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Preface

Whenever you are writing a book, people are bound to ask: ‘What kind of book is it? Who
is it for?’ These questions are reasonable, but the answers may not be that obvious. You
may, for example, have embarked on the project simply because it seemed like a good
idea at the time. So, with this in mind, what kind of a book is this? Having lived with it
for longer than I care to figure out, I still find it difficult to give a clear answer. It is much
easier to explain what it is not. This book is not an exhaustive review of gravitational-
wave astronomy. At least not in the sense that it provides a ‘complete’ reference list and
a detailed account of the historical developments of the ideas and the scope of the field.
It is much more ‘subjective’ than that. This may be frustrating to colleagues that have
contributed to the developments over the last several decades, but the reality is that I had
to make choices. It was simply not manageable to peek into (and report back on) every
nook and cranny, no matter how fascinating this might have been. Instead, I have tried
to provide an entry point to the vast (and rapidly growing!) literature on the different
aspects of gravitational waves and related astrophysics.

In essence, I have tried to build a bridge across different areas of physics that have
fascinated me for a long time. On the one hand, we have gravity—with Einstein’s warped
spacetime providing an astonishing example of what the human mind is capable of. On
the other hand, there is the extraordinary range of astrophysics and cosmology that comes
into play when we try to understand the gravitational-wave sky. And finally, we need to
consider the sublime technology that was developed to catch these faint whispers from
the distant Universe. This book maps out a journey through this complex landscape—
introducing a combination of overlapping areas of research, many of which require their
separate books for a fair treatment. The different chapters (especially in the second part)
are intended to narrow the gap between a basic understanding and current research. An
important part of this involves introducing the relevant language—making the involved
concepts less ‘mysterious’.

The book is intended to work as a platform, sufficiently low that anyone with an
interest in gravitational waves can scramble onto it, but at the same time high enough
that it connects with current research—and exciting discoveries that are happening right
now. It may only be an introduction, but I think it has potential... If you are an astronomer
and you want a basic understanding of this new window to the Universe, including a
brief (relatively self-contained) glimpse at Einstein’s theory, then this book may work
for you. Similarly, if you spend most of your time analysing data from gravitational-
wave detectors and you would like a better picture of what you are looking for (and
perhaps why theorists find it so difficult to make firm predictions) then other parts of
the book could work for you. Finally, there is a connection to nuclear physics—which is
natural, since gravitational-wave signals from neutron stars may help constrain our ideas
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for matter at extreme densities. Relevant aspects are addressed at various places in the
book, which may help nuclear and particle physicists appreciate how their work fits into
the bigger picture. Whichever direction you are coming from, and regardless of where
you are going, this book may be of interest to you.

In terms of teaching, the scope of the book is likely too vast for a single undergraduate
or masters-level course. But the material is flexible. The first part introduces the key
ideas, following a general overview chapter and including a brief reminder of Einstein’s
theory. This part can be taught as a (fairly) self-contained undergraduate one semester
course. In fact, the material is based on a course we have had on the books for over a
decade. So I know it works. Depending on the background and interest of the students,
I would select topics from the second (much longer) part of the book to connect with the
actual state of the art. The chapters are written to work as ‘set pieces’ with core material
that can be adapted to specific lectures and additional material that provide context and
depth. At least that’s the way I like to think about it. Some of the chapters have been
road-tested at summer schools and other events so I am confident they work. The one
thing that is missing in terms of teaching material is exercises. However, it is quite easy
to identify steps that need filling in and to come up with questions that go beyond the
material, so this should not be a major issue.

Before we embark on the journey, it is useful to make a few comments on notation and
conventions. Throughout the book I have chosen to work with a spacetime metric with
signature +2. There is one exception: The discussion of the Newman–Penrose formalism
used to discuss the dynamics of spinning black holes. I have adopted the convention that
spacetime indices are given by letters from the beginning of the alphabet, a,b,c, ..., while
spatial indices start with i, j,k, . . . . Many text books use Greek letters for the former.
Repeated indices (spacetime or spatial) indicate summation.

With these formalities out of the way, let’s get started.
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A long time ago, in a galaxy far away, the two black holes edged closer. Dancing around each
other in a nearly perfect circle.Drawn together by gravity, through the emission of gravitational
waves.Faint ripples encoded the change in gravity over eons.In the last few moments the motion
grew frantic.A storm of warped space and time raged as the two objects came together.An energy
equal to the obliteration of several suns was released in a fraction of a second. Then it was over.
All that remained was a single black hole. And empty space.

The signal moved unchanged over the vast distances of space until, after more than a
billion years, it reached the Earth. When the signal was created, this insignificant blue planet
hosted single cell organisms. When the signal arrived, there was an advanced civilization. A
civilization curious about the Universe. A civilization with technology to catch the elusive
spacetime whisper. Their advanced detectors registered a disturbance.

This was the beginning.
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Opening the window

1.1 The beginning

The first direct detection of gravitational waves was announced to the world on the 11th
of February 2016 with a triumphant ‘We did it!’. The signal, which had been picked
up by the two LIGO detectors on the 14th of September 2015, matched the predictions
from numerical simulations of the merger of a pair of black holes with masses 36M� and
29M�, forming a larger black hole with mass 62M� (Abbott et al., 2016b). The missing
mass—the equivalent of about 3 solar masses—had been radiated as gravitational waves.
This extraordinary event, which only lasted a fraction of a second, was the most powerful
astronomical event ever observed. It was the beginning of a new kind of astronomy.

The breakthrough detection came nearly a century after Einstein’s prediction that
changes in gravity should propagate as waves (Einstein, 1916). It was an extraordinary
moment of success, following decades of technology development, political wrangling to
secure funding, and several false starts. It was a moment of glory, rewarding an enormous
amount of patient and hard work from a lot of people.

The LIGO project was initiated in the early 1990s Abramovici et al. (1992) and
the first generation of kilometre-scale gravitational-wave interferometers reached their
initial design sensitivity in a broad frequency window in November 2005 (during the
fifth science run, S5). More than one year’s worth of quality data was taken during
the following science run (S6) in 2009–10. Many research papers were written, but no
signals were found. After a couple of years’ downtime to improve the technology, the
first ‘observing run’ (O1) of the advanced interferometers started in September 2015.
The immediate detection of the black-hole signal led to a collective sigh of relief. It had
been a long journey.

The first detection brought the promise of gravitational-wave astronomy into sharp
focus. It was much more than a confirmation that gravitational waves exist and that we
can catch them. We learned that there are double black-hole systems in the Universe and
that they merge due to the emission of gravitational radiation. The observed signal agreed
with the predictions from general relativity, showing the expected inspiral, merger, and
ringdown phases seen in numerical supercomputer simulations (Chapter 19). It was the
first test of Einstein’s theory in a dynamical, strong-field setting. The signal allowed us to
identify more massive black holes than so far found in X-ray binaries, and it also provided
interesting constraints on the spin of the individual black holes.

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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The underlying theory may be complex, but the observed signal was simple. It swept
upwards in amplitude and frequency from 30 to 250 Hz in a perfect example of the
anticipated chirp (see the time-frequency plots in the lower panels of Figure 1.1). At its
peak, the gravitational-wave strain, h ≈ 10−21, corresponded to a luminosity equivalent to
emitting the mass-energy of about 200 suns in a second. The event took place 1.3 billion
light years from the Earth (Abbott et al., 2016b). In terms of the Universe, it was ancient
history.

Binary signals, like GW150914, carry unique information on the masses and spins
of the sources. In the case of neutron stars, the gravitational waves also encode the
internal structure, which depends on the state of matter at extreme densities. In essence,
gravitational-wave observations have the potential to probe many fundamental physics
issues. Given the weakly interacting nature of gravitational waves, the information they
carry provides an important complement to electromagnetic observations. In fact, they
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Figure 1.1 The first gravitational-wave signal (GW150914) observed by the LIGO Hanford (H1, left)
and Livingston (L1, right) interferometers. The top row shows how the gravitational-wave strain varied
with time in the two detectors (with a direct comparison after a time shift of 10 ms corresponding to the
travel time—at the speed of light—between the two instruments). The middle row compares the signal to
results from numerical relativity simulations, showing inspiral, merger, and ringdown of two coalescing
black holes. The bottom row gives a time-frequency representation of the gravitational-wave strain,
again showing the signal frequency and strength increasing with time. (Reproduced from Abbott et al.
(2016b), Creative Commons Attribution 3.0 License.)
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shed light on aspects that cannot be probed by traditional means, like the internal
dynamics of a supernova explosion or quantum fluctuations in the very early Universe
just after the Big Bang. In order to understand the wide range of possibilities, we need
to explore the mechanisms that generate gravitational waves in the first place. We need
to be able to predict the character of the signals and consider the challenges associated
with detecting them. As this involves many complex questions, and it is important to
appreciate the context, we need to start from the beginning.

1.2 A new kind of astronomy

With his theory of general relativity, Einstein revolutionized our view of space and time
(Einstein, 1915). By explaining gravity in terms of the geometry of a combined spacetime
he provided a fresh perspective on the Universe. This led to the introduction of exciting
concepts that have become part of mainstream culture. Most notably, black holes, formed
when massive stars die, and the Big Bang, the explosion which gave birth to the Universe
some 14 billion years ago. Moreover, Einstein’s general relativity is a dynamic theory of
gravity, where space and time are flexible concepts. The theory predicts that changes
in gravity propagate as waves, ripples in spacetime moving at the speed of light. These
gravitational waves are elusive. For decades they caused debate and controversy1 and,
until recently, attempts to detect them proved futile.

It is not really surprising that the detection of gravitational waves proved such a
challenge. Early generations of instruments may have been remarkably sensitive—from
an everyday life point of view—but they would still only have been able to catch unique
events in our own Galaxy and its immediate neighbourhood and such events are rare.
Take supernova explosions, which occur only a few times per century in a typical galaxy,
as an example. Population modelling and our understanding of stellar evolution tell us
that we need to reach further out into the Universe if we want to detect such events.
Exactly how far, we do not know at this point. It is relatively easy to work out the energy
that must be released in order for a given source to be detectable, but very difficult to
provide a reliable model of the complex physics associated with most gravitational-wave
scenarios. Yet, it is clear that we will always be dealing with faint signals. This is in sharp
contrast with mainstream astronomy, where observations are traditionally made at large
signal-to-noise ratios.

As the sensitivity of the available detectors improved—gradually—we learned valuable
lessons. It is fairly easy to identify ‘milestone’ results leading up to the breakthrough in
2015. For example, the initial LIGO–Virgo detectors were sensitive enough that they
would have been able to catch a gravitational-wave burst from a Milky Way supernova,
should one have occurred during the series of science runs (Abadie et al., 2012). The
absence of detections hardly challenged our view of the Universe, but it was nevertheless
an important step. The fact that the gravitational-wave contribution to the spin-down of

1 A meeting at Chapel Hill in January 1957 is often seen as the turning point. In particular, Richard Feynman
famously provided a ‘sticky bead’ argument to demonstrate that gravitational waves must carry energy.
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the Crab Pulsar—a neutron star born in a supernova recorded by Chinese astronomers
in 1054—can be constrained to be less than a fraction of a percent of the observed rate
(Abbott et al., 2008a) may only be mildly interesting from the astrophysics point of view,
but it was nevertheless a milestone achievement as it constrained the asymmetry of a
distant astronomical object in a way that could not be done by other means.

Gravitational-wave astronomy is a fascinating area that involves a range of complex
issues, from the development of detector technology to data-handling techniques and
theory modelling. In order to progress, we need to improve on all these aspects. As we
celebrate the first successful detections, it is useful to keep in mind the effort behind the
success. Over decades, generations of scientists turned an impressive engineering project
into an astronomical observatory. This was a spectacular achievement, but we are far
from done. Future observing runs will probe a much larger volume of space. We will have
more, better quality, data. Conservative population synthesis models suggest that we will
detect many inspiralling compact binaries (consisting of black holes and/or neutron stars)
every year. Given that such ‘bread and butter’ binary signals are well understood (and
depend very little on the composition of the binary companions) and the data analysis
algorithms are (more or less) developed, this should allow us to probe the parameters of
such systems, shedding light on the cosmic compact binary population and the relevant
formation channels.

The wider range of gravitational-wave sources put more emphasis on the involved
physics and high-quality modelling of relevant astrophysical scenarios. Inevitably, this
requires an exchange of expertise with mainstream astronomers. For a long time the
emphasis was on detector development and data analysis strategies. As we establish
this new area of astronomy, we need rapid change. We need to address challenging
modelling problems. Many relevant gravitational-wave scenarios involve extreme physics
that cannot be tested in the laboratory and precision searches require an understanding
beyond ‘order of magnitude’ precision.

The future is, of course, bright. Once third-generation detectors, like the Einstein
Telescope (Punturo et al., 2010; Sathyaprakash et al., 2012) or the Cosmic Explorer
(Abbott et al., 2017c), come on-line we will firmly be in the era of gravitational-wave
astronomy. These instruments will improve the broadband sensitivity by another order of
magnitude, reaching another factor of 1,000 in volume of space. This may seem remote,
given that such detectors are still at the design stage, but we need to consider their promise
now. We are talking about ‘big science’ and we need to understand its potential in order to
argue the case for building such hugely expensive instruments. It is relevant to ask what
we can hope to achieve with an Einstein Telescope, but not (necessarily) with Advanced
LIGO. How much better can we do with (roughly) an order of magnitude improvement
in sensitivity? Are there situations where this improvement is needed to see the signals in
the first place, or is it a matter of doing better astrophysics by getting improved statistics
and more precise parameter extraction? There are many interesting and complicated
issues to consider.

Perhaps in contrast, it is straightforward to argue the case for a space-based detector,
like the LISA project which is expected to launch in 2034 to address the European
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Space Agency’s science theme of the Gravitational Universe (Amaro-Seoane et al.,
2017). Sensitive to low-frequency gravitational waves, LISA is perfectly tuned to typical
astronomical timescales (hours to minutes). If the instrument works as planned—and
there is no reason to think that it should not, given the impressive results from the LISA
Pathfinder (Armano et al., 2018)—detection is guaranteed. In fact, many known binary
systems can be used to verify that the detector is working as intended. The challenges
that the LISA project faces are different. Given the number of, in principle, detectable
binaries in the Galaxy, the data analyst may suffer an embarrassment of riches. The
science may (to some extent) be confusion limited. However, the fact that LISA is
sensitive to signals from supermassive black holes (either merging or capturing smaller
objects) throughout the Universe makes it an extremely exciting mission.

On a timescale of 20 years or so we should have a network of high-precision
instruments searching the skies for gravitational-wave signals over a range of up to eight
decades in frequency; see Figure 1.2. These detectors will provide us with unprecedented
insights into the dark side of the Universe, and allow us to probe much exciting physics.
Further improvements in data quality may allow us to extract the gravitational-wave
component in the cosmic microwave background. In addition, ultra-low-frequency
gravitational waves are likely to have been detected by pulsar timing arrays. In parallel,
we can expect to see breakthroughs in related areas of physics. Following the detection of
the Higgs boson by the Large Hadron Collider, the colliders probe higher energies and
may eventually find evidence for supersymmetry. Experiments aimed at detecting dark
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Figure 1.2 The spectrum of anticipated gravitational-wave sources and the different methods that may
be used to detect them, across more than 20 decades in frequency. The physical timescales range from the
age of the Universe to a fraction of a millisecond.
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matter signals may provide indisputable data. We ought to have a better understanding
of dark energy, e.g. a constraint on the cosmic ‘equation of state’. These developments
will stimulate theorists as well as experimenters, leading to dramatic improvements in
our understanding of the Universe in which we live.

1.3 Audio not video

Most of the information we have about the Universe was gleaned from electromagnetic
signals; from beautiful high-resolution images from the Hubble Space Telescope to X-ray
timing with the Rossi X-ray Timing Explorer (RXTE) and spectra from Chandra,
from pulsar timing with radio dishes to the cosmic microwave data from the Wilkinson
Microwave Anisotropy Probe (WMAP) and the Planck experiment, the Sloane Digital
Sky Survey, and so on. In the past 50 years we have learned that the Universe is a violent
place where stars explode and galaxies collide. There are massive black holes at the centre
of most galaxies, and their evolution (through accretion or mergers) may be closely linked
to the formation of large-scale structures in the first place. The amount of information
we have gathered is truly awesome. Yet, our current Universe is no less mysterious than
that of the early 1960s. As we improve our understanding, there are surprises and new
questions. At the present time, specific questions concern the dynamics of black holes and
their role in evolutionary scenarios, and the state of matter under the extreme conditions
in a neutron star core. The big puzzles concern dark energy and (obviously) the still
uncomfortable marriage between gravity and physics at the quantum scale.

The gravitational-wave effort should be viewed from this perspective. It is natural to
start by comparing and contrasting signals carried by gravity and electromagnetic ones.
From the theory point of view, there is a close analogy between electromagnetic and
gravitational waves. However, one must not push this too far. The two problems are
conceptually rather different. Electromagnetic radiation corresponds to oscillations of
electric and magnetic fields propagating in a given spacetime, while gravitational waves
are oscillations of the spacetime itself. In order to identify a gravitational wave one must
identify an oscillating contribution to spacetime, varying on a lengthscale much smaller
than that of the ‘background’ curvature (which we experience as our everyday gravity).
This distinction can be confusing. Other differences hint at the promises and challenges
of gravitational-wave astronomy:

(i) While electromagnetic waves are radiated when individual particles are acceler-
ated, gravitational waves are due to asymmetric bulk motion of matter. In essence,
the incoherent electromagnetic radiation generated by many particles carry
information about the thermodynamics of the source. Gravitational radiation
probes large-scale dynamics.

(ii) The electromagnetic waves that reach our telescopes will have been scattered
many times since their generation. In contrast, gravitational waves couple weakly
to matter and arrive at the Earth in pristine condition. They carry key informa-
tion about violent processes that otherwise remain hidden, e.g. associated with
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the heart of a supernova core collapse or merging black holes. Of course, the
waves also interact weakly with our detectors, making their detection a challenge.

(iii) Mainstream astronomy is based on deep imaging of small fields of view, while
gravitational-wave detectors cover virtually the entire sky. A consequence of this
is that the ability to pinpoint a source in the sky is not particularly good. On
the other hand, any source in the sky will in principle be detectable, not just
ones towards which we aim the detector (which we cannot do anyway!). This
could lead to difficulties if the sources are plentiful, which may be a problem for
space-based instruments like LISA.

(iv) Electromagnetic radiation typically has a wavelength much smaller than the size
of the emitter. Meanwhile, the wavelength of a gravitational wave is usually
comparable to or larger than the size of the radiating source. Hence, gravitational
waves can not be used for ‘imaging’. Gravitational-wave astronomy is more like
listening to the radio than watching television. It may be a matter of taste, but let
us not forget that radio offers quality entertainment...

The bottom line is that, gravitational waves carry information about the most violent
phenomena in the Universe; information that is complementary to (in fact, very difficult
to obtain from) electromagnetic data.

1.4 On the back of an envelope

Without (at this point) getting immersed in technical detail, let us outline the key
ideas involved in modelling gravitational-wave sources and at the same time take the
opportunity to get a rough idea of the strength and character of typical astrophysical
signals. As we will derive the key results later—after developing the required tools—this
also provides us with an idea of the road ahead.

We start by noting that, since gravitational-wave signals tend to be weak, it is often
sufficient to work at the level of linear perturbations of a given spacetime. In essence,
one makes a distinction between a (known) background spacetime and a deviation that
lives in this spacetime. In terms of the metric gab, which provides distance measurements
in the curved spacetime, we then have

gab = gB
ab + hab, (1.1)

where gB
ab is some known background metric and |hab| is suitably small. The metric is,

of course, a tensor and each index runs from 0 to 3 to represent the four dimensions
of spacetime. It must also satisfy Einstein’s field equations, essentially a set of 10
coupled nonlinear partial differential equations. Massaging these equations (by choosing
a particularly useful set of ‘coordinates’) one can show that hab satisfies a wave equation.
Changes in the gravitational field propagate as waves, travelling at the speed of light.
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If we consider the effect that the waves of gravity have on matter, we find that they
are transverse and have two possible polarizations. They act like a tidal force, which
means that they change all distances by the same ratio. If we consider two ‘free masses’
a distance L apart, then the gravitational-wave induced strain h ∼ |hab| leads to a change
�L such that

h ≈ �L
L

. (1.2)

This allows us to quantify the effect that a passing wave will have on a detector (see
Figure 1.3 for a simple thought experiment). Of course, to do this we need an estimate
of the typical magnitude of h. We get this from a well-known formula that relates the
gravitational-wave luminosity (the energy radiated per unit time) to the strain h

c3

16πG
|ḣ|2 = 1

4πd2 Ė, (1.3)

where G is Newton’s gravitational constant, c is the speed of light, d is the distance to the
source, and the dots represent time derivatives. This relation is exact for the weak waves
that bathe the Earth.

Suppose we characterize a given event by a timescale τ and assume that the signal is
monochromatic, with frequency f . Then we can use Ė ≈ E/τ and ḣ ≈ 2π f h. Introducing
the relevant scales in the problem, we find that

Figure 1.3 In order to illustrate the effect that a gravitational wave has on matter, let us consider a
simple thought experiment. Paint a cross on a coin and place it on a table. Then wait until a
gravitational wave passes through the coin. Somewhat simplistically, the gravitational wave will
alternately stretch and squeeze the coin (as shown in the illustration) and we should be able to monitor
how the cross changes shape as a result. Of course, the impact of gravitational waves from astrophysical
sources is far too minuscule to be detected this way. Nevertheless, the principle behind this experiment is
the same as that used in bar detectors. (Illustration by O. Dean.)
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h ≈ 5 × 10−22
(

E
10−3M�c2

)1/2 ( τ

1 ms

)−1/2
(

f
1 kHz

)−1 (
d

15 Mpc

)−1

, (1.4)

where we have scaled the distance to the Virgo cluster, the nearest supercluster of galaxies
about 15 Mpc away from us. This kind of scaling is necessary to ensure a reasonable event
rate for many astrophysical scenarios. For example, at this distance one would expect to
see several supernovae per year, which means that one can hope to catch the birth of a
few neutron stars/black holes during one year of observation. We have taken the energy
radiated to be a thousandth of the energy equivalent of the mass of the Sun (M�c2),
which would represent a very powerful event, and assumed that the typical timescale of
the dynamics that generated the gravitational waves is a millisecond.

We learn that the effect the waves will have on a terrestrial detector is minuscule.
They would stretch a one metre ruler by a puny 10−22 m, much less than the diameter
of the nuclei that make up the atoms of the ruler. This highlights the severe challenge
associated with detecting this kind of signal. Fortunately, we can do better. We can define
an ‘effective amplitude’ that reflects the fact that detailed knowledge of the signal can be
used to dig deeper into the detector noise. A typical example is based on the use of
matched filtering (see Chapter 8), for which the effective amplitude improves roughly as
the square root of the number of observed signal cycles,N . This is a good approximation
when N is large, so the estimate will be reliable for persistent sources (like a slowly
evolving source) but obviously less so for short bursts associated with explosive events.
Anyway, using N ≈ f τ we arrive at

hc = √
Nh ≈ 5 × 10−22

(
E

10−3M�c2

)1/2 (
f

1 kHz

)−1/2 (
d

15 Mpc

)−1

. (1.5)

This relation shows us that the effective gravitational-wave strain, essentially the
‘detectability’ of the signal, depends only on the radiated energy and the characteristic
frequency. This allows us to assess the relevance of a range of proposed sources without
having to work out the detailed signals.

To make progress we need a better idea of the typical frequencies associated with
different classes of sources. Luckily, this is straightforward. We only have to note that
the dynamical frequency of any self-bound system with mass M and radius R can be
approximated by

f ≈ 1
2π

(
GM
R3

)1/2

. (1.6)

Given this, the natural frequency of a (non-rotating) black hole (for which R = 2GM/c2)
should be

fBH ≈ 104
(

M�
M

)
Hz, (1.7)
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immediately suggesting that medium-sized black holes, with masses in the range
10 − 100M�, should be prime sources for ground-based interferometers since the
“sweet spot” of these detectors tends to be located around 100 Hz; see Figure 1.4.
Basically, these instruments are perfectly tuned to events like GW150914. We also see
that neutron stars, with a typical mass of 1.4M� compressed inside a radius of 10 km or
so, would be expected to radiate at

fNS ≈ 2 kHz. (1.8)

In other words, they require detectors that are sensitive at high frequencies. This is a key
science target for future ground-based instruments.

Compact object binaries—involving black holes, neutron stars, or white dwarfs—
provide particularly promising sources. One reason for this is that the signal strength
is calibrated by the masses, so it is fairly easy to assess the detectability. We have already
seen that the signal from a pair of black holes with mass of order 10M� are within
reach of today’s ground-based detectors. A simple scaling argument then tells us that
supermassive black-hole binaries—resulting from galaxy mergers—radiate in the LISA
frequency band. In fact, the frequency range of the space-based interferometer (down
to 10−4 Hz) is a good match to the timescale of many known astronomical systems.
Different classes of galactic binary systems radiate gravitationally in the LISA band and
should lead to detectable signals. The most common such systems are (i) binary white
dwarfs, (ii) binaries comprising an accreting white dwarf and a helium donor star, and
(iii) low-mass X-ray binaries. There may be more than a billion galactic binaries in the
LISA range. Finally, pulsar timing arrays allow us to probe ultra-low frequencies (nano-
Hz) for signals from truly gigantic black holes.

These back-of-the-envelope estimates provide a sketch of the gravitational-wave sky.
They do not tell us the whole truth but serve to motivate more detailed thinking.
Unfortunately, the next step tends to be difficult, either involving poorly understood
physics (as in the case of neutron stars) or complex nonlinear dynamics (as for black-
hole collisions), or both (as in the case of neutron star mergers and supernova core
collapse). These requirements have led to the development of numerical relativity as
a high-powered tool for astrophysical simulations (see Chapters 19 and 20). At the
same time, a range of issues bridging nuclear physics, particle physics and quantum
field theory, low-temperature physics, and hydrodynamics relevant for neutron stars are
being investigated. Fundamental physics associated with the early Universe and the dark
matter/energy models in modern cosmology is also under vigorous scrutiny.

1.5 Binary inspiral and merger

Before we turn to the detailed theory, let us sketch a set of problems that provide
interesting modelling challenges. These problems (obviously) do not provide a complete
list in any sense. Rather, they have been selected to illustrate particular aspects and
provide an idea of the bigger picture.
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It is natural to start with inspiralling binaries. Long before the first detection of
gravitational waves, compact binaries provided convincing—although indirect—support
for Einstein’s theory. Detailed monitoring of the famous Binary Pulsar PSR B1913+16,
discovered in data from the Arecibo radio telescope in 1974 (Hulse and Taylor, 1975),
and the more recently found (and more relativistic) Double Pulsar PSR J0737-3039
(Lyne et al., 2004), provides clear evidence of orbits decaying at a rate that agrees with
the predictions of general relativity.

However, in contrast to Newtonian gravity, the two-body problem remains ‘unsolved’
in general relativity. Given the lack of suitable solutions to the Einstein field equations,
significant effort has gone into developing approximations and numerical approaches to
the problem. For the inspiral phase of a binary system, the post-Newtonian expansion
(essentially a low-velocity expansion; see Chapter 11) is particularly useful. Within the
post-Newtonian scheme, the leading order radiation effects are described by the so-called
quadrupole formula, according to which the gravitational-wave strain follows from the
second time derivative of the source’s quadrupole moment

Q jk =
∫

ρxjxkdV , (1.9)

where xi is the position vector and ρ is the mass density. If we consider the simple situation
of two (effectively) point masses with mass M separated by a distance a (see Chapter 5
for a detailed discussion), then we see that

Q ∼ Ma2. (1.10)

The gravitational-wave strain follows from

hjk = 2G
dc4

d2Qjk

dt2
→ h ∼ Ma2f 2

d
∼ M2

da
, (1.11)

where d is the distance to the source and we have used the frequency for a Keplerian
orbit f ∼ M/a3.

As the system emits gravitational waves, it loses energy and the orbit shrinks. From
(1.3) we see that

Ė ∼ d2ḣ2f 2 ∼ M5

a5 . (1.12)

Balancing the rate of energy loss to the orbital energy, E ∼ M2/a, we arrive at an
evolutionary timescale for the decay

tD ∼ a4

M3 . (1.13)
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Assuming that this timescale is shorter than the observation time (which obviously means
that we are considering the final stages before merger), we can use (1.6) to estimate the
effective amplitude of the binary signal

hc ≈ √
ftD h ∼ M

d

( a
M

)1/4
. (1.14)

This estimate shows that, even though the raw signal gets stronger as the frequency chirps
up towards its cut-off value at plunge and merger, the detectability decreases as the orbit
shrinks. Hence, we need to make sure our detectors are sensitive at low frequencies,
where the binary system spends more time. This is, however, problematic due to
gravity gradient noise (earthquakes, human activity, clouds, you name it . . .) below a
few hertz.

Ground-based detectors should (eventually) be able to track a neutron star binary as it
evolves all the way from a few hertz through to coalescence, radiating around 104 cycles
in the process. In principle, one can enhance the detectability by roughly a factor of 100
if one can follow the signal through the entire evolution (without losing a single cycle
of the wave-train). This influences detector design. It also motivates the development of
high-order post-Newtonian approximations to the waveforms (especially the phase), as
well as fine-tuned signal analysis algorithms (see Chapter 8).

The estimated inspiral time, tD, tells us that any binary system which is observable
from the ground will coalesce within hours. Statistics based on the known radio pulsar
population (see Chapter 9) then tells us that these events should happen less regularly
than once every 105 yrs in our Galaxy. Hence, we need to detect events from a volume
of space containing at least 106 galaxies in order to see a few such mergers every year.
Translating this into distance, using our understanding of the mass distribution in the
Universe, we learn that a detector must be sensitive enough to see coalescing binaries
beyond a few hundred megaparsec in order for the event rate to be reasonable.

This explains why, first of all, it would have been surprising to find a binary signal in
initial LIGO data. Given even the most optimistic rate estimate from population synthesis
models, such events would be extremely rare in the observable volume of space. The
situation is drastically different given Advanced LIGO level sensitivity so it is (perhaps)
not surprising that the first detection came immediately after the detector upgrade in
2015. It may have been a surprise that the first observed signal came from merging black
holes, but given our ignorance about the black-hole binary population (with some models
suggesting they should not form at all and others stating they would be plentiful) this may
be overstating the case.

Third-generation detectors may still be required if we want to consider population
statistics. They are also likely to be needed if we want to study the final stages of
neutron-star binary inspiral, including the merger. This is a very interesting phase of
the evolution since the merger will lead to the formation of a hot compact remnant with
violent dynamics (see Chapter 20), generating a relatively high-frequency gravitational-
wave signal that should be rich in information. In particular, it may tell us whether a
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massive neutron star or a black hole was formed. As neutron stars are magnetized, the
merger may also trigger a gamma-ray burst. As a rough rule-of-thumb, if the inspiral
phase is observable with Advanced LIGO then the Einstein Telescope should be able
to detect the merger (Andersson et al., 2011). In other words, the development of third-
generation detectors is likely to be essential if we want to study these events. In parallel,
we need to improve our models of the merger phase. This requires nonlinear simulations
in full general relativity, accounting for the complex physics associated with a high-
density/extremely hot remnant. Realistic models need to include magnetic fields and
account for energy loss due to neutrino emission. Progress is being made towards this
goal, but many challenges remain.

The situation is quite different for black-hole binaries. The last decade has seen
a breakthrough in numerical relativity, to the point where the problem of inspiralling
and merging black holes is considered ‘solved’ (see Chapter 19). This progress was of
immense importance as it provided experimenters with reliable templates that could be
used to develop optimal data analysis strategies, impressively demonstrated in the case
of GW150914. Since a black-hole binary should be more massive than one comprising
neutron stars, it will lead to a stronger gravitational-wave signal. This means that we
expect to see more distant black-hole binaries, ultimately reaching out to cosmological
distances with instruments like the Einstein Telescope and LISA.

Detailed calculations show that, in the case of unequal masses the leading order signal
depends only on the so-called ‘chirp-mass’; the combination M = μ3/5M2/5 where μ is
the reduced mass and M the total mass. If one observes the decay of the orbit as well
as the gravitational-wave amplitude, then one can infer the chirp mass and the distance
to the source. This means that coalescing binaries are ‘standard sirens’ which may be
used to infer the Hubble constant and other cosmological parameters (see Chapter 22).
By extracting higher-order post-Newtonian terms one can hope to infer the individual
masses, the spins and maybe also put constraints on the graviton mass (the speed of the
waves compared to the speed of light).

In the case of LISA, one would expect to be able to observe mergers of supermassive
black holes with very high signal-to-noise ratio (several 1,000s; see Figure 1.4). This
means that one may be able to see such events no matter where they occur in the
Universe. The information gained from such observations will shed light on the evolution
of these gigantic black holes, via a sequence of mergers or accretion, and improve our
understanding of the development of large-scale structures in the Universe.

Another key problem for LISA concerns the capture of smaller bodies by large black
holes. A space-based detector should be able to detect many such events. Their detailed
signature provides information about the nature of the spacetime in the vicinity of the
black hole. To model these systems is, however, far from trivial, in particular since
the orbits may be highly eccentric. The main challenge concerns the calculation of
the effects of radiation reaction on the smaller body (see Chapter 16). In addition to
accounting for the gravitational self-force and the radiation reaction, one must develop
a computationally efficient scheme for modelling actual orbits. This is not easy, but at
least we know what the key issues are.
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Figure 1.4 Comparing the typical gravitational-wave strain for various classes of binary systems to
the sensitivity of current and future detectors (showing dimensionless characteristic strain amplitude as
function of frequency). The current ground-based detectors, Advanced LIGO and Virgo, are sensitive
above 10 Hz. Third generation instruments (like the Einstein Telescope, not shown) are expected to
improve the sensitivity by an order of magnitude across a similar frequency range. The space-based
interferometer LISA (Amaro-Seoane et al., 2017) will be a supreme instrument for detecting signals from
massive black holes in the range 104 − 107M�. There is also expected to be a population of extreme
mass-ratio inspirals arising from the gravitational capture of smaller objects by supermassive black holes.
The most massive black-hole binaries in the Universe, radiating at nanohertz frequencies, may be
detectable via pulsar timing arrays. Inspiralling black holes with mass 109 − 1010M� lead to to a
stochastic low-frequency background with a few individual, loud sources. (Figure provided by A. Sesana.)

1.6 Supernovae

At this point a word of caution is in order. Our expectations are not always brought out
by more detailed modelling. Sometimes the devil is in the detail and our intuition falters.
For example, one might expect apparently powerful events like supernova explosions and
the ensuing gravitational collapse to lead to very strong gravitational-wave signals. This
was, indeed, first thought to be the case (Thorne, 1979). However, the outcome depends
entirely on the asymmetry of the collapse process. That this is the case is clear from
(1.11). The difference between the initial and the final state does not matter. It is the route
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the system takes—how it evolves—that determines the strength of the gravitational-wave
signal. Unfortunately, numerical simulations suggest that the level of radiation from core
collapse events is low. Typical results suggest that an energy equivalent to ∼ 10−7M�c2

(or less!) will be radiated (see Chapter 20).
Combining this anticipated level of energy release with the typical dynamical timescale

for a collapsing compact core, around a millisecond (frequency ∼1 kHz), we see from
Eq. (1.5) that the gravitational-wave amplitude may be on the order of hc ∼ 10−22 for
a source in the Virgo cluster. This estimate (which accords reasonably well with full
numerical simulations) suggests that these sources are unlikely to be detectable beyond
the local group of galaxies. This would make observable events rare. It is expected
that only three to four supernovae will go off every century in a typical galaxy so we
would be very lucky to see one in our Galaxy given only a decade or so of observation.
However, a single stand-out event could provide great insight into supernova physics.
The gravitational waves carry unique information and the detailed signature may allow us
to distinguish between different proposed explosion mechanisms. While the optical signal
emerges hours, and the neutrino burst several seconds after the collapse, the gravitational
waves are generated during the collapse itself. As a result, they carry a clean signature of
the collapse dynamics. This information may be impossible to extract in any other way.

1.7 Spinning neutron stars

When the dust settles from the supernova event we are left with a compact remnant, either
a neutron star or a black hole. As we have already seen, both sets of objects are relevant
to the gravitational-wave physicist. Black holes involve extreme spacetime curvature, and
allow us to probe strong field aspects of Einstein’s theory, while neutron stars are cosmic
laboratories of exciting physics that cannot be tested by terrestrial experiments. With
a mass of more than that of the Sun compressed inside a radius of about 10 km, their
density reaches beyond that of the atomic nucleus (∼ 1014 g/cm3). We already have
a wealth of data from radio, X-ray, and gamma-ray observations, providing evidence
of an incredibly rich phenomenology. We know that neutron stars appear in many
different guises, from radio pulsars and magnetars to accreting millisecond pulsars, radio
transients, and intermittent pulsars. Our models for these systems remain somewhat
basic, despite 40 years of observations and attempts to understand the physics of the
pulsar emission mechanism, glitches, and the evolution of accreting systems.

Importantly, neutron stars can radiate gravitationally through a number of different
mechanisms. Relevant scenarios include the binary inspiral and merger that we have
already discussed, rotating stars with deformed elastic crusts (Chapter 14), various
modes of oscillation, and a range of associated instabilities (Chapter 13). Modelling
these different scenarios is not easy since the physics of neutron stars is far from
well known. To make progress we must combine supranuclear physics (the elusive
equation of state) with magnetohydrodynamics, the crust elasticity, a description of
superfluids/superconductors, and potentially also exotic phases of matter involving a
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deconfined quark-gluon plasma or hyperons (see Chapter 12). Moreover, in order to
be quantitatively accurate, the models have to account for relativistic gravity.

Much effort has been invested in understanding the rich spectrum of oscillations
of ‘realistic’ neutron star models (see Chapters 13 and 18). This is natural since such
oscillations may be excited to a relevant level at different stages in a neutron star’s life.
Gravitational waves from a pulsating neutron star could provide an excellent probe of
the star’s properties, and may allow us to infer the mass and radius with good precision.
This would help constrain the supranuclear equation of state. The most promising
scenarios involve unstable oscillations. As an unstable pulsation mode grows, it may reach
a sufficiently large amplitude that the emerging gravitational waves can be detected. In the
past couple of decades the inertial r-modes have been under particular scrutiny, following
the realization that they are particularly prone to a gravitational-wave-induced instability
(see Chapter 15). This is an active area of current research.

As soon as a newly born neutron star cools below roughly 1010 K (within a few
minutes) its outer layers begin to crystallize; freezing to form the neutron star crust. The
crust is not very rigid—in fact, it is rather like jelly—but it can still sustain shear stresses,
something that a fluid is unable to do. Asymmetries in the crust, expected to arise due to
its evolutionary history, will slowly leak rotational energy away from a spinning neutron
star. Such sources would be the gravitational-wave analogue of radio pulsars, radiating
at twice the star’s spin frequency (see Chapter 6). On the one hand, rotating neutron
stars will emit low amplitude waves, but on the other hand, they radiate continuously for
a long time. This means that observers can carry out targeted searches for known radio
and X-ray pulsars, with frequency and position provided from radio and X-ray data (see
Chapter 14).

It is straightforward to estimate the signal strength for this kind of source. We are
essentially dealing with a rotating bar. Expressing the associated asymmetry in terms of
an ellipticity ε, we find that

h ≈ 8 × 10−28
( ε

10−6

)(
f

100 Hz

)2 (
10 kpc

d

)
, (1.15)

where we have used the fact that the gravitational-wave frequency f is twice the rotation
frequency (and assumed a canonical M = 1.4M� and R = 10 km neutron star). The
source distance has been scaled for objects in our Galaxy, since this is all we can hope
to detect, anyway. This signal is far too weak to be detected directly, but the effective
amplitude increases (roughly) as the square root of the number of detected cycles.
Accounting for this and assuming an observation time of one year, we need

ε > 2.5 × 10−6
(

100 Hz
f

)5/2 (
d

10 kpc

)(
hc

10−22

)
. (1.16)

Combined with the expected detector sensitivities, i.e. some idea of the achievable hc,
this estimate allows us to assess whether a given deformation is likely to be detectable.



OUP CORRECTED PROOF – FINAL, 30/10/2019, SPi

Spinning neutron stars 17

However, we also need some idea of the level of asymmetry one would expect a
neutron star to have. This is a complicated physics problem. The answer depends
not only on the properties of the star, but also on its evolutionary history. To a large
extent, modelling has focused on establishing what the largest possible neutron star
‘mountain’ would be. Detailed models suggests that ε < 2 × 10−5 (σbr/0.1) and recent
molecular dynamics simulations suggest that the breaking strain is σbr ≈ 0.1 (much
larger than originally anticipated). In comparison to terrestrial materials, which have
σbr ≈ 10−4 − 10−2, the neutron star crust appears to be super-strong! But the induced
asymmetries are still tiny.

Observations of targeted radio pulsars have provided interesting results, even in the
absence of a detection. As an example, one month of data from the third and fourth
LIGO science runs was used to set the constraint ε < 7 × 10−7 for PSR J2124-3358
(Abbott et al., 2007). This tells us that this, relatively fast-spinning, 4.9 ms period pulsar
is far from maximally deformed. It is also quite easy to estimate how the result should
improve in the future since the effective amplitude of a periodic signal increases as the
square root of the observation time. For example, Advanced LIGO, with more than an
order of magnitude better sensitivity, should be able to reach ε < 10−8 for this pulsar
(still assuming a one-year integration). The Einstein Telescope may push the limit as
far as ε < 10−9. At this point, the deformation of the star would be constrained to the
micron level—an astonishing level of symmetry. One might expect a signal to be detected
before this level is reached, but we do not know this for sure. The main issue concerns
the cause of the star’s deformation. Why would the neutron star be deformed in the first
place? This is an urgent question that needs to be addressed by theorists.

As far as evolutionary scenarios are concerned, accreting neutron stars in low-mass
X-ray binaries have attracted the most attention. This is natural for a number of reasons.
First of all, the currently observed spin distribution in these systems seems consistent
with the presence of a mechanism that halts the spin-up due to accretion well before
the neutron star reaches the break-up limit. Gravitational-wave emission could provide a
balancing torque (Chapter 6). Using a simple accretion torque model one finds that the
required deformation is smaller than the allowed upper limit. We need

ε ≈ 4.5 × 10−8
(

Ṁ
10−9M�/yr

)1/2 (
300 Hz

νs

)5/2

, (1.17)

where Ṁ is the mass accretion rate and νs is the star’s spin frequency. It is fairly easy to
see why asymmetries would develop in an accreting system, as the matter flow should be
channelled along the star’s magnetic field. However, accreting systems are messy, and we
do not understand the accretion torque very well. Hence, reality could be quite different
from our rough estimate. Another issue concerns the need to integrate the signal for a
long time to build up the signal-to-noise ratio. Given the somewhat erratic behaviour
of accreting neutron stars it is not clear that we will be able to track such systems (and
integrate coherently) for long enough.
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1.8 Fundamental physics

Arguably, the most fundamental observation we can hope to make with future detectors
would be a cosmological background from the Big Bang. Asymmetries in the very early
Universe would be amplified by the expansion, resulting in a broad gravitational-wave
spectrum in the present Universe (see Chapter 22). The slope of this spectrum and
possible peaks provide information about masses of particles, energies of relevant phase
transitions, and perhaps the sizes of extra dimensions. Detection of such stochastic
signals is rather different from the problems we have considered so far. In particular,
it requires cross-correlation of the output from several detectors. This presents a new set
of challenges.

Constraints on the energy density of the stochastic gravitational-wave background
(normalized to the critical energy density of the Universe; see Chapter 4) confronts some
of the most extreme theoretical suggestions but the standard scenario remains very safe.
We may have to live with this situation for some time. Gravitational waves associated
with the standard inflationary scenario will be out of reach for all planned ground-based
instruments and LISA. However, LISA’s frequency band (∼mHz) represents gravita-
tional waves that had the horizon size at the electroweak phase transition. If this transition
were first order, then there could be a detectable stochastic background (Chapter 22).
Another relevant possibility involves cosmic strings, which emit gravitational waves with
a characteristic signature. These waves may be detectable even if they do not make a
significant contribution to the mass budget of the Universe. The best search window for
such signals, essentially free of ‘local’ gravitational-wave sources, is around 0.1–1 Hz.
This would require a LISA follow-up space mission. Any such venture is not going to
take place soon.

Future detectors may nevertheless make significant contributions to our understand-
ing of fundamental physics. As an example of this, consider the fact that we expect to
be able to infer distances to coalescing binary systems, providing a distance scale of the
Universe in a precise calibration-free measurement (see Chapter 22). This idea will be
pursued with ground-based detectors in the first place, but their reach is obviously not
as impressive as that of LISA. In fact, LISA will have excellent sensitivity to massive
black hole mergers at redshift z = 1 and would be able to detect 104M� systems out to
z = 20. If some of these merger events have an observable electromagnetic counterpart
this would provide us with redshift information, and as a consequence we may be able to
use LISA data to constrain the dark energy equation of state. In other words, LISA may
also be a dark energy mission. This is an interesting idea, providing yet another example
of the interdisciplinary nature of gravitational-wave physics.

1.9 Many different messengers

Bringing the different aspects of the discussion together, gravitational-wave astronomy
promises to shed light on the ‘dark side’ of the Universe. Because of their strong gravity,
black holes and neutron stars are ideal sources and we hope to probe the extreme physics



OUP CORRECTED PROOF – FINAL, 30/10/2019, SPi

The golden binary 19

associated with them. The potential for this is clear, but in order to detect the signals and
extract as much information as possible we need to improve our theoretical models.

The binary black-hole problem may have been ‘solved’ by the progress in numerical
relativity, but for neutron star binaries many issues remain. We need to work out precisely
when finite size effects begin to affect the evolution (see Chapter 21). We need to
consider tidal resonances and ask to what extent they affect the late stages of inspiral.
For hot merger remnants, we need to refine our nonlinear simulations. The simulations
must use ‘realistic’ equations of state, and consider composition, heat/neutrino cooling,
and magnetic fields with as few ‘cheats’ as possible. Similar issues arise for supernova
core-collapse simulations, which set the current standard for including realistic physics
(Chapter 20). In parallel, we need to improve our understanding of neutron star
oscillations and instabilities. This effort should aim at accounting for as much of the
interior physics as possible. We need a clearer phenomenological understanding of pulsar
glitches, accreting neutron stars, and magnetar flares. These are ambitious targets, but
there is no reason why we should not make progress on them. Observations (gravitational
and electromagnetic) will help us understand aspects of extreme physics that seem
mysterious to us today.

The future will see significant improvements in the various observational channels,
and we should expect great progress in our understanding of the Universe. Gravitational-
wave physics, with its promise to provide information that is complementary to electro-
magnetic observations, has an important part to play in this enterprise. The precision
modelling and sophisticated data analysis tools that are essential for gravitational-wave
experiments should be valuable also for X-ray and radio astronomy. Evidence for this
is clear from the emergence of numerical relativity simulations as a reliable tool for
studying violent astrophysical phenomena and the use of sophisticated data analysis
techniques being adapted to detect gamma-ray pulsars in Fermi data (Clark et al., 2018).
These developments may have been motivated by gravitational-wave physics, but they
are finding applications in a wider context. One would expect these kinds of synergies
to continue to develop, particularly as many gravitational-wave sources may have
electromagnetic counterparts. The most exciting results may come from a combination
of gravitational-wave, electromagnetic, and neutrino channels—true multimessenger
astronomy.

1.10 The golden binary

On the 17th of August 2017 we arrived in the future. The two LIGO detectors picked
up the gradually evolving signature of a binary neutron star system, a signal lasting over
a minute before diving into the detector noise (Abbott et al., 2017j). The signal was
fainter in the Virgo instrument, which had actively joined the detector network at the
beginning of the month. This suggested that the source must be in one of Virgo’s blind
spots, which helped the observers constrain the location in the sky (with an uncertainty
of about 30 degrees). A trigger message was sent to electromagnetic observers around
the globe. They responded—and struck gold.
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Figure 1.5 The joint multi-messenger detection of GW170817 and the short gamma-ray burst GRB
170817A. Top: the light curve from the Fermi Gamma-ray Burst Monitor (GBM) between 10 and
50 keV. Second: the same, but in the energy range 50–300 keV. Third: the light curve from Integral with
the energy range starting approximately at 100 keV and with a high energy limit of least 80 MeV.
Bottom: the time-frequency map of GW170817 obtained by coherently combining LIGO-Hanford and
LIGO-Livingston data. (Reproduced from Abbott et al. (2017j), Creative Commons Attribution
3.0 License.)
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The GW170817 event was detected across the electromagnetic spectrum, from
gamma rays to X-rays, radio and optical. First to join the party were the gamma-ray
instruments Fermi and Integral (Abbott et al., 2017j; Troja et al., 2017). They picked
up a gamma-ray flash (GRB 170817A) emitted just two seconds after the neutron star
merger; see Figure 1.5. The signal was faint, but the features were generally consistent
with those of short gamma-ray bursts, long suspected to have their origin in neutron star
mergers. GW170817 was unique in that the event occurred more than 10 times closer
to the Earth (130 million light years away) than any previously known short gamma-ray
burst. This makes it much easier to study, but the signal was weak. Perhaps we did not
look right down the barrel of the outflowing jet (Chapter 21).

The event was caught by traditional optical telescopes (Cowperthwaite et al., 2017),
confirming predictions that neutron star mergers lead to an outflow of matter that
radiates in a characteristic way. By tracking the evolution of the light signal as it faded
away over several days, peaking in the infrared, astronomers identified the glow emitted
as neutrons and protons combine to form heavy elements (Metzger and Berger, 2012).
This extraordinary event told us that all the gold, platinum and uranium in the Universe
come from merging neutron stars. GW170817 was a multi-sensory treasure trove of
information.
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From theory to experiment
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2

A brief survey of general relativity

In order to understand the nature of gravitational waves and model relevant sources we,
first of all, need to have a working understanding of general relativity. There are many
excellent textbooks that cover Einstein’s theory in much more detail than we will be
able to here,1 but it nevertheless makes sense to provide a brief survey, to remind us of
the main ideas and introduce the various tools we will need. This involves motivating
why it makes sense to consider gravity in terms of a curved spacetime, discussing what
this implies for the motion of both light and massive objects and finally explaining the
reasoning behind the Einstein field equations, which govern the gravitational field. As
we outline the theory, it becomes clear that issues associated with the measurement of
distance are fundamental. They are also intimately linked to the origin and nature of
gravitational waves.

The theory of special relativity, which deals with bodies in relative uniform motion,
is based on the simple postulate that the speed of light, c, is a universal constant, taking
the same the value according to all (inertial) observers. From this seemingly innocuous
starting point, Einstein revolutionized our view of space and time. His 1905 theory tells
us that time and space are flexible; time runs slow on a moving clock and moving rods
appear shorter than they are at rest. These effects follow immediately from the fact that
the theory in invariant under the Lorentz transformation, which relates time and space
measurements in two coordinate systems, one moving relative to (in this case, away from)
another one (see Figure 2.1 for an illustration). Using primes for the moving coordinates,
we have

t′ = γ (t − vx), x′ = γ (x − vt), y′ = y, z′ = z, (2.1)

where v is the (constant) relative velocity (assumed to be in the x-direction) and

γ = (1 − v2)−1/2 (2.2)

1 Every practitioner of relativity has his/her own favourite books on the subject. Different aspects are
covered particularly well by particular authors. It may also be a matter of taste. A useful starting point, at
the undergraduate level, would be either Schutz (2009) or Hartle (2003), while more advanced topics are
covered by Poisson and Will (2014) and Thorne and Blandford (2017). The overview in this chapter is (clearly)
incomplete and the reader would be well advised to dig deeper—it will not be a waste of time.

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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x ′

x

t
t ′

t ′
A

x ′
A

Figure 2.1 In Einstein’s relativity, different spacetime events and observers carry their own clocks to
measure time (and rulers to measure space distance). Since the speed of light is a universal constant, the
different clocks can be synchronized using light signals. The idea is indicated in this illustration which
shows the relation between the two sets of coordinates used in (2.1), with the primed coordinate system
moving away from the unprimed one. An observer at x′

A will synchronize his/her clock with another
observer at x = 0 in such a way that t = 0 corresponds to t′A.

(in units where the speed of light is unity2). The key lesson is that we have to consider
time and space together.

However, special relativity does not (really) deal with acceleration. It also does not
consider gravity. After completing the theory, Einstein spent the next decade trying to
extend the framework to handle both acceleration and gravity. His vision was a geometric
theory—where the curvature of spacetime encodes gravity—inspired by a simple thought
experiment.

Imagine asking a person in a lift (without windows, obviously) to carry out an
experiment to establish if the lift is moving. He/she decides to do this by dropping a
ball. If the lift is at rest in a gravitational field the ball will accelerate towards the floor due
to gravity. But the experiment would have the same outcome if the lift were accelerating
upwards in absence of gravity. Once the ball is dropped it will be floating free, but the
floor of the lift accelerates towards it. By arranging the rates of acceleration to be the

2 Setting the speed of light c = 1 simply means that we are measuring distance in (say) light-seconds. Later
we will work in geometric units, where the gravitational constant G is also set to unity. This is convenient, but it
may lead to confusion when we try to put actual numbers in. And it gets worse if we submit to the temptation
to also set the Boltzmann and Planck constants equal to 1 when we weave in thermodynamics and quantum
aspects. If we are not careful, we end up in a right mess.



OUP CORRECTED PROOF – FINAL, 24/10/2019, SPi

A simple thought experiment 27

same in the two cases one can ensure that the observer in the lift is confused (as long as
the rocket engine is very quiet, of course).

This is known as the equivalence principle. We cannot tell the difference between
gravity and acceleration. They are two sides of the same coin. This, in turn, suggests
that we should be able to describe gravity as a non-inertial effect. The idea may seem
simple, but the development of general relativity still took the best part of a decade.
Einstein had to learn the mathematics required to describe motion in curved spaces
(tensor calculus/differential geometry) and he needed to verify that his theory led back to
Newton’s gravity in the appropriate limit. The final theory from November 1915 remains
one of the greatest achievements of modern physics—a geometric description of gravity
that has (so far) passed all tests with flying colours.

2.1 A simple thought experiment

Following in Einstein’s footsteps (even though the shoes may be a bit too big for us!) we
can describe the theory in terms of a simple thought experiment.

Let us extend the lift experiment in such a way that we are able to deduce the
presence of a gravitational field. To do this we note that falling bodies move towards
the centre of gravity, which means that the relative distance between two falling objects
should change. Extending the setting of the experiment to deal with this problem, we
let our experimenter drop two objects in such a way that they initially fall along parallel
trajectories. For the purpose of this thought experiment we will assume that the two
objects are ‘ideal’ in the sense that their motion is only affected by gravity. That is, they
are able to fall unimpeded through the matter of the Earth.

Since gravity attracts towards the centre of the Earth, we expect the trajectories of
the two objects to cross eventually. In Newtonian physics, this happens because of
the universal gravitational attraction. As a first step towards understanding Einstein’s
explanation, compare the trajectories of the bodies in the thought experiment to two
great circles on the surface of the Earth (assumed to be a sphere), as in Figure 2.2. Two
great circles that start out orthogonal to the equator must cross at the north and south
poles, because of the curvature of the surface. This motivates an intuitive explanation
of the crossing of the trajectories of our falling objects in terms of the curvature of the
spacetime in which they are moving.

Before we develop the mathematical machinery we need to describe this problem,
it is worth pointing out that the two ways to understand gravity differ significantly
in philosophy. While Newton’s theory describes the gravitational attraction, Einstein’s
general relativity explains the origin of gravity in terms of the curved spacetime. In the
first case an inverse square law is imposed at the outset. In the second, gravity follows as
a consequence of the geometry of spacetime.

Let us now develop—step by step—the tools we need to describe the thought
experiment. By comparing the Newtonian result to a framework based on a curved
spacetime, we will be able to derive Einstein’s field equations.
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A B

A B

Figure 2.2 The left image illustrates a thought experiment where two ideal objects A and B (only
influenced by gravity) are dropped along initially parallel trajectories from the surface of the Earth. The
right image shows the close analogy with great circles on a sphere. Even though two great circles A and B
start out parallel at the equator, they cross at the poles.

2.2 The tidal tensor

We begin with the Newtonian description of the problem. Introducing a vector ξ that
describes the separation between the two falling objects, we must initially have

dξ

dt
= 0, (2.3)

since the trajectories start out parallel. However, the second derivative will not vanish.
Symbolically, we can write the relative acceleration as

d2ξ

dt2
= −E(_,ξ), (2.4)

defining the tidal tensor E . When this object acts on the displacement vector ξ we end up
with another vector, encoding the tidal acceleration.

Tensors play a central role in much of the following, so we need to understand what
they are and how to work with them. There are different ways to approach this, but we
will choose a route that is both elegant and conceptually simple. The key idea is to think
of a tensor as a geometric object, representing a linear function of a number of vectors.
Somewhat simplistically, we think of a tensor as a machine that turns a set of vectors into
a single number. Each tensor has a number of ‘slots’ that can be occupied by vectors.
The number of slots is called the rank of the tensor. If all slots are filled, the result is a
real number; if one slot is left empty the outcome is a vector; and so on. The tidal tensor
E has rank 2 (note that one slot is left empty in (2.4)), and the object on the right-hand
side of (2.4) is a vector. A tensor is completely specified once we know what real number
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we get when all the slots are filled. These ideas may seem somewhat abstract at this point,
but they should become clear as we start calculating.

This advantage of this way of thinking about tensors is that it allows us to understand
the geometric nature of many physical relations. This is useful since we expect nature
to obey the principle of relativity which essentially says that true physical laws should not
depend on our choice of coordinate system or frame of reference.

Of course, in terms of actually working things out (and designing experiments!) we
often want to express tensors in terms of their components, using a basis associated with
a given set of coordinates. Since it helps us understand the concept of a tensor, consider
the familiar fact that any vector can be expressed in terms of a set of orthonormal basis
vectors êj (where the index j = 1 − 3 simply labels the vectors) as

ξ =
∑

j

ξ j êj = ξ j êj . (2.5)

The second identity introduces Einstein’s summation convention: repeated indices are
implicitly summed over.3 As the basis vectors are orthogonal and normalized to unit
length we have

êi · êj = δij , (2.6)

where δij is the Kronecker delta (= 1 if i = j and 0 otherwise). Given this, the individual
vector components follow from the scalar product

ξ · êj = ξkêk · êj = ξkδjk = ξj . (2.7)

Equivalently, in the spirit of (2.4), we can think of the vector components as given by

ξ j = ξ
(
êj

)
. (2.8)

Returning to the tidal tensor, we then have

E jk = E(êj , êk), (2.9)

and since tensors are linear, we can write this as

E = E jk(êj ⊗ êk). (2.10)

3 We have also (sneakily) introduced a distinction between upstairs and downstairs indices. If we are dealing
with Cartesian tensors, this distinction is not so important, but we will soon see that it is crucial in a curved
spacetime. Hence, it makes sense to introduce the convention from the beginning. In the following, the Einstein
summation convention applies only to repeated up-down indices. Repeated down-down indices (say) render
an expression meaningless.
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This relation introduces a new symbol, ⊗ (representing a tensor product), but there is no
reason to run in terror at the sight of this. It is fairly easy to understand. First of all, Ejk
is the number we get if we insert the basis vectors êj and êk in the two slots of êj ⊗ êk. In
terms of two (general) vectors u and v, the tensor product is then defined as

êj ⊗ êk(u,v) = (êj · u)(êk · v). (2.11)

The first scalar product projects out the part of u which is parallel to êj , while the second
projects out the part of v parallel to êk. It is then easy to see that (2.9) follows if we take
u and v to be the basis vectors.

Let us now return to the fundamental equation of tidal gravity. In practical calcula-
tions, one would often focus on the individual components of a given expression. Leaving
out the basis vectors, the geometrical relation (2.4) takes the form4

d2ξ i

dt2
= −E i

jξ
j . (2.12)

We need to relate this expression to the gravitational potential �. In Newtonian gravity,
the acceleration is proportional to the gradient of the gravitational potential. Letting the
trajectory of a falling object be described in terms of coordinates xj we have

d2xi

dt2
= −δij ∂�

∂xj = −δij∂j� (2.13)

(where we have introduced a useful short-hand notation for the partial derivative)
for each of the two particles. With the vector separating the particles defined as (see
Figure 2.3)

ξ j = x j
A − x j

B, (2.14)

we have

d2ξ i

dt2
= expand in Taylor series ≈ −δij

(
∂2�

∂x j∂xk

)
ξk, (2.15)

as long as the trajectories are suitably close. Comparing this result to (2.12) we identify

E i
k = δij

(
∂2�

∂xj∂xk

)
. (2.16)

4 We are using a simplified mathematical machinery here. When a metric is present one can simplify the
notation to ‘avoid’ row vectors and work only with column vectors. In the language of differential geometry, we
can get rid of one forms and work solely with vectors. In the context of gravitational waves, which is our main
focus, we can get by with this simplified approach.
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Figure 2.3 The trajectories of two (ideal) objects A and B (only influenced by gravity) falling along
initially parallel trajectories.

This completes the Newtonian description of the thought experiment. Once we know
the gravitational potential—which is determined by the mass distribution in the usual
way—we can work out the relative motion of the two particles.

2.3 Introducing the metric

We now turn to the more challenging task of describing the thought experiment in terms
of a curved spacetime. To do this, we need a new set of tools. This is the price we have
to pay as soon as we work in a curved space. We need to think carefully about concepts
we would normally take for granted. However, there is still no need to panic. Many of
the ideas are intuitive and the final computational machinery is just as easy to use as the
one we are accustomed to.

The principle of relativity is the key to the mathematics we need. If the physics is
to be the same regardless of the frame of reference, then the mathematical expressions
should not depend on whatever coordinates we decide to use. This naturally leads us
to thinking of spacetime as made up of events P (say), which can be defined without
resorting to a specific coordinate system. The idea is that different observers should
always agree that something specific happened (like ‘a star exploded in that particular
galaxy’), even though they may associate the event with different coordinate locations
and times (as they may be using their own rulers and clocks). Of course, given a set of
coordinates xa (where we add the time coordinate x0 to the usual space coordinates xj so
the index a runs from 0 to 3), there should be a one-to-one mapping between points and
particular coordinate values. It is, however, important to develop the physical concepts
in a coordinate independent way.

To stress this point, consider two spacetime events P and Q. We can easily define the
vector �x that separates the corresponding points in spacetime. These concepts do not
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rely on coordinates for their definition. It should also be clear that, even though different
observers may disagree on the ‘coordinate location’ of the points P and Q, they should be
able to confirm that they are discussing the same events and the same separation vector.
In fact, the principle of relativity forces the interval between the two events

ds2 = (�s)2 = (�x)2 (2.17)

to be the same in all frames of reference. This is an important observation. However, in
order to make sense of this, we need a way of quantifying the concept of squared length.
The object we need is the metric tensor, which encodes the geometry of spacetime and
provides us with the means to measure distance.

Given a scalar product

A · B = real number, (2.18)

we define the metric tensor g in such a way that

g(A,B) = A · B. (2.19)

Since we have already introduced the concept of the squared length of a vector as equal
to the associated spacetime interval ds2 we can now compute the dot product between
any two vectors. To do this, we note that

A · B = 1
4

[(A + B) · (A + B)− (A − B) · (A − B)]. (2.20)

Moreover, we see that

A · B = B · A, (2.21)

which implies that the metric tensor will be symmetric in its two slots. When written in
component form it is symmetric in its two indices

gab = g(êa, êb) −→ gab = gba. (2.22)

In four spacetime dimensions the metric has 10 components.
It is worth noting that we can always isolate the symmetric part of a given tensor. For

example, the symmetric part of a tensor, Aab, follows from

A(ab) = 1
2

(Aab + Aba) , (2.23)

and in the case of the metric we have g(ab) = gab. Similarly, the anti-symmetric part is
given by

A[ab] = 1
2

(Aab − Aba) , (2.24)

and it is clear that g[ab] = 0.
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When discussing motion in spacetime, it is useful to consider a specific observer. We
need someone to carry out our measurements. One can imagine this observer carrying
a clock, the rate of which is associated with an infinitesimal vector dP. This allows us
to ask, ‘How fast does an ideal clock tick?’, as we move along with the observer. If the
answer is dτ , we have

(length of dP)2 = ds2 = −dτ2 < 0, (2.25)

and dτ > 0 is called the proper time interval. It represents the time recorded on the co-
moving clock. Intervals such that ds2 is negative are called timelike because they represent
curves along which one can imagine a physical observer (limited by the speed of light)
carrying a clock. In contrast, a spacelike vector dQ leads to

(length of dQ)2 = ds2 > 0, (2.26)

where ds measures the spatial distance in the particular reference frame in which the
vector is at constant time. Such intervals cannot be connected by observers restricted
by the speed-of-light speed limit. Finally, light signals are null, meaning that ds2 = 0.
Centered on any particular point in spacetime, null intervals define the light cone which
limits the movement of massive particles and defines their possible past and attainable
future. The idea is illustrated in Figure 2.4.

null

timelike

spacelike

the future

now

the past

Figure 2.4 As no signals can travel faster than light, actual clocks are confined to remain inside the
light cone associated with an event (now). This constrains both the past history of the event and future
events it may communicate with. Spacetime intervals Aa (say) that may be associated with an observer
carrying a clock are called timelike and satisfy gab AaAb < 1. In contrast, spacelike intervals, for which
gab AaAb > 1, would have to involve superluminal motion. Finally, intervals associated with light
signals (called null) are such that gabAaAb = 0.
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2.4 The four-velocity

In order to discuss motion in more detail, it is useful to revisit the concept of an inertial
frame. An inertial frame can be viewed as a lattice of rods and clocks that moves in
such a way that it is not affected by any forces. It also does not rotate with respect
to distant observers. We let the rods form an orthogonal lattice with uniform length
intervals that can be used to set up orthonormal Cartesian coordinates. The clocks are
synchronized by light pulses, as in Figure 2.1, and measure time in a uniform way. Given
such an inertial system we have a natural coordinate system for spacetime, xa = {t,x,y,z}
(say). The coordinates associated with a certain event P is then given by the location
{x,y,z} in the lattice of rods, and the time t measured by the clock at that coordinate
location. In a curved spacetime we cannot construct a global inertial frame. Instead, we
are forced to consider local inertial frames, which are relevant only in a small region of
spacetime.

The world line of a particle is the sequence of events P(τ ), where τ is the proper time
measured by an ideal clock carried along by an imagined observer riding along with the
particle (as in Figure 2.5). The world line’s tangent vector u is called the four-velocity.
Mathematically, we can define the four-velocity through the standard limiting procedure
for derivatives

u = dP
dτ

= lim
�τ→0

P(τ + �τ)−P(τ )

�τ
. (2.27)

In practice, one would think of the world line as a trajectory xa(τ ), leading to

ua = dxa

dτ
. (2.28)

u

ξ

Figure 2.5 An illustration of the four-velocity u as the tangent to a given worldline, with proper time
measured on a co-moving clock. As long as no forces act on the particle it follows a geodesic. The
separation ξ to a neighbouring geodesic plays a key role in the discussion of geodesic deviation.
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Anyway, it is easy to show that we must have

u2 = dP
dτ

· dP
dτ

= dP · dP
(dτ)2 = −1. (2.29)

This follows since dP · dP is the squared length of the interval dP , which is equal to ds2,
while dτ2 is (by definition) minus this interval.

It is worth stressing the following (perhaps trivial) point: Even though the difference
in the numerator of the expression on the right-hand side of (2.27) becomes small as
�τ → 0, the four-velocity u itself may nevertheless be ‘large’ (since we divide by �τ).
This means that we should not expect to be able to ‘lay the tangent vector down’ in the
curved space. The situation is similar for a calculation carried out on a spherical surface;
see Figure 2.6. In order for the vector to follow the space we need to bend it in a nonlinear
manner. But this is not allowed because tensor analysis is linear. Hence, all vectors, like
u, live in the flat tangent space associated with each individual spacetime point P .

Now consider a freely falling object. That the object is freely falling means that it
should follow a straight line in a local inertial frame (a frame carried along by the particle
and in which it remains at the origin). In this frame we should have

u = constant. (2.30)

That the four-velocity is constant in this frame means the worldline of the object is ‘as
straight as possible’. Thinking about this for a moment, we see that it boils down to
the requirement that the derivative of u along itself must vanish. In terms of a ‘suitably
defined’ spacetime derivative ∇ and inspired by the directional derivative from vector
calculus, one would expect to end up with a frame-independent relation:

(u · ∇)u = ∇uu = 0. (2.31)

This is the geodesic equation, which describes the motion of freely falling objects in
any chosen coordinate system. However, we have moved a little bit too fast. While we

u

P(τ)

Figure 2.6 An illustration of the fact that the four-velocity u lives in the tangent space associated with
each individual spacetime point P along the worldline of a particle.
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understand the meaning of this kind of expression for three-dimensional vectors in flat
space, we have not yet discussed derivatives in a curved space. We need to take a couple
of steps back in order to move on.

Consider a curve P(ζ ) parameterized in terms of a suitable parameter ζ (which one
might take to be the proper time τ in the case of a massive particle). The curve has
tangent vector

dP
dζ

= lim
�ζ→0

P(ζ + �ζ)−P(ζ )

�ζ
. (2.32)

These are all coordinate independent concepts. Now assume that we choose coordinates
{xa} and that all points in spacetime are described by P(xa). Then we can build a
coordinate basis for vectors through the partial derivatives

ea = ∂P
∂xa . (2.33)

This is important. For any chosen set of coordinates we have a natural basis in terms
of which we can express tensor components. Given this basis, we define the tangent
vector as

t = taea = dP
dζ

= dxa

dζ

∂P
∂xa = dxa

dζ
ea. (2.34)

Note that standard differential calculus works even though, strictly speaking, P is a set
of points. Thus, we identify

ta = dxa

dζ
. (2.35)

Contrast this to the directional derivative of a scalar field ψ(P). As in standard vector
calculus, we define the derivative of ψ along t as

∇tψ = t · ∇ψ = ta
∂ψ

∂xa . (2.36)

In essence, we have

∇t = ta
∂

∂xa = dxa

dζ

∂

∂xa = d
dζ

, (2.37)

evaluated along the curve P , we then have

∇tψ = d
dζ

ψ[P(ζ )]. (2.38)
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This highlights the correspondence between vectors and directional derivatives. In fact,
from the mathematical point of view, we can define a vector to be a directional derivative.
From a practical point of view, we can take

t = ∇t = dP
dζ

= d
dζ

, (2.39)

to have the same meaning. Similarly, we have for the coordinate basis

ea = ∂P
∂xa = ∂

∂xa . (2.40)

It is important to note that the natural basis is orthogonal but not normalized. The latter
is only the case in flat space.

Let us now ask what happens if we transform from one set of coordinates to another,
say from xa to x′a. From our definitions we have (thinking of the unprimed coordinates
as functions of the primed ones and using the chain rule)

t = taea = ta
∂

∂xa = ta
∂x′b

∂xa

∂

∂x′b = ta
∂x′b

∂xa e′
b = t′be′

b. (2.41)

We see that the components must transform in such a way that

t′b = ∂x′b

∂xa ta. (2.42)

This rule defines a contravariant object; what we usually call a vector.
Meanwhile, in the natural basis the components of the metric tensor follow from

gab = g(ea,eb) = ea · eb. (2.43)

Even though we often do not ‘buy much’ by using the full machinery of differential
geometry (and dealing with one-forms and dual spaces) when we discuss applications of
general relativity (basically because we have a metric theory) it is useful to introduce the
concept of a dual basis. Suppose we have determined a basis {ea} at the point P . Then
we can define another basis (the dual) {eb} through

eb · ea = g(eb,ea) = δb
a. (2.44)

This leads us to introduce covariant objects, like the dual vector (more commonly
referred to as a one form)

B = Baea, (2.45)

where Ba are the components in the dual basis.
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As we have already pointed out, it is often useful to think of tensor expressions as
abstract (geometric) relations where the ‘slots have labels’ rather than as a value in
a particular coordinate basis (even though there obviously is a direct correspondence
between the two pictures). For example, for the dot product we have

g(A,B) = A · B = AaBbea · eb = AaBbgab. (2.46)

Here we can interpret gab as the geometric object g(_,_) where we have ‘labeled’ the two
slots a and b. The repeated indices in AaBbgab mean that we have inserted the vector A
in the first slot of g and B in the second. That is, we are dealing with the real number
g(A,B). Making use of the dual basis, we alternatively have

g(A,B) = A · B = AaBbea · eb = AaBa. (2.47)

This has to be the same number as before. Comparing the two expressions, we see that

Ba = gabBb. (2.48)

This is a very important result. It shows that we can use the metric to lower a given tensor
index.

Similarly, we can define the inverse metric as

gab = g(ea,eb) = ea · eb. (2.49)

Not surprisingly, this object can be used to raise component indices. Finally, the mixed
metric follows from

ga
b = g(ea,eb) = ea · eb = δa

b, (2.50)

or, equivalently,

gabgbc = δa
c. (2.51)

We can also use the dot product to figure out how a covariant object transforms if we
change coordinates. Basically, we have

A · B = AaBa = Aa
∂xa

∂x′b B′b = A′
bB′b, (2.52)

where we have used (2.42) (exchanging primed and unprimed variables). We see that

A′
b = ∂xa

∂x′b Aa. (2.53)

This is the transformation rule for a covariant object.
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The dot product illustrates the concept of tensor contraction. Essentially, contraction is
a process that lowers the rank of a tensor by two. In component expressions a contraction
is represented by a sum over repeated indices. When carrying out actual calculations one
can freely change the labels of such repeated indices (often called dummy indices).

2.5 The covariant derivative

Since physical laws tend to be described in terms of (partial) differential equations, we
must add differentiation of tensors to our geometrical armour. Remember that, strictly
speaking, we still do not fully understand the meaning of the geodesic equation (2.31).

Formally, the introduction of derivatives poses no problem. We can define derivatives
through the usual limiting process. Indeed, in the case of the derivative of a scalar field
ψ we see from (2.36) that

∇ = ea ∂

∂xa , (2.54)

and it follows that (if u is the four-velocity)

u · ∇ψ = (
uaea

) ·
(

eb ∂ψ

∂xb

)
= ua ∂ψ

∂xa = dψ

dτ
. (2.55)

The question is what happens for tensors. In principle, given a tensor A (which should
be interpreted as a tensor field A = A[P(ζ )]) we can define the rate of change along a given
world line P as

∇tA = lim
�ζ→0

A[P(ζ + �ζ)] − A[P(ζ )]
�ζ

, (2.56)

where t is the tangent vector from before. However, there is a slight problem here. We
have seen that tensors are linear objects that live in the tangent space associated with each
spacetime point; see Figure 2.6. The two tensors in the expression on the right-hand side
of Eq. (2.56) represent different events and hence belong to different tangent spaces. In
order to work out the derivative, we need to be able to transport one of the vectors in
such a way that we take the difference in the same tangent space. In doing this we need
to account for any stretching and twisting of the basis vectors due to the curvature of
spacetime. We need to identify the connection between the tangent spaces.

This may sound like a tricky problem, but the procedure turns out to be straightfor-
ward. In flat space we can parallel transport a vector by keeping it aligned with itself while
holding its length fixed. This idea is easily extended to tensors. We simply keep all the
components fixed in an orthonormal coordinate basis. However, in a curved spacetime
we do not have the luxury of such a basis, apart from at the local level. Of course, in
constructing derivatives we are dealing with infinitesimal differentials. One can convince
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oneself that the difference between the tangent spaces (the deviation from a local inertial
frame at (say) P(ζ )) occurs at second order in the distance �ζ . This means that we can
introduce coordinates sufficiently close to the flat space ones that we can define parallel
transport in the usual way.

The gradient of a tensor is then defined as

∇tA(_) = ∇A(_, t). (2.57)

That is, if A is a tensor of rank n, then its gradient has rank n + 1. Alternatively, we write
this as

∇A = ∇eaA = ∇a(Abeb)ea = (∇aAb)(eb ⊗ ea). (2.58)

This is the covariant derivative.
In the following we will use either ∇a or a semi-colon followed by the relevant

spacetime index to represent the covariant derivative in component expressions. Partial
derivatives will be given by ∂a or a comma followed by the index. The latter notation may
be confusing at first, but as it is commonly used it is important to be comfortable with
it. For example, the divergence follows as the contraction

∇ · A = ∇aAa = Aa
;a. (2.59)

The question is, how do we work out the coefficients of these expressions? First of all,
it makes sense that the covariant derivative should reduce to the standard gradient for
scalars. After all, there is no issue about tangent spaces for scalar quantities. However,
for tensors, it is easy to show that the partial derivative does not respect the expected
transformation properties. Partial differentiation of vectors is not a tensor operation. The
solution to the problem follows once we realize that the induced change in any given basis
vector ea must be a linear combination of all the basis vectors. That is, we should have
(again with u the four-velocity, in order to make contact with (2.31))

(u · ∇)u =
(
ubeb

)
· (ec∂c

)(
uaea

)
= ub∂b

(
uaea

) = ub [
ea(∂bua)+ ua(∂bea)

]
= ub (

∂bua + �a
cbuc)ea = (ub∇bua)ea, (2.60)

where we have defined

∂bea = �c
abec, (2.61)

and we identify the components of the covariant derivative as

∇bua = ua
;b = ∂bua + �a

cbuc. (2.62)
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The first term measures the rate of change of the components of u while the second term
arises because of the change in the basis vectors. The quantities �c

ab are known as the
connection coefficients. For a given metric (in a coordinate basis) they are often called the
Christoffel symbols.

Next, the fact that ea · eb = δa
b leads to

∂bea = −�a
cbec, (2.63)

and it follows that

∇aAb = Ab;a = ∂aAb − �c
baAc. (2.64)

For higher rank tensors we have to account for the change in each basis vector, which
means that all indices must be corrected for in the same way as in these examples.

Finally, we need to be able to calculate the connection coefficients. One can think of
different ways of doing this. One way would be to define the derivative in such a way
that the metric is effectively constant with respect to it. This is the choice that is made in
general relativity. It is sometimes described as the covariant derivative being ‘compatible’
with the metric. We then require the derivative to be such that

∇g = 0 or ∇agbc = 0. (2.65)

From our definition of the covariant derivative, it follows that

∇agbc = ∂agbc − gdc�
d
ab − gbd�

d
ac = 0. (2.66)

Given this relation we can cyclically permutate the free indices to get three relations,
combine these, and use the fact that the connection coefficients are symmetric in the last
two indices5 to show that

�a
bc = 1

2
gad(∂cgbd + ∂bgcd − ∂dgbc). (2.67)

2.6 The geodesic equation

We have arrived at a point where, once we have introduced coordinates, we can work out
the corresponding coordinate basis and build the metric to get a notion of distance. We
also have a derivative that allows us to discuss how quantities vary along a given curve.
We are ready to make sense of the geodesic equation.

5 Caution: This is an assumption of general relativity. Other theories may have non-vanishing torsion, in
which case this symmetry does not hold.
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A freely falling particle will follow the straightest possible path in spacetime. This
means that the four-velocity u satisfies the geodesic equation

∇uu = (u · ∇)u = 0, (2.68)

or

ua∇aub = (∂aub + �b
cauc)ua = 0. (2.69)

In essence, the vector u is parallel transported along itself. In a given set of coordinates,
xa(τ ) (where τ could be proper time, in the case of a material object), the first term can
be written

ua∂aub = ∂ub

∂xa

dxa

dτ
= dub

dτ
= d

dτ

(
dxb

dτ

)
, (2.70)

while, by definition,

uauc = dxa

dτ

dxc

dτ
. (2.71)

Hence, the geodesic equation becomes

d2xb

dτ2 + �b
ca

dxc

dτ

dxa

dτ
= 0. (2.72)

These four coupled ordinary differential equations determine the trajectory for given
initial conditions.

Let us digress for a moment to consider an issue closely related to the motion of an
object: the existence (or not) of conserved quantities. In general, a conserved quantity
is associated with the problem having some underlying symmetry. As we will now show,
this leads to the existence of a so-called Killing vector, an object that satisfies

∇akb + ∇bka = 0. (2.73)

It is straightforward to show that, for any vector that satisfies this equation, we have

d
dτ

(kaua) = ub∇b(kaua) = 0. (2.74)

In effect

k · u = kaua (2.75)
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is constant along a geodesic. We have a constant of motion. It is also easy to demonstrate
that this conserved quantity is associated with a spacetime symmetry. Such a symmetry
typically results in there existing a set of coordinates such that the metric does not depend
on one of them. Let us take the time coordinate as an example. Suppose we have a Killing
vector associated with x0 in some set of coordinates. That is, let

ka = δa
0 −→ ka = gabkb = ga0. (2.76)

Making use of the covariant derivative (2.64) and the explicit expression for the
Christoffel symbols from (2.67) we see that

∇akb + ∇bka = ∂0gab = 0. (2.77)

In other words, the existence of this particular Killing vector implies that the metric does
not depend on the x0 coordinate, and vice versa. Later, when we consider particle motion
in black-hole spacetimes (see Chapter 10), we will see that this particular symmetry leads
to the conservation of energy.

2.7 Curvature

Having developed the notion of tensor derivatives, we are primed to discuss the concept
of curved spaces in more detail. To do this, we need to introduce the notion of a
commutator. Given two vectors A and B (or identically, directional derivatives) the
commutator is defined by

[A,B]ψ = [∇A,∇B]ψ = (∇A∇B − ∇B∇A)ψ

=
(

Aa ∂Bb

∂xa − Ba ∂Ab

∂xa

)
ψ = ∇Cψ , (2.78)

where ψ is a scalar field. Geometrically, we can understand this in the following way.
Consider two vectors which start at the same point but aim in different directions. Let
us call them A and B. Then parallel transport one of the vectors (A) until its tail is at
the tip of the other vector (B), and vice versa. In flat space, we know that this would
lead to the tips of the transported vectors touching. In a curved space the answer may be
different. As we move the vectors to different points they will change a little. Aa∂Bb/∂xa

measures the amount by which the vector B changes as one moves it along A, and so on.
The commutator measures the ‘failure’ of the tips of the two transported vectors to meet
at the end of the exercise, encoding the spacetime curvature.

Having introduced the commutator, it is natural to highlight the different types of
bases one might want to use for practical calculations. As we have already seen, given
a set of coordinates xa(P) one can construct a coordinate basis, whose basis vectors are
given by
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ea = ∂P
∂xa = ∂

∂xa −→ [ea,eb] =
[

∂

∂xa ,
∂

∂xb

]
= 0. (2.79)

Obviously, a non-coordinate basis must then be such that

[êa, êb] = c c
ab êc �= 0, (2.80)

where c c
ab are called the commutation coefficients. It is important to appreciate the

difference between these two sets. For example, when taking partial derivatives one must
know (i) what one is differentiating with respect to, and also (ii) what is held fixed.
Perhaps confusingly, one may want to use both kinds of basis in a practical calculation.
Typically, one would use an orthonormal (non-coordinate) basis, where the basis vectors
have unit length, when discussing physical interpretations (the experimenter’s view).
At the same time, many calculations are easier to carry out in a coordinate basis (the
theorist’s view). We will see examples of both strategies later.

Having come quite far since we set out, we now embark on the final leg of the journey.
Equipped with the appropriate tools we are able to discuss the spacetime curvature.
Particularly important for this discussion will be the Riemann tensor, which is a measure
of the failure of second derivatives to commute. Given a vector field A we define the
Riemann tensor through

(∇c∇d − ∇d∇c)Aa = Ra
bcdAb. (2.81)

This shows that the Riemann tensor must be anti-symmetric in its last two indices
(associated with the derivatives). Although it is less trivial, one can also prove that it
must be anti-symmetric in the first two indices, and symmetric if the two pairs of indices
are interchanged. In addition one can prove that

∇eRabcd + ∇cRabde + ∇dRabec = 0. (2.82)

These are the Bianchi identities. Combining all this information, one can work out that,
in four spacetime dimensions the Riemann tensor has 20 independent components.
Generally, these components can be calculated from

Ra
bcd = ∂c�

a
bd − ∂d�

a
bc + �a

ce�
e
bd − �a

de�
e
bc. (2.83)

This expression follows (admittedly after a little bit of work) from the definition of the
covariant derivative. In terms of a prescribed metric we get, in a local inertial frame
(where we can ignore first, but not second derivatives of the metric),

Rabcd = 1
2

(∂c∂bgad + ∂d∂agbc − ∂d∂bgac − ∂c∂agbd). (2.84)

This result will be important to us later.
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Given the Riemann tensor, we can contract on the first and third indices to obtain the
Ricci tensor

Rab = gcdRdacb = Rc
acb. (2.85)

The 10 independent components of this object follow from

Rab = ∂c�
c
ab − ∂b�

c
ac + �c

ab�
e
ce − �c

ae�
e
bc. (2.86)

Contracting one more time we arrive at the Ricci scalar

R = gabRab = Ra
a. (2.87)

Given these definitions we note that, if we carry out the Ricci contraction on the
Bianchi identities (2.82), we find that the divergence of the so-called Einstein tensor

Gab = Rab − 1
2

gabR (2.88)

vanishes. That is, we have

∇ · G = 0 or ∇aGab = 0. (2.89)

The importance of this result will soon become apparent.

2.8 A little bit of matter

So far we have focused on how the motion of an object is affected by the spacetime
curvature. However, our aim is to design a theory of gravity, where the presence of matter
generates the gravitational field that causes the spacetime to bend in the first place. In
order to do this we need to introduce one more tensor: the stress-energy tensor. This is
a rank 2 object that encodes all energy, momentum, and stresses associated with matter.
As we also want to account for electromagnetism, elasticity, and other matter properties,
this can be a very complicated object. We will consider some of the complications later
when we discuss neutron star physics (Chapter 12), but for the purposes of the present
discussion we will take a more simplistic view. Let us ask what the simplest tensor we can
build out of the ingredients we already have available may be. This may seem more of
a mathematics question than one of physics, but it turns out that this approach leads us
directly to two widely used matter models; the dust model (representing a gas of non-
interacting and hence pressure-less particles) that is used in cosmology and the perfect
fluid that is used to build stellar models.

First, consider a set of moving particles, each with its own individual worldline (as
in Figure 2.5). Averaging over the particles (on some length scale) the congruence of
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worldlines provides us with a four-velocity (field) ua. With this as our only building
block, there is only one rank 2 object we can construct:

Tab = εuaub. (2.90)

This model represents what is called ‘dust’ and ε is the corresponding energy density. By
contracting twice with the four-velocity, we have

ε = uaubTab. (2.91)

This model is very simple, yet it forms the basis for relativistic cosmology (Chapter 4).
The basic idea is that individual stars/galaxies can be viewed as non-interacting (dust)
particles and on a suitably large scale the average (2.90) makes sense.

We obviously want to be able to deal with more complicated models. The natural next
step would be to ask what happens if we build the stress-energy tensor out of both the
four-velocity and the spacetime metric. Then we have

Tab = Auaub + pgab. (2.92)

As before, the energy density follows from contractions with the four-velocity. We now
have

ε = A − p, (2.93)

which means that

Tab = (p + ε)uaub + pgab = εuaub + p ⊥ab . (2.94)

This model is called the perfect fluid. It does not allow for shear stresses, but it allows for
particle interactions that give rise to the (isotropic) pressure p. In Chapter 4 we will see
how this model leads to the familiar equations for fluid dynamics.

Before we move on, let us make two remarks. First of all, we have (sneakily) introduced
a new object, ⊥ab, in (2.94). This is known as the projection. To see why this name is
appropriate, note that

ua ⊥ab = 0. (2.95)

The projection isolates components orthogonal to the flow associated with ua. This will
prove useful later.

Secondly, it is worth considering the Newtonian limit. Special relativity tells us that
energy and mass are equivalent. As a result, the energy density generally takes the form
(for a fluid made up of a single particle species)

ε = mnc2 + ε(n), (2.96)
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where n is the number density of particles, m is the rest mass of each particle, and ε is the
internal energy due to interactions between the particles. Formally, the Newtonian limit
involves letting c → ∞ (see Chapter 4), which means that the rest mass contribution
dominates and the leading part of the stress-energy tensor is (returning to geometric
units)

T00 ≈ mn = ρ. (2.97)

We will make use of this result shortly.

2.9 Geodesic deviation and Einstein’s equations

We now have the tools we need to attempt a relativistic description of the thought
experiment from the beginning of the chapter. Recall that we are interested in the paths
of two freely falling particles; see Figures 2.2 and 2.5. Let us try to describe the motion of
the two particles A and B in the thought experiment, assuming that the two trajectories
start out parallel. To do this, we again introduce a vector ξ to measure the separation
between the two trajectories. Assuming that this vector is purely spatial according to
the trajectory of A, which we also assign to measure time (such that the corresponding
four-velocity only has a time-component), we trivially have

u · ξ = uaξa = 0. (2.98)

The second derivative of ξ will be affected by the spacetime curvature. In order to
quantify this effect, we assume that the geodesics are labelled by a parameter λ in such a
way that

u =
(

∂

∂τ

)
λ

and ξ =
(

∂

∂λ

)
τ

. (2.99)

Then it is easy to show that

[u,ξ] = ∇uξ − ∇ξ u = 0, (2.100)

or

ua∇aξ
b − ξa∇aub = 0 (2.101)

This means that we get

∇u∇uξ = ∇u∇ξ u = (∇u∇ξ − ∇ξ∇u)u, (2.102)
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where we have made use of the geodesic equation. In other words, the relative acceleration
is caused by the failure of the double gradients to commute. In terms of components (and
making use of (2.101)), we have

uc∇c(ub∇bξ
a) = ucξ b(∇c∇b − ∇b∇c)ua = −Ra

dbcu
dξ buc, (2.103)

where we have used the definition of the Riemann tensor, (2.81). This is the equation of
geodesic deviation.

As we want to make contact with the Newtonian description of our falling-body
thought experiment, it is useful to introduce (in analogy with the result for scalar fields)
a total time derivative such that

D
Dτ

= ua∇a, (2.104)

which means that (2.103) becomes

D2ξa

Dτ2 = −Ra
dbcu

dξ buc. (2.105)

Now that we have an expression for the relative acceleration caused by the spacetime
curvature, we can complete the description of the thought experiment. In the local inertial
frame associated with particle A we have (since the particle remains at rest in this frame)

u0 = 1, u j = 0, (2.106)

ξ0 = 0, ξ j �= 0. (2.107)

Also replacing the proper time τ with the coordinate time in this frame t, we have

∂2ξ j

∂t2
= −R j

abcu
aξ buc = −R j

0b0ξ b = −R j
0k0ξ

k. (2.108)

Comparing this to the Newtonian equation for tidal gravity (2.12), we identify

R j
0k0 = E j

k = δjl
(

∂2�

∂xl∂xk

)
. (2.109)

This provides a constraint that any curved spacetime theory must satisfy in the New-
tonian limit (weak gravitational fields, low velocities etcetera). In essence, the Riemann
tensor represents a generalized tidal field.

In the Newtonian case we also have the Poisson equation for the gravitational potential

∇2� = 4πGρ = δjk∂j∂k� = E j
j , (2.110)
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where G is Newton’s gravitational constant and ρ is the mass density. This relation
provides a constraint on the trace of the tidal tensor. We must have (in geometric units)

E j
j = 4πρ. (2.111)

One might then expect the field equations of general relativity to look something like

Rj
0j0 = 4πρ. (2.112)

However, this is not an acceptable solution. As it is not a coordinate independent
statement it does not have the form expected of the ‘true physics’. We need to have
spacetime indices, rather than spatial ones. However, noting that

R0
000 = 0, (2.113)

we have

R00 = Ra
0a0 = R j

0j0 = 4πρ, (2.114)

which takes us part of the way (as we are now summing from 0 to 3). Inspired by these
relations, let us guess that the required form of the field equations might be

Rab = 4πTab, (2.115)

where we have used the fact that T00 ≈ ρ in the weak-field limit. This would seem a
natural extension of the Newtonian result. Unfortunately, it is wrong...

The reason why the above expression is not (quite) what we want is the underlying
coordinate freedom of the spacetime problem. In essence, Eq. (2.115) corresponds to
10 equations for 10 unknown metric coefficients. In normal circumstances this is exactly
what one would need for a well-posed mathematical problem. However, the geometric
description allows us to freely choose the coordinate system, i.e. specify the four functions
xa(P). We can use this freedom to make four of the metric functions gab anything we
want. So the problem we have posed is overdetermined. We need to formulate the field
equations in such a way that we end up with six independent equations.

With the benefit of more than a century’s hindsight, the fix is simple. We need to
introduce a constraint to remove four degrees of freedom. We can do this by working
with the Einstein tensor Gab, which is required to satisfy the four equations (2.89). Thus,
we are led to

Gab = Rab − 1
2

gabR = 8πTab, (2.116)
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where the factor of 8π is determined by taking the Newtonian limit. If we reinstate G
and c we have the final result6

Gab = Rab − 1
2

gabR = 8πG
c4 Tab. (2.117)

These are the Einstein field equations. They describe how the presence of matter at a point
affects the average spacetime curvature in its neighbourhood, and how the curvature, in
turn, influences the motion of the matter.

The theory is now consistent because the four constraints from (2.89) reduce the
problem to six independent equations, as required. The model brings us back to
Newtonian gravity in the appropriate limit. In addition, it leads to a number of testable
predictions. We will consider such tests in Chapter 10.

Before we move on, it is useful to note that (2.89) and (2.117) imply that

∇ · T = 0, i.e. ∇aTab = 0. (2.118)

These four equations represent the conservation of energy and momentum7 and can be
used to work out the equations of motions for any given matter model. We will discuss
this further (from different perpectives) in Chapters 4 and 20.

We have retraced the steps Einstein took in developing general relativity, from the
original idea of the equivalence principle in 1907 to the final version of the field equations
almost a decade later (Einstein, 1915). It is remarkable to note that he did not yet have
the final form of the equations at the beginning of the frantic month of November 1915.
His thinking may still have been in flux, but he nevertheless arrived at a theory that has
passed every single test it has been subjected to—an extraordinary achievement.

As he completed the theory, Einstein knew that the field equations were remarkably
complicated. He even suggested that they may never be solved, at least not in closed
form. In this case, he was wrong. We will discuss this in Chapter 4. First, we will explore
another prediction of the theory—the existence of gravitational waves.

6 The correct power of c can be figured out from the fact that the left-hand side represents spacetime
curvature so has dimension of inverse length squared, while the stress-energy tensor has the dimension of
an energy density.

7 It is worth pointing out that (2.118) is not a ‘true’ conservation law. The actual argument assumes the
presence of a Killing vector—a ka satisfying (2.73)—and the flux Jb = kaTab such that

∇b Jb = ka∇bTab = 0. (2.119)

Flux conservation requires (2.118) to be satisfied, but this is only part of the argument.
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Gravitational waves

General relativity explains gravity in terms of a dynamical spacetime, where changes
in the gravitational field propagate as waves. These waves are generated by the bulk
acceleration of matter and they travel at the speed of light. We want to understand the
nature of these gravitational waves,1 explain how they are generated, and discuss how
they move through spacetime. These are all important steps.

In order to model astrophysical sources we need to understand what gravitational
waves are and how they are generated. We need to establish how they carry energy
from the source to our detectors, what effect this has on the source, and how a wave
passing through our instruments affects them. We need to know to what extent the waves
are altered as they travel through the Universe, e.g. via gravitational lensing or through
interaction with the interstellar medium. If the waves are of cosmological origin we also
need to weigh in the fact that the Universe evolves (see Chapter 22).

As the combined problem is challenging, it makes sense to build our understanding
step by (careful) step. Hence, we begin by considering different ways to analyse slightly
perturbed spacetimes, starting from weak waves travelling in an otherwise flat spacetime
and then extending the analysis to the general case of a curved background. As a key
part of the development, we consider the origin of the waves and the effect they have
on a given source. This leads us to the so-called quadrupole formula, which provides a
very useful estimate of the signal. Along the way, we also learn how one can derive a
stress–energy tensor for the waves.

Let us begin by asking why there should be gravitational waves in the first place. In
a sense this brings us back to the speed of light providing a universal limit for signal
propagation in Einstein’s theory, but one may still ask why we end up with waves. To
show that this is natural, consider a weak disturbance propagating in an otherwise flat
spacetime. Working in flat space we can construct a global inertial reference frame with
coordinates {xa} = {t,x,y,z}. We also have the Minkowski metric

1 There are a number of books dedicated to gravitational waves (although nowhere near as many as there
are general relativity texts), for example, Maggiore (2007) and Creighton and Anderson (2011). These texts
predate the first detection but they are nevertheless useful complements to this book. In particular, the latter
provides a focus on data analysis strategies. A more recent text, Maggiore (2018) includes a detailed discussion
of the detections to date and also provides an exhaustive discussion of relevant cosmology aspects.

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001



OUP CORRECTED PROOF – FINAL, 24/10/2019, SPi

52 Gravitational waves

gab = ηab = diag(−1,1,1,1), (3.1)

and all derivatives become partial. This setting is comfortably familiar. Now, any
deviation from the flat background will lead to curvature which can be expressed in terms
of the Riemann tensor, Rabcd . Without too much effort one can show that the individual
components of the Riemann tensor satisfy

�Rabcd = ηef ∂e∂f Rabcd = 0, (3.2)

where (in flat space, Cartesian coordinates, and geometric units)

� = − ∂

∂t2
+ ∂

∂x2 + ∂

∂y2 + ∂

∂z2 . (3.3)

In other words, the Riemann tensor components satisfy a wave equation. Moreover, the
wave operator is the same as in electromagnetism, so the gravitational waves travel at the
speed of light.

3.1 Weak waves in an otherwise flat spacetime

Since gravity is a tidal interaction, the presence of a gravitational wave can never be
detected by a local experiment. This follows immediately from the fact that we have the
freedom to choose inertial coordiclnates associated with any observer. We can always find
a frame such that spacetime is flat in the neighbourhood of some given point. In order to
begin to understand the nature of gravitational waves we need to revisit the setting of the
thought experiment that led us to Einstein’s equations in the first place (see Chapter 2).
Thus, we consider the influence of a wave on two test particles, A and B, initially taken
to be at rest. As before, we arrange the setting to be such that the particles are separated
by a purely spatial vector ξ j. A gravitational wave will ‘push the particles around’ with
respect to each other, which means that our reference frame can no longer be globally
inertial.

To discuss the motion of the particles let us use the local inertial frame in which particle
A remains at rest at the origin. This situation is illustrated in Figure 3.1. In this frame
we have

gab = ηab + O(|x|2/R2), (3.4)

where R2 ∼ 1/|Rabcd | is a measure of the radius of spacetime curvature induced by the
waves.

Recalling the analysis that motivated the field equations of general relativity, we realize
that we need to make use of the equation of geodesic deviation

∇u∇uξ = −R(_,u,ξ ,u). (3.5)
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x y

t

ξ j

A

B

Figure 3.1 A schematic illustration of the effect a gravitational wave has on two particles, A and B, as
viewed in a local inertial frame moving along with particle A.

In our chosen frame we have u0 = 1 and uj = 0. In essence, the coordinate time t of A is
identical to the proper time (because the metric is flat in the vicinity of the origin of our
coordinate system). Thus, we get

∂2ξ j

∂t2
= −R j

0k0ξk. (3.6)

Now assume that

ξ j = xj
0 + δxj , (3.7)

where xj
0 represents the unperturbed location of B and δxj describes the wave-induced

change. The latter is obviously small for weak waves. This leads to

∂2δxj

∂t2
≈ −R j

0k0xk
0. (3.8)

One can prove that, for weak gravitational waves and in a local inertial frame, all
components of the Riemann tensor can be determined from Rj0k0. There are, in fact, only
two independent components. Intuitively, one might expect Rj0k0 to have six independent
components, but symmetries reduce this to two degrees of freedom. It is customary to
define the gravitational-wave field hjk through

Rj0k0 = −1
2

∂2hjk

∂t2
, (3.9)

where the factor of 1/2 is a convention. We now get

∂2δxj

∂t2
≈ 1

2

∂2hj
k

∂t2
xk

0, (3.10)
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which integrates to (if we assume that the particles are initially at rest)

δxj = 1
2

hj
kxk

0. (3.11)

This means that, if the two particles are initially a distance L apart, then a passing
gravitational wave (hjk ∼ hsinωt) will lead to a change in the separation �L such that

h ≈ �L
L

. (3.12)

This example describes exactly the situation one deals with in discussing gravitational-
wave detection with interferometers (see Chapter 7). Of course, it is a simplification.
For example, in the case of a ground-based detector one must also account for effects
due to the Earth’s gravity. Nevertheless, the analysis remains essentially the same. Most
importantly, as long as the wavelength of the wave is much larger than the size of the
detector, Eq. (3.4) is an adequate approximation.

3.2 Effect on matter

In order to investigate the properties of the (frame-dependent) gravitational-wave field,
we may orient our coordinate system in such a way that the waves travel in the z-direction.
Then we have hjk = hjk(t − z), since the waves propagate at the speed of light (and we
use geometric units). Furthermore, we have only two independent components. It turns
out (we will show this later) that one can always find a coordinate system where hij is
such that

hTT
xx = −hTT

yy , (3.13)

hTT
xy = hTT

yx , (3.14)

and all other components vanish. The TT subscript indicates that hjk is transverse and
traceless. It is conventional to introduce the notation

h+ = hTT
xx = −hTT

yy , (3.15)

h× = hTT
xy = hTT

yx , (3.16)

where the two polarizations are referred to as ‘h-plus’ and ‘h-cross’.
We can now use (3.11) to figure out the effect a wave with (say) pure plus polarization

h+ has on matter. Consider a particle initially located at (x0,y0) and let h× = 0 to
find that
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δx = 1
2

hTT
xx x0 + 1

2
hTT

xy y0 = 1
2

h+x0, (3.17)

δy = 1
2

hTT
xy x0 + 1

2
hTT

yy y0 = −1
2

h+y0. (3.18)

From this we see that, during a wave-induced oscillation, h+ ∼ hsinωt first induces a
stretch in the x-direction accompanied by a squeeze along the y-axis. One half-cycle
later, the stretch is in the y-direction, with the squeeze is along the x-axis. Similarly, we
readily show that the influence of h× is such that

δx = 1
2

h×y0, (3.19)

δy = 1
2

h×x0. (3.20)

The effect is the same as that of h+ but rotated by 45◦. The characteristic stretch and
squeeze that a gravitational wave induces on a ring of test particles is illustrated in
Figure 3.2.

We naturally have to exercise some caution at this point. We carried out our analysis
in a particular reference frame. In essence, we determined how particle B moves due to
a gravitational wave in a coordinate system where particle A remains at the origin. How
do things change if we use some other set of coordinates? In order to see under what
conditions our derivation remains valid we need to examine (3.4) a bit closer. Suppose

h+

h×

Figure 3.2 A schematic illustration of the effect that the two gravitational-wave polarizations h+ and
h× have on a ring of test particles (the unperturbed case is represented by the dashed circle). As shown in
the top panel, h+ induces a stretch in the x-direction, accompanied by a squeeze along the y-axis. One
half-cycle later, the stretch is in the y-direction, while the squeeze is along the x-axis. The effect of h× is
analogous but rotated by 45◦, as seen in the bottom panels. (The illustration is, of course, a vast
exaggeration of the true magnitude of the motion.)
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we carry out an experiment using a ‘detector’ of size L. That is, we take |x j
0| ∼ L in

our calculation. Considering gravitational waves with reduced wavelength λ– = λ/2π we
then have

1
R2 ∼ |Rabdc| ∼ |Rj0k0| ∼ |ḧjk| ∼ h+

λ–2 . (3.21)

Hence, Eq. (3.4) becomes

gab = ηab + O
(
h+L2/λ–2

)
. (3.22)

This shows that, as long as L � λ–, we have

gab = ηab + hab, with hab ∼ h+
(

L
λ–

)2

� h+. (3.23)

This proves the statement we made earlier. As long as the system is small compared to
the gravitational-wave wavelength we do not need to worry about the curved background
when carrying out a measurement. We will make this notion more precise later.

If we compare the wavelength of a gravitational wave with frequency of order 100 Hz
(where ground-based interferometers are the most sensitive), i.e. λ– ≈ 500 km, we see
that with interferometer arms a few kilometers long we are safely in the regime where
the calculation is valid. As far as the detector is concerned we are (essentially) in flat
space and in order to understand the basic principles of detection one never really has
to calculate anything in full general relativity!

3.3 The wave equation

At this point it is natural to consider the equations that govern gravitational waves, and
how they connect with a general matter source. As before (see Eq. (3.4)), let us consider
a metric that differs only slightly from the Minkowski case. That is,

gab = ηab + εhab, (3.24)

where ε is a small (dimensionless) parameter introduced to make the smallness of the
metric deviation explicit. By carrying out calculations accurate to linear order in ε, i.e.
neglecting all quadratic and higher order terms, one can show that

gab = ηab − εhab. (3.25)

In essence, at this level of approximation one may think of hab as a field living in the
fixed background space and indices can be raised and lowered with the flat metric. For
example, we have
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ha
b = ηachcb. (3.26)

From (2.84) we find that the Riemann tensor, to order ε, is given by

Rabcd = 1
2

ε (∂c∂bhad − ∂c∂ahbd − ∂d∂bhac + ∂d∂ahbc) . (3.27)

Contracting the first and third index of this expression—using the flat metric as we
neglect higher order terms in ε—we find that the Ricci tensor takes the form

Rab = −1
2

ε
(
�hab + ∂a∂bh − ∂c∂bhc

a − ∂a∂chc
b

)
, (3.28)

where we have introduced the trace h = ha
a and the wave operator � = ηab∂b∂a, as before.

Another contraction leads to the Ricci scalar

R = −ε
(
�h − ∂c∂dhcd

)
. (3.29)

These equations are still quite complicated. However, we have not yet made use of
the coordinate freedom in Einstein’s theory. It makes sense to ask whether we can find
a set of coordinates in which the relations simplify. As we will now demonstrate, this is
straightforward. First of all, we note that an infinitesimal coordinate transformation,

xa → x′a = xa + εξa, (3.30)

affects the metric gab in such a way that

hab → h′
ab = hab − ∂bξa − ∂aξb. (3.31)

In principle, this means that we can adjust some of the components of hab by choosing
coordinates in a clever way. Secondly, we introduce a new variable (inspired by the form
of the Einstein tensor (2.88))

h̄ab = hab − 1
2

ηabh. (3.32)

Note that this operation reverses the sign of the trace

h̄ = h̄a
a = −ha

a = −h. (3.33)

Under the coordinate transformation, this new variable changes in such a way that

h̄ab → h̄′
ab = h̄ab − ∂bξa − ∂aξb + ηab∂cξ

c. (3.34)
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Combining the results we find that the linearized Einstein tensor can be written

Gab = Rab − 1
2

ηabR = −1
2

ε
(
�h̄ab + ηab∂c∂dh̄cd − ∂c∂bh̄c

a − ∂c∂ah̄c
b

)
. (3.35)

Let us now specify the coordinates in such a way that

∂ah̄a
b = 0. (3.36)

These four conditions determine what is known as Lorenz gauge.2 With this choice, the
problem simplifies to

Gab = −1
2

ε�h̄ab = 8πTab, (3.37)

where the stress-energy tensor enters at order ε since we assumed that the background
spacetime was flat. This makes the example somewhat contrived, but we will soon deal
with that issue.

