of methods has moved closer to linking 
hydrograph characteristics to fundamental watershed properties. 

Despite sophisticated computational models now available, these synthetic unit 
hydrograph approaches remain valuable for their balance of physical intuition and 
practical applicability. They offer conceptual frameworks that help practitioners 
understand watershed behaviour, not just predict it. This conceptual understanding is 
particularly valuable in ungauged basins where data limitations preclude more data-
intensive approaches. 

As land use changes and watershed characteristics modify, these synthetic methods 
evolve. Regional coefficients require periodic recalibration, and the fundamental 
relationships between watershed form and hydrological function may shift in response 
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to changing conditions. Yet the core principles—connecting physical watershed 
characteristics to runoff patterns through standardised shapes, empirical relationships, 
or network properties—remain as relevant as ever in modern hydrological practice. 

Mathematical representations have further enriched the hydrograph modelling 
toolkit, providing rigorous frameworks for understanding catchment response.  

Nash Cascade: Visualising Catchment Response 
________________________________________________________________ 

Formula 4: Nash Cascade Catchment Response 

The Nash cascade model conceptualises the catchment as a series of n linear 
reservoirs, each with storage coefficient K, yielding an impulse response function: 

h(t) = (1/K(n-1)!) * (t/K)^(n-1) * e^(-t/K) 

Where h(t) represents the instantaneous unit hydrograph ordinate at time t, this 
elegant formulation captures the essential features of catchment response while 
maintaining mathematical tractability. 

The convolution integral forms the mathematical backbone of unit hydrograph 
application: 

Q(t) = ∫[0 to t] I(τ) * h(t-τ) dτ 

Where Q(t) is the direct runoff hydrograph, I(τ) is the excess rainfall intensity, and 
h(t-τ) is the unit hydrograph ordinate. In discrete form, this becomes: 

Q(t) = Σ[j=1 to m] P(j) * U(t-j+1) 

where P(j) represents excess rainfall in period j, and U(t-j+1) is the unit hydrograph 
ordinate. 

________________________________________________________________ 

The Nash cascade model offers an elegant conceptual framework for understanding 
how watersheds transform rainfall into streamflow. Imagine a series of connected 
reservoirs—like a sequence of small ponds—each feeding into the next. This is 
essentially how the Nash model represents a catchment, with water flowing through 
multiple storage elements before reaching the outlet. 

In this model, the number of reservoirs (n) and their storage behaviour (K) together 
determine how quickly or slowly the watershed responds to rainfall. More reservoirs 
create a smoother, more delayed response, much like how a complex watershed with 
many storage zones tends to delay and attenuate flood peaks. Similarly, larger storage 
values (K) represent a watershed that holds water longer before releasing it 
downstream. 

When rain falls on the watershed, this model traces how that water pulse moves 
through the system. At first, little water reaches the outlet as the reservoirs begin filling. 
Gradually, flow increases as water cascades through the system. Eventually, the flow 
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peaks and then recedes as the reservoirs progressively empty. This rising, peaking, and 
falling pattern creates the bell-shaped hydrograph observed in natural streams. 

The beauty of the Nash model lies in its ability to capture complex watershed 
behaviour with just two parameters. A watershed with many storage zones (wetlands, 
lakes, soil layers) might have more reservoirs, while a flashy urban watershed might use 
fewer. Similarly, a watershed with high infiltration capacity and substantial 
groundwater storage would have a more significant storage coefficient than an 
impervious, steep catchment. 

The Convolution Integral: Translating Rainfall Patterns to 
Streamflow 

Using a unit hydrograph, the convolution integral represents the fundamental 
mathematical operation connecting rainfall to streamflow. Given its an integral, it 
accounts for how every bit of rainfall contributes to streamflow over time. 

If we consider rainfall as a sequence of individual pulses, each pulse generates its 
own small streamflow response, resembling the unit hydrograph but scaled by the 
amount of rainfall. The convolution process effectively stacks these individual 
responses together, correctly offset in time, to yield the total streamflow. 

When an intense rainstorm occurs over several hours, the initial rainfall begins 
generating streamflow immediately, while subsequent rainfall enhances this primary 
response. As time goes on, the impact of earlier rainfall decreases, while the effect of 
later rainfall increases. The convolution integral accurately tracks and adds these 
overlapping contributions together. 

Hydrologists typically use a discretised version of this process, dividing rainfall into 
short time intervals (perhaps hourly or sub-hourly). For each rainfall interval, they 
calculate the resulting streamflow contribution across all future time steps. Then, at 
any specific time, they aggregate the contributions from all previous rainfall to 
determine the total streamflow. 

Our mathematical framework enables hydrologists to convert complex, variable 
rainfall patterns into anticipated streamflow responses. It underpins nearly all rainfall-
runoff modelling applications, from flood forecasting to water resource planning. It 
provides the crucial link between what falls from the sky and what flows in our rivers. 

Modern deconvolution techniques enable the extraction of unit hydrographs from 
complex observed hydrographs through Fourier analysis or matrix operations, while 
data-driven approaches leverage machine learning to bypass traditional hydrograph 
separation requirements. Each method presents distinct advantages and limitations, 
with selection typically guided by data availability, catchment characteristics, and 
specific modelling objectives. 

The outputs of runoff models provide essential information for risk assessment: 

Hydrograph Characteristics: 

• Peak flow rate (Qp) in m³/s. 
• Time to peak (tp) in hours. 
• Hydrograph volume in m³. 
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• Flow duration at specific thresholds. 

Derived Metrics: 

• Annual maximum series. 
• Flow duration curves. 
• Flood frequency distributions. 
• Base flow separation indices. 

Risk Assessment Parameters: 

• Inundation extent predictions. 
• Alert exceedance probabilities. 
• Above alert duration analysis. 

These outputs form the foundation for various risk assessments, from flood plain 
mapping to infrastructure design and insurance pricing. Depending on the application 
and catchment characteristics, the temporal resolution of outputs typically ranges from 
sub-hourly to daily. 

Model development follows a structured yet iterative process. It begins with 
formulating a perceptual model that captures the modeller's understanding of key 
catchment processes. This conceptual framework is then translated into mathematical 
expressions, leading to decisions about model structure and parameter relationships. 
The crucial calibration and validation steps follow, where model parameters are 
optimised against observed data, and performance is verified using independent 
datasets. 

Runoff models are used in physical risk assessment in multiple domains, from 
insurance and reinsurance to infrastructure investment and property valuation. For 
infrastructure investment, they support design flood estimation and adaptation 
planning. In property valuation, runoff models contribute to flood risk zonation, 
influencing investment decisions. 

The challenge of uncertainty pervades all aspects of runoff modelling, manifesting 
in parameter estimation, input data quality and model structure. Managing these 
uncertainties requires careful attention to model selection criteria, considering the 
purpose of analysis, data availability, required accuracy, and resource constraints. The 
communication of these uncertainties to stakeholders remains a critical aspect of 
model application in risk assessment contexts. 

Recent Developments in Runoff Modelling 

Integrating machine learning approaches has significantly enhanced recent 
advancements in runoff modelling. Long-short-term memory (LSTM) networks have 
demonstrated superior performance in capturing temporal dependencies compared to 
traditional methods, particularly during high-flow periods.  

Hybrid approaches combining LSTM with signal decomposition techniques like 
Variational Mode Decomposition (VMD) have improved Nash-Sutcliffe Efficiency and 
reduced root-mean-square error across diverse conditions. Similarly, Random Forest 
models have outperformed traditional conceptual frameworks by leveraging ensemble 
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techniques to produce more stable and precise runoff estimates, especially when 
incorporating antecedent runoff data to improve accuracy across seasonal variations. 

Data assimilation techniques have transformed how hydrological models integrate 
real-time observations. The Ensemble Kalman Filter and variational techniques have 
been widely employed to incorporate near-real-time data such as streamflow and 
remotely sensed soil moisture, significantly enhancing prediction accuracy.  

The development of frameworks like the Parallel Data Assimilation Framework 
(PDAF) has enabled better integration of high-resolution land surface and 
meteorological observations across large spatial domains. Despite these advances, 
challenges persist in addressing non-stationarity in hydro-climatic conditions and 
managing limited high-quality field data. Machine learning models have shown promise 
in effectively utilizing sparse datasets to partially mitigate these constraints. 

Practical Implementation 

The practical implementation of runoff models in risk assessment requires careful 
attention to best practices in model selection, data management, and result 
communication. Success depends not only on technical proficiency but also on a clear 
understanding of model limitations and uncertainties. Regular model reviews and 
updates are required to ensure continued relevance and accuracy in risk assessment 
applications. 

The dynamic nature of weather and human development patterns ensures that 
runoff modelling remains an active area of research and development. As our 
understanding of hydrological processes deepens and computational capabilities 
expand, the challenge is to balance model sophistication with practical utility in risk 
assessment applications. This balance becomes particularly crucial as we face 
increasing uncertainty in future weather conditions and their implications for water-
related risks. 

Hydrologically Tracing Water’s Journey 

Hydrologic routing addresses the specific challenge of tracking how water moves 
through landscape features once it enters channels, rivers, and reservoirs. This 
approach emphasises pragmatic simplification while maintaining sufficient physical 
realism for practical applications. 

Hydrologic routing rests upon fundamental principles of water movement. At its 
core lies the continuity equation – the mathematical expression of mass conservation 
that states the rate of change in storage equals the difference between inflow and 
outflow: 

________________________________________________________________ 

Formula 5: Hydrologic Routing Differential 

dS/dt = I(t) - O(t) 

Where: 

• S represents storage volume 
• I(t) captures the inflow rate at time t 
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• O(t) describes the outflow rate at time t 
________________________________________________________________ 

This elegant relationship forms the mathematical backbone for tracking water's 
movement through the landscape. However, a solvable system requires complementary 
relationships between storage and discharge. 

Model Parameters and Implementation 

Effective implementation of hydrologic routing involves careful consideration of 
several parameter types: 

Physical Parameters: 

• Channel roughness coefficients. 
• Cross-sectional geometry parameters. 
• Channel bed slope. 
• Expansion/contraction coefficients. 

Numerical Parameters: 

• Time step size (Δt). 
• Space step size (Δx). 
• Numerical scheme coefficients. 
• Convergence tolerances. 

Boundary Condition Parameters: 

• Upstream flow conditions. 
• Downstream stage relationships. 
• Lateral inflow coefficients. 
• Structure operation rules 

The practical implementation involves careful attention to data requirements. 
Channel geometry data, typically obtained through field surveys or remote sensing, 
must capture relevant features while maintaining computational efficiency. Boundary 
conditions require careful consideration to ensure physical realism and numerical 
stability. 

Hydrologic routing methods have evolved distinct approaches for different 
landscape features: 

Water bodies with relatively horizontal surfaces – lakes, reservoirs, and wide 
floodplains – invite a simplification known as level pool routing. Here, the water surface 
remains horizontal throughout, allowing storage to be calculated directly from the 
water level.  
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The Modified Puls Method and Flow Routing 

________________________________________________________________ 

Formula 6: Modified Puls Flow Rate 

The Modified Puls method operationalises this approach through a finite difference 
approximation: 

S( j+1) + (Δt/2)O(j+1) = S( j) + (Δt/2)O(j) + (Δt/2)(I( j) + I( j+1)) 

Where: 

• S( j) is the storage volume at time step j. 

• S( j+1) is the storage volume at the next time step j+1. 

• O(j) is the outflow rate at time step j. 

• O(j+1) is the outflow rate at the next time step j+1. 

• I( j) is the inflow rate at time step j. 

• I( j+1) is the inflow rate at the next time step j+1. 

• Δt is the time step interval. 

________________________________________________________________ 

The Modified Puls method provides a straightforward way to track water movement 
through reservoirs, channel reaches, or storage areas. At its core, this method balances 
what comes in, goes out, and stays stored in the system. 

This method is particularly useful because it handles the relationship between 
storage and outflow. In natural systems, outflow typically depends on storage—more 
water stored means higher pressure and faster outflow. The Modified Puls method 
accounts for this by using a weighted average of outflows (both current and future) 
rather than just a single value. 

In practice, engineers first establish a relationship between storage and outflow for 
the specific system (like a reservoir or river reach) through direct measurement or 
hydraulic calculations. Then, for each time step in a storm event, they solve for the 
unknown future outflow using known values of current storage, current outflow, and 
inflows (both current and future). 

The method is especially valuable because it preserves mass conservation while 
being computationally simple. It's widely used in flood routing applications, reservoir 
operations, and stormwater management because it balances accuracy with 
practicality. Modern software packages often implement Modified Puls routing because 
it provides reliable results without demanding excessive computational resources or 
complex data inputs. 
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Channel Routing: Muskingum 

Rivers and streams present a different challenge, as water moves longitudinally with 
varying speeds and depths. The Muskingum method, developed in the 1930s for flood 
control studies in the Muskingum River basin, addresses this through a conceptual 
model relating storage to weighted combinations of inflow and outflow: 

________________________________________________________________ 

Formula 7: Muskingum River Basin 

S = K[xI + (1-x)O] 

Where: 

• S is the storage volume in the river reach (m³). 

• I is the inflow rate to the reach (m³/s). 

• O is the outflow rate from the reach (m³/s). 

• K represents a storage constant approximating travel time through the reach 
(seconds). 

• x serves as a weighting factor (between 0 and 0.5), balancing the influence of 
inflow and outflow 

• 	 x = 0 represents pure translation (reservoir-type storage) 
• 	 x = 0.5 represents pure translation (kinematic wave) 
• Typical values range from 0.1 to 0.3 for natural channels 

This conceptualisation leads to an efficient routing equation: 

O(j+1) = C₀·I( j+1) + C₁·I( j) + C₂·O(j) 

Where: 

• O(j+1) is the outflow at the next time step j+1. 

• I( j+1) is the inflow at the next time step j+1. 

• I( j) is the inflow at the current time step j. 

• O(j) is the outflow at the current time step j. 

• C₀, C₁, and C₂ are routing coefficients derived from K, x, and Δt (time step) 

The routing coefficients are calculated as: 

C₀ = (-Kx + 0.5Δt)/(K - Kx + 0.5Δt) C₁ = (Kx + 0.5Δt)/(K - Kx + 0.5Δt) C₂ = (K - Kx - 
0.5Δt)/(K - Kx + 0.5Δt) 
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Routing coefficients (C₀, C₁, and C₂) are derived from the physical parameters K and 
x and the computational time step. This approach has become a workhorse for 
operational hydrology, offering accuracy when adequately calibrated. 

________________________________________________________________ 

Considering channels as having both "prism storage" (regular channel volume) and 
"wedge storage" (additional volume from flood waves), the Muskingum method 
captures how flood waves change shape as they move downstream. The method's 
conceptual foundation lies in relating the water stored in a river reach to both inflow 
and outflow rather than to either value alone. 

The storage constant approximates how long water typically takes to travel through 
the river reach, representing the natural lag in the system. The weighting factor x 
indicates how much the storage in the reach depends on inflow versus outflow. When x 
equals zero, storage depends entirely on outflow (like a level pool), while higher values 
of x (though typically not exceeding 0.5) indicate a more significant influence of the 
inflow. 

The Muskingum method transforms these physical concepts into a straightforward 
computational procedure. For each time step, the outflow is calculated using a 
weighted combination of current and previous inflows plus the previous outflow. This 
approach effectively tracks how flood waves attenuate (reduce in peak) and lag (shift in 
timing) as they move downstream. 

River engineers and hydrologists value the Muskingum method for several reasons. 
It preserves the conservation of mass, runs efficiently even with limited computational 
resources, requires minimal data inputs, and conceptually aligns with physical river 
processes. Properly calibrating using observed inflow-outflow data provides reliable 
results for many natural river systems. These benefits have established the Muskingum 
method as a standard tool in flood forecasting, water resource planning, and reservoir 
operation studies. 

Muskingum Calculations 

To perform Muskingum calculations, you need the following data: 

• Streamflow data is usually measured in cubic feet per second (cfs). 

• A roughness coefficient, C, characterises the stream's resistance to flow. 

• A time lag, T, represents the delay between changes in upstream conditions and 
downstream responses. 

Once you have this data, you can calculate the Muskingum parameters: 

• Instantaneous discharge (Q) at each time step. 

• Area-averaged velocity (V) at each time step. 

• Storage (S) at each time step. 

• Time of travel (Tt) between upstream and downstream locations. 
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Once you have these coefficients, you can use them to estimate the discharge at an 
ungauged location using the Muskingum-Cunge method. This method assumes that the 
relationship between discharge and upstream and downstream conditions is linear, 
which may not always be accurate but is often a good approximation. 

You can calculate the Muskingum parameters using the following equations: 

Instantaneous discharge (Q): Q = C \* A \* V^2 / (2 \* g), where A is the cross-
sectional area, g is the acceleration due to gravity, and V is the average velocity. 

Storage (S): S = A \* (h\_down - h\_up) / 1000, where h\_down and h\_up are the 
water surface elevations downstream and upstream of a given cross-section. 

Time of travel (Tt): Tt = L / V, where L is the reach length between the upstream 
and downstream locations. 

Area-averaged velocity (V): V = Q / A. 

After calculating these parameters, you can use them to compute the Muskingum 
coefficients: 

• Coefficient a: a = [(Q\_down - Q\_up) / (Q\_down + Q\_up)] / 2. 

• Coefficient b: b = [(S\_down - S\_up) / (S\_down + S\_up)] / 2. 

• Coefficient c: c = [(Tt\_down - Tt\_up) / (Tt\_down + Tt\_up)] / 2. 

This method can help estimate discharge at locations where flow measurements are 
unavailable or difficult to obtain. However, the accuracy of the estimates depends on 
the accuracy and representativeness of the upstream and downstream data and the 
Muskingum coefficients. 

Muskingum-Cunge 

Over decades of hydrological practice, the basic Muskingum method has been 
enhanced numerous times. The Muskingum-Cunge method introduced a physical basis 
for parameter estimation based on channel properties, allowing its application to 
ungauged basins. Nonlinear Muskingum methods addressed the limitation of constant 
parameters, recognising that storage-discharge relationships often vary with flow 
magnitude. 

Using the Muskingum-Cunge method requires data for the upstream and 
downstream locations and coefficients a, b, and c. You can then estimate the discharge 
at an ungauged location using the following equation: 
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________________________________________________________________ 

Formula 8: Muskingum-Cunge Discharge 

Q_est = Q_up * (1 + a * (1 - exp(-b * (h_down - h_up) / T))) * (1 - c * exp(-(h_down - 
h_up) / T)) 

Where: 

• Q_est: Estimated discharge at the ungauged location. 
• Q_up: Discharge at the upstream location. 
• h_down: Water surface elevation at the downstream location. 
• h_up: Water surface elevation at the upstream location. 
• T: Time constant, typically related to the travel time. 
• a, b, c: Muskingum coefficients calculated from observed data. 
• a: Coefficient related to the relative change in discharge. 
• b: Coefficient related to the relative change in storage. 
• c: Coefficient related to the relative change in travel time. 

________________________________________________________________ 

The outputs of hydrologic routing provide essential information for risk assessment 
applications. Water surface profiles enable inundation mapping, while calculated 
discharges support infrastructure design and floodplain management. The temporal 
evolution of these parameters offers crucial insights into flood wave propagation and its 
implications for infrastructure and property exposure. 

Modern developments in hydrologic routing have embraced technological advances 
in computational capabilities and data availability: 

• Enhanced computational methods allow for more detailed simulations. 

• Improved remote sensing technologies provide better geometric data. 

• Integration of real-time monitoring systems supports operational flood 
forecasting. 

• Machine learning approaches complement traditional routing methods. 

The intersection of physical process understanding and artificial intelligence 
presents the most exciting frontier in hydrological routing. Machine learning shows 
particular promise in addressing long-standing challenges: 

• Parameter estimation through machine learning can establish relationships 
between observable landscape features and difficult-to-measure parameters. 

• Model error correction using neural networks can identify and compensate for 
systematic biases. 

• Computational efficiency improvements through surrogate modelling can 
accelerate simulations dramatically. 
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Balancing Theory and Practice 

The balance between theoretical rigour and practical utility remains a central 
consideration in hydrologic routing applications. Computational demands increase 
significantly with model complexity, necessitating pragmatic decisions about spatial 
resolution and temporal discretisation. Data requirements similarly scale with model 
sophistication, often necessitating simplifications where detailed information is 
unavailable. 

This theoretical-practical tension manifests in selecting model simplifications 
appropriate to specific applications: 

• More straightforward methods may offer sufficient accuracy for many flood 
forecasting applications. 

• Detailed floodplain mapping may demand more sophisticated approaches. 

• Infrastructure design applications may require detailed local modelling and 
simplified routing for broader system representation. 

Uncertainty Considerations 

Despite these advances, uncertainty remains an inherent aspect of all routing 
applications. This uncertainty stems from multiple sources: 

• Roughness coefficients and geometry data uncertainty. 

• Model structure uncertainty. 

• Future land use changes. 

Communicating these uncertainties to stakeholders remains crucial for informed 
decision-making. Modern routing applications increasingly embrace ensemble 
approaches, sensitivity analysis, and formal uncertainty quantification to provide 
decision-makers with a complete picture of what is known, what is assumed, and what 
remains uncertain. 

Despite being computationally intensive in some implementations, this advanced 
framework is an excellent candidate for AI development. It offers the detailed analysis 
needed for complex systems where more straightforward methods fall short. The 
ongoing challenge of balancing physical accuracy with computational efficiency 
continues to propel advancements in the field, highlighting its increasing importance in 
physical risk assessment applications. 

Hydraulic Modelling 

Hydraulic modelling is a fundamentally different approach to water flow analysis 
than hydrologic routing. The distinction is rooted in their mathematical foundations.  

While hydrologic routing relies solely on the continuity equation and empirical 
storage-discharge relationships, hydraulic modelling is firmly grounded in the Saint-
Venant equations, which incorporate mass conservation and momentum principles.  
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“This critical difference means that hydraulic models solve the 
complete physics of water movement, accounting for acceleration 

terms, pressure forces, and complex flow interactions that 
hydrologic methods cannot capture.”- David Kelly, MKM 

Consequently, hydraulic modelling demands significantly more detailed inputs—
including precise cross-sectional geometry, roughness coefficients, and channel 
characteristics—but provides superior resolution of flow dynamics, water surface 
profiles, and velocity distributions.  

Saint-Venant Equations 

The Saint-Venant equations, developed by Adhémar J. C. Barré de Saint-Venant in 
1871, describe one-dimensional, unsteady flow in open channels through a system of 
partial differential equations. These equations emerge from the fundamental principles 
of mass and momentum conservation, providing a mathematical framework that 
captures the essential physics of open channel flow while maintaining computational 
tractability through carefully considered assumptions. 

________________________________________________________________ 

Formula 9: Saint-Venant Equations 

The equations consist of: 

Continuity equation (Conservation of Mass): 

∂h/∂t + ∂(uh)/∂x + ∂(vh)/∂y = 0 

Where: 
h: Water depth 
u, v: Velocity components in x and y directions 

Momentum equations in the x-direction and y-direction: 

∂(uh)/∂t + ∂(u²h + ½gh²)/∂x + ∂(uvh)/∂y = gh(S₀ₓ - Sfₓ) 
∂(vh)/∂t + ∂(uvh)/∂x + ∂(v²h + ½gh²)/∂y = gh(S₀y - Sfy) 

Where: 

g: Gravitational acceleration. 
S₀ₓ, S₀y: Bed slopes in x and y directions. 
Sfₓ, Sfy: Friction slopes in x and y directions. 

________________________________________________________________ 

These equations form the mathematical foundation for hydraulic modelling and are 
widely used in engineering applications for water resource management, flood 
prediction, and environmental studies. 
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The derivation of the Saint-Venant equations is built on a foundation of key 
assumptions that balance physical accuracy and practical applicability. The framework 
assumes a one-dimensional flow with a hydrostatic pressure distribution, relatively 
small channel slopes, and uniform velocity distribution within each cross-section. 
Regular channel geometry is presumed, while wind and turbulence effects are 
negligible.  

While simplifying the mathematical treatment, these assumptions preserve the 
essential channel flow characteristics necessary for most practical applications, 
instilling confidence in the model's reliability. 

Different simplifications of these equations yield various practical modelling 
approaches: 

• The dynamic wave approach, employing the full Saint-Venant equations, 
includes all terms and provides the most complete representation of flow dynamics, 
though at the cost of computational intensity.  

• The diffusion wave approximation neglects the acceleration terms while 
retaining the pressure term, making it suitable for gradually varied flows where 
inertial effects are less significant. The kinematic wave represents the simplest form, 
neglecting both acceleration and pressure terms, applicable primarily to steep slopes 
where gravity and friction forces dominate the flow behaviour. 

• The numerical solution of these equations typically employs finite difference, 
finite element, or finite volume methods. Each offers distinct advantages regarding 
stability, accuracy, and computational efficiency. The choice of numerical scheme 
often depends on specific application requirements and computational constraints. 

One and Two-Dimensional Approaches 

Hydraulic models are classified based on their spatial dimensionality, with 
important implications for applications in flood risk assessment. One-dimensional (1D) 
models represent flow along a single spatial dimension, typically the channel 
centerline. These models use cross-sections perpendicular to the flow direction to 
capture channel geometry and solve the 1D Saint-Venant equations for flow and water 
surface elevation.  

They are most appropriate for channels with uniform floodplains and 
predominantly longitudinal flow. However, they are limited in representing complex 
lateral flows that often characterise extensive floodplains, which is an essential 
consideration in their application. 

Two-dimensional (2D) models account for flow variations in longitudinal and lateral 
directions by solving the 2D shallow water equations, extending Saint-Venant principles 
to multiple dimensions. These models better represent complex terrain, meandering 
rivers, and irregular flows over floodplains, providing more detailed spatial information 
about flood characteristics. However, they require significantly more data and 
computational resources, which can constrain their application in resource-limited 
situations. 
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“Coupled 1D-2D models combine the strengths of both approaches 
by using 1D representation for channel flow and 2D for floodplain 

flow.”- Johnny Mattimore, MKM. 

This hybrid approach allows computational efficiency in well-defined channels 
while capturing complex floodplain dynamics. Such models require careful interface 
treatment between 1D and 2D domains to ensure proper mass and momentum transfer.  

As outlined in the door-stopper and seminal Flood Handbook Analysis and 
Modelling, edited by Saeid Eslamian and Faezeh Eslamian, recent advancements in 
hydraulic modelling have seen coupled 1D-2D models emerge as the preferred 
approach for flood risk assessment due to their ability to balance computational 
efficiency with spatial accuracy.  

These hybrid systems integrate the strengths of both modelling approaches—
employing 1D solutions for efficient channel routing while leveraging 2D frameworks 
for detailed floodplain dynamics. Research from the handbook demonstrates that 
coupled models can reduce simulation times by 30–50% compared to complete 2D 
models while improving flood extent accuracy by 15–25% over standalone 1D systems.  

Technological progress has driven this evolution, including improved coupling 
algorithms that ensure momentum conservation and high-performance computing 
capabilities that enable basin-scale applications. 

The increasing preference for coupled 1D-2D approaches is further evidenced by 
their successful implementation in complex environments, such as Vietnam's Mekong 
Delta, where the F28 model effectively captured intricate infrastructure-floodplain 
interactions while maintaining computational feasibility.  

Similarly, regulatory bodies have recognised these advantages, with FEMA 
guidelines now specifically recommending coupled approaches for systems with 
disconnected floodplain flows. As computational resources expand, these integrated 
modelling systems have increasingly become the standard methodology for flood risk 
assessments requiring both hydraulic precision and operational practicality, 
particularly in lowland deltas and urbanised floodplains where infrastructure 
significantly alters natural flow patterns. 

Model Requirements and Implementation 

Successfully applying hydraulic modelling requires careful data inputs. Input quality 
directly impacts model reliability. Topographic data forms the foundation for channel 
and floodplain geometry. Digital Terrain Models (DTMs) represent terrain's bare earth 
surface. They remove all vegetation and human-made structures from the landscape. 
LiDAR technology generates these models efficiently. Light Detection and Ranging uses 
laser pulses to measure distances to Earth. It creates precise elevation measurements 
over large areas. Survey methods can also produce DTMs when LiDAR isn't available. 

High-resolution DTMs improve flood predictions dramatically. They can increase 
accuracy by up to 30% compared to simplified models. DTM generation faces 
challenges in certain environments. Dense vegetation blocks laser penetration. Water 
surfaces reflect signals unpredictably. Supplementary data often fills these gaps. 
Comprehensive data collection ensures robust hydraulic modelling. 
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DTMs serve as bare-earth elevation models that capture the underlying terrain by 
filtering out vegetation and structures from raw data. This enables high-precision 
representation of riverbed morphology and floodplain features with 10–15 cm vertical 
accuracies.  

LiDAR technology has revolutionised topographic data collection by using laser 
pulses to measure distances to the Earth's surface. This generates dense point clouds 
that can be processed to achieve spatial resolutions of 1m or finer. This level of detail 
allows hydraulic models to detect crucial microtopographic elements such as 
riverbanks, levees, and floodplain depressions that significantly influence water 
movement during flood events. 

Channel and floodplain roughness parameters, expressed as Manning's n 
coefficients, characterise the resistance to flow and significantly affect predicted water 
levels and velocities. Boundary conditions, including inflow hydrographs and stage-
discharge relationships, define how water enters and leaves the model domain.  

Detailed representation of infrastructure elements such as bridges, culverts, and 
levees ensures their hydraulic effects are appropriately captured. For unsteady flow 
simulations, initial conditions define the system's starting state.  

The integration of high-resolution DTMs with these hydraulic parameters has 
transformed flood prediction capabilities. In 2019, Xia et al.'s National Water Model 
(NWM) improvement project documented significant gains when transitioning from 
simplified trapezoidal channels to realistic geometries derived from LiDAR data. 

 Xia demonstrated that replacing simplified channel assumptions with realistic 
geometries extracted from LiDAR-derived DTMs can improve flood stage and discharge 
predictions by up to 30%.  

Despite their advantages, DTM generation faces challenges in areas where dense 
vegetation or water surfaces obscure ground returns. This often requires 
supplementary data from sonar surveys or ground measurements to fill gaps in 
riverbed bathymetry, highlighting the importance of comprehensive data collection 
approaches for robust hydraulic modelling. 

Model Parameters: 

• Physical parameters: roughness coefficients, expansion/contraction coefficients. 

• Numerical parameters: time step size, space step size, convergence tolerances. 

• Boundary condition parameters: upstream flow conditions, downstream stage 
relationships. 

The computational implementation involves several important considerations that 
affect model performance and reliability. Spatial resolution must balance detail with 
computational efficiency. The finer resolution provides more accurate results but 
requires more computational resources.  
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Temporal discretisation significantly impacts unsteady simulation stability, 
accuracy, and computational efficiency. Time steps influence how flow changes are 
captured over time. Smaller time steps generally increase stability by better resolving 
rapid flow transitions. However, they also increase computational demands. Different 
numerical schemes offer various trade-offs. Explicit schemes solve equations directly 
for each time step but require smaller steps to maintain stability. Implicit schemes can 
use more significant time steps but involve more complex calculations at each step. The 
Courant-Friedrichs-Lewy (CFL) condition, which relates time step size to grid spacing 
and flow velocity, provides a key stability criterion. 

Recent advancements in computing power have enabled more sophisticated 
approaches. Research by Oleg Zikanov (2010) established practical guidelines stating 
that time steps should be less than hydrograph rise time divided by 20 for flood 
modelling. The theta weighting factor balances stability and accuracy in methods used 
by software like HEC-RAS (more of which are in the next section). 

GPU acceleration has transformed simulation capabilities. Studies by Eslamian and 
Eslamian (2017) demonstrated that parallel CUDA architectures enable million-particle 
Smoothed Particle Hydrodynamics simulations with 100× speedups compared to CPUs. 
Adaptive time-stepping approaches dynamically adjust step size based on error 
estimates, maintaining stability while minimising computational cost. 

Modern workflows increasingly combine multiple techniques. Bengt Andersson's 
work (2011) on error transport equations co-solved with primary equations shows how 
localised discretisation errors can enable iterative correction for improved accuracy. 
Knight and Shamseldin's research (2009) on hybrid implicit-explicit schemes leverages 
GPUs for stiff terms while explicitly handling non-stiff components, optimising stability 
and speed. These developments allow hydraulic modellers to achieve high-fidelity 
simulations of complex phenomena like turbulence and multiphase flows within 
practical timeframes. 

HEC-RAS: Industry Standard Implementation 

The Hydrologic Engineering Center's River Analysis System (HEC-RAS), developed 
by the U.S. Army Corps of Engineers, is the global industry standard for implementing 
hydraulic modelling principles. Its comprehensive capabilities, including one-
dimensional steady and unsteady flow modelling, two-dimensional unsteady flow 
modelling, and combined 1D/2D approaches, have established it as a worldwide 
cornerstone tool for flood risk assessment. In addition to hydraulic calculations, it 
provides modules for sediment transport with movable boundary computations and 
water quality analysis, ensuring a holistic assessment of water resource systems. 

The software's advanced 2D modelling features represent a significant evolution in 
hydraulic modelling capabilities. Subgrid bathymetry allows detailed terrain 
representation even with relatively coarse computational meshes, improving efficiency 
without sacrificing accuracy.  

This innovative approach, detailed in the HEC-RAS 2D User's Manual version 3 
(2024), enables computational models to represent fine-scale underwater terrain 
features while using coarse computational grids. The system works by preprocessing 
detailed bathymetric data into hydraulic property tables for each coarse grid cell. 
These tables store critical relationships between water elevation, wetted area, volume, 
and hydraulic roughness at subgrid scales. 
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A key advantage is the handling of partially submerged terrain. Subgrid bathymetry 
is a computational technique that incorporates high-resolution underwater terrain data 
(bathymetry) within larger computational grid cells, essentially storing detailed 
elevation information below the visible resolution of the model's mesh.  

Rather than simplifying terrain by averaging elevations within each cell, this 
approach preserves critical small-scale features like narrow channels, depressions, and 
ridges by maintaining their hydraulic properties in lookup tables that inform 
calculations even when these features are smaller than the grid cell.  

Cells can track narrow channels within larger grid elements using elevation-
dependent volume curves, thus avoiding simplified binary "wet/dry" approximations. 
This preservation of flow dynamics in small features maintains model fidelity, even 
with larger cell sizes. The Global Modelling and Assimilation Office's 2025 study 
demonstrates that this approach enables flood modelling across entire basins while still 
resolving meter-scale hydraulic features. 

Coarser grids dramatically lower computational demands—for example, using 500-
meter cells instead of 5-meter cells reduces total cell count by a factor of 10,000. The 
HEC-RAS Model Library (2022) documents how these larger cells enable stable 
simulations with longer timesteps due to relaxed Courant–Friedrichs–Lewy conditions.  

Despite this computational efficiency, accuracy is maintained through terrain 
fidelity. Small channels are less than 100 meters wide are preserved via subgrid 
elevation-volume curves, preventing artificial widening that plagued earlier modelling 
approaches. The software even tracks sediment movement at subcell resolution, 
avoiding homogenisation issues across large computational elements. 

Implementation of rainfall-runoff modelling with infiltration enables direct 
simulation of pluvial flooding processes. Sophisticated representation of hydraulic 
structures ensures that bridges, culverts, weirs, and similar features are appropriately 
integrated into the hydraulic calculations.  

Levee and floodwall modelling capabilities permit the evaluation of flood defence 
systems under various loading conditions. Flexible hydraulic connections between 1D 
and 2D domains allow appropriate representation of complex flow paths. Wetting and 
drying algorithms accurately simulate the dynamic progression of inundation across 
initially dry areas, which is crucial for realistic flood mapping. 

Through its RAS Mapper interface, HEC-RAS provides an integrated geospatial 
environment, supporting terrain model development, comprehensive spatial data 
management, and advanced visualisation of hydraulic results. This integration with GIS 
platforms facilitates seamless workflows from data preparation through result analysis 
and presentation. Computational enhancements, including parallel computing 
capabilities and GPU acceleration options, allow efficient execution of complex 
simulations. At the same time, adaptive time stepping improves computational 
efficiency by adjusting temporal resolution based on flow conditions. 

The model setup process involves a systematic approach to represent the physical 
system accurately. Preparing terrain data incorporates LiDAR, survey data, and other 
sources to describe the model domain accurately. Developing the computational mesh 
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establishes 1D cross-sections and/or 2D computation cells at appropriate locations and 
densities to capture relevant hydraulic features.  

Specifying boundary conditions defines how water enters and exits the system 
while assigning hydraulic parameters characterising the flow resistance and structural 
properties. After executing the simulation, analysing results provides insights into flow 
characteristics relevant to risk assessment. 

HEC-RAS provides a robust framework for implementing the Saint-Venant equations 
and their variations in practical applications, making it an essential tool for detailed 
flood risk assessment. Its combination of theoretical rigour, practical usability, and 
comprehensive features has established it as the preferred platform for hydraulic 
modelling in professional practice and research applications. 

Applications and Limitations 

Hydraulic modelling, particularly with advanced tools like HEC-RAS, offers powerful 
capabilities for flood risk assessment but comes with important considerations. The 
detailed representation of flow physics enables numerous valuable applications in risk 
assessment and management. Detailed floodplain delineation provides spatial 
information on flood extent and characteristics, which are crucial for zoning, 
insurance, and emergency planning.  

Infrastructure design and analysis ensures that bridges, culverts, levees, and other 
structures perform adequately under design flood conditions. Evaluation of flood 
mitigation alternatives allows comparison of different intervention strategies to identify 
optimal solutions. When coupled with hydrologic models, real-time flood forecasting 
warns of flood conditions. 

Outputs for Risk Assessment: 

• Inundation extent and depth. 
• Flow velocity distributions. 
• Water surface profiles. 
• Arrival time of flood peaks. 
• Shear stress for erosion potential. 

Despite its capabilities, hydraulic modelling faces several limitations and challenges 
that influence its application. Extensive data requirements can constrain 
implementation in areas with limited topographic or hydrometric information. 
Significant computational demands may necessitate simplifications or reduced 
resolution in large or complex systems.  

The need for skilled practitioner expertise means that model quality depends 
heavily on the modeller's experience and judgment. Uncertainty in boundary 
conditions and parameters propagates through the model, affecting the reliability of 
results. Model simplifications may not capture all relevant processes, particularly in 
highly complex or unconventional hydraulic situations. 

Several promising developments are shaping the future of hydraulic modelling. 
Enhanced integration with real-time monitoring systems enables continuous model 
updating and improved forecast accuracy. Improved representation of complex 
hydraulic structures allows better simulation of engineered systems.  
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More efficient numerical schemes lower computational demands while preserving 
accuracy. Improved uncertainty quantification and communication aid decision-
makers in grasping model results' limitations and confidence levels. Integration with 
artificial intelligence presents significant advancements in model calibration and 
prediction capabilities, potentially lowering the expertise barrier for effective 
modelling. 

