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Preface 
Valérie DEPLANO1, José-Maria FULLANA2 and Claude VERDIER3 

1CNRS, IRPHE, Ecole Centrale Marseille, 
Aix-Marseille University, France 

2Institut Jean Le Rond d’Alembert, CNRS UMR 7190, 
Sorbonne University, Paris, France 

3 Laboratoire Interdisciplinaire de Physique (LIPhy, UMR 5588),  
Grenoble Alpes University & CNRS, France 

At the 44th Annual Congress of the French Society of Biomechanics held 
in Poitiers in 2019, a thematic session was proposed on the state of the art of 
biomechanical modeling applied to blood flow in large vessels, as well as on 
the associated in vivo experiments based on experimental data from medical 
imaging. During this session, organized jointly with the “MEChAnics of 
BIOlogical materials and fluids” (MecaBio, CNRS) research group, 
particular focus was placed on the benefit of interactions between the clinical 
and biomechanical teams, and the indispensable dialog between numerical 
modeling and in vitro and in vivo experimental studies.  

This book, which has grown from the presentations made at this thematic 
session, deals more specifically with numerical modeling in fluid and solid 
mechanics applied to biological systems. It provides some answers to the 
question of the benefit of combining medical and biomechanical knowledge 
to treat clinical issues. Theoretical and numerical modelings applied to 
biological systems aim to link together dynamic, biological or mechanical 
variables, which may or may not be accessible to experimental 
measurements (velocities, stresses or pressures, for example). These 
variables, which are used to build a theory, a model and then its numerical 
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counterpart, are based on hypotheses and therefore require experimental 
verification in the form of comparison and validation with existing in vitro 
or in vivo data. The numerical model can then be used for predictive 
calculations.  

Recent advances in medical imaging, particularly in the field of technical 
applications, and their integration into clinical routines, have been 
significant. Clinical trials today provide a large amount of in vivo data from 
imaging techniques, such as ultrasound, magnetic resonance imaging (MRI), 
elastography, confocal endomicroscopy, or optical coherence tomography, 
which give precise information on the internal structure of biological 
systems and their physiological function. Faced with these data, several 
questions arise: How is clinically relevant information extracted? How is this 
information processed? How can we predict the evolution of the variables 
observed? 

The link between the medical field and research in living mechanics, 
numerical modeling and mathematics, more precisely between doctors and 
medical researchers and engineers, mechanics, and applied mathematicians, 
became possible because a dialog was established between seemingly remote 
disciplines; common interests emerged; and complementary approaches 
crossed paths.  

One of the objectives of this book is to provide insight into the key  
points linking medical teams dealing with pathologies where a mechanical 
component is present, and mechanics and mathematics researchers 
developing numerical models and tools. We started from the observation that 
any theoretical/numerical research relies on experimental data, which evolve 
with technological advances, and that vice versa, experimental protocols will 
often tap into theoretical/numerical predictions. 

When establishing such interdisciplinarity, the knowledge of the 
complexity inherent to each discipline is a key point. In addition to questions 
of growth, remodeling and the different spatiotemporal scales that biological 
systems obey, one of the complexities of the living also stems from the fact 
that the same cause can offer very varied effects. They depend, inter alia, on 
the pathology, its level of evolution, the patient-specific profile and 
environmental factors, among others. Let us consider the case of aortic 
dissection, a typical vascular-pathology example of medical and mechanical 
interactions. In aortic dissection, a mechanical cause, the wall shear stress 
that is a consequence of pulsatile blood flow, and a geometric cause, the  
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topology of the aortic arch, can lead to the genesis of the pathology or to 
deleterious events in its evolution. However, if we consider biological 
activation processes due to mechanical stimuli and/or specific conditions of 
the clinical protocol, wall shear stress and topology may cause different or 
indeed conflicting effects or “experimental data”; one textbook example 
being the effect of wall shear stress due to flow on atheroma growth. This 
complexity greatly complicates the determination of the variables relevant to 
the assessment of a pathology and, retrospectively, the establishment of a 
theory or model based on the available data.  

The complexity of numerical models is diverse and appears at different 
levels: in the non-linearity of the fluid and solid mechanics models, in the 
complex geometries inherent to the living systems where the models are 
applied, in numerical implementation through the use of sophisticated 
numerical schemes and integration techniques, and even in parallelization 
techniques specific to numerical codes to accelerate calculations. This book 
will also show that the models deployed can either be complete, such as the 
Navier–Stokes equations for fluid mechanics, or reduced, such as simple 
models to model the mechanics of the arterial wall.  

In either case, the two disciplines pursue a common translational dream 
of computational medicine, where faster numerical simulations, whose 
models have been validated, are conducted at the patient’s bedside, become 
tools for decision support and prediction of pathology evolution, become an 
integral part of the operating room and enable the planning of personalized 
interventional procedures.  

This work, sponsored by the Société de Biomécanique Francophone and 
the “MécaBio”, CNRS research group, takes a stride in this direction. The 
first chapter proposes a state of the art on the structure and rheological 
properties of the blood, essential for understanding circulatory dynamics 
under different conditions. The topics proposed in the other chapters are 
varied, ranging from the study of parameters and hydrodynamic markers 
influencing endovascular repairs, the study of flows in some geometrical 
singularities of the cardiovascular system (native or pathological) and their 
correlation with the evolution of cardiovascular pathologies, and the role of 
hemodynamics in the development of atherosclerosis, to the simulation of 
flexible objects in flows, with the introduction of numerical tools such as 
YALES, Basilisk or Caps3D, which allow specific studies on biological  
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systems, as well as modeling via model reduction, used in order to obtain 
fast and reliable numerical tools.  

We hope that this book will shed new light on biomechanical modeling 
applied to blood flow in vessels, and that it will provide avenues for further 
development and applications of digital models in clinical research and 
experimental protocols.  

Marseille and Paris, March 2021 
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1 

Hemodynamics and 
Hemorheology 

Thomas PODGORSKI 
CNRS, Université Grenoble Alpes, France 

1.1. Structure and function of the circulatory system 

Since the founding discovery by William Harvey, who demonstrated 
blood circulation in De motu cordis (Harvey and Leake 1928), blood and its 
circulation have received constant and renewed attention from doctors, 
physicists and fluid mechanics engineers. Further to Stephen Hales 
performing the first blood pressure measurements on horses (Hales 1733), 
Poiseuille (1835), motivated by a desire to understand blood flows at 
different scales, laid a solid foundation for rheology and fluid mechanics by 
establishing, through experimentation, the relationship linking flow rate, 
pressure drop and viscosity in a tube (Poiseuille 1844). More recently, these 
questions have formed the subject of numerous experimental, theoretical and 
numerical studies, in vivo and in vitro, with interest constantly renewed in 
light of technical and conceptual developments (imaging, velocimetry, 
rheometry, numerical methods, microfluidics, etc.) and ever greater coupling 
of different fundamental studies on model systems, clinical studies and 
questions of biomedical interest. The complexity of the cardiovascular 
system, which presents a multi-scale structure with time-dependent 
dynamics, regulated by numerous biological, physical and mechanical 
processes, cannot necessarily be reduced to the sum of its constituents or 
elementary behaviors, which interact in a nonlinear manner. Nevertheless, a 
quantitative understanding of this complexity always requires the study of 
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simpler subsystems or configurations, in order to validate the physical 
concepts incorporated into larger scale models. 

Blood circulation performs a number of essential physiological functions, 
including: 

– transport of oxygen and nutrients from the lungs and digestive tract to 
tissues, and to or from storage organs and tissues (liver and adipose tissues); 

– elimination of carbon dioxide and metabolic wastes to the lungs and 
disposal organs, thus participating in the regulation of the internal medium; 

– immune response by transporting leukocytes and antibodies, and injury 
repair processes, notably via coagulation processes; 

– transport of internal messengers (hormones) and medicines, ensuring 
their rapid distribution throughout the body. 

The circulatory system is composed of a pump (the heart) and a complex 
network of vessels in which blood circulates, which can be divided into two 
parts: pulmonary circulation and systemic circulation. As pulmonary 
circulation takes place in a shorter circuit close to the heart, the pressure is 
lower there (from about 3.3 kPa or 25 mm Hg in the right ventricle and the 
pulmonary artery to 0.6 kPa, or 5 mm Hg in the left atrium) than in systemic 
circulation, where the distances to be covered and the amount of tissue to be 
irrigated are greater (from about 13 kPa [100 mm Hg] in the left ventricle 
and the aorta, to 0.6 kPa [5 mm Hg] in the right atrium). Vessel diameters 
extend across almost five orders of magnitude, from the largest arteries 
(several cm) to the finest capillaries (several µm), with average velocities 
ranging from about 1 mm/s in capillaries to almost 1 m/s in the aorta, with a 
highly pulsed flow linked to the heart’s operation in the arteries and veins 
close to the heart: during systole (contraction of the heart), the pressure 
reaches approximately 120 mm Hg (16 kPa) in the aorta and 25 mm Hg 
(3.3 kPa) in the pulmonary artery, and drops sharply within the heart during 
diastole. This results in very different natures of flow depending on the 
position in the network. These flows can be characterized by two 
dimensionless numbers: the Reynolds number, Re = ρUD/η, where ρ is the 
blood density (about 1,060 kg/m3), U is the typical flow velocity, D is the 
vessel diameter and η is the dynamic viscosity (about 3–4 mPa·s); and  
the Womersley number, α = R(ωρ/η)1/2, where R is the vessel radius and 
ω is the pulsation (of the order of 20 rad/s for a heart rate of 60 beats/min). 
The typical values of these numbers in the different stages of circulation are 
given in Table 1.1. These values show that, first, flows are highly inertial in 
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the large vessels (arteries and veins) for which Re >> 1, whereas in the finer 
vessels they are dominated by viscous effects and, second, the effects of the 
pulsed nature of the flow are mainly felt in the large vessels where α  > 10. 
The consequence of these large values of the Womersley number is that the 
velocity profile in these vessels does not have time to develop completely 
and is relatively flat, and that Poiseuille’s law, for example, does not apply. 
In finer vessels, the viscous effects, combined with the elasticity of the 
upstream vascular walls, enable dampening of the pressure fluctuations and 
flow there is quasi-stationary. Wall shear rate, a significant parameter for the 
function of the endothelium lining the vessels, also varies significantly, with 
a maximum in the arterioles. 

 Diameter 
(mm) 

Average 
velocity 
(mm/s) 

Reynolds, 
Re 

Womersley 
α 

Wall shear rate 
(1/s) 

Aorta 25 400 3,000 17 130 
Arteries 4 450 550 3 900 
Arteriole 0.05 50 0.75 0.03 8,000 
Capillary 0.008 1 0.002 0.006 1,000 

Venule 0.02 2 0.01 0.01 800 
Veins 5 100 150 3 160 

Vena cava 30 380 3,500 20 100 

Table 1.1. Typical values of flow parameters  
in different levels of the vascular network 

Besides their geometric properties, the structure and mechanical properties 
of vessels contribute to circulatory dynamics through passive dilatation/ 
relaxation mechanisms and active contraction/expansion mechanisms. 
Vascular walls are multi-layer structures presenting variations depending on 
their position in the vascular network, and therefore different mechanical 
properties. The internal surface of the vessels, common to the entire vascular 
system, consists of a layer of endothelial cells whose elongated shape varies 
with local shear stresses. The endothelium fulfills several exchange functions 
between blood, the vascular wall and surrounding tissues. It intervenes in the 
immune response through the processes of adhesion and extravasation of 
circulating cells, and also regulates coagulation and vasomotor processes  
and intervenes in angiogenesis. Endothelial cells are sensitive to 
hydrodynamic and mechanical stresses, thus allowing short-term adaptation 
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(vasoconstriction/vasodilatation) or longer term remodeling and adaptation via 
growth, migration or apoptosis of vascular cells. The presence of this 
nucleated cell layer on the inner surface of the vessels results in surface 
roughness, with height variations of up to 750 nm in endothelial cell nuclei. 
The shape of the cells, 10–15 µm wide and 60–100 µm long in the flow 
direction, adapts to local stresses. In addition, the surface of these cells is 
covered with a layer of glycoproteins and glycolipids forming a brush 
(glycocalyx), which plays a crucial role in hemostasis and coagulation, or  
the regulation of vasomotor processes (Reitsma et al. 2007; Weinbaum  
et al. 2007).  

The walls of the large vessels have a layered, tunic-shaped structure 
successively composed, from the inside to the outside, of (i) the intima, 
composed of the endothelium and the underlying connective tissue, the 
internal elastic lamina whose thickness, structure and properties depend on 
the vessel type, (ii) the tunica media, composed of circumferential, smooth 
muscle cells, collagen and elastic tissue, and (iii) the tunica externa 
(adventitia), composed mainly of connective tissue (collagen and elastin), 
but also, for the large nerve arteries, of small vessels irrigating the arterial 
wall (vasa vasorum) and lymphatic vessels. 

A common pathology of the arterial wall is atherosclerosis, which leads 
to coronary heart disease due to the progressive formation of atheromatous 
plaque in the artery, resulting in a narrowing of the lumen. It results from 
chronic inflammation of the arterial wall, which is most likely to occur in 
zones of disturbed flow, such as branches. It generally begins with 
endothelial dysfunction and disruptions in the elastin layer, causing the 
subendothelial accumulation of cholesterol (LDL), which forms atheroma by 
mixing with cell debris and becoming surrounded by a fibrous shell (Weber 
and Noels 2011).  

Veins, which have thinner walls (thin intima, quasi-absent internal elastic 
lamina and weak media except in the lower limbs) and a more elliptical than 
circular cross-section, generally behave more passively than arteries. 
Medium-caliber veins generally feature valves with folding intima, which 
prevent backflow. 

The small vessels have a simpler structure, composed of an endothelium 
surrounded by one or more layers of smooth muscle cells for the arterioles, 
allowing flow to be regulated in the organ concerned. The capillaries consist  
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of an endothelium supported by a basal membrane, whose structure and 
permeability depend on the organ (continuous and slightly permeable 
membrane in the muscles, lungs and skin, discontinuous and highly 
permeable in the glands, mucous membranes, liver, spleen, bone marrow, 
etc.). The postcapillary venules have a structure close to the latter, while the 
largest venules have smooth muscle cells. 

The conditions and nature of flows are strongly influenced by the size, 
geometry and mechanical properties of the vascular walls. In the largest 
vessels, flows are inertial (generally without turbulence), often unsteady and 
may present secondary flows such as recirculations. In small vessels with a 
diameter less than a few dozen times the size of blood cells, the multiphase 
nature of the blood can no longer be reduced to a continuous medium-type 
approach, and a specific rheology is manifested. The following sections 
summarize the structure and rheological properties of blood in these 
different situations. 

1.2. Blood composition 

Blood is a complex fluid in terms of its composition and rheology. It is a 
dense suspension of generally deformable objects (blood cells) in a fluid 
with a composition that can be complex to a lesser or greater degree, plasma. 
A simple centrifugation of a whole tube of blood essentially reveals three 
fractions which, in order of increasing density, are a fluid phase containing 
various solutes (plasma), a layer called the buffy coat, consisting of 
leukocytes (white blood cells) and platelets representing less than 1% of the 
total volume, and a dense layer of red blood cells (erythrocytes or red 
corpuscles) representing a volume fraction (hematocrit) of 38–46% in 
women and 42–53% in men, or about 45% on average. The different blood 
cell types are summarized in Table 1.2. 

Plasma is composed mainly of water (92%), proteins (7%), electrolytes 
(0.9%), lipoproteins and lipids (0.6%) and carbohydrates (0.1%). 
Electrolytes (predominantly Na+, followed by Ca++, K+, and Mg++ for cations 
and predominantly Cl–, followed by HCO3

–, HPO4
2– and So4

2– for anions) 
control osmotic pressure, are regulated by the kidneys and are involved in 
cellular processes. Carbohydrates are energy sources for cells, and are 
divided into oligosaccharides (glucose, fructose and galactose), 
disaccharides (sucrose, lactose and maltose) and polysaccharides (glycogen). 
Lipoproteins are structures that encapsulate insoluble lipids (cholesterol and 
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triglycerides) in a shell of polar lipids and proteins. They are divided into 
chylomicrons, very low-density lipoproteins (VLDL), low-density 
lipoproteins (LDLs) and high-density lipoproteins (HDLs), which differ in 
size and content (80–500 nm for chylomicrons to 10 nm for HDLs) and 
participate in different functions. 

Proteins, a number of which play a crucial role in blood rheology, are 
divided into different families representing different plasma fractions. 
Fibrinogen (0.03% or 195–365 mg/dL) acts on red blood cell aggregation 
(see section 1.5.2) and is involved in coagulation. Albumin is the main 
plasma protein (0.6% or 3.3–4.5 g/dL), used for the transport of small 
molecules and at this concentration level has a significant contribution to 
plasma osmolarity. Globulins (α, β, γ-globulins) and antibodies represent 
about 0.4% of plasma in total. Finally, other nitrogenous compounds are 
present, such as urea, ammonium salts, uric acid, creatine, creatinine and 
amino acids, many of which are waste eliminated by the kidneys. 

Cell type  Count /µL Geometry 

Red blood cells (erythrocytes), ~99.7% ~5,000,000 
Bioncave disc 

diameter 8 µm, thickness 2.5 µm 

White blood cells (leukocytes), ~0.2% ~7,500 
Quasi-spherical 

diameter 20–100 µm 

Platelets (thrombocytes), ~0.1% ~250,000 
Ellipsoid 

major axis 4 µm, minor axis 1.5 µm 

Table 1.2. Blood cell types, relative fraction and geometrical data 

In rheological and modeling terms, plasma is generally considered as a 
Newtonian fluid with a viscosity between 1.1 and 1.3 mPa·s (normal values 
independent of age and gender). However, recent studies involving a 
complete rheological characterization and molecular simulations of protein 
dynamics at high shear and extension rates have shown that it is viscoelastic 
in nature at high frequencies (Varchanis et al. 2018). Although the 
deformation rates considered (103 to 105 s–1) are higher than those 
encountered in most of the vascular network (Table 1.1), these  
non-Newtonian effects could be significant in regions such as the arterioles 
or capillaries.  

Among the factors that have a crucial influence on blood rheology, 
hematocrit plays a leading role, with an indirect influence on the mechanical 



Hemodynamics and Hemorheology     7 

properties of red blood cells (see section 1.3). As in any suspension, the 
effective viscosity and possible viscoelastic properties increase with the 
volume fraction in particles. The hematocrit varies significantly around  
the mean value of 45%, with, first, a significant difference between men  
and women under normal conditions and, second, pathological deviations 
toward lower values (anemia) or higher values (polycythemia), resulting in 
significantly different blood viscosities, and thus an altered oxygen transport 
capacity. There are different types of anemia, which may be due to a 
hemorrhage, the destruction of red blood cells by different pathologies (see 
section 1.3) or a deficit in hemoglobin production. Polycythemia may result 
from adaptation to conditions of reduced oxygenation (living at high altitude, 
sleep apnea syndrome, etc.) or from diseases such as polycythemia vera 
(Vaquez disease), a myeloproliferative syndrome that can double, or more 
than double, the number of red blood cells (these are then often smaller than 
normal) and bring the hematocrit to above 55%. Finally, certain doping 
techniques in sport essentially aim to increase hematocrit to improve blood 
oxygenation capacity – with the circulatory risks that doing so entails – thus 
enabling blood viscosity to be doubled, with a 40–60% increase in 
hematocrit. It should be noted that even in the absence of doping or 
pathological conditions, hematocrit and blood viscosity may vary 
significantly during physical exercise due to dehydration or fluid exchange 
with the rest of the body, which may modify the ratio of red blood cell and 
plasma volumes (Connes et al. 2013). Strictly from the point of view of 
oxygen transport efficiency, there is an optimal concentration for blood 
systems (Jensen et al. 2013), ensuring maximum transport, otherwise equal 
in all aspects (with imposed pressure or pumping power): the transported 
flow is proportional to the concentration (hematocrit), but an increase in this 
concentration is accompanied by an increase in viscosity, such that between 
two extremes (zero hematocrit, for which the red blood cell flow is zero by 
definition, and maximum hematocrit, for which the viscosity is such that the 
flow stops), an optimum exists, located more or less in the physiological 
hematocrit range. This optimum may be influenced by a number of factors, 
such as the properties of red blood cells, but also other blood or extra-blood 
factors (Reinhart 2016). It should be noted, for example, that the mean 
hematocrit value varies significantly between different animal species 
(mammals, birds, reptiles and amphibians), with normal values ranging from 
20% to 55% for highly variable red blood cell volumes, shapes and 
deformabilities (Hawkey 1975; Lewis 1996). The following section 
summarizes the properties of the human red blood cell, its pathologies and 
its dynamics.  



8     Biological Flow in Large Vessels 

1.3. The red blood cell: structure and dynamics 

1.3.1. Red blood cell properties 

The primary function of red blood cells is to transport oxygen and 
eliminate carbon dioxide from the body. The main oxygen carrier is 
hemoglobin, an organometallic protein contained in the cytoplasm of red 
blood cells, which has the ability to fix an amount of oxygen that is much 
higher than the solubility limit of plasma. The extraction of CO2 is assisted 
by carbonic anhydrase, an enzyme located in the red blood cell membrane 
catalyzing the hydration of carbon dioxide into H2CO3, which dissociates 
into HCO3

– bicarbonate ions and H+ protons, thus having an effect on blood 
pH, combined with the role of hemoglobin as a buffer. 

Red blood cells, which lack nuclei, have a characteristic biconcave disc 
shape with an average diameter of 7.7 ± 0.7 µm and a thickness at the 
thickest point of about 2.8 ± 0.5 µm and about 1.4 ± 0.5 µm in the center 
(Evans and Fung 1972). The mean corpuscular volume (MCV), which is an 
essential hematological parameter, is on average between 82 and 98 µm³, 
while the membrane surface area is about 140 µm². These characteristics 
make it a highly deflated object (the red blood cell’s membrane surface 
could contain a volume of about 150 µm³ if it were spherical in shape) that 
allows for substantial deformations, notably in order to circulate within the 
finer capillaries, whose diameter is less than 8 µm. In theoretical models that 
require the characteristics of the model object representing the red blood cell 
to be fixed, a dimensionless parameter is generally defined. This may be a 
reduced volume (corpuscular volume/volume of a sphere with the same 
surface area), having a value of about 0.59 for an average blood cell, or a 
relative excess surface area (membrane surface/surface of a sphere of the 
same volume) of about 1.44 on average. 

Since the cell is devoid of a nucleus and organelles, its internal medium 
essentially consists of a solution of hemoglobin (cytosol), which is 
considered as a Newtonian fluid (the range of shear rates accessible in this 
compartmentalized medium being restricted). The mean concentration of 
hemoglobin in cytosol (mean corpuscular hemoglobin concentration in 
hematology) is normally comprised between 32 and 36 g/dL. This 
concentration is responsible for the relatively high value of the internal 
viscosity of red blood cells. Since this concentration range is just below the 
solubility limit of hemoglobin, the viscosity can vary significantly, from 
6 mPa·s at 32 g/dL to 10 mPa·s at 36 g/dL at 37°C (Ross and Minton 1977). 
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However, this mean value masks a significant dispersion within the same 
blood sample. Indeed, red blood cells that are produced in bone marrow 
from hematopoietic stem cells before being released into the circulation have 
an average lifespan of 120 days. Over this duration, their density increases 
due to dehydration (approximately 1,060 to 1,120 g/L), resulting in a  
25–30% increase in the corpuscular hemoglobin concentration. The 
concentration within the individual red blood cells of the same sample can 
thus range from 19 to 25 mmol/L or 30–40 g/dL (Bosch et al. 1992), and 
corresponding viscosity variations from 5 to 20 mPa·s. This significant 
increase in red blood cell viscosity, combined with membrane alterations, 
significantly reduces their deformability (Linderkamp et al. 1993) and leads 
to their elimination by the spleen through a process of filtration and 
phagocytosis. The viscosity of hemoglobin is also sensitive to other 
parameters such as temperature and calcium concentration, and presents a 
transition within the vicinity of body temperature, notably for high 
hemoglobin concentrations (Kelemen et al. 2001). The internal viscosity of 
red blood cells is thus significantly higher at room temperature (20–25°C)  
than at 37°C, which may be a factor to be taken into consideration in the 
interpretation of in vitro experiments whose temperature is not necessarily 
regulated. Furthermore, the dispersion of hemoglobin concentration and 
viscosity values within the same sample and the influence that this dispersion 
may have on the red blood cell dynamics in flow represents a challenge for 
modeling and numerical simulations focusing on collective behavior. 

The membrane consists of a phospholipid bilayer containing inclusions of 
transmembrane proteins (Band-3 ion channels, glycophorins carrying 
antigens of the blood group, notably). Below the inner surface of the 
membrane is a cytoskeleton consisting of a dense network of spectrin 
filaments bound to the membrane by complexes involving anchoring 
proteins (association of spectrin-ankyrin-protein 4.2-band 3, or spectrin-
actin-protein p55-protein 4.1-glycophorin C). These interactions allow the 
structural integrity of the red blood cell to be maintained. The phospholipid 
bilayer, which is a two-dimensional fluid, confers several significant 
mechanical properties to the red blood cells. The most obvious is a  
quasi-inextensibility with a surface expansion module (ratio between 
isotropic surface tension and relative surface expansion) of about 400 mN/m, 
an important value at the scale of a micrometer object. In practice, the 
surface area of the membrane can therefore be considered constant, with 
dilatations not exceeding 5% for hydrodynamic stresses, such as those 
experienced in circulation. The membrane also has a bending resistance that 
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is generally modeled by a Canham–Helfrich energy per unit surface taking 
the following form (Helfrich 1973; Seguin and Fried 2014): 

( )2
0

1
2b GE H H Gκ κ= − +  [1.1] 

where κ is the curvature modulus with a value of 1.15 ± 0.9 × 10–19 J, H is 
the local mean curvature, H0 is the spontaneous curvature (linked to the 
asymmetry of the two lipid layers), κG is the Gaussian curvature modulus 
and G is the Gaussian curvature. With G being a topological invariant, the 
second term is therefore constant and only the first term is likely to vary with 
deformations of the membrane. It is essentially this bending elasticity that is 
responsible for the biconcave equilibrium shape of the red blood cell, which 
minimizes the integral of the bending energy at a given surface area and 
volume. Finally, friction between phospholipids and with transmembrane 
proteins produces a surface viscosity that plays a non-negligible role in the 
dynamics of the red blood cell. 

In parallel with the fluid membrane, the spectrin network is an elastic 
shell characterized by a shear modulus of approximately 5 µN/m (Table 1.3). 
The question of the reference shape of this elastic component (a shape for 
which the stresses are zero) remains a matter of debate (Švelc and Svetina 
2012). Several hypotheses have been put forward, with some taking into 
account the formation of the red blood cell, and different shapes have been 
proposed, from a spherical reference shape (which assumes that the 
cytoskeleton retains a memory of its composition in an initially quasi-
spherical cell with a nucleus) to a biconcave reference shape (which assumes 
that slow remodeling of the cytoskeleton leads it to relax toward the shape 
imposed by the minimization of the membrane bending energy). This 
question is far from anecdotal in the modeling of quantitative red blood cells, 
and numerical simulations have shown the influence of this choice in 
different situations (Hoore et al. 2018). 

Since previous results showed a link between red blood cell metabolic 
activity and deformability (Weed et al. 1969), several works have suggested 
possibilities for remodeling the spectrin network and its links with the 
membrane involving ATP (adenosine triphosphate), which could provide the 
energy needed for this remodeling, and thus modulate the shape and 
deformability of the red blood cell to optimize its function in the 
microcirculation (Park et al. 2010). Other works also suggest that the high  
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stresses experienced by the red blood cell in the microcirculation lead to the 
release of ATP in the plasma, which could in turn serve as a signal to 
endothelial cells to trigger vasomotion mechanisms and adapt the resistance 
of the microcirculation network (see WAN et al. (2011) for a review). 
However, these possible interactions between ATP, red blood cell 
mechanical properties and signaling still remain to be fully clarified and are 
even a contentious issue (Betz et al. 2009).  

The mean values of the main mechanical properties of the healthy red 
blood cell are summarized in Table 1.3. A review of the techniques for 
measuring these different properties is given in Tomaiuolo (2014). 

 Mean values 
Volume (µm3) 89.4 ± 17.6 

Surface area (µm2) 138.1 ± 27.6 
Internal viscosity (mPa·s) 6.07 ± 3.8 

Membrane viscosity (µN·s/m) 0.7 ± 0.2 
Membrane shear modulus (µN/m) 5.5 ± 3.3 

Bending energy (× 10–19 J) 1.15 ± 0.9 
Surface compressibility modulus (mN/m) 399 ± 110 

Table 1.3. Main red blood cell mechanical parameters  
and typical values (according to Tomaiuolo (2014)) 

1.3.2. Erythrocyte pathologies 

A number of conditions of congenital, infectious or metabolic origin are 
likely to significantly alter the properties of the red blood cell, and 
consequently the rheology of the blood. With regard to the mechanical and 
modeling consequences, they can affect the properties of the cytosol or the 
membrane, together with morphological modifications.  

There are several hereditary hemoglobinopathies, the most emblematic of 
which is drepanocytosis (sickle cell disease), which affects around 300,000 
births a year worldwide (Rees et al. 2010). It is caused by a mutation in a 
hemoglobin gene that results in the production of an abnormal hemoglobin, 
hemoglobin S (HbS). In homozygous patients, the high HbS concentration in 
red blood cells leads to its polymerization under low oxygen pressure 
conditions (notably when red blood cells deoxygenate substantially in the 
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microcirculation in situations of effort, stress and dehydration). This results 
in a rigidification of the red blood cells and, depending on the rate at which 
deoxygenation has occurred, a change in shape related to the polymerization 
of HbS in the form of fibers. The red blood cells then take on the 
characteristic shape of a rigid sickle, which can cause capillary occlusions 
(Figure 1.1). Altered red blood cells are also more fragile, resulting in 
hemolytic anemia (Figure 1.2). The severe complications, high prevalence of 
the disease, and the difficulty of its treatment make it an important topic of 
study for therapeutic purposes and diagnostic aid. Blood rheology is altered 
by several factors interacting in a complex manner (hematocrit, and 
composition of the plasma, which is generally more viscous due to increased 
protein concentration) and more widely speaking, an increase in viscosity is 
observed, even in oxygenated blood, due to a reduced deformability of the 
red blood cells (Barabino et al. 2010). 

 

Figure 1.1. Sickle-cell morphologies under different oxygen partial pressures: (a–c) 
venous (deoxygenated) blood from three different patients; (d) after oxygenation of 
sample B with 25% O2 (PO2 = 180 mm Hg) (Asakura et al. 1994). Copyright National 
Academy of Sciences, U.S.A (1994) 

A hemoglobinopathy commonly associated with sickle cell disease is 
hemoglobinosis C, caused by the production of another type of abnormal 
hemoglobin, HbC. This abnormal hemoglobin is less likely to polymerize 
than HbS, but still leads to a decrease in red blood cell deformability. In 
addition, the prevalence of HbC and HbS genes in the same populations 
means that HbSC heterozygotes are more common than HbCCs (Nagel et al. 
2003).  

Thalassemias (α or β depending on the type of hemoglobin subunit 
affected) are another family of highly prevalent hereditary 
hemoglobinopathies (Higgs et al. 2012). They are characterized by 
hypochromia (hemoglobin deficiency and therefore a lower internal 
viscosity) and microcytosis (smaller than normal red blood cells). 
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Figure 1.2. Sickling, hemolysis and capillary occlusion in sickle cell disease 
(according to Kumar et al. (2012)). For a color version of this  

figure, see www.iste.co.uk/deplano/biological.zip 

Red blood cells maintain their biconcave shape (favoring their 
deformability) by regulating osmotic exchanges through their membrane. In 
particular, the internal sodium and calcium concentrations are maintained at 
a low level because of the ion channel activity (requiring energy in the form 
of ATP to function). A genetic modification of the AE1 anion exchanger 
(band 3) making it permeable to cations is linked to several forms of 
stomatocytosis, the most common form of which leads to dehydration of the 
red blood cells, and thus both an increase in internal viscosity and a change 
in shape (Da Costa et al. 2013). A number of hereditary membrane 
pathologies affect the cytoskeleton and lead to changes in the geometry of 
the red blood cell: spherocytosis, elliptocytosis, ovalocytosis, etc. The 
defects, which affect either the links between the cytoskeleton and the 
membrane, or the interactions within the spectrin network, lead to fragility of 
the membrane and a loss of its surface area to a lesser or greater degree, 
leading to an alteration in the shape and deformability of the red blood cells. 
Figure 1.3 shows several examples of morphological alterations associated 
with these pathologies, as well as the mechanical consequences 
characterized by the measurement of an elongation index in ektacytometry. 
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Figure 1.3. Examples of red blood cell membrane pathologies. a) Elliptocytosis,  
b) pyropoikilocytosis and c) ovalocytosis. The graphs represent measurements of 
deformability by ektacytometry (elongation index, EI) as a function of the osmolarity 
of the medium. The light-colored curve represents normal red blood cells (according 
to Da Costa et al. (2013)). For a color version of this figure, see www.iste.co.uk/ 
deplano/biological.zip 
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1.3.3. Red blood cell dynamics 

As we saw above, a number of questions remain open regarding the 
structure and mechanical properties of the red blood cell, notably regarding 
the values and variability of membrane properties: bending rigidity, elastic 
modulus and membrane viscosity. The question of the reference shape of the 
cytoskeleton is also significant and unresolved: is this shape fixed, if so 
which shape is it, or is it subject to remodeling? Should these properties be 
considered fixed, or dynamic and capable of adapting to the flow through 
ATP-consuming active mechanisms? The alteration of the mechanical 
properties of red blood cells can be a consequence (and an indicator) of 
different hemoglobin and membrane pathologies, with repercussions on 
blood rheology: the dynamics of red blood cells (deformations, orientation 
with respect to flow) depend directly on them and condition the viscous 
dissipation, the elasticity of the suspension and the hydrodynamic 
interactions responsible for structuring under flow.  

A simple shear flow is a reference rheometric configuration, in which the 
dynamics of a suspended red blood cell can be considered as a marker of its 
rheological properties. It is also a useful reference configuration to contrast 
theoretical and numerical models and compare them with the experiment, in 
order to validate their usage in more complex flows. 

Many theoretical approaches have been proposed for modeling red blood 
cells, including models of elastic capsules (see, for example, Lac and  
Barthès-Biesel (2005)) or vesicles (Vlahovska et al. 2009; Biben et al. 
2011). While these models, in their simple version (two-dimensional, 
incompressible fluid with bending elasticity for vesicles, quasi-two-
dimensional solid with dilatation and shear elasticity for capsules), enable a 
number of red blood cell behaviors to be described in qualitative terms, more 
recent models tend to incorporate, to as great a degree as possible, the set of 
mechanical parameters that can influence the dynamics (inextensibility, 
bending and shear elasticity, and membrane viscosity). Many recent works 
focus on simple-shear red blood cell dynamics (see, in particular, Cordasco 
and Bagchi (2014), Peng et al. (2014), Sinha and Graham (2015), Lanotte  
et al. (2016) and Mauer et al. (2018)). On the experimentation side, a 
number of recent studies have confirmed or identified different dynamic 
regimes (Dupire et al. 2012; Fischer and Korzeniewski 2013; Lanotte et al. 
2016; Levant and Steinberg 2016; Mauer et al. 2018) for the purpose of 
drawing up a diagram of the transitions between different motions of tank 
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treading, tumbling, rolling and other more complex motions combining 
rotations, oscillations or deformations.  

The parameters influencing dynamics (viscosities of internal (ηi) and 
external (ηo) fluids, membrane viscosity, bending (κ) and shear (µ) moduli, 
flow shear rate ,γ  volume (V) and surface area (S) of the blood cell) are 
generally combined into a set of dimensionless numbers that are the reduced 
volume (ν), viscosity ratio (λ) and capillary numbers (Caκ and Caμ) comparing 
the viscous stresses with the forces linked to the bending or shear elasticity of 
the membrane. These parameters are defined by: 
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where (3V/4π)1/3 is the mean radius of the red blood cell, defined as the 
radius of a sphere of the same volume. 

Despite many dynamic modes having been identified in different studies, 
and the fact that the transitions between different regimes can be hysteretic 
in nature (Dupire et al. 2012), there is still no consensus regarding the 
general diagram of the shear red blood cell dynamics to serve as a common 
reference for validating theoretical and numerical models. It should be noted 
that variability in the properties of red blood cells between different subjects 
and within a sample from a given subject may be a cause of the differences 
observed between different experimental studies. To account for this 
property dispersity, a recent study statistically quantified cell populations in 
the different dynamic modes by measuring the orientations and shapes of a 
large number of cells within the same shear sample (Minetti et al. 2019). By  
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confirming the variety of dynamic modes, the ranges of parameters on which 
transitions occur and quantifying the fractions of the red blood cell 
population in the different modes, these statistical data complete the 
landscape of a reference flow situation for modeling (Figure 1.4).  

 

Figure 1.4. Transitions between dynamic regimes of the shear red blood cell 
identified in the literature and transition ranges observed on a large sample of red 
blood cells (Minetti et al. 2019). For a color version of this figure, see www.iste.co.uk/ 
deplano/biological.zip 

1.4. Rheology and dynamics 

1.4.1. Phenomenology of blood rheology 

From a macroscopic point of view, that is to say, at measurement scales 
significantly higher than that of the cellular constituents, the behavior 
presented by blood for shear rates typical of those encountered in large 
vessels (102–103 s–1) is quasi-Newtonian, with a viscosity of the order of  
3–4 mPa·s. This simple rheology can be useful for modeling flows in large 
vessels in their broad outline (Ku 1997), in particular through the use of 
solvers of the Navier–Stokes equations in numerical simulation. Notably, it 
has been shown that at the scale of the large arteries, the imaging resolution 
does not make it possible to systematically distinguish significant  
non-Newtonian effects, and that a Newtonian rheology is sufficient in order 
to reasonably describe the flows as a whole – that is, in terms of pressure 
distributions and flow rates – in arteries that can measure as little as 5 mm in 
diameter, with renormalization of the viscosity (Lee and Steinman 2007). 
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This simplified perspective, nevertheless, masks a complexity that may 
be significant in specific regions of physiological flows or in artificial 
systems, and when considering details that can be crucial in pathological 
situations, and situations of biomedical interest, or in intermediate regions of 
the vascular tree. In these situations, it may be necessary to take into account 
the non-Newtonian aspects of blood rheology. 

An essential phenomenon of constant-shear rheology of blood is its 
shear-thinning nature (Chien 1970): in a range of shear rates from 10–2 to 
10 s–1, blood viscosity falls by nearly two orders of magnitude, in direct 
relation to (i) the decrease in red blood cell aggregation and (ii) the influence 
of red blood cell deformability (Figure 1.5), the latter leading to a 
morphology and dynamics that depend on the shear rate. Several authors 
have focused on determining a blood yield stress resulting from the 
formation of aggregate networks at very low shear rates. These 
measurements at vanishing shear rates are technically difficult, notably due 
to artifacts related to red blood cell sedimentation, but it has been possible to 
produce estimates using a Casson law for rheology, in which the relationship 
between stress (τ) and shear rate γ  is given by: 

yτ τ ηγ= +   [1.3] 

where τy is the yield stress. An adjustment of this type of law to rheometric 
measurements at low shear rates allows this yield stress to be estimated at 
about 5 mPa, under average physiological conditions (Picart et al. 1998). 

On the circulatory side, shear-thinning, in particular associated with 
aggregation phenomena, can play a role at different levels. First, it can modify 
the velocity profiles by making them non-parabolic. In addition, for geometric 
reasons, secondary flow zones may appear transiently in the branches or 
curved portions of large vessels, constrictions (or irregularities related to the 
presence of stents, atherosclerosis etc.) due to the inertial, unsteady nature of 
the flow. A number of phenomenological rheological models are 
conventionally used in numerical simulation, from simple models such as 
power law or Carreau (Cho and Kensey 1991), to more elaborate models such 
as Carreau-Yasuda (Bird et al. 1987), modified Casson (Fung 1993), 
generalized power law (Ballyk et al. 1994) or Quemada (Quemada 1978).  
The latter model allows a good representation of blood rheology in steady 
shear to be obtained, avoiding the singular nature of the simple Casson  
model at near-zero shear rates, and the instabilities linked to the evolution of 
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aggregate structures to be taken into account. Furthermore, the Quemada 
model is equivalent to a modified Casson model (Buchanan et al. 2000). The 
generic forms of these different models are summarized in Table 1.4.  