We have arrived at the final result (reinstating G and c and setting ε = 1 since it was
only used for bookkeeping)

�h̄ab = −16πG
c4 Tab. (3.38)

The linear metric perturbations satisfy a wave equation, as expected. This particular
form of the equation only describes gravitational waves in weak gravity, but we will soon
see that the analysis can be extended to a more general setting.

3.4 Transverse-traceless (TT) gauge

Before we move on, let us digress on the choice of coordinates in the derivation of the
wave equation. The procedure we used leads to coordinates that are ‘as close to inertial
as possible’. To see this, first, note that the Lorenz gauge remains unchanged for any
coordinate transformation such that

�ξa = 0. (3.39)

This should not come as a great surprise since (3.36) is a condition on the divergence of
the gravitational field. It leaves four ‘integration constants’ unspecified. This means that
we can impose four further conditions on hab. It is natural to take the vanishing of the
trace ha

a as the first of these. Of course, if we do this then we have h̄ab = hab.

2 Also referred to as harmonic coordinates. Generally, the word ‘gauge’ is used to describe a chosen set of
coordinates or, equivalently, constraints imposed on the metric.
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One can also prove that, if we orient the coordinate system in such a way that the
waves propagate in the z-direction and impose as our remaining three conditions

h00 = hj0 = h0j = 0 (3.40)

(note that the z-components vanish automatically because of the transverse nature of the
waves), we have the final result

hjk = hTT
jk . (3.41)

This is known as transverse-traceless (or simply TT) gauge. Since the gravitational-
wave field takes a very simple form in TT-gauge it is often used in source modelling and
discussions of wave propagation.

If we want to understand the behaviour of a gravitational-wave detector that is large
compared to the wavelength, we need to abandon the ‘flat space description’ and use the
TT-gauge. In the case of a space-based interferometer like LISA, a typical gravitational-
wave signal will have frequency 10−2 Hz, i.e. λ– ≈ 106 km, which is similar to the planned
interferometer armlength. Hence, we cannot use the local inertial frame argument to
discuss the effect that gravitational waves have on the detector.

Since we will be using the TT-gauge extensively in the following, it is worth discussing
it in a bit more detail. First note that we have

gab = ηab + hTT
ab . (3.42)

Given this, consider the geodesic equation for a single particle, i.e.

d2xa

dτ2 + �a
bc

dxb

dτ

dxc

dτ
= 0. (3.43)

If the particle is initially at rest we have

d2xj

dτ2 = −�
j
00

(
dx0

dτ

)2

= −1
2

(2∂0hj
0 − ∂ jh00) = 0 (3.44)

(where ∂ j = ηjk∂k). After integration this leads to

dxj

dτ
= 0. (3.45)

In other words, we have xj = constant. This shows that the TT-gauge represents
coordinates which move with the particles—the system is as ‘inertial as possible’.

If we again consider the two test particles A and B we now have the situation shown
in Figure 3.3 (where we have oriented the coordinate system in such a way that the two
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x y

t

A

B

Figure 3.3 A schematic illustration of the effect that a gravitational wave has on two test particles,
A and B, when the problem is considered in TT-gauge.

particles are both on the x-axis). At first sight this result may seem odd. How can the
TT picture be compatible with the local inertial frame description from Figure 3.1? The
answer follows if we consider the proper distance between the particles:

(�s)2 = gxx(�x)2. (3.46)

In the local inertial frame associated with particle A we have

gxx = ηxx = 1, (3.47)

and if we take the initial separation to be x0 = L, we get

(�s)2 = (�x)2 =
(

L + 1
2

h+L
)2

→ �s ≈
(

1 + h+
2

)
L. (3.48)

Meanwhile, in TT-gauge we find that

(�s)2 = (1 + hTT
xx )(�x)2 = (1 + hTT

xx )L2 → �s ≈
(

1 + h+
2

)
L. (3.49)

So the two pictures are consistent, after all. We just need to keep in mind that it is the
distance in spacetime that matters, not the spatial separation in some particular set of
coordinates.

Finally, suppose we have managed to find a solution to the wave equation (3.38).
Because of the assumptions made in the derivation, this solution will obviously be in
Lorenz gauge. However, this means that the result will in general not be transverse-
traceless. However, it is often useful to work in the TT gauge. So how easy is it to
transform a given result into this gauge? We will consider two options. The first approach
is pragmatic, completely sacrificing mathematical rigour. Suppose that we are in a gauge
where the waves propagate at the speed of light. Assume that wavefronts are nearly
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planar, i.e. that we are far away from the source, and orient the coordinate system in
such a way that the waves move in the z-direction. Then one can simply:

1. Throw away all the time-space and time-time components,

2. Drop all components with z indices,

3. Keep the remaining off-diagonal terms unchanged, and

4. Remove the trace from the diagonal components.

These steps bring the result into the TT-gauge.
A more formal procedure (which essentially proves why the ‘ad hoc’ approach actually

works) makes use of the projection operator. The aim is to first project out the transverse
part of h̄ab and then remove the trace. This can be done via the (spatial) projection

⊥k
j = δk

j − njnk, (3.50)

where n = x/r is a unit vector, and the waves move away from the source in the direction
of n. Clearly, we then have

⊥k
j nj = 0. (3.51)

In order to project out the transverse part of h̄jk we need to act on each of the two indices.
Also making sure to remove the trace, we have

hTT
jk =

(
⊥l

j⊥m
k −1

2
⊥jk⊥lm

)
hlm. (3.52)

3.5 The quadrupole formula

Having derived the wave equation for gravitational waves (3.38) and considered the
implications of the particular gauge in which the equation was shown to hold, we now
turn to the link between the motion of the source and the waves. The aim is to outline
a framework that allows us to estimate the rate of emission associated with proposed
phenomena. In a very practical sense, this involves working out an approximate solution
to (3.38). As we will demonstrate, this can be done in terms of a formal expansion away
from Newtonian gravity, leading to the so-called quadrupole formula. Traditionally, this
is the first port of call for anyone trying to estimate the gravitational-wave emission for a
given astrophysical scenario. We will derive the key result, and consider the implications
for various relevant problems later.

We know that a weak gravity source leads to gravitational waves governed by the wave
equation (again, in geometric units)
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�h̄ab = −16πTab. (3.53)

As we are working in flat space, we can obtain a formal solution by means of the standard
(retarded) Green’s function for the wave equation. This leads to the integral equation

h̄ab(t,x) = 4
∫

Tab(x′, t′ = t − |x − x′|)
|x − x′| d3x. (3.54)

Moreover, following the procedure outlined in the previous section, we readily translate
the result into the TT-gauge:

h̄TT
jk (t,x) =

{
4
∫

Tjk(x′, t′ = t − |x − x′|)
|x − x′| d3x

}TT

, (3.55)

where we recall that we have hTT
ab = h̄TT

ab .
At first sight, this may not appear to have taken us any closer to an actual solution

of the problem. But—as a matter of fact—it has! The trick is to use the integral form of
the solution and iterate over a succession of approximations, until we reach the desired
precision. This forms the basis of the post-Newtonian approximation scheme that we
discuss in more detail in Chapter 11. In order to get a feeling for the nature of the
solutions we obtain this way, and the steps involved, we focus on the leading order
approximation here.

We start by manipulating (3.55). First, assume that we are dealing with a slow-motion
source, i.e. that there is a characteristic velocity v such that v � c → λ– 
 L. Then the
source resides deep within its own ‘near zone’ (we will discuss this concept in more
detail later), |x − x′| ≈ r = the distance to the centre of the source, and the waves do not
change much as they move across the source (since it is smaller than λ–). In essence, we
have

t′ = t − |x − x′| ≈ t − r, (3.56)

so

h̄TT
jk (t,x) =

{
4
r

∫
Tjk(x′, t′ = t − r)d3x

}TT

. (3.57)

Next, we use the equations of motion for the matter

∂bTab = 0, (3.58)

where the use of partial derivatives is warranted since we are neglecting the self-gravity
of the source. This leads to conservation laws for energy and momentum (we explore
this in more detail in Chapter 4)
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∂tT00 + ∂jT0j = 0 energy conservation, (3.59)

∂tT j0 + ∂kTjk = 0 momentum conservation, (3.60)

where we have used x0 = ct (with c = 1 throughout the calculation). After some algebra,
using the fact that we can work in a global inertial frame, we find that

∂2
t T00xjxk = ∂l∂m(Tlmxjxk)− 2∂l(Tljxk + Tlkxj)+ 2Tjk. (3.61)

This relation is extremely useful because it enables us to deduce the components of the
stress–energy tensor from various divergences. It is a handy trick since, if we perform a
volume integration, the various divergence terms vanish (as long as we can ignore surface
terms), and we are left with

2
∫

Tjkd3x =
∫

∂2
t T00xjxkd3x. (3.62)

Hence, (3.57) reduces to

h̄TTjk(t,x) =
{

2
r

∫
T00

,00xj′xk′d3x′
}TT

t′=t−r

=
{

2
r
∂2

t

∫
T00xj′xk′d3x′

}TT

t′=t−r
. (3.63)

If we now define the mass quadrupole moment of the source as

Mjk =
∫

ρxjxkd3x, (3.64)

and use the fact that T00 = ρ in any nearly Newtonian situation, we see that we have

h̄TT
jk = 2

r
M̈TT

jk . (3.65)

It is customary to express the final result in terms of the reduced quadrupole moment,
defined by

I–jk =
∫

ρ

(
xjxk − 1

3
r2δjk

)
d3x. (3.66)
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Simply noting that MTT
jk = I–TT

jk (since the trace is removed by the TT operation), and
reinstating G and c, the final result can be written

h̄TT
jk = 2G

rc4 Ï–
TT
jk (t − r). (3.67)

This is the quadrupole formula. As we will see later, it forms the basis for many useful
gravitational-wave estimates.

Perhaps the most important insight we gain from this discussion is that the amount of
gravitational waves that a source emits depends on how the involved masses accelerate.
The difference between initial and final state (say in terms of gravitational binding
energy) makes no difference. In gravitational-wave physics the destination is less impor-
tant than the route you take to reach it.

3.6 The energy carried by gravitational waves

It is obviously important to estimate the rate at which energy is carried away from a
system. However, it is not at all trivial to quantify the energy associated with gravitational
waves. In fact, the issue was quite contentious (Kennefick, 2007), until it was finally
resolved in the late 1950s.

On dimensional grounds one would expect the energy per unit volume to be
proportional to the square of the time derivative of the gravitational-wave field; recall
(1.3). As we are using geometric units, we should have

(
dE
d3x

)
GW

∼ g
cm3 ∼ 1

cm2 ∼ 1
s2 ∼ ḣ2. (3.68)

Given this, one ought to be able to formulate a gravitational-wave stress-energy tensor
that is quadratic in the wave amplitude. However, there is a problem. According to the
equivalence principle one can always find a local inertial frame (carried along by an
observer) in which the gravitational field vanishes. Does this mean that gravitational
waves do not carry energy, or even worse, that they do not even exist? Not at all; it
is simply an indication that we cannot localize the effect of the wave, or the energy it
carries. This should not come as a great surprise. We have already seen that gravitational
waves represent tidal effects that can only be measured through the relative influence on
two (or more) bodies.

The trick to defining a stress-energy tensor for gravitational waves is to average over
several wavelengths. To see how this works, let us extend the deviation away from flat
space to higher orders. As before, consider gab = ηab + hab but now let

hab = εh(1)
ab + ε2h(2)

ab +O
(
ε3

)
, (3.69)
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where ε is a bookkeeping parameter (that we will set to unity later), and h(1)
ab is the

linear wave from before. If we plug this expression into the Einstein equations in vacuum
we get

Gab = (0)

Gab(ηcd)+ (1)

Gab(hcd) + (2)

Gab(hcd) +O(ε3) = 0. (3.70)

The notation is a bit clumsy, but we want to distinguish between the expansion in
powers of ε and the different contributions to the Einstein tensor (the label on top of
the quantities), where the second term on the right-hand side collects all linear terms in
hcd , while the third term contains all quadratic ones. Now, the first term vanishes because
background spacetime is flat and we already know that the linear term leads to a wave
equation for h(1)

ab . At second order in ε we have two contributions. These lead to

(1)

Gab(h
(2)
cd ) = −(2)

Gab(h
(1)
cd ) = 8πG

c4 tab. (3.71)

In this equation, the right-hand side effectively acts in the same way as a matter source
with stress–energy tensor tab. The waves at order ε generate curvature at order ε2. We see
that tab is symmetric and if hab satisfies the wave equation, then ∂atab = 0. Hence, it may
be tempting to interpret tab as the gravitational-wave stress-energy tensor, but we have
to be a little bit more careful than that. One problem is that tab is not gauge invariant.
Indeed, we would not expect it to be since we have already argued that there can be no
local notion of energy for the gravitational field. However, if we average tab over a small
volume, rather than evaluating it at a point, then we do get a meaningful measure. And
it turns out to be gauge-invariant, as well. In view of this, we define

TGW
ab = 〈tab〉 = − c4

8πG

〈
(2)

Gab

〉
= − c4

8πG

〈
(2)

R ab − 1
2

ηab
(2)

R

〉
, (3.72)

where the angle brackets indicate averaging over several wavelengths. At this point we can
abandon the messy notation, as we only need to keep track of the linear wave contribution.
Working out the quadratic contribution to the Ricci tensor we get

(2)

R ab = 1
2

[
1
2

∂ahcd∂bhcd + hcd (∂a∂bhcd − ∂b∂dhca − ∂a∂dhcb + ∂c∂dhab)

+ ∂dhc
b (∂dhca − ∂chda) + ∂dhcd (∂chab − ∂bhca − ∂ahcb)

+1
2

∂ch(∂ahcb + ∂bhca − ∂chab)

]
. (3.73)
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This expression may look complicated but it simplifies dramatically once we perform the
averaging. Crucially, this step allows us to ‘integrate by parts’.3 As an example, once we
use this trick the second term in the bracket becomes

hcd∂a∂bhcd −→ −∂ahcd∂bhcd + discarded surface terms. (3.74)

This term obviously combines with the first one. Remarkably, this is all we are left with
once we impose the condition for TT-gauge. That (3.73) collapses completely is easy to
see. We first of all have h̄ = −h = 0, which removes the last few terms in the expression.
Most of the other terms vanish because of the gauge condition (which now holds also
for hab), although in some cases we need to integrate by parts to see this. Finally, we have

∂dh c
b ∂dhca −→ h c

b �hca = 0. (3.75)

The same arguments show that the contribution to (3.72) from the Ricci scalar also
vanishes.

At the end of the day, we are left with a neat result (usually referred to as the Isaacson
stress-energy tensor (Isaacson, 1968b))

TGW
ab = c4

32πG

〈
∂ah̄cd∂bh̄cd

〉
. (3.76)

Noting that the time components of the wave field can be set to 0, we arrive at the
commonly used form for the gravitational-wave stress-energy tensor:

TGW
ab = c4

32πG

〈
∂ahTT

ij ∂bhTTij
〉
. (3.77)

This formula localizes the gravitational-wave energy to within a wavelength, but it cannot
provide more specific information. For example, we cannot say whether the energy is
associated with a wave peak or a wave trough. This leads to obvious trouble if we want
to discuss the backreaction of the waves on a compact source. Consider, for example,
a neutron star which radiates at (say) 1 kHz. The wavelength would then be of order
50 km, and since the radius of the star is about 10 km we cannot meaningfully associate
the emission of the wave with a specific point in the star.

3 As we are integrating over a volume with a boundary we can use integration by parts for spatial derivatives
∂i and discard all surface terms (assuming periodic boundary conditions as would be relevant if we average
over one or several wave cycles). Moreover, we know that the time dependence of hab is in terms of retarded
time. If we, as an example, assume the waves are propagating in the z-direction, then we have hab(x0 − z) with
x0 = ct. This means that ∂0hab = −∂zhab. In other words, we can replace a time derivative by a spatial one,
integrate by parts, and then reinstate the time-derivative. The upshot of this argument is that time and space
derivatives are on equal footing in the average even though we are only working out a spatial integral.
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Suppose we want to work out the energy in terms of the two wave polarizations. One
can readily show that the above expression leads to

TGW
ab = 1

16π
〈∂ah+∂bh+ + ∂ah×∂bh×〉 . (3.78)

Let us assume that we are interested in a wave moving in the z-direction (in a local
coordinate system such that the z-direction points away from the source). The energy
flux then follows from (recall the comment on the derivatives from the previous footnote)

TGW
0z = −TGW

00 = − 1
16π

〈
ḣ2+ + ḣ2×

〉
. (3.79)

Assuming that the wave is monochromatic with frequency ω, the energy flux is

F = −TGW
0z = ω2

16π

〈
h2+ + h2×

〉
. (3.80)

Finally taking h+ ∼ h× ∼ hsinω(t − z) and using
〈
sin2 ω(t − z)

〉
= 1/2, we arrive at

Ė = h2ω2

16π
, (3.81)

and if we (finally) integrate over a sphere with radius d, we get

Ė = ω2d2

4
h2 → |ḣ|2 = 4G

c3d2 Ė. (3.82)

This is the flux formula we used to obtain our first gravitational-wave estimates in
Chapter 1. After a considerable amount of work, we have managed to derive what may
have seemed like a fairly simple result at the time. In fact, you could argue that the
result follows more or less directly from dimensional analysis. The detailed arguments
are needed to provide the correct numerical prefactor.

3.7 The radiation reaction force

Up to this point, we have discussed the energy loss in terms of the radiation that reaches
a distant observer. We never required information about the effect that the emission
of the waves might have on the source. We are, in fact, fortunate to be able to discuss
the problem in this somewhat indirect way, because it is far from easy to account for
the gravitational-wave back reaction. This is more or less obvious since (i) gravitational
waves typically have wavelengths larger than the size of the radiating system, and (ii) we
can only localize the energy carried by the waves to one wavelength or so.
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Despite these conceptual difficulties we need to be able to model the effect the waves
have on a source. This would certainly be the case if we wanted to describe a system that
evolves as the radiation is emitted, i.e. in situations where averaging over one wavelength
may not be enough. Typical astrophysical systems where we need this kind of modelling
would be a supernova core collapse leading to the formation of a black hole or a neutron
star, an eccentric orbit inspiral of a small body into a rapidly rotating black hole, and the
growth of unstable oscillations of a rotating neutron star.

We can make progress on this tricky problem by expressing the radiation reaction
acting on a body in terms of a local (potential force), Fi. To work this out, we first of all
need to connect our result for the gravitational-wave energy with the quadrupole formula.
Again taking the local direction of wave propagation to be the z-direction, the energy that
flows through an area element dA of a sphere with radius r is

dE
dtdA

= TGW
0z = −1

c
TGW

00 = − c3

32πG

〈
ḣTT

ij ḣTTij
〉
= − G

8πr2c5

〈...
I–TT

ij
...
I–TTij

〉
. (3.83)

The energy radiated into a solid angle d� is then

dE
dtd�

= − G
8πc5

〈...
I–TT

ij
...
I–TTij

〉
. (3.84)

In order to integrate this over the sphere we need to account for the fact that

I–TT
ij =

(
⊥ik⊥jl −1

2
⊥ij⊥kl

)
I–kl , (3.85)

where we recall that ⊥ij= δij − ninj with ni a unit vector aligned with the wave direction.
It is also worth noting that, since I–ij is traceless, we have ⊥ij I–ij = −ninjI–ij . We now have

dE
dtdA

= − G
4πc5

〈
1
2

...
I– ij

...
I– ij − ninjI–ik

...
I– j

k + 1
4

ninjnknlI–ij ...I–kl
〉
. (3.86)

In order to integrate over the angles we need

∫
d� = 4π , (3.87)

∫
ninjd� = 4π

3
δij , (3.88)

and
∫

ninjnknld� = 4π

15

(
δijδkl + δikδjl + δilδjk

)
. (3.89)



OUP CORRECTED PROOF – FINAL, 24/10/2019, SPi

The radiation reaction force 69

Putting this all together we arrive at the rate at which energy is lost by the system

F = −dEGW

dt
= G

5c5

〈...
I– ij

...
I– ij

〉
. (3.90)

We want to turn this result into a force Fi such that

∫
Fividt = G

5c5

∫ ...
I– ij

...
I– ijdt, (3.91)

where vi represents the velocity of (say) a local fluid element or an individual particle.
Integrating by parts (twice) and neglecting boundary terms, this leads to

∫
Fividt = G

5c5

∫
İ–ijI–(5)

ij dt, (3.92)

where the (5) indicates five time derivatives. If we consider a small localized body with
mass m, then

İ–ij = m
d
dt

(
xixj − 1

3
r2δij

)
= m(vixj + xivj) (3.93)

(assuming that the distance r2 is constant). Making use of this (and the symmetry of I–ij)
we get

∫
Fividt = 2G

5c5

∫
mvixjI–(5)

ij dt, (3.94)

from which we read off the desired result

Fi = 2G
5c5 mxjI–(5)

ij . (3.95)

Taking one final step, we can express the result in terms of a radiation-reaction potential
(Burke and Thorne, 1970)

φR = G
5c5 I–

(5)
jk xjxk, (3.96)

such that

Fi = m∂iφ
R. (3.97)

This is the expression we need.
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It is important to keep in mind that, while it is consistent with the rate of energy loss
we predict from the quadrupole formula, the force we have identified only (really) works
in an averaged sense.

3.8 The radiated angular momentum

Given a workable expression for the force gravitational waves exert on a source (albeit
only in an averaged sense), it is a straightforward exercise to work out the rate at which
angular momentum is radiated. We only have to recall that the torque exerted by a force
is given by

τ i = εijkxjFk. (3.98)

In our case, we have the instantaneous torque

τ i = 2G
5c5 mεijkxjxlI–(5)

kl . (3.99)

However, in the TT-gauge we have (again, for a small body like a point particle or an
individual fluid element)

mxjxk = I–jk, (3.100)

so, in fact, we have

τ i = 2G
5c5 εijkI–l

jI–
(5)
kl . (3.101)

Integrating this expression by parts twice (ignoring boundary terms, as before) we
arrive at

τ i = 2G
5c5 εijkÏ–l

j
...
I–kl . (3.102)

From this we learn that the rate at which gravitational waves carry angular momentum
away from a source is given by

Gi = −
〈
τ i

〉
= −2G

5c5

〈
εijkÏ–l

j
...
I–kl

〉
. (3.103)

We will make use of this result later.
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3.9 A stab at perturbation theory

So far we have assumed that the background gravitational field is weak enough that it can
be well approximated by flat space. This is, obviously, an enormous restriction on the
physics. Fortunately, it is easy to do better. Moreover, we can show that all the concepts
we have introduced extend in a natural way to a more general curved spacetime setting.

As a first step towards generalizing the description, we consider gravitational waves
that propagate through the Universe, and assume that the wavelength of the waves is such
that λ– � R, with R the radius of background curvature of spacetime. To isolate the waves,
we need to make a distinction between this background curvature and that associated
with the gravitational waves. We can do this by averaging over several gravitational
wavelengths. This provides us with a measure of the background curvature

gB
ab = 〈gab〉 , (3.104)

where gB
ab is a solution to the likewise averaged Einstein equations.

Now write the full metric as

gab = gB
ab + hab, (3.105)

where hab represents a short wavelength ripple on the slowly varying (now curved)
background (the separation is similar to that of the small dimples on the curved surface
of an orange, say). With this decomposition, and adding the assumption4 that the waves
are weak |hab| � 1, we can derive the linearized Einstein equations

h |c
ab|c + gB

abhcd
|cd − 2h |c

c(a |b)︸ ︷︷ ︸
∼1/ λ–2

+2RB
cadbhcd − 2RB

c(ah c
b)︸ ︷︷ ︸

∼1/R2

= −16πTab, (3.106)

where | denotes the covariant derivative (replacing the semi-colon) with respect to the
defined background metric gB

ab (defined in such a way that gB
ab|c = 0). Also recall that

the parentheses indicate the symmetric part of a tensor; see Chapter 2. In this case, this
means that

RB
c(ah c

b) = 1
2

[
RB

cah c
b + RB

cbh c
a

]
. (3.107)

Finally, the stress-energy tensor contribution on the right-hand side of (3.106) should be
taken to represent the wave-generating motion of any matter source. That is, it contains
only the part of the complete Tab that is due to asymmetric matter motion.

4 This requirement is not as trivial as it may seem. The magnitude of a tensor component depends on the
chosen coordinates. We take |hab| � 1 to mean that there exists a coordinate system in which the assumption
holds in a suitably large spacetime region.
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Since we have assumed that λ– � R the above relation immediately simplifies to

h |c
ab|c + gB

abhcd
|cd − 2h |c

c(a |b) = −16πTab. (3.108)

We can simplify this expression further by introducing the trace-reversed metric
perturbation

h̄ab = hab − 1
2

gB
abhc

c, (3.109)

and working in Lorenz gauge, which is now defined by

h̄ |b
ab = 0. (3.110)

Thus, we arrive at the simple (and familiar) result

�h̄ab = −16πTab. (3.111)

This shows that one can, quite generally, think of gravitational waves as a field living in a
given curved background spacetime. The one key difference from the wave equation we
derived earlier is that the wave operator is no longer that of flat space. Instead, we have

� = gBab∇a∇b, (3.112)

where ∇a is the covariant derivative associated with gB
ab.

The previous results for weak fields follow immediately from the above equations, but
the general framework is clearly more powerful. Of course, there is an obvious question:
What is the appropriate choice of background metric gB

ab? The answer depends on the
physics under consideration. In the first instance, it makes sense to explore how the use
of symmetries allows us to build suitable solutions to Einstein’s field equations. We are
led to consider black holes, relativistic stars, and (on a much larger scale) the evolution
of the entire cosmos.
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From black holes to stars
and the Universe at large

The scope of gravitational-wave astronomy should be apparent from the discussion
of the key aspects of the theory. Moreover, it is clear what we have to do if we want
to model specific gravitational-wave sources. We have seen that the waves represent
small scale variations of a smooth background spacetime and we have connected the
origin of the waves to asymmetric motion of a matter source. However, these results are
extremely general. In order to make sure we do not take on more than we can handle,
we need to focus on more specific situations. This leads us to two issues. First of all,
we can make the notion of a given background spacetime more precise by considering
exact solutions to the Einstein field equations. Secondly, we can take a closer look at
the relation between the stress-energy tensor and the motion of matter. The first issue
involves introducing symmetries to simplify the mathematics to the point where we
can solve the equations. The second issue is a bit messier as it involves introducing
a matter description, which by necessity includes some understanding of the relevant
‘microphysics’ (particle interactions, thermodynamics, and so on). Nevertheless, we can
make progress on modelling problems on a vast range of scales, from single astrophysical
objects, like black holes and stars, to the entire cosmos.

4.1 The Schwarzschild solution

Given the complexity of the equations of general relativity, Einstein did not think it
would be possible to find exact solutions. However, much to his surprise, the first such
solution was discovered by Karl Schwarzschild only two months after the publication of
the theory (see Schwarzschild (1999) for a translated version). Today we have a large
number of analytical solutions, and there are systematic ways of using computer algebra
to generate new ones (Stephani et al., 2009). Unfortunately, very few of these solutions
are of astrophysical interest. In fact, Schwarzschild’s original solution remains one of the
most interesting as it describes the exterior of both non-rotating black holes and stars.

Any attempt to find an exact solution to the relativistic field equations relies on
simplifications, typically associated with assumed symmetries. For example, in order to

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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be in equilibrium an object must be either static or stationary. Intuitively, we know what
these words mean. The difference between the two cases should become clear under time
inversion. In the static case—when there is no motion—the solution looks the same, but
a stationary configuration looks different if we ‘run the film backwards’ (a rotating star
is seen to spin the other way).

In order to make these ideas precise, we define a stationary spacetime to be one for
which there exists a set of coordinates xa such that

∂gab

∂x0
∗=0, (4.1)

where x0 is a time-like coordinate, and the asterisk indicates that the statement is true
only in this particular coordinate system. A static spacetime requires the additional
assumption that the line element

ds2 = gabdxadxb (4.2)

is invariant under the change x0 → −x0 (time reversal). This indicates that the metric
must be such that

g0j
∗=0, j = 1 − 3. (4.3)

If we, in addition, require the solution to be spherically symmetric, then there should exist
coordinates {t, r,θ ,ϕ} such that the t = constant, r = constant surfaces have the geometry
of a sphere. Without loss of generality, one can show that such a metric can be written

ds2 = −eνdt2 + eλdr2 + r2(dθ2 + sin2 θdϕ2). (4.4)

Let us see if we can find a solution to the vacuum Einstein equations for a metric of
this form. That is, we are trying to solve (2.117) in the absence of matter. We can read
off the non-zero metric components from the line element and use the results to work
out the Einstein tensor. After some algebra we arrive at three independent equations,

G00 = eν−λ

r2

(
rλ′ + eλ − 1

) = 0, (4.5)

G01 = λ̇

r
= 0, (4.6)

G11 = 1
r2

(
rν′ − eλ + 1

) = 0, (4.7)

where a dot represents a time-derivative and a prime is a derivative with respect to r. The
second of these equations shows that λ must be a function only of r, which means that
we can integrate the first equation to get
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eλ =
(

1 − 2GM
c2r

)−1

, (4.8)

where we have (suggestively) introduced the integration constant −2GM/c2. Combining
the first and the third equations, we see that

λ′ + ν′ = 0 −→ ν(t, r) = −λ(r)+ h(t). (4.9)

Finally, introducing a new time coordinate by making the change eh(t)/2dt → dt we arrive
at the line element

ds2 = −
(

1 − 2GM
c2r

)
dt2 +

(
1 − 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2). (4.10)

This is the Schwarzschild solution. It represents a non-rotating black hole with mass
M. At first sight, the solution appears to be singular at the event horizon, r = 2GM/c2

(the so-called Schwarzschild radius). However, one can show that this is a coordinate
artefact (Kruskal, 1960). It is possible to find coordinates which are perfectly regular
at the horizon. One particular such alternative—isotropic coordinates—follows from the
replacement (in geometric units)

r = r′
(

1 + M
2r′

)2

. (4.11)

This leads to

ds2 = −
(

1 − M/2r′

1 + M/2r′

)2

dt2 +
(

1 + M
2r′

)4 [
dr′2 + r′2 (

dθ2 + sin2 θdϕ2
)]

, (4.12)

which is only singular at the origin (this is a real singularity).
The Schwarzschild solution (4.10) is also relevant in the exterior of a non-spinning

star. However, in order to describe the star’s interior we need to account for the presence
of matter on the right-hand side of the Einstein equations. We need to explore relativistic
fluid dynamics.

4.2 Relativistic fluids

In order to model stars we need to understand how fluids move in a curved spacetime.
We need to describe how the matter affects the geometry and, in turn, how spacetime
feeds back on the motion. To illustrate this problem, let us assume that the matter is
represented by the perfect fluid stress–energy tensor

Tab = (p + ε)uaub + pgab, (4.13)
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where ε is the energy density, p is the isotropic pressure, and ua is the four-velocity
associated with the (averaged) flow of the fluid elements. The four-velocity has a double
role as it is also taken to be the observer that measures the fluid properties. In order to
describe the motion of the fluid we need four equations, representing the conservation
of energy and momentum. These follow from

∇aTab = 0, (4.14)

which leads to

(p + ε)ua∇aub + ub∇a
[
(p + ε)ua] + gab∇ap = 0. (4.15)

It is useful to decompose this expression into a component aligned with the flow and an
orthogonal part. The component along the four-velocity (contract the equation with ub)
becomes

ua∇aε + (p + ε)∇aua = 0. (4.16)

In order to interpret this result we need a little bit of thermodynamics. Assuming that we
are dealing with a fluid composed of a single-particle species, we have ε = ε(n), where n
is the particle number density. The associated chemical potential (essentially the energy
cost associated with adding a single particle to the system; see Andersson and Comer
(2007))

μ = dε

dn
(4.17)

then satisfies the thermodynamics relation

p + ε = nμ. (4.18)

Making use of these relations, we find that (4.16) leads to

∇a
(
nua) = 0. (4.19)

This is simply the statement that the particle flux is conserved. The model does not
account for particle creation/destruction.

Next we use the projection ⊥ab= gab + uaub to obtain the component orthogonal to
the four-velocity. This leads to

(p + ε) u̇c+ ⊥a
c ∇ap = 0, (4.20)
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where the four-acceleration is given by

u̇a = dua

dτ
= ub∇bua. (4.21)

These are the relativistic Euler equations. They simply show that the fluid accelerates
(deviates from geodesic motion) as a result of pressure gradients. The intuition is exactly
the same as in Newtonian physics.

4.3 How to build a star

Let us now show how we build a non-rotating star. Since the system is static, the left-
hand side of the Einstein equations will remain as in the Schwarzschild problem. We only
need to provide the right-hand side. That is, we need the four-velocity. In the static case,
when there is no fluid motion, the only non-trivial component is u0 and we have

−1 = uaua = gabuaub = g00

(
u0

)2 = −eν
(
u0

)2 −→ u0 = eν/2. (4.22)

For a perfect fluid, we then have, using the metric inferred from (4.4),

T00 = εeν , (4.23)

T11 = peλ. (4.24)

Combining these results with the Einstein tensor components from the previous section
we have, first of all,

G00 = 8πT00 −→ 1
r2

d
dr

[
r
(
1 − e−λ

)] = 8πε. (4.25)

Inspired by the Schwarzschild result, we define

m(r) = r
2

(
1 − eλ

)
, (4.26)

which means that

m′ = 4πεr2 −→ m = 4π

∫
εr2dr. (4.27)

In effect, m(r) represents the mass-energy contained inside radius r. Next we have

G11 = 8πT11 −→ ν′ = 2eλ

r2

(
m + 4πpr3

)
. (4.28)
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These equations are known as the Tolman–Oppenheimer–Volkoff equations (Tolman,
1939; Oppenheimer and Volkoff, 1939) and, once they are supplemented by an equation
of state p(ε)—or, equivalently, ε(n)—they allow us to build models of relativistic stars. It
is also useful to note that the radial component of the fluid momentum equation (4.20)
leads to

p′ = −1
2

(p + ε)ν′. (4.29)

This is the relativistic version of a familiar result from Newtonian gravity—the equation
for hydrostatic equilibrium. As this is an important connection, it is worth considering it
in more detail.

4.4 The Newtonian limit

It is often useful to build intuition about possible gravitational-wave sources in the sim-
plified context of Newtonian gravity, making use of the quadrupole formula. However,
while doing this one must keep an eye on the simplifications assumed in the analysis.

Let us consider the weak-field limit of the relativistic fluid equations. As in Chapter 3,
we can consider the gravitational field as a small deviation away from flat space. In fact,
even though we are not interested in the dynamical aspects of the problem, it is useful to
take the derived wave equation (3.38) as our starting point. Noting that

|T00| ≈ ε � |T0i| � |Tij | ≈ p (4.30)

in the weak-field regime, and that ε ≈ ρ = mn, we focus on

�h̄00 = −16πT00 ≈ −16πρ. (4.31)

We also have

�h̄ = −�h = −16πT ≈ 16πρ, (4.32)

so it follows that

�h00 ≈ −8πρ. (4.33)

For low velocities, v 	 c, this simplifies further. If ∂t ∼ v∂j then

∂t 	 ∂j −→ � ≈ ∇2 (4.34)
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(where ∇2 is the familiar three-dimensional Laplacian), and we arrive at

∇2h00 ≈ −8πGρ (4.35)

(where we have reinstated the gravitational constant, for convenience). Comparing this
to the Poisson equation for the gravitational potential � in Newton’s theory

∇2� = 4πGρ, (4.36)

we identify

h00 ≈ −2�, (4.37)

and find that (to leading order) we have the line element

ds2 = −c2dτ2 = −c2
(

1 + 2�

c2

)
dt2 + ηijdxidxj , (4.38)

where xi (i = 1 − 3) are Cartesian coordinates and ηij is the flat three-dimensional metric.
In essence, the Newtonian limit consists of writing the general relativistic field

equations to leading order in an expansion in powers of the speed of light c. The
Newtonian equations are obtained in the limit where c → ∞.

Let us now see what this implies for the equations of fluid dynamics. With τ the proper
time measured along a fluid element’s worldline, the curve it traces out can be written

xa(τ ) = {ct(τ ),xi(τ )}. (4.39)

In order to work out the four-velocity,

ua = dxa

dτ
, (4.40)

we note that (4.38) leads to

dτ2 =
(

1 + 2�

c2 − gijvivj

c2

)
dt2, (4.41)

with vi = dxi/dt, the usual Newtonian three-velocity of the fluid. Since the velocity is
assumed to be small, in the sense that

∣∣vi
∣∣

c
	 1, (4.42)
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this leads to

dt
dτ

≈ 1 − �

c2 + v2

2c2 , (4.43)

where v2 = ηijvivj , and

u0 = dx0

dτ
= c

dt
dτ

≈ c
(

1 − �

c2 + v2

2c2

)
. (4.44)

It is also easy to see that

ui = dxi

dτ
= vi dt

dτ
≈ vi. (4.45)

In order to obtain the covariant components we use the metric (which is obviously
diagonal). Thus, we find that

u0 = g00u0 = −c
(

1 + 2�

c2

)(
1 − �

c2 + v2

2c2

)
≈ −c

(
1 + �

c2 + v2

2c2

)
, (4.46)

and

ui = vi. (4.47)

Note that these equations lead to

uaua = −c2
(

1 − �

c2 + v2

2c2

)(
1 + �

c2 + v2

2c2

)
+ v2 ≈ −c2. (4.48)

We can now work out the Newtonian limit for the conserved particle flux

∇a(nua) = 0 −→ 1
c
∂t

(
nu0

)
+ ∇i

(
nvi

)
= 0

−→ ∂tn + ∇i

(
nvi

)
= O

(
c−1

)
. (4.49)

To leading order we retain the standard result

∂tn + ∇i

(
nvi

)
= 0. (4.50)
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If we introduce the mass density ρ = mn, with m the mass per particle, we recover the
continuity equation, usually taken to imply mass conservation,

∂tρ + ∇i

(
ρvi

)
= 0, (4.51)

If we reintroduce the basis vectors, we have

∂tρ + ∇ · (ρv) = 0. (4.52)

In order to work out the corresponding limit of the Euler equations, we need the
curvature contributions to the covariant derivative. However, from the definition (2.67)
and the weak-field metric, we see that only g00 gives a nonvanishing contribution.
Moreover, it is clear that

a
bc = O(1/c2), (4.53)

which is why we did not need to worry about this in the case of the flux conservation.
The curvature contributes at higher orders.

Explicitly, we now have

ua∇aub = ua∂aub + b
cauauc = 1

c
u0∂tub + ui∂iub + b

cauauc. (4.54)

We only need the spatial components, so we set b = j to get

ua∇auj = 1
c

u0∂tuj + ui∂iuj + j
cauauc

= ∂tvj + vi∂ivj + c2
j
00 + higher order terms

= ∂tvj + vi∂ivj + 1
2

ηjk∂k

(
2�

c2

)

= ∂tvj + vi∂ivj + ηjk∂k�. (4.55)

Finally, we need the pressure contribution. For this we note that the projection
becomes

⊥ab= gab + 1
c2 uaub, (4.56)

in order to be dimensionally consistent. We also need ε � p. This means that we have

⊥ba ∇ap −→ ηjk∂kp, (4.57)
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and we (finally) arrive at the Euler equations

∂tv j + vi∂iv j = −η jk
(

1
ρ

∂kp + ∂k�

)
, (4.58)

or

(∂t + v · ∇)v + 1
ρ

∇p + ∇� = 0. (4.59)

By setting vi = 0 we arrive at the equation for hydrostatic equilibrium

∂jp = −ρ∂j�, (4.60)

a result that we could have obtained by taking the weak-field limit of (4.29).

4.5 Modelling the Universe

Finally, let us turn to what might be the mightiest task problem of all: to model the entire
Universe. Quite naturally, we have to simplify things in a dramatic fashion before we can
even begin to contemplate this problem.

We are obviously not going to try to track every single speck of dust, star, or galaxy.
Instead, we focus on the gross properties and the large-scale evolution. Imagine zooming
out until you reach a scale where all granularity has been smeared out. At this point the
problem is closely related to that of fluid dynamics. It makes sense to—at least in the
first instance—work at this averaged level and assume that the Universe is (spatially)
homogeneous and isotropic. There are no preferred directions and things look pretty
much the same everywhere. One can then introduce a ‘fibration’ of spacetime1 associated
with a four-velocity ua and a corresponding cosmological time t.

The assumed spatial symmetry implies the Robertson–Walker line element2

ds2 = −dt2 + [R(t)]2
[

dr2

1 − kr2 + r2
(
dθ2 + sin2 θdϕ2

)]
. (4.61)

In this expression, we recognize the geometry of the two-sphere—which is natural
since the assumed isotropy implies spherical symmetry with respect to every point in
spacetime. The function R(t), known as the scale factor, represents the ‘size’ of the
Universe. Finally, the curvature constant k is −1,0, or 1, depending on whether the

1 It is useful to compare this approach to the 3+1 foliation used in numerical relativity; see Chapter 20.
2 More detailed introductions to relativistic cosmology are provided by Carroll (2004) and Weinberg (2008).

A less mathematical introduction is provided by Liddle (2003), while a detailed analysis of many relativistic
cosmology scenarios is provided by Ellis and van Elst (1999).
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Universe is open, flat or closed. As we will see later (Chapter 22), current observations
favour a flat Universe. It is easy to see that, if we set k = 0 in (4.61) the spatial part is a
flat (3D) geometry scaled by an overall (conformal) factor R2(t).

Assuming that the matter in the Universe can be described as a perfect fluid, we can
work out the Einstein equations for the geometry in (4.61) and the stress-energy tensor
from (2.94). This leads to the Friedmann equations

(
Ṙ
R

)2

= 1
3

(8πε + �) − k
R2 , (4.62)

where the dot represents a derivative with respect to t, and

R̈
R

= −4π

3
(ε + 3p) + �

3
. (4.63)

In these equations we have accounted for a cosmological constant, which arises if we add
a term �gab to the left-hand side of the Einstein equations. The original motivation for
introducing this term was that the second equation could only lead to a static Universe
if ε + 3p = 0. That is, if the pressure vanishes (as in the favoured dust model), then
the energy density must vanish as well. The introduction of the cosmological constant
resolves this conundrum. However, following the discovery that distant galaxies move
away from us—the Universe is expanding (Hubble, 1929)—the use of � fell out of
favour. Einstein is said to have referred to it as a blunder. However, it has since been
reintroduced as it appears to be required to explain observations. The modern argument
for its presence is that it represents the vacuum energy, although the calculation of this
quantity from first principles remains a vexing issue.

We can combine the two Friedmann equations to get

ε̇ + 3(p + ε)
Ṙ
R

= 0. (4.64)

If we want to progress, we need to provide an equation of state that relates p and ε. In
cosmology, it is usually assumed that this relation is linear. That is, we have

p = wε, (4.65)

where w is constant. This leads to

ε ∼ R−3(1+w), (4.66)

and we can identify three distinct cases. First we may consider a universe consisting of
dust, i.e. take w = 0. Then ε ∼ R−3, which simply states that the density decreases as the
volume of the universe increases. The next option is to assume a universe dominated by
radiation, in which case w = 1/3. This leads to ε ∼ R−4; i.e. the radiation energy decays
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faster as the universe expands. Finally, if the cosmological constant (read: the vacuum
energy) dominates, then w = −1 and ε ∼ constant. In reality, all three components
contribute, but the simple scalings suggest that an expanding universe will go through
different eras where each term dominates in turn. The hot early Universe was dominated
by radiation. At some point there was a phase-transition to our current matter-dominated
era. Finally, if the Universe continues to expand there will be a late epoch when matter
becomes so dilute that the cosmological constant takes over.

In order to illustrate the range of possible behaviour, it is worth solving the Friedmann
equations in two simplified scenarios. Let us first assume that the Universe is flat (k = 0).
Then we get

Ṙ2 = 8πε0

3
R−3(1+w) −→ R(t) = R0

(
t
t0

)2/(3+3w)

, (4.67)

where ε0 is the current density, R0 is the current size of the Universe, and

t0 = 2
3(1 + w)

1
H0

(4.68)

is its ‘age’. The quantity H0 is the current value of the Hubble expansion parameter

H = Ṙ
R

, (4.69)

one of the main ‘observables’ in cosmology (see Chapter 22). If matter dominates, we
have w = 0 , which leads to the Einstein–deSitter model in which

R(t) = R0

(
t
t0

)2/3

and t0 = 2
3H0

. (4.70)

Until quite recently, this simple Universe—that expands uniformly forever and ends in
a ‘big chill’—was the favoured model.

As an alternative, consider the case where the cosmological constant term dominates.
That is, let w = −1. This leads to

Ṙ2 = 8πε0

3
R2 or Ṙ = H0R −→ R(t) = R0eH(t−t0). (4.71)

This shows that, in a flat Universe, the cosmological constant may drive an exponential
expansion. Our Universe is thought to have undergone such an era of rapid expansion
in its early stages. This is known as inflation.

To conclude this brief initial consideration of cosmology, and prepare the ground for
a discussion of gravitational waves in a cosmological setting (in Chapter 22), it is useful
to introduce the critical density, ρc, as
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ρc = 3H2

8π
, (4.72)

along with the density parameter, �, such that

� = ε

ρc
. (4.73)

These definitions allow us to rewrite the first Friedmann equation (4.62) as (ignoring
the cosmological constant for now)

�− 1 = k
H2R2 . (4.74)

This simple relation shows that the sign of k depends on � (hence the notion of a critical
density). If ε > ρc then k > 0 and the Universe is closed. There is enough energy that the
cosmic expansion will reverse at some point. Meanwhile, a flat Universe (k = 0) must be
fine-tuned to have � = 1 and, finally, if there is not enough energy, so that ε < ρc then
the expansion can proceed indefinitely. It is straightforward to extend this argument
to account for additional energy contributions. In particular, the notion of a density
ρgw associated with gravitational waves will prove useful when we consider stochastic
cosmological backgrounds .

4.6 Was Einstein right?

After more than a century, general relativity remains a cornerstone of modern physics.
The theory has been battered by a variety tests but always passes intact (Will, 2005).
This is (obviously!) remarkable. Yet, we know that Einstein’s theory must be wrong. We
just do not know exactly how, or at what level, the theory breaks.

There are good reasons to believe that general relativity requires modifications in
strong gravitational fields. We also know that it does not mesh with quantum theory—it is
an entirely classical theory, after all—so it must also break down at small scales (high ener-
gies). As an example, high-energy corrections may help us avoid the formation of the sin-
gularities that seem inevitable when we consider black-hole interiors. Ultimately, we need
a quantum theory of gravity to provide the answer. At the moment we do not have such
a theory, but even incomplete constructions (at the moment, string theory (the mono-
graph by Green et al. (1987) is largely outdated—see Polchinski (2005) for a modern
alternative—but it still provides a motivation for the theory) and loop quantum gravity
(Ashtekar and Pullin, 2017) make predictions and it makes sense to ask to what extent we
can test them. At the very least, we should learn how to formulate meaningful questions.

Our understanding of the large scales of cosmology also raises a number of issues.
What is the origin of the mysterious dark energy? Why is the value of the cosmological
constant so remarkably small, compared to our expectations? Again, the answers may
require modification(s) of Einstein’s theory . . .
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Any effort to modify general relativity poses interesting challenges. On the one hand,
we do not seem to have much freedom to move. Assuming Lorentz invariance and a
massless spin-2 particle (the graviton, which represents gravitational waves from the
particle physics perspective; see Maggiore (2007)), Einstein’s theory is unique. If we
want to add physics we need to add degrees of freedom, but the changes must be
compatible with the slew of tests we have already carried out. We are up against laboratory
experiments, a range of solar system tests, and precise observations of binary pulsars
(see Chapter 10). On the other hand, we have an embarrassment of riches. If we let
imagination roam free, then we can devise a plethora of new theories, deviating from
Einstein’s theory in their own special ways. This makes the problem difficult, because
we need to avoid confusion and contradictions. We need some kind of ‘taxonomy’ of
alternative gravity theories, a dictionary that allows us to keep careful track of what we
are testing (Berti et al., 2015).

To start with, we can try to list the aspects of the theory we are challenging. If we do
this, we typically end up with four main categories:

– Adding fields: This is, perhaps, the most famous (and best tested) approach to
tweaking general relativity. One may, for example, couple gravity to a dynamical
scalar field (Brans and Dicke, 1961). Some versions of this category of theories
have multiple extra (possibly vector or tensor) fields. The fields may be passive or
contribute to the dynamics, for example, leading to additional gravitational-wave
polarizations.

– Introducing extra dimensions: The presence of dimensions beyond the familiar
three space dimensions is a requirement of string theory. These dimensions may
be ‘compactified’ but this does not mean they do not affect experiments. There
are a number of different alternatives, including models with a single extra space
dimension—brane cosmology, where our everyday reality is restricted to 3+1
dimensions while gravity acts in one additional dimension (Randall and Sundrum,
1999).

– Violating the equivalence principle: The introduction of the Einstein tensor Gab
(Chapter 2) ensured that the equations of general relativity are well posed. At
closer inspection, this was dictated by the requirement that the stress-energy tensor
must be divergence free, which follows from the (weak) equivalence principle. One
can imagine theories that go beyond this (minimal) coupling between matter and
geometry. However, the wriggle room in this direction is limited because the (weak)
equivalence principle has been tested to very high precision.

– Breaking Lorentz invariance: This is a key ingredient already in special relativity
and it is well tested by particle physics (as it is a key part of the standard model),
but one may still imagine breaking this symmetry at high energies. This opens the
door to alternative theories. The invariance under diffeomorphisms dictate that the
graviton is massless—gravitational waves propagate at the speed of light. If this
symmetry is broken, then gravity signals should move slower, and we can try to use
experiments to test this.
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Turning to the issue of possible additional gravitational-wave polarizations, we recall
Figure 3.2 where there was no stretch or squeeze in the z-direction. This is a prediction of
general relativity. It follows from the equivalence principle, which demands that gravity
is a metric theory such that (i) spacetime is endowed with a symmetric metric gab, (ii)
freely falling bodies move along geodesics of this metric, and (iii) according to an inertial
observer, all nongravitational physics remain as in special relativity. However, as we have
just mentioned, we can formulate more general metric theories of gravity. A famous
example is the theory proposed by Brans and Dicke (1961), which couples the metric to
a scalar field. Such scalar–tensor theories would be natural in the context of string theory
or higher-dimensional models. In the most general case, all six components of Rj0k0 may
be expressed as wave polarizations (see Will (1999) for a light-touch discussion). Three
of these would be transverse to the direction of propagation. Two are the quadrupole
deformations we have already discussed. The third represents an axisymmetric ‘breath-
ing’ mode. The remaining three polarizations are longitudinal. One induces stretching in
the direction of propagation, and the remaining two are quadrupolar modes in each of the
two orthogonal planes containing the direction of propagation. Out of these possibilities,
scalar–tensor theory allows the standard transverse quadrupole modes and the scalar
breathing mode. Given a suitable array of detectors one would hope to be able to infer
the actual polarizations present in a detected wave, and hence put constraints on the
theory of gravity. If one were to observe additional polarizations then general relativity
would fall. Conversely, absence of the breathing mode would limit the parameters of
scalar–tensor gravity.

In terms of observations, it is difficult to constrain the polarization of any incoming
gravitational waves with the two LIGO instruments. As they have similar orientations—
a design decision aimed at maximizing the chance of detections in the first place—little
information about polarizations can be obtained from these two detectors alone. The
situation changes with the addition of Virgo. With data from the three instruments, one
can project the wave amplitude onto the detectors to constrain the polarization. The first
such test was carried out for the black-hole merger GW170814 (Abbott et al., 2017h),
basically confirming that the signal was consistent with Einstein’s theory. A similar test
on signals from rotating deformed neutron stars also returned a null result (Abbott et al.,
2018b).

When it comes to the possible existence of extra dimensions, one may search for
evidence that gravitational waves and photons experience different number of spacetime
dimensions. If this were the case, the gravitational waves may ‘leak’ into the extra
dimensions, effectively reducing their amplitude compared to expectations. This will, in
turn, introduce a systematic error in the inferred distance. Assuming that electromagnetic
signals are not similarly affected, one can use counterpart observations to constrain
the extra-dimensional leakage. This idea has been tested for the neutron star merger
GW170817 (Pardo et al., 2018). The results indicate that we live in the expected 3+1
spacetime dimensions.

The first set of detections has also allowed us to test the notion that the graviton has
mass. The idea is quite simple. If gravity is associated with a massive field, then long
wavelength gravitational waves will travel more slowly than short wavelength ones. This



OUP CORRECTED PROOF – FINAL, 24/10/2019, SPi

88 From black holes to stars and the Universe at large

introduces a distortion of the binary inspiral signal (it is ‘squashed’ as high-frequency
waves try to catch up with the lower frequency ones emitted earlier), which can be
constrained using matched filtering (Will, 1998). The effect is typically quantified in
terms of the Compton wavelength of the graviton

λg = h
mgc

. (4.75)

Combining data from the three events GW150914, GW151226, and GW170104 one
arrives at a constraint (Abbott et al., 2017g)

λg > 1.6 × 1013 km, (4.76)

which improves bounds set in the 1980s using solar-system data by about a factor
of 6. However, an update on the latter leads to a new bound about one order of
magnitude more stringent than the gravitational-wave one (Will, 2018). The situation
should improve with more detections, but progress may be slow. For ground-based
interferometers, the bound scales roughly as (Will, 2018)

λg ∼ S−1/4
0 f −1/3

0 M11/12, (4.77)

where S0 and f0 represent the noise ‘floor’ at the frequency of the sensitivity sweet spot
of the detector, respectively, and M is the ‘chirp mass’. It is worth noting that the result
is largely independent of the distance. Basically, the decrease in parameter estimation
accuracy cancels the cumulative effect of the massive graviton on the signal propagation.
The bound increases roughly linearly with the chirp mass, but binaries significantly more
massive than those seen so far will merge before entering the detectors’ sensitive band.

In addition to being ‘viable’—in the sense of passing all available observational tests—
any suggestion for an alternative theory should—in order to be practically useful—lead
to distinct predictions in regimes that have not yet been probed. As we have seen, the
gravitational-wave events observed so far constrain a variety of mechanisms associated
with the generation and propagation of gravitational waves (see Yunes et al. (2016) for
an in-depth discussion). In particular, we are beginning to probe strong-field gravity,
involving the dynamics of black holes and neutron stars. The gravitational-wave signature
associated with different scenarios involving such compact objects comes to the fore.
Simply speaking, we can try to establish to what extent the ‘black holes’ we observe are
the Kerr black holes (Chapter 17) predicted in Einstein’s theory, or if they are somehow
different. Similarly, we can probe the properties of neutron stars, but (as we will discuss
in Chapter 12) this problem is complicated by the fact that we do not fully understand
the involved nuclear physics. A key point is that we need to be able to determine what
a ‘black hole’ (say) would look like in our new theory, and we need to quantify how the
answer differs from what we find in general relativity. This is far from trivial, but there
has been some progress on understanding (in particular) higher dimensional black-hole
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solutions. Still, we need to explore the nonlinear merger regime in any relevant modified
gravity scenario, and this may be far from easy.

There are many tricky issues and we are not yet equipped to explore them in detail.
Once we have further developed the theory—to the point where we appreciate the
possibilities—we will return to some of the relevant points. Given our scope, we will
be particularly interested in using gravitational-wave observations to test to what extent
Einstein was right.
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Equipped with the quadrupole formula from Chapter 3 and some understanding of the
context, we are ready to turn our attention to the gravitational waves associated with
specific astrophysical systems. This will highlight an entirely different set of questions
that need to be resolved if we want our models to be useful. In particular, it will become
apparent that we need an accurate representation of the physics of the source. In order
to illustrate some of the relevant issues, we will first consider the gradual inspiral of a
compact binary system, driven by the loss of orbital energy as gravitational waves are
emitted. This is the archetypal gravitational-wave source—and it was the first to be
detected, as well!

Gravitational waves are emitted as stars or black holes orbit each other and as a
result the binary separation decreases. In Newtonian gravity the two-body problem is
conservative and—as we will see—easily solved. In general relativity, the emission of
gravitational waves, leading to a shrinking orbit, complicates the problem immensely and
it can no longer be solved in closed form. Given the lack of suitable analytical solutions,
considerable effort has gone into developing approximations and numerical approaches
to the problem. In the first instance, we will try to get an idea of the gravitational-wave
signal by making use of the quadrupole formula. We will turn to numerical simulations
later (in Chapter 19).

5.1 Basic celestial mechanics

As we plan to explore the binary problem in the full glory of general relativity, and it is
useful to appreciate similarities and differences, we will start by going back to basics. This
allows us to introduce the concepts we need to generalize. Thus, we consider two bodies
moving around each other due to their mutual gravitational interaction, as in Figure 5.1.
Let the masses of the two bodies be M1 and M2 and their locations (with respect to an
arbitrary origin) be given by the two vectors r1 and r2. That is, the separation between
the two masses is r = r1 − r2 and the relative distance is r = |r|. Because of Newton’s
third law, the forces acting on each body are equal and opposite:

F1 = −F2 = −G
M1M2

r2 r̂. (5.1)

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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Figure 5.1 Left: The two-body problem, where two bodies of mass M1 and M2 orbit around one
another due to their mutual gravitational interaction. Right: The effective one-body picture, where a
fiducial body of mass equal to the reduced mass μ orbits around a different origin (note that there is no
body at this location).

Each force (obviously) accelerates the corresponding mass according to Newton’s
second law.

In order to work out the orbital motion, it is useful to reformulate the situation as an
effective one-body problem. To see why this makes sense, note that

r̈ = r̈1 − r̈2 = F1

M1
− F2

M2
=

(
1

M1
+ 1

M2

)
F1 = 1

μ
F1, (5.2)

where the dots represent time derivatives and we have introduced the reduced mass

μ = M1M2

M1 + M2
. (5.3)

We see that μ can be interpreted as the mass of a body with position r moving under the
influence of a central force −F1r̂. Defining the total mass M = M1 + M2, we have

r̈ = −GM
r3 r. (5.4)

The two-body system has two constants of motion, the energy E and angular
momentum L of the orbit. Since the velocity of the reduced body is v = ṙ, the energy is
given by

E = 1
2

μv2 − G
μM

r
. (5.5)
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If we assume that the system is oriented as in Figure 5.1, i.e. that the body rotates around
the z-axis of a Cartesian coordinate system centred on the fiducial origin for the reduced
body, then it is natural to let the angle to the x-axis be ϕ. Working in polar coordinates in
the orbital plane, the angular momentum is then given by

L = μr2ϕ̇, (5.6)

and

v2 = ṙ2 + r2ϕ̇2 (5.7)

leads to

E = 1
2

μṙ2 + 1
2

L2

μr2 − GμM
r

= constant. (5.8)

Rewriting this using the mass and angular momentum per unit mass, Ẽ = E/μ and
L̃ = L/μ, respectively, we have

ṙ2 = 2Ẽ − L̃2

r2 + 2GM
r

= 2Ẽ − V (r), (5.9)

where V (r) is an effective potential that governs the binary motion. This is a powerful
concept, readily extended to bodies moving in a curved spacetime. In fact, we will
contrast the present Newtonian results with their relativistic counterparts in Chapter 10.

It is easy to use (5.9) to infer the key properties of the orbital motion. First of all,
we can take the time derivative of the relation (keeping in mind that Ẽ and L̃ are both
constant) to get

r̈ −
(

L̃2

r3 − GM
r2

)
= 0. (5.10)

From this we learn that circular orbits must be such that

r = L̃2

GM
= L2

GμM1M2
≡ p, (5.11)

which defines the so-called semilatus rectum p. Quite intuitively, it takes a certain angular
momentum L to keep the system in an orbit with radius r.

Assuming instead that the orbit is elliptic, we learn from (5.9) that the motion must be
such that Ẽ ≥ V/2. Each orbit then has two turning points, at which ṙ = 0. From (5.9)
we see that these are given by the roots to
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r2 + GM

Ẽ
r − L̃2

2Ẽ
= 0. (5.12)

Introducing

e =
[

1 + 2L̃2Ẽ
(GM)2

]1/2

, (5.13)

we have

r = −GM

2Ẽ
(1 ± e). (5.14)

Moreover, noting that (5.11) leads to

p
1 − e2 = −GM

2Ẽ
, (5.15)

we see that the two turning points are

r = p
1 − e2 (1 ± e). (5.16)

This result is useful as it allows us to parameterize the motion in terms of the semilatus
rectum and the eccentricity, e.

In describing an orbit it is also worth noting that the point of closest approach, the
periastron rp, and the furthest distance, the apastron ra, are such that

p = 2rarp

ra + rp
, (5.17)

and

e = ra − rp

ra + rp
. (5.18)

Finally, it is useful to introduce the orbital separation

a = 1
2

(
rp + ra

) = p
1 − e2 , (5.19)

such that

Ẽ = −GM(1 − e2)

2p
= −GM

2a
. (5.20)
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Let us now determine the motion of the system. This problem becomes straightfor-
ward if we first introduce a new variable

u = u(ϕ) = 1
r

−→ ṙ = −L̃
du
dϕ

. (5.21)

Using this in (5.9) (and taking a derivative with respect to ϕ) we get

d2u
dϕ2 + u = GM

L̃2
. (5.22)

Not surprisingly (since the orbit is periodic), we have arrived at the equation for a
harmonic oscillator. The solution can be written (after setting suitable initial data)

u = GM

L̃2
(1 − ecosϕ) −→ r = p

1 − ecosϕ
. (5.23)

As expected, the orbit is an ellipse. This suggests an easy way to work out the orbital
period. Noting that an angular increment dϕ corresponds to the motion sweeping out an
area segment dA = r2dϕ/2 we can integrate over a complete orbit to get

Ȧ = L̃
2

−→ A =
∫

dA = L̃
2

∫
dt = L̃

2
P = πab, (5.24)

where the semi-major axis is b = a(1 − e2)1/2. It follows that the orbital period,
P = 2π/�, with � is the angular frequency, is given by

P = 2π

(
a3

GM

)1/2

−→ �2 = GM
a3 . (5.25)

This is, of course, no surprise. We have simply derived Kepler’s law.
Having characterized the orbital motion, we want to use the quadrupole formula to

work out the rate of gravitational-wave emission. To do this, we need to know the motion
of each individual body rather than the reduced mass. Fortunately, this is easy to work
out. From Figure 5.1 we have

r = r1 − r2 = a1 − a2 = a, (5.26)

and making use of the centre of mass

R = M1r1 + M2r2

M
, (5.27)
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Figure 5.2 A schematic illustration of the orbital motion of a binary system.

we see that

a1 = r1 − R = μ

M1
a, (5.28)

and

a2 = r2 − R = − μ

M2
a. (5.29)

Each body moves around the centre of mass in the same way that the reduced body
moves about its (fiducial) centre. The individual distances are simply shortened by the
factor μ/MA (A = 1,2). Since the reduced mass moves along an ellipse, the individual
bodies in the binary also move along ellipses, as shown in Figure 5.2.

5.2 Circular orbits

Let us now focus on the simplest case, that of circular orbits. Then the two distances to
the centre of mass, a1 and a2, remain fixed. Provided the stars are far enough apart that
we can ignore the tidal interaction (see Chapter 21), we can treat the two bodies as point
masses, which means that the integrals required to work out the mass multipole moments
we need for the quadrupole formula are trivial. Working in a Cartesian coordinate system,
as shown in Figure 5.2, with the z-axis associated with the rotation, we have the reduced
quadrupole moment from (3.66)
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I–xx = (M1a2
1 + M2a2

2)

[
cos2 ϕ − 1

3

]
= μa2

2
cos2ϕ + constant, (5.30)

where ϕ = �t. We do not need to worry about the constant piece since we will take time
derivatives to arrive at the gravitational-wave field (see, for example, (3.67)). The other
time-varying contributions are

I–xx = −I–yy = μa2

2
cos2ϕ, (5.31)

I–xy = I–yx = μa2

2
sin2ϕ. (5.32)

Combining these results with (3.90), we see that the gravitational-wave luminosity is
(where the angle brackets indicate an average over at least one orbit)

F = G
5c5

(
μa2

2

)2

(2�)6
〈
2sin2 2ϕ + 2cos2 2ϕ

〉
= 32

5
G
c5 μ2a4�6. (5.33)

Using the orbital frequency from Kepler’s law (5.25) and introducing the so-called chirp
mass

M = μ3/5M2/5, (5.34)

we have

F = 32M�

5c5 (GM�)7/3. (5.35)

This result provides the rate at which gravitational waves carry energy away from
the system. Later, when we discuss higher order post-Newtonian corrections (see
Chapter 11), it is useful to understand how the luminosity scales with the characteristic
velocity of the system. Hence, we note that the orbital velocity is v = a�, in terms of
which (5.33) becomes

F = 32
5

c5

G
η2

(v
c

)10
, (5.36)

where we have used the symmetric mass ratio η = μ/M.
In order to predict how fast the orbit shrinks as a result of the gravitational-wave

emission, we also need the energy from (5.20). Again, making use of the chirp mass, we
have

E = −M
2

(GM�)2/3 . (5.37)
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Working out the back reaction on the binary orbit, we only need to keep in mind that
the gravitational waves carry energy away from the system. As long as the evolution is
slow and gradual, the change in the system’s energy is given by Ė = −F , so the evolution
takes place on a characteristic timescale

tD = E

Ė
= − E

F ∼ M−5/3�−8/3. (5.38)

Note that, for an equal mass system, this agrees with the back-of-the-envelope estimate
from Chapter 1

tD ∼ a4

M3 . (5.39)

The evolution of the relevant orbital parameters follows from

Ṗ
P

= − �̇

�
= 3

2
ȧ
a

= −3
2

Ė
E

= 3
2
F
E

. (5.40)

For example, the orbital period evolves according to

Ṗ
P

= − 96
5c5 (GM�)5/3 �. (5.41)

Notably, the rate of orbital decay only depends on the chirp mass and the orbital
frequency. The estimate (5.41) should be valid as long as the evolution is slow compared
to the orbital velocity

|ȧ| � �a. (5.42)

However, it is easy to see that this condition ought to be satisfied. We have

|ȧ| = 2
3

�̇

�
a = (�a)(�tD)−1, (5.43)

where

�tD = 5
64

η−1/5
(v

c

)−5 � 1. (5.44)

Determining the gravitational-wave amplitude is a little bit more complicated since
we need to introduce a specific observer; see Eq. (3.67). In essence, any given observer
will only see waves due to transverse motion according to his/her location relative to the
source. As an example, let the observer sit a distance d away from the source on the y-axis
and work out hTT

xx . Then we use n = ey and the TT-projection from (3.52) to get
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I–TT
xx =⊥l

x⊥m
x I–lm − 1

2
⊥xx

(
⊥lm I–lm

)
= 1

2
I–xx. (5.45)

This leads to

hTT
xx = −2μa2�2

d
cos2�(t − r) = −2M5/3�2/3

d
cos2�(t − r). (5.46)

The gravitational waves emerge at twice the orbital frequency, which makes sense if we
consider the symmetry of the situation. Moreover, we see that the chirp mass, M, plays
a central role. In fact, this is the only combination of the two masses that can be inferred
from an observed gravitational-wave signal at this level of approximation. We also see
that if one can observe both the shrinkage of the orbit and the gravitational-wave field
(hTT

xx , say) then one should be able to infer both the chirp mass and the distance to the
source, d. This means that coalescing binaries can act as ‘standard candles’ which may
be used to measure distance in the Universe. That is, we can hope to infer the Hubble
constant H0 (see Chapter 22). By extracting higher order post-Newtonian terms we
should also be able to infer the individual masses, the spins and perhaps even put
constraints on the mass of the graviton (see Chapter 4).

5.3 The Binary Pulsar

The first double neutron star system—the Binary Pulsar PSR B1913+16—was dis-
covered in 1974 by Russell Hulse and Joseph Taylor in data from the Arecibo radio
telescope (Hulse and Taylor, 1975). This system allowed the first test of Einstein’s theory
in the (moderately) strong field regime. The discovery (and the subsequent analysis of
the timing data) is celebrated because it provided the first quantitative (albeit indirect)
confirmation of the existence of gravitational waves. Given the historical significance, it
is natural to use the Binary Pulsar as a benchmark for our estimates from the quadrupole
formula.

If we combine the observed parameters from Table 5.1 with the calculated change in
the orbital period from (5.41), then we predict that

Ṗ ≈ −2 × 10−13 s/s. (5.47)

However, the precision of pulsar radio timing allows a very accurate tracking of the
system’s evolution. The observed change in the orbit is

Ṗ ≈ −2.3 × 10−12 s/s. (5.48)

Our estimate appears to be wrong by an order of magnitude. This does not look good.
However, we used the results for circular orbits. In reality the orbit of the Binary Pulsar is
eccentric, see Table 5.1, and this makes a difference. In principle, one would expect the
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Table 5.1 Key observed parameters for the Binary
Pulsar PSR B1913+16. (Data from Weisberg et al.
(2010).)

Pulsar mass (M1) 1.441M

Pulsar spin period 59.02999792988 ms

Companion mass (M2) 1.387M

Total mass (M) 2.828379M

Reduced mass (μ) 0.707M

Chirp mass (M) 1.23M

Semimajor axis (a) 1,950,100 km

Orbital period (P) 7.75 hours (27,900 s)

Eccentricity (e) 0.617

Distance (d) 6,400 pc (1.97 × 1017 km)

gravitational-wave emission from an eccentric system to differ from our estimate because
the signal is stronger during the part of the orbit when the stars are closer and weaker
when they are further apart. To make progress on the comparison, we need to quantify
this effect.

As a slight aside before we move on, it is interesting to note that the power radiated
as gravitational waves by the Binary Pulsar is about 7 × 1023 W—enough to power quite
a few light bulbs. As a result, the orbit shrinks almost 4 m each year. The system will
eventually merge, but we have to wait another 300 million years.

5.4 Eccentic orbits

It is relatively straightforward to extend our analysis of the gravitational-wave emission to
eccentric binary systems (Peters and Mathews, 1963). After all, we have already worked
out the general orbital motion. But the problem is messier than the circular-orbit one.
Without working out all the details, let us illustrate why this is the case. The good news
is that the expressions for the mass multipoles remain exactly as before. We have

Mxx = μr2 cos2 ϕ, (5.49)

Mxy = Myx = μr2 sinϕ cosϕ, (5.50)

and

Myy = μr2 sin2 ϕ. (5.51)
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For circular orbits, we had r = a =constant so it was easy to identify the time-varying
parts of these moments. In the general case, this is not quite so straightforward. Now
we have

r = a
1 − e2

1 − ecosϕ
, (5.52)

so the time dependence of the multipole moments will be more complicated. We need
to use

ϕ̇ = L̃
r2 =

(
GM
a3

)1/2 (
1 − e2

)−3/2
(1 − ecosϕ)2 . (5.53)

After some algebra, we arrive at

F = 8
15

�(GM�)7/3

c5

1

a5
(
1 − e2

)5

〈
(1 − ecosϕ)4

[
12(1 − ecosϕ)2 + e2 sin2 ϕ

]〉
. (5.54)

In order to work out the required average, we integrate over one complete orbit. This
leads to the final result

F = f (e)F0, (5.55)

where F0 follows from (5.36) and

f (e) = 1
(1 − e2)7/2

[
1 + 73

24
e2 + 37

96
e4

]
. (5.56)

This can be quite a large factor. In the case of the Binary Pulsar we have e = 0.617
(see Table 5.1), which leads to f (e) ≈ 11.8. Accounting for the ellipticity thus brings the
theoretical estimate much closer to the observed result. In fact, after more than 40 years of
timing of PSR 1913+16, the observations agree with the predictions of general relativity
to within a fraction of a percent; see Figure 5.3—a remarkable confirmation of Einstein’s
theory.

In the case of circular orbits, we only needed the gravitational-wave luminosity in
order to work out the orbital evolution. For eccentric orbits we need more information
since the eccentricity evolves as the orbit shrinks. As we will see, the orbit becomes more
circular with time.

If we want to account for this effect, we need the rate at which gravitational waves
carry angular momentum away from the system. From (5.13) we have

ė = −
(

1 − e2

e

)(
Ė
2E

+ L̇
L

)
=

(
1 − e2

e

)( F
2E

+ G
L

)
. (5.57)
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Figure 5.3 Orbital decay caused by the loss of energy to gravitational radiation from the Binary
Pulsar B1913+16. The parabola shows the shift of periastron time relative to an unchanging orbit, as
predicted by general relativity. Data points represent measurements, with error bars mostly too small to
see. (Reproduced from Weisberg et al. (2010) with permission by the AAS.)

In this expression, G is the rate at which the system radiates angular momentum, which
follows from (3.103). With the setup as in Figure 5.2 we get (in the orbital plane and
after using integration by parts for two of the terms)

G = 4G
5c5

〈
Ï–xy

(...
I–xx − ...

I– yy
)〉 = 4G

5c5

〈
M̈xy

( ...
Mxx − ...

Myy
)〉

. (5.58)

This leads to

G = −32
5

M(GM�)7/3

c5

1
(1 − e2)2

(
1 + 7e2

8

)
. (5.59)
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Combining this result with the expression for the energy flux, we arrive at

ė = −304
15

(GM�)5/3�

c5

e
(1 − e2)5/2

(
1 + 121

304
e2

)
, (5.60)

which leads to

da
de

= 192
304

a
e(1 − e2)

(
1 + 73

24
e2 + 37

96
e4

)(
1 + 121

304
e2

)−1

. (5.61)

This can be integrated to give

a = C
e12/19

1 − e2

(
1 + 121

304
e2

)870/2299

, (5.62)

where C is constant for any given system.
Let us consider what this implies for a system like the Binary Pulsar. To get an idea,

we simplify the expression assuming that e2 � 1. Then we have

e ≈ Da19/12, (5.63)

where the constant factor is fixed by the current orbital parameters, D ≈ 2 × 10−5.
Extrapolating into the distant future, we see that when this system has evolved to the
point where it enters the sensitivity band of a ground-based detector (say, at a frequency
of 10 Hz), the ellipticity has decreased to e ≈ 4 × 10−6. For all intents and purposes the
orbit will be circular.

The main lesson from this exercise is that the emission of gravitational waves drives
eccentric systems towards circular orbits on a timescale much shorter than that of the
inspiral.

5.5 The orbital evolution

With confidence in our results for the gravitational-wave emission, let us make a few
additional observations. Since we have established that the orbit tends to circularize,
it makes sense to assume that e ≈ 0. We can then use our estimates to write down an
equation for the rate of change of the binary separation. Solving this equation we find that

a = a0

(
1 − t

tm

)1/4

, (5.64)
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where a0 is the initial separation and tm = tD/4. Parameterizing this timescale we have

tm ≈ 30
(

f
10 Hz

)−8/3 (
10M

M

)5/3

s, (5.65)

where the gravitational-wave frequency is twice the orbital frequency, f = �/π . This
gives us a more precise idea of the time that remains until merger (even though, in reality,
the merger will not correspond to a = 0, exactly). A sample of typical values for tm for the
types of binaries expected to be the most relevant for ground-based detectors is given in
Table 5.2. From the results we see that all binaries likely to be observed from the ground
will merge within hours from the time when they first enter the detector bandwidth.

In order to appreciate another key aspect of the problem, let us work out the energy
radiated as the system evolves. Taking the orbital energy as our starting point, we have

dE
df

= M
3

(πGM)2/3 f −1/3. (5.66)

We see that the energy released from the point when the signal first enters the detector
bandwidth, fmin (at time t0), up to the frequency that signals the end of the inspiral, fmax
(at t1), follows from

�E = π2/3

2G
(GM)5/3

(
f 2/3
max − f 2/3

min

)
. (5.67)

If we assume that fmax � fmin, then

�E ≈ 4 × 10−2M

( M

1.2M


)5/3 (
fmax

1 kHz

)2/3

. (5.68)

Table 5.2 Estimated time until merger (tm = tD/4) for various
classes of binary systems that may be observed by ground-based
detectors, the most common of which are expected to be double
neutron star (each with mass about 1.4M
) systems, double
(here 10M
 each) black-hole systems, and mixed black
hole–neutron star binaries. fmin is the gravitational-wave
frequency of the signal when the system first enters the detector’s
sensitivity band.

fmin 1.4 − 1.4 M
 1.4 − 10 M
 10 − 10 M

1 Hz 6 days 1 day 4.8 hrs

10 Hz 17 min 4 min 38 s

100 Hz 2 s 0.5 s 0.08 s
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As we will discuss in Chapter 10, the inspiral will end when the system reaches the
innermost stable circular orbit (Bardeen et al., 1972). Approximating this with the
result for a small body moving in the Schwarzschild spacetime (see Chapter 10)—an
assumption which may not be particularly accurate—we have

aisco ≈ 6GM
c2 −→ fmax ≈ c3

63/2πGM
. (5.69)

Hence, we arrive at an estimate for the radiated energy

�E ≈ 1
12

μc2, (5.70)

where μ is the reduced mass of the system, as before. This is a lot of energy, but the signal
will still be weak. Moreover, binary inspirals are rare in a typical galaxy. To detect them
we need to search a volume of space that contains many galaxies. In order to make this
statement precise, and get an idea of how sensitive a detector will have to be, we need to
know what the event rate may be. We will consider this question in Chapter 9.

Let us wrap up the discussion by highlighting a complicating aspect. We have seen
that the frequency evolves according to

ḟ = 96π8/3

5
(GM)5/3 f 11/3. (5.71)

We can use this relation to work out the number of gravitational-wave cycles emitted
during the inspiral

N =
∫ t1

t0
fdt =

∫ fmax

fmin

f

ḟ
df = 1

32π8/3

c5

(GM)5/3

(
f −5/3
min − f −5/3

max

)
, (5.72)

or (if fmax � fmin)

N ≈ 1.6 × 104
(

10 Hz
fmin

)5/3 (
1.2M

M

)5/3

. (5.73)

When we consider the problem of identifying weak signals in a noisy data stream (see
Chapter 8) we learn that the loss of a single cycle leads to a significant drop in the signal-
to-noise ratio. In essence, we need very accurate source models. For binary inspirals, the
leading order post-Newtonian results we have used so far will not suffice. We need to
do much better. This means going to higher orders in the post-Newtonian expansion, a
technically challenging problem which we will return to in Chapter 11.
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Spinning stars and cosmic recycling

As a step towards problems where the detailed physics have a more decisive impact,
let us consider gravitational waves from rotating neutron stars. A spinning star radiates
gravitationally if its shape deviates from perfect symmetry. Colloquially, the associated
(quadrupole) deformations are often referred to as ‘mountains’, even though their actual
height may not be particularly impressive. Stars also have internal dynamics, often
represented in terms of a set of normal modes of oscillations, that may be exited during
the star’s life. These two aspects force us to account for the physics of the stellar interior
(see Chapter 12). Neutron star mountains may be associated with the star’s crust—
the outer kilometre or so—where, moving towards the centre, increasingly neutron-rich
nuclei form a Coulomb lattice with elastic properties. The crust may also sustain shear
modes of oscillation, but due to the relatively low density of the crust region these may
not be very important for gravitational-wave physics. From our point of view oscillations
involving the high-density core will be more relevant. The relevant modes of oscillation,
and their damping, then depend on the supranuclear physics, e.g. the matter composition,
encoded in the equation of state. We consider this problem in Chapters 13 and 18. For
the moment we ignore any internal dynamics and assume that the star can be considered
a rigid body.

As soon as a newly born neutron star cools below 1010 K or so (within seconds to
minutes after its birth) the outer layers will begin to crystallize, forming the neutron star
crust. Even though the crust is not very rigid, it can sustain shear stresses, something that
a fluid is unable to do. This means that neutron stars may have long-lived deformations
which generate a continuous gravitational-wave signal. The signal will inevitably be
weak, but there are many neutron stars in the Galaxy and some of them are quite close
to us. Moreover, the effective amplitude increases (roughly) as the square-root of the
observation time (see Chapter 8), so an observing run lasting (say) a year would provide
a significant enhancement of the raw signal.

6.1 Rotating deformed stars

In order to understand the neutron-star mountain problem, we need to recall some results
from classical mechanics. Even though neutron stars are not rigid—in a rigid body the

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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distance between the different particles does not change, while a neutron star is expected
to have a fluid core and an elastic crust, both of which may sustain oscillations—the rigid-
body problem provides a useful introduction to the main concepts.

To describe the motion, we use two coordinate systems: an inertial system with
coordinates xi and (orthonormal) basis vectors ei, with i, j,k, . . . = 1 − 3 , and a moving
system with coordinates xî and basis vectors eî with î, ĵ, k̂, . . . also running from 1 to 3.
This latter system is fixed to the body. We will occasionally use standard Cartesian
coordinates x, y, and z for the inertial system. For simplicity, we let these coordinates
be centred at the body’s centre of mass and neglect any translational motion.

When the body rotates with angular velocity �i we then have

v = � × r, or vi = εijk�jxk, (6.1)

where xi are the components of the position vector of a given particle in the body, such
that xixi = r2 gives the distance from the centre of the star. Using this in the expression
for the kinetic energy, we get

E = 1
2

∫
ρv2dV = 1

2

∫
ρ(� × r)2dV = 1

2

∫
ρ[�2r2 − (�ixi)

2]dV , (6.2)

where the integral is over the volume of the star, V . Alternatively, since the angular
velocity must be the same for all parts of the body,

E = 1
2

�i�j
∫

ρ[r2δij − xixj]dV = 1
2

Iij�
i�j , (6.3)

which defines the moment of inertia tensor Iij .
Similarly, the definition of the angular momentum of a spinning body leads to

Ji = εijk
∫

ρxjvkd3x = εijkεklm

∫
ρxj�

lxmdV = �j
∫

ρ(δij r2 − xixj)dV = Iij�
j . (6.4)

It is worth noting that, when we work out the gravitational-wave signal, we need the
reduced quadrupole moment. This follows from, see Eq. (3.66),

Ijk = −I–jk + 2
3

δjk

∫
ρr2d3x, (6.5)

where the second term is constant.
It is also worth pointing out that Iij is additive. The total moment of inertia is the

sum of contributions from the various parts of the body. This is an important insight,
useful whenever we want to consider an object made up of several distinct components
(like a neutron star with a rigid crust and a fluid core; see Chapter 12). We also see that
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the moment of inertia tensor only depends on the density distribution and the shape of
the object.

Since Iij is symmetric, one would expect to be able to diagonalize it by making a
clever choice of coordinates. The corresponding axes, which we will take as the system
eî, defines the principal axes of the body. It is natural to refer to this as the ‘body frame’.
We denote the corresponding moments of inertia by Iî . In this system the kinetic energy
takes the very simple form

E = 1
2

(I1�
2
1 + I2�

2
2 + I3�

2
3), (6.6)

and

Jî = Iîĵ�
ĵ . (6.7)

For future reference, it is worth noting that these relations imply

Ė = �î J̇ î, (6.8)

where the dots represent time derivatives, provided the body-frame moments of inertia
are fixed (i.e. the body is truly rigid).

In general, it may be difficult to determine the principal axes, but the problem
simplifies if the body has symmetries. Then the centre of mass must be located on any
axis of symmetry and the principal axes must share the symmetry of the body.

Without specifying the shape of the body, let us move on and consider the
gravitational-wave luminosity. From the quadrupole expression (3.90) we know that
we need to work out

dE
dt

= G
5c5

〈...
I– jk

...
I– jk

〉
, (6.9)

where it follows from (6.5) that

...
I– jk = −...

I jk, (6.10)

and we recall that the angular brackets indicate time-averaging over several periods. We
now note that it is much easier to work in the body frame than in the inertial frame, and
it is wise to take advantage of this. In fact, since Iîĵ is constant in the body frame, the
time derivatives we need are encoded in the transformation between the two systems. In
general, we need

Ijk = Rĵ
jR

k̂
kIĵk̂, (6.11)
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where the transformation follows from combining xi = Ri
î
xî with (6.1) (keeping in mind

that the transformation to the inertial frame involves rotating the axes in the opposite
direction to the body’s rotation in the inertial frame). We will make use of this when we
consider the general problem of a wobbling star in Chapter 14. For now we will settle for
a discussion of the simpler case of rigid body rotation.

Consider a spinning star endowed with a small asymmetry. Assume that the star has
principal moments of inertia I1, I2 and I3 and that it rotates around the z = e3 = e3̂ axis,
as in Figure 6.1. Provided that I2 �= I1 = I3 the star is not axisymmetric and will radiate
gravitationally.

In this case the tranformation we need in order to estimate the gravitational-wave
luminosity from (6.9) is the standard rotation matrix

R =
⎛
⎝ cosϕ sinϕ 0

−sinϕ cosϕ 0
0 0 1

⎞
⎠ , (6.12)

and (6.11) is simply

I inertial = RT IbodyR. (6.13)

If we define � = I1 − I2, then it follows that

Ixx = −Iyy = 1
2

�cos2ϕ, (6.14)

and

Ixy = Iyx = 1
2

�sin2ϕ, (6.15)

a3

a1 a2

Ĵ = e3̂

e1̂
e2̂

Figure 6.1 A schematic illustration of an asymmetric rotating neutron star. The body frame is
described by axes eî and the star rotates around the inertial z = e3̂-axis, associated with the (conserved)
angular momentum Ji.
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where ϕ is the angle between the e1̂-axis and the inertial x-axis, such that ϕ = �t with
� the angular frequency (and we recall that we are only interested in contributions that
vary in time). If we assume that the rotation is steady and � is constant, then

dE
dt

= 32G
5c5 �2�6. (6.16)

In order to relate this result to an actual star, we need the moments of inertia. For
simplicity, we consider the case of a uniform density ellipsoid. We let the three axes of
the ellipsoid, along which the principal axes lie, have length a1, a2, and a3, respectively.
To work out the corresponding moments of inertia we need to integrate over the volume.
This exercise is easier if we note that the change of variables x1 = a1ξ1 (and similar for
x2 and x3), turns the equation for an ellipsoidal surface

x2
1

a2
1

+ x2
2

a2
2

+ x2
3

a2
3

= 1, (6.17)

into that of the unit sphere

ξ2
1 + ξ2

2 + ξ3
3 = 1. (6.18)

We then find that, if we consider rotation about the ê1-axis, the relevant moment of
inertia is

I1 = ρ

∫
(x2

2 + x2
3)dx1dx2dx3

= ρa1a2a3

∫
(a2

2ξ
2
2 + a2

3ξ
2
3 )dξ1dξ2dξ3 = 1

5
M(a2

2 + a2
3), (6.19)

where M is the star’s mass and we have used the volume of the ellipsoid: 4πa1a2a3/3.
The other moments of inertial follow from a cyclic permutation of the indices.

Assuming that a2 �= a3 = a1, as in Figure 6.1, we have

� = 1
5

M(a2 − a1)(a1 + a2). (6.20)

We now define the ellipticity

ε = a2 − a1

(a1 + a2)/2
, (6.21)

and relate the result to a spherical star with the same volume, which would have radius

R3 = a2
1a2. (6.22)
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This leads to

� = 2εMR2

5
= εI0, (6.23)

where I0 = 2MR2/5 is the moment of inertia of a uniform density sphere with mass M
and radius R. Thus, we have the final result for the gravitational-wave luminosity

dE
dt

≈ 32G
5c5 ε2I2

0�6. (6.24)

It is worth noting that we have assumed that the star is stretched into the shape of
an American football. We will later distinguish this prolate configuration from the oblate
case, where the star is squashed to look more like a disc. Effectively, this involves changing
the sign of �. However, it is already clear from our calculation that the sign of � has no
effect on the gravitational-wave luminosity.

The simple model problem we have considered, essentially assuming that we can
describe the star as a rotating bar, raises several tricky questions. The two most obvious
ones may be: How large can we reasonably expect the ellipticity ε to be? This is a difficult
problem as it involves issues—like the breaking strain—that are poorly understood
even for terrestrial materials and evolutionary considerations—which should determine
why the deformation developed in the first place. We will return to these problems in
Chapter 12. A second set of questions concern observations: In particular, how do we
confront our estimates with actual data?

6.2 The Crab Pulsar

Even though we know very little about the actual asymmetries of astrophysical neutron
stars, we can get important hints from radio pulsar observations. It is, for example,
straightforward to compare the predicted gravitational-wave spin-down rate to obser-
vations. From (6.24) we see that the emitted gravitational waves lead to a change in the
spin period (recall that the energy is drained from the star’s rotation)

Ṗ
P

= − Ė
2E

= −32G
5c5 ε2I0�

4, (6.25)

where P = 2π/� is the spin period and we have taken the rotational energy to be
E = I0�

2/2.
As an indicative example, let us consider the famous Crab Pulsar PSR B0531+21.

When the Crab Pulsar was discovered—shortly after the first discovery of pulsars
(Hewish et al., 1968)—it was the first pulsar to be associated with a supernova remnant.
Impressively, the association with a historical supernova from 1054 is confirmed by old



OUP CORRECTED PROOF – FINAL, 24/10/2019, SPi

The Crab Pulsar 111

Chinese records.1 The Crab Pulsar is interesting in many ways, but for now all we need
to know is that it currently spins with a period P = 33 ms while the observed spin-down
rate is

Ṗobs ≈ 4.2 × 10−13s/s. (6.26)

If we want to compare these observations to (6.24), then we need to know the star’s
mass and radius. Unfortunately, we do not. However, if we assume ‘canonical’ neutron
star parameters, a mass of 1.4M� and radius R = 10 km (see Chapter 12), then we find
that the pulsar should slow down at a rate

Ṗgw ≈ 8 × 10−7ε2. (6.27)

Comparing the results we see that we need ε ≈ 7 × 10−4 in order to explain the
observations. This estimate, which is often quoted as an upper limit on the possible
gravitational-wave strength, would correspond to a deformation of about 10 m on the
surface of the star.

So far, this looks reasonable. Our estimate suggests that the Crab Pulsar might be an
interesting gravitational-wave source, so let us consider the detectability of these waves.
We can readily use the energy balance argument from (3.82) to estimate the strength of
the emerging gravitational waves. This leads to

h ≈ 8 × 10−28
( ε

10−6

)(
f

100 Hz

)2 (
10 kpc

d

)
, (6.28)

where we have used the fact that the gravitational-wave frequency, f = �/π , is twice the
star’s rotation frequency. Noting that the Crab Pulsar is about 2 kpc away from us, we
would have

h ≈ 10−24 at f ≈ 60 Hz. (6.29)

This is too weak to be detected directly by any present or, indeed, future detector.
However, as we have already mentioned, the effective amplitude hc increases (roughly)
as the square-root of the number of detected cycles. If one could observe the system for
an entire year, then this buys a large factor, and we would have

hc ≈ 4 × 10−20. (6.30)

1 ... and petroglyphs by the Anasazi in the US southwest.
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This estimate is often referred to as the Crab Pulsar spin-down limit. In general, we see
that (6.25) implies that

εsd =
[

5c5P3Ṗ
32(2π)4I0

]1/2

(6.31)

provides an upper limit on the allowed ellipticity of any observed system (see
Figure 14.4).

However, nature is unlikely to be this generous. We have assumed that the pulsar spins
down entirely due to gravitational-wave emission. It is easy to argue that this is optimistic.
For a handful of relatively young pulsars, including the Crab, observations provide the
second derivative of the spin. This allows us to work out the so-called braking index, a
dimensionless quantity defined as

�̇ = constant ×�n → n = ��̈

�̇2
. (6.32)

From our gravitational-wave formulas we would expect ngw = 5, while electromagnetic
dipole radiation would lead to nem = 3 (see Espinoza et al. (2011b) and Chapter 9).
The observed result for the Crab Pulsar is n ≈ 2.51, clearly closer to electromagnetic
result. This is a strong indication that gravitational radiation cannot be the main spin-
down mechanism for this pulsar. The argument does, of course, not exclude a small
gravitational-wave component. We will return to this problem in Chapter 14.

6.3 Contact binaries

One can imagine taking the discussion in different directions at this point. We could,
for example, dig deeper into neutron star physics and consider the crust elasticity that is
needed to support the mountains we have discussed. We might consider other observed
pulsars to see if we can find systems that are more promising than the Crab. We will,
indeed, discuss these problems later (see Chapter 14). Right now, we will embark on
what may (at first) seem like a detour.

So far we have considered problems where the gravitational-wave emission is readily
understood from the quadrupole formula. These examples provide useful and important
illustrations, but they do not tell the full story. Our calculations only apply to idealized
situation, like well-separated binaries or isolated spinning neutron stars. Reality is more
complicated. The late stage of binary inspiral likely requires a detailed understanding of
the neutron-star interior and we need to consider nonlinear aspects of relativity. Similarly,
there are many relevant scenarios where neutron stars interact with their environment,
and where this interaction impacts on the star’s evolution.

As a first step in this direction, let us consider close binary systems where matter may
flow from one partner to the other. We will discuss how this mass transfer affects the
orbital evolution and how the accretion of matter may spin up the receiving star. These
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problems are important and, as we will see, complex. They provide a first insight into why
the modelling of binary evolution is difficult. This also adds relevant historical context.
The Binary Pulsar PSR B1913+16 provided impressive quantitative (albeit indirect)
evidence that binary systems emit gravitational waves at the rate predicted by Einstein’s
theory, but this was not the first indication that the theory is correct. The first such
evidence came from systems undergoing mass transfer (Faulkner, 1971).

In order to see how gravitational-wave emission affects systems undergoing mass
transfer, let us start by considering two bodies in circular Keplerian orbit (as in
Chapter 5), but now ask how a small particle in the mutual gravitational potential would
move. Any gas flow between the stars should simply be governed by the equations of
fluid dynamics. If we translate the Newtonian equations from Chapter 4 into a frame that
rotates along with the two stars, accounting for both centrifugal effects and the Coriolis
force, we have

(∂t + v · ∇)v = −1
ρ

∇p − ∇�R − 2�× v. (6.33)

Here, ρ and p are the density and pressure of the gas, respectively, and v is the velocity.
The last term in the equation is the Coriolis force. The so-called Roche potential, �R, is
given by

�R = − GM1

|r − r1| − GM1

|r − r2| − 1
2

(�× r)2 , (6.34)

where the last term is the centrifugal force. The inner equipotential lines for this kind of
potential are sketched in Figure 6.2. Far away from the system, the potential remains
that of a single point mass at the centre of mass, but the situation becomes more
complicated—and interesting—as we zoom in. Close to each star any gas flow would
be dominated by the pull of the closest body. This means that there will be a critical
surface that joins the two stars. This surface will have the shape of an eight. This defines
the Roche lobe associated with each of the stars and also the (inner) Lagrange point L1,

M2

L1

M1

Figure 6.2 An illustration of the Roche lobes that surround two stars in close orbit and the associated
mass transfer from the secondary to the primary at the Lagrange point L1. The figure also shows the
accretion disk that forms around the primary.
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at which the two lobes intersect. Near this point it is easier for orbiting material to enter
the Roche lobe of the other star than it is for it to escape the critical surface.

In general, one would expect the tidal interaction to lead to the stars rotation becoming
synchronized with the orbital rotation. In such a system, the Roche lobes represent the
maximum volume that each star can fill while remaining in hydrostatic equilibrium. If
either star swells up to fill its Roche lobe at some point, mass will be transferred to
the companion. Matter will simply fall from the secondary (the lobe-filling star) onto
the primary. This transfer will be stable as long as the secondary continues to fill its
Roche lobe. Such systems are called semi-detached binaries. In detached binaries both
stars are much smaller than their Roche lobes, while both stars fill their Roche lobes
in contact binaries. These phases of matter exhange are important for stellar evolution
and impact on, for example, the formation rate for stellar mass black holes (discussed in
Chapter 9).

It is important to consider the stability of the mass transfer. If we (for simplicity)
assume that the total mass is conserved, then the mass exchange affects the system’s
angular momentum in such a way that

ȧ
a

= 2J̇
J

− 2Ṁ2

M2
(1 − q) , (6.35)

where q = M2/M1 is the mass ratio. Let us first consider the conservative case where
J̇ = 0 and assume that M2 < M1. We see that, if Ṁ2 < 0, then ȧ > 0. As mass is
transferred to the more massive companion, more matter is moved closer to the centre
of mass, which means that the mass M2 must move out to conserve angular momentum.
Mass transferred to the lighter partner would decrease the orbit. We can approximate
the mean radius of the secondary’s Roche lobe as (Paczyński, 1971)

RL ≈ 2a
34/3

(
q

1 + q

)1/3

, (6.36)

which means that

ṘL

RL
= ȧ

a
+ Ṁ2

3M2
, (6.37)

and the Roche lobe is also affected by the change in mass ratio and separation. Combining
this with our earlier result we find that

ṘL

RL
= 2J̇

J
− 2Ṁ2

M2

(
5
6

− q
)

. (6.38)

In the conservative case, when J̇ = 0, mass transfer from the less massive star cannot
be stable if q < 5/6. The Roche radius RL will simply expand and end the process. In
contrast, if q > 5/6, then RL will shrink onto the star and accelerate the transfer. This will
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lead to a violent evolution until q falls below 5/6 and we return to the first case. The key
insight from this argument is that we cannot have stable mass transfer unless the system
loses angular momentum .

However, since many observed systems shine in X-rays, stable mass transfer must take
place. Gravitational waves are thought to play a key role in facilitating this (Faulkner,
1971). The idea is simple. The stars gradually spiral together until the secondary fills
its Roche lobe. At that point the mass transfer will become self-sustained as long as
gravitational waves remove enough angular momentum to stop the Roche lobe from
growing faster than the secondary’s radius expands (a rate which obviously depends on
the matter equation of state).

It is also relevant to ask what happens to the matter that crosses the Lagrange point.
So far we assumed that it simply accretes directly onto the primary. However, this may
not be the case. From the point of view of the primary, the Lagrange point acts like a
rotating nozzle spraying material. Unless the binary period is long, this nozzle will rotate
so fast that the material will be injected with considerable angular momentum. If we take
L to be the distance from the centre of the primary to L1, then the matter would have
specific angular momentum

j = L2�. (6.39)

Once the matter enters the primary’s Roche lobe its motion will be dictated by that star’s
gravitational field. This means that matter will orbit at a distance determined by the
amount of angular momentum it has. This leads to an orbital frequency

�g =
(

GM2

R3
c

)1/2

, (6.40)

where the distance Rc is obtained by balancing the angular momentum

R2
c �g = L2�. (6.41)

If we assume Keplerian orbits, we have

Rc = a(1 + q)
(

L
a

)4

. (6.42)

This is called the circularization radius. If Rc is smaller than the radius of the primary,
then the matter will crash (obliquely) onto the surface. If, on the other hand, Rc is greater
than the star’s radius, the matter cannot accrete until it loses angular momentum. Instead,
the matter forms an accretion disk around the primary, as indicated in Figure 6.2. Over a
longer timescale viscosity moves angular momentum outwards, which allows the matter
to creep closer to the primary and eventually accrete onto it. The angular momentum
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stored in the disk also enters in the previous mass transfer argument, making the problem
more complicated.

6.4 Cosmic recycling

Let us return to the problem of gravitational waves from rotating neutron stars. The
discussion of contact binaries allows us to broaden the discussion to include a wider set
of astrophysical system. In particular, we can now consider accreting neutron stars in
X-ray binaries.

Neutron stars may be born with a range of spin frequencies, basically depending
on the formation process and the detailed dynamics of the collapsing core following
the supernova explosion. Simple conservation of angular momentum arguments would
suggest that a newly born neutron star ought to spin fast, but one can easily come up
with counterarguments involving efficient coupling to the extended envelope during
the collapse (Spruit and Phinney, 1998). Observations provide some support for these
arguments. If we trace the spin-evolution of young pulsars back in time we typically find
that they were not spinning near the break-up limit, above which the centrifugal force
causes mass shedding (see Chapter 12). In the case of the Crab Pulsar one finds that it
would have been born with a period ∼ 19 ms, while the mass-shedding limit corresponds
to a period of ∼ 1 ms.

The fastest known pulsars are all old. They also have weak magnetic fields, which
may suggest that the field decays as the stars age. The most rapidly rotating millisecond
radio pulsar is PSR J1748-2446ad with spin frequency νs = 716 Hz. In the standard
picture, such systems form through cosmic recycling (Alpar et al., 1982; Radhakrishnan
and Srinivasan, 1982). The neutron star gains its angular momentum during a period
of accretion from a (low-mass) binary partner, following the mass transfer scenario we
already discussed. The idea is supported by the general observation that approximately
80% of millisecond pulsars are in binary systems, compared to only 1% of slower pulsars
(see Figure 9.3). There is also a growing body of evidence connecting fast-spinning
neutron stars with low-mass companions to the radio millisecond pulsars. The 1998
discovery of the first accreting millisecond X-ray pulsar SAX J1808-3658 (see Table 6.1
and Wijnands and van der Klis (1998)) added important support for the recycling
paradigm and we now have evidence of transitional systems which appear to be in the
process of moving from one population to the other (Archibald et al., 2010).

The low-mass X-ray binaries could be interesting gravitational-wave sources. All
observed systems appear to rotate far below the mass-shedding limit for a typical neutron
star (see Figure 6.3). Could it be that nature imposes a speed limit on spinning stars?
If so, what is the mechanism that enforces this? The answer may involve gravitational
waves (Papaloizou and Pringle, 1978; Wagoner, 1984; Chakrabarty et al., 2003).

In order to work out whether it is reasonable to assume that the spin-up of accreting
neutrons stars may be stalled because of gravitational radiation, we need to consider
two issues. First, we have to understand the angular momentum transferred as matter
accretes onto the star. Secondly, we need to argue that the accreting star develops
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Table 6.1 Observational parameters for the
accreting millisecond X-ray pulsar SAX
J1808-3658.

Spin frequency (Hz) 401

Rate of spin evolution (Hz/s) 2 × 10−13

Peak luminosity (erg/s) ∼ 1036

Distance (kpc) 2.5

Orbital period (hours) 2.1

Companion mass (M�) 0.05–0.1
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Figure 6.3 The observed distribution of fast-spinning neutron stars. Left: the millisecond radio pulsars,
based on data from http://www.atnf.csiro.au/research/pulsar/psrcat/, with PSR J1748-2446ad being the
fastest known system (νs = 716 Hz). Right: the accreting neutron stars in low-mass X-ray binaries (both
accretion powered, AMXP, and nuclear powered, NXP), based on data from Patruno et al. (2017). The
fastest known accreting neutron star is 4U 1608-522 (at νs = 620 Hz). (Figures provided by F. Gittins.)

a significant asymmetry. We will leave aside the latter problem for the moment, and
simply take it as given that the star is deformed and emits gravitational radiation at
twice the spin frequency. We can then work out how large the deformation needs to be
for the gravitational-wave emission to balance the accretion torque. In the simplest case
(see Chapter 14 for a more detailed model), we can approximate the accretion torque as
the angular momentum change associated with orbiting matter falling onto the star’s
equator. Effectively assuming that the accretion disk reaches the star’s surface, we
then have

J̇ = Ṁ
√

GMR. (6.43)

http://www.atnf.csiro.au/research/pulsar/psrcat/


OUP CORRECTED PROOF – FINAL, 24/10/2019, SPi

118 Spinning stars and cosmic recycling

We balance this with the loss due to gravitational-wave emission (6.24), using

Ė = �J̇, (6.44)

to relate the energy and angular momentum losses. Combining this with (6.24)
(assuming a neutron star with mass 1.4M� and radius 10 km) we arrive at an estimate
for the deformation required to balance accretion spin-up:

ε ≈ 10−8
(

Ṁ
10−9M�/yr

)1/2 (
500 Hz

νs

)5/2

. (6.45)

This estimated deformation seems small enough to make it plausible that gravitational-
wave spin-down could play a role in these systems.

The predicted ellipticity is certainly much smaller than that required to ‘explain’ the
spin-down of the Crab Pulsar. In that case we learned that our estimate was optimistic.
Confronting our new estimate with observational data for accreting systems is much
more difficult. If we want to move beyond the back-of-the envelope understanding, we
need to consider a number of complicating aspects. The connection with observations
typically links the observed X-ray luminosity to the mass accretion rate. This is done
by assuming that the gravitational potential energy released by the infalling matter is
radiated as X-rays. This leads to

Lx ≈ GMṀ
R

. (6.46)

Observations then give us a direct estimate for the required deformation

ε ≈ 3 × 10−9
(

Lx

1036 erg/s

)1/2 (
500 Hz

νs

)5/2

. (6.47)

However, most of the observed systems are transients with variable, and often low,
mass transfer rates. For example, SAX J1808-3658 has an average X-ray luminosity in
quiescence of about 1031 erg/s. Meanwhile, during X-ray outbursts the luminosity rises
to 1035 erg/s on a timescale of days. The system seems to undergo bursts lasting for
roughly three weeks every two years or so. Using a single luminosity to infer the mass
accretion rate is clearly an oversimplification, but at least we have an idea of where to start.

We may, for example, approximate the maximum accretion rate by balancing the
pressure due to spherically infalling gas to that of the emerging radiation. This leads
to the Eddington limit

ṀEdd ≈ 1.5 × 10−8
(

R
10 km

)
M�/yr, (6.48)
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which would correspond to an X-ray luminosity

Lx ≈ 1.8 × 1038
(

M
1.4M�

)(
Ṁ

ṀEdd

)
erg/s. (6.49)

These estimates give us an idea of what the strongest gravitational-wave sources may be.
An often-quoted example is Sco X1, one of the brightest X-ray sources in the sky. In this
case we have Lx ≈ 2 × 1038 erg/s (Bildsten, 1998). This suggests that the neutron star
must accrete near the Eddington limit, which leads to

ε ≈ 4 × 10−8
(

500 Hz
νs

)5/2

. (6.50)

Unfortunately, the spin frequency of the Sco X1 neutron star is not known. In order
to search for it one has to consider a range of frequencies and this is computationally
expensive (see Chapter 14).

The second aspect we need to consider is the detailed accretion torque. Our estimate
(6.43) is too naive. The accretion problem is messy and it has proved difficult to use
observations to constrain the theory. In fact, there does not appear to be an immediate
association between the X-ray luminosity (the rate of accretion) and the rate of change
of the spin frequency. For example, the neutron star in SAX J1808-3658 was seen to
spin up during outbursts in 1998 and 2000 (with ν̇s ≈ 2 − 3 × 10−13 Hz/s), but it was
undergoing constant spin-down during the following outburst in 2002. The problem is
further complicated by the fact that one should account for fluctuations in the luminosity,
on a timescale of hours to days, during quiescence.

Nevertheless, we can do better than (6.43) by noting that, for a magnetized star, the
accretion disk may not reach all the way to the surface. At some point, the matter flow will
be dominated by the magnetic field and funnelled onto the star’s surface along the field
lines. This effect may not be overwhelming for weakly magnetized neutron stars in low-
mass X-ray binaries, but we need to quantify it if we want to improve our understanding.
We will consider this problem in Chapter 14.

6.5 Spin–orbit evolution

As the physics involved tends to be complicated, one often has to settle for phenomeno-
logical models. This may seem far removed from the elegance and precision of general
relativity, but it may be the best that we can hope for. And one should not underestimate
the importance of simple, qualitative arguments. They may, after all, hint at directions
where more effort should be invested.