Hydraulic modelling provides a detailed analysis of complex systems where more 
straightforward hydrologic routing methods fall short. The ongoing challenge of 
balancing physical accuracy with computational efficiency continues to drive 
advancements in the field, highlighting its increasing importance in physical risk 
assessment applications. As computational capabilities advance and data availability 
improves, the scope and detail of hydraulic modelling applications will continue to 
expand, enhancing our ability to understand and manage flood risk in an increasingly 
complex and changing environment. 
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Chapter 5 - Flood Risk Assessment 

W hile hydrological modelling provides the foundation for understanding 
water movement, assessing flood risk requires a further layer of analysis 

that bridges the gap between water dynamics and their impacts on the built 
environment. The preceding chapter established how we model the fundamental 
physics of water movement; this chapter examines how we translate that 
understanding into practical flood risk assessments that inform banking, insurance, 
and property decisions. 

"Flood risk assessment is where the abstract physics of water flow 
meets the concrete reality of human settlement. It translates 
hydrodynamic principles into the language of vulnerability, 

exposure, and banking impact. 

Regarding property valuation, the eternal adage of location, 
location, location also applies to flood hazards.”- David Kelly, MKM 

Overall, flooding is recognised as the most pervasive and financially devastating 
natural disaster, with its impacts projected to worsen due to climate change, 
population growth in flood-prone areas, and continued economic development in high-
risk zones.  This is supported by several studies: 

• Frequency and Impact: According to the World Health Organization, floods are 
the most frequent natural disaster, affecting over 2 billion people between 1998 and 
2017. They cause widespread devastation, loss of life, and significant economic 
damage. The International Association of Hydrological Sciences, in cooperation with 
UNESCO, emphasises that floods represent the most common natural disaster 
worldwide, with their frequency increasing dramatically over the past two decades. 
According to Eslamian and Eslamian (2017), flood events accounted for 43% of all 
recorded natural disasters between 1995 and 2015, affecting more communities than 
any other hazard type. 

• Global Costs: Research published in the "Flood Handbook" by Eslamian and 
Eslamian (2017) highlights that floods are among the most devastating natural 
hazards, with global costs significantly increasing due to factors such as climate 
change and expanded development in floodplains. Their analysis documents that 
floods regularly claim over 20,000 lives annually, impacting approximately 75 million 
people worldwide. Economic assessments from Pender and Faulkner's 2011 "Flood 
Risk Science and Management" indicate that annual global flood damages range from 
$50 to $60 billion, projected to increase substantially by 2050. 
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• Economic Losses: Knight and Shamseldin's comprehensive study (2009) 
demonstrates that flood-related losses have grown exponentially, with economic 
damages increasing sevenfold after adjusting for inflation between the 1960s and 
2000s. Their research shows that these impacts disproportionately affect developing 
nations, where flood damages can represent up to 15% of annual GDP in severely 
impacted regions. Teegavarapu's analysis (2012) further quantifies that flood events 
account for approximately 40% of all global economic losses from natural disasters. 

• Regional Vulnerability: Teegavarapu's 2012 assessment identified East Asia and 
South Asia as particularly vulnerable regions, with approximately 1.36 billion people 
exposed to flooding in densely populated, high-risk areas. The Federal Emergency 
Management Agency analysis presented in the 2019 Flood Risk Report shows that 
floods represent the most common hazard in the U.S., accounting for over 80% of all 
federal disaster declarations between 1953 and 2018, with average annual losses 
exceeding $8 billion. 

At its core, flood risk is the product of two essential components: the probability of 
a flood hazard occurring and the vulnerability or potential consequences stemming 
from that event. This dual nature of risk—combining likelihood with impact—forms the 
fundamental principle underlying all assessment methodologies. 

The accurate quantification of flood risk requires specialised analytical processes 
that go beyond simply modelling water movement. A comprehensive flood risk analysis 
quantifies the probabilities and consequences of potential flood events, serving as a 
critical subset of the broader flood risk management process. This management 
approach represents a cyclical, continuous effort to reduce flood impacts through 
structural and non-structural measures, with risk assessment providing the analytical 
foundation for decision-making. 

Modern flood risk analyses leverage increasingly sophisticated technology, including 
advanced software tools, high-performance computing, high-resolution datasets, LiDAR 
elevation models, and detailed building inventories.  

These technologies enable unprecedented precision in evaluating flood impacts 
across large geographic areas and diverse property portfolios. The outputs of these 
analyses are often visualised through flood risk mapping, which represents hazard and 
risk information spatially and shows inundation extent, depth, and velocity for 
different probability scenarios. 

The essential first step in this process is classifying flood types. While all floods 
involve excess water, their dynamics, predictability, and impacts vary dramatically 
depending on their source and characteristics. Riverine flooding follows different 
patterns than coastal storm surges, and flash floods present distinct challenges 
compared to gradual groundwater rise. Each classification entails different modelling 
approaches, warning timeframes, and mitigation strategies. 

Property-specific assessment forms the crucial next layer of analysis. A structure's 
position within the landscape—its elevation, proximity to water bodies, and 
relationship to surrounding terrain—fundamentally determines its exposure to flood 
hazards. Practitioners must analyse this geospatial positioning and broader 
environmental factors, including watershed characteristics, natural and local flood 
defences, and weather pattern change projections that may alter historical patterns. 
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The resilience of individual properties completes this assessment picture. Structural 
characteristics, adaptation measures, and system redundancies all influence how a 
property will respond when flood waters arrive. This component of assessment bridges 
purely physical analysis with the practical concerns of property owners, insurers, and 
lending institutions.   

As we explore these dimensions of flood risk assessment, we extend the hydrologic 
and hydraulic models for water flow into frameworks that support the initial 
assessment of property exposure to a hazard such as flood. 

While significant progress has been made in flood risk assessment methodologies, 
standardised practices and agreed indicators for flood risk mapping, especially at local 
scales, continue to evolve across different regions and countries. This progression—
from hydrological modelling to flood risk assessment—ultimately enables the 
quantification of impacts discussed in the following chapter. 

Flood Classification Systems 

The systematic categorisation of flood events is the foundation for practical risk 
assessment. Classification systems provide the necessary framework to differentiate 
between flood types, each with distinct characteristics influencing their modelling, 
prediction, and mitigation approaches. This section explores established and emerging 
flood classification methodologies, their applications, and limitations in the context of 
physical risk assessment. 

Traditional Classification Methods 

Historically, floods have been classified primarily by their source mechanism, with 
each category representing fundamentally different hydrodynamic processes: 

• Fluvial (Riverine) Flooding: Occurs when water exceeds the capacity of river 
channels, causing overbank flow. Riverine floods typically develop more gradually 
than other flood types, with warning times ranging from hours to days, depending 
on watershed characteristics. The dynamics of these floods are governed by river 
channel geometry, floodplain topography, and upstream hydrological conditions. 
Assessment methodologies typically incorporate river gauge data, precipitation 
records, and watershed models to establish probability distributions of flood 
magnitudes. 

• Pluvial (Surface Water) Flooding occurs when rainfall overwhelms drainage 
systems' capacity or infiltrates the ground, causing water to pool or flow over the 
land surface. Unlike riverine flooding, pluvial events can happen anywhere—even far 
from water bodies—making them particularly challenging to predict and map. The 
risk is especially pronounced in urban environments with extensive impervious 
surfaces. Assessment requires high-resolution digital elevation models, detailed 
drainage system mapping, and precipitation statistics. 

• Coastal Flooding: Primarily driven by storm surges, high tides, or tsunamis, 
coastal flooding presents distinct challenges due to its interaction with wave 
dynamics, tidal patterns, and coastal geomorphology. The combined effect of high 
water levels and wave action creates complex loading scenarios for coastal 
structures. Assessment methodologies must account for astronomical tides, 

112



barometric effects, wind setup, wave runup, and, increasingly, sea level rise 
projections. 

• Flash Flooding: Characterised by rapid onset (typically within six hours of the 
causative event) and high water velocities, flash floods represent hazardous events 
with limited warning time. They commonly occur in steep watersheds (a drainage 
area or catchment where the land slopes sharply, leading to rapid water movement), 
urban areas with high imperviousness, or regions susceptible to intense rainfall. 
Assessment approaches must emphasise the temporal dimension of flooding, 
incorporating rainfall intensity-duration-frequency relationships and time-of-
concentration calculations. 

• Groundwater Flooding: Results from a rise in the water table to the land 
surface, typically following prolonged periods of high precipitation. This flood type 
often has an extended duration but a relatively gradual onset. Assessment requires 
understanding hydrogeological conditions, antecedent moisture patterns, and 
subsurface water movement—factors frequently underrepresented in standard flood 
models. 

While these traditional classifications provide a helpful starting point, they often fail 
to capture the complexity of real-world flood events, which frequently involve multiple 
mechanisms operating simultaneously. This limitation has driven the development of 
more sophisticated classification frameworks. 

Regulatory Preamble 

There is never a perfect time or place to mention regulations, but this is the best 
moment since how governments consider flood risk and their chosen responses is 
central to how insurance and mortgage lending operate. 

The European Floods Directive 

Before the establishment of comprehensive flood management frameworks in 
Europe, the continent experienced several devastating flood events that highlighted the 
need for coordinated action. The early 2000s saw particularly catastrophic flooding, 
with the August 2002 floods affecting Central Europe, causing over €15 billion in 
damages and claiming dozens of lives across Germany, Austria, the Czech Republic, and 
other nations.  

These events, along with rising concerns about the effects of climate change on 
precipitation patterns and sea levels, prompted European policymakers to create a 
more integrated approach to flood risk management. Between 2000 and 2006, over 175 
significant floods were recorded in Europe, emphasising the urgency for systematic 
assessment and management protocols that crossed national boundaries. 

In response to these challenges, the European Parliament and Council adopted the 
European Floods Directive (2007/60/EC) on October 23, 2007, which came into force 
on November 26, 2007. The Directive established a framework requiring Member States 
to assess and manage flood risks coordinated across transboundary river basins.  

Implementation followed a six-year cycle, starting with Preliminary Flood Risk 
Assessments completed by December 2011, then detailed flood hazard and risk maps 
developed by December 2013, and comprehensive Flood Risk Management Plans by 
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December 2015. This revolutionary approach transcended traditional flood defence 
strategies, shifting towards more holistic risk assessment methodologies that 
acknowledged flood events' complex, multi-faceted nature and their impacts on human 
health, economic activities, cultural heritage, and the environment. 

U.S. National Flood Insurance Program 

Before the National Flood Insurance Program (NFIP) was established, the United 
States encountered a significant gap in disaster management policy, as many flood-
prone properties were uninsurable in private markets, leaving residents primarily 
dependent on federal disaster assistance.  

A series of catastrophic flood events in the 1950s and 1960s, including Hurricane 
Betsy in 1965, which caused over $1 billion in damages (equivalent to approximately 
$8.5 billion today), underscored the need for a systematic approach to flood risk. These 
events, coupled with rising federal disaster relief costs and increasing development in 
floodplains, prompted Congress to commission extensive studies on flood hazards and 
potential insurance solutions, culminating in the landmark 1966 "Insurance and Other 
Programs for Financial Assistance to Flood Victims" report that laid the groundwork for 
a national flood insurance mechanism. 

In response to these challenges, the United States Congress established the National 
Flood Insurance Program through the National Flood Insurance Act of 1968, 
implementing a comprehensive approach that balanced insurance accessibility with 
floodplain management requirements.  

The program became operational in 1969 under the Department of Housing and 
Urban Development before transferring to the Federal Emergency Management Agency 
(FEMA) in 1979 following its creation. The NFIP underwent significant expansions and 
reforms through subsequent legislation, including the Flood Disaster Protection Act of 
1973, which introduced mandatory purchase requirements for properties with 
federally-backed mortgages in Special Flood Hazard Areas, and the National Flood 
Insurance Reform Act of 1994, which strengthened compliance mechanisms and 
established the Flood Mitigation Assistance Grant Program.  

These developments transformed what began as a modest voluntary program into a 
cornerstone of American flood risk management, providing over 5 million policies with 
more than $1.3 trillion in coverage nationwide by the early 2000s. 

UK’s Flood RE 

In the decades preceding Flood Re, the United Kingdom experienced increasingly 
frequent and severe flooding events, highlighting significant market failures in flood 
insurance provision. The Easter floods of 1998, the widespread flooding of autumn 
2000, and the catastrophic summer floods of 2007—which affected over 55,000 
properties and caused approximately £3.2 billion in damages—demonstrated the urgent 
need for reform.  

Before 2016, flood insurance in the UK was governed by a series of voluntary 
agreements between the government and insurers, starting with the informal 
"Gentleman's Agreement" in the 1960s and culminating in the Statement of Principles 
(2000-2013). However, this system became increasingly unsustainable as climate 
change heightened flood risk,s and premiumreached prohibitive levels for many 
homeowners in high-risk areas. 
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Following extensive consultation and negotiations between 2010 and 2014, the UK 
Parliament passed enabling legislation through the Water Act 2014, establishing Flood 
Re as a not-for-profit reinsurance scheme. The program officially launched on April 4, 
2016, representing a novel approach to address the growing insurance protection gap.  

In 2022, Flood Re enhanced its offerings by introducing the "Build Back Better" 
scheme. This innovative initiative provides up to £10,000 in additional funding for 
property-level flood resilience measures when claims are settled. This forward-thinking 
program enables homeowners to not repair flood damage and enhance their property's 
resilience against future flooding events through od doors, raised electrical outlets, and 
water-resistant flooring.  

Designed with a planned 25-year lifespan, Flood Regradually created a transitional 
mechanism to move from subsidised to risk-reflective pricing by 2039y. Its Build Back 
Better scheme exemplifies how insurance can be leveraged to drive adaptation and risk 
reduction rather than simply transferring financial risk, representing a significant 
evolution in approach compared to traditional flood insurance models. 

UK’s Hazard Rating System 

The development of comprehensive hazard classification systems in the United 
Kingdom emerged from a growing recognition of the need to quantify flood risks more 
precisely for infrastructure planning and public safety purposes. In the early 2000s, 
following significant flood events across the UK, particularly the Easter floods of 1998 
and the widespread flooding of autumn 2000, research institutions and government 
agencies began developing more sophisticated approaches to assess flood hazards 
beyond simple inundation mapping.  

This period coincided with the implementation of the Housing Act 2004, which 
introduced the Housing Health and Safety Rating System (HHSRS), signallin a broader 
shift toward risk-based assessment methodologies across multiple sectors, including 
flood management. The Flood Risk to People research project, commissioned by the 
Department for Environment, Food and Rural Affairs (DEFRA) in 2003, played a pivotal 
role in establishing the scientific basis for what would become the UK's standard hazard 
rating formula. 

Building on this foundation, the UK Environment Agency and DEFRA jointly 
published "Flood and Coastal Defence R&D Programme: Flood Risks to People" in 
2006, which formally introduced the depth-velocity hazard rating formula that would 
become widely adopted across the nation.  

This methodology represented a significant advancement over previous approaches 
by explicitly incorporating multiple flood characteristics—water depth, velocity, and 
debris factor—into a single quantifiable metric directly linked to human stability 
thresholds in floodwaters.  

The formula HR = d × (v + 0.5) + DF was subsequently incorporated into official flood 
risk assessment guidance documents, including the 2008 "Supplementary Note on 
Flood Hazard Ratings and Thresholds" and the Flood Risk Assessment Guidance for 
New Development (FD2320/TR2). By 2010, this approach had become embedded in 
standard practice for flood risk assessments throughout England and Wales. It provided 
emergency planners, local authorities, and developers with a consistent framework for 
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evaluating and communicating flood hazards that directly corresponded to potential 
impacts on human safety and infrastructure vulnerability. 

Australian Rainfall and Runoff Guidelines 

The Australian Rainfall and Runoff (ARR) Guidelines represent one of the longest-
standing and most comprehensive national frameworks for flood estimation and water 
management in the world. First published in 1958, these guidelines have undergone 
several major revisions to incorporate advancements in hydrological science, data 
collection techniques, and computational methods.  

The most significant transformation came with the 4th edition, released in 2016. 
This edition represented a complete overhaul that integrated over 30 years of 
additional rainfall observations from more than 10,000 gauging stations across 
Australia's diverse climatic regions. This landmark update moved away from outdated 
methodologies like the Rational Method toward more sophisticated regional flood 
frequency estimation techniques that better reflect Australia's highly variable 
precipitation patterns. 

Following the 2016 revision, Engineers Australia transferred ongoing management 
of ARR to Geoscience Australia, ensuring its continued development as a government-
funded public resource. 

ARR has maintained a foundational principle that effective flood risk management 
requires calibration to local conditions—acknowledging that Australia's diverse 
landscapes, from tropical northern regions to temperate southern zones, necessitate 
tailored approaches rather than one-size-fits-all solutions. This emphasis on local 
calibration has become increasingly important as climate change alters historical 
rainfall patterns, requiring practitioners to continuously adapt their flood classification 
methodologies to reflect evolving regional circumstances. 

Advanced Classification Frameworks 

Recognising the limitations of source-based classifications, more nuanced 
frameworks have emerged that incorporate multiple parameters to characterise flood 
events: 

• Multi-parameter Classification Systems: These approaches classify floods 
based on combinations of factors, including source, temporal characteristics (onset 
speed, duration, seasonality), spatial extent, and driving meteorological conditions. 
The European Floods Directive, for example, employs a multi-parameter approach 
that enables more precise risk assessment and management planning. These systems 
recognise that a single flood event may encompass multiple source mechanisms, 
such as combined coastal and fluvial flooding during severe storms. 

• Duration-Depth-Velocity Matrices: These three-dimensional classification 
schemes recognise that flood impacts depend on water depth, flow velocity, and 
event duration. High-velocity shallow flooding, for instance, can cause more damage 
than deeper, static flooding due to increased hydrodynamic forces on structures. 
Similarly, extended duration increases damage to building materials unsuitable for 
prolonged water exposure. These matrices support more accurate vulnerability 
assessments and mitigation planning. 
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• Recurrence Interval Categorisation: This approach, which prevails in 
catastrophe modelling, classifies floods by their statistical return period, such as 1-
in-100-year events (1% annual exceedance probability) or 1-in-500-year events (0.2% 
yearly exceedance probability). While widely used in regulatory contexts and 
infrastructure design, these classifications face increasing challenges due to non-
stationarity in weather patterns. While beneficial to note, this is not what we need to 
solve in a capital markets scenario. 

• Combined Hazard Classification Approaches: These frameworks integrate 
multiple flood characteristics to produce comprehensive hazard ratings that directly 
connect to potential impacts. For instance, the UK's Hazard Rating system uses an 
innovative methodology that combines water depth, flow velocity, and a debris 
factor to calculate risk levels. This integrated approach produces a single numerical 
value directly correlating with floodwaters' human stability thresholds. By accounting 
for the combined effects of these variables rather than assessing them in isolation, 
the system provides a more nuanced and impact-focused classification that better 
reflects real-world flood dangers to both people and infrastructure. 

• International Standards and Regional Variations: Classification systems vary 
significantly across jurisdictions, reflecting regional priorities, data availability, and 
historical flood experience. For example, the Australian Rainfall and Runoff 
Guidelines emphasise the importance of local calibration in flood classification. In 
contrast, the U.S. National Flood Insurance Program classifications focus primarily 
on regulatory floodplain delineation. These variations create challenges for 
consistent cross-border risk assessment but also reflect the importance of local 
context in flood risk management. 

• Urban-Specific Flood Typologies: The unique characteristics of urban flooding
—influenced by complex drainage networks, building configurations, and 
infrastructure dependencies—have prompted specialised classification systems for 
urban environments. These typologies incorporate drainage capacity exceedance, 
surface water flow paths, and infrastructure failure modes. They often employ high-
resolution modelling to capture micro-topographic features influencing urban flood 
routing. 

• Infrastructure Failure Flood Types: In addition to natural flood mechanisms, 
increased attention has focused on classifying floods resulting from infrastructure 
failures, including dam breaches, levee failures, and urban drainage system 
malfunctions. These classifications incorporate cascade effects and system 
dependencies, recognising that infrastructure failures often produce flood 
characteristics significantly different from those of naturally occurring events, 
particularly onset speed and flow velocity. 

Compound Flood Event Categorisation 

Compound flood event categorisation is an emerging field focused on 
understanding the complexity of flooding mechanisms that occur simultaneously or in 
close succession. This research addresses the amplified impact of such occurrences due 
to their multidimensional nature, involving combinations of drivers like precipitation, 
storm surge, river discharge, high tides, and more. 

The Intergovernmental Panel on Climate Change (IPCC) first formally addressed 
compound events in 2012, noting that they involve multiple drivers or hazards 
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occurring simultaneously or sequentially, often amplifying the resulting damage 
(Seneviratne et al., 2012). A notable example is Hurricane Harvey (2017), where record-
breaking rainfall, river discharge, and storm surge combined to cause catastrophic 
flooding. 

Research into compound events has proposed several classification frameworks. For 
instance, one framework identifies four interaction types for compound events: 

• Preconditioned: Saturated soil that amplifies flood impacts. 

• Multivariate: Co-occurrence of two hazards like storm surge and river discharge. 

• Temporally Compounding: Sequential hazards in a region. 

• Spatially Compounding: Hazards in different locations interact to amplify 
impacts.  

These categories help researchers analyse specific conditions and impacts of 
compound flood events. 

In practical modelling, rainfall runoff, storm surge, and other mechanisms are often 
studied together to enhance flood hazard assessments tailored to specific geographic 
areas, like coastal and estuarine environments. Simplified models now aim to break 
down complex interactions to better understand their effects on flooding and provide 
actionable insights for flood resilience and management. 

The categorisation of compound flood events has emerged as a critical area of study, 
with several classification dimensions: 

• Flood-Generating Process Combinations: Compound events frequently involve 
interactions between different flood types. These combinations include coastal-
fluvial events (where storm surge prevents river discharge, exacerbating upstream 
flooding), pluvial-fluvial events (where intense rainfall overwhelms drainage systems 
while simultaneously causing river flooding), and coastal-pluvial events (where storm 
surge coincides with heavy rain). Each combination produces distinct flood dynamics 
that standard single-process models may fail to capture. 

• Temporal Sequencing: Compound events can be categorised based on their 
temporal characteristics—single events with multiple mechanisms, multiple events 
clustered closely in time, or events separated by insufficient recovery periods. This 
temporal dimension is particularly significant for infrastructure resilience and 
community recovery capacity. Systems still recovering from initial flooding often 
display amplified vulnerability to subsequent events, even of lesser magnitude. 

• Characteristic Combinations: The specific combination of flood characteristics
—magnitude, duration, timing, onset speed, and spatial extent—provides another 
classification dimension. For example, prolonged moderate flooding followed by a 
brief high-magnitude event creates different impact patterns than consecutive 
moderate events. Seasonal timing significantly influences impacts, particularly for 
agricultural systems with varying vulnerability throughout growing cycles. 

• Pathway and Mechanism Interactions: Compound events often involve 
complex interactions between flood pathways—defence overtopping or breaching, 
surface water accumulation, groundwater emergence, and infrastructure failure. 
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Each time series pathway may trigger or exacerbate others, creating cascade effects 
that traditional siloed assessments fail to capture. Classification frameworks 
increasingly incorporate these interaction pathways to better represent real-world 
flood complexity. 

• Vulnerability System Memory: A critical dimension in compound event 
classification involves the "flood memory" of affected systems—how quickly natural 
and built environments recover their baseline resilience. Systems with long recovery 
periods (extended groundwater saturation, damaged flood defences, or depleted 
community resources) remain at elevated vulnerability, creating compound impacts 
even when subsequent events would not usually cause significant damage. 

These multi-dimensional classification approaches represent a significant 
advancement beyond single-mechanism frameworks, better reflecting the complex 
reality of flood events that rarely occur in isolation. Comprehensive compound event 
classification requires considering hazard drivers, physical characteristics, failure 
mechanisms, and receptors' vulnerability and resilience characteristics. 

Riverbank Breach Modelling 

The modelling of riverbank breaches represents a specialised and critically 
important subset of flood risk assessment. These breaches—whether occurring in 
natural riverbanks or engineered levees—often result in rapid inundation of previously 
protected areas, creating distinct hazard characteristics compared to gradual overbank 
flooding. This section explores the methodologies to model such breaches and their 
implications for comprehensive flood risk assessment. 

Riverbank breach modelling employs a range of approaches that balance physical 
accuracy with computational efficiency: 

• One-dimensional (1D) Hydraulic Models: represent the river system as a series 
of cross-sections perpendicular to the flow direction, solving the Saint-Venant 
equations for conservation of mass and momentum. While 1D models significantly 
simplify the three-dimensional flow processes during breaching events, they remain 
widely used due to their computational efficiency and ability to model long river 
reaches. The effectiveness of these models depends critically on accurate stage-
discharge relationships, particularly for overbank flows where the curve typically 
shows a distinct inflexion point as flow encounters the floodplain's higher roughness 
and storage capacity. 

River schematisation for 1D models necessitates a "broad brush" approach aligned 
with the overall river features. Cross-sections are positioned to capture significant 
changes in channel geometry, roughness, or potential breach locations. In these 
models, breaches are generally depicted as lateral structures with time-varying 
geometric properties. The breach initiation, widening rate, and final dimensions are 
either predefined based on geotechnical analysis or modelled dynamically from 
hydraulic parameters. 

• Two-Dimensional (2D) Hydraulic Models: divide the floodplain into a grid or 
mesh of cells, solving the shallow water equations to determine water depth and 
velocity vectors throughout the domain. These models offer significant advantages 
for breach modelling by directly representing the spatial variation of flood 
propagation across the landscape. The explicit terrain representation allows for more 
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accurate prediction of inundation patterns following a breach, particularly in urban 
areas where buildings and infrastructure create complex flow paths. Additionally, 2D 
models provide spatial distributions of flow velocity, which are crucial for assessing 
erosive forces during breach development and potential damages to structures in the 
breach flow path. 

• Coupled 1D-2D Approaches: represent the main river channel in 1D while 
representing the floodplain in 2D, offering a balance between computational 
efficiency and physical realism. The treatment of the interface between domains is 
critical for accurate breach modelling, with various methods including lateral 
structures, vertical links, or horizontal links. Advanced coupled models dynamically 
activate the 2D domain when water levels exceed threshold values, efficiently 
focusing computational resources on areas experiencing inundation following a 
breach. 

• Computational Fluid Dynamics Applications: These models provide a detailed 
representation of three-dimensional flow structures for site-specific analyses. They 
capture complex flow features around breach openings, including vortex formation, 
supercritical flow regions, and hydraulic jumps influencing breach development and 
downstream hazards. The extreme computational demands typically limit their 
application to relatively small spatial domains and short time intervals. 

• Dam Break Modelling: a specialised subset of breach modelling, focuses on dam 
failures that can produce particularly catastrophic flooding. In many jurisdictions, 
dam owners must conduct dam break analyses to predict potential inundation areas 
and develop emergency plans. Specialised models have been developed for dam 
break wave propagation, accounting for the distinctive hydraulic characteristics of 
these extreme events, including supercritical flow transitions and bore formation. In 
river systems with multiple dams, models must account for potential cascade failures 
where the breach of an upstream structure leads to overtopping and failure of 
downstream structures. 

Geotechnical Factors in Breach Formation 

The hydraulic modelling of breaches must be informed by a geotechnical 
understanding of the failure mechanisms that initiate and drive breach development: 

• Soil Composition and Erodibility: fundamentally control breach susceptibility. 
Different soil types exhibit varying resistance to erosion, with cohesive clay soils 
generally more resistant than non-cohesive sandy soils. Direct measurement of soil 
erodibility through Jet Erosion Tests or Erosion Function Apparatus testing provides 
quantitative parameters for physically-based breach models. Natural riverbanks and 
even engineered levees often contain spatial variations in material properties, 
creating potential weak points that may initiate breach formation. 

• Vegetation Effects: bank stability operates through both mechanical and 
hydrological mechanisms. Plant roots provide mechanical reinforcement to the soil, 
increasing erosion and mass failure resistance. The degree of reinforcement depends 
on root density, tensile strength, and architecture. Hydrologically, vegetation 
influences soil moisture regimes through rainfall interception, transpiration, and 
preferential flow paths along roots. These effects can either enhance stability (by 
reducing soil saturation) or reduce stability (by creating preferential seepage paths). 
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The stabilising influence of vegetation often varies seasonally, creating temporal 
patterns in breach susceptibility. 

• Geomorphological Evolution: recognises that rivers and their banks represent 
dynamic systems that evolve as a time series. Natural river meandering processes 
create zones of erosion on the outside of bends and deposition on the inside, 
continuously altering bank geometry. Long-term processes of channel incision 
(downcutting) or aggradation (sediment accumulation) alter the hydraulic loading on 
banks and levees, potentially creating conditions conducive to breaching even 
without changes in flow magnitude. Analysis of historical breach locations often 
reveals patterns related to these geomorphological features. 

• Advanced Soil Mechanics Applications: Advanced soil mechanics applications 
increasingly incorporate sophisticated principles into breach modelling. Models that 
couple hydraulic loading with transient seepage can predict the development of 
internal erosion pathways and stability reduction due to increased pore pressures. 
Integrating slope stability analysis with hydraulic models enables the assessment of 
mass failure mechanisms that may initiate or accelerate breach formation. Advanced 
models incorporate unsaturated soil mechanics to represent the transition from 
unsaturated to saturated conditions during flood events, including the associated 
changes in strength and erodibility. 

Real-time Monitoring and Prediction 

Beyond modelling for planning and design purposes, increasing emphasis has been 
placed on real-time monitoring and predicting potential breaches during flood events. 
Since the early 2010s, significant technological advances have transformed flood 
forecasting capabilities, with AI and machine learning integration revolutionising 
prediction accuracy and lead times. 

Google's AI-driven Flood Hub exemplifies this evolution, providing forecasts up to 
seven days in advance by analysing global weather data, satellite imagery, and river 
gauge measurements to enhance situational awareness during flood emergencies. 

  
Modern integrated systems now combine sophisticated GIS tools with hydrological 

data to produce detailed flood maps, hazard zones, and impact assessments that 
enable timely alerts to minimise property damage. Companies like Previsico have 
pioneered high-resolution modelling systems capable of predicting flood risks at the 
property level, utilising networks of sensors and "instacasting" to provide actionable 
warnings based on live radar data and hydrological measurements—dramatically 
improving the precision with which authorities can identify potential infrastructure 
failures and implement targeted emergency responses: 

• Sensor Networks: deploy multiple monitoring technologies to detect precursors 
to breach formation. Piezometers (a device used to measure the pressure of a fluid, 
typically groundwater, in a specific location) embedded within levees measure pore 
water pressures, allowing the detection of anomalous seepage conditions that may 
precede internal erosion-driven breaches. Deformation monitoring through 
exotically named inclinometers (precision instruments used to measure angles of 
slope, elevation, or inclination relative to gravity's pull), extensometers (measure 
small changes in the distance between two points, specialising in detecting 
deformation, displacement, or strain in materials and structures), and remote 
sensing techniques measures bank or levee movement, providing early warning of 
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potential mass failure mechanisms. These sensors are increasingly connected to 
integrated monitoring systems with automated alert thresholds and real-time data 
visualisation. 

• Remote Sensing Technologies: provide broad spatial coverage to complement 
point-based sensor networks. Synthetic Aperture Radar systems can detect surface 
deformation and soil moisture changes associated with potential breach conditions, 
even during storm events when optical systems are limited by cloud cover. Thermal 
imaging can identify temperature anomalies related to seepage. In contrast, time-
series analysis of remotely sensed data identifies progressive changes in bank or 
levee conditions that may indicate increasing breach susceptibility. 

• Machine Learning Approaches: apply advanced analytical techniques to the 
complex, multi-parameter problem of breach prediction. Algorithms trained on 
historical breach data and precursor conditions identify patterns that may not be 
apparent in traditional analyses. These approaches can integrate disparate data 
streams from multiple sensor types, extracting meaningful signals from complex, 
noisy datasets. Bayesian methods provide probabilistic breach forecasts that update 
dynamically as new monitoring data becomes available, supporting risk-based 
decision-making during flood events. 

• Early Warning System Integration: ensures monitoring and prediction 
capabilities translate into effective risk reduction. The definition of appropriate alert 
thresholds balances false positive risk against the need for sufficient warning time to 
implement emergency measures or evacuations. Clear communication protocols 
ensure monitoring data and breach predictions reach decision-makers and affected 
populations through multiple, redundant channels. Integrating breach prediction 
into broader flood early warning systems provides comprehensive situational 
awareness for emergency management. 

The modelling and monitoring of riverbank breaches continues to advance through 
integrating hydraulic modelling, geotechnical analysis, and real-time monitoring 
technologies. These developments support a more accurate assessment of breach-
related risks and a more effective allocation of mitigation resources. 

Property Positioning Analysis 

The physical positioning of properties within the landscape fundamentally 
determines their exposure to flood hazards. While flood classification and breach 
modelling characterise the hazard, property positioning analysis translates these 
hazard characteristics into site-specific exposure assessments. This analytical approach 
draws from methodologies developed in real estate valuation—where the mantra 
"location, location, location" underscores positioning's critical importance—and adapts 
them to the specific requirements of flood risk assessment. 

Typographical Analysis 

Topography represents the most fundamental positioning factor for flood risk 
assessment, directly influencing flow paths, water accumulation, and inundation 
potential: 
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• Elevation Relative to Flood Sources: is the primary determinant of flood 
exposure. The vertical distance between a property and potential water sources—
whether rivers, coastlines, or surface water accumulation zones—establishes the 
basic threshold for flooding. This relationship is complicated because absolute 
elevation alone is insufficient; the hydraulic connectivity between the property and 
flood sources must be considered. Properties at relatively high elevations may still 
experience flooding if hydraulic pathways (natural or artificial channels, drainage 
systems) connect them to flood sources. 

• Digital Elevation Models: provide the foundation for topographic analysis in 
modern flood risk assessment. The resolution and accuracy of these models 
significantly influence assessment quality. While national or regional DEMs may be 
sufficient for broad-scale risk screening, property-specific assessment typically 
requires high-resolution data derived from LiDAR or similar technologies capable of 
sub-meter vertical accuracy. Such precision is essential for identifying subtle 
topographic features that may significantly influence flood routing. 

• Microtopography: is particularly important in urban environments, where 
insignificant elevation differences can significantly alter flood pathways. Features 
such as curbs, berms, garden walls, and small depressions may redirect or impound 
water in ways not captured by coarser elevation models. Advanced assessments 
incorporate these features through ultra-high-resolution elevation data or specific 
feature recognition and hydraulic representation. 

• Relative Positioning: within the landscape context often matters more than 
absolute elevation. Even if their absolute elevation is relatively high, properties at 
local low points may be subject to ponding during intense rainfall events as surface 
water flows converge. Similarly, properties positioned along preferential flow paths—
natural drainage lines, valleys, or urban street corridors that channel water—face 
elevated risk during high-intensity events regardless of their elevation relative to 
typical flood sources. 

Location Analysis 

Comprehensive property positioning assessment requires analysis at multiple 
spatial scales, each revealing different aspects of flood risk exposure: 

• Regional Analysis: examines the broader hydrological context within a property. 
This includes watershed characteristics, regional weather patterns, and large-scale 
flood control systems influencing the flood regime. Properties in regions with flat 
topography, poor regional drainage, or prone to large-scale weather systems capable 
of producing widespread precipitation (such as tropical cyclones or atmospheric 
rivers) face fundamentally different risk profiles than those in regions with efficient 
drainage networks or less extreme meteorological patterns. 

• Macro-location Analysis: focuses on the property's position within its city or 
district and its relationship to significant flood sources. The traditional real estate 
categorisation of locations as central, semi-central, or peripheral takes on a specific 
meaning in flood risk assessment. Central urban areas often face different flood 
mechanisms (predominantly pluvial and drainage-system related) compared to 
peripheral regions (where riverine flooding may dominate). Historical development 
patterns frequently placed central districts near water bodies for transportation and 
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industrial purposes, creating legacies of flood exposure that modern developments 
must address. 

• Micro-location Analysis: examines the immediate surroundings of a property, 
typically within a radius of several hundred meters, to identify localised flood risk 
factors. Critical considerations include: 

• The proximity to water bodies and drainage systems includes significant 
rivers, smaller streams, drainage channels, and stormwater infrastructure. 

• Local topographic features that might channel or impede water flow. 

• Barriers and obstructions that may protect or, conversely, increase flood risk 
by redirecting flows. 

• Neighbouring structures that may influence local flow dynamics. 

• Impervious surfaces in the immediate vicinity that generate runoff. 

• Street-level Positioning: represents the finest scale of analysis, examining how a 
property's specific position on its street or block influences its flood exposure. 
Factors such as setback distance from the street, position relative to the street crown 
and drainage structures, driveway configuration, and even subtle grading around the 
building footprint can significantly influence how surface water interacts with the 
structure during flood events. 

Built Environment Context 

The built environment surrounding a property creates a complex system that 
significantly modifies natural flood dynamics: 

• Urban Density: alters hydrological processes by increasing impervious surface 
area, modifying drainage patterns, and creating the channelling effect of street 
networks. High-density urban environments typically result in more rapid runoff 
with higher peak flows than natural landscapes, generating complex flow paths 
through the built environment. Properties in dense urban areas may experience 
flooding mainly due to these altered urban hydrological processes rather than from 
natural water bodies. 

• Street Network Hydraulics: play a critical role in urban flood routing. Streets 
often function as secondary drainage systems during intense rainfall events when 
conventional drainage infrastructure reaches capacity. The orientation, slope, width, 
and connectivity of streets create a network of flow paths that distribute floodwaters 
throughout urban areas. Properties at street intersections, low points in the street 
network, or downstream of large contributing street corridors face elevated 
exposure to these urban flow paths. 

• Infrastructure Systems: significantly influence flood exposure through both 
intended and unintended effects. Stormwater drainage systems reduce flood risk 
when functioning properly by efficiently removing surface water. However, these 
same systems can become flood sources when they reach capacity or experience 
backwater effects. Subsurface infrastructure—including utility corridors, subway 
systems, and underground parking facilities—can create unexpected hydraulic 
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connections that bypass surface topography, potentially bringing floodwaters to 
otherwise protected areas. 

• Building Arrangement Effects: occur when nearby structures alter flow paths 
to increase or decrease risk to a specific property. Depending on their configuration 
relative to flow direction and adjacent structures, buildings may block, channel, or 
redirect flows. In dense urban environments, the arrangement of buildings can 
create corridor effects, focusing flows between structures or shadow effects, where 
upstream buildings protect downstream properties. These complex interactions 
typically require detailed two-dimensional hydraulic modelling to capture accurately. 

Exposure Assessment Integration 

The comprehensive assessment of property positioning requires the integration of 
these multiple factors into a coherent exposure assessment: 

• Exposure Pathway Identification: systematically analyses all potential routes 
by which floodwaters might reach a property. This includes direct inundation from 
water bodies, surface flow across the landscape, backwater effects through drainage 
systems, groundwater rise, and infrastructure-mediated pathways. Each pathway 
requires specific positioning analysis techniques and may dominate under different 
flood scenarios. 

• Multi-hazard Positioning: recognises that property location simultaneously 
influences exposure to multiple flood types. A comprehensive positioning analysis 
must consider exposure to riverine, coastal, pluvial, and groundwater flooding and 
infrastructure-related flood risks. Properties often face different positioning-based 
exposure levels for each flood type, creating complex multi-hazard risk profiles. 

• Temporal Dynamics: in positioning assessment acknowledge that exposure 
changes over time through natural processes and human interventions. Coastal 
erosion, riverbed migration, urban development patterns, and infrastructure 
modifications all gradually alter a property's effective position relative to flood 
sources. 

