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Preface 

The success of bioinformatics in recent years has been prompted by research in 
molecular biology and molecular medicine in several initiatives. These initiatives 
gave rise to an exponential increase in the volume and diversification of data, 
including nucleotide and protein sequences and annotations, high-throughput exper-
imental data, biomedical literature, among many others. Systems biology is a related 
research area that has been replacing the reductionist view that dominated biology 
research in the last decades, requiring the coordinated efforts of biological researchers 
with those related to data analysis, mathematical modelling, computer simulation and 
optimization. 

The accumulation and exploitation of large-scale databases prompt new compu-
tational technology and for research into these issues. In this context, many widely 
successful computational models and tools used by biologists in these initiatives, 
such as clustering and classification methods for gene expression data, are based on 
computer science/artificial intelligence (CS/AI) techniques. In fact, these methods 
have been helping in tasks related to knowledge discovery, modelling and optimiza-
tion tasks, aiming at the development of computational models so that the response of 
biological complex systems to any perturbation can be predicted. The 16th Interna-
tional Conference on Practical Applications of Computational Biology & Bioinfor-
matics (PACBB) aims to promote the interaction among the scientific community to 
discuss applications of CS/AI with an interdisciplinary character, exploring the inter-
actions between sub-areas of CS/AI, bioinformatics, chemoinformatic and systems 
biology. The PACBB’22 technical programme includes ten papers of authors from 
many different countries (Bahrain, Canada, France, Italy, Portugal, Saudi Arabia, 
Spain and UK) and different subfields in bioinformatics and computational biology. 
All papers underwent a peer review selection: each paper was assessed by three 
different reviewers from an international panel composed of about 46 members from 
11 countries. The quality of submissions was on average good, with an acceptance 
rate of approximately 60% (10 accepted papers from 15 submissions). 

There will be special issues in JCR-ranked journals, such as Interdisciplinary 
sciences: mathematical biosciences and engineering, integrative bioinformatics, 
information fusion, neurocomputing, sensors, processes and electronics. Therefore,
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vi Preface

this event will strongly promote the interaction among researchers from international 
research groups working in diverse fields. The scientific content will be innovative, 
and it will help improve the valuable work that is being carried out by the participants. 

This symposium is organized by the University of L’Aquila (Italy) with the 
collaboration of the United Arab Emirates University, the University of Minho, the 
University of Vigo, the University of Salamanca and the Gheorghe Asachi Technical 
University of Ias, i. We would like to thank all the contributing authors, the members 
of the programme committee and the sponsors. We thank for funding support to 
the project: “Intelligent and sustainable mobility supported by multi-agent systems 
and edge computing” (Id. RTI2018-095390-B-C32), and finally, we thank the local 
organization members for their valuable work, which is essential for the success of 
PACBB’22. 

Vigo, Spain 
Braga, Portugal 
Al Ain, United Arab Emirates 
Ias, i, Romania 
Salamanca, Spain 

Florentino Fdez-Riverola 
Miguel Rocha 

Mohd Saberi Mohamad 
Simona Caraiman 

Ana Belén Gil-González
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TooT-BERT-T: A BERT Approach 
on Discriminating Transport Proteins 
from Non-transport Proteins 

Hamed Ghazikhani and Gregory Butler 

Abstract Transmembrane transport proteins (transporters) serve a crucial role for 
the transport of hydrophilic molecules across hydrophobic membranes in every living 
cell. The structures and functions of many membrane proteins are unknown due to the 
enormous effort required to characterize them. This article proposes TooT-BERT-T, a 
technique that employs the BERT representation to analyze and discriminate between 
transporters and non-transporters using a Logistic Regression classifier. Additionally, 
we evaluate frozen and fine-tuned representations from two different BERT models. 
Compared to state-of-the-art prediction methods, TooT-BERT-T achieves the highest 
accuracy of 93.89% and MCC of 0.86. 

Keywords Transmembrane transport proteins · Machine learning · BERT ·
Language model · Transformers · Neural network 

1 Introduction 

Around one-third of the proteins in a cell are found in its membrane, and approxi-
mately one-third of these proteins are involved in molecule transport [21]. Trans-
membrane transport proteins, also known as transporters, are required for cell 
metabolism, ion homeostasis, signal transduction, binding with small molecules in 
the extracellular space, immune recognition, energy transduction, and physiological 
and developmental processes [21]. 

Protein research has advanced our knowledge of human health and disease treat-
ment. The decreasing cost of sequencing technology has enabled the generation of 
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2 H. Ghazikhani and G. Butler

massive datasets of naturally occurring proteins with enough information to build 
sophisticated machine learning models of protein sequences [23]. 

Since proteins, like human languages, are denoted by string concatenation, we 
can apply natural language processing (NLP) approaches [18]. Transformer neural 
networks (Transformers) have contributed significantly to the field of natural lan-
guage processing [22]. Autoencoders, for example, BERT (Bidirectional Encoder 
Representations from Transformers) [9], are stacking models that are trained by cor-
rupting input tokens and attempting to recover the original sentence [11]. While they 
can generate text as well, they are typically used to create vector representations for 
future tasks such as classification [11]. 

A massive collection of protein sequences from UniProt Archive (UniParc) [14] 
and the Big Fantastic Database (BFD) [11, 13] comprising over 390 billion amino 
acids resulted in ProtTrans [10], an amazing adaption to the protein domain of six 
available Transformer topologies which are Transformer-XL, BERT, Albert, XLnet, 
T5, and Electra. 

TooT-BERT-T proposes a method for discriminating transport proteins from non-
transport proteins using representations from ProtBERT-BFD and Logistic Regres-
sion. Our investigation can be summarised as follows: 1) Using ProtBERT-BFD 
to discriminate between transport and non-transport proteins for the first time. 2) 
Evaluation of frozen/fine-tuned ProtBERT-BFD representations. 3) Evaluation of 
frozen/fine-tuned MembraneBERT representations. 4) The fine-tuned Transporter-
BERT is a publicly accessible model pre-trained on the BFD database and fine-
tuned using the transport proteins dataset (https://huggingface.co/ghazikhanihamed/ 
TransporterBERT). 5) Proposing TooT-BERT-T as a method for classifying transport 
proteins that outperforms all other approaches. 

The following is the outline for the paper: Sect. 2 describes the related work. 
Section 3 contains information about the dataset and experimental design used in this 
study. Section 4 compares and analyses the outcomes of TooT-BERT-T and Sect. 5 
brings the paper to a close. 

2 Related Work 

Aplop and Butler [4, 5] provide a comprehensive overview of transport protein 
prediction methods. Earlier efforts used experimentally characterized databases to 
conduct homology searches for novel transporters. For example, TransATH [5] auto-
mates the Saier’s protocol via sequence similarity. TransATH improves transmem-
brane segment computations by including subcellular localization and claims an 
overall accuracy of 71.0%. 

TrSSP (Transporter Substrate Specificity Prediction Service) [16] was developed 
to predict the substrate category of membrane transport proteins in an attempt to 
overcome the limitations of homology methods. The TrSSP tool predicts top-level 
transporters with an accuracy of 78.99 and 80.00%, respectively, and an MCC of 
0.58 and 0.57 on the cross-validation and independent test sets.

https://huggingface.co/ghazikhanihamed/TransporterBERT
 16391 28643
a 16391 28643 a
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Transporters Prediction Using BERT 3

SCMMTP [15] makes use of a novel scoring card method (SCM) to ascertain the 
dipeptide composition of potential membrane transport proteins. SCMMTP begins 
with a 400-dipeptide starting matrix and scores dipeptides based on the difference 
between positive and negative compositions. Following that, the matrix is optimized 
using a genetic algorithm. SCMMTP achieved an overall accuracy of 81.12% and 
76.11% and an MCC of 0.62 and 0.47, respectively, on the training and independent 
datasets. 

Nguyen et al. [17] characterize transporter protein sequences using a word-
embedding technique. The protein sequence is defined by the word embedding and 
the protein’s biological terms frequency. They achieved accurate results in terms 
of transporter substrate specificity but not in terms of transporter detection. When 
cross-validation was used, the prediction accuracy for transporters was only 83.94 
and 85.00% using the independent dataset. 

In 2020, Alballa and Butler developed TooT-T [2], an ensemble technique that 
combines the results of two distinct approaches: homology annotation transfer and 
machine learning. BLAST searches the Transporter Classification Database (TCDB) 
[20] for homology to a query protein. If a query meets three thresholds, it is pro-
jected as a transporter. It also computes three composition features for training their 
respective SVM models. Finally, the meta-model assigns a protein the transport pro-
tein classification. They claim accuracy of 90.07% and 92.22%, respectively, and 
MCC values of 0.80 and 0.82 for the cross-validation and independent test sets, 
respectively. While incorporating multiple feature sets and classifiers improves the 
classification of transport proteins in TooT-T, it also increases the task’s complexity. 

3 Materials and Methods 

3.1 Dataset 

This work utilizes the dataset from the TrSSP project [16] which can be accessed 
at the following URL: https://www.zhaolab.org/TrSSP/. The dataset was created 
using the UniProt database [14], in which 10, 780 transporter, carrier, and channel 
proteins were initially well characterized at the protein level with different substrate 
specificity annotation. Mishra et al. [16] eliminated from this benchmarking dataset 
fragmented sequences, sequences with more than two substrate specificities, and 
biological function annotations based only on sequence similarity. As presented in 
Table 1 the final dataset contains 1, 560 protein sequences for the training and test 
sets. This dataset is referred to as DS-T, which stands for a dataset for transporter 
proteins.

https://www.zhaolab.org/TrSSP/
 8661 40819 a 8661 40819 a
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4 H. Ghazikhani and G. Butler

Table 1 DS-T: transport proteins dataset 

Class Training Test Total 

Transporter 780 120 900 

Nontransporter 600 60 660 

Total 1,380 180 1,560 

3.2 Protein Sequence Representation 

As multiple studies demonstrate, representation learning, a branch of machine learn-
ing in which the representation is estimated concurrently with the statistical model, 
is gaining traction in biology. Works [3, 6, 19] highlight how representations can 
assist in extracting crucial biological information from the millions of observations 
collected by modern sequencing technologies [8]. 

BERT (Bidirectional Encoder Representations from Transformers) [9] is a lan-
guage model used in natural language processing that employs a multi-layer bi-
directional Transformer encoder that employs an attention mechanism in each 
encoder layer to condition both left and right context and process all words in the 
sentence in parallel. Each encoder layer comprises two sub-layers: multi-head self-
attention and feed-forward neural networks. While encoding a specific word, the 
multi-head self-attention sublayer assists the encoder in looking at other words in 
the input sentence. The following formula is used to compute the scaled dot-product 
attention sublayer [22]: 

Multi  Head(Q, K , V ) = Concat  (head1, ..., headn)W o (1) 

headi = Attention(QW Q i , KW  K i , VW  V i ) (2) 

Attention(Q, K , V ) = so f  tmax(
QK  T √

dk 
)V (3) 

where Q (Query), K (Key) and V (Value) are various linear transformations of the 
input features in order to obtain information representations for various subspaces. 
The dimension of K is dk and W Q i , W K i , W V i and W O i are weight matrices. 

BERT is a two-step framework: pre-training and fine-tuning. Pre-training is train-
ing the model on a large amount of unlabeled data in an unsupervised manner. In 
contrast, fine-tuning is the process of initializing the model with the pre-trained 
parameters and fine-tuning all parameters using labeled data from downstream tasks 
via an additional classifier [9]. 

There are two methods for extracting representations from pre-trained BERT 
models: (i) frozen and (ii) fine-tuned. The former extracts features from a pre-trained 
BERT model without updating the model’s weights, whereas the latter extracts
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features after training the pre-trained BERT model on a smaller dataset and fine-
tuning the model’s weights [9]. 

ProtBERT-BFD [10] is the BERT model which has been pre-trained on a large 
corpus of protein sequences from the BFD database (https://bfd.mmseqs.com) which 
contains 2.5 billion protein sequences. MembraneBERT is ProtBERT-BFD fine-
tuned using the TooT-M membrane proteins dataset [1]. MembraneBERT can be 
found at (https://huggingface.co/ghazikhanihamed/MembraneBERT). 

The representations from the final hidden layer of ProtBERT-BFD and Mem-
braneBERT models are used in conjunction with a mean-pooling strategy, which is 
concluded to be the optimal method in ProtTrans [10]. 

3.3 Fine-Tuning a BERT Model 

We add a classification layer and train the entire BERT model on the transporters 
training set to fine-tune a BERT model. We randomly chose 10% of the training 
samples as the validation set in this study. The downstream task dataset will update all 
initialized weights from pre-training during the fine-tuning phase. We fine-tuned the 
BERT models using the Trainer API from HuggingFace [24]. This is a preliminary 
investigation of BERT’s role in transport protein analysis, so we used the same 
hyperparameter settings as ProtTrans [10], except for the empirically determined 
number of training epochs of 13 for ProtBERT-BFD and 10 for MembraneBERT. 
We discovered these numbers when we have the maximum performance throughout 
the validation set results. Additional hyperparameters for fine-tuning are listed in 
Table 2 which are recommended and used in ProtTrans project. 

Table 2 Fine-tuning ProtBERT-BFD and MembraneBERT hyperparameters 

Hyperparamer Value 

Training batch size 1 

Evaluation batch size 32 

Warmup steps 1000 

Weight decay 0.01 

Gradient accumulation steps 64 

Except for the training epochs, ProtBERT-BFD and MembraneBERT use the same fine-tuning 
hyperparameter settings as ProtTrans [10].

https://bfd.mmseqs.com
 20824 3404
a 20824 3404 a
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3.4 Logistic Regression 

Logistic Regression is a widely used classification technique in medical/biological 
research [12]. The Logistic Regression algorithm used was the scikit-learn Python 
module (https://scikit-learn.org) and the study used the default hyperparameters. 

3.5 Evaluation 

A 10-fold cross-validation (CV) technique was used in this analysis to evaluate the 
model’s performance by partitioning the dataset into ten sections. For the purpose of 
fine-tuning the BERT, 10% of the training set was used as the validation set, while 
the remaining 90% was used for training. The independent test set is utilised for the 
sole purpose of evaluating the method. 

3.6 Evaluation Metrics 

Four key evaluation criteria are considered in this project: Sensitivity (Sen), Speci-
ficity (Spc), Accuracy (Acc), and MCC. 

MCC = (T P  × T N  ) − (FP  × FN  ) √
(T P  + FP)(T P  + FN  )(T N  + FP)(T N  + FN  ) 

(4) 

MCC is an acronym for Matthew’s Correlation Coefficient. For imbalanced data, 
MCC is a more stable assessment metric [7]. 

4 Results and Discussion 

4.1 Fine-Tuning ProtBERT-BFD and MembraneBERT 

We compared both representations of ProtBERT-BFD and MembraneBERT, without 
(frozen) and with (fine-tuned) fine-tuning using the DS-T dataset. Figure 1 visualises 
the effect of fine-tuning ProtBERT-BFD and MembraneBERT for each epoch. 

As demonstrated, the ProtBERT-BFD model improved representations in each 
epoch, increasing from zero MCC and 56% accuracy to 0.77 MCC and 87% accuracy 
on the validation set. The ProtBERT-BFD model outperforms the MembraneBERT 
model, indicating that a BERT model trained on a more extensive set of protein 
sequences has superior representation and performance in the downstream task 
fine-tuning. Additionally, the ProtBERT-BFD performs better in both frozen and

https://scikit-learn.org
 1919 5175 a 1919 5175 a
 
https://scikit-learn.org
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Fig. 1 The effect of fine-tuning (This figure depicts the results of fine-tuning the ProtBERT-BFD 
(left) and MembraneBERT (right) with accuracy and MCC metrics at each epoch on the validation 
set. The y-axis and x-axis display the scores and epochs, respectively) 

Table 3 Logistic Regression performance with ProtBERT-BFD and MembraneBERT 

Model Sen (%) Spc (%) Acc (%) MCC 

Ind. CV Ind. CV Ind. CV Ind. CV 

ProtBERT-BFD 
frozen 

76.67 80.00 90.83 82.69 86.11 81.52 0.6840 0.6262 

ProtBERT-BFD 
fine-tuned 

95.83 96.79 90.00 97.17 93.89 96.96 0.8620 0.9387 

MembraneBERT 
frozen 

88.33 80.51 68.33 77.50 81.67 79.20 0.5799 0.5797 

MembraneBERT 
fine-tuned 

86.67 98.08 85.00 97.00 86.11 97.61 0.6989 0.9512 

This table summarizes the 10-fold CV and independent test set performance of frozen/fine-tuned 
representations from the ProtBERT-BFD and MembraneBERT models in terms of sensitivity, speci-
ficity, accuracy, and MCC. The maximum value for each column is displayed in boldface. 

fine-tuned representations than MembraneBERT, with the exception of the frozen 
representation of sensitivity. Despite the high cost of fine-tuning the 420 million-
parameter ProtBERT-BFD model, our results (Table 3) demonstrate that fine-tuning 
ProtBERT-BFD for transport protein prediction results in the best representation. 

4.2 Logistic Regression with Fine-Tuned ProtBERT-BFD 

We selected Logistic Regression as a preliminary good binary classifier because it 
is simple to implement and interpret, has been tested in the ProtTrans project, and 
produces competitive results [10]. Table 3 demonstrates that Logistic Regression with
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both fine-tuned ProtBERT-BFD and MembraneBERT representations performs well, 
with fine-tuned ProtBERT-BFD outperforming MembraneBERT on all independent 
test set results, while MembraneBERT outperforms sensitivity, accuracy, and MCC 
on CV results. 

4.3 Comparison of TooT-BERT-T with State-of-the-Art 
Models 

Table 4 and Fig. 2 are used to compare TooT-BERT-T to other published methods that 
use only the protein sequence on the same dataset. As demonstrated, TooT-BERT-T 
outperforms other published works in all evaluation metrics except sensitivity, where 
Nguyen et al. [17] achieves 100% sensitivity. 

Table 4 Comparative performance of TooT-BERT-T with state-of-the-art 

Method Sen (%) Spc (%) Acc (%) MCC 

Ind. CV Ind. CV Ind. CV Ind. CV 

SCMMTP [15] 80.00 83.76 68.33 77.68 76.11 81.12 0.47 0.62 

TrSSP [16] 76.67 76.67 81.67 78.46 80.00 78.99 0.57 0.58 

Nguyen et al. [17] 100.00 83.14 77.50 84.48 85.00 83.94 0.73 0.68 

TooT-T [2] 94.17 90.15 88.33 89.97 92.22 90.07 0.82 0.80 

TooT-BERT-T 95.83 96.79 90.00 97.17 93.89 96.96 0.86 0.94 

This table compares the outcomes of various techniques using sensitivity, specificity, accuracy, and 
MCC metrics on the CV and independent test set. Results taken from [2].  The maximum  value for  
each column is displayed in boldface. 

Fig. 2 Comparison of methodologies
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Fig. 3 TooT-BERT-T 
confusion matrix (This figure 
summarises the performance 
of TooT-BERT-T, where T 
represents transport protein 
and non-T represents 
non-transport protein) 
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Predicted values 

TooT-BERT-T has a greater specificity (rate of true negatives) than the approach of 
Nguyen et al. [17], indicating that it makes fewer false positive predictions (Fig. 3). 
This is essential for achieving a high true negative rate of 90% when describing 
non-transport proteins. 

The proposed method, TooT-BERT-T, which employs fine-tuned ProtBERT-BFD 
representation and a Logistic Regression classifier using the dataset explained in 
Sect. 3.1, outperforms previous methods with an accuracy of 93.89% and an MCC 
of 0.86 on the independent test set. 

The ProtBERT-BFD representation is effective because it understands the context 
of each amino acid in different protein sequences, whereas other methods rely on 
static protein-encoding techniques. 

Figure 3 shows a confusion matrix of TooT-BERT-T for separating transport pro-
teins from non-transport proteins. As depicted in the figure, despite the fact that the 
number of errors is quite low, the model makes more mistakes when identifying non-
transporters as transporters (False positive = 6) than when predicting transporters 
as non-transporters (False negative = 5). This suggests that the proposed strategy 
is somewhat skewed towards predicting the positive class (transport proteins). This 
issue may occur when the dataset is imbalanced, with more positive class samples 
than negative class samples. 

5 Conclusion 

TooT-BERT-T distinguishes transport proteins from non-transport proteins using the 
fine-tuned ProtBERT-BFD representation. The representations of two BERT mod-
els, ProtBERT-BFD and MembraneBERT, were compared using frozen and fine-
tuned representations. The ProtBERT-BFD fine-tuned representation outperforms the 
MembraneBERT representation on the independent test set. The proposed method, 
TooT-BERT-T, which utilizes fine-tuned ProtBERT-BFD and Logistic Regression, 
achieves an accuracy of 93.89% and an MCC of 0.86 on the independent test set and 
outperforms other methods. Given that this study was a preliminary examination of 
the BERT representation’s performance in transport protein analysis, other classifiers 
such as SVM and CNN can be evaluated in the future.
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Techniques for Epileptic Seizures 
Prediction: A Brief Review 
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Abstract The third most common neurological disorder, only behind stroke and 
migraines, is Epilepsy. The main criteria for its diagnosis are the occurrence of 
unprovoked seizures and the possibility of new seizures appearing. Usually, the 
professional in charge of detecting these seizures is a neurologist who interprets 
the patients’ electroencephalography. However, more accurate, precise, and sensitive 
methods are needed. Machine learning has increased as a viable alternative, reducing 
costs and ensuring rapid diagnostic time. This work reviews the state of the art in 
machine learning applied to epileptic seizure detection and prediction as a prospective 
study before developing a novel seizure prediction algorithm. 
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1 Introduction 

Epilepsy is a neurological disorder affecting more than 39 million people in the 
United States [1], being the third most common only before stroke and migraines 
[31]. Due to its chronic nature, it is one of the most invalidating conditions, making 
it a suitable target for new therapies and biomedical research [11, 14, 34]. 

The International League Against Epilepsy defines an epileptic seizure as a “tran-
sient occurrence of signs and/or symptoms due to abnormal excessive or synchronous 
neuronal activity in the brain” [59]. 

The most widely used diagnostic method for epilepsy is electroencephalogra-
phy (EEG). EEG records the electrical activity of the brain by the voltage changes 
provoked by the ion currents of the brain neurons [44]. 