 

Figure 1.5. Relative viscosity (normalized by plasma viscosity) for a suspension of 
normal human red blood cells with a hematocrit of 45% in plasma (normal blood) in a 
buffer containing albumin (with no aggregation) and glutaraldehyde-stiffened red 
blood cells (data from Chien (1970)) 

The unsteady nature of blood flows in part of the vascular system, as well 
as the complex and variable cross-section flow geometries, lead us to 
consider the dynamic aspects of blood rheology. The characteristic times for 
the establishment of a microstructure related to red blood cell aggregation 
(as well as possible hysteresis in the force/distance relationship between the 
aggregation and disintegration processes; see section 1.5.2) are responsible 
for the thixotropic nature of blood. This has been revealed by a number of 
experimental measurements (Dintenfass 1962), but remains a weak and 
visible effect, mainly at low shear rates with relatively long relaxation times, 
and this effect is likely negligible under physiological flow conditions. 
Viscoelastic properties have been shown to emerge in frequency (or 
characteristic time) ranges relevant to blood circulation (Thurston 1973). 
Since these properties are closely related to the composition of blood and the 
mechanical properties of its constituents (red blood cell deformability), a 
quantitative understanding of the link between microscopic properties and 
viscoelastic characteristics may be of significant interest, in order to use 
rheology for diagnostic purposes, for example. However, this viscoelasticity 
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decreases significantly as the shear rate increases and for physiological 
hematocrits (McMillan et al. 1986), suggesting that in a vessel flow 
modeling approach, the main non-Newtonian characteristic to be taken into 
account remains the shear-thinning behavior.  
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Table 1.4. Main models of macroscopic blood rheology 

Taking this shear-thinning behavior into consideration, although it 
significantly complicates numerical simulations, leads to significantly 
different results from the Newtonian model in situations of medical interest 
in the presence of pulsatile flow, bifurcations or stenosis-like constrictions 
(Buchanan et al. 2000). As an example, Karimi et al. (2014) compare nine 
rheological models in blood flow simulations in the aortic arch that produce 
significantly different velocity fields and stress distributions at the walls. 
This demonstrates how taking the non-Newtonian nature of blood into 
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consideration can be important, even in regions where the flow velocities are 
fastest. Other simulations of flow in the coronary arteries show differences 
in peak pressure values of up to 50% between a Casson-type model and a 
Newtonian fluid (Apostolidis et al. 2016). The chosen rheological model 
can, moreover, have an effect on the transport of particles (cells and 
platelets) and can also influence secondary structures that establish 
themselves (vortex) in the vicinity of arterial stenoses, for example, and that 
may play a role in the appearance of microembolisms (Buchanan and 
Kleinstreuer 1998). 

1.4.2. Red blood cell aggregation  

In the presence of plasma proteins, red blood cells form aggregates at low 
shear rates, which are responsible for the shear-thinning nature of the blood 
mentioned above. The degree of aggregation is directly correlated with the 
rate of sedimentation of red blood cells, a test commonly used in hematology 
as a non-specific marker of inflammatory conditions or other blood 
abnormalities. While immunoglobulin abnormalities, or an abnormal  
C-reactive protein level associated with an inflammatory response may be 
associated with a high sedimentation rate, it has been shown that these 
factors alone are not sufficient to promote aggregation, but are generally 
associated with an increase in the fibrinogen level, which is considered the 
main factor of aggregation (Schechner et al. 2003; Flormann et al. 2015). 
The flattened shape of red blood cells favors the formation of aggregates in 
the form of “rouleaux”, similar to stacks of coins (Figure 1.6), which may 
also agglomerate into aggregates with a less regular shape, or connect to 
form a network responsible for the existence of a (low) yield stress for blood 
flow. It should be noted that (reversible) red blood cell aggregation is a 
fundamentally different phenomenon from (irreversible) coagulation, which 
leads to the formation of blood clots by polymerizing fibrinogen into a fibrin 
network, and which represents an important subject of research in itself in 
view of its biomedical implications (Yeromonahos et al. 2010). 

Different techniques can be used to characterize aggregation and its 
structural consequences at the suspension scale: image analysis (Jan and 
Chien 1973; Chen et al. 1994), aggregometry or ektacytometry (Baskurt and 
Funda 2000; Baskurt et al. 2009), light scattering (Shin et al. 2005) or 
acoustic backscatter (Boynard and Lelievre 1990; Franceschini et al. 2020) 
to enable the characterization of the size distribution of aggregates in a flow. 
While these techniques enable the correlation of aggregate size statistics and 
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rheology, more local techniques have been used to study microscopic-scale 
aggregation and disaggregation mechanisms to derive information on 
underlying mechanisms and characterize cell-scale interaction forces. These 
include techniques of micropipette aspiration (Buxbaum et al. 1982) or 
atomic force microscopy measurement to determine the interaction energy 
between two red blood cells in a doublet disaggregation experiment (Steffen 
et al. 2013). Recently, measurements of interaction forces in an aggregation 
or disaggregation situation have been conducted using multiple optical 
tweezers, allowing better control of the interaction surface (Yaya 2021). 

 

Figure 1.6. Aggregates (rouleaux) of red blood cells forming an interconnected 
network. For a color version of this figure, see www.iste.co.uk/deplano/biological.zip 

Two mechanisms have been identified to explain aggregation: membrane 
bridging by aggregation molecules and depletion effects leading to forces of 
entropic origin. It should be noted that the experimental studies on these 
mechanisms were not only carried out in solutions containing fibrinogen, the 
main protein responsible for aggregation under physiological conditions, but 
also with the help of model molecules such as Dextran, which offers the 
advantage of existing in a wide range of molecular weights, allowing 
hypotheses of different theoretical aggregation models to be tested. 
Historically, the bridging interaction mechanism is the first to have been 
proposed and is supported by the evidence of macromolecule adsorption on 
the surface of red blood cells and the role of electrostatic forces (Chien and 
Jan 1973) to explain the non-monotonous nature of the interaction force as a 
function of the macromolecular concentration, for which a characteristic 
bell-shaped curve is generally observed. Models of non-specific interaction 
have been integrated into numerical simulations of red blood cells in 
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aggregation (Bagchi et al. 2005), based on association and dissociation rates 
and local ligand concentrations. In the case of fibrinogen, it has also been 
suggested that specific sites may be involved in adhesive interaction 
(Lominadze and Dean 2002). Within this context, Pereverzev et al. (2005) 
propose a model in which the receptor-ligand binding can be achieved by 
two types of bonds, called “slip” and “catch,” the latter being reinforced by 
the application of a low force. The second mechanism invoked, which is 
based on depletion effects, was originally proposed by Asakura and Oosawa 
(1958) and adapted by Neu and Meiselman (2002), to introduce the effects 
of macromolecular penetration into cell glycocalyx, in order to account for 
saturation effects responsible for the decrease in interaction at high 
macromolecular concentrations. In qualitative terms, the depletion effects 
are related to the finite size of the macromolecules (proteins) in solution, 
which results in the existence of a steric depletion layer on the surface of the 
red blood cells. When two red blood cells get close, this exclusion is 
responsible for a local decrease in the macromolecular concentration within 
the space separating the two membranes, relative to the concentration in the 
outer volume. The result is a gradient of concentration and therefore 
osmolarity, which leads to low pressure in this semi-confined space. 

While these two models make it possible to account, at least in qualitative 
terms and after adjusting the parameters, for the phenomenology of the 
measurements of interaction energy or forces between red blood cells, 
questions still remain as to the relative importance of the two phenomena in 
real systems (fibrinogen, possibly with the synergistic effect linked to other 
plasma proteins, or dextran in model experiments). In complex situations of 
red blood cell suspensions in flow, with relative shear motions between 
membranes, it may be surmised that qualitative differences might have 
repercussions on the dynamics and mechanisms of aggregation/ 
disintegration under flow. To the extent that only depletion forces are 
present, these depend only on the instantaneous distance between the red 
blood cell membranes, regardless of the history of the process. Conversely, a 
bridging mechanism first involves asymmetry between the aggregation and 
disaggregation processes from the perspective of the forces involved, all the 
more so if binding consolidation is established with the contact time. 
Furthermore, a specific ligand/receptor interaction has implications for the 
conditions of relative motion of the two membranes in a shear situation, for 
example. Recent investigations (Yaya 2021) tend to confirm this asymmetry 
in the force/displacement relationship between aggregation and 
disaggregation processes when bridging phenomena are involved, which 
may have repercussions on the stability of aggregates in circulation. 
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On a microscopic scale and in the absence of hydrodynamic stresses, the 
morphology of aggregates and their stability are governed by an equilibrium 
between the attractive or adhesion forces, on the one hand, and the 
membrane forces on the other. The result, even for the simplest aggregates 
made up of two cells, is a large variety in morphology, conditioned by the 
membrane bending energy (Ziherl and Svetina 2007; Flormann et al. 2017), 
as well as the shear modulus of the red blood cell spectrin network, or the 
differences in size and reduced volume that may result from the dispersity of 
red blood cell properties within the same sample (Hoore et al. 2018).  

In flow, a complex interaction occurs between adhesive interaction forces 
between red blood cells and hydrodynamic effects that tend to both promote 
aggregation kinetics (by provoking interactions between red blood cells 
proportional to the local shear rate) and break up existing aggregates 
(Quemada 1978). Significant efforts have been made in recent years, first,  
to characterize the aggregate size distributions and their flow dynamics 
through experimentation, and second, to model aggregation/disaggregation 
phenomena on a microscopic scale and propose models linking aggregate 
dynamics, in statistical terms, with blood rheology. The fundamental process 
in the dynamics of aggregation under flow is that of the interaction between 
two cells. In modeling terms, this model situation has therefore logically 
received a certain amount of attention in numerical simulation using several 
methods. One of the first studies of this type, based on 2D simulations with a 
front tracking method and a model of a droplet surrounded by a viscoelastic 
membrane for red blood cells (Bagchi et al. 2005) suggests that the 
rheological properties of cells have a significant effect on stability and 
aggregate dynamics, with cytoplasmic viscosity and membrane rigidity 
tending to stabilize aggregates. In this model, the adhesion between cells is 
modeled by a set of equations reflecting the kinetics of formation and 
breaking of bonds between the membranes when the distance between them 
is below a critical distance. Although the authors state that this model does 
not specifically call on a specific molecular mechanism, it seems more suited 
to accounting for the effect of a bridging mechanism, rather than a depletion 
mechanism. Other models use a simple distance-dependent membrane 
interaction potential of the Morse potential type (Zhang et al. 2008; Ju et al. 
2013) and Lattice–Boltzmann methods (LBM) for fluid dynamics. While 
qualitative information can be derived regarding the relative effects of 
adhesion, shear rate or even heterogeneity of red blood cell properties (Ju  
et al. 2013), these models are still limited in quantitative terms and when it 
comes to comparison with experimental results. Mechanical models of red 
blood cells remain approximations: neo-Hookean membranes, which do not 



Hemodynamics and Hemorheology     25 

offer membrane inextensibility if corrections are not made to the model, and 
two-dimensional calculations, which cannot account for all of the dynamics 
and spatial interaction configurations of two red blood cells in a real flow. A 
similar model has also made it possible to examine the effect of aggregation 
on the structure and rheology of a red blood cell suspension in a channel 
(Zhang et al. 2009), with the authors notably concluding that aggregation, by 
making the suspension more compact, tends to increase the depletion layer 
in the vicinity of the walls (see Figure 1.7 and the following section for a 
description of this phenomenon) and, counter-intuitively, reduce the 
apparent viscosity. This influence of aggregation on the depletion layer is 
confirmed by several experimental studies (Ong et al. 2010; Sherwood et al. 
2012). Other numerical works are based on models such as coarsed graining 
of red blood cells, enabling a large number of objects to be simulated more 
approximatively, and modeling their aggregation with a Lennard–Jones-type 
potential (Fedosov et al. 2011). While this type of large-scale simulation 
represents significant progress, allowing a link to be established between 
microscopic dynamics and rheology, and, notably, experimental viscosity 
curves to be reproduced (Figure 1.7) as a function of the shear rate or blood 
yield stress, it should be noted that the nature of the models can at times lead 
to the mechanical parameter values chosen not necessarily being consistent 
with the values measured independently or used to simulate other 
experiments. As a result, microscopic-scale modeling of the phenomena of 
aggregation under flow is a research pathway that still largely remains to be 
explored. 

Other works suggest a more comprehensive theoretical and statistical 
approach based on phenomenological kinetic equations modeling the 
phenomena of aggregation and disaggregation (Chen and Huang 1996), and 
inclusion of the dynamics of the aggregate network through modeling of 
energy flows in the system (Kaleviotis and Yanneskis 2011). These models, 
which require parameter adjustment on experimental data, can represent an 
interesting intermediate step between microscopic and macroscopic 
rheological models. Advances in theoretical and numerical modeling of 
aggregation under flow require and generate experimental developments to 
characterize the dynamics of aggregation at different scales, from the 
elementary mechanisms of association and dissociation of red blood cells in 
aggregates, to the determination of the characteristics and distributions of 
aggregate sizes in concentrated and complex flows. A number of studies are 
participating in this effort, based on techniques using imaging (Mehri et al. 
2014; Kaliviotis et al. 2016) or acoustics (Franceschini et al. 2020).  
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Figure 1.7. a) Effect of increasing aggregation (from top to bottom) on the structure 
of a 2D suspension of red blood cells (from Zhang et al. (2009)). b) Experimental and 
simulated rheology of a suspension of shear red blood cells. Open symbols: 
experimental data; solid lines: mesoscopic model (MS-RBC); dashed lines:  
low-dimensionality model (LD-RBC) (according to Fedosov et al. (2011)). For a color 
version of this figure, see www.iste.co.uk/deplano/biological.zip 

Rheological data (see Figure 1.5) and mean shear rate values in 
capillaries (of the order of 1,000 s–1) have long meant that aggregation can 
only play a role in the center of larger vessels (arteries, veins, venules and 
possibly arterioles), where shear rates are relatively lower. Trains of cells 
(clusters) are observed in capillaries in vivo, however, with their formation 
and stabilization mechanisms forming the subject of several recent studies 
(see Figure 1.8(a)). While it is recognized that these clusters of cells can 
form and even be stabilized by hydrodynamic interaction processes (Claveria  
et al. 2016), experimental and numerical studies have shown that there is a 
strong correlation between the probability of these clusters occurring and the 
concentration of the aggregating agent (dextran or fibrinogen), in ranges of 
concentration (and thus interaction energy) that may cover physiological 
ranges in healthy or pathological situations (Brust et al. 2014). With 
aggregation tending to stabilize red blood cell clusters in capillaries, 
aggregation is likely to play a role in microcirculation through local changes 
in flow resistance, and more generally in red blood cell behavior in 
microcirculation networks. 
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Figure 1.8. a) Red blood cell flow in a mouse capillary, showing both isolated blood 
cells and groups of cells potentially in adhesion. b) Study in microfluidic channels of 
the role of aggregation on the size of groups of red blood cells. c) Statistics of 
aggregate sizes as a function of interaction energy (controlled by Dextran or 
fibrinogen concentration (Brust et al. 2014)). For a color version of this figure, see 
www.iste.co.uk/deplano/biological.zip 

1.4.3. Dynamics of microcirculation 

In the systemic circulation, between the arterial system that conveys a 
highly pulsed flow of oxygenated blood from the heart and the venous 
system that brings it back to the heart, lies the domain of microcirculation, 
consisting of vessels whose diameter is less than a few hundred micrometers. 
These regions of the vascular system consist of complex networks of vessels, 
the finest of which, the capillaries, have a diameter of 4–8 µm, are preceded 
by arterioles and are followed by venules. The largest part of the pressure 
drop between leaving the heart through the aorta and returning through the 
vena cava occurs in these dense, branched networks, which irrigate all of the 
organs. The boundary conditions of the transport in large vessels are 
therefore determined by the resistance imposed by microcirculation, which, 
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moreover, is a system regulated by mechanisms of vasodilatation or 
vasoconstriction responding to local supply needs for oxygen, heat or 
immune response, for example. Indeed, it is in the microcirculation that the 
blood functions are manifested, and the walls of the arterioles are sensitive to 
shear stresses on the wall and can activate contractile cells, enabling the flow 
in the capillaries to be regulated. Significant, repeated variations of these 
wall stresses can also trigger an adaptation of the vessels (vascular 
remodeling) and the capillary network (angiogenesis). 

The fundamental difference in the nature of flow between 
microcirculation and macrocirculation (large vessels) is not limited to 
differences in the order of magnitude of the characteristic numbers 
(Reynolds number and Womersley number). These aspects are certainly 
crucial: flows are dominated here by viscous effects, and fluid dynamics can 
generally be modeled by the Stokes equation at these scales. Cardiac 
pulsations are markedly dampened here, ensuring quasi-stationary 
conditions, but the scale of the flows also means that blood does not behave 
as a uniform continuous medium here, with its nature as a dense suspension 
of deformable particles giving rise to specific phenomena. In arterioles or 
venules, the vessel diameter is less than 30 times the diameter of a red blood 
cell, and in the finest capillaries, the red blood cells even have to deform to 
pass through a conduit smaller than their own diameter. The structure and 
rheology of the suspension are therefore dominated by cell–cell and  
cell–wall interactions, and depart significantly from the rheological laws 
applicable in large vessels or viscometric flows. 

The structural characteristics of microcirculatory flows, revealed by 
Poiseuille (1835), can be seen in Figure 1.9, which shows his representation 
of the microvascular network of the frog mesentery and circulating red blood 
cells. Two observations stand out: (i) in the precapillary arterioles and 
postcapillary venules there is a depletion layer with no red blood cells in the 
vicinity of the walls, generally called the cell-free layer (CFL); (ii) the red 
blood cell distribution is very heterogeneous in the capillaries and the 
hematocrit is not homogeneous. More recent imaging techniques are able to 
confirm these observations and record network geometries useful for 
simulating blood flow models based, for example, on effective rheological 
laws and phase separation laws at the bifurcations responsible for the 
heterogeneities observed. 
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The non-uniform distribution of red blood cells in the cross-section of a 
vessel and the existence of a depletion layer (CFL) at the walls are 
responsible for two significant rheological effects in blood flows in a tube. 
The first, identified by Fåhræus, indicates that for a given systemic 
hematocrit, the apparent hematocrit in the microcirculation is less than the 
hematocrit of the reservoir that supplies it (artery), and decreases with the 
diameter of the vessels. This is a consequence of the conservation of red 
blood cell and plasma flows, and because the blood cells are on average 
more centered in the channel than the plasma, as their velocity is greater. A 
correlation between tube hematocrit, discharge (or reservoir) hematocrit and 
vessel diameter is proposed by Pries et al. (1990). The second effect 
correlated with the existence of the cell-free marginal layer is the Fåhræus–
Lindqvist effect, which consists of a decrease in the apparent viscosity of the 
blood when the tube diameter decreases. This counterintuitive effect is the 
result of the lubricating effect of the marginal layer, whose viscosity (that of 
plasma) is lower than that of the dense suspension flowing through the 
middle of the channel (Fåhræus and Lindqvist 1931). 

 

Figure 1.9. Microcirculation networks: (a) frog mesentery (Poiseuille 1835); (b and c) 
color-coded representations of simulated fields (b: hematocrit, c: flow) in a network 
geometry acquired by X-ray tomography in monkey brain (Guibert et al. 2010). Scale 
bar: 500 µm 
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On a microscopic scale, the structuring of the suspension responsible for 
these phenomena is governed by two antagonistic processes, which are, first, 
a migration of cells away from the walls and toward the center of the 
channel, and second, a shear-induced diffusion and interactions between red 
blood cells. These processes, which are common to all suspensions of 
deformable objects, have become the subject of works permitting scaling 
laws to be proposed (Podgorski et al. 2011; Grandchamp et al. 2013; 
Losserand et al. 2019), and are strongly influenced by the mechanical 
properties of circulating cells, which can make them tools of interest for 
diagnosis, indirect characterization of these properties or cell sorting 
(Geislinger and Franke 2013; Connolly et al. 2021). In a polydisperse 
system, such as blood, this sensitivity to cell properties also leads to 
margination and segregation phenomena, where the most rigid and smallest 
cells tend to be closer to the walls (white blood cells, platelets and, 
potentially, more rigid pathological red blood cells), on average. While there 
are continuous models to describe margination, as well as numerical works 
(Kumar and Graham 2012), the details of the mechanisms remain the subject 
of active research. There has been a renewed international interest in this 
subject among teams of theorists/numerical analysts, further to the evolution 
of numerical models and computing means (Fedosov and Gompper 2014; Qi 
and Shaqfeh 2017), underscoring a need for quantitative experimental data. 

The heterogeneity of the distribution of hematocrit visible in Figure 1.9 is 
a consequence of the asymmetric separation of red blood cells in the network 
bifurcations. Model experiments in microfluidics have shown that in general, 
for perfectly symmetrical bifurcations where the two outlet branches are 
geometrically identical, if the flow rates are different in these two branches 
(e.g. because the outlet pressures or branch lengths are different), the red 
blood cell volume fraction (hematocrit) is higher in the branch of higher 
flow rate. This phenomenon, widely observed in microcirculation, is 
generally referred to as the Zweifach–Fung effect (Svanes and Zweifach 
1968; Fung 1973). Under physiological conditions, it can be estimated that if 
the asymmetry of the bifurcation outlet flow rates is such that one branch 
receives only a quarter of the inlet flow rate, the hematocrit in that branch 
may fall to zero. There have been a large number of in vivo studies devoted 
to this phenomenon (Pries et al. 1996), as well as studies on model systems 
(Chien et al. 1985) or numerical simulations (Barber et al. 2008). The 
phenomenon is relatively subtle, and strongly depends on the configuration 
of the particles or blood cells that arrive at the bifurcation (Doyeux et al. 
2011), which may even lead to the inversion of the partition in some cases 
(Shen et al. 2015). These effects, coupled with the dynamics of the 
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reorganization of red blood cells in the network branches between two 
bifurcations, under the effect of the migration/diffusion mechanisms 
mentioned above, are crucial for the distribution of red blood cells at the 
scale of a capillary network (Balogh and Bagchi 2018).  

The strong coupling between (i) the structure of the suspension in the 
network branches, (ii) the apparent viscosity in these branches and (iii) the 
phase separation at the bifurcations cannot only lead to heterogeneities in the 
hematocrit distribution, but also to spatiotemporal fluctuations in the flow 
(Kiani et al. 1994). The oscillations and instabilities of microvascular flows 
have been observed in vivo (Mezentseva et al. 2016) and are suspected to 
have an impact on the regulation of blood flow and tissue oxygenation. To 
date, the question of the stability of these flows has formed the subject of 
some recent theoretical studies, but there is very little experimental 
validation (Davis and Pozrikidis 2014; Karst et al. 2017), making it a 
relatively active subject of study aimed at clarifying the purely passive 
mechanisms of microcirculation regulation. The inclusion of effects related 
to aggregation, its influence on red blood cell distribution and blood 
perfusion in the capillary networks is also an active research topic (Reinhart 
2017; Kaliviotis et al. 2018). 

1.5. Conclusion 

According to the WHO, cardiovascular disease, affecting the circulatory 
system, is the leading cause of mortality worldwide, accounting for more 
than 30% of deaths, predominantly from coronary heart disease and strokes. 
In addition, hemopathies, which affect the components of the blood, 
constitute a group of diseases, many of which hereditary, that are highly 
prevalent. While the causes, mechanisms and consequences of these 
pathologies are extremely varied and affect different circulation levels, a 
common characteristic discussed in this chapter is their fundamentally  
multi-scale nature, coupling biology and physicochemistry, circulating cell 
mechanics and vascular walls, blood rheology and hydrodynamics at vessel 
and circulatory-network scale. 

The quantitative understanding and modeling of the physical and 
mechanical aspects of blood circulation dynamics continue to represent a 
challenge related to its nonlinear character and extreme sensitivity to 
biomechanical and physicochemical parameters, which are likely to vary 
greatly in pathological cases. The past few decades have seen significant 
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developments in both in vivo and in vitro experimental techniques (optical 
and acoustic imaging and Magnetic Resonance Imaging). There have also 
been advances in numerical simulation, in terms of both methods and 
computing power, which now allow the study of large systems with a 
multiphysics approach. As a result, considerable progress has been made in 
understanding the rheological properties of blood and circulatory dynamics. 
In addition to a better fundamental understanding of hemodynamics and 
hemorrheology, these advances offer new scope for fruitful interactions at 
the interface between medicine, physics and mechanics in areas such as 
diagnosis, patient monitoring assistance and preoperative decision support 
within the framework of vascular surgery, because of the ever-increasing 
predictive ability of the models. 
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2.1. Introduction

Over the past few decades, technologies in endovascular aortic aneurysm
repair (EVAR) have evolved rapidly. Complex abdominal aneurysms with
unfavorable neck (i.e. very short length of normal aorta between the lowest
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renal artery and the beginning of aneurysmal dilatation) or involving renal or
digestive arteries are unsuitable for conventional EVAR. They carry a high
risk for open surgery, with a high rate of renal complications (West et al.
2006). Innovative, minimally invasive approaches such as fenestrated
(fEVAR), chimney (chEVAR) or periscope EVAR (pEVAR) were developed
to treat complex aortic aneurysms and preserve target vessel perfusion. The
advantages of these endovascular techniques over conventional open repair
are the reduction of mortality and morbidity (such as blood loss and
complications related to aortic and visceral arterial clamping that could lead
to organ ischemia) (O’Neill et al. 2006, Nordon et al. 2009, Verhoeven et al.
2010, Oderich et al. 2014, Verhoeven et al. 2015, O’Donnell et al. 2019). The
fEVAR devices include custom-made fenestrated stent grafts which usually
take several weeks to be manufactured and, consequently, they are not
available in emergency situations. Parallel stent graft techniques such as
chEVAR and pEVAR are built using off-the-shelf devices with antegrade
parallel renal stent grafts (chEVAR) or retrograde parallel renal stent grafts
(pEVAR) associated with a main aortic endograft. Their main advantage is
immediate availability. The different repair methodologies (fEVAR, chEVAR
and pEVAR) may impact hemodynamics in target vessels such as the renal
arteries, a major concern in EVAR. Renal events often complicate complex
EVAR such as target vessel loss (3–4%), renal stenosis (7%) or postoperative
renal dysfunction (20–29%) (Mohabbat et al. 2009, Martin-Gonzalez et al.
2015, Ou et al. 2015, Tran et al. 2016). Renal dysfunction may arise from
perioperative arterial lesions caused by the device (Mohabbat et al. 2009) or
from strong hemodynamic alterations following the procedure. Intrastent
stenosis and thrombosis after stent implantation remain major clinical issues.
Wall motion and flow disturbances distal to the stent graft are associated with
increased intimal hyperplasia, particularly at the junction between the stent
and the artery. The mechanisms are not fully understood but direct
endothelial damage, reduced compliance and alteration of the distribution of
the wall shear stress (WSS) within the stent graft (LaDisa Jr. et al. 2005) may
be involved. Restenosis from intimal hyperplasia is often observed at the
distal ends of the stent (Sutton et al. 1988). The stent rigidity relative to the
native arterial compliance results in stiffness mismatch (LaDisa Jr. et al.
2005), which may also stimulate intimal hyperplasia. Moreover, since the
aorta is fixed at the retroperitoneum, the proximal segment of the renal
arteries undergoes limited motion compared to its distal counterpart.
Moreover, respiration may cause kidney rigid-body motion leading to upward
and downward deflections of the renal arteries, with a larger displacement
distally than close to renal ostia (Draney et al. 2005). This mobility again
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may contribute to intimal hyperplasia. Nevertheless, it should be noted that
the stented length is usually greater in parallel stent graft techniques than in
fEVAR (Ullery et al. 2016). Analyzing renal artery hemodynamics following
fEVAR, chEVAR and pEVAR may help to understand the occurrence of renal
complications such as intrastent or arterial stenosis from intimal hyperplasia
or thrombosis in the renal arteries. Computational fluid dynamics (CFD) is a
tool that enables detailed investigation and systematic comparison of
hemodynamic descriptors in complex EVAR. Our aim was to analyze the
hemodynamic impacts of fenestrated, chimney and periscope endovascular
repair of complex abdominal aortic aneurysms on renal arteries. The study
presented focused on the patterns of flow, pressure and WSS caused by
complex EVAR and by the possible stenosis related to intimal hyperplasia.
The influence on platelet transport and activation was also considered.
Understanding the hemodynamic impact of different EVAR procedures can
potentially help clinicians to prevent renal complications and to make optimal
choices between the types of EVAR procedures (fEVAR vs. chEVAR or
fEVAR vs. pEVAR).

2.2. Methods

A series of nine idealized computed aided design (CAD) models of
complex EVAR was created in Autodesk Inventor 2016. These models were
divided into three groups: fEVAR, chEVAR and pEVAR. In each group, three
models were created with different degrees of renal arterial stenosis: no
stenosis (baseline model), a non-clinically significant stenosis; 40% diameter
reduction and a clinically significant one; 70% diameter reduction. The 40%
stenosis is a non-hemodynamically stenosis, whereas the 70% stenosis
represents a hemodynamically stenosis that leads to hemodynamically
significant reductions in renal blood flow and pressure. The stenoses were
created 2 cm after the renal ostium at both right and left renal arteries. They
represent the intimal hyperplasia usually developed at the junction between
the renal artery and the distal part of the renal stent graft (Sutton et al. 1988,
Draney et al. 2005). All models were built with equal aortic inlet diameter
(24 mm), iliac artery diameter (12 mm), renal artery diameter (6 mm) and
length (62 mm). The total length of the fEVAR and pEVAR models was equal
(286 mm). The chEVAR model was larger (339 mm) to minimize the
disturbances triggered by the chimney inlet on the aortic velocity profiles.
The same length was kept between the aortic inlet and the proximal end of
the renal stent graft in order to have an established flow. In the fEVAR model,
renal stents were aligned to the renal ostium and protruded 5 mm into the
aortic lumen. In pEVAR and chEVAR, the renal stent protruded 40 mm
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vertically into the aortic lumen. The angle between the renal artery segment
of the stent graft and its aortic segment was 90◦. An image of each model is
shown in Figure 2.1. CFD analyses were performed using the validated finite
element code CRIMSON (Cardiovascular integrated modelling and
simulation crimson) on the high-performance computer of Mines
Saint-Etienne (cluster of 11 Tflops with 26 nodes totaling 384 cores and 1 Tb
of RAM). Tetrahedral mesh was created by discretizing the geometric model
of the aorta and refined using a combination of global mesh, maximum
curvature and boundary layer refinement. Pulsatile flow was run, followed by
an iterative field-based anisotropic refinement operation until mesh
independent results were obtained (Sahni et al. 2006, Youssefi et al. 2018).
Mesh independency was assessed for each model in all patients. The results
of the inlet and outlet pressure were compared between each mesh adaptation
of the same model. Mesh adaptivity was stopped when the differences in inlet
and outlet pressure between two consecutive mesh adaptations was below
1%. Two mesh adaptations were performed in order to reach mesh
independency. Mesh sizes ranged between 0.6 × 106 and 2.4 × 106
elements. The vessel and stent graft walls were modeled as rigid. The blood
was treated as a Newtonian and incompressible fluid with a dynamic
viscosity of 4 mPa.s and a density of 1060 kg/m3. A liquid is said to be
Newtonian if the coefficient of viscosity is constant at all rates of shear. This
condition exists in most homogeneous liquids, including blood plasma
(which, since it consists of mostly water, is Newtonian). But the mechanical
behavior of a liquid containing a suspension of particles (like blood) can vary
such that the liquid becomes non-Newtonian. These deviations become
particularly significant when the particle size becomes appreciably large in
comparison to the dimension of the channel in which the fluid is flowing. In
the large vessels, such as aorta, iliac and renal arteries, it is reasonable to
assume blood has a constant viscosity, because the vessel diameters are large
compared with the individual cell diameters, and because shear rates are high
enough for viscosity to be independent of them. Hence, in these vessels the
non-Newtonian behavior becomes insignificant and blood can be considered
to be a Newtonian fluid (Ottesen et al. 2004). A pulsatile adapted
patient-specific flow waveform (Ahmed et al. 2016) was prescribed at the
aortic inlet using a Womersley velocity profile (Williams and Leggett 1989,
Odenstedt et al. 2001, Osinnski et al. 1995). The flow fraction that feeds the
supra-aortic trunks and the digestive arteries was removed from the cardiac
output (4 L/min) and the adapted aortic inflow represented 55% of the cardiac
output (2.2 L/min). Outflow boundary conditions were prescribed using a
coupled multi-domain method (Vignon-Clementel et al. 2006, Figueroa et al.
2006) in which three-element Windkessel models were coupled to each
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outflow branch (renal and iliac arteries) (Vignon-Clementel et al. 2010). The
Windkessel model represents the arterial tree beyond the outlet in an intuitive
and physiological manner. It comprises a proximal resistance, compliance,
and a distal resistance for each outlet. Specification of the Windkessel
parameters requires knowledge of flow splits and pressure (Sahni et al. 2006).
The prescribed mean, systolic and diastolic aortic pressure was 93.3, 120, and
80 mm Hg, respectively (Figure 2.1). The Windkessel parameters for outlets
were estimated following the procedure described in Xiao et al. (2014) and
are summarized in Table 2.1. The inflow waveform and the outlet boundary
condition parameters were kept constant in all cases for the sake of
comparison. Simulations were run until a periodic solution was achieved,
imposing a total residual tolerance criterion (sum of all nodal residuals) of
10−3. Only the results of the last cardiac cycle are reported. For each model,
systolic pressure (SP), diastolic pressure (DP), mean pressure (MP), pulse
pressure (PP) and mean flow (Qm) were measured at aortic inlet, all model
outlets, and the proximal and distal segments of the renal arterial stenosis.
Time averaged WSS (TAWSS) and platelet activation state (PAS) were
determined in the renal arteries and in the renal stents. Peak velocities were
also measured 3 cm downstream the renal artery ostium, that is, at the end of
the stenosis for the stenosed models. Platelet activation state was calculated
for each case according to the validated Lagrangian-based model of
shear-induced platelet activation, proposed by Grigioni et al. (2005), adapted
by Nobili et al. (2008) and applied to the carotid artery by Massai et al.
(2012). PAS is a dimensionless parameter. It aimed to evaluate the
hemodynamic risk related to platelet activation and aggregation that increase
the risk for thromboembolic complications (Massai et al. 2012). Pressure,
flow, velocity, TAWSS and PAS were compared between non-stenosed and
stenosed models.

Proximal resistance Compliance Distal resistance
g/(mm4.s) mm4.s2/g g/(mm4.s)

Right renal artery 0.51 1.96 2.08

Left renal artery 0.51 1.96 2.08

Right iliac artery 0.11 4.96 0.81

Left iliac artery 0.11 4.96 0.81

Table 2.1. Boundary conditions of the renal and iliac outlets
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Figure 2.1. A) 3D CT-scan view of abdominal aortic aneurysm not eligible for
conventional EVAR (a) and treated by fEVAR (b). B) Idealized model of fEVAR (a),
chEVAR (b) and pEVAR (c) with sagittal slice view of each model in the black box.
Surrounded by dashed lines, position of the 40% diameter renal stenosis (d) and
70% diameter renal stenosis (e) in the fEVAR, chEVAR and pEVAR models. C)
Boundary conditions with patient-specific flow waveform applied at the aortic inlet, and
the three-element-windkessel model (proximal resistance (Rp), compliance (C) and
distal resistance (Rd) at each outlet. Dao, aortic diameter (24 mm); Dil, iliac diameter
(12 mm); α, angle of the renal chimney and renal periscope and between the aorta and
the renal stent graft in fEVAR (90◦); L, length of the renal artery (62 mm); l, length of
the vertical segment of the renal chimney and periscope (40 mm)

2.3. Results

Since all geometric models are symmetrical, pressure, flow and velocity
values were identical in the left and right renal arteries. Thus, only the results
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for the left renal artery were reported. Numerical values for the flow, velocity
and pressure obtained are listed in Table 2.2.

fEVAR chEVAR pEVAR fEVAR chEVAR pEVAR fEVAR chEVAR pEVAR
−40 −40 −40 −70 −70 −70

Aortic inlet
systolic pressure

(mm Hg)
166.2 148.7 148.3 167.5 150.2 148.7 187.8 170.7 169.5

Aortic inlet
diastolic pressure

(mm Hg)
70.9 73.6 72.9 70.7 73.3 71.5 74.3 76.4 76.1

Aortic inlet
mean pressure

(mm Hg)
94.2 93.7 92.8 94.3 93.7 91.8 102.0 101.4 100.7

Aortic inlet
pulse pressure

(mm Hg)
95.3 75.1 75.3 96.8 77.0 77.3 113.5 94.3 93.4

Renal
systolic pressure

(mm Hg)
156.7 137.7 132.5 151.7 132.2 126.4 83.8 77.4 76.2

Renal
diastolic pressure

(mm Hg)
71.2 74.3 73.4 70.9 74.0 72.0 63.4 65.9 65.0

Renal
mean pressure

(mm Hg)
93.0 92.1 90.6 92.0 91.1 88.7 70.5 70.7 69.7

Renal
pulse pressure

(mm Hg)
85.5 63.4 59.1 80.8 58.2 54.4 20.4 11.5 11.1

Iliac
systolic pressure

(mm Hg)
156.0 141.4 141.4 156.8 142.8 141.4 174.0 160.8 159.9

Iliac
diastolic pressure

(mm Hg)
71.6 74.5 73.6 71.3 74.2 72.2 75.0 77.5 77.0

Iliac
mean pressure

(mmHg)
93.4 92.9 92.1 93.4 92.9 91.1 100.9 100.4 99.6

Iliac
pulse pressure

(mm Hg)
84.4 67.0 67.8 85.5 68.6 69.3 98.9 83.3 82.9

Renal artery
maximal velocity

(mm/s)
1301.0 1564.3 1260.5 2099.7 2382.2 2347.2 5025.1 4971.5 4892.0

Mean inflow
(mm3/s) 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20
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fEVAR chEVAR pEVAR fEVAR chEVAR pEVAR fEVAR chEVAR pEVAR
−40 −40 −40 −70 −70 −70

Mean
renal outflow

(mm3/s)
0.29 0.29 0.29 0.29 0.29 0.29 0.22 0.22 0.22

Mean
iliac outflow

(mm3/s)
0.81 0.81 0.81 0.81 0.81 0.81 0.88 0.88 0.88

Prestenosis renal
systolic pressure

(mm Hg)
156.4 127.9 134.1 155.9 142.9 137.7 179.5 170.1 167.1

Prestenosis renal
diastolic pressure

(mm Hg)
71.0 73.9 73.3 70.8 73.8 73.6 74.2 76.4 76.1

Prestenosis renal
mean pressure

(mm Hg)
92.4 90.6 90.9 92.3 92.5 91.5 100.4 100.9 100.0

Prestenosis renal
pulse pressure

(mm Hg)
85.3 54.1 60.8 85.1 69.2 64.1 105.2 93.7 91.0

Poststenosis renal
systolic pressure

(mm Hg)
156.1 127.9 133.6 146.6 127.9 124.1 82.6 77.1 76.0

Poststenosis renal
diastolic pressure

(mm Hg)
71.1 73.9 73.3 70.8 73.9 73.7 63.2 65.6 64.8

Poststenosis renal
mean pressure

(mm Hg)
92.3 90.6 90.8 90.9 90.6 89.7 69.9 70.3 69.4

Poststenosis renal
pulse pressure

(mm Hg)
85.1 54.1 60.2 75.7 54.1 50.5 19.4 11.5 11.2

Table 2.2. Pressure and flow values at inlet and outlets in all idealized models.
fEVAR, fenestrated EVAR; chEVAR, chimney EVAR; pEVAR, periscope EVAR;

-40, 40% stenosed renal arteries; -70, 70% stenosed renal arteries

2.3.1. Model without stenosis

2.3.1.1. Flow and velocity

Qm at aortic inlet, renal outlets (0.6 L/min) and at iliac outlets (1.6 L/min)
were the same in all idealized models. The largest renal artery velocity (3 cm
after the renal ostium) was found in chEVAR (1.6 m/s). In the same region,
the peak velocity for pEVAR and fEVAR was 18% lower (Figure 2.2). Flow
recirculation, indicating vortex formation, was found at the proximal intra
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renal cranial part of the fenestrated stent graft and in the aortic segment
located just below the fenestrated stent graft as well as at the entrance of the
periscope stent graft, as represented in Figures 2.3 and 2.4.