As an example of an indicative scenario—essentially how we can use estimated
timescales to explore the behaviour of a system—let us consider the spin–orbit evolution
of an accreting neutron star (borrowing results from Ho et al.(2011b)). This ties together
the different concepts we have discussed. We have considered how mass transfer
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affects the binary evolution, and accounted for the angular momentum associated with
gravitational waves from the orbit. We have also discussed the spin-up of the primary
star as matter and angular momentum from the secondary are accreted onto it. We
have suggested that observational data hints at the need for an additional mechanism
for angular momentum loss, potentially associated with gravitational waves from the
primary. In this case we have additional angular momentum loss and it is interesting
to consider how this impacts on the orbital evolution.

Let us consider an accreting neutron star with mass M1 = mxM� (using mx = 1.4M�
as the canonical example) and a binary companion with mass M2 = mcM�. Then we can
use (6.36) to work out when the donor star fills its Roche lobe. Taking the companion
to be a main sequence star, mc ≈ Rc/R�, where R� is the solar radius. Using (6.36) and
Kepler’s law, we then have

a = 0.8R� (mx + mc)
1/3

(
Porb

2 hr

)2/3

, (6.51)

where Porb is the orbital period. We also have a relationship between the mass of the
companion and the orbital period

mc = 0.23m̂c

(
Porb

2 hr

)
, (6.52)

where m̂c ≡ mc/mMS
c and mMS

c is the mass of a main-sequence star that just fills its Roche
lobe at Porb. The factor of m̂c (< 1) is due to the fact that the companion star in a binary
has a larger radius for its given mass than an isolated star. This encodes an uncertainty in
the (less evolved, since we only consider mc < mx) evolutionary state of the companion.

Now consider mechanisms that would lead to a change in the angular momentum of
the orbit or the neutron-star spin, and thus cause a system to move in the νs–Porb-plane.
We have seen that mass transfer can cause an increase in the size of the orbit, while
orbital angular momentum loss due to magnetic braking or gravitational-wave emission
causes the orbit to decrease. The orbital period which separates expansion and decay is
estimated to be > 0.5 days, while magnetic braking is dominant for orbital periods longer
than one hour. A typical (see Chapter 9) estimate for the magnetic braking torque leads
to a timescale for orbital decay

tdecay ≈ 2.1 × 108m̂−4/3
c m2/3

x

(
Porb

2 hr

)−2/3

yr, (6.53)

and a mass transfer rate (in units of 10−11M� yr−1)

Ṁ−11 = 80m̂7/3
c m−2/3

x

(
Porb

2 hr

)5/3

. (6.54)
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Note that the mass accretion rate increases with the orbital period. It is also worth noting
that, at very short orbital periods, Porb � 4 hr, gravitational radiation becomes important
and some accreting millisecond pulsar companions are degenerate stars. These systems
may be evolving to longer orbital periods, but this should happen slowly because the
mass transfer and angular momentum loss rates are low. For example, SAX J1804-3658
has a degenerate companion and the orbital period is seen to increase on a timescale
Porb/Ṗorb ≈ 6 × 107 yr.

As we have seen, accretion of angular momentum from the companion can spin up
the neutron star. The timescale for spin-up is (again; see Chapter 14)

tsu ≈ 1.5 × 109 B−2/7
8 Ṁ−6/7

−11 m−3/7
x

( νs

100 Hz

)
yr, (6.55)

where B8 is the neutron star magnetic field (in units of 108 G). Using the mass accretion
rate from (6.54), we see that

tsu ≈ 3.4 × 107 B−2/7
8 m̂−2

c m1/7
x

(
Porb

2 hr

)−10/7 ( νs

100 Hz

)
yr. (6.56)

Meanwhile, a deformed neutron star spins down due to gravitational waves. From (6.25)
we have the spin-down timescale

tsd ≈ 2.9 × 1010 m−2
x ε−2

−8

( νs

100 Hz

)−4
yr, (6.57)

where ε−8 = ε/10−8 is the star’s ellipticity. We ignore spin-down by electromagnetic
dipole radiation, which only becomes dominant at

B8 � 10ε−8

( νs

100 Hz

)
. (6.58)

The evolution of the star’s spin, νs, and the orbital period, Porb, are (primarily)
determined by the process with the shortest timescale. As an example, a comparison
of the different estimates is provided in Figure 6.4. For the ranges displayed, we
identify three regions representing; spin-up from the accretion torque, spin-down from
gravitational radiation, and orbital decay from magnetic braking. It is natural to focus
on the transitions between the different regimes. First of all, an accreting neutron star
moves towards higher νs if the pulsar rotation rate is below both ν1 (from tsu < tsd) and
ν3 (from tsu < tdecay), where ν1 is given by

ν1 ≈ 330ε
−2/5
−8 B2/35

8 m̂2/5
c

(
Porb

2 hr

)2/7

Hz, (6.59)
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Figure 6.4 Estimated regimes of spin–orbit evolution for accreting millisecond pulsars. A system in the
spin-up/spin-down regime (I/II) moves to higher/lower spin frequencies, as well as shorter orbital periods
on a longer timescale. Systems in the orbit decay regime (III/IV) move to shorter orbital periods, as well
as to lower/higher spin frequencies on a longer timescale. The lines (labeled ν1, ν2, ν3) separating the
regimes are given by Eqs. (6.59)–(6.61). Open triangles denote accreting millisecond pulsars, while the
solid triangles are the two specific systems SAX J1808.4-3658 at (Porb,νs)=(2 hr, 401 Hz) and
IGR J00291+5934 at (2.5 hr, 599 Hz), which exhibit short-term spin-up and long-term spin-down.
(Reproduced from Ho et al. (2011b) with permission by the AAS.)

while ν3 follows from

ν3 ≈ 750B2/7
8 m̂2/3

c

(
Porb

2 hr

)16/21

Hz. (6.60)

This defines spin-up region (I) in Figure 6.4.
Meanwhile, if the rotation rate is above both ν1 and ν2 (from tsd < tdecay), where

ν2 ≈ 270ε
−1/2
−8 m̂1/3

c

(
Porb

2 hr

)1/6

Hz, (6.61)

then the star moves towards lower νs. This is the spin-down regime (II) in Figure 6.4.
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Finally, a decrease in orbital period occurs when the rotation rate is below ν2 but above
ν3. Note that deviations from low values of m̂c (up to a factor of order unity, e.g. due to
degenerate companions) have the strongest effect on ν3, but do not qualitatively change
the picture.

Though (obviously) dependent on the various parameters, the timescale of the
dominant process in each regime bears out the observed population. In the spin-up
region (long Porb, low νs) we have

tsu ∼ 7 × 106m̂−2
c

(
Porb

10 hr

)−10/7 ( νs

200 Hz

)
yr. (6.62)

In the spin-down region (high νs), the evolution is independent of the orbital period and
occurs on a timescale

tsd ∼ 2 × 109
( ε

10−9

)−2 ( νs

500 Hz

)−4
yr. (6.63)

Finally, in the orbit decay region (short Porb), the evolution is independent of the spin
frequency and occurs on a timescale

tdecay ∼ 2 × 108m̂−4/3
c

(
Porb

3 hr

)−2/3

yr. (6.64)

The main lesson is that we can try to explain the observed population of fast-spinning
accreting neutron stars in terms of the evolution of νs and Porb, depending on the
process (magnetic braking, mass accretion, and gravitational radiation) with the shortest
timescale. A system born at low νs and long Porb very quickly spins up to high νs. On a
much longer timescale, these fast-spinning sources slow down, while their orbits shrink.
The first phase happens on a timescale of a million years, whereas the second may last a
thousand times longer. Once mass accretion stops, there is no longer a spin-up torque.
The binary then contains a rotation-powered millisecond pulsar that can move into the
(former) spin-up region in Figure 6.4 by spinning down (as a result of gravitational-wave
emission or electromagnetic radiation) or by expanding its orbit.

This model is, obviously, only a qualitative sketch, but it accords reasonably well with
observations. It is, for example, instructive to compare the estimates to data for the two
accreting millisecond pulsars SAX J1808-3658 and IGR J00291+5934 (Galloway et al.,
2005). These systems show an overall spin-down with timescales νs/|ν̇s| ≈ 2 × 1010 and
5 × 109 yr, respectively (interupted by short spin-ups during outbursts with timescales
108 yr and 2 × 107 yr, respectively). Given this, one would expect both systems to
reside in the spin-down region (II). Adjusting the parameters of the model accordingly,
we end up with the results in Figure 6.4. Here is it worth noting a lack of observed
slow spin–long orbital period systems. The discovery of a system at the relatively low
νs (100 Hz � νs � 400 Hz) and long Porb would clearly challenge the scenario (or at
least question the parameters assumed in Figure 6.4). Nevertheless, it is suggestive that
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the quadrupole deformation required for the gravitational-wave emission is ε � 10−9.
For smaller deformations, spin-down by gravitational radiation becomes irrelevant—
see eqs. (6.59) and (6.61)—and all observed systems would be in spin-up or orbit
expansion/decay, contrary to what is seen. It is interesting to note that the estimated
ellipticity is well below the theoretical maximum (see Chapter 12) and also (although
much less so) below the current limit set by gravitational-wave searches for signals from
known pulsars (see Chapter 14).
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Catching the wave

With an understanding of the basic theory and some astrophysics perspective, we can
turn our attention to the experimental challenge. We already have an idea of the effect
that a passing gravitational wave will have on matter and we know it will be tiny. Given
that the coupling is proportional to G/c5 ≈ 3 × 10−53 s3/kg m2 we need to compensate
by involving large masses and/or high velocities. Still, we realistically need to measure
relative displacements of order 10−21. Common sense would suggest this is impossible
(Saulson, 2000). After all, even if we design a kilometre-size instrument we need to
resolve a change in distance about 1,000 times smaller than the size of the atomic nucleus.
Luckily, experimenters do not always listen to reason.

The question is: How do we turn the notion of independent test particles, as in
Figure 3.2, into a practical proposition? We clearly cannot reproduce this setup in the
laboratory, but perhaps we can get close to it. In principle, any object can serve as a
gravitational-wave detector, but it is not enough to absorb the energy from the passing
wave. We need to amplify the signal to be able to measure it. One possibility would
be to make use of resonances. Consider as a simply toy detector two masses joined by
a spring (ignoring the mass of the spring). A gravitational wave will push the masses
together, then apart, and so on. The spring tries to counter the effect. In general, the
motion of the masses would be tiny but if the wave were to have frequency close to one
of the natural frequencies of the system (representing its free oscillations), the associated
resonance would amplify the effect. This simple idea motivated the first attempt to build a
gravitational-wave detector, by Joseph Weber in the 1960s. In practice, Weber (and those
following in his footsteps) used massive cylindrical metal bars to represent the resonant
system. Later generations of instruments were cooled to a low temperature to counteract
thermal fluctuations (Visco and Votano, 2000; Fafone, 2004) .

Another possibility would be to replace the spring connecting the masses with a
pendulum suspending each mass, monitoring their movement with laser light. By making
sure that the natural frequencies associated with the suspension lie outside the frequency
range of interest, and using interferometry to monitor the motion of the test masses, such
instruments can be made extremely sensitive. In fact, the use of laser interferometry—
pioneered by Rai Weiss at MIT and Ron Drever in Glasgow, and after decades of

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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developments leading to the Advanced LIGO instruments1—was the decisive move
towards successful detection.

A third option would be to implement the idea envisaged in Figure 3.2 and actually
use freely floating test masses. This is obviously not possible on the ground, but it can
be achieved in space. This is the idea behind space-borne detectors like LISA (Amaro-
Seoane et al., 2017).

The idea behind the different kinds of detectors may be simple, but the engineering
challenge associated with reaching the required sensitivity is still immense. Not the least
since any detector is limited by a number of noise sources. In fact, in order to understand
the behaviour of any given detector, it is crucial to have a good handle on the limiting
noise sources.

7.1 Resonant mass detectors

Suppose that a gravitational wave propagating along the z axis, with pure plus polariza-
tion amplitude h+, and frequency ω, passes by our proposed mass-spring toy detector,
now aligned with the x-direction (say). Let us try to calculate the amplitude of the
oscillations induced in the instrument and the amount of energy absorbed by it. As
outlined in Chapter 3, the tidal force induced on the detector follows from the equation
for geodesic deviation, and as a result the masses move according to

ξ̈ + ξ̇ /τ + ω2
0ξ = −1

2
ω2Lh+eiωt, (7.1)

where ω0 is the natural vibration frequency of the detector, τ is the damping time of the
oscillator due to friction, L is the separation between the two masses, and ξ is the relative
change in the distance between them. The passing gravitational wave provides a driving
force for the oscillator, and the solution is simply

ξ = h+
Leiωt

2
ω2

ω2
0 − ω2 + iω/τ

. (7.2)

If the frequency of the impinging wave is near the natural frequency of the oscillator (so
that we are close to resonance), the detector is excited into large-amplitude motion and
rings like a bell. Actually, for ω = ω0 we have the maximum amplitude

ξmax = 1
2

ω0τh+L. (7.3)

1 The historical developments are nicely summarized in Saulson (2005), while an in-depth description of the
technology can be found in Saulson (2017) and Bond et al. (2017). The approach to space-borne instruments
is reviewed by Tinto and Dhurandhar (2014).
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Since the size of the detector, L, and the amplitude of the gravitational waves are fixed,
large-amplitude motion can be achieved only by increasing the quality factor Q = ω0τ

of the instrument. Moreover, in practice the frequency of the detector is fixed by its size
so the only improvement we can make is to choose materials with long relaxation times.

In reality, the sensitivity of a resonant bar detector depends on many other parameters.
Even if we assume perfect isolation from external noise sources (acoustic, seismic,
electromagnetic), we are limited by thermal noise. In order to detect a signal, the energy
deposited by the gravitational wave every τ seconds must be larger than the energy kBT
due to thermal fluctuations. This leads to an expression for the minimum detectable
energy flux of gravitational waves, which, in turn, leads to a minimum detectable strain

hmin ≤ 1
ω0LQ

(
15kBT

M

)1/2

, (7.4)

where M is the mass of the detector. In the case of Weber’s first detector (Weber, 1967),
with M = 1,410 kg, length L = 1.5 m, resonant frequency ω0 = 1,660 Hz and quality
factor Q = 2 × 105 at room temperature, the smallest detectable strain would be of order
10−20. However, this estimate applies only to gravitational waves whose duration is at
least as long as the damping time of the bar’s vibration and whose frequency perfectly
matches the resonance of the detector. For short bursts or periodic signals off resonance
the sensitivity would decrease by several orders of magnitude. You would have to be very
lucky to detect gravitational waves with an instrument operating at this level.2

More modern bar detectors (Visco and Votano, 2000; Fafone, 2004) are complicated
devices, consisting of a solid metallic cylinder weighing a few tons suspended in vacuum
by a cable wrapped under the centre of gravity. This suspension system protects
the antenna from external mechanical shocks. The whole system is cooled down to
temperatures of a few kelvin (or even millikelvin). To monitor the vibrations of the
bar, piezoelectric transducers (or more modern capacitive ones) are attached to the
bar. These converted the bar’s mechanical energy into electrical energy. The signal is
amplified by an ultra-low-frequency amplifier, via a device called a SQUID (Super-
conducting QUantum Interference Device), before becoming available for analysis.

Throughout much of the 1990s, a number of such devices were in (nearly) continuous
operation at several institutions around the world. At best, they achieved sensitivities of a
few times 10−21, but never provided conclusive evidence for gravitational waves. At the
given level of sensitivity, they would have had a reasonable chance of detecting a signal
from a supernova explosion in our Galaxy, but they would still have had to be lucky,
because such events are rare (a few per century).

More advanced ideas include the construction of spherical resonant detectors (see
Lobo (2000) for the principles), the advantages of which would be a high mass and a

2 There were claimed events, but they were relatively easy to dismiss with astrophysics arguments. For
example, the energy associated with the coincidences reported in Weber (1969) would be at the level of the
Sun having exploded.
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broader sensitivity range (a bandwidth of up to 100–200 Hz). Such a detector would
also be omnidirectional (as five modes of the sphere could be excited). This would make
it possible, in the case of detection, to obtain information about the polarization of the
wave and the direction to the source.

However impressive the technology, a resonant mass detector is ultimately a narrow-
band instrument, typically operating at a frequency 500 − 1,500 Hz with a bandwidth
of a few tens of hertz. Many astronomical sources are expected to radiate at far lower
frequencies and (arguably) the most important sources, inspiralling compact binaries,
produce broadband signals. The chance of detecting such gravitational waves is far
greater with a detector that operates at lower frequencies and has wide bandwidth. It was
perhaps inevitable that laser interferometers would eventually become the technology
of choice.

7.2 Gravitational waves and light beams

There is a (seemingly simple) question everyone that ever tried to explain gravitational-
wave interferometers to a general audience will be familiar with. In the description of the
freely floating test masses in Chapter 3, we described the effect of gravitational waves as
stretching and squeezing distances. How come, when we try to measure that distance, the
ruler we use is not stretched and squeezed, as well? To some extent, we have already seen
the answer. We can, indeed, set up the problem in such a way that the individual masses
remain at the same coordinate location (this is the TT gauge, illustrated in Figure 3.3).
The reason we can nevertheless measure the effect is that we are measuring spacetime
distance, not just spatial distance. We have already sketched this argument in Chapter 3,
but it is worth considering it in more detail.

Understanding the effect gravitational waves have on null and time-like geodesics is an
essential step towards appreciating how different detectors work, and it is also necessary
if we want to figure out new methods of detection. For example, laser interferometric
detectors are based on the principle that the round trip travel time of laser beams in the
interferometer arms is affected by a passing gravitational wave. Similarly, arrival times of
radio pulses from a millisecond pulsar will be modulated by a gravitational wave passing
by the Earth (see Chapter 22). It is, therefore, instructive to explore how gravitational
waves interact with beams of light in general.

We already know from the equivalence principle that it is impossible to distinguish
between non-inertial reference frames and gravitational fields in a local neighbourhood
of spacetime. No experiment restricted to small time- and length-scales can differentiate
between accelerated reference frames and gravitational fields. For instance, as Einstein
himself taught us, no local experiment would detect the presence of the Earth’s gravity
in a freely falling lift. One way to infer the presence of such a field is to compare the
frequency of a standard source of light as the light beam propagates from one point
to another. As light ‘climbs’ up a gravitational potential it gets redshifted. Another way
to detect gravitational fields is to watch two nearby freely falling test masses, as in the
thought experiment from Chapter 2. After some time, the two masses will be seen to
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approach each other. The effect of gravitational waves on light beams and free test masses
is not different from the effect of gravity itself.

Let us recall the form of the metric for weak gravitational waves and consider the
associated symmetries. As discussed in Chapter 3, the metric of a plane gravitational
wave travelling in the z direction is given by

ds2 = −c2dt2 + [1 + h+(t − z/c)]dx2 + [1 − h+(t − z/c)]dy2

+ 2h×(t − z/c)dxdy + dz2, (7.5)

where {t,x,y,z} are the flat spacetime coordinates, and h+ and h× are the amplitudes
of the plus and cross polarizations of the wave. Note that the metric coefficients are
independent of the coordinates x and y. This independence is due to the symmetry
of the problem. As discussed in Chapter 2, whenever the metric is independent of a
certain coordinate there will be an associated Killing vector. The above form of the
metric explicitly implies that there are at least two such Killing vectors. Moreover, from
the fact that the metric depends on t and z only through the combination t − z/c (it is
propagating wave) we expect that there should be a third Killing vector. The existence
of this vector can be most easily seen by transforming to a new set of (advanced and
retarded) coordinates {ξ ,x,y,χ}, defined by

ξ ≡ ct − z, χ ≡ ct + z, (7.6)

leaving x and y unchanged. These are called null coordinates, as lines of constant ξ and
χ define null rays. In this new coordinate system the metric takes the form

ds2 = −dξ dχ + [1 + h+(ξ)]dx2 + [1 − h+(ξ)]dy2 + 2h×(ξ)dxdy. (7.7)

We see that, in null coordinates the metric is independent of the coordinates χ , x and
y. Therefore, there are three Killing vectors, given by

k1 = ∂

∂χ
, k2 = ∂

∂x
, and k3 = ∂

∂y
. (7.8)

The components of these Killing vectors are

k
′a
1 = (0,0,0,1), k

′a
2 = (0,1,0,0), k

′a
3 = (0,0,1,0), (7.9)

where the primes indicate that the components refer to the {ξ ,x,y,χ} coordinates.
However, the calculation of the effect of gravitational waves on light beams is simpler if
we work with the {t,x,y,z} coordinates. The components of the Killing vectors in these
coordinates can be determined using the standard transformation law for vectors (or
simply noting that ka

1 = ∂xa/∂χ , etc.). Thus, we have
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ka
1 = 1

2
(1,0,0,1), ka

2 = (0,1,0,0), ka
3 = (0,0,1,0). (7.10)

Following the demonstration in Chapter 2 (see Eq. (2.73)), we then have a conserved
quantity φi associated with each ka

i (i = 1 − 3) along the spacetime trajectory of a test
mass or light, given by

φi = gabka
i V b, (7.11)

where V a is the four-velocity (for massive objects) or the tangent to the trajectory (for
light rays).

Let us now consider the effect that a passing gravitational wave has on light (like the
laser beam in a detector). The path of light in a gravitational field is described by null
geodesics. Consider a beam of light in the field of a gravitational wave, for the sake of
simplicity assuming that the gravitational wave is propagating in the z direction. Let us
suppose a beam of light is sent from an emitter, at the origin of the chosen coordinate
system, to a receiver a distance L away from the emitter, as in Figure 7.1. The directions
of propagation of the light beam and gravitational wave define a plane, which we take
to be the x − y plane. Furthermore, let us assume that the wave consists of only the plus
polarization, i.e.h+ �= 0 and h× = 0. In this case the metric simplifies to:

ds2 = −c2 dt2 + [1 + h+(t − z/c)] dx2 + [1 − h+(t − z/c)] dy2 + dz2. (7.12)

Even though we have assumed a specific polarization and direction of propagation of
the waves, the final result will be covariant so remains valid in general (as long as the

emitter

L

z

x

receiver

γ

w
avefronts of gravitational w

ave

L cosγ

Figure 7.1 A light beam (dashed line), making an angle γ with the z axis and travelling in the x − z
plane, is sent from an emitter to a receiver located a distance L away. The frequency of light at the
receiver is Doppler modulated, relative to the emitter, as it travels in the field of a gravitational wave
moving in the z direction (with wave fronts parallel to the x-axis). (Illustration by B. Sathyaprakash.)
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wavelength of the wave is far greater than the distance between the emitter and the
receiver).

Let the light beam make an angle γ with the z-axis. In flat spacetime such a light beam
will be described by a null vector

Ua = ν (c, csinγ , 0, ccosγ ), (7.13)

where ν is the frequency of the light. We want to calculate the time it takes for a light beam
to traverse from the emitter to the receiver and back in the presence of gravitational waves.
In the absence of waves the time interval 
tR between consecutive light pulses arriving at
the receiver will be the same as the time interval 
tE = ν−1 between consecutive pulses
at the emitter. A gravitational wave will alter the time of flight of the light pulses. We can
work out the change in travel time from the Doppler shift in the frequency of the light
beam. That is, we focus on the change in the frequency of light as it moves from emitter
to receiver.

As discussed in Chapter 2, the vector Ua parallel transported along itself defines the
light ray and, in flat spacetime, both the frequency ν and the angle γ remain fixed as the
beam propagates. In a curved spacetime, however, both will change. Let us denote by νE
and νR the frequencies, by γE and γR, the angles and by V a

E and V a
R the null vectors, at the

emitter and receiver, respectively, in the gravitational-wave spacetime. To linear order in
the metric perturbation hab, a null vector V a in the perturbed spacetime is related to the
flat spacetime null vector Ua by

V a = Ua − 1
2

ηabhbcUc. (7.14)

Using this relation it is easy to see that

V a
E = νE

[
c, csinγE

(
1 − 1

2h+(tE)
)

, 0, ccosγE

]
, (7.15)

V a
R = νR

[
c, csinγR

(
1 − 1

2h+(tR − LcosγR/c)
)

, 0, ccosγR

]
, (7.16)

where tE and tR = tE + L/c are the times when the beam leaves the emitter and is received
at the receiver, respectively. Note that the gravitational field at the receiver is not evaluated
at time tR but at an earlier time tR − LcosγR/c. The gravitational-wave phase does
not quite catch up with the phase of the light beam because they travel in different
directions.

The null vectors at the emitter and receiver are related by parallel transport. We could
parallel transport V a

E from the emitter to the receiver and compare the final vector to V a
R

to arrive at a relation between νE and νR. However, we can readily derive such a relation
by making use of the conserved quantities φi. We know that φi at the emitter must be
the same as at the receiver. Let us first note that, due to our choice of geometry, φ3 is
identically zero. Meanwhile, for i = 1,2 we have
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φ1E = φ1R ⇒ νE (1 − cosγE) = νR (1 − cosγR) ,

φ2E = φ2R ⇒ νE

[
1 + 1

2h+(tE)
]

sinγE = νR

[
1 + 1

2h+(tR − Lcosγ /c)
]

sinγR.

We can eliminate γR from these equations and solve for the Doppler shift of the beam
caused by the wave. Keeping only terms of linear order in h+ we find that

νR − νE

νE
= 1 + cosγ

2
[h+(t)− h+(t + L(1 − cosγ )/c)] , (7.17)

where t refers to the time at the emitter and for γ one can use either γE or γR, leaving
the Doppler shift unchanged at linear order in the metric perturbation.

When the beam travels in the same direction as the wave (i.e., when γ = 0 or π)
there is no Doppler modulation and νR = νE . When γ = 0, the light beam is ‘riding’
on the gravitational wave and so the frequency of light does not change as it traverses
from emitter to receiver. When γ = π , the amplitude of the effect is zero (although the
change in phase of the gravitational wave is the greatest). For all other angles, the Doppler
modulation of the light beam can be used to detect the gravitational wave.

To see this, we can write (7.17) in terms of time intervals 
tE = ν−1
E and 
tR = ν−1

R .
To linear order in h+, we have


tR

tE

= 1 + 1 + cosγ

2
[h+(t + L(1 − cosγ )/c)− h+(t)] . (7.18)

Given this, one can detect a passing gravitational wave by comparing the rate at which
light pulses arrive at a distant point as compared to the rate at which they were sent.
This is essentially the way pulsar timing arrays work (see Chapter 22). The largest
fractional difference in the ticks is |1 − 
tR/
tE | � h so the sensitivity of a one-path
system as a detector would be limited by how stable the clocks are. Since the best atomic
clocks have a stability of 10−16, the maximum detectable amplitude would be h ∼ 10−16

(see Figure 1.4). Pulsar timing arrays improve on this by using data from several stable
pulsars. The effective gravitational-wave amplitude increases (roughly) as the square root
of the number of pulsars used.

An alternative to the above strategy would be to compare the rate at which light pulses
return to the emitter after being reflected by the receiver. Starting from (7.18), we can
deduce that the beam reflected by the receiver arrives at the emitter at intervals 
tret
given by:


tret


tR
= 1 + 1 + cos(γ + π)

2
[h+(t + 2L/c)− h+(t + L(1 − cosγ )/c)] . (7.19)

Here we have made use of the fact that the return beam makes an angle γ + π with the
z-axis and when the beam returns to the emitter the phase of the gravitational wave at the
emitter corresponds to time t + 2L/c. Multiplying (7.18) and (7.19) and keeping terms
linear in h+ we get
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tret


tE
= 1 + 1

2
[(1 − cosγ )h+(t + 2L/c)+ 2cosγ h+(t + L(1 − cosγ )/c)

− (1 + cosγ )h+(t)] . (7.20)

This provides the time interval between consecutive light pulses as they travel to the
receiver and are reflected back to the emitter.

In an interferometric detector, the frequency of a standard laser source acts like a
clock. However, the frequency of even the best lasers is not very stable and a one-arm
detector would be severely limited by the frequency fluctuations. Interferometry avoids
this problem by comparing the round trip travel time of light beams in two perpendicular
directions; the round trip travel time in one arm of the interferometer is used as a
reference clock against which the round trip travel time along the other arm is compared.
This is the basic principle behind interferometric gravitational-wave detectors.

7.3 Advanced interferometers

Returning to the issue of designing a sensitive gravitational-wave detector, we know
from our estimates that we can improve a resonant-mass instrument by increasing
the dimensions. We can simply increase the length L of the instrument. Of course, at
some point this becomes problematic. Instead, we can develop the strategy we have
just outlined and try to measure the relative change in distance between two well-
separated masses, e.g. by monitoring the separation via a laser beam that bounces back
and forth between them. As we have already mentioned, we can compare the time
of flight of laser beams in the two perpendicular arms of a Michelson interferometer.
This kind of instrument has a long history in testing aspects of relativity going back to
Albert Michelson designing and performing experiments (already in 1881) to test the
presence of the luminiferous aether. The famous null result of the Michelson and Morley
experiment in detecting any such medium ultimately led to the formulation of special
relativity (Michelson and Morley, 1966). The same idea is now being used, more than a
century later, to measure tiny variations in gravity arising from violent cosmic events.

A sketch of a typical gravitational-wave interferometer is provided in Figure 7.2. The
simplest design consists of a source of monochromatic light (a laser beam) that is sent
along two perpendicular arms with the use of a 50–50 beam splitter—a half-silvered
mirror that passes half of the light and reflects the other half. Highly reflective mirrors at
the end of the two arms reflect the light beams back towards the beam splitter. Beams that
show no net difference in path length interfere constructively upon reaching the beam
splitter and exit the interferometer towards the laser source and no light is transmitted
towards the photo diode. That is, the photo diode is set on a dark fringe when the two
arms are of equal length.3 A passing gravitational wave changes the path lengths, which

3 More precisely, the photo diode will be on a dark fringe if the arm lengths differ by a multiple of the
wavelength and will be on the main, or central, dark fringe when the arms are of equal length.
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Figure 7.2 Schematic illustration of the key elements of an advanced gravitational-wave
interferometer. The light from a laser source passes through a beam splitter that equally divides the light
along two perpendicular arms. Having been reflected by mirrors at the end of the arms, the returning
beams interfere and the output is recorded on a photo diode. The design also includes an optical cavity
that reflects the laser light back and forth many times in each arm, enhancing the effect of a gravitational
wave on the phase of the laser light; a power recycling mirror that increases the power of the laser in the
interferometer as a whole and a signal recycling mirror that further optimizes the signal extracted at the
photodetector. The inset on the right shows the locations and orientations of the two LIGO instruments
and indicates the light travel time between them (about 10 ms). (Adapted from Abbott et al. (2016b),
Creative Commons Attribution 3.0 License.)

causes the fringe to shift. The associated change in light intensity at the photo diode can
be directly linked to the gravitational-wave amplitude.

Recall, from Chapter 3, that the relative change in interferometer arm length is related
to the strain amplitude through 
L/L ≈ h. That is, an instrument with a longer arm
length is sensitive to a weaker signal. A difference 
L in arm length induces a phase shift

φ = 2π
L/λ in the two light beams, or a fringe shift of 
φ/2π = 
L/λ, where λ is the
wavelength of laser.

What magnitude of fringe shift can we expect from astronomical gravitational-wave
sources? As we have argued, the strongest sources are expected to have strain amplitude
h ∼ 10−21 and so the change in length in a 1-km arm is 
L ∼ 10−18 m. For a Nd:Yag
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infrared laser with wavelength λ = 1,064nm the fringes then shift by a tiny fraction of

L/λ ∼ 10−12. Differential length changes of this magnitude can be caused by unwanted
noise sources, some of which are technical (and so might require new designs and
technology) in origin and others fundamental (and difficult or impossible to circumvent).
Novel interferometer designs have made it possible to address some of the main causes
of noise.

Interferometers cannot detect arbitrary length changes because of fundamental noise
that mimics the effect of gravitational waves. For example, even when the arms are
of equal length the photo diode could receive some light because photons from the
laser obey Poisson statistics and arrive at random times. This fluctuation in photon
number, which is called shot noise, limits the sensitivity of the interferometer. In an
instrument that uses a laser of wavelength λ, the smallest change that can be measured is
limited to


Lshot = λ/(2π
√

N), (7.21)

where N is the number of available photons. The energy of each photon is 2π h̄c/λ (h̄
being the reduced Planck constant) so the number of photons contained in a laser of
power P is

N = Pτλ/(2π h̄c), (7.22)

where τ is the time duration over which the measurement is made. Assuming that we
collect photons over a time τ = 1 (in suitable units), we arrive at

N = Pλ/(2π h̄cf ). (7.23)

It follows that the sensitivity that can be achieved due to the shot noise limit is

hshot ≥ 
Lshot

L
= 1

L

√
h̄cλf
2πP

. (7.24)

Interferometeric detectors require continuous lasers for operation and the best (current)
lasers have powers P ∼ 100W. This would limit the sensitivity to strain amplitudes h ∼
10−18 at f ∼ 1kHz. It is also worth noting that the sensitivity scales as f 1/2, so it is more
difficult to detect high-frequency signals.

Photon shot noise can be reduced by using two clever designs, both of which
involve adding extra mirrors to the instrument. First of all, we can add a mirror at the
interferometer output. This power recycling mirror does exactly what it says. Remember
that when no gravitational waves are passing by, the light beam exits the interferometer.
In early designs this light was wasted by diverting it away from the interferometer. The
power recycling mirror sends this light back into the interferometer in phase with the
input laser. The maximum power P then depends on the reflectivity R, or transmittance
(1 − R), of the recycling mirror and the mirrors at the end of the two arms. The power
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keeps building up until transmission losses add up to the input laser power Pin, that
is P(1 − R) = Pin, so the input laser power is amplified by a factor 1/(1 − R). Current
mirror coating technology has achieved power losses of few parts per million leading to
amplification 1/(1 − R) ∼ 105 in arm cavity laser power.

We can also add extra mirrors after the beam-splitter in each arm. These Fabry–
Perot mirrors convert the two arms into cavities, effectively increasing the path length
of the beams. The storage time can, however, not be arbitrarily large. Recall that the
interferometer mirrors oscillate at the same frequency as that of incident gravitational
waves. So the differential length change that builds up during the first half of a
gravitational-wave period will be undone by the next half. So the storage should not be
larger than half the gravitational wave period, or 1/2f . This corresponds to n = c/(2f )L
or ∼ 100 bounces for L = 1km and f ∼ 1kHz.

Power recycling and Fabry–Perot cavities together improve the strain sensitivity by a
factor

√
(1 − R)/n, so the limiting sensitivity in this case will be:

hFP ≥ 
LFP

L
= 1

L

√
h̄cf λ(1 − R)

2πnP
. (7.25)

Taking (1 − R) = 10−5 and n = 100, we have hFP ∼ 2 × 10−22, which sets the design
sensitivity of the current generation of advanced interferometers (Abramovici et al., 1992;
Aasi et al., 2015a; Martynov et al., 2016). For the purpose of data analysis (see Chapter 8),
what is relevant is the spectral density of noise fluctuations caused by shot noise. This is
usually expressed in units of strain per

√
Hz and can be estimated to be h̃FP = hFP/

√
f .

At 1 kHz, the expected spectral sensitivity is then h̃FP ∼ 10−23 Hz−1/2.
It is a bit more complicated to estimate the effect of introducing a signal recycling

mirror. Gravitational waves incident on the interferometer can be thought to create
side bands in the laser light of frequencies ν ± f where ν and f are the laser and
gravitational-wave frequencies, respectively. The signal recycling mirror is used to
selectively resonate one of these side bands. Relative to the signal recycling mirror the
rest of the interferometer can be thought of as an effective mirror, with which the
signal recycling mirror forms a cavity. By carefully adjusting the position of the signal
recycling mirror relative to the beam splitter it is possible to improve the sensitivity
at specific frequencies. In essence, what happens is that the photons used in the
measurement are made to resonate at a specific gravitational-wave frequency, f , so
there will be gain in sensitivity around this frequency at the expense of loss at other
frequencies. The reflectivity of the signal recycling mirror determines the improvement
in sensitivity and the bandwidth: the smaller the chosen transmittance, the greater the
bandwidth.

The sensitivity of all detectors on the ground is severely limited below about 10 Hz
because of fluctuations in gravity gradients caused by motion of the ground. Human
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activity of various kinds and environmental factors (variations in the density of air,
clouds, tumble-weed, and so on) are extremely difficult to control.

7.4 An international network

At the time of writing, three kilometre-scale laser interferometeric detectors have been
built and operated on the ground—in addition to the two LIGO instruments, the
advanced Virgo detector (Acernese et al., 2015) started taking data in August 2017.
The discussion of future instruments is well underway, exploring the potential of similar
technology and developing the plans for the space-based LISA detector (Amaro-Seoane
et al., 2017), which is scheduled to fly in 2034. Ground-based interferometers operate
from a few hertz up to about 10 kHz, with the best sensitivity in the range from 20 Hz
to 2 kHz. Given that a compact binary of mass M has the greatest luminosity just prior
to coalescence, when the gravitational-wave frequency is f ∼ 200(M/20M�)Hz, these
ground-based detectors are essentially sensitive to stellar-mass sources.

The first detection in 2015 was the culmination of decades of technology develop-
ment. The work on interferometric detectors began with prototypes at MIT (10-m arms)
led by Rai Weiss, CalTech (40-m) pioneered by Ron Drever, the University of Glasgow
(10-m) led by Jim Hough, and the Max-Planck-Institut für Quantenoptik in Munich (30-
m) under Albrecht Rüdiger. The instruments were gradually improved as many complex
issues were resolved. As early as 1989, coincident operation of the Glasgow and Munich
prototypes for about 100 hours provided a demonstration that the technology to build
and operate detectors together over a long baseline was becoming available (Nicholson
et al., 1996).

Cutting a long story short, the CalTech 40-m prototype work eventually led to the
foundation of the Laser Interferometer Gravitational-wave Observatory (LIGO; see
Abramovici et al. (1992)), which has grown to a scientific collaboration involving over
1,000 scientists at over 100 institutions worldwide. The two LIGO installations have
4 km long arms and are built in Livingston, Louisiana and Hanford, Washington. The
detector sensitivity reached the initial design target; see Figure 7.3, by the time of the
fifth science run (S5) in 2005 and over a year’s worth of data was taken during S6 (from
July 2009 to October 2010).

At the same time, a French–Italian–Hungarian–Dutch collaboration built the Virgo
detector, with 3-km arms, outside Pisa. The sensitivity of the Virgo detector is similar
to that of the LIGO ones. The British–German GEO600 instrument outside Hannover
is a 600-m arm interferometer. It is less sensitive than LIGO and Virgo, but has served
as an important test bed for new technologies like monolithic silica suspensions, signal
recycling, squeezed light, and so on. A 300-m interferometer called TAMA was also
operated in Tokyo between 2001–2005.

The initial detector era saw impressive strides in technology development. The data
placed ‘interesting’ upper limits for some predicted sources, but there were (obviously)
no detections. This changed as soon as the technology upgrade of the LIGO detectors
was completed in the summer of 2015 (see Figure 7.3). The first detection came on the
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Figure 7.3 The strain sensitivity, in units of strain per
√

Hz, for the LIGO Livingston detector (L1)
and the LIGO Hanford detector (H1) during the O1 observing run. Also shown is the noise level for the
Advanced LIGO design (grey curve) and the sensitivity during the final data collection run (S6) of the
initial detectors. (Reproduced from Martynov et al. (2016).)

14th of September, pretty much the moment the detectors were switched on. The first
Observing run (O1) lasted from September 2015 to January 2016, when the detectors
were again taken offline for fine tuning.

The LIGO instruments resumed data taking at the end of November 2016 and
the advanced Virgo detector joined the venture during the final month of this second
observing run (O2), in August 2017. This was a very exciting month, with several
black-hole events—including GW170814 (Abbott et al., 2017h), which provided a clear
demonstration of the value of adding a detector to the international network. As can be
seen in Figure 7.4 the sky localization improved by about a factor of 10 compared to
the two LIGO detectors on their own. This improvement was, in fact, crucial for the
spectacular neutron star binary merger GW170817 (Abbott et al., 2017f ). The inferred
position in the sky allowed electromagnetic observers to point their telescopes in the
right direction, leading to the identification of counterpart signals across the spectrum
(see Chapter 21).

The ultimate aim of the advanced detector development is to reach strain sensitivity
a factor of 10 better (a survey volume a factor 1,000 larger) than the initial instruments
(see Figure 7.3). The detectors are expected to reach this target in the next few years. In
parallel, Japan is building a new 3-km arm, underground instrument, called KAGRA, in
the Kamioka mines near the city of Toyashima (Akutsu et al., 2017). This is an exciting
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Figure 7.4 An illustration of the 90% probability localizations for GW170814, indicating the
improvement associated with adding the Virgo detector to the two LIGO instruments. The large banana
shaped curve represents a sky area of 1160 square degrees, obtained from the data in the two LIGO
detectors. The green area shows the improvement after adding Virgo, leading to an area of about 100
square degrees. The purple map shows the final localization after a full parameter estimation analysis,
an area of about 60 square degrees. (Reproduced from Abbott et al. (2017h), Creative Commons
Attribution 4.0 License.)

project because it allows a glimpse of future technology. In particular, an underground
detector should experience greatly reduced gravity gradients. The KAGRA detector will
also deploy cryogenic mirrors to beat the thermal noise. Further developments of this
kind of technology may be crucial for third-generation ground-based detectors, like the
(aptly named) Einstein Telescope (Punturo et al., 2010).

Initial LIGO had a third interferometer with 2-km arms at the Hanford installation,
operating in the same vacuum tube as the 4-km instrument. It was realized that the scien-
tific potential of the interferometer network would vastly improve if this interferometer
were to be installed at a different site, such as Australia or India, far away from the other
locations. The network of LIGO, Virgo, and KAGRA consisting of four interferometers
are all located roughly in the same plane. As a result, they are not able to resolve some of
the degeneracies in the parameter space of sources like coalescing binaries. Specifically,
there is a strong degeneracy between the distance to the source and the inclination angle ι

of the orbital plane with respect to the radial vector pointing in the direction of the source
from a detector (see Figure 7.5). The inclination angle is also strongly correlated with the
polarization angle ψ (see Eqs. (7.26)–(7.27)). A detector in the southern hemisphere, or
India, would partly break this degeneracy. More importantly, the largest light travel time
between detectors increases by 60% to ∼ 40ms as opposed to ∼ 25ms for the three-
detector network. This improves the localization of sources by a factor 5 or so. Given
this promise it was decided to ship the third Advanced LIGO detector to India. The
LIGO-India detector is expected to join the other instruments in the mid 2020s.
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Figure 7.5 The geocentric coordinate system where the origin is assumed to be at the centre of the
Earth, with the x-axis pointing along zero degree longitude and z-axis pointing along the zenith. This
coordinate system is used to define the antenna pattern functions of gravitational-wave detectors.
(Illustration by B. Sathyaprakash)

7.5 The antenna pattern

Interferometric detectors are essentially omnidirectional (quadrupole) antennas. Unlike
optical telescopes which can only observe a small field-of-view at any given time, they
have good sensitivity over a large fraction of the sky. The antenna pattern characterizes
the sensitivity of a gravitational-wave detector to different directions.

We can use the results from Section 7.2 to understand an interferometer’s antenna
pattern. First of all, we need to introduce a system of coordinates in which to specify
sky position. We take this to be the geocentric coordinate system sketched in Figure 7.5.
An interferometer located at the north pole in this coordinate system will have its arms
along x- and y-axes and the z-axis points in the direction of the zenith. Gravitational
waves coming from a sky position (θ ,φ) propagate in the negative radial direction, −n̂,
and the wavefronts lie in the radiation plane normal to n̂. θ̂ and φ̂ are unit vectors in the
direction of increasing θ and φ in the radiation plane.

Recall that the metric perturbation hab takes a particularly simple form in the
transverse-traceless gauge: hTT

xx = −hTT
yy = h+, hTT

xy = h×, with all other components
vanishing. The coordinate system that refers to this gauge is defined by unit vectors
(x̂R, ŷR, ẑR), with ẑR = −n̂, and we assume that the vector x̂R makes an angle ψ with the
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Figure 7.6 Plots of the antenna pattern functions F+ (left) and F× (middle), showing the sensitivity of
an interferometer to plus- and cross-polarised waves coming from a given direction in the sky. We also

show the total response function
√

F2+ + F2× (right) which is independent of the polarization angle ψ .
The interferometer arms are assumed to be in the x − y plane. Red indicates directions where the
interferometer’s sensitivity is null (blind spots), while blue corresponds to directions (orthogonal to the
plane containing the interferometer arms) in which the interferometer has the greatest sensitivity.
(Illustration provided by B. Sathyaprakash.)

vector θ̂ . That is, θ̂ · x̂R = cosψ . In this coordinate system the plus and cross antenna
pattern functions of a hypothetical interferometer located at the centre of the Earth are:

F+ = 1
2

(
1 + cos2 θ

)
cos2φ cos2ψ − cosθ sin2φ sin2ψ , (7.26)

F× = 1
2

(
1 + cos2 θ

)
cos2φ sin2ψ + cosθ sin2φ cos2ψ . (7.27)

These results are shown in Figure 7.6. In general, the antenna patterns are functions of
three angles: the direction in the sky (θ ,φ) and the polarization angle ψ .

By operating a network of detectors one can add sensitivity in directions where a
single instrument would be blind (or perhaps, rather, deaf). This notion is demonstrated
by Figure 7.7 which gives an idea of the response of the currently planned worldwide
detector network to different polarisations. The figure shows

F2 ≡
∑

A

(FA+)2 + (FA×)2, (7.28)

where the sum is over the different detectors included. Basically, a network of four
gravitational-wave detectors, LIGO-Hanford, LIGO-India, LIGO-Livingston and Virgo
(HILV), would have a decent sky coverage, achieving good sky localization of binary
inspiral sources. Once the KAGRA detector in Japan is added, blind spots are essentially
removed.
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Figure 7.7 Mollweide plots (equal area projections commonly used for global maps) of the antenna
patterns of single and multiple detectors for different combinations of current and upcoming
interferometers. Starting from the top left: Hanford (H), H-Virgo (HV), H-India-Livingston (HIL), HLV,
HILV, HIL-Japan-V (HILJV) networks. The network of five detectors consisting of HILJV has roughly
uniform sensitivity over the whole sky. (Illustration provided by B. Sathyaprakash.)

7.6 The road to the future

As we enter the era of gravitational-wave astronomy, it is natural to take a look into the
crystal ball and try to predict where this new field may take us. This is an important
exercise because any new generation of gravitational-wave detectors will require huge
investment. We are talking about billion-dollar facilities, akin to the Large Hadron
Collider at CERN. It is debatable if single countries can bear the cost of such an
experiment. Moreover, if we want to widen the search and look for low-frequency
gravitational waves, as expected from massive black holes in distant galaxies, then we
will need a detector in space. Such missions are costly and on top of that they require a
significant lead time. This is perhaps the main lesson from the drawn-out development
of the LISA project, which was first proposed in the late 1980s (Faller et al., 1985) and
which is expected to launch in the 2030s (Amaro-Seoane et al., 2017).
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7.6.1 The view from the ground

If we want to build more sensitive detectors, then it is useful to look back at how we
arrived at the present instruments—how the different noise sources were eventually
beaten down to the level where detections became possible. This is a complicated story,
but we basically learn that the natural steps towards better instruments involve more
powerful lasers, longer arm lengths, and a colder environment. It is also important to
understand the fundamental limitations. For laser interferometers this leads us to the
so-called quantum limit.

We have already seen that the photon shot noise limits the sensitivity at high
frequencies. This limit arises due to the quantum nature of light. Expressing the effect
in terms of the displacement noise spectrum, we have

Sx
shot = h̄cλ

2πP
, (7.29)

where P is the laser power and λ is the wavelength of the laser light. This leads to the
previous estimate for the dimensionless strain (7.24) since

hshot =
√

Sx
shotf

L2 . (7.30)

However, it is useful to work directly with the noise spectrum since we can simply add
different contributions to the overall noise. We also see that Sx

shot is independent of the
gravitational-wave frequency—we are dealing with a white noise contribution. Anyway,
from this estimate it is clear that we can suppress this noise by increasing the laser power.
However, we cannot push this too far. As we increase the power, the radiation pressure
on the suspended mirrors increases. This leads to a low-frequency noise which can be
estimated as

Sx
rp = P

λc
h̄

2π3m2f 4 . (7.31)

This noise increases linearly with the laser power so we pay a penalty for trying to improve
the instrument. After adding the two noise sources, we see that we are limited by

h̄cλ
2πP

+ P
λc

h̄
2π3m2f 4 ≥ h̄

π2mf 2 . (7.32)

Notably, the lower limit (which follows from working out when the two contributions
are equal) is independent of the laser power. It represents what is known as the standard
quantum limit

Sx
ql = h̄

π2mf 2 −→ hql ≈ 1
πL

(
h̄

mf

)1/2

. (7.33)
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This is basically as a trade-off between the shot noise and radiation-pressure noise. As
we increase or decrease the optical power, the power-independent lower bound of the
total spectrum will trace over Sx

ql.
The rules of quantum mechanics are strict, but it is possible to cheat. For example,

recall that the uncertainty principle limits the product of two conjugate variables. You
can imagine improving the sensitivity to one of these variables while sacrificing the
other. This idea leads to the notion of squeezed light, which allows experimenters to go
beyond the quantum limit. Squeezing of light has already been implemented and tested
in the GEO600 detector (Willke et al., 2007) and is one of the key steps towards future
instruments.

The discussion of future instruments is gathering pace, with several design studies
considering the next generation of detectors (see Figure 7.8). A common target for these
designs is to enable the detection of binary signals from cosmological distances. The
aim is to study populations, rather than individual events. The first steps towards this
ambitious goal will involve upgrades of the existing installations (in the first instance,
leading to a detector configurations referred to as LIGO-A+). The LIGO Voyager
configuration pushes the technology to the limit, still within the original infrastructure
(Abbott et al., 2017c). On a longer timescale, one would envisage instruments with a
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Figure 7.8 Possible sensitivity of future ground-based detectors (amplitude spectral density, ASD) for
monochromatic sources distributed isotropically in sky position, inclination, and polarization. The solid
lines indicate the effective strain sensitivity for an optimally oriented source. The coloured bands denote
the effective sensitivity for the best 10% of sources, and the median source. The blue curve shows the
Advanced LIGO design sensitivity. The orange curve below it represents the so-called Voyager design,
which uses the current infrastructure but pushes the technology to the limit. The capability of
third-generation instruments, with longer arm lengths, is indicated by the predicted sensitivity for the
Einstein Telescope (ET, green) and the LIGO Cosmic Explorer (CE, pink). (Reproduced from Hall and
Evans (2019).)
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Figure 7.9 Indicative detector horizon—the redshift beyond which none of the sources are detected—of
selected second- and third-generation detectors for equal-mass, non-spinning binaries, shown as a
function of total source-frame mass. The binaries are distributed isotropically in sky location and
inclination angle. The shaded bands show the redshifts at which 10% and 50% of the sources at that
distance are detected (a source is assumed to be detected if it leads to a matched-filter signal-to-noise
ratio ≥ 8). The blue curve shows the Advanced LIGO design sensitivity. The orange curve below it
represents the so-called Voyager design, which uses the current infrastructure but pushes the technology to
the limit. The capability of third-generation instruments, with longer arm lengths, is indicated by the
predicted sensitivity for the Einstein Telescope (ET, green) and the LIGO Cosmic Explorer (CE, pink).
(Reproduced from Hall and Evans (2019)).

longer baseline. In Europe, a conceptual design study for an underground detector, called
the Einstein Telescope (ET), has been completed (Punturo et al., 2010). The proposed
design has a triangular layout with 10-km arms and operates three broadband detectors
at a single site by using each arm of the triangle twice. The overall ET strain sensitivity
is 10 times better than the current advanced detectors. A similarly ambitious project
discussed in the USA is known as the Cosmic Explorer (Abbott et al., 2017c). In this
case the design is L-shaped, as in LIGO, but the arm-length is a stunning 40 km. At
the moment, these are simply discussion documents aimed at focusing the mind. There
may be a long way to actual constructions, but these are very exciting projects. With a
suggested detector horizon reaching a redshift of several for solar-mass binaries, third-
generation interferometers should be able to detect signals from all related mergers in
the Universe.

7.6.2 Going into space

The sensitivity of ground-based detectors below a few hertz will always be limited by
gravity gradient noise that arises as a result of variations in the surface density of the



OUP CORRECTED PROOF – FINAL, 30/10/2019, SPi

146 Catching the wave

Earth due to seismic waves, variations in the density of air caused by wind and other
environmental factors, and, more generally, noise due to human activity. Some of these
noise sources can be reduced by building a detector deep underground (as in the case
of KAGRA) where the density of air and anthropogenic noise will cease to be problems
and the effect of seismic waves is suppressed.

One can try to avoid low-frequency noise entirely by placing the detector in space.
Plans for such a mission have been under development since the early 1990s, under
the leadership of Karsten Danzmann (Amaro-Seoane et al., 2017). It has been a long
journey, but space missions require a very long lead time. Finally, in June 2017, the Laser
Interferometer Space Antenna (LISA) was selected by the European Space Agency’s
steering committee for the L3 mission launch slot. It is now due to fly in 2034. LISA will
have a set of three free flying spacecraft. Separated from each other by 2.5 million km
(in the current design; see Figure 7.10), the spacecraft will fly in a triangular formation,
trailing the Earth’s heliocentric orbit by about 20◦. The instrument will be sensitive to
sources in the frequency range 0.01 − 100 mHz, meaning that it can probe radiation from
supermassive black-hole binaries from the far end of the Universe. It would essentially
make it possible to trace the history of large black holes across all stages of galaxy
evolution. A range of anticipated LISA sources is summarized in Figure 7.11.

An instrument like LISA has its own design challenges. For example, due to diffraction
losses it is not feasible to reflect the laser beams back and forth between the spacecraft,
as is done on the ground. Instead, each spacecraft will have its own laser. These lasers

Sun
1 AU

Sun

Earth 2.5 million km

1 AU (150 million km)

19 – 23˚
60˚

Figure 7.10 Illustration of the planned LISA orbit, with the triangular interferometer configuration
lagging around 20◦ behind the Earth as it travels around the Sun. (Reproduced with permission from
Amaro-Seoane et al. (2017).)
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Figure 7.11 Predicted sources in the frequency range of LISA, compared to the sensitivity of the
proposed three-arm configuration. The figure shows the dimensionless characteristic strain amplitude for
three tracks of equal mass black-hole binaries, located at a redshift of z = 3 with total intrinsic masses
107, 106, and 105M�. The remaining time until plunge is indicated along each track. Simultaneously
evolving harmonics of an extreme-mass-ratio inspiral source at z = 1.2 are also shown, as are the tracks
of a number of stellar origin black-hole binaries of the type discovered by LIGO (in particular
GW150914). Several thousand galactic binaries will be resolved after one year of observation. Some of
the known systems will, in fact, serve as verification signals. Millions of other binaries result in a
confusion-limited signal, with a detected amplitude that is modulated by the motion of the constellation
over the year (the grey-shaded area). (Reproduced with permission from Amaro-Seoane et al. (2017).)

will be phase locked, achieving the same kind of phase coherence as LIGO does with
mirrors. The configuration then functions as three, partially independent and partially
redundant, gravitational-wave interferometers (Tinto and Dhurandhar, 2014). The
individual test masses must be placed in as drag-free an environment as possible. The
relevant technology has been (spectacularly) demonstrated in flight. The results obtained
by the LISA Pathfinder mission (basically a mini-version of the LISA setup, flying
from December 2015 through March 2016) shows that the required sub-femto-g/

√
Hz

spurious acceleration requirement can be met (Armano et al., 2018); see Figure 7.12.
This was a spectacular result. At the time of the measurements, the LISA Pathfinder
test masses were in one of the stillest places in the Universe. The experiment was more
sensitive than the weight of a virus.

The main LISA noise sources are relatively easy to understand. At low frequencies,
below 3 mHz, the instrument is limited by acceleration noise. This aspect was tested by
the Pathfinder mission. At higher frequencies the photon shot noise determines LISA’s
sensitivity. The sensitivity curve then steepens at f ∼ 3 × 10−2 Hz because at higher
frequencies the gravitational-wave period is shorter than the round-trip light travel time
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Figure 7.12 The level of parasitic differential acceleration of the LISA Pathfinder test masses as a
function of frequency. Data refer to a roughly 13-day-long run and the red, noisy line is the amplitude
spectral density estimated with the standard periodogram technique averaging over 10, 50% overlapping
periodograms each 2 × 105 s long. The blue noisy line represents an earlier, less sensitive, measurement.
The results are compared to the LISA requirements. Fulfilling requirements implies that the noise must
be below the corresponding shaded area at all frequencies. (Reproduced from Armano et al. (2018),
Creative Commons Attribution 4.0 License.)

in each arm. LISA’s sensitivity is roughly the same as that of LIGO, but at a frequency 105

times lower. Since the gravitational-wave energy flux scales as F ∼ f 2h2, this corresponds
to an energy sensitivity that is 1010 times better than LIGO.

7.7 Doppler tracking

So far we have discussed different detector designs, where the primary purpose of the
experiment is to catch gravitational waves. We may also make progress using technology
developed for a different purpose. This would typically involve a variation on the
‘single-arm’ light-travel experiment from Figure 7.1. As an example of this, the Doppler
delay of signals between the Earth-based communication stations and a spacecraft
provides a gravitational-wave detector (Armstrong, 2006). A radio signal of frequency f0
is transmitted to a spacecraft and then coherently transported back to Earth, where it is
received and the frequency is measured with a highly stable clock (typically a hydrogen
maser). The relative change f /f0 is monitored as a function of time. A gravitational-wave
propagating through the Solar System would cause a small perturbation in the frequency
ratio, proportional to the amplitude of the gravitational waves.

With a baseline of 1–10 AU, we can use this technique to search for gravitational
waves in the millihertz regime, and as atomic clocks are extremely stable, it is possible to
achieve sensitivities of order h ∼ 10−15 − 10−13. Noise sources for this experiment can
be divided into two broad classes: (i) instrumental and (ii) related to propagation. At the
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high-frequency end of the band accessible to Doppler tracking, thermal noise dominates
over all other noise sources (typically at about 0.1 Hz). Among the other sources of
instrumental noise (transmitter and receiver, mechanical stability of the antenna, stability
of the spacecraft, etc.), clock noise has been shown to be the most important source
of frequency fluctuations. The propagation noise is due to fluctuations in the index of
refraction of the troposphere, ionosphere, and the interplanetary solar plasma.

Both NASA and ESA have performed this kind of measurements, with increasing
sensitivity due to advances in technology, since the 1980s (Armstrong, 2006). The
first opportunities came with Voyager in 1980, for which a burst search was carried
out. Similar proof-of-principle studies for a stochastic background, periodic waves, and
chirps were carried out on data from Pioneer 10 and 11 and Ulysses. This work motivated
innovations in signal analysis, setting the scene for the Galileo and, in particular, Cassini
missions. Cassini was launched on a mission to Saturn in 1997 and there were several
data-taking campaigns in 2001–3. Opportunities to continue this effort are provided by
the Jupiter mission Juno and, in the near future, the Mercury orbiter BepiColombo.

7.8 Pulsar timing arrays

A population of highly stable millisecond pulsars, with timing accuracies of ∼ 10 ns over
several years, could serve as an array of clocks whose regular ticks would be coherently
modulated by gravitational waves passing the Earth. Given this, there is a worldwide
effort to observe stable millisecond pulsars and exploit them for detecting gravitational
waves.

Pulsar timing arrays can be thought of as nature’s own interferometers, with galactic-
scale arm lengths. They are sensitive to much lower frequencies than ground-based
instruments. Typically, precise timing of an array of pulsars could detect the nanohertz
gravitational waves one would expect from merging supermassive black-hole binaries
with masses in the range 109 − 1010M�. The array should also be sensitive to stochastic
gravitational waves.

As we will discuss in Chapter 22, the strategy behind pulsar timing arrays is intimately
linked to the problem of extracting the signal. The detector design is up to nature. The
observers job is ‘simply’ to identify, and continue to track, the largest possible set of
extremely stable pulsars. There are three current efforts in this direction, operating under
the joint umbrella of the International Pulsar Timing Array (IPTA) (Manchester et al.,
2013): NANOgrav in the USA, the Parkes Pulsar Timing Array (PPTA) in Australia, and
the European Pulsar Timing Array (EPTA). The current sensitivity of the experiments
is close to the level where one may expect a detection. This is already exciting and the
future seems bright. Once it comes on-stream in the next decade, the Square-Kilometre
Array (SKA) is expected to lead to significant further improvements (Stappers et al.,
2018).
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Mining the data

Gravitational-wave detectors are complex instruments, with (more or less) ‘individual
personalities’ requiring intricate and specialized control systems. Moreover, they are
wide-band instruments sensitive to (more or less) all sky directions. A single detec-
tor monitors sources over a large fraction of the sky and a network of instruments
may achieve near isotropic sensitivity. Signals from a variety of sources—transients,
continuous waves, binary inspiral and merger signals, stochastic backgrounds—may
be present in the same data set. In addition, the background noise is likely to have
considerable non-stationarity (short duration glitches caused by electronics, suspension
systems, stray magnetic fields acting on the electronics, etc.), which means that it cannot
simply be described as a simple Gaussian background. Disentangling different sources
and determining their properties is a serious challenge. However, over the past decades
many different search techniques have been developed and considerable progress has
been made on addressing the key problems.

In order to complete our first pass through the main issues facing a gravitational-
wave astronomer, we will now introduce the basic principles behind signal detection
and parameter estimation.1 The main aim is to develop the ideas to the point where
we can assess the detectability of any proposed source. The main focus will be on
standard matched filtering. To an expert, this may seem somewhat old fashioned, but
it is natural to take this ‘frequentist’ approach as it does not assume any prior knowledge
of statistics. However, both the detection and parameter extraction problems ultimately
involve the maximization of the likelihood that a signal is present in the data and that the
signal parameters take certain values. Hence, it is equally natural that modern analysis
discussions tend to be based on a Bayesian strategy. Given this, we also provide a brief
introduction of Bayesian statistics and how it can be applied to the gravitational-wave
analysis problem.

Before turning to the details it is useful and instructive to underline why any
data analysis strategy for gravitational waves must be different from the conventional
approach in astronomy.

1 The interested reader will find a more exhaustive discussion in the book by Creighton and Anderson
(2011). Other useful starting points are the reviews by Thorne in Hawking and Israel (1989) and Sathyaprakash
and Schutz (2009).

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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(i) Gravitational-wave antennas are omnidirectional, with a response better than
50% of the root mean square over 75% of the sky (see Chapter 7). As we do not
have the ability to ‘point’ the instrument, we have to carry out all-sky searches.

(ii) Interferometers are typically broadband, covering a frequency range of (up to)
three orders of magnitude. This is an advantage, as it helps track sources whose
frequency evolves, but it means that we need to search over a wide range of
frequencies.

(iii) General relativity predicts that gravitational radiation has two independent
polarizations (h+ and h×; see Chapter 3). Measuring the polarization is of
fundamental importance (as there are alternative theories of gravity with more
than two polarizations; see Chapter 4) and may have astrophysical implications
too (it would, for example, be one way to resolve the mass-inclination degeneracy
of binary systems). A polarization measurement requires a network of detectors,
which means that we need analysis algorithms that work with data from multiple
antennas.

(iv) Astrophysical gravitational waves are detected coherently, by following the
phase of the radiation, rather than the energy (as in standard astronomical
observations). The signal-to-noise ratio is built up by coherent superposition
of many wave cycles emitted by a source. The phase evolution contains more
information than the amplitude and the signal structure encodes the underlying
physics. Nevertheless, tracking a signal’s phase means that searches will have to
be made over a vast region of parameter space for each source, placing severe
demands both on the theoretical understanding of the emitted waveforms and
the data analysis algorithms.

(v) Gravitational-wave detection is computationally intensive. Advanced detectors
will collect data continuously for several years at the rate of several megabytes
per second (the sampling rate of LIGO is 16,384 Hz). About 1% of this data is
signal data; the rest is housekeeping information that monitors the operation of
the instrument. The large parameter space requires that the signal data be filtered
many times for different searches, and this puts huge demands on computing
hardware and algorithms.

Despite these challenges, data analysis for broadband detectors has been developed
since the mid-1980s (see Thorne’s contribution to Hawking and Israel (1989)). Much
of the theory is now well understood, but implementation strategies depend on available
computer resources, data volumes, astrophysical knowledge, and source modelling, and
so are under constant development.

8.1 Random noise

As we turn to the actual data analysis problem, it is natural to begin by considering
the issue of random noise. Our real interest may be in astrophysical gravitational-wave
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signals, but it is crucial that we understand the detector noise. After all, we need to devise
clever schemes for digging weak signals out of the noisy data stream. As a first step, it is
useful to consider how we characterize the noise in a given detector.

Noise is a random process. As the detector output is sampled at some finite rate, the
noise is given by some discrete time series ni(t) (say). However, we will nevertheless
consider the problem in the continuous limit. That is, we take the noise to be some
function of time n(t). The extension to the discrete case is straightforward, e.g. by
changing the Fourier transforms below to their discrete versions.

Because the noise is random we cannot know exactly which realization we are dealing
with at any give time. We have to consider the problem from a statistical point of view.

Let us take pn to be the probability (density) for a given n at time t. We then have the
expectation value

〈n〉 =
∫

npn(n)dn (8.1)

(where the notation should not be confused with the averaging over wave-periods from
the previous chapters). If we assume that the noise is stationary2 we can use the time
average

〈n〉 = lim
T→∞

1
T

∫ T/2

−T/2
n(t)dt. (8.2)

For stationary Gaussian processes the mean value 〈n〉 = 0, but the corresponding power
spectrum will be nontrivial. The power associated with the noise follows by integrating
n2 over some time T and averaging, so we have

〈n2〉 = lim
T→∞

1
T

∫ T/2

−T/2
n2dt. (8.3)

Assuming that the noise vanishes outside the time window we are considering, i.e. using,

n(t) =
{

nT , −T/2 ≤ 0 ≤ T/2,
0 , elsewhere,

(8.4)

we have

〈n2〉 = lim
T→∞

1
T

∫ ∞

−∞
n2

T dt = lim
T→∞

2
T

∫ ∞

0
|ñT ( f )|2df ≡

∫ ∞

0
Sn( f )df , (8.5)

2 The assumption that the noise is stationary boils down to assuming that (in absence of signals) the detector
output remains (statistically) unchanged. The noise would have the same properties on Tuesday as it had on,
say, Monday. This property is desirable, but it is always going to be an idealization.
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where we have used the Fourier transform

ñ(f ) =
∫ ∞

−∞
n(t)e2π ift dt (8.6)

with inverse

n(t) =
∫ ∞

−∞
ñ(f )e−2π ift df . (8.7)

We have also used the fact that the noise is real, so that ñ(−f ) = ñ∗(f ), where the asterisk
represents complex conjugation, and applied Parseval’s theorem. The result (8.5) defines
the (one-sided) power spectral density, Sn( f ), which provides the all-important measure
of the strength of the noise.

Before we proceed, it is worth noting that, the spectral noise density is (twice) the
Fourier transform of the auto-correlation3 of the noise. With

Rn(τ ) = 〈n(t)n(t + τ)〉 , (8.8)

we have

Sn(f ) = 2
∫ ∞

−∞
Rn(τ )e2π if τ dτ . (8.9)

8.2 Matched filtering and the optimal signal-to-noise ratio

We now want to see what happens when we add in a signal. As a first step towards
understanding this problem, it makes sense to introduce matched filtering—a well-
established data analysis technique that efficiently searches for a signal of known shape
buried in noise. The method involves correlating the output of a detector with a
waveform, known as a template or filter. Given a signal h(t) buried in noise n(t), the
task is to find an ‘optimal’ template K(t) that produces, on average, the best possible
signal-to-noise ratio.

Intuitively, it is clear what we expect the matched filtering to achieve. Operationally,
we need to take a few steps to reach this target.

Let us, first of all, take the detector output to be a time series, x(t), consisting of a
background noise n(t) and a gravitational-wave signal h(t). Letting a tilde denote the
Fourier transform of a quantity, as before, we have

3 Given two time series, the correlation quantifies to what extent there are common features. The auto-
correlation in (8.8) measures how much the noise has ‘in common with itself ’.
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x̃(f ) =
∫ ∞

−∞
x(t)e2π ift dt. (8.10)

Inspired by (8.8) we introduce the correlation

c(τ ) =
∫ ∞

−∞
x(t)K(t + τ)dt, (8.11)

where K(t) is a suitable filter. Since 〈n〉 = 0, it then follows immediately that

S = 〈c〉 =
∫ ∞

−∞
h(t)K(t + τ)dt =

∫ ∞

−∞
h̃( f )K̃∗( f )e2π if τ df . (8.12)

The lag τ now represents the duration by which the filter function lags behind the
detector output. The purpose of the correlation integral is to concentrate all the signal
energy at one place. It is worth noting that, if the signal arrives at time ta so that we are
matching the filter to h(t + ta), then we have

S =
∫ ∞

−∞
h̃( f )K̃∗( f )e2π if (τ−ta) df . (8.13)

We see that if we want to maximize the output, we need the lag τ to be equal to the time
of arrival of the signal. Hence, we assume this to be the case from now on. Of course, in
practice this involves moving any given template shape along the data set to identify the
most likely arrival time.

When no signal is present, the detector output is just a realization of the noise, i.e.,
x(t) = n(t). In order to separate the noise from the signal, we use the variance

N2 =
〈
(c − 〈c〉)2

〉
. (8.14)

We then have

N2 =
∫ ∞

−∞

∫ ∞

−∞
K(t)K∗(t′)

[∫ ∞

−∞

∫ ∞

−∞
〈ñ(f )ñ∗(f ′)〉dfdf ′

]
dtdt′

=
∫ ∞

−∞
1
2

Sn|K̃(f )|2df =
∫ ∞

0
Sn|K̃(f )|2df , (8.15)

where K̃∗(t) denotes the complex conjugate of K̃(t), and we have used

〈ñ∗(f ′)ñ(f )〉 = 1
2

δ(f − f ′)Sn(f ), (8.16)

with δ(f − f ′) the delta function.
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Finally, the signal-to-noise ratio ρ is defined as

ρ2 ≡ S2/N2. (8.17)

The form of the different integrals suggests that it is natural to define a scalar product
of waveforms. Given two functions, a(t) and b(t), we let their scalar product be

(a|b) ≡ 4 Re
∫ ∞

0

ã(f )b̃∗(f )
Sn(f )

df . (8.18)

We then have

S = (h|SnK/2) = 2 Re
∫ ∞

0
h̃(f )K̃∗(f )df , (8.19)

which means that we can express the signal-to-nose ratio as

ρ2 = (h |SnK)2

(SnK |SnK)
. (8.20)

This is a very important result. We see that the template K that leads to the maximum
value of ρ is simply (recalling that we have already used τ = ta)

K̃(f ) = γ
h̃(f )
Sn(f )

, (8.21)

where γ is an arbitrary constant. This represents the optimal (Wiener) filter. It is the best
we can hope to do.

We have learned two important things. First, it is the shape of the filter that is
important, not the overall amplitude. Second, the optimal filter is not just a copy of the
signal; it is weighted by the noise spectral density Sn(f ).

Combining the above results, we can work out the optimal signal-to-noise ratio. From
(8.20) and (8.21) we get

ρ2
opt = (h|h) = 4

∫ ∞

0

∣∣∣h̃(f )
∣∣∣2

Sn(f )
df . (8.22)

It is worth highlighting that this is not just the total energy of the signal (which would
be 2

∫ ∞
0 |h̃(f )|2 df), but rather the integrated signal power weighted by the noise Sn(f )/2.

This makes intuitive sense. The contribution to the signal-to-noise from a frequency bin
where the noise is high is smaller than from a bin where the noise is low. In other words,
an optimal filter takes into account the nature of the noise.
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The final result (8.22) is powerful but may not be ideal if we want to compare
predicted signal strengths to the noise in a given detector. The magnitude |h̃(f )| provides
the raw signal strength as a function of frequency, but (as we will soon see) this
instantaneous amplitude can be orders of magnitude smaller than the accumulated
signal after some observation time. Hence, a direct comparison with Sn(f ) may not be
meaningful. The comparison would not make sense, anyway, as the two quantities have
different physical dimensions.

In order to make a more meaningful comparison it is common to introduce a
characteristic amplitude such that

|hc(f )|2 = 4f 2|h̃(f )|2, (8.23)

and write the optimal signal-to-noise ratio as

ρ2
opt =

∫ ∞

0

|hc(f )|2
fSn(f )

d log f . (8.24)

We are now comparing dimensionless quantities, hc(f ) and
√

fSn(f ), which makes more
sense. Moreover, with this convention, if we compare the quantities on a log–log scale,
then the area between the source and detector noise curves is simply related to the signal-
to-noise ratio. In effect, we can ‘integrate by eye’ to assess the detectability of any given
scenario. Another advantage is that fSn(f ) simply represents the root-mean-square noise
in a bandwidth f . Figure 1.4 provides an example of this kind of comparison.

Of course, the characteristic amplitude hc does not directly represent the amplitude of
waves emerging from a given source. As an alternative, we can rearrange (8.24) in such
a way that we compare dimensional quantities:

ρ2
opt =

∫ ∞

0

2
∣∣∣√f h̃(f )

∣∣∣2
Sn(f )

d log f . (8.25)

The advantage of this convention is that the power spectral density Sn, when integrated
over all frequencies, gives the mean square amplitude of the detector noise. Of course,
the height of the source about the noise curve is no longer trivially related to the signal-to-
noise. An example of this kind of comparison, for the black-hole signals detected during
the first observation run of Advanced LIGO, is provided in Figure 8.1.

Signals of interest to us involve a number of (a priori unknown) parameters, such as
the masses of the two components in a binary and their intrinsic spins, and an optimal
filter must agree with both the signal shape and these parameters. If the filter parameters
are slightly mismatched with the signal, the signal-to-noise will degrade. For example,
even a mismatch of a single cycle in 104 during a neutron star binary inspiral can degrade
the signal-to-noise ratio by as much as a factor of 2.
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Figure 8.1 A comparison of the gravitational-wave signals and the detector noise for three black-hole
merger events seen during the first LIGO observing run. Note that the GW151012 event was upgraded
from a ‘candidate’ to a detection when the data was reanalysed; see table 9.3. (Reproduced from Abbott
et al. (2016a), Creative Commons Attribution 3.0 License.)

8.3 Applications of matched filtering

As a rule of thumb, matched filtering helps enhance the signal-to-noise ratio as the square
root of the number of signal cycles in the detector band, compared to the case in which
the signal shape is unknown and all we can do is Fourier transform the detector output
and compare the signal energy in a frequency bin to the noise in that bin.

As illustrations of this, let us consider a couple of problems of immediate relevance
to gravitational-wave searches: the detection of chirp signals from compact binaries and
continuous waves from spinning neutron stars.

8.3.1 Coalescing binaries

In the case of inspiralling binaries, post-Newtonian theory (see Chapter 11) is used to
model the dynamics to a high order in v/c, where v is the speed of the binary companions.
Given this approximate signal, we can effectively match filter for binaries as long as the
system is still ‘far’ from coalescence. In reality, one takes the waveform to be valid until
the innermost stable circular orbit (see Chapter 10). In the case of binaries consisting
of two neutron stars, or a neutron star and a black hole, tidal effects might affect the
evolution well before reaching this point. We will explore this problem in more detail in
Chapter 20, but let us not worry about this issue right now.

As we will see later (Chapters 19–21), numerical relativity simulations provide wave-
forms for the merger phase of compact binaries, as well. However, the computational cost
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in matched filtering the merger phase will not be very high, as it only involves a small
number of gravitational-wave cycles. Having said that, it is crucial to have the correct
waveform to enhance signal visibility and, more importantly, to enable strong-field tests
of general relativity.

In the general case of a black-hole binary inspiral the search space is characterized by
17 different parameters. These are the two masses of the bodies, their spins, eccentricity
of the orbit, its orientation at some fiducial time, the position of the binary in the sky
and its distance from the Earth, the epoch of coalescence and phase of the signal at that
epoch, and the polarization angle (quite a list!). However, not all these parameters are
important in a matched-filter search. Only those parameters that change the shape of
the signal, such as the masses, orbital eccentricity, and spins, or cause a modulation in
the signal due to the motion of the detector relative to the source, such as the direction,
are to be searched for. Other parameters, such as the epoch of coalescence and the phase
at that epoch, are simply reference points in the signal that can be determined without
significant burden on the computational power.

For typical neutron star binaries (where the spin of the stars can be ignored, as it is
likely to be slow) observed for a short enough period that the detector motion can be
neglected, or where the signal lasts only a short time in the detector’s sensitivity band,
there are essentially two search parameters—the individual component masses.

This problem serves as a useful example of the matched filtering approach. In
particular, we can show that the filtering allows us to account for the fact that the binary
system spends more time at lower frequencies. If we take φ to be the orbital phase, so
that φ̇ = 2π f = 2�, then the number of cycles generated at a given frequency is roughly

N = f
2π

dφ

df
= f 2

ḟ
. (8.26)

Let us work out the corresponding characteristic amplitude, given the raw amplitude

h(t) = h0 cosφ(t), (8.27)

with h0 (approximately) constant. Provided the frequency is slowly evolving, we can
work out hc using the stationary phase approximation. First of all, we have

h̃(f ) = h0

2

∫ ∞

−∞

{
exp

[
2π i

(
ft + φ

2π

)]
+ exp

[
2π i

(
ft − φ

2π

)]}
dt. (8.28)

The main contribution to the integrals come from frequencies where the arguments of
the exponentials are approximately zero, and we find that (Cutler and Flanagan, 1994)

h̃( f ) ≈ h0

2

(
ḟ
)−1/2

exp[2π ift − iφ(f )− iπ/4], (8.29)
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where t is the time at which φ̇ = 2π f (the stationary point) and φ(f ) is shorthand for
φ[t(f )]. Given this, it follows from (8.23) that

|hc(f )| ≈
(

f 2

ḟ

)1/2

h0 = √
Nh0. (8.30)

This is the desired result—the characteristic amplitude is enhanced at lower frequencies
where the inspiralling system spends more time. From the leading order post-Newtonian
result derived in Chapter 5, we know that

N ∼ f −5/3, (8.31)

so the enhancement of the signal-to-noise can be significant. We also know that

h0 ∼ M5/3f 2/3

d
, (8.32)

so

hc ∼ M5/3f −1/6

d
. (8.33)

This explains the overall slope of the model inspirals in, for example, Figure 8.1.

8.3.2 Continuous waves

As we discussed in Chapter 6, spinning neutron stars may emit continuous gravitational
waves. In this case, the signal shape is simple: a sinusoidal oscillation with small
corrections to account for the gradual spin-down of the neutron star. However, the
search for such signals is costly as one has to account for the Doppler modulation of the
signal caused by the Earth’s rotation, the motion of the Earth around the Solar System
barycenter, and so on.

Much of the observational literature describes continuous gravitational waves in terms
of a intrinsic strain, h0, associated with the response of a hypothetical detector at either
of the Earth’s poles to a signal from a spinning star over either pole whose rotation axis
is parallel to that of the Earth (Jaranowski et al., 1998). This quantity is simply related to
the gravitational-wave luminosity:

Ė = 1
16π

〈ḣ2+ + ḣ2×〉, (8.34)

In general, we have (see Chapter 6)

h(t) = F+
h0

2
(1 + cos2 i)cos2ωt + F×h0 cos i sinωt, (8.35)
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where F+ and F× are the detector antenna patterns from Chapter 7, and ω is the
(angular) frequency of the waves. For the assumed configuration we simply have h+ =
h× = h0. Next, being less cavalier with numerical factors of order unity than we were in
Chapter 3, we average over all possible source orientations. This leads to an additional
factor of 2/5 in the luminosity, so we have

Ė = 1
10

ω2d2h2
0, (8.36)

where d is the distance to the source. Making use of the quadrupole formula result from
Chapter 6 we have

h0 = εI0ω
2

d
= 4π2εI0f 2

d
, (8.37)

where ε is the ellipticity associated with the star’s deformation, I0 is the moment of inertia,
and f is the gravitational-wave frequency.

We can now ask how strong the signal would need to be in order for it to be detectable
in the ideal case where we know all source parameters to sufficient accuracy that only
one template is needed. In this case we can easily integrate for long observation times,
Tobs. In the case of such a coherent search, with D detectors, the signal-to-noise ratio
follows from

ρ2 = DTobsh2
0

Sn
. (8.38)

That is, the effective amplitude of the signal increases as the square root of the
observation time. For a one–year search the improvement would be almost a factor of
6,000 over the instantaneous amplitude. This is clearly significant. Note also that the
signal-to-noise improves with the number of detectors.

This result allows us, for a given set of (identical) detectors, to work out the minimum
h0 required to achieve a certain signal-to-noise. This minimum amplitude works out to
be (Jaranowski et al., 1998)

h0 ≈ 11.4
(

Sn

DTobs

)1/2

. (8.39)

This is a useful measure of the sensitivity of a continuous-wave search. The numerical
factor of 11.4 corresponds to a signal-to-noise threshold representing a single trial false
alarm rate of 1%, a false dismissal rate of 10%, and a uniform averaging over the possible
source orientations and sky positions.

In reality, the continuous-wave problem presents a severe computational challenge. As
an illustration, let us estimate the cost of a search for unknown pulsars by working out the
number of sky patches one would have to consider (Sathyaprakash and Schutz, 2009).
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We want to know how many independent patches we need to observe if we do not want to
lose appreciable signal-to-noise. First of all, the baseline of a gravitational-wave detector
for continuous-wave sources is essentially L = 2 × 1 AU � 3 × 1011 m. For a source that
emits gravitational waves at 100 Hz (near the sensitivity sweet spot of a ground-based
detector), the wavelength of the radiation is λ = 3 × 106 m, and the angular resolution
�θ of the antenna at a signal-to-noise ratio of 1 is �θ � λ/L = 10−5, or a solid angle
of �� � (�θ)2 = 10−10. In other words, the number of patches one should search for
is Npatches ∼ 4π/�� � 1011. Moreover, for an observation that lasts for about a year
(Tobs � 3 × 107 s), the frequency resolution is �f = 1/Tobs � 3 × 10−8. If we search a
frequency band of (say) 300 Hz we need to consider about 1010 frequency bins. We
have to search over roughly 1011 patches in the sky for each of the 1010 frequency bins.
This is a formidable task.

In reality, one can only expect to perform a matched-filter search over a short period
(days/weeks) of the data or over a restricted region in the sky, or perform targeted
searches for known objects. This suggests three possible search strategies. (i) We can
target the search on pulsars with known location and spin frequency. (ii) In some cases,
like known supernova remnants, we know the location but not necessarily the spin-
frequency of the neutron star. In this case the directional information can be used to
lower the computational burden. (iii) Finally, and for the reasons given earlier, we have
blind all-sky searches, trying to find objects that may not radiate electromagnetically. This
kind of search is very costly, but one can still develop hierarchical algorithms that add
power incoherently with the minimum possible loss in signal visibility. We will discuss
continuous-wave results for all three search strategies in Chapter 14.

8.4 Bursts searches

In many gravitational-wave scenarios a significant amount of energy is emitted as a
brief, unpredictable, burst. This is notably the case for core collapse supernovae (see
Chapter 20). The very nature of such scenarios means that matched filtering makes little
sense. There is no chance of accumulating signal-to-noise by integrating over a large
number of cycles, as in the case of binary inspiral. Typically, a search for burst signals
cannot be template based.

For burst sources one would typically replace the characteristic amplitude with the
root-sum square:

h2
rss =

∫ (
|h+(t)|2 + |h×(t)|2

)
dt]. (8.40)

For a linearly polarized wave, with h̃(f ) constant over some bandwidth �f , it is then
approximately the case that

h2
rss ≈

∫
|h̃|2df ≈ �f |h̃(f )|2. (8.41)
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Let us take the opportunity to discuss a different kind of averaging, which may be
useful when we want to assess the detectability of a given set of sources. In general, the
gravitational waves that arrive at a detector will (as long as the detector is small compared
to the wavelength; see Chapter 3) be given by

h(t) = F+h+ + F×h×. (8.42)

Consider a specific class of burst sources, distributed in space and with random
orientation of the polarization axes. In order to work out the detectability of such signals
we need to do more than just average over the angles. There may also be a preference
for directions and polarizations which leads to a strong signal-to-noise. This is natural
because a stronger source can be seen from a larger distance, where the event rate is
higher. This can be a significant bias because the event rate increases as d3 while the
gravitational-wave amplitude decreases as 1/d. The upshot of this is that (see Thorne’s
review in Hawking and Israel (1989))

(
S
N

)2

strongest
≈

〈(
S
N

)3
〉2/3

≈ 3
2

(
S
N

)2

. (8.43)

Also noting that 〈F2+〉 = 〈F2×〉 = 1/5 and 〈F+F×〉 = 0 we have

(
S
N

)2

strongest
≈ 3

10

∫ ∞

0

〈|h̃+|2 + |h̃×|2〉
Sn(f )

df , (8.44)

or

(
S
N

)2

strongest
≈ 3

10
�f |h̃(f )|2

Sn(f )
, (8.45)

where we have assumed that �f is sufficiently small that we can take the noise as constant.
Before we move on, it is also worth noting that burst searches often involve time–

frequency techniques, where the data from the detector is broken up into segments and
then transformed into the frequency domain. After normalizing to the noise spectrum of
the detector, a time–frequency plot is produced. Possible signals are ‘simply’ identified
by clusters of pixels that contain excess power. This strategy is useful whenever we are
unable to accurately predict the shape of the signal. This can be for a variety of reasons,
either technical or arising from our ignorance of the physics. Regardless of the reason,
the implication is clear. We cannot use matched filtering to detect such signals. In fact,
even in cases where the waveform is known, matched filtering may not be effective if
there is a great variety in the shape of the signals. In these cases one is naturally led
to suboptimal methods. This means negotiating on the signal-to-noise, but there may
be advantages as well. In particular, suboptimal methods are less sensitive to the signal
shape and computationally cheaper than matched filtering. The best such methods are
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sensitive to signal amplitudes a factor of 2 to 3 larger than that required by matched
filtering.

The majority of suboptimal techniques build on some form of time-frequency
transform, defined as q(τ , f ) for data x(t) using a window w(t), such that

q(τ , f ) =
∫ ∞

−∞
w(t − τ)x(t)e2π ift dt. (8.46)

The window function w(t − τ) is centred at t = τ , and one obtains a time–frequency map
by moving the window from one end of a data segment to the other. The window is not
unique and its efficiency depends on the kind of signal one is looking for. Once the time–
frequency map is constructed, one can look for excess power (compared to the average)
in different regions, or search for specific patterns.

In practice, the preferred method depends on the signal we are searching for. For
unknown signals, the only choice is to look for a departure from the ‘average’ in different
regions of the map. However, if we have some level of knowledge of the spectral/temporal
content of the signal, then we can do better. Wavelet-based algorithms, which have been
used in searches for unstructured bursts, provide useful examples. One may also develop
strategies that improve detection efficiency over a simple search for excess power. For
example, chirping signals will leave a characteristic track in the time–frequency plane,
with increasing frequency and power as a function of time. An excellent example of this
is provided by the data for GW150914, shown in the bottom panels of Figure 1.1. This
signal was, in fact, first picked up by a LIGO burst search algorithm.

8.5 Stochastic backgrounds

In terms of search strategies, we also need to consider the possibility of a large number
of unresolved signals. This will be important as detectors become sensitive enough to
observe a large fraction of the universe. In this case we are dealing with a stochastic
gravitational-wave background which can be described in terms of the energy carried
by the waves. From the standard flux formula it follows that the energy emitted per unit
area is given by

E = c2

16πG

∫ ∞

−∞
(2π f )2|h̃(f )|2df =

∫ ∞

0

πc2

4G
f 2Sn(f )df (8.47)

(after integrating over time and using Parseval’s theorem). The integrand is often defined
in terms of the energy per unit volume of space per unit frequency

SE = πc2

4G
f 2Sn. (8.48)
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In a cosmological context it is common to work with the dimensionless quantity �gw,
the energy density per logarithmic frequency interval, normalized to the critical density
required to close the universe. This is a straightforward extension of the discussion in
Chapter 4. That is, we introduce

�gw = fSE(f )
ρcc2 = f

ρc

dρgw

df
, (8.49)

where ρgw is the energy density associated with gravitational waves and the critical density
is given by (4.72). That is, we have

ρc = 3H2
0

8πG
, (8.50)

where H0 is the present value of the Hubble constant.
Before we proceed it is useful to relate the different representations for the

gravitational-wave amplitude. We have

H2
0�gw(f ) = 8πG

3c2 fSE(f ) = 2π2

3
f 2|hc(f )|2 = 8π2

3

∣∣∣h̃(f )
∣∣∣2 . (8.51)

We will make frequent use of these relations when we consider cosmological backgrounds
in Chapter 22.

In order to detect a stochastic signal, we need to correlate the output from two (or
more) detectors. The combined sensitivity can be significantly higher than that obtained
for each individual instrument. To see how this goes, let us suppose that each detector
output (labelled by I) contains a stochastic signal s(t) along with the usual noise n(t).
That is, we have

xI(t) = sI(t)+ nI(t) , I = 1,2, .... (8.52)

Moreover, let us assume that the signal-to-noise ratio is so low that we cannot easily
distinguish the signal. It is simply part of the noise. However, all detectors will sense the
same gravitational wave so we can use the correlation

x = 〈x1,x2〉 =
∫ T/2

−T/2
x1(t)x2(t)dt. (8.53)

Then we have

x ≈ 〈s1, s2〉 + 〈n2,n2〉 , (8.54)

since the cross terms are uncorrelated and should be much smaller than the uncorrelated
noise–noise term.
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If we run the detectors for a long time Tobs, then the signal correlation will grow
linearly. Hence we have

〈s1, s2〉 ∼ |s(f )|2�f Tobs. (8.55)

Meanwhile, the noise will execute a random walk, leading to

〈n1,n2〉 ∼ |n(f )|2 (�f Tobs)
1/2 . (8.56)

This argument tells us that the minimum detectable amplitude will improve as

�gw ∼ |n(f )|2
(�f Tobs)

1/2 . (8.57)

The main question is whether we can keep observing long enough to make a weak signal
detectable. We will return to this problem in Chapter 22.

8.6 Avoiding false alarms

When we are dealing with real detector data we have to accept the presence of glitches
and transients that may look like damped sinusoids, or in other ways mimic the signals
we are interested in. There will inevitably be false alarms, due to both the instrument and
its environment, and we need to figure out efficient ways of dealing with these. As a first
step towards ruling out such triggers, let us consider a veto that makes use of the scalar
product from matched filtering (Allen, 2005) (see also Lindblom and Cutler (2016)).

Suppose we are looking for binary inspiral signals. For such signals the matched-filter
signal-to-noise has contributions from a wide frequency range. However, the result is
an integral over the frequency, so it does not distinguish contributions from specific
frequency regions. However, imagine dividing the range of integration into a finite
number of bins fk ≤ f < fk+1, k = 1, . . . ,p spanning the entire frequency band, in such
a way that f1 = 0 and fp+1 = ∞, and assume that the contribution to the signal-to-noise
from each frequency bin is the same. That is

4
∫ fk+1

fk

|h̃(f )|2
Sn(f )

df = 4
p

∫ ∞

0

|h̃(f )|2
Sn(f )

df . (8.58)

Then define the contribution from the kth bin as

zk ≡ (K |x)k ≡ 4Re
∫ fk+1

fk

K̃∗(f )x̃(f )
Sn(f )

df , (8.59)

where x̃(f ) and K̃(f ) are the Fourier transforms of the detector output and the template,
respectively. If we sum over all the bins we (obviously) recover the original matched-filter
result:
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z =
p∑

k=1

zk. (8.60)

Having chosen the bins and the quantities zk, we can construct a new statistic based on
the measured signal-to-noise in each bin compared to the expected value. To be specific,
if the background noise is stationary and Gaussian, the quantity

χ2 = p
p∑

k=1

(
zk − z

p

)2

(8.61)

obeys the standard χ-square distribution with p − 1 degrees of freedom. Therefore, the
properties of the this statistic are known.4

Let us now imagine two triggers with identical signal-to-noise, one caused by a true
signal and the other by a glitch with power only in a small frequency range. These triggers
will have very different χ2 values. The first will be much smaller than the second. This
idea provides a powerful veto in the search for binaries and has been instrumental in
cleaning up the data, in general.

A variant of this kind of analysis is provided in Figure 8.2. The aim of the exercise is to
establish the statistical significance of the signal. One can do this by comparing the event
(in this case GW150914) to a set of alternative realizations of the data, that should (by
construction) not contain an astrophysical signal. The first step involves working out the
matched-filter signal-to-noise ratio ρ(t) for a set of inspiral templates in each detector and
identifying maxima with respect to the time of arrival of the signal. For each maximum
one then calculates a χ2 statistic to test to what extent the data in different frequency
bands are consistent with the matching template. Values of χ2 near unity indicate that
the signal is, indeed, consistent with a merger event. If the result exceeds χ2 = 1, the
signal-to-noise is reweighted as

ρ̂ = ρ

[
2

1 + (χ2)3

]1/6

. (8.62)

The final step involves establishing the likelihood that the event happened by chance.
First of all, coincidence between detectors is established by selecting pairs of events from
the same template within a 15-ms window—determined by the 10-ms propagation time
between the detectors (see Figure 7.2) plus a 5-ms uncertainty in the arrival time of
weak signals. Coincident events are simply ranked based on the quadrature sum ρ̂c of
the individual ρ̂ from each detector.

To produce background data for the search, the signal-to-noise maxima of one
detector are time shifted in such a way that a coincidence with the other detector data
cannot have an astrophysical origin. A new set of coincident events is computed on

4 One would typically use a χ2 statistic to test relationships between variables. The null hypothesis is that
the variables are independent.
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Figure 8.2 Results from a binary coalescence search on LIGO data including the GW150914 event.
The histograms show the number of candidate events (orange markers) and the mean number of
background events (jagged black lines) in the search where GW150914 was found as a function of the
search detection statistic ρ̂c (with a bin width of 0.2). The scales at the top of the panel give the
significance of an event in Gaussian standard deviations based on the corresponding noise background,
showing that the significance of the GW150914 detection was greater than 5σ . The tail in the
background is due to random coincidences of GW150914 in one detector with noise in the other detector.
The purple curve represents the background excluding those coincidences. This background was used to
assess the significance of the second strongest event in the data set. (Reproduced from Abbott et al.
(2016b), Creative Commons Attribution 3.0 License.)

this shifted data set. Repeating the procedure ∼ 107 times produces a noise background
equivalent to a search lasting 608,000 years. The background level indicated in Figure 8.2
relates to templates matching the GW150914 event. The inferred value ρ̂c = 23.6 is
larger than any background event, which means that one can only infer an upper bound
on the false alarm rate. Combining the result with other template sets for the search one
arrives at a bound of 1 in 203,000 years. This translates into a false alarm probability of
< 2 × 10−7. Expressed in terms of Gaussian standard deviations for the corresponding
noise background, the event was detected at the 5σ level.

8.7 Bayesian inference

Up to this point we have laid the foundations for what is often called the ‘frequentist’
approach to data analysis. This has provided us with useful insights, but if we want to go
further it is natural to consider a Bayesian strategy (Sathyaprakash and Schutz, 2009).
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In essence, the data analysis problem involves hypothesis testing and it is natural to base
the discussion on the construction of probabilities and probability densities. We want
to establish strict detection criteria involving quantitative thresholds—any statement of
detection must involve a quantified degree of certainty that the event is not an instance
of the noise. Similarly, when it comes to parameter extraction, we want to be able
to characterize the signal in terms of the most likely parameter values. The Bayesian
approach allows us to achieve these goals.

The starting point of all Bayesian analysis, however complex, is Bayes’ theorem.
It is based on the fundamental principle of calculating joint probabilities of mutually
independent events. Two events A and B (say) are said to be mutually independent if
the fact that event A happened has no influence on the occurrence (or otherwise) of
B. If P(A) and P(B) represent the probabilities for events A and B to happen, then the
probability that they both occur, the joint probability of A and B—denoted5 P(A,B)—is
the probability of A given that B has occured times the probability of B:

P(A,B) = P(A|B)P(B). (8.63)

Alternatively, we can write the joint probability as

P(A,B) = P(B|A)P(A). (8.64)

Equating the two alternative expressions for the joint probability leads to Bayes’ theorem

P(A|B) = P(B|A)P(A)

P(B)
. (8.65)

The statistical interpretation of this result has far-reaching consequences. In order to
see why this is so, we first of all note that

P(B) = P(B|A)P(A)+ P(B|Ā)P(Ā), (8.66)

where the bars denote negation, so P(Ā) is the probability that A is not going to happen.
Next we identify the first term in the above expression with the numerator on the right-
hand side of Bayes’ theorem (8.65). This allows us to rewrite the result as

P(A|B) = �

�+ P(Ā)/P(A)
. (8.67)

5 The notation should not be confused with the inner product used for matched filtering.
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The new quantity

� = P(B|A)

P(B|Ā)
(8.68)

is known as the likelihood ratio. Rewriting Bayes’ theorem in this fashion is powerful
because we now see that the outcome P(A|B) only depends on the likelihood ratio � and
the prior probabilities P(A) and P(Ā).

Before moving on it is useful to note that the posterior P(A|B) is always less than or
equal to 1, with equality only when P(B|Ā) = 0. In all other situations, the result is strictly
less than 1.

How do we use these results in practice? Well, let us recast the final statement in terms
of a gravitational-wave detection problem. To do this we replace A with h, the expected
gravitational-wave signal. B is replaced by x, the data stream, which may contain the
signal, h + n, or be pure noise, n. We then have

P(h|x) = �

�+ P(h̄)/P(h)
. (8.69)

The conditional probability that a signal of form h is present in the data stream x depends
on the likelihood ratio and the a priori probabilities that the signal is present, P(h), and
that it is not, P(h̄). The likelihood ratio is now given by

� = P(x|h)

P(x|h̄)
. (8.70)

This is the ratio of the probability of detecting the data stream x with the signal present
to that of the signal absent. It is notable that the data only enters � on the right-hand
side of (8.69).

In order to use this result, we need to assess the a priori probabilities and calculate the
likelihood ratio. The first step neatly folds in our understanding of the astrophysics and
obviously involves a degree of belief. We may not know the probabilities precisely, but
we can often make an educated guess. We may, for example, believe that the sources are
distributed in some particular way or that a specific event happens at some given rate.

Turning to the calculation of �, we first of all note that the probability density for
Gaussian noise is given by

pn ∝ exp[(n|n)/2], (8.71)

where we have used the inner product from (8.18). This allows us to quantify P(x|h̄).
Next we use

pn(x − h) ∝ exp[−(x − h|x − h)/2], (8.72)
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to get P(x|h). Putting things together, we have

� = pn(x − h)

pn
= exp[(x|h)− (h|h)/2]. (8.73)

We see that � increases monotonically with (x|h). This leads us back to the result for the
optimal filter.

The Bayesian analysis correlates the data stream (x) with the signal (h) and allows us
to compare the result to some set threshold. Starting from

log� = (x|h)− 1
2

(h|h), (8.74)

an often-used criterion is based on the maximum likelihood. The idea is quite simple.
Assume that the signal depends on some parameters, collectively labelled θ , so that h =
h(t;θ). Then solve

∂ log�

∂θ
= 0, (8.75)
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Figure 8.3 Posterior probability densities (PDF) for the two masses in the GW150914 binary system;
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1 and msource
2 (with the convention that msource

2 ≤ msource
1 ). Results are shown for two specific

waveform models, one phenomenological and one based on the effective-one-body framework outlined in
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overlaid on a colour-coded PDF. (Reproduced from Abbott et al. (2016c), Creative Commons
Attribution 3.0 License.)
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to find the most likely values. An example is provided in Figure 8.3, again for GW150914.
Of course, in reality this is a complex problem. In most cases we are dealing with a large
set of parameters—forming an abstract vector θi—so calculating the posterior involves
a multidimensional integral. As this is computationally expensive, it is often not possible
to apply Bayesian techniques to continuously streaming data.

8.8 Geometry in signal analysis

As we are dealing with a challenging multiparameter problem, it is natural that there is
a significant literature on the computational requirements (Owen and Sathyaprakash,
1999). In the case of binary inspirals estimates suggest that, for the Advanced LIGO
detectors, one will need several thousand templates to search for component masses in
the range [mlow,mhigh] = [1,100]M�. Lowering the mass cut-off leads to an increase
in the number of templates that scales as m−8/3

low . However, as we are not aware of any
formation channels for neutron stars or black holes with lower mass than mlow ≈ 1M�,
it makes sense to use this lower limit.

The inclusion of spins is only important when one or both of the components is rapidly
spinning. For neutron stars, one would expect spin effects to be largely unimportant
since, in terms of the dimensionless parameter a/M = JNS/M2

NS � 1 (see Chapter 17),
even the fastest spinning neutron stars are extremely slow. In fact, as we expect the
binaries we observe to be old, the neutron stars would have had ample time to slow
down and it would be surprising to find a system with significant spin. Regardless, the
computational costs, while high, are not formidable for ground-based detectors (even
if we include the spins). It should be possible to carry out a real-time search on large
computer clusters.

Let us focus on the situation where we have some idea of the character of the signal,
so that we can create useful filters. In reality, we will need a bank of filters reflecting
the uncertain parameters of the source (like component masses and individual spins in a
binary). How many filters do we need in any given situation? The answer depends on the
extent to which we are prepared to risk missing out on detections. We would, obviously,
like to minimize any losses in this respect, so let us ask how far apart (in parameter space)
two filters can be allowed to be without compromising the search. In many ways, this is
a geometry problem (Owen, 1996).

8.8.1 Ambiguity function

As a first step towards quantifying how many filters we are likely to need, we introduce
the so-called ambiguity function. Well known in the statistical theory of signal detection,
this is a powerful tool which helps us assess the number of templates required to span
the parameter space of the signal. It can also be used to make estimates of variances and
covariances involved in the measurement of various parameters and to compute biases
associated with using a family of templates whose shape is not the same as that of the
signal.
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The ambiguity function is defined as the scalar product of two normalized waveforms
maximized over the initial phase of the waveform, in other words, the absolute value
of the scalar product. A waveform e is normalized if (e|e)1/2 = 1, where the inner
product is inversely weighted by the power spectral density, as in (8.18). Working with
normalized waveforms is useful because it means that it is easy to define the signal
strength as h0 if h = h0e. It also means that the signal-to-noise ratio is simply given by
(h|h)1/2 = h0.

Let us suppose that e(t;θ)—where θ = {θi|i = 0, . . . ,p} is the parameter vector made
up of p + 1 parameters—represents a normalized waveform. It is conventional to choose
the parameter θ0 to be the time lag τ , the coordinate time when an event occurs. This is
an extrinsic parameter, while the rest of the p parameters are taken to be intrinsic to the
source.

Given two normalized waveforms e(t;θ) and e(t;φ), whose parameter vectors are not
necessarily the same, the ambiguity A is defined as

A(θ ,φ) ≡ |(e(t;θ)|e(t;φ))| . (8.76)

Since the waveforms are normalized, A(θ ,θ) = 1 and A(θ ,φ) < 1, if θ �= φ. If we want
to make contact with the previous discussion, we can think of θ as the parameters of a
template while φ represents the parameters of a signal. With the template parameters θ

fixed, the ambiguity function is a function of the signal parameters φ, giving the signal-
to-noise obtained by the template for different signals. The region in the signal parameter
space for which a template obtains signal-to-noise ratios larger than a chosen value (often
called the minimal match) is the span of that template. Template families need to be
chosen so that they span the entire signal parameter space of interest with the least
overlap of one another’s spans. In effect, we may also interpret the ambiguity function as
giving the signal-to-noise obtained for a given signal by filters with different parameter
values.

The ambiguity function has a local maximum at the ‘correct’ set of parameters, φ = θ .
Search methods that vary φ to find the best fit to the parameter values make use of this
property one way or another. But the ambiguity function will usually have secondary
maxima as a function of φ with fixed θ . If these additional maxima are only slightly
smaller than the primary one, noise can lead to confusion. Randomly, a secondary can
be elevated to a primary, which would lead to a false measurement of the parameters.
Search methods need to be designed to avoid this as much as possible.

As is clear from the definition (8.76), there is no need for the functional forms
of template and signal to be the same. The definition works for any signal–template
combination. Crucially, the number of template parameters need not be identical (and
usually is not) to the number of actual signal parameters. For example, a binary can be
characterized by a large number of parameters, while we may use a model waveform
involving only the masses. For inspiral waves, e(t;φ) is the exact waveform emitted by
a binary, the form of which we do not know, while the template family can be a post-
Newtonian approximation.
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8.8.2 Metric on the space of waveforms

When it comes to working out the ideal choice of templates for a given search, it is
can be useful to consider the geometric nature of the problem (Owen, 1996). After all,
we are interested in figuring out how close neighbouring filters need to be in order for
us not to deplete the signal-to-noise of a signal with unknown parameters. In order to
make the question quantitative, we may introduce a measure that tells us how close (in
parameter space) two filters are. To do this, let xk, with k = 1,2, . . . ,N, represent the
discretely sampled output of a detector. The set of all possible outputs then satisfies the
usual axioms of a vector space. This means that we can think of xk as an N-dimensional
vector. In practice, we can assume that this vector is some discrete representation of a
continuous problem, with infinite dimensional vectors.

Out of all possible such vectors, we are naturally interested in those that correspond to
gravitational waves from a given astronomical source. While every signal can be thought
of as a vector in the infinite-dimensional vector space of the detector output, the set of
all such signal vectors do not, by themselves, form a vector space. However, the set of
all normalized signal vectors (i.e., signal vectors of unit norm) form a manifold, and the
parameters of the signal play the role of a coordinate system. The upshot of this is that
we have an n-dimensional manifold Sn, where n is the number of independent source
parameters, for each kind of source. Following the familiar steps, e.g. from Chapter 2,
the manifold Sn can be endowed with a metric gij associated with the scalar product from
(8.18). In a coordinate system pi, the components of this metric are defined as

gij ≡
(
∂i ĥ|∂j ĥ

)
, ∂i ĥ ≡ ∂ ĥ

∂pi . (8.77)

The metric can then be used on the signal manifold as a measure of the proper distance
dl between nearby signals with coordinates pi and pi + dpi, such that

dl2 = gijdpidp j . (8.78)

Taylor expanding ĥ(pi + dpi) around pi, and keeping only terms to second order in
dpi, it is easy to see that the overlap of two infinitesimally close signals can be obtained
using the metric:

O(dpi; pi) ≡
(
ĥ(pi)|ĥ(pi + dpi)

)
= 1 − 1

2gijdpidp j . (8.79)

This then allows us to determine, in an efficient manner, how close together in parameter
space our search templates need to be.

8.8.3 The Fisher matrix

In principle, parameter estimation is not distinct from detection. This is, indeed, the spirit
of a Bayesian analysis where one obtains the most likely parameter values by comparing
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the data against a (usually very large) number of realizations from theoretical models
(typically obtain using Markov Chain Monte Carlo simulations). This approach leads
to probability distributions for the parameters, as in Figure 8.3. Still, in practice, some
methods might be computationally efficient in detecting a signal but not necessarily the
best for parameter estimation, while the best parameter estimation methods might not be
computationally efficient. Thus, the problem of parameter extraction is often considered
separately from detection.