These voltage changes are recorded with electrodes placed either along the scalp 
(sEEG) or over the cortex, inside the cranium (iEEG). Those electrodes do not have 
enough spatial resolution to detect each neuron’s action potential, but the simul-
taneous activity of millions of neurons creates a voltage wave that stimulates the 
electrodes. 

The events observed in the EEG can be divided into three categories [16]: Ictal 
events, which are the events occurring during the seizure, preictal events, the ones 
that preceded the seizure, and interictal events, every other event that is not part of 
the ictal or preictal phase. The duration of the preictal phase varies between studies, 
and can range from a few minutes to hours. 

In animal and in vitro models, microelectrodes are used instead of EEG to per-
form electrophysiology recordings, as the latter carries a considerable amount of 
drawbacks in such cases (Fig. 1). 

2 Signal Processing and Feature Extraction 

EEG signals usually come with several artifacts that may obscure the signal’s 
epilepsy-related information. These artifacts depend on the type of model of study 
or the specifics of the EEG recording. 

Fig. 1 Usual pipeline in epileptic seizure classification or prediction
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The most typical processing for most EEG signals includes the removal of back-
ground noise, done by filtering the 50–60 Hz powerline. A vast number of features 
can then be extracted from the processed signal. 

2.1 Feature Extraction 

Statistical Features. Distribution and amplitude changes in EEG signals can be 
tracked using statistical parameters like kurtosis, mean, skewness, and variance [12, 
38, 53]. Phase correlation [39, 46, 49, 57] can be used to analyze the patterns in ictal 
and preictal events. Common Spatial Pattern [56] extracts features by decomposing 
EEG signals. 

Nonlinear Features. Correlation Dimension allows to measure the complexity of 
each event [2, 27] and the Largest Lyapunov Exponent calculates the chaos in EEG 
signals [60, 61]. Applying Fractality Dimension [17, 18, 41] enables the comparison 
of the rhythms between the EEG events and exposes the self-similarity in the data. 
The Repeatability of the events is also measurable using Lempel-Zic Complexity [2, 
10, 71]and Approximate Entropy [58, 70]. Entropy can also be used as a measure 
of randomness with Spectral Entropy and level of disorganization using Wavelet 
Entropy. 

Activity (variance of the signal of a time function), mobility (proportion of the 
standard deviation), and complexity (change in frequency) parameters can be used 
as descriptors in the Hjorth parameters analysis [19, 32]. To unveil the unifor-
mity of the different frequency bands in EEG data Wavelet Energy can be applied 
[6, 24, 26]. 

Frequency Domain Features. Fourier transforms like Short Time Fourier Transform 
[63] and Fractional Fourier Transform [48] are used to obtain phase and magnitude 
components, while Spectral Power Analysis [7, 21] allows studying the different 
frequency bands in EEG. 

Time-Frequency Domain Features. One of the most widely used time-frequency 
domain feature in EEG analysis is the wavelet transform, either Discrete Wavelet 
Transform [68], or Continuous Wavelet Transform [40]. Each wavelet transform 
offers a different decomposition; the CWT generates a scalogram from the dilation 
and translation, while the DWT filters the signal and breaks down the signal in 
different levels. 

Some time-frequency domain features can be combined with nonlinear features to 
monitor hidden data properties. Higher-Order Spectra [4, 45] and Variational Model 
Decomposition [20, 35] are the most widely used features in these combinations.



16 M. Hernández et al.

2.2 Feature Selection 

For most Machine Learning techniques, selecting an optimum number of features is 
essential for the algorithms to reach their full potential. Having features that carry 
similar information about the target variable or no information about this variable 
whatsoever can make the model too complex and impoverish its performance. 

A roster of techniques is used to select the most suitable features for each study. 
Statistical approaches like Principal Components Analysis [23, 50, 66] or Partial 
Least Squares [30] are the easiest way of archiving a conclusion. More complex 
techniques such as Minimum Redundancy Maximum Relevance [8, 51] or Gaussian  
Mixture Models [22, 52, 69] are used in more sensitive situations like human seizure 
prediction. 

However, Deep Learning algorithms can use part of their architecture to automat-
ically extract the most relevant information out of the initial input variables [65, 67]. 
In these cases, both feature extraction and selection can be skipped and still achieve 
competitive results. 

3 Seizure Detection and Classification 

Detection of seizures by EEG has traditionally been done manually by clinical pro-
fessionals, evaluating the frequency, wavelength, voltage, amplitude, and waveforms. 
These features are suitable for being analyzed using automated learning algorithms 
[28]. Since the first computer analysis of EEG records in 2002 using wavelet trans-
form [5], automated detection of ictal events has become an essential matter in 
epilepsy research [9, 25]. 

Many studies have been carried out in the last years to improve the performance of 
automated seizure detection. A wide range of Machine Learning and Deep Learning 
classifiers have been employed [15, 37] but, while detecting seizures may remain 
valuable for research purposes, patients and clinical professionals need tools that 
allow them to avoid the seizures instead of doing a post hoc analysis; here is where 
seizure prediction comes necessary. 

4 Seizure Prediction 

Having enough anticipation before a seizure is a crucial milestone for a clinical 
approach. The usual pipeline to seizure prediction is similar to seizure detection. 
However, instead of classifying interictal and ictal events, it focuses on separating 
interictal from preictal, leaving the actual seizures out of the analysis.
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Establishing a correct stimulation protocol implies having enough anticipation 
before the seizure. Nevertheless, early prediction usually reduces sensitivity and 
specificity, ballasting the overall performance [29, 42]. 

4.1 Animal Models 

The first experiments achieved times near 2.24 min and demonstrated the effective-
ness of wavelet functions as predictors [47]. Best time results in animal models were 
obtained by [64] using canine EEG data and multiple machine learning algorithms, 
being able to detect the seizures 1 min ahead. That work established a proof of con-
cept, so no diagnostic performance analyses were carried out. Nevertheless, some 
works have developed systems with performances over 90% of sensitivity but with a 
loose prediction time. Rajdev’s team [55] developed a seizure prediction system for 
rat EEG recordings based on an adaptive wiener filter; his approach hits a 92% of 
sensitivity, being also the most sensitive of the works done on animal EEG recordings. 

4.2 Human Subjects 

The work of Iasemidis [33] established a ceiling of capacity in the time of prediction 
with 91 min and a precision of 91.3% (and sensitivity of 81.82%). Other authors 
aimed to maintain a prediction time horizon and keep the algorithm between those 
parameters. In such works [2, 70] 30 and 50-min horizons were fixed, and sensitivity 
between 79.9 and 90.2% were achieved. 

Tsiouris [62] reached a prediction with 15 to 120 min ahead and a 99% of sensitiv-
ity, making use of Long Short-term Memory networks (LSTM), the first application 
of deep learning in the field. 

Other deep learning approaches have reached similar results while automating 
feature extraction. Wei [65] uses an image of the EEG as input to an architecture 
based on Convolutional Neural Networks (CNN) for feature extraction and LSTM 
for sequence learning. This network achieves an average accuracy of 93.4% at an 
average warning time of 21 min. Transformers have been used in a similar manner 
[67] reaching prediction sensitivity and a False Positives Rate of 96.01% and 0.047/h, 
respectively with an average warning time between 3 and 30 min. 

5 Conclusion 

Although many advances have been made since the first works in automated seizure 
prediction, some gaps remain to be cleared.
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To deploy accurate diagnostic and treatment tools, a correct balance between 
the time of prediction and the sensitivity and specificity must be reached. This bal-
ance can only be achieved with deep learning techniques such as CNN, LSTM, and 
Transformers. In this regard, some recent developments have been made, reaching 
promising results [3, 13, 36, 43, 54, 65, 67]. 

A combination of multiple techniques and features offers the best performance 
and results, but the computational requirements scale with each model implemented. 
Solving this issue is also a significant challenge in automated seizure prediction. 

The solution to the automated seizure prediction problem will surely enhance the 
life quality of epilepsy patients and ameliorate the impact on the health services. 
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The Covid-19 Decision Support System 
(C19DSS) – A Mobile App 

Pierpaolo Vittorini , Nicolò Casano , Gaia Sinatti , 
Silvano Junior Santini , and Clara Balsano 

Abstract The COVID-19 pandemic remains a concrete challenge, especially in 
communities and rural areas where health resources are scarce. We recently devel-
oped several classifiers, useful to predict safe discharge, disease severity, and mor-
tality risk from COVID-19, fed by routine analyses collected in the Emergency 
Department. In this paper, we discuss a system, made up of an app and a server, that 
enables doctors to use these models during the management of COVID-19 patients. 
The app has been developed involving the doctors since the early phases of the app 
design, then revised in the light of two usability cycles. We report its main features 
and its ease of use. So far, it has been used during the fourth wave, producing accurate 
results with patients that did not complete the vaccination protocol (i.e., up to the 
second dose). 

Keywords COVID-19 · App ·Machine learning · User-centered design 

1 Introduction 

Health informatics can be defined as the application of computer science, engineering 
and telecommunication to healthcare [2]. It regards the use of methods, applications 
and devices in all aspects concerned with both individuals and public health [8, 11, 
23, 25]. 

The pandemic caused by severe respiratory acute syndrome coronavirus 2 (SARS-
CoV-2) was declared a global emergency by the World Health Organization (WHO) 
[24] on the  11th  of March 2020. Although recent progress in the possible treatments 
has changed the face of the pandemic, some concerns still remain about threats 
related to SARS-CoV-2 [21]. Countries have not adopted a common global response 
to COVID-19 and vaccination inequities are manifest [17]. In this scenario, the 
pandemic risk remains a concrete challenge, especially in communities and rural 
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areas where health resources are scarce. To face these risks, we recently developed 
several classifiers, useful to predict safe discharge, disease severity, and mortality risk 
from COVID-19, fed by routine analyses collected in the Emergency Department 
(ED) [7]. 

In this paper, we focus on a system, called COVID-19 Decision Support System 
(C19DSS), whose aim is to enable doctors from EDs to take advantage of the afore-
mentioned models during the management of COVID-19 patients. The C19DSS sys-
tem has been developed following the User-Centered Design (UCD) methodology, 
i.e., involving the doctors since the early phases of the system design, and revising 
the development in the light of usability cycles [16]. So far, the system has been used 
during the fourth wave. It is currently producing accurate results with patients that 
did not complete the vaccination protocol (i.e., up to the second dose). Therefore, 
we consider the system suitable in these cases, as well as in all countries with low 
vaccination rates. 

2 Background 

To allow the paper to be self-contained, we briefly report the results concerning the 
models we developed, which we submitted in [7]. 

From a dataset containing the routine analyses of 779 patients collected in the 
ED, we devised several models for both the complete cases and through missing 
data imputation [6]. The following different models were tried from the available 
dataset: decision tree (DT) – as baseline [5], random forest (RF) [4] and gradient 
boosting machines (GBM) [9]. The models were developed to predict safe discharge 
(discharge/admit), disease severity (mild/severe), and mortality risk (no risk/risk). 
For all models and outcomes, we split the dataset into train and test (with 75% of 
data going for training, 25% for testing), used 10-fold cross-validation, tuned each 
classifier according to its specific hyper-parameters, calculated the confusion matrix 
and the ROC curve [10]. The results are summarized in Table 1. The table lists all 
details of each model, for each outcome, for the subset of the complete cases and 
for the complete dataset (with missing data imputation). The best AUC is reported 
in bold, together with the corresponding model. 

Besides the limited size of the dataset and the constraint of using only routine 
clinical and laboratory data to devise the models, the performances of our models 
are in line with the best prediction models available in the scientific literature, that 
make use of similar data than our [3, 12, 26]. In particular: (i) concerning hospital 
admission, Jimenez-Solem et al. [12] developed a RF model that reached an AUC 
equal to 0.82, vs 0.89 and 0.94 of our models; (ii) for severity prediction, Yao et 
al. [26] devised a Support Vector Machines (SVM) model that reached an accuracy 
equal to 0.82, vs the 0.76 and 0.89 of accuracy of our models; (iii) for mortality 
prediction, Booth et al. [3] developed a SVM model that reached an AUC of 0.93, 
vs 0.84 and 0.87 of our models.
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Table 1 Main statistics for all outcomes and classifiers. Acc = Accuracy, Sens = Sensitivity, Spec 
= Specificity, AUC = Area Under the Curve 

Complete cases Missing data imp. 

Acc Sens Spec AUC Acc Sens Spec AUC 

Safe discharge 

DT 0.870 0.941 0.546 0.937 0.824 0.842 0.770 0.858 DT 

RF 0.886 0.960 0.546 0.938 0.829 0.869 0.780 0.894 RF 
GBM 0.886 0.951 0.591 0.943 0.824 0.876 0.666 0.882 GBM 

Disease severity 

DT 0.805 0.560 0.867 0.792 0.742 0.732 0.752 0.766 DT 

RF 0.886 0.680 0.939 0.886 0.757 0.783 0.732 0.832 RF 
GBM 0.846 0.600 0.908 0.893 0.762 0.804 0.721 0.827 GBM 

Mortality 

DT 0.829 0.970 0.250 0.758 0.840 0.944 0.290 0.689 DT 

RF 0.878 0.960 0.542 0.866 0.876 0.969 0.387 0.842 RF 

GBM 0.854 0.939 0.500 0.857 0.860 0.944 0.419 0.844 GBM 

With respect to similar tools available in the scientific literature, Liu et al. [15] 
propose a system to assist doctors in collecting data, assessing risk, triaging, manag-
ing, and following up on patients during the COVID-19 outbreak. The system uses 
logistic regression to predict risk, obtaining an AUC of 0.71. Furthermore, McRae 
et al. [18] developed an app that leverages models that use non-laboratory data to 
help determine whether hospitalization is necessary (AUC = 0.79) and that predicts 
the probability of mortality using bio-marker measurements (AUC = 0.95). 

Our work continues in the same direction: it adopted state-of-the-art models based 
on routine data collected by the involved EDs, and developed a system supporting 
doctors in defining the need for hospitalization, disease severity and mortality risk, 
for patients accessing the ED. 

3 C19DSS 

In this section, we first describe the architecture of the overall system, and in particular 
of the C19CDSS app. Then, we present the usability results and the preliminary use 
within our Institution.
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Fig. 1 System architecture 

3.1 Architecture 

The COVID-19 Decision Support System (C19DSS) is the system we developed 
to enable physicians to effectively use our models. The system is made up of a 
smartphone app used by clinicians, and a server that provides the “intelligence” to 
the app (Fig. 1). 

The app is made up of four activities (see Fig. 2). The first activity is the dashboard, 
where a summary of the database and of the server connection status is reported. The 
second screen contains the patient list, how to filter patients according to different 
parameters, and the button to add a new patient. The third screen shows how to 
enter the laboratory/clinical data of a new patient, and the button to request the 
classification to the server. The fourth screen depicts how to edit the patient data, 
request the classification to the server, or delete the patient from the database. 

In details, the first screen is the app dashboard (Fig. 2-a). The first card contains 
a summary of the data stored in the database. The second card shows the connection 
status with the server. By tapping on the “Go”, the user accesses the list of available 
patients (Fig. 2-b). If needed, the user can show a filtering panel through a menu item 
“Filters”. The filtering panel permits to include/exclude patients: (i) that have been 
classified and/or finalized (i.e., whose hospitalization has ended), or (ii) that have a 
name/surname containing a given string. The central part of the screen contains the 
list of patients (with information about name, surname, ID and status): by tapping on 
a patient, the user can edit the related data; by tapping on the floating action button, the 
user can add a new patient to the database. Figure 2-c shows the interface to introduce 
all data regarding a patient. On the lower part of the interface, two floating action 
buttons are available. The rightmost button saves the data, the leftmost requests the 
classification. Finally, Fig. 2-d shows how the user can edit the patient’s data. Three 
floating action buttons are available. From right to left, allow a user to update the 
data, request the classification, and delete the patient. Worth noting the two panels 
at the bottom of the interface, i.e., “Automated classification” and “Outcome”, that 
contain the results of the automated classification and the hospitalization outcome, 
respectively. 

When the classification process is activated, the app opens an encrypted con-
nection to the server, sends the laboratory data and the ID of the patient (so, no
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(a) Dashboard (b) Patient list (c) New data (d) Edit data 

Fig. 2 C19DSS activities 

personal data is ever communicated over the network) to the classification endpoint 
(the server follows the RESTful API paradigm) [20]. Then, the server uses R [19] to  
apply the correct model, depending on the request, on the received data. Hence, the 
server stores the received data for further analyses (i.e., to evaluate the quality of the 
predictions and potentially update the models), and finally returns the classification 
results to the app. 

3.2 Usability Evaluation 

To develop the app, we followed the UCD methodology, i.e., we involved the physi-
cians from the very beginning phases of the design, and then we adapted and improved 
the design/implementation according to consecutive cycles of usability tests. 

In the first phase, we discussed and defined with three physicians the navigational 
structure and the app user interface through mockups. After the system implementa-
tion, the first usability testing took place. The following three tasks were evaluated 
with seven physicians: (i) data entry, (ii) classification and (iii) data editing. We 
collected quantitative and qualitative measures based on the Single Ease Question 
(SEQ) and through unstructured interviews [22]. At the first iteration, we measured 
an average SEQ of 3.86/5, 3.71/5 and 4.00/5 for each task, and we collected a few 
issues and suggestions on how to improve the app. Among them, we added the auto-
mated calculation of the P/F, NLR and PLR values1, we implemented a more clear 

1 P/F (PaO2/FIO2) = Oxygenation Index, NLR = Neutrophil-to-Lymphocyte Ratio, PLR = Platelet-
to-Lymphocyte Ratio.
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visualization of the classification, and we fixed a bug that blocked the classification. 
At the second iteration, the average SEQs increased to 4.71/5, 4.43/5 and 4.71/5. 

In summary, we increased the overall average ease of completing all tasks from 
3.86/5 to 4.62/5, from the first to the second implementation. 

3.3 Preliminary Use 

So far, the system is currently used in our Institution, as complementary support to 
physicians during the management of patients affected by COVID-19. The physicians 
that used the system reported that the application was easy ed intuitive to use; the 
process of data entry and classification did not hamper the normal ED work routine. 
Conversely, it helped them to organize the workflow of COVID-19 patients. 

Furthermore, with the current small cohort of patients managed through the 
C19DSS system, the mortality risk prediction model showed an accuracy of 0.92, 
whereas the model about safe discharge returned an accuracy of 0.57 (0.70 for the 
unvaccinated cohort). However, for safe discharge, the mistakes were conservative, 
i.e., the system never suggested discharging a patient that needed to be hospitalized, 
and took place mostly on vaccinated patients. 

4 Discussion 

The work presented in this paper starts from previous research finalized to devise 
state-of-the-art ML models, fed by routine clinical and laboratory analyses, to be 
used by physicians to manage safe discharge, severe disease (on the seventh day 
after medical presentation) and mortality during hospitalization. 

Nevertheless, the models were devised from a cohort of unvaccinated patients, 
hence a cohort not previously immunized against SARS-CoV-2, and therefore the 
applicability of the models should be considered for unvaccinated patients. 

At the time of writing, available data suggest long-term vaccine effectiveness in 
fully vaccinated healthy adults, but there are some uncertainties regarding vaccine 
waning in not fully vaccinated and in immunocompromised patients. Some evidence 
suggests that the risk of severe disease is higher in immunocompromised patients and 
in elderly ones [1, 13, 14]. On these bases, the app could be useful also in vulnerable 
patients where the immunizations seem to be less effective after a prolonged time. 

In order to optimize the app performance also in fully vaccinated patients, during 
the data entry, for any new patient, we also save the vaccination status. So far, this 
information is not used by our models. However, when enough data will be collected, 
we could devise new models that will also consider the vaccination status. Moreover, 
given the client/server architecture and given that the predictions are provided by the 
server, the new models could be used by physicians without any change in the app, 
but only with a server upgrade, without affecting the user experience.
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With specific regard to the C19DSS system, the adoption of the UCD methodology 
to design and develop the app, enabled us to gradually improve the user experience 
and collect useful suggestions on how to improve the overall system. Finally, the 
physicians that used the system reported that the application was easy ed intuitive to 
use; the process of data entry and classification did not hamper the normal ED work 
routine; conversely, it helped them to organize the workflow of COVID-19 patients. 

5 Conclusions 

Presumably, in the next future, the SARS-CoV-2 pandemic will no longer be a global 
emergency, but in absence of an efficient global vaccination campaign, SARS-CoV-2 
outbreaks could still be a threat to the communities where healthcare resources are 
limited and the immunization rate has not reached a protective stage. 

Our study highlighted how AI-powered tools could be a valid support for emer-
gency care. We do not suppose that mobile apps could replace the physician’s bedside 
decision process, but we conceive that the interaction between emergency physicians 
and AI tools could improve healthcare assistance and have a significant impact on 
SARS-CoV-2 management. 
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Workflow for Analyzing miRNA-Seq 
Neuropsychiatric Data: An Initial 
Replicability Assessment 

Daniel Pérez-Rodríguez, Mateo Pérez-Rodríguez, Roberto C. Agís-Balboa, 
and Hugo López-Fernández 

Abstract In the last decade, miRNAs have attracted noticeable interest as potential 
biomarkers of neuropsychiatric conditions. However, a standard methodology for 
miRNA-Seq analysis does not yet exist, raising concerns about the reproducibility 
of the in-silico results and limiting their usefulness. This situation motivated us to 
design a miRNA-Seq pipeline specialized in the analysis of neuropsychiatric data, 
aiming to integrate the results of several bioinformatics tools in a highly reproducible 
workflow. In this study, we performed an initial test of the usefulness of our new 
pipeline, named myBrain-Seq, by reanalyzing four recent miRNA-Seq studies of 
neuropsychiatric conditions. We then compared the myBrain-Seq results with the 
original results and with an additional reanalysis done with another pipeline in order 
to make an estimation of the overall replicability. We found one of the three myBrain-
Seq methodologies to be the one with best replicability, although the heterogeneity 
of the results and the absence of an experimental validation limits our conclusions.
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Further work is required to assess myBrain-Seq’ performance using a bigger dataset 
of studies with experimental validation data available. 

Keywords miRNA-Seq · Pipeline · Neuropsychiatry · Docker 

1 Introduction 

MiRNAs are short non-coding RNA molecules that participate in the regulation 
of gene expression. They are almost ubiquitous in the regulation of the biological 
processes in eukaryotes, and their expression levels are known to be affected by 
lifestyle and environmental events such as age, diet, stress or medications [1–4]. 
In the last decade, these molecules have been studied as biomarkers of numerous 
conditions, gaining a particular importance in the field of neuropsychiatry. 