Figure 2.2. Flow and pressure at aortic inlet (A), mid-renal artery (B), renal artery outlet
(C) and iliac artery outlet (D) in the baseline models (without stenosis). We chose to
report only the results of the left renal artery and the left iliac artery as the models were
symmetric and the results of the contralateral side were the same

2.3.1.2. Pressure

Aortic inlet SP and PP were 11% and 21% higher in fEVAR compared
to chEVAR and pEVAR, respectively. MP was almost identical in all cases,
around 93.5 mm Hg. SP at renal arteries was 12% and 15% higher in fEVAR
compared to chEVAR and pEVAR, respectively. PP in renal arteries was 26%
and 31% higher in fEVAR compared to chEVAR and pEVAR, respectively.
DP ranged between 71 mm Hg and 74 mm Hg. MP was nearly identical in all
cases, around 92 mm Hg.
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Figure 2.3. Velocity field in the renal arteries of the idealized models (surrounded by
solid lines) without renal stenosis (A), with 40% diameter renal stenosis (B) and with
70% diameter renal stenosis at peak systole. Surrounded by dashed lines, close-up
of the proximal part of the stent graft (fenestrated, chimney and periscope) and the
horizontal portion of chimney and periscope stent graft

2.3.1.3. Renal artery WSS and PAS

As shown in Figure 2.5, TAWSS was the lowest (< 0.4 Pa) at the proximal
intra renal segment of the fenestrated stent graft in fEVAR, and at the proximal
horizontal segment of the chimney and periscope stent grafts. The TAWSS
peak values (> 7 Pa) were reached at the proximal aortic end of the fenestrated
stent graft, at the proximal vertical segment and at the curvature of the chimney
stent graft, and at the proximal vertical part of periscope stent graft. PAS is
presented in Figure 2.6. At systolic peak, PAS was the highest in the horizontal
part of the periscope stent graft and in the renal artery in pEVAR. PAS was the
lowest at the proximal part of the renal chimneys in chEVAR. The highest
value for PAS in fEVAR was 0.01 and was found in the fenestrated stent graft
and in the renal artery. The highest value of PAS in chEVAR was 0.0036,
located at the renal stent angulation, the distal part of the chimney and the
renal artery. The highest value for PAS in pEVAR was 0.02 and was found in
the distal part of the periscope stent graft and in the renal artery.
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Figure 2.4. Velocity streamlines in each idealized model (solid lines) without renal
stenosis (A), with 40% diameter renal stenosis (B) and with 70% diameter renal
stenosis at peak systole. Surrounded by dashed lines, detailed view in portion of the
model with complex flow streamlines

2.3.2. Model with 40% diameter stenosis

2.3.2.1. Flow and velocity

Qm in renal and iliac arteries were identical for all three cases. This
suggests renal artery stenosis has a greater impact on flow dynamics than the
different effective resistances to flow set by the different renal stent graft
configurations. Larger velocities resulting from the stenoses were recorded in
the renal arteries. Peak velocity at the renal artery (3 cm after the renal
ostium) was almost identical in chEVAR-40 and pEVAR-40 (2.38 m/s and
2.35 m/s) and 12% lower in fEVAR-40, as shown in Figure 2.7. Flow
recirculation was found in the aortic segment distal to the fenestrated stent
graft and at the proximal intrarenal part of the fenestrated stent graft, as well
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as at the entrance of the periscope stent graft, as can be seen in Figures 2.3
and 2.4.

Figure 2.5. TAWSS in the renal arteries of the idealized models
(solid lines) without renal stenosis (A), with 40% diameter renal

stenosis (B) and with 70% diameter renal stenosis at peak systole

2.3.2.2. Pressure
As Figure 2.8 shows, the pressure variations (SP, PP, DP, MP) at the renal

and iliac outlets were identical to the baseline models (without stenosis).
Aortic inlet SP and PP were higher in fEVAR compared to chEVAR and
pEVAR, respectively. MP was almost identical in all cases, around
93.3 mm Hg. SP at renal arteries were higher in fEVAR compared to
chEVAR and pEVAR. PP in renal arteries were around 30% higher in fEVAR
compared to chEVAR and pEVAR, respectively. DP ranged between 71 and
74 mm Hg. MP ranged between 89 and 92 mm Hg. Pre- and poststenosis SP
and PP were higher in fEVAR-40 compared to chEVAR and pEVAR. The MP
drop in renal stenosis was identical in all 40% stenosed models, that is, 2%.
The SP drop in renal stenosis was 6% in fEVAR-40 and 10% in chEVAR and
pEVAR. The PP drop in renal stenosis was 11% in fEVAR-40 and 21% in
chEVAR and pEVAR. Pre- and post-renal stenosis DPs were similar in all
models.
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Figure 2.6. PAS in the renal arteries of the idealized models
(solid lines) without renal stenosis (A), with 40% diameter renal

stenosis (B) and with 70% diameter renal stenosis at peak systole

2.3.2.3. WSS and PAS in renal arteries

As presented in Figure 2.5, TAWSS was the lowest (< 0.4 Pa) in the
post-stenotic renal artery in all models. Low TAWSS values also occurred in
the cranial segment of the proximal intrarenal part of the fenestrated stent
graft, in the cranial segment of the proximal horizontal part of the chimney
and at the caudal segment of the proximal horizontal part of the periscope.
TAWSS was the highest (around 15 Pa) at the proximal part of the renal
stenosis in all models, followed by the proximal vertical part of pEVAR-40
(around 7 Pa). TAWSS was moderate (around 4 Pa) in the angulation of
pEVAR-40 and chEVAR-40. PAS is represented in Figure 2.6. At systolic
peak, the highest value for PAS, was found in chEVAR-40 and the lowest in
fEVAR-40. The highest PAS value in fEVAR-40 was 0.009 at the renal
stenosis. The highest value of PAS in chEVAR-40 was 0.032 and located
above the renal artery stenosis to the proximal part of the chimney stent graft.
The highest value of PAS in pEVAR-40 was 0.025 and was found from the
stenosis to the end of the renal artery. Compared to the baseline models, the



56 Biological Flow in Large Vessels

values of PAS in fEVAR-40 and pEVAR-40 remained relatively constant.
However, PAS in the chEVAR-40 increased nearly tenfold.

Figure 2.7. Flow waveforms and mean flow bar charts at aortic inlet (A), renal artery
outlet (B) and iliac artery outlet (C) of the 40% and 70% renal artery stenosed models
for the last cardiac cycle. The renal stenosis is surrounded by dashed lines in the model
on the left. The results of the 40% stenosed models and 70% stenosed models are
presented in two columns. The flow waveforms of the 40% stenosed fEVAR, chEVAR
and PEVAR are shown in the first column. The flow waveforms of the 70% stenosed
fEVAR, chEVAR and PEVAR are shown in the second column. Mean flow of the 40%
stenosed fEVAR (f-40), 40% stenosed chEVAR (ch-40), 40% stenosed pEVAR (p-40),
70% stenosed fEVAR (f-70), 70% stenosed chEVAR (ch-70) and 70% stenosed pEVAR
(p-70) are shown in bar charts in the last column. We chose to present only the results
of the left renal artery and the left iliac artery as the model was symmetric and the
results of the contralateral side were the same

2.3.3. Model with 70% diameter stenosis

2.3.3.1. Flow and velocity
Qm in renal and iliac arteries was identical in all three cases. Renal artery

flow was 24% lower than in the non-stenosed models. As shown in
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Figure 2.7, peak velocity was similar (around 5 m/s) in all three models. Flow
recirculation was present at the proximal part of the fenestrated stent graft
and at the aortic segment located just below the fenestrated stent graft, as
well as at the entrance of the periscope stent graft, presented in Figures 2.3
and 2.4.

Figure 2.8. Pressure waveforms and mean pressure bar charts at aortic inlet (A),
pre-renal stenosis (B), post-renal stenosis (C), renal artery outlet (D) and iliac artery
outlet (E) of the 40% and 70% renal artery stenosed models. The renal stenosis is
surrounded by dashed lines in the model on the left. The results of the 40% stenosed
models and 70% stenosed models are presented in two columns. The pressure
waveforms of the 40% stenosed fEVAR, chEVAR and PEVAR are shown in the first
column. The pressure waveforms of the 70% stenosed fEVAR, chEVAR and PEVAR
are shown in the second column. Mean pressure of the 40% stenosed fEVAR (f-40),
40% stenosed chEVAR (ch-40), 40% stenosed pEVAR (p-40), 70% stenosed fEVAR
(f-70), 70% stenosed chEVAR (ch-70) and 70% stenosed pEVAR (p-70) are presented
in bar charts in the last column. We chose to report only the results of the left renal
artery and the left iliac artery as the model was symmetric and the results of the
contralateral side were the same
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2.3.3.2. Pressure

Aortic inflow pressure noticeably increased in all models (PP increases
relative to the non-stenosis models of 13%, 15% and 14% for fEVAR,
chEVAR and pEVAR, respectively) (Figure 2.8). This clearly indicates that
greater pressure is needed to drive the same amount of flow in the presence of
the hemodynamically significant renal stenoses. fEVAR SP at the renal
arteries was approximately 9% larger than chEVAR-70 and pEVAR-70.
Renal PP was around 44% higher in fEVAR-70 compared to chEVAR-70 and
pEVAR-70. Renal DP ranged between 63 and 66 mm Hg. Renal MP was
similar in all models, around 70 mm Hg. Pre- and post-renal stenosis SP and
PP were higher in fEVAR-70 compared to chEVAR and pEVAR. The
pressure drop in the renal stenosis was identical in all models: around 54%
for the SP, 15% for the DP, 31% for the MP and 86% for the PP.

2.3.3.3. TAWSS and PAS in renal arteries

As shown in Figure 2.5, TAWSS was highest (around 100 Pa) at the renal
stenosis in all models. TAWSS was the lowest (< 0.4 Pa) at the post-stenotic
renal artery in all models and at the cranial intrarenal segment of the
fenestrated stent graft as well as at the caudal intrarenal segment of the
horizontal part of the periscope. PAS is presented in Figure 2.6. Compared to
the baseline models, the values of PAS in the 70% stenosed models increased.
At systolic peak, the highest value for PAS was found in pEVAR-70. The
highest value for PAS in pEVAR-70 was 0.078 located above the stenosis
(angulation and proximal vertical part of the periscope stent graft). The
highest PAS value in chEVAR-70 was 0.034 located from the proximal part
of the stenosis to the angulation of the chimney stent graft. The highest PAS
in fEVAR-70 was 0.052 located between the stenosis and the end of the renal
artery.

2.4. Discussion

The use of complex EVAR has increased in recent years. As fenestrated,
chimney and periscope stent grafts protrude into the aortic lumen, these
complex endovascular repairs could potentially interfere with the renal blood
flow. One of the most serious complications is intimal hyperplasia,
responsible for narrowing and occlusion of the target vessel, that can lead to
organ ischemia. Platelet activation is one of the mechanisms involved in this
phenomenon. High shear stress can stimulate platelet activation, aggregation
and lytic process, whereas low shear stress leads to endothelium damage,
atherosclerosis and intimal hyperplasia (Massai et al. 2012). Understanding
the hemodynamic impact of fEVAR, ChEVAR and pEVAR configurations on
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renal arteries, as well as the impact of renal stenosis could help physicians to
choose the best endovascular option for each patient. Only a few studies in
the literature have analyzed renal artery flow and pressure patterns following
complex endovascular interventions. A close computational study published
by Kandail et al. (2015) compared blood flow in chEVAR, pEVAR and
fEVAR. The originality of our approach compared to this previous study is
the introduction of a renal artery stenosis in these endovascular repairs of
complex aortic aneurysms, and the comparison of the pressure, flow, TAWSS
and PAS between the models. No studies have analyzed the hemodynamic
impact of renal artery stenosis in idealized models of complex aortic
aneurysm endovascular repairs. Abnormal flow and shear stress are involved
in the occurrence of intimal hyperplasia. Following stent implantation, the
stented segment of the artery can be stenosed by four key processes:
thrombus formation, arterial inflammation, neointimal hyperplasia and
remodeling. Neointimal hyperplasia appears within weeks of stent
implantation followed by remodeling. Smooth muscle cells that normally sit
in the middle layer of the artery migrate inwards toward the stent where they
proliferate and form the bulk of the new tissue that narrows the artery. The
migration and proliferation of smooth muscle cells is triggered by various
chemical signals such as injured endothelial cells and dysfunctional
endothelial cells, which activate platelets at the site of arterial injury.
Abnormal hemodynamics near the stent result in altered stresses on the
endothelial cells and potential mechanical activation of platelets. Then
collagen deposits in the outer layer of the artery lead to arterial stiffening.
This process increases the pressure on the stent and can squeeze the arterial
wall between inter-strut spaces (Murphy and Boyle 2010). Stent implantation
under low flow is associated with increased neointima formation (Richter
et al. 1999). Tissue growth in a stented artery is prominent at the site of low
WSS (< 0.5 Pa) (LaDisa Jr. et al. 2005).

2.4.1. Velocity and flow

Total renal blood flow usually accounts for 15–20% of the cardiac output
under normal resting conditions (Williams and Leggett 1989, Moore Jr. and
Ku 1994). Our total renal blood flow was physiologic as it represented 15%
of the cardiac output (Weinstein and Anderson 2010). The stenosed
geometries (both 40% and 70%) showed no noticeable differences in renal
flow between the different renal stent designs. Šutalo et al. (2008) observed
negligible differences in the outflow rates to a branch vessel in antegrade and
retrograde directions for 40 mm-long conduits in their experimental study.
For the baseline (without stenosis) geometry, the chEVAR design resulted in
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the largest peak velocity in renal arteries. This result is in agreement with
Kandail et al. (2015) in their computational study. The larger the renal artery
stenosis, the lesser the flow recirculation in the aortic segment located just
below the fenestrated stent graft and at the entrance of the periscope stent
graft. No vortical structures were observed in the set of chEVAR models.
However, they were observed in all fEVAR and pEVAR models.

2.4.2. Pressure

The fEVAR design resulted in the largest pulse and systolic pressure for
all idealized anatomical models. This finding suggests that this design
induces the largest viscous losses in the abdominal region. Under the
assumption that the aortic flow is maintained, higher viscous losses result in
the greatest pressure seen in the fEVAR design. The renal artery stenosis
impacted the hemodynamics in all models. In clinical practice, renal artery
stenosis has a hemodynamic impact when it reaches 50% of the diameter and
it has a clinical impact when it reaches 70% of the diameter (Lao et al. 2011,
Li et al. 2008). In the 40% stenosis models, negligible pressure variations
were found before and after stenosis. However, in the 70% renal stenosis
models, significant pressure drops were observed, confirming the significant
hemodynamic impact of a 70% stenosis in the renal artery. At the aortic inlet,
systolic, mean and pulse pressure was higher in fEVAR, regardless of the
degree of stenosis. Pre- and post-stenosis renal artery pressure was also
higher in fEVAR irrespective of the extent of the stenosis. This could be
related to the increase in resistance in the fenestrated renal artery as the flow
makes a 90◦ angulation before entering into the fenestrated renal stent that
protrudes into the aortic lumen. Pulse pressure was reported as this parameter
has an important role in remodeling, wall thickening and stiffening (Eberth
et al. 2009). FEVAR had the highest PP whatever the degree of stenosis,
meaning that it presents the highest risk of remodeling and wall thickening
for the renal artery.

2.4.3. TAWSS

Low WSS values correlate with intimal hyperplasia and in-stent stenosis,
whereas high WSS values correlate with endothelial damage. Low shear
stress was found below and above the 40% and the 70% stenosis. Moderate
TAWSS values were found in the following regions: proximal end of the
fenestrated renal stent graft, angulation of the renal chimney stent graft,
vertical ascending part and angulation of the renal periscope stent graft.
These results corroborate the study of Suess et al. (2016). Low TAWSS was
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found at the intra-renal proximal cranial segment of the fenestrated stent
graft. Its configuration at the aortic inlet requires a 90◦ change in direction of
the flow momentum, which results in separation of the flow and vortices.
Recirculation and downstream flow were observed in the cranial extent of the
proximal part of the renal stent, and this can lead to the development of
intimal hyperplasia. However, the artery is not exposed to this phenomenon
as the stent graft is usually covered, hence protecting the artery (Suess et al.
2016). In terms of flow recirculation, it seems to be more important during
peak respiratory motion, which can reach 3 mm displacement at the proximal
and distal ends of the renal artery. However, in fEVAR, the motion of the
proximal and distal ends of the renal artery are reduced by 25% and 80%,
respectively (Muhs et al. 2008). The fixation of the proximal part of the stent
graft in the main body allows motion of the distal part of the stent graft,
which can lead to intimal hyperplasia (Suess et al. 2016). Chimneys are
usually further extended in the renal artery than they are in fEVAR, where the
renal artery can move to a larger extent (Ullery et al. 2016), and this can
again lead to an increased risk of intimal hyperplasia. In chEVAR, the
antegrade part of the stent decreases flow disturbance. In the angulation, the
changes in direction lead to oscillations and high WSS. The same trend as in
fEVAR was observed in the cranial extent of the proximal entrance of the
chimney in the renal artery. The periscope has a retrograde configuration with
a takeoff angle that makes 180◦ to reach the lateral part of the periscope. The
flow is dramatically disturbed at the proximal end of the periscope with
oscillating flow and high WSS, which can lead to endothelial damage and
thrombosis. At the angulation of the periscope, the trend was the same as in
chEVAR but with less flow disturbance and moderate TAWSS. The TAWSS
was low in the caudal extent of the proximal entrance of the periscope in the
renal artery. The largest vortical structures were found at the cranial segment
of the proximal part of the fenestrated stent graft and in the part of the main
stent graft that was located below the renal fenestrated stent graft, where
TAWSS was < 0.4.

2.4.4. PAS

Thrombus formation was not simulated directly in this study, but PAS was
used to identify regions with a high risk of thrombosis. These metrics were
used to quantify the history of shear experienced by massless particles
moving through the vasculature. This tool can be used to compare the
performance of different endograft designs on a patient-specific basis (Massai
et al. 2012). The impact of the renal stenosis was more significant in fEVAR
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with a higher increase in PAS between the non-stented and the 70% diameter
renal stenosis at systolic peak. In the 70% stenosed models, platelets were
exposed to high shear stress for a short time due to the flow acceleration in
the stenosis. Platelets were activated most quickly in fEVAR, followed by
pEVAR and chEVAR. In the 40% renal stenosis models, platelets were
activated more quickly in the proximal part of chEVAR and in the distal part
of the renal artery in pEVAR. In the models without stenosis, platelets were
activated more in the renal artery and in the part below the angulation of the
periscope stentgraft. Platelets were less activated in chEVAR. Platelets were
activated above both stenoses in chEVAR, and 70% stenosis in pEVAR. The
physiological range of wall shear stress varies from 0.1 to 6 Pa, higher values
activating platelets. Potential change from low to high shear induces platelet
activation and thrombus formation (Holme et al. 1997), which explains the
increased platelet activation in the stenosis. The chEVAR configurations
revealed a smoother shear stress distribution along the renal branches, which
predispose it to less material fatigue or a lower trend for renal events in the
long term. In practice, chimneys have less acute angulations compared to
fEVAR bridging stents (Georgakarakos et al. 2015). The effect of the stenosis
on pressure and velocity was more significant in fEVAR, followed by pEVAR
with highest PAS at systolic peak value in the non-stenosed and 70%
stenosed models. fEVAR seems to be more sensitive to the occurrence and
narrowing of a renal stenosis. In the non-stenosed models, chEVAR had the
lowest value of PAS, followed by pEVAR and fEVAR. In the 40% stenosed
models, fEVAR-40 had the lowest value of PAS, followed by chEVAR-40
and pEVAR-40. In the 70% stenosed models, chEVAR-70 had the lowest
value of PAS followed by fEVAR-70 and pEVAR-70.

2.4.5. Limitations

Several assumptions were made in this study. The walls were assumed
rigid. However, the material of the stent grafts has low compliance. The
results of CFD-simulations can be highly coupled to boundary conditions
used in the computed analysis. Only one geometry of fEVAR, chEVAR and
pEVAR was analyzed in our study. Many geometries need to be analyzed in
further studies. Georgakarakos et al. (2015) showed that the lowest value of
WSS was found at 90◦, whereas the highest was at 45◦. Geometry was
idealized in our analysis. Further study will be achieved on patient-specific
models (specific anatomy and specific physiology). The study was focused on
WSS and PAS but other criteria, including material fatigue, could be relevant
in order to predict risks such as intimal hyperplasia or thrombosis. All models
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represented an idealized geometry and made it possible to run sensitivity
analyses without effects of interindividual variations of anatomy. All
geometric models, in addition to being idealized, also neglected aortic
curvature. Stented abdominal aneurysms typically have tortuosity in the
coronal and sagittal directions, which can significantly affect the
hemodynamics (Figueroa et al. 2009). Finally, the effect of renal
autoregulation in response to alterations in flow was not included. With the
modeling approach presented here, the Windkessel parameters were kept
constant for all geometric models. Fundamentally, this means that the distal
resistance of the renal vascular bed was assumed to not respond to a reduced
flow situation such as that observed in the 70% renal stenosis geometry. In
reality, alterations in renal flow and pressure would trigger the
renin–angiotensin–aldosterone response (Textor and Lerman 2015).
However, a given renal artery stenosis can generate widely variable
hemodynamic effects in different patients. Mounier-Vehier et al. (2004)
observed a significant increase in renal blood flow after angioplasty of renal
artery stenosis in hypertensive patients, meaning renal artery stenosis
decreased renal blood flow in these symptomatic patients.

2.5. Conclusion

Computational fluid dynamics is a powerful tool that enabled us to
systematically compare the hemodynamic patterns obtained after different
types of complex EVAR procedures and for different degrees of possible
renal stenosis. Hemodynamic alterations appear to be more significant in
fEVAR in the presence of renal stenosis. The fEVAR model appears to carry
a higher risk of thrombosis. The chEVAR and pEVAR appear to induce fewer
hemodynamic alterations but carry a higher risk of thrombosis in the
presence of a renal stenosis. However, our findings in idealized models must
be validated in anatomical models. Further studies with patient-specific
analyses need to be performed as it is now evident that complex EVAR has a
major hemodynamical impact which needs to be considered in the treatment
of complex abdominal aortic aneurysms.
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3.1. Introduction 

Vascular pathologies are numerous and varied, and their genesis and 
development are multifactorial. Nevertheless, it is now known that the 
characterization and analysis of the fluid dynamics and structures involved 
in the functioning of certain segments of the vascular system allow their 
dysfunction to be better understood, and allow correlations to be established 
between these dynamics and the genesis and development of vascular 
pathologies.  

The purpose of this chapter is to describe flow behaviors in certain 
geometric singularities of the cardiovascular system, whether they are native 
or pathological, and to correlate their dynamics with the evolution of 
cardiovascular pathologies. These correlations can be made using 
associations between the spatiotemporal distributions of certain 
hemodynamic markers/indexes and in vivo observation of deleterious 
clinical events. Certain in silico and in vitro works conducted within the 
IRPHE Biomechanics team, mostly over the period of the “Biomechanics of 
fluids and transfers, biological structure-fluid interaction” and “MEChAnics 
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of BIOlogical materials and fluids” research groups, will notably serve to 
illustrate the remarks, which will not necessarily be exhaustive. 

3.2. General characteristics of blood flows at the macroscopic 
scale 

Biomechanical models of blood flows in the cardiovascular system at the 
macroscopic scale form part of a complex geometric, hydrodynamic and 
mechanical environment. As the heart delivers a pulsatile flow, blood flows 
are inherently unsteady. These flows occur in three-dimensional, evolving 
geometries, a specific patient with many singularities. The behavior of 
blood, which is closely linked to that of red blood cells, may exhibit a 
Newtonian, shear-thinning, viscoelastic or even thixotropic nature, 
depending on the vascular segment. Arterial walls, which are heterogeneous 
living media, have a visco-hyperelastic anisotropic mechanical behavior. 
The pulsatile character of flow and the viscoelastic nature of the walls lead 
to the propagation of pressure and velocity waves along the arterial system. 
In addition, the presence of geometric singularities induces wave reflections 
and thus contributes to altering the shape of the waves (pressure and 
velocity) along the cardiovascular system. It should be noted that these 
alterations are also due to the dispersive nature of the wall and the nonlinear 
effects of the pressure/diameter relationship of the artery and the fluid. At 
the same time, given their spatial proximity, these geometric singularities 
also result in it being impossible to obtain fully developed flows. 

If we consider circulation models with distributed parameters (as opposed 
to global parameters), the location of the vascular segment to be modeled 
within the cardiovascular system will therefore play a significant role. As the 
acceleration and deceleration ramps and the maximum and minimum values 
of the pressure and velocity waves vary from one site to another in the 
cardiovascular system, the spatiotemporal shapes of the velocity profiles 
associated with different areas of the arterial tree cannot be considered to be 
identical. Furthermore, any dysfunction will also result in an alteration of 
these spatiotemporal shapes. 

In macro-circulation two dimensionless numbers, the Reynolds number, 
Re, and the frequency parameter, α, or Womersley number, ϑ = α2, allow 
the classification of blood flow regimes.  
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During systolic acceleration, the maximum value of the Reynolds 
number1, 𝑅𝑒 = ௎ௗఔ , can reach 5,000 at the outlet of the left ventricle and flow 
can remain laminar. By contrast, at the beginning of deceleration, certain 
authors (McDonald 1952, for example) agree that for a critical Reynolds 
number value and particular values of the frequency parameter, disturbances 
appear, leading to a transition to turbulence.  

The frequency parameter, which characterizes flow unsteadiness, is 

defined as 𝛼 = 𝑎ටఠఔ , where a is the radius of the artery and 𝜔 = ଶగ் 

represents the pulsation. T is generally considered to be the cardiac cycle 
period. In practice, however, the definition of laws for the transition to 
turbulence, as well as analysis of evolution mechanisms for secondary 
structures that exist in certain geometric singularities of the cardiovascular 
system, in fact involves characteristic times that are related to systolic 
acceleration or deceleration times. It should be noted, for example, that the 
appearance of turbulence during the deceleration phase and the ensuing 
relaminarization are strongly dependent on the deceleration ramps. A longer 
deceleration time allows instabilities created at the wall to propagate toward 
the tube axis, whereas a shorter time results in a faster relaminarization.  

The Womersley number can also be written as the ratio of characteristic 

times. Thus, 𝜗 = 𝛼ଶ = ௔మ ఔൗଵ ఠൗ  represents the viscous diffusion time over the 
period of motion. If, as a first approach, we consider that blood viscosity and 
the cardiac period remain constant throughout the cardiovascular system, 
then only the radius of the artery of the site concerned influences this 
parameter. Therefore, for arteries with large diameters, of the order of 1 cm, 
the frequency parameter will be higher than for arteries with smaller 
dimensions and the viscous diffusion time will be large relative to the period 
of motion. The boundary layer will be confined to the wall and the velocity 
profiles will have a somewhat plateau shape, regardless of the effects of 
inlet, setting in motion or the appearance of a turbulent regime. In 
coronaries, which are arteries with smaller diameters, ~3 mm, the frequency 
parameter value will be lower, the viscous diffusion time will be low 
compared to the period of motion, the boundary layer will develop faster and 
thus the velocity profiles will have a more parabolic shape.  

                                       
1 ρ density of blood, ν its kinematic viscosity, U its average velocity, and d the artery 
diameter. 
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This analysis is supported by a dimensional study of the thickness of the 

Stokes layer, 𝛿௦ = ቀఔఠቁଵ/ଶ = ௔ఈ. The thickness of the boundary layer is all the 
thinner (or more developed, respectively), the larger the frequency parameter 
is (or smaller, respectively). 

Table 3.1 gives several mean values of Re and α encountered in different 
segments of the arterial tree, considering a constant dynamic viscosity value 
equal to 3.6 × 10–3 Pa·s, the density of blood, ρ = 1,060 kg/m3, and the 
cardiac period, T = 0.8 s. 

 Diameter Reave α 
Ascending thoracic aorta ~25 mm 1472.2 19 

Abdominal aorta ~18 mm 1,060 13.6 
Right coronary artery (RCA) ~3.7 mm 261.4 2.8 

Table 3.1. Several characteristic values of the Reynolds  
number and frequency parameter in macrocirculation  

The Dean and Strouhal numbers are also used in the characterization of 
secondary vortical structures (VSs) that appear downstream of geometric 
singularities, whether native or pathological. Dean (1928) was one of the 
first to describe the counter-rotating helical structures existing in the aortic 
arch. The Dean number, defined as 𝐷𝑒 = 𝑅𝑒 √𝐻, allows consideration of the 
aspect ratio, H, between the radius of the artery, a, and its radius of 
curvature, R, 𝐻 = ௔ோ.	It measures the ratio of the centrifugal inertial forces to 
the viscous forces. Within the context of biofluid mechanics, the Strouhal 
number, 𝑆௧ = ௙஽ೝ௎ , is also used to quantify the frequency, f, of the detachment 
of vortex rings downstream of the orifice, where Dr is the constriction 
diameter and U the upstream flow velocity. 

The general characteristics of blood flows have been presented 
succinctly. Nevertheless, these elements make it easier to address one of the 
main objectives of this chapter, focusing on the analysis of the relationships 
existing between the dynamics of blood flows in certain geometric 
singularities, the determination of hemodynamic markers associated with the 
behavior of these dynamics and the evolution of vascular pathologies. The  
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physical phenomena and subsequent behaviors of blood flows in the most 
common macroscopic singularities of the cardiovascular system are 
presented in the following section. The purpose is not to provide an 
exhaustive review but to describe the main physical phenomena. 

3.3. Several geometric singularities of the cardiovascular system 

The physiological singularities that will induce particularities in flow 
behavior are mainly those correlated with the existence of curvatures and 
bifurcations, that is, a change in flow direction. The valves also induce 
hemodynamic specificities linked to a significant dynamic variation in the 
diameter of the arterial lumen, from approximately 21–22 mm (Oh et al. 
1999) in systole to 0 mm in diastole through the valve leaflets. The most 
notable pathological particularities are correlated with cross-section 
enlargements and constrictions, which are found in many pathologies. The 
most evident are aneurysms and valve or artery stenoses, regardless of their 
locations. Other conditions, such as aortic dissection and aortic coarctation, 
also induce cross-section enlargements and constrictions. These 
particularities can be combined: notably, cross-section constriction followed 
by an enlargement or a curvature. We must note that vessel tortuosities, 
which may be physiological or pathological, are, quite simply, curvatures. 
Finally, prosthetic particularities also induce alterations in blood flow 
behavior. Examples include bypass surgery, stents, endoprostheses, 
mechanical or bioprosthetic valves. Only valve prostheses will be described 
in this chapter.  

3.3.1. Curvatures and bifurcations 

The characteristics of the aortic arch mean it is considered to be a duct of 
great curvature with an average curvature ratio, H, between ¼ and ½. In 
addition, there are many bifurcations in the vascular system, with these 
feeding adjacent organs. Starting from the aorta, for example: the 
brachiocephalic arterial trunk, the left primitive carotid and the left and right 
subclavians irrigate the head, neck and upper limbs, the renal arteries that 
bifurcate from the abdominal aorta vascularize the kidneys, the iliac 
bifurcation feeds the lower limbs, etc. 

Generically speaking, curved or bifurcated geometries induce a change in 
fluid direction, initially straight, giving rise to a centrifugal force directed 
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from the inner wall of the curved duct (or outer of the daughter branch of the 
bifurcation) to the outer wall. In addition to the viscosity forces, the fluid 
motion is then governed by the relationship between the centrifugal forces 
and the transverse pressure gradient, which is in the opposite direction. 
Flows in bent or bifurcated geometries were extensively studied by Pedley 
(1980). 

To describe the characteristics of this flow type in the center plane of 
symmetry (r,θ) (Figure 3.1(a)) as simply as possible, let us assume that at 
inlet there is a plateau-type velocity profile with a thin wall boundary layer 
corresponding to a high frequency-parameter value. Such a scenario is quite 
likely in the aortic arch as in the parent branch of the iliac bifurcation, that is, 
the abdominal aorta. In this case, for most of the tube the flow can be 
considered as inviscid; the pressure increases upon moving away from  
the center of curvature and by applying Bernoulli, in the center plane,  
the maximum axial velocity is initially located toward the inner wall of the 
curved duct. Then downstream, with the development of the boundary layer 
toward the center of the curved duct, this maximum velocity is offset toward 
the outer wall; in the boundary layer the centrifugal force induces a motion 
of fluid directed toward the outer wall. Boundary layers play an important 
role in the development of three-dimensional effects.  

In the center plane, where the axial velocity amplitudes are highest, the 
centrifugal forces are predominant on the pressure gradient leading to a 
motion directed toward the outer wall of the tube. In the lower and upper 
planes, the decrease in velocity amplitude is accompanied by the domination 
of the transverse pressure gradient and the fluid motions directed toward the 
interior wall (Figure 3.1(b)). The composition of these opposing motions 
gives rise to a secondary flow in the form of two counter-rotating vortices, 
which develop in planes perpendicular to the axial flow and propagate 
helically.  

It seems important to describe some characteristics associated with 
bifurcations that depend on geometric factors such as the bifurcation angle, 
β, or the ratio, Rs, between the daughter branch diameter, Dd, and the radius 
of the parent branch, ap as well as the flow regime. In general, recirculating 
regions appear along the outer walls if the ratio, Rs, is greater than 1. The 
extent of the recirculating regions is accentuated with the increase in the Re 
number, but also with the bifurcation angle.  
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Figure 3.1. Representative diagram of a) main and b) secondary flows in a 
singularity with change of direction. Steady flow. Adapted from Fung (1996).  
For a color version of this figure, see www.iste.co.uk/deplano/biological.zip 

All of these characteristics evolve during the cardiac cycle. The dynamic 
evolution of counter-rotating vortices may, for example, be described in 
different cross-sections, θ, perpendicular to the main flow as a function of 
the instant considered in the cardiac cycle. It is dependent on the inlet 
velocity conditions as well as the De and α numbers. Thus, in parallel with 
the description of these structures with two counter-rotating vortices, works 
conducted in the 1980s (Masliyah 1980; Dennis and Ng 1982; Cheng and 
Mok 1986) show that, based on a critical value of the Dean number of the 
order of 950, a dual solution exists, consisting of four counter-rotating 
vortices. The existence of secondary flows with two additional vortices, 
stable or unstable, appears to be due to centrifugal instabilities.  

The works, in vitro and in silico, carried out by Boiron et al. (2007) in a 
bent tube by considering physiological flows, make it possible to illustrate 
the evolution of secondary structures in an idealized aortic arch model. 

For small values of the Dean number, De = 114, and the frequency 
parameter, α = 8.14 (Figure 3.2), during systolic acceleration, we observe 
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the development of two circumferential motions along the side walls. These 
motions, which remain confined in the viscous layer, are directed from the 
outer wall to the inner wall. Given the low value of α, the viscous diffusion 
time is low relative to the period of motion, which induces a viscous layer 
thickness of the order of one-third of the radius at θ = 156°. At maximum 
flow (t = 0.528 s), these motions impact at the inner wall and give rise to two 
counter-rotating vortices that move from the inner wall to the outer wall. The 
development of these vortices may be likened to a “mushroom” shape. At 
the start of systolic deceleration, t = 0.79 s, these vortices extend radially to 
occupy almost the entire cross-section. Their intensities then decrease. 

 

Figure 3.2. Time evolution of velocity vectors in the  
planes θ = 60°, θ = 120°, θ = 156°, De = 114, α = 8.14  

For the same frequency parameter value, α = 8.14, but for a higher value 
of the Dean number, De = 210 (Figure 3.3), the intensity of the  
counter-rotating vortices is greater but they remain confined to the upper part 
of the cross-section throughout the acceleration phase, t < 0.565 s. When the 
flow decelerates, 0.79 s < t < 1.24 s, the vortices extend toward the outer 

t=1.402 st=0.528 s t=0.79 s t=1.22 s

θ=60° 

θ=120° 

θ=156° 
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wall. For θ < 120°, due to the presence of a radial pressure gradient near the 
axis of symmetry, they are pushed toward the side walls. These structures, 
which can be likened to “bean” shapes, belong, according to the Sudo 
classification (Sudo et al. 1992), to structures called deformed Dean 
circulation. For θ = 156°, two additional counter-rotating vortices, rotating in 
the opposite direction to the first two, are worth noting. They are associated 
with structures, which are called intermediate circulation between Dean and 
Lyne (Lyne 1971). 

 

Figure 3.3. Time evolution of the velocity vectors in  
the planes θ = 60°, θ = 120°, θ = 156°, De = 210, α = 8.14  

These results obtained in silico have been confirmed by in vitro 
measurements and visualizations (Boiron et al. 2007). The complexity of the 
spatiotemporal dynamics of these secondary structures according to 
hydrodynamic conditions offers an indication of the importance for patients 
of biomechanical models that closely resemble reality. 

t=0.79 s t=1.24 s t=1.578 s

θ=60° 

θ=120° 

θ=156° 

t=0.56 s 
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3.3.2. Cross-section constriction 

The flow in a cross-section constriction, representative of arterial 
stenosis, for example, is equivalent to the flow in a convergent followed by a 
divergent. Its description in the center plane (Figure 3.4) is facilitated with 
the use of the rotational transport equation, Ω(𝑋, 𝑡).  ∂∂t (Ω) + (V. ∇)Ω = (Ω. ∇)V + υ Δ(Ω) 

Upstream of the convergent, flow is irrotational. When the fluid arrives in 
the convergent, it undergoes continuous acceleration and subsequently, 
rotational convection takes place toward the low-velocity zones. The 
convection terms of the rotational equation are opposed to the diffusion 
terms and reduce the viscous layer to an increasingly small thickness along 
the convergent. This phenomenon is accentuated by the extension term of 
the vortex lines, which is directed toward the wall. The velocity profiles then 
show a central plateau whose width increases upon moving toward the 
convergent throat. At the throat, the area of the minimum cross-section, the 
flow has the characteristics of a wall boundary layer, which will be thinner, 
the higher the Reynolds number.  

In the convergent, we can observe a cone of potential fluid whose base 
lies in the vicinity of the throat.  

In the divergent, the convection of the rotational, which takes place 
toward the center of the tube, will add to its diffusion from the wall and to 
the extension of the vortex lines, which is directed toward the axis. In the 
case of the free jet, there is therefore a rotational supplement, which 
penetrates the potential core and reduces its length. In combination with the 
decrease in mean velocity, the fluid is subjected to an increase in pressure, 
which induces a detachment of the boundary layer and the creation of 
recirculating regions at near-wall negative velocities. The position of the 
reattachment point, downstream of the neck, is a function of the Reynolds 
number. 

The boundary layer is transformed into a free shear layer that separates 
the potential core from the region with negative velocities near the walls. It 
is limited downstream of the neck by the reattachment point, which is not  
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fixed and oscillates constantly over time. The shear layer transforms into a 
boundary layer again by reattachment to the wall. 

Three main regions can thus be differentiated by moving upstream and 
downstream: the recirculating region, the reattachment area and the recovery 
area. It is important to note the sensitivity of post-stenotic flows, via the 
shear layer, to very small disturbances that can generate convective-type 
instabilities that “self-maintain” through the recirculating regions, as well as 
the amplifying nature of instabilities of stenosis. 

 

Figure 3.4. Diagram of the main flows in the center plane of a  
stenosis. S, detachment point of the boundary layer;  
R, reattachment point. Adapted from Siouffi (1988) 

The Re and α values, the spatiotemporal form of the inlet flow rate and 
the form and degree of severity of stenosis, have an influence on the 
dynamics of post-stenotic flows. The characterization of the lesion influence 
lengths and the temporal and spatial evolutions of vortex shedding in the 
recirculating regions, reattachment points and detachment can be described 
using the rotational transport equation in a dimensionless form 

αଶ ∂∂t (Ω∗) + 2𝑅𝑒୫ୟ୶(V. ∇)Ω∗ = 2𝑅𝑒୫ୟ୶(Ω∗. ∇)V + υ Δ(Ω∗) 
The extension term of the vortex lines (Ω∗. ∇)V, as well as the term 

relating to the convection of the rotational (V. ∇)Ω∗, increase with the value  
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of Remax. Thus, the longitudinal dimension of the recirculating region 
increases as the maximum Reynolds value increases. The propagation of the 
recirculating region is then facilitated by an increase in Remax. If we also 
consider the rotational transport time, the longitudinal and radial amplitude 
of the recirculating region will be greater at the beginning of deceleration. 
The studies of Siouffi et al. (1998), carried out by modifying the value of the 
frequency parameter, however, show that increasing this value leads to a 
reduction in the recirculating region. 