We can never be absolutely certain that a signal is present in a given data set. We can
assign a level of confidence, which may be close to 100%, but we cannot know for sure.
Moreover, whatever the signal-to-noise ratio may be, we cannot be absolutely certain
about the true parameters of the signal. At best we can obtain estimates in a certain
range, and this range depends on the level of confidence we require.

For any given measurement, any estimated parameters—however efficient, robust,
and accurate—are unlikely to be the actual parameters of the signal, since, at a finite
signal-to-noise ratio, noise alters the input signal. In geometric language, the signal vector
is being altered by the noise vector and the matched filtering aims at computing the
projection of this altered vector onto the signal space.

There is an immediate connection between the geometric approach and the parameter
extraction problem. The metric on the signal manifold is nothing but the well-known
Fisher information matrix6 �ij , after scaling with the square of the signal-to-noise ratio,

gij = �ij

ρ2 . (8.80)

The information matrix itself is the inverse of the covariance matrix, Cij . These quantities
allow us to quantify how accurately we can extract the parameters of a given signal.

For a given waveform model, with unknown parameters to be determined, we can
readily construct the Fisher information matrix and determine its inverse. This is the
most important quantity from the experimental point of view as its components are
directly related to the measurement errors of the parameters. An illustration of this is
provided in Chapter 18.

6 The Fisher matrix encodes to what extent different parameters in a given model are related.
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The stellar graveyard

Gravitational waves are generated whenever masses accelerate anywhere in the Universe.
As a result, the Earth is bathing in spacetime ripples, stretching and squeezing not just
our detectors but all of our everyday reality. If the waves were strong, this would be
uncomfortable, but this is obviously not the case. The waves that reach us from the
distant Universe are extremely weak. Any effort to detect them must necessarily focus
on the most powerful events. We are not interested in subtlety—we seek cosmic drama.

To get an impression of how weak the effect of gravitational-wave emission can be, let
us return to the quadrupole formula result (5.33) for the energy loss in a binary system.
Recall that

Ė = 32
5

G
c5 μ2a4�6, (9.1)

where μ is the reduced mass

μ = M1M2

M1 + M2
, (9.2)

a is the orbital separation, and the (angular) orbital frequency is �. Combining this with
the energy

E = −GμM
2a

, (9.3)

where M = M1 + M2 is the total mass, we see that the radius of the orbit shrinks at a rate

ȧ
a

= − Ė
E

= 64
5

(
�a
c

)5 ( μ

M

)
�. (9.4)

So far, this simply repeats the calculation from Chapter 5, although we have written
the result in a slightly different way. Now let us consider the implication for the Solar
System. Putting in the relevant masses, the distance between the Sun and the Earth and

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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an orbital period of one year, we find that the rate at which the Earth’s orbit decays due
to gravitational-wave emission is a tiny fraction of a centimetre in a billion years. This is
obviously not impressive (!) and it is easy to see that the associated waves would be very
difficult to detect. In fact, there is a practical reason why we would not be able to detect
these waves at all. Comparing the wavelength of the waves to the size of the orbit

λgw

a
∼ c

�a
∼ 104, (9.5)

we see that the Earth is nowhere near in the wave-zone for this problem. If we had access
to extreme precision measuring technology, we might be able to monitor the shrinking
orbit, but we could never catch the waves because in our neighbourhood they are, in fact,
not waves at all.

Looking further afield, it is instructive to ask what kind of astrophysical systems
might be better for our purposes. The numerical penalties for the Earth–Sun system
are obvious. To do better, we need to have more equal masses (to avoid μ/M � 1)
and close (ideally relativistic) orbits (to avoid �a/c � 1). If we consider also the wave
amplitude, say from (5.46), we see that it would be good to involve more massive
objects. This exercise pretty much tells us that we need to go beyond mainstream stellar
astrophysics and focus on compact objects: white dwarfs, neutron stars, and black holes.
Representing the possible endpoints of stellar evolution, these objects provide the most
promising sources for gravitational-wave astronomy. Given this, we need to understand
the physics associated with them better. We need to understand the ways they may radiate
gravitational waves, what the amplitude and signature of such events may be, and how
frequently they occur within the horizon distance of any given detector.

9.1 White dwarfs

During the first decades of the twentieth century astronomers were puzzled by the nature
of the companion of Sirius (imaginatively called Sirius B). The companion’s mass could
be derived from the binary orbit, and appeared to be similar to that of the Sun, but at
the same time it was more than a hundred times dimmer. The obvious explanation that
the star was faint because it was cold failed. Stars radiate like black bodies, and cold stars
should be unmistakably red. This peculiar star was white. The inevitable conclusion was
that the star had to be small.

That the companion of Sirius was, indeed, small was confirmed by redshift measure-
ments in 1925. This remarkable observation demonstrated that extremely dense matter
is not only possible, but actually present in the Universe. The new class of stars—the
white dwarfs—had to be very compact. We now know that a typical white dwarf has a
mass similar to that of the Sun compressed inside a radius of 104 km or so. This means
that the density inside the star is on the order of 106 g/cm3, making it something like
2,000 times denser than platinum. This may sound exotic, but white dwarfs are actually
the second most common stars in the Universe. They represent the endpoint of stellar
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evolution for virtually all stars. As a star with mass less than about 8M� begins to run out
of nuclear fuel it swells up to form a red giant (as it continues to burn heavier elements),
then it fades and shrinks to form a white dwarf. The remnant gradually fades from view
as it radiates away the residual thermal energy over billions of years.

Since the early days, astronomers have found many more white dwarfs. Progress
has been particularly swift since the European Space Agency’s Gaia telescope started
collecting data in 2013.1 The aim of Gaia is to carefully monitor the position of more than
1 billion stars, also recording spectral information. Results from the second Gaia data
release (in 2018) are shown in Figure 9.1. The illustration provides colour–magnitude
information—it is a standard Hertzsprung–Russell diagram—bringing out, in addition
to the main sequence stars, the white dwarf population. Particularly interesting (for our
purposes) is the indication of two distinct populations of white dwarfs, with different
masses. The heavier systems could conceivably be the result of white dwarf mergers
(Kilic et al., 2018).

The Galaxy contains a large number of low-mass binaries involving white dwarfs.
These are, in principle, interesting gravitational-wave sources. However, as the typical
orbital timescales ranges from minutes to hours, we cannot expect to detect these systems
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Figure 9.1 Left: Results from the second Gaia data release as a Hertzsprung–Russell diagram. Right:
Evidence of the presence of two populations of white dwarfs, distinguished by the mass. The data includes
about 13,000 white dwarfs within 100 pc of the Sun. (Left panel adapted from http://sci.esa.int/gaia/,
copyright: ESA/Gaia/DPAC, Creative Commons Attribution-ShareAlike 3.0 IGO License. Right panel
reproduced from Kilic et al. (2018).)

1 See http://sci.esa.int/gaia/.

http://sci.esa.int/gaia/
http://sci.esa.int/gaia/
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from the ground. We need a space-based instrument. In fact, a significant population of
double white dwarf systems should be detectable by LISA, to the point where they form
a confusion-limited background (see Figure 7.11). In addition, there may be as many as
25,000 individually resolvable systems (Cornish and Robson, 2017). Some of these sys-
tems are considered as verification binaries for the LISA mission (Stroeer and Vecchio,
2006). By monitoring this class of binaries, we may improve our understanding of binary
evolution leading to the formation of double white dwarf systems. This may, in turn, shed
light on the common envelope phase and the stability of the involved mass transfer.

The internal structure of these (no longer very exotic) objects was first understood
when Ralph Fowler brought the new quantum statistics of Fermi and Dirac to bear on
the problem (Fowler, 1926)—a landmark in the development of our understanding of
stellar structure. This drew attention to the fact that the electron gas in matter this dense
must be degenerate. When confined to a finite volume even an absolutely cold assembly
of electrons retains a spread of momenta (due to Pauli’s exclusion principle). This leads
to the ‘electron degeneracy’ pressure that balances gravity in a white dwarf.

9.2 The Fermi gas model

Given its importance, it is worth taking a closer look at the electron degeneracy pressure.
We do this by formulating the basic ideas of the Fermi gas model, which plays a key
role in solid state physics in regimes where quantum mechanics dominates and it is also
essential for dense matter astrophysics.

Due to the exclusion principle, each energy state of a system of fermions can only be
occupied by a single particle. In order to determine the ground state of a system of N
particles one simply starts filling the energy states from the lowest to higher levels until
all particles have been accounted for. Because each state can accommodate two fermions
(with distinct spins), the system is degenerate. If we define the Fermi energy EF as the
energy of the highest filled state we have, see Figure 9.2,

EF = p̄2
F

2m
, (9.6)

in terms of the Fermi momentum,2 p̄F = h̄kF , where the corresponding wave number is
defined as

kF = (3π2n)1/3, (9.7)

and n = N/V , where V is the volume, is the number density of particles (each with
mass m).3

2 We add a bar to the momentum throughout the discussion of Fermi gases in order to make a clear
distinction between the momentum p̄ and the pressure p.

3 It is common to work in units such that h̄ = c = G = 1, in which case we obviously have kF = pF . That is,
we extend the geometric units to include h̄.
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Fermi surface at energy EF

Figure 9.2 In a system of N fermions the occupied states can be represented by points in a sphere in
momentum space, or equivalently, in terms of the wavenumber. In the ground state the particles fill a
sphere of radius kF , where EF = h̄2k2

F/2m is the energy of a particle. This is the Fermi energy.

Now consider a gas made out of these particles. The total energy (density) should
simply be ε = nEF and we can use the first law of thermodynamics to derive an estimate
for the corresponding pressure, p. In order to do this, it is, first of all, natural to introduce
the chemical potential μ, which corresponds to the energy required to ‘add one more
particle to the system’

μ = dε

dn
. (9.8)

Then the pressure follows from the thermodynamical relation

p = −ε + nμ = 2
5

nEF −→ p ∼ n5/3. (9.9)

We can use this result together with the equations for fluid dynamics from Chapter 4
to work out the properties of a star supported by electron degeneracy. However, for the
moment, a simple back-of-the-envelope estimate will do. If we assume that the density is
uniform, then hydrostatic equlibrium immediately leads to

∇p = −ρ∇� −→ p ≈ GMρ

R
∼ M2

R4 , (9.10)

where M is the star’s mass and R the radius. Meanwhile, the degeneracy pressure suggests
that (using ρ = mn)

p ∼ ρ5/3 ∼ M5/3

R5 . (9.11)

The two results have to balance, so we must have

M1/3 ∼ 1/R. (9.12)

We learn that more massive white dwarfs must be smaller. This is contrary to the result
for normal stars, and the story is about to become even more peculiar...
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9.3 Chandrasekhar’s limit

As matter is compressed, the pressure increases. Individual particles move at higher speed
and at some point one would expect special relativity to come into play. In order to assess
whether we need to worry about this, we can compare the Fermi momentum to the highly
relativistic limit. This is equivalent to comparing the interparticle distance d in the gas to
the Compton wavelength h̄/mc. Introducing the parameter x = p̄F/mc, such that x ≈ 1
means that a given particle must be considered as relativistic, we find that the electrons
are relativistic above

ne ≈ 1
3π2

(
mec
h̄

)3

. (9.13)

For a given white dwarf, with known mass and radius, we also need to contrast the
obtained value for ne (which provides the degeneracy pressure) to the baryon number
density, nb, (which provides the bulk of the mass). Introducing the electron fraction xe =
ne/nb (which would be 1/2 for a pure Helium star), we have

ρ ≈ mbnb ≈ mb

xe
ne, (9.14)

and we find that relativity becomes important above a density of about 2 × 106 g/cm3.
Given that white dwarfs typically have central densities in the range 104 − 107 g/cm3, we
clearly need to pay attention to relativistic effects when we model their interiors.

The question is, how does relativity impact on the Fermi gas model? To answer this,
we need to consider the problem in more detail. It is natural to start by considering the
density of states g(p̄) in momentum space

g(p̄)dp̄dV = 8π

h3 p̄2dp̄dV , (9.15)

where we have accounted for a factor of 2 for the opposite spins. In general, the electrons
obey Fermi–Dirac statistics, which means that the distribution is

f (ε) =
[

exp
(

ε − μ

kBT

)
+ 1

]−1

, (9.16)

where μ is the chemical potential (as before) and kBT is the thermal energy (kB is
Boltzmann’s constant and T is the temperature). At low temperatures the system is
completely degenerate, which means that all states up to the surface of the Fermi sphere
are filled and all states above it are empty. That is, we have

f (ε) =
{

1, ε ≤ εF ,
0, ε > εF .

(9.17)
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Now, on the microscopic scale of a fluid element the pressure, p, follows from the
momentum flux through a given surface. If the particles have velocity v(p) this leads
to (after integrating out the angular dependence)

p = 4π

3h3

∫ p̄F

0
p̄3v(p̄)dp̄, (9.18)

in the fully degenerate case. For a non-relativistic gas, we have v = p̄/m and if we also
make use of the number density (the integrated density of states)

n = 8π

h3

∫ p̄F

0
p̄2dp̄ = 8π

3h3 p̄3
F , (9.19)

it is easy to obtain Eq. (9.9). However, when the particles move at relativistic speeds,
we need account for the Lorentz factor in the (spatial part of the) four-momentum (see
Chapter 2). That is, we have

p̄ = γ mv with γ =
(

1 − v2

c2

)−1/2

, (9.20)

which leads to

v(p̄) = p̄
m

[
1 +

(
p̄

mc

)2
]−1/2

. (9.21)

This affects the pressure calculation and we now get

p = πm4c5

6h3

[
x(2x2 − 3)

√
1 + x2 + 3sinh−1 x

]
, (9.22)

where x = p̄F/mc, as before. In the highly-relativistic limit, when x → ∞, this reduces to

p ≈ 1
16

(
3
π

)1/3

hcn4/3. (9.23)

We learn that relativistic effects tend to soften the equation of state (the pressure
increases slower as we crank up the density). This has profound implications. Matter
finds it harder to withstand its own gravity at higher densities. One can imagine reaching
a point where gravity wins and the star has to fall in on itself. This is, indeed, what
happens. In order to infer the critical mass, let us again balance the bulk pressure to the,
now relativistic, degeneracy pressure. This leads to
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p ∼ M2

R4 ∼ M4/3

R4 . (9.24)

Remarkably, the radius R drops out of the equation and we have a unique result for the
mass of a relativistic white dwarf. Whereas we had the freedom to choose the mass and
find the corresponding radius in the non-relativistic case, we now appear not to be able
to select the mass. A more careful calculation shows that the critical mass is

MCh ≈ 5.8x2
eM� ≈ 1.44M� for xe = 1/2. (9.25)

Real electrons do not exactly obey (9.23), but the approximation should get better as
they get more relativistic. In essence, we should consider MCh as a limit on the mass
of all white dwarfs. More massive stars cannot be supported by electron degeneracy
pressure. Basically, the maximum mass of a helium white dwarf is just below one and a
half solar masses.

This argument was first worked out by the 19-year-old Subrahmanyan Chandrasekhar
in 1929, during the sea voyage from India to Britain, where he was going to study
at Cambridge University (Chandrasekhar, 1931). Perhaps understandably, the result
was controversial. One of the main opponents was Arthur Eddington, who had led the
solar eclipse expedition that lent support to Einstein’s curved spacetime theory (see
Chapter 10). Eddington famously stated that ‘there should be a law of Nature to prevent
a star from behaving in this absurd way!’ It took time, but eventually the evidence was
clear. Chandrasekhar’s calculation was correct. Nature does not shy away from absurdity.

9.4 Neutron stars

The remarkable maximum-mass result for white dwarfs threw the door wide open to
speculation. What is the fate of more massive stars? Einstein’s theory seemed to point
in the direction of gravitational collapse, but astronomers were not ready to accept this
idea, no matter how persuasive the argument may have been.

A temporary resolution to the controversy followed James Chadwick’s 1932 discovery
of the neutron. This led to speculation that entire stars made up of such particles might
exist. Scientists argued for the existence of ‘neutron stars’ for two different reasons.
An astrophysically motivated (and visionary) view was taken by Walter Baade and
Fritz Zwicky. They suggested that neutron stars might be the remnants of supernova
explosions (Baade and Zwicky, 1934). There was, however, no observational support
evidence for this suggestion at the time. The association between supernovae and neutron
stars would eventually be established, but Zwicky would remain the sole advocate of the
idea for many years. Conventional astronomy had no need for anything more exotic than
white dwarfs.

Nuclear physicists had different motivation to discuss neutron stars. In the early 1930s
theoretical physics had difficulties to account for the generation of energy in stars in
terms of thermonuclear reactions. As an attempt to solve this problem George Gamow
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and Lev Landau suggested that many, possibly all, stars contained degenerate neutron
cores (Landau, 1938; Gamow, 1939). The slow growth of such a core could help fuel the
stars’ radiation. As matter was neutronized it would reduce in volume and gravitational
energy would be released. That this might be a runaway process that would lead to a
rapid collapse of the core of the star was not realized until later.

Given what we already know, let us try to estimate the properties of a typical neutron
star. For simplicity, we take the Newtonian equation for hydrostatic equilibrium as our
starting point

dρ

dr
= −Gρ

dρ

dp
m(r)
r2 , (9.26)

where m(r) is the mass inside radius r and we have assumed that the equation of state is
barotropic, p = p(ρ). We can approximate the solution by replacing ρ and dρ/dp on the
right-hand side with their values at the centre of the star (indicated by an index c). Then
m(r) ≈ 4πρcr3/3 and we get

dρ

dr
≈ −4π

3
Gρ2

c

(
dρ

dp

)
c
−→ ρ(r) = 2π

3
Gρ2

c

(
dρ

dp

)
c
(R2 − r2), (9.27)

where we have ensured that the density vanishes at the surface of the star, at radius R.
Setting r = 0 we find a simple estimate for the star’s radius

R ≈
[

2π

3
Gρ

(
dρ

dp

)]−1/2

c
. (9.28)

Basically, the radius can be deduced from the central values of the density and the
compressibility (the sound speed). A more compressible equation of state leads to a
smaller radius. It is common to describe equations of state as either soft or stiff, depending
on whether dρ/dp is large or small. We now see that, for the same central density, a soft
equation of state leads to a smaller star than a stiff equation of state. Moreover, the softer
the equation of state is, the lower the attainable mass tends to be.

In order to put numbers to these estimates, let us again make use of the Fermi gas
model, now assuming that the star is entirely made out of non-relativistic neutrons. Then
we find that

1
ρ

dρ

dp
≈ (3π2)2/3h̄2

m3
b

1
n1/3 , (9.29)

where n is the neutron number density and mb ≈ 1.67 × 10−27 g is the mass of each
baryon. Thus, we get
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R ≈
[

2π

3

Gm3
bn1/3

c

(3π2)2/3h̄2

]−1/2

, (9.30)

which leads to R ≈ 14 km for nc = 0.6 fm−3, which would correspond to a central density
of about ρc ≈ 1015 g/cm3. The corresponding mass follows from

M = 4π

∫ R

0
ρr2dr = 8π

15
ρcR3, (9.31)

and we find M ≈ 1.7M� for the suggested value of the central density.
This is a useful exercise. We learn that we should expect a neutron star to have a radius

of order of 10–15 km and a mass close to one and a half times that of the Sun. These
estimates may be rough, but when compared to more detailed models (see Chapter 12)
they turn out to be rather good.

That this kind of object actually exists in the Universe was established (somewhat
serendipitously) in 1967 when Jocelyn Bell Burnell found a peculiar periodic signal in
the data from a new radio telescope (Hewish et al., 1968). The first signal consisted of
a series of equally spaced pulses 3.7 seconds apart. The source was far too rapid to be
something like a pulsating star and yet it had to have an astronomical origin because it
kept sidereal time. Many possibilities were considered—including that the signal came
from a distant civilization—but it was soon suggested that these ‘pulsars’ were associated
with supernova remnants. They were rotating neutron stars (Gold, 1969). We see regular
pulses because the star emits radiation (associated with the rotation of the presumably
misaligned magnetic field) which is misaligned with the rotation axis. As the star spins,
the radiation beam sweeps across the sky, and once every revolution it can be picked up
by telescopes on Earth.

The main pulsar observables are the spin period P = 2π/� and its derivative Ṗ; see
Figure 9.3. If we accept the notion that these systems are rotating neutron stars with a
misaligned magnetic field, then we can work out the rate at which they should be losing
rotational energy

Ė = −BpR6�4 sin2 α

6c3 , (9.32)

where α is the misalignment between the rotation axis and the magnetic (dipole) axis and
Bp is the strength of the field at the magnetic pole. A more detailed analysis (Spitkovsky,
2006) shows that the star will lose energy even when the magnetic filed is aligned with
the rotation axis. However, the estimate from (9.32) will suffice for now. Combining the
energy loss with the total rotational energy,

E = 1
2

I�2, (9.33)

where I is the moment of inertia, we can link the magnetic field strength to the observed
spin-down rate. Of course, in order to do this we need to assume that the other parameters
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Figure 9.3 The two main observables, the spin period P and the spindown rate Ṗ, for a collection of
observed neutron stars. The rotation-powered radio pulsars make up (by far) the largest population
(over 2,500). Fast-spinning (presumably) recycled millisecond pulsars are usually found in binary
systems. Magnetars have very strong magnetic fields and tend to be slowly spinning. If we ignore the
(likely) evolution of the magnetic field, then a neutron star would evolve from the top left towards the
bottom right of the figure, along one of the indicated fixed magnetic field trajectories. This gives us a
rough idea of the relative age of the observed systems. (Figure provided by T. Tauris.)

are known, which they obviously are not. However, we can use ‘reasonable’ values
and assume M ≈ 1.4M� and R ≈ 10 km (for example). This leads to the moment of
energy (for a uniform density sphere) of I ≈ 1045 g cm2. In practice, we then obtain
a lower limit for the magnetic field (B > Bp sinα) since we do not know the inclination
angle4

B � 5 × 1019
(

PṖ
1 s

)1/2

G. (9.34)

In the case of a small number of young pulsars, observers have also managed to
measure the second derivative P̈ (Espinoza et al., 2011b). Such observations provide

4 Note that, in the literature it is common to use a slightly more realistic estimate for the moment of inertia
than we have done here, leading to the numerical prefactor changing to 3.2 × 1019 (see, for example, Lorimer
and Kramer (2012)).
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a consistency check of the magnetic spin-down model. It is easy to see that, if we hold
the other parameters fixed, then the braking index obtained from the power law

�̇ = −K�n (9.35)

should be n = 3. Observed values are close to this, but differ sufficiently from the
expectation that the model needs tweaking. Nevertheless, it is clear that one can use
the observations to rule out a gravitational-wave-dominated spin-down (leading to n = 5
for a rotating deformed star; see Chapter 6), in all cases where P̈ has been measured.

Since the early days of radio astronomy more than 2,500 pulsars have been found
(see Figure 9.3). The range of observed periods and phenomenology is enormous. Spin
periods vary from about 1.4 ms for the fastest known pulsar, PSR J1748-2446ad (Hessels
et al., 2006), to several seconds for the slowest pulsars. Some pulsars are remarkably
stable, even rivalling the most precise atomic clocks. Others exhibit timing noise (Hobbs
et al., 2010b) and frequent spin-up glitches (Espinoza et al., 2011a). There are fast radio
bursts (Lorimer et al., 2007), which release a spike of energy, and systems that seem
to switch between different spin-down states (Kramer et al., 2006) (presumably due
to processes in the star’s magnetosphere). Despite a wealth of observations many key
questions remain to be answered. In fact, we do not even know (exactly) what makes the
pulsars pulse.

Observations in other wave bands add to the mystery. Some neutron stars have super-
strong magnetic fields. These magnetars exhibit X-ray bursts and gamma-ray flares,
presumably releasing pent-up magnetic energy (Thompson and Duncan, 1995; Kaspi
and Beloborodov, 2017) We see accreting neutron stars emitting X-rays, but we do
not (fully) understand the accretion torque and why these stars do not spin faster than
they do (Patruno and Watts, 2012). The answer might involve gravitational waves (see
Chapter 6). For a small number of isolated neutron stars, we see thermal radiation from
the surface, giving us clues to the gradual ageing of the star and perhaps some insight
into its composition (Page et al., 2004). With the data from the Fermi satellite we have
a growing number of young pulsars that emit gamma-rays (Acero et al., 2015). There is
a virtual neutron star zoo out there, and we are doing our best to catalogue its different
species.

In order to understand neutron stars we need to consider cutting-edge nuclear,
particle, and condensed matter physics, as well as electromagnetism. We need superfluids
and superconductors. You only have to list the words to appreciate that this is a challenge
for theoretical physics. We also need Einstein’s gravity. A neutron star is as close to a black
hole as you can get (without collapsing). This is easy to see, since

GM
Rc2 ≈ 0.2, (9.36)

compared to the value of 0.5 for a Schwarzschild black hole; see Chapter 4. Of course,
these are all reasons why neutron stars are so exciting. The fact that they are also
interesting gravitational-wave sources is icing on the cake. Neutron stars can radiate
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through a variety of mechanisms and we will explore some of the main ideas later, starting
in Chapter 12.

9.5 The rebirth of relativity

When Einstein passed away in 1955 general relativity was not (at least not universally)
considered the triumph we perceive it to be today. Of course, it was recognized as a
success—the original calculation of the perihelion shift of Mercury and the confirmation
of light bending by the Sun’s gravity during several eclipse expeditions, had established
gravity as a geometric theory—and Einstein spent the last decades of his life as a celebrity,
but the general view among astronomers was that his theory had little practical relevance.
Besides, the mathematics involved (tensor calculus) was far too complicated for most
people to understand.

As we have already seen, our view of the Universe changed dramatically in the decades
following Einstein’s death. Astronomy underwent a revolution as radar antennae (devel-
oped during World War II) were turned towards the heavens and X-ray instruments
were developed. The new Universe was very different from the old one. We do not live
in a calm Universe where stars serenely glide across the sky, evolving over eons. Our
Universe is dramatic and violent. Stars explode in spectacular supernovae as they run
out of nuclear fuel. Galaxies collide. Neutron stars and black holes spew out powerful
jets. The Universe itself began in a massive explosion. Improved measuring technology
enabled these spectacular discoveries. At the same time, the technology reached the level
where precision measurements of time and space became possible. This opened the door
for more accurate tests of general relativity, e.g. by measuring the slowing down of clocks
in a gravitational field and the gravitational redshift (see Chapter 10). Finally, the exciting
astronomy stimulated theorists to return to gravity. This led to a deeper understanding
of Einstein’s theory and established general relativity as one of the two cornerstones of
modern physics (alongside quantum mechanics).

Relativistic astrophysics blossomed as a research area in the late 1960s, but several
key developments happened much earlier. The suggestion that stars might have neutron
cores had prompted Robert Oppenheimer and his students to initiate a series of
remarkable investigations already in the late 1930s. The first question they considered
was whether there is an upper limit to the possible size of such a neutron core. To
answer the question they integrated the relativistic equations for hydrostatic equilibrium
numerically (see Chapter 4). Having done this, they found that no equilibrium solutions
were possible above 0.7M� or so (Oppenheimer and Volkoff, 1939). This showed that
there is an upper mass limit, similar to Chandrasekhar’s limit for white dwarfs, also for
neutron stars. The maximum mass result was substantially below the modern value,
because the equation of state they used was unrealistic, but it was an important qualitative
conclusion. It brought the issue of gravitational collapse into the limelight.

The follow-up work by Oppenheimer’s group remains remarkable. On the 10th of
July 1939, Oppenheimer and Snyder submitted a manuscript discussing gravitational
collapse to Physical Review (Oppenheimer and Snyder, 1939). This paper may be one
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of the most prophetic ever written in this field of research. More than 80 years later, it
needs only modest revision—even the terminology is undated! The scope of the paper
(as well as its daring nature) is clear already from the abstract:

When all the thermonuclear sources of energy are exhausted a sufficiently heavy
star will collapse . . . this contraction will continue indefinitely . . . the radius of the
star approaches asymptotically its gravitational radius; light from the star is pro-
gressively reddened, and can escape over a progressively narrower range of angles
. . . The total time of collapse for an observer co-moving with the stellar matter
is finite, and . . . an external observer sees the star asymptotically shrinking to its
gravitational radius.

Oppenheimer and Snyder describe how they integrated Einstein’s equations for a
collapsing fluid (in spherical symmetry) to obtain a solution that could be joined to
Schwarzschild’s solution for the exterior vacuum (see Chapter 4). The result established
the modern view of gravitational collapse. Unfortunately, the importance of the work
would not be appreciated until much later. War had already broken out in Europe
when the paper appeared in print (September 1939). Oppenheimer’s research group
dispersed. By 1941 he had been recruited to the Manhattan Project (and was busy
considering other aspects of Einstein’s theories). The subject entered a dark age.
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Figure 9.4 A schematic illustration of gravitational collapse. As a massive star runs out of nuclear fuel
it begins to collapse under its own weight. Eventually a black hole forms. If the collapse is asymmetric it
generates gravitational waves.
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Figure 9.5 A schematic illustration of the sequence of increasingly compact objects, from white dwarfs
to neutron stars and, ultimately, black holes. There are no stable configurations on the dashed part of the
curve.

The rebirth of relativity as a vibrant area of research owed much to a small number
of charismatic personalities. One of the main players was John Archibald Wheeler. In
the late 1950s Wheeler and his Princeton students became intrigued by the notion of
gravitational collapse. In order to understand whether the process could actually happen
in nature, they reconsidered the problem using a more realistic equation of state (making
use of nuclear physics lessons learned during the war). Also benefiting from advances
in computer technology, they managed to graph the stellar mass as a function of central
density and found two distinct humps, corresponding to the anticipated white dwarf and
neutron star configurations (Harrison et al., 1965). This unified the results into a single
picture, see Figure 9.5, which remains valid today.

By the end of the 1960s the landscape had changed dramatically. It was clear that
Einstein’s theory was essential for an exploration of extreme astrophysics. It had been
established that gravitational waves should, indeed, exist. It was understood that massive
stars will inevitably undergo gravitational collapse, leading to the formation of black holes
(see Figure 9.4). And astronomers were beginning to find the supporting evidence.

9.6 Weighing black holes

Black holes challenge even the liveliest of imaginations. That such objects may exist
was, in principle, clear already when Schwarzschild found his solution in 1915. But
the notion of an event horizon, acting like a one-way membrane that hides everything
that falls through it from the outside Universe, was not taken seriously for most of the
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following half-century. The simple fact that an infalling clock would appear to freeze
as it approached the horizon caused confusion, as it suggested that a collapsing star
might actually never quite reach the horizon, either. The resolution to the problem—that
the infalling clock itself would measure time as usual and that the conundrum was all a
matter of relativity, where it is essential to keep track on who is doing the measurement—
eventually came in 1960 when Martin Kruskal suggested a set of spacetime coordinates
that describes what actually happens (Kruskal, 1960).

An added reason for the lack of interest in black holes was the lack of evidence
for their existence. This has (obviously) changed dramatically in the past decades.
Black holes have become mainstream astrophysics. Moreover, black holes are important
gravitational-wave sources so we need to understand them better. We need to be able to
model how they interact with their surroundings. At first sight this may seem a hopeless
task, but these are, in fact, the simplest macroscopic objects we know of. A black hole can
be described by three parameters: the mass, the rate of rotation, and the electric charge.
However, it is easy to argue that an astrophysical object is unlikely to have significant
net charge. If it did it would simply attract particles of the opposite charge from the
interstellar medium and neutralize. This leaves us with two parameters. Given values
for the mass and the spin, the nature of a black hole is completely determined by the
vacuum geometry of spacetime (see Chapters 4 and 17). In contrast, the modelling of
other astronomical bodies, like white dwarfs and neutron stars, involves a lot of (often
poorly understood) physics.

The question is, how can you expect to pin down an invisible object in the dark cosmic
sky? There are two obvious answers. The first involves tracking the motion of a visible
object that is influenced by the presence of an unseen companion. The second method
becomes relevant when the dark object is close enough to a companion that matter starts
flowing towards it (as in the interacting binaries discussed in Chapter 6). The accreted
matter generally heats up, and provided that enough gravitational potential energy is
released this may lead to detectable X-rays. Both these approaches are relevant for finding
black holes.

As it is difficult to distinguish one dark object (say a neutron star) from another (a
black hole), one often proceeds by ruling out the neutron star option rather than ruling in
the black hole. This can be done whenever the compact object has a binary companion.
If the compact object is found to ‘weigh’ more than the absolute upper limit for neutron
stars (usually taken as about 3M�, maybe adding another 20–30% for a rotating star
(Cook et al., 1994)), one has a black-hole candidate.

Working out the mass of a compact, essentially invisible, object is obviously not a
trivial matter. However, the main idea behind mass estimates for black-holes in X-ray
binaries is clear. We need to infer the binary orbit. Assuming that Newtonian gravity is
sufficient to describe the dynamics, let us consider a system with two masses, M1 and
M2, separated by a distance a. The individual distances from the combined centre of
mass then follow from (see Chapter 5)

M1a1 − M2a2 = 0. (9.37)
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Now suppose that we observe variations in the emission from one of the objects, say M1.
Factoring in the inclination angle i between the binary orbit and the line of sight, we can
work out the velocity of this body

v1 = 2π

P
a1 sin i, (9.38)

where P is the orbital period. Combining this with Kepler’s law, we arrive at the so-called
mass function

f (M1,M2, i) = (M2 sin i)3

(M1 + M2)2 = P v3
1

2π
. (9.39)

The right-hand side of this expression is a combination of observables, so we can use
data to constrain the left-hand side. In systems where both companions are observed,
we have two constraints. If we also happen to know the inclination angle, then we can
calculate the individual masses. This is only possible in very fortunate cases. Typically,
one would observe one partner (say a white dwarf) and involve some model for its
properties from stellar structure theory. This would lead to a constraint on the mass of the
unseen companion. In many cases the mass function leads to an absolute lower limit on
the mass of the compact object. If f > 3M� it would seem unlikely that we are observing
a neutron star, and (unless we find some other, probably more exotic, explanation) the
X-rays should come from a black hole.

The era of X-ray astronomy truly began with the launch of the Uhuru (‘Freedom’ in
Swahili) satellite off of Kenya’s coast in December 1970. By the time of its demise in
March 1973, Uhuru had discovered more than 300 discrete sources. The data enabled
scientists to make positive identification of X-rays from binary systems and discover
two X-ray pulsars, Cen X3 and Her X1 (with periods of 4.84 and 1.24 s, respectively;
see Fabian (1975)). These were concluded to be neutron stars since nothing associated
with a black hole can lead to a regular pulsing behaviour. It was inferred that most
of the galactic X-ray sources ought to be compact objects accreting matter from a
binary companion. These conclusions follow from (i) the fact that the sources vary on
short timescales, which indicates a small emitting region,(ii) the confirmation that some
sources are in binary systems, i.e. there are cases where no optical companion is observed,
and (iii) the efficiency with which accretion onto a compact object can convert energy
into X-rays.

Since the early 1970s, many other satellites have confirmed the Uhuru data and pro-
vided a wealth of additional information. Many other objects—like X-ray burst sources,
magnetars, and micro-quasars—have been added to the X-ray zoo. The evidence for
solar mass black holes has strengthened and yet the oldest candidate, Cygnus X1, still
presents one of the best cases.

Shortly after the detection of X-rays from outside the Solar System in 1962, one of the
strongest sources, Cygnus X1, was found to be varying on very short timescales. This
led to suggestions that it might be a black hole (Thorne, 1974b). Close observations
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unveil variability on timescales ranging from months to milliseconds. In order for a
source to vary this rapidly it must be compact. Coherent variation is only possible on
timescales larger than a light crossing time, and for a millisecond burst we can deduce a
size of R < ct ∼ 300 km. The only (known) astronomical objects that fit this criterion are
neutron stars and black holes. Unfortunately, unless one can associate some phenomenon
with the presence of a surface (like the explosive events that lead to X-ray bursts from
neutron stars) it is not easy to distinguish the signature of a black hole from that of a
neutron star.

The upshot of this is that, if the mass function is smaller than 3M� (or whatever
we take the maximum neutron star mass to be) the dynamical evidence for a black
hole is not so convincing. One would have to involve further information, such as
the mass of the companion and the inclination angle. The latter can sometimes be
constrained by a lack of observed eclipses, and the mass of the companion star may
be inferred from its spectral characteristics. But you still have to be lucky. In the
case of Cygnus X1, the companion star is a hot blue giant expected to (from its
spectral characteristics) have a mass of 24 − 42M�. From this, and the observed mass
function f = 0.25M� we can deduce (using the maximum value sin i = 1) that the
mass of the compact object should be larger than 6M�. Even if we take a devil’s
advocate point of view, we find that the mass of the compact object in Cygnus X1
remains well above the upper limit for neutron stars. The current mass estimate is,
in fact, 14.8 ± 1.0M� (see Table 9.1), a strong argument in favour of the black-hole
explanation.

The number of similar black-hole candidates has increased dramatically, see Table 9.1
for a selection. The discovered systems fall in different categories depending on the
mass of the companion star. With a companion heavier than 20 M�, Cygnus X1 is
the prototype for high-mass X-ray binaries (HMXB). In contrast, the companion of a
typical low-mass X-ray binary (LMXB) is below one solar mass (usually a white dwarf).
Intermediate X-ray binaries (IMXB) obviously lie in between. The classification into
high- and low-mass binaries does not specify the nature of the compact accreting object;
it can be either a black hole or a neutron star. The prototype LMXB black-hole candidate,
A0620-00, was discovered as it flared up to the brightest X-ray source in the sky for two
months in 1975 (Elvis et al., 1975). This black hole is estimated to have a mass in the
narrow range 6.6 ± 0.3M�.

It is also worth highlighting a system that is famous for its similarity with the much
larger black holes found in the cores of active galaxies. In July 1994 the bright X-ray
source GRO J1655-40 was discovered by the Burst and Transient Source Experiment
(BATSE) on board the Compton Gamma-Ray Observatory. Observations of this object
led to a precise mass estimate in the range 5.4 ± 0.3M�, but the source is interesting
for other reasons. A few weeks after the initial X-ray outburst, radio jets were found to
emerge from GRO J1655-40 (Tingay et al., 1995). The observed double radio structure
resembles the jets seen in many active galactic nuclei. The jet displays superluminal
motion which indicates that, just like in the extragalactic counterparts, matter is moving
relativistically. This is an interesting illustration of the fact that the flow around black
holes can be essentially the same on radically different scales.
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Table 9.1 Black-hole masses in X-ray binaries (classified by the mass of the
companion, from Low to Intermediate and High). The objects discussed in the
main text are highlighted in bold. (Adapted from Casares et al. (2017), which
provides original source references.)

Object X-ray binary class Mass (M�)

GRS 1915+105 LMXB/transient 10.6−14.4

V404 Cyg 8.4−9.2

BW Cir >7.0

GX 339-4 >6.0

XTE J1550-564 7.8−15.6

H1705-250 4.9−7.9

GS 1124-684 9.6−13.1

GS 2000+250 5.5−8.8

A0620-00 6.3−6.9

XTE J1650-500 4.0−7.3

GRS 1009-45 >3.6

XTE J1859+226 > 5.42

GRO J0422+32 >1.6

XTE J1118+480 6.9−8.2

XTE J1819.3-2525 IMXB/transient 5.8−7.0

GRO J1655-40 5.1−5.7

4U 1543-475 2.7−7.5

Cyg X-1 HMXB/persistent 13.8−15.8

LMC X-1 9.5−12.3

LMC X-3 6.4−7.6

M33 X-7 14.2−17.2

MWC 656 3.8−5.6

9.7 The formation of compact binaries

The X-ray data suggests that black holes are common. However, electromagnetic
observations provide no handle on black-hole binaries. This is a shame as these are
(obviously!) exciting gravitational-wave sources.
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In order to estimate the event rates for inspiral signals for different generations of
detectors we need to understand how compact binaries form. This question has been
attracting attention since the discovery of the binary pulsar PSR1913+16 in 1974 and
early estimates played a key part in the arguments for funding the LIGO project and
other large interferometers in the first place. As pulsar astronomers continue to identify
similar double neutron star systems, see Table 9.2, we get a better idea of the relevant
formation rate. Moreover, the detection of GW150914 (Abbott et al., 2016b) brought
the issue of formation scenarios into sharp focus since the two black holes were found to
be more massive than expected. In fact, the black holes (so far) found in gravitational-
wave data tend to be more massive than those seen in X-ray binaries (compare the data
in Tables 9.1 and 9.3). These systems also appear to be more common than one might
have expected, raising questions that need to be resolved by better modelling. This is,
however, a difficult problem.

We know that more than 50% of normal stars are found in binaries. Compact
binaries should form naturally as a result of stellar evolution of these systems (Tutukov
and Yungelson, 1993). They may also form in dense star clusters via dynamical
exchanges involving stars and black holes (Sigurdsson and Hernquist, 1993), or in more
exotic environments like the disks of active galactic nuclei (see Postnov and Yungelson
(2014) for a review of the different scenarios). Population synthesis models allow us
to establish how close pairs of compact objects form and whether these systems will
merge within a Hubble time. The input parameters for such simulations are: (i) the
shape of the galactic gravitational potential, (ii) the initial mass function of massive
main sequence stars, (iii) the metallicity of the parent gas cloud, (iv) the fraction of
primordial binaries (and triplets), and (v) the distribution of the initial binary separation
and eccentricity, which affect the degree of interaction of the two stars over their
lifetime.

Stars lose mass through winds, but in binaries they can also exchange mass with the
companion (as discussed in Chapter 6). Mass transfer occurs when the most massive
star, which first evolves away from the main sequence, fills its Roche lobe. The mass loss
to the companion leads to a re-equilibration of the mass ratio and tends to make the less
massive star the heaviest in the system. After this period of mass exchange, the faster
evolving star becomes a Wolf–Rayet or a helium star (depending on the initial mass)
that can evolve towards a supernova. The supernova explosion may unbind the binary
due to mass loss and recoil associated with an anisotropic collapse. In fact, we know
that the collapse typically involves asymmetries as neutron stars receive birth kicks with
mean velocities of several 100 km/s. This may break up the binary. Thus, it is expected
that about 90% of potential binaries end up being disrupted after the first supernova
explosion. This makes compact binaries rare. Black holes—which form either through
fall back of matter (following the supernova) or direct collapse—are likely to receive
weaker kicks. The lower level of mass loss that may accompany their formation, and the
weaker kicks, may help a heavy binary survive almost intact after the formation of the
first compact object. The key implication is that the rate of formation for binary systems
with one compact object is not directly set by the initial mass function. This further
complicates the population modelling.
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Table 9.2 Observed parameters for known double neutron star systems, including the coalescence time
tm. (Note that the merger time does not simply follow from (5.65) for systems with significant ellipticity,
like the Binary Pulsar PSR B1913+16. For these systems one has to combine Eq. (5.62) with the
relation for ȧ/a from the quadrupole formula in order to determine tm.) The merger times should be
compared to the Hubble time (the age of the Universe) which is about 1.4 × 104 Myr. The two systems
below the horizontal line are not yet confirmed to be neutron star binaries. (Based on data from Tauris
et al. (2017).)

Pulsar P (ms) Porb (days) e Mpsr(M�) Mcomp(M�) tm (Myr)

J0453+1559 45.8 4.072 0.113 1.559 1.174 1.5 × 108

J0737-3039A 22.7 0.102 0.088 1.338 1.249 86

J0737-3039B 2773.5

J1518+4904 40.9 8.634 0.249

B1534+12 37.9 0.421 0.274 1.333 1.346 2.7 × 103

J1753-2240 95.1 13.638 0.304

J1755-2550 315.2 9.696 0.089 >0.40

J1756-2251 28.5 0.320 0.181 1.341 1.230 1.7 × 103

J1811-1736 104.2 18.776 0.828 <1.64 >0.93

J1829+2456 41.0 1.176 0.139 < 1.38 >1.22

J1906+0746 144.1 0.166 0.085 1.291 1.322 310

J1913+1102 27.3 0.206 0.090 <1.84 >1.04

B1913+16 59.0 0.323 0.617 1.440 1.389 300

J1930-1852 185.5 45.060 0.399 <1.32 >1.30

J1807-2500B 4.2 9.957 0.747 1.366 1.206 1.0 × 106

B2127+11C 30.5 0.335 0.681 1.358 1.354 220

After the birth of the first compact object, the evolution continues through a common
envelope phase (see Figure 9.6). During this phase the second star swells up to a giant
and engulfs its partner. The compact object then spirals inwards due to gas dynamical
friction, losing orbital angular momentum and energy, which in turn heats the envelope.
Next, the remnant either merges with the dense core of the companion—forming what
is known as a Thorne–Zytkow object (Thorne and Zytkow, 1975)—or end up in a tight
orbit after ejecting the envelope. In this last case, the core of the star evolves into a
relic object which may explode in a supernova, form a black hole through the fall-back
of matter, or undergo direct collapse, depending on its mass. This route may lead to
double neutron star systems or black-hole/mixed binaries. The main uncertainties in the
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Table 9.3 Parameters inferred for the 10 binary black-hole events recorded during the first two
Advanced LIGO observing runs, O1–O2. The Virgo detector joined the O2 search at the beginning of
August 2017. It is notable that 4 black-hole mergers were observed that month. The energy radiated in
each event (in M�c2) is (roughly) given by the difference between the final black hole mass and the total
mass of the initial binary system, Mf − M1 − M2. It is also worth noting that the estimated spin of the
final black hole (af ) is similar in all cases, suggesting that it originates from the orbital angular
momentum. (Data from Abbott et al. (2019c) where the estimated errors for each measurement can also
be found.)

Event M1 (M�) M2 (M�) M (M�) Mf (M�) af dL (Mpc)

GW150914 35.6 30.6 28.6 63.1 0.69 430

GW151012 23.3 13.6 15.2 35.7 0.67 1060

GW151226 13.7 7.7 8.9 20.5 0.74 440

GW170104 31.0 20.1 21.5 49.1 0.66 960

GW170608 10.9 7.6 7.9 17.8 0.69 320

GW170729 50.6 34.3 35.7 80.3 0.81 2750

GW170809 35.2 23.8 25.0 56.4 0.70 990

GW170814 30.7 25.3 24.2 53.4 0.72 580

GW170818 35.5 26.8 26.7 59.8 0.67 1020

GW170823 39.6 29.4 29.3 65.6 0.71 1850

respective formation rates relate to the common envelope phase of the evolution. The
tight binary that forms after common envelope and mass ejection is likely to survive.
If the two compact objects remain bound and end up sufficiently close (a few solar
radii apart), gravitational waves will drive the binary towards coalescence on timescales
that vary between a few million to more than a billion years (see Table 9.2). As the
evolutionary scenario is sensitive to complex issues like the kick distribution and the
detailed supernova dynamics, predicted binary coalescence rates remain uncertain. In
fact, we may need a statistically significant sample of observations to shed light on the
uncertain aspects of the process.

Compact binaries may also form as a result of dynamical interaction in dense stellar
clusters (Sigurdsson and Hernquist, 1992; Portegies Zwart and McMillan, 2000). The
high density of stars in clusters favours the formation via exchange interactions. Three-
body interactions can lead to a population of massive binaries. As they are the heaviest
objects in the cluster, these binaries sink to the centre on a timescale shorter than the
two-body relaxation time. In the process they may encounter other black holes, which
can lead to a sequence of mergers and the development of progressively heavier binaries.
Scattering off of stars can drive these binaries to coalescence within ∼ 1 − 10 Gyr. Again,
we need observations to establish the relevance of this scenario.
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Figure 9.6 The standard formation path for compact binaries. The initial masses of the stars determine
the nature of the binary. To reproduce the data of GW150914, the initial stars must be massive. The
evolution is also sensitive to a range of issues, like the metallicity. (Reproduced from Marchant et al.
(2016) with permission from Astronomy and Astrophysics, copyright ESO.)

9.8 Estimating merger rates

In order to understand the chances of detecting gravitational signals from cosmic events
we need to have an idea of the signature we should be looking for—to prepare the
appropriate data analysis strategy—and we also need to estimate how often these events
are likely to happen inside the horizon of our detectors. As we are (mainly) interested in
black holes and neutron stars, the latter is a notoriously difficult problem. For isolated
objects, we need to understand the supernova mechanism and the relative proportion of
events that lead to the direct formation of a black hole. This problem is relatively well
constrained; see Figure 9.7. We expect roughly 3–4 core collapse supernova events in
our Galaxy each century, so once we consider the local galaxy distribution we see that
our detectors need to be sensitive to a signal from a distance of at least 10 Mpc if we
want to catch a couple of events each year.

The problem becomes much more difficult when we turn to binaries (Phinney, 1991;
Narayan et al., 1991). As we have already seen, different channels may explain the
formation of these systems and the details are sensitive to many unknown factors, in
particular, the common envelope phase, which is essential in bringing the binary partners
into a close enough orbit that gravitational radiation can drive the system to merger inside
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the Hubble time. This typically leads to more than an order of magnitude uncertainty in
the estimated rates.

For neutron star binaries we can still make progress using known systems. Extrapola-
tions based on the data in Table 9.2 typically lead to about 100 events in the Galaxy every
million years. Since the estimate is based on galactic binary data, it is natural to express
the extrapolated result in terms of the number of galaxies similar to our own. That is, we
anticipate a rate of 100 Myr−1 per Milky Way Equivalent Galaxy (MWEG) (Kalogera
et al., 2004). Considering the uncertainties the actual merger rate is expected to lie in the
range 1 − 1,000 Myr−1 per MWEG (Abadie et al., 2010). If we want to turn this into an
estimated detection rate, we need to project the result onto the estimated sensitivity for
a given set of detectors. This step is also far from trivial. The detection threshold for a
network of interferometers depends on the relative configuration (locations, orientations,
and noise power spectral densities of the instruments), the characteristics of the noise,
and the employed search algorithms. However, we get a rough idea by expressing the
reach of a given gravitational-wave search in terms of the horizon distance: dh, the dis-
tance at which a single detector would detect an optimally oriented source with a signal-
to-noise ratio of 8 (as required for a confident detection). We can combine the results
from Chapter 8 with a given detector configuration to make this statement quantitative.

In order to estimate rates, we also need to know the number of galaxies inside dh.
This is sometimes expressed in terms of the accessible blue-light luminosity. To convert
this luminosity into the number of galaxies within reach, Ng, we need the approximate
relation (Abadie et al., 2010)
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Ng(MWEG) ≈ 1.7CL(L10), (9.40)

where CL is the cumulative blue luminosity observable within a given search volume
measured in terms of the corresponding luminosity of the Sun (L10 is 1010 times the
blue luminosity of the Sun). This then leads to an estimated number of galaxies

Ng ≈ 4π

3
× 0.0116 ×

(
dh

2.26Mpc

)3

≈ 4 × 10−3 Mpc−3, (9.41)

where the factor of 2.26 arises from an average over possible sky locations and orienta-
tions (see Figure 9.8) and 1.16 × 10−2 Mpc−3 is the extrapolated density of MWEGs
in space.

Let us see where this gets us. First of all, we find that the expected rate for neutron
star inspirals is 10−2 − 10 Mpc−3 Myr−1. Taking the initial LIGO horizon distance for
neutron star inspirals to be 33 Mpc, we then estimate the expected number of events in
a one-year observation to be 2 × 10−4 − 0.2, and it is not surprising that there were no
detections. In fact, the rate estimate illustrates why it is essential to reach the advanced
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LIGO sensitivity, for which dh ≈ 445 Mpc, as we then arrive at a binary neutron star
detection rate of about 40 events per year (with a range between 0.4 and 400 per year;
see Abadie et al. (2010)).

Estimates for mixed neutron star–black-hole systems or double black-hole systems are
more difficult, as we have no electromagnetic evidence for their existence. As estimated
rates tend to be correspondingly uncertain, typical results for the neutron star–black-
hole systems merger rate lie in the range 6 × 10−4 − 1 Mpc−1 Myr−1, while the results
for black-hole systems is 10−4 − 0.3 Mpc−3 Myr−1 (Abadie et al., 2010). As these
are small numbers and the Advanced LIGO horizon distance for black-hole mergers
should reach beyond 1 Gpc, at which point we expect to observe for about a year,
it is natural re-express the rate as 0.1 − 300 Gpc−3 yr−1. This estimate predates the
breakthrough LIGO observations. However, we can place an improved constraint on the
rate already from the data surrounding the GW150914 event. The most conservative
assumptions, see Abbott et al. (2016e), then suggest a range of 2 − 600 Gpc−3 yr−1,
demonstrating that black-hole binaries are more common than we might have expected.
The constraint (obviously) improves with further detections. The data from the first
two advanced detector observing runs, which include roughly one event for every two
weeks of data taking (see the 10 events listed in table 9.3), suggest a merger rate of
9.7 − 101 Gpc−3 yr−1 for binary black holes (Abbott et al., 2019c).

We are still waiting for the first observation of a neutron star–black-hole binary, but
the LIGO O1 results still provide an upper limit on the merger rate for such systems. For
systems with a 1.4M� neutron star and black-hole masses of at least 5M�, the detectors
were sensitive to an average distance of at least dh ∼ 110 Mpc. This constrains (with 90%
confidence) the merger rate of such systems to be less than 3600 Gpc−3 yr−1 (Abbott
et al., 2016e).

We may also weigh in the rate of observed short gamma-ray bursts which are thought
to be associated with the merger of systems involving neutron stars (simulations suggest
that the presence of a spinning black hole surrounded by an accretion disk is essential
for the launch of a jet; see Chapter 21). Observations of short gamma-ray bursts with
known redshifts then allow for a better estimate of the merger rate of these systems in
the local Universe. Data from the SWIFT satellite lead to a rate in the range 500 −
1,500 Gpc−3 yr−1 (Petrillo et al., 2013). One can also compare the observed rates for
gamma-ray bursts to the merger rates to constrain the opening angle of the gamma-
ray burst jet (Chen and Holz, 2013). This suggests an opening angle of a few degrees
(Abbott et al., 2016e).

9.9 Active galaxies

Having focussed on solar-mass compact objects, we sacrificed some of the historical
context. The first glimpse of our violent Universe—unveiled in its full glory by the
new technology—was Maarten Schmidt’s discovery of quasars (Schmidt, 1963). These
‘quasi-stellar’ radio sources appeared starlike in telescopes but were found at enormous
distances so must emit exceptional amounts of energy. These objects are now referred
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to as Active Galactic Nuclei (AGN) and we know that they can be thousands of times
as bright as an ordinary galaxy. They come in different varieties: Seyfert galaxies, broad
and narrow line radio galaxies, quasars, BL Lacertae objects, and so on. An outstanding
example is M87, a strong radio source that has been identified with an elliptical galaxy
about 50 million light years away. Matter is ejected at relativistic speed from the centre
of this galaxy, forming two spectacular jets that extend 2,600 light years from the core.
The energy associated with these jets is equivalent to that released in something like ten
million supernova explosions!

This kind of observation indicates that the nucleus of a galaxy cannot be composed
of common stars alone. We need a massive body capable of ejecting a mass many times
exceeding that of the Sun. What central engine can possibly release such awesome power?
Whatever the central object is, it must be able to radiate continually for a long time. The
natural conclusion is that the central object in an active galaxy must be a supermassive
black hole feeding from an accretion disk. Within this model, the bewildering variety
of AGNs has been unified in a single picture. Different AGNs simply look different
because we view them from different angles (Elvis, 2000). It is generally agreed that most
galaxy cores harbour supermassive black holes, but it is still legitimate to ask whether the
observations are precise enough to rule out other options. So, let us take a brief look at
the evidence.

In May 1994 NASA announced that the Hubble Space Telescope (HST) had ‘seen’ a
black hole at the centre of M87 (Kormendy and Richstone, 1995). The gas in the heart of
the galaxy was found to whirl rapidly around the centre. Spectrographic measurements
showed that the gas moved at velocities of about 500 km/s at a distance of 18 pc. From
this one could work out that the centre of M87 must hide an unseen mass of at least
2.4 × 109M� inside a volume of space that contains far too few visible stars to account
for this amount of matter. The announcement caused quite a stir, partly because of the
remarkable HST images of the central region of the galaxy.

Another impressive case for a supermassive black hole was presented a year later.
This involved the use of emission lines from water masers (the microwave equivalent of
the laser) to accurately map the gas motion in the spiral galaxy NGC 4258 (Kormendy
and Richstone, 1995). Using the Very Long Baseline Array, a resolution more than 100
times sharper than that of the HST was achieved. The radio observations revealed a disk
surrounding a compact dark mass, with rotational velocities following an almost exact
Keplerian rotation law. The mass of the central object was inferred to be 3.6 × 107M�
inside a radius of 0.13 pc. The maser observations make a very strong case for a black
hole in NGC 4258. This is, in fact, the most conservative explanation. If the central mass
in this galaxy is not a black hole, then it must be something even more exotic.

The case for supermassive black holes in galaxy cores has continued to strengthen in
the past couple of decades. The black-hole explanation fits the data and the phenomenol-
ogy of these systems. It is not easy to come up with a credible alternative. Having said
that, we are still far from confirming that these objects are the black holes of Einstein’s
theory. This would involve observing features directly associated with the presence of an
event horizon. This will always be difficult for distant galaxies, but it may well be possible
if we look closer to home. The recently announced results from Event Horizon Telescope
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(a virtual Earth-sized radio telescope; see Psaltis et al. (2015)) provide exciting progress
in this direction, reconstructing event-horizon-scale images of the supermassive black-
hole candidate in M87 and constraining the involved central mass to be (6.5 ± 0.7)×
109M� (Akiyama et al., 2019).

Observations of huge black holes at impressive distances tell us that these monsters
grow rapidly in the early Universe. How this happens remains a mystery (Rees, 1984).
Studies predict black-hole seeds in the mass range 103 − 105M� at redshifts above
z ≈ 10 (when the Universe was less than a billion years old). These seeds then grow to
108M� by accretion and/or repeated mergers, contributing to the formation of cosmic
structures in the process. In the standard cold dark matter model (see Chapter 22)
galaxies undergo multiple mergers during their lifetime. If one assumes that most galaxies
host black holes in their centre (which makes sense given the observational evidence), and
that a local galaxy has experienced multiple mergers, then a massive black-hole binary
system would be a natural evolutionary stage. After each merger, the central black holes
would migrate to the new centre of mass via dynamical friction, followed by (once they
get close enough) the emission of gravitational radiation.

Different models take different starting points and make different assumptions about
the stages involved. The initial seed black holes may form from the direct collapse of gas
(Begelman et al., 2006) (in which case the mass of the black hole may lie in the range
104 − 106M�), gravitational collapse of zero-metallicity population III stars (leading to
∼ 100M� black holes), or mergers of stellar clusters. The evolution may be dominated
by gas accretion, black-hole mergers, or the tidal capture of stars. The efficiency of
these channels depends on a number of factors (the black-hole spin dictates accretion
efficiency, gravitational interactions may lead to slingshot effects and recoils, the galactic
environment determines the level of gas supply, and so on). The details are uncertain,
but one should be able to constrain the theory with observations. For example, along with
any accreted mass the black hole should gain angular momentum, so one might expect
massive black holes formed by accretion to spin rapidly (Thorne, 1974a). In contrast,
the capture of lower mass objects (from randomly oriented orbits) may allow the black
hole to remain slowly spinning.

Low-frequency gravitational-wave observations should (eventually) allow us to dis-
criminate between the different models. Any scenario that involves repeated black-hole
mergers will (inevitably) lead to gravitational waves in the LISA sensitivity band (see
Figure 7.11). Detection of these signals, which should last from hours to months, would
help us decode the evolution of supermassive black holes.

9.10 A giant at the centre of the Milky Way

The violent activity of many galaxy cores inevitably draws our attention to the centre
of the Milky Way. If most galaxies host a massive black hole, should not our own have
one, as well? The centre of our Galaxy is an intriguing part of the sky that displays many
astrophysical extremes. It is often studied, but because it is obscured by interstellar dust
and gas, detailed observations are difficult. Hardly any of the photons created in the
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galactic centre are able to pierce the dust along our line of sight. As a consequence, the
centre of the Milky Way is the domain of radio and infrared astronomy.

Since the early 1970s we know that an unusual radio source is located at the dynamical
centre of the Galaxy. This source, Sgr A*, has long been regarded the prime candidate
for our own supermassive black hole. The mere presence of a distinct object close to
the centre of the Galaxy is intriguing, but is Sgr A* really a black hole? The source is
extremely compact and outshines all other radio sources in the Galaxy by several orders
of magnitude. Compared to a typical AGN it is feeble, but the observed radio luminosity
is still similar to the nuclear radio sources found in many other nearby galaxies, like
Andromeda (M31).

After years of speculation, the object at the centre of the Milky Way emerged as
perhaps the strongest massive black-hole candidate of all (Lu et al., 2009; Gillessen
et al., 2009). The evidence, which continues to improve, is based on remarkable infrared
observations tracking the proper motion of stars near the galactic centre for decades; see
Figure 9.9. The observations have much higher spatial resolution than can be achieved
with the HST for (say) M31. The detected motion is consistent with a black hole of mass
close to 4 × 106M� inside the central 0.015 pc of the Galaxy. The evidence for a black

Figure 9.9 Orbits of stars in the vicinity of the centre of the Milky Way. (Image created by Prof.
Andrea Ghez and her research team at UCLA from data sets obtained with the W. M. Keck Telescopes.)
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hole is further strengthened by recent observations of flares in the near infrared (Abuter
et al., 2018), indicating a clockwise looped motion on the sky. The flares may originate
from a compact hotspot of synchrotron emission from just outside a Schwarzschild black
hole.

In essence, observations allow us to establish the presence of a dark mass—most likely
a black hole—but they do not allow us to probe the exact nature of this object. To do
this, we need to track objects closer to the centre. In principle, this should be possible
because the galactic centre is a busy place. In practice, it is difficult because the region is
obscured by dust. Still, a single observation of a radio pulsar orbiting close to the central
black hole would provide a wealth of information. Finding such an object is one of the
exciting targets for the Square Kilometre Array in the next decade (Stappers et al., 2018).
If such a pulsar were to venture too close to the black hole, or indeed, end up in a close
orbit due to dynamical slingshot interactions, it would be captured. Such gravitational
captures should be fairly common in galactic nuclei.

Compact objects (in particular stellar mass black holes and neutron stars, as they
are unlikely to tidally disrupt) orbiting a massive black hole may allow us to probe
physics that is inaccessible to electromagnetic observations. Usually referred to as extreme
mass-ratio inpirals, such systems spiral through the strong field region near the event
horizon before finally plunging through it. The associated gravitational-wave signal is
expected to be very clean, except perhaps in active galaxies containing accreting black
holes, where interactions with the accretion disk may impact on the inspiral dynamics.
Extreme mass-ratio inspirals trace the geodesics in the black-hole spacetime, and the
emitted low-frequency gravitational waves should be observable with an instrument like
LISA (see Figure 7.11). Over a typical observation time of months to years, the orbits
would highly relativistic, displaying extreme forms of periastron and orbital precession.
We will consider the modelling of these systems in Chapter 16.

Observations of extreme-mass-ratio systems will also shed light on the stellar mass
black-hole populations in galactic nuclei. We can expect to learn about the mass
spectrum of such black holes, which is largely unconstrained—both theoretically and
observationally—at present. By they time LISA flies in the mid-2030s, the Large
Synoptic Survey Telescope (Tyson and Angel, 2001) should have observed a large
number of tidal disruption events, which will also tell us a lot about black holes and
stellar populations in galactic centres. However, this information will not have the same
precision as that achievable through gravitational-wave observations.

In order to explore this possibility, we need to take a closer look at the theory. It makes
sense to start by trying to understand geodesic motion a bit better.
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Einstein’s theory describes a Universe far from our everyday experience. Not only does
gravity move mass, it also bends light and warps time. Clocks run slow in a gravitational
field. Gravity makes waves and creates black holes. Ultimately, gravity also helps us
explain the cosmos. These are exciting ideas, but how do we know they are right? How
do we put the theory to the test?

When Einstein—after a number of false starts—finally formulated general relativity
in 1915 the results were presented in a series of short communications to the Prussian
Academy. In these papers he suggested several ways that the theory could be tested by
experiment.1

The first of Einstein’s tests involved the perihelion shift of Mercury. It had been known
since Le Verrier’s work in 1859 that Mercury’s orbit marched forwards a tiny bit faster
than expected. Once the influence of the other planets was accounted for there was a
mismatch of 43 arcseconds per century (about a third of the effect due to the presence
of Jupiter). This had led to suggestions of a missing planet and a discussion that lasted
until Einstein solved the problem with his new theory.

Einstein’s second test involved the bending of light in a gravitational field, essentially a
consequence of the equivalence principle. He first calculated this effect already in 1911,
well before he completed the theory. He managed to convince astronomers that the
prediction could be tested during a solar eclipse. Fortunately, for Einstein, a number
of proposed expeditions fell through. This was lucky, because the result was wrong. The
1915 theory corrected the mistake, but by then the world was at war. It was not until 1919
that a British eclipse expedition, led by Arthur Eddington, confirmed the light bending
(Dyson et al., 1920). But the measurement was not totally convincing. The observations
agreed with Einstein’s calculated value with an error of about 30%, a level of uncertainty
that would remain for a long time.

The theory also says that gravity makes clocks slow down. Einstein noted that the
frequency of light should shift toward the red as it struggles to escape the gravitational
pull of the Sun. The first attempt to measure this effect took place in 1917, but the
experiment was too difficult for the available technology (the surface of the Sun is
‘messy’). The solar redshift was not measured until the 1960s (Brault, 1962).

1 A relatively up-to-date overview of different tests of Einstein’s theory can be found in Will (2005).

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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When Einstein passed away, he left a desk full of unfinished calculations and
unanswered questions. Many predictions of the theory remained untested. The effects
were simply too small and there was no serious interest in testing the theory, anyway.
The renaissance of relativity in the decade that followed Einstein’s death was driven by
three developments: First, atomic clocks allowed precision measurements of space and
time. Second, a new generation of telescopes—building on technology developed during
World War II—opened new windows to the Universe, driving a revolution in astronomy
(as we have already discussed; see Chapter 9). Third, a generation of talented physicists
revisited Einstein’s theory, leading to a much better understanding of its implications.

10.1 Geodesics

In order to explore the various tests of Einstein’s theory, we need to understand motion
in a curved spacetime. We need to consider both light, which moves along null geodesics,
and massive bodies (for the moment treated as test particles), which follow timelike
trajectories. For clarity, we will focus our attention on the Schwarzschild spacetime.
This is natural since the weak field limit of the results can be used to describe the
conditions in the Solar System and hence relate directly to the classic tests of the theory.
However, the results also apply in the strong-field regime so we gain insight into the
physics of black holes along the way.

We already derived the equation that determines geodesics (see Chapter 2), however,
when it comes to working things out it is often practical to follow a different route.
In Chapter 2 we argued that geodesics trace out the shortest possible paths in spacetime,
but we did not back up that statement. It is useful to do so now.

If we want to emphasize that geodesics represent extremal curves, it is natural to use
a variational description. Basically, we try to minimize the spacetime interval

ds2 = gabdxadxb. (10.1)

Let us assume that the geodesics are described by some parameter τ , say. Dividing the
line element by dτ2, we then have

(
ds
dτ

)2

= gab
dxa

dτ

dxb

dτ
= gabẋaẋb ≡ 2L, (10.2)

where dots represent derivatives with respect to τ . This defines the Lagrangian L for the
motion. The spacetime interval between two events, P1 and P2, follows from

s =
∫ P2

P1

ds =
∫ P2

P1

ds
dτ

dτ , (10.3)
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and any extremal path must be such that the variation δs vanishes. Noting that this also
means that δs2 = 0, we need

δ

∫ P2

P1

Ldτ = −
∫ P2

P1

[
d
dτ

(
∂L
∂ ẋa

)
− ∂L

∂xa

]
δxadτ = 0, (10.4)

where we have integrated one of the terms by parts. This leads to the Euler-Lagrange
equations

d
dτ

(
∂L
∂ ẋa

)
− ∂L

∂xa = 0. (10.5)

At first sight this result seems rather different from (2.72), but it is straightforward to
show that the two pictures are identical.

In the case of the Schwarzschild metric (4.10), we have xa = [t, r,θ ,ϕ] and the
Lagrangian can be written

2L = −
(

1 − 2M
r

)
ṫ2 +

(
1 − 2M

r

)−1

ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2. (10.6)

The Euler-Lagrange equations (10.5) for the t, θ , and ϕ-components become, respec-
tively,

d
dτ

[(
1 − 2M

r

)
ṫ
]

= 0, (10.7)

d
dτ

(r2θ̇ )− r2 sinθ cosθϕ̇2 = 0, (10.8)

and

d
dτ

(r2 sin2 θϕ̇) = 0. (10.9)

Finally, we need an equation for the r-component. In principle, we can get this from
(10.5), as well, but since the metric elements depend explicitly on r this equation will
be a bit messy. Instead, we can make a judicious choice of the parameter τ . In the case
of timelike geodesics it is natural to use proper time. Then it immediately follows that
2L = −1, which provides us with the equation we need. In the case of light we do not
have a meaningful measure of time along the trajectory, but we know that the geodesics
should be null so we must have 2L = 0, and again we have our final equation.

What do we learn from the Euler-Lagrange equations? Without too much effort, quite
a lot. In particular, the equations reflect the symmetry of the spacetime. Equations (10.7)
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and (10.9) provide us with two conserved quantities (associated with two of the Killing
vectors of the spacetime; see Chapter 2). The energy

(
1 − 2M

r

)
ṫ = constant = E (10.10)

and the angular momentum

r2 sin2 θϕ̇ = constant = L (10.11)

are both constants of the motion. The quantities are conserved because the spacetime
is static and axisymmetric (the metric gab is independent of t and ϕ). Meanwhile, the
third equation, (10.8), reflects the spherical symmetry of the problem, which implies that
motion can be confined to a plane. If we conveniently choose the trajectory to initially
be in the equatorial plane, θ = π/2, we see that it is possible to find orbits that remain in
this plane.

10.2 The gravitational redshift

At the level of geometric optics (discussed in more detail in Chapter 22), light can
be described in terms of photons moving along null geodesics. In essence, they are
described by a wave vector ka which satisfies kb∇bka = 0. The wave vector is tangent
to the geodesics, which means that we can take

ka = dxa

dλ
(10.12)

(where we are using λ as parameter rather than τ in order to avoid confusion with proper
time). The frequency measured by a given observer is then

ω = −gabua
obsk

b, (10.13)

where ua
obs is the four-velocity of the measuring device. If we consider a static observer,

then the normalization condition immediately leads to

ua
obs = [u0,0,0,0] with u0 =

(
1 − 2M

r

)−1/2

. (10.14)

Combining the results, and making use of (10.10), we have (reinstating h̄)

h̄ω =
(

1 − 2M
r

)1/2

E. (10.15)
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However, since the energy E is conserved along a given geodesic, we learn that if a
photon is emitted at r1 and subsequently detected at r2, then the frequencies are related
according to

ω2

ω1
=

(
1 − 2M/r1

1 − 2M/r2

)1/2

. (10.16)

If we, as an example, assume that the photon is emitted from the surface of the Sun
(at radius R) and detected far away (say, at infinity), then it follows that

ω∞ =
(

1 − 2M
R

)1/2

ωR. (10.17)

The observed frequency is lower—it has shifted towards the red.
This is an important result. The gravitational redshift affects any local time-varying

phenomenon. For example, we will later consider stellar oscillations. In that case, the
observed frequencies will be redshifted. This has important implications for modelling.
If we want to make precision predictions, we need to model the seismology dynamics in
general relativity.

The first precision test of the gravitational redshift was carried out by Pound and
Rebka in 1959 (Pound and Rebka, 1960). They compared the energy shift for photons
dropped down a 23-m tower to that of photons launched upwards the same distance
(in order to eliminate systematic errors). In order to quantify this effect, we can simplify
(10.16) to the situation where the gravitational field is weak and the relative difference
between the source and the detector is small. In this case we get

∣∣∣∣
ω

ω

∣∣∣∣ ≈ gh
c2 ≈ 2.5 × 10−15, (10.18)

where g is the gravitational acceleration at the surface of the Earth and h is the height of
the tower.

10.3 Flying clocks

According to general relativity, clocks run slow in a gravitational field. This suggests an
obvious way to test the theory. Keep one accurate (atomic) clock in the laboratory and fly
another one at high altitude. If the theory is correct, the flying clock should tick faster than
the one left behind. This experiment involves comparing the proper time τ at different
altitudes. Assuming that the clocks are at fixed position, the time interval on a local clock
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is related to a clock at infinity (this is the de facto meaning of the Schwarzschild time
coordinate t) according to


τ =
(

1 − 2M
r

)1/2


t. (10.19)

The local clock ticks at a slower rate than the distant time keeper. As an example, the
Earth’s gravity will cause a clock on the surface to accumulate around 0.0219 fewer
seconds each year than a distant clock would.

However, the clock experiment is not as straightforward as it may seem. In reality,
the flying clock would be in orbit. To see how this affects the result, let us consider a
circular orbit such that ṙ = ϕ̇ = 0 (without any particular loss of generality). In this case,
the geodesics are such that (this follows readily from the Euler–Lagrange equation for
the radial component)

(
dθ

dt

)2

= M
r3 . (10.20)

Combining this result with the Schwarzschild line element, we obtain the rate of proper
time associated with the orbit

dτ2 = −ds2 =
(

1 − 2M
r

)
dt2 − r2dθ2 −→ 
τ =

(
1 − 3M

r

)1/2


t. (10.21)

In addition, we need to weigh in the fact that a moving clock slows down. From special
relativity, we know that


tmoving =
(

1 − v2

c2

)−1/2


trest (10.22)

(this follows from the Lorentz transformation given at the beginning of Chapter 2).
The first successful flying-clock experiment was carried out by Hafele and Keating in

1971 (Hafele and Keating, 1972). They brought one of their atomic clocks on a round-
the-world trip—and back again—on commercial airliners. The clock took up two seats,
but the scientists had to settle for one each. When they returned and worked out the
combined effects of the two relativity theories they found the experiment to be in good
agreement with the expectations.

The slowing down of clocks has obviously been tested at much higher precision since
those pioneering days, mainly by going into space. The trailblazer for this was Gravity
Probe A, a rocket experiment launched in 1976 carrying a hydrogen maser clock.2 When

2 http://einstein.stanford.edu/content/faqs/gpa1.html.

http://einstein.stanford.edu/content/faqs/gpa1.html
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it splashed down in the Atlantic after a short 2-hour flight, it had tested the theory
prediction to better than 0.01%.

The fact that gravity makes your head age faster than your feet may not have much
impact on your everyday life, but many of us are regularly using technology that simply
would not work if we did not account for relativity. The multibillion dollar Global
Positioning System (GPS; see Ashby (2003)) system has 24 satellites orbiting the Earth,
each carrying a precise atomic clock, allowing navigation with a precision of 15 m (and
local time determination to 50 billionths of a second). The satellites move at 14,000 km
per hour in orbits that circle the Earth twice a day, much faster than clocks on the ground.
We know that moving clocks tick slower and if we work it out we find that this amounts
to 7 millionths of a second per day. However, in the curved spacetime the clocks on
the ground move slower. This effect, in turn, makes the orbiting clocks move faster by
45 millionths of a second per day. Combining the results, the moving clocks move faster
by 38 millionths of a second every day. The upshot of this is that, if we ignored relativity,
navigational errors would accumulate at a rate of more than 10 km every day.

The efforts to reach higher precision are continuing. At the time of writing, the
ACES/Pharao clock experiment is flying on the International Space Station (Cacciapuoti
et al., 2017). The experiment involves an ensemble of atomic clocks and microwave
and optical links to compare the onboard clocks to clocks on the ground. The aim is
to achieve as clock signal up to 100 times more stable and accurate than the state-of-the-
art technology used in the GPS satellites. This will be the most accurate measurement
of time yet.

10.4 Light bending

Let us move on to the problem of light propagation more generally. For practical reasons
it makes sense to focus on trajectories in the equatorial plane. Setting θ =π/2 and θ̇ =0
and making use of the two conserved quantities from (10.10) and (10.11), we have (with
L = Lz for motion in the equatorial plane)

ṙ2 = E2 −
(

1 − 2M
r

)
L2

z

r2 . (10.23)

In order to solve this equation, let us rewrite it in terms of a new variable u = u(ϕ) = 1/r.
Using (as in the corresponding Newtonian problem; see Chapter 5)

ṙ = −Lz
du
dϕ

, (10.24)

we arrive at

(
du
dϕ

)2

+ (1 − 2Mu)u2 = E2

L2
z

. (10.25)
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This equation is tricky to solve, but if we take a derivative the right-hand side will vanish.
We get

d2u
dϕ2 + u = 3Mu2. (10.26)

In the case of flat space (when M = 0) the solution is obviously a straight line

u0 = 1
D

sin(ϕ − ϕ0), (10.27)

where D is the distance of closest approach to the origin and ϕ0 is the initial infall angle.
Suppose we now look for an approximate solution to the curved spacetime equation
(taking ϕ0 = 0 without loss of generality). To find such a solution we let

u = 1
D

sinϕ + 3Mu1, (10.28)

where the second term is assumed to be sufficiently small that we can use perturbation
theory. This then leads to

3M
(

d2u1

dϕ2 + u1

)
= 3M

D2 sin2 ϕ + 6M
D

sinϕu1 + 9M2u2
1︸ ︷︷ ︸

ignore small terms

, (10.29)

or

d2u1

dϕ2 + u1 ≈ 1
2D2 (1 − cos2ϕ), (10.30)

and the solution is

u1 = 1
D2

[
Acosϕ + Bsinϕ + 1

2

(
1 + 1

3
cos2ϕ

)]
. (10.31)

Combining this with the leading order result, we have

u ≈ 1
D

sinϕ + 3M
D2

[
Acosϕ + 1

2

(
1 + 1

3
cos2ϕ

)]
. (10.32)

If we are interested in the effect accumulated as light passes near a gravitating body,
we only need to consider the asymptotes. Recall that u → 0 as r → ∞ and let the infalling
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light have ϕ = 0. This means that we must have A = −2/3. It follows that the light will
return to infinity at an angle ϕ = π + δ, where

δ = 4M
D

. (10.33)

If we consider the particular case of light rays grazing the edge of the Sun, we find that
light bending amounts to 1.75 arcseconds. This result was confirmed (although not with
particularly high precision) by Eddington’s eclipse expedition.

Light bending has been tested to high precision since the 1960s. Arrays of radio
telescopes have used signals from distant quasars passing close to the Sun to confirm
Einstein’s prediction to the 0.01% level. ESAs Gaia mission,3 which aims to track the
motion of 1% of the stars in the Galaxy, is expected to test the light bending to the level
of one part in a million. This will not leave much wriggle room for alternative models.

Light bending has, in fact, become an important tool for modern astronomy. Gravity
can lens distant sources in different ways, forming multiple images, arcs, or, in some
cases, complete circles (Schneider et al., 1992). After matching to detailed calculations,
the distortion of light from the distant Universe (way back in time!) provides clues of
the presence of unseen matter between us and the source. Combined with data from, for
example, the Sloan Digital Sky Survey,4 this gives us one of the best handles we have on
dark matter in the cosmos (see Chapter 22).

10.5 Shapiro time delay

In 1964 Irwin Shapiro proposed a new test of Einstein’s theory (Shapiro, 1966). Light
slows down as it passes through a gravitational field, leading to a signal arriving a little
bit later than it would otherwise have done. The Shapiro time-delay has since been
measured very precisely. As an example, in 2003 the delay of signals from NASAs Cassini
spacecraft were found to agree with the theory to the 0.001% level (Bertotti et al., 2003).

In order to understand the idea behind Shapiro’s time delay, let us consider the leading
order (straight line) solution to the equation for null geodesics (in the equatorial plane)

r sin ϕ = D. (10.34)

A variation of this leads to

dr sin ϕ + r cos ϕdϕ = 0 −→ dϕ = − D√
r2 − D2

dr. (10.35)

3 http://sci.esa.int/Gaia
4 http://www.sdss.org

http://sci.esa.int/Gaia
http://www.sdss.org
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Combining this with the Schwarzschild line element we have

ds2 = −
(

1 − 2M
r

)
dt2 +

[(
1 − 2M

r

)−1

+ D2

r2 − D2

]
dr2 = 0. (10.36)

After expanding in M/r this leads to

dt ≈ ± r√
r2 − D2

[
1 + 2M

r

(
1 − D2

2r2

)]
dr. (10.37)

The last term in the bracket represents the time delay.

10.6 Light rays and black holes

So far we have analysed the propagation of light in the relatively safe weak-field region.
This allowed us to reflect on Solar System tests of the theory. Throwing caution to the
wind, let us now venture into the strong-field region.

We take as our starting point the radial equation (10.23), but do not assume that
a perturbative solution will suffice. Instead, we define the impact parameter b = Lz/E
(and rescale λ accordingly). This allows us to write the equation as

(
dr
dλ

)2

= 1
b2 − 1

r2

(
1 − 2M

r

)
= 1

b2 − V (r). (10.38)

Here we have introduced the effective potential, V (r), that governs the radial motion of a
photon outside a Schwarzschild black hole. The potential has a maximum (= 1/27M2)
at r = 3M, vanishes at the horizon of the black hole, and falls off rapidly towards spatial
infinity; see Figure 10.1.

From the requirement that (dr/dλ)2 can only be positive or zero, we can deduce that
the motion of a photon is restricted to values of r such that 1/b2 > V (r). The upshot of
this is that, if a particle with impact parameter 1/b2 < 1/27M2 falls towards the black
hole from infinity, there will be a radius r0 > 3M such that V (r0) = 1/b2 (case A in
Figure 10.1). The point r0 is a turning point for the radial motion. It is straightforward
to analyse what happens at this point. Differentiation of (10.38) leads to

d2r
dλ2 = −1

2
dV
dr

= r − 3M
r4 , (10.39)

from which we see that the radial acceleration of the trajectory is always directed outwards
for r0 > 3M. Hence, the inwards moving photon turns back to infinity after reaching r0—
it is scattered by the spacetime curvature outside the black hole.

For incoming photons with 1/b2 > 1/27M2 there is no turning point, and they will be
swallowed by the black hole (case B in Figure 10.1). The relative smallness of b for such
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Figure 10.1 The effective potential for radial motion of light in the Schwarzschild geometry. Three
typical trajectories are indicated. In case A, photons are scattered by the black hole, in case B they plunge
into the black hole, while case C corresponds to the unstable circular photon orbit at r = 3M.

plunging trajectories can be interpreted as meaning that the initial orbit must be aimed
more or less directly at the black hole.

Finally, circular orbits are only possible at maxima or minima of the potential V (r).
In the case of photons, this means that we can only have a circular orbit at r = 3M (case
C in Figure 10.1). This orbit is, however, unstable since it is associated with a maximum
of the potential. As is clear from Eq. (10.39), a slight deviation from r = 3M will lead to
motion away from the maximum.

As we will see later, it is convenient to introduce a new radial coordinate in problems
involving wave propagation in a curved spacetime. This so-called tortoise coordinate, r∗,
encodes the gravitational redshift and its definition follows naturally from the equation
for radial geodesics. Taking Lz = 0 we see from Eqs. (10.10) and (10.23) that

dr
dt

= ±
(

1 − 2M
r

)
. (10.40)

After integration this leads to

t = ±r∗ + constant, (10.41)

where we defined the new coordinate r∗ by

d
dr∗

=
(

1 − 2M
r

)
d
dr

, (10.42)
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or

r∗ = r + 2M log
( r

2M
− 1

)
+ constant. (10.43)

The choice of integration constant is irrelevant in most situations.
The tortoise coordinate differs from the ordinary radial variable by a logarithmic

term. This has the effect that r∗ → +∞ as r → +∞ (at spatial infinity), but r∗ → −∞ as
r → 2M (at the event horizon of the black hole). In other words, the event horizon has
been ‘pushed all the way to −∞’. The tortoise coordinate can be used to explore all the
physics that a distant observer will see, but (obviously) not the region inside the event
horizon.

10.7 The motion of massive bodies

The trajectories of massive particles in the Schwarzschild geometry share many of the
features we have discussed. We readily find that the equation for radial motion can be
written

(
dr
dτ

)2

= Ẽ2 −
(

1 − 2M
r

)(
1 + L̃2

z

r2

)
= Ẽ2 − Ṽ (r). (10.44)

Here we have used the identification λ = τ/m, with τ proper time and m the mass of
the particle. We have also rescaled the energy and the angular momentum to a ‘per unit
mass’ basis: Ẽ = E/m and L̃z = Lz/m.

We immediately note a feature that is different from the photon case. For light we
could introduce an impact parameter that removed the direct dependence on the angular
momentum. As a consequence, the photon results were effectively independent of the
value of Lz. For example, the unstable photon orbit will be located at r = 3M regardless
of Lz (as long as it does not vanish). Clearly, the massive-particle case does not allow this
simplification.

The analysis of massive-particle trajectories splits naturally into two cases. The
simplest case corresponds to radial infall, for which ϕ is constant. Taking L̃z = 0 we have

dr
dτ

= −
[
Ẽ2 − 1 + 2M

r

]1/2

. (10.45)

The particle plunges into the black hole for all values of Ẽ, but we can distinguish three
cases: (i) When Ẽ < 1 the particle falls from rest at some finite r, (ii) when Ẽ = 1 the
particle falls from rest at infinity, and (iii) when Ẽ > 1 the particle falls from infinity with
a finite inward velocity. We also see that it takes a finite proper time for the particle to
reach r = 2M (or, for that matter, r = 0). This is in contrast to the well-known fact that
it takes an infinite coordinate time (t) to reach the horizon.
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Let us now consider the case of nonvanishing L̃z. In analogy with the photon problem
there will exist both scattered and plunging orbits. These correspond to cases A and B in
Figure 10.2, respectively. The condition for circular orbits (the vanishing of the derivative
of Ṽ ) leads to

r = L̃2
z

2M

[
1 ±

√
1 − 12M2

L̃2
z

]
. (10.46)

We see that there are generally two circular orbits for each value of L̃z. One (the outer
one) is stable and the other (the inner one) is unstable. The typical situation is illustrated
(for a suitable value of L̃z) in Figure 10.2. In the figure the unstable circular orbit
corresponds to case C, while the stable orbit is case D. Distinct circular orbits only
exist if L̃2

z > 12M2. When L̃2
z = 12M2 the two orbits coincide, and when L̃2

z < 12M2

there are no circular trajectories at all. By inserting the minimum value of L̃z = 12M2

in Eq. (10.46) we find that the minimum value of r for which circular orbits exist is
risco = 6M. This is the innermost stable circular orbit (ISCO for short), When a particle
that spirals towards the black hole reaches risco the character of its motion changes and
it plunges through the horizon.

The presence of the ISCO impacts on the inspiral of a binary system and the
associated gravitational-wave signal. As a neutron star (say) that approaches a black hole
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Figure 10.2 The effective potential for radial motion of a massive particle in the Schwarzschild
geometry (the case of orbital angular momentum L̃z = 4 is shown as a thick solid line, while the cases
L̃z = 3 and 5 are shown as thin solid lines for comparison). Four typical trajectories are indicated.
In case A the particle is scattered by the black hole. In case B it plunges into the hole and cases C and D
corresponds to the unstable and stable circular orbit, respectively.
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reaches the ISCO the orbital motion will change from a slow adiabatic evolution to a rapid
plunge (unless the star is tidally disrupted first; see Chapter 20). The slowly evolving
gravitational-wave signal will be cut off roughly at the orbital frequency corresponding
to risco. One should be able to probe this feature with observations. Of course, in order
to do this we need to first model the ISCO for binaries with comparable masses (Kidder
et al., 1993a).

10.8 Perihelion precession

Having considered the general nature of particle orbits, let us briefly return to the Solar
System tests of the theory, and repeat one of the calculations Einstein carried out in that
frantic month of November 1915. As in the case of photon trajectories, we focus on
motion in the equatorial plane, but now we want to solve the two-body problem (in the
limit where one body is so much lighter than the other that we can ignore its contribution
to the spacetime curvature—it is a test particle). From the variational derivation, we have
the two equations

r2ϕ̇ = Lz (10.47)

and

ṙ2 +
(

1 − 2M
r

)(
1 + L2

z

r2

)
= E2. (10.48)

Repeating the steps from the light-bending problem (introducing a new variable u = 1/r
and taking a derivative of the corresponding equation of motion) we arrive at

d2u
dϕ2 + u − M

L2
z

= 3Mu2. (10.49)

This is almost, but not quite, the result we obtained in the massless case. The extra term
on the left-hand side (which is constant along a given geodesic) has the effect that the
general solution to the leading order equation (known as Binet’s equation, and which we
recognize from the Newtonian problem in Chapter 5) is an ellipse, rather than a straight
line. Orienting the coordinate system in such a way that ϕ = 0 when the clock starts
ticking, we have

u0 = M
L2

z
(1 + ecosϕ) . (10.50)

Considering the right-hand side of (10.49) as small, we use the leading-order solution
to get the equation for first-order perturbations (as before). We then see that one of the
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source terms is a solution to the homogeneous problem. This means that the perturbative
solution has a secular term. Specifically, we have

u1 = M
L2

z

(
1 + e2

2

)
+ Me

L2
z

ϕ sinϕ︸ ︷︷ ︸
secular

−Me2

6L2
z

cos2ϕ. (10.51)

The second of these terms grows in time. Before long it will dominate the oscillatory
terms, which means that we can approximate the overall solution as

u ≈ M
L2

z
{1 + ecos[ϕ(1 − ε)]} +O(ε2), (10.52)

where

ε = 3M2

L2
z

≤ 1
4

, (10.53)

is a small parameter. The period of this solution is clearly no longer 2π . Instead, the
smaller body will complete an orbit after

2π

1 − ε
≈ 2π

(
1 + 3M2

L2
z

)
. (10.54)

In effect, the perihelion of a small planet like Mercury marches forward a little bit
each orbit. It is a tiny effect, amounting to 43 arcseconds per century, compared to the
overall influence of the other planets, which add up to a perihelion shift of about 5,600
arcseconds per century. Nevertheless, Einstein’s calculation resolved a long-standing
mystery and gave him confidence in the theory.

10.9 The Double Pulsar

The forwards march of the periastron is much more pronounced in relativistic systems.
For example, the effect has been tested in the case of the Binary Pulsar PSR B1913+16
(Hulse and Taylor, 1975). In this system the periastron advances about 4◦ every year.
If we combine this result with the orbital decay due to gravitational-wave emission, then
we have two observables in addition to the orbital period Pb and the ellipticity e. This
allows us to constrain two of the intrinsic parameters in the system, like the individual
masses. This kind of analysis leads to the results listed in Table 9.2.

By extending the analysis of orbital motion to systems of roughly equal masses, one
can express the various relativistic effects in terms of so-called post-Keplerian parameters
(Damour and Deruelle, 1981; Damour and Taylor, 1991). As indicated by the name,
these parameters quantify the deviation from Keplerian motion. However, they can be
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expressed in terms of the (easily measured) Keplerian parameters: the two masses of the
orbiting objects, and the angles that define the direction of the pulsar spin axis. If we are
fortunate enough to have more observables than parameters in the model, then we can
test the underlying theory.

In the case of the Binary Pulsar one can measure three post-Keplerian parameters:
the advance of periastron

ω̇ = 3G2/3

c2

(
2π

Pb

)5/3 1
1 − e2 (MA + MB)2, (10.55)

where the two masses are MA and MB; the gravitational redshift

γ = G2/3

c2

(
Pb

2π

)1/3

e
MB(MA + 2MB)

(MA + MB)4/3 ; (10.56)

and the change of the orbital period due to gravitational-wave emission

Ṗb = −192π

5
G5/3

c5

(
2π

Pb

)5/3 1 + 73
24 e2 + 37

96 e4

(1 − e2)7/2

MAMB

(MA + MB)1/3 . (10.57)

Since the orbital decay can be determined from the other parameters of the system,
while it is also observed directly, we can test the theory and confirm of the existence of
gravitational waves. The observational constraints on the masses of the two neutron stars
in the system are shown in left panel of Figure 10.3.

A more highly relativistic neutron star system was discovered in 2003 (Lyne et al.,
2004). In this case there were pulses from both neutron stars, with periods of 23 ms
and 2.8 s, and as a result the system (PSR J0737-3039A/B) was named the Double
Pulsar. This system has proved an excellent gravity laboratory. Observers have managed
to pin down seven post-Keplerian parameters. In addition to (10.55)–(10.57), we have
the range and shape of the Shapiro delay

r = GmB

c3 , (10.58)

and

s = c
G1/3

(
2π

Pb

)2/3

xA
(MA + MB)2/3

MB
(10.59)

(where xA is the semi-major axis of the pulsar A orbit), which can be precisely measured
because of the fortuitous geometry of the system, where pulsar B eclipses the signal
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Figure 10.3 Tests of gravity using double neutron star systems. Left: Constraints on the masses of the
two neutron stars in the Binary Pulsar (B1913+16) system, with different curves showing the results for
different post-Keplerian parameters (as discussed in the text). In order for the theory to be consistent, the
different curves must intersect at a single point. Right: The constraints obtained for the Double Pulsar
system (J0737-3039A/B). The white wedge shows the allowed region due to the inclination angle
(sin i ≤ 1), and the solid diagonal line comes from the measurement of the mass ratio R. (The left panel is
based on the discussed in Will (2014) while the right panel is based on data from Kramer et al. (2006).)

from pulsar A. The orbital motion determines the mass ratio (see the discussion in
Chapter 5)

R = xB

xA
= MA

MB
+ O(v4/c4), (10.60)

and we also have the geodetic precession of pulsar B (a measure of the impact of the
spacetime curvature on the pulsar’s spin axis)

B = G2/3

c2

(
2π

Pb

)5/3 1
1 − e2

MA(4MB + 3MA)

2(MA + MB)4/3 . (10.61)

In total, we have seven observables constraining two parameters (the two masses). Five
of these relations thus serve as a test of the theory. A beautiful example of how Einstein’s
theory passes the test (yet again) is provided in the right panel of Figure 10.3.

10.10 Radial infall

With a handle on geodesic motion, we can start to model gravitational-wave signals
from bodies moving through a curved spacetime. We are not yet able to account for the
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backreaction the gravitational-wave emission has on the motion, but we can nevertheless
gain useful insight. As an illustration, let us consider a small body falling radially
towards a non-rotating black hole. For radial motion we have Lz = 0 so the geodesics
are determined by

(
dr
dτ

)2

= Ẽ2 −
(

1 − 2M
r

)
, (10.62)

where τ is proper time. If we assume that the body started out at rest at infinity, then we
must have Ẽ = 1. We are now going to cheat—and replace proper time τ by coordinate
time t. In effect, this means that the calculation will not be accurate as we get close to
the black hole, but we are only interested in a rough estimate for the moment. For an
infalling body, we then need to integrate

dr
dt

= −
(

2M
r

)1/2

. (10.63)

Let us orient the coordinate system in such a way that the infall is along the z-axis. From
the quadrupole formula (3.90) we then see that the only non-vanishing contribution to
the gravitational-wave emission comes from the mass multipole

Mzz = mz2(t) −→ I–zz = 2
3

Mzz −→ dE
dt

= 2G
15c5 〈 ...

M
2
zz〉, (10.64)

where m is the mass of the falling body. The total energy emitted is given by

E = 8Gm2

15c5

∫ tmax

−∞
(ż

...
z + 3żz̈)dt. (10.65)

In order to work out the integral, we rewrite (10.63) as

ż = −c
(

Rs

z

)1/2

, (10.66)

where Rs = 2GM/c2 is the Schwarzschild radius. Introducing a new variable u = z/Rs
and tracking the motion to a final point r = R, we have

E = 2Gm2

Rs

∫ ∞

R/Rs

u−9/2du = 4
105

Gm2

Rs

(
Rs

R

)7/2

. (10.67)
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If we (somewhat simplistically, given the presence of the curvature potential) use this
result all the way to the horizon we arrive at

E ≈ 2 × 10−2
( m

M

)
mc2. (10.68)

As a first step towards more similar mass systems, we can also draw on the discussion of
binary motion from Chapter 5. That is, we replace m with the reduced mass μ and the
central mass M with the total mass M1 + M2. This way we obtain

E ≈ 2 × 10−2
(

μ

M1 + M2

)
μc2. (10.69)

In the specific case of an equal mass system, we have μ = M1/2 so it follows that

E ≈ 2 × 10−3M1c2. (10.70)

This gives us a first idea of the (not insignificant) amount of energy involved in black-
hole mergers. Moreover, as we will see in Chapter 19, this rough estimate is better than
one might have expected.

10.11 A bit more celestial mechanics

We could easily adopt the example from the previous section to more general orbits, but
we are not going to do this (we will return to the problem in Chapter 16 once we have
developed more appropriate tools). Instead, we will take the opportunity to look ahead.
Let us ask what happens if we allow the orbiting body to venture closer to the central
mass. We have already discussed objects plunging into a black hole. We now consider
orbits that remain outside the black hole, yet probe the strong-field regime.

If we want to consider a generic orbit in the Schwarzschild geometry it is natural to
begin by noting that the motion is bound as long as

Ẽ < 1, and L̃z ≥ 2
√

3M. (10.71)

The first condition ensures that the body does not escape to infinity, while the second
implies the existence of the inner turning point required to prevent plunge into the
black hole—the difference between the cases L̃z = 3M and L̃z = 4M (say) is illustrated
in Figure 10.2. When the two conditions from (10.71) are satisfied, the problem has
three turning points. Bound motion takes place between the outer two of these, rp and ra
(rp ≤ ra), which correspond to the periastron and apastron of the orbit, respectively. The
third turning point (r3) is not of great importance as we are not considering plunging
orbits.
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It is useful to parameterize the orbit in terms of the eccentricity e and the semilatus
rectum p. As in Chapter 5, these quantities are defined by

e = ra − rp

ra + rp
, and p = 2rarp

ra + rp
. (10.72)

The first of these parameters describes how circular the orbit is. The second is a measure
of the ‘size’ of the orbit. Together e and p provide a complete description of a bound orbit.
In order to solve the equations of motion, e.g. (10.44), we also need

Ẽ2 = (p − 2)2 − 4e2

p(p − 3 − e2)
, (10.73)

and

L̃2
z = p2M2

p − 3 − e2 . (10.74)

The constraints on Ẽ and L̃z are now satisfied for all values of p and any e < 1. It is also
easy to show that a stable circular orbit corresponds to

e = 0 −→ rcirc = pM. (10.75)

Meanwhile, the ISCO (corresponding to the merger of ra and r3) occurs for

p = 6 − 2e −→ risco = (6 + 2e)M
1 + e

. (10.76)

Note that this orbit does not, in general, have vanishing eccentricity. Since p ≥ 6 − 2e for
a bound orbit, we have

rp ≥ (6 + 2e)M
1 + e

> 4M, (10.77)

and we see that periastron is always located outside r = 4M.
We also learn that bound orbits in the Schwarzschild geometry can be represented by

points in the p − e plane which satisfy the conditions

0 ≤ e < 1 and p ≥ 6 − 2e. (10.78)

The latter boundary is often referred to as the separatrix.
The integration of the geodesic equations is complicated by the fact that (10.44) is

multivalued, with one branch corresponding to the body moving towards the black hole
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and the other to it moving away. To avoid this difficulty it is useful to introduce a new
parameter χ such that

r(χ) = pM
1 + ecosχ

. (10.79)

With this definition, χ is single-valued and ranges from 0 to 2π as r goes from rp to ra
and back again. Substituting into (10.44) we find that

dχ

dτ
= (1 + ecosχ)2

pM

[
p − 6 − 2e cosχ

p(p − 3 − e2)

]1/2

. (10.80)

A typical example of an elliptic Schwarzschild orbit obtained from this equation is shown
in Figure 10.4.

Next we consider the equation for ϕ, which can be written

ϕ(χ) = p1/2
∫ χ

0

dχ ′

(p − 6 − 2e cosχ ′)1/2 . (10.81)

By working out the angle traversed by the orbit during the passage from periastron to
apastron and back, 
ϕ = ϕ(2π), we find that it is in general not a rational fraction of 2π .
We knew this already—typical bound orbits are not closed. It is a minute effect in the
case of planets orbiting the Sun. A black-hole spacetime provides much more spectacular
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Figure 10.4 A typical elliptic orbit in the Schwarzschild geometry. This particular case corresponds to
parameters close to those what would correspond to a circular orbit at rc = 10M. The angular
momentum is the same and the energy has been increased by 1%, leading to an elliptical orbit. The left
panel shows r as a function of ϕ, while the right panel shows the orbit in the equatorial x − y plane.
Also shown (as dotted lines) are the periastron rp and apastron ra.
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possibilities. In particular, from (10.81) we see that for parameters close to the separatrix,
i.e. small values of

ε = p − 6 + 2e, (10.82)

the region near periastron (χ = 0 and 2π) will provide the main contribution to the
integral and hence to 
ϕ. By expressing (10.81) as an elliptic integral and expanding for
small ε one can show that


ϕ ≈ 2
(

3 + e
2e

)1/2

log
64e
ε

ε << 1. (10.83)

We learn that orbits close to the separatrix in the p − e plane, can have changes in ϕ much
larger than 2π . These are known as ‘zoom-whirl’ orbits (Glampedakis and Kennefick,
2002). The body zooms in from apastron, whirls around the black hole a number of
times, and then zooms back out to apastron. This kind of complicated orbital dynamics
will be of great interest for an instrument like LISA, which should be able to see small
bodies orbiting supermassive black holes in distant galaxy cores (see Chapter 16).
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Beyond Newton

So far we have only considered linearized models for gravitational-wave sources. Now
it is time to get serious. General relativity is fundamentally a nonlinear theory. If we
want to achieve the accuracy required for detection and extraction of parameters from
astrophysical signals we need to go beyond linear order. This obviously makes the
modelling more difficult. Yet, if we (in the first instance) focus our attention on binaries,
it is possible to proceed in a systematic manner. The natural way to do this is to build on
the approach that led to the quadrupole formula in Chapter 5. We can carry out a low-
velocity expansion, order by order in powers of v/c. Basically, we know from Kepler’s
law that there is an intimate link between the velocity and the gravitational potential

v2 ∼ GM
a

, (11.1)

where M is the total mass of the system. This means that we may equally consider an
expansion in the deviation from flat space—essentially M/a where a is the size of the
orbit. If we prefer, we can use the source frequency

� ∼ v/a. (11.2)

At the end of the day, these different parameters are linked. In practice, the post-
Newtonian framework1 we will explore makes use of a small parameter

x =
(

GM�

c3

)2/3

∼ O
(

v2

c2

)
∼ O

(
GM
ac2

)
. (11.3)

The connection between the different parameters illustrates why the scheme we need to
develop is not quite straightforward. It may be easy to outline in words what we want to
do, but to carry it out in practice takes some effort. We need to keep track of contributions

1 The principles behind the post-Newtonian approach are clearly laid out by Poisson and Will (2014) while
the technical aspects of the binary problem are surveyed by Blanchet (2006). Relevant historical comments are
made by Schutz (1996).

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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from the motion as well as the spacetime curvature and, as the underlying problem is
nonlinear, the coefficients in the expansion we end up with may be rather complicated.

Higher order post-Newtonian calculations are not for the faint hearted. Yet, it is
essential that we take on this challenge. We know from the discussion of matched filtering
in Chapter 8 that we need reliable search templates. Effectively, for a binary signal the
templates must remain faithful to better than (something like) one wave cycle as the
system sweeps through the detector’s sensitivity band. In the case of neutron star binaries,
this means that we need to accurately represent several thousand wave cycles. This will
inevitably involve going to higher orders in the expansion parameter, x. In fact, a key
question concerns to what order in the parameter we have to extend the calculation (and,
of course, to what extent this is manageable; see Cutler et al. (1993)).

11.1 Near and far-zone solutions

The introduction to binary systems in Chapter 5 brought us to a natural transition. We
had discussed the nature of gravitational waves and their origin and provided rough
estimates of the signal strength and its characteristics. In essence, we covered the problem
at the back-of-the-envelope level. It is essential to understand the problem at this level,
but we need to dig deeper if we are to consider state-of-the-art aspects. We will now do
this—obviously leaving room for further exploration (see Blanchet (2006) for a more
detailed discussion).

Let us begin by revisiting the quadrupole formula. At a deeper level, an analysis
of a given gravitational-wave source involves subtle issues which may require different
kinds of approximations. This is best illustrated by a particular—still fairly general—
example. With a slow-motion source in mind, such that λ– � L � M, where λ– is the
reduced wavelength, L is the size of the source, and M its mass, let us ask: What is
actually involved in calculating the propagation of gravitational waves from the point of
origin to the detector?

After a little bit of thought, we see that it makes sense to identify four spacetime
regions:

1. The strong gravity region: In this region gravity is (obviously) strong. Modelling
involves full nonlinear relativity and may require supercomputer simulations, as
the equations are too complicated to solve by any other means. We will discuss this
approach in Chapters 19–21.

2. The weak field near zone: Beyond a distance of r ≈ 10M or so it is probably safe
to consider gravity as weak. The problem can then be analysed using linearized
theory in a, more or less, flat spacetime.

3. The local wave zone: It is only in this region (and beyond) that it is meaningful to
talk about gravitational waves. The transition to the wave zone is at r ≈ λ–. Other
sources of gravity are assumed to be distant and have no effect on the analysis.

4. The distant wave zone: This is the Universe at large. Here we need to worry about
additional sources of curvature, interaction with interstellar matter, perhaps the
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expansion of the Universe, and so on. As we will discuss in Chapter 22, geometrical
optics provides an adequate description of the wave propagation, but other sources
of gravity may lead to gravitational lensing and complicate the results.

Why do we need to consider this confusing hierarchy of spacetime regions? The
answer lies in the inherent complexity of the Einstein equations. Since we cannot find
exact solutions, and since the available computing power is insufficient to allow the
construction of a complete numerical solution (not mentioning the technical challenges
involved!), we are forced to bring every possible trick and technique to bear on each
problem of interest.

In the following we will focus on the transition between regions 2 and 3. This is a
key element of the general analysis since it involves going from a region within about a
wavelength or so of the source to the region where the concept of gravitational ‘waves’
makes sense.

As a first step, we return to the integral equation (3.55). In general, the integral on the
right-hand side contains more information than we made use of so far; it accounts for
all the moments of the stress–energy tensor. We have (first of all) the mass monopole M,
the mass dipole Mj , and the momentum dipole Pj ,

M =
∫

T00d3x, (11.4)

Mj =
∫

T00x jd3x, (11.5)

Pj =
∫

T0jd3x, (11.6)

but since mass, linear and angular momentum are all conserved, these multipoles will not
contribute to the result. However, all higher multipoles will enter the problem. We can
think of this as a formal expansion starting with the mass quadrupole and the leading
moment associated with stresses

Mjk =
∫

T00x jxkd3x, (11.7)

Sjk =
∫

Tjkd3x. (11.8)

At this level, we also have the momentum contribution

Pjk =
∫

T0jxkd3x, (11.9)

but using the conservation laws (3.59) and (3.60) we can show that

Ṗ jk = Sjk (11.10)
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(where the dot represents a time derivative), so we can replace this with the stress
multipole wherever required. Similarly, it is worth noting that

M̈jk = 2Sjk. (11.11)

Let us now consider the weak-field near zone. Here we are not dealing with radiation.
Instead, the field changes quasistatically. This follows since

∂t ∼ 1
λ–

, ∂r ∼ 1
L

−→ ∂t � ∂r. (11.12)

As long as λ– � L we can neglect time-derivatives compared to spatial ones. The upshot
of this is that, in the near zone, we can work with simultaneous expansions in inverse
powers of r and the various multipoles.