Unlike other diseases, the complex etiology of mental illnesses limits their diag-
nosis to the identification of symptoms. Patients diagnosed with the same psychiatric 
disorder can present diverse clinical manifestations, often resulting in poor treatment 
efficacy and management. The necessity of biological biomarkers has focused the 
interest on miRNAs plasticity, increasing interest in the study of these molecules as 
biomarkers for neuropsychiatric conditions. Lots of studies have focused on finding 
differentially expressed miRNAs between groups of patients and healthy controls 
(DE miRNAs), and hundreds of these DE miRNAs have been proposed as potential 
candidates without being experimentally validated. 

However, there is no standard methodology to perform a miRNA-Seq analysis, and 
this is usually performed using custom software and statistical thresholds [3, 4], and 
sometimes outdated reference genomes or annotations [5]. This lack of standardiza-
tion raises a concern about reproducibility of the findings and questions the inference 
of the results to new data. To address this problem, pipelines as miARma-Seq [6] 
have emerged as an alternative to in-house solutions, integrating existing tools into a 
standardized process and offering a higher level of replicability and maintainability. 

In our previous study [7], we used miARma-Seq to re-analyze the results of five 
miRNA-Seq studies in neuropsychiatric diseases and evaluate the reproducibility of 
the differential expression analysis (DEA) results. We found that only 28% of the 
original results were replicated with miARma-Seq on average, and tested the useful-
ness of the pipelines for comparing the replicability between studies. Furthermore, 
we hypothesized that the higher replicability of Mavrikaki et al. [8] might be related 
to the high quality of their raw data, perhaps as a result of using an animal model. 

To the best of our knowledge, there are no pipelines for the analysis of miRNA-Seq 
data that offer specific results and features for the study of neuropsychiatric diseases. 
Since we believe that this field could greatly benefit from this type of tool, we are using 
Compi [9] to design an integrated solution named myBrain-Seq,1 specifically adapted 
to work with miRNAs of neuropsychiatric patients. Our motivation to develop a new 
pipeline comes from three main aspects: (i) to tune the existing bioinformatics tools

1 https://www.sing-group.org/compihub/explore/625e719acc1507001943ab7f. 

https://www.sing-group.org/compihub/explore/625e719acc1507001943ab7f
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used to enhance their performance with miRNA data, providing rationale default 
values, (ii) to focus on the analysis of data of neuropsychiatric diseases, adding 
specific features for different experimental designs; (iii) to provide a self-contained 
pipeline based on Docker, compatible with all operating systems with a Docker 
installation, where software versions can be easily changed and new tools can be 
easily added to perform custom analyses. In this study, we aim to pilot test the alpha 
version of myBrain-Seq by re-analyzing the same data as in our previous study [7] 
and comparing it to both miARma-Seq results and the original results. By doing this, 
we will be able to identify ways of improving our new pipeline and start enhancing 
its usability. 

2 Materials and Methods 

The dataset reanalyzed with myBrain-Seq are the same studies analyzed with 
miARma-Seq in our previous study [7] (Table 1), with the exception of one that 
was later discarded (see next section). Throughout this paper we will use the term 
“original studies” to refer to these five studies and “previous study” to refer to our 
previous miARma-Seq analysis [7]. 

2.1 Data Acquisition 

MiRNA-Seq Data Acquisition. The raw data in FASTQ from our previous study 
was archived to a hard drive and retrieved for this study. More details about data

Table 1 Summary of the original studies and data to be reanalyzed 

Year Study Organism Contrast Cases Controls Bioproject 

2020 Nie et al. Human AD-Control 
PD-Control 

5 AD  
7 PD  

34 PRJNA587017 

2019 Mavrikaki 
et al. 

Rattus 
norvegicus 

Females I-G 
Males I-G 

5 Females 
I-G 
5 Males 
I-G 

5 Females 
5 Males 

PRJNA543123 

2018 Wang et al. Human ADHD-Control 1 ADHD 
(pool of 5 
samples) 

1 
(pool of 5 
samples) 

PRJNA450485 

2017 Martin 
et al. 

Human PTSD-Control 15 PTSD 9 PRJNA347370 

2016 Hicks et al. Human ASD-Control 24 ASD 21 PRJNA310758 

2016 Hoss et al. Human PD-C 
PDD-PDN 

29 PD 33 PRJNA295431 
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acquisition are given in our previous study [7]. A summary of the original studies 
can be seen below in Table 1. As myBrain-Seq needs replicas to perform the DEA, 
Wang et al. 2018 [10] study was discarded because they exclusively used pooled 
samples. 

Reference Genomes and Annotation Files. The reference genome and annotations 
are needed to convert the FASTQ sequences to genome coordinates first, and then to 
miRNA IDs. These references are dynamic and are subjected to continuous updates 
and modifications as the knowledge of the genome and epigenome grows. Changes on 
the reference genome include placement and orientation of new sequences, region 
relocations and deletions and inclusion/correction of alternative loci. Annotation 
changes include the identification of new miRNAs and the relocation or deletion 
of existing ones. These modifications are grouped and published in versions called 
assemblies or builds. All original studies aligned with old genomic builds: four of 
them [11–14] aligned with human genome hg19 and one [8] aligned with Rattus 
norvegicus genome rn6. Both genomes were downloaded from the NCBI Datasets 
[15] in their latest build: hg38 and mRatBN7.2. Regarding the annotation files, we 
used miRBase [16] to download the human annotations and NCBI [15] for the rat 
genome. Both genome and annotations were in the same version as used in our 
previous study using miARma-Seq [7]. This could imply that regions mapping to a 
miRNA in the original studies could be missing in miARma-Seq and myBrain-Seq 
analysis and vice versa. 

2.2 myBrain-Seq Implementation 

MyBrain-Seq is a container-based pipeline developed with Compi [9] and publicly 
available at Compi Hub [17]. Based on the knowledge gathered from our previous 
bibliographic review [5], the initial version of the pipeline comprises nine software 
and 14 tasks (Fig. 1), here is a brief summary of them: (1) pull-docker-images, down-
load of the docker images from the pegi3s repository; (2) initialization, building of 
the directory tree for the results; (3) fastqc-qc, quality control of the fastQ files with 
FastQC [18]; (4) cut-sequences (optional), adapter removal with Cutadapt [19]; (5) 
build-genome-index (optional), genome index creation for the Bowtie alignment; (6) 
bowtie-alignment, alignment to the reference genome with Bowtie [20]; (7) sam-to-
bam, format conversion of the Bowtie output files to bam using sam-tools [21]; (8) 
bam-stats, quality control of the alignments with sam-tools; (9) feature-counts, quan-
tification and annotation with featureCounts [22]; (10) deseq, DEA with DESeq2 
[23]; (11) edger, DEA with EdgeR [24]; (12) dea-integration (optional), intersec-
tion of the DESeq2 and EdgeR results and averagement of their q-values and FC; 
(13) venn, creation of a Venn diagram with the integrated results using VennDia-
gram [25] and (14) volcano, creation of a volcano plot with the DEA results using 
EnhancedVolcano [26].
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Fig. 1 Analysis workflow implemented in myBrain-Seq 

Our pipeline uses independent Docker images from the pegi3s Bioinformatics 
Docker Images project [27] to run the external software required in each task. This 
design improves the maintenance of the code, easing the version updates, and builds 
an isolated environment for each analysis at runtime to improve reproducibility. Also, 
the pipeline itself is distributed as a Docker image2 and thus the only dependency 
required to execute it is Docker. The source code of myBrain-Seq is available at 
GitHub3 under a MIT License and the pipeline can be also seen at CompiHub.4 

2.3 Experimental Setup 

The analysis of the original data consisted on the following steps: (1) data arrange-
ment into myBrain-Seq format requirement, (2) myBrain-Seq analysis, (3) quality 
control, (4) application of the same statistical thresholds as the original articles, and 
(5) comparison between the original results, miARma-Seq results and myBrain-Seq 
results. 

Data Arrangement into myBrain-Seq Format Requirement. In addition to data, 
genome and annotations, the myBrain-Seq pipeline requires three additional files: 
(i) a parameters file with the paths of the data, references, output directory and paths 
to the other two additional files; (ii) a TSV file with sample names, conditions and 
labels; and (iii) a text file with the conditions to compare and a label for the contrast. 
Although these files are myBrain-Seq-specific, the information required to build the 
latter two files is similar to that used in our previous analysis. In order to diminish 
the probability of errors we adapted, whenever possible, the miARma-Seq files to 
myBrain-Seq files. 

myBrain-Seq Analysis. MyBrain-Seq analysis was performed using all the tasks 
described in the Sect. 2.2 excepting for the adapter removal task. This task was 
only performed in the Hoss et al. 2016 samples as they explicitly state the adapter 
sequence. 

Quality Control. To assess the performance of the myBrain-Seq analysis, MultiQC 
[28] reports were generated with the results of each study. We look for mapping and 
assignment rates in order to discard studies with low-quality data.

2 https://hub.docker.com/r/singgroup/my-brain-seq. 
3 https://github.com/sing-group/my-brain-seq. 
4 https://sing-group.org/compihub/explore/625e719acc1507001943ab7f#readme. 

https://hub.docker.com/r/singgroup/my-brain-seq
https://github.com/sing-group/my-brain-seq
https://sing-group.org/compihub/explore/625e719acc1507001943ab7f\#readme
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Application of the Same Statistical Thresholds as the Original Articles. Results 
of DESeq2, EdgeR, and the integrated ones were filtered in a LibreOffice spread-
sheet using the same criteria as in the original articles, namely: false discovery 
rate-corrected p-value (q-value) < 0.05 on the Mavrikaki [8], Hoss [14] and Martin 
[11] studies and q-value < 0.05, fold change lower than -1 or greater than 1 on Nie 
[12] study. The resulting miRNAs were stored in an SQLite database, identified by 
study and contrast, to ease further queries and comparisons. 

Comparison Between the Original Results, miARma-Seq Results and myBrain-
Seq Results. Prior to the DEA result comparisons, the miRNAs annotations format 
was adapted to that used on the original studies: myBrain-Seq results were obtained 
in format “hsa-miR…/rnor-miR…” and were adapted to “miR-” nomenclature for 
the Martin [11] and Nie [12] studies by removing the “hsa-” prefix. 

We aim to perform two comparisons: (1) myBrain-Seq results vs. miARma-Seq 
results and (2) myBrain-Seq results vs. original results. We chose the Jaccard index 
(J) as an estimator for the similarity between results (Fig. 2). To calculate J we 
considered n to be the number of contrasts in a study, therefore, for each contrast we 
could define pipeline results as three sets: 

MBSi 1 = { DE miRNAs of myBrain-Seq using DESeq2 }, 
MBSi 2 = { DE miRNAs of myBrain-Seq using EdgeR }, 
MBSi 3 = MBSi 1 ∩ MBSi 2, 

where i ∈ {1, …, n}. Denote by ref i = {DE miRNAs} the set of DE miRNAs found 
either in the original studies or miARma-Seq. Let us finally consider the number of 
coincidences in the i-th contrast using k software, 

coincidencesi k =
|
| MBSi k ∩ refi

|
|, i ∈ {1, .  .  .  ,  n }, k ∈ {1, 2, 3}. 

Whenever MBSi k /= ∅  and refi /= ∅, we consider the Jaccard index of the i-th 
contrast using k software defined as 

J i k =
|
|coincidencesi k

|
|

|
|MBSi k ∪ re  f  i

|
|
, i ∈ {1, . . . ,  n}, k ∈ {1, 2, 3}.

Fig. 2 Graphical 
representation of the Jaccard 
index as Venn sets 
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Table 2 Average number of sequences per study successfully aligned (% Alignment) and assigned 
(% Assignment) 

Study Contrast % Alignment % Assignment 

Mavrikaki et al. Females I-G, Males I-G 98.41 30.98 

Hoss et al. PD-C, PDD-PDN 94.20 39.77 

Martin et al. PTSD-Control 82.68 45.36 

Nie et al. AD-Control, PD-Control 64.03 10.24 

Hicks et al. ASD-Control 13.61 1.86 

Note that the case MBS = ref = ∅  is interpreted as complete agreement, which 
means that J = 1. 

3 Results and Discussion 

3.1 Quality Control 

MultiQC reports [28] were generated to summarize the Bowtie [20] and Feature-
Counts [22] results. Alignment rates (Table 2) were above 80% for all samples except 
in Nie [12] (64.03%) and Hicks [13] (13.61%) studies. Similarly, assignment rates 
averaged 39% except for the Nie (10.24%) and Hicks (1.86%) samples. As done in 
our previous study, we discarded the Hicks et al. study for subsequent comparisons. 

3.2 Application of the Same Statistical Thresholds 
as the Original Articles 

Statistical criteria of the original articles were applied on myBrain-Seq results and 
names of the resulting miRNAs were stored in the SQLite database. Only in the 
Martin study [11] myBrain-Seq did not suggest any DE miRNAs. 

3.3 Comparison Between the Original Results, MiARma-Seq 
Results and MyBrain-Seq Results 

To get a first impression of the performance of myBrain-Seq, we re-analyzed the same 
data as in our previous study [7] and compared the results with those of miARma-
Seq and the original studies. Table 3 contains all the comparisons mentioned in 
Sect. 2.3 along with the results of our previous study. In this section, we will refer
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to myBrain-Seq DESeq2 results as MBSD, to myBrain-Seq EdgeR results as MBSE 
and to myBrain-Seq integrated results as MBSI (these are simply the intersection 
of MBSD and MBSE). We will also use the term “methodologies” to refer to the 
original, miARma-Seq and myBrain-Seq analyses.

It can be observed from Table 3 that myBrain-Seq was the methodology with 
fewest DE miRNAs predictions, with MBSD having more results on average than 
MBSE and the latter more than MBSI. The number of results per study and contrast 
was highly variable across methodologies, having Hoss et al. study [13] the contrast 
with more DE miRNA predictions, PD-control with 312 results in average, and fewer 
predictions, PDD-PDN with 0 in all the analysis including the original. This absence 
of results across all the analysis determines that PDD-PDN is the only contrast with 
J values of 1 for all the methodologies (see J definition in Sect. 2.3), but the relevance 
of this finding is limited, since it could be the result of comparing very unrelated 
groups. 

As far as replicability is concerned, myBrain-Seq results were, on average, more 
similar to miARma-Seq results (J = 0.251) than to the original results (J = 0.143) 
(Table 4). Specifically, the comparisons between the results of MBSD and miARma-
Seq achieved the highest degree of replicability, with an average J of 0.37. Notably, 
in the case of the PD-control contrast in Hoss et al. [14], J is about 0.7 between 
miARma-Seq and myBrain-Seq (Table 3). This higher replicability could be the 
result of using the same reference genome and annotations in both pipelines, as well 
as the result of using similar software for alignment and quantification.

The first row of Table 4 shows the replicability of the original results taking in 
account the J values of miARma-Seq and myBrain-Seq: it could be interpreted as 
only 16% of the original results were replicated by these both pipelines. In the same 
line, miARma-Seq replicated 22.5% of the original results and myBrain-Seq 14.3% 
on average. The contrast best replicated was that of MBSD vs. miARma-Seq (J = 
0.372 on average), and the one with least replicability was MBSI vs. original studies (J 
= 0.117 on average). MBSE was the methodology with less predictions and greatest 
fluctuations in number of results, with almost the same number of predictions as the 
other methodologies in the Hoss et al. [14] contrast PD-control and Mavrikaki [8] 
contrast SM-GM, and up to 68 times less predictions in the Mavrikaki IF-GF contrast 
and 35 times less in Nie [12] AD-NC contrast. This result must be analysed further 
as miARma-Seq also uses edgeR but averages higher J values. 

If we now turn to the results per study, Hoss et al. [14] was the study with highest 
replicability, with an overall average of J = 0.713, followed by Martin et al. study 
[11] with 0.286, Mavrikaki et al. study [8] with 0.214, and finally Nie et al. study 
[12], with 0.059. Poor replicability of the Nie et al. study [12] could be explained 
by the low alignment and assignment rates of their data, and appears to be consis-
tent with the higher replicability of the Hoss and Martin studies [11, 14], as they 
both had the best alignment rates. In Mavrikaki [8] SM-GM contrast, myBrain-Seq 
methodologies made almost the same number of predictions, more than miARma-
Seq and the original studies, but the J of such predictions was half of the J obtained
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Table 4 Average Jaccard index (J) of each methodology for all the studies, with MBSD being 
myBrain-Seq DESeq2 results, MBSE myBrain-Seq EdgeR results, MBSI myBrain-Seq integrated 
results, (M) miARma-Seq results and (O) the original results. In the “Summary” column, “All vs. 
O” is the average J of all the comparisons of MBS with O and M with O, whereas “M vs. O” is the 
average J result of all the comparisons of M with O 

Summary myBrain-Seq vs. Original myBrain-Seq vs. miARma-Seq 

All vs. O MBSD vs. O 0.185 MBSD vs. M 0.372 

0.16 MBSE vs. O 0.126 MBSE vs. M 0.157 

M vs. O MBSI vs. O 0.117 MBSI vs. M 0.225 

0.225 MBS vs. O 0.143 MBS vs. M 0.251

by miARma-Seq. Finally, in Nie AD-NC contrast, myBrain-Seq had better J values 
than miARma-Seq; both methodologies struggled to replicate the results of the Nie 
study [12]. 

4 Conclusion 

MiRNAs are emerging as promising biomarkers for neuropsychiatric diseases, 
however there is still no standard methodology to perform a miRNA-Seq analysis. 
In this study, we aimed to test the replicability of a new pipeline that we are still 
developing, known as myBrain-Seq, which will be specially oriented to the analysis 
of miRNAs in neuropsychiatric data. To do that, we re-analyzed the same data as in 
our previous study [7] and compared it to both miARMa-Seq results and the original 
results. We found that the results best replicated were those of myBrain-Seq when 
using DESeq2 software for differential expression analysis. However, replicability 
varied widely across studies, suggesting that it might be strongly related to the quality 
of the raw data. In addition, we found more similarities between miARma-Seq and 
myBrain-Seq results which could be attributed to the use of similar software for 
annotation and quantification. This would emphasize the influence of the method-
ology in drawing conclusions from the same data. On the other hand, the usefulness 
of the integrated methodology was limited due to the reduced number of EdgeR 
results, although it performed better than the EdgeR results alone. Additionally, as 
there is no experimental validation data in the original studies, our conclusions are 
limited by the predictions made by each methodology. Terms such as “good” and 
“bad” performance are related to how many results were replicated in silico, but are 
not a representation of true biological positives. In a future study, we would like to 
test and tune myBrain-Seq performance using a bigger dataset of studies with exper-
imental validation data available. We will also start using our pipeline to analyze 
miRNA-Seq data from ongoing projects in our laboratory. 
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The NAD Interactome, Identification 
of Putative New NAD-Binding Proteins 

Sara Duarte-Pereira , Sérgio Matos, José Luís Oliveira, 
and Raquel M. Silva 

Abstract Nicotinamide adenine dinucleotide (NAD) is an essential metabolite in 
normal cellular physiology and its deregulation may lead to several pathological 
conditions. NAD interacts with a vast number of proteins, acting as a coenzyme, as 
a substrate and regulating the interaction between proteins. The goals of this study 
were to characterize the proteins involved in NAD metabolism and to identify putative 
new NAD regulated proteins. Using an in silico approach, we first defined a NAD-
binding dataset, that we characterized through pathway enrichment analysis and 
protein structural domains analysis. We then screened the full human proteome and 
further analyzed a selection of potential NAD-binding proteins. This global study of 
the NAD interactome resulted in the identification of new potentially NAD-binding 
proteins (NADPBs), including TRPC3 and a few isoforms of DGA kinases, which are 
involved in calcium signaling. NADBPs participate in several metabolic pathways 
and signaling processes in the cell, while proteins interacting with NADPBs are 
mostly involved in signaling pathways, including pathways related to disease, namely 
three major neurodegenerative diseases, Alzheimer’s, Huntington’s, and Parkinson’s. 
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1 Introduction 

Proteins are responsible for virtually all fundamental cellular processes and often 
their function depends on the physical interaction with other proteins and with 
small molecules. Thus, protein-protein or protein-metabolite interactions are highly 
specific and regulated. Over the years, the study of protein-protein interactions has 
shown that the specificity of the interaction between a protein and its target depends 
mostly on the structure of the interface of the two proteins and that the interaction 
patterns between similar proteins or domains are more conserved than their amino 
acid sequence [1]. On the one hand, structural analysis showed similarities between 
interfaces and, on the other, a preference of certain amino acids on protein interfaces 
has been observed, which differ from the amino acids at the periphery of the protein 
[2]. In addition, protein domains are usually associated to a specific protein function 
or interaction. Therefore, the analysis of both the sequence and the structural units 
of a protein may lead to the prediction of associated functions [3]. 

Nicotinamide adenine dinucleotide (NAD) is a small molecule essential for 
cellular functions such as energy metabolism, by acting as a coenzyme in redox 
reactions in several metabolic pathways. Additionally, NAD serves as a substrate for 
proteins involved in critical physiological processes, such as transcription regula-
tion, DNA damage repair, calcium signaling, cell survival, among others. The major 
groups of NAD-dependent enzymes are sirtuins (SIRTs) [4], poly- and mono-(ADP-
ribose) polymerases (PARPs and MARTs) [5], and cyclic ADP-ribose hydrolases, 
such as CD38 [6]. 

More recently, a third role for NAD has been suggested, where NAD would 
function as a direct regulator of protein-protein interactions (PPIs). In their report, Li 
and collaborators [7] have shown that NAD binds to the NUDIX homology domain 
(NHD) of the Deleted in Breast Cancer 1 (DBC1) protein, preventing its interaction 
with PARP1. PARP1 is one of the most important players in the DNA damage repair 
process and the DBC1-PARP1 interaction inhibits PARP1 normal function. On the 
other side, DBC1 regulates the activity of several proteins with key roles in the 
cellular physiology, such as the transcription factor p53 [8]. 