• Quantitative Exposure Metrics: translate qualitative positioning analysis into 
numerical inputs for risk assessment models. These metrics include elevation relative 
to various flood levels, distance from flood sources adjusted for hydraulic 
connectivity, flow accumulation indices from hydrological models, or compound 
indices that integrate multiple positioning factors. These quantitative metrics enable 
consistent comparison across properties and incorporation into broader risk 
assessment frameworks. 

Property positioning analysis represents the essential bridge between hazard 
characterisation and vulnerability assessment. By systematically analysing how a 
property's location influences its exposure to various flood mechanisms, this approach 
provides the foundation for targeted resilience strategies and accurate risk 
quantification. As urban development alters flood patterns, sophisticated positioning 
analysis becomes increasingly critical for effective flood risk management across the 
built environment. 
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Environmental Resilience Factors 

While property positioning establishes exposure to flood hazards, environmental 
resilience factors determine how natural systems buffer, absorb, or amplify these 
hazards before they reach vulnerable assets. Resilience—the ability of a system to 
absorb disturbances while maintaining its essential functions and structure—represents 
a critical dimension of comprehensive flood risk assessment. Natural systems exhibit 
complex resilience characteristics that fundamentally influence the translation of 
meteorological events into flood impacts. 

Natural Flood Defence Systems.   

The landscape surrounding developed areas provides the first line of defence 
against flooding through various natural mechanisms: 

• Wetland Buffer Capacity: represents one of the most effective natural flood 
mitigation systems. Wetlands function as natural sponges, temporarily storing flood 
waters and releasing them gradually, thereby reducing downstream peak flows. The 
flood attenuation capacity of wetlands depends on their type, size, antecedent 
conditions, and position within the watershed. Riparian wetlands directly connected 
to river systems provide immediate storage during high flows, while isolated 
wetlands may reduce the volume of water reaching rivers through groundwater 
recharge. Historical wetland loss—exceeding 50% globally and reaching 90% in some 
developed regions—has significantly reduced this natural resilience mechanism, 
amplifying flood risks downstream. 

• Forest and Vegetation Systems: influence flood dynamics through multiple 
mechanisms operating at different time scales. The canopy intercepts precipitation, 
reducing the volume and velocity of water reaching the ground. Root systems 
enhance soil infiltration capacity, converting potential surface runoff into subsurface 
flow, moving more slowly toward water bodies. The forest floor, with its organic litter 
layer, provides additional water storage and slows surface flow. These mechanisms 
don't eliminate flooding during extreme events but modify the flood hydrograph by 
delaying and attenuating peak flows. The effectiveness of these systems varies by 
forest type, age, health, and management practice, with mature, diverse forests 
generally providing more significant flood mitigation benefits than young, 
monoculture plantations. 

• Soil Systems: play a crucial but often overlooked role in flood resilience. Healthy 
soils with high organic content and well-developed structures can absorb and store 
significant water volumes, reducing runoff's volume and velocity. Infiltration capacity
—the rate at which water can enter the soil profile—represents a critical parameter for 
flood mitigation. This capacity varies dramatically across soil types and conditions, 
with well-structured loamy soils potentially infiltrating ten times more water than 
compacted clay soils or those depleted of organic matter. Land management 
practices that maintain soil health contribute significantly to flood resilience, while 
soil degradation through compaction, organic matter depletion, or contamination 
reduces this natural defence. 

• Natural Channel Morphology: influences how efficiently river systems convey 
flood waters. Naturally, meandering rivers with connected floodplains dissipate 
energy and store water during high flows, reducing downstream flood peaks. The 
complexity of natural channel forms—including pools, riffles, side channels, and 
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woody debris—creates hydraulic roughness that slows flow velocities during floods. 
Channel straightening, artificial levee construction, and floodplain disconnection, 
while potentially protecting specific areas, often increase downstream flood risk by 
increasing flow velocity and peak discharge. River restoration efforts increasingly 
recognise the flood mitigation value of returning rivers to more natural 
configurations, providing ecological benefits and enhanced flood resilience. 

Resilience Mechanisms and Processes 

Beyond specific natural features, broader ecological and geomorphological 
processes contribute to environmental resilience against flooding: 

• Self-Organisation Capacity: distinguishes resilient natural systems from 
engineered flood defences. While built infrastructure typically provides static 
protection until failure thresholds are exceeded, natural systems dynamically adjust 
to changing conditions. River systems redistribute sediment, vegetation communities 
adapt to hydrological changes, and coastal systems migrate in response to sea-level 
fluctuations. This self-organisation allows natural systems to maintain their flood 
mitigation functions across various conditions, though within certain thresholds. 
When these thresholds are exceeded—through extreme events or cumulative human 
alterations—natural systems may shift to alternative states with different flood 
response characteristics. 

• Disturbance Absorption Thresholds: represent the magnitude of flood events 
that natural systems can accommodate while maintaining their essential functions. 
These thresholds vary across different ecosystem types and conditions. Healthy 
floodplain forests may withstand extended inundation during seasonal flooding but 
lose resilience when flooding becomes too frequent or prolonged. Similarly, coastal 
dune systems absorb the energy of moderate storm surges but may breach during 
extreme events, requiring time to rebuild naturally. Understanding these thresholds 
is essential for a realistic assessment of the protection provided by natural systems 
and for identifying points of failure where natural resilience may suddenly diminish. 

• Adaptive Learning Processes: enable natural systems to incorporate previous 
disturbances into their structure and function, potentially increasing resilience to 
future events. Vegetation communities in frequently flooded areas develop 
specialised physiological, morphological, and reproductive adaptations that enhance 
survival during inundation. Geomorphic systems reorganise after significant floods, 
sometimes creating more stable configurations that better accommodate future 
events. These natural adaptive processes operate across multiple time scales, from 
seasonal adjustments to evolutionary adaptations spanning centuries. Unlike 
engineered systems designed for static conditions, natural systems continuously 
adjust to changing flood regimes, though human development time frames often fail 
to recognise these slower processes. 

• System Recovery Trajectories: describe how natural flood defence systems 
return to functional states following disturbance. These trajectories rarely represent 
simple returns to previous conditions; instead, they often involve reorganisation 
around new equilibrium states that reflect both the disturbance and changing 
environmental conditions. For example, a coastal marsh may rebuild after a storm 
surge with altered channel networks that more efficiently dissipate future surge 
energy. These dynamic recovery processes contribute significantly to long-term 
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resilience but complicate assessment efforts based on static environmental 
conditions. 

Social-Ecological System Interactions 

The resilience of natural systems cannot be fully understood in isolation from 
human systems, as the two interact in complex ways that influence overall flood risk: 

• Coupled System Dynamics: recognise that human and natural systems interact 
through multiple feedback mechanisms relevant to flood resilience. Human 
modifications to natural systems—through development, resource extraction, 
pollution, or restoration—alter their flood mitigation capacity. Conversely, natural 
system responses to these modifications and flood events influence human 
vulnerability and subsequent adaptation decisions. These coupled dynamics create 
complex feedback loops operating across multiple spatial and temporal scales. For 
instance, development in previously natural floodplains reduces flood storage 
capacity, potentially increasing downstream flooding, which may prompt further 
flood control measures that alter natural systems. 

• Resilience Trade-offs: occur when enhancing one aspect of system resilience 
compromises another. Engineered flood control systems often increase short-term 
protection for specific assets while reducing the long-term resilience provided by 
natural systems. Flood walls may protect riverside developments but prevent the 
natural overbank flows that sustain floodplain ecosystems, providing flood 
mitigation. Similarly, drainage systems that effectively remove local surface water 
may increase downstream flood peaks. Comprehensive assessment requires 
recognising these trade-offs and their implications across different spatial scales and 
time horizons. 

• Knowledge Integration Challenges: arise from how human and natural system 
resilience are conceptualised and measured. Engineering approaches typically 
evaluate performance against defined design standards, while ecological resilience 
encompasses more complex, sometimes qualitative characteristics like diversity, 
redundancy, and adaptive capacity. Practical assessment requires bridging these 
knowledge systems, incorporating quantitative hydraulic analysis and ecological 
understanding of system dynamics. This integration remains challenging but 
increasingly necessary as recognition grows of the substantial flood protection value 
provided by natural systems. 

• Governance System Alignment: with natural resilience processes is critical in 
maintaining and enhancing environmental contributions to flood risk reduction. 
Governance frameworks—including regulations, incentives, planning processes, and 
management institutions—strongly influence whether natural flood mitigation 
systems are protected, restored, or degraded. Effective governance recognises the 
spatial misalignment often present between jurisdictional boundaries and watershed 
or coastal system boundaries. Systems that align governance with natural processes 
can significantly enhance overall flood resilience. 
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Weather Pattern Change Implications 

The natural shift in weather patterns introduces new uncertainties to environmental 
resilience assessment, potentially altering both the hazards that natural systems must 
absorb and the system's capacity to provide protection: 

• Shifting Baseline Conditions: that challenge the assumption that natural 
systems will continue to provide historical levels of flood protection. Changes in 
precipitation patterns, rising sea levels, and varying temperature regimes alter the 
environmental conditions to which local ecosystems are adapted. Depending on local 
circumstances and ecosystem types, these shifts may enhance or reduce natural 
flood mitigation capacity. For instance, increased precipitation may improve wetland 
function in some areas, while drought conditions in other regions may decrease soil 
infiltration capacity and vegetation cover, thus diminishing natural flood protection. 

• Ecosystem Transition Thresholds: may be crossed, leading to rapid changes in 
natural flood defence systems. Many ecosystems exhibit non-linear responses to 
changing environmental conditions, maintaining relative stability until critical 
thresholds are exceeded, then rapidly transitioning to alternative states. Coastal 
marshes may keep pace with moderate sea level rise but suddenly convert to open 
water when a critical rate is exceeded. Forested watersheds may maintain flood 
mitigation functions through moderate drought but lose them rapidly during 
extreme moisture stress events that trigger widespread mortality. Identifying these 
potential transition points represents a critical frontier in resilience assessment. 

• Adaptive Management Imperatives: emerge from uncertainty when projecting 
future weather pattern intensity. This uncertainty necessitates approaches that 
monitor natural system conditions, detect early warning signals of resilience loss, 
and adjust management strategies accordingly. Adaptive management frameworks 
incorporate structured learning processes that treat interventions as experiments, 
generating knowledge to refine subsequent actions. For flood risk assessment, this 
approach recognises that environmental resilience factors are not static features to 
be measured once but dynamic processes requiring ongoing evaluation and 
adjustment of protection estimates. 

The assessment of environmental resilience factors completes the hazard 
component of flood risk analysis by addressing how natural systems mediate the 
translation of meteorological events into flood impacts on human settlements.  

This assessment connects traditional hazard analysis with vulnerability assessment 
by acknowledging that flood characteristics in specific locations arise from the initiating 
event and the intricate environmental systems that influence the movement of 
floodwaters. Understanding and enhancing these natural resilience mechanisms 
becomes increasingly central to effective flood risk management as human 
development patterns evolve. 

Property-Specific Resilience Assessment 

The culmination of flood risk assessment occurs at the individual property level, 
where the analysis of hazard characteristics, positioning factors, and environmental 
resilience coalesce into property-specific vulnerability and adaptation assessments. 
This final analytical layer translates broader flood risk understanding into actionable 
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property-level interventions that significantly reduce physical damage and banking 
impacts. A structured approach to property-specific resilience assessment provides the 
critical link between technical flood risk analysis and practical risk reduction 
outcomes. 

Structural Vulnerability Analysis 

The built characteristics of individual properties fundamentally determine their 
flood vulnerability through multiple physical mechanisms: 

• Material Vulnerability Differentiation: reveals significant variation in how 
building materials respond to flood exposure. Masonry structures generally 
withstand hydrostatic pressure better than timber-frame constructions but may 
experience more significant capillary action, drawing water upward beyond the 
visible flood line. Concrete structures typically provide superior structural resilience 
but may create significant drying challenges post-flood. These material-specific 
vulnerabilities extend to finishing elements—plasterboard deteriorates rapidly when 
inundated, while water-resistant gypsum boards may maintain structural integrity 
through moderate flooding events. Comprehensive assessment requires evaluating 
the complete material assembly from structural elements through insulation to 
interior finishes. 

• Critical System Placements: significantly influence both damage potential and 
recovery timelines. Properties with elevated electrical systems—raised sockets, 
elevated consumer units, and ring mains routed through upper portions of walls 
rather than near floor level—typically experience less critical system damage and 
faster recovery. Similarly, positioning HVAC (Heating, Ventilation, and Air 
Conditioning) equipment, water heaters, and other mechanical systems relative to 
anticipated flood levels directly correlate with system survival rates. To prioritise 
protection or relocation interventions, vulnerability assessment must identify these 
critical system elevations relative to property-specific flood risk characteristics. 

• Foundation-type assessment: reveals varying flood response characteristics 
across foundation systems. Properties with solid floor construction face different 
vulnerabilities than those with suspended floors—while solid floors may better resist 
structural damage, they often present more significant drying challenges. Suspended 
floors allow underfloor drying but may experience greater uplift forces and access 
points for floodwater. Crawlspaces and basements introduce additional complexities, 
potentially serving as beneficial buffer zones when properly designed or as 
significant vulnerabilities when improperly protected. Assessment must consider the 
foundation type and specific details like damp-proof course positioning and 
perimeter drainage systems. 

• Dynamic Pressure Considerations: become particularly important in high-
velocity flood scenarios. Properties in breach flow paths or flash flood zones face 
additional hydrodynamic forces beyond simple inundation. Structural elements 
require assessment for their capacity to withstand these lateral forces—particularly 
corner junctions, door and window openings, and non-load-bearing walls that may 
face disproportionate pressure. This assessment extends to external elements like 
garden walls and fences, which may provide beneficial shielding or create debris 
hazards depending on their construction and orientation relative to anticipated flow 
paths. 
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Property-Level Adaptation 
Measures 

Practical resilience assessment extends 
beyond vulnerability identification to 
evaluation of adaptation options through a 
structured six-step process: 

•Step 1: Risk Understanding: provides the 
foundation for property-specific 
interventions. Comprehensive assessment 
requires evaluating the likelihood and 
potential severity of flooding for the specific 
property, incorporating all relevant flood 
mechanisms—fluvial, pluvial, coastal, 
groundwater, and infrastructure failure. 
This risk profile should consider historical 
events but must also incorporate forward-
looking projections. Risk understanding 
should extend beyond simple inundation 
mapping to consider anticipated flood 
characteristics, including depth, duration, 
velocity, water quality, and seasonal timing—
each influencing the selection of 
appropriate resilience measures. 

•Step 2: Adaptation Planning: translates 
risk understanding into strategic decision-
making. Property owners must evaluate the 
full spectrum of available approaches, from 
resistance strategies (preventing water 
entry) to resilience measures (minimising 
damage when water enters). This planning 
process requires a comprehensive cost-
benefit analysis considering initial 
implementation costs, maintenance 
requirements, operational reliability, 
aesthetic implications, and potential 
insurance benefits. Effective planning aligns 
selected measures with specific property 
characteristics and owner capabilities, 
recognising that even the most sophisticated 
interventions prove ineffective if improperly 
deployed or maintained. 

Figure 5: Property Adaption Measures 
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• Step 3: Property Survey: provides the technical foundation for adaptation 
implementation. Unlike generalised risk assessments, property-specific surveys 
identify all potential water entry pathways—doors, windows, air bricks, service 
penetrations, and construction joints or material interfaces. Effective surveys 
evaluate construction details that might not appear on standard plans, such as 
hidden service penetrations, legacy features from previous modifications, or subtle 
topographic features that influence local flow paths. 

• Step 4: Product Selection: matches identified vulnerabilities with appropriate 
technological solutions. Property-specific assessment must evaluate not only the 
theoretical performance of these products but also their appropriateness for the 
specific context, including user capabilities, deployment time requirements, 
aesthetic considerations, and compatibility with existing building features. 

• Step 5: Professional Installation: ensures theoretical protection translates to 
real-world performance. Assessment must consider the quality of installation and 
selected products, as even superior technologies fail when improperly integrated 
with existing structures. This evaluation extends to sealing methods, fixing 
approaches, and interface treatments between different protection system 
components. Post-installation testing provides critical verification, from simple hose 
testing of minor interventions to complete deployment exercises for more complex 
systems. 

• Step 6: Maintenance and Operation: completes the resilience assessment 
cycle. The most sophisticated protection systems prove worthless without proper 
maintenance and timely deployment. Assessment must evaluate operational 
requirements against occupant capabilities, particularly considering warning time, 
physical abilities, and the potential need for assistance. Maintenance assessment 
extends beyond simple physical inspection to consider ageing effects, material 
degradation patterns, and operational testing protocols, particularly for less 
frequently used mechanical components that may seize or deteriorate while 
dormant. 

Resilience Scoring Methodologies 

Quantitative assessment of property-specific resilience enables more sophisticated 
risk management and banking protection: 

• Multi-criteria Evaluation Frameworks: typically incorporate resistance 
measures (preventing water entry) and recovery-enhancing features (minimising 
damage when water enters). Effective scoring systems weigh different factors 
according to their relative importance for specific property types and flooding 
characteristics. For example, the resistance of building fabric might receive greater 
weighting in short-duration, high-frequency events, while rapid drying potential 
might receive greater emphasis in prolonged inundation scenarios. These weighted 
scores provide a standardised basis for comparing properties, prioritising 
interventions and demonstrating improvement over time. 

• Resilience Certification Programs: translate technical assessments into 
accessible documentation for non-technical stakeholders. These programs, 
increasingly recognised by insurance markets, provide standardised verification of 
implemented measures and their expected performance across defined flood 
scenarios. Certification typically requires documentation review and physical 
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inspection, often with periodic renewal requirements, to ensure ongoing 
maintenance. The resulting certifications provide objective evidence of reduced risk 
that can support insurance negotiations, property valuation, and regulatory 
compliance demonstrations. 

• Insurance Premium Integration: represents a critical application of resilience 
scoring. While historical approaches to flood insurance often relied on simplistic risk 
categorisation, advanced insurers increasingly incorporate property-specific 
resilience characteristics into underwriting models. Properties demonstrating robust 
protection measures—particularly those validated through recognised certification 
programs—can access more favourable coverage terms, lower premiums, reduced 
deductibles, or coverage in otherwise uninsurable locations. This insurance 
recognition creates powerful incentives for resilience investment, creating a virtuous 
cycle where premium savings help finance further protection measures. 

• Valuation Methodology Alignment: extends resilience benefits beyond 
insurance markets. Property valuation increasingly considers flood risk, with high-
risk properties facing potential value penalties. Property-specific resilience 
assessment provides a mechanism to differentiate protected properties within high-
risk areas, potentially preserving significant value through demonstrated risk 
reduction. Advanced valuation methodologies incorporate resilience scoring 
alongside traditional factors, recognising that properties with equivalent flood zone 
designations may face dramatically different actual risk profiles based on 
implemented protection measures. 

• Cost-benefit optimisation: allows targeting of limited resilience investment for 
maximum return. Comprehensive assessment enables prioritisation of interventions 
based on their risk reduction potential relative to implementation costs. This 
optimisation process typically reveals that specific low-cost measures—such as raising 
electrical systems or installing removable flood barriers—deliver disproportionate 
benefits compared to more extensive structural modifications. For properties with 
recurring flood exposure, these cost-benefit calculations often demonstrate 
remarkably short payback periods for resilience investments, notably when 
insurance savings and avoided disruption are fully valued. 

The assessment of property-specific resilience completes the risk assessment chain, 
translating broader flood hazard understanding into practical, location-specific 
protection strategies. As development pressures continue to alter flood risk profiles 
across the built environment, this property-level focus provides the most immediate 
and effective path to risk reduction.  

While community-scale defences and watershed management remain essential 
components of comprehensive flood risk management, property-specific interventions 
offer immediate protection benefits regardless of broader defence implementation 
timelines or funding constraints. Integrating these property-level assessments with risk 
transfer mechanisms creates powerful banking incentives that accelerate adoption 
without regulatory mandates, creating a market-driven approach to enhanced 
resilience. 
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Chapter 6 - Impact Quantification  

T he quantification of physical risk impacts represents the culmination of our 
progression from fundamental principles to practical applications. Having 

established how water moves through the environment and how we assess the 
resulting flood risks, we now turn to converting these assessments into measurable 
impacts on property, infrastructure, and economic systems. 

"The value of risk assessment ultimately lies in our ability to 
quantify potential impacts. Without this quantification, we cannot 

properly price risk, allocate resources for mitigation, or make 
informed decisions about development and adaptation.”- David 

Kelly, MKM. 

Impact quantification translates the physical reality of hazards into the banking 
language that drives decision-making. It bridges the gap between scientific 
understanding and economic consequences, enabling stakeholders to evaluate trade-
offs, justify investments, and manage exposures. This translation requires sophisticated 
methodologies that connect the physical characteristics of hazard events to their 
banking, social, and environmental outcomes. 

Hazard curves are the foundation of this quantification process, characterising the 
probability distribution of events across different magnitudes and timeframes. These 
curves encapsulate both historical patterns and future projections. Developing robust 
hazard curves requires statistical rigour, appropriate distribution selection, and careful 
treatment of uncertainty—particularly when extending beyond the historical record. 

Vulnerability functions then connect these hazard characteristics to expected 
damages. These functions—often expressed as relationships between flood depth and 
percentage damage—vary significantly across building types, content categories, and 
occupancy classes. The development of these functional curves draws upon empirical 
data from past events, engineering principles, and, increasingly, advanced simulation 
techniques. 

Applying these functions yields damage estimates across multiple dimensions: 
direct structural damage, content losses, business interruption, and broader economic 
impacts. Each category requires specialised methodologies that account for repair 
costs, replacement values, temporal disruption, and complex economic 
interdependencies. These estimates must further consider insurance coverage, 
including policy terms, exclusions, and risk transfer mechanisms that distribute 
impacts across stakeholders. 
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The ultimate expression of these impacts often appears in property valuations, 
where market participants price risk into their investment decisions. Understanding 
how physical risks translate into changes in market value requires consideration of 
capitalisation rates, market perception, regulatory influences, and adaptation 
potential. 

As we explore these quantification methodologies, we complete the analytical 
pathway that began with fundamental physical principles. This progression—from 
Newtonian physics to banking economics—enables the effective management of 
physical risks in an increasingly uncertain world. 

Hazard Curve Development 

Hazard curves form the foundational component of physical risk assessment, 
providing a quantitative representation of the relationship between hazard intensity 
and probability of occurrence. This section details the methodological approach to 
constructing hazard curves, emphasising flood hazards, as exemplified in the 
framework of the FINOS physical risk project under OS-Climate. 

A hazard curve establishes the relationship between the severity of a physical 
phenomenon and its probability of occurrence. This typically forms a return period 
curve or exceedance probability curve for chronic hazards like flooding. The OS-
Climate methodology adopts principles from natural catastrophe modelling, where: 

• Return period (τ) refers to the average time between events with intensity higher 
than a specified threshold. 

• Exceedance probability represents the probability that in a given period (typically 
one year), an event of intensity more significant than a specified threshold will occur. 

________________________________________________________________ 

Formula 10: Hazard Curve Development 

The mathematical relationship between these concepts is expressed as the 
probability of at least one occurrence in time t:- 

P(X^h_t ≥ 1) = 1 - e^(-t/τ) 

Where:- 

• P(X^h_t ≥ 1) is the probability of at least one hazard event occurring within time 
period t. 

• X^h_t represents the number of hazard events of type h occurring in time period 
t. 

• t is the time period of interest (typically 1 year). 

• τ is the return period in years (average recurrence interval). 
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Convert to probability bins. Using the relationship 

F'_S(h) = F'_S(s_q^(lower)) - F’_S(s_q^(upper)) 

Where: 

• F'_S(h) is the probability of the hazard intensity falling within a specific bin. 
• s_q^(lower) is the lower bound of the hazard intensity bin. 

• s_q^(upper) is the upper bound of the hazard intensity bin. 

• F'_S represents the probability density function of the hazard intensity 

________________________________________________________________ 

In everyday parlance, a 100-year flood has approximately a 1% probability of 
occurrence in any given year. 

Constructing Hazard Curves 

The OS-Climate framework constructs hazard curves through the following process: 

• Identify hazard indicators: The primary hazard indicator is flood depth 
(measured in meters) for floods. 

• Obtain spatial hazard datasets: OS-Climate leverages multiple data sources, 
including: 

•    World Resources Institute (WRI) Aqueduct flood model for global coverage of 
coastal and riverine inundation 

•    Higher resolution regional datasets (e.g., TU Delft pan-European dataset with 
100m resolution) 

•    Weather-conditioned future projections based on different emissions 
scenarios 

• Extract location-specific hazard data: Extract the relationship between hazard 
intensity and return period for a given location (latitude, longitude). For inundation, 
this might look like: 
• Construct probability bins for different hazard intensities. For example, the 

probability of occurrence of a flood with depth in the range (0.86m, 1.00m] would be 
0.02 - 0.01 = 0.01. 

• Interpolate between return periods.  For comprehensive risk assessment, 
interpolation methods are applied to estimate hazard intensities between the defined 
return periods. 
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• Account for weather pattern uncertainty.  Compare hazard curves under baseline 
historical conditions with weather-conditioned curves for future periods to quantify 
hazard frequency and severity changes. 

Table 4: Flood Depth by Return Period 

Connecting Hazard and Vulnerability 

The hazard curve and vulnerability curve are connected in the following way: 

• The hazard curve provides the probability of experiencing different hazard 
intensities at a location. 

• The vulnerability curve takes those hazard intensities as inputs and translates 
them into expected damage/loss values for the exposed assets. 

In risk analysis, the hazard curve is first used to determine the range of hazard 
intensities that must be considered based on their likelihood at that location. Then, the 
vulnerability curve maps each hazard intensity to a damage ratio or loss estimate for 
the asset being analysed. 

By combining the hazard exceedance probabilities from the hazard curve with the 
expected damage/losses from the vulnerability curve, catastrophe models can calculate 
risk metrics like the probable maximum loss or average annual loss for the exposed 
portfolio of assets. 

In summary, the hazard curve characterises the frequency of the peril. In contrast, 
the vulnerability curve characterises the fragility of the asset to that peril's intensity - 
both critical components in quantifying potential losses from any flood event. 

Vulnerability Curve Modelling 

Vulnerability curves represent the relationship between hazard intensity and an 
asset's resulting damage or disruption. While hazard curves capture the probability of 
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Return Period (years) Flood Depth (m)

2 0.06

5 0.33

10 0.51

25 0.72

50 0.86

100 1

250 1.15

500 1.16

1000 1.17



physical phenomena, vulnerability curves translate these phenomena into actual 
impacts on assets. 

The OS-Climate methodology implements vulnerability models through conditional 
probability distributions that capture the uncertainty in asset response to hazard 
events.  

________________________________________________________________ 

Formula 11: Vulnerability Curve 

For a given hazard intensity s, the vulnerability curve provides the probability 
distribution of damage/impact d: 

f_D|S(d, s)= probability that given hazard intensity s, impact d occurs 

Where: 

• f_D|S(d, s) is the conditional probability density function of damage/impact. 

• d represents the level of damage or impact to the asset (often expressed as a 
percentage of total value). 

• s represents the hazard intensity (e.g., flood depth in meters, wind speed in km/
h) 

The effective impact distribution is then derived through the convolution of the 
hazard and vulnerability distributions: 

f_D(d) = ∫_{-∞}^{∞} f_S(s)f_{D|S}(d, s)ds 

Where: 

• f_D(d) is the overall probability density function of damage level d. 

• f_S(s) is the probability density function of hazard intensity s. 

The integration combines all possible hazard intensities to determine the total 
damage probability distribution 

________________________________________________________________ 

The vulnerability curve shows the range of possible damage outcomes for a specific 
hazard level. Rather than predicting a single damage amount, it gives us the probability 
of different damage levels occurring when faced with a particular flood level. 

When we talk about the effective impact distribution, we're combining two critical 
pieces of information: how likely different hazard intensities are to occur in your area, 
and what damage each intensity might cause. This gives us the complete picture of 
possible damages by considering every potential hazard scenario, weighing each by its 
likelihood, and adding up all the resulting damage probabilities. 
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“Vulnerability curves account for how likely different flood depths 
are in your location and how the building’s resilience responds to 
each depth, producing your overall damage risk profile.”- David 

Kelly, MKM 

Types of Vulnerability Models 

The OS-Climate framework supports multiple vulnerability modelling approaches: 

• Expert-derived vulnerability curves are used in engineering analysis and 
judgment. 

• Statistical vulnerability models derived from empirical loss data. 

• Parametric vulnerability functions using mathematical distributions to 
represent damage uncertainty. 

Expert-Derived Flood Vulnerability Curves 

Expert-derived flood vulnerability curves represent a critical methodological 
component in physical risk assessment for regions without a sufficiently rich dataset. 
These curves are developed through a structured analytical process integrating 
engineering principles with quantitative expert judgment. 

The development methodology typically proceeds as follows: 

• Structural and hydrological specialists systematically analyse how varying 
inundation depths affect building typologies and construction materials. 

• Quantitative "what-if" analyses determine damage thresholds at specified flood 
depth intervals, identifying critical points where damage functions exhibit significant 
gradient changes. 

• Mathematical relationships between inundation depth and structural response 
are established and calibrated to engineering principles and material behaviour 
characteristics. 

• The resulting functions express damage as normalised ratios (0 to 1) or 
percentage values of total replacement cost across the continuum of possible flood 
depths. 

These expert-derived functions offer several methodological advantages within the 
risk assessment framework. They can be constructed without extensive empirical flood 
damage datasets, enabling vulnerability quantification in regions lacking recent flood 
event data. They incorporate building characteristics and flood parameters that may be 
absent from historical records while providing a technical foundation for forward-
looking assessments under projected climate conditions. 

However, significant methodological limitations must be acknowledged when 
applying expert-derived vulnerability functions. They rely on expert judgment rather 
than observed damage data and may not capture all multivariate factors influencing 
flood vulnerability. These functions introduce subjectivity that may vary between 
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expert groups, necessitating careful documentation of assumptions and 
methodological choices. When integrated with the hazard curves, such functions form 
the technical basis for quantitative risk assessment, informing infrastructure planning, 
insurance pricing models, and resilience investment decisions. 

Statistical Vulnerability Models 

Statistical vulnerability models provide a data-driven alternative to expert-derived 
curves. These models leverage historical damage data from past flood events to 
establish empirical relationships between hazard intensity variables and observed 
damages. Through regression analysis or machine learning techniques, these models 
can identify key vulnerability factors and provide more objective measures based on 
empirical evidence. 

The OS-Climate framework implements several statistical approaches for flood 
vulnerability modelling. Random Forest models utilise environmental factors, building 
characteristics, and historical damage data to predict potential losses at different flood 
depths. Regression-based approaches establish mathematical relationships between 
flood parameters (depth, duration, velocity) and observed damage ratios. Empirical 
damage functions are derived directly from historical loss data across different asset 
classes and regions, offering direct translation from hazard intensity to expected 
damage. 

Statistical vulnerability models offer significant methodological advantages in risk 
assessment applications. They are based on actual observed damage rather than 
theoretical estimates, enabling them to capture complex, non-linear relationships 
between hazard intensity and damage that might not be apparent through expert 
assessment alone. They frequently reveal unexpected vulnerability factors not initially 
considered in expert-driven approaches, providing insights that can refine overall risk 
understanding.  

However, these models face essential limitations in their application. They require 
sufficient historical damage data, which may not be available in all regions or asset 
classes. They may not adequately represent vulnerability under novel weather 
conditions outside historical experience. Additionally, they can be biased by the 
specific characteristics of the historical events depicted in the dataset, potentially 
limiting their generalizability to future conditions. 

Parametric Vulnerability Functions 

Parametric vulnerability functions represent a third approach in the OS-Climate 
framework, using standard mathematical distributions to model the relationship 
between hazard intensity and damage. These functions employ well-defined 
probability distributions such as Beta, Gamma, or Lognormal to express the damage 
response of assets to hazard intensities. The parameters of these distributions undergo 
calibration processes based on available empirical data or structured expert judgment. 
These functions systematically express damage as a percentage of asset value or 
absolute monetary loss, providing a standardised format for integration into risk 
assessment frameworks. 

Beta distribution has emerged as a preferred mathematical form for modelling 
vulnerability in the OS-Climate methodology due to its specific properties and 
analytical advantages. The distribution is constrained to the interval [0,1], which 
naturally corresponds to the range of possible damage ratios from no damage to total 
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loss. Its shape parameters can be adjusted to represent different vulnerability profiles 
across diverse asset types and construction categories. The Beta distribution effectively 
models the uncertainty in damage estimation at specific hazard intensities, capturing 
both the expected value and the variance of potential outcomes.  

The development process for parametric functions follows a structured 
methodology that involves categorising assets into similar vulnerability groups based 
on construction characteristics, occupancy types, or land use categories. For each asset 
category, the parameters of the chosen distribution undergo estimation procedures 
using available data or expert assessment. These functions then undergo validation 
against historical damage data where such information is available, allowing for 
refinement of the parametric representations. 

Parametric functions offer distinct methodological advantages in risk modelling 
applications. They provide mathematical elegance and computational efficiency, 
allowing for rapid calculation across large portfolios of assets. Their probabilistic 
nature enables the representation of uncertainty through complete probability 
distributions rather than point estimates, reflecting the inherent variability in damage 
outcomes. These functions integrate seamlessly with probabilistic risk assessment 
frameworks, supporting advanced risk metrics and uncertainty quantification. This 
makes parametric functions highly desirable for global banking systems needing to 
crunch vast numbers of assets at any defined frequency. 

However, several limitations must be considered in their application. Standard 
mathematical distributions may oversimplify complex damage mechanisms that exhibit 
threshold effects or non-standard response patterns. Parameter estimation presents 
significant challenges when working with limited empirical data, potentially 
introducing additional uncertainty. Furthermore, standard distributions may not 
accurately capture the actual shape of the damage-hazard relationship, especially for 
specialised assets or under hazard conditions. Within the OS-Climate framework, these 
parametric functions frequently complement other vulnerability modelling 
approaches, particularly in contexts where uncertainty quantification is crucial in 
comprehensive risk assessment. 

The OS-Climate methodology explicitly accounts for two types of uncertainty in 
vulnerability: 

Aleatory Uncertainty 

Aleatory uncertainty represents the inherent randomness or natural variability in 
how assets respond to hazards, even under seemingly identical conditions. This type of 
uncertainty is irreducible and cannot be eliminated through additional information or 
improved models. 

In the context of flood vulnerability, aleatory uncertainty manifests in several ways. 
Two identical buildings subjected to the same flood depth may experience different 
levels of damage due to random factors such as water flow dynamics, debris impact, or 
subtle differences in construction quality. This natural variability remains even with 
perfect building characteristics and flood parameters knowledge. 

The OS-Climate framework quantifies aleatory uncertainty using probability 
distributions that capture the range of possible damage outcomes for a given hazard 
intensity. For example, rather than predicting that a 1-meter flood will cause precisely 
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30% damage to a specific building type, the model might represent this as a probability 
distribution with a mean of 30% and a standard deviation that reflects the observed 
variability in historical flood damage data. 

Epistemic Uncertainty 

Epistemic uncertainty stems from incomplete knowledge about asset characteristics 
and their vulnerability to hazards. Unlike aleatory uncertainty, epistemic uncertainty 
can be reduced through additional data collection or improved modelling. 

In the context of physical risk assessment, epistemic uncertainty arises from: 

• Limited information about building characteristics (e.g., foundation type, 
materials, age). 

• Incomplete understanding of damage mechanisms. 

• Scarce historical damage data for calibration. 

• Limitations in modelling approaches. 

These uncertainties are modelled through probability distributions rather than 
deterministic damage functions, allowing robust risk quantification. 

Property Clustering Magnifies Flood Risk 

When we assess flood risk for residential properties, looking at individual properties 
in isolation tells only part of the story. The spatial clustering of properties creates 
complex, interconnected risk dynamics that can dramatically amplify the impact of 
flood events beyond what individual property assessments might suggest. 

Properties that cluster in flood-prone areas create a risk multiplier effect. This 
occurs through several interconnected mechanisms: 

• Correlated Physical Damage: When properties are tightly clustered, they share 
similar flood exposure characteristics. Properties within 1000m of each other (the 
correlation distance parameter) experience strongly correlated impacts. This means 
that rather than a random distribution of damages across a portfolio, damages tend 
to occur in concentrated clusters—creating more significant aggregate impacts than 
predicted by treating properties as independent risks. A neighbourhood with 50 
homes nearby will often see nearly all properties affected simultaneously by a single 
flood event rather than a random subset. This correlation effect is most substantial in 
densely developed floodplains, where property values tend to rise and fall in unison 
based on flood events. 

• Infrastructure Vulnerability Amplification: Clustered properties typically 
share critical infrastructure, creating systemic vulnerabilities that amplify flood 
impacts throughout the neighbourhood. When flood waters overwhelm stormwater 
systems in a densely populated area, the consequences ripple through all properties 
connected to that system. The drainage network designed to protect homes becomes 
a shared point of failure, causing water to back up into multiple properties 
simultaneously. 
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Access becomes another critical issue during flood events in clustered developments. 
As waters rise, road networks serving entire neighbourhoods can become 
impassable, cutting off not just individual homes but whole communities from 
emergency services. This isolation effect extends the impact of flooding well beyond 
direct water damage, affecting even properties that might remain dry but 
unreachable. 

Perhaps most consequential are the cascading utility disruptions that spread through 
densely populated areas. A single flooded electrical substation can plunge hundreds 
of clustered homes into darkness. Water treatment facilities overwhelmed by flood 
waters can render tap water unsafe across entire subdivisions. These shared service 
disruptions create prolonged recovery challenges that isolated properties typically 
don't face. 

The failure of shared protective infrastructure represents the most dramatic 
expression of this vulnerability. When a levee breach or a communal drainage system 
fails, it doesn't affect just one property but simultaneously unleashes water across 
countless homes. This synchronised flooding creates resource competition during 
the emergency response and recovery phases, extending the severity and duration of 
impacts for all affected properties. 

• Market Value Correlation Effects: Property clustering creates a robust market 
value contagion during and after flood events, where banking impacts spread 
through neighbourhoods much like the flood waters themselves. When a significant 
portion of homes in a neighbourhood experience flooding, the market reacts not just 
to the directly damaged properties but to the entire area. Prospective buyers begin to 
view the whole neighbourhood through the lens of flood risk, creating a collective 
devaluation effect that touches even homes that remain dry. 

Flooding and market stigma 

Belanger & Bourdeau-Brien's groundbreaking 2018 study offers significant insights 
into how flood risk manifests as market stigma in property valuations. By analysing 
over 600,000 residential properties across England, their research revealed that flood 
risk creates a complex economic geography where property values respond to actual 
and perceived hazards. 

Properties within designated 100-year floodplains experienced notable price 
discounts compared to similar properties in safer areas, with the most pronounced 
effects on waterfront properties. However, proximity to water bodies alone provides an 
incomplete picture of how markets process flood risk. Factors like elevation differences 
and localised topographical features create substantial variations in risk perception and 
resulting price impacts even within the same floodplain. 