In order to obtain explicit expressions we need to solve the Lorenz gauge condition
(see Chapter 3)

∂bh̄ab = 0, (11.13)

together with

�h̄ab =
{

0 vacuum,
−16πTab weak internal gravity.

(11.14)

We have already seen that time derivatives are not important in the near zone. Keeping
only spatial derivatives we have

∂j h̄0j = 0, (11.15)

∂kh̄jk = 0, (11.16)

from the gauge condition and

∇2h̄00 = −16πT00 = −16πρ, (11.17)

∇2h̄0j = −16πρvj , (11.18)

∇2h̄jk = O(ρv2) ≈ 0, (11.19)

from the wave equation (since the wave operator � reduces to the three-dimensional
Laplacian ∇2 if we neglect the time derivatives). This is now a static problem. Using the
standard Green’s function for the Poisson equation, we find that

h̄00(x) ≈ 4
∫

ρ(x′)
|x − x′|d

3x′ = −4�. (11.20)
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This was, in fact, clear already from (11.17) since the Newtonian gravitational potential
� is determined by

∇2� = 4πρ. (11.21)

Next, we turn the integral equation into a multipole expansion by considering x′ as a
point interior to the source, while x is the exterior field point. Assuming that the centre
of mass is close to x′, we should have

|x| = r � r′ = |x′|. (11.22)

Under these conditions we have

1
|x − x′| = 1√

(x − x′)2
= 1√

[r2 − 2x · x′ + (r′)2)2

= 1
r

[
1 − 2n · x′

r
+

(
r′

r

)2
]−1/2

≈ 1
r

+ njx ′j

r2 + 3
2

njnk[x ′jx′k − (r′)2δjk/3]
r3 . (11.23)

From this we get

h̄00(x) = 4
{

1
r

∫
ρ(x′)d3x′ + nj

r2

∫
ρ(x′)x′jd3x′

+ 3njnk

2r3

∫
ρ(x′)[x′jx′k − (r′)2δjk/3]d3x′

}
. (11.24)

Here we identify the first integral as the mass (monopole moment) M, the second integral
is the mass dipole moment Mj , and the third integral is the quadrupole moment Mjk (with
the trace removed). In other words, we have

h̄00 = 4

{
M
r

+ Mjnj

r2 + 3
2
I–jknjnk

r3

}
, (11.25)

in the near zone.
As we extend this result into the wave zone, the static parts (the monopole and the

dipole) retain their form. But the quadrupole part (which is dynamic) no longer takes
the form in (11.25). As r increases we must account for retardation effects and describe
the quadrupole component in terms of (outgoing) gravitational waves.

In essence, we want to match (11.25) to an expression that is valid in the wave zone.
In this region we can no longer neglect the time derivatives, but gravity is still weak so
we can linearize the equations. Thus, we need a solution to
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∂bh̄ab = 0, (11.26)

�h̄ab = 0, (11.27)

which satisfies the boundary condition

h̄00 = 6I–jknjnk

r3 for r � λ–, (11.28)

and which corresponds to purely outgoing waves as r → ∞.
From the simplified analysis that led to (3.67), we already know what form the solution

should take. This provides a short cut to the answer. Instead of writing down the general
solution, we note that the scalar wave equation�ψ = 0 admits the outgoing wave solution
ψ = f (t − r)/r, where f can be any function. In our problem (and in a local inertial frame),
each component of h̄ab should satisfy the same wave equation. This inspires us to write
the solution as

h̄00 = 2∂j∂k

[
1
r
I–jk(t − r)

]
. (11.29)

Expanding this expression for small r, using

∂j

(
1
r

)
= −nj

r2 = − xj

r3 , (11.30)

∂j∂k

(
1
r

)
= − 3

r3

[
njnk − δjk

3

]
, (11.31)

and

∂j[I–jk(t − r)] ∼ I–jk

λ–
where λ– � r, (11.32)

we see that this solution satisfies the boundary condition (11.28) in the near zone.
Finally, given an expression for h̄00 we can determine all other components of the

perturbed metric. First, we integrate the gauge condition

∂0h̄00 = −∂j h̄0j , (11.33)

to get

h̄0j = −2∂k

[
1
r
İ jk(t − r)

]
. (11.34)
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Then we use

∂kh̄jk = −∂0h̄j0 = −∂0h̄0j , (11.35)

to find

h̄jk = 2
r
Ï–jk(t − r). (11.36)

This is the main result. Retaining only the transverse-traceless (TT) part in the wave
zone (as discussed in Chapter 3) we have

h̄TT
jk = 2

r
Ï–TT

jk . (11.37)

Not surprisingly, we have arrived at the same expression for the gravitational-wave
field as before. Yet, there are subtle differences. In particular, the approach we have used
remains valid also when we are dealing with a source with strong internal gravity—we can
still deduce the gravitational-wave strength from the quadrupole moment in the weak-
field regime. The difference is that in that case we must use the full nonlinear theory to
describe the interior dynamics.

Anticipating the need to proceed to higher orders, one may envisage a number of
possible strategies. We can add terms to the post-Newtonian v/c expansion, expand in
‘powers of G’ beyond the flat Minkowski spacetime, decompose in multipoles to deal
with the angular behaviour, and use the source ‘size’ as expansion parameter, expand
in powers of 1/r to work out the asymptotic behaviour, or focus on a particular class of
binaries and treat one body as a small perturbation in the spacetime of the other (this
extreme-mass-ratio limit will be discussed in Chapter 16). The different possibilities
involve specific steps and choices. If we want to solve the problem we may need to
combine several strategies. This becomes apparent as soon as we realize that the post-
Newtonian expansion, which would be the natural way to model the (relatively) slow
motion of the source, is incompatible with retardation so it cannot be used to describe the
outgoing nature of the gravitational waves. This is, of course, a crucial aspect. First of all,
these are the waves we are trying to describe and, secondly, we need to be able to balance
the emitted energy to work out the impact of radiation reaction on the source. In this
sense, the post-Minkowski expansion is more universal (Blanchet, 2006). As long as we
are dealing with a weak-gravity source, an expansion in powers of G is valid throughout
spacetime. However, the involved mathematics can be confusing.

11.2 A slight aside: symmetric trace-free (STF) tensors

It should be clear, even from our somewhat sketchy derivation, that the notation will
become messy as we go to higher order approximations. In order to (at least to some
extent) alleviate this problem, it is common to introduce a more ‘efficient’ notation for
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the different multipole expressions. In order to introduce the idea, let us consider the
problem of tidal interaction in a binary system. Suppose we have two stars, with masses
MA and MB, respectively, located at xA and xB. As long as the stars are far apart, we can
expand the two gravitational potentials. Moreover, we can consider the influence of one
of the stars (B, say) on the other (A) as due to a point mass. The acceleration of star A
due to the presence of star B is then given by

UB(x) = −
∞∑

l=0

1
l! (x − xA)LEL., (11.38)

where we have introduced the tidal moments

EL = −
(

∂L
MB

|x − xB|
)

x=xA

, (11.39)

and used the short-hand notation ∂L = ∂1∂2 . . . ∂l .
Making contact with our previous derivation, let us use a coordinate system such that

r = |x − xB|. Then we have

EL = −MB∂L

(
1
r

)
, (11.40)

and it follows that (as before)

Ej = MB
nj

r2 , (11.41)

Ejk = −MB

r3

(
3njnk − δjk

)
, (11.42)

Ejkl = MB

r4

[
15njnknl − 3

(
njδkl + nkδjl + nlδjk

)]
, (11.43)

and so on. It is worth noting that the expressions on the right-hand sides are symmetric
and trace-free (STF).

The general pattern from these results suggest the compact expression

EL = MB(−1)l+1(2l − 1)!!n〈L〉

rl+1
. (11.44)

The angular brackets indicate that the object is symmetric and trace-free. It may seems
as if we have simply tried to hide the real problem with some clever notation, but this is
not the case. There is an efficient (and practical) prescription for working out n〈L〉. We
need (Thorne, 1980)
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n〈L〉 = n〈j1j2...jl〉 =
[l/2]∑
p=0

(−1)p (2l − 2p − 1)!!
(2l − 1)!!

[
δj1j2 . . . δj2p−1j2pnj2p+1 . . .njl + sym

]
, (11.45)

where [l/2] should be taken to mean the largest integer ≤ l/2. Each of the p terms inside
the bracket involves a product of p Kronecker deltas and l − 2p unit vectors.

As we are establishing notation, it is also useful to note that we can translate different
expansions into one another. For example, in the case of the external gravitational
potential of star A, we have

UA =
∞∑

l=0

ML
A

(
∂L

1
|x − x′|

)
x′=xA

. (11.46)

Making use of our new notation, this can equivalently be written

UA =
∞∑

l=0

(2l − 1)!!
l!! ML

A
n〈L〉

A

rl+1
A

. (11.47)

We can also express the result in spherical harmonics (Thorne, 1980)

UA =
∞∑

l=0

l∑
m=−l

4πG
2l + 1

Mlm

rl+1
Ylm. (11.48)

In practice, different representations suit different applications (see Poisson and Will
(2014) for more details and a number of examples).

11.3 The relaxed Einstein equations

Formally, the Newtonian limit corresponds to 1/c → 0 (as in the case of the fluid
equations in Chapter 4). If we take a closer look at the derivation of the quadrupole
formula we see that the result was entirely determined by Newtonian dynamics. We used
the Newtonian quadrupole moment and worked out the orbital motion in Newtonian
gravity. If we want a more accurate description, we need to account for higher multipole
contributions. Traditionally, these contributions are labelled in such a way that terms of
order (v/c)n ∼ 1/cn are said to be of n/2 post-Newtonian (pN) order. In other words, the
gravitational radiation reaction, which occurs at order 1/c5 arises at the 2.5 pN order. In
order to go beyond this, we need to systematically incorporate higher order terms.

As we set out to devise a scheme that allows us to proceed to high orders, it makes
sense to consider the problem from a formal point of view. It is natural to begin by
reconsidering the Einstein equations
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Gab = Rab − 1
2

gabR = 8πTab. (11.49)

These are, obviously, a set of coupled nonlinear partial differential equations. In order to
facilitate an iterative solution, it would be better to have the equations on integral form.
This is, however, tricky because we need to somehow invert the differential operator on
the left-hand side. However, we can do this by taking a couple of clever steps. We start
by introducing a new field (Blanchet, 2006)

hab ≡ ηab − gab, (11.50)

such that the ‘gothic’ metric is given by

gab = (−g)1/2gab. (11.51)

The linearized version of the new field leads us back to h̄ab

hab ≈ ηab − (1 + h)1/2
(
ηab − hab

)
≈ hab − 1

2
ηabh = h̄ab, (11.52)

but we are not going to assume that hab is small. Nevertheless, let us impose the usual
harmonic gauge condition

∂ahab = 0, (11.53)

where it is important to appreciate that we are using partial derivatives.
With these definitions (and after a fair bit of work) the Einstein equations (11.49) take

the form

�hab = −16πτ ab, (11.54)

where � is the usual flat spacetime wave operator. Meanwhile, the source on the right-
hand side is given by

τ ab = (−g)Tab + (16π)−1�ab, (11.55)

where �ab contains the nonlinear contribution of the gravitational field (it does not
depend on the matter). It is explicitly given by

�ab = 16π(−g)tab
LL + (∂chad∂dhbc − hcd∂c∂dhab), (11.56)
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where tab
LL is the so-called Landau–Lifshitz pseudotensor, defined by

16π(−g)tab
LL ≡ gfcgde∂dhaf ∂ehbc

+ 1
2

gfcgab∂ehfd∂dhec − 2gcdgf (a∂ehb)d∂f hec

+ 1
8

(2gaf gbc − gabgfc)(2gdeggh − geggdh)∂f hdh∂cheg. (11.57)

At first sight, it may not seem as if we have achieved much. If anything, the problem
looks more complicated than before. We have certainly used more indices than we might
be comfortable with. However, this new formulation has a clear advantage. Basically, the
differential operator on the left-hand side of (11.54) is well understood so it is (formally)
straightforward to invert the problem.

The combination of (11.53) and (11.54) contains all the information from the original
Einstein equations, but we now solve the problem in two separate steps. First, we ignore
the gauge condition (11.53). We can, for example, assign an arbitrary time dependence
to Tab. That is, we can relax the assumption that the matter variables should satisfy
the equations of motion. For this reason, Eq. (11.54) is known as the relaxed Einstein
equations. Of course, in the second step we must impose (11.53) in order to recover
the true physics. This logic may seem peculiar, but it makes sense if we note that the
condition (11.53) implies that the source term satisfies the conservation law

∂aτ
ab = 0. (11.58)

Imposing (11.53) is then equivalent to ensuring that the matter behaves according to the
usual equations of motion

∇aTab = 0. (11.59)

The derivation of (11.54) involved no approximations. It is a valid alternative
description as long as spacetime can be covered by harmonic coordinates. And it is
straightforward to write down the formal solution as a functional of source variables
(without specifying the motion of the source). Making use of the standard retarded flat
space Green’s function (with an outgoing-wave boundary condition), we have

hab(t,x) = 4
∫

τ ab(t′,x′)δ(t′ − t + |x − x′|)
|x − x′| d4x′

= 4
∫

τ ab(t − |x − x′|,x′)
|x − x′| d3x′. (11.60)

Of course, this does not mean that it is easy to find an actual solution. There is no free
lunch. We face three main problems. First of all, the ‘source’ in (11.60) contains terms
which depend explicitly on hab, the quantity we are trying to solve for. We need to know
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the solution in order to find it. However, this is a common setup for an iterative solution
so it should not be much of a concern. The second complication arises from the fact
that the fields hab (and hence τ ab) are likely to have infinite spatial extent. After all, these
terms represent the outgoing gravitational waves that we are interested in. As is clear from
(11.54), these waves will contribute to the source, generating an additional component
of the radiation. We need to account for waves creating waves—we cannot avoid the
nonlinearities. Finally, we note that the third term in (11.56) really belongs on the left-
hand side of (11.54). Along with the other second derivatives, this term contributes to
the principal part of the differential operator. By moving this term to the right-hand side
we modify the propagation characteristics of the field from true null cones of curved
spacetime to the flat-spacetime characteristics of the d’Alembert operator. We need to
keep careful track of this.

11.4 Iterative schemes

Before we consider some of the technical issues, let us set out what we want to achieve. We
want to come up with a systematic procedure that extends the orbital motion beyond the
Newtonian level. This will involve corrections to the orbital parameters, like the energy E
and the angular momentum Ji. Similarly, we need corrections to the gravitational-wave
luminosity, for both the rate of energy loss F and the angular momentum carried by the
waves Gi. Once we have these, we can connect them (provided the orbital evolution is
slow enough, an assumption that will break down before the bodies merge) by averaging
over an orbit. As before, this leads us to the evolution equations

〈
Ė

〉 = −〈F〉, (11.61)

and
〈
J̇i

〉
= −〈Gi〉. (11.62)

From the outset, we have no way of knowing to what order we have to carry out the
calculation. We do not know the rate of convergence of the post-Newtonian scheme,
or (indeed) if the procedure converges at all. However, we do know that E and Ji are
conserved up to 2pN order. This means that we have to calculate F and Gi to 3pN
precision, and likely beyond. We need to obtain the equations of motion and work out
the wave generation at each order. This requires a mathematical tour-de-force effort
involving a number of subtle nonlinear effects.

The general strategy is fairly easy to describe. Because the field hab appears in the
source of the equation, the natural solution is to iterate. Starting from (11.60), we
substitute hab

0 = 0 in the integrand and solve for the first-iterated field hab
1 ; substitute

this into (11.60) and solve for the second-iterated hab
2 ; and so on (imposing the gauge

condition (11.53) consistently at each order). At each step j, the matter variables are
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C
N

D

field point (far zone)

Figure 11.1 The spacetime regions involved in a typical post-Newtonian iteration scheme. The past
harmonic null cone C of an exterior field point intersects the near zone world tube D at a hypersurface N .

used to determine Tab
j and �ab

j . Equation (11.60) then yields hab
j . One can extract the

motion of the source by substituting hab
j into the matter stress–energy tensor and working

out j∇b(Tab
j ) = 0, where j∇b represents the covariant derivative associated with the jth

iterated field.
The approach is logical, but the complexity increases (dramatically) with each step. As

an illustration, let us consider a direct integration of (11.60). The equation represents an
integration of τ ab/|x − x′| over the past harmonic null cone C associated with the field
point (t,x), as illustrated in Figure 11.1. This past null cone intersects the world tube
of the source D, enclosing the near zone at the three-dimensional hypersurface N . In
effect, the integral in (11.60) consists of two pieces, an integration over the hypersurface
N , and an integration over the rest of the past null cone C −N . Each requires its own
computational strategy.

As an alternative, we could try a strict post-Minkowski expansion with the deviation
from flat space increasing at each order. This would be a direct extension of the strategy
we used in Chapter 5. But this leads to other technical issues. In particular, treating the
bodies in a binary as point masses causes trouble. General relativity abhors singularities
and if we try to construct an iterative procedure to solve (11.60) we need to be able to
handle powers of singularities. We need to work out integrals that diverge at the location
of each point particle. This is a nasty mathematical problem, but luckily it is familiar
from quantum electrodynamics. The resolution is the same as in that setting; we need to
invoke some kind of regularization procedure (Blanchet, 2006). However, this introduces
regularization parameters that remain undetermined by the scheme.

Given the immense importance of the problem for gravitational-wave astronomy,
a considerable effort has been invested in high-order post-Newtonian schemes. After
decades of work by several groups,2 the calculations reached the 3.5pN order—the level
expected to be sufficient for sensitive gravitational-wave searches.

2 See, for example, Schäfer (1985), Iyer and Will (1995), Jaranowski and Schäfer (1997), Pati and Will
(2000), Pati and Will (2002), and Nissanke and Blanchet (2005).
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11.5 Inspiralling binaries

Having outlined the post-Newtonian strategy, let us bypass the (sometimes gory) details
and translate the results into a form that relates to the ‘Newtonian’ results from Chapter 5.
To do this, we translate the origin of the coordinates to the binary’s centre of mass (and
enforce the constraint that the dipole moment vanishes). As we expect most binaries to
be circular when they enter the sensitivity band of a ground-based detectors we focus on
that case.

In order to describe the results (see Blanchet (2006) for a deeper analysis), we first of
all introduce the symmetric mass-ratio

η = μ

M
= M1M2

(M1 + M2)2 , (11.63)

which is constrained to the range 0 ≤ η ≤ 1/4. This is always a ‘small’ quantity and
hence we can use it as a formal expansion parameter. We also use the post-Newtonian
parameter

γ = GM
ac2 ∼ O

(
1
c2

)
, (11.64)

which quantifies how relativistic the system is.
At 3.5pN order the relative acceleration ẍ = ẍ1 − ẍ2 of two bodies in circular orbit is

then given by

ẍ = −�2x − 32
5

G3M3η

c5a4

[
1 − γ

(
743
336

+ 11
4

η

)]
v +O

(
1
c8

)
, (11.65)

where x gives the relative separation in harmonic coordinates and � is the usual angular
frequency. The second term in the square bracket represents the effect of the radiation
reaction force at this order. It is worth noting that it acts in the direction opposite to the
velocity. This leads a secular decrease of the binary separation a together with an increase
of the orbital frequency. We have

ȧ = −64
5

G3M3η

c5a4

[
1 − γ

(
1751
336

+ 7
4

η

)]
, (11.66)

�̇ = 95
5

G3M3η

c5a4

[
1 − γ

(
2591
336

+ 11
12

η

)]
. (11.67)

The equations of motion provide a relation between the frequency � and the
separation a. At 3pN order this leads to a generalized form of Kepler’s law
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�2 = GM
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(11.68)

where a′
0 is a constant associated with the gauge. Meanwhile, the orbital energy is given by

E = −μc2γ
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(11.69)

The energy is an observable quantity and as such it should not depend on the choice
of coordinate system. Yet, the gauge constant a′

0 appears in the expression. To see that
the numerical value of the energy is indeed the same in all coordinate systems, we can
replace the post-Newtonian parameter γ , which depends on the separation a in harmonic
coordinates, with a parameter related to the frequency (another observable)

x =
(

GM�

c3

)2/3

∼ O
(

1
c2

)
. (11.70)

This leads to

γ = x
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. (11.71)

Substituting this expression into (11.69) we find that the ‘unwanted’ logarithmic term
has disappeared

E = −μc2γ
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}

+O
(

1
c8

)
. (11.72)

Moreover, for circular orbits it turns out that there are no terms of order x7/2 so this
expression is actually accurate to 3.5pN order. This example highlights the importance
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of using gauge invariant quantities when we compare different calculations and motivates
the use of x as the formal expansion parameter.

The corresponding 3.5pN result for the gravitational-wave luminosity is

F = 32c5
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. (11.73)

This result provides us with the information we need to work out the all-important
phase of the gravitational-wave signal. To do this we ‘simply’ need to solve the balance
Eq. (11.61) for the energy loss. However, as we are dealing with quantities arising from
an ordered expansion there are (yet again) different ways of doing this, leading to slightly
different results. One option is to introduce a new (dimensionless) time variable

T = ηc3

5GM
(tc − t), (11.74)

where tc represents the (fiducial) time of coalescence, and then turn (11.61) into a
differential equation, which can be integrated to give x as a function of the new variable
T . However, this is not the result we want. To make contact with the orbital phase, we
note that

dϕ

dt
= � −→ dϕ

dT
= −5x3/2

η
. (11.75)

This leads to an expression for ϕ(T), which we (finally) recast in terms of x to get
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where x0 is an integration constant, which can be associated with the initial conditions
when the signal enters the detector band. This lengthy expression allows us to work out
how many wave cycles each post-Newtonian order contributes as a binary system spirals
through the detector bandwidth, adding to the leading order result from Chapter 5.

If we, for example, take the seismic low-frequency cut-off to be 10 Hz and assume
that the inspiral lasts until the system reaches the ISCO frequency for the Schwarzschild
solution, f = c3/(62/3πGM), then we arrive at the results in Table 11.1. These estimates
show that the 3.5pN results lead to a level of accuracy where less than one accumulated
cycle is lost as the signal sweeps through the detector band. This means that there would
be no significant loss of signal-to-noise ratio if we were to use the post-Newtonian phase
evolution in a matched filter search. We can stop calculating...

In order to describe the waveform itself, we need to account for higher-order post-
Newtonian corrections to the amplitude. In addition, there will be harmonics of the
orbital frequency. We do not gain much additional insight from the corresponding (rather
complicated) expressions. Instead of listing them, let us turn to issues we have not yet
accounted for.

We have not considered the spin of either binary partner. Spin is not expected to have
a significant effect on the equations of motion for binary neutron stars. These systems

Table 11.1 Post-Newtonian contributions to the accumulated number of
gravitational-wave cycles N as a binary signal evolves from 10 Hz (representing the seismic
cut-off of a fiducial detector) to the ISCO frequency for the Schwarzschild solution,
f = c3/(62/3πGM). Results are shown for a canonical 1.4M� neutron-star binary, a
mixed binary with a neutron star and a typical (10M�) black hole and an equal-mass
black-hole binary. (Data from Blanchet (2006).)

Order 1.4M� − 1.4M� 1.4M� − 10M� 10M� − 10M�

Newtonian 15952.6 3558.9 598.8

1pN 439.5 212.4 59.1

1.5pN −210.3 −180.9 −51.2

2pN 9.9 9.8 4.0

2.5pN −11.7 −20.0 −7.1

3pN 2.6 2.3 2.2

3.5pN −0.9 −1.8 −0.8
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are old, as they take a considerable time to spiral together (see Table 9.2), so when they
enter a ground-based detector’s sensitivity window they are likely to have spun down.
One can imagine different formation channels, e.g. gravitational capture in a globular
cluster, where the neutron stars are not given time to spin down, but this may not be
very common. The situation is different for black holes. First of all, they can spin much
faster than neutron stars, so the maximal spin-effect is larger. Secondly, black holes may
not spin down as efficiently as neutron stars.

Spin introduces two new effects (Kidder et al., 1993b). The dominant effect is due to
the spin-orbit coupling, which is linear in the spin. The spin–spin coupling is quadratic.
If we adopt the convention that the spin enters at 0.5pN order, then the leading spin–
orbit effect enters at 1.5pN and spin-spin terms are present from 2pN order. These
effects modulate the amplitude, phase, and frequency of the gravitational-wave signal.
In a binary system with misaligned spins, the orbital plane will precess. In essence, if
we want to detect signals from spinning objects, and successfully infer the associated
parameters, we need to account for these effects.

For black-hole binaries it is common to characterize the spin in terms of the
dimensionless parameter χ i = Si/M2

i with Si, each black hole’s angular momentum and
Mi its mass (and i = 1 − 2 labelling the binary partners). In addition, we have the orbital
angular momentum L. For a binary system the quantity

χeff = (χ1 + qχ2) · L̂
1 + q

, (11.77)

where q = M2/M1 is the mass ratio (assuming M1 ≥ M2), is proportional to the lowest
order spin contribution to the gravitational-wave phase. Additionally, it turns out that
this quantity is approximately conserved during the inspiral (Racine, 2008).

The actual nature of the bodies in the binary system should also be important. At
the Newtonian level, we got away with treating the bodies as point masses. In principle,
one might expect this to remain a good approximation also in general relativity. After all,
the equivalence principle tells us that the binary partners will fall towards one another
in the same fashion regardless of their composition. So why not replace them with point
masses? Well, we have to be careful that we do not ignore phenomena associated with
the finite size and internal dynamics of the bodies. We know that the gravity of the moon
raises tides in the Earth’s ocean. Should we be concerned about a similar effect in the
case of binary neutron stars? Indeed, we should. The tidal interaction will deform a fluid
body, leading to additional quadrupole moments, which may affect the gravitational-
wave signal. We will consider that problem in Chapter 21.

The nature of a black hole also introduces new aspects. In particular, black holes
have horizons, through which radiation may enter. This leads to energy dissipation from
the exterior spacetime, and hence an additional loss of orbital energy compared to the
neutron star case. Luckily, this effect is small. For non-rotating black holes the absorption
enters at 4pN order, while for Kerr black holes it needs to be accounted for already at
2.5pN order (Poisson and Sasaki, 1995).
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11.6 The effective one body approach

When you try to establish the relevance of any given gravitational-wave source, it makes
sense to focus on simple approximations. Otherwise the required simulations or data
analysis considerations simply become intractable. Of course, given the need for faithful
search templates (see Chapter 8), rough estimates eventually need to be turned into
precise models. This requirement has been a key driver behind moves towards high-
order post-Newtonian models and full nonlinear simulations. At the end of the day,
the results of these efforts need to be combined into actual search templates, and both
are problematic in this respect. The post-Newtonian approach does not remain valid
through the final merger and numerical simulations are too expensive to extend beyond
the late stages of inspiral. Moreover, accurate parameter estimation may require millions
of waveforms to be compared with the data. In reality, we can never afford to consider
the entire parameter space with simulations. Pragmatically, it is natural to turn to some
kind of ‘hybrid’ waveform model drawing on the whatever reliable results we have
at hand.

A powerful approach to the problem of ‘tuned’ gravitational waveforms is the
effective-one-body model (EOB) (Buonanno and Damour, 1999; Damour and Nagar,
2016). This is an analytical framework inspired by the classic one-body approach to the
binary problem in Newtonian gravity (outlined in Chapter 5). At the heart of the model
is an effective one-body Hamiltonian, the form of which is chosen to reproduce known
results from the point-particle limit and higher order post-Newtonian approximations.
The Hamiltonian has a number of ‘calibration’ functions that can be adjusted based on,
for example, available numerical relativity results.

The effective-one-body model has three key ingredients:

1. a description of the conservative dynamics of two black holes,

2. an expression for the gravitational radiation reaction,

3. a description of the gravitational waves during inspiral.

The main information at each step of the process is provided by the high-order post-
Newtonian expansion. However, rather than using the raw results one tends to build
the approximation on re-summation (e.g. using Padé approximants; see Damour et al.
(2001)). Each step in the process can be improved as we gain better understanding
of the relevant physics. Recent efforts has paid particular attention to tidal effects in
neutron star binaries (see Hinderer et al. (2016) and Steinhoff et al. (2016), as well
as Chapter 21). One can argue that one can extend the resummed model to obtain a
sufficiently accurate description of the entire waveform, from inspiral through remnant
ringdown, including the nonlinear plunge and merger phases. Such waveforms provide
a practical tool for data analysis (Buonanno et al., 2009a). However, for obvious reasons,
they need to be calibrated against (for example) the output from numerical simulations
(Buonanno et al., 2009b).

The effective one body approach builds on a one-to-one map between the dynamics
of a real binary (in its centre of mass system) and an effective body with mass μ (the
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reduced mass) moving in some effective metric. Taking this metric to be spherically
symmetric, we have (as in the derivation of the Schwarzschild solution in Chapter 4)

ds2 = −A(R)dT2 + B(R)dR2 + R2
(
dθ2 + sin2 θdϕ2

)
, (11.78)

where the coefficients—which represent a μ̂ = μ/M deformation of the Schwarzschild
metric—are obtained from the (resummed) post-Newtonian results.

In order to describe how radiation reaction is incorporated in the prescription, let us
focus on circular binaries. For such systems, it is sufficient to add a radiation reaction
force to the pϕ equation of motion (see Chapter 10). To represent the orbital motion, it
it natural to use phase space variables R,ϕ,Pr , and Pϕ associated with polar coordinates
(in the equatorial plane). In fact, it is practical to replace the radial momentum Pr by the
momentum conjugate to the ‘tortoise’ coordinate (see Chapter 10)

R∗ =
∫

(B/A)1/2dR, (11.79)

that is

Pr∗ = (A/B)1/2 Pr. (11.80)

The relevant Hamiltonian is obtained by solving for the energy of the system and re-
expressing the result in the preferred variables. This leads to (see Damour and Nagar
(2016))

ĤEOB(r,pr∗ ,ϕ) =
[
1 + 2μ̂ (Ĥeff − 1)

]1/2
, (11.81)

with

Ĥeff =
{

p2
r∗ + A(r)

[
1 + p2

ϕ

r2 + 2μ̂ (4 − 3μ̂)
p4

r∗
r2

]}1/2

. (11.82)

In these expressions we have used dimensionless variables r = R/GM, pr∗ = PR∗/μ,
pϕ = Pϕ/μGM, and a rescaled time t = T/GM. This then leads to equations of motion
of the form

dr
dt

=
(

A
B

)1/2
∂ ĤEOB

∂ pr∗
,

dpr∗
dt

= −
(

A
B

)1/2
∂ ĤEOB

∂ r
,

� ≡ dϕ

dt
= ∂ ĤEOB

∂ pϕ

,

dpϕ

dt
= F̂ϕ . (11.83)
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The last of these equations encodes the fact that the system must lose angular momentum
as it emits gravitational waves. In order to complete the model, one must construct the
resummed version, F̂ϕ , of the known post-Newtonian gravitational-wave flux.

A clear advantage of working with the resummed post-Newtonian results is that the
series is likely to converge more rapidly to the true waveform. In fact, effective-one-
body waveforms have been shown to accurately reproduce numerical results for both
binary black holes and neutron stars (Buonanno et al., 2009b; Hinderer et al., 2016). In
effect, these waveforms, which are much cheaper to generate, should be accurate enough
for both detection and parameter extraction. The procedure necessarily involves some
level of parameter fitting to remove the dependence on unknown post-Newtonian terms,
but once the model has been calibrated the results should be reliable. In fact, signal
templates based on the effective-one-body approach form the basis for several LIGO
search strategies.
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Towards the extreme

We have already considered scenarios that make neutron stars interesting for
gravitational-wave astronomy (see Chapter 6). If we want to flesh out these ideas
and make our estimates more precise, we need to consider a range of fundamental
physics issues. So far we ignored internal composition and dynamics. This led to useful
qualitative insight, but if we want quantitative models we need to extend the discussion in
two directions. First of all, we need a more realistic matter description. This is tricky—all
four fundamental forces of nature (the strong, weak, electromagnetic, and gravitational)
impact on the formation, composition, and evolution of a neutron star. We need to
account for supranuclear physics, superfluidity/superconductivity, strong magnetic
fields, and exotic particle physics. The list of ingredients is rather long. Secondly, if
we want to move beyond phenomenological models we need to consider the various
astrophysical scenarios in general relativity.

12.1 Matter at supranuclear densities

The problem of understanding the composition and state of matter under the extreme
conditions in a neutron star presents a challenge, but we need to make progress on it. In
fact, neutron stars may radiate gravitational waves through mechanisms which are, more
or less directly, associated with specific physics aspects. Asymmetries in the star’s crust
will lead to the emission of periodic gravitational waves with frequency twice that of the
star’s spin (as discussed in Chapter 6). Global non-radial oscillations generate waves that
carry a fingerprint which depends directly on, for example, the interior speed of sound
(in the case of the pressure p-modes; see Chapter 13) and the star’s rotation (in the
case of the inertial r-modes; see Chapter 15). The reward associated with a successful
detection of these gravitational waves would be significant since it would allow us to test
physics that cannot be probed in terrestrial laboratories.

Let us start by taking a cursory peek beneath a neutron star’s surface. In many ways,
the star can be thought of as a layer cake, with a series of distinct regions from the surface
to the deep core see Figure 12.1. As one progresses towards the centre, the density
increases monotonically and our understanding of the physics becomes less certain.
A cross section of a mature isolated neutron star would unveil an atmosphere, which

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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Figure 12.1 Inset: Sketch of the QCD phase diagram. While colliders like the Large Hadron Collider
(LHC) at CERN and the Relativistic Heavy Ion Collider (RHIC) at Brookhaven probe matter at
extremely high temperatures but relatively low densities, neutron star physics relies on the
complementary low-temperature, high-density regime for highly asymmetric matter; a regime that can
never be tested by terrestrial experiments. Main image: Schematic of a neutron star interior. The outer
layers consist of an elastic lattice of neutron-rich nuclei. Beyond neutron drip free neutrons form a
superfluid that coexists with the lattice. Above about half the nuclear saturation density, the protons form
a liquid and should be in a superconducting state. The composition and state of matter in the deep core
are not well constrained. The stabilizing effect of gravitational confinement permits (slow) weak
interactions (such as electron captures) to reach equilibrium, generating matter that is neutron-rich and
may have net strangeness. Hyperons are likely to be present, ultimately giving way to deconfined quarks
and a possible colour superconductor. Processes in the pair plasma in the star’s magnetosphere give rise
to the lighthouse effect observed by radio telescopes. X-rays associated with explosive nuclear burning
on—and thermal emission from—the star’s surface can be used to infer the properties of the outer layers
as well as the internal temperature, which is governed by a range of neutrino processes. Hotspots on the
surface of the star can lead to observable pulsations. Large-scale fluid motion in the dense interior may
generate detectable gravitational waves. (Reproduced from Graber et al. (2017))

could be a few meters thick, followed by a ‘solid’ crust composed of nuclei, neutrons,
and electrons. At a density of about 1011 g/cm3 the neutrons begin to drip out of the
nuclei to form a superfluid which permeates the crust lattice. The properties of the crust
regulate the thermal emission from the star and are also believed to be key to observed
pulsar spin glitches (Espinoza et al., 2011a). The crust extends to about two-thirds of the
nuclear saturation density. If we take the saturation density to be ρ0 = 2.8 × 1014 g/cm3

(corresponding to a baryon number density of n0 = 0.17 fm−3), then the crust–core
transition takes place at about 1.7 × 1014 g/cm3. The interior of the star is primarily a
neutron fluid, with a small contamination of protons, electrons, and muons. The neutrons
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are (again) expected to be in a superfluid state, while the protons form a superconductor.
At densities beyond a few times nuclear density various exotic states of matter, ranging
from a kaon condensate to hyperons and deconfined quarks may be present. In fact,
these phases could dominate the deep core as the density of the star may reach about
1015 g/cm3.

12.2 A simple model for npe matter

Inspired by the Fermi gas results from Chapter 9, let us try to build a simple equation
of state for a star composed of neutrons with a small fraction of protons and electrons.
In doing this, we first of all treat the various species of particles (n, p, and e) as non-
interacting Fermi gases, and secondly assume that the baryons are non-relativistic while
the electrons are relativistic. This makes sense since the electrons are much lighter than
the neutrons and protons. The respective chemical potentials are then given by

μx = mxc2 + EFx x = n,p, (12.1)

where mx are the rest masses, and

μe = EFe = h̄c(3π2ne)
1/3. (12.2)

We have kept the natural constants in these expressions but in the following we will work
in units where h̄ = c = 1. As the chemical potentials are given by the partial derivatives
of the energy with respect to the individual number densities, it is easy to see that we
will have

ε = (mnnn + mpnp)c2 + 3
5

(nnEFn + npEFp)+ 3
4

neEFe. (12.3)

At each density, the composition is determined by the requirement that the matter is
in chemical equilibrium. In the present case we need to consider the Urca reactions

n → p + e + ν, (12.4)

p + e → n + ν. (12.5)

In order for these reactions to be in equilibrium—with an equal number of neutrons
being destroyed by the first reaction as the number being created through the second—
the chemical potentials must satisfy

μn = μp + μe, (12.6)

where we have assumed that the star is cold enough that the matter is transparent
to neutrinos (i.e. that their contribution can be neglected). This should be a valid
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approximation for all observed neutron stars since the neutrinos only remain trapped
for at most a few tens of seconds in a hot newly born star (Burrows and Lattimer, 1986).

In addition, we need to ensure that the matter is charge neutral. If the star were to
have a significant net charge it would simply attract particles from its surroundings until
charge neutrality was restored. Hence, we impose the (local) condition

np = ne. (12.7)

Now taking the neutron and proton masses to be equal mn = mp = mb and assuming
that np � nn (as expected in a neutron star core) one easily arrives at an approximation
for the proton fraction

xp = np

n
≈ 3π2

(
h̄

2mbc

)3

n ≈ 6 × 10−3
(

n
n0

)
, (12.8)

where n = nn + np is the baryon number density and n0 is the nuclear saturation
density (from before). We see that, in this case, the protons make up about 1% of the
baryons at nuclear saturation. More realistic models tend to have slightly larger proton
fractions (by a factor of a few) but it is always the case that the neutrons are vastly
dominant.

Meanwhile, the pressure and mass density follow from

p = −ε +
∑

x

nxμx = 2
5

(nnEFn + npEFp)+ 1
4

neEFe, (12.9)

and

ρ ≈ mbn. (12.10)

This provides us with the input physics we need in order to build a star. The model may
not be particularly realistic, but it achieves two things. It gives us a rough idea of what
to expect and also introduces the key building blocks of a more detailed description. In
order to improve the model, we must account for particle interactions—the effect that the
presence of the protons has on the neutrons, and so on. This is far from straightforward
since it requires knowledge of the nuclear N-body interactions at extreme densities. To
some extent we can parameterize the effect by introducing ‘effective’ masses m∗

x for the
baryons (replacing the bare masses in the Fermi energies). This would (at least) allow
us to account for medium effects in a phenomenological way. In a mixture of Fermi
gases, the strong interaction tends to lead to the effective mass being somewhat lower
than the bare mass. In addition, the effective mass depends on how many companions
of the ‘opposite kind’ each baryon has. The larger the number, the smaller the effective
mass tends to be. As a consequence, the effective proton mass m∗

p will be smaller than the
effective neutron mass m∗

n. In a typical neutron star core, one finds that m∗
p ≈ 0.5 − 0.8
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(Baldo et al., 1992). If we, in view of this expectation, reconsider (12.8) we see that
medium effects may significantly increase the proton fraction.

12.3 Determining the equation of state

The Fermi gas model highlights the equation of state as the fundamental diag-
nostic of dense matter interactions. Each theoretical model generates a unique
mass-radius relation—through the Tolman–Oppenheimer–Volkoff equations from
Chapter 4—which, in turn, predicts a characteristic radius for a range of masses and a
maximum mass above which a neutron star collapses to a black hole. It also allows us to
work out quantities like the maximum spin rate and the moment of inertia. However, first
principle calculations of the interactions for many-body QCD systems are not within
reach (due to what is known as the fermion sign problem). Instead one has to resort
to phenomenological models, using experiments and observations to test predictions as
new models become available (Watts et al., 2016).

Two-body interactions are fairly well constrained by experiment, but the three-body
forces still represent the frontier of nuclear physics (Epelbaum et al., 2009; Gandolfi et al.,
2012). At low energies, effective field theories based on symmetries from QCD provide
a systematic expansion of the nuclear forces, which predict two- and many-nucleon
interactions (Hebeler et al., 2010), but it is difficult to extend these calculations to high
densities. There are complementary efforts using lattice approaches to the nuclear forces
to provide few-body nucleon–nucleon and more generally baryon–baryon interactions,
but this approach also remains affected by uncertainties. Predictions of these models can
be tested against current nuclear data (like observed particle masses; see Chamel et al.
(2011)). Where data are not yet available, predictions can be based on the consistency
of the approach. As an alternative, one may consider phenomenological models based
on as much experimental information as possible (Hebeler et al., 2013).

Exotic neutron-rich nuclei, the target of present and upcoming experiments, provide
relevant constraints on effective interactions for many-body systems. Nuclear masses
and their charge radii probe symmetric nuclear matter, the neutron skin thickness of
lead tests neutron-rich matter (Roca-Maza et al., 2011), while giant dipole resonances
and dipole polarizabilities of nuclei also concern largely symmetric matter (Piekarewicz
et al., 2012). However, these laboratory experiments probe only matter at densities lower
than n0. Neutron stars can reach densities several times higher. Similarly, heavy-ion
collisions probe hot and dense matter, but have uncontrolled extrapolations to the zero-
temperature regime relevant for a mature neutron star.

In essence, neutron stars provide a unique environment for testing nuclear physics
at high levels of asymmetry, extreme density, and low temperature. Astrophysical
constraints on the equation of state can be used to infer crucial aspects, like the nature
of the three-nucleon interaction or the presence of free quarks at high densities.

The state of matter adds dimensions to the problem. Mature neutron stars tend to
be cold. With a ‘typical’ core temperature of order 108 K they are far below the Fermi
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temperature of the involved constituents, e.g.

TF = EF

kB
≈ 1012

(
n
n0

)2/3

K, (12.11)

in the case of the neutrons. This makes the formation of superfluid/superconducting
phases likely throughout the star’s core. The involved parameters (e.g. the energy gaps
for Cooper pair formation of different constituents (Graber et al., 2017) influence the
long-term evolution of the system.

State-of-the-art astrophysical models tend to be based on phenomenological equa-
tions of state. Different approaches include nuclear potentials (e.g. the Urbana/Illinois or
Argonne forces) that fit two-body scattering data and light nuclei properties (Akmal et al.,
1998); phenomenological forces like the Skyrme interaction (Douchin et al., 2000); and
microscopic nuclear Hamiltonians that include two- and three-body forces from chiral
effective field theory calculations (Hebeler et al., 2013). The challenge for future efforts
in this area is to (i) incorporate as much of the predicted microphysics as possible, and
(ii) use observations to further constrain the unknown aspects.

Given the uncertainties associated with the nucleon interactions and the difficulties to
build an equation of state from first principles, it is helpful to consider the problem in a
schematic fashion. As an illustration, consider a Taylor expansion away from symmetric
matter (for which xp = 1/2)

E(n,xp) ≈ E
(

n,xp = 1
2

)
+ 1

8
d2E
dx2

p︸ ︷︷ ︸
=S(n)

(1 − 2xp)2 + . . . . (12.12)

Any realistic model must reproduce the fact that the energy per particle at the saturation
density (n = n0) for symmetric nuclear matter is about −16MeV. Moreover, the coeffi-
cient S(n)—the ‘symmetry energy’—is known to be about 30MeV at nuclear saturation.

As a demonstration of the importance of the symmetry energy (Lattimer, 2014), let
us take the total energy (density) to be ε(n,xp) so that E = ε/n. Then it is easy to show
that

μn = ∂ε

∂nn

∣∣∣∣
np

= E + n
∂E
∂n

− xp
∂E
∂xp

, (12.13)

and

μp = ∂ε

∂np

∣∣∣∣
nn

= E + n
∂E
∂n

+ (1 − xp)
∂E
∂xp

= μn + ∂E
∂xp

. (12.14)
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From this we see that chemical equilibrium is sensitive to the symmetry energy,
since

μn − μp = − ∂E
∂xp

= 4S(1 − 2xp). (12.15)

Adding the lepton energy to (12.12), assuming that the electrons are relativistic (as
before), we find that chemical equilibrium requires

μe = h̄c(3π2np)1/2 = 4S(1 − 2xp), (12.16)

where we have assumed that the matter is charge neutral. The proton fraction now follows
from the solution to the cubic

bxp − (1 − 2xp)3 = 0, (12.17)

where

b = 3π2n
(

h̄c
4S

)3

≈ 22
(

n
n0

)(
30 MeV

S

)3

, (12.18)

and it follows that xp ≈ 1/b ≈ 4 × 10−2 at the nuclear saturation density. The exercise
shows that xp is (essentially) governed by the energy dependence of the symmetry
energy.

The symmetry energy has further impact on the composition. For example, when
μe > mμc2 ≈ 105 MeV (the muon rest mass) it becomes energetically favourable to
convert electrons into muons via the reaction

e −→ μ+ ν̄μ + νe. (12.19)

From the above results we see that, for small xp, the threshold corresponds to

μe ≈ mμc2 ≈ 4S(n) −→ S(n) ≈ mμc2

4
. (12.20)

Since the symmetry energy is expected to be about 30 MeV at the saturation density, we
learn that muons are likely to appear close to n0.

The symmetry energy represents the difference between the energies of pure neutron
matter and symmetric nuclear matter as a function of density. In (12.12) we truncated
the expansion. We can extend the discussion by defining

S(n) = E(n,1/2)− E(n,0), (12.21)
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and then expand the result in powers of density near saturation. This way we arrive at
(Lattimer, 2014)

S(n) ≈ Sv(n)+ L
3

(
n − n0

n0

)
+ Ksym

18

(
n − n0

n0

)2

. (12.22)

This expression is useful because the two parameters Sv and L can be extracted from a
range of nuclear physics experiments (Hebeler et al., 2013). The third parameter, Ksym,
is much less precisely known.

From rather general arguments we have learned that, at densities below n0, neutron
star matter is dominated by neutrons with a small fraction of protons and electrons (to
ensure charge neutrality). Close to nuclear density it becomes favourable for electrons
to be converted into muons. We have also seen that the symmetry energy plays a key
role in determining the matter composition. As we will now discover, additional degrees
of freedom may become relevant at higher densities and as a consequence matter may
become even stranger.

Mean-field calculations based on effective Lagrangians (Glendenning, 1996) indicate
that hyperons and/or deconfined quarks are likely to appear once the density in a
neutron star core reaches a few times the nuclear saturation density. The introduction
of these exotic phases of matter considerably enhances the difficulties of determining an
accurate representation for the equation of state, as very little is known about the relevant
interactions from experiments.

Several possible phases, which may all be present in a neutron star core, endow
the matter with net strangeness. We may allow for the presence of hyperons, a Bose
condensate of K− mesons, or deconfined strange quarks (Witten, 1984; Alcock et al.,
1986). It is generally thought that such additional states should be present once the
density exceeds ∼ 2n0. The � and �− hyperons may be particularly important. Large
hyperon populations are likely to be present once the density approaches that which is
typical of heavier neutron stars. The hyperons may, in fact, make up as much as 15–20%
of the total baryon population in the star’s core.

The presence of hyperons may have significant observable effects. First of all, the
�− carries negative charge, which means that the lepton fractions drop following its
appearance. In some proposed models there are virtually no electrons left in the core of
the star. This affects the different conductivities as the electrons are efficient carriers of
heat and electric charge (and impact on the star’s gradual magneto-thermal evolution).
Secondly, the hyperons can act as an efficient refrigerant. The hyperons may undergo
direct Urca reactions essentially as soon as they appear, in contrast to the protons which
must exceed a threshold value of xp ∼ 0.1 (Lattimer et al., 1991). The upshot of this is
that a neutron star with a sizeable hyperon fraction should cool extremely fast. In fact, the
star would cool so rapidly that it would be colder than observational data suggests (Page
et al., 2004). This could be taken as evidence against a hyperon core, but more likely it
suggests that the hyperons are (at least partly) superfluid, in which case the reactions are
suppressed (Page et al., 2006).
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Beyond some threshold density a neutron star core may contain deconfined quarks.
In the quark phase, the difference between the quark masses is significantly smaller than
their respective Fermi energies, so the equilibrium composition should involve equal
fractions of the three flavours (up, down, and strange), with a strangeness fraction per
baryon of almost unity.

In fact, one can argue that if the most stable form of matter at supranuclear densities
is a conglomerate of deconfined quarks, then all observed neutron stars ought to be
strange stars (Caldwell and Friedman, 1991). If it (more modestly) could be established
that strange stars exist in the Universe, it would put important constraints on the
QCD parameters, like the so-called bag constant in perturbative QCD. This is a
phenomenological parameter, B, in terms of which the equation of state can be written

p ≈ 1
3

(ε − 4B). (12.23)
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Figure 12.2 Mass vs radius curves for a sample of realistic neutron star equations of state, compared to
constraints from observations. The most severe constraint is set by the most massive known pulsars, PSR
J0348+0432 and J1614-2230, which require the equation of state to allow a mass of at least 2M�. The
figure also illustrates the difference between hadronic matter models and strange quark stars (SQM),
which is most pronounced for lighter stars. The light red region indicates the expected uncertainty
associated with extrapolations to high density from current first principles chiral effective field theory
calculations (Gandolfi et al., 2012). Note that some of the included equations of state are ruled out by
these constraints. (Adapted from Demorest et al. (2010).)
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The bag constant is usually taken to be in the range 100–250 MeV/fm−3. Note that, in this
model, the surface of the star is associated with a finite density. Modern representations of
the model include corrections due to, for example, the mass of the strange quark (Alford
et al., 2005).

It is obviously important to establish to what extent observations can distinguish
a strange star from a neutron star. Unfortunately, this is a delicate problem. Strange
stars are held together by both the strong nuclear interaction and gravity, and the
corresponding equation of state is quite accurately described by uniform density models.
A consequence of this is that, in contrast to the neutron star case, very small strange
‘dwarfs’ (with mass M ∼ R3) can form. However, for the canonical mass of 1.4M�
gravity dominates the strong interaction, leading to strange stars and neutron stars being
similar in size (see Figure 12.2). In other words, it is not clear that one would be able to
distinguish between the two cases given observed masses and radii.

12.4 Observational constraints

Turning to the implications of observations for the nuclear physics, one would in the first
instance draw on observed masses (which can be obtained if the neutron star has a binary
companion; see Chapter 9) and constraints on the radius (a more problematic issue).
In terms of mass the current record holders are PSR J0348+0432 at 2.01 ± 0.04M�
(Demorest et al., 2010) and (in close second place) PSR J1614-2230 at 1.97 ± 0.04M�
(Antoniadis et al., 2013) (although an improved measurement using the NANOGrav
nine-year data set leads to a slightly lower preferred mass of around 1.93M�; see Fonseca
et al.(2016)). The second case is particularly interesting from the relativity point-of-view
as the measurement involves a strong Shapiro delay signature. Knowing that the equation
of state must allow a maximum mass above 2M� helps us rule out some proposed models
(especially ones that include a significant softening phase transition, as expected from the
appearance of hyperons) but (as is clear from Figure 12.2) many options remain viable.

If we ignore small effects due to rotation and the star’s magnetic field, the neutron star
mass–radius relation should be universal. All neutron stars in the Universe are expected
to lie on the same curve. From the maximum mass we know how high in the diagram
the mass–radius curve has to reach. If we want a tighter constraint on the equation of
state, then we need to bracket the radius, as well. This is much more difficult (obviously,
because neutron stars are small and distant). Nevertheless, there has been good progress
on this problem.

By measuring the X-ray flux and temperature of a system at a known distance, one
can work out the radius of the emitting object. The temperature will be redshifted in
general relativity (it is an energy, after all...), which means that one would measure the
radius as seen at infinity:

R∞ =
(

1 − 2GM
Rc2

)1/2

R. (12.24)
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In effect, observations lead to a region in the mass–radius plane (Özel et al., 2010; Steiner
et al., 2010). The spectrum also depends on the surface gravity in the atmosphere and
the redshift.

Recent work on this problem has mainly focussed on quiescent systems in globular
clusters (Steiner et al., 2018). One reason for this is that the the distance is fairly well
known for globular clusters, and this reduces the uncertainty of the radius constraint.
Moreover, it appears that quiescent low-mass X-ray binaries in globular clusters have
relatively simple spectra, dominated by thermal surface emission. A number of quiescent
systems have been studied in some depth with Chandra and/or XMM-Newton, leading
useful constraints on mass and radius. For example, a Bayesian analysis (Steiner et al.,
2018) suggests that the neutron star radius (for a 1.4M� star) should lie in the range
10–14 km.

12.5 The slow-rotation approximation

If we want to explore real neutron stars, we need to account for rotation. This is important
for a number of reasons, ranging from the simple notion that the centrifugal force
deforms fluid bodies to the fact that various emission mechanisms rely on the star’s spin.
If neutron stars did not rotate, we would not see them as radio pulsars—and we know
that some pulsars spin at an astonishing rate. The fastest known case is PSR J1748-
2446ad with a frequency of 716 Hz (Hessels et al., 2006), leading to the excluded region
indicated in Figure 12.2. Rapidly spinning systems could be particularly interesting for
gravitational-wave astronomy. After all, we know from our simple solid-body example
in Chapter 6 that the gravitational-wave amplitude scales as the square of the spin
frequency (everything else being equal). In essence, understanding the impact of rotation
is important if we want to understand neutron stars as gravitational-wave sources.

As a first step towards exploring the effect rotation has on a star, let us outline the
slow-rotation approximation in Newtonian gravity. The aim is to obtain the equilibrium
shape of a rotating configuration. There are different approaches to this problem. The
route we will follow is useful because it can be extended to consider magnetically induced
deformations.

As long as we are considering a fluid body, the equilibrium equations are the same as
before,

1
ρ

∇p = −∇	, (12.25)

although we now have an effective potential

	 = 	0 − 1
2


2r2 sin2 θ , (12.26)
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where 	0 is the gravitational potential and the second term accounts for the centrifugal
force.

The first step involves introducing a new radial variable a, such that the level surfaces
of the system take the form

a(r) = r

[
1 +

∑
l

εl(r)Pl(cosθ)

]
, (12.27)

where Pl are the Legendre polynomials. Perturbed quantities, like pressure and density,
are assumed to be expanded in the same way. As we want to work out how rotation
deforms a given star, we insist that the deformation conserves the total mass. Generally,
we then require that

Mε =
∫ R

0
ρ (1 + εlPl)dV = M. (12.28)

Meanwhile, in the case of quadrupole deformations (l = 2), the (r and θ) components
of the perturbed Euler equations lead to

dδp
dr

+ ρ
dδ	

dr
+ δρ

d	

dr
= −2

3
ρ
2r, (12.29)

and

δp + ρδ	+ δρ	 = −1
3

ρ
2r2. (12.30)

Combining these we have

δρ = − π2

4πGR2

(
δ	+ 
2r2

3

)
. (12.31)

Substituting this into Poisson’s equations for the gravitational potential, we arrive at

d2δ	

dr2 + 2
r

dδ	

dr
−

(
6
r2 + π2

R2

)
δ	 = −π2

R2


2r2

3
. (12.32)

We need to solve this equation, imposing regularity at the centre and matching to the
exterior solution

δ	 = A
r3 , (12.33)
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with A some constant. Once we have the solution, we can determine δρ and infer the
surface deformation from

εs = 1
R

[
dρ

dr

]−1

R
δρ(R). (12.34)

For an n = 1 polytrope this leads to

ε(R) = − 5
π2


2R3

GM
. (12.35)

As expected, the rotational deformation makes the star oblate.
We can use the same method to obtain the rotational deformation for a uniform density

star, but this calculation is a little bit more involved. We need to keep in mind that δρ then
has support only between R and the new radius R(1 + εs) and we also need to account
for the discontinuity in the gravitational potential at the surface. Once this is done, we
arrive at (Tassoul, 1978)

ε(R) = −5
6


2R3

GM
. (12.36)

These may only be rough estimates but they are nevertheless very useful. In particular,
we can easily compare the rotational effect to other possible deformations of the star.
While doing this in the context of gravitational waves, it is important to stress that the
centrifugally induced change in shape does not lead to the kind of asymmetry we need.
It is easy to see that the star remains symmetric, no matter which angle we view it from.
A rotating star does not emit gravitational waves unless we introduce some additional
deformation.

12.6 The virial theorem

Without discussing specific models of rapidly rotating stars—which would require a
numerical solution—we can establish a useful relationship between the different energies
of the system. The starting point for the analysis is the Euler equation (4.59) and
the Poisson equation (4.36). Using the relevant Green’s function, we find that the
gravitational potential follows from

	(x) = −G
∫

ρ(x′)
|x − x′|dV ′. (12.37)



OUP CORRECTED PROOF – FINAL, 30/10/2019, SPi

The virial theorem 263

Let us now multiply (4.59) by ρxi and integrate over the entire star. This leads to
three distinct contributions. First of all, we have

∫
ρxiDtvidV =

∫
ρ[Dt(xivi)− v2]dV = d

dt

∫
ρxividV − 2T , (12.38)

where V is the volume, we have used the convective derivative

Dt = ∂t + v j∇j , (12.39)

and identified the kinetic energy

T = 1
2

∫
ρv2dV . (12.40)

We have also used the fact that

∫
(DtA)dV = d

dt

∫
AdV , (12.41)

for any scalar function A. The next term leads to

∫
ρxi

(
1
ρ

∇ip
)

dV = −3
∫

pdV , (12.42)

as long as the pressure vanishes at the surface of the star (as it should).
The gravitational potential energy, W , follows from the remaining term. With a little

bit of work, we get

∫
ρxi∇i	dV = G

∫
V

∫
V ′

ρ(x)ρ(x′)x · (x − x′)
|x − x′|3 dV ′dV =

= G
2

∫
V

∫
V ′

ρ(x)ρ(x′) (x − x′) · (x − x′)
|x − x′|3 dV ′dV =

= 1
2

∫
V

∫
V ′

ρ(x)
Gρ(x′)
|x − x′|dV ′dV = −1

2

∫
ρ	dV = −W . (12.43)

Combining the results we see that the equations of motion imply

d
dt

∫
ρxividV = 2T + W + 3

∫
pdV . (12.44)
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Now we note that, with vi = Dtxi, the left-hand side is equal to

1
2

d2

dt2

∫
ρ|x|2dV = 1

2
d2I
dt2

, (12.45)

where I is the moment of inertia.
As a system reaches equilibrium the left-hand side of (12.44) vanishes. Hence, we

must have

2T + W + 3
∫

pdV = 0. (12.46)

This is known as the virial theorem. In addition to providing insight into a general
equilibrium configuration, the relation serves as a useful accuracy test for numerical
solutions.

At this point it is worth introducing a little bit of thermodynamics. Let us assume that
the star is described by a barotropic equation of state,1 such that ε = ε(n). Then we have
the first law

p + ε = n
dε

dn
= ρ

dε

dρ
, (12.47)

which leads to

d
(

ε

ρ

)
= −pd

(
1
ρ

)
. (12.48)

In the case of a polytrope p = Kρ�, we can integrate the relation to get

ε

ρ
= c2 +

∫
p
ρ2 dρ = c2 + K

ρ�−1

� − 1
, (12.49)

where the integration constant has been appropriately chosen. We see that

ε = ρc2 + p
� − 1

= ρc2 + ε′, (12.50)

and the internal energy of the star readily follows as

U =
∫

ε′dV = 1
� − 1

∫
pdV . (12.51)

1 Realistic neutron star matter can be considered to be barotropic as long as it is charge neutral and in
chemical equilibrium.
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Given this result, the virial theorem can be written

2T + W + 3(� − 1)U = 0. (12.52)

This is an important relation. For example, consider the case of a non-rotating star
(T = 0). In that case the virial theorem provides a relation between potential and
internal energy, which allows us to immediately write down the total energy of the star.
We get

Etotal = U + W = − 3� − 4
3(� − 1)

|W |. (12.53)

Since the total energy must be negative in order for the star to remain bound, we learn that
we must have � > 4/3. If the adiabatic index is smaller than this, then a small perturbation
will lead to disruption.

Before moving on, let us take a closer look at the gravitational potential energy. From
the definition (12.43), we have

W = 1
2

∫
ρ	dV = −G

2

∫
ρ(x)

∫
ρ(x′)

|x − x′|dV ′dV . (12.54)

In order to evaluate this expression, we first expand the integrand in spherical harmonics.
Using μ = cosθ we then get

	(x′) = −2πG
∞∑

l=0

Ym
l (μ′)

∫ 1

−1
Ym

l (μ)

[∫ r′

0
ρ

( r
r′

)l+1
rdr +

∫ R

r′
ρ

(
r′

r

)l

rdr

]
dμ.

(12.55)

It is instructive to consider the case of a spherical uniform density star, since we then
only need to consider the l = 0 term in the sum. With y = r/R we have

	 = −4πGR2ρ

[
1
y′

∫ y′

0
y2dy +

∫ 1

y′
ydy

]
. (12.56)

Using this in (12.54) to determine the gravitational potential energy we find that the two
terms lead to identical contributions, and we have the final result

W = −3
5

GM2

R
. (12.57)
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The formalism provided by (12.55) is, of course, much more general. For example,
we can show that the centrifugal deformation of a rotating uniform density star affects
the gravitational potential energy in such a way that (Tassoul, 1978)

�W = 3ε2GM2

25R
−→ �W

W
= −ε2

5
. (12.58)

Given that ε is proportional to 
2 we learn that the change in potential energy induced by
the rotation is proportional to 
4. This observation will be useful later, when we discuss
deformations of the neutron star’s crust (see Chapter 14).

12.7 The Kepler limit

We have already seen that neutron stars can spin rapidly. There is, however, a natural
speed limit. If the star rotates so fast that gravity does not overcome the centrifugal
force on a particle at the equator, the star will shed mass. This is usually referred to
as the Kepler limit. It corresponds to the rotation frequency of the star being equal to the
frequency of a particle in orbit around the equator. If the star remained undeformed
by the rotation, the limiting frequency would trivially follow from 
2 = GM/R3. Of
course, a real star has a centrifugal bulge, so the true Kepler limit corresponds to a lower
rotation rate.

It is straightforward to estimate the mass-shedding limit from the rotational deforma-
tions we have derived. However, as it is instructive to have different ways of looking at a
problem, let us take an alternative route. We will adopt the so-called Roche approximation
(Lai et al., 1993), which is known to be accurate for stars governed by a soft equation
of state. The idea is that the gravitational potential can be taken as spherical also in the
rotating case. Gravity is assumed to be dominated by the stellar core while the relatively
low-density envelope is deformed by rotation.

A uniformly rotating model is generally governed by

1
ρ

∇ip = −∇i

(
	0 − 1

2

2r2 sin2 θ

)
, (12.59)

where we now assume that

	0 ≈ −GM
r

. (12.60)

Introducing the enthalpy

∇ih = 1
ρ

∇ip, (12.61)
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we have

h + 	− 1
2


2r2 sin2 θ = constant = H. (12.62)

The integration constant can be determined by evaluating the expression on the left-
hand side at the pole of the star, where r = Rp, using the fact that h = 0 at the surface.
Thus, we get

H = −GM
Rp

. (12.63)

Given that the frequency of a particle in a Keplerian orbit around the equator, with
r = Re, follows from


2
K = GM

R3
e

, (12.64)

we find from (12.62) that we must have

− 3
2

GM
Re

= −GM
Rp

−→ Re

Rp
= 3

2
. (12.65)

If we also assume that the polar radius remains roughly unchanged by the stellar
rotation, Rp ≈ R(
 = 0) = R0 we deduce that the maximum rotation rate of the star is
approximated by


K ≈
(

2
3

)3/2
√

GM

R3
p

≈
(

2
3

)3/2
√

GM

R3
0

≈ 2
3

√
πGρ0, (12.66)

where ρ0 is the average density of the corresponding non-rotating star. That is, we have


K ≈ 2π × 1180
(

M
1.4M�

)1/2 (
R

10 km

)−3/2

s−1. (12.67)

This simple approximation has been shown to be good for rigidly rotating Newtonian
bodies. In fact, as we will soon see, it remains reasonably accurate also for relativistic
models.

The mass-shedding limit may, however, be significantly different for differentially
rotating stars. This is natural since it is the equatorial rate of rotation that plays the key
role. Whether the core of the star rotates faster or slower is of hardly any consequence. In
fact, the rotation frequency 
 may not be a particularly useful parameter for differentially
rotating configurations. Instead, one would often use (in particular in the context of
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instabilities of a rotating star; see Chapter 13) the ratio β between the kinetic energy,
T , and the gravitational potential energy, W . Defining

β = T
|W | , (12.68)

it follows from our previous estimates that, for uniformly rotating constant density stars
we have

β ≈ 1
9

(




K

)2

. (12.69)

In other words, the mass-shedding limit corresponds to β ≈ 0.11. This agrees reasonably
well with detailed calculations for realistic supranuclear equations of state, which typically
lead to a maximum value of β in the range 0.09–0.13 (Stergioulas and Friedman, 1995).
However, depending on the adopted rotation law, differentially rotating models may allow
much larger values of β. This will be important later.

12.8 Rotating relativistic stars

The different approximations we have outlined provide useful insights into rotating
neutron stars, but ultimately we need to move on to relativistic models. This is important
for two reasons. First of all, if we want to test our understanding of the microphysics
against precise observations, then we need to account for general relativity. Secondly, new
effects enter in the relativistic description and these may impact on the phenomenology.
We have, in fact, already discussed one such aspect—the maximum mass. Neutron stars
do not have a maximum mass in Newtonian gravity.

As in Newtonian theory, rotation can be accounted for in two different ways. Much
work has focussed on slowly rotating stars, for which an expansion in the rotation rate
may lead to fairly accurate results. This approach has the advantage that one can draw
on the result for non-rotating systems and make some progress analytically (Hartle
and Thorne, 1968). The dynamics of rapidly rotating stars tends to be much more
complicated, and one typically has to resort to full-blown numerical solutions. We will
outline both approaches in the following.

In the case of a slowly rotating relativistic star, one may consider the rotation rate 
 as
a formal expansion parameter. If we take the rotation to be uniform, then we know from
our discussion of the corresponding Newtonian problem that rotational effects associated
with the centrifugal force arise at order 
2. The relativistic problem is, however, different
in that a new effect—the rotational frame-dragging—appears already at linear order in

. At the linear level, we have

ds2 = −eνdt2 + eλdr2 − 2ωr2 sin2 θdtdϕ + r2(dθ2 + sin2 θdϕ2), (12.70)
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where we recognize the non-rotating metric components from the Schwarzchild solution
(see Chapter 4) and ω = O(
). The fluid four-velocity is given by

ua = [e−ν/2,0,0,
e−ν/2], (12.71)

where 
 = dϕ/dt is the angular velocity of the fluid as seen by an observer at rest at
infinity. The Einstein equations for a stationary configuration now lead to the familiar
Tolman–Oppenheimer–Volkoff equations (at non-rotating order) supplemented by (at
first order in rotation) an equation for the frame dragging

� ′ −
[
4π(p + ε)reλ − 4

r

]
� ′ − 16π(p + ε)eλ� = 0, (12.72)

with

� = 
− ω. (12.73)

In the vacuum exterior, the solution is simply given by

� = 
− 2J
r3 , (12.74)

where J is the star’s angular momentum (as measured by a distant observer). In principle,
one can extend the slow-rotation calculation to higher orders. The next order brings
in the centrifugal deformation of the star, just as in the Newtonian case (Hartle and
Thorne, 1968). Beyond that point the algebra becomes messy and one might as well
turn to numerics.

A rapidly rotating star2 can be described by

ds2 = −e2νdt2 + e2ψ(dϕ − ωdt)2 + e2μ(dr2 + r2dθ2), (12.75)

where ν,ψ ,ω, and μ are functions of r and θ (not to be confused with the metric functions
in (12.70), which were chosen to connect to the Schwarzschild metric in the non-rotating
limit.). This form for the line element follows if we assumes that (i) the spacetime has
a timelike Killing vector ta (related to stationarity) and a second axial Killing vector ϕa

(associated with axial symmetry), and (ii) the spacetime is asymptotically flat. The fact
that the two Killing vectors commute means that one can choose coordinates x0 = t and

2 The problem is discussed in detail by Friedman and Stergioulas (2013).



OUP CORRECTED PROOF – FINAL, 30/10/2019, SPi

270 Towards the extreme

x3 = ϕ and the asymptotic flatness then allows us to represent the three metric potentials
ν,ψ , and ω as the invariant combinations

gtt = tata → −1 as r → +∞, (12.76)

gϕϕ = ϕaϕ
a → +∞ as r → +∞, (12.77)

gtϕ = taϕa → 0 as r → +∞. (12.78)

The final metric potential μ determines the conformal factor associated with the orthog-
onal 2-surfaces. The metric function ψ also has a geometrical meaning: eψ is the proper
circumferential radius of a circle around the axis of symmetry. In the nonrotating limit,
the metric (12.75) reduces to the metric of a non-rotating star in isotropic coordinates
(see Chapter 4).

The four-velocity now takes the form

ua = e−ν

(1 − v2)1/2 (ta + 
ϕa), (12.79)

where v is the magnitude of the three-velocity relative to a local zero-angular-momentum
observer (see Chapter 17), given by

v = (
− ω)eψ−ν . (12.80)

Rapidly rotating configurations must be determined numerically. This is typically
done via either an implementation of the Hachisu self-consistent field method (Ster-
gioulas and Friedman, 1995) or a spectral approach (Bonazzola et al., 1993; Ansorg et al.,
2002). Both methods lead to reliable results, the veracity of which can be established via
the relativistic analogue of the virial theorem.

As in the non-rotating case, neutron star models constructed from different equations
of state have different bulk properties, associated with uncertainties in the high-density
physics. Soft equations of state produce models with low maximum mass, small radius,
and potentially large rotation rate. Stiff equations of state lead to models with a high
maximum mass, large radius, and low maximum rotation rate. The attainable rotation can
differ by as much as a factor of 2 for a reasonable range of equations of state. In general,
the effect of rotation is to increase the equatorial radius of the star (as we have already
seen) and increase the mass that can be sustained for a given central energy density. In
effect, the most massive rotating model tends to be 15 − 20% above the maximum mass
non-rotating star. The corresponding increase in radius is 30 − 40%, so the difference is
significant.

As in the Newtonian case, the maximum rotation rate is reached at the onset of mass-
shedding at the equator. In relativity, this corresponds to


K = ω′

2ψ ′ + eν−ψ

[
ν′

ψ ′ +
(

ω′

2ψ ′ e
ψ−ν

)2
]

. (12.81)
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It is (understandably) not straightforward to come up with an estimate analogous to
(12.67) in this case. However, drawing on a collection of numerical results one may infer
the empirical relation (Haensel and Zdunik, 1989; Friedman et al., 1989; Haensel et al.,
1995)


K ≈ 2π × 1400
(

Mmax

1.4M�

)1/2 (
Rmax

10 km

)−3/2

s−1, (12.82)

where Mmax and Rmax are the mass and radius of the maximum mass non-rotating model.
This estimate typically provides the maximum angular velocity with an accuracy better
than 10%. Comparing to the Newtonian estimate (12.67), we see that the results are
similar although one should keep in mind that (12.82) involves the parameters for the
maximum mass configuration for a given equation of state.

Figure 12.3 provides an illustration of the (dynamically) stable region for a typical
sequence of uniformly rotating relativistic stars. The results highlight the different
features we have already discussed. In addition, we see that there may exist a class
of rotating stars that have no non-rotating counterpart. These ‘supramassive’ stars
must eventually collapse if they are spun down, e.g. by magnetic dipole radiation or
gravitational waves.

1 2 3 4 5
0.5

1

1.5

2

2.5

Kepler limit
Static stars
Onset of instability
Maximum mass (
= 0)

Supramassive stars

M
/M

�

ρc (1015 g/cm3)

Figure 12.3 The region of stable relativistic stars for a given equation of state (FPS; see
Pandharipande and Ravenhall (1989)). Rotation increases the maximum mass by roughly 20% and
also leads to the presence of a family of stars that have no non-rotating counterpart. These configurations
are located between the mass-shedding curve and the dashed curve, which represents the most massive
rotating star that has a stable non-rotating counterpart. A particular sequence (with constant baryon
mass) of such supramassive stars is indicated by a thin solid line. An isolated star that spins down due to
magnetic dipole radiation would evolve along this sequence until it reaches the state represented by the
filled circle. At this point it will become unstable and undergo gravitational collapse.
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Finally, it is worth recalling that even a small amount of differential rotation can
significantly increase the angular velocity required for mass-shedding. This is potentially
very important since neutron stars are likely born differentially rotating. Studies of this
problem tend to assume a simple analytical rotation law. The relativistic analogue of the
so-called j-constant law,

A2(
c − 
) = (
− ω)e2(ψ−ν)

1 − (
− ω)e2(ψ−ν)
, (12.83)

where A is a constant, is particularly common. When A → ∞ this leads back to uniform
rotation and in the Newtonian limit the rotation is such that the specific angular
momentum is constant. This rotation law is computationally convenient, but it should
ideally be replaced by a more realistic model deduced from (say) neutron star birth
simulations.

12.9 The quasiradial instability

Neutron stars may suffer a number of instabilities, which impact on the star’s evolution
and may also lead to the generation of gravitational waves. We have already discussed
the most familiar case—the instability associated with the maximum mass for a given
equation of state, cf. Figure 12.2. Any spherical relativistic star will suffer a dynamical
instability before the compactness reaches the Schwarzschild limit (Chandrasekhar,
1964). General relativity does not permit stable stars with R < 2.25GM/c2. In fact, there
are no (even remotely reasonable) equations of state which permit stars more compact
than R ≈ 3GM/c2.

The existence of an upper mass limit is important both for the formation of neutron
stars and for mature stars accreting matter from a companion. In the first case, the
collapse of a massive core that exceeds the maximum mass should lead to the prompt
formation of a black hole. In the latter case, an accreting neutron star which reaches the
maximum mass will become unstable and collapse, again leading to the formation of a
black hole.

The maximum mass instability is relatively easy to analyse in the case of non-rotating
stars. It sets in through the star’s radial (l = m = 0 in a spherical harmonics expansion)
oscillation modes. Assuming that the oscillation is associated with a time-dependence
eiωt, the equations that describe radial oscillations depend only on ω2. This means that
the mode frequencies come in pairs (±ω). As one increases the central density of the
star (for a given equation of state) the absolute value of the stable (real valued) mode
frequencies decreases. It passes through zero exactly at the point at which the mass
reaches an extremum (Harrison et al., 1965). Beyond this ‘turning point’, the mode
frequencies become a complex conjugate pair, and one of the modes is unstable. The
growth of this unstable mode triggers the collapse of the star.

The ‘turning point method’ provides a simple way of locating the onset of instability
along a sequence of equilibrium models. One simply has to identify the maximum mass
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model along a sequence with increasing central density. However, it is not immediately
obvious that this approach will generalize to rotating stars. The problem is subtle.
Nevertheless, in the case of uniform rotation an extremum of the angular momentum J
along a sequence with constant baryon number limits the region of stable stars (Sorkin,
1982). This notion is illustrated in Figure 12.3.

If we want to explore the dynamics of a star that reaches the instability point and
collapses, we need to resort to nonlinear simulations. We will consider this problem in
Chapter 20. Modelling the actual dynamics is particularly important if we want to extract
a gravitational-wave signal. We cannot easily estimate the level of emission from back-
of-the-envelope arguments.

From an intuitive point of view one might expect gravitational collapse to lead to
a very strong gravitational-wave signal. However, the outcome depends entirely on the
asymmetry of the collapse. A purely spherical collapse will not radiate gravitationally
at all, while the collapse of a strongly deformed body could release a large amount of
gravitational waves. The main reason why it is difficult to make ‘reliable’ estimates for
the released energy is that the answer depends entirely on the route the system follows
towards the final configuration. This is immediately clear from the post-Newtonian
formulas, e.g. (3.90), which show that the gravitational-wave luminosity depends on
time-derivatives of the involved multipoles.

As an example of this argument, let us consider the sudden contraction of a neutron
star due to a phase transition in the interior. Instead of collapsing completely, the star
reaches a new equilibrium at a slightly higher central density.

As a neutron star spins down, e.g. due to magnetic dipole radiation, the central density
increases. Various theoretical models indicate that the equation of state may soften
significantly once the central density reaches a critical value (likely several times the
nuclear saturation density). This could be due to the formation of pion/kaon condensates,
the creation of a significant hyperon core or quark deconfinement. Should this happen,
it could result in a ‘mini-collapse’ during which gravitational potential energy may be
released as radiation.

Such phase transitions have been suggested as sources for both detectable gravita-
tional waves and gamma-ray bursts (Cheng and Dai, 1998). However, the estimates
tend to be overly optimistic. The reason for this is simple. It is typically assumed that
the entire change in potential energy incurred during the contraction can be radiated
away. However, this is at variance with work that shows that the radiated energy is at best
only a few percent of this (Schaeffer et al., 1983). Most of the released potential energy
is transferred into internal energy (i.e. heats the star up). That this should be the case is
clear from the virial theorem.

Does this mean that the process is irrelevant from the gravitational-wave point of view?
Not necessarily. Using the results for a uniform density sphere, we estimate the change
in potential energy δW associated with a change in radius δR as

δW ≈ 3
5

GM2

R2 δR. (12.84)
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Suppose the contraction associated with a phase-transition in the core of a neutron star
leads to δR ≈ 10 m, and that 1% of δW is radiated as gravitational waves (which may
not be unreasonable). Combining the result with (3.90), assuming a typical timescale of
a millisecond, we find that hc ≈ 10−23 (assuming f = 1 kHz) for a source at the distance
of the Virgo cluster. This is a weak signal, but it may (just) be within reach of advanced
instruments.

From this estimate we learn that, even though many statements of the strength of
the gravitational waves from neutron star phase transitions are vastly too optimistic, we
should not discard the idea. We also need to keep in mind that such events may be more
violent than we have assumed. Moreover, a unique event from within our Galaxy could
well be detectable. Given that these events are likely to be rare we would obviously be
very lucky to catch one, but the information such that an observation would provide
about physics at supranuclear densities would be extremely valuable.

12.10 Superfluids and glitches

Mature neutron stars tend to be extremely stable rotators, in some cases rivalling the
best atomic clocks. However, in their adolescence they may behave in a less ordered
fashion. Many young neutron stars exhibit (more or less) regular glitches, where the
spin rate suddenly increases (Espinoza et al., 2011a). These spin-up events tend to
be followed by a slow relaxation towards the original spin-down rate. The archetypal
glitching neutron star is the Vela pulsar, which has (since the first observed event; see
Radhakrishnan and Manchester (1969) and Reichley and Downs (1969)) exhibited a
regular sequence of similar size glitches. The most energetic and perhaps also enigmatic
system, is the X-ray pulsar PSR J0537-6910 in the Large Magellanic Cloud (associated
with the supernova remnant N157B (Marshall et al., 1998)). Spinning at a frequency of
62 Hz this is the fastest spinning non-recycled neutron star and it glitches roughly every
100 days. Data showing the glitch activity of this pulsar, drawing on the complete set of
timing observations from the Rossi X-ray Timing Explorer, are shown in Figure 12.4.
The results highlight the (almost) predictable regularity of the glitches, the overall glitch-
dominated spin-evolution, and the complex inter-glitch behaviour.

When pulsar glitches were first observed in the late 1960s they were thought to be
associated with quakes in the star’s crust (Ruderman, 1969). In essence, a glitch would
be associated with the release of elastic strain built up as the star spun down and the
centrifugal force weakened. As repeated large glitches were seen in the Vela pulsar this
explanation was no longer viable as there was not enough time to build up the required
strain between the events (Baym et al., 1969). Small glitch events may still be explained as
starquakes, but larger events (typically associated with a relative change in spin frequency,
�ν/ν ∼ 10−6) are now thought to be a manifestation of a superfluid component in the
star’s interior (Anderson and Itoh, 1975). A glitch is envisaged as a tug-of-war between
the tendency of the neutron superfluid to match the spin-down rate of the rest of the star
by expelling vortices (by means of which the superfluid rotates) and the impediment
experienced by the moving vortices due to ‘pinning’ to crust nuclei (Alpar et al., 1984a).
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Figure 12.4 The observed evolution of the spin-down rate of the young X-ray pulsar PSR
J0537-6910. The regular glitches (sharp jumps in the spin-frequency and its derivative, ν̇ shown here),
roughly every 100 days, are apparent in the data. (Reproduced from Antonopoulou et al. (2018).)

Strong vortex pinning prevents the neutron superfluid from spinning down, creating a
spin lag with respect to the rest of the star (which is spun down electromagnetically).
This situation cannot persist (Seveso et al., 2016). The increasing spin lag builds up the
Magnus force exerted on the vortices. Above some threshold, pinning can no longer be
sustained, the vortices break free, and the excess angular momentum is transferred to
the crust, leading to the observed spin-up.

Several decades have passed since the two-component model was first suggested,
yet there has been little progress on making it quantitative. Theoretical models are not
(yet) at the level where they can be matched to observations like those in Figure 12.4.
The outcome is sensitive to issues involving unknown microphysics, like the pinning of
superfluid vortices to the nuclear lattice in the star’s inner crust (Alpar et al., 1984a) and
how mobile the superfluid component is (Chamel, 2012). Moreover, the mechanism
responsible for triggering glitches in the first place remains poorly understood and we
do not actually know the location of the superfluid reservoir associated with the events
(Andersson et al., 2012).

Regardless of the uncertainties, it is clear that we need to understand neutron star
superfluidity. Combining the simple fact that neutron stars are very cold—on the nuclear
physics temperature scale; see (12.11)—with the standard arguments for laboratory
systems, one would expect their outer core, which is dominated by npe matter, to contain
a mixed superfluid/superconductor. The relevant critical temperatures inherit an uncer-
tainty from the nuclear interactions that dictate the equation of state, but calculations
suggest that the neutrons in the star’s crust (pairing in a singlet state) have a critical
temperature in the range Tc = 109 − 1010 K. The critical temperature for the protons to
form a (singlet) superconductor is similar, although this phase sets in at higher densities
(basically since there are much fewer protons than neutrons at a given density). The
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neutrons in the star’s core may also pair (in a triplet state). The corresponding critical
temperature is the most uncertain, with typical estimates in the range Tc = 108 − 109 K.
From the schematic illustration of the critical temperatures in Figure 12.5 (see Andersson
et al. (2005b) for a discussion of more detailed models), it is clear that one would expect
the bulk of a mature neutron star to contain these macroscopic quantum condensates.
However, the relativistic electrons remain in a normal state as their transition temperature
lies far below typical neutron star temperatures.

The dissipation channels in a superfluid star are quite different from those of a
single fluid system. Basically, the superfluid flows without friction. This will inevitably
affect the internal dynamics. Some of the relevant effects are well understood from
low-temperature laboratory experiments (Graber et al., 2017). The most familiar low-
temperature system is, perhaps, He4, which exhibits superfluidity below a critical
temperature near 2K. Experimentally, it has been demonstrated that this system is
well described by the Navier–Stokes equations above the critical temperature. Below
the critical temperature the behaviour is different, and a ‘two-fluid’ model is generally
required. Superfluid neutron stars are similar. In particular, we know that the second
sound in Helium has a set of analogous, more or less distinct, ‘superfluid’ oscillation
modes in a neutron star (Lee, 1995; Andersson and Comer, 2001a). The additional
modes arise because the different components of a superfluid system are allowed to move
‘through’ each other.

In a superfluid neutron star, the shear viscosity is dominated by electron–electron
scattering (Andersson et al., 2005b). The bulk viscosity—which is due to the fluid motion
driving the system away from chemical equilibrium and the resultant energy loss due
to nuclear reactions—is expected to be (exponentially) suppressed. This has direct
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Figure 12.5 Schematic illustration of the critical temperatures for superfluidity of neutrons in both
singlet (red, crust) and triplet (red, core) pairing states and superconducting protons in the singlet state
(blue, core). Since neutron stars are well below the Fermi temperatures for the involved baryons, their cores
are expected to be dominated by superfluid (or superconducting) components. The density-dependent
critical temperatures can be constrained by neutron star cooling data. They also impact on restlessness in
the star’s spin-down and the engimatic spin-glitches that are seen in (predominantly) young pulsars. The
glitches provide information on the mobility of superfluid components (the so-called entrainment effect)
and the potential pinning of vortices to nuclei in the star’s crust.
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implications for neutron star dynamics. We will return to these aspects later; see for
example Chapter 15. It is, however, not the end of the story. A superfluid exhibits an
additional dissipation mechanism, usually referred to as ‘mutual friction". The mutual
friction is due to the presence of vortices in a rotating superfluid. In a neutron star core,
the electrons can scatter dissipatively off of the (local) magnetic field of each vortex
(Alpar et al., 1984b; Andersson et al., 2006). This effect may dominate the damping of
the interior dynamics of realistic neutron stars.

The basic requirements of a model for superfluid neutron star dynamics is clear.
We must account for the additional dynamical degree(s) of freedom, and add in the
mutual friction. But this is only the starting point. More realistic models should include
finite temperature effects, magnetic fields, and the possible presence of exotic (hyperon
and/or quark) cores. The additional physics brings complications, like new fluid degrees
of freedom, boundary layers at phase-transition interfaces, and fundamental issues
concerning dissipative multifluid systems (Haskell et al., 2012).

As a first step, let us consider the two-fluid model for neutron star cores. This
model accounts for two dynamical degrees of freedom, loosely speaking representing
the superfluid neutrons (labeled n) and a charge-neutral conglomerate of protons and
electrons (labeled p). For simplicity, we assume that the electrons are electromagnetically
locked to the protons. Assuming that the individual species are conserved, we have the
usual conservation laws for each of the mass densities

∂tρx + ∇i(ρxvi
x) = 0, (12.85)

where the constituent index x may be either p or n. Meanwhile, the equations of
momentum balance can be written (Andersson and Comer, 2006)

Ex
i = (∂t + vj

x∇j)(vx
i + εxwyx

i )+ ∇i(μ̃x + 	)+ εxwj
yx∇ivx

j = f x
i /ρx, y �= x, (12.86)

where the velocities are vi
x, the relative velocity is defined to be wi

xy = vi
x − vi

y and
μ̃x = μx/mx represents the chemical potentials (we assume that mp = mn). 	 is the usual
the gravitational potential, and the parameter εx encodes the non-dissipative entrainment
coupling between the fluids. The force on the right-hand side of (12.86) can be used to
represent additional interactions, including dissipation.

We can express the entrainment as a dynamical effective mass (not to be confused
with the effective mass associated with the nuclear interactions; see (Prix et al., 2002)).
This follows immediately from considering each fluid momentum in the frame moving
along with the other fluid (set vi

y = 0). This leads to

m�
xnxvx

i = mxnx(1 + εx)vx
i , (12.87)

which gives the effective mass m�
x. This could be a significant effect. In particular, the

effective mass of the superfluid neutrons in the star’s inner crust can be much larger
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than the bare mass (Chamel, 2012). In essence, the neutron superfluid may not be very
mobile.

Let us now consider the vortex-mediated mutual friction, which is introduced in the
same way as for superfluid helium (Hall and Vinen, 1956; Mendell, 1991; Andersson
et al., 2006). This leads to a force of form

f n
i = ρnNnκ

(
B′εijkκ̂

jwk
np +Bεijkκ̂

jεklmκ̂lwnp
m

)
(12.88)

acting on the superfluid neutrons (with an equal and opposite force on the charged
component). The strength of the friction is intimately linked to the friction on individual
vortices. Assuming that the bulk rotation is uniform, we have Nnκ i = 2
i

n and each
vortex carries a quantum of circulation

κ = h
2mn

≈ 2 × 10−3 cm2s−1, (12.89)

which means that the (area) density of vortices is

Nn = 2
n

κ
≈ 6 × 105

(
P

10 ms

)−1

cm−2, (12.90)

with P the star’s rotation period. The mutual friction is often expressed in terms of a
dimensionless ‘drag’ parameter R, such that

B′ = RB = R2

1 +R2 . (12.91)

In the standard picture the mutual friction is due to the scattering of electrons off of the
array of neutron vortices (Alpar et al., 1984a). This leads to

R ≈ 2 × 10−4

(
mp

m�
p

)1/2 (
ρ

1014 g/cm3

)1/6 ( xp

0.05

)1/6
. (12.92)

That is, we have R � 1, i.e., B′ � B, and hence the first term in the mutual friction force
(12.88) can be ignored. It is, however, possible that the problem is in the opposite regime.
In particular, if one considers the interaction between the fluxtubes in a type II proton
superconductor and the neutron vortices (Ruderman et al., 1998; Link, 2003). In this
case one would expect to be in the strong drag regime where R � 1, i.e., B′ ≈ 1 while B
remains small.

In the spirit of the estimates for energy released in a sudden phase transition, it is
useful to consider the energy budget for pulsar glitches. We can get some idea of the
available energy even though we do not have a detailed understanding of the dynamics.
It may not be very sensible to associate these estimates with gravitational-wave emission,
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but it is interesting to consider the possibility. These are regularly occurring events in
galactic systems and the energetics may be suggestive of what one could expect from
pulsars in general.

In the particular case of solid-body rotation, with 
i
x aligned with the z-axis, energy

conservation follows immediately from the two-fluid equations. We have

dE
dt

= d
dt

{
1
2

In
n
[

n + εn

(

p − 
n

)] + 1
2

Ip
p
[

p + εp

(

n − 
p

)]} = 0. (12.93)

For simplicity, we have assumed that the entrainment parameters εx are constant and
defined each constituent moment of inertia as

Ix
j
i =

∫
ρx

(
δ

j
i x

2 − xixj
)

dV , (12.94)

with Ix = Ix
z
z. Similarly, we can calculate the angular momentum. To do this we note that

εijkxjvl
x∇kvx

l = 0 for i = z , (12.95)

as the rotation is aligned with the z-axis. Contracting Ex
i from (12.86) with ρxεijkxj and

integrating over the volume V we arrive at

dJx
i

dt
=

∫
ρxεijkxjEk

x dV

=
∫

ρxεijkxj

[
(1 − εx)

∂vk
x

∂t
+ εx

∂vk
y

∂t

]
dV = 0 for i = z . (12.96)

This can be rewritten as

dJx
i

dx
= d

dt

{
Ix

j
i

[

x

j + εx

(



y
j − 
x

j

)]}
= 0 for i = z . (12.97)

From this we see that the total angular momentum is also conserved

dJz

dt
= d

dt

(
In
n + Ip
p

) = 0. (12.98)

Let us now consider a glitch event, assuming that the key ingredient that brings the two
fluids together is the mutual friction. Basically, we take the vortices the be either perfectly
pinned or completely unpinned. In such a model, a glitch would proceed as follows.
Initially, we take the superfluid vortices to form a uniform, straight, array aligned with
the rotation axis. Vortex pinning simply fixes the number of vortices per unit area. This,
in turn, dictates the neutron fluid’s angular momentum, so the superfluid component
rotates at a constant rate. If we assume that the charged fluid is electromagnetically
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locked to the crust, then the vortices will be rotating with the charged fluid component.
As the crust spins down due to an external torque, a velocity difference builds up
between the two constituents. This leads to an increasing Magnus force on the vortices.
Eventually, when some critical lag, �
c, is reached this force will be strong enough to
overcome the nuclear pinning and the vortices are suddenly free to move. At this point
the vortex mutual friction transfers angular momentum between the two components.
The two components couple, the lag decays, and the crust spins up—leading to the
observed glitch. If the system relaxes completely, the end state should be such that the
two components rotate at the same rate. The glitch event itself is sudden (Dodson et al.,
2002; Palfreyman et al., 2018). On a longer timescale one would expect the vortices to
repin. The repinning should determine the long-term relaxation after the event, i.e. the
spin evolution on timescales longer than (perhaps) tens of seconds (Alpar et al., 1984a).
Eventually, the system will reach a state where the rotational lag increases, and the pulsar
may glitch again.

It is relevant to compare the energetics associated with the two main glitch paradigms.
In the starquake model, we need to estimate the energy available for radiation based on
a single component. The total kinetic energy and angular momentum are (obviously)
given by

Ekin = 1
2

I
2, and J = I
. (12.99)

If we assume that a glitch of size �
 results from a change in the moment of inertia
�I, then—since the total angular momentum is conserved—it is easy to show that the
available energy is

�Equake ≈ 1
2

I
�
 =
(

�ν

ν

)
Ekin . (12.100)

Basically, we could release a fraction of �ν/ν ∼ 10−6 (the size of the glitch) of the star’s
kinetic energy. This level of energy may be interesting for gravitational-wave astronomy
(assuming that it is associated with some asymmetry of the system, of course; see
Andersson and Comer (2001b)).

However, if we consider the two-component model we get a rather different picture.
In this case, for constant Ix, the conservation of angular momentum leads to

�
n = − Ip

In
�
p . (12.101)

Basically, the superfluid (neutrons) spin down as the crust (protons) spins up. Estimating
the available energy, we now find that

�Esf ≈ 1
2

Ip(�
)2 = Ip

I

(
�ν

ν

)2

Ekin, (12.102)
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where we have used �
 = �
p and assumed that Ip � In. For typical parameters,
Ip/I ≈ 0.1 and �ν/ν ∼ 10−6, we see that the available energy is suppressed by a factor
of 10−7 compared to the starquake case. If this estimate is taken seriously, and glitches
really do represent the transfer of angular momentum envisaged in the two-fluid model,
then the gravitational-wave signal from a pulsar glitch is unlikely to be detected by any
future instrument (Sidery et al., 2010).

Glitches may be more a nuisance than an opportunity (Ashton et al., 2018). Take the
case of PSR J0537-6910 as an example. As this is a relatively young neutron star, it is an
interesting object for gravitational-wave astronomy (Andersson et al., 2018). However,
unless one can figure out how deal with the frequent glitches one will not be able to
carry out a coherent search for more than a couple of months (which does not improve
the effective gravitational-wave amplitude much). Moreover, a sensitive search requires
a reliable timing solution from electromagnetic observations. During the S6 LIGO run
this was provided by the Rossi X-ray Timing Explorer (RXTE), leading to an upper
limit on the gravitational-wave amplitude (Aasi et al., 2014). However, RXTE was no
longer operating during the first advanced detector observing runs so the improvement
of instrument sensitivity has not (yet) led to better results in this particular case.
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From oscillations to instabilities

The oscillations of a compact object, be it a star or a black hole, are of great interest
for gravitational-wave astronomy. Plausible scenarios lead to such oscillations being
excited to a detectable amplitude. In fact, the late stages of GW150914 showed hints
of the ringdown signature of the remnant black hole (see Chapter 16). Similar behaviour
is expected from neutron star mergers, like GW170817 (see Chapter 21), with the
characteristics of the oscillations depending on whether the merger led to a more massive
neutron star or collapse to a black hole. Less dramatic scenarios, like the tidal interaction
during the late stages of inspiral (also discussed in Chapter 21), may excite oscillations
in the stellar fluid which could leave an observable imprint on the signal. Finally, there
are situations where specific oscillation modes become unstable and grow to a large
amplitude. Given that typical gravitational-wave signals are weak, this possibility is
particularly interesting.

Realistic neutron star models have rich oscillation spectra, with specific modes
associated with different aspects of the physics (ranging from the internal composition
to the elasticity of the crust, superfluid components, and so on). In the first instance,
we will illustrate these ideas in the context of Newtonian gravity. This is natural since
the qualitative aspects of the problem mainly depend on the fluid dynamics—the local
restoring forces that affect the motion of a given fluid element. This allows us to identify
the different classes of oscillation modes and discuss different instabilities that may affect
the star. In the process, we arrive at useful estimates for the gravitational-wave emission.
However, the ultimate aim is to use gravitational waves from a pulsating neutron star to
probe the involved physics. In order to enable actual measurements, we need to carry
out fully relativistic mode calculations. We consider that problem in Chapter 18.

13.1 The fundamental f-mode

Stars have complex internal dynamics, often represented in terms of oscillation modes
related to waves in the Earth’s oceans. Different families of modes can be, more or less
directly, associated with specific physics ingredients. This is particularly true for neutron
stars, where the composition and state of matter depend on many-body aspects of the
nuclear interaction (see Chapter 12). On the one hand, this makes the modelling of such

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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systems challenging. On the other hand, the effort may bring rich rewards as observations
matched to precise theory would provide insight into the star’s interior. The ultimate aim
is to develop this seismology strategy to a level similar to that which is being used to probe
the interiors of the Sun and distant main sequence stars (Aerts et al., 2010).

In order to introduce the key concepts of stellar oscillation theory, let us first consider
the case of a constant density star. Neutron stars obviously do not have uniform density,
but the results nevertheless help us understand more complicated settings.

The dynamics of a non-rotating incompressible star is governed by the Euler equations
(4.59), together with the continuity equation (4.52) and the Possion equation (4.36) for
the gravitational potential. However, since the density is constant the continuity equation
simplifies and we have

∂tρ + ∇ · (ρv) = 0 −→ ∇ · v = 0. (13.1)

In general, we have the option of considering two different kinds of perturbations.
Eulerian perturbations concern changes in the various quantities at a fixed point in space;
e.g. for the pressure we have

δp = p(x, t)− p0(x, t), (13.2)

where p0 is the unperturbed reference pressure. The Eulerian description is ‘macro-
scopic’ in the sense that it does not identify how the fluid elements move. A ‘microscopic’
description would track the individual fluid elements. We can do this by introducing
a Lagrangian displacement ξ which connects the perturbed fluid elements to the
corresponding ones in the unperturbed configuration. Lagrangian pressure variations
are given by

�p = δp + ξ · ∇p. (13.3)

For non-rotating stars, the displacement vector is simply related to the perturbed
velocity through

∂tξ = �v = δv. (13.4)

Not surprisingly, the case of a rotating star is more complicated. In order to understand
that problem it is important to develop the Lagrangian description (for which it is also
natural to work in a coordinate basis, making a distinction between co- and contravariant
objects). We will consider this framework later. For the moment, as we are taking the first
steps, we opt for the Eulerian approach. Thus, we arrive at the perturbed momentum
equation

∂tδv + 1
ρ

∇δp + ∇δ� = 0, (13.5)

where δ� is the variation in the gravitational potential.
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We also have Eq. (13.1) and

∇2δ� = 0. (13.6)

For an incompressible fluid the velocity can be determined from a potential χ , such
that

δv = ∇χ (13.7)

(hence, the motion is often referred to as ‘potential flow’). With this definition the
perturbed Euler equations lead to

∂tχ + 1
ρ

δp + δ� = D = constant. (13.8)

Moreover, taking the divergence of (13.5) we see that we must have

∇2δp = 0, (13.9)

while the continuity equation leads to

∇2χ = 0. (13.10)

We see that the velocity potential χ , the perturbed pressure δp, and the perturbed
gravitational potential δ� all satisfy Laplace’s equation. In spherical polar coordinates
we then have, for each of these variables (= X),

∇2X = 1
r

∂2

∂r2 (rX)+ 1
r2 ∇2

θ X = 0, (13.11)

where we have defined

∇2
θ X = 1

sinθ
∂θ (sinθ∂θX)+ 1

sin2 θ
∂2
ϕX . (13.12)

Approaching (13.11) via separation of variables, the angular part can be expressed in
terms of the spherical harmonics Ym

l (θ,ϕ). Specifically, we get

∇2
θ Ym

l = −l(l + 1)Ym
l . (13.13)

Then writing the solution to (13.11) as

X(r,θ ,ϕ) =
∑
l,m

Xl(r)Ym
l , (13.14)
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we see that the various Ym
l contributions decouple (since the spherical harmonics form

a complete orthogonal set), and we need to solve

1
r

d2

dr2 (rXl)− l(l + 1)

r2 Xl = 0. (13.15)

The general solution to this equation is

Xl = Ar l + Br−l−1. (13.16)

Since all physical quantities must remain regular, we should reject the second term as
r → 0. This means that we must take B = 0 in the star’s interior. Meanwhile, we must have
A = 0 in the exterior solution for δ� in order to avoid divergence as r → ∞. Focussing
on a solution described by a particular Ym

l we see that the perturbed quantities we are
interested in are given by

χ = alrlYm
l , (13.17)

δ� = blrlYm
l , (13.18)

δp = clrlYm
l , (13.19)

in the star’s interior. If we further assume that the fluid motion has a harmonic
dependence on time, i.e. that χ ∝ eiωt, as one would expect of an oscillation, we get from
(13.8)

iωal + cl

ρ
+ bl = 0, (13.20)

where we have set D = 0 since all functions on the left-hand side of (13.8) vanish as
r → 0 (and the constant must have the same value for all r).

To complete our solution we need to consider the boundary conditions at the surface
of the star. First of all, the Lagrangian perturbation of the pressure must vanish. This is,
in fact, the definition of the surface. We must have

�p = δp + ξ rp′ = 0 at r = R, (13.21)

(where the prime indicates a radial derivative). The radial component of the
displacement vector then follows from

iωξ r = δvr = χ ′ = al lrl−1Ym
l . (13.22)

We also know that

p′ = −ρ�′ = −4πGρ2r
3

. (13.23)
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Given these relations the boundary condition leads to

cl = 4πGρ2l
3iω

al . (13.24)

The final part of the solution comes from the perturbed gravitational potential.
However, since we are considering a uniform density model the condition on the
gravitational potential at the surface is somewhat pathological. As a short-cut to the
answer, we assume that we can ignore the perturbed gravitational potential. This is called
the Cowling approximation (Cowling, 1941). Setting bl = 0 in (13.20) we immediately
arrive at

ω2 = 4πGρl
3

. (13.25)

For each value of l we have two oscillation modes. These modes, which were first by Lord
Kelvin as early as 1863, are known as the fundamental f-modes. The f-mode frequency
scales with the average density of the star and it also increases with the multipole l.
The first of these scalings provides a hint that it may be possible to use observed data
to constrain the physics of the star. Of course, we also learn that the observation of a
single mode-frequency would not be enough. It would only constrain the average density,
while the real aim is to infer both mass and radius (and perhaps learn about the interior
composition, as well).

As we will see later, this qualitative picture remains valid also for more realistic models.
In order to demonstrate this, we need to relax the simplifying assumptions. As a step
towards this, we may check the accuracy of the Cowling approximation. In order to do
this, we need the appropriate matching condition for the perturbed gravitational potential
at the surface

δ�′ + l + 1
R

δ� = −4πGρξ r, at r = R. (13.26)

This leads to

bl = − 4πGρl
(2l + 1)iω

al , (13.27)

and it follows from (13.20) that

ω2 = 8πGρ

3
l(l − 1)

2l + 1
. (13.28)
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Taking the ratio of the two results for the mode frequency, we see that

(
ωCowling

ωnon-Cowling

)2

≈ 2l + 1
2(l − 1)

. (13.29)

The error is fairly large for the l = 2 modes but decreases rapidly as we move to higher
multipoles.

For typical neutron star parameters we find that the l = 2 (quadrupole) f-mode has
a frequency of approximately 2 kHz. (We discuss results for realistic equations of state
in Chapter 18.) In principle, we can also use the quadrupole formula to estimate how
efficiently the mode is damped by gravitational-wave emission (although this exercise a
bit messy for a uniform density model; see Detweiler (1975)). This leads to a typical
damping timescale

τ ∼
(

c2R
GM

)l+1 R
c

∼ 0.1 s. (13.30)

From this we see that the f-modes are rapidly damped by gravitational-wave emission.
These results allows us to connect with the flux argument used to estimate the effective
gravitational-wave amplitude in Chapter 1.

13.2 General non-rotating stars: p/g-modes

The f-modes are important for several reasons. They are associated with significant
density variations and hence lead to efficient gravitational-wave emission. They are
expected to be excited in many relevant astrophysical scenarios and may also become
unstable in fast-spinning stars. However, this does not mean that we can ignore other
classes of oscillation modes. Other modes may be less efficient gravitational-wave
emitters and their dynamical role may be more subtle, but they can nevertheless have
decisive impact on observations.

More complex stellar models have additional classes of pulsation modes. A useful
rule-of-thumb is that each piece of ‘physics’ added to the model brings (at least) one new
family of modes into existence. Thus, there are modes associated with the compressibility
of the neutron star fluid. These oscillations correspond to sound waves and are known as
the p-modes. If we add internal stratification associated with, for example, temperature or
composition gradients, then the so-called gravity g-modes come into play (Reisenegger
and Goldreich, 1992). There are also classes of modes directly associated with rotation,
the elasticity of the neutron star crust, the magnetic field, the superfluid nature of the
star’s core, and so on.

Suppose we consider a more general non-rotating perfect fluid star: that is, a body
whose dynamics is governed by the Euler equations (4.59), but with the density no longer
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taken to be constant. Then the perturbation equations become

∂2
t ξ = δρ

ρ2 ∇p − 1
ρ

∇δp − ∇δ�. (13.31)

As before, ξ is the fluid displacement vector and ∂tξ = δv. We also have the (integrated
form of) the continuity equation

δρ + ∇ · (ρξ) = 0. (13.32)

It is customary to introduce the adiabatic index of the perturbations, �1, as

�p
p

= �1
�ρ

ρ
, (13.33)

or, in terms of the Eulerian variations,

δp = p�1

ρ
δρ + ξ ·

[
p�1

ρ
∇ρ − ∇p

]
≡ p�1

ρ
δρ + p�1(ξ · A), (13.34)

which defines the Schwarzschild discriminant A. Note also that the sound speed follows
as

c2
s = �p

�ρ
= p�1

ρ
. (13.35)

For spherical stars we can rewrite the perturbed Euler equations as

∂2
t ξ = −∇

(
δp
ρ

)
+ p�1

ρ
A(∇ · ξ)− ∇δ�. (13.36)

Once the equation is written in this form we see that the fluid motion is affected
by (neglecting δ�) two restoring forces: the pressure variation and the ‘buoyancy’
associated with A. The latter is relevant whenever the star is stratified, by either
entropy or composition variations. If we are considering mature neutron stars we can
to a good approximation assume that the temperature is zero and neglect internal
entropy gradients. Still, we cannot assume that A = 0 since any variation of the matter
composition will lead to an effective buoyancy force acting on a fluid element. This
may be an important effect since we know there will be a varying proton fraction in
the neutron star core (see Chapter 12).
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In essence, we may consider the equation of state to be of the form p = p(ρ,xp). This
leads to

�p =
(

∂p
∂ρ

)
xp

�ρ +
(

∂p
∂xp

)
ρ

�xp. (13.37)

If the oscillations are fast compared to the nuclear reactions that work to reinstate
chemical equilibrium, then individual fluid elements retain their identity. The co-moving
proton fraction remains fixed and we have �xp = 0. In this case we identify

�1 = ρ

p

(
∂p
∂ρ

)
xp

. (13.38)

The key point is that the proton fraction is held fixed in the thermodynamical derivative,
making the result differ from the corresponding derivative in chemical equilibrium.