During the flow deceleration phase, the shear layer bordering the 
potential core will roll up to form a vortex ring downstream of the stenosis 
neck. The formation and evolution of this ring will be described in 
section 3.3.3, devoted to cross-section enlargements. The works of Kim  
et al. (2016) enable it to be viewed by MRI, for example. The studies of Zhu 
et al. (2018), meanwhile, demonstrate the complexities of the flows resulting 
from the serial combination of a stenosis followed by a curvature. 

3.3.3. Cross-section enlargement 

The flow in a cross-section enlargement is representative of that 
occurring in fusiform aneurysms, for example. It has characteristics in 
common with post-stenotic flow, notably with regard to the creation of a jet 
and the appearance of VSs in the form of a vortex ring downstream of the 
neck. However, the pre-constriction convergent effects are not present and 
the effects of the divergent are more pronounced. 

As with other singularities, the flow dynamics in cross-section 
enlargements will depend on the Re number, the frequency parameter, α, but 
also on the geometric characteristics of the enlargement, such as its 
dilatation, length, asymmetry and aspect ratio. Nevertheless, a general 
description can be given. 

The cross-section enlargement associated with the flow acceleration 
phase leads to an irrotational jet flow that enters the divergent. During this 
phase, the flow remains attached to the wall. At the beginning of 
deceleration, the velocity discontinuity at the edge of the jet generates an 
unstable Kelvin–Helmholtz-type shear layer that rolls into a vortex, which 
detaches at the neck of the divergent and propagates downstream. During the 
deceleration phase, recirculating regions appear in the zones furthest from 
the jet axis. The propagation of the ring may, depending on the 
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hydrodynamic, geometric and rheological conditions, result in an impact of 
the structure at the wall in the distal region with the appearance of a 
stagnation point, but also in a near-wall dislocation. It is also important to 
note that several rings can coexist during a cardiac cycle, depending on the 
propagation time of the structures. 

 

Figure 3.5. 3D temporal evolution of the vortex ring (in gray) overlaid on vorticity 
maps in the center plane. Adapted from Deplano et al. (2016). For a color  

version of this figure, see www.iste.co.uk/deplano/biological.zip 

The in vitro works of Deplano et al. (2007, 2014, 2016) notably enable 
the dynamics and propagation of this ring to be quantified by performing 
velocity measurements using stereo-PIV in a deformable asymmetric 
aneurysm model for physiological 3D flows and a fluid with shear-thinning 
behavior. The dynamics of VSs are described and quantified using the 
criterion λci from the works of Zhou et al. (1999), which allows structures 
with local rotation to be extracted from vorticity maps. Figure 3.5 shows the  
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propagation of vortex rings, identified by 3D isocontours of λci overlaid on 
the vorticity maps in the center plane. These VSs may be involved in the 
formation of thrombus in the aneurysm sac according to mechanisms, 
notably associated with the transport of platelet elements (see  
section 3.5.2.3). 

3.3.4. Valves 

The aortic valve is the first singularity encountered by the flow in the 
systemic vascular system. It is located at the aortic root, between the left 
ventricle and the aorta. This valve is generally composed of three flexible, 
deformable leaflets (tricuspid valve) but may sometimes have only two 
leaflets (bicuspid) or even just one (unicuspid) in rare cases (Novaro et al. 
2003). Behind each of these leaflets, an anatomical bulge, the Valsalva sinus, 
is present, ending the junction with the aorta. The diameter of the sinotubular 
junction, downstream of the aortic root, is slightly larger than that of the 
valve orifice.  

The two main characteristics of aortic trans-valvular flows are the 
formation of a jet through the valve orifice and the presence of vortex 
structures in the sinuses. 

The left ventricular outflow tract ends with the valve orifice, thus creating 
a constriction. Moreover, the leaflets confine the trans-valvular flow, the 
streamlines are straight and parallel. Thus, during the systolic phase, a flow 
in the form of a jet is established through the valve. The opening surface of 
the valve is quasi-circular, which leads to the formation of a jet centered on 
the orifice with velocities of the order of 0.8–1.2 m/s. The flow in the 
ascending aorta is then preferentially aligned with the aortic walls. Generally 
referred to as symmetric, the jet may nevertheless impact the anterior distal 
wall of the ascending aorta, according to the latter’s curvature in relation to 
the valve orifice. The downstream cross-section enlargement of the aortic 
root associated with the curvature of the ascending aorta leads to the 
development of a secondary helical motion in the ascending aorta from the 
systolic peak (see section on curvatures and bifurcations) (Kilner et al. 1993; 
Morbiducci et al. 2011). This motion is visible during the entire deceleration 
phase. 
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In bicuspid cases, two of the three leaflets are fused together, creating an 
eccentric opening in the aortic root. The dynamics of the transvalvular jet 
then differ from that observed in the case of a healthy tricuspid valve. The jet 
is eccentric and asymmetric in the ascending aorta (Hope et al. 2011). 
According to the fused leaflets, the jet directly impacts the anterior wall of 
the proximal ascending aorta (in the case of a bicuspid with right and left 
leaflet fusion) or the posterior wall, before being deflected toward the 
anterior wall (in the case of a bicuspid with right, non-coronary leaflet 
fusion) (Rodriguez-Palomares et al. 2018). Successive deviations and 
impacts in the curved geometry of the ascending aorta lead to the appearance 
of a highly helical secondary flow, mainly in patients with a fusion of the 
right and non-coronary leaflet (Meierhofer et al. 2013; Mahadevia et al. 
2014). Given the geometric angulation of the aorta associated with helical 
motion, it has been possible to observe retrograde flows in some patients 
(Barker et al. 2010) during the systolic phase. 

In case of failure (a problem with closure-regurgitation or with optimal 
opening – stenosis – calcification, etc.), the aortic valve is replaced with a 
bioprosthesis or mechanical prosthesis. The design of mechanical valves 
differs from one prosthesis to another, thus resulting in the behaviors of 
prosthesis-dependent flows (Dasi et al. 2009), whose main characteristics are 
visible from the systolic peak. In the case of a monoleaflet valve, the orifice 
is divided into two geometrically asymmetric parts. The result is the 
formation of two jets of marked, very different amplitudes. The velocity 
profiles are eccentric in the proximal ascending aorta. In the case of a 
bileaflet valve, two lateral orifices and one central orifice lead to the 
formation of three separate jets, also making the flow non-axisymmetric 
(Figure 3.6). Due to the cross-section constrictions related to the valve 
design, the recorded velocities are generally higher. At about two diameters 
downstream of the prosthesis, the velocity profiles become more or less 
dampened (Yoganathan et al. 1986; Hasenkam et al. 1988). 

During systolic ejection, the free edge of the leaflets of the native or 
prosthetic aortic valve is not in contact with the wall, given the presence of 
the sinus behind each of the leaflets. The streamlines are parallel to the 
leaflets in the valve orifice. Upon reaching the free ends of the leaflets, the 
streamlines separate to enter the sinuses, resulting in the formation of a 
recirculating region from the start of the ejection. The vortex structure 
created is present until the start of diastole. With the closure of the leaflets,  
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each of the vortex structures gradually extends out of the sinuses, decreasing 
in intensity. Their presence ensures good cleaning and prevents the  
post-valvular stasis zones during diastole. 

3.4. Hemodynamic markers  

Quantified characterizations, in vitro or in silico, of the flow dynamics in 
geometric models that are close to vascular pathologies by deploying 
biomechanical models, taking into account the hydrodynamic conditions of 
patients, the blood shear-thinning behavior and the wall dilatation capabilities, 
allow the definition of hemodynamic indexes that are capable of providing 
relevant response elements in predicting the evolution of these pathologies. 
Among the most widely-used hemodynamic markers are those derived from 
the spatiotemporal quantification of wall shear stress and those related to the 
dynamics of secondary structures. The determination of spatiotemporal 
mapping of wall shear stress as well as secondary vortical and/or helical 
structures is notably related to velocity gradients and possible viscosity 
variations. These two quantities are associated with the geometric singularities 
that, as we have just shown, significantly influence flow dynamics. 

Thus, without quantifying a wall shear stress value, it is important to 
recall that for curvatures or bifurcations, the location of the maximum 
velocities, alternately on the inner and/or outer walls, will be associated with 
regions of high wall shear stress values, and the opposite outer and inner 
walls, respectively, at lower values; recirculating regions that exist 
downstream of cross-section constriction (stenosis, coarctation, false lumen 
of aortic dissection, etc.) but also possibly at the outer walls of bifurcation, 
as well as within cross-section enlargement (valsalva sinus, aneurysms, etc.) 
will lead to low, oscillating wall shear stress values; flow impact zones, such 
as the apex of a bifurcation or the anterior distal wall of the ascending aorta, 
will be the site of high wall shear stress values relative to the normal, as will 
arterial stenosis necks, aortic dissection entry tears or mechanical valve 
leaflets. VSs, meanwhile, which appear in many singularities, allow for the 
characterization of complex fluid transport. They will be able to interact with 
cellular/globular elements – transport them and shear them – and the 
vascular walls by, for example, impacting them.  
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3.4.1. Indexes derived from wall shear stress 

The indication that we can correlate wall shear stress values with the 
location of certain vascular pathologies dates back about 50 years. It was 
mainly dedicated to the analysis of zones prone to the development of 
atherosclerosis. Although the genesis and development of this pathology 
depend on many biological factors and involve different spatiotemporal 
scales, it was noted that there are preferred locations at sites of bifurcations, 
curvature and constrictions, beyond patient profile – excess lipids in blood 
(LDL-cholesterol), sedentariness, presence of free radicals due to tobacco, 
hypertension, diabetes, genetic alteration, stress, etc. As we have seen, these 
geometric singularities are prone to the appearance of zones of high 
velocities, recirculation, stases, stagnation points, reattachment points, and 
helical secondary structures, and these flow particularities induce 
specificities in wall shear stress behavior. 

This indication is currently reflected in the characterization of the 
spatiotemporal evolution of wall shear stress and its numerous derivative 
indexes, with associated events involved in a deleterious remodeling of the 
wall, as we will see in section 3.5.  

3.4.1.1. Definitions 

Let df be the elementary shear stress force, 𝜏 the viscous stress tensor and 
n the external normal to the surface element, ds, on which the elementary 
wall shear stress force is determined.  

df is defined as 𝐝𝐟 = τ𝐧ds  
Considering that fluid has a generalized Newtonian behavior, 𝜏 is written 

as:  𝜏 = 2μ(Jଶ)D with D the strain velocity tensor, D = ଵଶ (∇𝐕 + ∇𝐕୲) and J2 its 
second invariant. 

The wall shear stress vector thus defined will be noted WSS for the 
remainder of this chapter. It depends on t and the geometric coordinates in 
which the object of study is defined; WSS(X,t). It is, therefore, important to 
quantify its amplitude, direction, spatiotemporal evolution and its variations 
in relation to its average, its average direction and the associated spatial and 
temporal gradients. 
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The markers most commonly used in the literature to associate WSS with 
the location of deleterious clinical events, derived from the WSS 
quantification, are listed below.  

The time average of the WSS norm, TAWSS (Time Average Wall Shear 
Stress), is an index introduced by Ku et al. (1985). It is defined as:  TAWSS = 𝐖𝐒𝐒തതതതതത = ଵ୘ ∫ |𝐖𝐒𝐒|	dt୘଴ , with |WSS| the WSS norm. 

The oscillatory shear index (OSI) (Ku et al. 1985) represents the degree 
of deviation of wall shear stress from its mean direction. Its value varies 
between 0 when the WSS is unidirectional and 0.5 when the WSS is highly 
oscillating. This index is written as: 

OSI = ଵଶ ቆ1 − ቚ∫ 𝐖𝐒𝐒	ୢ୲౐బ ቚ∫ |𝐖𝐒𝐒|౐బ ୢ୲ ቇ  

The WSS spatial gradient, WSSG, is a concept introduced by Lei et al. 
(1996). Its components, WSSGij, are written as:  WSSG୧୨ = ப୛ୗୗ౟ப୶ౠ   

Relative residence time (RRT) is an index proposed by Himburg et al. 
(2004); it is proportional to the residence time of blood particles. It is 
defined as: RRT = (1 − 2OSI)TAWSS  

Some authors suggest combinations of these indexes. The following can 
be found, for example: 

The Holmes (High Oscillatory Low MagnitudE Shear) indicator, 
introduced by Alimohammadi et al. in 2016 (Alimohammadi et al. 2016), 
that identifies zones of low TAWSS and high OSI values. HOLMES =TAWSS(0.5 − OSI) 

The degree of deviation of the wall shear stress gradient (WSSG) from its 
mean direction, gradient oscillatory number (GON), is proposed by 

Shimogonya et al. (2009): GON = ଵଶ ቆ1 − ቚ∫ ୛ୗୗୋ	ୢ୲౐బ ቚ∫ |୛ୗୗୋ|౐బ ୢ୲ ቇ  
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The transWSS is presented by Peiffer et al. (2013a), who identifies the 
temporal variations of the components of the WSS perpendicular to the 
average principal direction.  

3.4.2. Indexes describing VSs  

The creation and evolution of secondary VSs can also play an important 
role in the functioning or dysfunction of the cardiovascular system. Their 
positive role can be found in the left ventricle, with their involvement in a 
washing function. Their deleterious effects are described in their 
participation in the formation of thrombotic material, but also in their 
involvement in various arterial dilatation processes. 

The quantification and identification of these coherent structures are 
derived from works stemming from fluid mechanics (Zhou et al. 1999; 
Chakraborty et al. 2005). Vorticity 𝛀 = rot	(𝐕)	alone will not suffice to 
extract them; indeed, in the near-wall, for example, there are high-vorticity 
zones due to shearing, associated with viscous dissipation and not with local 
rotation. 

Of the many techniques proposed, none achieve unanimity because they 
are based on velocity and pressure, which are global quantities. Those 
calculated from the eigenvalues of the velocity gradient tensor, ∇𝐕, are used 
in particular because the complex eigenvalues delimit zones where the 
streamlines are locally circular or spiral in shape (Chong et al. 1990). ∇𝐕 can be broken down into a symmetric part, D, the strain velocity 
tensor, and an antisymmetric part, Ω, the vorticity tensor (or rotation rate): ∇𝐕 = D + Ω. 

The characteristic equation of eigenvalues, λ, of ∇𝐕 is written as: 𝜆ଷ + 𝑃𝜆ଶ + 𝑄𝜆 + 𝑅 = 0 

For an incompressible flow, P = -divV, the first invariant ∇𝐕 is therefore 
zero. The second and third invariants, Q and R, are defined as: Q = ଵଶ (‖Ω‖ଶ − ‖D‖ଶ)	and	R = −det	(∇𝐕)  

Several criteria deriving from the characteristic equation are used in our 
scope. The criteria Δ, Q and λci are presented below. 
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The eigenvalues of ∇𝐕 are complex when Δ, the discriminant of the 
characteristic equation, is strictly positive. Thus, Δ > 0  constitutes the first 
criterion for extracting a vortex. 

When the second invariant, Q, is strictly positive, the vorticity 
(antisymmetric part of ∇𝐕) dominates the strain velocity tensor (symmetric 
part of ∇𝐕). Hunt et al. (1988) propose that the vortices then be identified by 
regions that fulfill the strictly positive Q-criterion.  

Introduced by Zhou et al. (1999), the criterion λci (swirling strength) is 
based on the criterion Δ. The eigenvectors associated with the complex 
eigenvalues of ∇𝐕 enable the plane in which the flow is locally swirling to 
be defined. The criterion λci then consists of determining the imaginary part 
of the complex eigenvalues that represents a local quantification of the 
vortex motion. 

These criteria, based on invariants, have the advantage of being objective 
quantities and are therefore frame-independent. Moreover, being based 
solely on the calculation of complex eigenvalues they thus eliminate 
vorticity regions without local rotation motion, such as shear zones.  

Some authors use the criterion λ2 (Biasetti et al. 2011; Ab Naim et al. 
2016). Based on the fact that the value of the pressure induced locally by the 
presence of a vortex is minimal, Jeong et al. (1995) propose evaluating the 
eigenvalues of the tensor Dଶ + Ωଶ. This tensor is derived from the gradient 
of the Navier–Stokes equation, broken down into symmetric and 
antisymmetric parts and overlooking the viscous and unsteady effects, which 
can suppress or generate minimum pressure values, respectively.  

Thus, under these hypotheses Dଶ + Ωଶ = − ଵ஡ ∇(𝛁𝐩). A local minimum 
pressure appears if Dଶ + Ωଶ has two negative eigenvalues. Since this tensor 
is symmetric, its eigenvalues are all real. By ordering λ1 > λ2 > λ3, the 
criterion becomes λ2 < 0 to have a local minimum pressure due to a vortex 
only. 

Other authors use Lagrangian techniques such as the “Finite-Time Lyapunov 
Exponent” (FTLE) to extract coherent structures (Shadden and Taylor 2008). 
The review by Haller (2015) details the latest developments. Arzani and 
Shadden (2012a), Arzani and Shadden (2012b) and Joly et al. (2018)  
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notably deploy them in the context of the study of aneurysms to describe 
flow topology. 

Finally, based on the quantification of velocity and vorticity fields and 
their scalar product, criteria such as the normalized helicity index (LNH) or 
the helicity flow index (HFI) (Grigoni et al. 2005; Morbiducci et al. 2009) 
have also been proposed to define the helical motions present in the vascular 
system. 

3.5. Correlation between hemodynamic markers and 
pathologies: some examples 

From the 1970s, different hypotheses were presented to correlate wall 
shear stress values with atherosclerosis. Fry (1968) claimed that high values 
could damage endothelial cells and subsequently lead to the stripping of the 
endothelium, which was thought to be the initiator of the pathology. 
Conversely, Caro et al. (1971) proposed a correlation between low wall 
shear stress values and pathology development by observation of preferred 
lesion locations.  

Fifty or so years later, the hypothesis of low values of wall shear stress 
prevails in the mechanisms of atherosclerosis development. This initial 
hypothesis suggested that low wall shear stress values could lead to 
prolonged residence times (RRTs) of LDL lipoproteins and/or monocytes 
and thus promote their local adhesion and infiltration into the arterial wall, 
characteristic of the pathology (Hermann et al. 1994). This increased 
permeability was seen as responsible for a cascade of deleterious events 
leading to a remodeling of the wall, such as intimal thickening. This 
reasoning was also extended to an effect on mass transfers resulting in the 
local accumulation of growth factors in the proximity of the intimal surface. 
However, these concepts consider rheological issues to be critical 
determinants and consider the arterial wall to be relatively passive. Another 
hypothesis, linking wall shear stress with atherosclerosis, emerged in the 
2000s in light of various works (Gimbrone 1998; Ross et al. 2004) on the 
active participation of arterial-wall cells in pathology processes.  

It is now clearly established that hemodynamic factors, in the form of 
mechanical stimuli of endothelial cells lining the intimal layer of the 
vascular wall, regulate many of the physiological responses of the healthy 
arterial wall and are also involved in the development of pathologies of the 
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arterial wall, such as atherosclerosis, intimal hyperplasia, dilatations and 
even ruptures. Endothelial cells are primary sensors of wall shear stress and 
function as sensors of mechanical loads in the wall’s biological responses 
(Tarbell et al. 2014). This concept of mechanotransducing endothelium 
indicates that any change in mechanical stimuli of the endothelial surface – 
values, orientations, variations, etc. – can cause dysfunction and hence 
initiate the different processes of development of pathologies in the vascular 
wall.  

In healthy humans, the instantaneous wall shear stress values can vary 
from 10 to 70 dyn/cm2 (1–7 Pa) in the straight arteries of the vascular system 
(Malek et al. 1999). Thus, the order of magnitude of the mean physiological 
values commonly found in the literature for straight arteries is  
15–20 dyn/cm2 (Malek et al. 1999). These values, called reference values, 
are classified as atheroprotective and/or conform with the wall stresses to 
which vascular endothelial cells may be subjected without expressing 
“corrective” responses to return to the reference value. 

Wall shear stress values, however, whether at reference values or above 
or below reference values, are subject to debate. At present, there is no 
sufficiently accurate in vivo methodology for measuring deformable-wall 
velocity gradients in the thickness of unsteady boundary layers. MRI 
measurements, for example, cannot be performed with a resolution finer than 
1.5 mm. Numerical simulations, meanwhile, which enable quantification of 
physical quantities as near as necessary to the wall, depend on the fluid 
models and structures used to reproduce the vascular segment under 
investigation, the geometries retained to represent those segments and the 
boundary conditions deployed. Finally, in vitro measurements can present 
the same disadvantages as in silico models, and near-wall quantifications are 
difficult to implement. 

Beyond the difficulty in establishing precise yield values above or below 
which deleterious processes are possible, the following sections take stock of 
the trends and controversies combining geometric singularities, low, high 
and very high values of wall shear stress and its derived indexes, their 
spatio-temporal variations and pathologies. The dynamics of VSs, 
representative of fluid transport, are also being investigated as a 
hemodynamic marker that can be associated with the development of 
vascular pathologies.  
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It is essential to underline that although in vitro and in silico models serve 
to establish and analyze hemodynamic indexes, the correlations between 
these markers and vascular pathologies can only be confirmed in fine 
through in vivo clinical studies. 

3.5.1. WSS and pathologies 

If we consider the wall shear stress values between 15 and 20 dyn/cm² as 
reference values in a healthy human, it is now commonly accepted that 
values below or equal to 5 dyn/cm2 are low WSS values (Sho et al. 2004), 
values greater than 30 dyn/cm2 are high values (Dolan et al. 2011) and 
values greater than or equal to 120 dyn/cm2 are very high values that act on 
circulating cells (Moake et al. 1988). As we saw in section 3.4, the 
downstream of cross-section constrictions, bifurcations, curvatures and 
enlargements of cross-section result in near-wall separation zones occupied 
by low-velocity flows that can cause low wall shear stress values. In 
contrast, accelerated flow in the form of a jet results in velocity gradients 
and, as a result, high near-wall shear stress values and very high values at the 
cross-section constriction neck. Fluid shear rates are also high. 

3.5.1.1. Low WSS values 

Having demonstrated the roles played by high residence times (RRTs) of 
circulating particles and increased endothelial wall permeability subjected to 
low wall shear stress values in pathologies such as atherosclerosis, new 
concepts have emerged to better understand the link between hemodynamic 
markers and pathology. For example, the introduction of the unsteady nature 
of flows in the different in vitro and in silico models led to the appearance of 
the criterion of high oscillating WSS, that is, a high OSI index, as an 
additional predictive indicator of arterial remodeling (Ku et al. 1985). The 
low WSS hypothesis then evolved into a combined low WSS and high OSI 
hypothesis. This criterion is now widely used and has been identified as a 
predictor of zones promoting the development of intimal thickening, either 
from in vivo animal models (Cheng et al. 2006; Thim et al. 2012), or in 
experimental models (Moore et al. 1994; Ding et al. 2001) and in silico  
models (Steinman et al. 2002; Ene-Irodache and Remuzzi 2012), who 
directly correlate their measurements with clinical observations. 

In parallel, DePaola et al. (1992), in an experimental study on endothelial 
cells of bovine aorta, also demonstrate the importance of spatial wall shear 
stress gradients, WSSG, promoting stretching (WSSG > 0) or compression 
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(WSSG < 0) of endothelial cells and subsequently influencing their shape, 
migration and division capacity. Depending on the WSSG level, the wall 
permeability can also be altered, as discussed by Lei et al. (1996), Herrmann 
et al. (1994) or Buchanan et al. (1999). In addition, the zones, subject to low 
and oscillating wall shear stress values, extend or reduce due to flow 
pulsatility, resulting in strong temporal WSS gradients at the cardiac cycle 
scale. The works of White et al. (2001), Haidekker et al. (2001), or Soulis  
et al. (2006) suggest that this temporal variation plays a role in the increase 
in intimal proliferation.  

Thus, the theory of low and oscillating wall shear stress appears to 
potentially minimize a more complex reality of the links between 
hemodynamic markers and arterial remodeling. In line with the works of 
Peiffer et al. (2013a) and based on studies by Wang et al. (2013), showing 
that endothelial cells are sensitive to flow multidirectionality, Morbiducci  
et al. (2015) combine the complexity of the links between markers and 
pathology by exploring the role played by the multi-directionality of wall 
shear stress. Recent reviews of the literature (Barakat 2013; Peiffer et al. 
2013b) also question both the systematic generalization of the criterion “low 
and oscillating wall shear stress” and its universally predictive nature. 
Indeed, whatever the vascular pathology, it is difficult to compare similar 
geometric characteristics (curvature, dilatation, constriction, etc.) presenting 
significant local variabilities from one arterial site to another, from one 
patient to another, from one study time to another, or indeed from one 
animal model to another.  

3.5.1.2. High WSS values 

In the general case of arterial dilatations – aneurysms of the thoracic or 
abdominal aorta, intracranial and dissection – there are two opposing 
theories – high and low wall shear stress values – to explain the same 
development of the pathology.  

In in vivo studies based on human MRI measurements, Hope et al. 
(2011), Mahavedia et al. (2014) and Rodriguez-Palomares et al. (2018) 
highlight an increase in the maximum value of wall shear stress in the dilated 
ascending aorta downstream of a bicuspid valve relative to the values 
encountered in healthy cases downstream of a tricuspid valve. High WSS 
values are also reported in studies correlating measurements in silico and 
clinical patient monitoring for sacciform intracranial aneurysms (Castro  
et al. 2009), or indeed during the aneurysmal evolution of the false lumen of 
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dissections (Shang et al. 2015). The effects of high WSS were also explored 
in vitro on bovine aortic endothelial cells in conjunction with the application 
of a WSSG, showing that the addition of a positive WSSG exacerbates cell 
dysfunction, significantly altering their alignment and increasing cell death 
(Dolan et al. 2011). 

In contrast, low wall shear stresses are observed in vivo in the dilated 
ascending aorta (Burk et al. 2012) and in in silico studies with  
patient-specific geometry, correlating measurements and the patients’ 
clinical profile, in the false lumen of dissections (Karmonik et al. 2013; 
Doyle et al. 2014), in intracranial aneurysms (Boussel et al. 2008; Zhou  
et al. 2017) or abdominal aneurysms (Boyd et al. 2016). In the case of 
aneurysms, it should be noted that the morphology is generally fusiform.  

This low/high wall shear stress controversy is discussed by Meng et al. 
(2014). The differentiated activation of the channels of the biological 
cascade in the mechanical transduction, notably with an inflammatory 
pathway – associated with low WSS – and an increase in metalloproteinase 
expression and activity – correlated with high WSS – seems to be at the 
origin of the differences observed. Moreover, in vitro studies confirm these 
two pathways: Anidjar et al. (1992) show a correlation between aortic 
enlargement and activation of the inflammatory system using an animal (rat) 
model of arterial enlargement. Sho et al. (2002), meanwhile, confirm, on 
another animal model (rabbit), an increasing activity of metalloproteinases 
following the exposure of the wall to strong WSS. Fedak et al. (2003) show, 
in samples of dilated ascending aorta collected from patients with a bicuspid 
valve, an increase in metalloproteinase activity that is correlated with aortic 
diameter. Finally, thanks to 4D flow MRI measurements, Guzzardi et al. 
(2015) also report that downstream of a bicuspid valve, ascending aorta 
dilatation is associated with high WSS values corresponding to extracellular 
matrix deregulation, the degeneration of elastin fibers and an increase in 
metalloproteinase expression. 

In light of the sometimes divergent conclusions of these different studies 
putting forward a hypothesis of low or high WSS in the dilatation process, it 
will, without a doubt, be necessary to question the role of biological and 
biochemical mechanisms taking place at the cellular or molecular scale and 
intervening in mechanotransduction: a change of scale for a change of 
paradigm.  
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3.5.2. Hemodynamic markers and thrombus 

The thrombus can roughly be described as a blood clot forming in various 
pathologies such as atherosclerosis, aneurysms of the abdominal aorta, 
dissections, etc. Its presence participates in an alteration of the pathological 
process. We will not discuss its protective or deleterious role with regard to 
pathologies here, but we will discuss the mechanisms of its formation that 
are linked to the hemodynamics. Platelets and circulating blood cells 
contribute to thrombus formation through their activation, aggregation and 
adhesion to the arterial wall; these three steps are complementary.  

3.5.2.1. Thrombus and high WSS values 

In accelerated flow in the form of a jet, such as at the neck of an arterial 
stenosis or at an aortic dissection entry tear, high near-wall velocity 
gradients appear and give rise to high WSS values (of the order of 
125 dyn/cm2 (Deplano and Siouffi 1999) and 100 dyn/cm2 (Khannous et al. 
2019), respectively) as well as very high fluid shear values (of the order of 
5,000 s–1; Casa et al. 2015).  

This configuration draws platelets and blood proteins such as von 
Willebrand factor2 (vWF) towards the walls. This is known as the 
margination phenomenon (Zhao et al. 2007). In the presence of 
thrombogenic surfaces such as subendothelial collagen fibers, exposed as a 
result of endothelium stripping, vWFs will rapidly colonize these surfaces. 
Given high fluid shear rates, (i) vWFs distort and stretch to form nets, 
multiplying platelet adhesion contacts and sites, and (ii) platelets will bind to 
these proteins rather than to fibrinogen, another coagulation factor; platelets 
rapidly adhere and aggregate even before their activation, as shown in vitro 
by Ruggeri et al. (2006) and in silico by Wellings et al. (2012). High shear 
rates also allow rapid platelet accumulation and activation, as observed  
in vitro by Bark et al. (2012). In addition, high WSS values also cause 
platelet activation (Moake et al. 1988). During the activation phase, platelets 
release proteins, notably vWF proteins and fibrinogen. In the case where 
platelets have already adhered, this release will allow thrombus growth. By 
constricting the cross-section of the arterial lumen slightly further, shear 
rates increase and the process self-maintains, to the extent of possibly 
occluding the vessel (Casa et al. 2015). 

                                       
2 von Willebrand factor is a protein that allows platelet adhesion to the arterial wall. 
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Thrombi that adhere in zones of high WSS are generally more unstable 
than those formed in zones of low WSS, given the bonds involved for platelet 
aggregation (Shi et al. 2016). The instability of thrombi formed in this way 
may lead to partial or total detachment of the thrombus, which gives rise to 
risks of the occlusion of a downstream artery with a smaller diameter. 

3.5.2.2. Thrombus and low WSS values 

Low WSS values found in zones of recirculation, for example, aneurysm, 
or other zones presenting cross-section enlargement, appear to favor 
adhesion of platelets preferentially via the fibrinogen present, as shown  
in vitro by Savage et al. (1996), in a study conducted on blood from human 
donors. Back in the 1970s, Blackshear et al. (1971), as well as Karino and 
Goldsmith (1977), demonstrated that the recirculation regions, the site of 
low WSS values, were favorable for thrombus formation. Other, more 
recent, studies have also correlated the presence of low wall TAWSS with 
the presence of thrombus, notably in the false lumen of aortic dissection. 
Zones of flow recirculating at low velocities (Chen et al. 2013; Cheng et al. 
2015) or even of stagnant flow (Rinaudo and Pasta 2014), essentially 
dominated, as we have seen, by low TAWSSs and RRTs of fairly high 
circulating particles (Cheng et al. 2013; Cheng et al. 2015), therefore 
represent regions favorable to thrombus development (Meng et al. 2014; 
Menichini and Xu 2016). 

It should be noted that, again, differences may appear here, underlining 
the complexity of the process: the in silico study by Di Achille et al. (2014) 
correlates, with clinical observations, low WSS and high OSI values with 
zones of the aneurysm sac of the abdominal aorta presenting thrombus in the 
patients under consideration. O’Rourke et al. (2012), meanwhile, also 
suggest, through in silico measurements, a combination of low WSS and low 
OSI values to correlate with thrombus growth zones based on two-stroke 
clinical imaging for patient follow-up. 

3.5.2.3. Thrombus and coherent structures 

In parallel to the concept of shear yield values within the fluid and/or at 
the wall as a platelet-stress mechanism acting on thrombus formation, 
several research groups have taken an interest in the role played by VSs, 
whether concerning aneurysms or aortic dissections (TAD) (Basciano et al. 
2011; Biasetti et al. 2011; Ab Naim et al. 2016; Menichini et al. 2018). 
Through in silico models and using the criterion λ2 to identify VSs, the  
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retained mechanisms clearly presented by Biasetti et al. (2011) in the case of 
abdominal aortic aneurysms (AAA) can be summarized in four phases:  
(i) platelets are trapped in VSs formed at the proximal throat of an aneurysm 
or at the entry tear of the false lumen of a TAD. (ii) The platelets, trapped in 
the VSs, are activated by the high shear values existing at the periphery of 
VSs and/or by the high WSS values that exist at the TAD entry tears.  
(iii) The VSs transport and convect the activated platelets downstream.  
(iv) In the deceleration phase, the VSs impact at the distal wall or dislocate 
near-wall, releasing activated platelets that aggregate and/or adhere to the 
wall in zones of low WSS. 

The multiphysics model for modeling thrombus formation and growth, 
proposed by Biasetti et al. (2012), confirms the concept of activation/ 
convection/release/aggregation of platelet elements. 

 

Figure 3.7. a) Geometry of a patient with type-A aortic dissection treated at T0 by a 
prosthesis on the ascending-aorta segment and having residual type-B dissection. 
Three entry tears (ETI) are present. b) WSS at the neck of ET3 presenting values 
>100 dyn/cm2. c–e) Evolution of coherent structures in the false lumen. f) Low WSS 
values in coherent structure dislocation zones. g) Clinical findings 1 year after T0, 
showing thrombus formation in the false lumen. Adapted from Khannous et al. 
(2019). For a color version of this figure, see www.iste.co.uk/deplano/biological.zip 



98     Biological Flow in Large Vessels 

The works carried out by Khannous et al. (2019) within a residual type-B 
aortic dissection model enable this concept to be illustrated (Figure 3.7). In 
this unsteady 3D in silico model of a fluid with shear-thinning behavior, the 
criterion λci is used as an identifier of coherent structures in a geometry of a 
patient at T0, presenting an unfavorable evolution one year later (T1). 
Analysis performed at T0 of the evolution of coherent structures in the false 
lumen and the spatiotemporal mapping of WSS shows that all of the 
ingredients are combined to initiate thrombus formation in the false lumen of 
the dissection. This result is confirmed by clinical observations made one 
year later at T1. 

3.6. Conclusion and perspectives 

In vitro and/or in silico models are implementing increasingly complex 
multi-physical models to closely approximate the pathophysiological reality 
of vascular pathologies. Thanks to advances in medical imaging, the focus in 
recent years is on in vivo validation and even inter-validation. Indeed, in 
vivo measurements validate in vitro and/or in silico modeling, but the 
accuracy of in vivo assessments of hemodynamic markers based on 4D flow 
MRI acquisitions, for example, must be validated by in vitro and/or in silico 
models. Thus, these non-invasive in vivo assessments at the patient’s bed are 
of particular relevance as a diagnostic aid or in patient follow-up.  

However, the understanding of the mechanisms for the initiation and 
development of vascular pathologies needs to be further improved. This is 
demonstrated by the controversies discussed in this chapter on the links 
between hemodynamic markers and pathologies. As such, multi-scale, 
growth and remodeling aspects must be included long term in the models 
developed. The recent technological advances in observations and 
measurements at the microscopic scale are enabling an ever greater 
understanding of the multi-scale aspect, and consequently, models are better 
equipped to take into account mechanisms at the cellular or indeed molecular 
scale. The mechanical-biological and biochemical mechanisms of arterial 
wall growth and remodeling are complex and their modeling remains only 
partial. Without being trite, the new possibilities linked to deep learning and 
processing by large databases will no doubt enable analysis of the 
correlations made between pathologies and hemodynamic indexes (or any 
other markers) on a large number of patients, and deduce associations that 
are useful to patient care. 
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The pathological complications of atherosclerosis, namely heart attacks and 
strokes, remain the leading cause of mortality and morbidity worldwide. 
Atherosclerosis is a disease of medium and large arteries, and it involves the 
accumulation of lipids, lipoproteins, and blood cells within the arterial wall. 
These deposits ultimately develop into plaques that can either directly obstruct 
blood flow or rupture to induce very rapid occlusive thrombosis. A key feature 
of early atherosclerosis is that it is a focal disease, with lesions developing 
preferentially near branches and bifurcations where arterial blood flow is highly 
disturbed. However, despite nearly five decades of study, the nature of the flow 
disturbance that best correlates with atherosclerotic lesions remains a matter of 
controversy. In this chapter, we review what we know about the role of fluid 
mechanical factors in the development of atherosclerosis. Furthermore, to 
concretely illustrate the complexity of arterial flow fields, we provide a specific 
example of a computational study of fluid mechanical interactions between two 
adjacent arterial branches. We conclude with a short section that describes the 
limitations of current studies and evokes strategies for future investigations. 

4.1. Introduction 

Atherosclerosis is the arterial disease whose pathological complications, 
namely heart attacks and strokes, are the leading cause of mortality 
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worldwide. While the development of atherosclerosis involves a myriad of 
complex biochemical and biological events, fluid mechanical considerations 
associated with arterial blood flow also play a central part. This chapter 
focuses on these biophysical considerations.  

This chapter is divided into two distinct parts. The first part (section 4.2) 
provides a rapid review of the initiation and development of atherosclerosis, 
before focusing on what we know about the role of arterial flow in the 
genesis and progression of the disease. The second part of the chapter 
(section 4.3) presents new results on a specific question in biofluid 
mechanics, namely how fluid dynamic interactions between two adjacent 
arterial branches affect the structure of the flow field. These results are based 
on three-dimensional, time-dependent computational fluid dynamics (CFD) 
simulations, and are intended as an illustrative example of the complexity of 
arterial flow field and the exquisite sensitivity of the flow field to what may 
appear as small changes in arterial geometry. The implications of the results 
to atherosclerosis also are discussed. 

4.2. Role of arterial fluid mechanics in atherosclerosis 

4.2.1. Atherosclerosis initiation and progression 

Atherosclerosis develops exclusively in medium and large arteries with 
particular prevalence in the coronary arteries, the carotid arteries, the aorta 
and parts of the cerebral arterial network. The disease can also develop in 
peripheral arteries where is it commonly referred to as “peripheral artery 
disease”. 

Why atherosclerosis develops in arteries but not in veins remains poorly 
understood. As illustrated in Figure 4.1, there are several important 
differences between arteries and veins. First, the blood pressure in arteries  
is significantly higher than that in veins, with a mean arterial pressure of 
~100 mm Hg and a mean venous pressure of 10–20 mm Hg. Second, arteries 
transport oxygen-rich blood, whereas veins carry oxygen-poor blood. Third, 
veins contain valves that prevent backflow during diastole, a feature that is 
absent in arteries. Finally, arterial walls are significantly thicker and more 
muscular than those of veins of comparable size. It is unknown if one or 
more of these differences underlies the different predisposition of the two 
vessel types to atherosclerosis. Interestingly, when a venous section is 
implanted in an arterial setting, which occurs, for instance, during coronary 
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bypass surgery, the venous section undergoes progressive remodeling, 
assumes an arterial phenotype and becomes predisposed to atherosclerotic 
disease development. 

 As detailed elsewhere (Tedgui and Mallat 2001; Libby 2002; Libby et al. 
2011) and illustrated in Figure 4.2, the development of atherosclerosis is a 
complex multi-step process that typically lasts decades and involves many 
different players in both the bloodstream and the arterial wall. It is widely 
accepted today that atherosclerosis is triggered by chronic inflammation of 
the vascular endothelium, the cellular monolayer that lines the inner surfaces 
of all blood vessels. This inflammation may be initiated by a variety of 
factors including oxidized low-density lipoprotein in the bloodstream, viral 
and/or bacterial infection, smoking and ionized radiation. In addition, and of 
particular relevance here, endothelial inflammation can also be induced by 
disturbances in arterial blood flow, as will be described in more detail below. 

 

Figure 4.1. Differences in structure between arteries and veins (see: www.haikudeck. 
com/cardiovascular-system-science-and-technology-presentation-4AklbF7Dtf# 

slide8). For a color version of this figure, see www.iste.co.uk/deplano/biological.zip 

Under normal physiological conditions, the vascular endothelium serves 
a number of critical functions, as follows: (1) regulation of vascular 
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permeability to both small and large molecules, (2) vasoregulation, that is, 
control of arterial diameter through the release of vasoactive agents that 
exert their effect on smooth muscle cells within the arterial wall,  
(3) provision of a non-thrombogenic surface and (4) maintenance of a 
contractile smooth muscle cell phenotype. In the context of atherosclerosis, 
the permeability regulation function of the endothelium is particularly 
critical because it prevents excessive transport of blood-borne 
macromolecules into the arterial wall. A normally functioning endothelium 
has tight cell–cell junctions that are able to effectively exclude 
macromolecules larger albumin (Stokes–Einstein hydrodynamic radius of  
~4 nm) from entering the arterial wall through the non-specific intercellular 
pathway. 