The study's examination of stigma's temporal nature revealed that post-flood price 
discounts typically ranged from 10% to 50%, but these effects were not permanent 
fixtures in the market. Instead, they gradually diminished as the collective memory of 
specific flood events faded, with most markets showing substantial price recovery 
within 4-7 years after major floods. This recovery pattern exhibited significant 
socioeconomic variation, as lower-priced properties demonstrated greater sensitivity 
and extended recovery periods than higher-priced homes, which frequently benefited 
from offsetting amenities such as desirable views or waterfront access. 
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This finding highlights how market responses to flood risk reflect objective hazard 
assessments and complex interplays among perceived risk, property characteristics, 
and location-specific amenities that can mitigate negative risk perceptions in specific 
contexts. Markets typically respond more strongly to recent visible events than abstract 
probability calculations or hazard maps, disconnecting technical risk assessments and 
market perceptions. 

The physical recovery process influences these market effects, particularly in 
clustered developments. When entire neighbourhoods require simultaneous repairs, 
the demand for contractors, materials, and inspections creates bottlenecks that 
significantly extend reconstruction timelines. Homeowners compete for limited 
recovery resources, expanding the visible signs of damage throughout the community 
and prolonging the period of market impact. 

Belanger & Bourdeau-Brien also documented a "halo effect" of property devaluation 
that spreads through clustered developments after flood events. Their analysis reveals 
that properties located within the same neighbourhood as flooded homes but 
themselves untouched by waters still experienced statistically significant devaluations—
demonstrating that in clustered developments, flood risk impacts extend beyond 
physical water damage to affect entire market ecosystems. 

The study's findings carry significant policy implications for flood risk management. 
Traditional floodplain designations frequently overlook the nuanced ways in which 
buyers evaluate and price flood risk. This disconnect highlights the need for more 
detailed, property-specific risk assessment tools to align market perceptions with 
hazard profiles better.  

Furthermore, the documented pattern of temporary stigma periods reveals 
opportunities for targeted recovery interventions that could accelerate market 
normalisation following flood events, potentially reducing economic disruption in 
affected communities. By emphasising these dynamics, Belanger and Bourdeau-Brien's 
work provides essential guidance for policymakers aiming to address the financial 
dimensions of flood vulnerability in an era of extensive new property development. 

Quantifying the Clustering Effect 

The portfolio impact model captures this clustering effect through the correlation 
matrix Σ, combined with the shock factor σ: 

________________________________________________________________ 

Formula 12: Belanger and Bourdeau-Brien 

f_D(d) = ∫_{-∞}^{∞} f_S(s)f_{D|S}(d, s)ds 

Where: 

• f_D(d) represents the probability density function of the damage level d across the 
portfolio 

• f_S(s) is the probability density function of the shock intensity s (flood severity) 
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• f_{D|S}(d, s) is the conditional probability density function of damage d given 
shock s 

• The integration from -∞ to ∞ accounts for all possible shock scenarios 

________________________________________________________________ 

The portfolio impact model measures how flood risks spread among closely situated 
properties by analysing their interconnectedness. This approach goes beyond treating 
each property as an isolated risk. It recognises that when properties are clustered 
together, the impact of flooding on one affects the others in predictable ways. 

The correlation matrix illustrates the strength of the connections between 
neighbouring properties—when one property suffers from flooding damage, others 
nearby encounter similar risks due to their proximity and shared environmental 
characteristics. The shock factor subsequently measures the extent of this ripple effect 
across the cluster. 

This mathematical framework enables us to calculate the overall probability 
distribution of damage across an entire neighbourhood or development. It combines 
the individual probabilities of specific shock events with the conditional probabilities of 
how those shocks translate into actual damage patterns across properties. 

The clustering effect can better predict how flooding impacts cascade through 
developments where homes share similar construction methods, elevation profiles, 
and proximity to water sources. The model demonstrates that flooding damage doesn't 
occur randomly across properties but follows patterns that reflect geography and built 
environment characteristics. 

Understanding these clustering dynamics allows insurers, developers, and 
policymakers to more accurately assess the actual financial vulnerability of residential 
areas to flood events rather than simply calculating risks for individual properties in 
isolation: 

• Higher tail risk: The 95% Value at Risk (VaR) and Expected Shortfall (ES) metrics 
increase dramatically compared to diverse portfolios of the same size. 

• Greater volatility: Portfolio impact variance increases with clustering 

• Reduced diversification beneft: The risk-reducing effect of portfolio 
diversification diminishes as spatial correlation increases 

A portfolio with properties distributed across different watersheds might see a 95% 
VaR 2-3 times lower than a portfolio of equal value concentrated in a single flood-prone 
area. 

Clustering Patterns in Real Estate Portfolios 

Residential property clustering follows systematic patterns that inadvertently 
maximise flood risk exposure across investment portfolios. The price premium 
commanded by waterfront views creates high-value property concentrations precisely 
in the highest-risk areas, generating natural risk accumulations.  
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Developmental history contributes significantly to risk concentration, as many 
neighbourhoods were constructed during single development phases, resulting in 
uniform risk profiles across entire communities sharing identical construction 
standards and elevations. Infrastructure determinism further reinforces these patterns, 
as road networks and utility systems naturally follow topographical features like river 
valleys, creating property density along the same hydrological pathways that channel 
floodwaters. 

These patterns establish natural risk concentration hotspots where property density 
and flood susceptibility align—precisely the conditions where correlation effects 
manifest most strongly. Understanding these clustering dynamics informs several key 
risk management approaches. Geographic diversification across multiple watersheds 
and flood zones becomes essential for reducing portfolio-level exposure.  

Correlation-based pricing mechanisms adjust mortgage rates and insurance 
premiums based on neighbourhood-level clustering characteristics rather than solely 
on individual property risk metrics. Targeted mitigation strategies focus infrastructure 
improvements on protecting entire clusters rather than attempting less cost-effective 
individual property-level interventions. Advanced stress testing methodologies 
incorporate portfolio simulations with varying correlation parameters to identify 
vulnerabilities to specific clustering effects.  

As flood patterns shift due to additional property development that converts 
permeable surfaces to impervious concrete, previously diverse portfolios may become 
inadvertently clustered regarding risk exposure. Areas once considered to have 
independent flood risks may begin experiencing correlated flooding as weather 
patterns and hydrological systems change. This dynamic risk landscape necessitates 
continuous reassessment of portfolio correlation structures rather than relying on 
static risk assessments based on historical patterns. 

The mathematical analysis of spatial correlation confirms what many risk managers 
have intuitively understood. When evaluating flood risk, the relative geographic 
positioning of properties within a portfolio is comparable to their risk profiles. By 
explicitly modelling these clustering effects, analysts develop a more accurate 
understanding of portfolio-level flood risk. They can formulate more effective strategies 
for managing that risk in an increasingly uncertain climate future.  

These territorial rating methodologies now feed into sophisticated insurance 
premium calculations incorporating several advanced components. Peril-specific 
territories establish separate geographic segmentation frameworks for flood, wind, fire, 
and other hazards. Proximity factors enable rating adjustments based on distance to 
risk features such as coastlines, floodplains, or fault lines.  

Topographic variables incorporate elevation, slope, aspect, and other terrain 
characteristics influencing risk profiles. Hydrological modelling directly integrates 
outcomes from the flood models discussed in previous chapters. The following chapter 
will examine These methodological components in greater detail, forming the 
foundation for comprehensive risk pricing frameworks. 
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Quantifying Resilience Using Standard Operating 
Procedures 

Standard Operating Procedures (SOPs) provide a structured approach to quantifying 
resilience by formalising how systems prepare for, respond to, and recover from 
disruptive events. When properly implemented, SOPs transform theoretical resilience 
concepts into measurable outcomes, particularly for built environments facing hazards 
like flooding. 

SOP Resilience Calculation 
________________________________________________________________ 

Formula 13: SOP Fundamental 

The fundamental calculation for SOP resilience coverage can be expressed as: 

S = (Implemented SOPs + Excluded SOPs) / (Total Recommended SOPs) × 100 

Where: 

• S represents the SOP coverage score (0-100%). 

• Implemented SOPs are procedures actually in place. 

• Excluded SOPs are procedures deliberately omitted with justification. 

• Total Recommended SOPs encompass all procedures advised for the specific 
context. 
________________________________________________________________ 

This calculation yields a normalised percentage that can be integrated into broader 
resilience assessments. 

Resilience Quantification: Assessment 

Begin by establishing an unprotected baseline scenario. For a property in a flood 
zone, this might involve: 

• Unprotected flood depth: 1 meter during a 1-in-100-year event. 

• Estimated damage: $X for building structure and contents. 

• Recovery time: Y days/weeks before reoccupation. 

• Operational continuity: Complete disruption for Z days. 

Resilience Quantification: SOP Inventory and Analysis 

Document all recommended resilience procedures for the property type, 
categorising them by resilience phase: 
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• Preparedness SOPs: Early warning monitoring, seasonal maintenance, supplies 
stockpiling 

• Protection SOPs: Deployment of barriers, equipment elevation, utility isolation 

• Response SOPs: Evacuation procedures, emergency communication protocols 

• Recovery SOPs: Water removal sequence, sanitisation procedures, systems 
restoration 

Each SOP should be assigned a weighted value based on its contribution to overall 
resilience. 

Resilience Quantification: Implementation Calculation 

________________________________________________________________ 

Formula 14: Phase-specific SOP 

For each resilience phase, calculate a phase-specific SOP score: 

S_phase = (Σ(w_i × I_i)) / (Σw_i) 

Where: 

• S_phase is the score for a specific resilience phase. 

• w_i is the weight of the i-th SOP. 

• I_i is the implementation status (1 for implemented, 0 for not implemented). 

• Σ represents the summation across all SOPs in that phase. 
________________________________________________________________ 

This calculation evaluates each SOP in that phase, determines whether it has been 
implemented (assigning a value of 1) or not (assigning a value of 0), and multiplies this 
implementation status by the weight assigned to that specific SOP. These weighted 
values are then summed and divided by the total of all the weights. This results in a 
score reflecting the implementation level for that particular resilience phase. 

The resulting S_phase score provides a normalised measure (typically between 0 
and 1) that indicates how thoroughly weighted SOPs have been implemented within a 
specific resilience phase. A score closer to 1 signifies that most important SOPs (those 
with higher weights) have been implemented, while a score nearer to 0 suggests that 
many significant SOPs remain unimplemented.  

This method ensures that more critical procedures (those with higher weights) have 
a proportionally more significant effect on the overall resilience score for that phase. 

Resilience Quantification: Hazard Reduction Modelling 

The implementation score translates to hazard reduction through modelling 
relationships between procedures and outcomes: 
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________________________________________________________________ 

Formula 15: Hazard Reduction 

H_reduced = H_baseline × (1 - R_eff ) 

Where: 

• H_reduced is the reduced hazard level 
• H_baseline is the baseline hazard level 
• R_eff is the effective resilience factor derived from the SOP scores 

For our flood example: 

• Baseline flood depth = 1m 
• SOP implementation score = 80% 
• Effective resilience factor = 0.8 
• Reduced flood depth = 1m × (1-0.8) = 0.2m (20cm) 
________________________________________________________________ 

Resilience Quantification: Return Period Translation 

The reduced hazard level can then be translated to an adjusted return period: 
________________________________________________________________ 

Formula 16: Return Period Adjustment 

T_adjusted = T_baseline × f(R_eff ) 

Where: 

• T_adjusted is the adjusted return period. 

• T_baseline is the baseline return period. 

• f(R_eff ) is a site-specific function relating resilience to return period adjustment. 
________________________________________________________________ 

In our example, a properly implemented set of SOPs effectively transforms a 1-
in-100-year flooding event into a 1-in-20-year event in terms of impact. 

Case Example: Residential Property Flood Resilience 

Consider a single-family home in a flood-prone area with the following 
characteristics: 

• It is located in a 1-in-100-year floodplain with a 1m projected flood depth 
• Home replacement value: $350,000 
• Contents value: $75,000 
• Displacement cost: $3,000 per month 
• Recovery time without SOPs: 4 months 

The homeowner implements a comprehensive set of SOPs: 
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• Preparatory SOPs 
1. Installation of flood-resistant materials in lower level 
2. Regular cleaning of gutters and drainage pathways 
3. Elevation of electrical systems and HVAC equipment 
4. Creation of a household emergency plan 

• Response SOPs 
1. Deployment of door/window flood barriers 
2. Moving valuable items to the upper floors 
3. Secure storage of essential documents in waterproof containers 

• Recovery SOPs 
1. The proper sequence for water removal and drying 
2. Mold prevention procedures 

Using the formula and appropriate weights for each SOP category: 

S_total = ((4 × w_prep) + (3 × w_resp) + (2 × w_recov)) / ((5 × w_prep) + (4 × w_resp) + (3 
× w_recov)) 

Assuming weights of 0.4 for preparatory, 0.4 for response, and 0.2 for recovery 
SOPs, the SOP implementation score is approximately 75%. 

This translates to: 

• Reduced flood depth: 25cm (instead of 1m). 
• Shortened recovery time: 1.5 months (instead of 4). 
• Damage reduction: $85,000 to structure and contents. 
• Displacement cost reduction: $7,500. 
• Return period adjustment: Impacts equivalent to a 1-in-25-year event. 

Integration with Broader Resilience Frameworks 

SOP resilience calculations should be integrated with other resilience metrics for 
comprehensive assessment: 

________________________________________________________________ 

Formula 17: Total Property Resilience 

R_total = w1 × S + w2 × P + w3 × A + w4 × T 

Where: 

• R_total is the total resilience score. 
• S is the SOP coverage score. 
• P is the physical infrastructure score. 
• A is the adaptive capacity score. 
• T is the technological readiness score. 
• w1 through w4 are respective weights. 

________________________________________________________________ 
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Quantifying resilience through SOP implementation provides a structured approach 
to understanding and enhancing a property's ability to withstand disruptive events. 
Proper procedures transform a 1-in-100-year event into an effective 1-in-25-year event, 
demonstrating the tangible value of operational resilience for residential properties. 

This methodology allows homeowners, insurers, and policymakers to make 
informed decisions about resilience investments based on measurable outcomes rather 
than theoretical frameworks alone. This could result in reduced insurance premiums, 
decreased recovery costs, and enhanced property values. The next step is to ensure 
that these fields are included in a property's CDM design. 
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Chapter 7 - Insurance Risk 
Assessment 

I nsurance calculation represents a critical junction in the physical risk 
assessment process, where the scientific understanding of hazards developed in 

previous chapters converges with banking risk transfer mechanisms. The preceding 
chapters have established a comprehensive framework for understanding flood risk
—from the fundamental principles of weather prediction and hydrological 
modelling, hydrological routing and hydraulic modelling to the detailed assessment 
of flood hazards and property-specific vulnerabilities. Insurance modelling builds 
directly upon this foundation, transforming these physical insights into economic 
terms through structured mathematical frameworks. 

"Insurance serves as the essential bridge between physical risk 
science and banking markets—it translates the complexities of 

hydrodynamic modelling and property vulnerability into an annual 
premium reflecting a precise risk quantification. While mortgages 

extend risk over decades, insurance distils it into a single year, 
creating both a temporal mismatch and a powerful market signal 

about the true cost of hazards." —Swiss Re Institute. 

This connection is particularly evident in territorial rating methodologies, which 
practically implement the hydrological and hydraulic modelling discussed in earlier 
chapters. The sophisticated flood modelling approaches—including riverbank breach 
modelling, digital elevation analysis, and flow path simulation—directly inform how 
insurers delineate rating territories and assign relative risk factors. These territories 
essentially translate complex hydrological realities into financially actionable zones for 
risk pricing. 

The insurance industry is uniquely positioned in the physical risk landscape due to 
its one-year time horizon. Unlike mortgages, which commit capital over decades (as we 
will explore in Chapter 8), insurance contracts typically last just twelve months, 
allowing for rapid adaptation to emerging risk information.  

This fundamental difference creates challenges and opportunities—insurers can 
quickly incorporate new physical risk data into their pricing models. Still, this same 
flexibility allows them to withdraw coverage entirely from areas they deem too risky, 
potentially leaving longer-term mortgage exposures unprotected. 

This chapter explores how insurers bridge the gap between scientific risk 
assessment and banking quantification. We begin with premium calculation 
approaches that translate territorial risk assessments derived from hydrological and 
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hydraulic models into specific pricing structures. We then examine how recent 
advancements in territorial rating methodologies have enabled more granular, 
property-specific risk assessments that more accurately reflect the underlying physical 
realities modelled in previous chapters. 

Premium Calculation  

Calculating insurance premiums represents the practical application of risk 
modelling principles within the constraints of market realities, regulatory 
requirements, and business objectives. For property insurance, particularly in areas 
prone to flooding and other natural hazards, advanced premium calculation methods 
are essential for ensuring insurer solvency and market accessibility. 

The fundamental insurance premium equation comprises several distinct 
components: 

Premium = Pure Premium + Expense Loading + Risk Loading + Profit Margin 

Where: 

• Pure Premium: The expected loss cost, as determined by comprehensive risk 
modelling 

• Expense Loading: Operational costs, including acquisition, administration, and 
claims handling 

• Risk Loading: Additional charge for uncertainty and volatility in the loss 
distribution 

• Profit Margin: Required return on capital to support the business 

The pure premium component derives directly from the risk modelling process 
through the application of credibility theory, which balances the predictive value of 
specific risk data against broader class experience: 

________________________________________________________________ 

Formula 18: Pure Premium 

Z = n / (n + K) 

Where: 

• Z represents the credibility factor. 
• n is the number of exposure units. 
• K is a constant reflecting the expected variance of the risk class.  

The final pure premium calculation then becomes: 

PP = Z × Individual Experience + (1 - Z) × Class Experience 

________________________________________________________________ 
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This approach ensures that properties with sufficient historical data receive 
individualised rates, while those with limited experience benefit from the stability of 
class ratings. 

Territorial Rating Refinement 

Territorial rating has long been a cornerstone variable for property insurance. It is 
traditionally defined by administrative building blocks such as postal codes, census 
blocks, or municipal boundaries.  

Building on the flood modelling techniques discussed in previous chapters, modern 
approaches employ significantly more granular spatial segmentation. 

The territorial rating process involves two critical phases: 

• Determining the boundaries of each territory 

• Establishing the rate relativities for these territories 

Traditional territory-based methods faced an inherent challenge: balancing the 
need for territories large enough to provide statistical credibility while small enough to 
encompass regions with relatively uniform risk exposure. Key considerations for 
effective territorial boundaries include: 

• Credibility thresholds: Ensuring sufficient exposure and claim volume 

• Risk homogeneity: Minimizing variance within territories 

• Intuitive boundaries: Creating defensible geographic delineations 

• Regulatory compliance: Adhering to jurisdictional constraints 

Modern flood insurers abandon the conventional zone-based rating approach in 
favor of coordinate-based systems that represent flood risk as a continuous gradient 
across landscapes.  

This approach uses property-specific latitude and longitude coordinates integrated 
with high-resolution digital elevation models to assess flood exposure with 
unprecedented precision.  

As Mitchell-Wallace et al. note in their practitioner's guide, this creates "continuous 
risk surfaces that better reflect localised risk gradients," enabling insurers to 
differentiate between properties even within the same postal code. As we have covered 
in the previous chapters, modern approaches to hydrology and hydraulic modelling 
enable advanced tools that allow the following: 

• Micro grid-based pricing: using uniform spatial grids down to 5m that 
transcend administrative boundaries and allow different Insurance for two 
properties in the same Zipcode (Postcode) 

• Risk-based clustering: Employing machine learning to identify regions of similar 
risk profiles that have more measurable historic events 
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• Dynamic boundaries: Adjusting territory definitions based on emerging loss 
patterns and changing hazard conditions 

• Multi-level territories: Implementing hierarchical structures that balance 
granularity with credibility 

The evolution toward these micro-territories has particular relevance for flood 
modelling, where risk can vary dramatically within short distances based on elevation, 
drainage infrastructure, and proximity to water bodies. These approaches enable the 
incorporation of spatial correlation in premium calculations, recognising that 
geographic proximity often entails similar flood risk exposures. 

Others have begun modelling territorial signals directly at the individual risk level, 
creating a continuous risk surface rather than discrete territories. This approach 
involves smoothing and aggregating nearby risks until sufficient credibility is reached, 
creating dynamic micro-territories that adapt to emerging patterns. These 
sophisticated methodologies typically employ holdout validation techniques to ensure 
model accuracy, with insurers reserving portions of their data to verify that territorial 
refinements genuinely have indicative power. 

The advantages of these advanced geospatial approaches extend beyond technical 
sophistication. Insurers implementing these methods report significantly increased 
accuracy in risk assessment, with greater differentiation and more significant 
properties even within traditionally defined territories. Perhaps more importantly, 
these approaches enable insurers to respond to localised changes in risk levels without 
requiring broad rate changes across entire regions.  

This granularity promotes fairness and precision in pricing, ensuring policyholders 
pay rates more closely aligned with their actual risk exposure. From an operational 
perspective, these systems typically enable incredible speed and efficiency in risk 
assessments and policy quotes, as territory assignment becomes an automated, 
algorithmic process rather than a manual lookup procedure. 

Multivariate Class Rating 

Modern premium calculation employs sophisticated multivariate rating plans that 
simultaneously consider numerous risk factors through generalised linear models 
(GLM): 

________________________________________________________________ 

Formula 19: Multivariate Premium Calculation 

log(Premium) = β₀ + β₁X₁ + β₂X₂ + ... + βₙXₙ 

Where: 
• log(Premium) is the natural logarithm of the premium amount. 

• β₀ is the intercept or base rate coefficient. 

• β₁, β₂, ..., βₙ are the regression coefficients that represent the effect of each risk 
factor. 
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• X₁, X₂, ..., Xₙ are the risk factors or predictor variables (both continuous and 
categorical). 
________________________________________________________________ 

These models incorporate both continuous variables (e.g., distance to coast) and 
categorical factors (e.g., construction type) through: 

• Main effects: Direct impact of individual factors. 

• Interaction terms: Combined effects of factor pairs. 

• Offset variables: External constraints on the rating structure. 

• Smoothing functions: Techniques like cubic splines for handling nonlinear 
relationships. 

• Advanced implementations: extend GLMs through techniques such as: 
• Generalised additive models (GAMs) for capturing complex nonlinear 

relationships. 
• Mixed-effects models for addressing hierarchical data structures. 
• Elastic net regularisation for variable selection and coefficient stability. 
•

Cost of Capital and Risk Loading 

Property insurance—particularly for catastrophe-exposed regions—requires 
substantial capital reserves to cover potential losses. The risk-loading component of 
premiums must reflect this capital requirement: 

Risk Loading = CoC × Required Capital. 

Where CoC represents the cost of capital (typically exceeding risk-free rates by 6-12 
percentage points), and Required Capital is determined through: 

Required Capital = TVaR₉₉.₅ - Expected Loss 

Where TVaR₉₉.₅ (Tail Value at Risk) represents the average loss in the worst 0.5% of 
scenarios. This approach ensures that the premium adequately compensates for the 
extreme tail risk characteristic of property catastrophe exposures.  

Solvency II regulatory framework 

The European Union formally implemented Solvency II on January 1, 2016, 
following nearly a decade of development and several postponements from its 
originally planned 2012 launch. All 27 EU member states were required to adopt this 
regulatory framework for insurance and reinsurance companies. While initially 
implementing Solvency II as an EU member, the UK has maintained these regulations 
post-Brexit through the UK Solvency II regime. However, some modifications have been 
introduced over time. 

Under Solvency II, insurers must account for catastrophe risk in their Solvency 
Capital Requirement (SCR) using either the standard formula or internal models. The 
standard formula utilises predefined scenarios and correlation matrices, with 
catastrophe risk integrated within underwriting modules (non-life, life, and health). For 
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non-life catastrophe risk, insurers apply 1-in-200-year loss scenarios across various 
perils and regions, reporting capital requirements both before and after implementing 
risk mitigation strategies like reinsurance. Life catastrophe risk involves more 
straightforward calculations, such as applying 0.15% to the total capital at risk across 
policies. 

Alternatively, larger insurers may develop internal models that reflect their specific 
risk profiles more accurately. These regulator-approved models use Monte Carlo 
simulations to model loss distributions with company-specific exposure data and 
reinsurance structures. While the standard formula offers simplicity with fixed 
scenarios and correlations, internal models provide greater precision but require more 
complex data and validation processes.  

Both approaches aim to ensure insurers maintain sufficient capital reserves to 
withstand extreme events at the 99.5% confidence level (1-in-200-year Value at Risk), 
balancing policyholder protection with operational feasibility. 

This regulatory charge directly influences premium pricing, as insurers must 
generate sufficient returns to compensate for this committed capital. Thus, the 
regulatory view of extreme physical risk effectively becomes a direct component of 
consumer premium costs. 

While these advancements mentioned earlier offer improved risk segmentation—
with some insurers reporting 15-25% reductions in cross-territory rate error compared 
to conventional methods—they also face regulatory scrutiny. Insurance commissioners 
increasingly demand transparency in these sophisticated models, requiring detailed 
documentation of how geographic risk factors are isolated and validated before 
approving rate filings based on these new methodologies. 

The ongoing evolution of flood premium modelling represents a material leap 
forward in risk-based pricing accuracy, potentially reducing cross-subsidization while 
better-aligning incentives for property-level flood mitigation investments. 

Experience and Schedule Rating 

Beyond model-driven base rates, premium calculation often incorporates more 
nuanced methodologies to account for individual risk characteristics and historical 
performance. Two key approaches that enable this refinement are experience rating 
and schedule rating. 

Experience rating adjusts premiums based on a policyholder's actual loss history 
relative to expected losses for similar risks. This approach recognises that historical 
performance is a reliable predictor of future claims activity. 

Calculation Methodology 

The experience modification factor is typically calculated as follows: 

Experience Modification = (Actual Losses + ESF) / (Expected Losses + ESF) 

Where: 
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• Actual Losses: The policyholder's historical claims over a defined period (typically 
3-5 years) 

• Expected Losses: Industry average losses for similar risk profiles 

• ESF (Experience Stabilization Factor): A parameter that dampens the impact of 
random fluctuations, crucial for smaller portfolios where a single large claim could 
create disproportionate premium volatility 

The resulting factor directly modifies the base premium: 

• Factor > 1.0: Premium surcharge for worse-than-expected loss experience 

• Factor = 1.0: No adjustment (experience aligns with expectations) 

• Factor < 1.0: Premium credit for better-than-expected loss experience 

Credibility Weighting 

The ESF functions as a credibility mechanism that balances the statistical 
significance of individual experience against broader risk class data. As exposure 
volume increases, the formula gives greater weight to personal experience: 

Z = n / (n + ESF) 

Z represents the credibility assigned to individual experience, and n reflects 
exposure units.  Exposure units represent the volume of risk-bearing activity (e.g., 
payroll, property value, or operational scale) used to quantify an insured entity’s 
exposure to potential losses. When calculating premiums, this parameter determines 
how much weight an insurer assigns to the entity’s loss experience versus industry-
wide data. 

Example: Workers' Compensation 

A construction firm with a $5M annual payroll (n = 500 units at $10,000/unit) and 
an ESF of 1,000 would have: 

Z = 500/(500 + 1,000) = 0.33 

Here, 33% of the premium adjustment would derive from the firm's claims, while 
67% would use industry data. 

If payroll grows to $15M (n = 1,500): 

Z = 1,500/(1,500 + 1,000) = 0.6 

Now, 60% of the weight is on the firm's experience, reflecting greater statistical 
confidence. 

  

Practical Application 
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For property insurance, particularly in flood-prone areas, experience rating might 
consider frequency and severity of previous flood claims, loss mitigation responses at 
earlier events, time elapsed since the last significant claim, and loss ratio compared to 
premium history. 

Example: A commercial property  

 A commercial property with $10M in coverage has experienced two minor flood 
claims totalling $125,000 over the past decade, compared to an expected loss of 
$200,000 for similar properties. With an ESF of $75,000, their experience modification 
would be: 

($125,000 + $75,000) / ($200,000 + $75,000) = $200,000 / $275,000 = 0.73 

This 0.73 modification factor would reduce their base premium by 27%, reflecting 
their better-than-expected loss history. 

Schedule Rating 

While experience rating looks backward at actual loss history, schedule rating 
evaluates current risk characteristics that statistical models or territorial classifications 
may not fully capture. 

Implementation Approach 

A schedule rating applies structured credits or debits to the base premium based on 
specific risk factors. Insurance underwriters evaluate properties against defined 
criteria, with typical adjustment ranges of ±25% from the base rate. 

Key Rating Factors 

Schedule rating for flood insurance typically evaluates several critical categories. 
Loss control measures include evaluating property-specific defences such as elevated 
critical systems, backflow prevention devices, and temporary flood barrier deployment 
capabilities. Construction features assessment focuses on the building's inherent 
resilience, examining foundation integrity, water-resistant materials usage, and 
structural reinforcements against hydrostatic pressure.  

Management practices evaluation encompasses organisational readiness through 
emergency response planning, staff training protocols, and ground-floor exposure 
minimisation strategies. Maintenance programs review examines the property owner's 
commitment to regularly inspecting water intrusion points, maintaining drainage 
systems, and adhering to manufacturer schedules for flood defence systems. 

Practical Application 

Example: A manufacturing facility located in a moderate flood zone might receive 
the following schedule rating net computed as the sum of adjustments: 
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Table 5: Insurance Premium Adjustment 

This 15% net credit would apply to the base premium (after any experience rating 
adjustments), reflecting specific risk mitigation efforts despite some management 
deficiencies. 

Premium Optimization 

Contemporary insurance pricing extends beyond pure risk assessment to 
incorporate strategic business considerations through premium optimisation 
techniques. This approach balances actuarial indications with market realities to 
achieve broader organisational objectives. 

Market-Responsive Pricing 

Premium optimisation leverages demand elasticity modelling to understand how 
price changes affect purchasing behaviour across different market segments. By 
analysing price sensitivity, insurers can identify segments where modest premium 
increases may have minimal impact on retention while applying more competitive 
pricing in highly elastic segments to drive growth. 

The optimisation function typically takes the form: 

Maximize: Σᵢ Pᵢ(rᵢ) × (rᵢ - LRᵢ) 

Where Pᵢ represents the purchase probability at rate rᵢ, and LRᵢ the expected loss 
ratio. 

Competitive Positioning 

Advanced optimisation models incorporate competitive intelligence to position 
premiums strategically within the market landscape. This requires sophisticated data 
collection on competitor pricing and regular market basket analyses to understand 
relative value propositions. 

Factor Condition Credit/Debit

Elevation Critical equipment raised 
4ft above BFE -12%

Drainage
Enhanced stormwater 
system with 150% 
capacity

-8%

Construction Water-resistant materials 
on first floor -5%

Maintenance Quarterly inspection 
program not implemented 4%

Emergency Plan No formal flood response 
protocol 6%

Net Adjustment -15%
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Insurers typically establish target competitive positions based on product features, 
service levels, and brand strength, then optimise premiums to maintain these relative 
positions while achieving profitability targets. 

Customer Lifetime Value 

Rather than optimising short-term profitability, contemporary approaches 
increasingly focus on maximising customer lifetime value (CLV).  

________________________________________________________________ 

Formula 20: Customer Lifetime Value 

CLV = Σₜ (Pₜ × (rₜ - LRₜ - Eₜ)) / (1 + d)ᵗ 

Where: 

• Pₜ (Probability of renewal): The likelihood that a customer continues their policy 
in period t. This reflects customer retention rates. 

• rₜ (Premium): The amount the customer pays for insurance coverage in period t. 

• LRₜ (Expected loss ratio): The anticipated claims costs as a proportion of 
premium. This represents the core insurance cost. 
• Eₜ (Expense loading): All operational costs associated with servicing the customer 

(administration, customer service, etc.). 

• (rₜ - LRₜ - Eₜ): This calculates the profit margin per customer in period t. 

• d (Discount rate): The rate used to convert future profits into present value, 
accounting for the time value of money. 

• (1 + d)ᵗ: The discount factor that decreases the value of future profits based on 
how far in the future they occur. 

• Σₜ: Summation over all periods of the customer relationship. 
________________________________________________________________ 

Customer Lifetime Value (CLV) represents the total financial contribution a 
customer is expected to make to a company throughout their entire relationship. This 
concept has become increasingly crucial in insurance companies shifting from short-
term profitability models to longer-term value maximisation approaches. 

In the insurance context, CLV considers several key elements: 

• Renewal Probability: The likelihood that a customer will continue their policy 
over time, reflecting customer loyalty and satisfaction. 

• Premium Payments: The revenue generated from the customer's insurance 
payments, which may change over time. 

• Expected Claims Costs: The anticipated payouts for customer claims, which 
directly impact profitability. 
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• Operational Expenses: The costs associated with servicing the customer, 
including administration, customer service, and overhead. 

• Time Value of Money: Future profits are discounted to present value, 
acknowledging that money received in the future is worth less than money received 
today. 

This approach allows insurers to make more strategic decisions. For instance, they 
might offer lower initial premiums to customer segments that data suggests will 
develop into profitable, long-term relationships. This is especially valuable when cross-
selling opportunities exist across multiple insurance products. 

Insurers can build more sustainable business models that prioritise customer 
retention and relationship development by focusing on lifetime value rather than 
immediate profitability. This might mean accepting lower margins or even initial losses 
on new customers with the understanding that the long-term relationship will 
ultimately be profitable. 

Constrained Optimization 

Premium optimisation operates within multiple constraint systems: 

• Regulatory constraints on rate changes and rating factor usage. 
• Business constraints on growth and retention targets. 
• Operational constraints on implementation capabilities. 
• Risk constraints on portfolio diversification requirements. 

Sophisticated optimisation models employ techniques like linear and nonlinear 
programming, multi-objective optimisation, and stochastic dynamic programming to 
navigate these complex constraint environments. 

Experience and Schedule Rating 

Modern premium optimisation systems integrate with experience and schedule 
rating methodologies to create a cohesive pricing framework: 

Calibrated Elasticity Models 

Advanced systems calibrate elasticity models based on historical experience rating 
data, recognising that price sensitivity often varies based on loss history. Policyholders 
with favourable experience modifications typically demonstrate higher retention rates 
even when facing modest premium increases, while those with poor experience may 
be more price-sensitive. 

Optimised Schedule Rating Factors 

Rather than applying uniform schedule rating approaches, optimisation techniques 
identify the most influential schedule rating factors for different market segments. This 
allows underwriters to focus on the most impactful risk characteristics during property 
inspections and provides more precise guidance on credit allocation priorities. 

Simulation-Based Optimization 
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Leading insurers employ Monte Carlo simulations that model the combined impact 
of experience rating, schedule rating, and market factors on portfolio performance. 
These simulations allow for robust sensitivity analysis and scenario testing before 
implementing rating changes. 

Regulatory Considerations 

The premium calculation must operate within regulatory frameworks that vary 
substantially by jurisdiction. Key regulatory constraints include: 

• Rate adequacy requirements: Ensuring premiums are sufficient to cover 
expected costs. 

• Rate equity standards: Prohibiting unfair discrimination between similar risks. 

• Rate stability provisions: Limiting the magnitude of premium changes. 

• Filing requirements: Prior approval vs. file-and-use vs. use-and-file systems. 

In many jurisdictions, insurers must demonstrate the actuarial soundness of their 
premium calculation methodologies through: 

• Statistical justification of rating factors. 
• Analysis of indicated vs. selected rate changes. 
• Compliance with specific limitations on rating variables. 
• Documentation of modelling methodologies. 

These regulatory considerations create a complex constraint environment for 
premium calculation, necessitating sophisticated optimisation approaches that balance 
actuarial indications with regulatory requirements. 

Technology-Enabled Pricing Innovations 

The insurance industry is undergoing a significant transformation in calculating 
premiums for flood risk. Technological advancements that allow for more nuanced risk 
assessment are driving this transformation. These innovations reshape traditional 
pricing, creating opportunities and challenges for insurers, policyholders, and 
regulators. 

Real-Time Data Integration: The Dynamic Premium 

Historically, flood insurance pricing relied on static risk assessments updated 
infrequently, sometimes only every few years. Insurers are increasingly incorporating 
real-time data streams that provide continuously updated risk information. Weather 
forecasts and alerts feed directly into pricing algorithms, allowing premiums to reflect 
imminent weather patterns rather than just historical averages.  

Property modification data—such as newly installed flood barriers or drainage 
improvements—can be captured and reflected in premiums more quickly. Even 
occupancy and utilisation patterns are being monitored to adjust risk profiles based on 
whether properties are continuously occupied or seasonally vacant. 
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This dynamic approach offers several advantages: premiums more accurately reflect 
current risk conditions, policyholders can see more immediate banking benefits from 
risk mitigation investments, and insurers can manage their exposure more effectively 
during peak risk seasons. However, this approach also introduces volatility into 
premiums that may frustrate consumers accustomed to stable pricing. Additionally, the 
constant influx of data creates significant challenges for actuarial teams to validate and 
incorporate responsibly, potentially leading to unintended biases or errors if not 
properly managed. 

Parametric Pricing: Objectifying Risk 

Parametric components are increasingly supplementing traditional indemnity-
based insurance models. These components trigger rate adjustments based on 
objective, measurable parameters rather than subjective assessments. Distance-based 
flood premium components, for example, might automatically adjust rates based on 
precise measurements from flood plains or water bodies rather than relying on broad 
zone classifications. Wind-speed triggered adjustments can modulate premiums based 
on recorded wind velocities in a region. Most innovatively, satellite-derived vegetation 
indices are being used to assess ground cover and permeability, factors that 
significantly impact flood risk but were previously difficult to quantify at scale. 

Introducing parametric elements brings greater transparency to pricing—a clear 
benefit for consumer understanding and regulatory oversight. These objective 
measures also reduce disputes over claims and pricing decisions. However, parametric 
approaches may sometimes oversimplify complex risk factors and create 
discontinuities in pricing that seem arbitrary to consumers. For instance, properties on 
opposite sides of a distance threshold might see dramatically different premiums 
despite minimal practical difference in risk. 

“Parametric insurance is the foundation for designing a Physical 
Risk Swap.”-David Kelly, MKM. 

Machine Learning: The Algorithmic Revolution 

The most profound change in premium calculation comes from machine learning 
applications that enhance predictive accuracy beyond what traditional actuarial 
methods could achieve. Gradient boosting algorithms define more granular rate classes 
by identifying subtle patterns in risk data that human analysts might miss. Neural 
networks improve claims cost prediction by recognising complex relationships 
between seemingly unrelated factors. Reinforcement learning algorithms optimise 
portfolios, balancing risk exposure across different property types and geographical 
areas. 

These advanced techniques deliver remarkable improvements in pricing accuracy, 
allowing insurers to match premiums to actual risk better and expand coverage to 
previously uninsurable properties. They also enable more personalised pricing that 
rewards risk-reducing behaviours. The downside, however, is the "black box" nature of 
many machine learning models, which creates significant challenges in explaining rate 
decisions to consumers and regulators. There are also legitimate concerns about 
algorithmic bias potentially perpetuating or even amplifying existing inequities in 
insurance access and pricing 
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Evolving Risk Cost Assessment 

The integration of evolving risk cost patterns into household insurance models 
reflects a growing recognition of the compounding financial pressures from natural 
hazards, even as hazard frequency remains relatively stable. In 2023, insured losses 
from natural catastrophes reached $108 billion, as the Swiss Re Institute reported. This 
marked the fourth consecutive year that such losses exceeded $100 billion globally.  