Returning to the oscillation problem, we want to infer the nature of the various modes
of pulsation the star may have from (13.36). In doing this, let us (again) make use of the
Cowling approximation, i.e. neglect the variation of the gravitational potential. Since the
gravitational acceleration

g = −gêr = 1
ρ

∇p, (13.39)

is purely radial for a spherical star, the horisontal component of the Euler equation
(13.36) leads to

ξ⊥ = 1
ω2ρ

∇⊥δp, (13.40)

where we have assumed that the perturbation has time-dependence eiωt (as before). We
have also assumed that the angular dependence of δp can be represented by a single
spherical harmonic Ym

l (which is natural since the pressure variation is a scalar) such
that

∇2⊥δp = 1
r2 ∇2

θ δp − l(l + 1)

r2 δp.

Making use of

�ρ ≡ δρ + ξ · ∇ρ = −ρ∇ · ξ , (13.41)
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we find that

�ρ = − ρ

r2

∂

∂r
(r2ξ r)− ρ∇⊥ · ξ = − ρ

r2

∂

∂r
(r2ξ r)+ l(l + 1)

ω2r2 δp. (13.42)

We also have the radial component of (13.36):

− ω2ξ r = − ∂

∂r

(
δp
ρ

)
− p�1A�ρ

ρ2 , (13.43)

where A = |A|.
We can replace �ρ by noting that

�ρ = ρ

P�1
(δp − ρgξ r), (13.44)

and we arrive at

1
r2

∂

∂r
(r2ξ r)− ρg

p�1
ξ r =

[
l(l + 1)

ω2r2 − ρ

p�1

]
δp
ρ

, (13.45)

and

1
ρ

∂

∂r
δp + g

p�1
δp = (ω2 + gA)ξ r = (ω2 − N2)ξ r, (13.46)

where we have introduced the so-called Brunt–Väisälä frequency, N2 = −gA.
Let us now introduce new variables

ξ̂ r = r2ξ r

φ
, δp̂ = φδp, where φ = exp

[∫
g/c2

s dr
]

. (13.47)

With these definitions our two equations can be written

∂ξ̂ r

∂r
=

[
L2

l − ω2
] r2δp̂

ρω2c2
s φ

2 , (13.48)

where the Lamb frequency, Ll , is given by

L2
l = l(l + 1)c2

s

r2 , (13.49)
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and

∂δp̂
∂r

=
[
ω2 + gA

] ρξ̂ rφ2

r2 . (13.50)

It is now easy to reduce the problem to a single differential equation for ξ̂ r :

d
dr

{
ρω2c2

s φ
2

r2

[
L2

l − ω2
]−1 dξ̂ r

dr

}
− [ω2 − N2]

ρφ2

r2 ξ̂ r = 0. (13.51)

This allows us to draw important conclusions. In particular, we note that the problem
reduces to the Sturm-Liouville form both for high and low frequencies. For large ω2 we
get

d
dr

{
ρc2

s φ
2

r2

dξ̂ r

dr

}
+ ω2 ρφ2

r2 ξ̂ r = 0. (13.52)

Standard theory now tells us that there will be an infinite set of modes—which can be
labelled by the number of radial nodes (n) of the eigenfunctions—for which ωn → ∞ as
n → ∞. In the opposite limit, when ω2 is small, the problem becomes

d
dr

{
ρφ2

l(l + 1)

dξ̂ r

dr

}
+

(
N2

ω2

)
ρφ2

r2 ξ̂r = 0, (13.53)

and we see that there will be another set of modes, with eigenfrequencies such that ωn → 0
as n → ∞.

These are known as the pressure p-modes and gravity g-modes, respectively, and
we can estimate their frequencies in the following way: assume that the perturbations
have a characteristic wavelength k−1—such that the various functions are proportional
to exp(ikr). Then we can readily deduce the dispersion relation

k2 = 1
c2
s ω2 (N2 − ω2)(L2

l − ω2). (13.54)

Here we must have ω2 > 0 for stability, and we see that we have oscillation modes (k2 > 0)
in two different cases. Either ω2 must be smaller than both N2 and L2

l , or it must be
larger than both of them. Solving the quadratic for ω2, and (for simplicity) assuming
that l � kr, we can estimate that the short-wavelength mode-frequencies are ω2 ≈ L2

l for
the p-modes and ω2 ≈ N2 for the g-modes.

As a neutron star cools below a few times 109 K the extreme density in the core
leads to the formation of various superfluids. The superfluid constituents play a crucial
role in determining the dynamical properties of a rotating neutron star. We have already
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Figure 13.1 Propagation diagrams for normal (left) and superfluid (right) neutron star cores. The
results are obtained for the BSk20 equation of state (Potekhin et al., 2013), and L2

l represents the Lamb
frequency, while N2 is the Brunt–Väisälä frequency. In this particular model, muons come into play at
radius Rμ and (as is clear from the left panel) their appearance has significant impact on the g-modes.
The right panel illustrates the presence of two sets of p-modes in a superfluid star (with frequencies σ1
and σ2). It is also worth noting the absence of g-modes in the superfluid case. (Reproduced from
Passamonti et al. (2016).)

considered (see Chapter 12), how the interplay between the lattice nuclei and the
superfluid in the inner crust may explain observed pulsar glitches. The presence of a
superfluid will also affect the star’s oscillations.

Studies of oscillations in superfluid stars have mainly been based on models allowing
for two distinct, dynamically coupled, fluids (as outlined in Chapter 12). The two fluids
represent the superfluid neutrons and the ‘protons’, viewed as a conglomerate of all
charged components in the star (which are taken to be electromagnetically coupled and
hence become co-moving on a very short timescale). A simple counting of degrees of
freedom suggests that there ought to exist a new class of modes in a superfluid star.
These ‘superfluid’ modes have the protons moving oppositely to the neutrons, unlike an
‘ordinary’ fluid mode that has the neutrons and protons moving more or less together
(Lee, 1995; Andersson and Comer, 2001a). The right panel of Figure 13.1 demonstrates
this feature. At the same time, the varying proton fraction no longer leads to g-modes,
because the neutrons and protons have separate dynamical degrees of freedom.

13.3 Calculating stellar oscillation modes

Up to this point, our discussion has been somewhat qualitative. Although we managed
to derive the f-modes of an incompressible star, we only provided a rough idea of the
frequencies of the p- and g-modes. If we want to determine the rate of gravitational-wave
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emission we need to do better. However, in general we can no longer solve the problem
analytically. We have to resort to numerical integration of the perturbation equations,
together with suitable boundary conditions.

When we worked out the f-modes we found that all perturbed scalar quantities could
be expanded in spherical harmonics, while the velocity followed from a potential χ , such
that δv = ∇χ . If we (quite generally) write1

χ =
∑

l

χlYm
l , (13.55)

then we have (for each l)

δvl = (∂rχl)Ym
l êr + χl

r
∂θYm

l êθ + χl

r sinθ
∂ϕYm

l êϕ . (13.56)

In the general, compressible, case this class of perturbations is associated with a velocity
field of form

rδvl =
(

Wl ,Vl∂θ ,
Vl

sinθ
∂ϕ

)
Ym

l = WlYm
l êr + rVl∇Ym

l . (13.57)

These are called polar (spheroidal) perturbations. Such perturbations tend to be accom-
panied by significant variations in pressure and density which can, since they are scalar
quantities, always be expanded in spherical harmonics. Hence, we have

δp =
∑

l

δplYm
l , (13.58)

and

δρ =
∑

l

δρlYm
l . (13.59)

The nature of a complementary class of perturbations can be deduced from the
form of the polar velocity perturbation. Any vector proportional to êr ×∇Ym

l will be
orthogonal to the velocity field in (13.57). This leads to the axial (toroidal) perturbations,
which are given by

rδvl =
(

0,
Ul

sinθ
∂ϕ ,−Ul∂θ

)
Ym

l = 1√
l(l + 1)

UlYB
lm, (13.60)

1 The various m multipoles are never coupled for axisymmetric (linear) systems (like rotating equilibrium
stars). Hence, we can separately consider each m component and only need to sum over the permissible l
contributions.
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where we have introduced the magnetic multipoles (Thorne, 1980)

YB
lm = 1√

l(l + 1)
êr ×∇Ylm. (13.61)

A non-rotating perfect fluid star has no non-trivial axial modes, but in a model with a
solid crust there are distinct axial shear modes (see Chapter 18).

Because of the symmetry of the non-rotating problem, modes corresponding to
different l and m decouple (as in the case of the f-modes). Hence, there is no need
to sum over the various l and m in the case of perturbed spherical stars. The case of
rotating stars is much more complicated. First of all, the symmetry is broken in such a
way that the various −l ≤ m ≤ l contributions become distinct. Secondly, rotation couples
the different l-multipoles. As the rotation rate increases, an increasing number of Ym

l ’s
are needed to describe a given mode. One must also account for coupling between the
polar and axial vectors. These factors make the problem of calculating pulsation modes
of rapidly rotating stars a challenge.

An important concept in the study of oscillating rotating stars is the pattern speed of a
given mode. As each mode is proportional to ei(mϕ+ωt) we see that surfaces of constant
phase are described by

mϕ + ωt = constant. (13.62)

After differentiation this leads to

dϕ

dt
= − ω

m
= σp, (13.63)

which defines the pattern speed, σp.
Having introduced this quantity, we make two observations concerning the (l = m)

f-modes. Let us denote the mode frequency observed in the rotating frame by ωr ,
while the inertial frame frequency is ωi. We then we see from (13.28) that the frequency
of the f-modes increases with m roughly as ωr ∼ √

m. According to (13.63) this means
that the pattern speed of the f-modes decreases as we increase m. As a consequence,
one can always find an f-mode with arbitrarily small pattern speed (corresponding to a
suitably large value of m) even though the high-order f-modes have increasingly large
frequencies. This observation will be important later.

We also see that mode patterns corresponding to opposite signs of m tend to
rotate around the star in different directions. Taking the positive direction to be that
associated with the rotation of the star we find that the l = ±m modes are backwards
and forwards moving (retro/prograde), respectively, in the limit of vanishing rotation.
However, rotation may change the situation for the l = m f-modes. Using (13.28), a very
rough estimate of the corresponding mode in a rotating star (observed in the inertial
frame) would be

ωi(�) ≈ ωr(� = 0)− m�+ higher order in � corrections, (13.64)
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where � is the rotation rate. Given this, we estimate that these modes become prograde
for rotation rates above

�s ≈
√

3
m

�K , (13.65)

where �K is the break-up frequency from (12.67). Basically, all but the l = m = 2
f-modes are likely to change from backwards to forwards moving (according to an inertial
observer) at attainable rates of rotation (� � �K ). This will also be relevant later.

13.4 The r-modes

In general, a slowly rotating star has two classes of low-frequency modes: the g-modes,
which arise because of stratification, and a set of inertial modes, which rely on the
Coriolis force for their existence (Lockitch and Friedman, 1999). The relation between
the two sets is illustrated, for a simple model, in Figure 13.2. In order to understand
the distinction, it is useful to translate the Euler equations into the rotating frame. Now
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Figure 13.2 An illustration of the relation between composition g-modes (in a simple model where
�1 = 2.05 while the background is given by a � = 2 polytrope) and inertial modes. The figure shows the
frequencies of some selected g-modes (solid lines) and inertial modes (dashed) for the corresponding
barotropic model. All frequencies are measured in the rotating frame. The results show that the Coriolis
force dominates the buoyancy in sufficiently rapidly rotating stars. In this case, the g-modes are mainly
restored by the Coriolis force when �/

√
Gρc > 0.3 (where ρc is the central density), and thus become

similar to the barotropic inertial modes. (Reproduced from Passamonti et al. (2009).)
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working in a coordinate basis and keeping only first-order terms in �i, i.e. ignoring the
rotational deformation, we have

∂tδvi + 2εijk�
jδvk + δρ

ρ2 ∇ip − 1
ρ

∇iδp + ∇iδ� = 0, (13.66)

where the second term is the Coriolis force, together with the continuity equation

∂tδρ + ∇i

(
ρδvi

)
= 0. (13.67)

Let us consider zero-frequency solutions to this problem, i.e. focus on solutions corre-
sponding to neutral convective currents. Such fluid perturbations can be understood as
follows. From (13.66) and (13.67) we see that stationary perturbations must be such that

∇i(ρδvi) = 0, (13.68)

and

δρ

ρ2 ∇ip − 1
ρ

∇iδp − ∇iδ� = 0. (13.69)

As the two equations decouple we may consider any solution as a superposition of two
distinct sets (Lockitch and Friedman, 1999):

δvi �= 0, δp = δρ = δ� = 0,

δvi = 0, δp,δρ,δ� nonzero.

In absence of external forcing any static self-gravitating perfect fluid must be spherical.
Hence, the second type of solution simply identifies a neighbouring equilibrium. This
implies that all stationary nonradial perturbations of an isolated spherical star must be
of the first kind.

As we have already discussed, a general mode solution (with time dependence
eiωr t in the rotating frame) for an axisymmetric system can be expanded in angular
harmonics in such a way that (this is the coordinate basis version of the combination
of (13.57) and (13.60))

rδvi =
∑

l

[
WlYlm∇ ir + rVl∇ iYlm − iUlε

ijk (∇j r
)
(∇kYlm)

]
eiωr t (13.70)

(the sum is over l only since the m multipoles still separate). As before, the two functions
Wl and Vl describe the spheroidal component, while Ul is toroidal. For the stationary
modes, one can readily verify that all toroidal displacements satisfy (13.68). In other
words, the function Ul is unconstrained. In the case of spheroidal perturbations, one
finds that the following relation between Wl and Vl must be satisfied,
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d
dr

(rρWl)− l(l + 1)ρVl = 0. (13.71)

Still, one of the two functions is left unspecified also in this case. This latter class is no
longer degenerate for non-barotropic perturbations. In general, the perturbations link
the perturbed velocity to δp and δρ, which (as we have seen) leads to the presence of
g-modes. However, the zero-frequency toroidal modes remain also for non-barotropic
stars.

Let us ask what happens when we bring the star into rotation. For spinning stars
the Coriolis force provides a weak restoring force that gives the toroidal modes genuine
dynamics. This leads to the so-called inertial modes, of which the r-mode is a particular
example. A general inertial mode is a mixture of spheroidal and toroidal velocity
components to leading order, but the r-modes are special as they remain predominantly
toroidal.

The main properties of the r-mode can be understood from a simple exercise. Assume
that the mode is purely toroidal to leading order also in the rotating case. Then the motion
is essentially horisontal and Wl , Vl , δρ, and δp are all of higher order in �. To leading
order the mode we are interested in is completely determined by Ul .

For simplicity, let us consider a uniformly rotating constant density star. First we take
the curl of the Euler equation (13.66) to derive an equation for the vorticity of the fluid.
Then we (i) focus on mode-solutions behaving as exp[i(ωr t + mϕ)], and (ii) make use
of the standard recurrence relations for the spherical harmonics:

cosθYm
l = Ql+1Ym

l+1 + QlYm
l−1, (13.72)

sinθ∂θYm
l = lQl+1Ym

l+1 − (l + 1)QlYm
l−1, (13.73)

with

Ql =
[

(l + m)(l − m)

(2l + 1)(2l − 1)

]1/2

(13.74)

(as well as the ortogonality of the Ym
l ’s). This way we end up with two equations:

[l(l + 1)ωr − 2m�]Ul = 0 (13.75)

and

{
[(l − 1)ωr − 2m�]r∂rUl−1 + 2m(l − 1)�Ul−1

}
Ql

− {
[(l + 2)ωr + 2m�]r∂rUl+1 + 2m(l + 2)�Ul+1

}
Ql+1 = 0. (13.76)
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From Eq. (13.75) we see that the only way to avoid a trivial solution is to have the
mode frequency

ωr = 2m�

l(l + 1)
. (13.77)

Moreover, an acceptable solution must be such that only a single Ul is nonzero. Given
this, Eq. (13.76) leads to two relations

[(lωr − 2m�)r∂rUl + 2ml�Ul]Ql+1 = 0, (13.78)

{[(l + 1)ωr + 2m�]r∂rUl + 2m(l + 1)�Ul}Ql = 0. (13.79)

In general, these equations are not compatible—the problem is overdetermined. But
in the special case of l = m we have Ql = 0, which means that the second equation is
automatically satisfied. In this case an acceptable (non-trivial) mode-solution will exist,
and we find that the eigenfunction is

Um = rm+1. (13.80)

This solution represents the single r-mode that exists (for l = m) in a slowly rotating
barotropic star (Lockitch and Friedman, 1999). One can show that this mode is only
weakly affected by stratification and remains virtually unchanged in a non-barotropic
Newtonian star. However, such stars have many additional r-modes, including various
overtones (Saio, 1982; Andersson et al., 1999a).

It is easy to see that the pattern speed for a typical r-mode is

σr = − 2�

l(l + 1)
< 0, (13.81)

according to an observer rotating with the star. On the other hand, an inertial observer
would find that

σi = �
(l − 1)(l + 2)

l(l + 1)
> 0. (13.82)

The modes appear retrograde in the rotating system but an inertial observer always finds
them to be prograde.

13.5 Gravitational-wave emission

If we want to estimate the rate at which gravitational-wave emission damps a given
oscillation mode (and we do!), we can use the standard post-Newtonian multipole
formulas. If we allow the background star to be rotating and consider both mass- and
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current multipole radiation, the luminosity associated with a given pulsation mode then
follows from (Ipser and Lindblom, 1991; Lindblom et al., 1998)

dE
dt

=
∞∑

l=2

Nlω
2l+2
i

(
|δDlm|2 + |δJlm|2

)
, (13.83)

where

Nl = 4πG
c2l+1

(l + 1)(l + 2)

l(l − 1)[(2l + 1)!!]2 . (13.84)

The first term in the bracket of (13.83) represents radiation due to the mass multipoles
(familiar from Chapter 3), which are determined by (with the asterisk representing a
complex conjugate)

δDlm =
∫

δρrlY∗
lmdV . (13.85)

The second term in the bracket of (13.83) corresponds to the current multipoles, which
follow from

δJlm = 2
c

√
l

l + 1

∫
rl(ρδv + δρ�) · YB∗

lm dV . (13.86)

These formulas allow us to draw some general conclusions. First of all, we see
that any fluid motion that leads to significant density variations (like the f-mode) will
predominantly radiate through the mass multipoles. This follows from the fact that
|δJ|2 ∼ |δD|2/c2, which means that the current multipole radiation is generally ‘one order
higher’ in the post-Newtonian approximation.2 However, there are situations where the
current multipoles provide the main radiation mechanism. Most notably, this is the case
for the r-modes, which will be discussed further in Chapter 15. In fact, the r-modes
are unique among expected astrophysical sources of gravitational radiation in radiating
primarily by gravito-magnetic effects.

13.6 What do we learn from the ellipsoids?

The general oscillations of a star emit gravitational waves, but under most circum-
stances the associated signal is too feeble to be detectable. We need scenarios involving

2 By counting inverse powers of c in each of the terms in (13.83) we see that quadrupole perturbations
(l = 2) will lead to Ė ∼ 1/c5 for the mass multipoles, while Ė ∼ 1/c7 for the current multipole radiation. Using
the standard way of counting orders, see Chapter 11, the mass multipole radiation arises at 2.5pN order while
the current multipole radiation is a 3.5pN effect.
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large-amplitude oscillations. This could be explosive events, like the boiling cauldron in
which a neutron star is born, or the merger of compact stars at the end of binary evolution.
We will consider these problems in Chapters 20 and 21, respectively. In addition, neutron
stars may suffer a range of instabilities, often associated with specific oscillation modes.
As an unstable mode grows it may reach a sufficiently large amplitude that the emerging
gravitational waves can be detected. Hence, we need to understand the different classes
of instabilities.

The most important instabilities are associated with rotating stars. We have already
seen how rotation complicates the stellar oscillation analysis, so we know we are dealing
with a messy problem. Fortunately, if we want to understand the nature and origin of
different relevant instabilities, we can make progress without specific mode solutions.
In fact, the key aspects of the instabilities that may be active in spinning stars can be
illustrated by results for rotating ellipsoids—a classic problem in applied mathematics.

The relative mathematical simplicity makes a study of the equilibrium properties
and stability of rotating self-gravitating fluid bodies with uniform density analytically
tractable. Since the problem provides important insight into the stability properties
of rotating stars, we will provide a brief introduction to it. An exhaustive discussion
(covering results up to the late 1960s) was provided by Chandrasekhar (1973) and we
draw on his results.

Consider an ellipsoid at rest with respect to a Cartesian coordinate system rotating
with a constant frequency � around the x3-axis. If the body is homogeneous and
incompressible, then it is easy to integrate the equations for hydrostatic equilibrium (cf.
the f-mode calculation from the beginning of the Chapter) to get

p
ρ

+ �− 1
2

�2(x2
1 + x2

2) = constant. (13.87)

To make further progress we need an expression for the gravitational potential. Formally,
we know that

� = −G
∫

ρ(x′)
|x − x′|dV ′. (13.88)

This leads to an expression for the interior gravitational potential of an ellipsoid with
semi-axes a1, a2, and a3 (for the moment allowing a2 to be different from a1, which
would make the body triaxial),

� = −πGρ

(
I −

3∑
i=1

Aix2
i

)
, (13.89)

where

I = a1a2a3

∫ ∞

0

du
�

, (13.90)
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Ai = a1a2a3

∫
du

(a2
i + u)�

, (13.91)

and

�2 = (a2
1 + u)(a2

2 + u)(a2
3 + u). (13.92)

Given this result, the isobars correspond to

(
A1 − �2

2πGρ

)
x2

1 +
(

A2 − �2

2πGρ

)
x2

2 + A3x2
3 = constant. (13.93)

Comparing this to a general ellipsoidal surface

x2
1

a2
1

+ x2
2

a2
2

+ x2
3

a2
3

= 1, (13.94)

we see that—in order for the two expressions to be compatible—we must have

(
A1 − �2

2πGρ

)
a2

1 =
(

A2 − �2

2πGρ

)
a2

2 = A3a2
3. (13.95)

From these equalities we learn that

�2

2πGρ
= a2

1A1 − a2
2A2

a2
1 − a2

2

= a2
1A1 − a2

3A3

a2
1

= a2
2A2 − a2

3A3

a2
2

, (13.96)

where the first equality is only relevant if a1 �= a2. Removing � from (13.95) we can also
show that

a2
1a2

2(A1 − A2)+ a2
3(a

2
1 − a2

2)A3 = 0. (13.97)

Using the definitions for Ai this implies that we must have

(a2
1 − a2

2)

∫ ∞

0

[
a2

1a2
2

(a2
1 + u)(a2

2 + u)
− a2

3

a2
3 + u

]
du
�

. (13.98)

This equality can be satisfied in two ways. Either we have a1 = a2, in which case the
prefactor vanishes, or a1 �= a2 but then we need the integral to vanish identically. The
first of these cases leads to the so-called Maclaurin spheroids, which are the most studied
(and therefore best understood) figures of rotating, self-gravitating, homogeneous and
incompressible fluid bodies in equilibrium. The second case corresponds to triaxial
equilibrium configurations known as the Jacobi ellipsoids. These are rigidly rotating
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about the smallest axis (a3), and have no vorticity when viewed from a rotating frame
in which the figure appears stationary (i.e. the frame in which we performed the
calculation). One can show that, for a given angular momentum, mass, and volume a
Jacobi ellipsoid has lower energy than the corresponding Maclaurin spheroid.

In addition to these uniformly rotating ellipsoids there exists a number of configura-
tions for which the shape of the surface is supported by internal flow, i.e. differential
rotation. For our present purposes, the so-called Dedekind ellipsoids, which have a
stationary triaxial shape in the inertial frame, are of particular interest. Their shape is
entirely supported by internal motion with uniform vorticity. A Dedekind ellipsoid with
the same mass and circulation as the corresponding Maclaurin configuration has lower
angular momentum.

Let us return to the Maclaurin spheroids, and recall that it is often useful to introduce
the parameter β = T/|W |; see Chapter 12. Since a1 = a2 we readily show that

I = 2Ma2
1

5
−→ T = I�2

2
= 2

5

Ma2
1�2

2
. (13.99)

The gravitational potential energy requires more effort. One can show that
(Chandrasekhar, 1973)

W = −2πGρM
5

(2A1a2
1 + A3a2

3), (13.100)

and it follows that

β = A1 − (1 − e2)A3

2A1 + (1 − e2)A3
, (13.101)

where we have expressed the ellipticity of the body as

e2 = 1 − a2
3

a2
1

. (13.102)

In terms of this parameter, we have

A1 = (1 − e2)1/2

e3 sin−1 e − 1 − e2

e2 , (13.103)

A3 = 2
e2 − 2(1 − e2)1/2

e3 sin−1 e, (13.104)
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which means that we arrive at the alternative expression

β = 3
2e2

[
1 − e(1 − e2)1/2

sin−1 e

]
− 1. (13.105)

This parameterization may seem somewhat inconvenient, but it is difficult to invert the
last relation to get an expression for β (say) in terms of the rotation rate � (which follows
from (13.96)). Of course, it is straightforward to solve this problem numerically so we
have no difficulties using the above results.

Let us assume that we start with a non-rotating uniform density star and spin it
up, keeping the mass constant. Proceeding along this specific sequence of Maclaurin
spheroids towards more rapidly rotating configurations, e.g. increasing β, one finds a
bifurcation point at βs ≈ 0.14. At this point the Jacobi and Dedekind ellipsoids both
branch off from the Maclaurin sequence; see Figure 13.3. Given the existence of these
alternative states (with lower energy/angular momentum) beyond the point of bifurcation
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β=0.27
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in
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a2/a1

Jacobi
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Dedekind
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Figure 13.3 A schematic summary of the instability results for rotating ellipsoids (a2/a1 represents the
axis ratio, i.e. the ellipticity of the configuration). For values of β greater than 0.14 the Maclaurin
spheroids are secularly unstable. Viscosity tends to drive the system towards a triaxial Jacobi ellipsoid,
while gravitational radiation leads to an evolution towards a Dedekind configuration. Indicated in the
figure is an evolution of this latter kind. Above β ≈ 0.27 the Maclaurin spheroids are dynamically
unstable, as there exists a Riemann-S ellipsoid with lower ( free) energy. (Reproduced from Andersson
(2003).)
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it would be favourable for a perturbed Maclaurin spheroid to move towards either the
Jacobi or the Dedekind sequence. However, this is not possible as long as the system
conserves circulation and angular momentum. As a result, the Maclaurin spheroid
remains stable unless we add dissipation to the dynamical equations. In other words,
the bifurcation point at βs indicates the onset of secular instabilities.

Viscosity dissipates energy while preserving angular momentum. The Maclaurin
spheroids are therefore susceptible to a viscosity-driven instability once β > βs, and the
instability drives the system towards the Jacobi sequence. Gravitational waves, on the
other hand, radiate angular momentum while conserving the internal circulation. Thus,
the Maclaurin spheroids also suffer a gravitational-wave-driven instability when β > βs
(Chandrasekhar, 1970). The gravitational-wave instability tends to drive the system
towards the Dedekind sequence (the members of which do not radiate gravitationally).

These secular instabilities actually set in through the quadrupole f-modes of the
ellipsoids. Just like the equilibrium configurations, oscillations of rotating ellipsoids have
been studied in great detail (Lai and Shapiro, 1995). Figure 13.4 shows the frequencies
of the l = |m| = 2 Maclaurin spheroid f-modes. These modes are often referred to as
the ‘bar-modes’, due to the way that they deform the star. The figure illustrates several
general features of the pulsation problem for rotating stars. In particular we note (i) the
rotational splitting of modes that are degenerate in the non-rotating limit, i.e. the m = ±2
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Figure 13.4 Results for the l = |m| = 2 f-modes of a Maclaurin spheroid. The left frame shows the
oscillation frequencies (solid lines) and imaginary parts (dashed lines) of the modes, while the right frame
shows the mode pattern speed σi in the inertial frame for the two modes that have positive frequency in
the non-rotating limit (the pattern speeds for the modes which have negative frequency in the
non-rotating limit are obtained by reversing the sign of m). The dashed curves in the right frame
represent a vanishing pattern speed (i) in the inertial frame (the horizontal line), and (ii) in the rotating
frame (the circular arc, which shows �/�K as a function of β). The points where the Maclaurin
ellipsoid becomes secularly (βs) and dynamically (βd) unstable are indicated by vertical dotted lines.
(Reproduced from Andersson (2003).)
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modes are distinct in the rotating case, and (ii) the symmetry with respect to ω = 0, which
reflects the fact that the equations are invariant under the change [ω,m] → [−ω,−m].
In Figure 13.4 we also show the pattern speed for the two modes that have positive
frequency in the non-rotating limit, cf. (13.28). We see that the l = −m = 2 mode, which
is always prograde in the inertial frame, has zero pattern speed in the rotating frame at
βs (σp = �). At this point the mode becomes unstable to the viscosity-driven instability.
Meanwhile, the gravitational-wave instability sets in through the originally retrograde l =
m = 2 mode. At βs this mode has vanishing pattern speed in the inertial frame (σp = 0).

The evolution of the secular instabilities depends on the relative strength of the dis-
sipation mechanisms. This tug-of-war is typical of these kinds of problems and tends to
make them complex (see Chapter 15). Since the gravitational-wave-driven mode involves
differential rotation it is damped by viscosity, and since the viscosity-driven mode is
triaxial it is damped by gravitational-wave emission. A detailed understanding of the
dissipation mechanisms is crucial for any study of secular instabilities of spinning stars.

In a non-dissipative model, the Maclaurin spheroids remain stable up to βd ≈ 0.27. At
this point there exists a bifurcation to yet another family of ellipsoids that have lower ‘free
energy’ than the corresponding Maclaurin spheroid for the same angular momentum
and circulation. A dynamical transition to a lower energy state may take place without
violating any conservation laws. In other words, at βd the Maclaurin spheroids become
dynamically unstable to m = 2 perturbations. This instability is usually refered to as the
dynamical bar-mode instability (Toman et al., 1998; New et al., 2000)

In terms of the oscillation modes, the dynamical instability sets in at a point where two
real-frequency modes merge, cf. Figure 13.4. At the bifurcation point βd the two modes
have identical frequencies and their angular momenta will vanish. Given this, one of the
degenerate modes can grow without violating the conservation of angular momentum.
The physical conditions required for the dynamical instability are easily understood. The
instability occurs when the originally backwards moving f-mode (which has δJ < 0 for
β < βd) has been dragged forwards by rotation so much that it has ‘caught up’ with
the originally forwards moving mode (which has δJ > 0 for β < βd). In order for the
modes to merge and become degenerate the perturbation must have vanishing angular
momentum at βd (δJ = 0). We will discuss the bar-mode instability in more detail when
we turn to numerical simulations in Chapter 20.

13.7 Lagrangian perturbation theory for rotating stars

If we want to study rotational instabilities in detail we need to analyse the problem
within the Lagrangian perturbation formalism developed by John Friedman and Bernard
Schutz in the 1970s (Friedman and Schutz, 1978a). This approach is more powerful
that the ‘naive’ approach we have used so far. In particular, it enables us to derive key
conserved quantities for rotating stars.

The Lagrangian variation (�) of a quantity is related to the Eulerian variation (δ) by

� = δ +Lξ , (13.106)
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where the Lie derivative Lξ has the meaning

Lξ p = ξ i∇ip (13.107)

for scalars,

Lξ vi = ξ j∇jvi − v j∇jξ
i (13.108)

for contravariant vectors, and

Lξ vi = ξ j∇jv i + vj∇iξ
j (13.109)

for covariant objects. The idea is illustrated in Figure 13.5.
The Lagrangian change in the fluid velocity follows from

�vi = ∂tξ
i. (13.110)

Given this, and (note the similarity to the infinitesimal gauge transformation discussed
in Chapter 3)

�gij = ∇iξj + ∇jξi, (13.111)

dragged tensor

vector field

tensor field

difference measured 
by Lie derivative

Figure 13.5 An illustration of the Lie derivative. The derivative is taken with respect to a smooth
vector field. The Lie derivative measures how a quantity (like a tensor field) actually changes, compared
to the quantity dragged along by the vector field.
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where gij is the flat three-dimensional metric, we have

�vi = �(gijv j) = ∂tξi + v j∇iξj + v j∇jξi. (13.112)

It is also useful to note that

δvi = ∂tξ
i + v j∇jξ

i − ξ j∇jvi = gijδvj . (13.113)

Given the Lagrangian formalism, one can prove that

�(∂t +Lv)vi = (∂t +Lv)�vi, (13.114)

a result that will be useful when deriving the perturbed equations of motion.
Let us consider a perfect fluid star, described by the familiar Euler equations from

Chapter 4. The perturbed equation for mass conservation leads to

�ρ = −ρ∇iξ
i −→ δρ = −∇i(ρξ i), (13.115)

while the perturbed gravitational potential follows from3

∇2δ� = 4πGδρ = −4πG∇i(ρξ i). (13.116)

In order to perturb the momentum equations we first rewrite (4.59) as

(∂t +Lv)vi + 1
ρ

∇ip + ∇i�− 1
2

∇iv2 = 0. (13.117)

With the equation in this form we can make use of (13.114). Perturbing (13.117) we
then have—after a bit of algebra—the perturbed Euler equations,

ρ∂2
t ξi + 2ρv j∇j∂tξi + ρ(v j∇j)

2ξi − ∇i[p�1∇jξ
j]

+ (∇jξ
j)∇ip − (∇iξ

j)∇jp + ρ∇iδ�+ ρξ j∇i∇j� = 0, (13.118)

where �1 is defined as before. It is useful to write this as (suppressing indices since there
should be little risk of confusion)

A∂2
t ξ + B∂tξ + Cξ = 0. (13.119)

3 For future reference it is worth noting that it is natural to work with Eulerian variations of the gravitational
field.
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Defining the inner product

〈
ηi,ξi

〉
=

∫
(ηi)∗ξidV , (13.120)

where the asterisk denotes complex conjugation, one can show that

〈η,Aξ〉 = 〈ξ ,Aη〉∗ , (13.121)

〈η,Bξ〉 = −〈ξ ,Bη〉∗ . (13.122)

The proof of the latter requires the background relation

∇i(ρvi) = 0, (13.123)

and holds as long as ρ → 0 at the surface of the star. A slightly more tedious calculation
leads to

〈η,Cξ〉 = 〈ξ ,Cη〉∗ . (13.124)

Assuming that η and ξ both solve the perturbed Euler equation (13.118), it is easy to
show that the quantity

W (η,ξ) =
〈
η,A∂tξ + 1

2
Bξ

〉
−

〈
A∂tη + 1

2
Bη,ξ

〉
, (13.125)

is conserved. That is, we have

∂tW = 0. (13.126)

The fact that W is conserved motivates the definition of the canonical energy as

Ec = 1
2

W (∂tξ ,ξ) = 1
2

[〈∂tξ ,A∂tξ〉 + 〈ξ ,Cξ〉] . (13.127)

This leads to

Ec = 1
2

∫ [
ρ|∂tξ |2 − ρ|v · ∇ξ |2 + �p|∇ · ξ |2 + (ξ∗ · ∇p)(∇ · ξ)

+ (ξ · ∇p)(∇ · ξ∗)+ ξ i∗ξ j(∇i∇jp + ρ∇i∇j�)− 1
4πG

|∇δ�|2
]
dV . (13.128)
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For axisymmetric systems (like rotating stars) one can also show that the canonical
angular momentum

Jc = 1
2

W (∂ϕξ ,ξ) (13.129)

is conserved. The proof of this relies on the fact that (i) W (η,ξ) is conserved for
any two solutions to the perturbed Euler equations, and (ii) ∂ϕ commutes with ρvj∇j
in axisymmetry, which means that if ξ solves the Euler equations, then so does ∂ϕξ .
Explicitly, the canonical angular momentum can be written

Jc = 1
2

{〈
∂ϕξ ,A∂tξ + 1

2
Bξ

〉
−

〈
A∂2

tϕξ + 1
2

B∂ϕξ ,ξ
〉}

= − Re
〈
∂ϕξ ,A∂tξ + 1

2
Bξ

〉
. (13.130)

Before we move on, we need to mention a factor that complicates a stability analysis.
The Lagrangian perturbation formalism permits the presence of so-called ‘trivial’
displacements (Friedman and Schutz, 1978a). In a sense, the trivials can be thought of
as ‘integration constants’ representing a relabeling of the physical fluid elements. They
correspond to displacements which leave the physical quantities unchanged, i.e. that
are such that δρ = δvi = 0. The trivials cause trouble because they affect the canonical
energy. Before one can use the canonical energy to assess the stability of a rotating
configuration one must deal with this ‘gauge problem’. The way to do this is to ensure
that the displacement vector ξ is orthogonal to all trivials. Having said this, as long as we
are considering modes of oscillation we are safe, because one can prove that all mode
solutions are orthogonal to the trivials.

13.8 The CFS instability

The importance of the canonical energy stems from the fact that it can be used to test
the stability of the system. In particular, we note that:

(i) If the system is coupled to radiation (e.g. gravitational waves) which carries away
positive energy (which should be taken to mean that ∂tEc < 0), then any initial
data for which Ec < 0 will lead to an instability.

(ii) Dynamical instabilities are only possible for motions such that Ec = 0. This makes
intuitive sense since the amplitude of a mode for which Ec vanishes can grow
without bounds and still obey the conservation laws.

Consider a complex normal-mode solution to the perturbation equations. That is, a
solution of form

ξ j → ξ̃ j eiωt, (13.131)
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with ω possibly complex. Then the associated canonical energy becomes

Ec = ω

[
Re ω

〈
ξ̃ ,Aξ̃

〉
− i

2

〈
ξ̃ ,Bξ̃

〉]
, (13.132)

where the expression in the bracket is easily shown to be real valued.
For the canonical angular momentum we get, in a similar way,

Jc = −m
[

Re ω
〈
ξ̃ ,Aξ̃

〉
− i

2

〈
ξ̃ ,Bξ̃

〉]
. (13.133)

Combining these two relations we see that, for real frequency modes we have

Ec = − ω

m
Jc = σpJc, (13.134)

where σp is the pattern speed of the mode.
Moreover, for real frequency normal modes, Eq. (13.133) can be rewritten as

Jc〈
ξ̃ ,ρξ̃

〉 = −mω + m

〈
ξ̃ , iρv · ∇ ξ̃

〉
〈
ξ̃ ,ρξ̃

〉 . (13.135)

Using cylindrical coordinates, and v j = �ϕ j , one can show that

− iρξ̃∗
i vj∇j ξ̃

i = ρ�[m|ξ̃ |2 + i(ξ̃∗ × ξ̃ )z]. (13.136)

However,

|(ξ̃∗ × ξ̃ )z| ≤ |ξ̃ |2, (13.137)

so we must have (for uniform rotation)

σp − �

(
1 + 1

m

)
≤ Jc/m2〈

ξ̃ ,ρξ̃
〉 ≤ σp − �

(
1 − 1

m

)
. (13.138)

This result forms an integral part of the proof that rotating perfect fluid stars are
generically unstable in the presence of radiation (Friedman and Schutz, 1978b). The
argument proceeds as follows: consider modes with finite frequency in the � → 0 limit.
Then (13.138) implies that co-rotating modes (with σp > 0) must have Jc > 0, while
counter-rotating ones (for which σp < 0) will have Jc < 0. In both cases Ec > 0 (from
(13.134)), which means that the two classes of modes are stable. Now consider a small
region near a point where σp = 0 (at a finite rotation rate). Typically, this corresponds
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to a point where the initially counter-rotating mode becomes co-rotating. In this region
Jc < 0. However, because of (13.134), Ec will change sign at the point where σp (or,
equivalently, the frequency ω) vanishes. Since the mode was stable in the non-rotating
limit the change of sign indicates the onset of instability.

The mechanism for gravitational-wave-driven instability can be understood in the
following way. First consider a non-rotating star. The mode-problem leads to eigenvalues
for ω2, which, in turn, gives equal values ±|ω| for the forwards and backwards propagat-
ing modes (corresponding to m = ±|m|). These two branches of modes are affected by
rotation in different ways, as illustrated in Figure 13.4. A backwards moving mode will
be dragged forwards by the rotation, and if the star spins sufficiently fast the mode will
move forwards with respect to the inertial frame. But the mode is still moving backwards
in the rotating frame. The gravitational waves from such a mode carry positive angular
momentum away from the star but, since the perturbed fluid actually rotates slower than
it would in absence of the perturbation, the angular momentum of the mode is negative.
The emission of gravitational waves makes the angular momentum increasingly negative
and leads to the instability.

As we have already argued, one can always find an f-mode with a low pattern speed,
even though the high-order (large l) modes have arbitrarily large frequencies. This means
that, when the star is rotating there must be an unstable f-mode no matter how slow the
rotation rate is (Friedman and Schutz, 1978b). Hence, the instability is generic in rotating
stars. Of course, the high-order short-wavelength modes that become unstable first are
not efficient gravitational-wave emitters. If we want to explore realistic situations where
the gravitational-waves may dominate, we need to consider the physics of the neutron
star interior beyond equilibrium. In order to facilitate a move in this direction, we need
to explore more of the relevant physics.



OUP CORRECTED PROOF – FINAL, 30/10/2019, SPi

14

Building mountains

If we want to model scenarios relevant to gravitational-wave physics, we (often) need to
go beyond the global properties like mass and radius of a neutron star (recall Figure 12.2).
In fact, this was clear from the very beginning—a stationary axisymmetric rotating star
does not radiate gravitational waves. The fact that the star’s shape is deformed by the
rotation is irrelevant. In order to radiate gravitationally, the star must have some additional
asymmetry. Such asymmetries may develop in a number of ways. An obvious possibility
involves deformations of the elastic outer region of the star—the neutron star crust. In
order to understand this problem we need to explore the properties of the crust, figure
out how deformations may form, and (try to) estimate the likely size of ‘mountains’ on
a realistic neutron star. This requires us to go beyond the fluid dynamics we used to
describe stellar oscillations in the previous chapter and account for imposed stresses.
The discussion also leads us to consider the internal magnetic field—which may deform
the star, perhaps setting a natural lower limit for neutron star asymmetries.

14.1 The crust

At densities below about 2 × 106 g/cm3 the lowest energy state of matter is in the form
of iron (56Fe). This is the matter of the neutron star ‘skin’. As the density increases,
it becomes energetically favourable for nuclei to capture electrons and undergo inverse
beta decay

(A,Z)+ e → (A,Z − 1)+ νe, (14.1)

leading to the production of increasingly neutron-rich nuclei deeper in the crust; see
Figure 14.1. In order to find the composition of the crust one has to work out the ground
state of matter at various densities (Chamel and Haensel, 2008). This is complicated, as it
involves accounting for the presence of nuclei which would be unstable in the laboratory
but which become stable in the star because the electron Fermi sea has no available states
for electrons produced by beta decay. Detailed calculations show that the mean nuclear
weight A increases dramatically, while the total charge Z remains roughly constant, as

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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Figure 14.1 A schematic illustration of the changing composition in the outer crust of a neutron star.
Layers of increasingly neutron-rich nuclei—stabilized by the extreme pressure—are present at higher
densities.

the base of the crust is approached. The neutron number N = A − Z tends to be close
to the magic numbers N = 50 and 82 throughout the crust.

Once the crust composition has been determined, one can move on to the melting
temperature and the shear modulus. The former is important because it tells us how
soon after the star’s birth the crust forms. The latter determines to what extent the crust
lattice can withstand shear stresses.

As a starting point, it is typically assumed that the nuclei in the neutron star crust form
a homogeneous body-centred cubic (bcc) lattice. This Coulomb lattice has interaction
energy

ECoul ≈ Z2e2

a
, (14.2)

where e is the unit charge and a the mean spacing between nuclei—the lattice constant.
A bcc lattice has two nuclei per unit cube (one in the centre plus 1/8 per corner times
8 corners), so given the number density of nuclei, nN, we have
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nNa3 = 2. (14.3)

The crust’s melting temperature is obtained by balancing the Coulomb energy to the
thermal energy. The crust freezes when ECoul exceeds Eth = kBT by a critical factor �.
If we take the melting temperature to be Tm, we have

kBTm ≈ 1
�

ECoul, (14.4)

where the value of � is empirically found to be about 175 (Strohmayer et al., 1991).
In order to allow for the fact that neutrons drip out of nuclei above a density of
4 × 1011g/cm3 (neutron drip), we may use

nN = 1 − xf

A
n, (14.5)

where xf is the fraction of ‘free’ neutrons and n is the baryon number density. This way
we arrive at

Tm ≈ 6.4 × 109
(

180
�

)
(1 − xf )

1/3
(

Z
20

)2 (
100
A

)1/3

n1/3 K. (14.6)

This estimate tells us that the crust will begin to form once the star cools to a few times
109 K—within minutes after the neutron star is born; see Figure 18.7.

The rigidity of the crust is an issue of obvious importance for gravitational-wave
estimates. Together with the breaking strain, the rigidity determines how large an
asymmetry the nuclear lattice is able to sustain. This information is encoded in the shear
modulus. Unfortunately, the neutron star crust turns out to be more like jelly than a solid.
It can support shear stresses, but they are unlikely to be large.

In order to quantify this statement, we draw on the shear modulus of a bcc lattice. For
a solid with cubic symmetry one can determine three independent elastic constants. One
of these is directly related to the compressibility of the material, while the remaining two
correspond to volume-preserving distortions of a lattice cell. Monte-Carlo simulations
of the deformation of the neutron star crust (Ogata and Ichimaru, 1990; Horowitz and
Hughto, 2008) show that we need to work with an effective shear modulus based on
averaging over the degrees of freedom. This leads to

μ = 0.1194
(

4π

3

)1/3

(Ze)2
(

1 − xf

A

)4/3

n4/3. (14.7)

The scaling with density makes sense if we consider the results for the Fermi gas model
from Chapter 12.
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Since the ratio

μ̃ = μ

ρ
≈ 1016 cm2/s2, (14.8)

only varies by a factor of a few across the relevant range of densities, the speed of shear
waves is nearly constant throughout the crust. In fact, as a first approximation, it is quite
reasonable to treat μ̃ as a constant. It is useful to keep this in mind.

In some instances, e.g. for very young neutron stars, we may need to account for
temperature dependence. Again, Monte-Carlo calculations show that one should then
replace (14.7) by (Strohmayer et al., 1991)

μeff ≈ 0.1194
1 + 1.781(100/�)2

(
4π

3

)1/3

(Ze)2
(

1 − xf

A

)4/3

n4/3. (14.9)

It is instructive to ask how important the presence of the crust is likely to be in
various dynamical scenarios. The answer depends on the extent to which the elasticity
can overcome other forces at play. Let us, for example, quantify the crust’s rigidity in
terms of the ratio � (say) between the speed of shear waves and a characteristic rotational
velocity �0, i.e.

� ≡ μ̃

R2�2 . (14.10)

The crust behaves almost like a fluid when � � 1 and is essentially rigid in the opposite
limit. Using

�2
0 = GM

R3 → �2
0R2 ≈ 1020 cm2/s2, (14.11)

(such that the Kepler limit is about two-thirds of �0; see Chapter 12) we have

� ≈ 10−4
(

�0

�

)2

. (14.12)

This shows that the � � 1 limit is appropriate as long as we do not let � → 0. This
conclusion is important in the context of stellar oscillations as it shows that the crust is
likely to partake in global oscillations of the star without significantly altering the fluid
motion. Of course, since the crust is elastic it can support shear waves so there will exist
a distinct family of crustal modes of oscillation; see Chapter 18.

The deep crust region is expected to contain nuclear structures with different geome-
tries (see Figure 14.2). These arise as the matter becomes frustrated and undergoes a
series of transitions. Since these geometries resemble spaghetti and lasagne, this region
has become known as the ‘nuclear pasta’ (Iida et al., 2001). The pasta phases are likely to
be disordered, which has implications for a range of phenomena. For example, electrons
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Figure 14.2 Zooming in on the structure of the inner crust of a neutron star. At low densities, a lattice
of neutron-rich nuclei is immersed in superfluid neutrons and a relativistic electron gas. At high densities
the nuclei might deform and connect along specific directions. This leads to the formation of extended
tubes, sheets, and bubbles of nuclear matter. These so-called ‘nuclear pasta’ phases are expected to form a
layer at the base of the neutron star crust. (Reproduced from Newton (2013).)

scattering off impurities in the lattice provide the dominant contribution to the electrical
resistivity in the crust. The disordered nature of the pasta region may lead to a high
electrical resistivity and faster than (otherwise) expected magnetic field dissipation (Pons
et al., 2013). The presence of nuclear pasta will also have implications for the crustal
breaking strain, although the astrophysical importance of this is not yet clear.

14.2 Energetics

We have seen that the crust forms very early in a neutron star’s life, at a time when the
star may still spin rapidly. At this point, the star is more oblate than it will be once it
spins down due to electromagnetic braking. As the star slows down, the centrifugal force
decreases, leading to gravity trying to pull the crust into a less oblate shape. The rigidity
of the crust will resist the change, making it remain less spherical than it would like to
be. Once stresses build up to a critical level, the crust yields to relieve excess oblateness.
As a result, the moment of inertia is suddenly reduced, and the star may be seen to spin
up due to the conservation of angular momentum.
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This scenario provided the first explanation for the enigmatic glitches observed in the
Vela and Crab pulsars already in 1969 (Radhakrishnan and Manchester, 1969; Reichley
and Downs, 1969). Shortly after the observations, it was proposed that the entire excess
strain would be released in a quake (Ruderman, 1969). In order for this to happen,
the crust would have to break into pieces much smaller than the radius of the star.
After such an event, the crust presumably refreezes and new stress builds along with
the star’s continued spin-down. In this picture one would expect glitches to occur at
roughly uniform time intervals (for any given pulsar), representing the time it takes to
build up the stress from zero to the breaking point. However, this model has been ruled
out as explanation for the large glitches seen in, for example, the Vela pulsar, as it cannot
explain regularly occurring events of the observed magnitude (Baym and Pines, 1971).
As discussed in Chapter 12, large glitches are now thought to be associated with the star’s
superfluid interior. Nevertheless, crust quakes remain a possible explanation for smaller
glitches in, for example, the Crab pulsar. The effect may also be relevant for other pulsar
timing irregularities (Hobbs et al., 2010b).

The crust quake scenario provides a useful framework for discussing likely asymme-
tries of a rotating star. Of course, we are interested in gravitational waves, so we should
focus on quadrupole deformations. Luckily, this happens to be the simplest case as we
can parameterize the crust deformation in terms of a single parameter ε, the ellipticity
introduced in Chapter 6. For the present discussion, it is convenient to let this parameter
represent the departure of the moment of inertia of the crust Ic from the value it would
have in the non-rotating case Ic0. That is, we define

ε = Ic − Ic0

Ic0
. (14.13)

Let us now imagine that the crust solidified in the distant past, leaving it with a zero-
strain oblateness ε0 (the reference shape). This parameter will change only through crust
failure or gradual plastic creep, both of which we ignore for the time being. If the actual
oblateness ε differs from ε0, the crust will store a strain energy (Pines and Shaham, 1972)

Estrain = B(ε − ε0)
2, (14.14)

where B is a constant related to the shear modulus, which must to be determined from
the equation of state.

Similarly, we can write down an expression for the total energy of the star

E = E0 + J2

2I
+ Aε2 + B(ε − ε0)

2. (14.15)

Here E0 represents the energy of the spherical star, the second term is the kinetic energy
(J is the angular momentum and I the total moment of inertia, as usual), the third term
represents the increase in gravitational potential energy due to the star’s shape no longer
being spherical, and the fourth term gives the elastic strain energy. We can make these
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quantities precise by building on the virial argument from Chapter 12, but for now this
(simpler) description will suffice. It is, however, useful to relate the energy expression
to slowly rotating stellar models (also discussed in Chapter 12). First of all, we then see
that, if I0 denotes the moment of inertia of a spherical star and we define the oblateness ε

in accordance with (14.13), the moment of inertia about the rotation axis is I0(1 + ε).
Comparing this to the expression for the moment of inertia of a slowly spinning uniform
density star, e.g. (12.36), we see that

ε = 5�2

8πρ
. (14.16)

Moving on, the constant A depends on the equation of state but will generally be the same
order of magnitude as the gravitational potential energy of the star. In fact, from (12.58)
we see that for an incompressible solid star A is −1/5 of the gravitational potential energy
of the non-rotating star.

The equilibrium configuration of the system can be found by minimizing the energy
(14.15) at fixed angular momentum:

∂E
∂ε

∣∣∣∣
J

= 0, (14.17)

leading to

ε = I0�
2

4(A + B)
+ B

A + B
ε0 ≡ e� + bε0. (14.18)

Here we have introduced the ‘rigidity parameter’ (Haensel, 1997)

b = B
A + B

, (14.19)

which vanishes for a fluid star (when B = 0) and is equal to 1 for a perfectly rigid body
(when B/A → ∞). Clearly, the oblateness is made up of two parts. The first, e�, scales as
�2 and we identify it as the centrifugal bulge due to rotation. The second term, bε0, is due
to the stresses of the nuclear lattice. The first contribution does not generate gravitational
waves, as the deformation is symmetric with respect to the rotation axis. The second one
can, but we need the deformation to be asymmetric.

As expected from (14.12), realistic equation of state calculations lead to B � A, with
b a steeply varying function of the mass. Any stresses in the crust will only slightly change
the shape away from that of the corresponding fluid body. The relative smallness of the
Coulomb deformation is due to the fact that the involved forces are much weaker than
the gravitational and centrifugal ones (on length scales typical to the star).

The rigidity parameter b is key to estimating the gravitational-wave emission from a
deformed rotating star, so we need to understand how to work it out. Let us, first of all,



OUP CORRECTED PROOF – FINAL, 30/10/2019, SPi

Energetics 319

consider the simple case of a uniform density star. We then have (again, see the discussion
of the virial theorem in Chapter 12)

A = 3
25

GM2

R
. (14.20)

Real neutron stars are, of course, compressible. The enhanced central concentration of
mass leads to a value of A somewhat larger than this rough estimate. The parameter B
is more difficult to determine. From the definition, we see that (for a thin uniform crust
with volume Vc) it may be reasonable to use

B ≈ μVc

2
≈ 2πμR2
R, (14.21)

where 
R � R is the thickness of the crust. This leads to

b = B
B + A

≈ B
A

≈ 25
2

μ

ρ


R
GM

≈ 25
2

(
c2R
GM

)(

R
R

)(
μ

ρc2

)
. (14.22)

In this expression the first factor is the inverse compactness of the star, typically close to
5, while the second term is the relative thickness of the crust, about 1/10. The magnitude
of the final factor can be gleaned from (14.8), which leads to the required factor being
about 10−5. Combining these factors, we arrive at a rough estimate of b ≈ 7 × 10−5 for
a typical neutron star.

More detailed calculations (Cutler et al., 2003) show that we have overestimated
the value of b by about a factor of 40. First of all, the rigidity parameter is reduced
by about a factor of 5 due to the star’s compressibility. An extra factor of 8 or so is
due to cancellations in the integral over the stress tensor components. Combined, these
reductions lead to b ≈ 2 × 10−6 for quadrupole deformations of the crust.

Building on these estimates, we need to figure out how large a deformation a neutron
star may sustain. As b is small we expect to have ε ≈ ε�. One would not expect the
shape of a rotating elastic star to deviate much from the shape of the corresponding fluid
body. This is an important insight, but it does not tell us anything about the expected
level of gravitational-wave emission. In order to emit gravitational waves we need the
deformation to be asymmetric with respect to the rotation axis. In effect, we can ignore
the effect of rotation and assume that that star’s relaxed shape is spherical. As ε and ε0
can differ at most by the breaking strain σbr of the crust we can obtain the estimate we
want from (14.18). However, the breaking strain is difficult to estimate. For terrestrial
materials the breaking strain lies in the range 10−4 ≤ σbr ≤ 10−2. In comparison to this,
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the nuclear lattice appears to be super strong. Molecular dynamics simulations for high-
pressure Coulomb crystals (Horowitz and Kadau, 2009) suggest that

σbr ≈ 0.1. (14.23)

Given this we arrive at the estimate

ε ≤ 2 × 10−7
( σbr

0.1

)
. (14.24)

Our simple energy estimates suggest that neutron stars may only sustain ‘mountains’ a
fraction of a centimetre high. Not very impressive, but if we compare to the detectability
arguments from Chapter 6, we see that these deformations may be large enough that the
gravitational waves can be detected. We will consider the status of actual searches shortly.

14.3 Modelling elastic deformations

If we want to make more precise statements—based on the actual nuclear physics
of the crust—we need to improve on the simple energetics argument. In order to
do this, we have to solve the equations of elasticity in the solid phase, allowing for
gravitational and pressure forces and including the degeneracy pressure, as well. This
is not straightforward, but it should not be beyond our means. However, it is difficult
to make the problem ‘calculable’ because it involves poorly understood evolutionary
aspects. We need to know why the star is deformed in the first place. Plausible scenarios
tend to involve additional (typically less controlled) physics. We will discuss some of the
possibilities later.

As a first step towards more realistic models of a strained neutron star crust, let us
focus on a question that does not rely on a specific formation scenario. What is the
maximal allowed crust deformation? This may not be exactly the problem we would
like to solve, but it nevertheless provides useful insight. In particular, it gives us a handle
on upper limits on the gravitational-wave signal. This could, in turn, help us fine-tune
our search strategy.

In this setup, we assume that the star has a (quadrupole) deformation imposed by
some unknown agent. The crust is stressed away from its preferred reference shape,
leading to the build-up of strain. At some point, we reach the breaking strain σbr and
the crust fails. The corresponding configuration tells us what the largest permissible
mountain will be. In order to quantify the strain, we need to keep track of the difference
between the unstrained shape and the actual shape of the crust. It is natural to represent
this difference in terms of a Lagrangian displacement vector ξ i (see Chapter 13). If we
assume that the crust responds elastically, and work in Newtonian theory, it is useful to
define the stress tensor of the solid as (Ushomirsky et al., 2000)

τij = −pgij + tij , (14.25)



OUP CORRECTED PROOF – FINAL, 30/10/2019, SPi

Modelling elastic deformations 321

where gij is the flat metric and we have isolated the isotropic pressure from the trace-free
tensor

tij = μ

(
∇iξj + ∇jξi − 2

3
gij∇kξk

)
, (14.26)

which describes the shear stresses. As the expression is given in a coordinate basis, the
covariant derivative ∇i is the one associated with gij . In addition, we have the Poisson
equation for the gravitational potential and the continuity equation. We need to solve the
equations subject to the condition that the traction vanishes at the top and base of the
crust. This is essentially a perturbation problem (as we expect the maximum deformation
to the small). If we, for simplicity, assume that the relaxed configuration is spherical, then
we can treat the deformation (and hence tij) as a first-order quantity. This leads to

δτij = −δpgij + tij . (14.27)

Once we have solved the (now linearized) equations for a given deformation, we can
calculate the corresponding quadrupole moment from

Q22 =
∫

δρr4dr. (14.28)

Finally, we can relate the answer to our previous estimates by identifying1

εI0 =
(

8π

15

)1/2

Q22. (14.29)

In practice, we can pretty much ignore the numerical factor as the error it introduces
is smaller than many of the other uncertainties. For example, taking the neutron star
radius to be in the range suggested by X-ray observations, R = 10 − 14 km, introduces an
uncertainty of a factor of a few in the moment of inertia. The actual density distribution
also affects the result (recall that we simply assumed a uniform density sphere). For actual
pulsars we also need the distance. This is typically obtained from a dispersion measure,
which may also be wrong by a factor of a few.

If we opt to work with the quadrupole moment—rewriting the various gravitational-
wave formulas accordingly—then we do not need to introduce the moment of inertia I0.
But this does not give us the intuitive connection with the magnitude of the deformation
of the star encoded in ε.

1 This identification depends on the convention for the spherical harmonics, whether we work with the
complex form or take the real part from the outset. Here we use the convention from Ushomirsky et al. (2000),
which is different from that in Thorne (1980). The relation we use has been adopted in LIGO observational
papers, following Owen (2010).
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This formulation of the problem allows us to make quantitative statements for any
given deformation, equation of state, and crust model. However, if our main interest is
in the largest possible mountain, then there is an elegant alternative (Ushomirsky et al.,
2000). This argument has the additional advantage that it leads us to introduce some
of the tools we will need later. In essence, we need to expand the tensor tij in a suitable
set of harmonics. The basic idea is that different parts of tij transform differently under
rotations on the two-sphere. Schematically, we have

tij ∼

⎛
⎜⎜⎜⎜⎝

S V

V T

⎞
⎟⎟⎟⎟⎠ .

The part marked S transforms as a scalar under rotation, V transform as a two-vector, and
T transforms as a two-tensor. We have seen the first two contributions already. Quantities
which transform as scalars can be expanded in spherical harmonics and the vectors we
need are the same as in the case of stellar oscillations (see Chapter 13). Basically, we
have the two vectors (momentarily suppressing the indices on the spherical harmonics,
Ym

l → Y , to avoid confusion)

V 1
i = ∇̃iY = ∂iY , (14.30)

and

V 2
i = εijγ

jk∇̃kY , (14.31)

where we have used the flat metric on the sphere (which defines the covariant derivative
∇̃i in these expressions)

γij =
(

1 0
0 sin2 θ

)
, (14.32)

and the corresponding anti-symmetric tensor

εij =
(

0 −sinθ

sinθ 0

)
. (14.33)

For the tensor part (on the sphere) we have three distinct (symmetric) contributions

T1
ij = ∇̃i∇̃jY , (14.34)

T2
ij = γijY , (14.35)
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and

T3
ij = 1

2

(
ε l

i T1
lj + ε l

j T1
li

)
. (14.36)

Making use of these contributions we have, from V 2
i and T3

ij , respectively,

e1
ij =

⎛
⎝ 0 − 1

sinθ
∂ϕYlm sinθ∂θYlm

sym 0 0
sym 0 0

⎞
⎠ , (14.37)

e2
ij =

⎛
⎝0 0 0

0 1
sinθ

Xlm − sinθ
2 Wlm

0 sym −sinθXlm

⎞
⎠ , (14.38)

where

Xlm = (∂θ ∂ϕ − cotθ∂ϕ)Ylm, (14.39)

and

Wlm =
(

∂2
θ − cotθ∂θ − 1

sin2 θ
∂2
ϕ

)
Ylm. (14.40)

Both e1
ij and e2

ij are manifestly trace-free and they transform as (−1)l+1 under the
spatial inversion (θ ,ϕ) → (π − θ ,π + ϕ). In the literature the corresponding solutions
are commonly referred to as odd parity (as they change sign under inversion for l = 2),
axial (as they can be associated with rotation), or toroidal.

Similarly, we have from the remaining building blocks

f 1
ij =

⎛
⎝Ylm 0 0

0 0 0
0 0 0

⎞
⎠ , (14.41)

f 2
ij =

⎛
⎝ 0 ∂θYlm ∂ϕYlm

sym 0 0
sym 0 0

⎞
⎠ , (14.42)

f 3
ij =

⎛
⎝0 0 0

0 Ylm 0
0 0 sin2 θYlm

⎞
⎠

′

, (14.43)
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and

f 4
ij =

⎛
⎝ 0 0 0

0 ∂2
θ Ylm Xlm

0 sym Zlm

⎞
⎠ . (14.44)

where

Zlm = (∂2
ϕ + sinθ cosθ∂θ )Ylm. (14.45)

These solutions are often called even parity, polar, or spheroidal. They all transform
as (−1)l under space inversion. It is worth noting that f 4

ij is not trace-free, which is
inconvenient as we prefer to work in Transverse-Traceless (TT) gauge. However, a
second suitable tensor (alongside e2

ij) is easily obtained from

f̃ 4
ij = f 4

ij + l(l + 1)

2
f 3
ij . (14.46)

Similarly, we have the trace-free combination

f̃ 1
ij = f 1

ij − 1
2

f 3
ij . (14.47)

After this fairly lengthy detour, let us return to the mountain problem. For the kind of
deformations we are interested in, we need the second set of tensor harmonics. Moreover,
as we want the trace of tij to vanish we need to use a combination of f̃ 1

ij , f 2
ij and f̃ 4

ij .

Following Ushomirsky et al. (2000) we use2

eij = gij − rirj = r2f 3
ij −→

(
rirj − 1

2
eij

)
Ylm = r2 f̃ 1

ij , (14.48)

fij = r2

β
f 2
ij , (14.49)

where β = √
l(l + 1), and

�ij = r2

β2 f 4
ij + 1

β
fij −→ �ij + 1

2
eijYlm = β−2r2

(
f̃ 4

ij + f 2
ij

)
. (14.50)

2 This is a bit of a sideways step, but it is useful as it allows a direct comparison to the original work.
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In terms of this set of harmonics, we have

tij = trr

(
rirj − 1

2
eij

)
Ylm + tr⊥ fij + t�

(
�ij + 1

2
eijYlm

)
. (14.51)

The equations we need to solve for a deformed equilibrium are:

∇ iδτij = δρg(r)ri + ρ∇ iδ�, (14.52)

where ρ represents the background density and g(r) = Gm(r)/r2 (with m(r) the mass
inside radius r) is the gravitational acceleration. Rearranging this expression, we can
integrate the radial component to get the quadrupole moment. Thus, we have (making
the Cowling approximation, δ� = 0)

Q22 =
∫ [

r4

g(r)

(
3
2

dtrr
dr

− 4
β

dtr⊥
dr

− r
β

d2tr⊥
dr2 + 1

3
dt�
dr

+ 3
r

trr − β

r
tr⊥

)]
dr. (14.53)

If we also integrate by parts (assuming that the shear modulus μ vanishes at the edges
of the crust, which may not be true but is ‘convenient’ as it allows us to ignore surface
terms) we arrive at

Q22 = −
∫ R

rb

r3

g

[
3
2

(4 − U)trr + 1
3

(6 − U)t�

+
√

3
2

(
8 − 3U − 1

3
U2 − r

3
dU
dr

)
tr⊥

]
dr, (14.54)

where

U = d lng
d ln r

+ 2. (14.55)

So far we have estimated the elastic response of the crust. However, real solids behave
elastically only up to the maximum strain, σbr, beyond which they either fail or deform
plastically. In order to estimate the highest neutron star mountain we assume that the
crust fails upon reaching a certain yield strain. We then need to consider the strain tensor
rather than the stresses, as this allows us to impose a simple criterion to establish when
the crust breaks. The strain tensor is simply defined as:

σij = tij/μ. (14.56)
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If we define the strain scalar as σ 2 = 1
2σijσ

ij , the standard Von Mises criterion states that
the crust yields when

σ ≥ σbr. (14.57)

Our expression for the stresses (14.51) leads to

σijσ
ij = 3

2
σ 2

rr[Re(Ylm)]2 + σ 2
r⊥[Re(fij)]2 + σ 2

�[Re(�ij + 1
2

Ylmeij)]2, (14.58)

where σrr , σr⊥, and σ� are the components of the strain tensor associated with the tensor
spherical harmonics from (14.51). By assuming that the quadrupole reaches its largest
value when the equality of Eq. (14.57) is satisfied, we find that the maximum is obtained
when (Ushomirsky et al., 2000)

√
3σrr = √

6σr⊥ = σ� =
√

96π

5
σbr. (14.59)

The Von Mises criterion, together with the expression for the maximum quadrupole in
(14.114), leads to a maximum quadrupole deformation

Qmax
22 ≈ 1039

( σbr

0.1

)
g cm2, (14.60)

no matter how the strain arises, under the assumption that all the strain is in the
l = m = 2 harmonic. Strain in other harmonics would push the crust closer to the yield
point without contributing to the quadrupole. The estimate is an upper limit for the
quadrupole deformation the crust can sustain, and hence on the energy the star may emit
in gravitational waves. Taking the (canonical) moment of inertia to be I0 ≈ 1045 g cm2

we have

εmax ≈ 10−6
( σbr

0.1

)
. (14.61)

The implications of this estimate are clear from Figure 14.5. The spin-down limit
(obtained from observed P and Ṗ for known pulsars; see Chapter 6) suggests an
overly optimistic level of gravitational-wave emission at frequencies below 100 Hz or
so. However, the more detailed analysis leads to a result that only differs from the basic
energetics argument by a factor of a few. This could be an indication that we are close to
the real answer. Of course, we have made a number of simplifications and it is legitimate
to ask how they affect the outcome. For example, we need to quantify the impact of
the Cowling approximation. It would also be desirable to explore the effects of general
relativity—especially if we want to make estimates using realistic equation of state. While
it may be reasonable to treat the crust elasticity at the Newtonian level, this is clearly not
the case for the star’s core (which will also be deformed at some level). More detailed
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Figure 14.3 Comparing results for the maximum quadrupole moment Q22 (and fiducial ellipticity)
for a deformed neutron star in the Newtonian Cowling approximation, including the perturbed
gravitational potential (no Cowling), and the full relativistic calculation (including stress contributions,
GR) due to crustal stresses vs mass for two choices of crustal thickness. The models are obtained for the
SLy equation of state and assumes a breaking strain of 0.1. (Reproduced from Johnson-McDaniel and
Owen (2013), copyright (2013) by the American Physical Society.)

modelling (Haskell et al., 2006; Johnson-McDaniel and Owen, 2013) shows that the
typical uncertainty is at the level of a factor of a few; see Figure 14.3.

14.4 Searches for known pulsars

As we make sluggish progress on the modelling, we can seek guidance from observations.
The signal from a spinning neutron star is unavoidably weak, but we have seen (in
Chapter 8) that the effective amplitude (after matched filtering) improves (roughly) as
the square-root of the observation time. Given the expected maximum deformation, we
can easily work out that—for a neutron star emitting gravitational waves at 100 Hz at
a distance of 1 kpc—we need observations lasting at least one year. This tells us that
we need to analyse long stretches of data, which makes the problem computationally
demanding. On the other hand, we know the location and spin rate of many radio pulsars,
so at least we have some idea of what we are looking for.

With a known position and spin evolution, one can use long stretches of data in a
coherent way. One can dig deeper into the noise. Taking the introduction to the data
analysis problem from Chapter 8 as our starting point, we know that we have four
unknown signal parameters: the gravitational-wave amplitude h0, the unknown phase
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Figure 14.4 A summary of upper limits from targeted pulsar searches in O1 data. Stars show 95%
credible upper limits on the gravitational-wave amplitude, h0, for 200 pulsars. Upside-down triangles
give the spin-down limits for all pulsars (based on distance values taken from the ATNF pulsar catalog
(apart from in a few cases; see the original paper for details) and assuming the canonical moment of
inertia. The upper limits shown within shaded circles are those for which the spin-down limits (linked
via the dashed vertical lines) are surpassed with the observations. The grey curve provides an estimate of
the detector strain sensitivity, combining representative amplitude spectral density measurements for the
two LIGO instruments. Results from the initial detector era (Aasi et al., 2014) are shown as red circles.
(Reproduced from Abbott et al. (2017e) by permission of the AAS. )
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of the wave φ0, the inclination of the spin axis i, and the polarization angle ψ . One of the
advantages of dealing with known systems is that we may have prior information about
some of the parameters. This alleviates the computational challenge. For example, in the
case of the Crab pulsar one can infer the orientation of the polarization angle from X-ray
observations of the pulsar wind nebula. This reduces the computational cost of a search.
Of course, one has to use any such information judiciously. After all, it may be that the
star is not aligned with the observed structures.

An observational milestone was reached when LIGO used data from the first 9 months
of the S5 science run (2005–7) to beat the Crab pulsar spin-down limit (Abbott et al.,
2008a). It may have been obvious from the beginning that there was no real possibility
that 100% of the observed Crab pulsar spin-down was gravitational-wave powered, as
this would conflict with the measured braking index (see Chapter 6). Nevertheless,
the demonstration that less than 6% of the available power is radiated as gravitational
waves was the first step into unknown territory. The summary of the results from the
entire S5 run (about 500 days of data; see Abbott et al. (2010)), provided upper limits
on the gravitational-wave emission for 116 pulsars. The Crab result was tightened to
a maximum of 2% of the available power and we learned that some pulsars have an
astonishing degree of symmetry. In the case of PSR J2124-3358 (spinning at 200 Hz)
the maximum allowed ellipticity was found to be ε = 7 × 10−8. Even though this is above
the spin-down limit for this system, it is an impressive result. The equator of this pulsar
is one of the roundest things in the Universe.

At the end of the initial interferometer era, the spin-down limit had also been beaten for
the Vela pulsar (crucially involving data from the Virgo instrument, with better sensitivity
at lower frequencies; see Abadie et al. (2011a)). The first observing run of the advanced
detectors provided upper limits that improved on the spin-down estimates for another
6 pulsars (based on about 70 days of data; Abbott et al. (2017e)). The gravitational-
wave contribution to the Crab pulsar spin down was limited to less than 0.2% and the
total catalogue of upper limits included 200 pulsars. The O1 results are illustrated, and
compared to the detector sensitivity, in Figure 14.4. The corresponding limits on the
ellipticities (ε) and mass quadrupole moments (Q22) are shown in Figure 14.5. It is
instructive to compare these results to the estimated maximum allowed deformations
from Figure 14.3.

14.5 All-sky searches

Targeted pulsar searches (obviously) make use of information gleaned from electromag-
netic observations—sky location, spin-down rate, and so on. Having this information is an
advantage, as it allows us to dig deeper into the data. However, even though this allows
us to set precise limits on the gravitational-wave strain, one can argue that we already
‘know’ that some of these systems are unlikely to be exciting gravitational-wave sources.
Given the (admittedly small sample of) braking index measurements for young systems,
one would expect the spin-down to be dominated by the electromagnetic torque. Let
us (for the moment) suppose that this is the case. Where does it leave us? We would
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Figure 14.5 Limits on fiducial ellipticities (ε) and mass quadrupole moments (Q22) for pulsars
targeted in the O1 LIGO run. Upside-down triangles represent the spin-down limits for these systems.
Pulsars for which the spin-down limit is beaten are highlighted within larger shaded circles and linked to
their spin-down limit values with dashed vertical lines. The diagonal lines show the constant
characteristic age, τ , for hypothetical systems that spin down entirely due to gravitational waves (with
braking indices of n = 5). (Reproduced from Abbott et al. (2017e) by permission of the AAS.)

immediately know that we have to beat the inferred spin-down limit in order to have a
chance of detecting a continuous gravitational-wave signal, but without a more detailed
understanding of the evolutionary scenario(s) that lead to the formation of asymmetries
in the system (e.g. in the star’s crust) we cannot know how sensitive our searches have to
be in order to be successful. As we will see later, the internal magnetic field sets a lower
limit on quadrupole deformation, but such estimates are also associated with significant
uncertainties. This seems rather pessimistic.

Taking a more upbeat view, we might assume that electromagnetic observations
do not tell us the whole story. Could it perhaps be that there are systems that spin
down predominantly due to gravitational waves, without an observable electromagnetic
counterpart signal? In principle, there is no reason why this could not be the case
(although one would again have to think carefully about the evolution leading to the
formation of such an object). Suppose we want to search for electromagnetically silent,
yet spinning down objects, how do we go about it? The answer is clear. As we are literally
looking in the dark, we have to search across the entire sky.
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In general, a blind search over the plausible parameter space is severely limited by
computing cost. One has to cover as large a portion of the plausible parameter space
as possible, including the signal frequency and its time derivative. In order to facilitate
a sensitive search, observers need to constrain the parameters. One way to do this is to
set an upper limit on the spin-down rate. For systems where we do not see pulses this
is tricky, but we can make use of a simple energetic argument. If we assume that all the
star’s kinetic energy is released as gravitational waves due to a quadrupole deformation,
we have (see Chapter 6)

d
dt

(
1
2

I0�2
)

= −32G
5c5 �6(I0ε)2, (14.62)

where ε is the star’s ellipticity and I0 is the moment of inertia. If we assume that the star
has spun down significantly since its birth (a natural assumption if the system is emitting
continuous gravitational waves) we see that the characteristic spin-down timescale is

τ = 5c5

27G
1

I0ε2�4
0

, (14.63)

where �0 is the initial spin rate. Combining this energy loss with the usual formula for
the gravitational-wave strain, we have

h0 ≈ 4G
c4

I0ε

d

(
1 + t

τ

)−1/2
�2

0. (14.64)

Again taking the t/τ � 1 limit and using (14.63) we arrive at

h0 ≈
(

5G
8c3

)1/2 (
I0

t

)1/2 1
d

. (14.65)

Basically, we have an upper limit on the gravitational-wave strain from a neutron star
of known age and at a given distance. We do not need either the spin frequency or the
ellipticity.

An amplitude estimate like (14.65) is helpful, as it provides a plausible constraint
on the parameters for an all-sky search, but the problem is still challenging. In order to
alleviate the computational severity, all-sky searches tend to be hierarchical (coherent
search strategies are prohibitively expensive). One would typically start from a fast
Fourier transform over a fixed length data set, to identify ‘interesting’ peaks in the
corresponding time–frequency maps, and then drill deeper using some combination of
coherent and incoherent steps to reduce the computational burden (Wette et al., 2008).
This inevitably leads to a loss of sensitivity. As a rough guide, one would expect an all-sky
search to be up to an order of magnitude less sensitive than a targeted pulsar search. The
most sensitive search to date, based on LIGO O1 data, sets upper limits on continuous
gravitational waves in the frequency range 475–2,000 Hz (Abbott et al., 2018c). At the
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highest frequencies the search was sensitive to a neutron star with ellipticity 1.8 × 10−7 at
a distance of 1 kpc. With improved computing power, future searches will involve longer
coherence times and even better sensitivities.

The most ‘ambitious’ all-sky search effort is Einstein@Home (Abbott et al., 2009a,
2017d), the goal of which is to carry out coherent searches for signals using wasted
CPUs on idle computers at homes, offices, and university departments around the
world. The project has been successful in attracting a large number of subscriptions
and provides powerful computational infrastructure for the search for continuous-wave
signals. The Einstein@Home framework has also been adapted for the search for pulsars
in gamma-ray data from the Fermi satellite, leading to the discovery of a number of new
systems (Pletsch et al., 2013; Lazarus et al., 2016; Clark et al., 2018). An example of the
achievable gravitational-wave sensitivity (in the frequency range 20–100 Hz) is provided
in Figure 14.6. In this case, the search rules out neutron stars with an ellipticity larger
than 10−5 or so within 100 pc of the Earth (Abbott et al., 2017d). This figure is also

Powerflux O1 search
Time-domain F-stat O1 search
Sky Hough O1 search
Frequency Hough O1 search
Results from this search

2010–25

10–24

h 090
%

30 40 50 60
search frequency (Hz)

70 80 90 100

Figure 14.6 The 90% confidence upper limits on the amplitude of continuous gravitational-wave
signals with frequency in 0.5-Hz bands and with spin-down values in the range [−2.65 × 10−9,
2.64 × 10−10] Hz/s. The lowest set of points (black circles) are the Einstein@Home distributed
computing results. The most recent upper limit results in this frequency range from O1 data obtained
with various search pipelines are also shown for comparison. These searches covered a broader frequency
and spin-down range. All inferred upper limits are averaged over the full sky and source polarization.
(Reproduced from (Abbott et al., 2017d), Creative Commons Attribution 4.0 licence.)
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useful as it compares different search strategies used for the LIGO data (although one
should keep in mind that the frequency range considered for the Einstein@Home search
is narrower).

14.6 The magnetic field

From the gravitational-wave point of view, it is important to have an idea of what the
highest expected neutron star mountain may be. It is encouraging that one can think
of ‘reasonable’ scenarios for such deformations being generated and the upper limits
from targeted pulsar searches (Figure 14.4) are obviously interesting. However, the
discussion comes with a major caveat—there is (at least, not yet) an obvious reason
why the crust should be stretched to the limit. It could, for example, be that plastic
flow relaxes the system (Chugunov and Horowitz, 2010). Or perhaps a sequence of
crust failures leads to deformations at smaller and smaller scales, making the system a
less efficient gravitational-wave emitter. These issues lead us to the obvious question: Is
there a minimum deformation we should expect in a realistic neutron star? Interestingly,
the answer is (at least, in principle) yes, and as so often is the case in astrophysics the
explanation is the magnetic field.

The (interior) magnetic field tends to deform a star and this should lead to some
level of gravitational-wave emission, It is easy to see why this has to be the case.
A predominately dipolar field, as required to explain pulsar spin down, is axisymmetric,
but if the magnetic axis is misaligned with the spin-axis the associated deformation will
not be aligned with the centrifugal bulge and hence will radiate gravitational waves.

Unfortunately, the magnetic deformation tends to be small for typical pulsar field
strengths. A simple energy argument—based on comparing the magnetic energy to the
gravitational potential energy—leads to (Haskell et al., 2008)

ε ∼
∫

B2dV
GM2/R

≈ 10−12
(

B
1012 G

)2

. (14.66)

One would expect any magnetic deformation to be small as the neutron star has a
tremendous self-gravity. However, it is the internal, rather than the external magnetic
field that counts. This means that we have little guidance from the dipole field inferred
from pulsar spin down. We need the internal configuration and this is a tricky issue. For
example, the above estimate assumes a normal fluid core while real neutron stars are
expected to harbour a proton superconductor (see Chapter 12). This complicates the
picture, but it could be good news as superconductivity may lead to larger asymmetries.
Basically, the stresses in a type II superconductor are different (as the field is carried by
quantized fluxtubes; see Glampedakis et al. (2011)). Simplistically, this leads to (Cutler,
2002)

ε ≈ 10−9
(

B
1012 G

)(
Hc

1015 G

)
, (14.67)
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where Hc ≈ 1015 G is the so-called critical field. The main problem is that we really do
not know what the internal magnetic field configuration is.

In order to illustrate the problem, we take as our starting point the equation for
hydrostatic equilibrium and add the Lorentz force associated with the magnetic field.
This leads to

∇p + ρ∇� = f L, (14.68)

where, if we assume ideal magnetohydrodynamics (ignore the displacement current in
Ampère’s law),

f L = j × B = 1
4π

B × (∇ × B), (14.69)

with j the charge current and B the magnetic field. We also have the usual Poisson
equation for the gravitational potential. For a barotropic model, we can introduce the
enthalpy

∇h = 1
ρ

∇p , (14.70)

which means that the left-hand side of (14.68) can be written as a gradient, and we must
have

∇ ×
(

f L

ρ

)
= ∇ ×

[
B × (∇ × B)

ρ

]
= 0. (14.71)

Meanwhile, the Maxwell equation

∇ · B = 0 , (14.72)

(the statement that there are no magnetic monopoles) implies that the magnetic field
only has two degrees of freedom. Working in cylindrical coordinates {� ,ϕ,z}, we can
introduce a pair of scalar stream functions u(� ,z) and f (� ,z) and write an axisymmetric
field in a form that is automatically divergence-free:

B = 1
�

[∇u × ϕ̂ + f ϕ̂
]
. (14.73)

The assumed axisymmetry requires f ϕ
L = 0, which in turn leads to the functional

dependence f = f (u). Then it is easy to show that

f L = ρ∇M, (14.74)

where M = M(u) is another scalar function (which makes (14.69) an identity).
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Using (14.73) in (14.74) to calculate f L leads to the so-called Grad–Shafranov
equation, which governs the hydromagnetic equilibrium in the star’s interior (see, for
example, Lander and Jones (2009)):

∂2u
∂� 2 − 1

�

∂u
∂�

+ ∂2u
∂z2 = −4πρ� 2 dM

du
− f

df
du

. (14.75)

In this equation, the two functions M(u) and f (u) may be freely specified (up to
requirements of regularity and symmetry). Through specific choices one may introduce
restrictions on the equilibrium solutions.

If we want to understand the meaning of particular choices, it is instructive to express
Ampère’s law in terms of the stream functions:

∇ × B = 4π

c
j = df

du
B + 4πρ�

dM
du

ϕ̂. (14.76)

The first term on the right-hand side describes the force-free part of the current while
the second term represents a purely azimuthal plasma flow.

In order to determine a magnetic equilibrium configuration, it is common to use the
vector identity for axisymmetric systems

�

sinϕ
∇2

(
usinϕ

�

)
=

(
∂2

∂� 2 − 1
�

∂

∂�
+ ∂2

∂z2

)
u, (14.77)

and rewrite the Grad–Shafranov equation as a ‘magnetic Poisson equation’ involving the
Laplace-type operator:

∇2
(

usinϕ

�

)
= −

(
f
�

df
du

+ 4π�ρ
dM
du

)
sinϕ. (14.78)

We need to solve this equation together with the usual equations for a barotropic fluid
equilibrium. This is typically done using the iterative method that was originally designed
to determined rotating equilibria (see, for example, Stergioulas and Friedman (1995)).
Crucially, the calculation must account for the back reaction of the magnetic field on the
fluid. It is not sufficient to solve for the field holding the fluid configuration fixed.

The nature of the magnetic equilibrium depends heavily on how we specify the
toroidal function f (u). In calculations where the exterior is assumed to be vacuum—
which would seem a natural starting assumption—one can fit f (u) inside the last closed
poloidal field line (ensuring the absence of exterior currents) by using (Tomimura and
Eriguchi, 2005)

f (u) =
{

a(u − uint)
ζ u > uint,

0 u ≤ uint ,
(14.79)
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Figure 14.7 An illustration of a typical twisted torus magnetic field equilibrium. The direction of
poloidal field/current is illustrated with lines and toroidal-field/current magnitude are shown as colour
scales. The numerical domain is expressed in units of the stellar radius R. Left: The magnetic field
configuration, with ζ = 0.1 (see (14.79)) and with a vacuum exterior (∇ × B = 0); no exterior current
or toroidal field. The magnetic energy contained in the toroidal field component is about 3% of the total
magnetic energy. Right: The electric current distribution, j/c = ∇ × B/4π , for the magnetic equilibrium
shown in the left-hand panel. (Reproduced from Glampedakis et al. (2014).)

where a and ζ are constant and uint is the value of the stream function associated with
the last closed poloidal line. An example of this ‘twisted torus’ equilibrium is shown
in Figure 14.7 (left panel) for the specific choice ζ = 0.1 (chosen to give the strongest
possible toroidal field; the value of the amplitude a sets the overall scale and is of less
importance). The corresponding current distribution is shown in the right panel of
Figure 14.7. It is easy to see that the currents are confined to the star. Meanwhile, the
poloidal field extends from (most of) the interior to the exterior. The poloidal component
is strongest in the centre and only vanishes in a small region at the edge of the star (seen
as the pair of semicircular contours on the equator at r/R ≈ 0.8). The toroidal field is
contained within the small region where the poloidal field vanishes.

Within this scheme we can work out the deformation associated with a given magnetic
field configuration. The results tend to confirm rough estimates like (14.66). As we are
not dealing with a uniform field, it is natural to quantify the result in terms of an average.
For example, we may use the volume average

B̄2 = 1
V

∫
B2dV , (14.80)

(where the integral includes the external field). For a purely poloidal field, we then have
(Lander and Jones, 2009)

ε ≈ 5 × 10−12
(

B̄
1012 G

)2

, (14.81)
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while a purely toroidal field leads to

ε ≈ −3 × 10−12
(

B̄
1012 G

)2

. (14.82)

The sign indicates that the toroidal configuration is prolate rather then oblate. This will
be of interest to us later.

What do these estimates mean for the observational effort? We immediately see that
we need the average magnetic field to be very strong (∼ 1015 G) in order for the magnetic
deformation to be competitive with the maximum allowed elastic one. But a neutron star
with such a strong external magnetic field would rapidly spin down and exit the sensitivity
band of ground-based interferometers (Stella et al., 2005). If we assume a typical radio
pulsar magnetic field, then the magnetic deformation will be too small to ever be detected
through gravitational waves. We need nature to be less conservative.

Of course, the magnetic field results come with a range of caveats. Most importantly,
numerical work (Lander and Jones, 2012) suggests that most (perhaps all) configurations
we can build are unstable. This is a problem. The issue could be related to the toroidal
contribution to the field. It is generally expected (based on stability analyses) that
one would need a significant toroidal field component to stabilize the configuration.
But in models obtained from the Grad–Shafranov approach, the toroidal component
appears to be bounded (typically to less than 10% of the overall field). Of course,
we have made a number of assumptions. Perhaps it is not appropriate to use ideal
magnetohydrodynamics. Indeed, it cannot be if the star’s interior is superconducting
(Glampedakis et al., 2011). Perhaps we should not assume that the equation of state
is a barotrope. Indeed, if we relax this assumption, then one can imagine stratification
providing an additional force to balance the magnetic contribution (Mastrano et al.,
2011; Glampedakis and Lasky, 2016). Perhaps we should not assume that the star is
in equilibrium. Strictly speaking, it will not be. A neutron star evolves (cools) due to the
emission of neutrinos. Perhaps we have simply not been sufficiently imaginative in our
choice of the magnetic stream functions.

The discussion of magnetic ‘mountains’ also leads us to an observational question.
How large can we expect a neutron star magnetic field to be?

14.7 The birth of a magnetar

Magnetars are young and strongly magnetized neutron stars with intriguing phe-
nomenology (Kaspi and Beloborodov, 2017). They burst and flare across the spectrum,
from X-rays to gamma rays. While many of the details remain to be understood, their
activity can be explained by the evolution of a super-strong magnetic field, that stresses
and fractures the crust as it untwists (Thompson and Duncan, 1995). The typical activity
ranges from millisecond X-ray bursts to month-long outbursts and occasional, incredibly
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powerful, gamma-ray flares. Since the first discovery of such a system—SGR0526-66,
which exhibited an enormous flare on 5 March 1979 (Barat et al., 1983)—the population
of observed magnetars has grown to about 30 (Olausen and Kaspi, 2014). Recent
evidence provides a link to highly magnetized radio pulsars and there are, in fact, objects
that bridge the two classes (Rea et al., 2012).

With an inferred (exterior) magnetic field of order 1014 − 1015G, a magnetar rapidly
spins down to a period of several seconds (in 104 years or so). In effect, even though
they may have interestingly large asymmetries from the gravitational-wave point-of-view,
they are likely to be outside the sensitivity band of any current (or future) ground-based
detector. However, these systems may make up as much as 10% of the young neutron star
population in the Galaxy. In essence, if we assume that they are born in supernovae—
an assumption supported by the association between several magnetars and observed
supernova remnants—then the magnetar birth rate could be as large as a tenth of the
supernova rate. If this is the case, then one would expect a magnetar to be born in our
Galaxy every few hundred years. It would not be a regular event.

In a slightly different context, the birth of a magnetar has been used to explain
observed light curves of superluminous supernovae and some gamma-ray bursts (Kasen
and Bildsten, 2010). The idea is simple. An additional source of energy input—over an
extended period of time—is needed to explain the observed evolution of the brightness
and/or the light curve. Sustained injection of energy from a hypothesized central engine
would explain the observed features. As the formation of a strong magnetic field requires
some kind of dynamo action, it is generally agreed that magnetars should be born rapidly
spinning. Magnetic dipole radiation would drain the star of rotational energy, injecting
energy into the surroundings. While the details of the scenario remains to be worked
out, the idea seems plausible, and if the star is born rapidly spinning, gravitational-wave
emission may also influence the evolution.

If we apply our estimates for a rotating deformed neutron star to this scenario, we
can estimate how large the gravitational-wave component is allowed to be before the
model is no longer viable. Assuming the magnetar model, we can connect the required
extra energy and timescale to the initial magnetic field, B, and the initial spin frequency,
ν0. These quantities then provide initial conditions for the evolution. This leads to a
constraint on the allowed ellipticity (Ho, 2016). We must have

ε < 10−4
(

B
1014 G

)(
1 kHz

ν0

)
. (14.83)

If the deformation is larger than this, then the light curve would be strongly affected,
leading to a significant decrease in peak luminosity and the time it takes to reach this peak.
Constraints for different observed systems are shown in Figure 14.8. These constraints
are (obviously) not as tight as those obtained from direct pulsar searches, but they are
nevertheless interesting.



OUP CORRECTED PROOF – FINAL, 30/10/2019, SPi

Modelling accretion 339

0.6
1012

1013

1014

B
 (

G
)

1015

GW ellipticity

1016

0.8 1 2
P0 (ms)

4 6

τmag =
 τdiff

τmag =
 1 yr

8 10

GRB
SN

Figure 14.8 Constraints on the allowed quadrupole deformation ε as a function of the initial neutron
star spin period P0 and the magnetic field B. The dashed line indicates when the magnetic spin-down
timescale is equal to 1 yr. Circles represent P0 and B for observed superluminous supernovae while
triangles are data for GRBs. (Reproduced from Ho (2016).)

14.8 Modelling accretion

A neutron star’s magnetic field dictates the general spin evolution. It is also key to how
the neutron star interacts with its environment. In particular, the magnetic field may
determine the flow of matter accreted onto the star. This problem is of great importance.
First of all, the accretion of angular momentum from a binary partner may spin a neutron
star up. We need to understand the accretion torque if we want to explain the origin of
the fastest observed pulsars (Alpar et al., 1982; Radhakrishnan and Srinivasan, 1982).
Secondly, the accreted matter may be channeled onto the star’s magnetic poles and if
the magnetic field is misaligned with the spin-axis, then this may provide a mechanism
for deforming the star. Hence, accreting fast-spinning neutron stars may be interesting
gravitational-wave sources (Vigelius and Melatos, 2010). We have already argued (see
Chapter 6) that gravitational-wave emission may balance the accretion torque. We are
now going to complicate the story by showing that the magnetic field may put a brake
on the spin-up, as well.

In order to outline the role of the magnetic field in the accretion problem, we consider
the interaction between a geometrically thin disk and the neutron-star magnetosphere.
The basic picture is that of a rotating magnetized neutron star surrounded by a



OUP CORRECTED PROOF – FINAL, 30/10/2019, SPi

340 Building mountains

R0R

Figure 14.9 A schematic illustration of the accretion problem for a magnetically threaded disk. In the
phenomenological model discussed in the main text, we take R0 to be equal to RM from (14.86). More
detailed calculations suggest that this is reasonable (up to a factor of order unity).

magnetically threaded accretion disk (Ghosh and Lamb, 1978); see Figure 14.9 for
a schematic illustration. In the magnetosphere, accreting matter follows the magnetic
field lines and gives up angular momentum on reaching the surface, exerting a spin-up
torque. The material torque at the inner edge of the disk (taken to be the point where
the magnetic pressure begins to dominate the fluid pressure) is usually approximated by
(Ghosh and Lamb, 1978, 1979)

J̇ = Ṁ
√

GMRM, (14.84)

where the magnetosphere radius, RM, is given by

RM =
(

μ4

2GMṀ2

)1/7

, (14.85)

and μ ∼ BR3 is the magnetic dipole moment (with B the strength of the star’s dipole
field). This leads to

RM ≈ 7.8
(

B
108 G

)4/7 (
R

10 km

)12/7 (
M

1.4M�

)−1/7 (
Ṁ

ṀEdd

)−2/7

km . (14.86)

Clearly, this torque can be significantly stronger than the rough estimate from Eq. (6.43)
if RM � R. In order to see whether this is likely to be the case, we need to estimate the
accretion rate. An approximation of the maximum accretion rate follows from balancing
the pressure due to spherically infalling gas to that of the emerging radiation. This leads
to the Eddington limit

ṀEdd ≈ 1.5 × 10−8
(

R
10 km

)
M� yr−1, (14.87)
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which would correspond to an X-ray luminosity

Lx = η
GMṀ

R
≈ 1.8 × 1038η

(
M

1.4M�

)(
Ṁ

ṀEdd

)
erg/s (14.88)

(where the efficiency factor η is usually taken to be 1, in absence of a more detailed
understanding). From these estimates we see that, for accretion at a fraction εeff of the
Eddington rate, e.g. Ṁ = εeff ṀEdd, the magnetic field must be accounted for (in the
sense that RM > R) as long as it is stronger than

B ≥ 1.6 × 108ε
1/2
eff G. (14.89)

Since observations indicate that rapidly rotating neutron stars have magnetic fields of
order 108 G, and many transient low-mass X-ray binaries accrete with εeff ∼ 0.01, the
magnetic field may well play a role in these systems.

The magnetosphere radius is not the only important scale in the problem. Outside the
co-rotation radius,

Rc ≈ 17
(

P
1 ms

)2/3 (
M

1.4M�

)1/3

km, (14.90)

the field lines rotate faster than the local Keplerian speed of the disk matter, resulting in
a negative torque. In fact, if RM > Rc the accretion flow will be centrifugally inhibited
and matter may be ejected from the system. This will happen if the spin period becomes
very short, or the rate of flux of material onto the magnetosphere drops. It is known as
the propeller regime. In this phase, accreting matter is flung away from the star, leading
to a spin-down torque. In order to account for this effect we alter the material torque
(Ho et al., 2014)

J̇ = ṀR2
M[�K (RM)− �] = ṀR2

M�K (1 − ωs)

= Ṁ
√

GMRM

[
1 −

(
RM

Rc

)3/2
]

, (14.91)

where � is the angular frequency of the star, �K is the angular velocity of a particle in a
Keplerian orbit

�K (r) =
(

GM
r3

)1/2

, (14.92)

and the so-called fastness parameter is given by ωs = �/�K . Even though this expression
only accounts for the propeller regime in a phenomenological way, it agrees with the
expectation that accretion will not spin the star up beyond the point RM = Rc (White
and Zhang, 1997). The model is now able able to explain why an accreting system would
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attain equilibrium before the star reaches the breakup limit. Simply setting RM = Rc, we
find the equilibrium period

Peq ≈ 0.30
(

B
108 G

)6/7 (
R

10 km

)18/7 (
M

1.4M�

)−5/7 (
Ṁ

ṀEdd

)−3/7

ms, (14.93)

or the limiting spin frequency

νeq ≈ 530
(

B
108 G

)−6/7 (
R

10 km

)−18/7 (
M

1.4M�

)5/7 (
Ṁ

ṀEdd

)3/7

Hz. (14.94)

It is clear that, in order to reach a spin rate of several 100 Hz, we need the star to have a
weak magnetic field and accrete at a high rate.

Conversely, given an observed spin period and mass accretion rate we can (assuming
that the system has reached equilibrium) deduce the neutron star’s magnetic field. In
order to carry out this exercise, we need both the spin and an estimate of the accretion
rate. The spin is, quite naturally, the easiest to determine. For X-ray pulsars, we can
use the measured pulse frequency. Many of the observed low-mass X-ray binaries are
not pulsars, but we nevertheless have a handle on the spin rate through observed burst
oscillations (assumed to be associated with explosive burning in the neutron star ocean;
see Patruno and Watts (2012)). Finally there are systems which exhibit neither pulsations
nor burst oscillations, but where high-frequency (kHz) quasiperiodic oscillations are
observed. There has been suggestions that the separation of observed pairs of frequencies
is related to the star’s spin, but this identification is not particularly reliable (Watts et al.,
2008).

The accretion rate can be estimated from X-ray observations. However, the luminosity
can be highly variable. It is clear that the estimated equilibrium period is shortest when the
accretion rate is highest (alternatively, for a given spin rate, when the inferred magnetic
field is maximal). Hence, we may perhaps assume that the observed spin rate is the
equilibrium period associated with the maximum accretion rate for a given source, even
for sources that are transient or highly variable. After all, the main contribution to the
spin-up torque ought to be associated with the phase where the star accretes at the
fastest rate.

If we combine the observed data with the assumed mass and radius for a canonical
neutron star (1.4M� and 10 km) we infer magnetic fields similar to those of millisecond
radio pulsars for low-mass X-ray binaries accreting at the level of 10−2ṀEdd and below
(Andersson et al., 2005a). The model does not do quite so well for systems accreting with
Ṁ ≈ ṀEdd for an extended period. In these cases the estimated magnetic fields appear
to be too large. This may hint towards an additional spin-down torque in systems that
accrete near the Eddington rate, possibly the presence of a gravitational-wave torque.

Are observations consistent with the idea that these systems are in magnetic spin
equilibrium? The answer is not clear. Overall, the model works well, but it does not
completely explain observations. In the case of two systems, XTE J1751−305 (which
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spins at 435 Hz) and IGR J00291+5934 (which spins at 599 Hz), we have sufficient
data to carry out a ‘consistency’ check. In these systems, a strong spin-up during an
outburst of accretion has been observed to be followed by a slow drop-off in the spin.
This behaviour would be naturally explained in terms of a dramatic rise in the accretion
torque during the initial outburst and standard magnetic dipole spin-down in between
outbursts. Within this scenario we can constrain each star’s magnetic field—both from
the accretion model and the dipole braking. If the results are consistent, there would be
no need to invoke an additional gravitational-wave torque.

This argument leads to the results in Figure 14.10. The vertical bands show the
inferred magnetic field from the observed spin-down rate along with the level of
theoretical uncertainty. If the spin up of the neutron star is the result of accretion,
then the magnetic field can be inferred from the associated torque. The magnetic field
inferred from (14.84) is shown as dotted lines in Figure 14.10. Of course, the simple
accretion torque does not account for the magnetic field threading the accretion disk.
The more realistic torque estimate (involving the fastness parameter ωs) from (14.91)
is shown as solid lines and cross-hatched regions. We see that the accretion torque
produces a spin-up rate significantly below the observed one for both XTE J1751−305
and IGR J00291+5934. This suggests that our understanding of the problem remains
incomplete. Of course, an additional gravitational-wave spin-down torque would not help
solve the problem.
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Figure 14.10 The inferred magnetic field of XTE J1751−305 (left) and IGR J00291+5934 (right)
as determined by the observed spin-down rate, spin-up rate, and fastness parameter ωs. The observed
spin-down rate (with 90% uncertainty) following an outburst produces the vertical band. The observed
spin-up rate (with 90% uncertainty) during outburst is represented by the horizontal band. The dotted
and solid lines show the maximum calculated spin-up rates due to accretion torques (14.84) and
(14.91), respectively. The magnetic field determined by ωs = 1 is inferred from the point where the solid
line crosses the bottom axis. (Reproduced from Andersson et al. (2014).)
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As we consider these issues, we need to keep in mind that the model is phenomeno-
logical. In order to do better, we have to resolve a number of issues. First of all, the
description of the accretion problem is inconsistent since our various estimates, e.g., of
the size of the magnetosphere, are based on spherical infall of matter. The model can
be improved, albeit at the cost of introducing several new (largely unknown) parameters.
For example, we need a description of the viscosity in the disk. Viscosity is the main agent
that dissipates energy and angular momentum, enabling matter to flow inwards. Since the
microphysical viscosity (likely due to the magneto-rotational instability in some form; see
Chapter 20) is difficult to determine, it is common to use the so-called α-viscosity from
Shakura and Sunyaev (1973). This introduces an unknown parameter. Moreover, in the
case of a magnetically threaded disk, we can improve the description of the interaction
between the disk flow and the magnetic field. Figure 14.9 provides a schematic illustration
of the problem. To develop a more precise model of this complicated physics problem is
not a simple task. Basically, one would expect the magnetic field to influence the infalling
matter over a range of radii, as in Figure 14.9. This means that we should replace RM with
some appropriate average value R0 (say). In order to determine this average, we need to
estimate the radius at which magnetic stresses balance the actual material stresses in the
disk. This is tricky, but most calculations suggest that the phenomenological model fares
rather well. One typically finds that R0 ≈ ξRM, with ξ of order unity (Wang, 1995). The
upshot of this is that the estimated spin equilibrium will involve unknown factors, but as
long as these factors are of order unity our estimates may not change very much.

14.9 The low-mass X-ray binaries

Fast-spinning neutron stars are found either as radio millisecond pulsars or in their
(presumed) progenitor systems, accreting neutron stars in low-mass X-ray binaries. As
we have outlined, accretion theory predicts the spin-up of these systems (Alpar et al.,
1982; Radhakrishnan and Srinivasan, 1982). It also suggest that, due to magnetic field
channeling, the matter flows onto hotspots on the star, and the majority of accreting
neutron stars should pulsate and be seen as accreting X-ray pulsars. This expectation is
not brought out by observations. The total number of accreting millisecond pulsars is
only 19 out of about 200 non-pulsating low-mass X-ray binaries (Patruno and Watts,
2012). In addition, about half of these systems are nuclear-powered pulsars, exhibiting
short-lived ‘burst oscillations’ associated with runaway thermonuclear explosions on the
neutron star surface (see Table 14.1). A key problem concerns to what extent the spin
distribution of these accreting neutron stars can be reconciled with detailed accretion
torque models (White and Zhang, 1997; Andersson et al., 2005a).

The spin-distribution of known fast-spinning accreting neutron is shown in the right-
hand panel of Figure 6.3. The data hints at a clustering at the fastest observed spins
(Patruno et al., 2017). This may be suggestive of an additional braking torque operating
in these systems. Whatever the mechanism is that causes the clustering, it must set in
sharply when the stars reach a given spin rate. Gravitational-wave emission, which scales
with a high power of the spin frequency (ν5 for a deformed star) may lead to exactly
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Table 14.1 Accretion and nuclear-powered millisecond pulsars spinning faster than 200 Hz. Systems
above the horizontal line are seen as millisecond X-ray pulsars. Those below the line are
nuclear-powered systems exhibiting X-ray bursts. The estimated outburst duration 
t is given in days
and the average accretion rate 〈Ṁ〉 (in units of 10−10 M� yr−1) . We also list the distance d (in kpc) of
the system and the spin frequency νs (in Hz). The mass accretion rates is linked to the X-ray flux
through (14.115). Given the uncertainties associated with this relation, the estimates should be seen as
indicative. (Based on data from Haskell et al. (2015), where original references can be found.)

Source νs d 〈Ṁ〉 
t

IGR J00291+5934 599 5 6 14

Aql X-1 550 5 10 30

Swift J1749.4-2807 518 6.7 2 20

XTE J1751–305 435 7.5 10 10

SAX J1808.4–3658 401 3.5 4 30

IGR J17498–2921 400.9 7.6 6 40

HETE J1900.1–2455 377 5 8 3000

XTE J1814–338 314 8 2 60

IGR J17511–3057 244.9 6.9 6 24

NGC 6440 X-2 204.8 8.5 1 4

4U 1608–52 620 3.6 20 700

SAX J1750.8–2900 601 6.8 4 100

4U 1636–536 581 5 30 Persistent

EXO 0748–676 552 5.9 3 8760

KS 1731–260 526 7 11 4563

4U 0614+091 415 3.2 6 Persistent

4U 1728–34 363 5 5 Persistent

4U 1702–429 329 5.5 23 Persistent

this behaviour (Bildsten, 1998). However, this is a phenomenological argument. It is
entirely possible that the answer has nothing whatsoever to do with gravitational waves.
The accretion torque may simply become much less efficient as soon as the star reaches
above 500 Hz, perhaps due to wind emission.

Additional observational evidence suggests that some of these systems might, in fact,
lack a magnetosphere strong enough to affect the dynamics of the plasma in the accretion
disk. Recent searches for pulsations in several low-mass X-ray binaries have found no
evidence for accretion-powered pulsations (Messenger and Patruno, 2015). It is difficult
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to reconcile this observation with the presence of a magnetosphere strong enough to
channel the matter flow (and hence impact on the accretion torque). This would argue
against a pure accretion explanation for the observed spins. But this might be problematic
also for the gravitational-wave argument. If no magnetosphere (or a very weak one)
is present, then we have to use the torque (14.84). The change in spin scales linearly
with the amount of mass transferred and the neutron star keeps spinning up (not even
spinning down during quiescence, since the pulsar spin-down mechanism from magnetic
dipole radiation is also suppressed—in contrast with observations). Moreover, if there
is no magnetosphere, then the accretion flow does not lead to asymmetries on the star’s
surface and therefore one may not expect the system to develop the deformation required
for gravitational-wave emission (although oscillation mode instabilities, see Chapter 15,
can still play a role and frozen-in compositional asymmetries may lead to the neutron
star being deformed).