Given the vast range of NAD functions in the cell and the importance of NAD 
metabolism in the normal physiology of the cell and pathological conditions, in 
this study we first aimed to characterize the proteins involved in NAD metabolism. 
Due to NAD specific role of regulating PPIs, we focused on NAD-binding proteins 
and their interactions, aiming to identify putative new NAD regulated proteins. To 
achieve these goals, we chose an in-silico approach where we first defined a NAD-
binding dataset, that we characterized through pathway enrichment analysis and 
protein structural domains analysis. We then screened the full human proteome and 
further analyzed a selection of potential NAD-binding proteins.
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2 Methods 

2.1 Data Collection and Definition of Protein Datasets 

NAD-Binding Proteins (NADBPs) Dataset. We defined a first dataset composed by 
proteins known to bind the NAD molecule. We searched for NAD-protein interactions 
in several chemical databases, based on experimental data. Namely, we downloaded 
data from the Human Metabolome Database1 [9] (accession HMDB0000902), from 
the STITCH database v.42 [10] (beta-NAD, all types of evidence, confidence level of 
0.9), from Drugbank v.5.03 [11] (accession DB00157), from ChEMBL database4 [12] 
release 23 (CHEMBL1234613), from PubChem5 [13], (ID 5893) and from Protein 
Data Bank6 (PDB) [14] (NAD as a ligand). For all proteins found, we mapped 
either the names or IDs obtained from each database to the corresponding UniProt 
ID7 [15], and removed duplicates. The resulting dataset was composed by all the 
proteins identified in the interactions from these six databases. 

NAD-Protein-Protein Interactions (NAD-PPIs) Dataset. We then built a dataset 
composed by the proteins that interact with the NAD-binding proteins, i.e., the NAD-
PPIs dataset. For that purpose, we searched for the interactions of the proteins from 
the NADBPs dataset, using three main sources: BIOGRID8 [16], STRING9 v.10 
[17] and IMEX Consortium10 [18]. On STRING database, we selected only the 
interactions with highest confidence (>0.9) of the combined score provided. We 
merged the results from these three databases, by identifying unique interactions and 
by removing the duplicates, and mapped the proteins to the UniProt ID. 

2.2 Datasets Analysis 

Gene Ontology (GO) Analysis. To perform a GO analysis, we used PANTHER11 

[19] overrepresentation test (Fisher’s exact, False Discovery Rate correction), using

1 https://hmdb.ca/. 
2 https://stitch4.embl.de/. 
3 https://go.drugbank.com/. 
4 https://www.ebi.ac.uk/chembl/. 
5 https://pubchem.ncbi.nlm.nih.gov/. 
6 https://www.rcsb.org/. 
7 https://www.uniprot.org/. 
8 https://thebiogrid.org/. 
9 https://string-db.org/. 
10 http://www.imexconsortium.org/. 
11 http://pantherdb.org/. 

https://hmdb.ca/
https://stitch4.embl.de/
https://go.drugbank.com/
https://www.ebi.ac.uk/chembl/
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
https://www.uniprot.org/
https://thebiogrid.org/
https://string-db.org/
http://www.imexconsortium.org/
http://pantherdb.org/
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the Pathways annotation dataset (version 13.0). We analyzed the NAD-binding and 
the NAD-PPIs datasets. 

Protein Structural Domain Analysis. To identify the most frequent protein domains 
and protein families within the NADBPs dataset, we used PFAM12 database [20]. 
We performed a batch search using as input a fasta file containing the NADBPs 
sequences, retrieved from UniProt. The analysis was executed through the HMMER 
software [21], that uses profile hidden Markov models. 

We also obtained the domain analysis of the full human Uniprot proteome (NCBI 
tax. ID 9606) and selected the results with an E-value below 1. We considered all 
human reviewed proteins from the Uniprot database as a reference dataset, in a total 
of 20,303 proteins, and the unreviewed proteins as a test dataset, in a total of 50,588 
proteins. 

2.3 Identification of Putative New NAD-Binding Proteins 

From the protein domains obtained from the NADBPs dataset, we identified 15 
domains that appeared in more than 10 proteins in the dataset. Then, we retrieved 
from both reference and test datasets the proteins that presented at least one of those 
15 domains. All protein fragments were excluded and the mapping to a corresponding 
single gene identifier was performed. The genes/proteins that were found exclusively 
within the test dataset of unreviewed proteins were identified. 

We analyzed the resultant proteins from the test dataset using the NADbinder13 

[22] to predict the number of NAD interacting residues. The amino acid fasta format 
sequence of each protein was used as input, and a threshold of 0.3 was selected. 

The STRING database v.11 [17] was used to obtain the interactions of each of 
those proteins. Only interactions based on experiments were retrieved, with a 0.4 
confidence level. 

3 Results 

3.1 NAD-Binding Proteins (NADBPs) Dataset 

The combination of the data obtained from the different databases resulted in a 
NADBPs dataset with a total of 439 proteins. Around 80% of these proteins were 
enzymes, most with catalytic activity, involved in metabolite interconversion. The 
major protein classes found were dehydrogenases (92 proteins), from which over 30

12 http://pfam.xfam.org/. 
13 http://crdd.osdd.net/raghava/nadbinder/. 

http://pfam.xfam.org/
http://crdd.osdd.net/raghava/nadbinder/
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were NADH dehydrogenase, and oxidoreductases (55 proteins), but several others 
were identified. In addition to enzymes that use NAD as cofactor in redox reactions, 
there were also enzymes that use NAD as a substrate, such as all SIRTs and all PARPs. 
Considering their molecular function, a small number of proteins were involved in 
regulation or transporter activities. Of note, over one hundred proteins corresponded 
to mitochondrial isoforms of enzymes, mostly involved in the chain of reactions 
responsible for ATP production. 

3.2 NAD-Protein-Protein Interactions (NAD-PPIs) Dataset 

After mapping every ID retrieved from each database to the UniProtKB ID, with 
reviewed annotation, we removed the duplicated entries that were mainly due to 
gene or protein alternative names. We then identified the proteins common to the 
three sources of PPIs, remaining with a final list of 10,020 proteins involved in 
PPIs with NADBPs. For further analysis, we considered the 1368 proteins that were 
common to all databases. 

3.3 Pathway Enrichment Analysis 

We performed a GO analysis on the the NAD-PPIs and the NADBPs datasets (Fig. 1).
Pathways specific of the NADBPs dataset were related to biosynthesis or 

metabolism of nucleic acids, carbohydrates, and amino acids, while NAD-PPIs 
dataset presented an enrichment in several signaling pathways. The pathways with 
the highest number of genes (over 50) were related to hormone receptors signaling, 
namely for gonadotropin and for the gastrointestinal peptide hormones cholecys-
tokinin and gastrin, followed by the Wnt signaling and angiogenesis pathways. 
Several other pathways were related to hormone or growth factor signaling, and 
disease pathways also emerged, namely three major neurodegenerative diseases, 
Alzheimer’s, Huntington’s, and Parkinson’s. 

3.4 Characterization of Protein Domains of the NADBPs 
Dataset 

From the analysis of the protein domain performed on the 439 NADBPs through 
PFAM database, 1101 identifications were made, which corresponded to a total of 
412 different domains, that belonged to a total of 114 clans. More than half of the 
proteins (56%–247 proteins) belonged to the FAD/NAD(P)-binding Rossmann fold
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Fig. 1 Graphical representation of the Pathway enrichment analysis of the NADBPs (blue bars) 
and the NAD-PPIs (orange bars) datasets
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superfamily (clan id:CL0063), and 27% belonged to the Ankyrin repeat superfamily 
(clan id: CL0465). 

The 15 more common domains appeared in more than ten proteins. They included 
five different ankyrin repeats, the short chain dehydrogenase, the aldehyde dehydro-
genase family, the cytochrome P450 and the poly(ADP-ribose) polymerase (PARP) 
catalytic domain. 

The NUDIX domain was found only in two proteins from the NAD-binding 
dataset, namely NUDT12 and NUDT7. 

3.5 Identification of Putative NAD-Binding Proteins 

Top Domains from the NADBPs Dataset. We searched for the 15 domains that were 
identified in ten or more proteins from the NADBPs dataset within the dataset of the 
full human proteome unreviewed proteins (test dataset) and obtained 901 protein 
sequences. After removing all protein fragments and duplicates, we identified 255 
proteins, which corresponded to 204 single genes. We performed a similar approach 
in the reference dataset and obtained 474 genes. Given our aim to identify unchar-
acterized proteins, from the 204 genes, we excluded 195 that were also identified in 
the reference dataset and 8 genes remained, corresponding to 13 protein sequences, 
found uniquely in the test dataset. 

Among the 13 proteins, there were five isoforms of the Diacylglycerol (DAG) 
kinase, four encoded by the DGKI gene (UniProt IDs: A0A087WV00, E7EM72, 
E7EWQ4 and E9PFX6) and one encoded by DGKZ gene (E9PNL8). There were 
two other kinase isoforms, from the Leucine-rich repeat serine/threonine-protein 
kinase 1, encoded by the LRRK1 gene (E9PK39 and E9PMK9). There were also 
two proteins related to membrane transport, the Sodium/hydrogen exchanger 9B2 
(SLC9B2 gene, UniProt ID D6R9P2) and two isoforms of a short transient receptor 
potential channel encoded by the TRPC3 gene (D6RC49 and J3QTB0). A smaller 
isoform of the POTEB member of the ankyrin family was also found (Q495V5). 
Of note, POTEB was the only protein that presented simultaneously two of the 15 
domains (Ank_2 e Ank_5). Additionally, there were two proteins resultant from 
the readthrough of two genes, CYP3A7-CYP3A51P (UniProt ID A0A087WV96), 
which belong to a subfamily of the Cytochrome P450, and FPGT-TNNI3K (UniProt 
ID V9GXZ4), from the neighboring fucose-1-phosphate guanylyltransferase (FPGT) 
and TNNI3 interacting kinase (TNNI3K) genes. 

NADbinder Analysis. We further analyzed the 13 identified proteins using the 
NADbinder software (Fig. 2). Here, instead of the protein structure, the protein 
sequence is considered. The highest number of NAD-interacting residues (33) was 
identified in the longest isoform of TRPC3, with 793 amino acids, followed by the 
longest isoform of DGKI with 1078 amino acids, where 31 residues were identified. 
We observed a positive correlation between the amino acid length and the number 
of NAD-interacting residues identified.
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Fig. 2 NADbinder results for the potential NAD-binding proteins identified. For each protein, the 
number of NAD residues (orange dots) was identified from the protein sequence, which length is 
represented by the blue bars 

Protein-Protein Interactions. To evaluate the possibility that NAD has an impact 
on the interactions between these proteins, we further searched for the interactions 
of each of the proteins (Fig. 3). DGKI and SLC9B2 had no reported interactions, 
as well as the proteins resultant from the two readthrough events. LRRK1 had the 
highest number of interactions, followed by TRPC3.

Among the 23 proteins that interact with the potential NAD-binding proteins, 
seven were already present in the NAD-PPIs dataset described previously, meaning 
that they were also found among the proteins that interact with known NAD-binding 
proteins. They were the following: the SHC-transforming protein 1 (SHC1), the 
phospholipase C gamma 1 (PLCG1), the serine/threonine Polo-like kinase 1 (PLK1), 
the leucine rich repeat kinase 2 (LRRK2), the FKBP (FK506-Binding Protein) Prolyl 
Isomerase 5 (FKBP5), the 14–3-3 protein sigma Stratifin (SFN), also known as the 
Epithelial cell marker protein 1, and the Retinoblastoma-associated protein (RB1). 
Among the interactors, we found that PLCG1 interacts both with TRPC3 and DGKZ. 

4 Discussion 

To accomplish the diversity of functions in which NAD participates within the cell, 
this small molecule binds to a high number of different proteins. In those reactions, 
NAD can play one of three roles: a) acts as an enzymatic cofactor in redox reactions, 
b) is consumed by NAD-dependent enzymes, and c) intervenes in protein-protein 
interactions, therefore regulating several cellular processes. In this exploratory study, 
our approach to identify potential NAD-binding proteins, led us to a global analysis 
of the NAD interactome. 

The pathway enrichment analysis revealed a diversity of cellular pathways in 
which the NADBPs are involved. Interestingly, the comparison with the NAD-PPIs
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Fig. 3 Protein-protein interactions of potential NAD-binding proteins. a TRPC3, b POTEB, c 
DGKZ and d LRRK1. Queried proteins are represented by red nodes and the line thickness indicates 
the confidence level of the interaction. Only physical interactions are represented. The network was 
obtained through STRING (string-db.org)

dataset highlighted the key role of NADBPs in basic metabolism and biosynthetic 
processes. Nevertheless, several pathways were common to both datasets, such as 
glycolysis and TCA cycle, which are essential metabolic pathways, or signaling 
pathways mediated by GABA or dopamine receptors, for example. On the other hand, 
the pathways found in NAD-PPIs dataset analysis, showed how vast is the action of 
this small molecule. Besides the large number of proteins that directly interact with 
NAD, the highest number of protein interactions in which it participates is related 
to critical signaling pathways, from development and apoptosis to general immune 
and hormone responses, and including many disease pathways. 

Then, our pursue for previously unidentified proteins as NADBPs was primarily 
based on the presence of the most frequent domains and then on the presence of 
NAD-interacting residues.
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Besides being, by definition, a structural protein motif that binds nucleotides, 
particularly NAD, NADP and FAD, the Rossmann fold is also one of the most 
common folds found in all human proteome [23]. So, it was expected to find that 
the majority of the NADBPs dataset belonged to this superfamily of proteins. In 
what concerns the protein domains, the ankyrin repeats were the most frequent, and 
some proteins presented more than one ankyrin repeat in their structures. The ankyrin 
domain is also very frequent in all human proteome and it mediates PPIs [24]. 

In addition to protein structural domains, from which only the frequency was 
evaluated, we considered the number of NAD interacting residues. In fact, the direct 
binding of NAD at specific sites of a protein ultimately determines its action [22]. 
In the case of the report from Li and collaborators [7], the NAD binding to the 
NUDIX homology domain of DBC1 regulates its action on PARP1, by preventing 
the interaction between the two proteins. In their study, they identified no more than 
10 residues within the NUDIX domain that are conserved across various species. So, 
even when considering the presence of a specific domain with a folding favorable 
to an interaction with a small molecule, only a small number of residues might be 
responsible for the actual interaction. 

Among the smaller set of proteins identified that might potentially bind NAD, 
TRPC3 (UniProt ID J3QTB0) had the ankyrin repeat domain and had the highest 
number of NAD-interacting residues. The corresponding reviewed protein (UniProt 
ID: Q13507) of TRPC3 is longer than the two isoforms detected here, with 836 amino 
acids. Its known interactions were found to be mostly involved in signal transduction, 
response to stress, anatomical structure development, and transport processes, many 
of them related to calcium transport and signaling, such as the inositol trisphosphate 
(IP3) receptors ITPR1 and ITPR3, and the Sodium/calcium exchanger 1 SLC8A1. 

TRPC3 is a member of the transient receptor potential (TRP) channels family, 
which regulates calcium concentration [25]. The canonical subfamily of the TRP 
channels is directly activated by lipids, specifically diacylglycerol (DAG). Together 
with IP3, DAG is a product of the hydrolysis of a phospholipid catalyzed by the 
phospholipase C (PLC) enzymes, that are key components of intracellular calcium 
signaling, in response to the activation of different receptors by neurotransmitters, 
hormones and growth factors. Some PLCG1 functions have been associated to a 
specific protein domain that directly interacts with TRPC3 and PLCG1, regulating 
calcium entry [26]. Very recently, the role of PLC gamma enzymes in disease devel-
opment has been explored [27]. Of note, PLCG1 was also found in our dataset of 
NAD-PPIs, showing that it already binds other NADBPs. 

5 Conclusion 

With this study, we obtained the main pathways in which NADBPs and NAD-PPIs are 
mostly involved and identified putative NADBPs. Both NAD-dependent signaling 
and calcium-dependent signaling are essential in the cell and therefore their dysregu-
lation is often associated with disease. In particular, the role of NAD as a regulator of
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calcium channels has been recently reviewed, due to its impact on cancer treatment 
research [28], where calcium channels emerge as potential targets for anticancer 
therapy. In addition to cancer, the TRP channels, namely the TRPC3 group, regulate 
functions in neurons and are involved in various neurological and psychiatric disor-
ders [29]. Generally, the proteins highlighted throughout this study were involved 
in several critical cellular pathways and processes that, when disrupted, may lead to 
pathological conditions. 
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Multiple Instance Learning Based 
on Mol2vec Molecular Substructure 
Embeddings for Discovery of NDM-1 
Inhibitors 

Thomas Papastergiou , Jérôme Azé , Sandra Bringay , 
Maxime Louet , Pascal Poncelet , and Laurent Gavara 

Abstract In this paper, we first present a new dataset of NDM-1 biological activi-
ties that is compiled by a cleaned version of the NMDI database. A literature review 
enriched the former database by 741 new compounds, comprising activities against 
NDM-1 classified in three classes (inactive, weakly and strongly active compounds) 
by specifying a unifying procedure for the labeling, which covers a range of different 
activity properties. Second, we restate the classification problem in the Multiple 
Instance Learning (MIL) setting by representing the compounds as a collection of 
Mol2vec vectors, each of them corresponding to a specific substructure (either atom 
or atom including their firsts neighbors). We observe an amelioration up to 45.7% and 
38.47% in respect to balanced accuracy and F1-score, respectively, for the strongly 
active class in the MIL approach when compared to the classical Machine Learning 
paradigm. Finally, we present a classification and ranking framework based on clas-
sifiers learned by a k-fold CV procedure, which possess different hyper-parameters 
per fold, learnt by a Bayes optimization procedure. We observe that the top-3 and
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top-5 ranked accuracies of the strongly active classified compounds yield 100% for 
the MIL setting. 

Keywords Machine leaning · Multiple instance learning · Drug discovery ·
NDM-1 inhibitors 

1 Introduction 

New Delhi Metallo-β-lactamase (NDM-1) is a recent bacterial enzyme highly 
involved in bacterial resistance phenomenon by its capacity to inactivate the main 
available class of antibiotics: the β-lactam agents [1]. The common way to fight this 
kind of resistance is the adjuvant strategy, which consists in a combination of a β-
lactam agent and a β-lactamase inhibitor [2]. Some combinations are already on the 
market but sadly are not effective on NDM-1 producers. Due to the specific mode 
of action of NDM-1, involving zinc atoms into the active site, the design of efficient 
inhibitors remains an unmet therapeutic need [3]. This major threat on human health 
has to be addressed to avoid return to the pre-antibiotic era. 

The drug discovery process is a very time-consuming (approximately 10–14 years) 
and costly (1 billion USD magnitude) procedure, characterized by high attrition 
rates, to reach marketing authorization [4]. Thus, in silico strategies, (e.g. Virtual 
Screening (VS) techniques) are often used as starting point for medicinal chem-
istry, for speeding-up the drug discovery process by identifying compounds of high 
potential against specific targets. VS can be categorized in three main areas: (1) 
structure-based (requiring knowledge of the 3D structure of the target), (2) ligand-
based (requiring knowledge of active ligands) and (3) hybrid approaches [5]. As 
the number of ligands in openly available databases is constantly increasing (e.g. 
ZINC 15 [6], ChEMBL [7] etc.) Machine Learning (ML) techniques are used for 
constructing efficient models used in VS for hit identification (i.e. discovery of small 
molecules as a starting point for medicinal chemistry programs), drug repurposing, 
activity scoring [8] or activity prediction [9]. In order to tackle the latter problem 
in an efficient manner specialized, annotated data are needed, since ligand-activity 
data that refer to different targets or to general target categories (e.g. antibacterial, 
anti-cancer, anti-inflammatory etc.) will produce ML models with low efficiency on 
specified tasks (e.g. discovery of effective NDM-1 inhibitors). 

Multiple Instance Learning (MIL) is a paradigm of weakly supervised learning 
where the samples to be classified (i.e. bags) are represented by multiple vectors (i.e. 
instances) and labels are only available for the bags. MIL was first introduced by 
Dietterich et al. in 1997 [10] tackling a musk odor prediction task. In this structure– 
activity prediction problem, each molecule was represented by their different confor-
mations captured by various feature vectors representing the shape of the molecule 
in each conformation. The standard MIL assumption was then applied stating that 
a bag is positive if it contains at least one positive instance (i.e. an active molecule 
conformation) and negative otherwise. The MIL paradigm has been used in different
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application areas including medical imaging classification, frailty prediction using 
physiological signals [11], natural images classification [12, 13], drug discovery [14] 
etc. 

As the numerical representation of molecules is crucial in order to construct ML 
models, different approaches have been proposed including Extended-Connectivity 
Fingerprints (a.k.a. Morgan Fingerprints (MF)), Molecular Graphs or computer 
learned representations [15] like the Mol2vec representation [16], a NLP-inspired 
technique that considers compound substructures, extracted by MF, as words and 
compounds as sentences. In this frame, a compound is represented by a collection of 
vectors, each of which corresponds to a substructure of the molecule, and a vector 
representation is obtained by adding-up these substructure vectors. 

ML have been extensively used in the drug design process for various purposes: 
prediction on drug-protein interactions, discovering of drug efficacy or ensuring the 
safety biomarkers, with applications ranging from prediction of protein folding or 
target identification to hit discovery [8]. More specifically, Shi et al. [17] compiled 
a NDM-1 activities database, comprising strongly and weakly active compounds of 
known NDM-1 activities and provided a list of “hypothetical” inactive compounds, 
based on their physicochemical properties. They have applied classical ML and deep 
learning models for activity prediction based on physicochemical features extracted 
by the commercial software MOE2018.1 

In this paper we present a framework to tackle the problem of discovering potential 
strongly active NDM-1 inhibitors by the use of ML models. For this purpose, (1) 
we compiled a database of 868 compounds of known activity against NDM-1, by 
collecting compounds from the recent literature and by considering only compounds 
referring to the NDM-1 enzyme, coming from the NDMI database, proposed by 
Shi et al. [17]; (2) we established a unifying set of rules for labelling compounds 
as inactive, weakly active or strongly active, by considering different experimental 
properties; (3) we restated the activity classification problem as a MIL problem by 
representing molecules by a collection of Mol2vec vectors representing molecular 
substructures; (4) we proposed an ensemble classification framework, which is able 
to rank the classification outputs per predicted class. 

The contributions of this paper can be resumed as follows: 

1. The compilation of a dataset of known activities against NDM-1 annotated by a 
set of unifying rules for incorporating different experimental properties; 

2. The restatement of the activity classification problem in the MIL paradigm, by 
representing compounds by Mol2vec representations of their substructures, that 
shows experimentally better performance than state-of-the-art Mol2vec classical 
ML models; 

3. The introduction of an homogeneous ensemble classifier framework that clas-
sifies and ranks the classification results per class, and shows very promising 
classification and ranking results for the strongly active class in terms of top-5 
to top-15 accuracy, when evaluated on an independent test set showing good 
generalization capabilities for the MIL ensemble models.