A record 142 natural catastrophes were reported during the year, with severe 
convective storms (SCS) representing the largest share of losses at $64 billion. These 
storms, which include events such as hailstorms and tornadoes, had a particularly 
significant impact in the United States, contributing to 85% of SCS-related losses, while 
Europe experienced the fastest growth in such losses. 

The most significant single event was the earthquake in Turkey and Syria, which 
caused $6.2 billion in insured losses. Nevertheless, most events in 2023 resulted in 
medium-severity losses ranging from $1 billion to $5 billion. The increasing frequency 
and severity of these occurrences align with a long-term trend of rising insured losses 
driven by urbanisation, economic growth, and climate change. Swiss Re estimates that 
annual insured losses could double within a decade due to intensifying weather 
hazards and greater exposure in vulnerable regions. 

To address these challenges, Swiss Re emphasises the importance of mitigation and 
adaptation measures, such as enforcing stricter building codes, constructing flood 
defences, and fostering collaboration between insurers, governments, and 
communities to reduce risk exposure. 

Exposing property developments into high-risk zones is a significant driver of 
increased costs. Urbanisation and housing demand have pushed construction into 
floodplains, wildfire-prone regions, and coastal areas, where over 700 U.S. Superfund 
sites alone face flood risks. Commercial real estate professionals increasingly prioritise 
climate resilience (46%), yet many properties in disaster-prone areas still encounter 
elevated insurance premiums and limited coverage options. 

In the multifamily housing sector, insurers specifically cite "weather risk" and aging 
infrastructure as reasons for premium increases ranging from 14% to 45% annually. 
These significant price hikes have compelled 93% of housing providers to raise 
deductibles or reduce coverage merely to manage costs. 

Construction Quality Concerns 

Cost-cutting measures in construction significantly amplify damage severity when 
natural hazards occur. Issues include: 

• Increased property values and development in high-risk areas. 
• Higher concentration of properties. 
• Rising construction and repair costs. 
• Greater concentration of wealth in vulnerable regions. 
• More complex building systems and materials. 

For example, hailstorms in Italy (2023) caused $5.5 billion in insured losses—a 
European record—partly attributed to inadequate hail-resistant building standards. 
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Similarly, construction projects in catastrophe-exposed regions face 20–30% higher 
insurance premiums if they lack proper risk mitigation protocols. 

Banking Sector Implications 

The rising costs of natural hazard insurance directly affect mortgage affordability 
and credit risk. Financial institutions now confront: 

• Collateral devaluation: Properties in flood zones or wildfire corridors 
experience value declines of 3.6–10%. 

• Increased default risks: Following catastrophic events, mortgage delinquencies 
increase by 15–30% in households in disaster-stricken areas. 

• Capital constraints: As insurers retreat from high-risk markets (Florida and 
Texas spring to mind), banks must either absorb more risk or reduce lending in these 
areas. 

The Cost-Frequency Paradox 

Swiss Re projects that insured losses could double within a decade, emphasising 
that socioeconomic factors—not just hazard frequency—drive cost escalation. This 
underscores the need for models that prioritise exposure growth and construction 
quality alongside climatic shifts. 

The disproportionate rise in costs relative to event frequency demonstrates that 
vulnerability and exposure have become the dominant factors in determining loss 
potential. This requires a fundamental reassessment of how risk is priced in household 
insurance and mortgage underwriting. 

To address these changing cost patterns, insurance models now incorporate: 

• Dynamic replacement cost estimation accounting for building material inflation. 

• Density-adjusted exposure models reflecting wealth concentration. 

• Time-dependent vulnerability functions addressing changing building practices. 

• Granular rating territories more accurately reflect local risk variations. 

_______________________________________________________________ 

Formula 21: Cost Frequency Bayesian 

These adjustments typically employ Bayesian hierarchical models that integrate 
historical data with socioeconomic factors: 

p(θ|y) ∝ p(y|θ)p(θ) 

Where  

• p(θ|y) is the posterior probability distribution - the updated probability of model 
parameters θ given the observed data y. 
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• ∝ means "proportional to" - indicating the relationship without including the 
normalising constant. 

• p(y|θ) represents the likelihood function - the probability of observing the data y 
given parameters θ. 

• p(θ) is the prior probability distribution - the initial belief about the parameters 
before observing new data. 

• θ (theta) represents the model parameters (e.g., vulnerability factors, exposure 
growth rates). 

• y represents the observed data (e.g., historical losses, claims data) 

________________________________________________________________ 

The Bayesian approach is very generic and something anyone looking at market 
data timeseries would recognise.  The approach to evolving insurance premiums begins 
with prior knowledge, where insurers establish initial risk estimates based on historical 
patterns and expert judgment. When new evidence emerges captured in the likelihood 
function from claims data, property changes, or environmental shifts), the model 
updates beliefs by proportionally weighting this evidence against prior assumptions to 
produce a posterior probability distribution.  

The crucial aspect is that this weighting isn't fixed—more reliable or robust evidence 
receives more significant influence in reshaping premium calculations, while uncertain 
data has less impact. This creates a continuously refining system where each update 
incorporates all previously learned information, allowing premiums to evolve gradually 
rather than overreacting to short-term fluctuations while still remaining responsive to 
genuine emerging trends in risk factors. 

Broad Territorial Rating 

Modern insurance risk assessment has evolved significantly from historical broad 
territorial rating approaches, now leveraging property-specific geospatial analysis 
powered by advanced machine learning techniques. This transformation combines 
high-resolution spatial data with sophisticated computational methods to create 
granular risk profiles. 

Traditional rating systems grouped properties into large geographic zones with 
uniform risk assumptions. This "one-size-fits-all" approach often resulted in similar 
properties facing different premiums based solely on arbitrary boundaries like zip 
codes or counties. 

Contemporary models now analyse individual properties using: 

• Sub-metre resolution DEMs for precise floodwater flow modelling: High-
definition topographic maps capturing elevation changes with 10-30cm accuracy, 
enabling detailed water movement simulation and identifying micro-topography 
features that affect flood vulnerability. 
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• LiDAR-derived building characteristics: Creates 3D digital representations that 
automatically extract critical structural features influencing wind, hail, and snow 
damage potential without requiring physical inspection. 

• Satellite-based vegetation analysis: - Monitors vegetation density, type, and 
moisture content; calculates defensible space metrics and fuel load profiles; and 
tracks seasonal changes in wildfire exposure through regular imaging. 

• Hydrological flow models Simulates water accumulation and movement during 
rainfall events, accounting for drainage capacity, soil saturation, and infrastructure 
while providing time-based flood progression scenarios instead of static zone 
designations. 

The predictive engine combines ensemble machine learning methods that handle 
complex spatial relationships. The model combines outputs from multiple decision 
trees (typically 100-1000) into a single prediction.  

Each decision tree processes specific spatial features like elevation gradients and 
building shapes. The final prediction is calculated by adding together all these 
individual tree outputs, with each tree's contribution weighted based on its predictive 
accuracy. This approach allows the system to capture complex interactions between 
different geographical and structural factors, creating a comprehensive risk assessment 
that's far more nuanced than traditional rating methods. 

________________________________________________________________ 

Formula 22: Predictive Tree 

f̂(x) = ∑ᵐ₌₁ᴹ γₘh_m(x) 

Where: 

• h_m(x) = Individual decision tree processing spatial features (e.g., elevation 
gradients, building shapes). 

• γₘ = Weighting factor optimising tree contributions. 

• M = Total number of trees in the ensemble. 
________________________________________________________________ 

This architecture is an advancement at modelling non-linear interactions between 
hundreds of geospatial variables: 

• Slope derivatives from DEMs: Calculates elevation change rates across 
distances, identifies flow acceleration zones where water velocity increases, and 
detects natural drainage channels that may not appear on standard maps. 

• Hydraulic connectivity indices: Measure water travel efficiency between 
points, identify properties vulnerable to distant flooding impacts, and account for 
underground drainage systems and culverts that affect water flow patterns. 

• Urban heat island effects: Quantifies temperature amplification in densely built 
environments, correlates building density and surface materials with temperature 
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patterns and identifies areas with increased risk of heat-related infrastructure stress 
based on spatial arrangement. 

Behavioral Risk Components 

Beyond physical hazard characteristics, effective household insurance modelling 
must account for human behavioural factors that influence risk outcomes: 

• Risk perception variables derived from demographic data. 

• Mitigation implementation rates by region and property type. 

• Claim filing propensity based on past insurance history. 

These factors significantly impact loss experience beyond what physical models 
alone would predict, necessitating the integration of socioeconomic data into 
comprehensive risk models. 

Insurance modelling thus represents a multidisciplinary integration of actuarial 
science, hazard modelling, geospatial analysis, and behavioural economics. The 
resulting framework provides the foundation for premium calculation, coverage 
design, and capital allocation across insurance markets. 

Common Data Models as Drivers of Resilience and 
Risk Precision 

Developing more granular and frequent data points plus more sophisticated flood 
and insurance models begins the critical journey toward linking lower premiums or 
more effective insurance with tangible incentives to improve resilience.  

While representing significant progress, the true potential lies in standardising data 
structures through Common Data Models (CDMs) so that all stakeholders operate from 
a shared definition of reality. Open source initiatives such as FINOS for banking and 
OASIS for insurance are ideally positioned to facilitate agreement among members on 
standardised property definitions, creating unified fields to drive calculations for 
resilience measurements. 

CDMs establish the causal foundations for next-generation insurance modelling by 
creating directional relationships between physical attributes, hazard exposures, and 
loss outcomes. Unlike traditional models that rely heavily on correlative patterns in 
historical data, CDM-driven approaches enable a causal understanding of risk factors. 
This shift from correlation to causation significantly enhances premium calculations' 
predictive power and explainability, especially in expanding property urbanisation, 
where historical patterns may become less reliable indicators of future risk. 

The transformative power of CDMs lies in their ability to connect disparate data 
sources through standardised ontologies. For flood risk specifically, CDMs can integrate 
building characteristics, terrain data, infrastructure performance metrics, and 
meteorological measurements into a unified framework that preserves the semantic 
relationships between these elements. This structured approach enables more 
sophisticated causal modelling, where the impact of specific interventions (such as 
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improved drainage systems or flood barriers) can be quantified with greater precision 
than previously possible. 

Machine learning algorithms applied to CDM-structured data can identify subtle, 
causal relationships that traditional actuarial methods might miss. Unlike conventional 
AI applications' "black box" concerns.  This combination of advanced analytics with 
standardised data models represents a fundamental advancement in risk assessment 
methodology, allowing insurers to develop more targeted and effective pricing 
strategies that precisely reflect individual risk profiles. 

“CDM-based machine learning maintains explainability by 
operating on semantically consistent data structures with clearly 

defined relationships.”- Johnny Mattimore, MKM. 

The revolutionary potential emerges when envisioning local governments 
maintaining detailed information on taxpayer properties, infrastructure, and terrain 
characteristics within CDM frameworks, enabling optimised resilience spending that 
directly translates to lower insurance premiums. This creates a transformative 
economic model where reduced insurance costs could offset increases in local taxation, 
leaving property owners financially advantaged and building community resilience. 

“CDMs facilitate real-time data integration in ways that ad hoc 
approaches cannot match. By establishing standardised interfaces 

for continuous data streams, insurers can incorporate emerging 
risk information without the required extensive data 

transformation.”- David Kelly, MKM.  

This standardisation dramatically reduces the technical complexity and potential 
errors associated with dynamic premium adjustments, making real-time risk-based 
pricing more feasible and reliable. 

“Perhaps most importantly, CDMs enable transparent risk pricing 
by clarifying the causal factors influencing premium calculations.”- 

David Kelly, MKM. 

When all stakeholders—insurers, policyholders, regulators, and municipal 
governments—share the same structured understanding of risk drivers, incentives 
naturally align toward meaningful risk reduction. Property owners gain clear visibility 
into how specific resilience improvements translate to premium reductions, while 
insurers can more confidently offer discounts for measures with demonstrable causal 
impact on expected losses. 

Standardised data frameworks built on CDMs allow insurers to precisely calibrate 
premium discounts against specific resilience improvements, creating transparent 
economic incentives aligned with individual and collective risk reduction. This 
represents the foundation for a virtuous cycle where data standardisation drives 
improved risk assessment, enabling more targeted resilience investments and 
ultimately reducing losses and insurance costs across entire communities. 
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As insurance models evolve from traditional actuarial approaches toward 
sophisticated machine learning applications, the quality and structure of underlying 
data become increasingly critical. CDMs provide the essential foundation for this 
evolution, ensuring that advances in analytical techniques translate to genuine 
improvements in risk assessment rather than merely amplifying existing data biases or 
correlative patterns.  

By establishing causal clarity with standardised data structures, CDMs are 
revolutionising property insurance by shifting their role from passive risk 
compensation to active risk prevention. By standardising data structures among 
stakeholders – banks, insurers, regulators, and risk modellers – CDMs create causal 
clarity that reveals root risk drivers while enabling predictive analytics at scale. 
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Chapter 8 - Mortgage Risk 
Assessment 

M ortgage valuation stands at the intersection of real estate appraisal and 
banking risk assessment. While traditional property valuation focuses on 

determining the market or lending value of the underlying collateral, modern 
mortgage valuation extends beyond this to assess the banking instrument itself. 
This comprehensive approach accounts for the complex interplay between 
borrower characteristics, property values, and macroeconomic conditions, 
determining the probability and impact of default events. 

"Creating a reliable mark-to-market framework for mortgages is not 
merely an accounting exercise—it's fundamental to banking 

stability. A robust valuation methodology provides the 
transparency that allows capital to flow efficiently even during 
periods of stress." — William C. Dudley, Former President of the 

Federal Reserve Bank of New York. 

Three primary banking modelling frameworks have emerged as the foundation for 
sophisticated mortgage valuation: discounted cash flow analysis, option-adjusted 
spread methodology, and stochastic house price models. These approaches share 
common mathematical underpinnings but differ in conceptualising and quantifying 
risk. The discounted cash flow method projects expected payment streams adjusted for 
default probabilities and recovery values. Option-adjusted spread methodology treats 
default as an embedded option exercised by the borrower under certain conditions. 
Stochastic models directly simulate the evolution of key variables like house prices and 
interest rates to derive default probabilities under various scenarios. 

Capital markets technology has recently introduced an alternative approach that 
draws from credit default swap (CDS) pricing methodologies. This framework centres 
on affordability ratios as primary drivers of default probability, establishing a direct 
relationship between payment burden and credit spread. By implementing 
sophisticated piecewise functions that capture the exponential increase in default risk 
as affordability deteriorates, this approach offers particular advantages when modelling 
the impacts of physical hazards such as flooding. Incorporating insurance costs, 
income disruptions, and property value adjustments following such events becomes 
more straightforward within this framework. 

A comprehensive mortgage valuation synthesises these approaches, recognising 
that default risk stems from two fundamental sources:  

172



• Inability to pay: income-related default.  Imagine shocks to someone’s income-
making cash flow, such as redundancy and divorce. 

• Strategic default: equity-related. Imagine a mortgage holder leaving the keys on 
the kitchen table and leaving since the property is now uninsurable. 

By modelling both the probability of default (PD) and loss-given default (LGD) 
components dynamically throughout the mortgage's life, these models provide a robust 
foundation for pricing, risk management, and capital adequacy assessment in 
residential mortgage lending. 

Discounted Cash Flow with PD/LGD Integration 

The discounted cash flow approach begins with the fundamental premise that a 
mortgage's value equals the present value of its expected future cash flows. However, 
these cash flows must be adjusted for the possibility of default and the resulting losses. 

We first calculate the scheduled payment for each period according to the mortgage 
terms. We then adjust this expected cash flow by subtracting the expected loss from 
default, which equals the probability of default in that period multiplied by the loss 
given default and the outstanding balance. 

________________________________________________________________ 

Formula 23: Discount Cash Flow  

The formula for the expected cash flow in period t becomes: 

 ECF(t) = Scheduled Payment(t) × (1 - PD(t)) - Outstanding Balance(t) × PD(t) × LGD(t) 

Where: 

• ECF(t) is the expected cash flow in period t. 

• Scheduled Payment(t) is the contractual mortgage payment in period t. 

• PD(t) is the probability of default in period t (expressed as a decimal between 0 
and 1). 

• Outstanding Balance(t) is the remaining principal balance in period t. 

• LGD(t) is the loss given default in period t (expressed as a decimal between 0 and 
1). 

These expected cash flows are then discounted using an appropriate risk-adjusted 
rate to arrive at the present value. The mortgage value is the sum of these discounted 
expected cash flows across all periods:  

Mortgage Value = Σ ECF(t) / (1 + r)^t 

Where: 

• Σ represents the summation across all time periods t. 
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• r is the risk-adjusted discount rate (expressed as a decimal). 

• t is the time period (typically in months or years) 

________________________________________________________________ 

The PD component evolves dynamically as the loan ages. Initially, it reflects the 
borrower's credit profile and loan characteristics at origination. Over time, it adjusts 
based on the changing loan-to-value ratio as property values fluctuate and the loan 
amortises. Macroeconomic factors like unemployment and interest rate environments 
further modify the default probability. 

The LGD component captures the severity of loss when default occurs. It starts with 
the expected property value at the time of default but accounts for foreclosure costs, 
property maintenance, and the time value of money during the recovery process. In 
high-value markets with quick property turnover, LGD might be relatively low. 
Conversely, in declining markets with extended foreclosure timelines, LGD can be 
substantial. 

Option-Adjusted Spread (OAS) with PD/LGD Factors 

The OAS approach recognises that mortgages contain embedded options—the 
borrower's option to prepay and, implicitly, the option to default. We simulate 
numerous possible future interest rates and house price scenarios to value these 
options properly. 

We determine whether default occurs in each simulated path based on the evolving 
conditions. Default typically happens when the borrower crosses certain thresholds - 
when home equity becomes sufficiently negative (strategic default) or payments 
become unaffordable relative to income (payment default). 

________________________________________________________________ 

Formula 24: Mortgage PD and LGD 

For path i at time t, the probability of default is modeled as a function of the 
simulated loan-to-value ratio and other triggers:  

PD(i,t) = f(LTV(i,t), Payment_Burden(i,t), Unemployment(i,t)) 

Where: 

• PD(i,t) is the probability of default for simulation path i at time t. 

• f() represents a functional relationship (often logistic regression). 

• LTV(i,t) is the loan-to-value ratio for path i at time t. 

• Payment_Burden(i,t) is the ratio of mortgage payment to income for path i at time 
t. 

• Unemployment(i,t) is the simulated unemployment rate for path i at time t. 

174



Similarly, the loss severity depends on the simulated house price and market 
conditions:  

LGD(i,t) = g(House_Price(i,t), Market_Liquidity(i,t), Foreclosure_Timeline) 

Where: 
• LGD(i,t) is the loss given default for simulation path i at time t. 

• g() represents a functional relationship. 

• House_Price(i,t) is the simulated house price for path i at time t. 

• Market_Liquidity(i,t) is a measure of real estate market liquidity for path i at 
time t. 

• Foreclosure_Timeline is the expected time to complete foreclosure 
proceedings. 

We calculate the present value of cash flows along each path, adjusting for these 
path-specific default probabilities and loss severities. The mortgage value equals the 
average present value across all simulated paths:  

Mortgage Value = (1/N) × Σᵢ Σₜ CF(i,t) / (1 + r(i,t))^t 

Where: 
• N is the total number of simulation paths. 

• Σᵢ represents summation across all simulation paths i. 

• Σₜ represents summation across all time periods t. 

• CF(i,t) is the cash flow for simulation path i at time t. 

• r(i,t) is the discount rate for simulation path i at time t 

________________________________________________________________ 

The "option-adjusted spread" is the additional yield required above risk-free rates to 
make the present value equal to the market price. This spread captures all risks, 
including default and prepayment risks and their correlation. 

Stochastic House Price and Interest Rate Model 

The stochastic model takes a more interest rate swaption approach, directly 
modelling house prices and interest rates as correlated random processes.  
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________________________________________________________________ 

Formula 25: Stochastic House Price 

House prices might follow geometric Brownian motion, while interest rates could 
follow a mean-reverting process: 

dH/H = µₕdt + σₕdWₕ dr = α(θ-r)dt + σᵣdWᵣ 

Where 

• Wiener processes Wₕ and Wᵣ . 

• correlate ρ. 

________________________________________________________________ 

Default occurs when the property value falls below a threshold relative to the loan 
balance or when other borrower-specific triggers are activated. This framework allows 
us to calculate the probability that the borrower will cross the default boundary during 
any given period. 

The mortgage value is determined by solving a partial differential equation that 
accounts for the stochastic processes and boundary conditions created by default 
possibilities. The partial differential equation above incorporates the probability of 
default and the loss severity upon default, which vary with the property value at 
default time. 

Rather than generating explicit cash flows, this approach directly models the 
evolving mortgage value over time. The present value emerges naturally from the 
solution to the PDE, which accounts for all future possibilities in a continuous-time 
framework. 

The advantage of this approach is its ability to capture complex interactions 
between interest rates and house prices, especially for high LTV mortgages where 
default risk is susceptible to property value changes. 

Synthesis of Approaches 

“The most sophisticated valuation models combine elements of all 
three approaches. They might use the stochastic model’s combined 

elements of all three approaches. They might use the stochastic 
model’s mathematical rigour to generate realistic scenarios, apply 

option-theoretic principles to model borrower behaviour, and 
structure the results in an intuitive discounted cash flow framework 

for banking analysis.”-David Kelly, MKM. 

The key insight is that mortgage value depends fundamentally on the timing and 
magnitude of cash flows, which are significantly shaped by default probabilities and 
loss severities. These PD and LGD factors are dynamic, responding to evolving loan 
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characteristics, borrower circumstances, property values, and macroeconomic 
conditions. 

Given the timing of cashflows - the interest payment, the pre-payment and the 
proceeds of sale given default, a Monte Carlo simulator is appropriate to value the 
mortgage:- 

• Path Generation: The model simulates hundreds of potential future economic 
scenarios by generating random interest rate paths, projecting house price 
movements, and modelling key economic indicators like unemployment rates and 
market liquidity conditions that affect borrower behaviour. 

• Default Risk Modelling: For each simulated path and period, the model 
calculates the probability of default by evaluating the borrower's incentives and 
constraints, including the current loan-to-value ratio, payment affordability relative 
to income, local unemployment conditions, and individual credit quality factors. 

• Loss Severity Assessment: When defaults occur in the simulation, the model 
estimates the percentage of principal that would be lost by analysing the projected 
property value, current market liquidity conditions, foreclosure timelines specific to 
the location, legal recovery processes, and any mortgage insurance protection. 

• Cash Flow Projection: The model calculates the expected cash flow at each 
point by combining scheduled payments with adjustments for both prepayment 
behaviour (driven by refinancing opportunities) and default outcomes (including 
recovery amounts), creating a probability-weighted cash flow projection for each 
path. 

• Discounted Valuation: The final mortgage valuation is derived by discounting 
each path's adjusted cash flows using path-specific discount rates (incorporating the 
option-adjusted spread), then averaging these present values across all simulated 
paths to arrive at a comprehensive risk-adjusted price. 

The Capital Markets Approach Using CDS 

This approach borrows from credit default swap (CDS) pricing methodology, where 
the mortgage is valued based on a credit spread that reflects the borrower's default 
probability. Unlike traditional mortgage models that rely heavily on LTV ratios and 
house prices, this model centres on affordability as the primary driver of default risk. 

The core of this model is the relationship between the affordability ratio (payment 
burden relative to income) and credit spread. The code implements a sophisticated 
piecewise function where: 

• The credit spread increases linearly with the ratio at low affordability ratios 
(below 15%). 

• There's a steeper linear relationship in the moderate range (15-30%). 

• At high affordability ratios (above 30%), the credit spread grows exponentially, 
reflecting rapidly increasing default risk when housing costs consume too much 
income. 
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The loan pricing function then uses these credit spreads to derive hazard rates 
(instantaneous default probabilities), determining survival probabilities over time. The 
loan value is calculated as the present value of expected cash flows (weighted by 
survival probabilities) minus the present value of expected losses (outstanding balance 
minus recovery value, weighted by default probabilities). 

Integration with PD/LGD Framework 

This model elegantly handles both PD and LGD components: 

• Probability of Default (PD): The credit spread derived from the affordability 
ratio, is a proxy for default probability converted to a hazard rate using h = 1 - exp(-
spread/2) for semi-annual periods. Survival probabilities are calculated recursively, 
with each period's survival probability depending on previous periods. 

• Loss Given Default (LGD): The model applies a haircut parameter (h) to the 
property value to determine recovery. LGD is calculated as max(0, 
outstanding_balance - h * property_value). This dynamically changes as the loan 
amortises, reflecting the evolving equity position 

Advantages of Physical Risk Assessment 

The key advantage of this approach, especially when considering physical risks like 
flooding, is that it can easily incorporate additional costs that affect affordability. When 
a flood event occurs, it can impact a mortgage in several ways: 

• Increased insurance costs directly affect the affordability ratio. 
• Temporary income disruption during recovery. 
• Property value declines due to realised flood risk. 
• Dynamically adjusting the insurance parameter (I) after a flood event. 
• Modifying the affordability ratio to reflect temporary income impacts. 
• Adjusting the haircut parameter (h) to reflect reduced recovery value in flood-

prone areas. 

The loan pricing function generates several valuable outputs for risk assessment: 

• Credit spreads over time. 
• Hazard rates (instantaneous default probabilities). 
• Survival probabilities. 
• Expected loss given default at each point in time. 
• Present value of the loan accounting for default risk. 

The scenario analysis capability allows you to assess how different LTV ratios and 
income levels affect loan value, which is particularly useful for stress testing under 
various physical risk scenarios. 

This capital markets approach offers a more direct link between affordability shocks 
(which can result from physical risk events) and credit quality than traditional 
mortgage models. Focusing on affordability rather than just collateral value better 
captures the dual impact of physical risks on property values and household finances. 

This approach could be a valuable bridge between traditional mortgage valuation 
techniques and forward-looking physical risk assessment. 
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Chapter 9 - Physical Risk Swaps 

I n the evolving landscape of climate finance, one critical challenge has remained 
unaddressed: the fundamental disconnect between long-term lending and 

short-term insurance coverage. This mismatch creates significant exposure for 
banking institutions, particularly mortgage lenders, who face escalating physical 
risks to their collateral assets over periods far beyond standard insurance 
timeframes. 

“Physical Risk Swaps (PRS) represent a pioneering banking 
innovation designed to bridge this gap. By adapting established 
capital markets instruments to address climate-related physical 

risks—particularly flooding—PRS offers a mechanism for banking 
institutions to effectively transfer and manage these exposures over 
multi-year horizons that align with their asset portfolios.”- Johnny 

Mattimore, MKM 

Inception of Physical Risk Swaps by MKM Research Labs 

The MKM Exec have been working on Sustainable Finance and Physical risk since 
partnering with BNP Paribas to lead the OS-Climate “Physical Risk and Resilience” 
project. 

• In November 2023 the Phrase Physical Risk Swap was coined by the Author and 
Johnny Mattimore in a LinkedIn Post “Repricing Mortgages using Flood Insurance 
Risk Transfer”as a way of describing a capital markets equivalent of a parametric 
insurance.  We call this a “Physical Risk” Swap, starting with the most ubiquitous 
hazard: flood risk. The natural solution was to create a new swap, building on the 
history of risk transfer. Eureka moment brought together the following principles:- 

• Parametric Insurance as a tradeable security 
• Analogy with CDS product design and market development 
• Analogy with ISDA legal definition of a CDS 
• Back to the origins of Tranches, MSB and CMOs 

• In October 2024, Johnny Mattimore and the Author presented “Physical Risk 
Swap for Flood Risk” as a concept to the FINOS NY gathering.  The driving design 
was to create an acceptable multi-year flood risk insurance protection in capital 
markets. 
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• In February 2025, Johnny Mattimore and the Author presented a Beta version of 
the Physical Risk Swap CDM alongside property, mortgage and household insurance 
to the FINOS CDM Working Group. 

• The background to the development of a Physical Risk Swap came from the below 
diagram designed in a LinkedIn Article, “How to build the next generation financial 
platforms to fully integrate sustainable finance data”, providing the position in the 
top right corner of the evolution to a risk transfer mechanism. 

Mismatched time horizons between lending and insurance 

The banking system faces a critical structural challenge in managing physical risks: a 
fundamental disconnect between long-term lending and short-term insurance 
coverage. Property owners typically borrow for 10-30 years but can only secure 
property insurance on annual renewal terms.  

Figure 6: MKM Reporting Framework 

This temporal mismatch creates significant exposure for banking institutions, 
particularly mortgage lenders, who face escalating physical risks to their collateral 
assets over periods far beyond standard insurance timeframes. 

This disconnect represents more than just an operational inconvenience—it 
constitutes a growing systemic risk as continued urbanisation intensifies the financial 
impact of physical hazards. Banking institutions are required to reconcile the long-
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duration nature of their asset portfolios with the inherently short-term, annually 
repriced nature of traditional insurance protection. Without addressing this 
fundamental mismatch, lenders face increasingly uncertain risk profiles that 
complicate capital planning, threaten portfolio stability, and potentially restrict credit 
availability in vulnerable regions. 

Physical Risk Swaps represent a pioneering banking innovation designed to bridge 
this gap. By adapting established capital markets instruments to address climate-related 
physical risks—mainly flooding—PRS offers a mechanism for banking institutions to 
effectively transfer and manage these exposures over multi-year horizons that align 
with their asset portfolios. Adapting the proven credit derivatives framework, this 
approach transforms unpredictable physical hazards into quantifiable, transferable 
banking risks. 

The business problem that Physical Risk Swaps address encompasses three distinct 
but interconnected risk layers that emerge from the insurance-lending duration 
mismatch: 

• Property Owners: Face significant uncertainty about future insurability and 
premium costs throughout their mortgage term. Annual insurance renewals create 
vulnerability to sudden premium increases or, more seriously, outright insurance 
unavailability following major events or shifts in risk assessment. This uncertainty 
affects property valuations and introduces potential covenant breaches if properties 
become uninsurable during the loan term. 

• Mortgage Lenders: Face direct exposure when borrowers cannot secure ongoing 
insurance coverage. As properties lose insurance protection, lenders bear an 
increased risk that physical events will impair collateral values without 
corresponding insurance recovery. This risk compounds at the portfolio level, where 
geographic concentrations can simultaneously create correlated exposures across 
multiple properties, facing insurance challenges. 

• Banking System: Faces systemic correlation risk as weather patterns shift against 
further urbanisation. Entire geographic regions may experience concurrent 
insurance market disruptions, with insurers either raising premiums to unaffordable 
levels or withdrawing coverage entirely from higher-risk locations.  

“This portfolio-wide concentration risk threatens synchronised 
collateral devaluation across significant portions of mortgage 

books.”- David Kelly, MKM. 

These risks are embedded in existing loan portfolios but remain largely 
unquantified in traditional risk management systems. Banking institutions must 
integrate physical risk assessment into their core banking architecture, measuring, 
monitoring, and managing these exposures with the same rigour applied to market or 
credit risk. They need mechanisms to translate specialised physical risk data (like flood 
scores from proprietary vendor models) into quantitative valuations and risk metrics 
for portfolio management. 

For many lenders, flood risk represents the dominant physical hazard threatening 
collateral impairment. Yet, they lack both methodologies to translate flood risk scores 
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into banking terms and established market mechanisms for transferring this risk. This 
capability gap prevents active management of embedded physical risks and 
complicates capital allocation to climate-vulnerable regions, potentially accelerating 
regional economic disparities through credit availability constraints. 

Example Framework for Flood Risk Transfer: Data 

The solution framework begins with a sophisticated data transformation pathway 
that converts environmental monitoring into financially quantifiable events. This 
process follows a methodical sequence: weather pattern time series generate 
precipitation measurements, which feed hydrological models producing water flow 
predictions, ultimately leading to real-time flood level monitoring at strategically 
positioned gauges. Each gauge is standardised within the Common Domain Model 
(CDM), creating definitive, reliable trigger points for banking contracts. 

The quantification of physical risk begins with comprehensive environmental data 
integration. Detailed digital terrain models capture the topographical features 
influencing water movement, while flow distribution models translate precipitation 
into volumetric water flows across landscapes. These models feed into catchment area 
response systems that predict how water accumulates throughout watershed regions. 
The culmination produces flood event distribution sets—statistical representations of 
flooding scenarios with associated probabilities—transforming unpredictable natural 
phenomena into quantifiable risk metrics suitable for banking modelling. 

Insurance Products: Established Risk Transfer Mechanisms 

The architecture of Physical Risk Swaps draws substantial inspiration from 
parametric insurance contracts rather than traditional catastrophe insurance. 
Parametric insurance triggers payouts based on objective measurements from specific 
instruments—such as a water level gauge on the wall of a building—without requiring an 
assessment of actual damages. These contracts establish direct relationships between 
physical measurements and banking settlements, creating transparent and rapid trigger 
mechanisms.  

A PRS extends this concept by incorporating multiple gauges throughout a 
catchment area, typically managed and maintained by the relevant environmental 
authority, ensuring data integrity and operational reliability. This multi-gauge approach 
creates a comprehensive risk transfer mechanism covering broad geographic areas 
while maintaining objective, verifiable tand legally enforceable contract triggers. 

By establishing tiered trigger levels corresponding to different water depths, 
parametric structures create granular risk segmentation that allows precise pricing and 
targeted protection. These established insurance constructs provide proven 
mechanisms for quantifying and transferring specific segments of the risk distribution 
without the complications of loss adjustment processes, offering valuable precedent for 
capital markets approaches that require rapid and unambiguous financial settlement 
mechanisms. Their performance during flood events demonstrates how objective 
physical measurements can effectively drive banking settlements in complex 
environmental scenarios. 

Banking Risk Transfer and Physical Risk Swaps 
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PRS's transformative innovation lies in extending established risk transfer concepts 
into banking and capital markets infrastructure. While insurance mechanisms have 
long addressed physical risks, they remain largely separate from banking capital 
frameworks and lack the standardisation, liquidity, and regulatory integration 
necessary for effective banking risk management. 

PRS bridge this gap by aligning with existing data sets from environmental 
monitoring and catastrophe modelling while structuring the banking instrument 
according to ISDA standards—the same legal and operational framework that underpins 
$100s of trillions in interest rate and credit derivatives. The valuation models employ 
methodologies consistent with the Oasis Loss Modelling Framework, creating 
compatibility with existing insurance analytics while introducing the precision required 
for mark-to-market valuation. 

“Most significantly, PRS development includes regulatory capital 
methodologies aligned with Basel standards, enabling banks to 

receive appropriate capital relief for transferred physical risks and 
creating powerful incentives for market adoption.”- David Kelly, 

MKM. 

Leveraging Existing Monitoring Infrastructure 

Implementing PRS benefits from substantial existing infrastructure that can be 
leveraged without requiring extensive new monitoring systems. For example, the 
Thames River Basin in the UK represents an ideal development environment with its 
highly populated, economically critical areas and persistent flood risks affecting assets 
from residential to industrial properties. 

The UK already maintains a robust flood monitoring system managed by 
government agencies. A network of monitoring stations along the Thames River 
provides real-time water level data at regular intervals. This existing infrastructure 
offers a solid foundation for flood risk assessment models and creates reliable 
triggering mechanisms for banking contracts. Rather than building new monitoring 
capabilities, PRS implementation can focus on integrating and standardising these data 
streams for banking applications. 

Leverage Experts 

Strategic partnerships with leading experts in flood modelling allow the adaptation 
of sophisticated terrain mapping, flood simulators, and event set development to meet 
the specific needs of mortgage lending risk assessment. These  

collaborations enable access to decades of accumulated expertise in hydrological 
modelling without requiring banking institutions to develop specialised climate science 
capabilities internally. 
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Figure 7: Physical Risk Swap Detail 

The computational demands of PRS valuation require partnerships providing access 
to high-performance computing capabilities. While gauge-level monitoring data is 
available in real-time, the complex task of portfolio revaluation requires substantial 
computing resources, particularly for stress testing across multiple climate scenarios. 
Cloud-based computing platforms with dedicated physical risk modelling capabilities 
allow market participants to access sophisticated analytics without individual 
infrastructure investments. 
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For effective implementation, governance frameworks must include cross-
disciplinary representation where meteorologists, hydrologists, atmospheric, and 
weather scientists work alongside derivatives structurers and trading strategists to 
refine risk assessment methodologies. 

  
Insurance underwriters with decades of catastrophe experience advise on threshold 

calibration and recovery value estimation. This cross-disciplinary integration 
accelerates product development while strengthening model validation through 
diverse perspectives. 

Structuring a PRS - The Thames River 

To illustrate how a Physical Risk Swap functions in practice, we can examine a 
specific implementation for the UK Thames Flood area. This concrete example 
demonstrates how the theoretical framework translates into an operational banking 
instrument. 

Without losing generality, we can define a specific swap structure that can be 
extended to any market segment seeking to manage flood risk. A five-year contract 
balances significant risk transfer and market liquidity for the Thames catchment area. 
This instrument operates on a familiar fixed-floating exchange principle: one party pays 
a fixed rate over the contract period, while the other party makes contingent payments 
based on realised flood levels (the floating rate component) across monitored points in 
the Thames basin. 

The fixed-rate calculation derives from sophisticated flood modelling, effectively 
pricing "wholesale" flood risk insurance over the contract term. In a sample 
implementation, this might be set at £1,150 on a contract notional of £1 million, 
representing an annualised premium of 11.5 basis points (0.115%). This rate reflects the 
expected loss based on historical flood data, climate projections, and defined trigger 
thresholds. 

The floating rate reference is determined by measured flood depths at specific 
gauges throughout the catchment area. These measurements provide transparent, 
objective triggers for contract settlement. For instance, if five monitored locations 
experience flooding with depths of 0.1, 0.5, 0.7, 1.0, and 0.2 meters, these might 
correspond to modelled losses per square meter of £143, £1,371, £1,886, £4,000, and 
£486 respectively. The floating leg payout would total £7,886 on a £1 million contract. 

Settlement mechanics follow established derivative practices, with contingent 
payments after verified flood events. The contract includes precise definitions of 
measurement protocols, confirmation procedures for gauge readings, and calculation 
methodologies for converting flood depths to banking settlements. These standardised 
terms ensure consistent treatment across market participants and reduce settlement 
disputes. 

This structure provides a precise, objective mechanism for transferring flood risk 
from mortgage lenders to counterparties better positioned to bear it, with pricing that 
reflects the underlying physical risk characteristics of the specific catchment area. 
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Addressing the mortgage lender's dilemma 

PRS directly address what can be termed "the mortgage lender's dilemma"—the 
mismatch between long-duration lending and short-term insurance solutions that 
creates growing banking vulnerability as climate risks intensify. 

From a risk and capital perspective, a PRS provides value through the high 
correlation between the swap's mark-to-market in the event of a realised flood and the 
corresponding mortgage impairment (rise in Probability of Default and Loss Given 
Default) of the portfolio. This correlation creates natural hedge effectiveness for capital 
relief purposes and portfolio risk management. 