With these caveats in mind, let us turn to one of the possible mechanisms for forming
a significant quadrupole moment in an accreting neutron star. The idea is simple (even
though the details are not): during an accretion phase, matter—originally composed
of light elements—is compressed to higher densities where it undergoes a series of
nuclear reactions (Haensel and Zdunik, 2003). An asymmetric accretion flow may lead
to inherited asymmetries in the internal composition, which in turn deform the star.
An approximate expression for the quadrupole due to asymmetric crustal heating from
nuclear reactions in the crust is given by (Ushomirsky et al., 2000):

Q22 ≈ 1.3 × 1035
(

R
10 km

)4 (
δTq

105 K

)(
Q

30 MeV

)3

g cm2, (14.95)

where δTq is the quadrupole component of the temperature variation due to nuclear
reactions and Q is the reaction threshold energy. Higher threshold energies correspond
to reactions at higher densities. In general, the reactions will heat the region by an amount
(Brown and Bildsten, 1998)

δT ≈ 106C−1
k p−1

d Qn
M22 K, (14.96)

where Ck is the heat capacity per baryon (in units of the Boltzmann constant kB), pd
is the pressure (in units of 1030 erg cm−3) at which the reaction occurs, Qn is the heat
released per baryon (in MeV) deposited by the reactions, and 
M22 is the deposited
mass (in units of 1022 g). Note that (14.96) gives the total increase in temperature. Only
a small fraction of this is likely to be asymmetric and associated with the quadrupole
moment. The estimates of Ushomirsky et al. (2000) suggest that δTq/δT ≤ 0.1, but the
true ratio is not known.

As the system returns to quiescence after an accretion outburst, the deformations
decay on the crust’s thermal timescale (Bildsten, 1998)

tth ≈ 0.2 p3/4
d yr. (14.97)
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If the system is in quiescence longer than this, the quadrupole deformation is erased
before the next outburst. Meanwhile, a shorter recurrence time could lead to an
additional accumulation of material. It is also entirely plausible that composition asym-
metries are frozen into the crust and not erased on a thermal timescale. Such a scenario
would predict the formation of large quadrupoles in all transient systems (with 1038 �
Q � 1040 g cm2). However, this level of gravitational-wave induced spin-down is already
excluded by measurements between outbursts in four transient systems (SAX J1808.4–
3658, XTE J1751–305, IGR J00291+5934, and SWIFT J1756.9–2508; see Patruno and
Watts (2012)). The detectability of typical transient systems is indicated in Figure 14.11.
The results suggest that thermal mountains on neutron stars in transients will be
challenging to detect (even with third-generation detectors, like the Einstein Telescope).
This conclusion accords with the detailed analysis of Watts et al. (2008).

The gravitational waves from transient accreting neutron stars may be difficult to
detect, but the associated energy loss could still be significant. Recent observations of the
pulsar J1203+0038 (Haskell and Patruno, 2017), which spins at 592 Hz and has been
observed to transition between a radio state (during which it is visible as a millisecond
radio pulsar) and a low-mass X-ray binary state (during which X-ray pulsations are
visible) are particularly interesting in this respect. Timing during the two phases shows
that the neutron star is spinning down at a rate 27% faster during the accreting phase than
during the radio phase. This is at odds with the standard accretion model. The increased
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Figure 14.11 Estimated gravitational-wave strain as function of frequency for deformed accreting
neutron stars in low-mass X-ray binaries. The data represents transient sources, for which the mountain
is the largest that can be created during an outburst, in the case of a shallow capture layer. Deep capture
layers lead to slightly weaker signals. The upper and lower ends of each detector band represent a
one-month and a two-year integration, respectively. (Based on data from Haskell et al. (2015).)
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spin-down rate would be compatible with gravitational-wave emission, perhaps due to
the creation of a ‘mountain’ during the accretion phase. This would require a quadrupole
moment (or ellipticity) (Haskell and Patruno, 2017)

Q22 ≈ 4.4 × 1035 g cm2 −→ ε ≈ 5 × 10−10, (14.98)

for canonical neutron star parameters. Thermal deformations at this level would be
consistent with the accretion history of the system. The corresponding gravitational-
wave strain h0 ≈ 6 × 10−28 (at a distance of 1.4 kpc) is, however, too weak to be detected
by current instruments (see Figure 14.11).

14.10 Magnetic field burial and confinement

A possible explanation for the absence of pulsations in many accreting systems is that
the magnetic field is buried by the matter flow. The problem of magnetic field burial
has been considered in detail for young neutron stars (Geppert et al., 1999; Ho, 2015)
following supernova fall-back accretion and in some simplified form also for accreting
neutron stars.

To get an idea to what extent this idea is viable for the much lower accretion rates
relevant for low-mass X-ray binaries, we can adapt the usual argument. We first estimate
the depth at which the field would be buried by balancing the timescale associate
with the inflowing matter to that of Ohmic dissipation (Geppert et al., 1999). We
then have

tflow = L
vr

, (14.99)

where L is a typical length scale of the problem, and in the case of accretion we have

vr = Ṁ
4πr2ρ

. (14.100)

Secondly, we need

tOhm = 4πσL2

c2 , (14.101)

where σ is the conductivity. If tflow < tOhm, the magnetic field is dragged along by the
inward flowing matter. The matter piles up faster than the field can diffuse out and
hence we have burial. If the accretion stops, the field emerges on the timescale (tOhm)
associated with the burial depth.
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As we do not expect the field to be buried deep, we consider the neutron star envelope
where the ions are liquid (the electrons are degenerate and relativistic). Then we have
(Geppert et al., 1999)

σ ≈ 9 × 1021
( ρ6

AZ2

)1/3
s−1, (14.102)

with ρ6 = ρ/(106 g/cm3). This leads to

tOhm

tflow
≈ 6 × 105 L5Ṁ/ṀEdd

r2
6ρ

2/3
6 (AZ2)1/3

, (14.103)

where ṀEdd ≈ 10−8M�/yr, A is the mass number of the nuclei and Z is the proton
number. As we are interested in the outer region it makes sense to consider Fe56, with
A = 56 and Z = 26. We can also set r6 = r/106 cm ≈ 1, as we are near the star’s surface.
Then we have

tOhm

tflow
≈ 2 × 104 L5

ρ
2/3
6

Ṁ

ṀEdd
, (14.104)

where L5 = L/105 cm.
We also need to know how the density increases with depth. As we only want a rough

estimate, we use the pressure scale height

H = p
ρg

, (14.105)

where the gravitational acceleration

g = GM
R2 , (14.106)

can be taken as constant. From Brown and Bildsten (1998) we take

H ≈ 265
(

2Z
A

)4/3

ρ
1/3
6 cm −→ ρ

2/3
6 ≈ 2 × 105H2

5 , (14.107)

with H5 = H/105 cm. Finally, it makes sense to let L ≈ H, so we are left with

tOhm

tflow
≈ 0.1H−1

5
Ṁ

ṀEdd
, (14.108)
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and we learn that the magnetic field is buried up to a density

ρburial ≈ 7 × 1010
(

Ṁ

ṀEdd

)3

g/cm3. (14.109)

This estimate agrees well with (extrapolations of) more detailed models (Geppert et al.,
1999).

We also have

Lburial ≈ Hburial ≈ 8 × 103
(

Ṁ

ṀEdd

)
cm, (14.110)

which means that, once accretion stops, the field will re-emerge after

tOhm ≈ 1010
(

Ṁ

ṀEdd

)2

s. (14.111)

That is, the field will emerge a few hundred years after a star accreting at the Eddington
rate goes into quiescence. This may be an indication of the lifetime of an accretion-
induced asymmetry.

We also need to know how long it takes to bury the field in the first place. Somewhat
simplistically, this follows from the accreted mass corresponding to the estimated burial
depth. This is roughly given by


M ≈ 4πρburialR2H ≈ 4 × 10−6
(

Ṁ

ṀEdd

)4/3

M�, (14.112)

and we see that it would also take a few hundred years to bury the field at the Eddington
accretion rate. Lower accretion rates, such as those of many of the observed systems
(see Table 14.1), would lead to a more shallow burial, and the field being buried and
re-emerging on much shorter timescales.

These estimates obviously come with several caveats. A number of complicating
factors may come into play, like possible plasma instabilities and the tension of the
internal magnetic field, which can lead to sharp gradients and reduce the typical length
scale L, thus reducing the amount of mass and the timescale needed for burial. However,
the general scenario should still apply. A modest level of accretion may lead to a
shallow field burial, with the magnetic field re-emerging shortly after a system goes into
quiescence.

An interesting— potentially highly relevant—question concerns what happens when
the external magnetic field is squeezed inside the crust. Intuitively, one might expect
accretion to deform the magnetic field. As matter is accreted and spreads towards the
equator it drags the field with it, compressing it. This could lead to a locally strong field
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that may sustain a ‘magnetic’ quadrupole deformation (Vigelius and Melatos, 2010).
The quenching of an external dipolar field, Bext, follows from (Haskell et al., 2015)

Bext = B∗
(

1 + Ma

Mc

)−1

, (14.113)

where Ma is the accreted mass. This leads to a mass quadrupole

Q22 ≈ 1045 A
(

Ma

M�

)(
1 + Ma

Mc

)−1

g cm2, (14.114)

where A ≈ 1 is a geometric factor that depends on the equation of state and the accretion
geometry, while Mc is the critical amount of accreted matter at which the mechanism
saturates. The size of the generated mountain is strongly dependent on the strength
of the magnetic field when accretion begins, B∗. Observations of both low-mass X-
ray binaries and millisecond radio pulsars suggest exterior fields of order Bext ≈ 108

G. Estimates suggest that one would need an initial field B∗ ≈ 1012 G in order for the
emitted gravitational waves to be detectable with Advanced LIGO (or even the Einstein
Telescope). The presence of such strong internal magnetic fields in the low-mass X-ray
binaries seems unlikely.

14.11 Persistent sources

We have argued that transient accreting systems are unlikely to develop detectable
asymmetries. The situation may be different for persistently accreting sources. In such
systems, ongoing accretion may lead to the build-up of mountains close to the breaking
strain of the crust. However, that level of deformation would comfortably exceed the
torque balance limit (see Chapter 6). As a result, one should perhaps not expect these
systems to be rapidly spinning. The problem is that we do not know! The spin frequency
of many of the persistent accretors is not known. When it comes to gravitational-wave
searches, this make the problem computationally expensive.

We can estimate the gravitational-wave strain using the observed (bolometric) X-ray
flux F, which follows from

Ṁ = 4πRd2F
GM

, (14.115)

where d is the source distance. Combining this with the gravitational-wave luminosity
from the quadrupole formula (as in Chapter 6), we have

h0 = 3 × 10−27
(

F
10−8 erg cm−2 s−1

)1/2 ( νs

300 Hz

)−1/2
(14.116)
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(for canonical neutron star parameters). Basically, if we accept the assumptions involved,
then the gravitational-wave signal strength depends only on two observables; the X-ray
flux and the neutron star spin rate. In the case of Sco X1, one of the brightest X-ray point
sources in the sky, we have F = 3.9 × 10−7 erg cm−2 s−1. Assuming that gravitational
waves are emitted at twice the spin frequency (at a frequency f = 2νs), we then have

h0 ≈ 3.4 × 10−26
(

f
600 Hz

)−1/2

. (14.117)

This estimate is compared to the current best sensitivity LIGO searches in Figure 14.12.
In essence, we learn that only a few of the persistently bright neutron stars, accreting at

rates near the Eddington limit, are likely to be within reach of Advanced LIGO. Moreover,
we need them to emit gravitational waves at a rate matching that of the accretion torque.
Given that the latter is poorly understood, it should (by now) be clear that this is a
challenging problem that requires further work. We need to advance the theory and at
the same time design clever search strategies.

The most sensitive results in Figure 14.12 are based on a semi-coherent search method
using details of a parameterized continuous model signal to combine data separated by
less than a specified coherence time (Abbott et al., 2017l). This allows the analyst to dig
into the noise below the level of sensitivity of an individual data segment. The current
upper limit is a factor of a few above the predicted torque balance. Future observing runs
should improve on this limit. The most important enhancement will come with better
detector sensitivity. Longer observation times will help, but for this search method the
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Figure 14.12 Upper limits from directed searches for gravitational waves from Sco X1 in O1 LIGO
data. The data show upper limits on h0, after marginalizing over the neutron star spin inclination. The
dashed line shows the nominal expected level assuming torque balance (14.116) as a function of the
(unknown) frequency. For comparison, the most sensitive cross-correlation results (CrossCorr), results
from the Viterbi analysis of Abbott et al. (2017k) (dark green dots), and the radiometer analysis of Abbott
et al. (2017b) (broad light magenta curve) are also shown. (Reproduced from Abbott et al. (2017l),
Creative Commons Attribution 3.0 licence.)
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effective amplitude scales as T1/4
obs . Given this weak scaling, there is an obvious trade-off

between the assumed coherence time and computational cost.

14.12 Free precession

So far we have discussed gravitational waves from rotating deformed neutron stars,
radiating at twice the spin frequency. In many ways, this is an idealized situation. The
gravitational-wave signal from an asymmetric spinning star may be more complicated. In
fact, one would generically expect (from basic classical mechanics) a rotating rigid body
to undergo free precession. It would not be too surprising if neutron stars were found to
be precessing, too. And if we find that they are not, then this could provide insight into
their interior structure (Jones and Andersson, 2001). Hence, it is useful to understand
(the basics of) the free precession problem.

We know from the discussion in Chapter 6 that we can write the moment of inertia
tensor of any asymmetric rigid body as a spherical piece and a part representing the
deformation. In the case of an axisymmetric body, this leads to

Iij = I0δij + 
(ni
dnj

d − δij/3), (14.118)

where the unit vector ni
d points along the body’s symmetry axis (here taken to be the

ê3-axis, as in Figure 14.13). The principal moments follow from I1 = I2 = I0 − 
/3 and
I3 = I0 + 2
/3, where 
 = I3 − I1 is negative for a prolate body and positive for an oblate
one. It follows that the angular momentum is related to the angular velocity according to

J
θ̂

θw

Ω

ê1

ê2

nd= ê3

Figure 14.13 A schematic illustration of a body undergoing free precession. The ‘reference plane’
contains the deformation axis ni

d (ê3 in this case), the angular velocity vector �i , and the fixed angular
momentum Ji. The angle θw is known as the wobble angle.
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Ji = (I0 − 
/3)�i + 
ni
d(nj

d�j) = I1�
i + 
ni

d(nj
d�j), (14.119)

and we see that the three vectors Ji,�i and ni
d must be coplanar, as in Figure 14.13. Given

that the angular momentum is fixed, this reference plane must revolve around Ji. As a
consequence, free precession can be parameterized by the angle θw between ni

d and Ji.
This is known as the wobble angle. For a nearly spherical body the angle θ̂ between �i and
Ji is much smaller than the wobble angle. If 
 � I0 we have (Jones and Andersson, 2001)

θ̂ ≈ 


I1
sinθw cosθw. (14.120)

Note that, for a prolate body, θ̂ + θw < θw, as in Figure 14.13.
Let us now denote the unit vector along the angular momentum by ni

J. Then we can
decompose the angular velocity in such a way that

�i = φ̇ni
J + ψ̇ni

d. (14.121)

Since the angular momentum is constant (= Jni
J) we find from (14.119) that

J = I1φ̇, (14.122)

and

ψ̇ = −


I3
φ̇ cosθw. (14.123)

That is, the symmetry axis ni
d rotates about Ji along a cone of half-angle θw with angular

frequency φ̇. This is the inertial precession frequency and the period P = 2π/φ̇ is the
spin period. At the same time, the body spins about the symmetry axis ni

d at the angular
velocity ψ̇ . This is usually referred to as the body-frame precession frequency. The
corresponding period,

Pfp = 2π

ψ̇
, (14.124)

is the free precession period. For a nearly spherical body, Eq. (14.123) shows that ψ̇ � φ̇,
or equivalently P � Pfp. Slightly deformed stars should undergo long-period precession.

Since astrophysical neutron stars tend to rotate significantly below the break-up limit,
and crustal deformations are expected to be very small, it is natural to simplify the analysis
by making the approximations of a small wobble angle and a nearly spherical star. Then
Eqs. (14.120) and (14.123) become



OUP CORRECTED PROOF – FINAL, 30/10/2019, SPi

Free precession 355

θ̂ ≈ 


I0
θw, (14.125)

and

ψ̇ ≈ −


I0
φ̇ . (14.126)

Moving on to the gravitational waves emitted from a precessing body, we need to
generalize the quadrupole formula results from Chapter 6. As in the simpler case, it is
useful to take advantage of the fact that the moment of inertia tensor Iîĵ is constant in the
body frame (Zimmermann and Szedenits, 1979). After cranking through the algebra of
the transformation (from the body frame to the inertial frame), we find that the energy
carried away from the wobbling neutron star is given by

dE
dt

= 2G
5c5 
2φ̇6 sin2 θw(cos2 θw + 16sin2 θw). (14.127)

In the case of a small wobble angle we have

dE
dt

≈ 2G
5c5 
2φ̇6θ2

w. (14.128)

We see that, in the limit of a vanishing wobble angle (θw → 0) there will be no
gravitational-wave emission. This makes sense since the body is then spinning around
the ê3-axis, which makes the situation axisymmetric. If, on the other hand, we take the
limit θw → π/2, then the body spins around the ê1-axis and we retain the result (6.24)
from before. We simply need to identify ε2I2

0 = 
2 and � = φ̇.
When it comes to working out the actual gravitational-wave signal, the problem turns

out to be both simpler and more difficult than the evaluation of the radiated energy. The
problem is easier because we need only two time derivatives of the moment of inertia
tensor and the wave amplitude is linear in the components rather than quadratic. At the
same time, the problem is more involved since we require information about the location
of the observer relative to the source. This means that the rotational transformation,
e.g. in terms of the Euler angles θ , φ, and ψ from Figure 14.14, appears explicitly in the
calculation. We also need to introduce a new parameter, the observer’s inclination angle i.

Again working out the algebra, we arrive at (Zimmermann and Szedenits, 1979)

h+ = 2G
φ̇2

rc4 sinθw

[
(1 + cos2 i)sinθw cos2φ + sin i cos i cosθw sinφ

]
, (14.129)

and

h× = 2G
φ̇2

rc4 sinθw [2cos i sinθw sin2φ + sin i cosθw sinφ] . (14.130)
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ê3

θ

ψ

φ

Figure 14.14 The two coordinate systems used in the description of a freely precessing body. The
inertial coordinate system has basis vectors êx, êy, and êz, while the body frame is represented by basis
vectors ê1, ê2, and ê3. The Euler angles θ , φ, and ψ which relate the two coordinate systems are defined
as in the illustration. The line ON represents the line of nodes formed by the intersection of the
êx − êy-plane and the ê1 − ê2-plane. Note that the angle θ is equal to the wobble angle θw in the free
precession problem.

We see that, for small wobble angles, the radiation is dominated by the contribution
at the spin frequency. This is an important lesson. Observers need to be aware of the
possibility that the strongest signal may not be found at twice the spin-frequency (Jones
and Andersson, 2002; Jones, 2010). However, we also see that, if the body flips over to
become an orthogonal rotator (θw → π/2), then this contribution vanishes and we retain
our previous results. Finally, as the wobble angle is likely to be small, we can use the
order-of-magnitude estimate

h ≈ 2G
φ̇2

rc4 θw, (14.131)

to asses the relevance of a precession signal (Jones and Andersson, 2002).
The question is if there is any evidence that real neutron stars are precessing. Sure, on

theoretical grounds one would expect free precession to be generic in spinning bodies,
but nature may not care too much about our theorizing. Indeed, it turns out that the
expectation is not brought out by observations. Radio observations tell us that pulsars do
not tend to undergo long period free precession. Nevertheless, there are a few cases where
the precession interpretation would seem to fit the data. The best evidence is provided by
PSR B1828-11, which spins with a frequency of 2.5 Hz and exhibits timing variability
that may be explained as slow precession (Stairs et al., 2000). Since the discovery,
several regular cycles have been observed; see Figure 14.15. The data show a strong
periodicity at about 500 and 1,000 days. A possible explanation for the two periodicities
is that the magnetic dipole is very nearly orthogonal to the star’s deformation axis (Jones
and Andersson, 2001; Link and Epstein, 2001). In this case, both the phase- and the
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Figure 14.15 Observed timing variability of PSR B1828-11 through 14 years of observations. The
regular behaviour may be interpreted as evidence for free precession. (Adapted from Ashton et al. (2016),
based on data from Lyne et al. (2010).)

amplitude modulations have significant components at 2ψ̇ . This scenario leads to an
inferred wobble angle in good agreement with the value estimated from the amplitude
modulation. Of course, for this scenario to apply, we need near-perfect orthogonality
between the deformation axis and the magnetic dipole axis.

While the PSR B1828-11 data may suggest a precessing pulsar, there are other expla-
nations. A likely alternative involves state switching in the pulsar magnetosphere, leading
to different spin-down rates (Lyne et al., 2010). This explanation is attractive as it also fits
the phenomenology of other systems. Moreover, if we want to interpret this kind of data
within the precession model, we need to appreciate that reality is more complicated than
we have so far pretended. Real neutron stars are not rigid bodies. In order to make the
model more realistic, we need to account for the fact that that mature neutron stars have
an elastic crust shielding a (compressible) fluid core (Jones and Andersson, 2001). The
core fluid is made up of (at least in the outer region) a viscous electron–proton plasma
coexisting with a neutron superfluid. The crust itself may contain a (potentially pinned)
neutron superfluid. The star’s magnetic field will thread the core, in a way which depends
on the properties of the superfluid phase. In principle, the core will couple to the crust
through friction. The free precession of this kind of system is much more complicated
than that of a rigid body. A key issue concerns the moment of inertia associated with
superfluid vortices, which may change the effective oblateness of the star by an enormous
factor (Shaham, 1977; Jones and Andersson, 2001). If a significant fraction of the crust
superfluid is pinned, corresponding to a few percent of the star’s total moment of inertia,
then the effective oblateness parameter will be of order unity, and we will have Pfp ∼ P.
That is, the precession period would be similar to the spin period. There is currently no
evidence for such behaviour from observations, but the simple argument should provide
motivation for further investigation of the possibility.

14.13 Evolution of the wobble angle

Having derived an estimate of the energy loss due to gravitational-wave emission, it is
natural to ask what the back-reaction on the precessing motion may be. We already know
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from the case of eccentric binaries (see Chapter 5) that this question is likely to be non-
trivial. In the case of a body spinning around the principal axis associated with the largest
moment of inertia it was clear that the energy lost to gravitational radiation had to spin
the object down. In the more general case, when the body is precessing, the emitted waves
will also affect the wobble angle. As we will now show, the wobble angle generally decays
much faster than the star spins down.

Let us begin by writing down the spin-down timescale, i.e. the timescale on which φ̇

changes. Since we have J = I1φ̇, and J is conserved, it follows that

φ̈ = J̇
I1

= Ė

I1φ̇
= −2G

5c5


2

I1
φ̇5 sin2 θw(cos2 θw + 16sin2 θw), (14.132)

where we have noted that the gravitational waves drain energy from the motion and we
have also used the general relation (6.8), i.e. Ė = φ̇J̇. Moreover, we have assumed that
the energy carried away by the radiation—given by (14.127) or (14.128)—correponds
exactly to that given up by the local motion. This should be true in our simple case but
one still has to be careful with this ‘flux-balance’ argument (Cutler and Jones, 2001).

It is straightforward to see that the timescale on which the star spins down is

tsd =
∣∣∣∣ φ̇φ̈

∣∣∣∣ ≈ 5c5

2G
I0


2

1

φ̇4θ2
w

, (14.133)

in the limit of a small wobble angle.
In order to estimate the timescale on which the wobble angle evolves, we note that the

precessing system is completely described by J and θw. Assuming that E = E(J,θw) we
then have

Ė =
(

∂E
∂J

)
θw

J̇ +
(

∂E
∂θw

)
J
θ̇w. (14.134)

Hence, we have

θ̇w = Ė

[
1 − 1

φ̇

(
∂E
∂J

)
θw

](
∂E
∂θw

)−1

J
. (14.135)

Considering that the kinetic energy of the system is given by (6.6), we have

E = J2

2I1

(
1 + 


I1
cos2 θw

)
, (14.136)
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from which we can work out the required partial derivatives. This leads to (since the
gravitational waves cary energy away from the system)

θ̇w = Ė

I0φ̇2

cosθw

sinθw
≈ −2G

5c5


2

I0
φ̇4θw. (14.137)

The result shows that gravitational-wave emission always leads to a decreasing wobble
angle, regardless of whether the deformation is prolate or oblate. Moreover, the timescale
for alignment, tw = θw/θ̇w, is much faster than the spin-down

tw ≈ θ2
wtsd. (14.138)

Parameterizing the alignment timescale we find that

tw = 1.8 × 106
(

1045gcm2

I0

)(
10−7

ε

)2 (
P

1ms

)4

yr . (14.139)

For example, for a star with ε ≈ 10−7, a canonical moment of inertia I0 = 1045gcm2,
and fast spin P = 1 ms, this corresponds to damping in 6 × 109 free precession periods.

If we ignore the gravitational waves the star would, once excited, precess forever. The
motion of a real star will, of course, be different. Comparing our estimates to the damping
rate due to various friction mechanisms (which we discuss in Chapter 15), it is easy to see
see that the gravitational radiation reaction is unlikely to be the dominant driver of align-
ment in any neutron star of physical interest. A number of dissipation mechanisms will
act to damp the precession. Understanding this internal damping is important because
it impacts on observations. It is also an interesting question in principle, and it turns out
that the outcome may be surprising. This becomes apparent as soon as we consider the
general timescale associated with internal dissipation. Key to the argument is the simple
fact that viscosity drains energy from the system—it involves the conversion of mechan-
ical energy into heat or radiation—but conserves angular momentum. This means that
we can assume that the angular momentum is nearly constant. That is, we have

θ̇w = Ė
(

∂E
∂θw

)−1

J
, (14.140)

where E now denotes the total energy of the deformed crust plus a possibly pinned
superfluid (say). Combining this with the precession model, we have

θ̇w = Ė

φ̇2θwI0εeff
. (14.141)

This result has an interesting implication. If the amount of superfluid pinning is
negligible, then we have I0εeff ≈ 
. For oblate deformations, we know that 
 > 0 and we
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see that θw decreases. This is as expected. However, in the case of a prolate deformation
we have 
 < 0, and hence the wobble angle will increase as energy is dissipated (Jones,
1976). As discussed by Cutler (2002), this would eventually lead to the body becoming
an orthogonal rotator. The question is whether there are situations where the deformation
of a real neutron star is prolate.

Making contact with the discussion of the magnetic field, a strong toroidal field could
provide the prolate deformation we need for the spin flip. One can estimate that the
toroidal field must be (Cutler, 2002)

Bt ≥ 3.4 × 1012
(

f
300 Hz

)2

G, (14.142)

in order for the (prolate) magnetic deformation to overcome the (oblate) one due to
crustal stresses. This is likely too strong for the mechanism to act in fast-spinning
accreting stars, but it may be relevant for a young magnetar (Dall’Osso et al., 2018).
The question then is whether the viscous timescale can be short enough, compared to
the fast spin-down, that the star may actually become an orthogonal rotator (Lasky and
Glampedakis, 2016).

The problem of determining the rate at which energy is dissipated from the precession
motion shares many aspects with the problem of viscous damping of neutron star
oscillations. This makes sense since free precession can be viewed as a mode of oscillation
of the system, and the damping is directly associated with the induced fluid flow
(Sedrakian et al., 1999). Given this connection we need to consider dissipative aspects
of neutron star fluid dynamics in more detail, and we will do this in the context of the
gravitational-wave driven r-mode instability.
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The r-mode instability

The dynamics of rotating stars are of obvious relevance to gravitational-wave astronomy.
One can think of many different astrophysical scenarios in which the oscillations of a star
may be excited to a significant level. These range across the life of a neutron star—from
its violent birth in a core-collapse supernova to the formation of a hot, rapidly spinning,
remnant at the end of binary inspiral. They may also involve different instabilities.
Of particular interest may be the gravitational-wave driven Chandrasekhar–Friedman–
Schutz (CFS) instability (see Chapter 13). The mere notion that the gravitational waves
that drive an oscillation mode unstable in the first place may be detectable is intriguing.

We have already seen that the (l > 2) fundamental f-modes would become unstable in
(Newtonian) neutron stars spinning close to the break-up rate. This instability has been
studied in considerable detail—and we will summarize the state of the art in Chapter 18—
but we already know that it is unlikely to provide an explanation for the apparent speed
limit for astrophysical neutron stars. The f-mode instability sets in at too high a rotation
rate. However, this does not mean that the CFS scenario does not play a role. In fact,
the inertial r-modes are likely to become unstable at lower spin rates (Andersson, 1998;
Friedman and Morsink, 1998; Lindblom et al., 1998; Andersson et al., 1999a). As a result
the instability of these modes may dominate, even though they are (in principle) less
efficient gravitational-wave emitters.

In retrospect, the instability of the r-modes may seem obvious. We have already shown
that the mode frequency is negative in the rotating frame and positive in the inertial frame
(see Chapter 13). Hence, the modes satisfy the CFS instability criterion for all rotation
rates. Nevertheless, the implications of this were overlooked for a long time, possibly due
to an ‘unconscious bias’ that mass multipoles dominate the gravitational-wave emission.
Be that as it may, we now know that the r-modes are an interesting source of gravitational
waves and different aspects of the problem continue to be explored (Andersson and
Kokkotas, 2001; Ho et al., 2011a).

There are several reasons why it is worth discussing the r-mode problem in detail. The
intricate balance between gravitational-wave emission—which drives the instability—and
various damping agents—which serve to suppress it—provides insight into the physics
of the star’s interior. This is important, as the outcome depends on equation of state
issues beyond the assumed pressure-density relation (for chemical equilibrium). We need

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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to consider a range of transport properties for supranuclear matter. In addition, it is
interesting to ask how astrophysical observations, e.g. in X-rays and radio, constrain the
instability scenario and how this influences our understanding of the theory.

15.1 The instability window

Once you identify the presence of an instability, it makes sense to ask whether it has any
actual physical relevance. We have learned that the r-modes are unstable at all rates of
rotation in a perfect fluid star. In principle, this implies that—unless nature intervenes—
such stars should not be able to rotate. The unstable modes would grow, radiate more
gravitational waves, and spin the star down. However, this is not reality. The fact that an
instability is present in principle does not mean that it is important in practice.

First of all, we need to establish that the instability grows fast enough to be relevant.
Intuitively, one may expect the r-mode instability to be weak since the associated fluid
motion does not involve large density variations and therefore should not be associated
with strong gravitational waves.

In order to estimate the relevant instability timescales we assume that the mode-
solution is well represented by the non-dissipative perturbation equations (Ipser and
Lindblom, 1991). Then we use these solutions to evaluate the effect of various dissipation
mechanisms, adding their respective contributions to the rate of change of the mode
energy, dE/dt. Finally, we verify that the first assumption is justified by checking that the
estimated growth/damping times are considerably longer than the oscillation period of
the mode.

Assume that the r-mode eigenfunctions are proportional to exp(−t/td), with td the
timescale associated with a specific dissipation mechanism. Then recall that the mode-
energy follows from the square of the perturbation, which means that

dE
dt

= −2E
td

, (15.1)

where

E ≈ 1
2

∫
ρ|δv|2dV ≈ l(l + 1)

2
ω2

r

∫ R

0
ρ|Ul |2dr, (15.2)

with Ul the r-mode eigenfunction from Chapter 13, is the energy of an r-mode measured
in the rotating frame and ωr is the corresponding frequency (recall that, for a barotropic
model, there will be a single r-mode for each l = m; see Chapter 13). Next, introduce a
suitable normalization—in terms of a dimensionless amplitude α—such that

δv ≈ α�R
( r

R

)l
YB

ll e
iωr t, (15.3)

where YB
ll is the magnetic multipole from (13.61).
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This way we can determine the r-mode energy for any given stellar model. If we
focus our attention on the simple case of an n = 1 polytrope, which is useful as we can
obtain simple scaling relations in terms of the stellar parameters (Lindblom et al., 1998;
Andersson et al., 1999a), we have

E ≈ 1051α2
(

M
1.4M�

)(
R

10 km

)2 ( νs

1 kHz

)2
erg, (15.4)

where M and R are the mass and radius of the star, respectively, and νs is the star’s
spin frequency. For simplicity, we only keep the leading order terms in (15.4) and the
dissipation integrals below. We also assume the Cowling approximation, as this simplifies
the analysis (although one has to be careful, as density variations play a key role in
estimates of the bulk viscosity).

As a first step towards establishing the relevance of the r-mode instability, let us
show that the modes grow on an astrophysically interesting timescale. This is, essentially,
an exercise in applying the post-Newtonian multipole formulas from Chapter 13. The
energy change from the mode (in the rotating frame) follows from

dE
dt

= −ωr

ωi

dE
dt

∣∣∣∣
gw

. (15.5)

We have already argued that the leading contribution to the r-mode emission comes
from the current multipoles. After inserting the leading order eigenfunction in the
relevant current multipole term, we find that

dE
dt

∣∣∣∣
gw

≈ −4l2Nlω
3
r ω2l+1

i

∣∣∣∣
∫ R

0
ρrl+1Uldr

∣∣∣∣
2

, (15.6)

with Nl given by (13.84). This leads to an estimated growth timescale for the instability
of the l = m = 2 r-mode (Andersson et al., 1999a)

tgw ≈ −47
(

M
1.4M�

)−1 (
R

10 km

)−4 ( νs

1 kHz

)−6
s, (15.7)

where the sign indicates that the mode is unstable. The timescale increases by roughly one
order of magnitude with each l, so higher order multipoles lead to significantly weaker
instabilities.

The main lesson from (15.7) is that the unstable r-modes grow fast enough that the
instability could be relevant for astrophysics (a few tens of seconds is considerably shorter
than the typical evolutionary timescale for a mature neutron star). This is encouraging,
but we still have work to do. In a real star, a number of mechanisms compete with the
instability and prevent it from growing. Unfortunately, many of the relevant mechanisms
involve physics that is poorly understood and difficult to model in a realistic fashion.
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Conversely, the instability may provide a probe of these unknown aspects. This would
be exciting as it may allow us to constrain the physics.

Let us (first of all) explore the possibility that the r-mode instability is active in a
newly born neutron star. In order for the r-modes to be relevant they must then grow
fast enough that they are not completely damped out by shear- and bulk viscosity. These
are due to rather different physical mechanisms and hence we consider them in turn.

At relatively low temperatures (below a few times 109 K) the main viscous dissipation
in a fluid star arises from momentum transport due to particle scattering. This leads to
friction that can be modelled in terms of a macroscopic shear viscosity. The effect of
shear viscosity on the r-modes can be estimated from (Lindblom et al., 1998; Andersson
et al., 1999a)

dE
dt

∣∣∣∣
sv

= −2
∫

ηδσ ijδσ ∗
ij dV , (15.8)

where η is the viscosity coefficient and the shear, δσij , associated with the perturbed fluid
motion is given by

δσij = iωr

2

(
∇iξj + ∇jξi − 2gij∇kξ

k
)

, (15.9)

with ξ i the fluid displacement. After working out the angular integrals we are left with

dE
dt

∣∣∣∣
sv

= −ω2
r l(l + 1)

{∫ R

0
η|∂rUl |2dr + (l − 1)(l + 2)

∫ R

0

η

r2 |Ul |2dr
}

. (15.10)

In order to make use of this result, we have to know the density dependence of the
viscosity coefficient.

Above the transition temperature at which the neutron star becomes superfluid
(several times 109 K; see Chapter 12), the appropriate viscosity coefficient is due to
neutron–neutron scattering (Flowers and Itoh, 1976, 1979; Cutler and Lindblom, 1987;
Andersson et al., 2005b). We then have

ηn = 2 × 1018
(

ρ

1015 g/cm3

)9/4 (
T

109 K

)−2

g/cms, (15.11)

which leads to an estimated shear-viscosity damping timescale

tsv ≈ 6.7 × 107
(

M
1.4M�

)−5/4 (
R

10 km

)23/4 (
T

109 K

)2

s (15.12)

(assuming that the star is isothermal). This estimate is expected to be relevant for the first
months of the life of a hot young neutron star. As soon as the core temperature drops
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sufficiently that the neutrons in the star’s core become superfluid, the neutron–neutron
scattering is suppressed. The above viscosity coefficient must then be replaced by

ηe = 6 × 1018
(

ρ

1015 g/cm3

)2 (
T

109 K

)−2

g/cms, (15.13)

which follows from an analysis of electron–electron scattering. This leads to

tsv ≈ 2.2 × 107
(

M
1.4M�

)−1 (
R

10 km

)5 (
T

109 K

)2

s. (15.14)

We see that superfluidity changes the shear viscosity timescale by a factor of a few, but it is
clear that—for sufficiently rapidly spinning stars and moderate (to high) temperatures—
gravitational-wave emission drives the r-mode growth faster than shear viscosity can
damp it.

At high temperatures (above a few times 109 K) bulk viscosity is the dominant
dissipation mechanism. Bulk viscosity arises as the oscillation drives the fluid away from
beta equilibrium. It corresponds to an estimate of the extent to which energy is dissipated
from the fluid motion as weak interactions try to re-establish equilibrium. The energy
lost through bulk viscosity is carried away by neutrinos. Bulk viscosity is a resonant
mechanism, which becomes very strong when the typical timescale associated with the
mode is similar to that of the reactions. In effect, this leads to rapid damping in a specific
temperature range which sensitively depends on the involved reactions (and the matter
composition).

We have seen that we can estimate the shear viscosity timescale from the leading order
contribution to the fluid motion. This is not the case for the bulk viscosity. In order to
assess its relevance we need the Lagrangian density perturbation and for the r-mode this
arises at a higher order in �. Explicitly, we need

dE
dt

∣∣∣∣
bv

= −
∫

ζ |δσ |2dV , (15.15)

where δσ is the expansion associated with the mode. In the standard case, where
β-equilibrium is regulated by the modified Urca reactions, the relevant bulk viscosity
coefficient is (Sawyer, 1989)

ζ = 6 × 1025
(

ρ

1015 g/cm3

)2 (
T

109 K

)6 ( ωr

1 s−1

)−2
g/cms. (15.16)

In order to evaluate the integral in (15.15), we need

δσ = −iωr
�ρ

ρ
, (15.17)
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where �ρ is the Lagrangian density variation associated with the mode. However,
this means that we have to work out the spheroidal corrections to the (predominantly
toroidal) r-mode. Since these arise at the same order in the slow-rotation expansion as
the centrifugal change in shape of the star, the calculation of the bulk viscosity is quite
messy (Lindblom et al., 1999). Accounting for the various effects (although still in the
Cowling approximation) we arrive at the estimate (Andersson et al., 1999a)

tbv ≈ 2.7 × 1011
(

M
1.4M�

)(
R

10 km

)−1 ( νs

1 kHz

)2
(

T
109 K

)−6

s. (15.18)

At this point it is worth making two comments. First, the proton fraction in the
star’s core may be large enough to make direct Urca reactions possible. In this case,
the bulk viscosity coefficient becomes significantly larger than (15.16). However, this
is unlikely to happen in the outer regions where the r-modes are mainly located (recall
that Ul ∼ rl+1). Due to the density factors in the different integrands the main r-mode
damping originates in the star’s outer core. As a result, one would not expect the direct
Urca reactions to be particularly important for the r-mode instability. The second point
concerns very hot stars. At high temperatures, the star is no longer transparent to
neutrinos. This basically shuts off the bulk viscosity. However, a newly born neutron star
is likely to cool too fast for this low-viscosity region to be relevant for the development
of an instability.

Equipped with these estimates we can address the main issue of interest: Should we
expect the r-mode instability to be relevant for astrophysical neutron stars? Well, it is
easy to see that the modes will only be unstable in a certain temperature range. To have
an instability we need tgw to be smaller in magnitude than both tsv and tbv. This leads to
the notion of an instability window, often illustrated by the critical rotation period above
which the mode is unstable as a function of temperature. We simply find the relevant
critical rotation rate by solving for the roots of

1
2E

dE
dt

= 1
tgw

+
∑ 1

tdiss
= 0, (15.19)

throughout the relevant temperature range. This typically leads to the result illustrated
in Figure 15.1.

From our estimates we find that shear viscosity will completely suppress the r-mode
instability at core temperatures below 105 K. Similarly, bulk viscosity will prevent the
mode from growing in a star hotter than a few times 109 K. In the intermediate region
there is a temperature window where the growth time due to gravitational radiation is
short enough to overcome the viscous damping and drive the mode unstable.

If we take our estimated timescales at face value, then a nascent neutron star would
be unstable at rotation periods shorter than 25 ms. This is interesting, because the
critical rotation rate is rather low. Moreover, it is reminds us of the rotation period
we would infer for the Crab Pulsar at birth, P ≈ 19 ms (if we extrapolate the current
spindown and measured braking index back to 1054). However, the predicted instability
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Figure 15.1 Schematic illustration of the r-mode instability window. At low temperatures dissipation
due to shear viscosity counteracts the instability. At temperatures above a few times 109 K bulk viscosity
suppresses the instability. At very high temperatures the nuclear reactions that lead to the bulk viscosity
are suppressed and an unstable mode can, in principle, grow. This region is not shown since it may only
be relevant for the first few tens of seconds following the birth of a neutron star. The main instability
window is expected at core temperatures near Tc ≈ 109 K. Provided that gravitational radiation drives
the unstable mode rapidly enough, the instability may govern the spin-evolution of a hot young neutron
star. (Reproducing the instability window as discussed in the first work on the problem; Lindblom et al.
(1998) and Andersson et al. (1999a).)

window is problematic. If we focus on young neutron stars, then we also need to consider
the X-ray pulsar J0537-6910 which currently spins with a period of 16 ms (Marshall
et al., 1998). In this case we infer a birth spin in the range 6–9 ms, which would place
this object firmly inside the instability region. Moreover, when we consider accreting
neutron stars in low-mass X-ray binaries we find that many systems would have to
be unstable if the results illustrated in Figure 15.1 were the whole story (Ho et al.,
2011a). In order to resolve this conundrum, we need to consider the physics in more
detail.

15.2 Complicating factors

The ability of the r-mode instability to act in a realistic neutron star depends on the actual
state and composition of matter. As we add features to the model, the problem becomes
increasingly complex. Different aspects may depend on one another and—as much of
the involved physics is poorly known—one has to tread carefully. In order to illustrate this
point, we consider the impact of four specific improvements to the simple fluid model.
First of all, let us explore the role of the star’s elastic crust.
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15.2.1 The Ekman layer

The neutron star crust, which forms shortly after the neutron star is born, may have
significant effect on the oscillations of the star. In particular, if the crust is assumed to be
rigid, the viscous fluid motion must drop to 0 at the base of the crust. The same effect
is observed in any fluid in a rotating container (or after stirring a cup of tea!), so it is
not mysterious. Viscosity leads to the formation of a boundary layer close to the fluid–
solid boundary. This is the so-called Ekman layer (Bildsten and Ushomirsky, 2000). The
thickness of the boundary layer, δ, can be deduced by balancing the Coriolis force and
the shear viscosity:

δ ∼
(

η

ρ�

)1/2

, (15.20)

where η is the shear viscosity coefficient from (15.11). Putting numbers into this relation
we see that δ will typically be a few centimetres for a rapidly rotating neutron star (taking
the crust–core transition to be at about half the nuclear saturation density). In essence the
viscous boundary layer enhances the shear viscosity damping by a potentially decisive
factor. For an r-mode the dissipation timescale due to the presence of such an Ekman
layer would be very short (Bildsten and Ushomirsky, 2000):

tEk ≈ 830
(

T
109K

)( νs

1kHz

)−1/2
s. (15.21)

This effect overwhelms the standard shear viscosity and leads to all neutron stars with
a rigid crust being stable at rotation periods longer than roughly 5 ms. This would
go a long way towards reconciling the theory with observed accreting systems; see
Figure 15.8. However, as is often the case, the devil is in the detail. The rough estimate
of the boundary-layer damping does not hold up to closer scrutiny. We know from the
discussion in Chapter 12 that the neutron star crust is not rigid. In reality, the Coriolis
force will be strong enough that the crust takes part in the r-mode motion (Levin and
Ushomirsky, 2001). As a result, the viscous damping is weaker (depending on the extent
to which the core fluid ‘slips’ relative to the crust). The true dissipation may be (at least)
a factor of about a hundred weaker than (15.21).

The effect that the slippage has on the Ekman layer damping is indicated by the rough
estimate (Levin and Ushomirsky, 2001):

tEk ≈ 3 × 105
(

T
109K

)( νs

1kHz

)−1/2
s. (15.22)

We arrive at this estimate by taking the rigid Ekman layer estimate and assuming a
‘slippage’ factor Sc=0.05 (see Figure 1 in Levin and Ushomirsky (2001)). The impact of
this slippage factor is shown in Figure 15.8. However, there are additional complications.
As the spin of the star increases, the r-modes will undergo a series of so-called avoided
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crossings with shear modes in the crust (see Chapter 18). Close to such resonances,
the character of the r-mode changes and it may be more rapidly damped. This can
lead to sharp resonances and narrow horizontal regions of stability near the resonant
frequencies. The main lesson is that the shape of the instability window may be more
complicated than Figure 15.1 suggests.

15.2.2 Superfluid mutual friction

As the star cools, the formation of superfluids in the core brings additional degrees of
freedom (see Chapter 12) and new dissipation mechanisms. Of particular importance in
this respect is the so-called mutual friction (Alpar et al., 1984b). In the standard picture,
this mutual friction is linked to the fact that a superfluid rotates by forming a dense
array of quantized vortices. Combining the vortices with the superfluid entrainment,
due to which a momentum induced in one of the constituents causes some of the mass
of the other component to be carried along—see, for example, Eq. (12.86)—the flow of
superfluid neutrons around the quantized vortices induces a flow in a fraction of the
protons. This, in turn, leads to magnetic fields forming around the vortices. Mutual
friction encodes the dissipative scattering of electrons off of the magnetized vortices
(Mendell, 1991; Andersson et al., 2006).

Superfluid mutual friction has been shown to suppress the instability of the f-mode
in a rotating (Newtonian) star (Lindblom and Mendell, 1995) and it was originally
thought to be the dominant damping agent for the r-modes, as well. However, detailed
calculations show that the r-mode instability window is essentially unaffected by the
mutual friction (Lindblom and Mendell, 2000; Haskell et al., 2009). Intuitively, it is easy
to see why this should be so. To leading order in the slow-rotation approximation, the
r-mode remains close to its normal-fluid counterpart. The two fluid components move
in sync. This means that the mutual friction, which relies on the relative flow, requires an
analysis to second order in the slow-rotation approximation (including the centrifugal
deformation of the star). As the effect enters at higher orders, it makes sense that it is
weaker.

A careful analysis of the superfluid r-mode problem to the required order shows that
the mutual friction is unlikely to suppress the instability (Haskell et al., 2009). In order
to have significant effect, the dimensionless parameter, R, which describes the efficiency
of the dissipation, see (12.92), must be much larger than expected. This is clear from
the representative results in Figure 15.2. If our current understanding of the relevant
parameters is correct, then mutual friction has no real impact on the r-mode instability.
However, if for some reason, R is enhanced by a factor of 100 or so, the effect would be
significant. One possible reason for a stronger mutual friction could be the fact that the
neutron superfluid coexists with a proton superconductor (in which case friction could
arise through interactions between vortices and fluxtubes; see Epstein and Baym (1992)
and Link (2003), but this effect is difficult to quantify (Haskell et al., 2014)).

As in the case of the elastic crust, the superfluid problem has a level of fineprint that
remains to be understood. For example, along with the r-mode, a neutron star core has a
large set of superfluid inertial modes. These may exhibit resonances with the r-modes as
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Figure 15.2 The r-mode instability window for a superfluid neutron star with entrainment εp = 0.6
(see (12.86)) calculated as a function of the core temperature T and for a range of drag parameters R.
The results are for a canonical neutron star and relatively weak superfluidity (represented by a small
triplet pairing gap for the neutrons). For the expected value of the drag parameter,R ≈ 2 × 10−4, mutual
friction has no impact on the r-mode instability (left). However, if (for some reason) R is enhanced by a
factor of 100 or so the effect would be significant (right). (Based on the results of Haskell et al. (2009).)

the star cools. This could lead to more efficient damping (as the r-mode adopts features
of the mode it is in resonance with), leading to sharp vertical peaks of stability (Gusakov
et al., 2014).

15.2.3 Exotica: hyperons and quarks

The presence of exotic particles in the core of a neutron star may lead to significantly
stronger viscous damping than assumed in the standard instability analysis. Of particular
relevance may be the presence of hyperons or deconfined quarks, because in each case
one would expect fast nuclear reactions to operate. In fact, it has been suggested that
hyperon bulk viscosity would completely wipe out the r-mode instability (Lindblom
and Owen, 2002). However, the problem is multifaceted. The reactions that lead to
the claimed result would also efficiently cool the star, making neutron stars significantly
colder than observations suggest. The discrepancy can be avoided if the hyperons are
superfluid and the relevant nuclear reactions are quenched. But this would also suppress
the bulk viscosity. The current understanding is that the presence of hyperons would not
have a strong impact on the r-mode instability (Haskell and Andersson, 2010).

Interestingly, strong viscous damping could work in favour of the r-modes as a
gravitational-wave source. This is illustrated by the case of strange stars. The observa-
tional evidence for the existence of strange stars is tenuous, but they may exist if strange
matter is the most stable form of matter at high densities (Witten, 1984; Alcock et al.,
1986). The r-mode instability window is very different for deconfined quark matter
(Madsen, 1998). In particular, as in the case of the hyperons, the bulk viscosity of strange
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matter is many orders of magnitude stronger than its neutron star counterpart (and the
associated resonance happens at lower temperatures).

The shear viscosity damping is now given by (Madsen, 1998)

tsv ≈ 7.4 × 107
( αs

0.1

)5/3
(

M
1.4M�

)−5/9 (
R

10km

)11/3 (
T

109K

)5/3

s, (15.23)

where αs is the fine-structure constant for the strong interaction. Meanwhile, the situation
is more complicated for the bulk viscosity (which now is a result of the change in
concentration of down and strange quarks in response to the mode oscillation). For low
temperatures we have (Madsen, 1998)

tlow
bv ≈ 7.9

(
M

1.4M�

)2 (
R

10km

)−4 ( νs

1kHz

)−2
(

T
109K

)−2 ( ms

100MeV

)−4
s, (15.24)

where ms represents the mass of the strange quark. These results lead to the main
instability window being shifted towards lower temperatures. The suppression of the bulk
viscosity also opens up an additional unstable region at high temperatures (estimating
this region requires a more detailed calculation).

We learn that the r-mode instability would not—in contrast to the case for neutron
stars—be active in strange stars with a core temperature of 109 K. In a strange star
the r-modes are unstable at lower temperatures (between 105 and 5 × 108 K) and also
at temperatures above a few times 109 K. In principle, the instability would be active
for a brief period after a strange star is born. Then the mode would become stable until
thousands of years later when the star has cooled sufficiently to enter the low-temperature
instability window. An interesting consequence of shifting the instability window to lower
temperatures is that an accreting neutron star may heat up sufficiently that—while still
inside the instability region—it evolves to the part of the instability curve that increases
with temperature. This may lead to the formation of a persistent gravitational-wave
source (Andersson et al., 2002). The main lesson is that the details of the interior physics
may impact on the astrophysics phenomenology.

15.2.4 The magnetic field

Intuitively, one might expect the star’s (interior) magnetic field to significantly affect the
r-mode instability. However, given that neither the field configuration nor the state of
matter is particularly well understood, it is not so easy to quantify this expectation. In
order to address the problem we need to make progress on the modelling of the field
structure in the first place. Nevertheless, there has been a fair bit of work on r-modes in
magnetic stars. The efforts essentially fall into three categories.

First, we can ask what effect the magnetic field may have on the r-mode itself.
However, the problem of oscillating magnetic neutron stars is computationally complex.
Due to the combination of a spherical star with the cylindrical symmetry of the magnetic
field there is no natural set of basis functions one can use to decompose the various
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perturbations—one has to deal with large sets of coupled harmonics. Moreover, one
can argue that (at least in ideal magnetohydrodynamics; see Chapter 20) the problem
may have a continuous spectrum (Levin, 2007). If this is the case, then the usual stellar
oscillation strategy will fail.

We can estimate how strong the magnetic field has to be to affect r-mode motion. If we
treat the influence of the magnetic field as a small perturbation of the usual fluid mode
we find that (in the simple case of a uniform magnetic field aligned with the spin axis;
see Morsink and Rezania (2002))

ωr = − 2�

l + 1

{
1 − M

T
(l + 1)(2l + 3)

10

}
, (15.25)

where the ratio of magnetic to rotational energy is

M
T

≈ 5
6

B2R
M�2 ≈ 8 × 10−12

(
B

1012 G

)2 ( νs

1 kHz

)−2
, (15.26)

for canonical neutron star parameters. This estimate suggests that it may be safe to
ignore the impact of the magnetic field in most cases. Perhaps not surprisingly, we need
magnetar level field strengths for the correction to the mode frequency to be significant.
For example, for a field of 1014 G and a star spinning at 1 Hz we have M/T ≈ 0.1.

Second, the presence of a magnetic field penetrating the star’s crust into the fluid
core may change the dynamics of any viscous boundary layer. In essence, the magnetic
field should prevent slippage of the core fluid relative to the crust (at least in ideal
magnetohydrodynamics). This simple observation has not yet been incorporated in
actual models, but estimates show that the magnetic field may have decisive impact
(Mendell, 2001).

Third, the interaction between an unstable mode and the magnetic field may have an
interesting consequence. The r-mode fluid motion induces differential rotation which
leads to a winding up of the interior magnetic field (Rezzolla et al., 2000, 2001). In some
situations, where the initial field is strong enough, this may lead to the magnetic field
preventing the r-mode from growing further. The problem relies on the so-called Stokes
drift (due to which fluid elements undergo a secular drift when a wave is present in the
system), the magnitude of which depends on the latitude of the fluid element and the
r-mode amplitude. Key issues concern how the differential drift affects the magnetic
field of the star, and what the back reaction on the mode may be (Friedman et al., 2017).

15.3 A simple spin-evolution model

Having established that the r-modes may be unstable in real neutron stars, let us turn
to the problem of the evolution of the instability. Provided it can grow to a significant
amplitude, one would expect the instability to influence the spin-evolution of the star. At
the same time, the induced shear viscosity will heat the fluid. In order to get an idea of
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how this may work, we need a model that evolves the unstable mode along with the star’s
rotation and temperature. Such a model will necessarily be somewhat qualitative, but it
may still provide useful insights.

While the early growth phase of an unstable mode can be described by perturbation
theory, an understanding of many effects (such as the coupling between different modes)
that may eventually dominate the dynamics requires nonlinear calculations. As such
calculations are beyond reach (given the timescales involved; see Lindblom et al. (2001),
Lindblom et al. (2002), and Lin and Suen (2006)) we will try to capture the essential
features of the problem phenomenologically. Intuitively, one would expect the growth
of an unstable mode to be halted at some amplitude. As the mode saturates it seems
plausible that the excess angular momentum will be radiated away and the star will spin
down. This motivates a simple three-parameter description of a spinning star governed
by the r-mode instability—using the spin rate � (assumed uniform, for simplicity), the
mode-amplitude α, and the star’s core temperature T as the key quantities (Owen et al.,
1998; Ho and Lai, 2000).

We first of all consider the (canonical) angular momentum of the unstable mode (see
Chapter 13)

Jc = −3�α2J̃MR2

2
, (15.27)

where the dimensionless quantity J̃ is given by

J̃ = 1
MR4

∫ R

0
ρr6dr = 1.635 × 10−2, (15.28)

for an n = 1 polytrope (which we take as our base model throughout this discussion).
The angular momentum evolves as gravitational-wave emission drives the instability (on
a timescale given by tgw) while viscosity tries to damp the motion. In order to describe
the damping timescale we introduce

1
tdiss

= 1
tsv

+ 1
tbv

+ other dissipation terms. (15.29)

The evolution is then given by

dJc

dt
= −2Jc

(
1

tgw
+ 1

tdiss

)
(15.30)

(recall that the we use a negative timescale to indicate growth).
A second evolution equation follows from the total angular momentum of the system

J = I�+ Jc =
(
1 − Qα2

)
Ĩ�MR2, (15.31)
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where

Ĩ = I/MR2 ≈ 0.261 (15.32)

(again for an n = 1 polytrope) and Q = 3J̃/2Ĩ. The first term in (15.31) represents the
bulk rotation of the star and the second is due to the canonical angular momentum of the
r-mode. This representation makes sense since Jc corresponds to the change in angular
momentum due to the presence of the mode (in absence of viscosity or radiation).

Taking a time derivative of (15.31) we have

dJ
dt

= I
d�

dt
+ dJc

dt
+ N, (15.33)

where the last term allows us to include additional torques on the system, e.g. due to
electromagnetic dipole emission or accretion.

The two equations, (15.30) and (15.33), lead to the coupled system

dα

dt
= − α

tgw
− α

1 − Qα2

tdiss
− N

2I�
, (15.34)

and

d�

dt
= −2Q�α2

tdiss
+ N

I
. (15.35)

These equations govern the mode evolution in the phase where the amplitude of
the r-mode grows, as well as in the late phase where the temperature has decreased
sufficiently to make the mode stable.

We also need to account for the fact that the mode may heat the star as it stirs the
core fluid (noting that the viscosities are highly sensitive to temperature changes). This
heating must be combined with the gradual cooling expected as the star ages. Thus we
need an equation for the thermal energy. Combining the main mechanisms, we have

dEth

dt
= Cv

dT
dt

=
∣∣∣∣2Ec

tgw

∣∣∣∣ − Lν − Lγ + H, (15.36)

where Cv is the heat capacity (averaged over the star’s core), and

Ec = 1
2

α2�2MR2J̃ (15.37)

is the canonical energy of the r-mode (again; see Chapter 13). The two terms, Lν and
Lγ , represent cooling due to neutrino emission and photons radiated from the star’s
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surface, respectively, while H accounts for additional heating, e.g. due to nuclear burning
of accreted material.

Since they should be adequately described by perturbation theory, the early and late
parts of the evolution of an unstable mode are reasonably well understood. However,
we are mainly interested in the nonlinear phase as this is where the main spin-down
would occur. To make progress, we need to model this nonlinear regime. As a (somewhat
pragmatic) starting point we take the view that the mode-amplitude saturates at a critical
value αs ≤ 1, noting that αs = 1 would correspond to the r-mode carrying a large fraction
of the angular momentum of the system (Owen et al., 1998). This is easy to see from

∣∣∣∣ Jc

I�

∣∣∣∣ ≈ 3α2J̃

2Ĩ
≈ 0.1α2. (15.38)

If we assume that α stays constant throughout the saturated phase (which may not be
at all realistic), then we see from (15.35) that the star will spin down on the viscous
timescale (as long as we ignore external torques). Furthermore, ignoring the Qα2 term
in (15.34), as it is likely to be small, we see that we must have

∣∣tgw
∣∣ = tdiss throughout the

saturated phase. As the mode heating acts on the same timescale, the system may reach
thermal balance, in which case we have from (15.36)

∣∣∣∣2Ec

tgw

∣∣∣∣ =
∣∣∣∣2Ec

tdiss

∣∣∣∣ = Lν + Lγ (15.39)

(ignoring additional heating). For a given saturation amplitude αs, this provides a ‘heating
equals cooling’ curve in the �− T plane (Bondarescu et al., 2007)

αs =
(

tgw

�2MR2J̃

)1/2

(Lν + Lγ )1/2. (15.40)

If we want to use this result, we need a better idea of the luminosities. First of all,
we need the modified Urca neutrino emission process (which is likely to dominate the
cooling unless the star is massive), for which the luminosity is (Ho et al., 2011a)

Lν ≈ 7.4 × 1031
(

T
108 K

)8

erg s−1 (15.41)

(for canonical neutron star parameters). Meanwhile, the photon luminosity follows from
the effective surface temperature. In general, this leads to

Lγ = 4πR2σT4
eff , (15.42)

where σ is the Stefan–Boltzmann constant and R is the star’s radius. The left-hand side
can (at least sometimes) be inferred from X-ray observations. However, we need to relate
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this effective temperature to the core temperature used in (15.36). To do this, we make
assumptions about the outer regions of star. The composition of the star’s envelope is
important as this region acts as a heat blanket that shields the (generally hotter) interior
from the surface. The composition depends on the amount of accreted material. For an
isolated star (with an iron heat blanket), we have (Gudmundsson et al., 1983)

T ≈ 1.288 × 108

[(
Teff

106 K

)4 ( g
1014 cm s−2

)−1
]0.455

K, (15.43)

where

g = GM
R2

(
1 − 2GM

Rc2

)−1/2

≈ 2.4 × 1014 cm s−2 (15.44)

is the (redshifted) surface gravity (and the numbers relate to a canonical neutron star).
The result depends on the chemical composition as the thermal conductivity becomes
lower with increasing Z. Accreted envelopes composed of light elements are more
transparent (i.e. have higher Teff for a given T). The difference is, however, not expected
to be larger than about a factor of 2. Combining the results, we have

Lγ ≈ 9.8 × 1032
(

T
108 K

)4

erg s−1, (15.45)

and we see that the neutrino emission dominates the surface emission for stars with core
temperature above 2 × 108 K or so.

If we focus on the regime where neutrino emission dominates, and use the fact that

Lgw ≈ 4 × 1045
( αs

10−2

)2 ( νs

1 kHz

)8
erg s−1, (15.46)

we find that the heating balances the cooling when

νs ≈ 56
( αs

10−2

)−1/4
(

T
108 K

)1/2

Hz. (15.47)

The trajectory is not very sensitive to the saturation amplitude. This weak scaling is good
news given that the actual level of saturation is not well known.

Next, we can work out the typical spin-down timescale. In the saturated regime, we
have

dνs

dt
= −2Qα2

s νs

tgw
≈ −4α2

s

( νs

1 kHz

)7
s−2. (15.48)
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If we assume that the initial spin was much faster than the final one, νfinal, the spin down
takes place on a timescale

tsd ≈ 42
( αs

10−2

)−2 ( νfinal

1 kHz

)−6
s. (15.49)

For example, if we take νfinal = 50 Hz—as may be appropriate for the Crab Pulsar—
and assume αs = 10−2, then the spin-down would take about 10 years. Of course, if the
saturation amplitude is smaller then the spin-down timescale can be much longer. Each
order of magnitude decrease in αs increases the timescale by a factor of 100. This is
important, as it means that the spin-down may take place on a long timescale compared
to any gravitational-wave observation. The r-mode instability may effectively become a
continuous wave source.

We also see that (15.48) leads to a typical braking index for an r-mode evolution of
7, rather than the 3 that would be expected for pure magnetic dipole radiation or the
5 that would follow for a deformed star spinning down due to gravitational waves (see
Chapter 6). However, this result will change if the saturation amplitude is spin dependent.

Finally, by comparing the gravitational-wave torque in (15.35) to the standard
magnetic dipole result, i.e. taking

N ≈ −B2R6�3

6c3 , (15.50)

we find that magnetic braking dominates the gravitational-wave emission for

B > 3.5 × 1013
( αs

10−2

)( νs

1 kHz

)2
G. (15.51)

That is, the r-mode instability is unlikely to have a major impact on the spin-down of
young magnetars (Watts and Andersson, 2002).

We can also work out an upper limit on the allowed amplitude in the magnetar scenario
for superluminous supernovae and gamma-ray bursts discussed in Chapter 14. If we use
the gravitational-wave luminosity for r-modes we find that we must have (Ho, 2016)

α < 0.01
(

B
1014 G

)( ν0

1 kHz

)−2
, (15.52)

where ν0 is the initial spin frequency. If the r-mode is allowed to grow larger than this,
then the observed light curves would be affected, leading to a decrease in peak luminosity
and also the time it takes to reach this peak.

15.4 Nonlinear saturation

As we bring the phenomenological spin-evolution model to bear on the r-mode problem
we see that, not surprisingly, the key parameter is the saturation amplitude. Provided
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that αs is sufficiently large, the r-modes will rapidly spin down a young neutron star. If
we assume that the neutron star is born with core temperature above 1010 K and that it
initially spins at the Kepler limit, with νs of order 1 kHz, the r-mode instability comes into
play within a few seconds as the star cools and enters the instability window. The mode
then grows to the saturation level in a few minutes. Once the mode has saturated, the
star spins down. After some time, when the star has cooled (or spun down) sufficiently
that the r-mode is again stable, the mode amplitude decays and the star enters a phase
where magnetic braking takes over and dominates the spin-evolution. We already have
some idea of this evolution from the estimates in the previous section. Let us now try to
develop a more detailed picture.

The first studies of the r-mode instability assumed a saturation amplitude in the
range αs = 0.01 − 1 (Owen et al., 1998). As we have seen, this would lead to a newly
born neutron star spinning down on a timescale of a few weeks to months and the
associated gravitational-wave signal would potentially be detectable by Advanced LIGO
for sources in the Virgo cluster (at a distance of 15–20 Mpc). The question is if the
unstable mode can grow to such large amplitudes. The answer requires us to figure
out how nonlinear fluid dynamics enters the problem. One way to do this would be
to carry out fully nonlinear fluid simulations (Lindblom et al., 2001, 2002; Lin and
Suen, 2006). However, this approach is limited in two important ways. First of all, the
instability timescale (� minutes) is much longer than the typical dynamical timescale of
the fluid (∼ milliseconds). Secondly, multidimensional simulations are expensive so we
may not afford to resolve the physics we are interested in. In order to overcome the first
problem, we can artificially accelerate the gravitational-wave emission (by scaling G to a
large value). Such simulations have shown that an r-mode with amplitude α ≈ 1 would
create shocks on the stellar surface, and these shocks would sap energy from the mode
(Lindblom et al., 2001, 2002). However, if one introduces a more gentle driving of the
mode, then the effect becomes weaker (Arras et al., 2003) and the mode is expected to
saturate well before it reaches the amplitude where shocks form.

As the early phase of r-mode evolution should be well modelled by perturbation
theory, it makes sense to consider what happens at second order in the perturbation
amplitudes. In effect, we can consider the problem as a system of nonlinearly coupled
oscillators, where the r-mode is driven by radiation reaction but other modes may be
efficiently damped by viscosity. The mode-coupling problem can then be formulated as
a set of coupled ordinary differential equations for the amplitudes of the various modes
in the system.

The nonlinear mode-coupling problem is subtle. The unstable r-mode may couple
to a large number of other modes and the nature of these modes can be sensitive to the
physics of the neutron star core (in contrast to the r-mode itself, which is rather robust in
this respect). The most complete analysis (by Brink et al. (2005)) considers the coupling
between the r-mode and a very large network of inertial modes for an incompressible
star (including almost 5,000 inertial modes with nearly 150,000 direct couplings to the
r-mode).

The discussion is often framed in terms of the various mode amplitudes, parameter-
ized in such a way that
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Ea = MR2� |ca|2 , (15.53)

where the subscript a labels the different modes (not to be confused with a spacetime
index). As long as the problem remains weakly nonlinear, it can be formulated as a set
of coupled oscillators (Schenk et al., 2002; Arras et al., 2003),

ċa(t)− iωaca + γaca = −i
ωa

εa

∑
bc

κabccbcc, (15.54)

where κabc are coupling coefficients, γa encodes the driving/damping of each mode, εa is
the scaled mode energy, and ωa is the frequency. The strength of the coupling, and the
efficiency with which the r-mode drives a set of daughter modes, essentially depends on
(i) a set of selection rules following from symmetry, (ii) proximity to resonance, and (iii)
overlap integrals involving the eigenfunctions of the modes.

In the coupled system there exists, for each ‘parent’ mode, a threshold amplitude
below which there are no oscillations in the amplitude. Above this threshold, a parametric
instability excites two ‘daughter’ modes, as illustrated in Figure 15.3.. These grow until
they begin to influence the amplitude of the parent. The interplay between the modes
leads to a long-term evolution which is difficult to track. However, we can establish the
amplitude at which the three-mode coupling sets in (Arras et al., 2003),

|ca|2 = γbγc

4ωbωcκ2

[
1 +

(
δω

γb + γc

)2
]

, (15.55)

saturation amplitude

2. parametric instability 
drives stable modes 

1. unstable mode grows 
to threshold amplitude

3. modes reach saturation

t

ca

Figure 15.3 Schematic illustration of mode saturation due to nonlinear coupling. (Figure provided by
P. Pnigouras.)
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where δω = ωa − ωb − ωc is the detuning and κ2 encodes the coupling coefficients. It is
notable that the threshold amplitude does not depend on the growth rate of the parent
mode.

The fact that the daughter modes tend to have short wavelengths explains why the
mechanism is difficult to observe in nonlinear simulations. Given the coarse resolution
of a typical numerical grid the short wavelength oscillations may simply not be resolved.

The mode-coupling results allow us to predict the point at which nonlinear effects
become relevant, but they do not by themselves provide the saturation amplitude for
the r-mode instability. This is more complicated, as it is possible (perhaps even likely)
that the system is driven beyond the first three-mode threshold. If this happens, other
parametric instabilities come into play and the r-mode amplitude may end up exhibiting
large and unpredictable variations. This is a concern as it could make the signal difficult
to detect using a search based on theoretical templates.

Interestingly, the problem could end up being similar to that of the Fermi–Ulam pasta
(Arras et al., 2003), extensively studied since the 1950s. In that case, the numerical study
of a large set of coupled nonlinear oscillators led to surprises. It was originally expected
that the system would relax to equipartition, but instead it was found that only a small
number of oscillators were excited. Moreover, after a sufficiently long time the system
returned to its initial state with a single driven mode. The large number of remaining
modes never grew above the noise. These conclusions serve as important caution for the
r-mode analysis. Even though we may expect the r-mode to be driven strongly enough
that it triggers many parametric instabilities, it is not yet clear that this will be the outcome.
In fact, numerical results (Brink et al., 2005) suggest that the r-mode amplitude does,
indeed, return to the first parametric threshold after a long time of evolution, rather
than approaching a state of equipartition. In effect, the analysis suggests that the r-mode
saturates when (Bondarescu et al., 2007, 2009)

Er−mode ≈ 1.5 × 10−5MR2�2, (15.56)

which translates into a (notably frequency-independent) saturation amplitude

αs ≈ 1.6 × 10−4. (15.57)

However, given that we do not yet fully understand the problem we need to consider
what might happen if the coupling to a small number of modes fails to saturate the
instability. If a large number of parametric resonances come into play, a significant set
of daughter modes may be excited until the system becomes turbulent. In this case,
estimates suggest that the saturation amplitude is given by (Arras et al., 2003)

αs ≈ 8 × 10−3
( αe

0.1

)1/2 ( νs

1kHz

)5/2
, (15.58)

where the parameter αe may be as small as 4 × 10−4. This would lead to a lower saturation
amplitude than the three-mode coupling for systems with νs ≤ 200 Hz or so.
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15.5 Are the gravitational waves detectable?

Having suggested that the r-mode instability may spin a newly born neutron star down
to a fraction of its initial spin rate in a few months to years we (obviously) want to
know whether the gravitational waves that carry away the star’s angular momentum are
detectable.

We can assess the detectability of the emerging waves in the standard way. First of all,
we note that the gravitational-wave frequency is (for the main l = m = 2 r-mode)

fgw = 4νs

3
= 2�

3π
. (15.59)

We can combine this with the gravitational-wave flux formula, making use of the idealized
source-detector configuration we used for deformed spinning stars in Chapter 8, i.e.

h2
0 = 10G

c3

(
1

2π fgwd

)2

Ė, (15.60)

where d is the distance to the source. Combining this with the gravitational-wave
luminosity for the r-modes, we arrive at (Owen et al., 1998)

h0 ≈ 3α

4d

(
10GMR2J̃

c3tgw

)1/2

. (15.61)

Scaling to suitable parameter values, we have

h0 ≈ 2.5 × 10−24α

(
M

1.4M�

)(
R

10 km

)3 ( νs

1 kHz

)3
(

15 Mpc
d

)
. (15.62)

In order to assess the detectability of the signal we also need to average over all possible
sky locations. As discussed in Chapter 8, this lowers our estimated strain by a factor of
about

√
3/10.

We have scaled the gravitational-wave strain in (15.62) to the distance to the Virgo
cluster. At this distance one would expect to see several neutron stars being born each
year. However, the amplitude is too weak to be observed without a detailed data analysis
strategy. To assess to what extent one may be able to make progress in this direction, let us
first consider the standard matched-filtering approach from Chapter 8. This will give us
an idea of the improvement that a tailored data analysis approach may bring, but in reality
matched filtering is unlikely to be possible for signals as complex and unpredictable as
that of the r-modes.

In order to compare the predicted strain to the sensitivity of different detectors, let
us first consider the Fourier transform of the signal, making use of the stationary-phase
result (see Chapter 8)
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h̃2
0( f ) =

∣∣∣∣ dt
df

∣∣∣∣h2
0(t). (15.63)

Given that

df
dt

= 3f α2J̃

Ĩtgw
, (15.64)

we find that (including the averaging over sky location)

h̃0 ≈ 3
4d

(
GI
fc3

)1/2

, (15.65)

or

h̃0 ≈ 6.9 × 10−25
(

fgw

1 kHz

)−1/2 (
15 Mpc

d

)
. (15.66)

As discussed in Chapter 8, we need to compare f h̃0 to the dimensionless noise in the
detector, hrms = √

fSn( f ), as in the left panel of Figure 15.4. The result can be interpreted
as saying that the detectability of an almost periodic signal improves as the square root
of the number of cycles radiated in the time it takes the frequency to change by f —a
natural extension of the intuition we developed in Chapter 8.

The result indicates that the r-mode signal from a young, fast-spinning, neutron star
would be detectable at this distance (Owen et al., 1998). However, we have to be careful
with this conclusion. Basically, the analysis assumes that the entire spin-down takes place
on a timescale shorter than the observation time. This would be true for large r-mode
saturation amplitudes (αs ≈ 0.01 − 1) and observation times of the order of one year,
cf. (15.49). The situation would be quite different for smaller saturation amplitudes.
A frequency-dependent αs, as in the case of the turbulent cascade leading to (15.58),
would also impact on the result. In fact, in this case, the star may be spinning down
very slowly. For example, if we take (15.58) at face value, then the spin-down timescale
changes to

tsd ≈ 0.36
( αe

0.1

)−1/2 ( νfinal

1 kHz

)−11
. (15.67)

In this case, a spin-down from the break-up velocity to 50 Hz would take over 2 million
years. In effect, for most of the spin-down phase, the system would not evolve much
during a one-year observation. Hence, we may assess the detectability by considering
the system as (effectively) a continuous wave source at fixed frequency. In this case, it
would be appropriate to compare

√
tobsh(t), using (15.62), to 11.4

√
Sn (see Chapter 8

for discussion). This comparison is shown in the right panel of Figure 15.4. The results
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Figure 15.4 Left: Comparing the effective r-mode amplitude f h̃ obtained from (15.66) to representative
detector sensitivities, given by

√
fSn( f ). The source is assumed to be at the distance to the Virgo cluster

(at 15 Mpc). The result indicates that the r-mode signal from a young, fast-spinning, neutron star would
be detectable at this distance. However, this conclusion comes with significant caveats. Right: Comparing
the effective r-mode amplitude for a finite observation time

√
tobsh(t) for a one-year observation

(obtained from 15.62) to representative detector sensitivities, given by 11.4
√

Sn( f ). These results suggest
that the r-mode signal from a young, fast-spinning, neutron star is unlikely to be detected from sources
far beyond the Galaxy.

suggest that the r-mode signal from a young star is unlikely to be detectable from large
distances (Bondarescu et al., 2007, 2009).

15.6 Astrophysical constraints for young neutron stars

Early discussions of the r-mode instability (Lindblom et al., 1999; Owen et al., 1998;
Andersson et al., 1999a) noted that a young neutron star would enter the instability
window shortly after birth and exit at a frequency close to the suggested ‘birth’ spin rate
of the Crab Pulsar, νfinal ≈ 50 Hz. This idea would be consistent as long as the r-mode
saturates at a relatively large amplitude,αs ≥ 0.01. If this were the case, gravitational-wave
emission would significantly spin down the star in the first year. However, for low—more
realistic—saturation amplitudes, the spin down would be much less dramatic, in conflict
with the notion that the Crab Pulsar has spun down from an initial spin near the break-
up velocity. According to (15.67) the gravitational-wave spin-down would take far too
long, seeing as the Crab Pulsar is less than 1,000 years old. Moreover, we know from
the observed braking index (see Chapter 6) that the current spin evolution of the Crab
pulsar is not dominated by gravitational-wave emission. In the case of an r-mode driven
spin down, it follows from (15.48) that we should have a braking index of n = 7. As there
is no evidence for this we must conclude that the Crab Pulsar does not currently reside
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inside the instability window. This may not be a very restrictive statement, but it is the
first hint that we may be able to use observational data to constrain the uncertain r-mode
theory.

We may also consider the young 16-ms X-ray pulsar J0537-6910 in the supernova
remnant N157B (Marshall et al., 1998). It seems reasonable to assume that this system
had an initial spin period of a few milliseconds. As we have already discussed (see
Chapter 12), this is a very interesting system because the neutron star exhibits regular
glitches, roughly every 100 days. The overall spin-down evolution is, in fact, dominated
by the glitches and their recovery (see Figure 12.4). If one tries to extract a braking index
for this system, then the answer appears to be negative (Antonopoulou et al., 2018).
However, one can focus on the inter-glitch periods. This leads to much larger braking
indices—typically too large to be explained by any proposed spin-down mechanism.
The data following the first observed (and largest) glitch seem to lead to an asymptotic
value of n ≈ 7 (Andersson et al., 2018). This may not be a very robust observation, but
it is nevertheless natural to speculate that the r-modes may play a role in this system.
A closer look at this possibility suggests that an r-mode scenario for this pulsar may be
(borderline) consistent, provided one negotiates on the saturation amplitude. In order to
explain the observed spin-down rate one would need αs ≈ 0.1, significantly larger than
the predicted value.

In absence of a detailed theoretical understanding, it makes sense to search for
gravitational waves from young neutron stars. A particularly interesting class of systems
to consider are the central compact objects associated with supernova remnants. A cele-
brated example of this class of sources is the remnant in Cassiopeia A. Likely associated
with a supernova observed by the British astronomer John Flamsteed in 1680, this is the
youngest known neutron star in the Galaxy. It is a very interesting case because X-ray
data hints at accelerated cooling, which may be associated with the onset of superfluidity
in the star’s core (Page et al., 2011; Shternin et al., 2011). However, even though we
know the remnant is a neutron star, we do not know its current spin rate. No evidence
for pulsations have been found in the data. This may be due to the magnetic field having
been buried by fallback accretion following the supernova (Geppert et al., 1999; Ho,
2015), in which case one would expect the magnetic field to gradually emerge. The
absence of a known spin period makes a gravitational-wave search challenging (see
Chapter 8).

Earlier (in Chapter 14) we suggested an energy argument that could be used to put
an upper limit on the gravitational-wave emission in absence of a known spin-down rate.
It is straightforward to adapt the logic to the r-mode case (Owen, 2010). That is, we can
use the estimate (14.65) as a guide for directed gravitational-wave searches. Directed
searches represent a middle ground between all-sky searches and targeted searches for
known pulsars. They are more sensitive than blind searches, as one can make use of
directional information and age constraints, but less precise than a targeted search where
one has reliable timing data from electromagnetic observations. At the back-of-the-
envelope level a blind search tends to be about one order of magnitude less sensitive
than a targeted search. Using directional information one may regain about a factor of 2
of the lost sensitivity. This may not seem like much, but every bit of improvement helps.
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In the case of young neutron stars associated with supernova remnants, we can make
use of the sky location (and thus the detector-frame Doppler modulation) but we may
not have the spin frequency and other parameters. This is the case for the Cas A remnant.
Searches for this object must cover a range of gravitational-wave frequencies. The first
constraints on gravitational waves from this system were obtained using 12 days of data
from the fifth LIGO science run (S5). The search covered frequencies from 100 to
300 Hz and a wide range of first and second frequency derivatives. The search was
specifically designed to beat the indirect upper limit set by (14.65). For Cas A, which is
at a distance of 3.4 kpc, we can turn (14.65) into an upper limit on the r-mode amplitude
(Abadie et al., 2010),

α � 3.9 × 10−4
(

I0

1045 g cm2

)−1/2 (
t

300 yr

)−1/2 (
f

100 Hz

)−2

, (15.68)

where f is the gravitational-wave frequency. The S5 search was limited to 12 days for
computational reasons. The cost of a coherent search scales with the 7th power of the
observation time (Wette et al., 2008), while the sensitivity improves only as the square
root (see Chapter 8). In essence, increasing the search time beyond 12 days would
dramatically increase the computational cost for a negligible gain in sensitivity.

The S5 search provided the first upper limit on the amplitude of an unstable r-mode,
constraining the amplitude to α ≤ 0.005 − 0.14 in the considered frequency range.
These upper limits improve on the indirect limit from (14.65) across the frequency
range. A similar search was carried out using data from the sixth LIGO science run
(Aasi et al., 2015b). However, the results did not lead to a significant improvement
of the upper limit for an r-mode in the Cas A neutron star (basically because of the
restricted search time), but similar results were obtained for 8 other supernova remnants
(and for a wider frequency range). The tightest upper limit on the r-mode amplitude
was α ≈ 4 × 10−5. This was further improved using data from the first observing run
of Advanced LIGO (Abbott et al., 2019b); see Figures 15.5 and 15.6. These results
demonstrate that observations are beginning to constrain the theory.

In addition to the indirect limit (14.65), electromagnetic observations may constrain
the allowed r-mode signal. The argument is quite simple—and serves as a useful
reminder that we need to base our search strategies on as much information as possible.
From the X-ray luminosity of the Cas A remnant we can infer the maximum allowed
r-mode amplitude by matching the observations against (15.46). This leads to

α ≤ 5 × 10−8
( νs

1 kHz

)−4
(

Lγ

1035 ergs−1

)1/2

. (15.69)

Systems like the remnant in Cassiopeia A typically have X-ray luminosities in the range
1032 − 1034 erg s−1. This leads to the constraints shown in Figure 15.7. Basically, we see
that the detection of gravitational waves from these systems could be a real challenge.



OUP CORRECTED PROOF – FINAL, 30/10/2019, SPi

386 The r-mode instability

0 400 800

Frequency (Hz)

In
tr

in
si

c 
st

ra
in

 h
0

1200 1600 2000

2e-24

1e-24

5e-24

Figure 15.5 Direct observational (95% confidence) upper limits on the intrinsic strain for the Cas A
neutron star, based on data from the first Advanced LIGO observing run. The horizontal line indicates
the indirect limit from energy conservation; see (14.65). Scattered points on a higher line indicate 1-Hz
bands where no upper limit was set due to data quality issues. (Reproduced from Abbott et al. (2019b).)
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Figure 15.6 Upper limits on the r-mode amplitude for the Cas A neutron star (in the supernova
remnant G111.7-2.1) and five other supernova remnants as well as Fomalhaut b, an extrasolar planet
candidate which might possibly be a nearby old neutron star. The results are based on data from the first
observing run of Advanced LIGO. (Reproduced from Abbott et al. (2019b).)
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Figure 15.7 Constraints on the r-mode amplitude from X-ray observations of compact central objects,
like the remnant in Cas A. The r-modes are limited by the predicted (frequency-dependent) saturation
amplitude, here taken to be given by (15.58)—although we also indicate the level from (15.57)—and the
limit on the X-ray luminosity, which constrains the mode through (15.46). Also shown are the
sensitivities obtainable with a one-year integration over data at the Advanced LIGO design sensitivity
and with a third-generation instrument like the Einstein Telescope.

15.7 r-modes in accreting systems

The r-mode instability may also, quite naturally, play a role for accreting neutron stars
(Bildsten, 1998; Andersson et al., 1999b). The problem can be analysed following the
steps from Chapter 14. As the basic idea is the same—the accretion torque is balanced
by gravitational-wave emission—we will focus on aspects that are unique to the r-mode
problem.

Let us, first of all, note that the existence of the r-mode instability calls into question a
possible formation route for millisecond pulsars. A millisecond pulsar may, in principle,
form by accretion-induced collapse of a white dwarf, but this scenario is inconsistent
with the r-mode picture. The collapse would form a star hot enough to spin down because
of the instability (Andersson et al., 1999b). Of course, the idea may still work, provided
that the r-mode saturation amplitude is small.

Turning to accreting neutron stars in low-mass X-ray binaries, it is easy to argue that
(given what we think we know) the r-mode instability should be relevant. Balancing the
r-mode gravitational-wave emission with the simple accretion torque from (14.84), we
see that we need
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α ≈ 10−6
( νs

1 kHz

)−7/2
(

Ṁ
10−8M�/yr

)1/2

, (15.70)

in order for the unstable r-mode to halt accretion-driven spin-up. This is much smaller
than the expected saturation amplitude, e.g. (15.58), for all reasonable accretion rates.
On the one hand, this is good news because there is no fundamental reason why the
r-modes cannot grow large enough to balance the accretion torque. On the other hand, it
is problematic. There is no reason why the r-modes should not grow to a larger amplitude,
in which case they would rapidly spin these stars down. In essence, it is difficult to
reconcile the notion of torque balance with our understanding of the r-mode instability,
unless, of course, the observed spin limit turns out to coincide with the edge of the
instability window.

The problem has additional twists. In addition to generating gravitational waves that
dissipate angular momentum from the system, the unstable r-modes heat the star up.
Since the impact of viscosity gets weaker as the temperature increases, the mode heating
triggers a thermal runaway (Levin, 1999; Andersson et al., 2000). As the star heats up, it
becomes increasingly unstable. This process continues until the mode saturates and the

200

400

600

PSR J1748 (716Hz)

sp
in

 f
re

qu
en

cy
 (

H
z)

core temperature (108K)

1 2 3

IGR J00291

4

KS 1731

5

MXB165B

4U 1636

4U 1608

EXO 0748

Aql X-1

SAX J1808

 rigid crust

Ekman layer + slippage

electron shear viscosity

Figure 15.8 The r-mode instability window (spin frequency vs core temperature) for accreting neutron
stars. We show results for the simplest (fluid) model (assuming that shear viscosity due to
electron–electron scattering dominates, thin dashed curve), as well as for a star with a crust (assuming a
standard Ekman layer with a slippage correction, thick solid line) and a (not realistic) rigid crust (upper
dashed curve). The squares indicate specific low-mass X-ray binaries, for which the temperature is
derived from the observed X-ray luminosity. (Adapted from Ho et al. (2011a).)
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star spins down. This could mean that, even if the r-modes are relevant for these systems,
we may not catch them in the act. If the saturation amplitude is large, these systems
may only radiate for a tiny fraction of the their lifetime. With a smaller amplitude the
duty cycle looks more promising (Heyl, 2002), but the gravitational-wave amplitude
is (obviously) weaker. It is a delicate balance. We also need to consider the fact that
many of the observed low-mass binaries are transients (Patruno and Watts, 2012). This
means that we need to consider episodes of accretion and quiescence. This is relevant
because one can use X-ray observations to place upper limits on the temperature of the
neutron stars in these systems. Typical results are shown in Figure 15.8. The estimates
show that a significant number of systems should be unstable unless some additional
dissipation mechanism impacts on the instability window. This problem remains to be
solved. The r-mode instability may play a role in the evolution of a low-mass X-ray
binary (see Figure 15.9) but we need to make progress on a range of issues—from the
accretion torque to the dissipation mechanisms that determine the instability window
and the saturation amplitude.
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Figure 15.9 Constraints on the r-mode amplitude from X-ray observations of low-mass X-ray
binaries. As in Figure 15.7, the r-modes are assumed to be limited by the theoretical saturation
amplitude, again taken to be given by (15.58), while the limit on the X-ray luminosity constrains the
mode through (15.46). Also shown are the sensitivities obtainable with a one-year integration over data
at the Advanced LIGO design sensitivity and with a third generation instrument like the Einstein
Telescope. If these constraints represent reality, then gravitational waves from most of these systems will
not be detectable.
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Do the different arguments (somehow) suggest that the r-modes do not play a role
in accreting systems? Perhaps. However, there is intriguing evidence that a non-radial
oscillation mode may be present in the X-ray data associated with the 2002 discovery
outburst of XTE J1751-305 (Strohmayer and Mahmoodifar, 2014a). The observed
frequency (0.5727597 × νs) is quite close to the frequency of the star’s quadrupole
r-mode (2νs/3 in Newtonian theory). At first sight, this interpretation may seem unlikely,
because the observed frequency is close to the mode frequency in a frame co-rotating
with the star, whereas one might expect a distant observer to see the inertial frame
frequency (which is 4νs/3 to leading order). However, it has been argued that a non-radial
oscillation mode can indeed lead to modulations of an X-ray hotspot being observed
at the rotating frame frequency (Lee, 2014). Adding in relativistic effects (e.g. the
gravitational redshift and the rotational frame dragging) and the rotational deformation
of the star (Andersson et al., 2014), one finds that the observed frequency is consistent
with an r-mode, without adjustments to our understanding of the physics. Moreover, one
would infer sensible values for the star’s mass and radius.

However, the association becomes problematic when we consider the spin-evolution
of the system (Andersson et al., 2014). Two features of the observations are relevant:
(i) The mode amplitude α has a typical value of ∼ 10−3 over the duration of the outburst,
and (ii) the star spins up during this phase. An r-mode with the suggested amplitude
ought to lead to strong spin down, which would overwhelm any reasonable accretion
torque. The (seemingly) unavoidable conclusion is that, within the phenomenological
model for r-modes (be they stable or unstable), it is not possible to reconcile the presence
of a mode excited to the suggested amplitude with the observed spin evolution. Adding
to the ‘confusion’, a similar quasi-periodic feature in the 582-Hz system 4U1636-536
(Strohmayer and Mahmoodifar, 2014b), would seem to be consistent with the inertial
frame r-mode frequency. This calls the r-mode interpretation into question. Of course,
it also means that we are left with an interesting problem to solve.
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Black-hole dynamics

Black holes are mysterious objects hidden from view. Yet, they are remarkably simple.
An astrophysical black hole is fully described by two parameters, the mass M and the
angular momentum J (often considered in terms of the dimensionless quantity a/M =
cJ/GM2 < 1). An important step towards understanding these objects, first addressed
in the 1950s—long before there was any observational evidence to worry about—
involved establishing that they were stable (Regge and Wheeler, 1957). In order to be
astrophysically relevant, black holes would have to be stable to external perturbations.
If they simply ‘exploded if an ant sneezed in the vicinity’ (Vishveshwara, 1970b),
gravitational collapse would have to lead to some different end state.

Many astrophysical scenarios involve dynamical deviations away from a given back-
ground equilibrium (or, at least, slowly evolving) state. We have already seen how
perturbation theory plays a key role in gravitational-wave physics—in fact, the very
‘definition’ of the waves is based on the notion of a linear deviation away from a
background geometry (see Chapter 3). We are now going to develop our understanding
of perturbation theory in general relativity a little bit further. We do this by considering
the problem for curved backgrounds, like the Schwarzschild solution. This leads to the
introduction of several new concepts, like the quasinormal modes of a compact object
(Kokkotas and Schmidt, 1999; Nollert, 1999; Berti et al., 2009). These differ from the
normal modes of, say, an oscillating Newtonian star (from Chapter 13) due to the fact
that we now have to account for the emission of gravitational waves. In essence, the modes
are damped at a rate that reflects how efficiently they radiate.

16.1 Issues of stability

Let us begin by outlining a simple stability argument. To address the issue one typically
considers linear perturbations away from a known background metric, such that

gab = gB
ab + hab, where |hab| � 1. (16.1)

This is the same procedure that we used to define gravitational waves in Chapter 3.
The only difference is that we now take the background solution to be given by the

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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Schwarzschild metric (for a non-rotating black hole) from Chapter 4. As we will see,
this leads to a wave equation with an effective potential V (associated with the spacetime
curvature)

∂2u
∂r2∗

− ∂2u
∂t2

− V (r)u = 0, (16.2)

where u encodes the perturbation hab and the tortoise coordinate (from Chapter 10);

d
dr∗

=
(

1 − 2M
r

)
d
dr

, (16.3)

translates the part of spacetime accessible to a causal observer into the range
−∞≤ r∗ ≤∞. Basically, the event horizon has been pushed all the way to r∗ = −∞.

Given this differential equation we can ask whether a solution remains stable or if it
becomes unbounded as it evolves. All indications point towards black holes being stable.
The first hints of this involved the construction of suitable energy integrals (Regge and
Wheeler, 1957; Vishveshwara, 1970b). If we multiply (16.2) with its complex conjugate
and integrate, we arrive at

∫ r∗=+∞

r∗=−∞

[∣∣∣∣∂u
∂t

∣∣∣∣
2

+
∣∣∣∣ ∂u
∂r∗

∣∣∣∣
2

+ V |u|2
]

dr∗ = constant. (16.4)

As long as V is positive definite, the integral bounds ∂u/∂t, which excludes exponentially
growing solutions. This suggests that there are no unstable ‘modes’ of a non-rotating
black hole. However, the stability problem is a bit more intricate. The energy argument
leaves loopholes through which an instability might sneak in. For example, perturbations
that grow linearly (or slower) with time are not ruled out. Also, we have only provided
a bound for integrals of u. The perturbation may still blow up in an ever-narrowing
spatial region. We can obtain a stronger stability argument, but it would require a more
sophisticated analysis than we may be comfortable with at this point (Kay and Wald,
1987; Beyer, 2001).

16.2 Scalar field dynamics

The problem we are interested in—that of perturbed black holes—obviously has no
analogue in Newtonian gravity. This is in contrast to the dynamics of relativistic stars that
remain qualitatively close to the Newtonian problem (see Chapter 13). The frequencies
of fluid oscillations may be altered, and should become complex-valued to incorporate
damping due to gravitational-wave emission, but one would not expect dramatic changes.
The black-hole problem is different, as we are exploring the dynamics of the gravitational
field itself.
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Luckily, the problem has features familiar from classic scattering situations and it turns
out that the key concepts can be understood from a study of massless scalar waves. This
may seem somewhat odd given that our main interest is in gravitational waves which
have a tensorial character, but it turns out that the linear equations that govern different
physical fields can be reduced to wave equations of the form (16.2).

If we want to study the dynamics of a massless scalar field � in the geometry of a
non-rotating black hole we need to solve the wave equation

�� = 0, (16.5)

where � = gab∇a∇b is the wave operator associated with the Schwarzschild metric (in
geometric units c = G = 1, as usual)

ds2 = −�

r2 dt2 + r2

�
dr2 + r2(dθ2 + sin2 θdϕ2), (16.6)

and we have used � = r(r − 2M), M being the mass of the black hole (see Chapter 4).
Since the metric is spherically symmetric it is natural to decompose the field in spherical
harmonics, Ylm. It also turns out that the problem is degenerate in the azimuthal
harmonics (again because of the symmetry), so it is sufficient to consider the m = 0
case. Thus, we have

� =
∞∑

l=0

�l =
∞∑

l=0

ul(r, t)
r

Pl(cosθ), (16.7)

where Pl are the Legendre polynomials. With this decomposition the function ul(r, t) is
governed by the one-dimensional wave equation

∂2ul

∂r2∗
− ∂2ul

∂t2
− Vl(r)ul = 0, (16.8)

with the effective potential Vl given by

Vl(r) = �

r2

[
l(l + 1)

r2 + 2M
r3

]
. (16.9)

It should be noted that we have used the ‘tortoise’ coordinate r∗ to simplify the wave
operator, but the potential is still a function of the radial coordinate r.

In order to understand the solutions to (16.8), let us assume a harmonic time
dependence ul(r, t) = ûl(r,ω)e−iωt (strictly speaking, we take the Fourier transform). We
then arrive at the ordinary differential equation
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d2ûl

dr2∗
+

[
ω2 − Vl(r)

]
ûl = 0. (16.10)

This problem looks simple. In fact, the effective potential Vl(r) is similar to the effective
potential for photon geodesics from Chapter 10. It represents a potential barrier with
maximum roughly located at the position of the unstable circular photon orbit, r = 3M.
Moreover, it is easy to understand the asymptotics of the solution. Since the potential
Vl vanishes at both spatial infinity and the event horizon, the two linearly independent
solutions to (16.10) behave as

ûl ∼ e±iωr∗ as r∗ → ±∞. (16.11)

Before moving on it is worth noting that all astrophysical black holes were (obviously)
formed by gravitational collapse at some point in the past. This means that there must be
a limit to how far back we can assume that the spacetime is appropriately described by
(say) the Schwarzschild metric. The description is only appropriate in a region outside
matter that undergoes perfectly spherical collapse. This is, of course, an idealized case
with little (or no) physical relevance. An astrophysical collapse is expected to be non-
spherical, and thus the Schwarschild metric cannot be an adequate description of the
spacetime until the dust from the collapse event has settled. However, when one studies
the physics in this ‘late time’ region it is often convenient to ignore the distant past,
including the messy details of the collapse. We will adopt this attitude and consider
‘eternal’ black holes throughout this Chapter.

We can construct a set of solutions to the scalar field equation (16.10) by imposing
suitable boundary conditions at the horizon and spatial infinity. In order to illustrate
the solutions we are interested in, it is useful to use conformal (Carter–Penrose)
diagrams. These are two-dimensional diagrams that capture the causal relationship
between different spacetime points. The vertical direction represents time, while the
horizontal direction represents space, and lines at an angle of 45◦ correspond to light
rays. Locally, the metric is conformal to the actual metric, with the conformal factor (see
Chapter 4) chosen in such a way that the entire infinite spacetime is transformed into
a finite-size diagram. For spherically symmetric spacetimes, like the Schwarzschild
geometry we are considering here, every point in the diagram corresponds to a
two-sphere.

The advantage of using conformal diagrams is that it is easy to illustrate the asymp-
totics of a given problem. In our case, one would start by imposing conditions at past
infinity, J −, and the past horizon, H−; see Figure 16.1. Once such conditions are
introduced we can deduce the corresponding behaviour in the late time region, at J +
and H+, respectively.

Given the asymptotic behaviour (16.11) it is easy to define solutions to (16.10) that
satisfy the relevant boundary conditions. One such solution satisfies the natural condition
that no waves should emerge from the horizon of the black hole. We refer to this as the
IN-mode (Chrzanowski, 1975), and define it by
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H+ H+J + J +

H– H–J – J –

IN UP

Figure 16.1 An illustration of the IN- (left) and UP-modes (right). By combining the radial solutions
to (16.10) with the assumed time-dependence exp(−iωt) we see that the UP solution satisfies the
boundary condition of purely ingoing waves at H+. Accompanying this radiation there are scattered
waves reaching J +. To achieve this solution, exactly the right amount of radiation should emerge from
H−. The amplitudes of the various waves are such that the UP-mode is an acceptable solution to
(16.10). The situation is analogous for the IN-mode.

ûin
l (r∗,ω) ∼

{
e−iωr∗ r∗ → −∞,
Aout(ω)eiωr∗ + Ain(ω)e−iωr∗ r∗ → +∞.

(16.12)

The complex conjugate of this solution, the OUT-mode, corresponds to purely outgoing
waves at H−. A second pair of basic solutions (the UP- and DOWN-modes) can be
defined in a similar way. The UP-mode corresponds to purely outgoing waves at spatial
infinity, and is specified by

ûup
l (r∗,ω) ∼

{
Bout(ω)eiωr∗ + Bin(ω)e−iωr∗ r∗ → −∞,
e+iωr∗ r∗ → +∞,

(16.13)

while the DOWN-mode is the complex conjugate of this solution. Figure 16.1 illustrates
the IN- and UP-modes.

Since two linearly independent solutions to (16.10) can be used to represent any other
solution, the coefficients in (16.13) cannot be independent of those in (16.12). Using
the fact that the Wronskian of two linearly independent solutions to (16.10) must be a
constant, it is easy to relate the coefficients. For example, we have

W ≡ ûin
l

dûup
l

dr∗
− ûup

l

dûin
l

dr∗
= 2iωAin(ω) = 2iωBout(ω). (16.14)

Thus, we find that (assuming for the moment that ω is real)

Bout(ω) = Ain(ω) (16.15)

Bin(ω) = −Āout(ω) = −Aout(−ω), (16.16)
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where a bar denotes complex conjugation. We see that the solution to (16.10) can always
be expressed in terms of a combination of any two of the IN-, UP-, OUT-, and DOWN-
modes. Most studies use the combination IN–UP, since they incorporate the causal
boundary conditions. The IN-mode describes how a wave coming in from infinity is
scattered by the effective potential (16.9), while the UP-mode corresponds to waves
emerging from the horizon (or its vicinity). The outcome is either a combination of
waves falling across the future horizon or reaching future null infinity.

When a black hole is perturbed by an external agent, or when it settles down
after formation following supernova core collapse or binary merger, it oscillates. These
oscillations are associated with the ‘quasinormal modes’ of the black hole, first seen in a
simple scattering problem involving scalar waves (Vishveshwara (1970a); see also Press
(1971)), as illustrated in Figure 16.2. For a given perturbing field, the frequencies of
the quasinormal modes depend only on the parameters of the black hole (Kokkotas and
Schmidt, 1999; Nollert, 1999; Berti et al., 2009). This is important as it may allow us
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Figure 16.2 A reproduction of the scalar-wave scattering experiment that provided the first illustration
of black-hole quasinormal modes (Vishveshwara, 1970a). The illustration shows how the presence of a
Schwarzschild black hole affects a Gaussian wavepacket. At roughly t = 50M the initial Gaussian
passes the observer on its way towards the black hole. Quasinormal-mode ringing dominates the signal
after t ≈ 150M. At very late times (after t ≈ 300M) the signal is dominated by a power-law fall-off
with time. (Reproduced from Andersson (1995), copyright (1995) by the American Physical Society.)
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to extract the mass M and rotation rate from observational data, thus identifying the
black hole. As we will discuss later, nonlinear simulations confirm that quasinormal-
mode ringing dominates the radiation from most processes that involve a black hole.
No matter how you kick a black hole, the response is dominated by quasinormal modes.
This is good news since the mode problem can be understood at the level of linear
perturbations.

For astrophysical (presumably stable) black holes, one would expect the solutions to
(16.8) to be damped in time. Hence, all acceptable mode solutions should have complex
frequencies with Im ω < 0. This simple fact leads to one of the practical difficulties
associated with the determination of quasinormal modes.

Intuitively, a black-hole oscillation mode should not depend on the character of the
waves falling in from infinity, or emerging from the horizon. This means that one would
expect a quasinormal mode solution to (16.10) to be given by (say) the IN-mode with
Ain = 0. Combining this with the required damping in time at each spatial location, r∗,
we immediately see that the desired solution to the radial equation grows exponentially
as we approach r∗ = ±∞. Although this conclusion may, at first, seem peculiar (and
indeed, undesirable), it is easy to see why this happens. Properly defined, each mode
(with frequency ωn) corresponds to purely outgoing waves reaching H+ and J +. For
example, at J + we expect to have ul(r∗, t) ∼ exp[−iωn(t − r∗)]. From this it is clear that,
if we assume a harmonic time dependence we must require solutions that behave as
ûl ∼ exp(iωnr∗). For Im ωn < 0 this solution diverges as r∗ → +∞. In other words, the
problem is one of our own making. It is simply due to the way we decoupled the time
dependence of the solution. Because a mode solution is expected to be damped with
time at any fixed value of r∗ it must diverge as r∗ → +∞ at any fixed value of t (i.e. on
a spacelike hypersurface). In the physical solution, the apparent divergence is balanced
by the fact that it takes an infinite time for the signal to reach J +.

Building on this intuition, we turn to the associated initial-value problem. Suppose
we are given a specific scalar field at some time, say t = 0, and we want to deduce the
evolution of this field. We then require a scheme for calculating (for each l multipole)
ul(r∗, t) once we are given ul(r∗,0) and ∂tul(r∗,0). This problem can be solved in terms of
a Green’s function G(r∗,y, t). The time-evolution of ul(r∗, t) follows from (Ching et al.,
1995; Andersson, 1997)

ul(r∗, t) =
∫

G∂tul(y,0)dy +
∫

∂tGul( y,0)dy, (16.17)

for t > 0, where the (retarded) Green’s function is defined by

[
∂2

∂r2∗
− ∂2

∂t2
− Vl(r)

]
G = δ(t)δ(r∗ − y), (16.18)

together with the (causality) condition G = 0 for t ≤ 0. Finding the Green’s function is
now the main task. Once we know it, we can study the evolution of any initial field by
evaluating the integrals in (16.17).
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The first step involves reducing (16.18) to an ordinary differential equation. To do
this we use the Laplace transform1

Ĝ(r∗,y,ω) =
∫ +∞

0−
G(r∗,y, t)eiωtdt. (16.19)

The transform is well defined as long as Im ω ≥ 0, and can be inverted using

G(r∗,y, t) = 1
2π

∫ +∞+ic

−∞+ic
Ĝ(r∗,y,ω)e−iωtdω, (16.20)

where c is some positive number.
The frequency-domain Green’s function can now be expressed in terms of two

linearly independent solutions to the homogeneous equation (16.10). In terms of the
IN- and UP-modes from (16.12) and (16.13) we have

Ĝ(r∗,y,ω) = − 1
2iωAin(ω)

⎧⎨
⎩

ûin
l (r∗,ω)ûup

l (y,ω), r∗ < y,

ûin
l (y,ω)ûup

l (r∗,ω), r∗ > y,
(16.21)

where we have used the Wronskian from (16.14).
The problem can, in principle, be solved by integration of (16.10) for (almost)

real values of ω and subsequent inversion of (16.20). This should lead to a good
representation of the evolution, as long as some care is taken at each step. However,
as we are mainly interested in explaining the features of the emerging waves, we will try
to isolate the behaviour of the Green’s function in different time intervals. A useful trick
that helps us achieve this aim is to use analytic continuation and ‘bend’ the integration
contour in (16.20) into the lower half of the complex ω-plane; see Figure 16.3.

What do we learn by extending the Green’s function into the complex frequency
plane? First of all, we find that Ĝ(r∗,y,ω) has an infinite number of distinct singularities
in the lower half of the ω-plane. These correspond to the quasinormal modes and are
associated with the zeros of the Wronskian W (ω) (Leaver, 1985; Andersson, 1992;
Nollert and Schmidt, 1992). For a quasinormal mode, the two solutions ûin

l and ûup
l are

linearly dependent. The mode frequencies do not, however, contain all the information
required to evaluate the Green’s function. While it is formally straightforward to use the
residue theorem to determine the mode contribution it is, in practice, not quite so easy
to evaluate the various excitation coefficients (Leaver, 1986; Andersson, 1995).