 

Figure 4.2. Progressive development of atherosclerotic lesions. a) A normal artery 
consists of three distinct layers: the tunica intima, which is lined by a monolayer of 
endothelial cells (in green); the tunica media, which contains a high concentration of 
smooth muscle cells, and the adventitia, which has important structural functions.  
b) Atherosclerosis is triggered by chronic inflammation of the endothelium, leading to 
the recruitment and transmigration of monocytes that eventually differentiate into 
foam cells. c) Lesion development involves the migration of smooth muscle cells from 
the media into the intima and the increased production of extracellular matrix, most 
notably collagen. d) The largest risk is plaque rupture that disrupts the endothelial 
layer and can cause rapid obstructive thrombosis. Reproduced with permission from 
Libby et al. (2011). For a color version of this figure, see www.iste.co.uk/deplano/ 
biological.zip 
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When arterial endothelial cells (ECs) become chronically inflamed, 
which occurs during atherogenesis, their permeability regulation function 
becomes compromised because inflammation leads to the loosening of  
cell–cell junctions. As a result, there is a greatly enhanced influx of  
blood-derived macromolecules, most notably low-density lipoproteins, into 
the arterial wall. If the extent of macromolecular influx into the arterial wall 
overwhelms the ability of the wall to eliminate these macromolecules 
through metabolic and/or efflux pathways, then there is net accumulation of 
these macromolecules within the arterial wall, which contributes to the 
development of fatty streaks that constitute the early form of atherosclerotic 
lesions. 

A chronically inflamed endothelium also triggers an immune response 
facilitated by the increased expression on the EC surface of adhesion 
molecules, such as intercellular adhesion moleculae-1 (ICAM-1) and 
vascular cell adhesion molecule-1 (VCAM-1). Consequently, leukocytes, 
most notably monocytes, adhere to the arterial wall, transmigrate across the 
endothelium and become trapped in the subendothelial space where they 
transform into macrophages, and upon excessive uptake of lipids, ultimately 
differentiate into lipid-laden foam cells that form a central component of the 
nascent atherosclerotic lesion.  

Concomitant with the events described above, smooth muscle cells and 
collagen fibers are recruited to the intimal layer of the arterial wall where 
they serve to thicken and structurally stabilize the atherosclerotic plaque. 
While certain plaques remain relatively soft, others become calcified over 
time and thus develop much higher rigidity. The greatest pathological risk 
arises from a plaque rupture which, when it occurs, leads to very rapid 
thrombosis that can cause a myocardial infarction if it occurs in a coronary 
artery, or a stroke if it occurs in a cerebral artery. 

4.2.2. Role of arterial flow in atherosclerosis 

The primary reason for implicating arterial fluid mechanics in the 
development of atherosclerosis is that the disease in its early stages is highly 
focal in nature. It has long been known that early atherosclerotic lesions do 
not develop randomly within the arterial system. Rather, they localize 
preferentially near branches and bifurcations where blood flow patterns are 
highly disturbed due to the complex arterial geometry at those locations. 
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A key question is what type of flow disturbance actually correlates with 
atherosclerotic lesions. This question has been the subject of numerous 
investigations over the past four decades. However, despite the fact that a 
plethora of studies have focused on this issue, the answer remains unclear. Most 
of the investigations focus on wall shear stress as the most relevant parameter 
because it is thought that ECs are more sensitive to changes in shear stress than 
they are to changes in other flow-derived forces, including pressure and stretch. 

The earliest investigations suggested that atherosclerotic lesions develop in 
arterial regions where the wall shear stress is particularly high (Fry 1968) 
because it was thought that high shear stress would induce endothelial damage 
and thus promote lesion development. This concept has, however, fallen out of 
favor for two reasons: (1) detailed histological studies demonstrated that the 
endothelium remains intact (i.e. not damaged) during early atherosclerosis and 
(2) the wall shear stresses required to induce endothelial damage in vivo  
(>35 Pa) are much higher than values encountered physiologically. Instead, 
subsequent work has suggested that atherosclerosis correlates best with areas 
of low wall shear stress (below ~0.5 Pa) (Caro et al. 1969, 1971), which would 
occur in zones of boundary layer separation and flow recirculation that are 
commonly observed at arterial branches and bifurcations. The physical 
argument here was that regions of low wall shear stress would lead to a longer 
residence time for blood-borne macromolecules, such as low-density 
lipoproteins near the arterial wall, which would increase the probability of 
their uptake and accumulation. 

The low shear hypothesis was subsequently expanded to include temporal 
oscillations in shear when it was realized that in the presence of pulsatile 
flow, the flow recirculation zones periodically grow and shrink, thereby 
subjecting underlying ECs to oscillations in blood flow (Ku et al. 1985). 
Although this remains the most widely accepted fluid dynamic 
atherosclerosis correlate today, several recent studies have raised questions 
about its universal validity. For instance, more recent studies on rabbits have 
indicated that atherosclerotic lesions are more likely to correlate with regions 
of high shear stress than low shear stress (Peiffer et al. 2012). Other studies 
have implicated gradients of shear stress, both spatial and temporal, as the 
likely culprits (DePaola et al. 1992; White et al. 2005). 

In summary, despite four decades of detailed experimental and 
computational studies, there is no consensus today as to whether a single 
fluid mechanical parameter correlates with atherosclerotic lesions. This 
rather confusing picture is attributable at least in part to the following 
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reasons: (1) the difficulty of making accurate measurements of wall shear 
stress in vivo, (2) the fact that the data in the literature are derived from 
different species that exhibit significant differences in the topography  
of atherosclerotic lesions and (3) the sensitivity of arterial flow fields to 
inter-individual variations in arterial geometry. 

To illustrate this last point about how seemingly small changes in arterial 
geometry have a significant impact on the flow field, the following section 
focuses on CFD simulations of fluid mechanical interactions between two 
arterial branches. 

4.3. An illustrative example of the complexity of arterial flow 
fields: fluid dynamic interactions between two arterial branches 

4.3.1. The specific problem addressed 

As already mentioned, during the past few decades, a large body of work 
has been devoted to elucidating the link between arterial blood flow and the 
localized genesis of atherosclerosis (Karino and Goldsmith 1979; Ku et al. 
1985; Karino et al. 1990; Barakat et al. 1992, 1997; Cheer et al. 1998; 
Friedman and Giddens 2005). While the low and oscillating wall shear stress 
hypothesis is very commonly cited (Ku et al. 1985; Wentzel et al. 2005; 
Chien 2008), other hemodynamic parameters such as spatial gradients of 
wall shear stress (DePaola et al. 1992) and spatial angular gradients of wall 
shear stress have also been related to the focal nature of the early disease 
(Buchanan et al. 1999, 2003). 

The complex wall shear stress patterns affecting the endothelium are a 
consequence of important flow disturbances ocurring in regions of arterial 
curvature or around branches. These disturbances can take the form of 
periodically appearing and disappearing boundary layer separation areas, 
intense flow recirculation zones, and extensive secondary flow structures 
that develop and evolve during the course of the cardiac cycle. Despite an 
extensive body of work devoted to advanced statistical cross-correlations of 
hemodynamic parameters to precise lesion locations (Buchanan et al. 1999, 
2003), a deep understanding of the precise dependence of arterial flow fields 
on various geometric, mechanical and fluid mechanical parameters is 
lacking. This is important in view of changes in these parameters for 
different species, individuals, ages and activity levels (Barakat et al. 1997; 
O’Flynn et al. 2010; Al-Musawi et al. 2004). 
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Steady flow in single T-junctions has been widely studied in glass models 
(Karino and Goldsmith 1979), ex vivo geometries (Karino et al. 1990; 
Barakat et al. 1997) and numerical simulations (Cheer et al. 1998; Buchanan 
et al. 1999). Separation zones have been consistently found laterally to the 
ostium for large ranges of Reynolds numbers, flow rate ratios and 
geometries (Karino et al. 1990; Cheer et al. 1998). It has also been shown 
that these recirculating zones are filled with particular streamlines that loop 
along the lateral walls of mother vessels before entering the branch (Karino 
and Goldsmith 1979; Karino et al. 1990; Barakat et al. 1997). These  
looping streamlines and the subsequent disturbed reversal flow are 
potentially very important in early atherosclerotic development.  

The present study aims to understand how these disturbances around  
T-junctions are affected when two branches are in close interaction, such as 
the aorto-celiac and superior-mesenteric junctions. The variability of the 
separation between these branches among species and individuals has 
motivated our interest in the dependence on this particular parameter. 

4.3.2. Materials and methods 

Laminar three-dimensional blood flow was simulated in two successive 
T-junctions. Geometry and boundary conditions (whose details are provided 
below) were chosen to model a generic rabbit abdominal aorta with celiac 
and superior mesenteric branches. Since the main goal of the study is to 
show a general result concerning two interacting junctions, it was not 
necessary to capture the geometrical details that are particular to every 
animal, and a very simplified geometry was therefore considered. Both 
steady and unsteady simulations were conducted: the steady flow 
simulations were used to identify the consequences of the interaction of two 
branches, while the pulsatile flow simulations allowed us to show the 
implications of the observed phenomena under pulsatile flow. 

4.3.2.1. Geometry and mesh 

The geometry and mesh used are presented in Figure 4.3, where the flow 
comes from left to right. The different arteries are rigid straight tubes and the 
dimensions are inspired by rabbit measurements (Barakat et al. 1997): the 
aortic diameter is Da = 4 mm, and each of the two branches has a diameter 
that is half that of the aorta. The separation distance L between the two 
branches is a parameter of our study and was varied from 1.5 to 13 aortic 
diameters, 5Da being considered as the reference case since it is roughly 
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close to a mean value for rabbit abdominal aortic branches. The variation of 
L is large but is motivated by the fact that in other species and particularly in 
humans, this distance is very different from that in rabbits. To reproduce 
experimental observations (Karino and Goldsmith 1979; Barakat et al. 
1997), the proximal lip of each orifice was gently rounded while the distal 
orifice was made more sharp. No taper effects were considered. 

 

Figure 4.3. Geometry, mesh and boundary conditions used in the simulations.  
Note that the separation distance L between branches and the Reynolds  

number are parameters of the study; the base case is shown 

We used a free tetrahedral mesh combined with a boundary layer mesh, 
and mesh independence was verified using the recommended procedure by 
the Journal of Fluids Engineering (2008): the mesh size used ensured a 
relative error in wall shear stress at the regions of interest not greater than 
3%. For the base case (Figure 4.3), the consistency of the results was also 
verified for a mesh that was twice as fine. As noted by Praskash and Ethier 
(2001), mesh independence for spatial shear stress gradients was far more 
difficult to obtain, and no maps of wall shear stress gradients will be shown 
in this study. 

4.3.2.2. Equations and solver 

Blood was assumed to behave as a Newtonian fluid with a density  
ρ = 1,055 kg/m3 and a dynamic viscosity μ = 0.00348 Pa-s. The full  

Qc = Q0/3
Qsm = Q0/3

Q0 = 260 mL/min
Re0 = 397

p = 0 Pa

Da= 4mm

Dsm = Da /2
Dc = Da /2

L = 5 Da

Dorsal wall

Ventral wall
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three-dimensional incompressible Navier–Stokes equations in a rigid 
geometry were considered: ∇ ∙ 𝑢ሬ⃗ = 0	and 𝜌 ቂడ௨ሬሬ⃗డ௧ + (𝑢ሬ⃗ ∙ ∇)𝑢ሬ⃗ ቃ = −∇𝑝 + 𝜇∇ଶ𝑢ሬ⃗  

where 𝑢ሬ⃗  is the velocity vector and 𝑝 is the pressure field. No-slip  
conditions were assumed at the walls, a Poiseuille velocity profile  
(𝑢଴ሬሬሬሬ⃗ = 8 ொబ஽మ (1 − ௥మ(஽/ଶ)మ)) was assumed at the inlet and at the outlet of the two 
daughter arteries, and zero pressure was imposed at the aortic outlet.  
To avoid artificial interactions between the imposed velocity profiles and  
the computed flow around both junctions, tube extensions were added to 
extend the arteries. For the base case, the assumed inlet flow rate was  
Q0 = 260 mL/min, as determined from experimental measurements (Barakat 
et al. 1997). The corresponding Reynolds number was 𝑅𝑒଴ = ఘಳ௎బ஽ೌఓಳ = 397. 
For unsteady flow, a time-dependent profile (shown later) was imposed at 

the aortic inlet with a Womersley number 𝑊଴ = ஽ଶೌ ටఠఘఓ = 5.3. Flow rate 

ratios were fixed for the study and inspired by the same experimental data 
(Barakat et al. 1997): Qceliac/Q0 = Qsuperior mesenteric/Q0 = 1/3. The solver used 
was the commercial code COMSOL, and convergence was achieved when 
the momentum residual term was ε < 10–4. All of the presented results are 
made non-dimensional using the aortic diameter Da = 4 mm, the base-case 
mean inlet velocity U0 = 334.8 mm/s and the corresponding upstream wall 
shear stress τ0 = 20.1 dyne/cm2. We will denote 𝑊𝑆𝑆 = |ఛሬ⃗ |ఛబ  as the normalized 
wall shear stress. 

4.3.3. Results 

4.3.3.1. Steady flow 

4.3.3.1.1. Effect of branch interactions on the flow structure 
Steady results at Re0 = 397 are first presented for different distances 

between branches. The flow rate ratios used are slightly above the 
geometrical ratio: Qc/Q0 = 1/3 > (Dc/Da)2 = 1/4 for the aorto-celiac junction 
and Qsm/(Q0 – Qc) = 1/2 > (Dsm/Da)2 = 1/4 for the superior mesenteric branch.  
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As reported in a number of previous studies performed under largely similar 
conditions (Karino and Goldsmith 1979; Barakat et al. 1997; Cheer et al. 
1998), a thin separation zone with reversal flow is observed in the aorta, 
lateral to the first branch. The zone is filled with streamlines coming from a 
middle lateral region of the aortic lumen, which are highly deflected toward 
the branch but not enough to enter it directly. They first impact the aortic 
ventral wall near the distal lip before looping back close to the side, they 
form the separation region (Figure 4.4, red and magenta streamlines), and 
then enter the branch with a complex movement. Although we can estimate 
that the maximum size of the observed loops around the first branch is 
around 75% of the aortic diameter, we will provide a more accurate estimate 
later of the size of the recirculation zone based on the structure of the wall 
shear stress streamlines.  

Figure 4.4(a) shows the base case, where L/Da = 5, which we compare to 
the situation of L/Da = 2.5 in Figure 4.4(b). In both configurations, the 
structure of the flow around the first junction is quite similar. This, in fact, is 
the case for the entire range of L/Da values explored (1.5–12). In contrast, 
the flow around the second branch is strongly influenced by the wake of the 
first branch. When the branches are close to one another with L/Da in the 
range of 1.5–3 (see Figure 4.4(b)), the same looping streamlines are 
observed at both junctions. Interestingly, however, for L/Da > 3 (see Figure 
4.4(a)), the interaction is such that the looping streamlines at the second 
branch are abolished. This means that the typical recirculation zone lateral to 
the ostium that we described above is absent at the second junction due to 
the interaction of the two branches. Note that another type of streamlines that 
loop along the dorsal wall before entering the branch is present at the second 
junction (see Figure 4.4(a) in magenta), showing that a recirculation region 
exists opposite to the branch, but is positioned along the dorsal wall rather 
than along the lateral walls. As expected, when the spacing between the 
branches is increased further, the flow around the second junction begins to 
recover its natural form with looping streamlines along the lateral walls  
of both branches (not shown), indicating that the two branches have  
now become sufficiently far apart so as to behave as independent  
(non-interacting) branches. This occurs around L/Da = 5.2, meaning, in 
conclusion, that there is a wide range of L/Da values (from 3–5.2 in our 
configuration of Reynolds number Re0, flow rate ratios and geometry) where 
the interaction between the two branches radically changes the flow structure 
lateral to the second ostium. 
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Figure 4.4. Steady flow streamlines. a) Base case with L/Da = 5. b) L/Da = 2.5. Note 
the difference in the localization of the looping streamlines (magenta) at the second 
branch between the two cases. For a color version of this figure, see 
www.iste.co.uk/deplano/biological.zip 

4.3.3.1.2. Effect of branch interactions on wall shear stress  
A separated flow zone with flow recirculation and reversing streamlines, 

as shown above, is also characterized by low wall shear stress and disturbed 
wall shear stress directions. Figure 4.5 depicts the wall shear stress patterns 
associated with different values of inter-branch spacing (L/Da = 5, 2.5 and 
1.5 for panels a, b, and c, respectively). The vectors show the direction of the 
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wall shear stress field, and the surface color maps correspond to the shear 
stress magnitude normalized by the baseline wall shear stress (τ0 =  
20.1 dyne/cm2) (WSS hemodynamic parameter). Next to each color map is a 
depiction of the wall shear stress streamlines on a view of half of the aortic 
wall, with the aorta ventrally cut open and pinned flat so as to look up on the 
endothelial surface en face. Our primary interest here is the lateral region of 
the aorta close to both ostia, where we have observed the looping 
streamlines. Those regions are found to always correspond to a low wall 
shear stress zone very close to the ostium, at around one aortic diameter 
streamwise from the proximal lip. From there, this zone extends to the dorsal 
wall and in both directions downstream and upstream. This wall shear stress 
pattern is consistent with previous numerical results (Cheer et al. 1998; 
Buchanan et al. 1999). 

Figure 4.5(a) shows the base case (see also Figure 4.3(a)), where the flow 
entering the second branch does not show any looping streamlines. Although 
they have similar wall shear stress values, the wall shear stress vectors 
around the first and second junctions are very different. As we can see from 
the wall shear stress streamlines in the insets, the structure of these fields are 
not topologically equivalent (Lighthill 1963; Ghil et al. 2001): the structure 
near the first ostium corresponds to a separated recirculation region, while 
near the second ostium the flow is laminar and stays streamwise. As defined 
in literature (Legendre 1956; Lighthill 1963; Délery 2001) and using the 
terminology of Legendre, the separated region is delimited by wall shear 
stress streamlines that merge in singular points. In this case, the singular 
points are two saddle points located opposite the branch, and we can 
therefore say that the separated region near the first ostium extends up to the 
dorsal wall. This situation was also observed experimentally by Karino and 
Goldsmith (1979), where looping flow streamlines extended to the dorsal 
wall. This regime was called the “fully disturbed regime”. On the contrary, 
in the immediate vicinity of the second ostium, the wall shear stress 
streamlines do not exhibit any separation, and they either enter the branch or 
simply proceed on to the downstream portion of the aorta. Note that another 
structure develops opposite to the second branch, corresponding to a 
separated region stacked to the dorsal wall (see also the magenta streamline 
in Figure 4.4(a)). This separated zone is typical in bifurcations and 
particularly in two-dimensional T-junctions, but the disturbance generated is 
positioned far from the regions where early atherosclerotic lesions localize; 
therefore, we will not focus on this structure. 
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a) 

 
b) 

 

c) 

Figure 4.5. Comparison of wall shear stress for different inter-branch spacing at the 
baseline Reynolds number (Re0 = 400). The arrows show the direction of the wall 
shear stress, while the color map denotes its magnitude. The inset next to each color 
map depicts the topology of the wall shear stress field. a) Base case L/Da = 5,  
b) L/Da = 2.5 and c) L/Da = 1.5. For a color version of this figure, see www.iste.co.uk/ 
deplano/biological.zip 
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When the branches are closer to one another (see Figures 4.5(b) and (c)), 
the wall shear stress structure at the second bifurcation is radically different 
from the base case (see Figure 4.5(a)) and becomes topologically equivalent 
to the structure seen at the first branch. When the branches are close to one 
another, we thus have flow separation near both ostia and a so-called fully 
disturbed flow regime at both junctions. In the case where L/Da = 1.5, the 
recirculating regions of both branches overlap, leading to a large disturbed 
flow zone. It must also be noted that the wall shear stress patterns for the 
first branch are fairly similar among all configurations; it is the pattern for 
the second branch that is altered from one configuration to another. 

Immediately upstream and for a longer region downstream of each 
branch, the wall shear stress is elevated, and the spatial gradients of shear 
stress are equally high. This is consistent with other published studies (Cheer 
et al. 1998; Buchanan et al. 2003, 1999). A low wall shear stress zone 
corresponding to a possible separation is also observed along the proximal 
wall of the bifurcating artery. This observation is common in T-junctions, 
but there is paucity of experimental data on early atherosclerotic lesion 
development inside aortic branches; thus, we will not focus on this part of 
the junction.  

4.3.3.1.3. Dependence on Reynolds number 
Figure 4.6 presents the results for the base case geometry (L/Da = 5) at 

different upstream Reynolds numbers ranging from 0.2·Re0 to 2·Re0 
(corresponding to Re = 80, 200, 400 and 800, respectively). In every image, 
we show streamlines of wall shear stress and a color map of the WSS 
parameter on a view of the aorta cut open and pinned flat. At low velocity 
(see Figure 4.6(a), Re < 100), no separation is observed, the flow is 
completely laminar and it enters both branches smoothly. Upon increasing 
the velocity to Re1 = 100 ± 8, a first bifurcation of the structure of the wall 
shear stress field occurs and leads to separation in both branches at the same 
time. For Re	∈	[100; 384], the separated lateral region is similar in both 
branches, and there is reversed and disturbed flow lateral to both branches 
(see Figure 4.6(b)). At around Re2 = 384 ± 8, the looping wall shear stress 
pattern at the second junction shrinks at its middle, and a second bifurcation 
occurs. The flow entering the second branch is reorganized and no more 
separation is observed in the vicinity of the second ostium (see Figure 4.6(c), 
corresponding to the base case Re0 where no looping streamlines enter the  
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second branch). However, as mentioned earlier, a separated flow zone 
remains, at the dorsal wall, isolated from the second ostium. For Re > 384 
and at least up to 800, the absence of looping streamlines at the second 
branch persists, and the wall shear stress structure is maintained  
(see Figure 4.6(d)). It should be noted that at high Reynolds number,  
we observe a small zone of low wall shear stress and even flow 
recirculation immediately distal to the second branch along the ventral wall 
(see Figure 4.6(d)). However, this is highly dependent on the shape of the 
distal lip. The WSS maps are similar in both branches and for the different 
Reynolds numbers, showing high WSS proximal and distal to each branch 
and low WSS lateral to the ostium. Therefore, the two bifurcations of the 
structure of the flow mentioned above do not have any influence on the 
WSS parameter; they only affect the directions of the shear stress vectors. 

 

Figure 4.6. Effect of the inlet Reynolds number on the wall shear stress. In each panel, 
the top half (color map) represents the magnitude of the normalized wall shear stress 
(WSS; normalization is relative to τ0 = 20.1 dyne/cm2), while the bottom half shows  
wall shear stress streamlines. a) Re = 80, b) Re = 200, c) Re = 400 and  
d) Re = 800. For a color version of this figure, see www.iste.co.uk/deplano/biological.zip 

The dependence of the flow field on Reynolds number was then studied 
for different spacings between the two branches (i.e. different L/Da values). 
The two Reynolds number thresholds mentioned above are depicted in the 
phase diagram in Figure 4.7, which summarizes all of the observations made 
for steady flow. The lower part of the diagram corresponds to the fully  
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laminar regime, where no separation is observed (see the structure shown in  
Figure 4.6(a)). Note that the first bifurcation at Re1 ≈ 100 ± 20 is 
independent of L, showing that the interaction between branches has little 
effect at a low Reynolds number. For the intermediate region, labeled the 
“disturbed flow region”, separation is observed lateral to both ostia (as 
shown in Figure 4.6(b)). The second threshold is also computed with the 
same precision (± 20) and limits the upper region where the flow entering 
the first branch remains disturbed and the flow around the second ostium 
becomes laminar again. Note that the convex shape of the Re2 curve is 
consistent with the results mentioned above (and shown in Figure 4.5) for 
different L values at fixed Reynolds numbers. 

 

Figure 4.7. Phase diagram for the flow structure as a function of both  
the Reynolds number and the inter-branch spacing L/Da. For a color  

version of this figure, see www.iste.co.uk/deplano/biological.zip 

4.3.3.2. Pulsatile flow 

4.3.3.2.1. Flow structure and wall shear stress 
In the case of unsteady flow, a separated flow region shows highly 

oscillating wall shear stress due to the periodic growth and the motion of the 
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separated streamlines. Unsteady simulations were conducted using the pulse 
waveform shown in Figure 4.8 on the base case geometry with L/Da = 5 
(similar to that in Figures 4.3, 4.4(a), 4.5(a) and 4.6). The waveform is a 
sinusoid that oscillates between Reynolds numbers of 80 and 800 (0.2Re0 
and 2Re0), without retrograde flow, consistent with what would be 
expected in the rabbit abdominal aorta. Figure 4.9 illustrates color maps of 
the normalized wall shear stress WSS magnitude, with the vectors 
indicating the wall shear stress directions at the four different time points 
during the pulsatile cycle indicated in Figure 4.8 (0.25T, 0.5T, 0.75T and T, 
where T is the period of the cycle). 

The WSS color maps are fairly similar throughout the pulsatile cycle, 
showing the same characteristics as in the case of steady flow: broadly 
lower WSS values lateral to the branches and higher values proximal and 
distal to each ostium. During diastole at t = 0.75T, we observe that the 
dorsal wall maintains an elevated WSS, even though the WSS value 
upstream of the first branch is lower. This is due to the skewness of the 
velocity profile downstream of the first branch, as we will demonstrate 
below.  

 

Figure 4.8. Non-reversing sinusoidal waveform used in the pulsatile flow simulations. 
The black dots correspond to the time points of 0.25T, 0.5T, 0.75T, and T, where T is 
the pulse period, at which flow behavior is subsequently shown. The minimum and 
maximum Reynolds numbers are 80 and 800, respectively 
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Figure 4.9. Wall shear stress variation during the pulsatile cycle at the four time 
points indicated by the black dots in Figure 4.8. The colors denote the magnitude  
of the normalized wall shear stress (WSS; normalization is relative to τ0 =  
20.1 dyne/cm2), while the vectors depict the direction of the wall shear stress. a) T,  
b) 0.75T, c) 0.5T, and d) 0.25T, where T is the pulse period. For a color version of 
this figure, see www.iste.co.uk/deplano/biological.zip 
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In the instantaneous snapshots in Figure 4.9, we also recognize the 
different wall shear stress structures described in the steady flow case (see 
Figure 4.7). At 0.25T, no separation is observed, and the flow enters 
smoothly into the branches. Flow separation occurs lateral to both ostia later 
in the cycle as seen at t = 0.5T, and the last structure is observed at t = 0.75T 
where the flow loops before entering the first branch, but no separation and 
no looping is observed in the vicinity of the second ostium. At the end of the 
cycle, complex structures remain, but very low WSS values are registered. 
During the cycle, the flow undergoes similar bifurcations to the ones 
described in the steady flow simulations, but the successive critical Reynolds 
numbers are modified due to the accelerating and decelerating inertia terms. 
Note that the second bifurcation leading to the structure observed at  
t = 0.75T, where no looping is found at the second ostium, occurs even 
during diastole at a lower Reynolds number. As already mentioned in other 
studies (Cheer et al. 1998; Buchanan et al. 2003, 1999), a deceleration in 
inertia leads to an amplification of secondary flows and therefore also leads 
to the second structural bifurcation observed here. Also note that the 
structures observed in unsteady flow around the dorsal wall are more 
complex than the ones observed in the steady flow simulations. 

In the region lateral and near the ostium where early atherosclerotic 
lesions have been reported, this succession of separated and non-separated 
flow structures that we have observed has a very important consequence 
under pulsatile flow. Around the first ostium, the wall shear stress is 
streamwise during approximately half of the cycle (t1) and reversed during 
the other half (t2 and t3). Around the second ostium, however, the wall shear 
stress is streamwise during part of the cycle (t1), and reverses similar to the 
first ostium (t2), but then reverts back to being streamwise (t3). Therefore, the 
wall shear stress lateral to the second ostium oscillates more strongly than at 
the first ostium.  

4.3.3.2.2. Hemodynamic indices 
We wish to explore if there are hemodynamic indices that are capable of 

capturing the differences between the two branches in flow structure and 
directional oscillations along the lateral walls, as described above. A 
hemodynamic index encountered in the literature is the time-averaged wall 
shear stress. Figure 4.10(a) depicts a map of the time-averaged WSS:  
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〈𝑊𝑆𝑆〉 = ଵ் ∫ |ఛሬ⃗ |ఛబ 𝑑𝑡଴்  on half of the aortic wall, with the aorta cut open and 
pinned flat. As can be clearly seen, this index shows largely similar results 
for both ostia, with low WSS at the sides of the junctions and elevated WSS 
proximal and distal to each ostium. The one exception is the already 
mentioned small zone immediately downstream of the second branch. It is 
clear from these results that this index fails to capture the differences 
between the two ostia. 

We then turned our attention to the commonly used oscillatory shear 

index (OSI), which is defined as: OSI = ଵଶ ቈ1 − ቚ∫ ఛሬ⃗ ௗ௧೅బ ቚ∫ |ఛሬ⃗ |ௗ௧೅బ ቉ and which represents 

a time-averaged parameter that assesses the oscillatory character of the wall 
shear stress during a cycle. The OSI for this simulation is depicted in Figure 
4.10(b) and shows a particularly oscillating region along the dorsal wall, 
which corresponds to the region where large structures develop during 
diastole. However, around both ostia, which are our zones of primary 
interest, not much oscillating shear stress is observed apart from a small zone 
lateral to the second ostium, where we have precisely found that the structure 
of the flow changes up to two times during the cycle.  

Because the OSI appears incapable of fully capturing the steepness of the 
oscillations, we have considered another averaged hemodynamic parameter 
that uses the time derivative of the wall shear stress, which we call the “time 
derivative oscillating shear index” (DtOSI): 

DtOSI = 𝑇	 ∫ ฬ𝜕𝜏𝜕𝑡ฬ 𝑑𝑡଴்∫ |𝜏|𝑑𝑡଴்  

Figure 4.10(c) depicts a map of this quantity, where we observe that a 
lateral region close to the second ostium undergoes steep oscillating shear 
stress, while the region near the first ostium is largely spared. A small region 
with high DtOSI is also noted immediately downstream of the second 
ostium, which corresponds to the small recirculating region observed in 
Figure 4.6(d). Again, the ventral wall is far less prone to steep oscillations 
than the dorsal wall.  
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Figure 4.10. Hemodynamic shear indices. a) The time-averaged wall shear stress.  
b) The oscillatory shear index (OSI). c) The “time derivative oscillating shear index” 
(DtOSI). For a color version of this figure, see www.iste.co.uk/deplano/biological.zip 

4.3.3.2.3. Wake of the first branch is a critical factor 
As we have shown, when two T-junctions are placed successively, the flow 

and the wall shear stress around the second ostium are highly modified. It 
should be noted that the suppression of flow separation and looping 
streamlines found at the second junction is strictly a consequence of the 
interaction between the two branches, since an isolated second branch under 
the corresponding inlet conditions (Re=2/3Re0 and Qs/Q0 = 0.5) gives the 
classical looping streamlines and an extended separation region. Thus, the 
wake of the first branch plays a key role in the new wall shear stress behavior 
that we have observed around the second ostium. This wake is described as a 
combination of a skewed velocity profile in the streamwise direction and 
induced secondary flows in the transverse plane. Here, the secondary flows  
are a pair of counter-rotating streamwise vortices, a consequence of the 
deflection of the flow toward the ventral wall when passing the first branch  
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(see Figure 4.11, base case under steady flow conditions). Note that the velocity 
profile is skewed toward the ventral wall and the streamwise rotation is from 
the ventral to the dorsal side near the wall and opposite to the midplane. 

 

Figure 4.11. Top: velocity profile in the midplane of the geometry, demonstrating the 
skewness of the streamwise velocity profile downstream of the first branch toward 
the ventral wall. Bottom: Transverse plane velocity at three different locations 
between the two branches, demonstrating the presence of secondary flow patterns 
that take the form of two counter-rotating vortices. The simulations are for steady flow 
and the baseline conditions 

In order to explore the spatial evolution of the skewness downstream of 
the first branch under steady flow conditions, we define a simple skewness 
index as a concentration of the flow around the peak: Skewness = 1 − ∆௬஽ೌ, 
where ∆𝑦 is the size of the transverse segment where the velocity is above 
75% of the peak velocity. This index ranges from 0 to 1, with larger values 
denoting increased profile skewness. The evolution of the skewness 
downstream of the first branch as a function of the streamwise distance from 
the first branch x/Da is shown in Figure 4.12(a) for different inter-branch 
spacing L/Da ranging from 2.5 to 12.5. Interestingly, almost no difference is 
found among the different L/Da values, suggesting that the presence of the 
second branch does not have a significant effect on the skewness of the  
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velocity profile between the two branches. Also note that the skewness 
increases initially due to the nature of the secondary flows in the transverse 
plane (vortices bringing fluid to the ventral wall) and then decreases 
naturally due to viscous effects.  

a) 

    
b) 

 

Figure 4.12. a) Assessment of the extent of velocity profile skewness as a function  
of the distance from the first branch. b) Non-dimensional vorticity as a function of the 
distance from the first branch. In both panels, multiple curves are shown 
corresponding to inter-branch spacing L/Da ranging from 2.5 to 12.5. The simulations 
are for steady flow under the baseline conditions 
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A similar analysis can be conducted for the evolution of the secondary flow 
between the branches. Figure 4.12(b) shows the evolution of the  
non-dimensional vorticity as a function of x/Da for inter-branch spacing L/Da 
ranging from 2.5 to 12.5. To avoid the negative vorticity generated by the 
boundary layer near the wall, we simply integrate the positive values (Jeong and 
Hussain 1995), or more formally, the non-dimensional computed quantity is: 

𝑉𝑜𝑟𝑡𝑖𝑐𝑖𝑡𝑦௡ௗ(𝑥) = 	 1𝐷௔𝑢଴ ඵmax(𝜔, 0) 𝑑𝑆
Σ(୶)  

where Σ(x) is the transverse surface at the streamwise x coordinate and 𝜔 is 
the streamwise component of the vorticity. In Figure 4.12(b), it is important to 
note that each curve is stopped one Da before the second branch. Therefore, 
we observe that the decrease in the vorticity is independent of the presence of 
a second branch until 1.5Da above the center of the second branch. 

The presence of a second branch does not appear to influence the wake of 
the first branch, which means that the flow around the second branch and in 
particular, the phenomenon of suppression of looping streamlines and flow 
separation along the lateral walls observed above, can only be studied in 
terms of a skewed and rotating inlet flow (streamwise and transverse 
disturbances). We thus isolated the second branch for the baseline case and 
artificially eliminated one of the two components – skewness or secondary 
flow – of the disturbed inlet at 1.5Da upstream of the second branch. 
Interestingly, when only the skewness is included at the inlet of the second 
branch (see Figure 4.13(a)), the resulting wall shear stress structure is very 
different from the natural situation (see Figure 4.5(a)), and a large flow 
separation region is observed. The same occurs when only the secondary 
flows are included at the inlet with an unskewed (Poiseuille) streamwise 
velocity profile (see Figure 4.13(b)). These results show that both skewness 
and secondary flows are necessary to obtain the suppression of looping 
streamlines around the second ostium observed in Figure 4.5(a). 

a)                                                            b) 

       

Figure 4.13. Wall shear stress streamlines for steady flow under the baseline 
conditions a) in the presence of velocity profile skewness, but without secondary  

flow and b) in the presence of secondary flow, but without velocity profile skewness  
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4.3.4. Discussion 

In the present work, we have studied the flow patterns at two successive 
T-junctions by performing a series of computational simulations on a rigid 
model of generic abdominal aorta with model celiac and superior mesenteric 
arteries. Motivated by the differences observed among species, a major 
parameter of interest was the distance between the two branches. We 
specifically wished to understand how this distance influences the fluid 
dynamic interactions between the two branches. 

For single isolated branches, a prominent feature of the flow field is the 
presence of separated flow and looping streamlines along the lateral wall of 
the aorta in the vicinity of the branch. In the case of a two-branch geometry, 
however, the results demonstrated that for a large range of both the Reynolds 
number and the spacing between the two branches, flow separation and 
looping streamlines do not develop in the vicinity of the second branch, 
while they do systematically in the vicinity of the first branch. The 
consequences for the WSS patterns were studied in terms of the structure of 
the wall shear stress field, and this has allowed us to identify the absence of 
separation around the second branch as a bifurcation of the structure of the 
flow field: as the Reynolds number grows, starting from zero, two structural 
bifurcations are obtained. The first one leads to separation around both ostia, 
and the second one leads to the relaminarization of the flow entering the 
second branch. The practical consequence of this is that although in steady 
flow the regions near both branches experience similar magnitudes of wall 
shear stress, the directions of the stresses near the ostia are opposite 
(reversed for the first branch and streamwise for the second). 

For sinusoidal pulsatile flow, this change in wall shear stress direction 
has major consequences for the underlying endothelium in the vicinity of the 
ostia. Since the separation zone appears and disappears more rapidly at the 
second junction, ECs along the lateral walls of the second ostium undergo 
steeper oscillations throughout the cardiac cycle. This is well translated by a 
newly proposed averaged parameter, the DtOSI, defined to take into account 
the steepness of oscillations. 

Some light has been shed on the reasons for this change in direction 
between the two branches; however, more work is needed for complete 
understanding. Our results have shown that the disturbed flow downstream 
of the first branch is virtually insensitive to the position of the second 
branch, which means that the relaminarization phenomenon can be studied in 
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terms of disturbed flow at the inlet of the second branch. We were able to 
demonstrate that both disturbances (skewness and secondary flow patterns) 
found downstream of the first branch are necessary for the relaminarization 
to occur. The same kind of observations are expected to be made around 
junctions placed just after curved sections of the aorta, since these flows are 
both skewed and possess significant secondary flow patterns. 

The present simulations were conducted under highly simplified 
conditions including rigid arterial walls, a Newtonian fluid and idealized 
geometries that neglected minor curvature and vessel taper. Therefore, 
whether or not the flow structures observed here would also be seen in vivo 
remains to be established. High resolution in vivo flow imaging would help 
in this regard. 

Finally, the potential implications of the results obtained here for 
endothelial dysfunction and the development of atherosclerosis remain to be 
elucidated. It is now well established that ECs are exquisitely responsive to 
fluid dynamic shear stress (Hahn and Schwartz 2009; Barakat 2013). The 
development of experimental systems that can reproduce the types of flow 
patterns observed here and the investigation of these flow patterns on EC 
structure and function would certainly merit future study. 

4.4. Concluding remarks 

This chapter is divided into two complementary sections. The first is a 
general review of the role of arterial fluid mechanics in the development of 
atherosclerosis. The second section provides an illustrative example of the 
complexity of arterial flow fields, even under highly simplified and idealized 
geometric and flow conditions. 