1 https://www.chemcomp.com/Products.htm. 

https://www.chemcomp.com/Products.htm
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2 Materials and Methods 

2.1 Dataset Collection 

In [17], Shi et al. introduced a database of active and “hypothetical” inactive 
compounds, found in the literature, comprising 511 and 6,358 compounds respec-
tively. The “hypothetical” inactive compounds where specified by considering phys-
iochemical properties of 51,280 compounds of the ZINC database, lacking of activity 
data against NDM-1. To compile a database comprising only compounds with known 
activities against NDM-1, we considered only the 511 compounds of NDMI. For each 
of these compounds, we tried to verify the existence of the publications by performing 
database searches on the PubMed2 database using, the provided Digital Identification 
Number (DOI) of each publication. In a subsequent step, the relevance to NDM-1 
inhibitors activities of the publications were checked, and irrelevant entries were 
discarded. Subsequently, the corresponding Canonical SMILES representation was 
produced, using the RDKit3 library, and duplicate entries were discarded. This proce-
dure yielded 127 compounds with known activity scores. Furthermore, a thorough 
search in the existing literature for compounds with known activities on NDM-1 
returned 741 new unique compounds. In total the new NDM-1 activity database 
comprises 868 unique compounds. 

2.2 Labeling the Database 

The activity against NDM-1 is measured by experimental properties based on enzy-
matic inhibition: (Ki, IC50, pIC50, enzyme inhibition at a set concentration, or Kd) 
[18] or in vitro bacterial growth inhibition (MIC) [19]. Our goal is to identify potential 
strongly active compounds against NDM-1. We classified the compounds in the new 
database in three classes: inactive, weakly active and strongly active compounds, 
inspired by the classification in [17] but with different, stricter, cut-off values for 
the strongly active compounds, since the aim is to deliver a classifier that can 
predict strongly active molecules with high enzymatic inhibition potency. We adopt 
a unifying strategy that comprises all activity properties. We include, in contrast 
to [17], only compounds with known activities against NDM-1 and classify them 
according to the cut-off values shown in Table 1.

As the compounds found in the literature often possess activity measurements 
for multiple properties and as different papers report different values for the same 
compound which sometimes leads to different labeling of the same compound, we 
need a unifying approach to cure these inconsistencies. We adopted a ranking order 
for the properties and classified each compound according to the property with the

2 https://pubmed.ncbi.nlm.nih.gov/. 
3 https://github.com/rdkit/rdkit. 

https://pubmed.ncbi.nlm.nih.gov/
https://github.com/rdkit/rdkit
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Table 1 Labeling cut-off scores for activity properties 

Rank Inactive Weakly active Strongly active 

1 K i (μM) >10 [0.5, 10) ≤0.5 

2 IC50 (μM) >20 (1, 20] ≤1 

3 pIC50 <4.7 [4.7, 6] ≥6 

4 %100 μM <60% >60% − 
5 Kd (μM) >10 [0.5, 10) ≤0.5 

6 MIC (μg/ml) >8 (0.5, 8] ≤0.5

highest rank. The ranking of the properties is shown in Table 1. Furthermore, if the 
classification of a compound according to two different publications is ambiguous, 
respecting the ranking of the properties, the more active label is assigned to the 
compound, since there is evidence in at least one experiment of the highest activity. 
We need to note here that when we applied the above procedure to the 127 compounds 
retained from the NMDI database [17], labels of 51 compounds (40.16%) changed. 

The rationale behind the ranking of the activity properties is following the main 
objective of this work, which is to deliver a classification model for the discovery 
of active NDM-1 inhibitors. In this sense, properties which refer to enzymatic inhi-
bition (e.g. Ki, IC50) are placed in higher ranks than activity properties that refer 
to the NDM-1 agent inhibition (e.g. MIC). In this sense, for compounds that both 
enzymatic and bacterial inhibition activity are provided, we rely on the enzymatic 
activity property for their classification. On the other hand, when only the agent’s 
inhibition property is provided, we rely on properties like MIC, although that in vivo 
experiments tend to possess a higher degree of complexity, than enzymatic assays, 
and MIC values are indirect observations. Indeed, it’s the concentration of β-lactam 
agents to have antibacterial effect protected by a fixed concentration of a NDM-1 
inhibitor. In this sense, the adopted ranking procedure resolves these ambiguities, in 
the aforementioned direction, and has a mild effect on the labeling of the dataset, 
since if the ranking of the activity properties is e.g. reversed only about 3% of the 
compounds would change labels. 

2.3 Calculating Mol2vec Embeddings 

ML Embeddings 
For calculating the embeddings, we used the Mol2vec pre-trained model of [16]. 
The model was trained on 19.9 M compounds of ZINC and ChEMBL databases, as a 
skip-gram word2vec model, with window size of 10 using radius 1 for the MF (for a 
more elaborate description of the extraction of the MF refer to [20]). For training the 
Mol2vec model all MF identifiers of radii 0 and 1 where generated, and considered 
as words, while each molecule was considered as sentence. The rare identifiers (i.e. 
identifiers that occurred less than 3 times in the training database) were marked as
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“unknown” and were attributed to a special identifier called ‘UNK’. After training the 
word2vec model, with such a specification, the individual vectors of each molecule, 
that corresponded to the MF substructures, were added up to produce a single vector 
for each molecule, and thus a molecule is represented by a vector of 300 real values. 

MIL Embeddings 
In order to restate the classification problem in the MIL setting, each molecule 
(i.e. bag) has to be represented by a collection of the individual’s MF substruc-
tures vectors (i.e. instances). The labels for each bag are known as the activity of 
each corresponding molecule is known, but the individual labels for each instance 
are unknown, since there is no activity information concerning each substructure. 
Thus, for the molecule to be bound to the target, one or multiple substructures of the 
molecule must be involved (i.e. active) in the binding affinity. 

As the Mol2vec model calculates the embedding vectors of all the substructures of 
each molecule, up to a specified radius r , , after removing all duplicate vectors corre-
sponding to the same substructure, we introduce two different types of MIL represen-
tations: (1) each molecule can be represented as a collection of all the substructure 
vectors of all radii (used in this work), or alternatively (2) each molecule can be repre-
sented as a collection of substructure vectors corresponding to a specific radius k, 
with 0 ≤ k ≤ r . . In contrast to the Mol2vec model, where all the substructure vectors 
(i.e. vectors corresponding to MF of different radii) are added up to construct a vector 
representation for each compound, in the MIL representation, each unique substruc-
ture vector is explicitly included in the compound’s representation. As we will show 
experimentally, this contributes positively to the performance of the models. Indeed, 
according to the MIL assumption, the inactivity of a molecule suggests that all his 
substructures must be inactive (i.e. not contributing to the binding affinity). Weak or 
strong activity suggests that a portion of its substructures is involved to the binding 
affinity. 

2.4 Classification and Ranking Frame Work 

In this section, we introduce a homogeneous classification and ranking framework, 
which is based on different models acquired by a k-fold Cross Validation (CV) 
procedure. Let f hi i : Rm → {cl_1, . . . ,  cl_n}, and dhi 

i : Rm → R, i = 1, . . . ,  k, 
k classification functions and their corresponding decision functions obtained by a 
k-fold CV procedure, where n and m are the number of classes and features respec-
tively and hi ∈ Rl are the corresponding hyper-parameters specified by a hyper-
parameter optimization procedure for each individual fold. In this sense, we are 
equipped with k homogeneous classifiers trained and evaluated in different training-
validation sets having different hyper-parameters. The decision of the ensemble 

classifier is then given by a voting procedure g
(
f h0 0 , . . . ,  f hk k

)
= c and the per 

class rank of the ensemble’s classification output for each sample can be given by
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rc(x) = mean 
i

{
dhi 
i (x), i f  f  hi i (x) == c

}
, c = cl_1, . . . ,  cl_n. Thus, by calculating 

for each sample the mean decision value of these classifiers, which have predicted 
the decision of the ensemble classifier, we obtain the rank per class of each sample. 

3 Results and Discussion 

For the evaluation of the proposed methods, we used the NDM-1 activities database 
described in Sect. 2.1. The 868 known activities compounds’ database, included 345 
(39.75%) inactive, 254 (29.26%) weakly active and 269 (30.99%) strongly active 
molecules, making it a relative balanced dataset. 

For representing numerically the compounds of the database for the classical ML 
paradigm, we generated Mol2vec vectors, employing the 300 dimensional pre-trained 
model of [16] resulting to 863 unique identifiers and 21 “unknown” structures. After 
generating the numerical representation for the MIL algorithms, we were equipped 
by 19,082 instances of radii 0 and 1, from which 1 radius 0 and 55 radius 1 structures 
were “unknown”. Furthermore, we obtained 7,264 and 11,818 instances of radii 0 and 
1 respectively. The “unknown” structures were removed from the training and test 
sets, since they do not contribute to the representation of a bag, because they represent 
potential different substructures. The removal of the “unknown” structures does not 
resulted to bags (i.e. molecules) without representation, since each compound was 
represented by at least one known substructure. 

The performance evaluation of the ranking and ensemble classification frame-
work was performed by an independent Test Set (TS), acquired by a stratified (90% 
Training (TrS)-10% (TS)) split of the database, while the evaluation of the classifiers 
was performed by tenfold CV on the TrS split. Support Vector Machines (SVM) 
with Radial Basis Kernel (RBF), Linear Discriminant Analysis (LDA) and Random 
Forest (RF) [8] have been used as representatives of classical ML algorithms and 
TensMIL [11] and TensMIL2 [12] as MIL state-of-the-art algorithms, from which 
we decoupled the feature extraction by tensor decomposition phase, since our data 
are of 2D nature, and used only the classification procedure. 

TensMIL and TensMIL2 consist of two inference phases: in the first phase, a score 
for each instance (i.e. substructure) is calculated and the bags’ scores distributions 
are estimated. These distributions are then fed to a bag classifier that yields the clas-
sification result. The difference of TensMIL2 is that, in the first phase, incorporates 
an instance selection procedure for choosing the most informative instances (i.e. 
substructures) per bag. 

For tuning the hyper-parameters for each algorithm, a Bayes optimization 
approach was adopted like in [11], using as objective function the mean twofold 
CV balanced accuracy (Bacc) on a validation set. The hyper-parameters were tuned 
separately for each one of the 10-folds, resulting thus to 10 different classifiers with 
different sets of hyper-parameters. The hyper-parameters tuned for each classifier 
were: C and γ for SVM, nrOfForestTrees for RF, ϑH and ϑp for TensMIL and q and



62 T. Papastergiou et al.

p for TensMIL2, where ϑH corresponds to the number of the histogram bins for the 
distribution estimation, ϑp and p to the variance retained of the PCA applied to the 
instances’ feature matrix and q to the quantile defining the threshold for the instance 
selection procedure of TensMIL2. For the required ϑH parameters of TensMIL2 we 
used for each experiment the �mean 

i 
θ i H�, i = 1, …, 10, where ϑ i 

H is the parameter 

acquired by TensMIL on the i-th fold of the corresponding experiment. For the LDA 
algorithm none hyper-parameter was tuned. For discussion on the hyper-parameters, 
the interested reader may refer to the corresponding publications. 

For the ensemble classifier, we used a majority voting approach in the sense that 
the class predicted by the majority of the classifiers is attributed to the corresponding 
sample. 

The metrics used for evaluating the ML, MIL and ensemble classifiers were the 
mean of tenfold CV accuracy, balanced accuracy, precision-, recall- and F1-score-
per class. For the evaluation of the ranking procedure, we used the per class top-k 
accuracy: Top  Acc(k) 

c = #top−k ranked  T  rue  Posi ti  ves 
k , with c being the corresponding 

class. 

3.1 Results 

Classification and Generalization Evaluation 
Since we are interested in discovering strongly active NDM-1 inhibitors, special 
attention on the presentation of the results will be given to the strongly active class. 
In Table 2 we compare the classification performance of the ML and MIL paradigms. 
The reported Precision (Prec.) and Recall metrics refer to the corresponding metrics 
of the strongly active class. 

As presented in Table 2, the MIL approach resulted in an amelioration from 
38.43% up to 45.7% in terms of balanced accuracy (Bacc.) in respect to the ML 
approach. Precision (Prec.) and Recall for the strong activity class was augmented 
up to 40.07% and 29.30% respectively in the case of the MIL setting in compar-
ison to the ML paradigm. The improvement of the classification performance could

Table 2 Comparison between classical ML and MIL for NDM-1 activity classification 

Tenfold CV Ensemble classifier 

Acc. 
(%) 

Bacc. 
(%) 

Prec.a (%) Recalla (%) Acc. 
(%) 

Bacc. 
(%) 

Preca. 
(%) 

Recalla (%) 

SVM 52.25 50.83 64.38 66.40 39.08 32.76 0.00 0.00 

LDA 51.09 50.24 58.95 68.00 35.63 38.00 33.77 96.30 

RF 52.76 51.15 62.41 62.28 40.23 33.71 0.00 0.00 

TensMIL 72.08 70.81 80.65 80.53 75.86 73.16 74.19 85.19 

TensMIL2 74.40 73.20 82.57 80.52 73.56 70.79 80.00 74.07 

a Refers to the strong activity class metric 
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Table 3 Per class CV and ensemble classifier F1-scores 

Tenfold CV F1-score Ensemble classifier F1-score 

Inactive 
class 

Weakly 
active class 

Strong active 
class 

Inactive 
class 

Weakly 
active class 

Strong active 
class 

SVM 0.5946 0.2021 0.6107 0.5546 0.0714 Inf 

LDA 0.5794 0.2243 0.6082 0.1053 0.1875 0.5 

RF 0.6216 0.2142 0.5861 0.5667 0.0741 Inf 

TensMIL 0.7767 0.5357 0.8023 0.8462 0.5263 0.7931 

TensMIL2 0.7942 0.5866 0.8116 0.8354 0.5116 0.7692 

be attributed to the compounds’ MIL representation. Instead of representing each 
compound by the sum of the vectors corresponding to each substructure, as is the 
case of the ML paradigm, each molecule is represented by the set of vectors of their 
substructures. As, in the frame of MIL, the individual activity labels of each instance 
(i.e. substructure) are unknown, and as the binding of a ligand to a target is a subject of 
specific substructures of a compound (i.e. the binding site of the ligand may concern 
a part of the compound having special structures and binding properties) the MIL 
representation has been proven beneficial to the activity classification performance. 

Furthermore, for evaluating the generalization ability of the models as well as for 
assessing the ranking performance of the ensemble classification framework intro-
duced in Sect. 2.4, we evaluated their performance in an independent test set that 
was not subject of the training, hyper-parameter tuning and CV evaluation of the 
models. As presented in Table 2, the ensemble classifier, in the frame of classical 
ML models, performs worse than the individual classifiers, suggesting that the gener-
alization ability of these classifiers are poor. In contrast, in the MIL setting we see that 
the ensemble classification framework, in the case of TensMIL, performs better than 
the individual classifiers, in terms of Acc., Bacc. and Recall for the strongly active 
class, and in the case of TensMIL2 it performs slightly worse than the initial clas-
sifiers, suggesting the generalization ability of the initial classifiers. The ensemble 
classifiers in the MIL setting performed, in terms of balanced accuracy, from 86.29% 
to 123.32% better than in the classical ML setting (Fig. 1). In the case of the LDA 
model, the ensemble classifier displays a 96% recall, but only 34% precision for the 
strong activity class, suggesting that, in this case, a significant amount of compounds 
are predicted as strongly active and thus the False Positive predictions are relatively 
high.

For further assessing the performance of the classifiers and their generalization 
ability, the tenfold CV and on the independent TS F1-scores of the classifier and the 
ensemble classification framework are presented in Table 3. Overall, the MIL classi-
fiers performed better in comparison to the classical ML classifiers. More specifically, 
in the MIL setting, we had from 24.95% to 37.07%, from 138.84% to 190.24% and 
from 31.36% to 38.47% better F1-scores for the inactive, weakly active and strongly 
active classes respectively, for the tenfold CV evaluation. For the MIL algorithms, 
the F1-score performance is better or slightly worse for the ensemble classifier on
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Fig. 1 Confusion matrices of TensMIL and TensMIL2, for the ensemble classifier on the 
independent test set

the independent TS, in contrast to the ML algorithms. Furthermore, we observed that 
the ensemble classifier based on the SVM and RF algorithms was not able to predict 
samples of the strong active class. In general, we observed lower performances in 
respect to the F1-score for the weakly activity class, than for the inactive and strong 
active classes. 

Finally, comparing the results in [17], where handcrafted features and “hypotheti-
cal” inactive compounds were used, to our experiments, we conclude that in general, 
the classification performance, with respect to the F1 score in [17], is better for the 
inactive and weakly active class. In contrast, TensMIL2 performs from 15.36% to 
41.66% better than the models in [17] for the strongly active class. Although, the 
two experiments are not fully comparable, we can conclude that the use of Mol2vec 
representations in the MIL setting and the stricter labeling for the strongly active 
class had a positive effect in the performance of the classification of the strongly 
active class. 

Ranking Evaluation 
The results of the ranking procedure are displayed in Table 4 where the top-3, 5, 10 
and 15 ranked compounds accuracy per class are presented. 

The improvement of the MIL algorithms in comparison to the classical ML algo-
rithms in terms of the top-k ranking accuracy for the inactive class is from 1.33x to 
7x (top-15 accuracy), for the weakly active compounds up to 10x and for the active

Table 4 Ranking performance (top-k accuracy) of the ensemble classifiers per class 

Inactive class Weak active class Strong active class 

Top-3 Top-5 Top-10 Top-15 Top-3 Top-5 Top-10 Top-15 Top-3 Top-5 Top-10 Top-15 

SVM 0.333 0.6 0.6 0.6 0.333 0.2 0.1 0.0667 0 0 0 0 

LDA 0.667 0.4 0.2 0.133 0.667 0.6 0.3 0.2 0.333 0.6 0.7 0.6 

RF 0.333 0.4 0.5 0.467 0.333 0.2 0.1 0.067 0 0 0 0 

TensMIL 1 0.8 0.9 0.867 0.667 0.6 0.8 0.667 1 1 0.9 0.933 

TensMIL2 1 0.8 0.9 0.933 0.667 0.8 0.6 0.6 1 1 0.9 0.933 
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class up to 3x. TensMIL and TensMIL2 are displaying 100% top-3 and top-5 accu-
racy, meaning that the top-5 ranked compounds are strongly active. In contrast, the 
ranking based on the ensembles of RF and SVM algorithms did not yield strongly 
active compounds in the top-15 ranks. In the evaluation of the classification perfor-
mance of the ensemble classifier, MIL algorithms display better ranking accuracy 
than ML algorithms, furthermore, their performances on inactive and strongly active 
class are better than on the weakly active class. 

4 Conclusion 

To conclude, the compilation of a new database comprising compounds with known 
activities against NDM-1 (excluding “hypothetical” inactive compounds), as well as 
the unifying labeling procedure, that comprises a stricter, in comparison to former 
approaches, rules for the strongly active compounds, can be beneficial for discovering 
strongly active compounds against NDM-1. Furthermore, the restatement of the 
classification problem in the MIL framework, by representing a compound as a bag 
of vectors corresponding to their substructures, showed promising results, in terms of 
the efficiency in the three-class classification problem. Indeed, a part of the molecule 
corresponding to certain substructures, is responsible for the binding of the ligand to 
the target. The introduction of the homogeneous ensemble classifier and the ranking 
procedure, especially if MIL algorithms are used, showed promising results, as in 
the case of TensMIL and TensMIL2 classifiers ensembles, where the top-3 and top-5 
ranked strongly active predicted compounds belong to the strongly active class, as 
predicted on an independent test set. This fact suggests that a screening for active 
compounds could reveal strongly active compounds among the top ranked results of 
the ensemble classifier. Finally, the classification evaluation of the ensemble classifier 
on an independent test set showed a great generalization ability for the MIL classifiers. 
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Towards Improving Bio-Image 
Segmentation Quality Through Ensemble 
Post-processing of Deep Learning 
and Classical 3D Segmentation Pipelines 

Anuradha Kar 

Abstract In biological image analysis, 3D instance segmentation is a crucial step 
towards extracting information on objects of interest from microscopy datasets. 
Existing instance segmentation pipelines are frequently affected by errors such 
as missing boundary layer cells or poorly segmented regions. In this study, we 
propose several ensembles as post-processing methods for improving the quality of 
outputs obtained from deep learning and classical 3D segmentation pipelines. These 
methods take as input the results from two independent 3D segmentation pipelines 
and combine them using different fusion algorithms. The first algorithm uses label 
set intersection, the second one involves adjacency graph composition and the third 
one works through segmented object boundary fusion followed by 3D watershed. 
These 3 algorithms are tested on a dataset of 3D confocal microscopy images of 
floral tissues. The third fusion algorithm is found to perform best and has better 
global and local accuracies compared to its input segmentations. The specialty of the 
proposed ensemble methods is that these are model agnostic, i.e., they can be used 
to combine segmentation results from deep learning as well as non-deep learning or 
classical pipelines. These methods could be highly beneficial in correcting segmen-
tation errors arising from missing cells in the boundary layer or under segmentation 
in the inner tissue layers and ultimately provide us robust segmentation results in 
presence of variable image qualities in biological datasets. 

Keywords Segmentation · Deep learning · Bio-imaging · Microscopy 

1 Introduction 

Accurate segmentation of 3D microscopy images is an essential first step in 
many biological analysis procedures like estimating cell lineages, studying cell 
morphology, growth and gene expression patterns [1–3]. In the past few years, a 
number of 3D segmentation algorithms have been developed which use watershed
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[4, 5], graph partitioning [6] or active contour models [7]. Recently a number of 
deep learning based 3D segmentation pipelines such as [1, 8, 9] have been developed 
which achieve highly accurate instance segmentation of 3D microscopy images to 
extract 3D objects from them on cellular levels. Both deep learning and non-deep 
learning pipelines for 3D segmentation are affected by errors arising from image 
quality variations or inherent pipeline characteristics. For example, watershed-based 
methods need extensive parameter tuning when the image intensity levels drop in the 
inner tissue layers [10]. For deep learning-based pipelines, segmentation quality may 
degrade when subjected to images that have artifacts or are different from images 
in their training datasets. In general, segmentation pipelines are frequently affected 
by errors in which objects of interest are either missed or segmented regions have 
incorrectly identified boundaries. 