However, it's important to note that this correlation is not perfect. Unless gauges are 
installed on each property—a theoretically possible but practically unrealistic solution—
the PRS holder maintains some basis risk due to the difference between gauge locations 
and actual property locations within the portfolio. While properties and reference 
gauges share the same catchment area and hydrological system, localised variations in 
topography, drainage infrastructure, and property-specific flood resilience measures 
can create a divergence between gauge readings and actual property damage. 

This basis risk requires careful calibration of the PRS structure, selecting 
strategically positioned gauges that maximise correlation with the protected mortgage 
portfolio while maintaining the objectivity and transparency of environmental 
authority-managed monitoring stations. Despite this imperfection, the high correlation 
provides substantial risk mitigation compared to the alternative of unhedged exposure 
to long-term flood risk. 

The primary beneficiaries of instruments like the PRS for UK Thames Flood are 
mortgage lenders, who face a unique challenge in risk management. These institutions 
typically hold mortgage assets on their books for up to 20 years, yet the properties 
securing these loans are often insured annually. 

The problem is compounded by correlation risk across mortgage portfolios. 
Lenders face the continual risk that a concentration of properties will simultaneously 
fail to secure annual insurance renewals if insurers either raise premiums to 
unaffordable levels or withdraw from specific geographic areas altogether. This 
portfolio-wide vulnerability can materialise suddenly, leaving lenders with significant 
unhedged exposures precisely when those risks are being recognised as most severe. 

PRS enable lenders to purchase specific flood protection that aligns with the 
duration of their mortgage assets. By entering into these contracts, lenders can realise 
multiple strategic benefits: 

• Reduce Exposure: To long-term flood risks by transferring this uncertainty to 
counterparties with appropriate risk appetite and diversification.  

• Improve Risk Accuracy: Their risk management strategy matches hedge 
durations to underlying asset exposures.  

• Stabilise Mortgage: Rates in flood-prone areas by removing the insurance 
uncertainty premium embedded in current pricing.  

187



• Enhance portfolio risk profiles: With associated prudential and regulatory 
benefits, including potential capital relief. 

This approach transforms uncertain, difficult-to-quantify physical risks into defined 
banking exposures that can be actively managed alongside traditional market and 
credit risks. Rather than facing unpredictable insurance market disruptions that could 
simultaneously affect substantial portions of their portfolios, lenders can secure multi-
year protection at known costs, significantly improving risk planning and capital 
allocation. 

From CDS to PRS, from credit to hazard curve 

Credit Default Swaps (CDS) have established a well-understood pricing framework 
that can be adapted for Physical Risk Swaps (PRS). To understand the transition from 
CDS to PRS pricing, we must first examine the fundamental components of CDS 
valuation. 

In a standard CDS contract, pricing involves calculating the present value of two 
legs: 

• Premium Leg: The fixed periodic payments made by the protection buyer 

• Protection Leg: The contingent payment made by the protection seller upon a 
credit event 

The value of a CDS is established when when the present values (PV) these two legs 
are equal: 

PV Premium Leg = PV Protection Leg 

The premium leg payments are weighted by the probability that the reference entity 
survives until each payment date, while the likelihood of default weights the protection 
leg. This creates a mathematical relationship: 

________________________________________________________________ 

Formula 26: CDS Survival 

∑_(i=1)^n S · Δt_i · DF_i · PS_i = (1 - R) · ∑_(i=1)^n (PS_(i-1) - PS_i) · DF_i 

Where: 

• S is the CDS spread. 

• Δt_i is the time interval. 

• DF_i is the discount factor. 

• PS_i is the probability of survival to time i. 

• R is the recovery rate. 

________________________________________________________________ 
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The par spread in credit default swaps (CDS) represents the equilibrium rate where 
the present value of protection payments (premium leg) equals the present value of 
potential default payouts (contingent leg). This ensures the CDS contract has zero net 
value at inception, making it a "fair" pricing benchmark for credit risk. 

Event Definition and Triggering Mechanism 

Credit Default Swaps (CDS) and Physical Risk Swaps (PRS) share structural 
similarities but differ fundamentally in their triggering mechanisms and applications. 
Both instruments allow for customisable risk transfer, but PRS leverage measurable 
physical parameters—such as flood depths—to define payout conditions, offering 
granular flexibility akin to credit risk tranching in CDS markets. 

CDS: Graded Credit Events and Repricing   

CDS contracts are structured to cover credit events across a spectrum of credit 
grades (AA to B), with payouts triggered by predefined conditions like bankruptcy, 
failure to pay, or restructuring[1][4][8]. Key features include:   

• Dynamic pricing: CDS spreads adjust intraday based on market perceptions of 
creditworthiness, enabling trading at intermediate risk levels (e.g., deteriorating 
credit from AA to BBB) before a default (D event) 

• Recovery rates: Post-default payouts account for the residual value of debt, 
typically determined via cash settlement (e.g., 100% minus post-default bond value)
[5][8].   

PRS: Flood Thresholds and Adaptive Design   

PRS replicate this flexibility using flood-specific triggers:   

• Customizable thresholds: Contracts can define payout triggers for specific flood 
depths (e.g., 0.5m–1.0m) or catastrophic levels (e.g., >2.0m), analogous to tranched 
CDS. 
•
• Objective triggers: Flood events are determined by remote sensors or gauge 

data, eliminating subjective judgments required in credit events like restructuring. 

The critical adaptation involves replacing default probability curves with physical 
hazard curves. For a flood PRS, the hazard curve represents the probability of a flood 
event of a certain magnitude occurring within a specific time frame where 
meteorological data expressing "1-in-X-year" events are converted to annual exceedance 
probabilities.  Each monitoring gauge has its hazard curve based on historical data and 
climate projections. 

________________________________________________________________ 

Formula 27: PRS Survival 

The hazard rate at time t represents the conditional probability of the physical event 
occurring in a small interval Δt, given that it hasn't occurred before time t: 

h(t) = lim_(Δt→0) (P(t < T ≤ t + Δt | T > t))/(Δt) 

189



Where T is the time of the physical event occurrence. 

For PRS, survival probability represents the probability that the trigger event (e.g., 
flood level exceeding the threshold) has not occurred by time t: 

PS(t) = e^(-∫_0^t h(s) ds) 

The protection leg is then calculated using: 

PV Protection Leg = (1 - R) · ∑_(i=1)^n (PS_(i-1) - PS_i) · DF_i 

R represents the "recovery value" in the physical risk context—the residual value 
after the physical event occurs. 

________________________________________________________________ 

The pricing mechanics have additional considerations regarding the gauge-based 
triggering system for a physical risk swap.  A flood PRS typically references specific 
water level gauges in a catchment area. Each gauge has: 

• A predetermined threshold level that constitutes a trigger event 

• Historical data used to develop the hazard curve 

• Continuous monitoring and automatic publishing capabilities for event 
determination 

The probability space for pricing is built by: 

• Converting traditional flood return periods (e.g., "1-in-100 year flood") into annual 
exceedance probabilities. 

• Developing a continuous hazard rate function based on these probabilities. 

• Incorporating weather projections to adjust forward-looking probabilities 

For example, a gauge with historical data showing: 

• 1-in-10-year flood level = 3.5 meters 
• 1-in-50-year flood level = 4.2 meters 
• 1-in-100-year flood level = 4.8 meters 

These data points fit a curve representing the continuous relationship between 
flood levels and exceedance probabilities. 

Many flood PRS contracts reference multiple gauges within a catchment area, 
requiring: 

• Correlation modelling between different gauge locations. 

• Settlement conditions based on one or more gauges exceeding thresholds. 
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• Weighted payout structures based on the severity and location of flooding 

The correlation modelling typically employs copula functions to represent joint 
probability distributions between gauges, accounting that flood events often affect 
multiple locations simultaneously. 

________________________________________________________________ 

The spread for a PRS represents the cost of protection and is calculated similarly to 
a CDS spread: 

S = ((1 - R) · ∑_(i=1)^n (PS_(i-1) - PS_i) · DF_i)/(∑_(i=1)^n Δt_i · DF_i · PS_i) 

Where 

• S is the PRS spread. 

• Δt_i is the time interval. 

• DF_i is the discount factor. 

• PS_i is the probability of no flood trigger to time i. 

• R is the recovery rate akin to a fixed payout. 

______________________________________________________________________________________________ 

Figure 8: PRS and Flood Participants 

According to market conventions for standardised contracts, this spread is 
converted to an upfront payment plus a fixed coupon. 
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Implementation Framework 

The journey from theoretical pricing models to a functioning Physical Risk Swap 
market requires careful orchestration across regulatory, technological, and banking 
dimensions. Rather than developing an entirely new market infrastructure, the PRS 
ecosystem leverages existing frameworks while introducing targeted innovations to 
address the unique characteristics of physical risk. 

The ISDA Master Agreement and Market Practices 

The cornerstone of derivatives market standardisation for decades—provides the 
contractual foundation for Physical Risk Swaps. This established legal framework 
reduces documentation uncertainty and creates immediate familiarity for market 
participants who have executed trillions in interest rate and credit derivative trades 
under the same structure. The agreement's modular design accommodates new 
definitions and supplements for physical risk events while maintaining consistency 
with existing market conventions for trade confirmation, settlement, and dispute 
resolution. 

This legal standardisation is complemented by the FINOS Common Domain Model 
(CDM), which offers critical data standardisation across the trade lifecycle. The CDM 
creates a unified representation of trade events, product definitions, and process 
models, enabling seamless interoperability between counterparties, clearing houses, 
and regulatory reporting systems.  

By incorporating physical risk parameters and gauge-level monitoring data into this 
existing framework, PRS transactions benefit from day-one compatibility with 
established market infrastructure. The CDM implementation ensures that gauge 
readings, threshold triggers, and settlement calculations maintain consistency across 
diverse market participants and technology platforms. 

Most significant for market adoption, Physical Risk Swaps integrate directly with the 
FINOS Digital Regulatory Reporting (DRR) framework from inception. This pre-
established compliance approach eliminates the traditional regulatory uncertainty 
often accompanying banking innovation.  

Because PRS instruments are designed to be DRR-compliant from their first 
transaction, they avoid the regulatory ambiguity and implementation lags that have 
historically slowed the adoption of new derivative products. Banks can confidently 
deploy these instruments in their regulatory treatment, focusing implementation 
efforts on risk modelling rather than compliance infrastructure. 

Market liquidity development follows a deliberate progression, beginning with 
bilateral transactions between major banking institutions and strategically expanding 
to include specialised market makers. Central counterparty clearing adoption occurs 
early in this evolution, reducing counterparty risk concerns and establishing 
standardised margin methodologies.  

Introducing PRS indices aggregating exposures across multiple catchment areas 
creates broader hedging vehicles that attract investment funds and insurance-linked 
securities investors, further deepening liquidity pools. Standard tenors aligned with 
mortgage and infrastructure financing timeframes (typically 5, 10, and 30 years) create 
natural hedging opportunities for banks with concentrated real estate exposures. 
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The computational demands of PRS valuation necessitate shared infrastructure 
investment across market participants. While gauge-level monitoring data is available in 
real-time through existing environmental agencies, the complex task of portfolio 
revaluation requires substantial computing resources, particularly for stress testing 
across multiple weather pattern timseries scenarios. Cloud-based computing platforms 
with dedicated physical risk modelling capabilities allow market participants to access 
sophisticated analytics without individual infrastructure investments. Significant 
banking technology providers are extending their derivatives analytics suites to 
incorporate physical risk modelling components, creating integrated valuation and risk 
management solutions. 

Regulatory capital recognition 

The critical incentive for banks to adopt Basel standards develops through targeted 
implementation rather than new regulatory frameworks. Physical Risk Swaps are 
structured to qualify under existing capital relief provisions for risk transfer 
instruments, with careful documentation of how the contracts mitigate specific 
physical risks within loan portfolios. The transparency of gauge-based triggers, 
combined with robust modelling of hazard probabilities, creates the verification 
mechanisms necessary for regulators to acknowledge genuine risk transfer.  

“This approach to regulatory acceptance allows banks to realise 
immediate capital benefits while maintaining prudent risk 

management standards.” - Johnny Mattimore, MKM 

As Physical Risk Swaps move from initial transactions to established market 
presence, they create dynamic feedback loops that enhance hazard resilience 
throughout the banking system. Price discovery in the PRS market provides powerful 
signals about evolving physical risks, informing capital allocation decisions and 
infrastructure investment priorities. The availability of multi-year hedging instruments 
encourages lending in flood-vulnerable regions with appropriate risk management 
rather than wholesale withdrawal of capital. 

Instrument pricing 

Effective physical risk management through swap instruments requires 
sophisticated pricing methodologies, regulatory alignment, and substantial 
computational infrastructure. 

Advanced Monte Carlo simulations are employed to price these contracts accurately 
and assess risk, generating comprehensive sets of potential flood scenarios, including 
low-probability, high-impact events. Critically, the valuation methodologies use 
frameworks already approved by regulators, incorporating existing bank model 
libraries while adding specialised physical risk components.  

“This alignment with established regulatory approaches supports 
the case for capital relief when lenders utilise PRS instruments.”- 

David Kelly, MKM 
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The pricing models incorporate several key components, including terrain models 
that capture topographical features influencing flood behaviours. These flow 
distribution models translate precipitation scenarios into water movement patterns 
and historical flood data calibrated with forward-looking weather projections. 
Integrating physical science with banking modelling requires cross-disciplinary 
expertise but produces robust pricing that accurately reflects underlying hazard 
probabilities. 

From a regulatory perspective, Physical Risk Swaps benefit from integrating existing 
frameworks rather than requiring new regulatory structures. The ISDA Master 
Agreement provides the contractual foundation, while the FINOS Common Domain 
Model ensures data standardisation across the trade lifecycle. Most significantly, PRS 
instruments are designed to be Digital Regulatory Reporting (DRR) compliant from 
inception, eliminating the regulatory uncertainty often accompanying banking 
innovation. 

This pre-established compliance approach allows banks to confidently deploy these 
instruments in their regulatory treatment, focusing implementation efforts on risk 
modelling rather than compliance infrastructure. PRS contracts are structured to 
qualify under existing Basel capital relief provisions for risk transfer instruments, with 
careful documentation of how they mitigate specific physical risks within loan 
portfolios. 

The computational requirements for effective risk management are substantial, 
particularly for portfolio-level analysis across multiple climate scenarios. While gauge-
level monitoring data is available in real-time through existing environmental agencies, 
intraday revaluation demands significant computing resources. Cloud-based shared 
services offer an efficient solution, allowing market participants to access sophisticated 
analytics without individual infrastructure investments. 

Banking technology providers are extending their derivatives analytics suites to 
incorporate physical risk modelling components, creating integrated valuation and risk 
management solutions. These platforms enable stress testing across various weather 
projections, sensitivity analysis for different threshold configurations, and portfolio 
optimisation incorporating physical risk dimensions alongside traditional risk factors. 

Market Impact - beyond risk transfer 

While mortgage lenders are the primary beneficiaries, Physical Risk Swaps have 
broader implications for property markets, weather resilience, and banking stability. 

The introduction of PRS creates significant positive externalities beyond direct risk 
transfer benefits. By reducing long-term risk exposure, lenders may be more willing to 
maintain mortgage availability in flood-prone areas, improving property market 
liquidity in regions that might otherwise face credit contraction. This sustained credit 
provision supports property values and enables ongoing investment in areas requiring 
adaptation rather than abandonment. 

PRS pricing provides valuable market-based information about perceived flood 
risks, creating transparent signals that inform urban planning, infrastructure 
investment, and adaptation priorities. Regional pricing differentials will highlight areas 
where flood mitigation infrastructure could deliver the most significant economic 
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benefits as the market develops, potentially influencing public investment decisions 
and encouraging preventative measures rather than post-disaster recovery. 

The availability of PRS may incentivise community-wide resilience improvements by 
creating banking rewards for risk reduction. As lenders better manage their risks, they 
may offer more favourable terms to borrowers implementing flood resilience measures, 
creating economic incentives for adaptation investments. This dynamic could 
accelerate the adoption of building-level and community-scale flood protection 
measures through market mechanisms rather than regulatory mandates. 

Price discovery in the PRS market will provide ongoing feedback about evolving 
physical risks, informing capital allocation decisions beyond the mortgage sector. 
Infrastructure investors, commercial real estate developers, and municipal bond 
issuers will gain additional market-based insights into physical risk pricing that can 
guide investment strategies and project designs. 

The broader banking system benefits from improved risk transparency and reduced 
correlation of flood-related losses. By distributing concentrated physical risks more 
widely through capital markets, PRS minimises the potential for synchronised 
institutional stress during significant weather events. This distribution mechanism 
supports banking stability objectives by preventing the concentration of weather risks 
in institutions with limited capacity to bear them. 

Market size estimates and broader implications. 

The potential scale of the Physical Risk Swap market is substantial, with estimates 
suggesting it could develop into a multi-trillion dollar notional market as significant 
capital markets firms integrate these instruments into their offerings. This projected 
growth follows patterns observed in other successful derivatives markets, such as 
interest rate and credit default swaps, which achieved enormous scale by addressing 
fundamental risk management needs. 

The initial focus on flood risk in significant river basins represents only the 
beginning of potential applications. The same framework can be extended to other 
physical hazards, including windstorms, wildfires, droughts, and heat stress—each with 
its observable metrics, historical data sets, and forward-looking projections. Each 
hazard type requires specific adaptation of triggering mechanisms and loss models, but 
the fundamental structure of transferring physical risk through structured derivatives 
remains consistent. 

Geographic expansion beyond initial implementations in developed markets with 
sophisticated monitoring infrastructure presents challenges and opportunities. 
Emerging markets often face heightened physical hazard risks with more limited 
historical data and monitoring capabilities. Strategic investment in gauge networks and 
remote sensing technologies could enable PRS implementation in these regions, 
potentially supported by development finance institutions seeking to enhance hazard 
resilience in vulnerable countries. 

Product evolution will likely follow patterns seen in other derivatives markets, with 
initial standardised contracts gradually complemented by more tailored structures 
addressing specific risk profiles. Index products aggregating exposures across multiple 
catchment areas will develop to create broader hedging vehicles. At the same time, 
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tranched structures may emerge to segment risk by severity levels, allowing more 
precise risk transfer matching particular institutional risk appetite requirements. 

Integration with climate adaptation finance represents an auspicious direction, 
where Physical Risk Swaps become components of blended finance solutions. Public 
sector risk absorption for extreme tail events could be combined with private market 
capacity for more frequent risks, creating layered protection that maximises the 
efficiency of limited public resources while maintaining broad market participation. 

As physical risk and climate disclosure requirements intensify globally, PRS 
instruments offer a potential mechanism for organisations to demonstrate active 
management of identified risks rather than simply reporting exposures.  

“This capability could enhance reporting compliance while 
improving resilience—transforming disclosure from a compliance 

exercise into strategic risk management.”- Johnny Mattimore, MKM. 

The role of PRS in creating banking resilience 

Physical Risk Swaps represent a natural extension of credit derivatives technology to 
manage natural hazard-related banking risks. The significant advantage of building PRS 
on established CDS technology, legal frameworks, and data constructs is the reduction 
in adoption efforts for banks. Banking institutions can leverage their existing systems, 
knowledge, and operational processes developed for credit derivatives, requiring the 
integration of physical risk data primarily and modelling rather than wholesale new 
infrastructure. 

By adapting the proven CDS pricing framework to incorporate physical hazard 
probabilities, these instruments offer a promising approach to bridge the gap between 
long-term flood risks and existing banking market structures. Implementing the FINOS 
Common Domain Model provides the critical data standardisation layer that enables 
interoperability across market participants. At the same time, compliance with digital 
regulatory reporting ensures smooth regulatory integration from inception. 

As we navigate an increasingly uncertain future of urbanisation, instruments like 
Physical Risk Swaps can play a vital role in creating more resilient banking systems. By 
aligning risk management timeframes with the duration of asset exposures, PRS 
enables more accurate pricing of hazard risks and supports informed decision-making 
by all market participants. This balanced approach facilitates necessary adaptation 
measures while maintaining economic vitality in communities navigating flood risk 
transition challenges. 

The successful implementation of PRS requires collaboration between atmospheric 
and weather scientists, hazard assessment experts, banking engineers, and market 
participants to develop robust pricing models that accurately capture the complex 
dynamics of physical risks while maintaining the standardisation and liquidity 
necessary for market adoption. With the foundation of ISDA documentation and the 
FINOS CDM, the market can focus on the unique aspects of physical hazard risk 
modelling rather than reinventing established market infrastructure 

Physical Risk Swaps represent not merely a technical, banking innovation but a 
critical step toward a banking system that properly accounts for and manages physical 
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risks — ultimately supporting both economic stability and climate adaptation in the 
decades ahead. 

Developing Market Liquidity for Physical Risk Swaps 

Developing a liquid market for Physical Risk Swaps (PRS) represents a critical 
innovation in risk management for physical assets. Following the successful evolution 
of the Credit Default Swap (CDS) market, we can establish a roadmap for creating a 
robust, efficient marketplace for transferring and managing physical risk exposures. 
This section explores the key elements necessary to foster liquidity in this evolving 
market. 

Learning from the CDS Market Evolution 

The Credit Default Swap market provides valuable lessons for developing PRS 
liquidity. From its inception in the early 1990s to its peak of $61.2 trillion in notional 
value by 2007, the CDS market demonstrated how standardisation, institutional 
participation, and regulatory frameworks can create a functioning risk transfer 
mechanism. While the market subsequently contracted to $9.4 trillion by 2017, the core 
infrastructure and liquidity mechanisms remained intact, particularly for index 
products. 

The core design of a PRS is a natural evolution of a parametric insurance contract. 
The only real difference is the legal wrapper, which is governed by two different 
regulatory frameworks. The cashflows, however, are identical. 

Unlike other innovations in finance, a PRS is incredibly easy to explain. Its simplicity 
and intuitive nature make it an elegant solution that will drive uptake. 

The fundamental design of PRS mirrors the CDS template, replacing credit events 
with physical risk triggers. This familiar structure allows market participants to 
leverage existing knowledge and systems: 

• Trigger Mechanism: Rather than a default event, a PRS is activated when a 
specified physical measurement (water level, temperature, wind speed, etc.) reaches 
a predefined alert threshold. 

• Premium Structure: Regular premium payments from protection buyer to 
protection seller until maturity or trigger event. 

• Settlement Process: Predefined payout mechanisms based on the severity of the 
physical risk event. 

• Term Structure: Standardized maturities that align with typical investment 
horizons for physical assets 

Unlike the organic and sometimes fragmented development of early CDS 
documentation, PRS benefits from institutional standardisation from inception that 
materially reduces documentation risk: 

• ISDA Framework: Developing standard PRS documentation under the 
International Swaps and Derivatives Association framework. 
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• Common Data Model: Implementation within the ISDA/FINOS Common Domain 
Model (CDM) program ensures consistent data structure and event management. 

• Unified Definitions: Clear, industry-accepted definitions of physical risk events, 
measurements, and thresholds. 

• Protocol Adoption: Streamlined adoption through ISDA protocols rather than 
bilateral negotiation. 

Market liquidity requires both willing buyers and sellers with genuine economic 
interests: 

• Protection Buyers: Asset owners face increasing physical risks due to climate 
change and other environmental factors. 

• Protection Sellers: Institutions with the capacity to diversify and manage 
physical risks across geographic and categorical dimensions. 

• Insurance Gap: Insufficient traditional insurance capacity creates a natural 
demand for alternative risk transfer mechanisms. 

• Portfolio Optimization: Institutional investors seeking to optimise risk-return 
profiles of asset portfolios containing physical risk exposure 

The substantial and growing gap between physical risk exposure and available 
insurance capacity creates natural market tension that PRS can address. 

Regulatory considerations represent both a challenge and an opportunity for PRS 
market development: 

• Dodd-Frank Precedent: Following the implementation pathway created for 
swaps under the Dodd-Frank Act. 

• Capital Treatment: Working with regulators to establish appropriate capital 
requirements that recognise the risk-mitigating nature of properly structured PRS. 

• Reporting Requirements: Building transparent reporting mechanisms that 
facilitate regulatory oversight without imposing excessive burden. 

• Cross-Border Considerations: Developing consistent international regulatory 
treatment to avoid fragmentation. 

Early and constructive engagement with regulators will be essential for market 
development. 

The involvement of several major banking institutions is critical for initial liquidity, 
requiring a coordinated launch (and ongoing commitment to make markets) by major 
banks that create an immediate two-way market. 

Early central clearing provides significant advantages for market development: 

• Counterparty Risk Reduction: Mitigating bilateral credit risk concerns through 
a central counterparty. 
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• Netting Efficiency: Improving capital efficiency through multilateral netting. 

• Standardised Margining: Creating predictable and efficient collateral 
requirements. 

• Position Portability: Facilitating the transfer of positions between 
counterparties. 

• Risk Aggregation: Developing methodologies with the banks to aggregate and 
tier physical risks across diverse geographies and asset classes. 

• Basis Risk Management: Addressing the inherent basis risk between index 
products and specific asset exposures. 

Liquidity Development Trajectory 

Based on the CDS market experience, we can anticipate the following liquidity 
development pattern for PRS: 

• Initial Phase: Concentrated bilateral trading among major dealers using 
standardised documentation. 

• Index Development: Creation of diversified indices covering major risk 
categories and geographies. 

• Buy-Side Adoption: Gradual expansion to asset managers, pension funds, and 
other institutional investors. 

• Market Bifurcation: Emergence of highly liquid index products alongside more 
specialised single-name PRS. 

• Electronic Execution: Migration from voice trading to electronic platforms as 
volume increases. 

• Market Maturity: Development of secondary market trading, curve trading, and 
basis trading strategies 

By following the successful model of the CDS market while implementing early 
standardisation and central clearing, PRS can evolve into an efficient risk transfer 
mechanism. The natural economic demand for physical risk protection, combined with 
careful attention to structural and regulatory considerations, creates a favourable 
environment for market development.  

While challenges remain, particularly regarding scale, basis risk modelling and 
capital treatment of hedge effectiveness, the pathway to PRS liquidity is clear and 
achievable. 
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Chapter 10 - Model Risk Governance  

A s banking institutions increasingly incorporate flood risk into their 
operations, the governance of flood risk models has emerged as a critical 

challenge. This chapter explores how traditional model risk governance 
frameworks must evolve to address the unique complexities of flood risk modelling. 
We examine the "model stack problem" in flood risk assessment, propose 
governance solutions, and outline collaborative industry approaches to 
standardisation. 

“Integrating current fragmented vendor offering of flood risk 
information and analytics into banking operations represents a 

fundamental challenge for model risk governance.”- David Kelly, 
MKM. 

As banks face increasing pressure to incorporate natural hazard considerations into 
their risk assessments and capital allocations, they must ensure their flood modelling 
approaches meet rigorous governance standards. Key challenges include: 

• Regulatory evolution: Regulators are expanding existing prudential frameworks 
to address climate-related risks, making model governance urgently needed when 
flood models inform capital requirements or lending criteria. 

• Complex decision-making: Banks face a web of requirements when 
implementing flood risk models, particularly for scenarios like assessing flood risk in 
mortgage portfolios, which can lead to adjusting lending criteria. 

• Societal implications: Poor model governance creates significant societal risks. 
For example, inappropriate vendor flood scores used to pre-screen UK mortgage 
applications profoundly impact property markets and individual homeowners.  

Model - Quick Reminder 

“Model Risk can lead to financial loss, poor business and strategic 
decision making, or damage to a bank’s reputation.  Model Risk 

should be managed like other types of risk. Firms should identify the 
sources of risk and assess the magnitude.  
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A guiding principle for managing model risk is ‘effective challenge’ 
of models.” ​ 

SR 11-7 Guidance on Model Risk Management – Fed / OCC  

A model is thus a quantitative method that includes complex manipulations and 
expert judgements that applies algorithmic engines to process input data into 
quantitative estimates for decision-making. A model has to have these three 
components otherwise it is a process. 

Model Governance for Climate Risks  

While this book is focused on the present hazard of flood risk, it is worth nothing 
how the banking industry takes model governance in new areas of risk management of 
which it is worth adopting as the industry introduces PRS. 

The Commodity Futures Trading Commission (CFTC) issued a groundbreaking 
report in September 2020 titled Managing Climate Risk in the U.S. Financial System, 
authored by the Climate-Related Market Risk Subcommittee chaired by Bob Litterman. 
This report marked the first comprehensive effort by a U.S. financial regulator to 
address climate-related risks in financial markets.  

Litterman, a former Goldman Sachs executive known for his work in risk 
management, led the diverse committee of 34 experts from financial institutions, 
academia, and non-governmental organisations. 

The report emphasises that effective model governance is essential for managing 
climate-related financial risks. It acknowledges the unique challenges of climate risk 
modelling, including data limitations, long time horizons, and deep uncertainty about 
future scenarios.  

The committee recommends that financial institutions establish robust governance 
frameworks for climate risk models, with clear board-level oversight and integration 
into existing enterprise risk management systems. According to the report, models 
must balance standardisation with analytical flexibility, while avoiding false precision in 
their outputs.  

These governance principles aim to ensure that climate risk assessment becomes a 
mainstream component of financial risk management across the U.S. financial system. 

Risk Management and Oversight 

• Board Oversight: Establish clearly defined oversight responsibilities for climate 
risk at the board of directors level. 
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•Integration with Existing Frameworks: Address 
climate-related risks through existing risk management 
frameworks with appropriate governance by corporate 
management. 

•Enterprise Risk Management: Integrate climate risks 
into Enterprise Risk Management (ERM) and Own Risk 
Solvency Assessments (ORSA) processes. 

Climate Risk Data and Modelling Standards 

•Standardised Classification Systems: Develop classification 
systems for physical and transition risks across asset 
classes and sectors. 

•Capacity Building: Implement training and education 
programs to build climate risk management capabilities. 

Scenario Analysis and Stress Testing 

•Consistent Scenarios: For assessment, use a consistent 
and common set of broad climate risk scenarios, 
guidelines, and assumptions. 

•Analytical Discretion: Allow firms to decide how they 
perform scenario analysis, balancing standardisation with 
flexibility. 

•Continuous Improvement: Establish mechanisms for 
ongoing refinement as science, data, tools, and conditions 
evolve. 

Figure 9: Components of a Model 

• In-house Capabilities: Develop internal capabilities to analyse climate scenarios, 
understand underlying assumptions, and recognise limitations. 

• Avoid False Precision: Recognize that quantitative results should be treated as 
illustrative rather than precise in climate scenario analysis. 

• Proportional Analysis: Ensure the scope, depth, and complexity of analyses are 
proportionate to the materiality of the impact measured. 

Flood Risk Model Stack Problem 

At the heart of flood risk modelling lies the "model stack problem." As established in 
Chapters 3-5, modern flood risk assessment involves the output of one model becoming 
the input of another, creating a chain of dependencies that amplify uncertainties 
throughout the modelling process. For flood risk specifically, this stack includes: 
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• Weather pattern models: Generating precipitation forecasts and historical 
distributions. 

• Hydrological models: Translating precipitation into river flows and surface 
water accumulation. 

• Hydraulic models: Determining how water moves across landscapes and 
through built environments. 

• Impact models: Assessing damage to properties based on flood characteristics. 

• Banking impact models: Translating physical damage into economic and 
banking consequences 

“From a model governance perspective, the practice of hydrologic 
and hydraulic modelling embodies a certain level of paradox: We 

use deterministic equations to describe inherently uncertain 
processes.  

We apply simplifications to represent indescribably complex 
systems. We seek precision in a domain where perfect prediction is 
impossible.  Apart from that it should work perfectly fine so long as 

we understand and measure uncertainty” - David Kelly, MKM. 

Key Characteristics of the Flood Model Stack: 

• Cascading dependencies: Physical process models feed into statistical models, 
which feed into banking impact models, creating multiple layers of uncertainty. For 
example, the previous example of the Thames flood model requires output from 
weather pattern time series to generate precipitation measurements, which feed 
hydrological models producing water flow predictions, ultimately leading to real-
time flood level monitoring. 

• Simplification of complex processes: Fundamental physical processes like 
cloud formation and precipitation patterns directly influencing flooding are often 
simplified due to computational limitations. As noted earlier, these simplifications 
significantly impact flood risk assessment. 

• Uncertainty amplification: Each model in the stack contains its uncertainties, 
which compound as they move through the chain. Our analysis of flood models 
showed how errors in flow estimation could be magnified for in-depth calculations, 
creating significant variations in estimated property damage. 

• Cross-disciplinary integration: Models originating from different scientific 
traditions (climate science, hydrology, economics, finance) with varying validation 
standards are linked, creating governance challenges across domains. 
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• Temporal mismatch: Models operating at different time scales (from hours for 
weather to decades for climate) must be integrated coherently, as highlighted in our 
examination of the mortgage-insurance duration mismatch as described in the 
previous chapter on PRS. 

Model Risk and Complexity 

The interconnected nature of model stacks in banking creates unique governance 
challenges that traditional frameworks struggle to address. Banks operate in 
increasingly complex regulatory and technical environments where models serve 
multiple purposes—from credit decisions to capital planning—and inform high-stakes 
business decisions. These models often form intricate webs of dependencies similar to 
the flood model stack but with additional banking and regulatory complexities. 

Model Dependency Management 

Banking institutions typically maintain hundreds or thousands of models across 
departments, creating a tangled web of dependencies. These models form hierarchical 
structures, sometimes called a “string-of-pearls”, where there is high dependency.  
Consider the following:- 

• Market data models generate time series of market simulations that collectively 
create market data. 

• Mid-level models link the market data to risk factors used for instrument pricing 
and hedging. 

• Risk models aggregate the risk factors of the originated risk and the hedges, 
leaving a basis required for P&L attribution and VaR. 

• Stress-based models that define tail events are used in the aggregate for capital 
allocation. 

Each layer inherits assumptions and uncertainties from previous layers, often 
without transparent documentation of these inherited limitations. For example, a 
mortgage pricing model might depend on interest rate projections, which rely on 
economic growth forecasts—each introducing its uncertainty profile that compounds 
through the chain. 

Model Boundary Ambiguity 

In complex banking environments, the boundaries between models become 
increasingly blurred. This creates several governance challenges: 

• Unclear ownership: When multiple teams contribute to different components of 
an interconnected model system, responsibility for overall performance becomes 
diffuse. 

• Validation gaps: Components at the boundaries between models often receive 
less scrutiny during validation exercises. 

• Inconsistent assumptions: Adjacent models frequently operate under 
contradictory assumptions about the same underlying process 
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One particularly problematic boundary exists where statistical models interface 
with expert judgment. In flood risk assessment, as in many banking contexts, human 
experts often adjust model outputs based on experience, creating a "grey area" where 
governance controls are challenging to implement consistently. 

Uncertainty propagation 

As highlighted in the flood model stack, uncertainty propagation becomes 
increasingly important—and challenging—in complex model environments. Banks face 
particular difficulties with: 

• Identifying the sources of model uncertainty. 

• Quantifying how uncertainty grows through model chains. 

• Attributing performance issues to specific components within the stack. 

While techniques like Monte Carlo simulation can help quantify overall uncertainty, 
attributing this uncertainty to specific model components remains extremely difficult. 
This creates significant challenges for model improvement efforts as teams struggle to 
identify which components would benefit most from refinement.  Perhaps most 
concerning from a governance perspective are the emergent properties that arise from 
complex model interactions.  

“Banking history is replete with examples where seemingly well-
governed individual models created systemic risks.”- David Kelly, 

MKM. 

The following red flags worth calling out in any complex model instances tend to be 
a combination: 

• Models that individually capture risk factors accurately may collectively miss 
correlation effects during stress periods. 

• Feedback loops between market and risk models can amplify volatility during 
crises. 

• Optimisation of individual models may lead to collectively suboptimal outcomes. 

These emergent risks often elude traditional governance frameworks focused on 
individual model performance rather than systemic interactions. 

Complex model environment 

Banks face significant operational challenges in governing complex model 
environments such as: 

• Specialised expertise: Effective governance requires rare combinations of 
domain expertise (e.g., climate science, banking, risk management). 
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• Resource constraints: Validation resources are typically limited, requiring 
difficult prioritisation decisions. 

• Technical infrastructure: Managing model dependencies requires sophisticated 
technical infrastructure that many banks lack 

Uneven Coverage 

The result is often uneven governance coverage, with sophisticated models 
receiving intensive scrutiny while simpler but potentially more consequential models 
receive less attention. 

Comprehensive documentation becomes extraordinarily more challenging as model 
complexity increases: 

• Underlying assumptions may span multiple domains and require specialised 
knowledge to understand. 

• Model interdependencies create complex webs that resist simple documentation. 

• Staff turnover leads to knowledge gaps about historical model decisions. 

This creates a significant "key person risk," where critical knowledge about model 
limitations resides with a few individuals rather than in institutional documentation. 

Toward Integrated Model Governance 

Addressing these governance challenges requires approaches that explicitly 
recognise model interdependencies and embrace the complexity inherent in modern 
banking environments. Key principles include: 

• System-level validation: Complementing component-level validation with 
holistic assessments of model systems. 

• Consistent metadata: Developing standardised ways to document model 
assumptions, limitations, and dependencies. 

• Transparent lineage: Creating clear documentation of how data and 
assumptions flow through model chains. 

• Adaptive governance: Implementing frameworks that can evolve as models and 
methodologies change. 

• Cross-functional oversight: Establishing governance bodies with expertise 
spanning relevant domains. 

The following case study on flood risk modelling illustrates how these principles can 
be applied in practice, highlighting successes and ongoing challenges in governing 
complex model environments with significant dependencies. 
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Case Study: Flood Risk Modelling 

Our UK flood risk modelling analysis provides an example of a physical risk model 
stack. The process typically involves the following checklist across the model risk 
governance process: 

• Measuring typical flow rates: Officers measure typical flood events in each 
area, noting how the land responds to rainfall. They manually define scores for pre-
defined factors like how quickly water flows, how much is absorbed, and how much 
runs off. 

• Calibrating flow distributions: Using the data measured in the first step, 
statisticians create a distribution of potential flows, including how variable a 
maximum can be and its frequency. 

• Estimating flood flow frequency: The next step combines the catchment 
profiles with the statistical models to assess the relative increase in water flow for less 
frequent events than typical flow rates. 

• Calculating flood heights by location: Modelers then take the flow estimates 
under different probabilities and adapt fluid dynamic simulations to measure how a 
rainwater burst leads to a rise in water in each location. 

• Inter-model dependency: The compatibility of underlying assumptions across 
the different model types (measurement, statistical, fluid dynamics) is often 
inconsistent. Statistical models are sometimes shoehorned into data, creating human 
inconsistency. 

• Error amplification: Final simulations depend on multiple upstream models 
with distinct error profiles. As shown in our Thames flood analysis, the simulation 
utilises output from the initial three steps, which consist of perfectly smooth and 
error-free distributions of future flow severity and frequency. Subsequently, it 
incorporates its assumptions about landscape response, thereby amplifying errors. 

• Granularity challenges: Minor differences between two locations can lead to 
significantly different results, regardless of model sophistication. Chapter 5 revealed 
how all those affected by floods point out how some properties avoid being affected 
while those nearby are inundated. 

• Underlying assumptions: Clear documentation of assumptions and 
construction of climate variable distributions (e.g., tails of the distribution of 
precipitation at a catchment area). 

• Data source lineage: Transparent information about data sources (public and 
vendor), measurement techniques, curation processes, quality checks, and update 
frequency. This is particularly important for flood models that rely on high-
resolution LiDAR data and real-time gauge measurements. 