The possible link between arterial fluid mechanics and atherogenesis was 
evoked over five decades ago. However, despite a very large number of 
theoretical, computational and experimental studies that have certainly 
greatly expanded our understanding of arterial flow fields, we still have not 
been able to establish definitively what type of flow corresponds to and 
correlates with the localization of atherosclerotic lesions. This lack of 
definitive conclusions is attributable to a number of considerations. One such 
consideration is the complexity of arterial flow fields and the difficulty of 
measuring wall shear stress in vivo, due to both resolution limitations and 
the movement of the arterial wall. Another complicating factor is that in 



136     Biological Flow in Large Vessels 

addition to studies on human subjects, different animal models are used in 
atherosclerosis research, including pigs, rabbits and mice, and the 
localization of lesions is different in all of these different species. Finally, in 
light of the fact that atherosclerosis is triggered by endothelial inflammation, 
as already described, linking fluid mechanics to atherosclerosis requires 
understanding of how disturbances in blood flow can induce endothelial 
dysfunction. This falls within the realm of the field of mechanobiology, a 
very active research field, where progress promises to ultimately unlock the 
secrets of fluid mechanical involvement in the development and progression 
of atherosclerosis. 
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5.1. Introduction

In normal systemic circulation, oxygenated blood flows out of the
pumping heart (left ventricle), through an architecture of branching trees
from larger to smaller conduits in the arterial network, to the
micro-vasculature of each organ. Here, it exchanges oxygen to enable
appropriate organ function, subsequently returning to the heart (right atrium)
through the smaller to larger conduits of the venous network. A similar
network architecture is present in pulmonary circulation where blood flows
out of the heart (right ventricle) to the lungs for oxygenation, and goes back
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to the heart (left atrium). Blood thus moves essentially forward in a
closed-loop system, due to pressure generated in the heart ventricles, in
which the flow rate is distributed according to the different subsystems’ need
and resistance to flow, and with a velocity that decreases from larger to
smaller vessels. In geometric multi-scale (or multi-domain) modeling, the
larger vessels, that is, the region of interest where the pathophysiology exists
or where an intervention is to be performed, are represented in full 3D forms
(reconstructed from medical images) while the remaining circulation is
represented by reduced order models, 1D or 0D lumped parameter models.
This approach (Formaggia et al. 2009; Vignon-Clementel et al. 2010a,
2010b; Quarteroni et al. 2016). Blood flow in a 3D domain Ω is modeled by
the Navier–Stokes equations (partial differential equations, PDE), as an
incompressible and often Newtonian fluid, taking into account the interaction
with the (visco)elastic vessel wall (fluid–solid interaction, FSI) or not (rigid
walls). In the latter case,

{
ρ
∂u

∂t
+ ρ (u ·∇)u− divσ = f in Ω,

divu = 0 in Ω,
[5.1]

with

σ(u, p) = −pI+ 2μD(u) and D(u) =
1

2

(
∇u+∇uT

)
[5.2]

where ρ and μ denote the density and dynamic viscosity, respectively, p and
u denote pressure and the velocity vector, respectively, f represents the
external body forces such as gravity, σ represents the stress tensor, I is an
identity matrix, and D is the strain-rate tensor. A no-slip boundary condition
is imposed on the surfaces Γwall representing the vessel walls. At inlet
surface(s) Γin, a Dirichlet boundary condition is typically imposed through
a measured mean flow rate and an assumed velocity profile (parabolic,
Womersley, or plug) but multiscale or multi-domain coupling
(Vignon-Clementel et al. 2006; Esmaily Moghadam et al. 2013; Quarteroni
et al. 2016) can also be done there. At the outlet surface(s) Γout, a pressure
boundary condition is typically imposed: for non-multiscale models, the
pressure values are either measured or imposed, and for multiscale models,
this pressure is derived from the coupled 1D or 0D models (hence enforcing a
relationship between pressure at this outlet and the rest of the system, rather
than fixing the pressure). The pressure boundary condition is usually imposed
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as a Neumann boundary condition on the traction σ · n (where n is the
normal vector) defined through equation [5.2].

By integration of FSI models on the cross-section of each vessel under
certain assumptions, one can obtain the 1D Euler equations (mass and
momentum balance equations), which contain wave propagation phenomena:

⎧⎪⎪⎨
⎪⎪⎩

∂A

∂t
+

∂(Av)

∂x
= 0,

∂v

∂t
+ v

∂v

∂x
+

1

ρ

∂p

∂x
=

f

ρA
+ g

[5.3]

where A represents the cross-sectional area at a location x along a vessel
centerline, v represents the average uniaxial velocity, f represents the friction
force per unit length, which depends on the assumptions made on velocity
profile and blood viscosity, and g denotes gravity along the longitudinal
direction. Equation [5.3] is closed with a pressure–area relationship through
the material properties of the vessel walls, which typically is:

p = pext + β
(√

A−
√

A0

)
[5.4]

where pext is the external pressure, A0 is the area at zero transmural pressure,
and β is a material parameter which depends on the Young’s modulus,
Poisson ratio and thickness of the vessel wall. Finally, an integration of the
1D equations along the x-direction results in a set of ordinary differential
equations (lumped parameter models or 0D models). These 0D models are
conveniently described as a combination of several electrical elements,
connected in series or in parallel, to describe various segments of the
circulation (pressure is considered analogous to electrical voltage and flow
rate is considered analogous to electric current). The electrical analogy and
the relationships between pressure and flow for the commonly used elements
are described in Table 5.1.

0D models are often designed to represent heart subparts or circulatory
subsystems with just a few components. These reduced models enable
computational tractability (Shi et al. 2011). For patient-specific predictions,
multiscale models require tuning of the model parameters (typically the
0D part of the model) to individual patients. To this end, clinical
measurements/data are required, and parameters are estimated such that the
model reproduces the clinical data within the bounds of measurement errors
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and model fidelities. This chapter presents some strategies on how such
parameter estimation may be performed given the type of clinical data
available and the importance of the 3D part. Note that such strategies can also
be used in multiscale ventilation simulations, such as air flows in the lung
through the trachea connected to the airway branching tree and terminal
regions (Oakes et al. 2015).

Phenomenon Electrical analogy Component Pressure–flow relation

Viscous losses Resistance p1

R
q

p2
p1 − p2 = R q

Inertial losses Inductance p1

L
q

p2
p1 − p2 = L q̇

Vessel compliance Capacitance

q1 p

C

q2

q1 − q2 = C ṗ

Table 5.1. Pressure (p) and flow rate (q) relationship in 0D models

5.2. Multiscale models: do we need patient-specific data?

While it is clear that patient-specific measurements are important, some
thought on when such data are indispensable is required. The utilities of
hemodynamic models can be broadly classified into three categories:
(i) generic assessment of a novel medical device, for example a valve, or
surgical/interventional procedure, for example creation of a shunt;
(ii) optimizing the design of a medical device or surgical/interventional
procedure to an individual patient for target hemodynamic indicators
(pressure, flow rate, wall shear stress); and (iii) studies where an overall
analysis for a population is required. These three scenarios are discussed
next.

5.2.1. Assessing function of a new procedure/device

Clinical practitioners (interventional cardiologists, surgeons, etc.) devise
novel procedures or devices to tackle particular pathophysiologies based on
experience. For example, the concept of a percutaneous pulmonary valve
reducer was proposed as an alternative to surgical valve replacement in order
to alleviate the right ventricle suffering from pulmonary valve regurgitation in
the enlarged right ventricular outflow tract of tetralogy of Fallot patients.
Caiazzo et al. (2015) proposed to study the effect of this novel device on
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patient hemodynamics through a multiscale model. The aims were to study
the device function (change in mean flow generated by the device, pressure
drop induced by the reducer, generated forces, etc.) and to compare two
variations of device implantation (the pulmonary reducer alone and when it is
augmented with a valve). In such a typical design study, patient
hemodynamic measurements may not be necessary. Before a new device is
implanted in patients, by design there are no data available, let alone for the
geometry. In such cases, a representative model of the pathophysiology
before treatment would suffice. Boundary conditions should be chosen such
that they are not expected to change with the device. For example, 0D
Windkessel models representing the distal circulation at each outlet can be
taken from the literature, or tuned such that typical pressure and flow rate
averages or cardiac-cycle variations of that part of the cardiovascular system
are reproduced (see Caiazzo et al. (2015) for a more specific example, and
section 5.3 but taking typical information instead of patient-specific
information for parameter tuning). The device geometry or surgical
anastomosis should be designed with the medical expert, and virtually
implanted in a typical patient geometry. The effects of the device can then be
simulated.

5.2.2. Optimizing the procedure/device for an individual patient

Once a particular procedure or device is being tested in clinical feasibility
study or has been established to be clinically beneficial, surgical connection
or device design may require optimization to provide maximal benefit to the
patient or to understand failing cases, given their specific unique vessel
geometry and hemodynamic conditions. This can be particularly important
when the margins of acceptable hemodynamic ranges in post-operative
hemodynamics may be low. As an example, Yang et al. (2013) proposed
multiscale modeling to optimise the design of a Y-graft in Fontan circulation
so that hepatic flow distribution was improved. In this case, since the device
design is specific to patient anatomy and the optimization is done for one
individual patient, multiscale model personalization through preoperative
patient-specific clinical measurements is indispensable.

5.2.3. Population studies

To go further in the understanding of a pathophysiology and its alleviation
and treatment options, population studies are desirable from a scientific point
of view. Such studies can build on patient-specific multiscale simulations, as
in the previous section but be performed for many patients such that
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statistically meaningful conclusions can be drawn. To date, such an approach
is rare due to the fact that it is difficult to have access to the patient-specific
data necessary to establish individualized flow simulations: such necessary
data are often acquired for research protocols only, for ethical and cost
reasons, and it is tedious to retrieve them, post-process them and perform
the entire chain of simulation (Vignon-Clementel et al. 2010a). Thus,
“population” studies that involve patient-specific hemodynamic data are
typically restricted to half a dozen or a dozen cases (Yeung et al. 2006;
LaDisa et al. 2011; Yang et al. 2012; Arbia et al. 2015). However, this is the
clinical number of cases needed for feasibility or prospective studies. Most
often, population studies are based on patient-specific anatomy and average
hemodynamics of the normal population (sometimes scaled by BSA) (Cebral
et al. 2005, Joly et al. 2020). The rare large population studies are conducted
under simplified assumptions (steady, not multiscale, etc.) to describe a state
rather than to be predictive (Haggerty et al. 2014). For normal physiology, as
the different organs and circulation subsystem parameters are documented in
the literature, a model (such as 1D-0D of a large number of arteries) can be
run spanning a range of parameter population priors to generate
hemodynamic waveforms (pressure and flow rate) at different locations of the
cardiovascular system that are representative of the population (Willemet
et al. 2015). If population priors can be known for disease cases, this
approach can be extended to pathophysiologies; however, these parameter
priors are not generally known for pathophysiologies. If enough
hemodynamic data are gathered for a given pathology, then by parameter
estimation of the whole population (most probably on a reduced model), we
could derive such disease parameter population priors.

5.3. How do we include patient-specific data?

When patient-specific data need to be integrated into the model
(multiscale or purely 0D), strategies should be devised according to the
available measurements, that is, their implementation and computational
complexity need to be coherent with the amount of information. Thus
parameter identification can be done on purely 0D models, and for multiscale
models, on loosely coupled 3D-0D models (meaning only a few 3D-0D
simulations are required), or on strongly-coupled 3D-0D models (in the sense
that each parameter identification simulation includes the 3D part).

In what follows, the types of clinical data that are typically available and
the associated challenges in their inclusion are first described. Then, a broad
categorization of model and measurements features, from which a suitable
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parameter estimation strategy can be devised, is presented along with
examples where such strategies have been employed.

5.3.1. Type of clinical data available and associated challenges

In multiscale models, reduced models constitute boundary conditions for
the 3D part and drive most of its dynamics. They are thus crucial for the model.
In closed-loop 0D models, the dynamics are defined by their many parameters.
Yet, in all of these cases, their parameters are a priori unknown: they need to
be identified in order to reflect hemodynamic measurements. Depending on
the considered application, available measurements besides imaging data to
build the 3D geometry vary. Direct or surrogate measurements of flow and/or
pressure are considered (see Figure 5.1):

1) phase-contrast magnetic resonance imaging (PC-MRI) can provide flow
rate over time on a surface and if the spatial resolution is fine enough even a
velocity profile over a surface and its time evolution;

2) catheterization leads to pressure over time at a given location (direct or
wedge as a surrogate);

3) Doppler ultrasound can provide maximum (in a small volume) velocity
over time, typically interpreted as a flow rate over time assuming a certain flow
profile on a surface or by direct integration by the machine.

Depending on the acquisition method, either mean values (in time and
possibly within a certain region), min/max values or full time-varying curves
are trusted. We thus present several challenges in this topic:

1) measurements are not necessarily taken at boundaries of the 3D domain;

2) they are often too few to identify all parameters, and thus need to be
complemented by modeling assumptions or literature data;

3) they are usually not taken simultaneously and are thus not synchronized
in time;

4) computational complexity is often an issue for parameter identification.

Each section is addressing these challenges in its own way. The question of
identifiability (see for example Miao et al. (2011), Pant and Lombardi (2015)
and the references therein) is not addressed here in the formal mathematical
sense (see Boulakia et al. (2013) for Robin parameter estimation in the Stokes
system), but rather a practical approach is proposed: either the model chosen is
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simple enough to ensure identifiability (section 5.3.3.1) or sensitivity analysis
tools give numerical feedback (section 5.3.3.2). There are certainly different
ways to address these questions, and we propose here practical strategies based
on experience: the main idea of the procedure is sketched in Figure 5.2. For the
sake of clarity, here unless otherwise stated, we will consider that the inlet flow
rate is known, on average (for steady simulations) or over time (for pulsatile
simulations). It can either come from measurement or from the literature; in
such cases, scaling with the patient’s body surface area (BSA) as often done
in the clinics or following allometric scaling laws (across species) with the
subject mass to the power 3/4 (West et al. 1997) is recommended. Even if the
inlet is coupled to a 0D model or has a pressure boundary condition imposed,
the philosophy is similar.

Figure 5.1. Examples of clinical data. MRA for the geometry (top left). Pressure
tracings over a few cardiac cycles (bottom left). Doppler velocity over seven cardiac

cycles (top right) and PC-MRI flow rate over one cardiac cycle (bottom right)
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5.3.2. Establishing if the resistance of the 3D part is negligible or not,
and parameterization in case it is

The resistance of developed flow in a pipe is given by the Poiseuille law,

which states that the resistance R = 8μl
πr4 is proportional to the pipe length l

and inversely proportional to the pipe radius r to the power 4. Hence, for
most large vessels, their resistance is small compared to the overall system:
in many pathophysiologies, almost all resistance to flow is due to
downstream micro-vasculature. In such cases, if no major nonlinearities are
estimated to exist in the 3D part of the multiscale model, such as those arising
due to stenoses, for example, then for the purpose of parameter estimation,
the 3D region may be neglected, thereby significantly reducing the
computational cost of parameter estimation. The main idea of the different
tuning options presented below is shown in Figure 5.2.

Estimate Req of whole system

Run a first 3D simulation
Compare 3D resistance

R3D and Req

If R3D << Req: tuning of
parameters without 3D part

If R3D ≤ Req: tuning of
parameters with 3D part

If mean/max/min data available:
simple tuning (e.g. fixed
point) on multiscale model

If time-tracing data available:
more expansive tuning (e.g. UKF),
possibly on 0D equivalent model

Figure 5.2. Scheme to choose a multiscale parameter tuning method appropriate
for the 3D effects and type of available clinical hemodynamic data

In any case, let us start with an initial steady simulation on a 3D
multi-branch geometry, which has one inlet and N outlets (cases with a
single vessel or with multiple inlets can be considered in a similar manner).
The precise pressure or flow rate is rarely known at each inlet and outlet
(Vignon-Clementel et al. 2006, 2010b). The minimum required information
is then to know the mean flow rate that goes through the model (Qin), a
representative mean target pressure PT in this area of the cardiovascular
system and a reference pressure Pref that represents the pressure at the distal
part of the 3D-0D model (typically the capillary pressure or the right atrium
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pressure for systemic simulations, and the left atrium pressure for pulmonary
simulations). The latter is often neglected in systemic arterial models. These
data can come from measurements or from the literature (Avolio 1980,
Nichols and O’Rourke 2005, Vignon-Clementel et al. 2006, 2010a). These
values enable us to define the total equivalent resistance of the branching

network, Req = PT−Pref

Qin
. A first simulation can then be run, imposing the

following set of boundary conditions (see section 5.1): {Qin at the inlet, zero
outlet pressures}. The output determines a first estimation of the resistance of

the 3D geometry R3D = P 3D
in

Qin
. If R3D << Req, then the 3D part of the model

represents a priori a negligible portion of the overall resistance of the
multiscale model, and most of the dynamics and flow distribution among
branches are expected to be driven by the choice of inlet and outlet boundary
conditions respectively.

In hemodynamic multiscale models, 3D outlets are coupled to 0D parts
which, prior to connecting together to the common pressure Pref , consist for
each outlet i from 1 to N in a resistance, a Windkessel RCR model
(resistance, capacitance and resistance) or more complex models (RLCR,
RCRCR, impedances from fractal trees...) (Vignon-Clementel et al. 2006,
Alastruey et al. 2008, Vignon-Clementel et al. 2010b, Arbia et al. 2015, Pant
et al. 2016). In all of these cases, the total resistance Ri determines the
average relationship between pressure and flow at this outlet i, and thus the
flow distribution among the different branches on average over a cardiac
cycle, assuming periodicity of the solution. This average flow distribution is a
modeling choice that should represent the physiological needs of the distal
vasculature and/or organs connected to that branch. Such flow distribution
thus depends on the application. Either distributions are known from the
patient data (see LaDisa et al. (2011), Pant et al. (2014a) for examples in the
aorta) or patient data in combination with assumptions of flow distribution
proportional to 3D outlet surface area to a certain power (see Troianowski
et al. (2011), Arbia et al. (2015) for examples in pulmonary circulation)
determine this average flow distribution αT = (αi)1≤i≤N , αi = Qi/Qin.

This thus sets the total resistance of each outlet reduced model
Ri = Req/αi. Another steady simulation can be run with the same inlet flow
and the Ri,1≤i≤N as outlet boundary conditions. Post-processing of the

solution leads to a comparison of the resulting inlet pressure to PT and flow
distribution to the target one αT. If the differences are negligible, then we
needs to define based on these Ris the rest of the 0D parameters (see section



Patient-specific Hemodynamic Simulations 149

5.3.3.1) and verify that this is still the case on a pulsatile multiscale
simulation. The multiscale model is then parameterized as best as possible
given the available information: local flow features, wall shear stress or other
post processing to study the pathophysiology can be performed, or virtual
changes in the 3D geometry or the inlet conditions can be investigated
(Vignon-Clementel et al. 2010a). If the differences are not negligible, then
the 3D part is in fact non-negligible in the setting of the multiscale
parameters, and we need to consider other strategies explained below. These
strategies must also be devised if R3D ∼ Req or if more complex
measurements (target data) are available.

5.3.3. Resistance of the 3D part is not negligible

In many pathophysiologies, particularly those involving aneurysms/
stenoses or very complex anatomies, the 3D resistance may not be neglected.
Measurements to be matched or target data may also not be as simple as the
ones presented above. These cases are addressed in this section with two
sub-categories: (i) cases where only mean values of key hemodynamic
indicators such as pressure and flow-rate are available; and (ii) cases where
full time-varying measurement curves are available.

5.3.3.1. Only mean values of flow/pressure are available

When only mean values of pressure and flow are available at a few
locations, there is clearly too little information to identify dynamical
components, such as compliances (capacitances) and inertial (inductance)
components, in the 0D model. As a first approximation, we can neglect their
influence on mean pressures and flow rates. Therefore, while only total outlet
resistances can be identified through steady-state multiscale simulations, the
latter are computationally less expensive than full pulsatile simulations.
Iterative strategies can thus be employed in the full multiscale model.
Moreover, the following approach tackles cases where measurements are not
taken at boundaries of the 3D domain. Examples are average flow over one
subpart (e.g. one side of the pulmonary arterial tree), and time-average
pressure for which the exact location has not been recorded but clinical
experts define it as being the minimum, maximum or average over a certain
number of branches – thereafter called non-local target pressure PT (Figure
5.3). Such an approach is illustrated in a case of single ventricle physiology
where more details can be found (Arbia et al. 2015).
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Figure 5.3. Left: multiscale model set-up for pre-stage 2 single ventricle physiology
with the 3D domain, its inlet face on which the inflow Qin is prescribed, and the distal
pulmonary circulation for each outlet which all merge in the single atrium defined by its
pressure Pat. Clinically measured quantities are marked with a star. At each outlet
(dashed rectangle), the pulmonary arteries, capillaries and veins are represented
either by a single total resistance for tuning, or by a more complete five-parameter
reduced model for predictions. Right: example of simulation results (pressure, velocity
streamline, wall shear stress). Images adapted from Arbia et al. (2015)

Several stages of palliative surgery are required to connect the systemic
and pulmonary circulations in single ventricle physiology. Arbia et al. (2015)
performed patient-specific multiscale simulations, identifying parameters
based on preoperative measurements, with the aim of studying the pre-stage 2
and virtual stage-2 treatment options. The multiscale model is shown in Figure
5.3 where the inlet face represents the systemic-to-pulmonary shunt that feeds
into the left and right pulmonary arteries. Since only mean values of inlet
flow (Qin), flow-split (ratio of right pulmonary artery flow to total flow) fs,
atrial pressure (Pat) and non-local pulmonary artery pressure (PT), in which
localization and type are defined differently for each patient, are available
for parameter estimation, only total resistances can be identified. Therefore,
each pulmonary outlet is coupled to a single total resistance for parameter
estimation. As opposed to the previous case, the 3D anatomy cannot, in
general, be neglected in this model. An alternative strategy is hence devised
based on the following principles:
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1) the measured Qin is imposed directly at the inlet and the measured atrial
pressure Pat is imposed at the ends of the model defining Pref ;

2) the target values to be reproduced by the model are PT and fs;

3) to alleviate the ill-posed nature of the inverse problem of identifying all
(6–20 depending on the patient anatomy) terminal total resistances from just
two measurements, a further assumption is made: the total flow of the right/left
pulmonary artery outlets is partitioned into the individual outlets in proportion
to the individual outlet surface areas. This defines with Qin and fs a certain
flow repartition αT, as defined in section 5.3.2;

4) the above assumptions lead to a fixed-point iterative method for total
resistance identification which, starting from a guess of total resistance values
(e.g. as defined in section 5.3.2), typically converges in 5–10 iterations.

The total resistances Ri,1≤i≤N are then split to RCRCR boundary
conditions (see Figure 5.3) based on a morphometric approach and scaling
rules (e.g. relative role of arterial and venous vascular beds) presented in the
literature. The iterative scheme can also be used with pulsatile inlet and
RCRCR boundary conditions. The resulting multiscale model has then been
coupled to larger closed-loop models or used for surgical planning. More
generally, Ri,1≤i≤N can be the basis for RCR (LaDisa et al. 2011,
Vignon-Clementel et al. 2010b), RCRCR (Arbia et al. 2015, Pant et al.
2016), RLCR Alastruey et al. (2008) or more complex impedances
(Vignon-Clementel et al. 2006).

5.3.3.2. Time-varying curves of flow/pressure are available

When full time-varying measurements are available, while the
measurement data are quite rich and allow for identification of the dynamical
components as well, the forward models (unsteady models that need to be run
for multiple cardiac cycles) can be prohibitively expensive for parameter
estimation. In such cases, one strategy is to employ a reduced order model for
parameter estimation that can capture the essential features of the fluid-flow
in the 3D regions. This strategy is illustrated in a case of aortic coarctation
(CoA).

CoA is a disease characterized by the narrowing of the aorta. The clinical
evaluation of coarctation severity, which determines whether or not corrective
surgery is required, is based on the threshold of 20 mm Hg pressure-drop
across the coarctation under exercise conditions. Measuring this pressure
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drop under stress conditions is difficult in a clinical setup and hence it is
thought that multiscale computational modeling can predict this pressure
drop and therefore aid in decision-making. The multiscale model proposed by
Pant et al. (2014a, 2014b) is shown in Figure 5.4 (left panel) where the
outlets are coupled to RCR Windkessel models and an inlet capacitance is
used to characterize compliance effects in the ascending aorta. The inlet flow
rate is measured and is imposed as a Dirichlet boundary condition before the
capacitance, and the target is to match the measured pressure in the proximal
plane (close to the 3D inlet, Figure 5.4), the measured flow rate in the
descending aorta and the measured mean flow rates in the supra-aortic
branches. Since time-varying measurement curves are available, Pant
et al. proposed to use a data-assimilation method, the unscented Kalman filter
(UKF), for parameter estimation.

Figure 5.4. Left: the image of the CoA region of interest. Iterations for parameter
estimation of the 3D region for CFD and the lumped boundary conditions and the
0D equivalent where the 3D part has also been replaced by a lumped parameter
model (black). Outer parameters (inlet capacitance and outlet Windkessel boundary
elements) are represented in orange

Two challenges were found: first, the pressure and flow-rate
measurements were not synchronized in time; and second, only mean flow
rates were available in the supra-aortic branches when the UKF method
requires full time-varying curves. The authors addressed the former issue by
introducing a time-lag parameter between pressure and flow-rate
measurements, which was also to be estimated, and the latter creating
pseudo-measurement curves for the supra-aortic branches by redistributing
the difference between ascending and descending aorta flow-rates in
proportion to the mean-flow rates. Since UKF methodology allows for
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specification of confidence in each measurement, the pseudo-measurement
curves were assigned a relatively low confidence when compared to the true
measurements. As coarctation is characterized by narrowing of the aorta, a
change in anatomical feature in the 3D geometry, the 3D resistance may not
be neglected. Furthermore, as opposed to the previous case of single ventricle
physiology, where only mean measurements were available and hence only
steady-state simulations (relatively inexpensive), here full unsteady
simulations (computationally expensive) would have been required even if an
iterative estimation method had been chosen. Therefore, the authors chose to
employ the UKF strategy not on the multiscale model but on a reduced order
model based on the following procedure (see Figure 5.4):

1) a 0D representation of the 3D geometry is created, whose parameters
are initialized by geometrical considerations. For the outer 0D parameters,
they can be initialized based on total resistances estimated as in section 5.3.2
and common RCR derivation (section 5.3.3.1);

2) UKF procedure is used on the 0D representation to estimate all 14 outer
parameters;

3) multiscale simulations are run from the above estimated parameters;

4) from the multiscale results, the 0D representation of the 3D geometry is
improved by linear regression analysis;

5) steps 2–3 are repeated until convergence.

The essential idea is that, in order to be computationally efficient,
parameter estimation is performed on a 0D representation of the 3D model,
and at each iteration the 0D representation is improved by the results of the
multiscale simulations, but requiring overall only a few 3D-0D simulations
(Pant et al. 2014a). Another approach to circumvent the high computational
cost of 3D simulations is to utilize a surrogate model. In this approach, a few
3D simulations, scattered so that they fill the parametric space, can be run to
create a surrogate model (often referred to as a meta model) that interpolates
or regresses the 3D model’s response. This fast-running surrogate model can
then be used in lieu of the higher fidelity 3D model for parameter estimation,
uncertainty quantification (Schiavazzi et al. 2016) and sensitivity analysis
(Quicken et al. 2016). Typical surrogate modeling approaches are Kriging
(Gaussian Process modeling), methods based on polynomial chaos expansion
and machine learning methods such as neural networks.
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5.4. When models fall short of expectations: toward adaptation

An important aspect that requires attention is model validation. It serves
two purposes: (i) when model validation is successful, it provides further
confidence in the model results so that the unique insights provided by the
model can be trusted; and (ii) when model validation fails, it points to
shortcomings in the coherence of the clinical data (Arbia et al. 2015) or in the
model, thereby paving the way for further development and adaptation to
account for important physical phenomenon. In what follows, two cases
where validation led to model adaptation and significantly improved results
are presented.

5.4.1. Liver hepatectomy and blood loss

Partial liver hepatectomy (resection) is widely performed to treat liver
disease or for liver donor transplantation. The resected liver is expected to
regenerate over a few weeks post-hepatectomy, but in some cases function is
poorly restored. Audebert et al. (2017) adopted a 0D modeling approach
(Figure 5.5) to gain insights into liver hepatectomy. They represented three
distinct lobes of liver to be able to simulate removal of one or more lobes
during hepatectomy. Parameters of the model were estimated for 12 pigs
individually through measurements of arterial and venous pressures, portal
vein pressure and flow rate, and hepatic artery flow rate. These were further
augmented by assumptions that liver lobe resistances and compliances were
inversely and directly proportional, respectively, to lobe mass. With these
assumptions, excellent agreement between the measurements and model
results was obtained pre-hepatectomy (which reflected the good tuning of the
parameters). On the other hand, while the simulations of hepatectomy
correctly predicted the general trend (increase or decrease) in the variation of
key hemodynamic indicators, the magnitudes were either over- or
under-estimated. The key phenomenon missing in the model was the fact that
significant blood loss occurred during the hepatectomy procedures, while the
model only accounted for loss of liver mass. When the authors took this
blood loss into consideration by introducing a variable Qi,b, they were able to
obtain significantly better post-hepatectomy predictions through the model.
Mechanisms that explained these non-trivial quantitative increases and
decreases in key hemodynamic factors could thus be elucidated. This
example shows how model adaptation is necessary for reliable understanding
or predictions in different pathophysiologies, as opposed to adopting a
one-size-fits-all approach.
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Figure 5.5. Schematic representation of the 0D closed-loop cardiovascular
and liver blood circulation. The pig liver model consists of three

distinct lobes. Qi,b accounts for blood loss during surgery (Audebert et al. 2017)

5.4.2. Pulmonary stenosis alleviation and vascular adaptation

Peripheral pulmonary artery stenosis is a disease characterized by
narrowing of the branched pulmonary artery segments. Yang et al. (2016)
developed a multiscale model with three-element Windkessel boundary
conditions to predict post-operative, i.e. when stenoses were virtually
surgically removed, hemodynamics to aid surgical planning between different
options (which, by nature, cannot all be tested on a given patient). They
estimated the Windkessel parameters by first identifying the total resistances
and then distributing the total resistance to RCR Windkessel components
based on a morphometry-based tree approach (Spilker et al. 2007). The
post-operative results, however, showed a deviation of ∼20% with respect to
the gold-standard clinical measure of flow to the right lung. The most likely
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reason for this deviation was that the pulmonary vasculature has an ability to
change its resistance through vascular dilatation and contraction, which the
model did not account for. Therefore, the authors hypothesized that a target
for such an adaptation could be maintenance of constant shear stress in the
pulmonary vasculature. It is, however, not straightforward to determine how
shear-stress-related dilatation/contraction will result in changes in parameter
value of the Windkessel model. Therefore, to model adaptation, the authors
constructed an equivalent structured pulmonary tree (see Figure 5.6), with
branches of successively decreasing radii. With the acute post-operative
results from the Windkessel multi-scale model, it was possible to change the
radii in the structured trees with the constant shear hypothesis. These adapted
structured trees were then converted back to Windkessel models to simulate
the post-operative and post-adaptation hemodynamics. This resulted in a
reduction from ∼20% error to ∼4% error with respect to the measurements.
This example shows how classical multiscale models, when they fail on
straightforward application, can be adapted to included key physical
phenomenon to improve their predictive power.

5.5. Conclusion

In this chapter, we have presented the challenges in devising
patient-specific model simulations and, in particular, presented an overall
strategy to choose a 0D parameter tuning method based on the type of
available data and the importance of the 3D flow features compared to the
overall system. When time-tracings of hemodynamic data are available, the
UKF has been shown to be a good option for such hemodynamic cases.
Besides multiscale simulations, it has been successfully used in a 0D
closed-loop model of the entire circulation for severe pathologies (Pant et al.
2016), including when pressure and flow rate data were acquired at different
heart rates (Pant et al. 2017). Although progress has been made in
patient-specific hemodynamic simulations and the combination of modeling
and machine learning seems promising (Joly et al. 2020), to date large
population studies with patient-specific hemodynamic data are lacking, and
validation of such simulations remains a challenge. Both facts are due to the
complexity of gathering patient-specific hemodynamic data from multiple
modalities, preoperatively or more often post-operatively to validate a
prediction based on preoperative data and virtual surgery planning
(Vignon-Clementel et al. 2010a). Furthermore, circulation changes due to
surgery, adaptation, growth or remodeling are largely yet to be better
understood and integrated into models (Corsini et al. 2015, Yang et al. 2016,
Audebert et al. 2017).
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Figure 5.6. a) Illustration of structured trees for the PAs. If a root segment has a radius
of r, the size for the daughter segments is scaled by α and β. For each 3D outlet, a
structured tree is created such that the total resistance of the structured tree is equal
to the resistance of the three-element Windkessel model used for the same 3D outlet
in simulations. b) Algorithm of structured tree adaptation for post-operative outflow
boundary conditions. Figures adapted from Yang et al. (2016)
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6.1. Introduction

Blood flow models in arteries are based on the Navier–Stokes fluid
equations and to solve the complete problem they have to be coupled to the
mechanics of the displacement of the arterial wall in a three-dimensional
(3D) domain. Coupling blood dynamics with wall displacements is a
challenging research topic due to the complexity of the problem. Because of
the technical difficulties, 3D modeling is usually restricted to small regions of
the systemic circulatory system such as arterial bifurcations, aneurysms (Kim
et al. 2010, Vignon-Clementel et al. 2010) and only in a few cases applied to
the entire circulation (Xiao et al. 2013). Nevertheless, it is clear and
acknowledged that 3D models can provide relevant information on the blood
flow behavior in patient-specific configurations. However, the drawback is
the time required for computations, which is far above real medical
application needs. Fortunately, it is possible to derive reduced-order models
that circumvent the computational time and resource problems by making
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some assumptions about the geometry of arteries and the flow symmetries.
Reduced models have been developed in the past and it is interesting to
compare their behavior in medical configurations.

We present four reduced blood flow models, each with different degrees of
complexity and compare them on a real medical configuration, a stenosis.
Stenosis is a narrowing of a blood vessel and can originate from aortic
coarctation, a congenital heart disease, frequently located in large arteries
(Warnes et al. 2008). Arterial stenoses can also result from the formation of
fat plaques on the arterial wall of the coronaries (Benjamin et al. 2017).
Regardless of the causes, the obstruction of the vessel affects the
hemodynamics, which is why we use the reduced-order models to analyze
the flow in such a configuration.

Section 6.2 presents the four reduced models for blood flow modeling: the
steady RNSP model, the multi-ring model, the one-dimensional (1D) model
and a zero-dimensional (0D) model. All of these models derive from the
Navier–Stokes equations, with the assumption of axisymmetric blood flow
and the classical long-wavelength hypothesis, that is, axial wavelength greater
than the arterial radius, leading to the reduced Navier–Stokes Prandtl (RNSP)
equation. To take into account the fluid–structure interactions, the mechanics
of the arterial wall are modeled by a relation called pressure law that can either
be elastic (Ghigo et al. 2017), hyper-elastic, viscoelastic (Alastruey et al.
2011) or rigid (Lagrée and Lorthois 2005). Starting from the Navier–Stokes
equations, we obtain :

– the RNSP model which is coupled to elastic or rigid walls and can lead
to two specific models:

- the steady RNSP model,

- the multi-ring model;

– next, by averaging the RNSP model over the cross-section of the vessel,
we recover the classical one-dimensional model (Alastruey et al. 2012, Ventre
et al. 2019). The 1D model also requires coupling with a wall pressure law
(Quarteroni et al. 2016) to take into account the fluid–structure interactions,
and an additional hypothesis on the velocity profile to compute the wall shear
stress (WSS);

– finally, by averaging the 1D equations over the length of the artery, we
obtain the 0D model, also referred to as the algebraic model (Young and Tsai
1973a,b).
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To validate the reduced models, in section 6.3 we propose two classical
configurations: a numerical one based on the development of the boundary
layer of a flow entering a straight rigid channel where the reduced models
(steady RNSP model, multi-ring model and Poiseuille solution) are compared
to a complete 2D axisymmetric simulation of the Navier–Stokes equations;
and a theoretical one by computing the analytical Womersley solution for
unsteady flows, in this case using the multi-ring model.

Finally in section 6.4, we present a comparison between the reduced
models over a stenosis configuration and against invasive and in vivo
experimental data of pressure drops (Young et al. 1975).

6.2. Blood flow modeling

The dynamics of blood flow in arteries are governed by the 3D
Navier–Stokes equations

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ μ∇2u [6.1]

where u is the 3D velocity vector, p is the pressure, ρ is the fluid density and
μ is the dynamic viscosity. In a cylindrical system, the components of the
velocity vector u are (ur, uθ, ux). The dynamic viscosity is constant because
in large arteries the average shear rate γ̇ is high enough to consider the fluid
homogeneous and Newtonian. Because the velocity in the arteries never
exceeds a few meters per second, the Mach number is small and we can thus
consider that blood flow is incompressible, that is,∇ · u = 0.

Most arterial wall models consider the artery as an axisymmetric thin
cylinder. In physiological conditions, the wall displacement is small
compared to the typical arterial radius R0, that is, the small perturbation
assumption is then valid. The simplest way to describe the arterial wall is
with a homogeneous, isotropic, isothermal, linear elastic material, therefore
the stress and strain tensors are related through Hooke’s law.

These hypotheses allow for simplifying the Navier–Lamé equations into a
simple law of the behavior of the arterial wall, which links the pressure to the
cross-section of the artery. This law can be elastic (Quarteroni et al. 2016) or
more complex, such as a viscoelastic (Alastruey et al. 2011) or hyperelastic
law. The elastic model follows:

p(x, t) = K(x)
(√

A(x, t)−
√

A0(x)
)

[6.2]
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where p is the fluid pressure, A(x) is the cross-section, A0(x) is the reference
cross-section and the parameter K characterizes the elastic behavior of the
arterial wall and is of the following form:

K(x) =
E

1− ν2

√
πh

A0(x)
[6.3]

where E is Young’s modulus, h is the wall thickness and ν is the Poisson
coefficient.

6.2.1. Two-dimensional axisymmetric model

The Navier–Stokes equations [6.1] simplify by considering the geometry of
an artery as axisymmetric, leading to the mathematical condition of symmetry
∂/∂θ = 0 and assuming that the azimuthal velocity uθ is negligible by mass
conservation.

To perform an asymptotic analysis, we introduce a small parameter
ελ = R0

λ � 1 that measures the ratio between the characteristic arterial radius
and the wavelength. In the large arteries, the wavelength λ of the pulse wave
is much larger than the characteristic radius: the elastic wave velocity c is of
order 102 cm/s (Moens 1878, Korteweg 1878), and the heart period Tc is
around 1 s. The axial wavelength of the pulse wave is then
λ = cTc ≈ 102 cm, which is much larger than R0 ∼ 1 − 0.5 cm, the
characteristic radius of a large artery.

We re-write equations [6.1] introducing the following dimensionless
variables:

t =
λ

c
t̄, r = R0r̄, x = λx̄, ur = Urūr, ux = Uxūx, p = p0 +Πp̄

Two dimensionless numbers appear naturally and characterize blood flows

in the arteries: (1) the Shapiro number Sh =
Ux

c
which assesses the

nonlinear effects and (2) the Womersley number α = R0

√
ω/ν which

compares the pulsatile and viscous effects and the kinematic viscosity
(ω = 2π/Tc and ν = μ/ρ). In large arteries, the Shapiro number ranges
between 0 and 1 and the Womersley number between 0 and 25.

According to the principle of least degeneracy (Van Dyke 1964), the
leading order terms should remain in equations [6.1]. It leads to Ur = ελUx
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in the mass conservation equation and, similarly, the principle states that the
pressure gradient must balance the inertial terms giving Π = ρUxc.

Finally, in the 2D cylindrical coordinate system (r, x), the RNSP equations
are given as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

r

∂rur
∂r

+
∂ux
∂x

= 0,

0 = −1

ρ

∂p

∂r
,

∂ux
∂t

+ ur
∂ux
∂r

+ ux
∂ux
∂x

= −1

ρ

∂p

∂x
+ ν

(
1

r

∂

∂r

(
r
∂ux
∂r

)) [6.4]

The set of equations [6.4] can be written in the dimensionless form with
the Shapiro number Sh in front of the inertial term and 1/α2 instead of ν in
the diffusion term of the x-momentum equation (Lagrée and Lorthois 2005).

We define two particular models from the RNSP equations by: (a)
removing the unsteady term from the x-momentum of equation [6.4],
supposing a rigid wall similar to Lagrée and Lorthois (2005), which we refer
to as the steady RNSP model in the following; and (b) coupling equation
[6.4] with an elastic arterial wall similar to Ghigo et al. (2017), which we
refer to as the multi-ring model.

For solving the steady RNSP model, we use an implicit finite difference
scheme. More details can be found in Lagrée and Lorthois (2005).

6.2.2. Multi-ring model

The multi-ring model was derived in Ghigo et al. (2017) to include the
elasticity of the arterial wall into the RNSP equations [6.4]. The model was
originally inspired by the multilayer model of Audusse et al. (2011) for the
Saint-Venant equations in shallow water flows.

The flow is solved by decomposing the fluid domain into concentric rings.
Each ring n is characterized by a width hn = Rn+ 1

2
−Rn− 1

2
. The cross-section

of each ring An and the average flow rate in the ring Qn are defined by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

An =

∫ 2π

0

∫ Rn+1
2

Rn− 1
2

rdrdθ,

Qn =

∫ 2π

0

∫ Rn+1
2

Rn− 1
2

uxrdrdθ

[6.5]
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We re-write the equations [6.4] in terms of the averaged quantities An and
Qn on each ring n

⎧⎪⎨
⎪⎩

∂An

∂t
+

∂Qn

∂x
= Gn+ 1

2
−Gn− 1

2
,

∂Qn

∂t
+

∂

∂x

[
ψn

Q2
n

lnA

]
+

An

ρ

∂p

∂x
= SM,n + Sν,n,

[6.6]

coupled to the elastic pressure law (equation [6.2]). The parameter ψn is the
nonlinear shape factor that we set to 1.