In order to mitigate these common segmentation errors, several ensemble methods 
are proposed and tested in this study. These methods operate by taking segmentation 
results from any two independent segmentation pipelines (we call them component 
segmentations here) as inputs and applying fusion strategies to produce a resultant 
segmented output. Three segmentation fusion algorithms are explored. The first one 
is based on label set based intersection of two 3D segmentations. The second algo-
rithm creates region adjacency graphs [11] from the component segmentations and 
merges them using graph composition. The third algorithm extracts and adds object 
boundaries from the component segmentations. A 3D watershed is applied to the 
fused boundary images to produce the final 3D instance segmentations. All the three 
algorithms are tested on a dataset of confocal microscopy images of floral meristem 
where the two component segmentations for each 3D image are from a deep learning 
[1] and a classical segmentation pipeline [12]. The outputs from the fusion algorithms 
are evaluated using a 3D Jaccard index metric by comparing them with ground truth 
segmented images. From the results, it is observed that the third ensemble method 
is successful in mitigating errors present in the component segmentations such as 
missed boundary cells and under-segmented regions. Using this method, an overall 
improvement in segmentation quality in terms of volumetric accuracy is observed 
for a test dataset of 20 confocal microscopy stacks. 

2 Previous Research on Ensemble Methods 
for Segmentation 

Ensemble methods have been reported in several works for image segmentation 
such as [13–15]. In [13] a multi-model ensemble framework is presented which 
integrates multiple state of the art deep learning architectures into a more powerful 
ensemble model which outperforms the single models in terms of accuracy. In [14] 
an ensemble segmentation algorithm is generated using AdaBoost for liver lesion 
extraction problems, where the component algorithms are built to work on lesions 
of different sizes. In [15] an ensemble system for combining multiple deep learning
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architectures in a layer wise manner is proposed. The prediction by the first layer is 
used as the augmented data of the training image for the next layer of the ensemble 
and the predictions of the second layer is then combined by using a weights-based 
scheme. Ensemble methods combining two deep learning models Mask R-CNN and 
DeeplabV3+ are presented in [16] which achieve higher Sensitivity and specificity 
in segmenting skin cancer lesion boundaries and outperformed several standalone 
models like U-Net, and SegNet. An ensemble of convolutional neural networks are 
presented in [17] for semantic segmentation and tested on polyp and skin segmen-
tation datasets. DeepLabV3+ and variants of the Resnet models and diversity in 
the ensemble is achieved through the use of different loss functions. In [18] first a 
deep network is used for generating feature maps from input images that are easy 
to segment. The second network in the ensemble is used for segmenting the gener-
ated images. The segmented images generated by the first and second networks with 
weight averaging. For segmenting an Invasive coronary angiography (ICA) dataset, 
[19] presents methods for combining results from multiple deep learning models that 
are trained using different loss functions. The results were evaluated and weighted 
based on the segmentation accuracy of the models. Other ensemble algorithms for 
segmentation are discussed in [20–22]. 

Key differences between above works and the ensemble methods presented in 
the study are that: 1) The approaches in the current study are model agnostic, 
i.e., independent of the segmentation mechanism used in the individual pipelines, 
which allows combining of results from deep learning as well as non-deep learning 
pipelines irrespective of their underlying concepts. 2) The methods presented in 
this study are post processing algorithms, therefore they do not require modifica-
tion, retraining or retuning of the original segmentation model architectures, making 
the methods computationally simple and easily implementable. 3) Finally, most 
ensemble methods are designed for either classification or semantic segmentation 
tasks, while the methods in this study are designed for 3D instance segmentation 
problem for microscopy datasets, which is uncommon in contemporary literature. 

3 Methodology 

3.1 3D Segmentation Pipelines 

In this study, two 3D segmentation pipelines are used for applying the ensemble 
methods. The first pipeline is deep learning based and the second one is a classical 3D 
segmentation method. For the deep learning pipeline, training images are 3D confocal 
stacks acquired from growing multicellular tissues from the plant Arabidopsis and 
are provided in the open dataset of [23]. The first pipeline (called P1 in this work) 
is adapted from [1]. It is a deep learning based pipeline consisting of a residual 3D 
UNet model. The architecture and workflow of this pipeline is shown in Fig. 1.
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Fig. 1 Workflow of pipeline P1. The deep learning 3D UNet model is trained using confocal images 
to produce 3D cell boundary images which are post processed using graph partitioning techniques 
to obtain the final 3D instance segmented outputs 

The second pipeline P2 is a classical 3D watershed technique [12]. In this, seed 
regions in a confocal image are defined using a h-minima parameter value and are 
then grown using morphological watershed transformation to identify segmented 
regions. 

3.2 Dataset 

For implementing the ensemble methods, a test dataset of twenty 3D stacks of plant 
floral multicellular tissues from Arabidopsis thaliana are used which are segmented 
independently by the two pipelines P1 and P2 described above. Each image has their 
expert 3D ground truth segmentations (3D stacks where voxels in each segmented 
cell has a unique label). The training data for P1 consists of 80 stacks of raw confocal 
images and corresponding 3D segmentations as ground truth (See Sect. 6 for training 
and test datasets used in this work). 

3.3 Fusion Algorithm 1: Label Set Intersection 

In this technique, fusing two component segmentations from pipelines P1 and P2 is 
based on a set intersection method (or simple sum of the label arrays). The objects 
in the component segmentations are treated as labeled voxels. Thus, if S1 and S2 
are two voxel label arrays corresponding to the two component segmentations from 
pipelines P1 and P2 respectively, the output set of voxel labels is a label array j given 
by: 

j = (max(S2) + 1) ∗ S1 + S2 (1)



Towards Improving Bio-Image Segmentation Quality Through … 71

Fig. 2 Combining segmented images based on intersection of voxel label sets from each component 
segmentation S1 and S2 

where j is the array of labels in the output segmentation. This forms our baseline or 
simplest method for combining the component segmentations. 

The logic of this algorithm can be stated as: a pair of voxels from segmentations 
S1 and S2 are determined to fall in the same segment of the output segmentation if 
and only if they are in the same segment in both S1 and S2 (Fig. 2). Thus, A voxel 
is said to belong to a region in the output segmentation only if it belongs to the 
corresponding regions in both of the input segmentations. 

3.4 Fusion Algorithm 2: Region Adjacency Graphs 

The Region Adjacency Graphs (RAG) are used to model regions within an image 
as nodes of a graph which represent the neighboring relationships between pixels. 
A Region is defined as a collection of connected pixels sharing common properties, 
e.g., color of the pixels. Thus, a segmentation of an image can be associated with 
a RAG. For a graph with vertices V and edges E such that graph G' = {V, E} and 
where a node represents a pixel (for 2D), a partition into R connected regions is done 
such that: 

V1 ∪ V2 · · ·  ∪  VR = V (2) 

V1 ∩ V2 · · ·  ∩  VR = ∅ (3)
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These regions may be identified with a new graph defined as G' = {V ', E'} where 
each partition of V is identified with a node of V '. The new edge set E' is defined 
by the criteria that edge weight between each node in V ' is equal to the sum of edge 
weights e connecting each original node in the set, so that for ei j  ∈ E ': 

wi j  =
∑

eks ,vk∈Vi ,vs∈Vj 

wks (4) 

In this work, RAGs R1 and R2 (undirected graphs) are created from two compo-
nent segmentations (S1 and S2 respectively) obtained from the two pipelines P1 and 
P2 as shown in Fig. 3. The voxel labels in S1 and S2 are converted to nodes of RAGS 
R1 and R2. The criteria for creating RAGs from the segmentations is the color (or 
voxel label) of each segmented region. Then R1 and R2 are combined using graph 
composition which is the union of node and edge sets from the two component RAGs 
R1 and R2. The union of two graphs R = R1 ∪ R2 with set of vertices V1 and V2 and 
set of edges E1, E2 has a set of vertices and edges given by: 

Vres  = V1 ∪ V2 (5) 

Eres  = E1 ∪ E2 (6) 

Finally, the nodes of this composed resultant RAG RAG_res or R are converted 
to voxel labels to get back the resultant 3D fused segmentation (Fig. 3).

Fig. 3 Concept of converting segmented images to RAGs and composing component RAGs to get 
fused segmentation. Example shown in 2D above works similarly for 3D data 
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Fig. 4 Boundary fusion strategy followed by applying 3D watershed 

3.5 Fusion Algorithm 3: Boundary Fusion with 3D 
Watershed 

This ensemble method is a two-step approach. First, from each component segmen-
tation, the object boundaries are extracted followed by pixel-by-pixel addition of the 
boundaries from each component segmentation. Object boundaries are obtained as a 
3D binary image where the boundary of each object has a value of 1 and the cell inte-
riors and background have a value of 0 (Fig. 4). The binary 3D boundary images from 
the two component segmentations are added to produce a fused boundary image. To 
this image, 3D watershed with the h-minima parameter = 0 (since cell interiors are 
zero) is applied to produce the final 3D instance segmentation. 

This is a new ensemble method that can help to counter significant segmentation 
errors occurring in both deep learning and non-deep learning based segmentation 
pipelines. For example, from Fig. 4 it is seen that this method helps to mitigate two key 
problems in the segmentation results from P1 and P2- which are under-segmentation 
(first row) and missing boundary cells (2nd and 3rd row). 

3.6 Segmentation Evaluation Metric 

For investigating the quality of segmentations obtained from each ensemble method, 
an averaged Jaccard Index metric is used. In this, the volumetric Jaccard Index 
(JI) between a ground truth object (from the ground truth segmented image for the
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corresponding image) and a predicted object is first estimated. The JI is then weighted 
with the volume of the ground truth object and summed for all ground truth object 
labels (k) and finally averaged using the sum of volume of all ground truth objects. 

Average J I  =
∑

i (Gi ∗ Jaccard  I  ndexi )∑
i Gi 

where i = 1, 2 . . .  k 
(7) 

This metric takes on values ranging between 0 and 1. Better segmentation accu-
racy is indicated by a metric result closer to 1. With this, the Jaccard Index score 
for individual segmented objects can be estimated without losing object location 
information. Implementation of this metric is provided in the open repository with 
this paper (Sect. 6). 

4 Results 

4.1 Results from Original Pipelines 

The original segmentation accuracy results from the two pipelines P1 and P2 are 
shown in Fig. 5A. For this, the averaged JI is computed for the segmentation results 
of P1 and P2 on the 20 test image stacks, using respective ground truth stacks. From 
the violin plots, it is seen that pipeline P1 (deep learning based) achieves a mean 
average Jaccard index of 0.7 while the 3D watershed-based pipeline P2 gets 0.8 on 
the test dataset.

4.2 Results from Fusion Algorithm 1 

The average JI values are computed for the results of fusion algorithm 1 and shown 
in Fig. 5B. The x-axis shows the names of the 20 test stacks and the y-axis presents 
the segmentation accuracy values for P1, P2 and their fusion result for those stacks. 
For most of the test stacks, the average JI of fusion results are close to the best results 
from the two component pipelines. Fusion algorithm 1 helps to recover many missing 
cells in the segmentation but it does not perform very well to remove large under-
segmented regions in the middle of the tissue. Also, the resultant cell boundaries in 
the fused image are not very smooth. This algorithm however works in real time and 
has a simple implementation.
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Fig. 5 Segmentation accuracy plots (y-axis view limited between 0.3 and 1) for the two 
segmentation pipelines and the three different ensemble methods (using fusion algorithms 1, 2, 
3)

4.3 Results from Fusion Algorithm 2 

The average JI values for fusion algorithm 2 are plotted in Fig. 5C. The JI values of 
the RAG based ensemble result fall between those from P1, P2 or in some cases lower 
than both of the P1 and P2’s results. The outputs from this algorithm mitigates the 
missing cells problem but not under-segmentations. Also, the cell boundaries remain 
irregular. Another issue is the high processing time for RAG creation especially for 
large stacks with more than 100 objects. Overall, this algorithm achieves the goal of 
combining two segmentations but does not help to mitigate all types of segmentation 
errors. It also produces global segmentation accuracy levels that are often lower than 
those of the two component segmentations and processing times are in the order of 
20–60 min for segmented stacks having more than 100 objects. 

4.4 Results from Fusion Algorithm 3 

The segmentation accuracies of the results from fusion algorithm 3 are plotted along 
with those of P1, P2 in Fig. 5D. It is seen that for all the test image stacks, this ensemble 
method achieves a higher segmentation accuracy compared to those obtained from its 
component segmentations on the same stacks. It works in real time and is independent 
of the number of objects in the component segmentations. In Fig. 6, the results from
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Fig. 6 Statistical plots of segmentation accuracies of individual pipelines P1, P2 along with 
accuracy results from fusion algorithms 1, 2 and 3 

the original pipelines are included and denoted as P1 (deep learning based) and P2 
(3D Watershed) for results from Pipelines 1 and 2 respectively. 

With algorithm 3, the accuracy is better than those from P1 and P2. Algorithm 
1 achieves a mean accuracy close to the better performing pipeline out of P1, P2. 
Algorithm 2 achieves a mean accuracy that is closer to the pipeline with lower 
accuracy out of the two. The fusion algorithms have different impacts but the third 
is most efficient. 

5 Discussions 

Quality of segmentation of 3D microscopy images is critical for biological analysis 
procedures that rely on the segmented image contents. Poor segmentation quality with 
missing cells or erroneous cell boundaries may lead to errors in successive biological 
analysis steps. Although several 3D instance segmentation pipelines for microscopy 
images exist, they face limitations in performance when image quality is degraded, 
which often leads to rendering large volumes of bio-image datasets unusable. In this 
study, several post-processing techniques are developed for segmentation quality 
improvement based on ensembles of segmentation results. These post-processing 
techniques are model agnostic, that is they can be used irrespective of the types of 
the component 3D segmentation pipelines. The benefits of these methods are that 
these are simple to implement and do not require retraining of the deep learning 
pipelines or re-tuning of the classical ones but still achieves improved segmentation 
by combining results from each pipeline. The ensemble post-processing concepts
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presented here could be highly useful to mitigate segmentation errors like missing 
cells and under-segmentation by utilizing the efficiencies of individual pipelines. This 
could also make the segmentation results robust to image quality and segmentation 
pipeline performance variations. The future work in this direction is to test fusion 
strategies with more than two segmentation pipelines and extend the analysis on 
other biological datasets. 

6 Data and Code Availability 

All data and codes used in this work are available as open resources The training 
data for the 3D UNet model may be found at: https://www.repository.cam.ac.uk/han 
dle/1810/262530. The test dataset containing 3D confocal stacks used in this work 
are obtained from: https://www.repository.cam.ac.uk/handle/1810/318119. 

Codes used for different parts of this work may be found in the GitHub repository 
at: https://github.com/anuradhakar49/SegFusion. 
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Exploring Xylella fastidiosa’s Metabolic 
Traits Using a GSM Model 
of the Phytopathogenic Bacterium 

Alexandre Oliveira , Emanuel Cunha , Miguel Silva , 
Cristiana Faria , and Oscar Dias 

Abstract Xylella fastidiosa is a gram-negative phytopathogenic bacterium able to 
infect over 500 plant species, with devastating consequences for agricultural and 
forest-based economies. In the last decade, genome-scale metabolic (GSM) models 
have become important systems biology tools for studying the metabolic behaviour 
of different organisms. In this work, a GSM model of X. fastidiosa subsp. pauca De 
Donno is presented, comprising 1164 reactions, 1379 metabolites, and 508 genes. The 
model was validated by comparing in silico simulations with available experimental 
data. The GSM model allowed identifying potential drug targets using a pipeline 
based on a gene essentiality analysis of the model. 

Keywords Xylella fastidiosa · GSM modelling · Essentially analysis · Merlin 

1 Introduction 

Xylella fastidiosa, first described in 1987 [36], is a gram-negative phytopathogenic 
bacterium transmitted among plants by xylem-fluid feeding insects. X. fastidiosa is 
able to infect over 500 plant species, as demonstrated in the Xylella spp. host plant 
database [14]. Also, many host plants, despite the infection, may remain symptom-
less and function as a reservoir for the phytopathogen [3]. In Europe, it led to a severe 
outbreak of olive quick decline syndrome in Italy, specifically in the Apulia region. 
This resulted in the death of thousands of trees, causing economic and environmental 
consequences. Hence, X. fastidiosa was declared as a quarantine pest by the European 
Commission [35]. 
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The field of systems biology aims at studying whole-cell mechanisms, using 
genomic and metabolic data [30]. As a result of developments in high-throughput 
sequencing techniques, which leads to an upsurge of the available genomic data, 
systems biology approaches have gained increased interest as means of obtaining 
metabolic insights. Genome-Scale Metabolic (GSM) Models comprise both genetic 
and metabolic data on a given organism and can be used extensively to predict the 
phenotype of the organism in different environmental conditions [10]. Addition-
ally, GSM models have been applied in the discovery of potential drug targets for 
pathogenic organisms [6, 31]. 

Recently, a GSM model of X. fastidiosa subsp. multiplex CFBP 8418 was released 
to explore metabolic properties associated with the fastidious growth of the phy-
topathogenic organism [16]. This work aimed at reconstructing a GSM model of 
X. fastidiosa pauca De Donno, which is the causal agent of the olive quick decline 
syndrome outbreak in Italy [32]. Due to the current spread of X. fastidiosa and the 
lack of a cure that effectively stops the phytopathogen, the developed model was also 
used to study intrinsic metabolic traits of the organism and find new ways to fight its 
spread by investigating potential drug targets. 

2 Materials and Methods 

2.1 Software 

The major steps of the GSM model reconstruction were performed within the merlin 
[11] framework. This software provides a friendly interface for manual curation and 
contains multiple tools that accelerate the reconstruction process. Furthermore, all 
simulations related to the final stage of reconstruction (model validation) were per-
formed in COBRApy [13]. Lastly, the drug targeting pipeline performed in this work 
required both COBRApy and Biopython [8] packages. X. fastidiosa subsp. pauca 
De Donno RefSeq assembly genome files, accessible via the NCBI [33] assembly 
accession number ASM211787v1 [17], were automatically retrieved with merlin. 

2.2 Metabolic Model Reconstruction 

Genome Annotation. The genome annotation of the genome of the bacterium was 
based on similarity searches with the basic local alignment search tool (BLAST) 
[1]. First, the similarity search was run against UniProtKB/SwissProt [9], using an 
expected value (e-Value) of 1e-30 as threshold. Genes without hits were submitted to 
an additional BLAST against UniProtKB/TrEMBL. The genome functional annota-
tion was performed using the merlin’s “annotation workflow” tool, which annotates
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all candidate genes (a gene that has at least one of its homologous is associated with 
a metabolic function) based on a set of defined organism. 

Metabolic Network Assembly. An initial draft metabolic network for X. fastidiosa 
was assembled by coupling the information obtained in the genome annotation step 
with metabolic data retrieved from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database [18]. The subcellular compartments of each protein was predicted 
using PSORTb 3.0 [37]. Transport reactions were generated using the Transport 
Systems Tracker (transyt.bio.di.uminho.pt). 

Both the Escherichia coli GSM model (iOJ1366) [28] and Xanthomonas 
campestris large-scale metabolic model [34] were used as templates to infer the 
macromolecular composition of the biomass equation. The biomass reaction accounts 
for a total of seven macromolecular entities, namely Deoxyribonucleic acid, ribonu-
cleic acid, Protein, Cofactor, Peptidoglycan, Lipopolysaccharide, and Lipid (Supple-
mentary File S1). The detailed description of the steps involved in the reconstruction 
of the GSM model is available in Supplementary File S2. 

Model Validation. The reconstructed GSM model’s performance was evaluated by 
comparing the predicted results to available information from the literature. As the 
amount of information on X. fastidiosa’s metabolism is limited, X. campestris’ data 
was used whenever necessary. In this work, all in silico simulations were considered 
one of the biomass reactions (‘R_e-Biomass’ or ‘R_Coupled_Biomass’) as the objec-
tive function, which was maximized through a Parsimonious Flux Balance Analysis 
(pFBA) [25], except otherwise indicated. Different simulations addressing the bac-
terium aerobic metabolism, amino acid auxotrophies, and glucose flux pattern were 
performed to validate the model (more details in Supplementary File S2 Sect. 1.4). 

2.3 Identification of Potential Drug Targets 

One of the most important applications of the X. fastidiosa’s reconstructed GSM 
model is the identification of potential drug targets that could impair the organ-
ism’s survival. A medium based on the olive tree’s xylem fluid composition [12] 
was replicated to reflect the natural environment of the phytopathogenic bacterium. 
Additionally, a chemically defined media, CHARD2 [22], which replicates the xylem 
environment was used in this step. 

The model’s essential genes were determined with adequate methods available 
in COBRApy, to pinpoint potential drug targets. The genes identified were filtered 
using a simple pipeline: a BLAST search (e-Value threshold of 0.0001) against the 
Olea europaea genome, followed by an evaluation of the results. However, before 
discarding a gene as a potential drug target, due to homologous genes present in 
the host’s genome, a metabolic potential analysis of the host, using KEGG and 
MetaCyc pathways was performed to evaluate the possibility of alternative metabolic 
routes for the same objective. In other words, if a reaction encoded by an in silico 
essential gene was essential for X. fastidiosa but not for the host (Olea europaea),
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the gene could be considered a potential drug target and further analysed. Finally, 
the DrugBank database was used to find potential inhibitors of the filtered genes. 
Hence, BLAST alignments and searches of EC number(s) associated with essential 
genes were performed on said database. Only compounds classified as inhibitors 
or antagonists were included. Using information retrieved from the DrugBank and 
BRENDA, the collected compounds were filtered to include only drugs with known 
activity in gram-negative bacteria. 

Furthermore, to find other strategies to possibly kill the phytopathogenic organ-
ism, synthetic lethals, which are pairs of non-essential genes whose simultaneous 
knockout leads to model infeasibility towards biomass maximization, and triple gene 
knockout in silico simulations were performed. 