• Input data derivation: Clear explanation of how vendor models derive their 
inputs, especially for crucial parameters like catchment response rates and 
infiltration capacities. 
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• Portfolio aggregation: Documentation of how portfolios of assets are aggregated 
by location, which is essential for understanding concentration risk in flood-prone 
areas. 

• Model limitations: Description of known model weaknesses, output 
uncertainties, and limitations of appropriate use, particularly regarding the 
granularity issues identified in our flood model analysis. 

• Model use: Define and document where and how flood model outputs should be 
used, distinguishing between screening tools and decision-making instruments. 

• Output interpretation guidelines: Provide clear guidance on how consumers 
should interpret outputs within their risk-based processes, particularly for flood 
scores that may appear deceptively precise. 

• Educate end users: Ensure that risk managers, loan officers, and senior 
decision-makers fully understand the technical limitations of flood models and the 
practical constraints on their utility, especially regarding property-specific 
characteristics that models may not capture. 

• Validation frameworks: Develop robust validation approaches designed 
explicitly for flood risk models, incorporating historical flood data and forward-
looking climate projections. 

• Uncertainty protocols: Establish methods for effectively communicating model 
uncertainty to decision-makers, recognising the compounding uncertainties 
throughout the model stack. 
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The Model Risk Cycle 

All documents discussing model risk governance have a variation of the following 
diagram. This book is no exception! 

Figure 10: Model Risk Cycle 
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Chapter 11 - The Cutting-Edge 

T he fundamental physics governing flood events has been well-understood for 
centuries. Precipitation falls, water flows downhill, rivers rise, and 

floodplains inundate according to laws of conservation of mass and momentum 
that have remained unchanged since they were first mathematically formalised. Yet 
computational constraints, data availability, and the inherent challenges of 
modelling complex, multi-scale physical systems have limited our ability to predict 
specific flood events. Artificial intelligence is now transforming our approach to 
these challenges, not by changing the underlying physics but by revolutionising 
how we implement, calibrate, and apply physical models across flood-related 
processes. 

"The future of flood risk management lies not just in better 
modelling but in better integration of models. When the artificial 

boundaries between physical science and banking analysis dissolve, 
we will finally see risk as nature does: as a continuous flow from 

cloud movements through flood time series to parametric 
attribution.”- Johnny Mattimore, MKM 

We stand today at the threshold of a profound transformation. Artificial intelligence 
is simultaneously revolutionising how we predict weather patterns, model fluid 
dynamics, and calculate insurance premiums—creating, for the first time, the 
technological possibility of a truly integrated approach to flood risk. This chapter 
explores the emerging paradigm of coherent model stacks, where time-series outputs 
from AI-enhanced precipitation models feed into computational fluid dynamics 
simulations, generating the probabilistic inputs needed for sophisticated banking and 
insurance pricing models. 

This integration represents a fundamental reconceptualisation of flood risk as a 
continuum that flows—much like water—from atmospheric conditions through physical 
infrastructure to banking impacts.  
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“The coherent model stack connects previously disparate domains: 
neural networks that identify subtle precursors to extreme 

precipitation events; reinforcement learning algorithms that 
optimise the simulation of water movement across complex 

topographies; and gradient-boosting techniques that translate 
predicted water levels into location-specific damage estimates and 

ultimately into dynamic pricing models.”- David Kelly, MKM. 

Yet this convergence brings unprecedented challenges. How do we manage 
uncertainty as it propagates through multiple model layers? What governance 
structures can ensure both innovation and responsible deployment? How do we 
maintain transparency when complex AI systems interact across domains? How do we 
ensure that these powerful new capabilities serve the broader societal goal of creating 
more resilient communities in the face of increasing flood risk? 

This chapter examines the technical, organisational, and ethical aspects of the new 
integrated modelling paradigm. Drawing on emerging research and early 
implementation experiences, we outline the vision for the direction this integration is 
heading, along with the practical steps organisations in the physical sciences, 
technology, and banking sectors can take to realise its benefits. The way forward 
requires technical innovation and new forms of collaboration that bridge traditional 
disciplinary and industry boundaries. 

Checklist for the steps way forward 

Providing a brief outline of the steps to a new paradigm seems sensible.  This is 
more for reference as each will be discussed in more detail: 

• Standardising weather pattern time series: Creating consistent formats for 
representing weather data that can serve as inputs to hydrological models. 

 
• Developing gauge-level monitoring networks: Expanding the infrastructure 

for real-time monitoring of water levels. 

• Building synthetic time series generators: Creating AI systems that generate 
plausible future scenarios based on climate projections. 

• Integrating with existing PVM (Product, Valuation and Market data) 
architectures: Ensuring that physical risk time series can integrate into banks’ 
existing risk management frameworks. 

• Establishing governance frameworks: Developing standards for model 
validation and uncertainty communication. 

Achieving this promise will require a sustained commitment to building coherent 
model stacks to transform our approach into one of our most persistent physical 
risks.  
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“The future of physical risk 
management lies not in isolated 

models but in integrated time 
series frameworks that span the 

entire journey from cloud 
formation to valuing physical 

risk swaps and parametric 
insurance.  It also requires a 

banking ecosystem agreement to 
do all this consistently and 

transparently. No bank can do it 
alone.”- Johnny Mattimore, 

MKM. 

Figure 11: Stages for PRS Development 

Breaking Down Traditional Barriers 

The historical approach to flood risk modelling has been characterised by 
disciplinary and institutional silos that mirror the organisational structures of 
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academia, government, and industry rather than the physical reality of flooding events. 
Meteorologists develop precipitation forecasts, hydrologists model river flows, 
engineers assess infrastructure vulnerabilities, and banking analysts price risk—each 
group working with different data formats, time horizons, spatial resolutions, and 
uncertainty frameworks.  

Information flows between these domains have typically been manual, episodic, 
and fragmented, with critical context and uncertainty measures often stripped away at 
each handoff point. This fragmentation introduces numerous opportunities for 
misinterpretation, data distortion, and compounding inaccuracies as insights move 
across disciplinary boundaries.  

The translation between specialised technical languages and methodological 
approaches frequently results in important nuances being overlooked or simplified 
beyond recognition, leading to analyses that inadequately capture the interconnected 
nature of flood risks and potentially underestimate systemic vulnerabilities. 

This fragmentation has persisted despite widespread recognition of its limitations. 
Academic papers spanning decades have called for more integrated approaches, and 
catastrophe modelling firms have made significant progress connecting physical and 
banking models. Yet the practical challenge of creating genuinely coherent model 
stacks has remained daunting, particularly for flood risk, which demands high spatial 
and temporal resolution across multiple physical domains before approaching banking 
considerations. 

Recent advances in computational capacity and machine learning techniques have 
finally made a new paradigm possible—where time series output from physical models 
directly feed banking models through standardised interfaces, with uncertainty 
appropriately characterised and propagated throughout the system. This shift 
represents a technical improvement and a fundamental reconceptualisation of 
understanding and managing flood risk. 

Neural Networks and Precipitation Forecasting and 
NVIDIA 

Traditional numerical weather prediction relies on solving partial differential 
equations representing atmospheric physics across a discretised grid. These models are 
computationally intensive, necessitating supercomputers to generate forecasts with 
reasonable lead times. Even with substantial computational resources, spatial 
resolution remains limited, typically to grid cells of 10-25 kilometres—far too coarse to 
capture the localised precipitation patterns that often drive flood events. 

Neural network approaches like NVIDIA's FourCastNet have transformed this 
landscape. By learning directly from historical weather data rather than solving 
equations from first principles, these models can generate global weather forecasts at 
25km resolution up to 500 times faster than traditional numerical methods. The speed 
advantage enables ensemble prediction—running multiple time series with slightly 
different initial conditions—that better characterises forecast uncertainty. For flood risk 
modelling, this means more lead time for warnings and the ability to generate many 
more scenarios for risk assessment. 
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Perhaps more importantly, machine learning approaches excel at downscaling—
generating high-resolution local forecasts from coarse global predictions. NVIDIA's 
CorrDiff model exemplifies this capability, employing diffusion modelling techniques to 
refine coarse 25km forecasts to a 2km resolution.  

At this scale, orographic effects (changes to air flow when the topography of the 
land forces air upward), urban heat islands, and other local factors significantly 
influence precipitation patterns.  

“The improvement highlighted by NVIDIA's FourCastNet is not 
merely cosmetic; it fundamentally alters the information available 

for subsequent hydrological modelling.”- David Kelly, MKM.  

Far from me to mention fractal geometry or the Butterfly Effect, but a summer 
thunderstorm that appears as a modest area-averaged rainfall in a 25km model cell 
might manifest as an intense cloudburst over a specific watershed in the downscaled 
2km forecast—the difference between a managed event and a flash flood. 

These AI weather models learn from observations and the output of traditional 
physics-based models, effectively distilling decades of meteorological science into 
neural network weights. The result is not a replacement for physical understanding but 
rather a computationally efficient implementation that preserves the essential 
behaviour while enabling previously impossible applications. 

Flood Propagation Modelling 

Once precipitation reaches the ground, predicting its movement through the 
landscape requires modelling surface runoff, river channel dynamics, and potentially 
complex interactions with urban drainage systems or coastal storm surges. Traditional 
hydrologic and hydraulic models solve simplified versions of the Navier-Stokes 
equations—the fundamental equations of fluid dynamics—but face significant 
computational constraints. 

Two-dimensional hydraulic models that simulate water movement across a 
floodplain typically require hours or days of computation for a single scenario covering 
a modest geographic area. This computational burden has historically forced a 
tradeoff: either model small areas at high resolution or larger areas at lower resolution, 
but rarely both simultaneously. AI approaches enable a breakthrough in this domain 
through several parallel innovations. 

Physics-informed neural networks (PINNs) represent one promising direction. 
These models combine traditional neural network architectures with explicit 
constraints derived from the laws of physics. For flood modelling, the neural network 
learns to predict water movement patterns from historical data while being constrained 
to conserve mass and momentum. The approach combines the computational 
efficiency of neural networks with the physical realism of traditional models. Early 
implementations have demonstrated the ability to simulate flood propagation 100 
times faster than conventional methods while maintaining comparable accuracy. 
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Graph neural networks 

Graph neural networks offer another powerful approach, particularly well-suited to 
river networks. These models can learn the complex relationships between upstream 
and downstream conditions by representing a river system as a graph—with nodes 
representing gauge locations and edges representing river reaches.  

The graph structure naturally captures the connectivity of the river network, 
allowing the model to propagate information about water movement through the 
system in a physically consistent manner. These models excel at predicting gauge 
height time series from precipitation inputs, providing crucial information for flood 
warning systems. 

For urban environments, where complex drainage infrastructure creates additional 
complications, reinforcement learning algorithms have shown promise in optimising 
flood simulation. These algorithms focus computational resources on the critical areas 
for accurate prediction, dynamically adjusting model resolution based on evolving 
flood conditions.  

The result is a more efficient and accurate simulation of urban flooding, where fine-
scale features like curbs, drainage inlets, and buildings strongly influence water 
movement patterns. 

Time and Space Together: Multi-Gauge Prediction 

The ultimate goal of flood forecasting is not just to predict water levels at a single 
location but to generate consistent predictions across an entire network of gauges, 
capturing how flood waves propagate through a river system over time. This multi-
gauge, multi-timestep prediction problem represents a particularly challenging test for 
AI systems, as it requires learning complex spatio-temporal dependencies. 

RNNs and LSTMs for Multi-Gauge River Forecasting 

Recurrent neural networks (RNNs) and their variants, such as Long Short-Term 
Memory (LSTM) networks, have demonstrated success in time series prediction tasks 
like stock price forecasting and hydrological modelling. However, their application to 
multi-gauge river forecasting introduces unique challenges that demand architectural 
and methodological adaptations, in particular how to handle non-stationarity and data 
quality: 

• Multivariate sequential dependencies: Multi-gauge systems require modelling 
interactions between spatially distributed gauges (e.g., upstream/downstream 
relationships). While LSTMs excel at temporal dependencies, they lack innate spatial 
reasoning. Hybrid architectures like CNN-LSTM (using convolutional layers for spatial 
feature extraction) or graph-based LSTMs are often employed to capture catchment 
topography and flow dynamics. 

• Heterogeneous data fusion: Integrating gauge data with external variables (e.g., 
precipitation, soil moisture, satellite-derived flood extents) requires careful feature 
engineering. 

• Cross-gauge variability: River networks often exhibit non-uniform hydrological 
responses due to varying basin sizes, land use, and climate zones. 
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• Dynamic normalisation: Scaling inputs per gauge to address differing 
magnitudes. 

• Attention mechanisms: Prioritising relevant gauges or time steps dynamically. 

• Long-term dependencies: Flood forecasting may require modelling lagged 
effects (snowmelt-to-discharge delays). LSTMs with stateful configurations or 
sequence-to-sequence architectures are used to retain memory across extended 
periods. 

• Missing data imputation: Sparse or inconsistent gauge readings (common in 
developing regions) necessitate techniques like bidirectional LSTMs or integration 
with physics-based models. 

• Transfer learning: Pre-training on data-rich basins and fine-tuning for data-
scarce regions improves generalisation.  

• Interpretability: LSTMs remain "black-box" models, complicating stakeholder 
trust. 

• Data hunger: Effective training typically requires >10 years of daily data, which is 
unavailable in many regions. 

Case Study: Western U.S. River Basins 

A 2022 study tested LSTMs across 10 gauges in the western U.S., achieving 20–40% 
improvement in Nash-Sutcliffe Efficiency (NSE) over traditional models like GloFAS by: 

• Training on ERA5 reanalysis data and historical streamflow. 

• Using a 7-day forecast horizon with recursive prediction. 

• Addressing spatial heterogeneity through basin-specific normalisation. 

For implementation, frameworks like TensorFlow/Keras and PyTorch provide 
customizable LSTM layers, while tools like NeuralHydrology offer domain-specific 

optimisations. 

Researchers have developed models that can generate coherent predictions across 
entire river basins by combining LSTM architectures with attention mechanisms that 
learn which upstream gauges most strongly influence each downstream location. 

More recent approaches leverage transformer architectures—initially developed for 
natural language processing—to capture the sequential nature of flood wave 
propagation. Just as a transformer model can understand the relationship between 
words in a sentence, it can learn how high water levels at one gauge relate to 
subsequent rises at gauges downstream. These models capture both the time lags 
between upstream and downstream flood peaks and the attenuation of flood waves as 
they move through the system. 

The most advanced current approaches combine spatial and temporal modelling in 
unified architectures considering geographic relationships and time evolution into (no 
surprises here) time series. These spatio-temporal models can ingest data from 
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multiple sources—gauge readings, weather forecasts, soil moisture measurements—and 
generate consistent flood predictions across regions. 

The output is a coordinated set of water level time series for every gauge in the 
network, providing a comprehensive picture of flood evolution that was previously 
achievable only with much more computationally intensive physics-based models. 

 

Figure 12: Connection of CorrDiff to LisFlood 
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The NVIDIA Earth-2 Vision of an Integrated Digital 
Twin 

NVIDIA's Earth-2 initiative best exemplifies the potential of AI-driven integration 
across the modelling chain. By combining global weather models (FourCastNet), 
downscaling techniques (CorrDiff ), and increasingly, hydrological and impact models, 
Earth-2 moves towards a comprehensive digital twin of the earth system. This platform 
enables rapid exploration of numerous high-resolution scenarios, with potential 
applications spanning emergency management, infrastructure planning, and banking 
risk assessment. 

The current implementation, while impressive, still requires significant human 
expertise to bridge between physical and banking domains. As the platform evolves, we 
can expect increasingly automated translation of physical model outputs into monetary 
terms, further streamlining the integrated modelling process. 

Despite these remarkable advances, AI approaches to physical process modelling 
face material limitations. The reliance on historical data means these models may 
struggle with unprecedented events or novel conditions resulting from atmospheric 
changes. The "black box" nature of many neural network approaches can make 
diagnosing errors or understanding limitations difficult.  This is particularly 
problematic in high-stakes applications like flood warning systems. 

Data quality and availability remain significant constraints, particularly in 
developing regions with limited historical observations. Models trained primarily on 
data from data-rich areas may perform poorly when applied elsewhere, potentially 
exacerbating inequities in risk management capabilities.  

Finally, AI can significantly accelerate computation but not eliminate the 
fundamental uncertainties in predicting complex natural systems.  

Regardless of the modelling approach, chaos dynamics place theoretical limits on 
forecast accuracy. Well-designed AI systems acknowledge these limitations through 
appropriate uncertainty quantification rather than promising precision beyond what 
physics allows. 

The most promising direction for AI in physical process modelling is not to replace 
traditional approaches but to complement them through hybrid systems. Physics-based 
models provide the foundation of understanding and ensure consistency with natural 
laws. At the same time, AI components accelerate computation, fill gaps where 
theoretical understanding is incomplete, and enable new applications not previously 
possible. 

218



“For flood risk precisely, we can envision a modelling ecosystem 
where global AI weather models feed downscaled predictions to a 
mix of traditional and AI-enhanced hydrological models. These 

physical models generate consistent scenarios that drive banking 
assessments through machine learning damage functions and 

business interruption models. The entire system operates 
coherently, with uncertainty appropriately characterised and 

propagated throughout.”- David Kelly, MKM. 

Achieving this vision requires technical innovation and continued investment in 
observational networks, data-sharing infrastructure, and cross-disciplinary 
collaboration. Integrating these advanced AI techniques with banking frameworks 
represents the frontier of comprehensive flood risk assessment and management. 

Integrated Modelling: Green Shoots of Innovation 
from Across the World 

Despite the significant challenges, several pioneering initiatives have demonstrated 
the value of the integrated modelling paradigm. The Thames Estuary 2100 project in 
the United Kingdom represents one of the earliest comprehensive efforts to connect 
climate projections to banking implications, creating a flexible adaptation pathway that 
has informed billions of pounds of infrastructure investment. While not fully 
implementing the time series-driven architecture described above, this project 
established many governance principles and cross-disciplinary collaboration patterns 
that more technical implementations have followed. 

More recently, the Nebraska Department of Natural Resources partnered with the 
reinsurance industry to develop an integrated model for the Platte River basin that 
connects weather generators, hydrological models, and insurance loss models. This 
system produces consistent scenarios across physical and banking domains, allowing 
policymakers to evaluate the physical effectiveness and the economic efficiency of 
proposed flood mitigation measures. By maintaining consistency across the modelling 
chain, the project enables apples-to-apples comparisons of different intervention 
strategies—something previously impossible when physical and banking assessments 
used different underlying scenarios. 

NVIDIA's Earth-2 initiative represents the most ambitious application of AI to 
environmental modelling at scale. By combining their FourCastNet global weather 
forecasting model with CorrDiff's downscaling capabilities, NVIDIA has created a 
system that can generate high-resolution (2km) weather forecasts up to 500 times 
faster than traditional numerical weather prediction methods. The platform moves 
from coarse 25km resolution global forecasts to localised predictions that capture the 
fine-grained atmospheric dynamics critical for accurate flood prediction.  

What makes Earth-2 particularly relevant to integrated flood risk modelling is its 
end-to-end approach: the same platform that produces weather forecasts can drive 
hydrological simulations and, increasingly, is being connected to banking risk 
assessment systems. Early banking service adopters already use Earth-2 outputs to feed 
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their risk models, creating a more seamless connection between cutting-edge climate 
science and banking decision-making. This integration is particularly valuable for flood 
modelling, where the spatial resolution of precipitation forecasts directly impacts the 
accuracy of subsequent hydrological and banking models. 

Early implementations have not been without challenges. All required substantial 
investment in data infrastructure, encountered unexpected complications in the model 
coupling, and faced significant change management hurdles in organisations 
accustomed to more siloed approaches. Yet they also demonstrated tangible benefits: 
more targeted underwriting, more efficient capital allocation, more effective public 
investments in resilience, and ultimately, better management of society's exposure to 
flood risk. 

The new modelling paradigm remains in its early stages, with implementations 
limited to well-resourced organisations and specific geographical regions. Yet the 
direction is clear: the future of flood risk modelling lies in coherent model stacks that 
connect physical processes to banking outcomes through calibrated time series, 
maintaining consistency and appropriately characterising uncertainty throughout the 
system. 

These models can translate predictions of physical disruption—roads flooded, 
utilities offline, buildings damaged—into estimated banking impacts on the business 
and local operations that make a property worth living in, providing a much more 
complete picture of flood risk. 

Modelling for Time Series - Role of AI 

Artificial intelligence radically transforms our ability to model and predict physical 
risks, particularly in creating the weather and gauge level time series that form the 
foundation of our integrated approach. The role of AI in this domain represents a 
significant evolution from traditional statistical methods, offering enhanced accuracy 
and computational efficiency. 

Weather Time series Generation 

The creation of weather time series relies on a hybrid approach that combines the 
strengths of AI with sophisticated Monte Carlo simulation techniques: 

Distribution Calibration 

AI models, particularly deep learning architectures, excel at calibrating the 
distribution of weather patterns based on historical data. These models can identify 
subtle relationships between atmospheric variables that traditional statistical methods 
might miss. By analysing decades of meteorological observations, AI systems learn the 
complex dependencies between temperature, pressure, precipitation, and other 
factors contributing to flood-generating weather systems. 

Pattern Recognition 

Neural networks demonstrate remarkable skill in recognising precursors to extreme 
weather events. By training on historical data that includes normal conditions and 
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those preceding major flood events, these systems can identify early warning signals 
within emerging weather patterns. 

Monte Carlo Path Generation 

Once AI has calibrated the underlying distributions, Monte Carlo techniques 
generate thousands of possible weather scenarios. Each path represents a plausible 
evolution of weather patterns, with the distribution of these paths reflecting the 
probabilities informed by the AI's analysis of historical data and climate projections. 

This hybrid approach leverages AI's pattern recognition capabilities while 
maintaining the statistical rigour of Monte Carlo simulations. 

Non-linear Gauge Response Modelling 

The relationship between precipitation and gauge levels is highly non-linear and 
influenced by countless local factors. AI models, particularly recurrent neural networks 
and graph neural networks, are ideal for capturing these complex relationships without 
requiring explicit parameterisation of every contributing factor. 

Real-time Adaptation 

Modern AI frameworks can incorporate real-time data to refine predictions as 
events unfold continuously. This adaptive capability allows for dynamic “intra-day” 
forecast updating as new information becomes available, improving accuracy 
throughout the evolution of flood events. 

Model Governance Considerations 

A significant advantage of running both weather pattern and gauge level predictions 
through the same AI framework is enhanced model governance. A unified modelling 
framework ensures consistent assumptions across the entire prediction chain, reducing 
the risk of incompatible methodologies introducing errors or biases. 

An integrated approach allows for greater transparency to track how uncertainties 
propagate from weather predictions to gauge levels, providing a more comprehensive 
understanding of confidence intervals in the final forecasts. 

A unified AI framework should allow for more efficient allocation of computational 
resources across different stages of the prediction process, optimising performance 
where it matters most. 

Convergence Challenges 

Yet this convergence brings unprecedented challenges. How do we manage 
uncertainty as it propagates through multiple model layers? What governance 
structures can ensure both innovation and responsible deployment? How do we 
maintain transparency when complex AI systems interact across domains? How do we 
ensure that these powerful new capabilities serve the broader societal goal of creating 
more resilient communities in the face of increasing flood risk? 

The good news is that the technical challenges follow classic model issues any 
banking entity has confronted: 
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• Uncertainty propagation: As data flows through the model stack, uncertainties 
compound at each level. 

• Computational demands: Running sophisticated AI-driven time series 
forecasting requires significant computing resources. 

• Data standardisation: Creating consistent formats for weather, hydrological, 
and banking data remains challenging unless we stay within the FINOS CDM 
framework from the outset. 

• Model interoperability: Ensuring that outputs from physical models can 
seamlessly serve as inputs to banking models. 

• AI explainability: Making complex AI-driven predictions interpretable for 
decision-makers who may lack technical expertise. 

The path forward requires technical innovation and new forms of collaboration that 
bridge traditional disciplinary and industry boundaries. Banking institutions, weather 
and atmospheric scientists, hydrologists, and technology providers are required to 
collaborate to build integrated time series frameworks for effective risk management. 

The Hidden Architecture of Capital Markets 

The advances in AI-driven physical modelling would be of limited value for 
integrated risk assessment without parallel innovations in translating physical outputs 
into output that can be ingested directly into banking systems without disrupting 
existing operating models. Neural network approaches have proven particularly 
effective at learning the complex, non-linear relationships between physical flood 
characteristics and resulting damages. 

Damage functions—the mathematical relationships that convert flood depths to 
property damages—traditionally rely on simplified curves derived from limited 
historical data. Machine learning approaches now enable much more nuanced damage 
prediction by incorporating additional factors beyond water depth: duration of 
inundation, flow velocity, water contamination, building materials, occupancy type, 
and even socioeconomic factors that might influence recovery capacity.  

The heart of banking institutions lies what industry insiders, under various guises, 
call the PVM architecture (Product, Valuation, and Market data).  

This classification system, developed over decades, is how banks seamlessly process 
an astonishing $500 trillion in instruments daily without significant incidents since the 
2008 banking crisis. Each banking instrument is assigned a specific PVM instruction set 
that: 

• Classifies the product type (equity, bond, swap, option, MBS). 

• Defines its market data model (what inputs are needed). 

• Specifies the analytics model (how to value and risk-manage it). 
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The standout element frequently underappreciated is the suffix "model" next to 
market data. While much of the market data is observable, such as a forex rate, a 
material subset is model-derived.  

This model-centric interim step, which creates curves and surfaces and drives 
higher-order market data such as implied volatility and correlation, is critical as it adds 
complexity and model risk to the process. 

The industry has worked hard since the SABR swaption surface model failure in 
2008 and the breakdown of the inflation curve construction in 2022 to establish 
considerable model governance to ensure their continued performance. 

The Time Series Engine for Capital Markets 

“Time series—chronological sequences of observations capturing 
how markets behave over time—of market data, whether observed 

directly or derived, are the fuel that feeds the capital market's 
engine.”- Johnny Mattimore, MKM. 

The importance of time series extends far beyond facilitating market-makers: 

• Algorithmic Trading Strategies: Quant teams build trading algorithms by 
detecting pattern anomalies between recent prices and their historical time 
series. 

• Risk Management Systems: You cannot discuss time series without 
acknowledging their crucial role in Value-at-Risk (VaR) engines, which are 
essentially time series processors. 

• Regulatory Capital Requirements: Perhaps most critically, the stress tests 
determining how much capital banks must hold are calibrated using time series 
data. 

• Research and Origination: All of those research documents have a chart 
explaining why their viewpoint now needs attention by the decision-makers and 
policy deciders. 

The Physical Risk Integration Challenge 

As banking institutions face mounting pressure to incorporate physical hazard risks 
into their frameworks, we've hit a fundamental compatibility problem. 

Most physical risk across natural hazards into risk information comes in the form of 
hazard curves—showing, for example, that a 1-meter flood is expected every 20 years, 
whereas a 2-meter flood is expected every 500 years.  
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“This works well for the insurance industry, but it does not work for 
banking. The reason is that any risk information for banking must 
integrate with banking's PVM architecture. To achieve this, the risk 

information must be presented as a time series with all of the 
attributes of market data.”- Johnny Mattimore, MKM. 

This integration is far more than a technical exercise. The coherent model stack 
connects previously disparate domains: neural networks that identify subtle precursors 
to extreme precipitation events; reinforcement learning algorithms that optimise the 
simulation of water movement across complex topographies; and gradient-boosting 
techniques that translate predicted water levels into location-specific damage estimates 
and ultimately into dynamic pricing models. 

A Time Series Approach to Physical Risk 

MKM Research Labs, in collaboration with esteemed partners in the FINOS 
collective, is pioneering an innovative solution to this architectural disconnect. Rather 
than conforming to the traditional hazard curve paradigm, we're approaching physical 
risk through the lens of what banks already understand: time series data. 

“Rather than reinventing how banks operate, we need to go back to 
the beginning and build the physical risk equivalent of what powers 
markets today: robust, reliable, and relevant time series data that 

can plug directly into existing banking infrastructure.”- David Kelly, 
MKM 

The goal is not to predict the weather but to create comprehensive time-series 
distributions that adhere to the High-Resolution Rapid Refresh (HRRR) weather data 
schema. This approach enables us to generate distributions of potential weather 
patterns, including crucial parameters such as direction, precipitation intensity, and 
atmospheric conditions. 

We employ standard fluid dynamics models combined with precise terrain data 
from these weather pattern time series to derive second-order time series: water-level 
measurements at specific river gauges. This methodology creates a continuous chain of 
causality from weather events to physical impacts that can be expressed in the 
language of banking markets. 

By adopting the local meteorological department's definition of flood alert levels—
similar to how a strike price operates in options markets—we establish clear, 
measurable thresholds that can be used to design parametric insurance products. 

FINOS CDM and Physical Risk Swaps 

Within the FINOS Common Domain Model, MKM Research Labs has defined a 
Physical Risk Swap that is remarkably similar to credit default swaps (CDS) as defined 
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by ISDA documentation. While a CDS pays out upon a credit event, these physical risk 
instruments payout when gauge measurements cross predefined alert levels. 

Most importantly, the valuation methodology for these instruments follows 
established banking market principles: 

• Historical time series of gauge measurements inform baseline expectations. 

• Synthetic time series generated from climate models provide forward-looking 
scenarios. 

• Standard derivative pricing techniques can be applied to determine fair values. 

This approach transforms an insurance-oriented hazard assessment into a market-
compatible banking instrument that can be seamlessly integrated into banks' existing 
PVM architecture. 

The introduction of Physical Risk Swaps creates the birth of a brand new asset class 
that will contribute to the protection—and most importantly, the reduction of insurance 
cost—of an asset class that, in the US residential market alone, is valued at $52.5 trillion 
with $12.6 trillion of outstanding mortgages. Of these, 12 million properties, in addition 
to those already in FEMA's Special Flood Hazard Areas, have a significant risk of 
flooding. 

Final Thoughts 

The journey through the cutting-edge developments in flood risk modelling reveals 
a landscape transformed by artificial intelligence and interdisciplinary collaboration. 
What emerges is not merely a technological evolution but a fundamental 
reconceptualisation of how we understand and manage flood risk across the physical-
financial continuum. 

The integration of AI-enhanced weather prediction, sophisticated hydrological 
modelling, and banking-compatible time series frameworks represents perhaps the 
most significant advancement in flood risk management since the introduction of 
computational fluid dynamics. This coherent model stack approach dissolves the 
artificial boundaries between scientific domains and banking analysis, allowing us to 
see risk as nature does: as a continuous flow from cloud movements through flood time 
series to parametric attribution. 

While the technical achievements are remarkable, the path forward depends 
equally on standardisation and governance. The FINOS Common Domain Model (CDM) 
provides the essential scaffolding for data standardisation, creating a shared language 
that enables physical risk information to flow seamlessly through banking systems. This 
standardisation is not merely a technical convenience but a prerequisite for market 
development, regulatory compliance, and ultimately, societal resilience. 

In parallel, legal standardisation through ISDA documentation brings the clarity and 
certainty that market participants require. By adapting established frameworks for 
innovative instruments like Physical Risk Swaps, we build on decades of market 
evolution rather than starting from scratch. This approach speeds up adoption and 
guarantees compatibility with existing risk management frameworks. 
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Perhaps most critically, robust model governance must support every aspect of this 
integrated architecture. As uncertainty propagates through multiple model layers, 
transparency and validation become not only regulatory requirements but also 
essential components of a trustworthy system. From neural networks predicting 
precipitation patterns to the complex valuation models for physical risk instruments, 
each component must undergo rigorous governance that recognises both its individual 
characteristics and its role in the broader system. 

The convergence of cutting-edge AI techniques with established banking 
frameworks represents a measured optimism rather than unbridled techno-
utopianism. We recognise the challenges: computational demands remain substantial, 
data quality varies significantly across regions, and model interoperability requires 
continued attention. Yet these challenges appear increasingly surmountable through 
collaborative effort and technological innovation. 

As we conclude this exploration of future developments, we can observe with quiet 
confidence that the tools required for comprehensive flood risk management are 
rapidly materialising. The integration of physical science and banking analysis through 
standardised time series provides a pathway to more resilient communities, more 
efficient capital allocation, and ultimately, a more sustainable relationship with our 
changing environment climate.  

I will now end this book with another quote! 

“This is not the end of the journey but rather the beginning of a new 
paradigm—one that promises to transform how we anticipate, 

mitigate, and respond to one of humanity's oldest and most 
persistent challenges.”- David Kelly, MKM. 
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Glossary of Terms 

A
• Chronic Physical Events: Sudden and severe weather occurrences, such as floods, 

storms, or hurricanes, can immediately damage properties and infrastructure. 

• Adaptation Planning: Developing strategies to adjust to actual or anticipated 
climate change effects is especially important for property-level flood resilience 
measures. 

• Affordability Ratio: The percentage of income allocated to housing costs, 
including mortgage payments and insurance premiums, utilised in mortgage 
valuation models to evaluate default risk. 

• Aleatory Uncertainty is the inherent randomness in natural processes that 
cannot be mitigated through additional information or improved models; it 
contrasts with epistemic uncertainty. 

• Annual Exceedance Probability: The likelihood that a specified flood level will be 
surpassed in any given year, often expressed as a percentage (e.g., 1% annual 
exceedance probability for a "100-year flood"). 

• Asset-Level Analysis: A thorough risk assessment carried out at the level of 
individual properties or assets, contrasting with portfolio-level analysis. 

• Atmospheric State Variables: Essential parameters that describe atmospheric 
conditions, including temperature, pressure, humidity, and wind vectors, which 
are used in weather prediction models. 

B
• Basel III/IV: International regulatory frameworks for bank capital requirements 

that increasingly include climate and physical risk considerations. These 
regulations establish standards for how banks must measure, disclose, and hold 
capital against various risks, with evolving requirements for incorporating 
physical and transition climate risks into banking operations. 

• Bayesian Approaches: Statistical methods that update probability estimates as 
new data becomes available; widely used in weather prediction and flood risk 
assessment to integrate prior knowledge and new observations. 

• Bayesian Inference: Statistical method used to update the probability estimate for 
a hypothesis as more evidence or data becomes available. It is based on Bayes' 
Theorem, which provides a way to calculate the probability of a hypothesis (or 
model) given observed data. As the industry gathers more data, we update our 
belief (posterior probability). 

• Beta Distribution: A family of continuous probability distributions defined on the 
interval [0,1], commonly used to model damage ratios in vulnerability functions. 
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• Black Box: A system or model whose internal workings are not transparent or 
easily understood; a concern with specific AI models used in risk assessment. 

• Boundary Conditions are the values of variables at the edges of a modelled 
domain, which are essential for solving hydrological and hydraulic models. 

•  Boundary layer in weather refers to the thin layer of air at the Earth's surface 
that is directly influenced by the surface itself (land, water, vegetation, etc.). This 
layer is typically around 1 to 2 kilometers (km) thick, although it can vary 
depending on factors like time of day, weather conditions, and geography. It 
plays a crucial role in weather dynamics because it's where most weather 
phenomena, like temperature, moisture, and wind, interact with the Earth's 
surface. 

• Building Arrangement Effects: The impact of building configurations in urban 
environments on flood flow paths and property-specific flood exposure. 

• Business Interruption: Banking losses arising from the inability to operate a 
business during and after a flood event; a critical component of comprehensive 
flood impact assessment. 

C
• Capital markets Approach: A methodology for valuing physical risk that adapts 

techniques from banking derivatives markets, particularly credit default swaps, 
to quantify and price flood risk. 

• Catastrophe Modelling: Analytical techniques that estimate the physical, social, 
and economic impacts of natural disasters by combining hazard, exposure, and 
vulnerability components. 

• CDM (Common Domain Model): A standardised data representation framework 
developed through FINOS that establishes consistent definitions for weather 
events, flood events, properties, mortgages, and other elements of physical risk 
assessment.  

• Climate Biennial Exploratory Scenario (CBES): A stress-testing exercise 
conducted by the Bank of England to assess how climate change might impact 
the UK banking system. It evaluates financial institutions' resilience to transition 
risks and physical risks across multiple scenarios and time horizons, enabling 
regulators to understand potential systemic vulnerabilities. 

• Coastal Flooding is the inundation of land areas along coastlines, typically caused 
by storm surges, high tides, or tsunamis. It has distinct characteristics that set it 
apart from riverine flooding. 

• Compound Flood Events: Situations in which multiple flood mechanisms occur 
simultaneously or in close succession, resulting in more complex and severe 
impacts than single-mechanism events. Examples include combined coastal and 
riverine flooding during storms or pluvial flooding coinciding with high 
groundwater levels, creating amplified impacts through their interaction. 

• Convective storm is a type of storm that forms due to the upward movement 
(convection) of warm, moist air. This process creates instability in the 
atmosphere, which leads to the development of storms such as thunderstorms, 
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tornadoes, and hailstorms. Convection occurs when warmer air near the Earth's 
surface rises because it is less dense than the cooler air above it. 

• Convolution Integral: A mathematical operation used in hydrograph analysis that 
combines excess rainfall with the unit hydrograph to calculate direct runoff. It 
enables hydrologists to predict streamflow response to complex rainfall patterns 
by treating them as a sequence of simple inputs, each generating its own scaled 
hydrograph response. 

•  Convolutional Neural Networks: A class of deep neural networks primarily used 
for analysing visual data, such as images and videos. They are particularly 
powerful for tasks like image classification, object detection, and segmentation 
but have also been adapted to other domains like speech and text processing. 
CNNs are designed to automatically and adaptively learn spatial hierarchies of 
features from input data. 

• Copula Functions: Mathematical tools that describe the dependence between 
random variables, beneficial for modeling the correlation between flood-causing 
factors. Copulas separate the marginal distributions of individual variables from 
their joint dependency structure, enabling more flexible and accurate 
representation of complex relationships like those between precipitation, soil 
moisture, and river levels. 

• Correlation Distance Parameter: The spatial distance (typically around 1000m) 
within which properties experience intensely correlated flood impacts is crucial 
for understanding portfolio-level risk. 

• Coupled partial differential equations (PDEs) are a system of two or more partial 
differential equations that are interrelated or "coupled" together. These equations 
involve multiple unknown functions that depend on the same set of independent 
variables (such as time and space) and are linked through their terms. The 
solutions to these equations are dependent on one another. 

• Credit Default Swap (CDS): A banking derivative that protects against the risk of 
default by a particular entity, serving as a model for the development of Physical 
Risk Swaps. 

• Credibility Theory: An actuarial approach that balances individual risk 
experience with broader class experience when setting insurance premiums. 

D
• Damage Functions: Mathematical relationships that translate flood characteristics 

(depth, duration, velocity) into expected property damage, typically expressed 
as a percentage of property value. 

• Default Probability (PD): The likelihood that a borrower will default on required 
mortgage payments, potentially influenced by flood events through income 
disruption or property devaluation. 

• Designed neural network architectures refer to the various specific 
configurations of neural networks that are created and optimised for particular 
tasks or types of data. These architectures determine how the neurons (or nodes) 
are connected, how data flows through the network, and how the network learns 
from the data. Different architectures are suited to various types of problems, 
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and they are typically chosen based on the nature of the input data, the 
computational resources available, and the desired output. 