The term Gn+ 1

2
(respectively, Gn− 1

2
) in equation [6.6] represents the radial

mass exchange at the interface of Rn+ 1

2
(respectively, Rn− 1

2
), the source term

SM,n characterizes the momentum associated with the radial mass exchanges
in the ring n and the source term Sν,n describes the viscous dissipation.

By coupling the system of equation [6.6] with the pressure law [6.2], we
obtain

⎧⎪⎨
⎪⎩

∂A

∂t
+

∂FA

∂x
= 0,

∂Qn

∂t
+

∂FQn

∂x
= SM,n + Sν,n + lnST for n = 1, ..., Nr,

[6.7]

where the source term ST corresponds to the geometrical and mechanical
source terms and

⎧⎪⎪⎨
⎪⎪⎩

FA =
Nr∑
i=0

Qi,

FQn
= ψn

Q2
n

lnA
+ ln

K

3ρ
A

3

2 .

[6.8]

The system of equation [6.7] is solved using a finite volume approach. We
split the system of equations into a convective subproblem that accounts for
the transport and a reaction subproblem for the friction source term. We treated
the convective subproblem with an explicit method using a kinetic scheme for
the flux (Audebert et al. 2017). We solved the viscous subproblem using an
implicit numerical scheme. More details can be found in Ghigo et al. (2017).
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6.2.3. One-dimensional model

The 1D equations result from averaging the RNSP equations [6.4] over the
cross-section. In the averaging process, we lose information about the velocity
profile and thus require an assumption on the profile to compute the friction.
The 1D equations are written in terms of the flow rate Q and the cross-section
A:

⎧⎪⎨
⎪⎩

∂A

∂t
+

∂Q

∂x
= 0,

∂Q

∂t
+

∂

∂x

(
ψ
Q2

A

)
+

A

ρ

∂p

∂x
= −Cf

Q

A
.

[6.9]

The shape factor ψ is set to 1, following the literature. The friction
coefficient Cf is set to 2(ξ + 2)μπ (Sherwin et al. 2003) where the parameter
ξ determines the friction depending on the hypothesis on the velocity profile.
For instance, ξ = 2 for a Poiseuille velocity profile, whereas ξ = 9 for a flat
velocity profile.

In our numerical computations, we use the same elastic pressure law
(equation [6.2]) to couple the motion of the wall to the flow, which
corresponds to equation [6.7] with n = 1. The same finite volume approach
of the previous section is used to solve the problem (Ghigo et al. 2017,
Delestre et al. 2015).

6.2.4. Zero-dimensional model

The last level of simplifications leads to algebraic, lumped parameter, or
0D models. The models are obtained from averaging the 1D equations [6.9]
over the longitudinal variable. Several 0D models were derived for specific
applications which explain the variety in the literature (Young and Tsai 1973b,
Seeley and Young 1976, Stergiopulos et al. 1992, Liang et al. 2009).

For the comparison section 6.4, we present the generalization of Bernoulli’s
principle, or a balance of mechanical energy proposed by Young and Tsai
(1973b) for the pressure drop assessment in a stenosis:

ΔP =
Kvμ

D0
U(t) +KuρLst

dU(t)

dt
+

Kt

2

((
A0

Ast

)2

− 1

)
ρ|U(t)|U(t),

[6.10]



170 Biological Flow in Large Vessels

where ΔP is the pressure drop across the length of the stenosis Lst, D0 is
the diameter and A0 is the reference cross-section, Ast is the cross-section at
the throat of the stenosis, and Kv, Ku and Kt are empirical coefficients. The
velocity U(t) is the instantaneous input velocity and | · | stands for the absolute
value. The Poiseuille viscous loss depends on the coefficient Kv, the inertial
effect of blood flow in a constriction on an inertial coefficient Ku and, finally,
the nonlinear effects on the coefficient Kt.

These expressions are considered in the literature as the gold standard for
model comparison and are used by physicians to roughly estimate the pressure
drop across an arterial stenosis, in cases where they do not have access to
invasive measurement.

In the following, we show two analytical cases that enable the models to
be validated against one another.

6.3. Validation of the models

6.3.1. The entry effect

The first comparison case is called the entry effect, as shown in Figure 6.1.
We investigate the development of the boundary layer of a flow entering a
straight rigid channel of radius R0 and length L, and we expect the velocity
profile to go from a flat to a fully developed Poiseuille profile.

x

boundary layer

Figure 6.1. Developing and fully developed flows in a channel. The flow
is fully developed after the two boundary layers have merged

The parameters of the simulation are presented in Table 6.1. A full 2D
axisymmetric Navier–Stokes computation is used as a target and compared to
the steady RNSP, the multi-ring and the Poiseuille solution.

In Figure 6.2, we plot the dimensionless pressure and the dimensionless
velocity at the centerline for the different models. We note that the numerical
results are similar. As predicted, we observe in Figure 6.2a that the
dimensionless center velocity goes from 1, which is the magnitude of the flat



Reduced-order Models of Blood Flow 171

profile, to 2, the magnitude of the Poiseuille profile. When the boundary layer
is fully developed, all models fit the analytic solution for the pressure (Figure
6.2b).

R0 L ReR U0 ρ
ρU0R0

ReR
K

1 25 100 100 1 1 1e7

Table 6.1. Characteristic scales of the entry effect problem. R0: initial radius,
L: artery length, ReR: Reynolds number, U0: entrance velocity, ρ: density,

μ: dynamic viscosity, K: elasticity. All values are in CGS units

a) b)

Figure 6.2. Comparison of (—) the 2D axisymetric Navier–Stokes, (�) the steady
RNSP model, (�) the multi-ring model and (- - -) the Poiseuille solution for the entry
effect. Dimensionless velocity (a) and pressure (b) at the centerline as a function
of the position in the tube. For a color version of this figure, see www.iste.co.uk/
deplano/biological.zip

6.3.2. The Womersley solution in an elastic artery

The second comparison case is the Womersley velocity profile in a straight
elastic tube. Womersley (1955) gives the analytic solution of the equations
[6.4] for Sh = 0, depending on the Womersley number α. For the velocity,
the solution is

ux = ûx(r)e
i(ωt−kx) [6.11]
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with ûx =
p̂

ρc

⎛
⎜⎜⎝1−

J0

(
i3/2α

r

R0

)
J0

(
i3/2α

)
⎞
⎟⎟⎠, where J0 is the Bessel function and

p̂ =
√
πKR̂ is the amplitude of the inlet oscillating pressure, imposed as a

boundary condition.

The configuration is a straight elastic tube with the properties reported in
Table 6.2. We compute the multi-ring model, which can account for the
elasticity of the arterial wall, and compare it to the analytic solution [6.11].
We use Nr = 32 rings.

R0 L ρ μ K R̂ Rt Tc tf α

1 200 1 2π
ρ

Tc

R2
0

α2
104 10−3 0 0.5 12Tc {5,20}

Table 6.2. Characteristic parameters of the Womersley velocity profile. R0: initial
radius, L: tube length, ρ: density, μ: dynamic viscosity, K: elastic coefficient [6.3],
R̂: inlet boundary condition, Rt: reflection coefficient, Tc: period, tf : final time of the
simulation, α: Womersley number. All values are in CGS units

We show a comparison between the multi-ring model and the analytic
solution [6.11] for a small Womersley number α = 5 (Figure 6.3a) and a
large Womersley number α = 20 (Figure 6.3b). We observe that the
multi-ring model accurately reproduces the analytic solution [6.11] for both
Womersley numbers. For α = 5, the viscous effects dominate over the
inertial effects, and we thus obtain a slightly deformed oscillating Poiseuille
profile. On the other hand, for α = 20, the boundary layer is very small and
we obtain a flatter velocity profile that tends to look like the slip condition at
the wall.

Womersley (1955) also gives an analytic solution for the flow rate Q and
the WSS τw. We compute these quantities with the multi-ring model and show
the comparison in Figure 6.4. Again, we obtain very good agreement between
the multi-ring model and the analytic solution.

In the following section, we compare the reduced models on a real medical
configuration, a stenosis.
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a) b)

Figure 6.3. Womersley velocity profiles in an elastic tube for a) α = 5 and
b) α = 20. Triangles correspond to the multi-ring model computation, and solid
lines correspond to the analytic solution [6.11]. Blue is t = 0.3TC + 11Tc, green is
t = 0.5TC + 11Tc and red is t = 0.7TC + 11Tc. For a color version of this figure, see
www.iste.co.uk/deplano/biological.zip

6.4. Application to arterial stenoses

The configuration is an idealized stenosed artery of length L, radius R0,
stenosis length Lst and stenosis degree β, as shown in Figure 6.5. At the inlet
of the vessel, we impose a steady input flow, that is, at x = 0, U(t) = U0. At
the outlet of the vessel, we impose a zero pressure, that is, at x = L, p = 0.
The properties of the configuration are reported in Table 6.3. The shape of the
radius of the artery R(x) is

R(x) = R0

(
1 + β exp

(
−(x− xst)

2

xl

))
[6.12]

where xst is the axial position of the throat of the stenosis and xl is related to
the length of the stenosis Lst.

We compare the steady RNSP, multi-ring and 1D models in the rigid
stenosed artery against the Poiseuille center velocity, center pressure and
WSS, as shown in Figures 6.6 a–c, respectively.
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a) b)

c) d)

Figure 6.4. Center flow rate Q and WSS τw comparison between the multi-ring model
(�) and the analytic solution (—) for α = 5 (a and c) and α = 20 (b and d) at
t = 0.3Tc + 11Tc. For a color version of this figure, see www.iste.co.uk/deplano/
biological.zip

R0 β L Lst ReR U0 ρ μ K

1 -0.4 40 10 100 100 1
ρU0R0

ReR
107

Table 6.3. Properties of the stenosed artery. R0: initial radius, β: degree of stenosis,
L: artery length, Lst: stenosis length, ReR: Reynolds number based on the radius,
U0: input velocity, ρ: fluid density, μ: dynamic viscosity, K: elastic coefficient [6.3]. All
values are in CGS units
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x

R0

L

Lst

U(t)

ΔP

Rst = R0(1 + β)

R0 1 + β exp −

(x − xst)
2

xl

Figure 6.5. Geometry of the stenosed artery of length L, radius R0, stenosis length Lst

and stenosis degree β (β < 0). The shape of the radius of the wall is equation [6.12],
with xst the position of the throat of the stenosis and xl related to Lst. The pressure
drop over the length of the stenosis is ΔP

We observe in Figure 6.6b that the center pressure drop between the
beginning and the throat of the stenosis is similar in all models. However, the
center pressure downstream of the stenosis is different in the 1D model
compared to the steady RNSP and the multi-ring. Indeed, the 1D model does
not account for the recirculation near the walls and the jet formation in the
center of the artery after the stenosis, as can also be seen in Figure 6.6a. One
of the assumptions of the 1D model is on the shape of the velocity profile,
therefore, the downstream flow is not impacted by the constriction in the 1D
model, as opposed to the steady RNSP and multi-ring models. We observe in
Figure 6.6b that the steady RNSP and multi-ring models account for the jet
and recirculation after the stenosis, which is confirmed by Figure 6.7, in
which we show the velocity profiles at different locations in the artery.

Figure 6.6c shows that the WSS computed with the multi-ring and RNSP
models is maximal at the throat of the stenosis. Downstream of the
constriction, the WSS becomes negative before going back to the Poiseuille
value, which characterizes a backflow near the walls downstream of the
stenosis.

We verify the presence of this back-flow by plotting the velocity profile in
the stenosis using the multi-ring model. The shape of the velocity profile
changes when entering the constriction (Figure 6.7d): the magnitude
increases and the profile becomes plug-like. The magnitude of the profile is
maximal at the throat of the stenosis (Figure 6.7e), that is, at x = 10 cm from
the entrance. After the throat (Figures 6.7f and g), we observe the formation
of a jet in the center. Far from the stenosis (Figure 6.7h), the velocity profile
is no longer affected by the constriction and goes back to the initial entry
Poiseuille velocity profile, as shown in Figure 6.7a.
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a) b)

c)

Figure 6.6. Dimensionless center velocity (a), center pressure (b) and WSS along
the stenosis (c) represented in Figure 6.5 with properties of Table 6.3. The black
solid line (—) corresponds to the steady RNSP model, the green triangles (�) to
the multi-ring model, the orange circles (©) to the 1D model and the dashed blue
line (- - -) to the Poiseuille pressure along a straight tube. The black dotted line
(· · ·) represents the radius R(x) of the artery. For a color version of this figure, see
www.iste.co.uk/deplano/biological.zip

The models presented in section 6.2 allow for computing the velocity and
pressure fields in the entire domain. However, the relevant indicator for
medical diagnosis is the pressure drop ΔP evaluated across the length of the
stenosis. Therefore, we compute the pressure drop with the algebraic model
from Young and Tsai (1973a), the 1D model, the multi-ring model and the
steady RNSP model.
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a) x = 0 cm b) x = 5 cm c) x = 7.5 cm d) x = 9 cm

e) x = 10 cm f) x = 12.5 cm g) x = 15 cm h) x = 35 cm

Figure 6.7. Velocity profiles at different locations in the
rigid stenosed artery, represented in Figure 6.5 with the

properties in Table 6.3, computed with the multi-ring model

We compare our reduced-order models to two sets of in vivo data
extracted from two patients with aortic coarctation. We determine geometric
properties of the stenosis and the velocity mapping of the aorta using 4D flow
MRI (Stankovic et al. 2014), carried out with the 1.5-T system (Signa CV/i;
GE Healthcare, Milwaukee, USA, Necker Hospital in Paris), knowing
already the invasive measurement of pressure gradient across the stenosis
(both patients had invasive catheterization during their follow up before MRI
study). The characteristics of the invasive data are reported in Table 6.4.

n◦ R0 β Lst U0 HR ΔP

IM1 0.55 -0.28 3 115 61 20

IM2 0.55 -0.47 3.65 79 92 30

Table 6.4. Characteristics of the invasive pressure drop measurements. R0: arterial
radius, β: degree of stenosis, Lst: stenosis length, U0: velocity, HR: heart rate in BPM,
ΔP : pressure drop between upstream and downstream of the stenosis in mm Hg. All
other values are in CGS units

We also compare our models with in vivo pressure drop measurements in
animals from Young et al. (1975).

In Figure 6.8, we show the dimensionless upstream to downstream
pressure drop computed with our four models as a function of the degree of
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stenosis. The comparison between the models and the invasive measurements
shows that the steady RNSP and multi-ring model are the most accurate in
predicting the pressure drop. The 1D model gives a lower estimation,
whereas the multi-ring model gives an upper estimation. However, the 1D
model remains a relevant first approximation for mild stenoses.

Figure 6.8. Comparison of the dimensionless pressure drop as a function of the
degree of constriction expressed in % ( i.e.−100β, β < 0) for the algebraic model
from Young and Tsai (1973a), the 1D model (©), the multi-ring model (�), the
steady RNSP model (�), in vivo measurements from Young et al. (1975) (♦) and
arterial catheter invasive measurements (♦). For a color version of this figure, see
www.iste.co.uk/deplano/biological.zip

The comparison with in vivo measurements from Young et al. (1975) also
shows that the steady RNSP and multi-ring are the most accurate models to
estimate the pressure drop across the stenosis. However, we can also observe
that for mild stenosis, the 1D model gives a reasonable agreement with the in
vivo measurements. Even if the 1D model might underestimate the pressure
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drop, it is a better starting point than the current algebraic formula with the
empirical coefficients of the literature.

6.5. Conclusion

We have described four reduced-order models to compute blood flows, all
of them derived from the Navier–Stokes equations and of differing
complexity, from 2D to 0D approaches. For the validation, we proposed two
classical configurations (entry effect) and Wormersley solutions and we
compared the models and found an excellent agreement.

As shown by detailed numerical results, the multi-ring model is a relevant
approach to be applied on blood flows: first, it reproduced two well-known
analytical cases; second, it accounted for the elasticity of the arterial wall and
solved the flow with more accuracy than the 1D model but was less
computationally expensive than a 3D fluid–structure interaction mode; and
third, it accounted for the unsteady effects, unlike the steady RNSP model.

In vivo pressure drop measurements in arterial stenoses provide us with
a framework to evaluate the models on a real medical application. We have
shown that the multi-ring model is the most accurate compared to the real
invasive data.
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Many cardiovascular diseases are related to blood flow features, and are
able to predict how blood flows could open a door toward better diagnostic
and treatment capabilities. To this respect, computational physics is
complementary to theoretical, experimental and medical imaging techniques
used to address questions related to either microscopic or macroscopic blood
flows.

Many (medical) questions related to blood flows are relevant to the
biggest arteries/veins of the cardiovascular system. The typical length scale
ranges from 1 mm to a few centimeters and the typical Reynolds number can
be as high as a few thousands. At these scales, blood is practically considered
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as a homogeneous fluid with either constant viscosity (typically
μ = 3 × 10−3 Pa.s) or characterized by a shear-thinning behavior. Typical
issues that must be properly handled are then related to the highly complex
and deformable geometry of the domain where blood flows, the transitional
nature of the wall-bounded blood flow, the interaction with thin and highly
deformable membranes (e.g. valve leaflets), thrombus formation due to the
presence of biomedical materials and, of course, validation.

Blood is actually not homogeneous, but a dense (volume fraction in the
range 20–50%) suspension of particles, ranging from 2 (platelets) to 20 μm
(white blood cells) in size. More than 95% of the cells flowing in plasma are
actually red blood cells, which are non-spherical (equivalent diameter 6 μm)
particles. Because their reduced volume is only 0.65, red blood cells are
highly deformable, their dynamics resulting from the coupling between the
inner fluid (cytosol), the membrane of the cell and the outer fluid (plasma). In
flow regimes typical of the micro-circulation, hemodynamics is dominated by
suspension-related phenomena such as the non-inertial migration of red
blood cells toward the center of the vessels.

This chapter describes some achievements and current modeling efforts
based on the YALES2BIO solver (see: imag.umontpellier.fr/∼yales2bio/)
developed at IMAG (Montpellier, France). A short account about the
numerical strategy is provided in section 7.1, where some validation test
cases are also described. Examples of simulations performed to support
modeling efforts are then provided in section 7.2, while section 7.3 gathers
two industrial applications. Eventually, some on-going developments are
described in section 7.4.

7.1. Methods and validation

YALES2BIO is a massively parallel multiphysics solver based on the
YALES2 solver (see: www.coria-cfd.fr/index.php/YALES2) developed at
CORIA (Rouen, France). YALES2BIO is dedicated to the simulation of
blood flows at the macroscopic and microscopic scales. The base is a solver
for the incompressible Navier–Stokes equations. The equations are
discretized using a finite-volume fourth-order scheme, adapted to
unstructured meshes (Moureau et al. 2011a,b). The divergence-free property
of the velocity field is ensured thanks to the projection method introduced by
Chorin (1968). The velocity field is first advanced in time using a low-storage
fourth-order Runge–Kutta scheme (Moureau et al. 2011b, Chnafa et al. 2014)
in a prediction step. This predicted field is then corrected by a pressure
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gradient, obtained by solving a Poisson equation to calculate pressure. This
equation is solved using the Deflated Preconditioned Conjugate Gradient
algorithm (Malandain et al. 2013). For turbulence modeling, large-eddy
simulations (LESs) are performed using the so-called sigma subgrid scale
model (Nicoud et al. 2011), which guarantees that no eddy viscosity is
applied for canonical laminar flows, and is well-suited to wall-bounded, as
well as transitional flows (Nicoud et al. 2018). Computations may be
performed with moving meshes, with an arbitrary Lagrangian–Eulerian
formulation being used in such cases (Chnafa et al. 2014, 2016).

Several YALES2BIO simulations involve fluid-structure interaction, both
at the macroscopic (Sigüenza et al. 2018) and microscopic scales (Lanotte
et al. 2016, Mendez and Abkarian 2018). For fluid-structure coupling,
YALES2BIO relies on Peskin’s immersed boundary method (IBM) (Peskin
2002) for massless structures. The action of the structure is seen by the fluid
as a force density applied in the prediction step. Forced Navier–Stokes
equations are solved as described in the former paragraph. Once the flow
velocity is calculated, the structure is simply convected by the flow, after the
interpolation of the fluid velocity on the structure. The deformed structure
being massless, it is always at equilibrium, which enables the calculation of
forces at the nodes of the structure mesh. These forces are then regularized
(or spread) over the fluid mesh. The original IBM, developed for Cartesian
meshes has been adapted to unstructured meshes to comply with the data
structure of YALES2BIO. This has been performed using the reproducing
kernel particle method, which guarantees that the regularization and
interpolation operators are coherent and reproduce a number of mathematical
moments of the regularized/interpolated functions (Liu et al. 1995, Pinelli
et al. 2010, Mendez et al. 2014). The cellular membrane mechanics are
modeled by combining different models representing either the in-plane or
out-of-plane resistances of the membrane (Skalak et al. 1973, Helfrich 1973).
More details may be found in Mendez and Abkarian (2019). The method,
originally developed for infinitely thin membranes, has also been extended to
finite-size yet thin structures (Sigüenza et al. 2016, 2018). Numerous
validation test cases have been presented in 2D (Mendez et al. 2014) and 3D
(Sigüenza et al. 2016), in particular for the fluid–structure interaction
coupling.

Our aim in confronting numerical results to reference data is not only to
confirm the quality of the solver, but also to provide new understanding on
the configuration. As an example, we developed new analytical solutions for
the case of an inertial relaxation of a membrane immersed in fluid (Martins
Afonso et al. 2014). Three other examples of advanced validation cases are
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discussed in the remainder of this section to illustrate how simulating for
validation may actually shed new light on the computed case itself.

7.1.1. Food and Drug Administration case

The configuration is the one proposed by the Food and Drug
Administration (FDA) as a benchmark for computational fluid dynamics
(CFD) in the context of biomedical engineering. It has been studied both
experimentally and numerically by several independent research groups
worldwide (Hariharan et al. 2011, Stewart et al. 2012). The geometry is
axisymmetric with a long inlet section, a convergent nozzle, a throat section
(10 diameters long) and a sudden expansion at the downstream end. The jet
generated into the sudden expansion section may break down and become
turbulent sooner or later depending on the flow regime. Five flow regimes
were considered experimentally, ranging from fully laminar to fully turbulent
and corresponding to Reth = 500; 2000; 3500; 5000; 6500 (Reth is the
Reynolds number based on the bulk velocity and throat diameter). From a
turbulence modeling point of view, LES is better suited than the RANS
approach to deal with flow situations at a moderate Reynolds number. It turns
out that none of the 28 blinded, RANS-based CFD studies led to a good
comparison with the FDA experimental results (Stewart et al. 2012), while
more successful LES-based computations were achieved after the
experimental results were released (Passerini et al. 2013, Delorme et al.
2013, Bhushan et al. 2013, Janiga 2014). This observation and the absence of
sensitivity analysis in the successful, not-blinded studies question the actual
predictive character of these simulations. YALES2BIO was thus used to
address the robustness of the FDA simulation (Zmijanovic et al. 2017,
Nicoud et al. 2018). The main outcome of this study is that a proper LES
strategy can indeed reproduce the experimental results with good accuracy
and for all of the flow regimes (from laminar to turbulent), as soon as small
perturbations are superimposed to the inlet velocity profile. In the absence of
inlet perturbations, the results are extremely sensitive (and thus neither robust
nor predictive) to any numerical parameters, such as the numerical scheme,
mesh topology and refinement or time step (see Figure 7.1 for an illustration).
The necessity to inject perturbations at inlet in order to obtain robust and
predictive simulations of the FDA configuration was recently demonstrated
by another research group using a different numerical tool (Bergersen et al.
2019).
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Figure 7.1. Velocity map in the FDA nozzle showing the jet generated in the
downstream pipe. The location of the jet breakdown (transition from laminar to
turbulent) is well captured when a small time step is used (CFL = 0.1, top view), but not
when a larger, yet numerically admissible, value is selected (CFL = 0.6, bottom view).
The red arrow shows the position of the jet breakdown as observed in the experiment
(Hariharan et al. 2011)

7.1.2. Optical tweezers

The validation of a solver dedicated to the dynamics of red blood cells
(RBCs) is a challenge as it mixes physical complexity with biological
complexity. In general, the validation includes fluid–structure interaction test
cases with simpler particles such, as vesicles or spherical capsules (Yazdani
et al. 2011, Barthès-Biesel 2009, 2016). It also relies on static cases in which
the membrane mechanics alone are probed. This explains the success of the
optical tweezers experiment (Dao et al. 2003, Mills et al. 2004) for validation
(Li et al. 2005, Dao et al. 2006, Pivkin and Karniadakis 2008, Le et al. 2009,
Fedosov et al. 2010a,b, Klöppel and Wall 2011, Chen and Boyle 2014,
Farutin et al. 2014, Sinha and Graham 2015). In this configuration, two
microbeads are attached on opposite sides of the RBC rim. One is fixed to a
glass slide and the other one is controlled by a laser beam, which allows it to
be displaced. The intensity of the laser beam allows the maximum force
applied on the microbead to be fixed. The RBC is thus stretched by
displacing the second beam with different forces. The sizes of the deformed
RBC are measured in the direction of the stretching and in the normal
direction, so that force-deformation curves can be obtained.

Simulations of a RBC stretched by optical tweezers have been performed
using the YALESBIO solver (Sigüenza et al. 2017), with excellent
comparisons with the experimental data from Mills et al. (2004). In addition,
we clarified the meaning of this validation. It had been clearly shown that
RBC simulations of the optical tweezers stretching are very sensitive to the
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membrane shear modulus (Mills et al. 2004). However, the dependence to
other deformation modes of the membrane was unclear. We first performed
simulations with and without bending resistance (not shown) and changing
the resistance to area stretching (see Figure 7.2(a)). We showed that results
were rather insensitive to such parameters. As a result, this means that this
validation test case can only assess the accuracy of the model representing
the resistance to shear deformations of the membrane, and not the whole
membrane model.

Figure 7.2. Comparison of long and small diameters in the plane of view of an RBC
stretched by optical tweezers, between simulations and experiments. a) Simulations
with the same in-plane Skalak model using different values of C, the ratio between the
area modulus and the shear modulus and b) simulations with the Skalak model with
C = 100 and the Yeoh model (Mills et al. 2004)

In addition, we showed that very different models could yield similar
results, as shown in Figure 7.2(b), where results using either the Skalak
model or the Yeoh model (see Mills et al. (2004), Sigüenza et al. (2017)) are
compared. Both models align well. However, with the Yeoh model, the area
of the RBC membrane increases by 30% (see Sigüenza et al. (2017)), which
is impossible in RBCs. In addition, in order to obtain this fair comparison, the
shear modulus of the Yeoh model has to be twice as large than that used with
the Skalak model. The results presented by Sigüenza et al. (2017) thus show
how cautious we have to be when using the optical tweezers for validation or
assessment of the membrane mechanics. As detailed by Dimitrakopoulos
(2012), this experiment focuses on large deformations of the cell. It is thus
not a good configuration for assessing the shear modulus of the membrane,
which is characteristic of small deformations: the value of the shear modulus
inferred by the simulations depends on the model used. If the same
membrane model is used, it is a good configuration to compare the resistance
of different cells, but not the resistances to bending or area changes. Note,
however, that the 3D shape of the RBC depends on such parameters, so that
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more detailed 3D data from the experiment could yield a more thorough
validation case for simulations (Sigüenza et al. 2017).

7.1.3. Red blood cell self-organization

The YALESBIO solver can also be run with multiple cells. The validation
of this capability has been demonstrated by Iss et al. (2019), where the
self-organization of RBCs in a rectangular channel has been computed. Iss
et al. (2019) have shown that in microfluidic channels of height 9 μm and
width 30 and 60 μm, RBCs self-organize in trains and lines at preferred
distances from the lateral walls. Numerical simulations of RBC suspensions
at different hematocrit values were performed in a periodic channel until
convergence was reached in terms of structure, and compared to experimental
images captured at the end of a 5-mm-long channel (see Figure 7.3).
Simulations predict how RBCs organize in one, two or three files with
increasing hematocrit well, as in the experiment. The essential role of
deformability and lateral walls was also proved by numerical simulations.
More details can be found in Iss et al. (2019).

Figure 7.3. Example of the structure of the flow in one, two or three lines for RBC
suspensions at different hematocrits in a channel of height 9 μm (direction normal to
the image) and width 30 μm (vertical direction). RBCs flow from left to right. Figure
adapted from Iss et al. (2019)

7.2. Simulation as support of modeling efforts

An interesting use of a flow solver is the generation of reference data as
part of a modeling effort. With the increase in computing resources, more
and more computationally demanding simulations become feasible, but the
need for simplified models remains. In this context, numerical simulations
may provide well-controlled data for building new low-order models to either
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understand a particular phenomenon, account for some effect at a moderate
cost in simulations or validate data reconstruction algorithms. This section
provides some examples of the use of YALES2BIO simulations to support
modeling.

Figure 7.4. Orbit angles of RBCs flipping under shear flow, as a function of the shear
rate, at viscosity contrast 1.0. Black lines: experiments from Dupire et al. (2012).
Symbols: YALES2BIO simulations for different stress-free shapes (red: quasi-sphere
of reduced volume 0.997; blue: ellipsoid of reduced volume 0.96). Bold continuous
lines: reduced-order model (Mendez and Abkarian 2018) changing the energy barrier
to mimic the change of stress-free shape. The definition of the orbit angle is provided
in the sequence of images extracted from a top view of the dynamics of a RBC flipping
over an orbit

7.2.1. Single cell dynamics

One fascinating aspect of the dynamics of red blood cells in shear flow
(Mendez and Abkarian 2019) is their behavior at low shear stresses, for
which RBCs exhibit very different motions without major deformations
(Dupire et al. 2012). The absence of RBC deformations actually led to the
consideration that their movement could be described by models developed
for the motion of rigid objects, and in particular the model of Jeffery (1922),
which predicts the motion of a rigid ellipsoid in shear flow. However, recent
experiments have shown that contrary to rigidified RBCs, healthy RBCs flip
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under shear over a specific orbit that depends on the shear rate. While the
in-plane elasticity associated with the cytoskeleton was suspected to be a key
element in the orbital selection and orbital drift, it was demonstrated for the
first time by numerical simulations (Mendez and Abkarian 2018), by
changing the stress-free shape of the cytoskeleton, which in turn controls the
energy barrier that has to be overcome for the membrane to tank-tread
(Abkarian et al. 2007). The effect is illustrated in Figure 7.4, which shows
how the orbital drift (change of angle with shear rate) depends on the
stress-free shape. This motivated the development of a low-order model
reproducing all of the motions of RBCs at low shear rates (Mendez and
Abkarian 2018). This model considers a fixed-shaped ellipsoid with a
membrane that is able to tank-tread around it. By providing the appropriate
modeling for the membrane elasticity, it displays all of the expected features
of RBCs at low stresses, where deformation remains small: an example is the
orbital drift predicted by such a model and displayed in Figure 7.4. This
model opens the door to new theoretical developments in terms of RBC
dynamics and blood flows.

7.2.2. Flow diverters

An intracranial aneurysm is an abnormal deformation of the arterial wall
occurring in 3.6–6% of the general population, according to the systematic
review by Rinkel et al. (1998). Since the prognosis1 of subarachnoid
hemorrhage is still very low, preventive surgery prior to rupture is considered
as a therapeutic option by physicians (Hackenberg et al. 2018). Among all of
the available treatments, flow-diverting type of devices are widely used due to
their high rate of success (76%), low procedure-related morbidity (5%) and
mortality (4%) (Brinjikji et al. 2013). The aim of these devices is to isolate
the aneurysm from the parent artery blood flow, in order to promote a stable
environment for thrombus formation (D’Urso et al. 2011). CFD has been
extensively used to extract relevant indices that could discriminate successful
and unsuccessful treatments (Ouared et al. 2016). To simulate the
hemodynamic effect of a deployed flow-diverter inside patient-specific
arterial geometries, two major techniques arise in the literature: conformal
and porous. The first one subtracts the volume taken by the struts of the
device from the arterial mesh. As struts are small compared to the size of the
aneurysm, this leads to heavy computational costs. In order to reduce these
costs, the porous method originally developed in Augsburger et al. (2010)
uses a homogeneous approach by approximating the device as a porous

1 Predicting the likelihood of a person’s survival.
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material that imposes calibrated pressure losses through its surface via
volumetric source terms added to the Navier–Stokes equations. Despite being
computationally less expensive, the porous method requires an initial
calibration and does not reproduce the effect of each strut on the flow. To
circumvent these issues, a novel technique that is halfway between the
conformal and porous methods has been developed and implemented in
YALES2BIO (Alain et al. 2021). This framework has been compared to a
“gold-standard” conformal computation of a steady flow through a
patient-specific aneurysm. The results depicted in Figure 7.5 show that the
implemented model compares reasonably well to the conformal results both
locally near the wires and globally in the intra-aneurysmal recirculating
region. The effort is currently geared toward validating this strategy using
other conformal computations with different patient-specific and device
geometries.

Figure 7.5. Blood velocity magnitude in an aneurysm treated by a
flow diverter, accounting for the device using a conformal approach (left)

or a model (right). The white arrows show the mean flow direction

7.2.3. Echocardiography

YALES2BIO was used to produce the intra-cardiac flow compatible with
the time-evolving geometry observed from either the computed tomography
of an actual patient (Chnafa et al. 2014) or magnetic resonance imaging of a
normal volunteer (Chnafa et al. 2016). In both cases, the computational
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domain extends from the four pulmonary veins to the root of the aorta and
includes the left atrium and ventricles, as well as rough models of the mitral
and aortic valves. The LESs were based on a subgrid scale model well suited
to represent wall-bounded transitional flows (Nicoud et al. 2011) and
performed over more than 50 cardiac cycles. The analysis revealed that
turbulence is periodically generated in the left ventricle at the end of the
diastole and washed out during systole (Chnafa et al. 2015). Moreover, the
large vortex observed from advanced medical imaging techniques (Markl
et al. 2011) at late diastole is well retrieved in the phase-averaged
computational results. This flow feature is of particular interest from a
medical point of view (it helps to redirect blood momentum toward the outlet
of the ventricle and facilitates ejection) and being able to characterize it from
routine echocardiography would be a useful feature for cardiologists. This
requires being able to reconstruct the intra-ventricular velocity field from the
knowledge of the radial component measured in color Doppler mode. The
numerical database for the intraventricular flow (Chnafa et al. 2014) was used
to support the development of a reconstruction algorithm based on an
optimization procedure (Assi et al. 2017). As illustrated in Figure 7.6, the
CFD recirculation zone is fairly well retrieved.

Figure 7.6. Left: a virtual echocardiography exam is made on the numerical
intra-cardiac flow. Right: the flow structure reconstructed from the virtual
echocardiography image (top) is compared to the exact flow structure from the
numerical database (bottom) at three different instants
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7.3. Simulations for industrial applications

7.3.1. Flow in the Carmat artificial heart

Since YALES2BIO relies on fully unstructured and parallelized numerical
methods, it has the potential to tackle complex industrial configurations. A
typical example is the total artificial heart developed by Carmat (see:
www.carmatsa.com), which, from a fluid mechanics point of view, relies on
the interaction between a biomimetic membrane and a working fluid operated
by two rotating pumps to alternatively suck and push blood as an actual heart
would do. Of course, the complexity of this blood-wetted device goes beyond
the fluid–structure interaction problem, and ensuring the reliability of the
control system and keeping the thrombogenic risk at a low level are other
paramount issues to deal with when developing such a device. Still, handling
the three elements (working oil, membrane, blood) fluid–structure problem in
a complex geometry under pulsatile conditions is already quite challenging
and was done using YALES2BIO (Larroque 2015). As an illustration, the
membrane shape is shown at two instants in Figure 7.7. Note that the actual
flow domain was truncated in this case (the casing where the two rotating
pumps are located was not represented) and that the membrane dynamics
were computed thanks to the LMGC90 software (Radjai and Dubois 2011)
coupled with YALES2BIO, as detailed in Sigüenza et al. (2016). The ability
of the YALES2BIO-LMGC90 coupling to handle macroscopic fluid–
structure interaction problems accurately was demonstrated elsewhere
(Sigüenza et al. 2016, 2018).

Figure 7.7. 3D view of the flow and membrane shape in a geometry inspired by the
Carmat artificial heart during diastole (left) and systole (right). The black arrows show
the mean flow direction. The red and blue color scales denote blood and oil (working
fluid) vorticity renderings, respectively
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7.3.2. Red blood cell dynamics in Horiba Medical’s blood analyzers

In a collaborative work between HORIBA Medical and IMAG, the
impedance measurement of red blood cells in an industrial hematology
analyzer was investigated (Taraconat et al. 2019). The configuration consists
of a polarized micro-orifice in which RBCs are aspirated one at time. This
constriction generates a high electrical field in the aperture so that the
presence of the RBC induces an increase in electrical resistance that can be
detected as voltage pulse. Numbering the electrical prints provides a count of
cells that crossed the micro-orifice, and the amplitudes of the perturbations
are assumed to be proportional to the particles size. Also known as the
“Coulter counter” (Coulter 1953), this system thus yields measurements of
the RBCs volumes and concentration. Coulter counters have been
implemented in blood analyzers for decades, but some measurement artifacts
are still misunderstood. In the neighborhood of the aperture walls,
inhomogeneities of the electrical field and complex RBCs dynamics lead to
measurement errors. Studying the dynamics of particles in the detection area
to understand these edge-effects is an intricate task because industrial
systems suffer from accessibility issues. This is why numerical simulation
was preferred for investigations.

Handling the simulation of deforming cells in a Coulter counter involves a
challenge that is multi-scale in nature, and has been overcome by a specific
sequence of simulations, as proposed by Taraconat et al. (2019). The
proposed method was compared with experimental measurements obtained
from a healthy blood sample and a latex bead sample (see Figure 7.8).
Numerical results not only reproduce the experimental observations, but also
provide indications for the understanding of the complex signatures that arise
when particles evolve in the wall vicinity. On the one hand, electrical
edge-effects occur when particles encounter regions of highly heterogeneous
electrical fields, near the aperture corner (see the blue circles in Figure 7.8).
On the other hand, dynamical edge-effects consist of a cell rotation induced
by substantial velocity shear located near the aperture walls (see the black
arrows in Figure 7.8). Both types of artifacts impact the electrical prints, but
they may be stratified thanks to the simulations (Taraconat et al. 2021).

7.4. Current developments

Most of the current challenges involve multi-physics and/or multi-scale
situations. Three examples are provided in this section: modeling
developments for the prediction of thrombotic events, modeling of the
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velocity measurement by 4D flow magnetic resonance imaging (MRI) and
the extension of YALES2BIO to dense suspensions of RBCs.

Electrical EEElectrical EE

Dynamical EE

Figure 7.8. The top row illustrates the simulated RBC dynamics in the micro-orifice,
while the associated electrical perturbations are displayed in the bottom row. Electrical
pulses arising from simulations are superimposed with experimental observations in
the bottom row. The left, middle and right columns correspond to an RBC on a
centered path, a RBC on a near-wall path and a rigid sphere on a near-wall path,
respectively. Electrical field isolines are shown over the cut view of the fluid domain
in the particle dynamics pictures in the top row. Electrical and dynamical edge-effects
(EE) are highlighted by blue circles and black arrows, respectively

7.4.1. Thrombosis

A major issue with blood-coated medical devices is their trend to produce
extra blood coagulation (thrombosis) that may lead to device malfunction or
thromboembolism (Manning et al. 2021). The adsorption/activation of the
coagulation factor XII (Hageman factor) by the artificial surfaces of the
devices is thought to be a key mechanism in this respect. A biochemical
scheme (Chatterjee et al. 2010) was recently implemented in YALES2BIO to
model thrombin generation by contact activation of factor XII with the device
wall. To reflect mass conservation, a proper boundary condition was
introduced that relates the species diffusive wall flux to the surface reaction
rate of factor XII activation:

D∇n[XIIa] + ks[XII] = 0 [7.1]
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In this equation, [·] is a molar fraction, ∇n is the gradient operator along
the direction normal to a solid boundary, XIIa is the activated form of factor
XII , D stands for the species diffusivity in whole blood and ks is a material
property (surface reaction rate). This boundary condition contrasts with what
is used in conventional in vivo models, in which the coagulation cascade is
initiated at user-defined and arbitrary injury sites. This strategy was applied
to a backward facing step geometry (Mendez Rojano et al. 2018) and a
significant amount of thrombin was generated in the recirculation zone, as
expected. Coupled to an existing model that represents platelet activity and
thrombus growth (Taylor et al. 2016), the approach developed leads to a
predictive pipeline for device-related thrombosis. This is illustrated in
Figure 7.9, which shows that the generation of the thrombus is well captured,
as well as its growth. Interestingly, this result was obtained without a priori
knowledge of the regions prone to thrombosis: Equation 7.1 was prescribed
in the same way everywhere and the appearance (or not) of a thrombus is
controlled locally by the chemical-to-flow time scales ratio (a thrombus may
only form if the fluid flow is slow enough to allow thrombin generation).
Current research efforts are devoted to the reduction of the biochemical
scheme (Chatterjee et al. 2010) used to predict thrombin formation (Mendez
Rojano et al. 2019).