3 Results and Discussion 

3.1 Model Validation 

The metabolic behavior of the GSM model was first assessed in aerobic conditions. 
As expected, an aerated environment supports the growth of the pathogen, while an 
oxygen restriction leads to infeasible solutions, as not even the energetic mainte-
nance requirements can be fulfilled. Therefore, the in vivo aerobic metabolism can 
be properly simulated, and viable energy production is achieved. Furthermore, as 
expected, all oxidative phosphorylation enzymatic complexes included in the model, 
namely, NADH dehydrogenase, succinate dehydrogenase, ubiquinol oxidase and 
ATP synthase, display flux through their reactions. The following test relied on the 
validation of amino acid auxotrophies. To date, no auxotrophies have been reported 
for X. fastidiosa, as the phytopathogen seems to be able to grow using exclusively 
glutamine as a nitrogen source [23]. In fact, it is expected for X. fastidiosa to have 
biosynthetic capabilities for all amino acids as it thrives in poor and limited nutrient 
environments. Furthermore, single amino acid omissions, simulated with the model, 
comply with the reported data as no auxotrophies were detected. Results from in 
silico simulations are presented in Supplementary File S3. 

Model Summary. The GSM model reconstructed in this work, comprises a total 
of 508 genes, 1379 metabolites and 1160 reactions. This model also includes 
1014 gene-protein-reaction associations, 241 transport reactions, and 94 exchange 
reactions. The iMS508 model is available in BioModels [26] with the identifier 
MODEL2205020002. An overview of the available metabolic models for X. fastid-
iosa, E. coli, and X. campestris pv. campestris B100 is presented in Table 1. 

The number of genes, reactions, and metabolites included in iMS508 are similar 
to the one presented by the X. fastidiosa multiplex model. However, these values 
are lower than the ones found for E. coli, which is related with the high amount 
of information available for this model organism. The X. campestris pv. campestris 
B100 model presents a smaller network, probably due to the lack of information for
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Table 1 Comparison of the number of genes, metabolites and reactions between the GSM models 
of X. fastidiosa pauca De Donno (this work), X. fastidiosa multiplex CFBP 8414, E. coli K-12 
substr. MG1655 (iJO1366), and X. campestris pv. campestris B100 (iSS352) 

X. fastidiousa 
pauca De Donno 

X. fastidiosa 
multiplex 

E. coli K-12 X. campestris pv. 
B100 

Genes 508 572 1,367 352 

Gene coverage 
(%) 

24.6 26.6 31.6 7.8 

Metabolites 1285 1107 1805 338 

Reactions 1160 1158 2583 447 

this species at the reconstruction moment (2013). The SBML file for the reconstructed 
model can be found in Supplementary File S4. 

Glucose Flux Pattern. In several xanthomonads, glucose catabolism occurs mainly 
through the Entner-Doudoroff pathway (EDP) and to a lesser extent through the 
pentose phosphate pathway, ranging from 81–93% and 7–19%, respectively [38]. 
Assuming the maximization of biomass production as objective function, the model 
predicts 90% and 8% of the glucose flux towards the Entner-Doudoroff and pentose 
phosphate pathways, respectively. 

X. fastidiosa seems to present a pyrophosphate-dependent phosphofructokinase 
(EC 2.7.1.90), similar to the one identified in X. campestris [15]. This enzyme could 
explain a flux bottleneck through the glycolytic pathway, which is a glucose degra-
dation route energetically more efficient than the Entner-Doudoroff pathway, as the 
enzyme only shares a minimal portion of the total proteome of X. campestris [15]. 
Furthermore, phosphofructokinase deletion mutants of X. campestris are unaffected 
when compared with the wild type [34]. Previous studies indicated the impossi-
bility of this organism to use gluconeogenesis, due to the lack of fructose-1-6-
bisphosphatase (EC 3.1.3.11) [24]. However, the detected phosphofructokinase could 
close this gap found in the gluconeogenic pathway, as there is not a preferred direc-
tion of the reaction catalysed by the enzyme [15]. Moreover, according to in silico 
simulations, gluconeogenesis is mandatory when organic acids and amino acids, 
which are usually available in a xylem fluid environment [19], are used as carbon 
sources for X. fastidiosa’s growth. 

Plant cells can produce reactive oxygen species (ROS) in response to environ-
mental stress, including the invasion by pathogenic organisms [2]. ROS levels are 
substantially increased to act as defence mechanisms to fight off invasive pathogens 
[27]. Therefore, using the EDP as a catabolic pathway for carbohydrates could offer a 
metabolic advantage in comparison to glycolysis, as this pathway generates NADPH, 
which is especially meaningful in the detoxification of ROS. For instance, a study 
performed with Pseudomonas putida, known to catabolise carbohydrates through 
the EDP, shows that the organism is highly tolerant against oxidative stress, while a 
transgenic strain with activated glycolysis becomes sensitive to ROS [7]. Therefore,
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Table 2 Potential drug targets evaluated for CHARD2 and Olive medium. The data was retrieved 
from the DrugBank database, considering only drugs with known inhibitory or antagonistic effects 

Methods for integrating transcriptomics data into GEMs 

Locus Tag EC number(s) Pathways Drugs 

B9J09_RS07720 2.5.1.7 Peptidoglycan Fosfomycin 

B9J09_RS10475 6.3.2.4 Peptidoglycan Cycloserine 

B9J09_RS10245 5.1.1.1 Amino acids Cycloserine 

B9J09_RS03350 1.5.1.3 Cofactors Trimethoprim 
Methotrexate 
Trimetrexate 
Pemetrexed 
Pyrimethamine 
Pralatrexate 
Aminopterin 

B9J09_RS04800 2.1.2.3; 3.5.4.10 Nucleotide Methotrexate 

B9J09_RS08730 1.17.4.1 Nucleotide Gemcitabine 

B9J09_RS08735 Hydroxyurea 

X. fastidiosa may use the Entner-Doudoroff pathway as a source of redox potential 
as means to act against plant defence mechanisms. 

3.2 Drug Targeting 

The identification of drug targets is one of the main applications of GSM models. 
These models have been used to identify drug targets in gram-negative pathogens, 
such as Klebsiella pneumoniae [6], Acinetobacter baumannii [20], and Pseudomonas 
aeruginosa [4]. The first step to identify potential drug targets was to perform a gene 
essentiality analysis, using both the CHARD2 and the olive media (Supplemental File 
S5). To reduce the potential interactions between the drugs and the host, a BLAST 
search against the genome of O. europaea was performed for each essential gene. 
Moreover, a manual pathway analysis allowed to determine alternative routes in the 
olive tree’s genome. 

The DrugBank database was used to identify drugs affecting these genes. As 
expected, most identified drugs are antibiotics affecting the peptidoglycan and cell 
wall assembly (Supplemental File S6). Specifically, penicillin-binding proteins had 
a high number of identified potential drugs. Besides genes encoding such proteins, 
seven genes were also identified as potential drug targets (Table 2). 

The genes B9J09_RS07720 and B9J09_RS10475 are also associated with the pep-
tidoglycan biosynthesis, encoding however a UDP-N-acetylglucosamine 
1-carboxyvinyltransferase (murA) and D-Alanine-D-alanine ligase, respectively. 
Fosfomycin and cycloserine were identified as inhibitors for these enzymes. Fos-
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fomycin, a broad-spectrum antibiotic produced by Streptomyces species, has demon-
strated inhibition against gram-negative bacteria, including E. coli, A. baumannii, 
and P. aeruginosa. This antibiotic acts as an irreversible inhibitor by binding cova-
lently to a cysteine in the active site of the murA enzyme. Thus, the peptidoglycan 
precursor UDP-N-acetylmuramic acid is not produced, and the cell wall synthesis 
is disrupted. Chlamydia trachomatis, a gram-negative bacterium, has demonstrated 
resistance to Fosfomycin due to the exchange of cysteine by aspartate in the active 
site. The sequence of murA in the X. fastidiosa genome presents a cysteine in that 
position, indicating that Fosfomycin might have activity against this species. 

Resistance against cycloserine was already reported in X. fastidiosa [5]. This 
antibiotic was also identified as a potential target for alanine racemase (encoded by 
B9J09_RS10245). Dihydrofolate reductase, encoded by B9J09_RS03350 in the X. 
fastidiosa genome, is an enzyme responsible for the synthesis of tetrahydrofolate. 
Seven drugs were identified as an inhibitor for this enzyme. From these, there are 
reports of resistance against trimethoprim [29]. Moreover, hydroxyurea has also been 
reported to inhibit ribonucleoside-diphosphate reductase in E. coli [21]. Penicillin-
binding proteins are widely used as targets for antibiotics. These proteins play a 
major role in the cell wall assembly, essential for the virulence of pathogens. Using 
the searches by the EC numbers (3.4.16.4 and 2.4.1.129) and BLAST searches, 61 
different antibiotics were identified as potential inhibitors of X. fastidiosa PBP. 

The susceptibility of X. fastidiosa against some of them, such as cephaloridine, 
cephaloglycin, carbenicillin, and ampicillin was already screened [5]. Integration 
of data regarding drug resistance mechanisms into the model, such as antibiotics 
degrading enzymes and multidrug resistance efflux pumps, would allow improving 
the prediction capabilities of the model to specific drugs. 

4 Conclusion 

This work reports the reconstruction of iMS508, a GSM model for X. fastidiosa 
subsp. pauca De Donno. The reconstruction of the model was based on a semi-
automatic genome annotation, and retrieval of information from biological databases 
and literature. The model can simulate aerobic growth of X. fastidiosa with accurate 
production rates of fastidian gum, and the lesA protein. The iMS508 was used for a 
brief drug targeting analysis, identifying 20 potential drug targets. Most of the drug 
targets identified are penicillin binding proteins, although genes related with the 
nucleotide, amino acids, and cofactors metabolism also presented results. Moreover, 
this approach identified drugs screened in previous studies that aimed at devising 
new compounds to fight this phytopathogenic bacterium.
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5 Supplementary Materials 

All Supplementary Material files mentioned in the manuscript are available at 
https://nextcloud.bio.di.uminho.pt/s/NBEwEoLaCRy8DxF. 

Data Availability 

The model presented in this work can be found in BioModels [26] with the identifier 
MODEL2205020002. To access the model: 

– Visit https://www.ebi.ac.uk/biomodels/login/auth. 
– Log in with the username reviewerForMODEL2205020002 and password 
DEMPB4. 

– Access https://www.ebi.ac.uk/biomodels/MODEL2205020002 to view the model. 
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Abstract Hairpin/cruciform structures, as well as other non-B DNA structures, are 
important regulators for biological processes and gene function. The formation of 
these structures require that the DNA sequence contains adequately spaced inverted 
repeats. To study the potential of DNA regions to form hairpin/cruciform structures, 
we developed a new procedure to analyse the variation of the concentration of occur-
rence of inverted repeats at different spacings along the human genome. We apply 
the method to the human genome and identify regions with atypical high concen-
tration of inverted repeats when compared to a control scenario based on a Markov 
model of order 7. We found that the potential to form hairpin/cruciform structures is 
very heterogeneous across different human genome regions. Also, different regions 
display strikingly different patterns of enrichment of concentration depending on 
inverted repeats spacing. 
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1 Introduction 

Hairpin/cruciform structures are a type of non-B DNA structure, sometimes called 
unusual or alternative DNA structures, not conforming to the canonical B structure, 
with importance in biological processes and gene function [8]. DNA motifs that are 
known to potentially form non-B DNA structures are available at public databases 
[6, 7]. Hairpins/cruciforms may form dynamically when certain conditions are met, 
such as the coiling state of DNA, but are less stable than the normal B-DNA con-
formation. Although their properties and relevance in several biological processes 
are acknowledged, evidence of their genomic location and mechanism of action are 
lacking in vivo [1, 9]. 

The stem and loop lengths of hairpin/cruciforms structures seem to vary over a 
wide range. According to different authors, the stem lengths vary between 6 and 100 
nucleotides, while loop lengths may range from 0 to 2000 nucleotides [6, 11, 15]. 
Short distances could favour the occurrence of these structures, but long distances 
have also been reported, such as the translocation breakpoints associated with human 
developmental diseases or infertility [1]. 

The simultaneous occurrence of inverted repeats in a specific region are a required 
feature of local cruciform structures. However, some regions can greatly enhance the 
occurrence of hairpin/cruciforms conformations than others. 

A DNA word analysis based on the distribution of the distances between adja-
cent symmetric words of length seven [13] showed a strong over-representation of 
distances up to 350, a feature that the authors considered might be associated with 
the potential for the occurrence of cruciform structures. The same research group 
later extended their analysis to include distance distributions of non-adjacent inverted 
repeats, since adjacency is not a required condition for cruciform structures to form 
[2, 4]. 

2 Methods 

This work aims to find, in the human genome, structures with regularity beyond 
the already well-known repetition structures published in the literature. Thus, we 
used pre-masked sequences available from the UCSC Genome Browser webpage 
[10]. These files contain the GRCh38 assembly sequences, with repeats reported by 
RepeatMasker [12] and Tandem Repeats Finder [5] masked with N symbols. 

Consider the alphabet A = {A, C, G, T } and let w be a symbolic sequence (word) 
defined in Ak , where k is the length of w. The pair composed by one word, w, and 
the corresponding reversed complement word, w', is called an inverted repeat pair. 
For example, (ACT , AGT ) is an inverted repeat pair. Since DNA sequencing is 
not perfect, some symbols in real DNA sequences are not in A. These unknown or 
ambiguous nucleotides are usually coded with N symbols or other IUPAC ambiguity
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characters. We treat these ambiguous nucleotides as separators that split the sequence 
into a set of unambiguous subsequences. 

In this work, we analyse, along the human genome, the cumulative distance distri-
bution of all possible inverted repeats, by dividing the complete genome in successive 
windows containing 100000 nucleotides. 

2.1 Distance Between Inverted Repeats 

For all words of length k, we compute the frequency distributions of distances, 
f , between occurrences of each word and all succeeding reversed complements at 
distances between k and 4000. 

For example, consider the sequence ACT T T GT ACT A A AGT T A AG of length 
19. Only four inverted repeats (w, w') of length k = 3 occur in this short sequence. 
The following lines show all occurrences of these inverted repeats, marked by under-
lines (w) and overlines (w'): 

(ACT , AGT ): ACT T TGT  ACT AA  AGT T A  AG, 
(CT  T  , AAG): ACT  T  T GT  ACT  A  AAGT T  AAG, 
(T T T  , AAA): ACT T T  GT  ACT  AAAGT T  A  AG, 
(T A  A, T T  A): ACT T T GT ACT A  A  AGT T  A  AG. 

The previous sequence includes six distances to all the succeeding reversed com-
plement words (distances: 12, 5, 10, 15, 8, and 5). Thus, the cumulative distribution 
is f (5) = 2, f (8) = f (10) = f (12) = f (15) = 1 and f (d) = 0 for all other d val-
ues. 

For each word w we analyse distances up to 4000 nucleotides, but, if a N symbol 
is found, the search for w' is stopped, because the length of long stretches of N s may  
be artificial. Considering the stem length of possible cruciform structures we choose 
to study words of length k = 7. 

2.2 Measuring the Concentration of Inverted Repeats 

In order to evaluate how atypical a window is, the observed values of the f (d) inverted 
repeat cumulative frequencies are compared to the expected values obtained from 
a Markov chain reference model of order 7. The method uses the total number of 
possible words at distance d to adjust the residual values to account for the actual 
number of ambiguous symbols in each window.
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Expected Values Under Higher Order Markov Chain for DNA Sequences. Let 
F(d) be the random variable that represents the total number of inverted repeats 
occurrence at distance d in a genomic region of length L and n(d) the correspond-
ing total number of possible word pairs at distance d, where d = 1, 2, ..., 4000 and 
d = k means that the two words (of length k) are in adjacent positions. Only dis-
tances between d = 7 and 4000 will be considered in this work, because to form 
hairpin/cruciform structures the words w and w' cannot overlap. 

Let p(d) be the probability of occurrence of inverted repeats at distance d. If  
we assume the independence between trials, F(d) follows a binomial distribution, 
F(d) ⌒  B(n(d), p(d)). Asymptotically, F(d) has normal distribution with mean 
n(d) p(d) and variance n(d)p(d)(1 − p(d)), so we can define a z-score 

Z (d) = F(d) − n(d) p(d) √
n(d)p(d)(1 − p(d)) 

⌒̇ N (0, 1). (1) 

However, the occurrence of inverted repeats at distance d in a genomic sequence 
cannot be considered independent. For example, for k = 7 there is no realization 
where all the trials are inverted repeats. 

Let M be the transition matrix of the Markov process, where each state corresponds 
to one genomic word of length k and the indexes (1, ..., 4k ) are in lexicographic order. 
M is a sparse matrix without absorbing states. The probability of one specific inverted 
repeat at distance d is given by 

P(wx1x2...xd−k−1w
') = P(w)P(x1x2...xd−k−1w

'|w), 

where xi ∈ {A, C, G, T }. The word probability, P(w), is estimated by the word fre-
quency in the corresponding chromosome. The conditional probabilities, 
P(x1x2...xd−k−1w

'|w), are obtained through the Markov transition matrix Md , where 
Md = [pi j  (d)], with 1 ≤ i, j ≤ 4k , holds the probabilities of getting from initial state 
i and finishing in state j in d transitions. 

Therefore, the probability of occurrence of inverted repeats at distance d is given 
by 

p(d) = 
∑ 

i 

P(i )pii ' (d). 

Number of Possible Word Pairs. Given a sequence of L unambiguous symbols, the 
number of pairs of non-overlapping words of length k that can occur at a distance d 
is at most 

n(d, k, L) = 

⎧ 
L − k − d + 1, if k ≤ d ≤ L − k 
0, otherwise.
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Sequences containing ambiguous symbols (represented by the N symbol) can be 
split into a set of unambiguous subsequences of lengths L1, L2, . . ., so the number 
of word pairs at a distance d is given by 

n(d) = 
∑ 

i 

n(d, k, Li ). 

For example, with k = 4, the number of possible word pairs at distance d = 6 in a 
sequence of length 40 containing only unambiguous symbols is n(6) = n(6, 4, 40) = 
31. However, if a length 40 sequence contains a single N symbol at position 11, 
the number of possible word pairs at distance d = 6 is only n(6) = n(6, 4, 10) + 
n(6, 4, 29) = 1 + 20 = 21. 

Accordingly, the statistic defined in Eq. (1) is adjusted by the ratio n(d)/n(d, k, l), 

T (d) = n(d) 
n(d, k, L) 

Z (d). (2) 

In order to measure the concentration of inverted repeats for a set of successive 
distances we compute the sum of all T values between two bounds (d1 and d2) 

S[d1,d22] = 
∑ 

d∈{d1,...,d2} 
T (d). (3) 

Control Scenario. We use a simulation process to obtain a control scenario composed 
of a set of sequences with features similar to those of the masked human genome: 
24 sequences with the same size of each of the human chromosomes and the same 
number and positions of the ambiguous symbols (Ns). The control sequences were 
generated under a k-order Markov process using the statistics of each chromosome 
to estimate the probabilities of the words and the transition matrices. 

We use the results of the simulation procedure to obtain a critical value for the 
S statistic (Eq. 3) under the assumption that the DNA sequence was generated by a 
k-order Markovian procedure. Thus, we could overcome the lack of independence 
between trials and to take into account the relative weight of unambiguous symbols 
of each window. 

To compute the critical values, we use a one-way test, since our main purpose 
is the identification of genomic regions with atypical (by excess) concentration of 
inverted repeats. Assuming a significance level of 5%, we compute the 0.95 quantile 
(cv) of the  S values of all windows in each simulated chromosome.
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2.3 Windows Selection 

In order to locate the sequence windows with highest concentration of inverted 
repeats, we obtain the sum of all T values S[k,4000]. We use the Tukey method [14], 
and the critical values obtained from the control scenario to identify, in each chro-
mosome, the windows with atypical concentration of inverted repeats. The Tukey’s 
threshold used for outlier detection is Tthr  = Q3 + 1.5|Q3 − Q1|, with Q1 and Q3 

the sample quartiles. 
In order to identify regions (windows) with atypical inverted repeats concen-

trations for a range of distances, we subdivided the set of distances under analysis 
into 8 intervals of distances: 7–500; 501–1000; 1001–1500; 1501–2000; 2001–2500; 
2501–3000; 3001–3500; 3501–4000. Using the results from all chromosomes, we 
used the S[d1,d2] statistic (Eq. 3) and the procedure described previously to identify 
genomic regions with atypical concentration of inverted repeats for each range of 
distances. 

3 Results 

Table 1 shows order statistics for each of the chromosomes, as well as, the critical 
values obtained in the control scenario, the Tukey thresholds and the percentage of 
windows where S surpasses those thresholds. As expected, the statistical behaviours 
of the concentration S[7,4000] of inverted repeats in the human genome and in the 
control scenario (Markov model) are significantly different. Almost all chromosomes 
have a majority of windows with a value of S[7,4000] above the critical values obtained 
from the simulation procedure. 

The S values of the windows in the human chromosomes reveal a strong positive 
asymmetry, which is not present in the control scenario. This behaviour confirms 
the existence of some genomic regions with atypical (reinforced) concentration of 
inverted repeats, potentiating the formation of hairpin/cruciform structures. 

Figure 1 shows the variation of concentration, S[7,4000], as a function of window 
number within chromosome 13. There is clearly higher enrichment of the concen-
tration values in the central region of the chromosome. Also, most atypical values 
are located in the same region. Heterogeneity of concentration values is observed in 
all other chromosomes as well.
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Table 1 Order statistics of scores, S[7,4000] over all the windows in each of the chromosomes and 
thresholds for finding windows with atypical S[7,4000] (critical values and Tukey thresholds) 
chr cv % > 

cv (%) 
min Q1 med Q3 max Tthr % > Tthr  

(%) 

1 23 71 –2311 19 56 132 2423 301 7 

2 27 68 –834 16 63 137 7079 317 6 

3 25 62 –196 6 47 123 5219 298 6 

4 26 60 –880 0 50 125 3595 312 4 

5 26 60 –480 3 48 136 14139 336 4 

6 29 61 –273 6 51 119 11399 287 5 

7 26 68 –377 14 65 149 2624 352 6 

8 24 68 –336 13 53 128 11210 302 6 

9 20 72 –128 14 53 127 1638 297 7 

10 22 79 –1542 27 65 129 4377 282 5 

11 22 80 –84 29 69 141 5401 310 7 

12 25 66 –269 13 56 131 4339 307 6 

13 29 49 –412 –1 25 140 2976 351 3 

14 22 62 –91 0 46 130 5581 326 5 

15 24 65 –63 10 45 105 3366 247 7 

16 19 79 –371 23 59 134 3128 301 9 

17 22 86 –325 40 91 184 6954 399 6 

18 25 60 –236 0 47 120 2528 301 5 

19 19 83 –31 30 68 129 1815 278 8 

20 19 85 –602 29 61 109 3107 227 9 

21 27 62 –67 0 64 185 1894 463 4 

22 19 62 –111 0 39 136 2010 339 8 

X 20 57 –846 3 28 79 7690 193 8 

Y 13 33 –1107 0 0 43 4722 107 13 

Table 2 shows the windows with the 0.1% highest S[7,4000] values in the complete 
genome. For these windows, which are the ones with the most enriched concentration 
of inverted repeats, we studied the behaviour of S values at sub-intervals of distances. 
As observed in a previous paper [3], there are different patterns of enrichment of 
inverted repeats along the distances. The values presented in Table 2 also reveal the 
existence of different patterns of enrichment. The first eight windows show a higher 
enrichment for shorter distances, while window nine (chr6, win# 1609) increases for 
higher distances. 