• Digital Elevation Models (DEMs): Three-dimensional representations of terrain 
surfaces used in flood risk assessment to determine water flow paths and 
inundation zones. 

• Digital Regulatory Reporting (DRR): A framework within FINOS that standardizes 
the regulatory reporting process, integrated with Physical Risk Swaps to ensure 
compliance. DRR transforms regulatory rules into machine-executable code, 
streamlining reporting while ensuring consistency across institutions. 

• Discounted Cash Flow Analysis: A valuation method that estimates the value of 
an investment based on its expected future cash flows, adjusted for the time 
value of money and risk. 

• Disturbance Absorption Thresholds: The magnitude of flood events that natural 
systems can accommodate while maintaining their essential functions; exceeding 
this threshold may sharply reduce natural resilience. 

• Distribution Path Modelling: An approach that characterizes the entire space of 
potential weather pattern evolutions, especially those that could lead to extreme 
precipitation events. Rather than producing single forecasts, this method maps 
the full probability distribution of possible weather trajectories, providing a more 
complete picture of potential flood-generating conditions. 

• Downscaling: Producing high-resolution local forecasts from coarse global 
predictions is essential for capturing localised precipitation patterns that drive 
flood events. 

• Duration-Depth-Velocity Matrices: Three-dimensional classification schemes that 
acknowledge that flood impacts depend on water depth, flow velocity, and event 
duration. 

• Dynamic Pressure Considerations: Analysing the hydrodynamic forces exerted by 
moving floodwaters on structures is critical in high-velocity flood scenarios.  

• Dynamic Wave Approach: A hydraulic modelling technique that employs the full 
Saint-Venant equations, including all acceleration and pressure terms, to provide 
the most complete representation of flow dynamics. While computationally 
intensive, this approach captures complex hydrodynamic effects crucial for 
accurate flood modeling in rapidly changing conditions. 

E
• Earth-2 Initiative: NVIDIA's extensive project aims to create a digital twin of 

Earth's systems by combining global weather models with hydrological and 
impact assessments for integrated climate risk modelling. 

• Enterprise Risk Management (ERM) Integration: The process of incorporating 
climate-related risks into an organization's comprehensive framework for 
assessing and addressing all risks that affect its business objectives. This ensures 
climate risks are evaluated alongside traditional risks within established 
governance structures, rather than being managed in isolation. 
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• Environmental Resilience Factors: These natural systems buffer, absorb, or 
amplify flood hazards before they impact vulnerable assets, including wetlands, 
forests, and soil systems. 

• Epistemic Uncertainty: This type of uncertainty arises from incomplete 
knowledge about asset characteristics and their vulnerability to hazards; unlike 
aleatory uncertainty, it can be mitigated through additional data or improved 
modelling. 

• Event_CDM: A component of the Common Domain Model that standardises the 
representation of extreme weather event pathways, utilising advanced AI 
platform components. 

• Exceedance Probability: This refers to the likelihood that a specific hazard 
intensity (such as flood depth) will be met or surpassed within a given time 
frame, typically one year. 

• Expected Cash Flow (ECF): In mortgage valuation, the scheduled payment is 
adjusted for the probability of default and loss given by default. 

• Expected Shortfall (ES), also known as Conditional Value at Risk (CVaR), is the 
expected loss in the worst α% of cases. Unlike Value at Risk (VaR), which only 
measures the minimum loss at a given confidence level, ES calculates the average 
of all losses that exceed this VaR threshold, providing a more comprehensive 
picture of tail risk and addressing VaR's failure to capture the severity of extreme 
losses beyond the threshold. 

• Exposure Analysis: This process identifies assets (buildings, infrastructure, etc.) 
that could be impacted by flooding, including their location, value, and 
characteristics. 

• Exposure Assessment Integration: This involves a comprehensive analysis of all 
potential paths by which floodwaters could reach a property, incorporating 
topographic, locational, and built environment factors. 

• Extreme Event Prediction: These are specialised approaches for forecasting rare 
but severe weather events, often necessitating methodologies different from 
those used for typical conditions. 

• Extreme Value Theory (EVT) is a statistical framework for modelling and 
analysing the stochastic behaviour of extreme events—rare occurrences that lie in 
the tails of probability distributions. These events, though infrequent, often have 
significant societal, financial, or environmental impacts, making their 
quantification critical for risk management across diverse fields 

F
• Finite Difference Approximation: A numerical method used in hydrological 

routing to solve differential equations by replacing continuous derivatives with 
discrete differences. In flood modelling, this approach enables practical 
computation of water movement through complex river systems and across 
floodplains.  
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• FINOS (Fintech Open Source Foundation): An industry consortium that promotes 
open collaboration in banking services technology, including developing the 
Common Domain Model for physical risk. 

• Fixed-Floating Exchange: The principle behind Physical Risk Swaps is that one 
party pays a fixed rate over the contract period while the other makes contingent 
payments based on realised flood levels. 

• Flash Flooding: Rapid-onset flooding characterised by high water velocities, 
typically occurring within six hours of the initiating event (heavy rainfall or 
infrastructure failure). 

• Flood Classification Systems: Methodologies for categorising flood events based 
on source mechanism, temporal characteristics, spatial extent, and other 
relevant factors. 

• Flood Depth: The height of floodwater above the ground or floor level is a 
primary factor in determining damage to structures. 

• Flood Gauges CDM: A standardised representation of flood monitoring devices 
within the Common Domain Model, creating definitive trigger points for banking 
contracts. 

• Flood Insurance Rate Maps (FIRMs): Official maps produced by the Federal 
Emergency Management Agency delineate flood hazard areas for insurance and 
regulatory purposes.  

• Flood Re: A not-for-profit reinsurance scheme established in the UK to ensure 
affordable flood insurance remains available to households in high-risk areas. 
Designed with a planned 25-year lifespan, Flood Re creates a transitional 
mechanism to move from subsidised to risk-reflective pricing by 2039. 

• Flood Risk Swaps: Banking instruments designed to transfer flood risk from one 
party to another, similar to credit default swaps but triggered by physical events 
rather than credit events. 

• Fluvial (Riverine) Flooding: Inundation is caused when water exceeds the 
capacity of river channels, resulting in overbank flow across the floodplain. 

• FourCastNet: NVIDIA's neural network approach to global weather forecasting 
can generate predictions up to 500 times faster than traditional numerical 
methods. 

G
• Gauge-Based Triggering System: This is a mechanism used in Physical Risk 

Swaps, where payouts are determined by water level measurements at specific 
river or flood gauges. 

• Generalised linear models (GLMs) are statistical models utilised in premium 
calculation that simultaneously consider multiple risk factors. 

• Generative Adversarial Networks (GANs) are a class of machine learning models 
designed for unsupervised learning, enabling synthetic data generation that 
mimics real-world distributions. GANs employ two neural networks—a 
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“generator” and a “discriminator”—trained adversarially to improve each other 
iteratively. 

• Geographic Diversification: A risk management strategy that spreads property 
exposures across various watersheds and flood zones to reduce portfolio-level 
correlation effects. 

• Geomorphological Unit Hydrograph (GUH): An approach that connects 
hydrograph shape to catchment physical characteristics by incorporating stream 
order statistics and network width functions. 

• Gradient Boosting Algorithms: Machine learning techniques that create 
predictive models by combining multiple weak models, particularly effective for 
defining detailed insurance rate classes. 

• Graph Neural Networks: Specialised deep learning architectures that depict river 
systems as connected graphs, with nodes representing gauge locations and edges 
representing river reaches. This approach captures the topological relationships 
between different parts of a river network, improving the modelling of how flood 
waves propagate through the system. 

• GRIB2 Format: a standardised file format for storing and distributing gridded 
meteorological data, commonly used for weather model outputs and historical 
climate data. GRIB2 utilises sophisticated compression techniques to efficiently 
store large volumes of data but requires specialised software for access and 
interpretation. 

• Groundwater Flooding is inundation caused by a rise in the water table to the 
ground surface, typically following extended periods of high precipitation. 

• Growth-at-Risk (GaR): A framework that associates banking conditions with the 
distribution of future economic growth, increasingly integrating physical risk 
factors. 

H
• Hazard Curve: A graphical representation of the relationship between hazard 

intensity (such as flood depth) and its probability of occurrence, which forms the 
foundation of physical risk assessment. 

• Hazard Identification: The first step in risk assessment involves recognising and 
characterising potential sources and mechanisms of flooding. 

• Hazard Rate: In the context of Physical Risk Swaps, the conditional probability of 
a physical event occurring within a small time interval, given that it has not 
happened previously. 

• HEC-RAS (Hydrologic Engineering Center's River Analysis System): Industry-
standard software developed by the U.S. Army Corps of Engineers for hydraulic 
modelling, capable of simulating one-dimensional and two-dimensional water 
flow. 

• Hidden Markov Models (HMMs): Probabilistic models that treat precipitation as a 
system transitioning among hidden weather states, each associated with distinct 
precipitation characteristics. 
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• High-Resolution Rapid Refresh (HRRR): This is an operational weather prediction 
model with a 3km spatial resolution that provides frequently updated forecasts, 
valuable for near-real-time risk assessment. 

• Hydraulic Modelling: The simulation of water movement based on fluid dynamics 
principles, typically solving the Saint-Venant equations to determine water 
surface elevations and flow velocities. 

• Hydrological Modelling: Depicting how precipitation transforms into runoff and 
river flow, incorporating factors such as infiltration, evaporation, and 
groundwater movement.  

• Hydrostatic Pressure Distribution: An assumption in the Saint-Venant equations 
that pressure varies linearly with depth at any point in a water column. This 
simplification enables practical hydraulic modelling while maintaining sufficient 
accuracy for most flood simulation applications. 

I
• Impact Quantification: Converting physical hazard characteristics into 

measurable effects on property, infrastructure, and economic systems. 

• Importance Sampling: A variance reduction technique used in Monte Carlo 
simulations that focuses computational resources on regions of the state space 
most relevant to risk assessment. This approach improves efficiency by 
concentrating sampling in areas of the probability distribution that have the 
greatest impact on flood risk, particularly in the tails of distributions that 
represent extreme events. 

• Infrastructure Failure Flood Types: Classifications for floods resulting from the 
failure of human-made structures such as dams, levees, or urban drainage 
systems. 

• Insurance Premium Equation: The mathematical formula that combines pure 
premium, expense loading, risk loading, and profit margin to determine the cost 
of insurance coverage. 

• Intensity-Duration-Frequency (IDF) Curves: Hydrological modelling uses graphic 
representations of the relationship between rainfall intensity, duration, and 
frequency. 

• Intensity-Duration-Frequency (IDF) Relationships: Mathematical functions that 
relate rainfall intensity to storm duration and recurrence frequency. These 
relationships, typically presented as curves or equations, provide essential inputs 
for hydrological modelling and are fundamental to flood hazard assessment. 

• ISDA Master Agreement: The standardised contract used for over-the-counter 
derivatives transactions, providing the contractual foundation for Physical Risk 
Swaps. 

J
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• Joint Probability Analysis: Statistical techniques considering the simultaneous 
occurrence of multiple flood-causing factors, such as high river levels coinciding with 
heavy rainfall. 

K
• Kinematic Wave Approximation: A simplified form of the Saint-Venant equations 

that neglects acceleration and pressure terms, applicable primarily to steep slopes 
where gravity and friction forces dominate flow behaviour. 

L
• LISFLOOD: an open-source distributed hydrological model developed by the 

European Commission's Joint Research Centre to simulate flood events. 

• Loan-to-Value (LTV) Ratio: This ratio of mortgage debt to property value is a key 
factor in mortgage risk assessment and can be significantly affected by flood 
events. 

• Local Adaptation refers to tailoring global or regional models to capture location-
specific weather or flood behaviour in modelling contexts.  

• Local Loss Model (LLM): A focused approach to risk assessment that applies 
detailed vulnerability functions to specific assets or small geographic areas. This 
methodology provides high-resolution loss estimates by considering individual 
property characteristics and their particular exposure to flood hazards.  

• Loss Given Default (LGD): This is the amount a lender loses when a borrower 
defaults on a loan, typically expressed as a percentage of the outstanding debt. 

• Lumped Models: Hydrological models that treat watersheds as single units with 
uniform characteristics, sacrificing spatial detail for computational efficiency. 

M
• Manning's n Coefficients: Parameters used in hydraulic modelling to represent 

the roughness or resistance to the flow of a channel or floodplain surface. 

• Market Value Correlation: The tendency for property values in a neighbourhood 
to rise or fall together following flood events, even affecting properties that 
weren't directly damaged. 

• Material Vulnerability Differentiation: Analysis of how different building 
materials respond to flood exposure, from structural elements to interior 
finishes. 

• Meteorological Models: Computational frameworks that simulate atmospheric 
conditions to predict weather patterns, particularly precipitation events that may 
lead to flooding. 
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• Microtopography: Small-scale terrain features (curbs, berms, garden walls) 
significantly influence urban flood pathways despite their modest size. 

• Model Risk Governance is the framework of policies, controls, and procedures 
for managing risks that rely on models. It is crucial for flood risk assessment, 
where multiple models are linked. 

• Monte Carlo Simulation is a computational technique that uses repeated random 
sampling to obtain numerical results. It is handy for exploring the range of 
possible flood scenarios. 

• Mortgage Component: A standardised structure within the Common Domain 
Model that defines how physical risk affects loan-to-value calculations, default 
probabilities, and valuation impacts. 

• Multi-criteria Evaluation Frameworks: Assessment methodologies that 
incorporate multiple factors related to property resilience, weighted according to 
their relative importance. 

• Multi-gauge Prediction: The process of generating consistent water level forecasts 
across an entire network of monitoring points, capturing how flood waves 
propagate through river systems. 

• Multivariate Class Rating: Insurance premium calculation approaches that 
simultaneously consider numerous risk factors through statistical models like 
generalised linear models. 

• Muskingum Method: A hydrological flow routing model based on weighted 
storage, used to calculate the outflow of a river reach given an inflow 
hydrograph. The method conceptualises a river reach as having both prism 
storage (regular channel volume) and wedge storage (additional volume from 
flood waves), making it particularly useful for flood wave propagation modeling. 

N
• National Flood Insurance Program (NFIP): A U.S. government program 

established in 1968 to provide flood insurance to property owners in 
participating communities. It combines insurance availability with floodplain 
management requirements and employs Flood Insurance Rate Maps (FIRMs) to 
determine premium rates and regulate development.  

• Nash Cascade: A conceptual rainfall-runoff model that represents a catchment as 
a series of linear reservoirs, each with the same storage coefficient. This 
approach produces an instantaneous unit hydrograph that captures the essential 
features of catchment response while maintaining mathematical tractability.  

• Navier-Stokes Equations: The fundamental equations of fluid dynamics that 
describe the motion of viscous fluid substances, forming the theoretical basis for 
hydraulic modelling. 

• Neural Networks: Computational models inspired by the human brain that can 
learn patterns from data are increasingly applied to weather prediction and flood 
risk assessment. 
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• Non-linear Gauge Response Modelling: The use of advanced statistical techniques 
to capture the complex, non-linear relationship between precipitation and water 
levels at monitoring points. 

• Non-stationarity: The concept that statistical properties of environmental 
systems change over time is particularly important in climate contexts where 
historical patterns may not represent future conditions. 

O
• One-dimensional (1D) Hydraulic Models: Simulation frameworks that represent 

water flow along a single spatial dimension, typically the channel centerline, 
using cross-sections to capture geometry. 

• Option-Adjusted Spread (OAS): A methodology that values embedded options in 
banking instruments by simulating numerous future scenarios for interest rates 
and housing prices. 

• Orographic Effects: The influence of mountains and other terrain features on 
precipitation patterns, often creating localised heavy rainfall that traditional 
weather models struggle to account for. OS-Climate Framework: An open-source 
collaborative initiative for climate risk assessment that standardises approaches 
to hazard curve development and vulnerability modelling. 

• Orographic precipitation is a type of precipitation that occurs when moist air is 
forced to rise over a mountain range or other elevated terrain. As the air rises, it 
cools and condenses, leading to the formation of clouds and, eventually, 
precipitation. 

• OS-SFT (Open-Source Sustainable Finance Taxonomy): A project that aims to 
harmonize regulatory interpretation across jurisdictions by creating standardized 
classifications for sustainable finance activities. This taxonomy proposed by 
Johnny Mattimore supports consistent assessment and reporting of physical risk 
impacts on financial assets across different regulatory regimes. 

• Overbank Flow: When water in a river channel exceeds capacity and spills onto 
the adjacent floodplain. 

• Own Risk Solvency Assessments (ORSA) Integration: The inclusion of hazard-
related factors within an insurer's internal process for evaluating its risk 
management framework and current and future solvency positions. This 
integration ensures that potential climate impacts on capital adequacy and 
financial stability are systematically assessed and reported to regulators. 

P
• Parametric Insurance is insurance contracts that pay out based on predefined, 

objective measurements (such as water level at a gauge) rather than assessed 
damages, providing the foundation for Physical Risk Swaps. 
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• Parametric Vulnerability Functions are mathematical distributions (like Beta, 
Gamma, or Lognormal) used to model the relationship between hazard intensity 
and damage, providing expected values and uncertainty ranges. 

• Physical Models: Hydrological approaches based on fundamental water 
movement and conservation equations demand significant data and 
computational resources but provide robust theoretical foundations. 

• Physical Risk Swap (PRS): A banking derivative instrument that transfers flood 
risk from mortgage lenders to counterparties better positioned to bear it. It is 
structured similarly to credit default swaps but triggered by physical events. 

• Physics-informed Neural Networks (PINNs): Machine learning models that 
combine neural network architectures with explicit constraints derived from the 
laws of physics, preserving physical realism while improving computational 
efficiency. 

• Pluvial (Surface Water) Flooding: Inundation is caused when rainfall overwhelms 
drainage systems or cannot infiltrate the ground, causing water to pool or flow 
over the land surface.  

• Portfolio Aggregation Techniques are methodologies for combining individual 
property-level risk assessments into comprehensive portfolio-wide measures. 
These techniques account for spatial correlation, exposure concentration, and 
diversification effects to determine overall risk profiles for mortgage or insurance 
portfolios. 

• Probability of Default (PD): In mortgage assessment, flood events may exacerbate 
a borrower's likelihood of defaulting on their loan due to property damage or 
disruption to income. 

• Product, Valuation, and Market Data (PVM): A classification system banking 
institutions use to process banking instruments, offering a framework for 
integrating physical risk into existing systems. 

• Property Clustering: The geographic concentration of properties in flood-prone 
areas, creating risk multiplier effects through correlated physical damage and 
market value impacts. 

• Property Component: A standardised structure within the Common Domain 
Model that captures essential physical characteristics, including geolocation, 
elevation, building specifications, and flood defence relationships.  

• Property-Level Flood Resilience (PFR): Specific measures implemented at 
individual buildings to reduce flood damage, including structural modifications, 
deployable barriers, and water-resistant materials. PFR approaches can 
significantly reduce loss potential through either resistance (keeping water out) 
or resilience (minimising damage when water enters). 

• Pure Premium: An insurance premium's expected loss cost component is 
determined through comprehensive risk modelling. 

• PVM (Product, Valuation, and Market Data): A classification system used by 
banking institutions to process banking instruments, offering a framework for 
integrating physical risk into existing systems. PVM provides the structural 
organization for how physical risk factors are incorporated into product 
definitions, valuation methodologies, and market data flows. 
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Q
• Quasi-Monte Carlo (QMC) Methods: Computational techniques that systematically 

explore state spaces through carefully constructed low-discrepancy sequences, 
providing more uniform coverage than conventional random sampling. 

• Queuing Loss Model: A mathematical framework for calculating the probability 
of system failure when demand exceeds capacity, applied to urban drainage 
systems during flood events. 

R
• Rainfall-Runoff Models: Hydrological frameworks that transform precipitation 

inputs into water flow outputs across landscapes, incorporating factors like 
infiltration, evaporation, and groundwater interaction.  

• Rating Territories: Geographic zones used by insurers to classify and price flood 
risk, traditionally defined by administrative boundaries but increasingly based on 
sophisticated hydrological and topographical characteristics. Modern 
approaches use high-resolution data to create micro-territories that reflect actual 
risk gradients more accurately. 

• Recurrence Interval: The average time between flood events of a specified 
magnitude, often expressed in years (e.g., "100-year flood"). 

• Recurrent Neural Networks (RNNs) are machine learning architectures designed 
explicitly for sequential data like time series. They can learn temporal 
dependencies in water level predictions. 

• Regularisation: Machine learning techniques prevent overfitting by incorporating 
a penalty term into the loss function, which is crucial for developing robust flood 
prediction models.  

• Regulatory Capital Methodologies are frameworks that determine how much 
capital financial institutions must hold against specific risks. These 
methodologies are evolving for physical risks like flooding to incorporate hazard 
frequency, severity, and correlation effects within established frameworks like 
Basel standards. 

• Resilience Certification Programs: Standardized verification of implemented 
flood protection measures and their expected performance, increasingly 
recognised by insurance markets. 

• Return Period: The inverse of the annual exceedance probability; a 100-year 
return period corresponds to a 1% annual exceedance probability.  

• Risk-Reflective Pricing: Insurance premium calculation that accurately reflects a 
property's actual flood risk based on detailed hazard, exposure, and vulnerability 
assessment. This approach contrasts with subsidised or community-rated pricing 
by charging higher premiums for higher-risk properties, creating economic 
incentives for risk reduction. 
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• Riverbank Breach Modelling: Specialized simulation of failures in natural 
riverbanks or engineered levees, often producing rapid inundation with distinct 
hazard characteristics. 

• Risk Loading: A component of an insurance premium that reflects uncertainty 
and volatility in the loss distribution, crucial for properties exposed to 
catastrophes. 

• Runoff Generation Process: The transformation of precipitation into water 
movement across landscapes, encompassing surface runoff, subsurface flow, and 
groundwater contribution. 

S
• Saint-Venant Equations: A system of partial differential equations describing one-

dimensional unsteady flow in open channels, forming the mathematical 
foundation for hydraulic modelling. 

• Schedule Rating: An insurance pricing approach that applies credits or debits for 
specific risk characteristics not captured in standard rating factors, such as loss 
control measures or construction features.  

• SCS Dimensionless Unit Hydrograph: A standardized unit hydrograph developed 
by the Soil Conservation Service (now Natural Resources Conservation Service) 
that represents the temporal distribution of runoff from a unit of excess rainfall. 
It provides a template that can be scaled based on watershed characteristics, 
making it widely applicable across diverse landscapes. 

• Self-Organisation Capacity: The ability of natural systems to dynamically adjust to 
changing conditions, distinguishing resilient natural flood defences from 
engineered structures. 

• Semi-Distributed Models: Hydrological approaches that segment watersheds into 
sub-basins with unique characteristics, balancing computational efficiency and 
the representation of spatial variability. 

• Sensitivity Analysis: A systematic investigation into how changes in model inputs 
affect outputs is essential for understanding uncertainty in flood risk assessment. 

• Simplifying Complex Processes: The essential reduction of intricate physical 
processes (such as cloud formation) in models because of computational 
limitations, leading to downstream effects on flood risk assessment. 

• Solvency Capital Requirement (SCR): Under the Solvency II regulatory 
framework, insurers must hold a specific amount of capital for catastrophe risk, 
directly influencing premium pricing.  

• Spatially Distributed Hydrological Model: A modelling approach that divides 
watersheds into a grid of cells with unique characteristics to simulate water 
movement across landscapes with high spatial resolution. These models can 
capture how terrain, soil, and land use variations influence runoff patterns and 
flood development.  

• Special Flood Hazard Areas (SFHAs): Designated zones on Flood Insurance Rate 
Maps where the National Flood Insurance Program's floodplain management 
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regulations must be enforced and the mandatory purchase of flood insurance 
applies. These areas face at least a 1% annual chance of flooding. 

• Snyder's Method: An empirical approach to synthetic unit hydrograph 
development that relates key hydrograph parameters to watershed physical 
characteristics. Developed in the 1930s, this method uses regional coefficients to 
estimate lag time and peak discharge based on watershed length, centroid 
distance, and other measurable features. 

• Spatial coherence refers to the consistency or correlation of a physical quantity 
(such as light, sound, temperature, or other fields) over space. It describes how 
well a property or signal is correlated across different locations in space, and it’s 
often used to analyse the structure of waves, signals, or phenomena as they 
propagate or vary over space. 

• Spatial Correlation: The tendency for nearby properties to experience similar 
flood impacts due to shared exposure characteristics, creating risk concentration 
in mortgage portfolios. 

• Stochastic Differential Equations (SDEs): Mathematical equations model random 
processes that evolve and are applied to weather pattern evolution in flood risk 
assessment. 

• Stochastic House Price Model: A mathematical approach that treats property 
values as random processes to simulate numerous possible future scenarios for 
mortgage valuation.  

• Strategic Default: A deliberate decision by a mortgage holder to stop making 
payments despite having the financial ability to continue, typically when a 
property's value falls significantly below the outstanding loan balance. In flood-
prone areas, this can occur when properties become uninsurable or suffer 
substantial devaluation following flood events. 

• Structural Vulnerability Analysis: Assessment of how building materials, critical 
system placements, foundation types, and other physical characteristics 
influence flood resilience. 

• Survival Probability: In Physical Risk Swaps, the probability that the trigger event 
(e.g., flood level exceeding threshold) has not occurred by a specific time. 

• Synthetic Unit Hydrograph: Techniques for estimating flood response without 
observed data, including the SCS Dimensionless Unit Hydrograph and Snyder's 
Method. 

T
• Tail Value at Risk (TVaR): A risk measure reflecting the average loss in the worst 

scenarios (typically the worst 0.5%) utilised to determine the necessary capital 
for catastrophe exposures. 

• Temporal Dynamics: Evaluating how flood exposure shifts over time due to 
natural processes and human interventions, encompassing coastal erosion, 
riverbed migration, and infrastructure modifications. 
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• Territorial Rating: An insurance pricing methodology that employs geographic 
location as a primary rating factor, increasingly enhanced through high-
resolution flood risk data. 

• Thames Estuary 2100 Project: A comprehensive initiative linking climate 
projections to banking consequences, establishing a flexible adaptation pathway 
for infrastructure investment. 

• Time Series Analysis involves analysing data points gathered or recorded at 
successive intervals, which is crucial for comprehending precipitation patterns 
and flood frequency. 

• Transformer Architectures: Advanced machine learning models initially designed 
for natural language processing but increasingly employed in sequential flood 
prediction problems. 

• Two-dimensional (2D) Hydraulic Models: Simulation frameworks that partition 
floodplains into grids or meshes, solving shallow water equations to ascertain 
water depth and velocity vectors throughout the domain. 

U
• Uncertainty Propagation: The process by which errors and uncertainty in input 

data and model structure are transmitted and potentially amplified through the 
modelling chain. 

• Unit Hydrograph: A mathematical method for understanding how catchments 
convert excess rainfall into runoff, illustrating the runoff response to a unit of 
rainfall input. 

• Urban Density: The concentration of buildings and impervious surfaces in 
developed areas, fundamentally altering hydrological processes by increasing 
runoff volume and peak flows. 

• Urban-Specific Flood Typologies: Specialized classification systems for urban 
flooding that incorporate drainage capacity exceedance, surface water flow 
paths, and infrastructure failure modes. 

V
• Validation Frameworks: Systematic methods for assessing model performance 

against observed data, particularly crucial for flood risk models that include 
forward-looking climate projections. 

• Value at Risk (VaR): A statistical measure of investment risk, indicating the 
maximum expected loss over a specified period at a given confidence level. 

• Variational Inference: A technique in machine learning that enables networks to 
learn and update probability distributions over weather patterns rather than 
producing single-point predictions. 
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• Vine Copula Structure: A flexible method for modelling high-dimensional 
dependencies by breaking them down into bivariate relationships, helpful in 
capturing complex interactions between atmospheric variables. 

• Vulnerability Assessment: The process of evaluating how susceptible properties, 
infrastructure, and communities are to flood damage based on their physical, 
social, and economic characteristics. 

• Vulnerability Curves are mathematical functions that link hazard intensity (such 
as flood depth) to expected damage, typically represented as a percentage of 
asset value. 

• Vulnerability Function Testing: Empirical validation of damage prediction 
models compared with actual loss data from historical flood events. 

W
• Weather Pattern Distributions: Statistical representations of possible atmospheric 

conditions, focusing on those that could lead to extreme precipitation events. 

• Weather Pattern Time series: Chronological sequences of meteorological data 
that act as inputs to hydrological models and provide the foundation for 
integrated flood risk assessment. 

• Weighted Payout Structures: Settlement mechanisms in Physical Risk Swaps 
based on the severity and location of flooding, measured by multiple gauges 
within a catchment area. 

• Wetland Buffer Capacity: Natural wetland systems' ability to temporarily store 
floodwaters and release them gradually, thus reducing downstream peak flows. 

X
• X-Year Flood: A flood with a 1-in-X probability of occurring in any given year (e.g., 

a 100-year flood has a 1% annual probability of occurrence). 

Y
• Year-over-year growth: In mortgage risk assessment, the comparative analysis of 

property values or default rates across consecutive annual periods is utilised to 
identify emerging trends in flood-affected areas. 

• Yield Curve: In banking contexts, a curve illustrates the relationship between 
interest rates and various maturity lengths, similar to hazard curves that depict 
the relationship between flood magnitude and return period. 
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Z
• Z-Score: A statistical measure that expresses a value's relationship to the mean of 

a group, used in flood risk analysis to identify statistical anomalies in gauge 
readings or damage patterns. 

• Zarr Format: A cloud-optimized data format for storing and accessing large arrays 
of meteorological data, enabling efficient processing of specific geographic 
subsets for regional flood analysis. 

• Zone-Based Pricing: Traditional flood insurance rating methods assign premiums 
based on broad risk zones, contrasted with property-specific assessment 
approaches that capture individual risk characteristics. 
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Property CDM 
Level 1 Level 2 Field Data 

Type Data Description Example 
Value

Property Header section

Header section

UPRN text Unique Property Reference 
Number 100023336785

PropertyID text Unique identifier for the 
contract

POL-2024
-001

Property 
Attributes section

Occupancy Type menu Primary use classification of 
the property

Residential 
owner-
occupied

Property AreaSqm deci
mal

Total floor area of property in 
square meters 140

Housing 
Association

boole
an

Indicates if property is 
owned by housing 
association

FALSE

Income Generating menu Property's income 
generation status No

Paying 
BusinessRates

boole
an

Indicates if property is 
subject to business rates FALSE

Building Residency menu Number of separate 
residences in building Single

Property Type menu Architectural style/category 
of property

Semi-
detached

Occupancy 
Residency menu Current occupancy status Family 

resident

Height Meters deci
mal Height of property in meters 2.35

Number Of Storeys integ
er Number of floors in property 2

Construction Year integ
er Year property was built 1962

PropertyPeriod menu Construction period 
category 1950-1975

CouncilTaxBand menu Property's council tax 
classification D

NumberBedrooms integ
er Total number of bedrooms 3

NumberBathrooms integ
er Total number of bathrooms 2

TotalRooms integ
er

Total number of rooms 
excluding bathrooms 8
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GardenAreaFront deci
mal

Front garden area in square 
meters 20

GardenAreaBack deci
mal

Back garden area in square 
meters 120

ParkingType menu Available parking facilities
Driveway 
and 
garage

AccessType menu Type of access to property Public 
road

LastMajorWorksDat
e date Date of last significant 

renovation/works
2018-06-1
5

Constructi
on section

ConstructionType menu Primary construction 
method/materials

Brick and 
block

FoundationType menu Type of building foundations
Strip 
foundation
s

FloorType menu Ground floor construction 
type

Solid 
concrete

StiltsHeight deci
mal

Height of any stilts/pillars 
supporting property 0

PropertyHeight deci
mal

Total height of property in 
metres 7.2

FloorLevelMeters deci
mal

Height of ground floor above 
ground level in metres 0.6

BasementPresent boole
an

Indicates presence of 
basement FALSE

Location section

BuildingName text Name of building if 
applicable

Rose 
Cottage

BuildingNumber text Street number of property 42

SubBuildingNumbe
r text Sub-unit number if 

applicable A

SubBuildingName text Name of sub-unit if 
applicable

Ground 
Floor Flat

StreetName text Name of street High 
Street

AddressLine2 text Secondary address line Millbrook

TownCity text Town or city name Southampt
on

County text County name Hampshire

Postcode text Property postcode SO16 4AB

USRN text Unique Street Reference 
Number 8400123
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LocalAuthority text Governing local authority 
name

Southampt
on City 
Council

ElectoralWard text Electoral ward name Millbrook

ParliamentaryConst
ituency text Parliamentary constituency 

name
Southampt
on West

Country menu Country within UK England

Region menu Geographic region South East

UrbanRuralClassific
ation menu Urban/rural development 

classification Urban

LatitudeDegrees deci
mal

Geographic latitude 
coordinate 50.9289

LongitudeDegrees deci
mal

Geographic longitude 
coordinate -1.4317

BritishNationalGrid text OS National Grid reference SU 430 
110

What3Words text What3Words location 
identifier

//
famout.ho
nest.pizza

RiskAsses
sment section

EAFloodZone menu Environment Agency flood 
zone classification Zone 2

OverallFloodRisk menu Combined flood risk 
assessment Medium

FloodRiskType menu Primary source of flood risk River

LastFloodDate date Date of most recent flood 
event 15/2/1975

SoilType menu Predominant soil 
composition Clay

GroundLevelMeters deci
mal

Height above sea level in 
meters 45

RiverDistanceMeter
s

deci
mal

Distance to nearest river in 
meters 250

LakeDistanceMeter
s

deci
mal

Distance to nearest lake in 
meters 2000

CoastalDistanceMe
ters

deci
mal

Distance to coastline in 
meters 12000

CanalDistanceMete
rs

deci
mal

Ditance to nearest canal in 
meters 350

GovernmentalDefen
ceScheme

boole
an

Covered by government 
flood defence scheme FALSE

ProtectionMeasures section

InsuranceStatus menu Current insurance coverage 
type

Standard 
cover
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FloodReEligible boole
an

Eligibility for Flood Re 
scheme TRUE

ClaimsHistory integ
er

Number of historical 
insurance claims 1

LastClaimDate date Date of most recent 
insurance claim

12/03/201
9

LastClaimType menu Nature of most recent claim Flood 
damage

Resilience
Measures section

WarningSystemStat
us menu Type of flood warning 

system in place Other

FloodBarriers boole
an

Presence of temporary flood 
barriers TRUE

FloodPanels boole
an

Presence of permanent flood 
panels FALSE

AirbrickCovers boole
an

Presence of airbrick flood 
covers TRUE

WaterproofWalls boole
an

Waterproof wall treatment 
applied TRUE

ResilientDoors boole
an

Flood-resistant door 
installation TRUE

RaisedFoundations
Mm

deci
mal

Height of raised foundations 
(mm) 450

ReinforcedWalls boole
an

Presence of reinforced wall 
construction TRUE

PermeablePaving boole
an

Installation of permeable 
paving TRUE

DrainageSystems boole
an

Enhanced drainage systems 
present TRUE

WaterDiversion boole
an

Water diversion measures 
installed TRUE

ElevatedSockets boole
an

Electrical sockets raised 
above flood level TRUE

NonReturnValve boole
an Non-return valves installed TRUE

WaterproofFlooring boole
an

Water-resistant flooring 
installed TRUE

SumpPumpSystem boole
an Sump pump system installed FALSE

NaturalMe
asures section

RainGardens boole
an Presence of rain gardens FALSE

DetentionPonds boole
an

Presence of water detention 
ponds FALSE

GreenRoof boole
an

Installation of green roof 
system FALSE
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StrategicPlanting boole
an

Strategic flood-resistant 
landscaping TRUE

Bioswales boole
an Presence of bioswales FALSE

WaterStorage boole
an

Rainwater storage systems 
installed TRUE

EnergyPerformance section

Ratings section

EPCRating menu Energy Performance 
Certificate rating C

CarbonRating menu Carbon emissions rating B

EmissionsScore menu Overall emissions 
performance rating Good

EnergyUsa
ge section

TariffType menu Type of energy tarif Fixed dual 
fuel

AnnualCarbonKgC
O2e

deci
mal

Annual carbon emissions in 
kg CO2e 3000

HeatingSystem menu Primary heating system type
Gas 
central 
heating

RenewableSystem menu Type of renewable energy 
system Solar PV

AnnualEnergyKwh deci
mal

Total annual energy 
consumption (kwh_year) 12000

GridElectricityKwh deci
mal

Annual grid electricity usage 
(kwh_year) 3500

GasUsageKwh deci
mal

Annual gas consumption 
(kwh_year) 8000

SolarGenerationKw
h

deci
mal

Annual solar energy 
generation (kwh_year) 500

AnnualEnergyBill deci
mal

Total annual energy cost 
(gbp_year) 2950

BuildingFa
bric section

WallConstruction menu Type of wall construction Cavity 
brick

CavityInsulation boole
an

Presence of cavity wall 
insulation TRUE

ThermalBridgeScor
e

deci
mal

Thermal bridging 
performance score 0.8

LoftInsulationMm deci
mal

Thickness of loft insulation 
(mm) 270

RoofType menu Type of roof construction Pitched 
with tiles
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FloorConstruction menu Type of floor construction Solid 
concrete

FloorInsulation boole
an Presence of floor insulation TRUE

HeatingSys menu Type of heating system Combi 
boiler

WaterHeating menu Type of water heating 
system Gas combi

LightingType menu Primary type of lighting LED

AirTightnessScore deci
mal Air leakage test score 4.2

GlazingType menu Type of window glazing Double

WindowFrameType menu Material of window frames uPVC

DoorType menu Material of external doors Composite

SmartMeterType menu Type of energy meter 
installed

Smart 
meter with 
export

History section

FloodEven
ts section

FloodReturnPeriod integ
er

Expected flood return period 
(from modelled output) 100

FloodDamageSever
ity menu Severity of flood damage Minor 

damage

LastFloodDate date Date of most recent flood 
event

12/03/201
9

GroundCo
nditions section

SubsidenceStatus menu Current subsidence 
condition No issues

ContaminationStatu
s menu Ground contamination status None 

detected

GroundStability menu Ground stability assessment Stable

LastGroundIssueDa
te date Date of last ground-related 

issue
22/08/202
2

Environme
ntalIssues section

AirQuality menu Local air quality rating Moderate

WaterQuality menu Local water quality rating Good

NoisePollution menu Type of noise pollution 
present None
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The latest version 9 of Property CDM can be found in the public Github:- 
 
https://github.com/MKM-Research-Labs/Physrisk-cdm/blob/main/property/
Property_CDM_v9.xlsx 

LastEnvironmentalI
ssueDate date Date of last environmental 

issue
30/11/201
8

FireInciden
ts section

FireDamageSeverity menu Severity of fire damage None

LastFireDate date Date of most recent fire 
incident

TransactionHistory section

Sales section

SalePriceGbp deci
mal Most recent sale price (gbp) 325000

SaleDate date Date of most recent 15/06/200
7

PreviousOwner text Smith 
Family

MarketingDays integ
er days 45

Rental section

RentalHistory menu Mixed use 
history

MonthlyRentGbp deci
mal gbp per month 1200

VacancyCount integ
er 2

TenancyDuration menu 12-24 
months
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