Figure 7.9. Left: velocity map and boundary of the thrombus (thick white line). The
white arrows show the mean flow direction. Right: time evolution of the length of the
thrombus that appears behind the step, as observed in the experiment (Taylor et al.
2014)

7.4.2. In Silico MRI

Time-resolved 3D phase-contrast MRI (3D PCMRI, also called 4D flow
MRI) is a promising tool for non-invasive blood flow quantification in vivo.
As it relies on complex physical principles and the multi-modal acquisition
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process, different types of velocity measurement errors arise, which might
impair the diagnosis. A way to identify the origins of these measurement
errors consists of numerically simulating the MRI experiment, governed by
the Bloch equations (Bloch 1946), in order to reconstruct synthetic images
that are exempt from experimental errors. However, the large variety of time
scales generally induced by coupling the MRI equations to the flow motion,
as well as the considerable acquisition times to simulate (of order 1000 s,
say), results in prohibitive computational costs and largely contributs to
making the simulations infeasible.

An Eulerian-Lagrangian 4D flow MRI simulation pipeline was developed,
which benefits from the massively parallel capabilities of the YALES2BIO
solver to solve the Bloch equations on Lagrangian particles with “on the fly”
coupling to the CFD flow solver (Puiseux 2021). A semi-analytic formulation
of the Bloch equations was proposed to accelerate the computations, and a
specific particle injection strategy was implemented that uses the periodic
removal of the transverse magnetization (RF-spoiling) to keep the particle
distribution homogeneous and avoid zones of spurious signal. The coupling
with the YALES2BIO solver was validated in several configurations (Puiseux
2021). A cardiovascular-like in vitro flow phantom was designed and
integrated to a MRI-compatible experimental test bench (Puiseux et al.
2019). Several PC-MRI experiments were carried out and post-corrected
from imaging artifacts. The compatible image-based CFD analysis was
performed, prescribing the PC-MRI measurements as inlet velocity profiles.
The CFD velocity field was downsampled to match the MRI spatiotemporal
resolution, and compared to the experimental MRI velocity, resulting in 97%
velocity correlations (Puiseux et al. 2019). Finally, coupled 4D flow MRI
simulation was performed and the corresponding in silico velocity images
were reconstructed and compared to the input CFD velocity field to validate
the full simulation pipeline (see Figure 7.10). Both the experimental and
simulated MRI velocity fields were compared with the downsampled CFD
velocity field. As shown in Figure 7.10, the sites of largest velocity error
seem well reproduced by the MRI simulation, although a systematically
higher error is reported in the experimental MRI. We suggest that the large
error site at the collateral-descending tube junction is a direct consequence of
neglecting the acceleration in 4D flow MRI sequences. The remaining
systematic error can be attributed to the experimental noise due to magnetic
field inhomogeneities and off-resonance effects that are not accounted for in
the MRI simulations.
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7.4.3. Multi-cells

YALES2BIO is also extended to perform multi-cells simulations, as
illustrated by the simulations of suspensions in microfluidic channels (Iss
et al. 2019) already mentioned in the validation section. The aim is now to
understand the relationship between single-cell behavior in shear flow, the
motions of the cells in suspension and the macroscopic outcome, such as
blood rheology, for instance. In particular, we have shown that RBCs in
plasma subjected to increasing shear stress become more and more folded
and compact (Mauer et al. 2018), which has beneficial effects on blood
rheology, as demonstrated experimentally (Lanotte et al. 2016). Simulations
may provide the explanation for this effect. In addition, our interpretation of
blood dynamics is often driven by the knowledge on single cells. Systematic
studies of the effect of increasing the concentration are still needed to
determine to which extent single cell dynamics can be used to explain blood
results. With this in mind, YALES2BIO now has the capability of performing
multi-cells simulations, and computation in pure shear flow is currently being
performed (see Figure 7.11) at various hematocrit levels.

Figure 7.10. Left: magnitude of the velocity a) reconstructed by MRI simulation and
b) predicted by CFD at peak systole. Right: velocity L2-norm error reported for

c) experimental MRI and d) simulated MRI, as compared to CFD

Figure 7.11. RBC suspension under shear flow, at physiological viscosity
contrast and shear rate 100 s−1. Hematocrit is 12.5%
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8.1. Introduction

A capsule is a mixed object consisting of a solid envelope surrounding an
internal substance at its core. A wide variety of materials, both natural and
bio-artificial, can be used for encapsulation purposes to create the envelope
and protect the internal medium. Depending on the materials constituting it
and its thickness, the capsule wall can range from a simple membrane that is
thin (as thin as a few nanometers for lipid layers), ultra-flexible and fragile, to
a rigid shell. Its ability to protect the internal medium from the inner
environment will depend on its mechanical strength and permeability. Indeed,
the membrane plays the triple role of vector for the capsule core, protective
barrier and controller of the exchanges between the internal substance and the
outer medium.

Capsules are ubiquitous and extremely varied in their natural state. In the
viral kingdom, the genetic material of most viruses is enclosed in a protective
shell called a capsid, obtained by the structured assembly of sets of proteins
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called capsomeres. In multicellular organisms, capsules are used, for example,
in reproduction, in the form of spores and eggs, or in blood circulation, in
the form of circulating cells such as red and white blood cells and platelets,
which are cells fragments. Other forms of encapsulation are also found in the
circulation, such as cholesterol transport by lipoproteins.

In most examples, the primary role of capsules is to allow vectorization,
which consists of modulating and controlling the distribution of an active
principle to a specific target. The control may be spatial, temporal or
quantitative. Many studies have focused on the encapsulation of active
principles, such as anti-cancer drugs for targeted chemotherapy (Desai et al.
2010, Singh et al. 2010, Sato et al. 2011, Henning et al. 2012, Zhang et al.
2013, Yan et al. 2016). Capsules also have a wide variety of industrial
applications, in the food, textile, cosmetic, hygiene, mechanical and
automotive sectors, but also in environmental applications, for instance, for
depollution. The number of applications for artificial capsules continues to
increase, but decades of work to develop artificial red blood cells, and, more
generally, artificial blood, demonstrate the difficulty in developing vectors
capable of withstanding hydrodynamic stresses in the circulation.

Understanding the flow dynamics of microcapsules in a confined
environment and being able to determine and control the mechanical
properties of the membrane are of great importance in the context of
encapsulation and controlled release of active agents. Despite the inherent
difficulty in characterizing the elastic properties of these small fragile objects,
different experimental approaches have been designed to deform
microcapsules under a known force. These are divided into two groups:
techniques such as atomic force microscopy (Dubreuil et al. 2003, Ivanovska
et al. 2004), micropipette aspiration (Fery and Weinkamer 2007),
compression between two parallel plates (Carin et al. 2003, Bando and
Yamaguchi 2017) and stretching with optical tweezers (Helfer et al. 2000)
are applied on individual microcapsules, while other techniques are used to
test entire capsule populations: generally, these consist of placing capsule
suspensions under flow in microfluidic channels (Hu et al. 2013, Loubens
et al. 2014) or under extension flows (Loubens et al. 2015). But these studies
only enable quantification of the elastic properties of the membrane. In order
to trace back to viscoelastic properties, the transient behavior of capsules
needs to be studied. Gires et al. (2016) studied the flow of microcapsules
through a microfluidic channel with a step and a cross-section that suddenly
changed from square to rectangular. They demonstrated that it is possible to
identify the elastic properties from the steady shape that the capsule takes in
the square part of the channel, and the membrane viscosity from the
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relaxation time once it enters the rectangular part. But no complete model of
the relaxation of a capsule in such a channel can be found in the literature.

The purpose of this work is to propose a numerical method of
fluid–structure coupling to characterize the relaxation of a microcapsule as it
flows through a channel with a change in cross-section for comparison with
the measurements from Gires et al. (2016), but also to extend the study to the
Navier–Stokes inertial regime. The capsule is modeled as a droplet enclosed
in a zero-thickness membrane with hyperelastic behavior. The fluid–structure
interactions are solved by coupling a finite-volume fluid solver (Popinet
2009) with a finite-element solid solver performing Lagrangian tracking of
the position of the capsule membrane material points (Walter et al. 2010).
Coupling is performed using the immersed boundary method (IBM) (Peskin
2002b).

After detailing the numerical method and validating the results, we will
study the temporal evolution of capsule deformation and the fluid flow
structure induced by capsule relaxation in the step cross-section. We will
consider the case of Stokes flows, and then the case where internal and
external fluid inertia is taken into account. Finally, we will show that
indicators of the capsule relaxation after the step can be predicted by reduced
models of the inertial Kelvin–Voigt type.

8.2. Overview of the physical problem

Let us consider an initially spherical liquid-core capsule with a radius a0,
suspended in a fluid of the same density ρ and viscosity μ as the inner fluid.
The capsule membrane has an elastic resistance characterized by a surface
shear modulus Gs. The membrane is assumed to be without thickness, and
devoid of bending stiffness and membrane viscosity.

The capsule is placed in a microchannel composed of a squared
cross-section 2l × 2l of length L (L/l = 16) connected to a co-axial portion
with a rectangular cross-section 2l × 4l along axes Oy and Oz, respectively,
and of length L according to Ox (Figure 8.1). The capsule is initially
positioned at a distance of 2l from the channel inlet. For aspect ratios
a0/l > 0.9, the capsule is pre-deformed into an ellipsoid of revolution before
being inserted into the channel (Hu et al. 2012, 2013). In the study, we focus
on a capsule with an aspect ratio a0/l = 1.1, pre-deformed into an ellipsoid

of half-major axis 1.5a0 and half-minor axes a0/
√
1.5. The coordinate

system, whose axis Ox is oriented in the direction of flow, is centered on the
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initial position of the capsule center of gravity. The step is located at
x/l = 14.

Figure 8.1. Geometry of the micro-channel composed of a square cross-section
(2l × 2l) opening onto a co-axial portion with a rectangular cross-section (4l × 2l).

For a color version of this figure, see www.iste.co.uk/deplano/biological.zip

The capsule is set in motion by a Poiseuille flow of mean velocity V ,
imposed at the inlet. The characteristic time scale is therefore l/V , giving the
dimensionless time t̃ = tV/l. For numerical simulations under Stokes
conditions, the pressure scale is μV/l, giving the dimensionless pressure
p̃ = pl/μV .

The dimensionless numbers controlling the flow of the capsule into the
square channel are

– the aspect ratio a0/l;

– the capillary number Ca = μV/Gs, the ratio between elastic and viscous
forces;

– the Reynolds number Re = ρV l/μ.

8.2.1. Fluid solver

The fluid solver, detailed in Popinet (2009), numerically solves the
dimensionless incompressible Navier–Stokes equation given by

{
∂tv + (v · ∇)v = −∇p+ 1

ReΔv + f
∇ · v = 0

[8.1]

where v is the velocity and p is the pressure. The Reynolds number,
Re = ρV l/μ, is the dimensionless number that characterizes the ratio
between inertial and viscous forces. The density ρ and viscosity μ are
assumed to be constant. The source term f is used to pass the capsule
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deformation forces, which are solutions of the solid solver described in
section 8.2.2.

The Stokes equations are obtained by neglecting the nonlinear inertia term.
Formally, we multiply [8.1] by Re, and non-dimensionalize time and pressure
by their respective viscous scale (Tμ = μl2/ρ = ReTV et Pμ = μV/l =
PV /Re) to obtain the unsteady Stokes equation.

{
∂tv = −∇p+Δv + f
∇ · v = 0

[8.2]

The boundary conditions imposed at the inlet and outlet of the channel
(Figure 8.1) are a Dirichlet condition for velocity and a Neumann condition
for pressure at the inlet, and vice versa for the outlet.

Equation [8.1] (much like equation [8.2]) is solved from instants 0 =
t0 < ... < tnΔt

= tf , where Δt is the (dimensionless) time step and n is the
number of time steps. The time step is adjusted to satisfy the CFL
(Courant–Friedrich–Levy) stability condition

Δt < C
Δx

Vmax
, [8.3]

where Vmax =|| v(t) ||∞ is the maximum velocity in the entire fluid domain
at the instant t and C is set by default to 0.8 in the study.

System [8.1] semi-discretized at time step tn is written as

⎧⎪⎨
⎪⎩

vn+1−vn

Δt +
(
vn+ 1

2
.∇

)
vn+ 1

2
= −∇pn+1/2

+ 1
Re∇. (Dn + Dn+1) + fn

∇.vn+1 = 0,

[8.4]

where D is the strain velocity tensor defined by D = 1
2

(∇v +∇vT
)
.

In the case of an incompressible fluid, pressure p is a dual velocity
variable that ensures the divergence of the velocity is nil. We therefore use an
auxiliary velocity field v∗ according to the Hodge decomposition. The
system then becomes (Chorin 1969)

vn+1 − vn = (vn+1 − v∗) + (v∗ − vn) [8.5]

v∗ = vn+1 +Δt∇pn+ 1

2
[8.6]
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By injecting [8.4] in [8.5], and replacing Dn+1 by D∗, we obtain

⎧⎪⎨
⎪⎩

v∗−vn

Δt +
(
vn+ 1

2
.∇

)
vn+ 1

2
= 1

Re∇. (Dn + D∗) + fn

v∗ = vn+1 +Δt∇pn+ 1

2∇.vn+1 = 0

[8.7]

Finally, we can rewrite the system [8.7] by placing the second line beneath
the divergence operator and considering the last line of [8.7]. We obtain

⎧⎪⎨
⎪⎩

v∗−vn

Δt +
(
vn+ 1

2
.∇

)
vn+ 1

2
= 1

Re∇. (Dn + D∗) fn
Δpn+ 1

2
= 1

Δt∇.v∗
vn+1 = v∗ −Δt∇pn+ 1

2

[8.8]

The nonlinear term
(
vn+ 1

2
.∇

)
vn+ 1

2
is estimated using the second-order

offset Godunov scheme by Bell–Collela–Glaz (Bell et al. 1989). Next, the
auxiliary velocity v∗ is solved implicitly. The pressure pn+1/2 of the second
line is solved by using the Poisson multi-grid solver on an Eularian mesh (E)
at each node defined by x ∈ E . Finally, the third equation gives the velocity
field at the next time step, vn+1. The velocity field vn+1 defined for x ∈ E is
used in the IBM coupling procedure to move the Langrangian points defining
the structure of the capsule. The Basilisk numerical scheme is accurate to the
second order in time because of the offset discretization of pressure.

8.2.2. Solid solver

The forces exerted by the membrane on the fluid are calculated by the
solid solver of the Caps3D fluid–structure solver from the reference
Lagrangian and the current Lagrangian L. It is based on a finite element
approach and a Lagrangian following of the capsule nodes. Finite elements
are third-order accurate in space, and in some couplings they can give
fourth-order spatial accuracy (Walter et al. 2010). They present a certain
numerical stiffness that ensures stability in compression. Based on a given
reference to configuration X0 of the membrane, the solid equations are
solved to deduce the internal elastic forces of its membrane, and finally the
stress exerted on the neighboring fluid (Walter 2009). The IMB coupling
method described below transfers the stress to the Eulerian fluid (E).

To define the parameters that characterize the solid, the lengths are
non-dimensionalized by the initial radius of the capsule a0, the tensions and
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energies per unit surface by the surface shear modulus Gs, the stresses by
Gs/a0, the forces by Gsa0 and the energies by Gsa

2
0.

Knowing the Lagrangian configuration (L) containing the position X of
the capsule nodes, which were at X0 in the reference configuration at time
t = 0, we compute the surface gradient of the transformation F, as well as the
Cauchy–Green (dilatation) tensor C defined by

C = FT .F [8.9]

From the principal dilatations, we obtain the deformation invariants I1 and
I2 that allow the membrane constituent laws to be defined from the free
energy of deformation per unit of undeformed surface area, ws (I1, I2). We
use Skalak’s law (Sk) that has a stiffening behavior (Skalak et al. 1973)

wSk
s =

GSk
s

4

(
I21 + 2I1 − 2I2 + CI22

)
[8.10]

The strain energy function links the Cauchy stress tensor T to the
transformation gradient F and the Green–Lagrange stress tensor

e = 1
2(F

T · F − 1) by T = 1
Js
F · ∂wSk

∂e · FT , where the Jacobian Js
represents the ratio between deformed and undeformed surfaces. Once the
Cauchy tensor T is known, the membrane elastic load per unit of deformed
surface area q is determined by solving the weak form of the wall
equilibrium equation

∇s ·T+ q = 0

where ∇s is the surface gradient operator on the deformed configuration.
Further details can found in Walter et al. (2010) and Barthès-Biesel et al.
(2010). The elastic load q is passed to the fluid solver in the term f by the
IBM method described below.

8.2.3. Fluid–structure coupling by the IBM method

We present the fundamentals of the IBM method. The IBM method is
designed to couple a Cartesian mesh (E for fluid) to a Lagrangian mesh (L
for solid) (Peskin 1972, 2002, Mittal and Iaccarino 2005). The IBM method
utilizes a transfer function used for both the volume dispersion of elastic
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forces in the fluid (L → E) and approximation of advection rates of the solid
(E → L). We propose the IBM filter defined by Beyer and Leveque (1992)

⎧⎨
⎩

δBL(s) = 1− s2, |s| ≤ 1
δBL(s) = 2− 3|s|+ s2, 1 < |s| ≤ 2

δBL(s) = 0, 2 < |s|
[8.11]

The two transfer processes are as follows:

– (L → E): to be injected into the fluid solver, the membrane elastic load
per unit surface q, calculated by the solid solver, is converted into a fluid
source term, f , defined in the Navier–Stokes equation in section 8.2.1. It is
first integrated on the surface of the nearest neighbors at each Lagrangian node
X ∈ L. The integration scheme uses three Hammer points, which guarantees
that the force on the finite element is maintained. The forces F(X) on the
Lagrangian node are distributed on the Eulerian grid E used by the fluid solver
using the IBM proposed in Peskin (2002), thus providing the force density

f (x) =
∑
X∈L

F(X)

(Δ)3

3∏
i=1

δBL

(
xi −Xi

Δ

)
, [8.12]

where Δ is the spatial size of the Eulerian grid E .

– (E → L): at the end of the integration step of the fluid solver with the
new force f , the new Eulerian velocity field v(x, tn+1) is used to find the new
configuration, L (tn+1), of the Lagrangian nodes X (tn+1) determined by an
explicit Euler method. The IBM method approximates the advection velocity
V (X (tn)) of the solid at the node X by the local average of the surrounding
fluid velocities, via

X(tn+1)−X(tn)

Δt
= Δ3

∑
x∈E

v (x)

3∏
i=1

δBL (xi −Xi (tn)), X ∈ L [8.13]

A volume correction is applied to each time step according to the
Lagrange multiplier method used by Mendez et al. (2014). The volume
correction maintains a relative error on the volume below 6 × 10−4

throughout the simulation, which must be compared to values between 10−3

and 10−2 without applying the correction.
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8.3. Transient flow of a microcapsule into a microfluidic channel with a
step

In this study, the capillary number is set to Ca = 0.05, and the Reynolds
number has a value of Re = 0 for Stokes flows and varies from 1 to 15 for
Navier–Stokes flows. The mean velocity of the inlet flow is increased linearly
from zero velocity to the reference value V between t = 0 and the
dimensionless time t̃ = 1. This time is chosen to guarantee that the capsule
has reached its steady form at a minimum distance of 2a0 from the step. For
steady state, we check that the surface area variation of the capsule
membrane with respect to the reference configuration varies by less than
5 × 10−4 for cases Re = 0 and Re = 1 and by less than 2 × 10−3 for
Re = 15 on a time interval t̃ = 1.

8.3.1. Capsule flow in the Stokes regime

We will start by validating the simulations for a capsule flowing in a
channel with a step in the Stokes regime, which was studied experimentally
in Gires et al. (2016), and for a capsule in a straight channel under Stokes
flow, which was studied by Hu et al. (2012), Hu et al. (2013), Krüger et al.
(2014), Kusters et al. (2014) and Wang et al. (2016). The results obtained in
the Stokes regime are compared with those obtained by Hu et al. (2013)
using the Caps3D fluid–structure solver coupling the boundary-integral
(BIM) and finite-element (FEM) methods (Walter et al. 2010). The evolution
of the capsule shape in the plane xOz to t̃ = 9 is shown in Figure 8.2.

Figure 8.2. Evolution of the capsule shape in the square channel: capsule
profile in the xOz plane at different instants, spanning t̃ = 0 to t̃ = 9
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We can observe that steady state is reached shortly before t̃ = 8. The
temporal evolution of the relative variation of the membrane surface area and
the comparison of the steady solution with that of the references (Hu et al.
2012, 2013, Gires et al. 2016) are represented in Figure 8.3.

Figure 8.3. a) Temporal evolution of the relative variation of membrane area(
S
(
t̃
)− S0

)
/S0 and comparison with the results of Hu et al. (2013). b) Profile of the

capsule in the xOz plane in steady state at t̃ = 8 and comparison of the simulation
with the Caps3D results (Hu et al. 2013). For a color version of this figure, see
www.iste.co.uk/deplano/biological.zip

Figure 8.3(a) shows the temporal evolution of the membrane area through
its relative variation with respect to the reference configuration. Note that the
area stabilizes shortly before t̃ = 8, at a value close to that obtained in the
infinite straight channel by Hu et al. (2012) and Hu et al. (2013). Figure 8.3(b)
compares, for t̃ = 8, the capsule shape given by the full simulation with that
of the previous studies (Hu et al. 2012, 2013) (Gires et al. 2016). The results
are consistent across almost the entire membrane, with the modified Hausdorff
distance calculated using the projection method being equal to dHm,p ≈ 8 ×
10−3, which validates the steady state of the full simulation. For the evolution
of the surface, good concordance is obtained, the variation being 14.1% in the
present simulations and 14.9% in the simulation by Hu et al. (2012) and Hu
et al. (2013). The steady state is reached before the capsule reaches a distance
2a0 from the step, which ensures that the crossing of the step by the capsule
will be independent of the initial conditions. From the area variations shown
in Figure 8.3(a), one can note that the membrane at steady state is around 2.4
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times more deformed than the initial ellipsoidal state, for which the relative
area variation is only 6%.

The complex dynamics of the variation of the capsule shape when passing
through the step is well illustrated in Figure 8.4, where it is compared with
the experimental data from Gires et al. (2016). Four cross-sections of the
capsule during the different stages of its flow are shown: one approaching the
step, the other during its crossing and the remaining two during relaxation.
The blue/pink cross-sections represent the results of our simulations and the
images from the Gires et al. (2016) experiment are in gray, in the
background.

Figure 8.4. Shape of the capsule under flow at different instants around the passage of
the step, and overlaying Figure 2 from Gires et al. (2016). The capsule cross-sections
from the numerical simulation are in blue. The cross-sections at numerical times
corrected to correspond to the slower dynamics of the experiment are in pink. For a
color version of this figure, see www.iste.co.uk/deplano/biological.zip

Note that the simulated capsule has higher maximum curvatures, which
indicates the presence of a bending stiffness in the experimental case. Finally,
we note that the membrane from Gires et al. (2016) has a membrane viscosity,
which is reflected in a slower adoption of a convex rear shape than in our
simulations. The authors themselves have made this finding and estimated the
membrane viscosity after comparison with the results from Diaz et al. (2001).

8.3.2. Relaxation dynamics in the Stokes regime

When the capsule exits the step, the dynamics of its structure are complex
and result from the interactions between the fluid flow and the membrane
mechanics. The capsule extends rapidly in the vertical direction with an
increase in Lz . But because the temporal variation in length is slower in the
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flow direction, which was noted by Gires et al. (2016), the length Lx is more
relevant to characterize the mechanical behavior of the membrane. If the
capsule shape and the lengths Lx and Lz are observable experimentally and
numerically, the interest of numerical simulation lies in accessing
hydrodynamic data, such as velocity (including streamlines) and pressure, as
well as quantities related to membrane deformation, such as elastic energy.

Figure 8.5 represents the temporal evolution of the longitudinal length Lx

of the capsule. After a rapid decrease when the capsule passes through the
step, it asymptotically approaches the length Lx,∞, which differs from that of
Gires et al. (2016) by only 0.02 l. With regard to the final width of the capsule
according to Oz, Lz differs by only 0.004 l from the numerical simulations of
Gires et al. (2016), which is an excellent level of agreement.

Figure 8.5. Temporal evolution of the length Lx of the capsule in Stokes regime

Figure 8.6 shows the streamlines in the plane xOz: (a) without the
capsule and (b) just after the instant when the capsule passes through the step.
Note that the tightening of the streamlines due to the presence of the capsule
accelerates flow and therefore the capsule. Capsule acceleration is a fairly
subtle fluid–structure coupling phenomenon identifiable through numerical
simulation.

The velocity field for the longitudinal component vx at time t̃ = 13.17
(Figure 8.7) gives important additional information: it presents a local
maximum on the inner side of the capsule edges.

Figure 8.8 presents the evolution of the velocity of the capsule center of
gravity. Note that at the steady state, the capsule velocity has a value of
Vcaps = 1.21V , which is in very good agreement with the value
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Vcaps = 1.2V of the BIM-FEM square-channel simulation from Hu et al.
(2012). We can observe the sudden acceleration due to the capsule-flow
interaction, as explained previously.

Figure 8.6. Streamlines (blue line) in the sectional plane xOz in the vicinity
of the step under Stokes conditions: (a) without the capsule and

(b) in the presence of the capsule (red line), at time t̃ = 13.17

Figure 8.7. Velocity field in the plane xOz under Stokes conditions at time t̃ = 13.17.
For a color version of this figure, see www.iste.co.uk/deplano/biological.zip

Figure 8.8. Temporal evolution of the capsule velocity in the Stokes regime. For a
color version of this figure, see www.iste.co.uk/deplano/biological.zip
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We present the capsule (Figure 8.9) at the instant studied, t̃ = 13.17. In
Figure 8.9(a), we can observe the negative stress values

Tneg
�
= min (Tmin, 0), where Tmin ≤ Tmax are the two eigenvalues of the

stress tensor T. The stresses are normalized by Gs. We can see that
| Tneg | /Gs � 1 everywhere, except on the rear part of the capsule edges,
located close to the plane xOy. As the membrane is, at this instant, in large
deformations (i.e. max {| Tmin |, | Tmax |} /Gs = O (1)), we have
Tmax/Gs = O (1). The membrane is therefore under stress almost
everywhere; in one or two directions, the compression zones being
quasi-inexistent. Figure 8.9(b) shows the normal load qn. We can observe that
qn < 0 at the center of the capsule. By contrast, we have qn > 0 on the part
near the plane xOz and at this location, | qn | is maximum. This suggests that
the external fluid is overpressurized near the center of the capsule, and under
low pressure near its edges.

Figure 8.9. 3D representation of membrane state at t̃ = 13.17: (a) normalized
negative stresses Tneg/Gs and (b) normalized normal loads qna0/Gs. For a

color version of this figure, see www.iste.co.uk/deplano/biological.zip

The deformation at each instant t offers a complementary vision of the
dynamics of relaxation. Figure 8.10 presents the strain energy over time.
Note that the membrane loses 85% of its energy as it passes through the step,
passing from Em/Gsa

2
0 ≈ 0.74 to Em/Gsa

2
0 ≈ 0.11. The energy stored by

the capsule during the deformation imposed by hydrodynamic stresses is
released at the crossing of the step, when the velocity of the basic flow is
divided by 2. The transition is not monotonous, however, as the fluid flow
transmits mechanical energy to the membrane upon expansion along the z
axis. The energy then reaches a local maximum of Em/Gs. In the case of a
Stokes flow, this energy transfer gives monotonous relaxation in terms of
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lengths (Figure 8.5), which allows the capsule mechanics to be characterized
using a simple model of a damped RLC circuit damped, as in Gires et al.
(2016). We will see that these relaxation dynamics are different for a capsule
in Navier–Stokes regime.

Figure 8.10. Temporal evolution of the membrane energy
resulting from the simulation in Stokes regime

8.3.3. Relaxation dynamics in the Navier–Stokes regime

The transient regime is studied in this section within the context of the
Navier–Stokes equation for Reynolds numbers of 1 and 15, and is compared
with the results of the Stokes regime.

Figure 8.11 presents the evolution of the relative variation of membrane
surface (S − S0)/S0. The line corresponding to Re = 1 merges with that
of the Stokes regime (Re = 0), which indicates that the inertial term is not
yet large enough to change the capsule dynamics. However, the behavior of
(S − S0)/S0 for Re = 15 is different, with a higher maximum value and
offset over time.

The dynamics of relaxation in the Navier–Stokes regime are better
understood if one looks at energy exchanges. Figure 8.12 represents the
evolution of the energy and the length Lx of the capsule for the different
Reynolds numbers. For a Reynolds number Re = 1, we have an evolution
close to the Stokes regime (Re = 0). As for relaxation in a fluid at rest, we
find that inertia causes additional exchanges of energy between the fluid flow
and the membrane. The oscillation observed for Re = 15 is characteristic of
an energy exchange, as demonstrated in the case of a capsule at rest (Sarkis
2018).
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Figure 8.11. Influence of inertia on the temporal evolution
of the relative variation of membrane area (S − S0)/S0

Figure 8.12. Comparison between Stokes and Navier–Stokes regimes: a) evolution
of the mechanical energy of the membrane; b) temporal evolution of the capsule

length Lx for different Reynolds numbers: Re = 0, 1 and 15

The temporal evolution of the longitudinal half-length Lx of the capsule
evokes the dynamics of a damped mass-spring system. We propose a
Kelvin–Voigt inertial model to predict its evolution. The purpose is to use the
reduced model to adjust the results of 3D simulations to identify the values of
the model constants and quantify the importance of the contributions of
inertia and viscosity to the relaxation of the capsule. The differential equation
driving the temporal evolution of its longitudinal half-length Lx is

m
d2Lx

dt2
+ ϕ

dLx

dt
+ k (Lx − a0) = 0 [8.14]
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where the stiffness k is associated with the Young surface modulus of the
membrane, the shear stress coefficient ϕ corresponds to a drag coefficient
acting on the capsule and the mass m is a measure of the inertia of the
system. Further details are provided in Sarkis (2018).

Figure 8.13 shows the results of the Kelvin–Voigt model after adjustment
of the parameters for Re = 1 and Re = 15. This method allows us to deduce
the characteristic times of the capsule oscillation, and thus trace back to its
physical characteristics. It also shows that the transition from a purely damped
system to an oscillating system occurs for Re ∼ 8.

Figure 8.13. Adjustment of Lx curves of simulations by the
Kelvin–Voigt inertial model for (a) Re = 1 and (b) Re = 15

8.4. Discussion and conclusion

We presented a fluid–structure solver coupling a finite–volume fluid solver
and a finite–element solid solver using an IBM. The approach was validated in
the Stokes regime by comparing the numerical results with the existing results
on the flow of a spherical microcapsule in a square cross-section microfluidic
channel.

We extended the approach to the Navier–Stokes regime and studied how
inertia affects the evolution of the capsule shape and the internal and external
flow structures. The detailed study of fluid flow is inaccessible
experimentally and it is because of numerical simulations that we can analyze
the coupled system. The new coupled fluid–structure solver allowed us to
determine two relaxation regimes: a damped regime where the capsule
dynamics are in linear regime, and a damped oscillatory regime dominated by
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inertia. In this configuration, the system dynamics depend on the Reynolds
number Re and the transition from a purely damped system to an oscillating
system occurs for Re ∼ 8.

Because the numerical tool has the ability to investigate the fluid field and
capsule state in detail, the analysis focused on a specific instant, at the moment
when the capsule exits the step. Access to hydrodynamic data allows us to
study the interaction between the streamlines and the shape of the capsule that
highlights the deceleration mechanism of the capsule after the passage of the
step.

To better understand the physical phenomena that govern the dynamics of
capsule relaxation, we studied the interaction between membrane deformation
free energy, kinetic energy and viscous dissipation. The analysis of the system
from an energy point of view has highlighted the role of energy exchanges
between the solid and fluids, and how it leads to the existence of one regime
or the other.

The study of the evolution of the capsule shape also showed that key
information on the regime and relaxation dynamics could be obtained from
the temporal evolution of the longitudinal half-length Lx of the capsule. We
therefore proposed to model relaxation using a simple Kelvin–Voigt model
assembled in series, with a point mass to account for inertial effects. The
model predicts the evolution of Lx very effectively and enables the
determination of the type of regime, the value of the Reynolds critical
number and the time constants with very high accuracy.

Comparison with other experiments (Gires et al. 2016) demonstrated the
existence of a bending stiffness and a membrane viscosity in the protein
capsules considered in the study. It would therefore be interesting to
incorporate these behaviors into the code. To implement bending stiffness, it
will be possible to consider different approaches, such as those of
Guckenberger et al. (2016) or Dupont (2014). Membrane viscosity could be
implemented by using existing methods (Yazdani and Bagchi 2013). It would
then be interesting to compare the results again with those of Gires et al.
(2016) and modify the bending stiffness and membrane viscosity. This would
offer us a more exhaustive understanding of the dynamics of the capsules
under flow and enable us to identify the values of these constants, which are
mechanical properties of the membrane.
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The light that this book sheds on biomechanical modeling applied to blood 
flow in large vessels provides elements for further reflection on numerical 
model applications in clinical research and experimental protocols.  

One of the major benefits of modeling and numerical simulation applied to 
medicine is the decision support role it is set to play in the near future. Indeed, 
in the coming years, it is expected that the patient will be “digitized” before 
entering the operating room to enable the medical team to improve diagnosis 
and prepare an interventional procedure through a virtual operation.  

Ongoing advances in medical imaging such as high-resolution ultrasound, 
MRI, high-frequency 3D elastography, confocal endomicroscopy, or optical 
coherence tomography will provide medical staff with a very precise image of 
the internal structure of the human body and, in particular, of the functions/ 
relationships between tissues/organs/flows, all in real time.  

The addition of patient-specific numerical simulations will provide 
comprehensive information concerning the biological system studied. Thus, 
one can readily imagine a three-dimensional reconstruction of the patient’s 
mechanical structures (tissues, organs, vessels and bone) based on medical 
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imaging, which will be introduced as input data for numerical calculation 
tools. The predictive results of these tools will then be added to clinical and 
biological analyses for more informed medical decision-making. The 
capabilities and advantages of the numerical tool are significant because, in 
addition to decision support, it will also be possible, for example, to simulate 
virtual interventions to inform the medical team of mechanical changes in 
terms of fluid flows or resulting solid displacements, or to take into account 
the mechanical impacts induced remotely from the field of intervention. 

The numerical studies on aortic aneurysms or bifurcations as well as the 
application of complete fluid mechanics equations, proposed in the chapters 
written by the teams at St-Etienne, Marseille and Paris Saclay, illustrate this 
last point. In the case of aortic aneurysm, it is now known that open surgery 
induces a high rate of renal complications. Innovative, mini-invasive 
approaches such as fenestrated (fEVAR), chimney (chEVAR) and periscope 
(pEVAR) EVAR have thus been developed to treat complex aortic 
aneurysms and preserve target vessel perfusion. The advantages of these 
endovascular techniques over conventional open repair are a reduction in 
mortality and morbidity. In the chapter by the St-Etienne team, numerical 
studies, an element seen as complementary to endovascular techniques, 
assist in defining and improving specific, safer procedures and allow virtual 
testing of prototypes before they go into production. The chapter written by 
the Marseille team demonstrates that the description and analysis of flow 
behaviors in some geometric singularities of the cardiovascular system, 
native or pathological, can be correlated with the evolution dynamics of 
cardiovascular pathologies using existing associations between the 
spatiotemporal distributions of certain hemodynamic markers/indexes and in 
vivo observation of deleterious clinical events. The definition of 
hemodynamic markers derived from numerical simulations for very precise 
pathologies, supported by in vitro/in vivo tests, is one of the areas set to 
develop in the future in engineering–medicine interactions. Finally, the 
chapter by the Paris-Saclay team clearly shows that the role of 
hemodynamics in endothelium dysfunction can only be fully elucidated 
through interactions between mechanics and biology. 

The implementation of real-time numerical simulations will also be one 
of the major challenges for dedicated medical applications in the next few 
years. It is clear that the intended use is comparable to that of today’s 
ultrasound system, which has the ability to provide real-time and continuous 
information to the physician during their clinical analysis. Here, in 
particular, two main avenues are opening up: the first is to reflect in parallel 
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on the technological advances in applied and theoretical computing, and the 
second concerns the development of reduced models.  

The possibilities offered by theoretical and applied computing in terms of 
computational speed through mass parallelization and high-performance 
computing (HPC), which are existing options for solving complex 
computational problems, combined with GPU programming and rapid 
storage capacity, mean that complete, real-time physiopathological flow 
computations will become reality tomorrow. The creation of large databases 
and their rapid and reliable processing by machine learning, or indeed deep 
learning with the advent of quantum computers, point to the multiple 
possibilities of implementing “complete” numerical models in creating tools 
to predict pathology evolution and other medical applications.  

Nevertheless, real-time computation remains, for the moment, a dream, a 
complete simulation of fluid mechanics in a typical case like those presented 
in this book currently taking days of computation time. The second avenue is 
reduced models, which are faster and increasingly accurate. This more 
affordable alternative is now widely studied and applied in research 
laboratories, although it has not yet entered clinical routine on a massive 
scale. Reduced models are models that are derived from the complete 
equations of fluid and solid mechanics and, by reducing dimensions, they 
enable rapid numerical computations. An overview of these was given in 
two of the chapters. The first, proposed by the INRIA team, presents virtual 
liver surgery using reduced modeling. Liver lobes are notably represented by 
0D models in order to simulate the ablation of one or more lobes during a 
hepatectomy. The numerical data thus obtained, placed in comparison with 
clinical experience, then provide elements of discussion to explain  
non-trivial phenomena of flow increase and decrease in the liver. The second 
chapter is presented by the Sorbonne University team with the study of a 
stenosis and the associated pressure drop. Regardless of the causes, vessel 
blockage affects hemodynamics, and rapid information on the entire blood 
network is necessary for rapid and early diagnosis. Reduced-order models 
(0D and 1D) are then developed to determine, in real time, the pressure drop 
associated with the passage of a flow through a stenosis and to thus propose 
a pathological marker for clinical use. 

Another rather fascinating aspect of numerical simulations applied to 
blood flows concerns the study of the dynamics of flexible objects in a blood 
flow. These objects may be red blood cells, white blood cells or indeed 
capsules. Their mechanical behavior under flow is of major interest in 
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helping to understand their dynamics. The chapter by the Grenoble team 
shows that advances in understanding the dynamics of micro-circulation 
allow us to consider interactions at the interface between medicine, physics 
and mechanics, particularly in the context of erythrocyte pathologies, 
because of the increasingly predictive nature of the models. The chapter by 
the Montpellier team thus presents a tool designed to analyze the collective 
motions of these objects, paving the way for new theoretical developments 
in terms of the dynamics of blood cells and their interaction in flow.  

From the point of view of modeling and implementation of coupled 
equations (solids and fluids), the theoretical and numerical approaches of 
fluid–structure interaction are quite recent compared to developments in 
fluid flow models or rigid solid mechanics. Theoretical and algorithmic 
efforts are yet to be produced. In the case of capsules, an overview of which 
is presented in the chapter written by the Compiègne team, relatively new 
numerical schemes are implemented. The role of numerical simulations here 
is to understand the dynamics of capsules in order to control their navigation 
in blood flow and their behavior in complex geometries, ultimately to 
modulate and control the distribution of an active principle to a specific 
target, with multiple applications. 

In addition to taking into account fluid–structure couplings, whether 
complete or reduced, future models will need to be more evolved and 
integrate growth and remodeling processes, whether natural or caused by the 
evolution of the pathology or associated surgical or endovascular treatments.  

The models of the future will need to describe the correlations between 
mechanisms taking place at different spatial scales, in order to link 
molecular, cellular and tissue aspects to those of the organ.  

In the future, solutions will have to be found so that the complexity of 
such spatiotemporal models can be understood. 

The dialog established between the medical field and research in 
mechanics for the living, numerical modeling and mathematics will have to 
be sustained, and interdisciplinarity extended to other scientific fields, such 
as biology and bioinformatics. 

This book, we hope, forms part of that movement.  

Marseille, Paris and Grenoble, March 2021 
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