Figure 2 shows as examples the absolute frequencies of the distances for two 
windows with atypical concentrations of inverted repeats and with the two distinct 
patterns mentioned previously.
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Fig. 2 Cumulative distance frequencies of two windows: top, chr5:67400001:67500000; bottom, 
chr6:160900001:161000000
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Table 2 Values for the windows with the 0.1% highest S[7,4000] values 
chr win # It I1 I2 I3 I4 I5 I6 I7 I8 

5 674 14139 6541 3968 2113 1032 378 107 0 0 

6 315 11399 6091 3336 1466 444 61 0 0 0 

8 576 11210 7684 3030 495 –1 1 0 0 0 

8 1295 7847 5001 1823 759 248 15 0 0 0 

X 531 7690 5288 1959 443 0 0 0 0 0 

X 91 7175 4089 2109 723 252 1 0 0 0 

2 1948 7079 5832 1209 28 8 2 0 0 0 

17 135 6954 4247 1876 781 50 0 0 0 0 

6 1609 6801 292 480 599 771 924 1127 1281 1327 

X 1157 6588 4708 1658 221 0 0 0 0 0 

14 859 5581 3417 1519 548 97 0 0 0 0 

2 685 5420 3342 1296 546 203 32 0 0 0 

11 1147 5401 848 740 693 671 643 628 607 572 

3 1888 5219 4068 1091 59 1 0 0 0 0 

5 1262 4737 3263 1229 242 3 0 0 0 0 

Y 223 4722 3660 990 77 0 –2 0 –1 –2 

X 2 4507 584 613 575 606 538 530 555 506 

2 2265 4412 2578 1122 626 86 0 0 0 0 

10 575 4377 2410 1173 538 219 36 2 0 0 

Y 2 4368 566 595 557 588 521 514 538 490 

12 866 4339 3381 918 40 0 0 0 0 0 

8 38 4222 2588 1194 409 31 2 –2 –1 0 

14 827 4002 3354 621 21 5 0 0 0 0 

8 353 3698 2360 933 387 17 0 0 0 0 

3 1119 3678 1948 1134 537 61 –1 –1 0 0 

2 439 3627 922 690 509 419 351 278 245 214 

4 1763 3595 2407 926 261 1 0 0 0 0 

5 894 3390 2638 712 38 1 2 –1 0 0 

15 231 3366 766 560 440 383 346 316 289 266 

16 891 3128 1814 903 316 79 9 5 2 1 

It = S[7,4000], I1 = S[7,500], I2 = S[501,1000], I3 = S[1001,1500], I4 = S[1501,2000], 
I5 = S[2001,2500], I6 = S[2501,3000], I7 = S[3001,3500], I8 = S[3501,4000], 

4 Discussion and Conclusion 

Motivated by the potential connection between the occurrence of inverted repeat 
pairs and the possible formation of hairpin/cruciform structures, we introduced a new 
measure to quantify the concentration of inverted repeats along the human genome.
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In order to assess the relevance of our findings, a control scenario was created 
using a Markov model of order 7. The results of the human genome are clearly 
different to those of the control scenario, showing several regions with significant 
enrichment of the occurrence of inverted repeats. Thus, identifying regions with high 
potential for the formation of hairpin/cruciform structures. 

The regions of enriched concentration of inverted repeats cannot be explained 
simply by well-known repetitive structures, such as those reported by RepeatMasker 
[12] and Tandem Repeats Finder [5], since we observed this phenomenon even in 
sequences of the human genome in which those repeats were masked. 

The S measure allows the identification of regions with high potential of connec-
tion between inverted repeats. However, it is still not known if such potential trans-
lates directly to more frequent formation of hairpin/cruciform structures in vivo. We  
expect that the actual formation of those non-B structures depends not only on the 
higher overall potential of connection between inverted repeats, but also on the actual 
frequency distribution of distances between inverted repeats, which we observed to 
differ markedly between regions, even when they have similar overall potential (see 
Fig. 2). 
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EvoPPI 2: A Web and Local Platform 
for the Comparison of Protein–Protein 
Interaction Data from Multiple Sources 
from the Same and Distinct Species 

Miguel Reboiro-Jato, Jorge Vieira, Sara Rocha, André D. Sousa, 
Hugo López-Fernández, and Cristina P. Vieira 

Abstract The understanding of the molecular basis of cellular processes and ulti-
mately disease, requires knowledge on protein structures, interactions, and functions. 
Protein–protein interaction data (PPI) is available in the publicly available main PPI 
databases that show little overlap due to the use of different criteria. Therefore, web 
platforms that aggregate the data from multiple sources, such as EvoPPI (http:// 
evoppi.i3s.up.pt), where the existing databases have been updated and new ones 
were added, as here described, and APID (http://cicblade.dep.usal.es:8080/APID/ 
init.action) are useful. Still, in both EvoPPI 1.0 and 2, here presented , we have made
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a special effort to make it flexible in what concerns the choice of the databases to be 
compared. Moreover, interacting protein pairs tend to be evolutionarily conserved, 
and thus the information available for one species might be used to predict the 
incompleteness of the network in another one, and identify putative missing interac-
tions. This approach is now available in EvoPPI 2 for Homo sapiens and the model 
species Mus musculus, Caenorhabditis elegans, and Drosophila melanogaster, using  
either Ensembl (https://www.ensembl.org) or DIOPT Ortholog Finder (https://www. 
flyrnai.org/cgi-bin/DRSC_orthologs.pl) orthologies/paralogies. Moreover, since not 
all available PPI data is present in the main databases (e.g. PPI observed in patient 
tissues and mutant animal species, where PPI might be aberrant, are usually not 
included in the main databases, although in several studies this has been shown 
not to be the case), we provide the needed tools (including a Lubuntu-based virtual 
machine where all software is already installed and ready-to-run) to run a local 
EvoPPI 2 instance and create a custom database from the existing ones. This way the 
user can add new data for any species and from any source database, creating custom 
interactomes. Administrator tools are provided to help in the automatic processing 
and conversion of files from various sources into the custom EvoPPI database format. 

Keywords PPI ·Web platform · Local platform · Docker · Database 

1 Introduction 

In order to understand the molecular basis of cellular processes and ultimately 
disease, protein structures, interactions, and functions must be elucidated [1, 2]. The 
identification of protein–protein interactions (PPI) in itself provides opportunities to 
explore biological functions (see for instance, [3]), which, in turn, can lead to a better 
understanding of the molecular basis of multiple diseases, and to the identification of 
possible therapeutic targets. The complete PPI network, the interactome, is however 
difficult to obtain due to the heterogeneity of the nature of the interactions. Indeed, 
some PPI are obligate, others are non-obligate. In the latter group, interactions can 
be permanent or transient. The interaction strength can also be strong or weak, and 
some proteins must undergo chemical modifications in order to be able to interact 
with their partners. Moreover, gene expression, and thus protein levels, vary among 
different tissues, and therefore not all PPIs may be observed in every tissue. 

PPIs can be detected with high-throughput experimental techniques such as yeast-
two-hybrid (Y2H) system [4], affinity purification followed by mass spectrometry 
(AP-MS) [5], luminescence-based mammalian interactome mapping (LUMIER) 
[6, 7] or literature-derived low-throughput experiments. All these techniques have 
known drawbacks that contribute, on one hand, to the identification of false posi-
tives, which for Y2H can be as high as 45% [8], but, on the other hand, to the 
incomplete network of interactions (see review [9, 10]), since in these methodolo-
gies only binary interactions are identified. These results are available in the main 
PPI databases such as (BioGRID [11, 12], CCSB [13], DroID [14], FlyBase [15],

https://www.ensembl.org
https://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl
https://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl
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HIPPIE [16], HitPredict [17], HomoMINT [18], INstruct [19], Interactome3D [20], 
Mentha [21], MINT [22, 23], and PINA [24]). Since different criteria have been used 
to build these databases, the overlap is low among them. Therefore, it is useful to 
have a web application such as EvoPPI [25], that shows, for a given protein, the 
results for the different databases side by side, but that also allows their integra-
tion as if they were a single database. The databases used by EvoPPI 1.0 version 
(whose database is currently named 2018.03) were updated, leading to increments in 
the number of unique interactions in the range of 6.42% up to 119.95%, depending 
on the species. Moreover, since interacting protein pairs tend to be evolutionarily 
conserved [26], the PPI information that is acquired for one species can, in principle, 
be transposed to another one, as long as orthologous gene pairs can be identified, 
using, for instance, BLAST, Ensembl1 orthologies, or the DIOPT Ortholog Finder 
webpage.2 In EvoPPI 1.0 version, there is already a “Distinct species” option that 
allows the use of a BLAST approach (where the user can specify the maximum 
number of target genes, the minimum expect value, minimum length of aligned 
block, and percentage of minimum identity). Nevertheless, this is a time consuming 
process as BLAST queries can last several hours. 

In order to address this issue, in the new EvoPPI 2 version here reported, the 
predicted interactomes of Homo sapiens, Mus musculus, Caenorhabditis elegans, and 
Drosophila melanogaster, based on the updated databases for these model organisms 
has been pre-computed, and are available for search as a regular interactome. Gene 
orthologies were derived using either Ensembl or DIOPT Ortholog Finder. The use of 
pre-computed predicted interactomes can give hints on whether a given interaction 
may be real or not, as well as on the incompleteness of the network for a given 
protein. There are, however, many other computational methods that can be used, 
as well, to infer interactomes [10]. The result of such methods can be uploaded 
to a local version of EvoPPI 2 as a list of Entrez Gene ID pairs describing the 
inferred interactions. It should, however, be noted that such computational methods 
can generate false-positive interactions, similar to the high throughput techniques 
[27–29]. 

2 Methods 

2.1 Data 

The EvoPPI architecture, data structure, interactome comparison algorithms, and 
basic user interface has been previously described [25]. The current version of the 
EvoPPI database (2022.04) includes 101 interactome datasets for ten animal species 
(Bos taurus, Caenorhabditis elegans, Danio rerio, Drosophila melanogaster, Gallus

1 https://www.ensembl.org/. 
2 https://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl. 

https://www.ensembl.org/
https://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl
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gallus, Homo sapiens, Mus musculus, Oryctolagus cuniculus, Rattus norvegicus, 
and Xenopus laevis), obtained from main PPI databases (BioGRID [11, 12], CCSB 
[13], DroID [14], FlyBase [15], HIPPIE [16], HitPredict [17], HomoMINT [18], 
INstruct [19], Interactome3D [20], Mentha [21], MINT [22, 23], and PINA [24]), 
and prepared as previously described [25]. Moreover, as detailed in the next section, 
462 Predicted Interactome files were created for H. sapiens, M. musculus, C. elegans, 
and D. melanogaster, based on the gene orthologies established in DIOPT Ortholog 
Finder (the options used are: all “Ortholog Sources” and the “Exclude low score 
(score > 1, unless only match score is 1)” filter), and Ensembl Genome Browser, for 
these same species. 

The EvoPPI philosophy is to give the user the possibility to see the results based 
on individual databases, as well as the databases of choice as an aggregate. Therefore, 
for HINT database, for instance, we downloaded the interactions as binary physical 
interactions (direct biophysical interaction between two proteins) and co-complex 
associations (provide information about co-membership in a complex), separately. 
The same applies to those obtained by literature-curation (LC), high-throughput 
experiments (HT), or sub-interactomes assigned as high-quality (hq). For CCSB 
Interactome Database, we downloaded the Human Reference Protein Interactome 
(HuRI, also known as HI-III-19 [13]), HI-union (an aggregate of all PPIs identified 
in HI-I-05, HI-II-14, HuRI, Venkatesan-09, Yu-11, Yang-16, and Test space screens-
19), CCSB Yang-16 (where the extent to which different protein isoforms perform 
different functions within the cell is assessed; [30]), and CCSB Test_space_screens-
19 (independent, reciprocal Y2H assay screens on a search space of ~1,800 × ~1,800 
genes; [13]). The same rational was applied to DroID database from where we down-
loaded the “Genetic Interaction Data” (named DroIDfly at EvoPPI), the “PPI curated 
by Flybase” (DroID_PPI_curated_by_FlyBase), and the “PPI from other databases” 
(DroID_PPI_from_other_DBs) interaction datasets. The remaining databases were 
treated as before [25] and updated (a summary of the between versions change can 
be seen at EvoPPI’s site3 ). 

2.2 Web Interface Updates 

The large increase in the number of EvoPPI databases, as well as the new resources 
made available, implied several changes to its web interface in order to ease the user 
interaction and the visualization of the results, namely: 

a) A select button has been added to both the “Distinct species” and “Same species” 
query pages that allows selecting or deselecting all databases as well as searching 
by keyword names. In the case of “Predicted Interactomes”, for convenience, the 
user can also choose from a list the species upon which the predicted interactomes 
are based, as well as whether homologies are based on data from Ensembl or 
DIOPT Ortholog Finder.

3 http://evoppi.i3s.up.pt/help. 
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b) Under the “Interactions table” of the “Same Species Results” section, the user 
can now choose to collapse the results for the different interactomes, or see the 
result for a subset of the interactomes/predicted interactomes included in the 
query. It should be noted that the “Show chart” option will still give the results 
for all the interactomes/predicted interactomes, since this image is created upon 
the initial request. In order to improve readability, uncollapsed results are shown 
for a maximum of ten interactomes/predicted interactomes. 

c) In the new “Species” tab, the user can explore the available proteomes and down-
load for each species a FASTA file containing the protein sequences associated 
with each Gene ID. 

d) In the new “Interactomes” and “Predicted interactomes” tabs, the user can 
explore the available interactomes/predicted interactomes and download the 
corresponding PPI files for each species and database. Such PPI files are two-
column TSV files where each line represents an interaction between two proteins 
(Gene IDs). 

e) In the new “Databases” tab, the user can see the basic information about the data 
used by the different EvoPPI database versions. There is also a tutorial on how to 
use EvoPPI locally with previous or custom database versions. Next subsection 
provides further details about this. 

2.3 Using EvoPPI Locally 

So far, EvoPPI 1.0 could only be used trough the public instance maintained by 
us. With this update, we have released the evoppi-docker project,4 which allows the 
deployment of a local EvoPPI 2 instance using a Docker environment for the database, 
the backend, and the frontend. Thus, researchers can now use their own EvoPPI 
instances for performing their analysis and select the specific database version that 
will be used. In addition, using this local version also allows researchers to register 
new species (as long as a GBFF file is available for them), new interactomes, and 
new predicted interactomes easily, as well as to manage the existing ones. 

We also provide a virtual Lubuntu disk image, where all software is already 
installed and running, for users without informatics expertise. However, it should be 
noted that performance may be lower than in a local or Docker installation, due to 
the use of a virtual machine. 

3 Results and Discussion 

As shown in the EvoPPI 2 website5 under the “Database” tab, 51 new databases 
were added to EvoPPI. Moreover, 39 databases were updated (on average, each of 
the databases shows an increase of 1.36 times), and 462 predicted interactome files

4 https://github.com/sing-group/evoppi-docker. 
5 http://evoppi.i3s.up.pt/. 
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were also created for H. sapiens, M. musculus, C. elegans, and D. melanogaster 
based on the available databases for these species. The increase in the number of 
unique interactions from database version 2018.03 to 2022.04 is shown in Fig. 1 for 
H. sapiens and three model species. Such increase is a warning on how incomplete 
the interactomes for the different species are. It should be noted that PPI obtained 
from tissues of patients or mutant animal model species used to study PPI in several 
diseases, for instance, are not included in these main databases [31]. This is the case 
of the neurodegenerative diseases caused by the expansion of the polyglutamine 
(polyQ) stretch [32], where it is well established that the polyQ expansion alters 
the native PPI, implying different accessibility at specific interacting residues, post-
translational modifications, RNA binding regions, or chaperone binding regions, 
needed for the normal protein activity, and not because of novel complexes formed 
by misfolded or aggregating proteins [25, 33, 34]. 

Interacting protein pairs tend to be evolutionarily conserved [34]. Therefore, the 
PPI information that is acquired for one species can, in principle, be transposed to 
another one, as long as orthologous gene pairs can be identified, using bidirectional 
BLAST, for instance. Nevertheless, when transposing data from protostomian species 
to deuterostomain species or vice versa (such as predicting H. sapiens PPIs, based on

Fig. 1 Increment (%) in the number of interactions reported in EvoPPI 2 relative to EvoPPI 1.0, 
for H. sapiens and the model species M. musculus, C. elegans, and  D. melanogaster 
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data acquired for D. melanogaster), only paralogous gene pairs can be established, 
due to the two whole genome duplications events that happened early in vertebrate 
evolution (see for instance, [35]). In this case, this approach likely works, although 
with a lower degree of success. In EvoPPI 2, we provide predicted interactomes for 
H. sapiens, M. musculus, C. elegans, and D. melanogaster based on the data available 
for these species at a given PPI database, using Ensembl or DIOPT Ortholog Finder 
orthologies. 

The predicted interactomes can be useful to understand how incomplete a given 
species PPI network might be, and identify the missing putative interactions, which 
can then be validated by performing hypothesis-driven experiments using techniques 
such as Y2H interaction assays, or searching the literature for results not included 
in the main PPI databases. For instance, ATXN1 causes Spinocerebellar ataxia type 
1 (SCA1) when it shows an expanded number of trinucleotide repeats in the polyg-
lutamine tract [36], and thus, it is of interest to fully characterize its network. When 
using all EvoPPI 2 databases, there are 380 and 665 ATXN1 interactors for H. 
sapiens and M. musculus, respectively (Fig. 2). Since human disease genes are largely 
conserved between the two genomes (99.5%; [37]), and PPI are largely conserved 
between species [26], the above observation suggests that the human ATXN1 network 
is likely very incomplete. Using the human predicted interactomes based on the 
15 M. musculus databases, 640 and 1321 PPI are predicted, depending on whether 
Ensembl or DIOPT Ortholog Finder are used to establish orthologies. Therefore, 
by performing such analyses, the human ATXN1 network increases to 972 when 
using Ensembl, and 1652 when using DIOPT Ortholog Finder orthologies. When 
using proteomic data not present in the main PPI databases (Fig. 2), further evidence 
is obtained for the incompleteness of the ATXN1 network. For instance, there are 
198 ATXN1 interactors reported in [38] that are not listed in any of the main PPI 
databases, and thus, are not present in EvoPPI. Out of these 198 interactors, 13 could 
have been predicted by the EvoPPI predicted interactomes from M. musculus, using  
either Ensembl or DIOPT Ortholog Finder, and eight could have been predicted 
using the latter approach only. Taken together, this suggests that the ATXN1 interac-
tion network is very large, although the presence of a large number of false positive 
interactions could also be an explanation. 

Fig. 2 Comparison of the 
198 ATXN1 interactors 
reported in [38] not present 
in EvoPPI 2 main 
interactome databases, with 
the human predicted 
interactomes based on M. 
musculus and Ensembl or 
DIOPT Ortholog Finder 
orthologies/paralogies
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Finally, the possibility that is now given of creating a local EvoPPI 2 instance 
using the evoppi-docker project mentioned before has many advantages: a) it allows 
the use of local computing resources, which for time consuming large scale analyses 
may be advantageous; b) unpublished data or data subject to legal restrictions can 
be analysed without leaving the institution where it was obtained; c) by using the 
EvoPPI 2 RESTful API, the data stored on a local EvoPPI database can be accessed 
by a pipeline/script running in headless servers, which is useful for the case of 
large scale analyses; and d) it allows the reproducibility of the analyses made with 
previous database versions. In addition, it should be noted that EvoPPI 2 includes 
the tools required to convert and prepare new interactomes databases in the required 
format (two-column TSV files where each line represents an interaction between two 
proteins represented as Gene IDs). Such tools perform the required steps, such as 
the removal of file headers, isolation of the columns containing the interactions data, 
the removal of prefixes and suffixes that may be associated with the gene/protein 
identifiers, the extraction of data for a single species from multispecies files, and 
most importantly, the conversion of most commonly used gene/protein identifiers 
to Gene ID (using the UniProt database identifier mapping service6 ). Tools are also 
given to prepare new species files from genome GBFF files, obtained from the NCBI 
Assembly database,7 for instance. With these tools, researchers can easily build 
custom databases, dedicated to the study of a single disease, for instance, where they 
can incorporate all PPI data that is relevant for such a study. The possibility to create 
a local custom database is a unique feature of EvoPPI. 

4 Conclusion 

EvoPPI 2 (http://evoppi.i3s.up.pt) is a flexible web resource, where the user can easily 
choose and retrieve the available PPI data for a given protein, or proteins that are less 
than a number of steps away from that protein. The publicly available EvoPPI 1.0 
interactome databases have been updated in EvoPPI 2, and new ones were added, as 
well. Predicted interactome files were also created for H. sapiens, M. musculus, C. 
elegans, and D. melanogaster based on the available interactome databases for these 
species, using two alternatives for the establishment of gene orthologies/paralogies 
(those from Ensembl and DIOPT Ortholog Finder), which enables the fast and easy 
comparison of interactome data from different species. Nevertheless, there is also the 
possibility (already available in EvoPPI 1.0) of performing tailored made BLAST 
searches to identify orthologous genes, although this is a much more time consuming 
option. Since not all available PPI data is present in the main databases, EvoPPI 2 can 
also be deployed as a local instance, giving the user the opportunity to use species 
and interactome databases (including unpublished ones) not included in EvoPPI 2.

6 https://www.uniprot.org/help/api%5Fidmapping. 
7 https://www.ncbi.nlm.nih.gov/assembly. 
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Tools are provided (including the conversion between different types of gene/protein 
identifiers) to convert the files of interest into the EvoPPI format. 
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