We must also account for a branch-cut in the Green’s function. This branch-cut
emerges from the origin and is usually taken to be along the negative imaginary ω-axis.
The branch-cut leads to a power-law tail that dominates the field at late times (Price,
1972); see Figure 16.2. Physically, the late-time tail arises because of backscattering off

1 In order to make contact with the previous discussion, we have chosen to write the transform as a one-sided
Fourier transform. The usual textbook Laplace transform follows if we replace iω → −s.
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quasinormal modes

t – r∗ – y = 0

t – r∗ + y = 0

y r∗

×
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×

inversion contour

complex frequency plane

power-law tail

Figure 16.3 Left: A schematic description of a black hole’s response to initial data with compact
support. The directly transmitted wave (from a source point y) arrives at a distant observer (at r∗)
roughly at t − r∗ + y = 0. The black hole’s response, which is dominated by quasinormal-mode ringing,
reaches the observer at roughly t − r∗ − y = 0. At very late times the signal falls off as an inverse power
of time. This power-law tail arises because of backscattering off the spacetime curvature. Right:
Integration contours in the complex frequency plane. The original inversion contour for the Green’s
function lies above the real frequency axis. When analytically continued in the complex plane this
contour can be replaced by the sum of (i) the quasinormal modes (the singularities of Ĝ(r∗,y,ω); the first
few are represented by crosses), (ii) an integral along the branch cut (a thick line along the negative
imaginary ω axis in the figure), that leads to the power law tail, and (iii) high-frequency arcs (which lead
to roughly ‘flat space propagators’ at early times). (Reproduced from Andersson (1997), copyright (1997)
by the American Physical Society.)

of the slightly curved spacetime in the region far away from the black hole.2. This means
that the tail will not depend on the exact nature of the central object (Gundlach et al.,
1994) A neutron star of a certain mass will give rise to the same late-time tail as a black
hole of the same mass.

The behaviour at late times can be obtained from a low-frequency approximation
of the integral along the branch cut (Leaver, 1986; Andersson, 1995; Barack and Ori,
1999). The leading order contribution is

GC(r∗,y, t) = (−1)l+1 (2l + 2)!
[(2l + 1)!!]2

4M(r∗y)l+1

t2l+3
. (16.22)

From the example in Figure 16.2 it may seem unlikely that the power-law tail will
have much interest for gravitational-wave astronomy. This is probably true if we expect
a direct detection, but it turns out to be false when we consider the bigger picture. The

2 This effect also explains the presence of logarithmic terms in the higher order post-Newtonian expansion;
see Chapter 11.
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low-frequency contribution to the Green’s function plays a decisive role in determining
the gravitational self-force, a problem we will consider shortly.

16.3 Gravitational perturbations

The scalar-field problem illustrates many of the concepts we need in order to understand
the gravitational-wave signal from a slightly perturbed black hole. In fact, the equations
that govern gravitational perturbations can be cast in the form (16.10). At first, this
may seem surprising—gravitational perturbations ought to be fundamentally different
from massless scalar waves. After all, the latter correspond to fields evolving in a fixed
background geometry, while gravitational perturbations correspond to changes in the
metric itself. Of course, we have already seen (see Chapter 3) that (weak) gravitational
waves can also be thought of as living in the fixed background spacetime, so the two
problems really are similar.

We want to solve the linearized Einstein equations in vacuum. This means that the
perturbed Ricci tensor must vanish, so we have

δRab = 0. (16.23)

In order to work out the perturbed Ricci tensor, we recall the discussion of the nature of
gravitational waves from Chapter 3, and consider the metric as a sum of the unperturbed
background metric gB

ab and a perturbation hab, as before. At this point, we only require
that the background metric is a solution of the Einstein field equations. As in Chapter 3,
we use the background metric to raise and lower indices on first-order quantities.

Since we already know that the background metric satisfies the Einstein equations, we
can compute the Ricci tensor to linear order (keeping only quantities that are linear in
hab). From the definition (2.86) it follows that we need

δRab = −∂cδ

c
ab + ∂bδ


c
ac − δ
d

ab

c
dc − 
d

abδ

c
dc + δ
d

ac

c
db + 
d

acδ

c
db. (16.24)

The problem seems a bit messy. However, we can make use of a clever ‘trick’. Let us
consider a local inertial frame, in which the Christoffel symbols all vanish. Then the
equation reduces to

δRab = −∂cδ

c
ab + ∂bδ


c
ac. (16.25)

One can show that δ
d
bc is a tensor—even though 
d

bc is not! – so (16.25) remains valid in
all coordinate systems once the partial derivatives are replaced by covariant ones. That
is, the variation of the Ricci tensor is governed by

δRab = −∇cδ

c
ab + ∇bδ


c
ac. (16.26)

After some algebra, we find that
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δ
c
ab = 1

2
gdc (∇ahdb + ∇bhda − ∇dhab), (16.27)

and we have all the elements we need to construct an explicit form for (16.23) to linear
order in hab.

However, even though we expect there to be two gravitational-wave degrees of
freedom, we are still dealing with six coupled partial differential equations. In order to
make progress we would like to separate the variables. Naively, one might think that we
could simply expand all components of hab in spherical harmonics. However, this does
not work. Because of the underlying spherical symmetry of the problem, it should not
change under a rotation around the origin. But a spherical harmonics decomposition
does change under such rotations. In fact, it transforms in a way that explicitly depends
on the coordinates. The upshot of this is that the expansion coefficients still depend on
the angular variables, which prevents separation and defeats the purpose of the exercise.

Luckily, we have already dealt with this kind of problem. To make progress we simply
need to recall the discussion of the fluid velocity and the stresses in Chapter 14. In a
similar way, we need to decompose hab in functions which have the correct behaviour
under rotation. As a first step, we note that different parts of hab transform differently.
Schematically, we have (Nollert, 1999)

h ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S S V

S S V

V V T

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The parts marked S transform as scalars under rotation, V transform as two-vectors and
T as a two-tensor. The scalars can be expanded in spherical harmonics, as usual. For the
remaining parts we need a basis of ‘tensor spherical harmonics’—precisely the one we
developed for the elastic problem in Chapter 14. The required tensor basis can be written
in different ways. Looking ahead to the discussion of numerical relativity in Chapter 19
we choose to decompose the metric into a lapse function α = gtt, a shift vector βi = gti,
and the spatial metric γij = gij .

Let us first consider the perturbations δα and δβi. We know that the first transforms
as a scalar and hence can be expanded in spherical harmonics. To get a corresponding
expression for δβi we use the same decomposition as for the fluid velocity in Chapter 14.
Again, there will be two classes of perturbations with distinct parity. Axial perturbations
correspond to

δα = 0, (16.28)

δβi =
(

0,− h0

sinθ
∂ϕYlm,h0 sinθ∂θYlm

)
, (16.29)

where the coefficient h0 is a function of t and r. For polar perturbations, the correspond-
ing expressions are
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δα = �

r2 H0Ylm, (16.30)

δβi = (
H1Ylm,c0∂θYlm,c0∂ϕYlm

)
. (16.31)

As in the fluid problem, terms belonging to different l and different parity will not mix
(as long as the background is spherically symmetric). Hence, we expect the perturbations
of a non-rotating black hole to be described by two sets of equations that decouple and
can be studied separately.

To complete the perturbed metric, we need expressions for the three-metric, hij . These
are (simply) given by

haxial
ij = h1e1

ij + h2e2
ij (16.32)

and

hpolar
ij = r2

�
H2 f 1

ij + c1 f 2
ij + r2K f 3

ij + r2G f 4
ij , (16.33)

with eI
ij and f I

ij defined as in Chapter 14.
Now that we have a general expression for the perturbed spacetime metric, we can

consider the separation of variables and derive the equations for the perturbations. As a
first step it is useful to decide what gauge to work in. The freedom to choose coordinates
can be turned into a suitable set of conditions on the perturbed metric. The traditional
choice is to remove the highest angular derivatives from the problem by setting h2 = 0
for axial perturbations, while taking c0 = c1 = G = 0 in the polar case. This is known as
the Regge–Wheeler gauge (Regge and Wheeler, 1957).

Since the background metric is spherically symmetric, the various spherical harmon-
ics decouple. In fact, as in the scalar case, it is sufficient to consider the m = 0 case. In
effect, all ϕ-derivatives can be taken to vanish and each spherical harmonic Ylm can be
replaced by the corresponding Legendre function Pl(cosθ). For axial perturbations we
then get

haxial
ab =

⎛
⎜⎜⎝

0 0 0 h0
0 0 0 h1
0 0 0 0
sym sym 0 0

⎞
⎟⎟⎠ × sinθ∂θPl(cosθ). (16.34)

Substituting this expression into (16.23) we find three nontrivial equations for the
variables h0 and h1

δRtϕ = 0 −→ h′
0 − ḣ′

1 − 2
r

ḣ1 − l(l + 1)r − 4M
r�

h0 = 0, (16.35)

δRθϕ = 0 −→ ḣ0 − �2

r4 h′
1 − 2M�

r4 h1 = 0, (16.36)
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and

δRrϕ = 0 −→ ḣ′
0 − ḧ1 − 2

r
ḣ0 − n�

r4 h1 = 0, (16.37)

where a dot represents a time-derivative, a prime is a derivative with respect to r, and we
have defined

n = (l − 1)(l + 2). (16.38)

It is easy to show that the first equation is a consequence of the other two, so we have
two equations for two unknown variables. These equations can be cast in the form of a
wave equation with an effective potential. Eliminating h0 we find

ḧ1 − r2 ∂

∂r

[
�

r4

∂

∂r

(
�

r2 h1

)]
+ n�

r4 h1 = 0. (16.39)

This equation simplifies further if we use the tortoise coordinate r∗ (as in the scalar-field
problem). If we also introduce a new dependent variable

u = �

r3 h1, (16.40)

we arrive at a wave equation with no first derivatives with respect to r. This is known as
the Regge–Wheeler equation and it can be written

∂2u
∂r2∗

− ∂2u
∂t2

− V (r)u = 0, (16.41)

with

V (r) = �

r2

[
l(l + 1)

r2 − 6M
r3

]
. (16.42)

The Regge–Wheeler equation is remarkably similar to the wave equation for a massless
scalar field (16.10). In fact, the ‘centrifugal’ (l-dependent) part, which dominates at large
distances, is exactly the same. The two problems share qualitative features, even though
they are physically rather different.

However, we need to exercise some caution. Our equation for gravitational pertur-
bations was derived using a specific gauge and it is legitimate to ask how this affects
the outcome. The choice we made was convenient because it simplifed the calculation,
but we need to establish to what extent the final equation (16.41) describes the true
physics—which should not depend on our choice of gauge/coordinates.

The issue is emphasized by the fact that the Regge–Wheeler gauge has pathologies
that make it unsuitable for discussing (say) gravitational waves far away from the black
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hole (which is ultimately what we want to do). That we have a problem is easily seen
from (16.40). We have

h1 = r2

r − 2M
u, (16.43)

and since u ∼ e±iωr∗ as r∗ → ∞ the metric perturbation h1 diverges towards spatial
infinity, e.g. hrθ ∼ r as r → ∞. This is in obvious contrast with the expectation that the
gravitational-wave amplitude should fall off as 1/r away from the source.

To fix this problem, we need to analyse the behaviour of the perturbations under a
gauge transformation. As discussed in Chapter 3, the infinitesimal transformation xa →
xa + ξa affects the metric perturbations in such a way that

hab → hab + ∇bξa + ∇aξb = hab + δhab. (16.44)

We combine this result with the generator of an arbitrary axial gauge transformation,
which can be written (cf. the expression for δβi)

ξa = C(t, r)
(

0,0,− 1
sinθ

∂ϕYlm,sinθ∂θYlm

)
. (16.45)

The fact that there is one unspecified function C is an indication that we should expect
to be able to construct a single gauge-invariant function for the problem. From (16.44)
it follows that

δh0 = Ċ, (16.46)

δh1 = C′ − 2C
r

, (16.47)

δh2 = −2C. (16.48)

To construct a gauge-invariant perturbation quantity, let us call it a1, we need to find a
combination of h0, h1 and h2 such that δa1 = 0. This can be done in several ways. One
option is to combine the last two equations and use

a1 = h1 + 1
2

h′
2 − h2

r
. (16.49)

It then follows that

u = �

r3 a1 (16.50)

satisfies the Regge–Wheeler equation.
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In essence, this exercise shows that one can derive gauge-invariant perturbation
variables for the Schwarzschild problem (Moncrief, 1974; Gerlach and Sengupta, 1979;
Gundlach and Martín-García, 2000) Our derivation of the Regge–Wheeler equation was
carried out in a specified gauge, but the information it contains is actually gauge invariant.
Hence, the information we extract represents the true physics.

However, the problem of the pathological behaviour as r → ∞ remains. The issue
can be resolved by a coordinate transformation into a so-called radiation gauge
(Chrzanowski, 1975). Pragmatically—assuming that we are mainly interested in the
waves far from the source—we may simply transform the result into the Lorenz gauge
used to discuss the weak-field dynamics in Chapter 3.

The analysis of polar perturbations is not quite as straightforward, mainly since we
are starting out with a larger number of equations (Zerilli, 1970a; Vishveshwara, 1970b).
Nevertheless, the introduction of a new variable,

(nr + 6M)

r3 u = −∂K
∂r∗

+ nr + 6M
r2 K +

(
1 − 2M

r

)
H0

r
(16.51)

(and a bit of algebra), leads to (16.41) with the effective potential

V (r) = �

r2

n2(n + 2)r3 + 3n2Mr2 + 18nM2r + 36M3

r3(nr + 6M)2 . (16.52)

This is known as the Zerilli equation (Zerilli, 1970a). As in the axial case one can
construct gauge-invariant polar quantities which satisfy this wave equation (Moncrief,
1974). One can also show that the axial and polar problems are closely related (Chan-
drasekhar, 1992).

16.4 Quasinormal modes

Let us now return to the quasinormal modes of the black hole. Since they tend to
dominate the signal from a perturbed black hole we need to understand these modes.
However, as we have ‘diverging boundary conditions’ we are not dealing with a standard
eigenvalue problem, and the identification of quasinormal modes is somewhat involved.
In order to find a mode one must ensure that no contamination of ingoing waves remains
at infinity—and that no waves are coming out of the horizon—but these unwanted
contributions are exponentially small. There are different ways to overcome this technical
challenge (Leaver, 1985; Andersson, 1992; Nollert and Schmidt, 1992), but we will not
go into the details here. Instead, we focus on a simple approximation.

The quasinormal-mode problem is essentially one of wave scattering off of a potential
barrier. The modes themselves are analogous to scattering resonances associated with
‘energies’ close to the top of the potential barrier. The analogy with the quantum problem
means that we can use the celebrated Bohr–Sommerfeld quantization formula from
WKB theory (Schutz and Will, 1985)
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∫ t2

t1
Qdr∗ =

(
n + 1

2

)
π , (16.53)

where n is the ‘quantum number’ of the mode (not to be confused with the variable from
(16.38)) and

Q2 = ω2 − V (r). (16.54)

The limits of integration, t1 and t2, are zeros of the function Q2. Let us assume that the
quasinormal modes are, indeed, associated with the peak of the potential. Then we can
Taylor expand the integrand around this point, r0∗ , to get

Q ≈
√

ω2 − V0 − V ′′
0

4
√

ω2 − V0
(r∗ − r0∗ )2, (16.55)

where V0 = V (r0∗ ) and

V ′′
0 =

(
d2V
dr2∗

)
r0∗

. (16.56)

We can easily solve for the zeros of this function and work out the integral in (16.53).
This way we find that the mode frequencies can be approximated by

ω2
n ≈ V0 + 3

8
(V ′′

0 )1/2
(

n + 1
2

)
π . (16.57)

Neglecting the ‘field-dependent term’ in the different effective potentials, we use

V (r) ≈ �

r2

l(l + 1)

r2 . (16.58)

Then V ′′
0 < 0 and assuming that Re ω � Im ω we arrive at the approximate result

Re ωn ≈ ±√
V0 ≈

(
l

3
√

3

)
M (16.59)

Im ωn ≈ 3
16

(
−V ′′

0

V0

)1/2 (
n + 1

2

)
π . (16.60)

From these expressions we learn that the real part of the quasinormal mode frequency
(the oscillation frequency) increases linearly with l. For l = 2, presumably the most
important multipole for gravitational-wave detection, the frequency is Re ωnM ≈ 0.38.
Meanwhile, the imaginary part of the mode frequency (the damping rate) depends
on the curvature of the effective potential. For the fundamental (n = 0) mode we find
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Table 16.1 The first five quasinormal-mode frequencies, ωnM, for the three lowest
radiating multipoles (l ≥ 2) of a gravitationally perturbed Schwarzschild black hole. The
frequencies are given in units of [GM/c3]−1 = (32,312/2π Hz) × (M/M�)−1. (Data
from Andersson (1992).)

n l = 2 l = 3 l = 4

0 0.373672 – 0.088962i 0.599443 – 0.092703i 0.809178 – 0.094164i

1 0.346711 – 0.273915i 0.582643 – 0.281298i 0.796631 – 0.284334i

2 0.301052 – 0.478276i 0.551683 – 0.479093i 0.772710 – 0.479904i

3 0.251504 – 0.705148i 0.511956 – 0.690338i 0.739835 – 0.683916i

4 0.207514 – 0.946845i 0.470173 – 0.915660i 0.701524 – 0.898240i

that Im ωnM ≈ 0.08, independently of the value of l. The damping rate of the higher
overtones then increases linearly with n. These approximations may not be very precise
but they explain the features brought out by more detailed calculations; see Table 16.1.

In physical units, the fundamental quadrupole gravitational-wave quasinormal mode
of a Schwarzschild black hole has frequency

f ≈ 12
(

M�
M

)
kHz, (16.61)

while the associated e-folding time is

τ ≈ 0.05
(

M
M�

)
ms, (16.62)

and the various overtones damp much faster. The quasinormal modes of a black hole
are extremely short lived—spacetime is a poor oscillator compared to other systems in
nature. If we define the quality factor

q ≈ 1
2

∣∣∣∣Re ωn

Im ωn

∣∣∣∣ , (16.63)

then quasinormal modes have q ∼ l ∼ 2. In contrast, the fundamental fluid pulsation
mode of a neutron star (see Chapter 13) has q ∼ 1000, and the typical value for an atom
is q ∼ 106.

16.5 Test particle motion

Back in the days when numerical relativity was still in its infancy (throughout the 1970s
and into the 1980s) a significant body of work explored gravitational-wave emission from
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a small body moving along geodesics in a black-hole spacetime (Zerilli, 1970b; Davis
et al., 1971). This problem provides intuition that helps us understand more complex
nonlinear work. It is also relevant for gravitational captures by supermassive black holes
in galaxy cores. For the present discussion, the key point is that we can (as long as we
ignore the impact of the mass of the moving body on the background curvature) use
perturbation theory to attack the problem.

In order to work out the gravitational waves emitted by a moving body, we need to
add the relevant stress–energy tensor to the perturbation problem. As we have already
seen in Chapter 3, this is straightforward. In the case of a point mass we have

Tab = m
∫ ∞

−∞
δ4(x − z(τ ))√−g

dz
dτ

a dz
dτ

b
dτ , (16.64)

where the δ-function gives the location of the particle, τ is proper time along the geodesic,
and m is the rest mass. As a sanity check, we may confirm that the divergence

∇aTab = 0, (16.65)

leads to the background geodesics.
In (16.64), the vector x represents a field point with coordinates [t, r,θ ,ϕ]. The space-

time coordinates of the moving mass are za(τ ). The components of za are [t′, r′,θ ′,ϕ′].
The determinant of the background metric tensor is g, so that, in the Schwarzschild case,
we have

√−g = r2 sinθ .
It is useful to simplify the stress–energy tensor. To do this, we first change the variable

of integration from τ to t′ using (Zerilli, 1970b)

∫ ∞

−∞
dτ →

∫ ∞

−∞
dt′ dτ

dt′
=

∫ ∞

−∞
dt′

γ
, (16.66)

where

γ = dt′

dτ
. (16.67)

Using the chain rule to rewrite the velocities as

dz
dτ

a
= γ

dz
dt′

a
, (16.68)

we have

Tab = m
∫ ∞

−∞
δ4(x − z(t′))√−g

dz
dt′

a dz
dt′

b
γ dt′. (16.69)
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Integrating out the delta function δ(t − t′), we get

Tab = mγ
δ(r − r′(t))δ2(�− �′(t))

r2 żażb, (16.70)

where

δ2(�− �′) = δ(θ − θ ′)δ(ϕ − ϕ′)
sinθ

, (16.71)

and we have defined

ża = dz
dt

a
. (16.72)

We have already introduced the tensor harmonics required to decompose the pertur-
bations of the spacetime metric. In principle, we can use the same basis for the stress–
energy tensor. This would require us to use the orthogonality of the tensor harmonics to
evaluate integrals of inner products. An alternative would be to expand the angular delta
function, δ2(�− �′), (which determines the θ and ϕ dependence of the stress–energy
tensor), in terms of spin-weighted spherical harmonics.

The notion of spin-weighted spherical harmonics arises naturally in the tetrad-
based Newman–Penrose formalism, which we will discuss in Chapter 17. We introduce
sYlm(θ ,ϕ), where s is the spin weight, as a generalization of the usual spherical harmonics,
which have spin weight 0. That is, Ylm(θ ,ϕ) = 0Ylm(θ ,ϕ). In principle, we may allow half-
integer spins but we will only need integer values here. Harmonics of different spin weight
are related by raising and lowering operators. The raising operator, ð, is defined by

ð sYlm(θ ,ϕ) = −(sinθ)s
[

∂

∂θ
+ i cscθ

∂

∂ϕ

]
(sinθ)−s

sYlm(θ ,ϕ). (16.73)

This increases the spin weight by 1, so that

ð sYlm(θ ,ϕ) = √
(l − s)(l + s + 1) s+1Ylm(θ ,ϕ). (16.74)

Meanwhile, the lowering operator, ð, which follows from the complex conjugate of
(16.73), lowers the spin weight by 1. Using ð and ð, we can construct spin-weighted
spherical harmonics of non-zero s from the spherical harmonics Ylm(θ ,ϕ). Note that,
(16.73) and its conjugate imply that

sYlm(θ ,ϕ) = 0, for |s| > l. (16.75)
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The spin-weighted spherical harmonics satisfy a second-order differential equation

ðð sYlm =
[

∂2

∂θ2 + cotθ
∂

∂θ
− m2

sin2 θ
− 2mscosθ

sin2 θ
− s2 cot2 θ + s

]
sYlm. (16.76)

These harmonics form a complete set for angular functions of spin weight s on the unit
sphere. The completeness relation is

δ2(�− �′) =
∞∑

l≥|s|

l∑
m=−l

sY lm(θ ′,ϕ′) sYlm(θ ,ϕ), (16.77)

where the bar indicates complex conjugation. Harmonics of the same spin weight are
orthonormal in the sense that

∫
sY l′m′(θ ,ϕ) sYlm(θ ,ϕ) d� = δll′ δmm′ , (16.78)

where the integration is over the sphere.

16.6 Taking the plunge

The radiation emitted as a small body falls radially into a Schwarzschild black hole was
calculated as one of the first astrophysical applications of the perturbation equations in
the early 1970s (Davis et al., 1971). The energy spectrum (averaged over all directions)
as measured by a distant observer is shown in Figure 16.4 (for the case where the
falling body starts off from rest at infinity). The spectrum peaks at the slowest damped
quadrupole quasinormal mode (at ωM ≈ 0.37) and the total energy emitted is E ≈
0.01m2/M. Roughly 90% of this energy is radiated through the quadrupole. This result
shows that our simple estimate (10.70) was much better than we had any reason
to expect. Of course, now we are also accounting for the spacetime curvature. The
calculation shows that as much as 97% of the total energy goes into quasinormal-mode
oscillations.

Qualitatively, the result hardly changes at all if the particle is given some initial
angular momentum or an initial velocity (Ruffini, 1973; Kojima and Nakamura, 1983).
The energy spectrum in each multipole still peaks at the relevant quasinormal-mode
frequency. One generally finds that the contribution from the l = m multipole dominates
the radiation. As L̃z (the angular momentum per unit mass; see Chapter 10) increases,
the importance of the higher multipoles is enhanced. As a result, the radiated energy may
increase by as much as a factor of 50.

In a similar way, one can work out the radiation from bodies that are ‘scattered’ by
the black hole (Kojima and Nakamura, 1984). When the particle (again, initially at rest
at infinity) has initial angular momentum L̃z > 2 it is not captured by the black hole—it
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Figure 16.4 The spectrum of quadrupole (l = 2) gravitational radiation emitted when a particle falls
radially into a Schwarzschild black hole (starting out at rest at infinity). The spectrum (averaged over
all directions) peaks at the slowest damped quasinormal-mode frequency (ωM ≈ 0.37). (Based on the
results of Davis et al. (1971).)

escapes to infinity. The larger the initial value of L̃z is, the further away from the black
hole the particle reaches periastron. Hence, one would expect less radiation to be emitted
as L̃z increases. This is, indeed, brought out by detailed calculations—when L̃z becomes
very large, the particle never gets close enough to the black hole to induce relativistic
effects.

These exercises tell us that the bulk of the energy radiated when a particle falls into
a black hole emerges through the quasinormal modes. We also learn that the modes are
hardly excited at all when a particle is scattered off to infinity. This is true even when
periastron is quite close to the black hole. Instead, the peak frequency depends on the
initial angular momentum L̃z of the particle (Kojima and Nakamura, 1984). Basically,
one can show that the spectrum depends on the angular velocity �p at periastron. The
position of all peaks in the spectrum are explained in the same way. The source term
contains a factor cos(ωt − mϕ). Close to periastron it is reasonable to approximate ϕ ≈
�pt. It then follows that the spectrum will peak at ω ≈ m�p, or since the l = m term
dominates, ωmax ≈ l�p.

This argument also explains why the quasinormal modes are not excited. For a particle
that falls into the black hole the quasinormal modes are excited as the particle passes the
peak of the curvature potential barrier. For a scattered particle, the modes can only be
excited as the gravitational radiation emitted by the particle motion reaches the black
hole. But the frequency of these waves is typically such that they get reflected off the
black-hole potential barrier before getting close. For example, for l = 2 one gets ωmaxM <

0.2 and such waves will not really excite the quasinormal modes. For this reason, the
quadrupole formula—which should be valid for particles moving at v � c in flat space
(and obviously ignores quasinormal modes)—provides a reasonable approximation of
the radiated energy in many situations.
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16.7 The self-force problem

While an understanding of geodesic motion provides us with a way of estimating the
gravitational-wave emission from a moving body, an important question remains to
be answered. How does the energy/angular momentum loss affect the motion? We
know what we expect to happen—the energy loss will draw the orbit closer towards
the eventual merger—and we have a good idea of the relevant timescale from post-
Newtonian calculations (see Chapter 11). When the evolution is slow, we can use the
averaged emission to estimate the (adiabatic) evolution (Cutler et al., 1993), but this
approximation breaks down as the two bodies get close. Eventually, we need to consider
the relativistic two-body problem in full. However, this problem is complicated. General
relativity is a non-linear theory, and we typically need to resort to numerical simulations
(see Chapter 19). However, when the mass ratio is small, the widely separated scales make
the problem difficult—at the very least, extremely expensive—to resolve numerically.
Instead, we can make clever use of perturbation theory.

The extreme mass-ratio regime is naturally explored perturbatively (see Poisson et al.
(2011), Barack (2009), and Barack and Pound (2019) for detailed reviews), as we have
a prescribed small parameter. The leading order configuration is that of a test particle,
with mass m, moving along a geodesic of the fixed spacetime of the larger object, with
mass M. This then serves as a basis for a perturbation scheme, where corrections due
to the finite mass of the smaller body are included order by order in the (supposedly
small) mass ratio η = m/M � 1. At first order in η the gravitational field of the small
object is a linear perturbation of the background geometry. The back-reaction from this
perturbation gives rise to an effective gravitational self-force that diverts the small body
from its geodesic motion. It is this self-force that is responsible for the radiative decay of
the orbit, as illustrated in Figure 16.5.

Interest in the extreme mass-ratio problem has grown since the mid-1980s, when the
space-based detector LISA was first proposed (Faller et al., 1985). LISA is expected
to observe signals from the inspiral of compact objects into massive black holes in
galaxy cores (Amaro-Seoane et al., 2017). The inspiralling objects have to be compact

background geodesic

m
M

accelerated orbit

Figure 16.5 A schematic illustration of the gravitational self-force problem. The emission of
gravitational waves drives the orbit of a small moving body away from the geodesics of the spacetime of
the more massive companion.
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to avoid tidal disruption before they reach a relevant signal strength. In fact, LISA is
expected to detect hundreds of extreme-mass-ratio events, out to cosmological distances,
z ∼ 1; see Figure 22.7. As an example, a 10M�/106M� system will spend the last few
years of inspiral in a very tight orbit emitting 105 − 106 gravitational-wave cycles in the
LISA band. These inspiral trajectories exhibit extreme versions of periastron precession,
Lense-Thirring precession of the orbital plane, and other strong-field effects (Barack
and Pound, 2019). This complex dynamics is encoded in the gravitational waves, see
Figure 16.6 for an illustration, which carry a detailed map of the spacetime geometry
around the massive black hole. It has been argued that LISA will be able to measure
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Figure 16.6 An illustration of the intricate detail of a typical extreme mass-ratio orbit and the
corresponding gravitational-wave signal. The top panel shows the geometrical shape of the relativistic
orbit. The lower panel provides the gravitational-wave amplitude as a function of time. (Reproduced
with permission from Amaro-Seoane et al. (2013).)
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fractional deviations as small as one part in a thousand in the quadrupole moment of
the black-hole spacetime, setting tight bounds on the parameters of alternative theories
of gravity. A precise understanding of the gravitational self-force is essential for this
problem. In a typical extreme mass-ratio inspiral, the self-force drives the orbital decay
over a timescale of months, but dephases the orbit already after a few hours (Barack and
Pound, 2019).

Given the importance of the problem, let us take a closer look at how we can model
the gravitational self-force. At first ‘post-geodesic’ order, one would expect the equation
of motion to have the form

mub∇bua = f a
self , (16.79)

where ua is the small body’s four-velocity in the background spacetime, ∇b is the
background covariant derivative, and f a

self is the force we want to determine. From
fundamental principles, one can argue that the self-force can be expressed in terms of
the ‘tail’ part of the physical metric perturbation (Barack et al., 2002), arising from the
part of the Green’s function that is supported inside (rather than on) the past light-cone
of the source. This makes intuitive sense, but it is far from straightforward to turn the
words into a practical computational framework.

First of all, the self-force is a gauge-dependent notion, as is the accelerated trajectory
in the background geometry. A gauge transformation in the perturbed geometry leads
to a distinct accelerated trajectory. This means that meaningful information about the
motion requires the combination of the self-force and the metric perturbation (in a
specific gauge). In fact, the intuition leading to (16.79) is based on using the harmonic
(Lorenz) gauge (see Chapter 3). Secondly, the definition (16.79) only holds locally, close
to a given point along the trajectory. The formulation of a faithful scheme for the long-
term evolution of the orbit involves subtle issues, like the fact that the Lorenz-gauge
condition cannot be consistently imposed when the source’s world-line is accelerating.

Despite the challenges, there has been significant progress on the self-force problem
since the 1990s, much of it stemming from a formal derivation of the required equations
of motion (Mino et al., 1997; Quinn and Wald, 1997) and a reinterpretation of the
problem in terms of geodesic motion in a smooth perturbed spacetime (Detweiler and
Whiting, 2003). As we have seen, it is natural to treat the orbiting body (with mass m)
as a point mass. This causes the perturbations to diverge at the location of the particle,
which is exactly where the force must be evaluated. Additionally, general relativity does
not ‘allow’ point masses—a black hole must form if we arbitrarily shrink a body with a
fixed mass. However, we can split the perturbation into two pieces, a direct part and a
tail part (Detweiler and Whiting, 2003):

hab = hdir
ab + htail

ab . (16.80)

The direct part is divergent—it is the relativistic analogue of the singularity in the
Newtonian potential. The tail part is an integral over the past history of the orbiting
body. As illustrated in Figure 16.3, a wave propagating in a curved spacetime will scatter
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off the background curvature, rather than propagating as a sharp pulse. It develops a
‘tail’ which may interact with the mass that generated the radiation in the first place. The
interaction between the mass m, its radiation field, and the background spacetime gives
rise to the gravitational self-force.

Since the tail term is not a homogeneous solution of the field equations (Detweiler
and Whiting, 2003), it makes sense to divide the perturbation in a different way

hab = hS
ab + hR

ab, (16.81)

where the first term is singular (behaving like ∼ m/r close to the particle, with r the
distance to the worldline). The second part is regular and given by a homogeneous
solution to the field equations, including backscattered waves inside the light cone of
the background geometry. This is the piece that leads to the self-force. It also involves
the prior history of the orbiting mass. In this formulation, the particle can be thought of as
moving along a geodesic of gB

ab + hR
ab, where gB

ab is the background metric. The equations
of motion are then simply reformulated as

mũb∇̃bũa = 0, (16.82)

where the tildes indicate the four-velocity and covariant derivative associated with the
complete first-order metric. However, the perturbation hR

ab is not the physical metric
perturbation induced by the particle (for instance, it is not causal)—it is a mathematical
construction that serves as an effective potential for the motion.

The formulation of a suitable framework for the problem is in progress, but we need
to turn it into actual calculations. This poses additional challenges. For example, since the
gravitational self-force is gauge dependent, one has to take care in interpreting the results.
In order to make a meaningful comparison of different calculations, it is necessary to
identify gauge-invariant quantities (representing physical observables). Such observables
include the orbital frequency and the rate of periastron advance (Barack and Sago,
2009; Le Tiec et al., 2011). There is also a gauge-invariant relation between energy and
angular momentum. The final step of the analysis involves incorporating the corrections
to the orbital motion into the gravitational waveforms. Detailed studies shows that, in
order to provide waveforms with the precision required for LISA data analysis, the
problem has to be solved to second order in the mass ratio. However, higher order
relativistic perturbation theory is messy, so this requirement adds to the complexity of
the calculation (especially as one should proceed in a gauge-invariant manner; see Pound
(2017)). Ultimately, one would like to directly integrate the (second-order) equation of
motion in a self-consistent manner. However, this is also tricky.

While the appropriate computational tools are being developed, we can make progress
using further approximations. As an example, orbital evolutions have been carried out
using the method of ‘osculating geodesics’, where the motion is obtained as a smooth
sequence of geodesics, each a tangent to the ‘true’ orbit at a particular time. This leads
to results like those in figure 16.7—an important step towards determining reliable
waveforms to inform data analysis.
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Figure 16.7 Evolutionary tracks for inspiral orbits around a Schwarzschild black hole for a mass ratio
m/M = 10−5. Each solid black curve tracks the evolution of a particular extreme-mass-ratio orbit in
the e–p plane (eccentricity vs. semilatus rectum), from the point at which it enters the LISA band (blue
curve, assuming a black-hole mass of M = 106M�), until it reaches the innermost stable orbit (red line
on the left). During the evolution, the conservative piece of the self-force acts to decrease the rate of
periastron advance. The dashed contour lines (with associated numerical values) indicate the total
amount of periastron phase (in radians) accumulated due to this effect, from a given moment until
plunge (Reproduced from Barack and Pound (2019), based on data from Osburn et al. (2016), copyright
(2016) by the American Physical Society.)
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Figure 16.8 Schematic representation of the different domains of the binary black-hole problem.
Numerical solutions of the full Einstein equations are required for close binaries of comparable masses.
Widely separated binaries are most efficiently treated within post-Newtonian theory, while strongly
gravitating binaries with large mass ratios are the realm of perturbative self-force theory. (Illustration
provided by L. Barack.)
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In addition to its immediate relevance for low-frequency gravitational-wave astron-
omy, the self-force programme informs efforts in complementary parts of parameter
space. In particular, one can use the self-force results to (i) fix unknown regularization
parameters in high-order post-Newtonian calculations (Blanchet et al., 2010), and (ii)
calibrate effective-one-body waveforms (see Chapter 11). The shift in the frequency of
the innermost stable circular orbit due to the self force (Barack and Sago, 2009), has
already been used to discriminate between post-Newtonian calculations (Favata, 2011).
The perturbative results also complement full nonlinear simulations, which become
challenging for small mass ratios. When combined, results from the different approaches
provide a ‘complete’ understanding of the relativistic two-body problem, as sketched in
figure 16.8.
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Spinning black holes

Stars rotate and since black holes form through gravitational collapse one would expect
them to rotate, as well. The spin of a black hole is associated with a range of phenomena.
In particular, it is thought to play a key role in the formation of the powerful jets seen
emerging from active galactic nuclei. A spinning black hole accreting matter from a torus
of fallback material is also thought to be the central engine that drives observed gamma-
ray bursts (see Chapter 21). In essence, if we want to understand these problems we
need to consider spinning black holes.

Fortunately, much of the rotating black hole phenomenology is similar to that for
Schwarzschild black holes. The rotating case tends to be a bit more complex, but the
underlying behaviour is often similar. In view of this, we will focus on the main differences
and features that enter when we add a twist to the black-hole problem.

17.1 The Kerr solution

One of the early breakthroughs of general relativistic astrophysics was Roy Kerr’s
discovery of a solution to the Einstein field equations for spinning black holes (Kerr,
1963). The line element of the Kerr solution can be written

ds2 = −�− a2 sin2 θ

�
dt2 + �

�
dr2 − 4aMr sin2 θ

�
dtdϕ

+ �dθ2 + (r2 + a2)2 − a2�sin2 θ

�
sin2 θdϕ2, (17.1)

where

� = r2 − 2Mr + a2, (17.2)

� = r2 + a2 cos2 θ . (17.3)

The rotation is encoded in the parameter a = J/M, which lies in the range 0 ≤ a ≤ M. If
we take a = 0, the black hole is not spinning and we recover the Schwarzschild solution

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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from Chapter 4. Maximal spin corresponds to a = M. The horizon of the black hole
follows from � = 0, and we see that there are two solutions

r± = M ±
√

M2 − a2. (17.4)

Adding to the familiar event horizon (r+) we also have an inner Cauchy horizon (r−).
However, the latter is not of any consequence unless we venture inside the black hole.

The coordinates [t, r,θ ,ϕ] used in (17.1) are called Boyer–Lindquist coordinates
(Boyer and Lindquist, 1967): ϕ is the angle around the symmetry axis, t is the time
coordinate in which everything is stationary, and (even though they are not immediately
associated with a geometrical definition) r and θ are related to their counterparts in
the spherically symmetric case (discussed in Chapter 4). These coordinates are the
natural generalization of the Schwarzschild ones, and may be suitable for many purposes.
For example, they are ideal for studying the asymptotic behaviour of various fields,
which is what we tend to base our physical interpretations on. But the Boyer–Lindquist
coordinates are somewhat ‘unphysical’ close to the black hole, which means that they
should be replaced by some other coordinates if one is interested in the region near the
horizon.

17.2 Inertial framedragging

Rotation brings about an important qualitative difference between Newtonian physics
and general relativity. A spinning object drags spacetime along with it. This influences
the motion of objects in the vicinity of a rotating black hole. The effect is associated
with the presence of off-diagonal elements in the metric. In the case of the Kerr solution
(17.1), we have

gtϕ = −2aMr sin2 θ

�
. (17.5)

In order to introduce the notion of frame dragging, it is useful to consider particle
motion in the Kerr spacetime. This problem is a little bit more involved than the
Schwarzschild case from Chapter 10, but the starting point is the same. For a particle
with (rest) mass m, the momentum is given by pa = mua, where ua is the four-velocity.
However, the symmetries of the Kerr spacetime admits two Killing vectors. These can
be taken to be

ta = (1,0,0,0) and ϕa = (0,0,0,1), (17.6)

associated with the stationarity and axisymmetry of the spacetime, respectively. As dis-
cussed in Chapter 2, we can use these Killing vectors to construct conserved quantities.
In the present case, we have
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Ẽ = −taua = −ut (17.7)

and

L̃z = ϕaua = uϕ , (17.8)

representing the energy and angular momentum (per unit mass), as in Chapter 10. It
is easy to show that these quantities are conserved by combining the geodesic equation
with Killing’s equation (2.73), but we can demonstrate this is a different way. Recall
that geodesic motion can be obtained through a variational argument starting from a
Lagrangian

L = 1
2

gabẋaẋb, (17.9)

where dots are derivatives with respect to a suitable parameter λ (say) along the trajectory.
For massive particles it is natural to take this parameter to be proper time, but we will
leave it unspecified for the moment as this allows us to consider the massless case, as
well. The momentum that is conjugate to the coordinates xa follows from

pa = ∂L
∂ ẋa −→ pa = gabẋb, (17.10)

and we retain the usual definition for the momentum of a particle if we let λ = τ/m.
The Euler–Lagrange equations lead to (see Chapter 10)

∂pa

∂λ
= ∂L

∂xa = 1
2

∂agbcẋbẋc. (17.11)

Since the Kerr metric is independent of t and ϕ it follows that Ẽ and L̃z are conserved
along geodesics.

Let us now consider a particle with vanishing angular momentum that falls towards
the black hole. That is, we take L̃z = 0. The angular (coordinate) velocity of the particle
then follows from

	 = ∂ϕ

∂t
, (17.12)

and since

pϕ = gϕϕpϕ + gϕtpt, (17.13)

pt = gttpt + gtϕpϕ , (17.14)
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we see that

	 = pϕ

pt = gϕt

gtt ≡ ω(r). (17.15)

That is, in a rotating background a particle with zero angular momentum can have non-
vanishing angular velocity! Inverting the Kerr metric we find that

grr = �

�
gθθ = 1

�
,

gtt = − (r2 + a2)2 − a2�sin2 θ

��
,

gtϕ = −2aMr
��

gϕϕ = �− a2 sin2 θ

��sin2 θ
, (17.16)

which means that

ω(r) = 2aMr

(r2 + a2)2 − a2�sin2 θ
∼ 2aM

r3 as r → ∞. (17.17)

This is the expression for the inertial frame dragging. It shows that, even if a particle
is dropped ‘straight in’ towards the rotating black hole it will be dragged along with the
rotation. The denominator is positive for all values of r, so the frame dragging has the
same sign as the spin parameter a; a particle is always dragged along with the black hole.
We also see that ω falls off rapidly with distance. In principle, the frame dragging provides
a means for measuring the rotation rate of any object, but the effect is small in most cases.
Nevertheless, the Gravity Probe B experiment confirmed the frame-dragging induced by
the spin of the Earth to within 15% of the prediction of the theory (Everitt et al., 2011).

17.3 Kerr geodesics

The general trajectory of a particle moving in the Kerr geometry is more complicated
than in the Schwarzschild case, but because of the axial symmetry we still expect to
have pθ = 0 for motion confined to the equatorial plane. A simple symmetry argument
suggests that, if a particle is initially moving in the equatorial plane, it should stay there.
Such equatorial trajectories are obviously special cases, but they are nevertheless a useful
starting point for an exploration of particle motion around a rotating black hole.

As we have seen, the fact that the spacetime is stationary and axisymmetric means
that we have two constants of motion pt = −E (= −mẼ) and pϕ = Lz (= mL̃z), the
‘energy measured at infinity’ and the component of the angular momentum along to the
symmetry axis of the spacetime. Given this we can readily deduce two of the required
equations of motion:
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pt = dt
dλ

= (r2 + a2)2 − a2�sin2 θ

��
E − 2aMr

��
Lz, (17.18)

pϕ = dϕ

dλ
= 2aMr

��
E + �− a2 sin2 θ

��sin2 θ
Lz. (17.19)

17.3.1 Light propagation

Let us, first of all, consider photons moving in the equatorial plane. The above results—
together with papa = 0 and pθ = 0—lead to an equation for the radial motion that can be
factorized as (Schutz, 2009)

(
dr
dλ

)2

= (r2 + a2)2 − a2�

r4 (E − V+)(E − V−), (17.20)

where

V±(r) = 2aMr ± r2�1/2

(r2 + a2)2 − a2�
Lz. (17.21)

These potentials fall off as 1/r as r → ∞, and we already know that the rotational effects
enter at higher orders. In essence, the rotation of the black hole has little effect on a distant
photon. But as the photon approaches the black hole the potentials have a much stronger
influence and we can distinguish two cases.

The way the rotation of the black hole affects an incoming photon depends on the
direction of Lz relative to the sense of rotation of the black hole. When aLz > 0 the photon
moves around the black hole in a prograde orbit, and we have the situation illustrated in
Figure 17.1. It follows from (17.21) that

r/M

V+

V–

V–>E>0

V/Lz

Figure 17.1 The effective potentials for a photon moving in the equatorial plane of a rotating black
hole. The figure illustrates the case where the photon has angular momentum directed in the same sense
as the rotation of the black hole (and a = 0.5M). The result for a retrograde photon (with aLz < 0) is
obtained by turning the figure upside down.
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V− = 0 at r = 2M, (17.22)

V+ = V− = aLz

2Mr+
= 	HLz at r = r+, (17.23)

where we have defined the angular velocity of the horizon, 	H .
Since the left-hand side of (17.20) must be positive (or zero) we infer that the photon

must move either in the region E > V+ or in E < V−. In the first case, the rotation of the
black hole leads to nothing new. An incoming photon from infinity can either be scattered
by, or plunge into, the black hole (cf. Figure 10.1). But what about the region V− > E > 0,
which would also seem to be accessible? An analysis of this possibility requires a bit of
care. It turns out that it is not sufficient to require that E > 0, as one might (initially)
think. The reason is easy to understand. E is the energy measured at infinity, and as we
get closer to the black hole this becomes a less useful measure. We need an observer
located close to the horizon to do the measurements for us.

A convenient choice of local observer is one that has zero angular momentum and
resides at a fixed distance from the black hole (at constant r). Such zero angular
momentum observers (ZAMOs; Bardeen et al. (1972)) do not follow geodesics, and
consequently must maintain their position by means of either a rocket or the hand of a
supreme being. The character of a ZAMO means that it must have four-velocity:

ut = A , uϕ = ωA, ur = uθ = 0, (17.24)

with the unknown coefficient A specified by the usual normalization

uaua = −1, (17.25)

In the Kerr case, we find that

A2 = gϕϕ

(gϕt)2 − gttgϕϕ

. (17.26)

We are now better equipped to address the question of photons in the region V− >

E > 0 in Figure 17.1. A ZAMO will measure the energy of a photon as

Ezamo = −paua = −(ptut + pϕuϕ) = A(E − ωLz). (17.27)

This ‘locally measured’ energy must be positive, which means that we must have E > V+
in Figure 17.1. In other words, the V− > E > 0 region is not physically acceptable and
we conclude that the case aLz > 0 only involves the kind of photon trajectories we found
in the Schwarzschild case.

This is not, however, true for the case aLz < 0, when the photon is inserted in a
retrograde orbit around the black hole. (The potentials for this case are obtained by
turning those in Figure 17.1 upside down.) We then find from (17.21) that
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V+ = 0 at r = 2M, (17.28)

and it is clear that some forward-moving photons (that must lie above V+ according to
our previous analysis) can have E < 0. That is, negative energy (as measured at infinity)
photons may exist close to the black hole! As should be clear from Figure 17.1 these
negative energy photons cannot escape to infinity, but the fact that they may exist in the
first place has an interesting consequence.

Let us suppose that a pair of photons, the total energy of which is zero, are created
in the region r+ < r < 2M. The positive energy photon can escape to infinity, while the
negative energy one must be swallowed by the black hole. The net effect would be that
rotational energy is carried away from the black hole, and it slows down. This energy
extraction process, first suggested by Roger Penrose (Penrose, 1969; Penrose and Floyd,
1971), can be extended to other objects. One can simply assume that a body breaks up
into two or more pieces. If one of them is injected into a negative energy orbit the total
energy of the remaining pieces must be greater than the energy of the original body, since
E is a conserved quantity. The extra energy is mined from the rotation of the black hole.

17.3.2 The ergosphere

As we have just seen, energy arguments may become weird in a region close to a rotating
black hole (in the region r < 2M in the equatorial plane). This is the so-called ergosphere,
and it is clear that there are interesting effects associated with it.

Consider a photon emitted at some point r in the equatorial plane (θ = π/2) of a Kerr
black hole. Assume that the photon is initially moving in the ±ϕ direction. That is, it is
inserted in an orbit that is tangent to a circle of constant r. In this situation only dt and
dϕ will be nonzero, and we readily find from ds2 = 0 that

dϕ

dt
= − gtϕ

gϕϕ

±
√(

gtϕ

gϕϕ

)2

− gtt

gϕϕ

. (17.29)

Something interesting happens if gtt changes sign. When gtt = 0 we have the two solutions

dϕ

dt
= −2

gtϕ

gϕϕ

, and
dϕ

dt
= 0. (17.30)

The first case corresponds to a photon moving in the direction of the rotation of the black
hole. The second solution, however, indicates that a photon sent ‘backwards’ does not
(initially) move at all! The frame dragging has become so strong that the photon cannot
move in the direction opposite to the rotation. As light sets the speed limit in relativity,
this means that all bodies must rotate along with the black hole. No observers can remain
at rest (at constant r,θ ,ϕ) in the ergosphere.
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ergoregion

event horizon

singularity

inner horizon

Figure 17.2 An illustration of the ergosphere that surrounds a rotating black hole.

As the example suggests, the boundary of the ergosphere follows from gtt = 0. In the
Kerr case this corresponds to

�− a2 sin2 θ = 0, (17.31)

or

rergo = M ±
√

M2 − a2 cos2 θ . (17.32)

It follows that the ergosphere always lies outside the event horizon (even though it touches
the horizon at the poles); see Figure 17.2.

17.3.3 More general orbits: Carter’s constant

So far we have only considered photons moving in the equatorial plane of a rotating black
hole. This is clearly a very special case, due to the axial symmetry of the Kerr spacetime.
What can we say about more general orbits? First of all, we should recall that one must
specify four quantities to fully describe the motion of a particle. In the cases covered so
far (the orbits around a non-rotating black hole and equatorial trajectories in the Kerr
geometry) the four constants of motion were: the rest mass m, the energy E, the angular
momentum Lz, and (conveniently) pθ = 0. The first three remain useful for a general
trajectory around a Kerr black hole, but we need a fourth constant of motion. That
such a fourth constant exists was first shown by Brandon Carter (1968). Specifically, he
proved that the quantity
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Q = p2
θ + cos2 θ

[
a2(m2 − E2)+ L2

z

sin2 θ

]
(17.33)

is conserved. This is now known as the Carter constant.
Having found the required fourth constant of motion we can write down the equations

of motion for a particle in a general orbit around a rotating black hole. First, we note that
the equations for dt/dλ and dϕ/dλ remain unchanged, so we can still use (17.18) and
(17.19). As a second step we solve (17.33) for pθ , to find

�pθ = �
dθ

dλ
= ±

{
Q − cos2 θ

[
a2(m2 − E2)+ L2

z

sin2 θ

]}1/2

. (17.34)

Finally, it follows from the normalization papa = −m2 that

�pr = �
dr
dλ

= ±V 1/2
r , (17.35)

where

Vr(r) = [(r2 + a2)2 − a2�]E2 − 4aMrELz + (a2 − �)L2
z − �(Q + m2r2). (17.36)

Recall that we can rescale the energy and the angular momentum to Ẽ = E/m and L̃z =
Lz/m and identify the affine parameter as λ = τ/m, with τ the proper time. The relation
(17.35) then becomes an equation for dr/dτ .

It is difficult to assign a specific physical meaning to Carter’s fourth constant of
motion, Q, in general, but in the non-rotating limit a → 0 we find that Q + p2

ϕ corresponds
to the square of the total angular momentum. We can also deduce some details about
particle trajectories for different values of Q. From (17.34) we see that motion is
restricted in such a way that

Q ≥ cos2 θ

[
a2(m2 − E2)+ L2

z

sin2 θ

]
. (17.37)

This suggests three possibilities:

(i) The simplest case corresponds to Q = 0. Motion in the equatorial plane
(cos2 θ = 0) belongs to this case. Furthermore, we can see that if θ is to vary, it
must do so in such a way that the square bracket in (17.37) vanishes identically.
That is, we must have

sinθ = ± Lz

a(E2 − m2)1/2 . (17.38)



OUP CORRECTED PROOF – FINAL, 24/10/2019, SPi

Kerr geodesics 427

These are trajectories that lie either above or below the equatorial plane. They
can touch the θ = π/2 plane, but never cross it.

(ii) For Q > 0 we can also distinguish two possibilities. Since cosθ = 0 at the equator
it is clear that there will always be solutions that cross the equator. Also, since sinθ

diverges on the symmetry axis, we see that these orbits cannot reach the axis of
symmetry, unless Lz = 0. The second possibility also allows motion along the
symmetry axis, but this is only possible if Lz = 0 and Q ≥ a2(m2 − E2).

(iii) Finally, we have the case Q < 0. Then there can be no solutions unless a2(E2 −
m2) > L2

z . We must also have (Carter, 1968)

Q ≥ −
{[

a2(m2 − E2)
]1/2 + |Lz|

}2

. (17.39)

In the case of a strict inequality, θ can vary in a range between the symmetry
axis and the equatorial plane (but not touch it!), unless Lz = 0, in which case the
motion is along the symmetry axis.

To conclude the discussion of particle trajectories in the Kerr geometry let us consider
possible circular orbits for massive particles. For simplicity, we again restrict ourselves
to the equatorial plane. A circular orbit then corresponds to

Vr(r) = 0, and V ′
r (r) = 0. (17.40)

Solving these two equations for Ẽ and L̃z we find (Bardeen et al., 1972)

Ẽ = r3/2 − 2Mr1/2 ± aM1/2

r3/4(r3/2 − 3Mr1/2 ± 2aM1/2)1/2 , (17.41)

L̃z = ± M1/2(r2 ∓ 2aM1/2r1/2 + a2)

r3/4(r3/2 − 3Mr1/2 ± 2aM1/2)1/2 , (17.42)

where the upper signs correspond to prograde orbits (L̃z > 0), and the lower sign is for
retrograde orbits (L̃z < 0).

What do we learn from this? First, we note that circular orbits cannot exist if the
argument of the square root in the denominator is negative. We must have

r3/2 − 3Mr1/2 ± 2aM1/2 ≥ 0. (17.43)

When this is an equality we have a photon orbit, since Ẽ = E/m → ∞. This orbit
corresponds to

rph = 2M
{

1 + cos
[

2
3

cos−1(∓a/M)

]}
. (17.44)
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In the limit a = 0 we recover the familiar photon orbit at r = 3M, and for an extreme
Kerr black hole (a = M) we find that rph = M for a prograde photon but rph = 4M for a
photon in a retrograde orbit.

For massive particles we know that an orbit is unbound if Ẽ > 1. Given a small outward
perturbation, such a particle will escape. Hence, we can deduce that marginally bound
circular orbits correspond to Ẽ = 1 or

rmb = 2M ∓ a = 2M1/2(M ∓ a)1/2. (17.45)

Any particle that penetrates to r < rmb must plunge into the black hole. For a = 0 we
find, rmb = 4M, while for a = M and a prograde orbit we have rmb = M. A retrograde
orbit for an extreme Kerr black hole leads to rmb = 5.83M.

Finally, a circular orbit is not stable unless V ′′
r < 0. This leads to the condition

r2 − 6Mr ± 8aM1/2r1/2 − 3a2 ≥ 0. (17.46)

For the extreme case a = M this leads to an innermost stable circular orbit at

risco =
{

M, prograde orbit,
9M, retrograde orbit.

(17.47)

From this, as well as the results for rph and rmb, we draw an important conclusion about
Kerr black holes: Particles in pro- and retrograde orbits will differ in their view of the
‘size’ of the black hole. A rotating black hole appears larger to a particle in a retrograde
orbit.

Finally, it should be pointed out that the apparent equality between the various circular
orbits (and the event horizon) for an extreme (a = M) Kerr black hole, rph = rmb =
risco = r+, is an artefact of the Boyer–Lindquist coordinates. In reality, the orbits are
distinct, and we have risco > rmb > rph > r+ (Bardeen et al., 1972).

17.4 The Newman–Penrose formalism

The problem of perturbed spinning black holes is more involved than the corresponding
Schwarzschild problem. If we try to expand in tensor spherical harmonics we find
that the rotation couples the different multipoles and the equations become messy.
To make progress it is useful to consider an alternative strategy. Instead of working
with a coordinate-based approach, we introduce a tetrad description where all tensors
are projected onto a complete vector basis at each spacetime point. The basis can be
chosen to reflect the symmetries of spacetime, which may simplify the mathematics
of the observables. The particular description we use is called the Newman–Penrose
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formalism (Newman and Penrose (1962); Newman and Penrose (2009)).1 It makes
use of a tetrad with four null vectors (two real ones and a complex-conjugate pair).
The two real vectors point (asymptotically) radially inwards and outwards, respectively.
This makes the description ideal for a study of wave propagation and it is natural to
use this approach for black-hole perturbations, as well. In fact, in the Newman–Penrose
description the Kerr problem turns out not to be much harder than the Schwarzschild
one. This is basically because—from the Newman–Penrose point of view—the Kerr and
Schwarzschild geometries are similar (they are both classified as Petrov type D vacuum
metrics; see Chandrasekhar (1992)).

In a systematic way, the Newman–Penrose approach starts by separating the Riemann
tensor into a traceless part, called the Weyl tensor, and a ‘Ricci’ part. The Weyl tensor is
obtained as

Cabcd = Rabcd − 1
2

(gacRbd + gbdRac − gbcRad − gadRbc)

+ 1
6

(gacgbd − gbcgad)R. (17.48)

In four spacetime dimensions, the Riemann tensor has 20 independent components.
These are now split between the Ricci and Weyl tensors, which have 10 components
each.

Next we introduce a null tetrad l,n,m,m̄ (where the bar denotes complex conjuga-
tion) which is orthogonal

l · m = l · m̄ = n · m = n · m̄ = 0, (17.49)

and null

l · l = n · n = m · m = m̄ · m̄ = 0, (17.50)

together with the normalization conditions (which are not required, but convenient)

l · n = 1, and m · m̄ = −1. (17.51)

Given the tetrad, we can replace the Einstein equations with a set of first-order
equations for projected tensor components. This involves introducing the so-called Weyl
scalars

1 In the Newman–Penrose approach it is conventional to use the opposite sign convention to that assumed
throughout the rest of the book. That is, the metric is taken to have signature + − −− rather than −+++. In
order to avoid confusing readers that may consult the original papers we will use this other signature in the
discussion of the Newman–Penrose approach. However, as this only affects a fairly self-contained part of the
book, this should not be a major issue.
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�0 = −Cabcdlamblcmd , (17.52)

�1 = −Cabcdlanblcmd , (17.53)

�2 = −Cabcdlambm̄cnd , (17.54)

�3 = −Cabcdlanbm̄cnd , (17.55)

�4 = −Cabcdnam̄bncm̄d . (17.56)

These five complex scalars completely specify the ten degrees of freedom of the Weyl
tensor. In particular, they encode the radiative aspects of the problem. Their physical
interpretation (Szekeres, 1965) is such that �2 is a ‘Coulomb-like’ term that represents
the gravitational field far from the source. Meanwhile, �1 and �3 are in- and outgoing
‘longitudinal’ radiation and �0 and �4 represent in- and outgoing ‘transverse’ waves.
Based on this interpretation, we expect all Weyl scalars apart from �2 to vanish for an
unperturbed black hole. Moreover, as gravitational waves are transverse in Einstein’s
theory, we are mainly interested in �0 and �4. Making contact with the discussion of
gravitational waves in Chapter 3, we have (asymptotically)

�4 = −ḧ+ − iḧ×. (17.57)

In order to complete the description, we need to introduce derivatives. This involves
using the tetrad as a basis, and thinking of the basis vectors as directional derivatives.
Thus, we introduce the derivatives

D = e1 = e2 = n, (17.58)

� = e2 = e1 = l, (17.59)

δ = e3 = −e4 = m, (17.60)

δ̄ = e4 = −e3 = m̄. (17.61)

Finally, we need the so-called Ricci rotation coefficients (which are related to the
covariant derivative; see Chapter 2). At each spacetime point the basis vectors have
components ea

â, where the tetrad indices are indicated by hats. These are, naturally, such
that

ea
âeb̂

a = δb̂
â, and ea

âeâ
b = δa

b . (17.62)

This allows us to project any tensor, Aa say, onto the tetrad in such a way that

Aâ = ea
âAa, (17.63)

which means that the directional derivatives are simply given by

eâ = ea
â∂a. (17.64)
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For scalar fields we get

∂â� = ea
â∂a�, (17.65)

while for vectors we need

∂b̂Aâ = ea
âeb

b̂
∇aAb + [

ea
âec

ĉ∇aeâc
]
Aĉ = eb

âea
b̂
∇aAb + γĉâb̂Aĉ, (17.66)

where the γĉâb̂ are the Ricci rotation coefficients (or simply spin coefficients). In the spirit
of the formalism, these are designated by symbols

κ = γ311, ρ = γ314, ε = 1
2

(γ211 + γ341), (17.67)

σ = γ313, μ = γ243, γ = 1
2

(γ212 + γ342), (17.68)

λ = γ244, τ = γ312, α = 1
2

(γ214 + γ344), (17.69)

ν = γ242, π = γ241, β = 1
2

(γ213 + γ343). (17.70)

So far, this may seem like an exercise in the Greek alphabet, but we are about to discover
the power of the approach.

For the Kerr spacetime, it is customary to use the Kinnersley tetrad (Kinnersley,
1969). This makes use of two of the principal null directions2 of (the equatorial plane
of) the geometry. In particular,

dt
dr

= ± r2 + a2

�
, (17.71)

dϕ

dr
= ± a

�
. (17.72)

We choose the vectors la and na in these directions and complete the tetrad in such a
way that the spin-coefficient ε vanishes. Imposing the orthogonality conditions and the
normalization, as discussed earlier, we then arrive at

2 These are the eigenvectors of the Weyl tensor, which can be used to classify the nature of a given spacetime
(Chandrasekhar, 1992).
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la =
[

r2 + a2

�
,1,0,

a
�

]
, (17.73)

na = 1
2�

[
r2 + a2,−�,0,a

]
, (17.74)

ma = 1√
2(r + iacosθ)

[
iasinθ ,0,1,

i
sinθ

]
, (17.75)

and we can write the Kerr metric as

gab = lanb + nalb − mam̄b − m̄amb. (17.76)

Making use of the various definitions, we have the spin coefficients

κ = σ = λ = ν = ε = 0, (17.77)

and

ρ = − 1
r − iacosθ

, (17.78)

β = − 1

2
√

2
cotθρ̄, (17.79)

π = ia√
2

sinθρ2, (17.80)

τ = − ia√
2�

sinθ , (17.81)

μ = �

2�
ρ, (17.82)

γ = μ+ r − M
2�

, (17.83)

α = π − β̄. (17.84)

We also find that the only non-vanishing Weyl scalar for a stationary black hole is

�2 = Mρ3. (17.85)

However, when the black hole is perturbed, quantities that vanished in the background
become non-zero. Furthermore, �2 and the remaining eight spin-coefficients all pick up
small increments. For a perturbed Kerr black hole we expect �0 and �4 to be small.
They represent the gravitational waves that we are interested in.
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In order to determine an equation for �0 we use three of the original Newman–
Penrose equations (see, for example, Chandrasekhar (1992)):

(δ̄ − 4α + π)�0 − (D − 2ε − 4ρ)�1 = 3κ�2, (17.86)

(�− 4γ + μ)�0 − (δ − 4τ − 2β)�1 = 3σ�2, (17.87)

(D − ρ − ρ̄ − 3ε + ε̄)σ − (δ − τ + π̄ − ᾱ − 3β)κ = �0. (17.88)

Somewhat fortuitously, these equations are already ‘linearized’. When we use the
Kinnersley tetrad the scalars �0, �1, κ, and σ are all first-order quantities. Hence, we only
need to replace all other quantities in the above equations with their background values
to arrive at the relevant perturbation equations. We will assume that this is done, and not
label first and zeroth order quantities explicitly (as there should be little risk of confusion).

To proceed, we note that the background �2 satisfies (by virtue of the Bianchi
identities)

D�2 = 3ρ�2, (17.89)

δ�2 = 3τ�2, (17.90)

which means that we can rewrite (17.88) as

(D − 4ρ − ρ̄ − 3ε + ε̄)σ�2 − (δ − 4τ + π̄ − ᾱ − 3β)κ�2 = �0�2. (17.91)

The second step towards an equation for �0 is to eliminate �1 from (17.86) and (17.87).
This can be done (Teukolsky, 1973) by making use of the commutation relation3

[D − (p + 1)ε + ε̄ + qρ − ρ̄](δ − pβ + qτ)

− [δ − (p + 1)β − ᾱ + π̄ + qτ ](D − pε + qρ) = 0, (17.92)

where p and q are any two constants. If we operate with (δ + π̄ − ᾱ − 3β − 4τ) on (17.86)
and (D − 3ε + ε̄ − 4ρ − ρ̄) on (17.87), and then subtract the results, all terms in �1 can
be made to vanish by means of (17.92) with p = 2 and q = −4. This way we arrive at the
final equation (after using (17.91) to remove κ and σ )

[(D − 3ε + ε̄ − 4ρ − ρ̄)(�− 4γ + μ)

− (δ + π̄ − ᾱ − 3β − 4τ)(δ̄ + π − 4α)− 3�2]�0 = 0. (17.93)

This is a single decoupled (second-order) equation for the Weyl scalar �0.
An analogous equation for �4 can be derived by using the fact that the Newman–

Penrose equations are invariant under the change l → n and m → m̄. With this inter-
change we also get

3 One can show that this relation holds for any type D metric.
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D → � , δ → δ̄, (17.94)

and

ε → −γ , π → −τ , ρ → −μ , α → −β , (17.95)

and vice versa. Hence, we have

[(�+ 3γ − γ̄ + 4μ+ μ̄)(D + 4ε − ρ)

−(δ̄ − τ̄ + β̄ + 3α + 4π)(δ − τ + 4β)− 3�2]�4 = 0 .

The two perturbation equations (17.93) and (17.96) for �0 and �4 are (it turns
out) independent of both the choice of tetrad and the specific coordinates. They
provide gauge-invariant measures of the gravitational-wave content of a perturbed Kerr
spacetime.

17.5 The Teukolsky equation

In the case of non-spinning black holes we showed that the perturbations could be
described in terms of (relatively simple) decoupled wave equations (see Chapter 16).
Given the the added complexities, one might not expect this to be possible also for Kerr
black holes. That it can (nevertheless) be done was first demonstrated by Saul Teukolsky
(1973).

We took the first steps of the calculation in the previous section. Completing the
argument (essentially by making the various quantities explicit for the Kerr metric), and
allowing for the presence of matter, we arrive at the so-called Teukolsky equation, which
describes the evolution of scalar, electromagnetic, and gravitational perturbations of a
Kerr black hole. This equation takes the form (Teukolsky, 1973)

[
(r2 + a2)2

�
− a2 sin2 θ

]
∂2ψ

∂t2
+ 4Mar

�

∂2ψ

∂t∂ϕ
+

[
a2

�
− 1

sin2 θ

]
∂2ψ

∂ϕ2

− �−s ∂

∂r

(
�s+1 ∂ψ

∂r

)
− 1

sinθ

∂

∂θ

(
sinθ

∂ψ

∂θ

)
− 2s

[
a(r − M)

�
+ i cosθ

sin2 θ

]
∂ψ

∂ϕ

− 2s
[

M(r2 − a2)

�
− r − iacosθ

]
∂ψ

∂t
+ (s2 cot2 θ − s)ψ = 4π�T . (17.96)

Here a ≤ M represents (as usual) the black hole’s angular momentum and s is the spin
weight of the perturbing field (s = 0,±1,±2). In the case of gravitational perturbations
(spin s = +2), we have

ψ = �0, (17.97)
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T = 2(δ + π̄ − ᾱ − 3β − 4τ)[(D − 2ε − 2ρ̄)Tlm − (δ + π̄ − 2ᾱ − 2β)Tll]

+ 2(D − 3ε + ε̄ − 4ρ − ρ̄)[(δ + 2π̄ − 2β)Tlm − (D − 2ε + 2ε̄ − ρ̄)Tmm]. (17.98)

We have projected the matter stress–energy tensor onto the tetrad in such a way that
Tll = Tablalb and so on. Similarly,

ψ = 1
ρ4 �4, (17.99)

ρ4T = 2(�+ 3γ − γ̄ + 4μ+ μ̄)[(δ̄ − 2τ̄ − 2α)Tnm − (�+ 2γ − 2γ̄ + μ̄)Tm̄m̄]

+ 2(δ̄ − τ̄ + β̄ + 3α + 4π)[(�+ 2γ − 2μ̄)Tnm̄ − (δ̄ − τ̄ + 2β̄ + 2α)Tnn], (17.100)

for s = −2.
If the existence of the decoupled wave equation (17.96) was a surprise, the fact that

it is possible to separate the variables, just as one can do for Schwarzschild black holes,
was totally unexpected.

Let us consider the source-free case (T = 0) and use an Ansatz inspired by the Fourier
transform

sψlm = sRlm(r,ω) sSlm(θ ,ω)e−iωt+imϕ . (17.101)

Then the equations that govern the radial function sRlm and the angular function sSlm
are (suppressing all indices for clarity)

�−s d
dr

(
�s+1 dR

dr

)
− VR = 0, (17.102)

with

V (r) = K2 − 2is(r − M)K
�

+ 4isωr − λ, (17.103)

and

1
sinθ

d
dθ

(
sinθ

dS
dθ

)
+

[
a2ω2 cos2 θ − m2

sin2 θ
− 2aωscosθ

−2mscosθ

sin2 θ
− s2 cot2 θ + E − s2

]
S = 0. (17.104)

We have also introduced

K = (r2 + a2)ω − am , (17.105)
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and

λ = E − s(s + 1)+ a2ω2 − 2amω. (17.106)

The angular equation (17.104) reduces to that for spin-weighted spherical harmonics
discussed in Chapter 16 when a = 0. The main difference is that the eigenvalues are
now frequency dependent. Given the connection, the solutions to (17.104) are referred
to as ‘spin-weighted spheroidal harmonics’.

The Kerr problem thus reduces to an analysis of the radial equation (17.102). One
complication is immediately obvious. The ‘effective’ potential explicitly depends on the
frequency ω. It is also clear that rotation breaks the angular degeneracy that was present
for Schwarzschild black holes. Hence, we must consider all 2l + 1 values of m for each
integer l ≥ |s|.

Reassuringly, as in the Schwarzschild case, it is useful to introduce a tortoise coordi-
nate. We now have

d
dr∗

= �

r2 + a2

d
dr

. (17.107)

With this definition, and introducing a new dependent variable

u = (r2 + a2)1/2�s/2R, (17.108)

the radial equation (17.102) transforms into

d2u
dr2∗

+
[

K2 − 2is(r − M)K + �(4irωs − λ)

(r2 + a2)2 − G2 − dG
dr∗

]
u = 0, (17.109)

where the function G is

G = s(r − M)

r2 + a2 + r�
(r2 + a2)2 . (17.110)

The asymptotic behaviour of (17.109) implies that the solutions behave as

u ∼ r±se∓iωr∗ , (17.111)

or

sRlm ∼
{

e+iωr∗/r2s+1,
e−iωr∗/r,

as r → ∞. (17.112)
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The power-law behaviour of the out- and ingoing-wave solutions is in accordance with
the so-called ‘peeling theorem’ (Newman and Penrose, 1962).

Close to the event horizon, r+ (the outer solution to � = 0), the behaviour is

u ∼ �±s/2e±i� r∗ , (17.113)

which means that

sRlm ∼
{

e+i� r∗ ,
�−se−i� r∗ ,

as r → r+. (17.114)

Here � is defined as � = ω − m	H .
For rotating black holes the formulation of the physical boundary condition at the

horizon requires some care. A wave must be ingoing ‘in the frames of all physical
observers’ (which will be dragged along by the rotation). One can show that this means
that sRlm ∼ �−se−i� r∗ as r → r+ (Teukolsky, 1973).

The asymptotic behaviour from (17.112) demonstrates that the Penrose process for
extracting rotational energy from a spinning black hole has a simple wave analogue.
Imagine setting up a scattering experiment. As a wave with a given frequency approaches
the black holes, some part of it will be scattered back to infinity and some of it will
disappear through the horizon. We can quantify this using (17.112) (and its complex
conjugate). This leads to

(
1 − m	H

ω

)
T = 1 − R, (17.115)

where T = 1/|Ain|2 and R = |Aout/Ain|2 are the transmission and reflection coefficients,
respectively (see the discussion in Chapter 16). We see that we can have R > 1, i.e. more
waves coming out of the black hole than we threw into it, if

0 < ω < m	H = ma
2Mr+

. (17.116)

This effect is known as superradiance (Press and Teukolsky, 1972). The energy gain in
the scattered waves corresponds to extraction of rotational energy from the black hole.

The amplification tends to be small, but if we fine-tune the setup the gravitational-
wave amplitude may be almost doubled (although this requires a specific frequency and
a near extreme Kerr black hole). It is interesting to ask whether superradiance may have
astrophysical relevance.This may seem somewhat far fetched, but it is conceivable. In
particular, it is known that perturbations due to a massive scalar field become unstable
(essentially due to feedback coupling to the superradiance). This may have interesting
implications for ultralight bosons, should they exist (Brito et al., 2017).
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17.6 Kerr quasinormal modes

Just like a non-rotating black hole, a perturbed Kerr black hole settles down in a way
that is dominated by its quasinormal modes. The problem is more involved than the
Schwarzschild one, but we can nevertheless determine the quasinormal modes. The main
difference is that, when the black hole rotates, the azimuthal degeneracy is broken. For
a given multipole l there are 2l + 1 distinct modes for each of the Schwarzschild modes.
These modes correspond to specific values of m, where −l ≤ m ≤ l.

It is relevant to consider the behaviour of the Kerr quasinormal modes for increasing
spin. The sample of numerical results provided in Table 17.1 show that rotation has a
pronounced effect on modes with m = l > 0. These can be thought of as co-rotating with
the black hole (in analogy with the discussion of waves in rotating stars in Chapter 13).
In the limit a → M the co-rotating modes become long-lived (Im ωnM → 0) and
accumulate at the frequency m	H In contrast, the counter-rotating modes (with m < 0)
are much less affected by rotation. They remain relatively close to the Schwarzschild
quasinormal modes for all values of a. The general behaviour of the slowest damped
l = 2 modes is illustrated in Figure 17.3.

In order to compare the theory to observations—and facilitate parameter extraction—
it is useful to have a simple approximation of the numerical results. The leading co-
rotating quadrupole Kerr mode is well approximated by a frequency (Echeverria, 1989;
Finn, 1992)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–0.1

–0.08

–0.06

–0.04

–0.02

0

Im
 ω

M

Re ωM

a=0.9

a=0.99

m=1

m=2

m=0
m=-1

m=-2

a=0.8

Figure 17.3 The trajectories (Im ωM as a function of Re ωM) for the slowest damped l = 2
gravitational quansinormal mode of a Kerr black hole. Results are shown for a range of rotation rates,
0 ≤ a/M ≤ 0.99. The position of each mode at spin a/M = 0,0.1,0.2...0.9,0.99 is represented by dots.
The data is taken from Table 17.1.



OUP CORRECTED PROOF – FINAL, 24/10/2019, SPi

440 Spinning black holes

f ≈ 32
[
1 − 63

100
(1 − a/M)3/10

](
M�
M

)
kHz , (17.117)

with damping time

τ = 1.9 × 10−2

(1 − a/M)9/10

[
1 − 63

100
(1 − a/M)3/10

]−1 (
M

M�

)
ms. (17.118)

In principle, the fact that the modes of a black hole rotating close to the extreme limit may
be very long lived could—provided that these modes are actually excited in a realistic pro-
cess (which is not at all clear)—improve the chances of detection. We have already seen
that the effective amplitude of a periodic signal improves as the square root of the number
of observed cycles. In this sense, the presence of long-lived modes might seem promising.
However, one can argue that these modes are difficult to excite to a large amplitude (given
the mismatch between the timescale of the typical dynamics and the damping time; see
Sasaki and Nakamura (1990) and Glampedakis and Andersson (2001)).

17.7 GW150914: a faint fingerprint

An observational identification of quasinormal ringdown would provide clear evidence
for the presence of a black hole and a direct way of inferring its parameters (Finn, 1992;
Baibhav et al., 2018). Excitingly, the breakthrough detection event GW150914 provided
the first opportunity to test this idea. However, the analysis of the problem is complicated
by the spin effects.

The spin of the binary companions in a merger impacts on both the amplitude
and the phase of the gravitational-wave strain. If the two spins are misaligned with
the orbital angular momentum, L, they cause the orbital plane to precess around the
(almost constant) direction of the total angular momentum, J = L + S1 + S2 (the sum
of the orbital angular momentum and the contributions from the spin of the two binary
partners). In the case of GW150914 the limited signal-to-noise (∼ 24) made it difficult
to untangle the individual black-hole spins. The results were, in fact, consistent with a
non-precessing fit. In essence, the value of the final black-hole spin may have been a
simple consequence of the conservation of angular momentum (with the orbital angular
momentum converted into the spin of the final black hole). As a result, the final spin is
more precisely determined than the spins of the individual black holes.

In the case of GW150914, the two black holes merged to form a remnant with mass
62M� and spin a/M ≈ 0.67; see Figure 17.4. The inferred black-hole spin was a first in
astronomy4—a tight constraint on the rotation rate of a black hole.

From the posterior distributions of the mass and spin of the final black hole one can
predict the frequency and damping time of the leading quasinormal mode (most likely

4 The spin of accreting black holes has been inferred via observations of broadened iron lines (Miniutti et al.,
2004), but this method has uncertain systematics.
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Figure 17.4 Probability density functions for the source-frame mass and the dimensionless spin of the
black hole formed in the GW150914 merger event. Results are shown for three different waveform
models (see the original paper for details). The dashed vertical lines mark the 90% credible interval for
the probability density. The two-dimensional plot shows the contours of the 50 and 90% credible regions.
(Reproduced from Abbott et al. (2016c), Creative Commons Attribution 3.0 licence.)

the fundamental l = m = 2 mode, cf., Table 17.1). The GW150914 observations suggest
that f = 251 ± 8 Hz and τ = 4.0 ± 0.3 ms at 90% confidence. Figure 17.5 shows the
90% credible contours in the frequency-damping rate plane as a functions of a possible
time offset to the start of the ringdown phase, alongside the contour for the slowest-
damped quasinormal mode from (17.117) and (17.118) for the estimated mass and
spin parameter of the remnant. In essence, the contours begin to overlap with the theory
prediction about 3 ms after the merger. This does not in itself prove the observation
of this particular oscillation mode, but the signal is at least consistent with numerical
simulations.

The GW150914 results demonstrate the potential of future observations. Given that
a strong constraint on both the frequency and the damping time allows an independent
extraction of the final black hole’s mass and spin, the identification of additional mode
features provide a test of the theory. The basic idea is analogous to the argument for
the Double Pulsar; see Figure 10.3. In principle, a multi-mode observation may allow
us to test of the no-hair theorem in general relativity (Berti et al., 2016; Dhanpal et al.,
2018). However, one should be aware that this is a non-trivial exercise. In particular,
the quasinormal-mode contribution to the signal is not easily separated from (say) the
merger part. Higher order modes are more rapidly damped and therefore play a more
prominent role at early times, precisely when it may not be clear to what extent the
signal is accurately represented by a sinusoidal ringdown. A detection of comparably
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Figure 17.5 Regions of 90% credibility (in the joint posterior distributions) for the frequency (f ) and
damping time (τ ) of the main quasinormal l = m = 2 mode of the black hole formed in the GW150914
event. Results are shown assuming that the ringdown starts at various times after the merger (as
indicated). The red filled-in region shows the 90% credible region for the frequency and decay time of the
slowest damped mode as derived from the posterior distributions of the remnant mass and spin
parameters (shown in Figure 17.4). (Based on the results of Abbott et al. (2016d).)

weak overtone quasinormal modes may require third-generation detectors or a space-
based instrument, like LISA.

Given the fundamental importance of this kind of observation, it is interesting to
consider other possible scenarios. Suppose we establish that we are not seeing a black
hole as described by Einstein’s theory, then what? It is well known that you cannot
squeeze a material object much inside R ≈ 3M (ignoring rotation) without invoking
‘non-standard’ physics. Hence, alternative scenarios tend to be speculative, introducing
deviations from the classical black-hole solution on the horizon scale. This can be done
by introducing a surface (e.g. supported by a negative pressure (Mazur and Mottola,
2015)) or by invoking quantum effects (Saravani et al., 2014), and typically leads to
a different quasinormal-mode response, e.g. revealing itself through the emergence of
secondary pulses in the late-time waveform (Cardoso et al. (2016); Abedi et al. (2017)).
These so-called echoes are likely to be faint and difficult to observe (see Abedi et al.(2017)
and Westerweck et al. (2018) for recent contributions to the discussion).
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Relativistic asteroseismology

We have seen that a detailed understanding of neutron star physics necessarily involves
all four fundamental forces of nature. This makes realistic modelling complicated. At the
same time it offers a unique opportunity to explore extreme physics. By developing more
precise neutron star models and matching them to observations we can probe physics in
a regime that may never be within the reach of terrestrial laboratories. A key part of this
enterprise involves extracting neutron-star parameters from observed data to constrain
the underlying microphysics, e.g. the equation of state. In this respect, gravitational-wave
asteroseismology offers a promising strategy (Andersson and Kokkotas, 1998; Benhar
et al., 2004; Doneva et al., 2013).

Neutron stars have rich oscillation spectra, with more or less distinct families of modes
depending, often rather sensitively, on the detailed physics (see Chapter 13). However,
if we want to develop an accurate strategy for inverting observed data to constrain the
physics, we need reliable models. Given our relative ignorance of issues like the state
and composition of matter at extreme densities this is a severe challenge, but one thing is
absolutely clear: the models have to be relativistic. The Newtonian models we considered
in, for example, Chapter 13 provide qualitative insight and help us decide where we
should focus our efforts, but it makes little sense to couple a Newtonian study to realistic
microphysics. Since relativistic effects have crucial impact on issues like the neutron star
radius for a given central density, it would make no sense to base a quantitative strategy
for parameter extraction on Newtonian results.

18.1 Relativistic fluid perturbations

In order to develop realistic models for neutron star dynamics we need to account for the
different physics aspects—outlined in Chapter 12—in general relativity. As a first step
towards this goal, it is natural to consider the problem for a perfect fluid. In this case, the
unperturbed equilibrium is provided by a solution to the Tolman–Oppenheimer–Volkoff
equations from Chapter 4. The perturbed fluid motion is governed by the linearized
Einstein equations

δG b
a = 8πδT b

a , (18.1)

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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in terms of the Eulerian perturbation (δ) of the Einstein tensor G b
a and the stress–energy

tensor T b
a . We may also want to use the perturbed fluid equations of motion

∇bδT b
a = 0, (18.2)

where it is worth noting that the (local) perturbation (δ) commutes with the covariant
derivative.

In the first instance, we will consider non-rotating perfect fluid stars. This means
that the perturbations can be expressed in terms of deviations from a metric of the
Schwarzschild form (see Chapter 4), with metric coefficients ν and λ (functions of the
radial coordinate r only), and involves working with the covariant derivative with respect
to this spacetime, as well (as outlined in Chapter 3).

In the case of a perfect fluid, we have

T b
a = (p + ε)uaub + pδb

a, (18.3)

where p is the (isotropic) pressure and ε is the energy density. That is,

δT b
a = (δε + δp)uaub + δpδb

a + (p + ε)
(
ubδua + uaδub

)
. (18.4)

In principle, the information in (18.2) is already contained in the perturbed Einstein
equations (18.1), but the relation between the results is not obvious. This means that,
in practice, it may be useful to work with different combinations of the equations. To
some extent it is a matter of choice. However, we have to tread carefully if we want
to make simplifications, like the Cowling approximation. In the Newtonian case this
involved omitting the perturbed gravitational potential (with the argument that the fluid
motion was predominantly horizontal). In the relativistic case it may seem natural to
take this to mean that we can ignore the metric perturbations, i.e. take δgab = hab = 0.
But this could be too drastic. After all, the left-hand side of (18.1) then vanishes
identically which would seem to suggest that the right-hand vanishes, as well. This
(obviously) makes the ‘approximation’ meaningless. However, we would have drawn
similar conclusions in the Newtonian case if we had taken the Poisson equation for the
gravitational potential as our starting point, so there is no reason to panic. We can simply
choose to ignore the Einstein equations and work with (18.2) instead. In this case, the
problem remains ‘consistent’ even if we leave out the metric variations, and it closely
resembles its Newtonian counterpart. However, we still have to be careful. The stress–
energy tensor involves components associated with the fluid momentum, and these may
be directly associated with changes in the spacetime. As a result one can argue that the
natural generalization of the Cowling approximation would be to retain the ‘momentum
part’ of the perturbed metric (Finn, 1988). This would involve only setting δgij = 0.
We will see an example where this distinction becomes important later.

In the case of a non-rotating (spherically symmetric) star the perturbation problem
splits into axial and polar sectors, just like in the black-hole case. In the polar case (and
Regge–Wheeler gauge), we have (as in Chapter 16)
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hab =

⎛
⎜⎜⎝

eνH0 H1 0 0
sym eλH2 0 0

0 0 r2K 0
0 0 0 r2 sin2 θK

⎞
⎟⎟⎠Ym

l , (18.5)

where the perturbations are assumed to be functions of t and r. Due to the spherical
symmetry of the problem, the different multipoles do not couple. In fact, we can, without
loss of generality, assume that the perturbations are axisymmetric (m = 0).

We also need the perturbed fluid velocity. The polar components we need are (see
Chapter 13, although we are now using a coordinate basis)1

δur = W , (18.6)

δuθ = 1
r2 V∂θYm

l , (18.7)

and

δuϕ = 1

r2 sin2 θ
V∂ϕYm

l . (18.8)

After cranking through the algebra, we find that (18.1) leads to a set of coupled
differential equations (see, for example, Thorne and Campolattaro (1967), Lindblom
and Detweiler (1983), or Kojima (1992))

δG t
t = 8πδT t

t −→
e−λr2K ′ + e−λ

(
3 − rλ′

2

)
rK ′ − n

2
K − e−λrH ′

2

−
[

1
2

l(l + 1)+ e−λ
(
1 − rλ′)]H2 = −8πr2δε, (18.9)

where primes are radial derivatives, dots are time derivatives, and we have used
n = (l − 1)(l + 2) (recall Eq. 16.38),

δG r
r = 8πδT r

r −→
r2e−νK̈ − 2e−(ν+λ)rḢ1 − e−λ

(
1 + rν′

2

)
rK ′ + n

2
K

+ e−λrH ′
0 − 1

2
l(l + 1)H0 + e−λ

(
1 + rν′)H2 = −8πr2δp, (18.10)

1 In principle, all perturbation variables should have indices l and m to indicate which multipole they refer
to, but as we know the multipoles decouple in spherical symmetry we suppress these indices here.
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δG r
t = 8πδT r

t −→
K̇ ′ + 1

r
(2 − rν′)K̇ − 1

r
Ḣ2 − l(l + 1)

2r2 H1 = 8π(p + ε)eλ+ν/2W . (18.11)

We also have

δG θ
θ + δG ϕ

ϕ = 8π
(
δT θ

θ + δT ϕ
ϕ

)−→
r2e−λ

(
H ′

0 − K ′)+ r2e−ν
(
K̈ + Ḧ2

)− 2r2e−λ−νḢ ′
1 − re−λ

[
1
2

r(ν′ − λ′)+ 2
]

K ′

+ e−λ

(
1 + rν′ − 1

2
rλ′
)

rH ′
0 + re−λ

(
1 + 1

2
rν′
)

H ′
2

+ 1
2

l(l + 1)(H2 − H0) + 2e−λ
(
eλ − 1 − rν′)H2 = −16πr2δp, (18.12)

δG θ
θ − δG ϕ

ϕ = 8π
(
δT θ

θ − δT ϕ
ϕ

)−→
H2 − H0 = 0, (18.13)

δG θ
t = 8πδT θ

t −→
− e−λH ′

1 + Ḣ2 + K̇ + 1
2

(λ′ − ν′)e−λH1 = 16π(p + ε)eν/2V , (18.14)

and finally

δG θ
r = 8πδT θ

r −→
− e−νḢ1 − K ′ + e−ν

[
eνH0

]′ + 1
r

(
1 + r

2
ν′)(H2 − H0) = 0. (18.15)

Two of these equations, (18.11) and (18.14), provide the perturbed velocity com-
ponents (W and V ) in terms of the metric variables. The remaining equations can be
expressed as coupled wave equations for H0 and K . The equations are, however, rather
messy and we do not learn very much from them (see, for example, Kojima (1992) or
Allen et al. (1998) for explicit expressions). It is easy to count the degrees of freedom to
confirm that we have a well-posed problem, but if we choose to work with the Einstein
equations and not involve the fluid equations of motion, then the fluid dynamics becomes
a bit convoluted. This is not surprising as we expect the problem to involve coupled
sound waves and gravitational waves. The first set is not naturally expressed in terms of
the spacetime metric. Despite these caveats, the set of equations we have written down
provides a useful system for studying the oscillations of a relativistic star (Detweiler and
Lindblom, 1985; Andersson et al., 1995; Krüger et al., 2015).
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18.2 f- and p-modes in relativity

The problem of relativistic neutron star seismology was first explored in the late 1960s
(Thorne and Campolattaro, 1967). As in the Newtonian case, the typical strategy
involves assuming a harmonic time-dependence eiωt for all perturbed quantities and
searching for mode solutions to the perturbation equations. In the relativistic case,
these solutions are no longer normal modes. Instead, they are quasinormal modes,
corresponding to purely outgoing (gravitational) waves at spatial infinity. The analysis
of the exterior problem is completely analogous to that for black holes (see Chapter 16).
In essence, one can extract both an oscillation frequency and a characteristic damping
time for each stellar oscillation mode.

Much of the literature has focussed on perfect fluid stars, often without consideration
of the interior composition and actual state of matter. In fact, many studies are based
on phenomenological models (typically polytropes) which only capture the rough
properties of a realistic equation of state. Nevertheless, this has led to an understanding
of the nature of the stellar spectrum, like the fundamental f-mode and the acoustic
p-modes. The gravity g-modes (arising because of composition gradients in a mature
neutron star) have also been considered (Finn, 1988; Krüger et al., 2015), as has the
role of the crust elasticity (Schumaker and Thorne, 1983; Samuelsson and Andersson,
2007), superfluidity (Comer et al., 1999; Lin et al., 2008), and the star’s magnetic field
(Gabler et al., 2012; Colaiuda and Kokkotas, 2012). We will not discuss all these aspects.
Rather, we will focus on the general strategy for solving the perturbation equations.

When the problem is approached in the frequency domain, it is common to recast it
as a set of coupled first-order differential equations (Lindblom and Detweiler, 1983;
Detweiler and Lindblom, 1985). For polar perturbations, we end up with a fourth-
order system so we need four independent variables. From the set of equations,
(18.9)–(18.35), it is easy to see that a natural choice may be to work with [K ,H0,H1,δp].
One would typically integrate this system from the centre of the star, implementing
regularity conditions through a Taylor expansion for small values of r (see Lindblom
and Detweiler (1983)), repeating the procedure with linearly independent initial vectors
in order to provide a basis that can be used to express the general solution. In order to
avoid numerical difficulties, it is also common to initiate an integration from the surface
of the star inwards. Finally, the obtained solutions are matched at an interior point. This
requires the solution of a linear system for the ‘amplitudes’ of the different solutions. The
boundary conditions at the centre and the surface of the star determine a unique (up to
amplitude) solution throughout the star’s interior. At the surface, this solution is matched
to an exterior solution obtained from the equations from black-hole perturbation theory
(e.g. the Zerilli equation from Chapter 16). The procedure is iterated until one finds a
complex frequency such that the amplitude of the ingoing wave amplitude at infinity
vanishes. The computational strategy is described in detail by, for example, Lindblom
and Detweiler (1983) and Krüger et al. (2015).

In order to facilitate gravitational-wave astronomy, it is relevant to explore the ‘inverse
problem’ for gravitational waves from oscillating stars. If we observed these waves, could
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we infer the properties of the star from which they originated? To answer this question
we need to consider the frequencies and damping times of oscillation modes that may
realistically be excited to a detectable level for a range of plausible equations of state.

As an illustration, let us consider the results from the first detailed consideration
of the seismology strategy for neutron stars (Andersson and Kokkotas, 1998). The
starting point is a family of stellar models for some set of equations of state, as shown in
Figure 18.1. It should be immediately clear that this particular set of equations of state
is not up to date. In particular, most of the models do not allow for neutron stars heavier
than 2M�, which we now know is an observational requirement (see Chapter 12). The
range of stiffness is also larger than expected. Conservatively, one may argue that X-ray
observations constrain the neutron star radius to lie in the range 10–14 km (the grey
vertical band in Figure 18.1, Steiner et al. (2018)). It is important to keep these issues in
mind, but they do not have much impact on the general argument.

Ignoring the caveats, we calculate the various oscillation modes we are interested in
for each of these stellar models. This leads to the results in Figure 18.2, showing the
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Figure 18.1 The mass–radius relation for the set of neutron star models used in the discussion of
empirical relations for neutron star oscillations. Note that, most of the equations of state used here are
outdated as they do not allow for neutron stars heavier than 2M� (the dashed line gives the mass of the
heaviest known neutron star). The range of stiffness is also larger than expected—X-ray observations
constrain the neutron star radius to lie in the range 10–14 km (the grey vertical band (Steiner et al.,
2018). The collection is nevertheless useful as it represents a wide range in stiffness. (Based on data from
Andersson and Kokkotas (1998).)
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Figure 18.2 The frequencies of the fundamental f-mode, the lowest order pressure p-mode, and the first
w-mode determined for the stellar models from Figure 18.1. (Based on data from Andersson and
Kokkotas (1998))

fundamental f-mode, the lowest order pressure p-mode, and the first w-mode (more
about this later). So far so good. Now let us ask what we would conclude from an
observation of a specific mode frequency, say at 2.5 kHz. This would allow us to put
a horizontal line through Figure 18.2. We would safely be able to say that we are dealing
with an f-mode and may be able to rule out some equations of state, but we would clearly
be left with several options.

We can do better by folding in some understanding of the physics. For example, in
the case of the f-modes we expect the frequency to depend (roughly) on the average
density of the star, cf. Chapter 13. That this scaling remains robust also for realistic
equations of state (and in relativity) is demonstrated by the results in the left panel of
Figure 18.3, where we show the frequency as a function of the average density of the star.
Similarly, we may assume that the quadrupole formula gives a reasonable indication of
the gravitational-wave emission. This suggests a scaling for the damping time of the mode

tf ∼ oscillation energy
power emitted in GWs

∼ R
(

R
M

)3

= tgw, (18.16)

which also turns out to be fairly reliable—see the results in the right panel of Figure 18.3.
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Figure 18.3 Left: Numerically obtained f-mode frequencies as functions of the average stellar density.
Right: The scaled f-mode damping times as functions of the stellar compactness. The straight (red) lines
represent the fits to the data given in (18.17) and (18.18). (Based on data from Andersson and Kokkotas
(1998).)

Based on these results, we can infer empirical relations which may form the basis for
a solution to the inverse problem. A linear fit to the calculated f-mode frequencies2 leads
to (Andersson and Kokkotas, 1998)

ff
1 kHz

� 0.22 + 2.16

(
M1.4

R3
10

)1/2

, (18.17)

where M1.4 = M/1.4M� and R10 = R/10 km. We see that the typical f-mode frequency
is around 2.4 kHz. Meanwhile, we have for the damping time

1s
tf

�
(

M3
1.4

R4
10

)[
22.85 − 14.65

(
M1.4

R10

)]
. (18.18)

The small deviation of the numerical data from this fit is apparent in Figure 18.3, and
one can easily see that a typical value for the damping time of the f-mode is a tenth of
a second. Given the Newtonian estimates from Chapter 13, these results should not be
surprising.

2 This is an improved fit of the original data. Similar empirical relations have been discussed by (amongst
others) Tsui and Leung (2005) and Lau et al. (2010), making use of different scalings with the stellar
parameters. However, as our main interest here is to illustrate the principle we base the discussion of the original
results from Andersson and Kokkotas (1998).
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Figure 18.4 Left: Numerically obtained p-mode frequencies as functions of the average density of the
star. Right: The corresponding damping times as functions of the stellar compactness. (Based on data
from Andersson and Kokkotas (1998).)

The fact that these empirical relations are robust reflects the expectation that the
fundamental mode depends on the star’s bulk properties. It is relatively insensitive to
the interior physics. In contrast, the frequency of the pressure p-modes depends on the
local sound speed (see Chapter 13) and the damping of these modes is sensitive to the
detailed perturbation amplitudes inside the star (Andersson et al., 1995). As a result,
different equations of state lead to rather different p-mode results, cf. Figure 18.4. It is
difficult to construct useful empirical relations from these results. However, in the overall
scheme of things, this may not be bad news. The distinct nature of the p-modes could
be an advantage. For example, if the mass and the radius of the star are already obtained
by other means, then an observed p-mode can be used to identity the equation of state.
Of course, we have to keep in mind that the p-modes reside at higher frequencies where
gravitational-wave detectors tend to be less sensitive.

18.3 The inverse problem

Making contact with the idea of determining a black hole’s mass and spin from observed
quasinormal modes (see Chapter 17), one may envisage combining an observed neutron
star f-mode frequency and damping time with the empirical relations (18.17) and
(18.18) to invert the problem and constrain the mass and the radius. The precision
of the result obviously depends on statistical uncertainties which we have not yet
considered.

As an example of this kind of parameter extraction—illustrating the main ideas—let
us suppose that we want to detect a signal from an oscillating star (or, indeed, a black
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hole; see Kokkotas et al. (2001)). The signal would then be rather simple (at least in
principle). For each individual mode we have a damped sinusoid,

h(t) =
{

0 for t < ta ,
Ae−(t−ta)/τ sin[2π f (t − ta)] for t > ta ,

(18.19)

where A is the initial amplitude of the signal, ta is its arrival time (the earliest time at
which the damped oscillation is present in the signal), and f and τ are the frequency
and damping time of the oscillation, respectively. From the standard flux formula from
Chapter 3, we have

A ≈ 2.4 × 10−20
(

E
10−6M�c2

)(
10 kpc

d

)(
1 kHz

f

)(
1 ms

τ

)1/2

. (18.20)

That is, we can relate the amplitude of the oscillation to the energy carried by gravitational
waves.

In a realistic situation, e.g. after neutron star merger, the assumed signal may only
be relevant at late stages when the remnant is settling down and its pulsations can be
accurately described as a superposition of the various modes that have been excited.
At earlier times (t < ta) the waves are likely to have a more complex character that is
completely uncorrelated with the intrinsic noise of the detector. This partly justifies the
simplification of setting the waveform equal to 0 for t < ta.

Following the matched-filter strategy from Chapter 8, we use templates of the same
form as the expected signal. This leads to the signal-to-noise ratio

(
S
N

)2

= ρ2 ≡ (h|h) = 4Q2

1 + 4Q2

A2τ

2Sn
, (18.21)

where

Q ≡ π f τ , (18.22)

is the quality factor of the oscillation, Sn is the spectral density of the detector noise
(assumed to be constant over the bandwidth of the signal in this example), and we have
adapted the strategy we outlined for burst signals in Chapter 8. That is, we have used

(h1(t)|h2(t)) = 4Re
∫ ∞

0

h̃1h̃2

Sn
df ≈ 4

Sn(f )
Re
∫ ∞

0
h̃1h̃∗

2df

= 4
Sn(f )

Re
∫ ∞

0
h1(t)h∗

2(t)dt. (18.23)
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In order to work out the accuracy with which the parameters of the signal can be
determined, it is useful to first introduce dimensionless variables such that

foε ≡ f − fo, τoη ≡ τ − τo, τoζ ≡ ta − to Aoξ ≡ A−Ao, (18.24)

where fo,τo, to, and Ao are the true values of the four quantities f ,τ , ta, and A. The
new parameters are simply relative deviations of the measured quantities from their true
values. Once we have decided to work with these parameters we can construct the Fisher
information matrix �ij (see Chapter 8) and by inverting it, obtain all possible information
about the measurement accuracy of each parameter of the signal, and the correlations
between the associated errors.

First of all, for a system with Gaussian noise the components of the (symmetric) Fisher
matrix follow from

�ij ≡
(

∂h
∂θi

∣∣∣∣ ∂h
∂θj

)
, (18.25)

where θi = (ε,η,ζ ,ξ) are the signal parameters. Given our simple model signal it is
straightforward to work out the components of this matrix, The inverse of the Fisher
matrix, Cij ≡ �−1

ij , gives the covariance matrix. This is the most important quantity
from the experimental point of view, since its components are directly related to the
measurement errors. In the present case, if we want to know how accurately we can
determine the mode frequency f and the damping time τ , we need Cεε and Cηη. Working
out the algebra (Kokkotas et al., 2001), we find that these are given by

Cεε = 1 − 2Q2 + 8Q4

2Q4(1 + 4Q2)

1
ρ2 , (18.26)

and

Cηη = 4(5 + 4Q2)

(1 + 4Q2)

1
ρ2 . (18.27)

These results represent the squares of the relative measurement errors of f and τ ,
respectively.

As an illustration, let us consider a typical f-mode with frequency f = 2.4 kHz and
damping time τ = 0.1 s. Then we have Q ≈ 750 and if we consider a galactic source at
a distance of d = 10 kpc and a fiducial detector with S1/2

n = 10−23 Hz−1/2 at the mode
frequency (roughly the level of Advanced LIGO), then we expect a signal-to-noise ratio

ρ ≈ 30
(

E
10−6M�c2

)1/2

. (18.28)
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That is, even if the system radiates as little as 4 × 10−7M�c2 through this mode we would
detect the signal with ρ ≈ 10. From (18.26) and (18.27) it follows that

δf /f ≈ 1.3 × 10−3/ρ, (18.29)

and

δτ/τ ≈ 2/ρ. (18.30)

For a signal leading to ρ ≈ 10 we would accurately infer the mode frequency but the
damping rate would only be known at the 20% level. If we want to extract both the
frequency and the damping to (say) the 1% level, then we need a signal-to-noise of at
least 200. This would require the release of an energy of order 4 × 10−5M�c2, which
may be unrealistic. The main lesson is that, while we may be able to extract the f-mode
frequency, we are much less likely to constrain the damping rate. In essence, a realistic
asteroseismology proposal needs to involve a different combination of parameters.

18.4 The w-modes

Up to this point we have assumed that the oscillations of relativistic stars are similar to the
well-established Newtonian results. Relativistic effects impact on the oscillation frequen-
cies through the gravitational redshift and the modes are damped by gravitational-wave
emission, but the results remain qualitatively similar to the Newtonian case. There is,
however, more to this story.

Relativistic stars have additional oscillation modes, with no relation to the fluid modes
from Newtonian theory (Kokkotas and Schutz, 1992). Rather, the new class of modes is
due to the dynamical spacetime. In the case of these modes the fluid hardly pulsates at
all (Andersson et al., 1996b). Like the quasinormal modes of a black hole, these so-called
(gravitational-wave) w-modes reflect the nature of the curved spacetime.

In order to explain the w-modes, let us turn our attention to the axial perturbations.
In this case, we have (see Chapter 14)

hab =

⎛
⎜⎜⎜⎜⎝

0 0 −h0∂ϕYm
l /sinθ h0sinθ∂θYm

l

0 0 −h1∂ϕYm
l sinθ h1sinθ∂θYm

l

sym sym 0 0

sym sym 0 0

⎞
⎟⎟⎟⎟⎠ , (18.31)

while the axial velocity field is given by

δuθ = − 1
r2 sinθ

U∂ϕYm
l (18.32)
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and

δuϕ = 1
r2 sinθ

U∂θYm
l . (18.33)

Once we account for the assumed axisymmetry (setting m = 0), we arrive at three
equations for the metric perturbations:

δG ϕ
t = 8πδT ϕ

t −→
h′

0 − ḣ′
1 − 1

2
(ν′ + λ′)(h′

0 − ḣ1)− 2
r

ḣ1 −
[

n
r2 eλ + 1

r
(ν′ + λ′)+ 2

r2

]
h0

= 16π(p + ε)eν/2+λU , (18.34)

δG ϕ
r = 8πδT ϕ

r −→ ḣ′
0 − ḧ1 − 2

r
ḣ0 − n

r2 eνh1 = 0, (18.35)

and

δG ϕ
θ = 8πδT ϕ

θ −→ e−ν ḣ0 − e−λh′
1 − 1

2
(ν′ − λ′)e−λh1 = 0. (18.36)

It is easy to see that the last of these equations leads to

ḣ0 = e(ν−λ)/2
[
e(ν−λ)/2h1

]′
, (18.37)

and it follows from (18.35) that

ḧ1 − r2 ∂

∂r

{
e(ν−λ)/2

r2

∂

∂r

[
e(ν−λ)/2h1

]}
− n

r2 eνh1 = 0. (18.38)

Meanwhile, (18.34) leads to

U̇ = −e−ν/2ḣ0, (18.39)

where we have used the background relation (see Chapter 4)

ν′ + λ′ = 8π(p + ε)reλ. (18.40)

We learn that the fluid motion is slaved to the metric variations. This is as expected.
Fluids cannot support shear stresses so one would not expect the axial problem to
have interesting dynamics. We have already seen this in the case of the r-modes (see
Chapter 13), which require rotation to become distinct. However, the relativistic problem
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brings something new. We have a wave equation for the perturbed metric. This should
not come as a surprise—we are discussing gravitational waves, after all—but it is an
interesting hint that there are features of the relativistic problem which do not have a
Newtonian counterpart. In fact, it is easy to show that, if we make the star sufficiently
compact (e.g. by assuming a uniform density), then the corresponding effective potential
develops a well inside the star. Gravitational waves may be temporarily trapped in this
well, leading to a set of slowly damped oscillation modes (Chandrasekhar and Ferrari,
1991; Andersson et al., 1996a).

The w-modes come in both the axial and the polar variety and for less compact stars
they are rapidly damped (Kokkotas and Schutz, 1992). The curvature of the stars is not
able to efficiently trap gravitational waves. Typical results for the lowest polar w-mode
are compared to the f- and p-modes in Figure 18.2. The corresponding frequencies and
damping times are shown in Figure 18.5.

Since they are mainly due to the spacetime curvature and they do not excite
significant fluid motion, one would expect the w-modes to be relatively independent of
the matter composition. This should lead to robust empirical relations between the mode
frequencies and stellar parameters. Indeed, numerical results (Andersson and Kokkotas,
1998) suggest that the frequency of the (main) w-mode is inversely proportional to
the size of the star; see Figure 18.5. Meanwhile, the damping time is related to the
compactness of the star; i.e. the more relativistic the star is, the longer the w-mode
oscillation lasts. This is also shown in Figure 18.5.

From numerical results we obtain the following relation for the frequency of the first
w-mode, (Andersson and Kokkotas, 1998)
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Figure 18.5 Left: Numerically obtained w-mode frequencies. We show Rfw as functions of the
compactness of the star. Right: The corresponding damping times, in terms of R/ctw as functions
of the compactness of the star. (Based on data from Andersson and Kokkotas (1998).)
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fw
1 kHz

� 1
R10

[
20.95 − 9.17

(
M1.4

R10

)]
, (18.41)

while the damping rate of the mode is well described by

M1.4

tw (ms)
� 3.90 + 104.06

(
M1.4

R10

)
− (67.28 ± 3.84)

(
M1.4

R10

)2

. (18.42)

We see that a typical value for the w-mode frequency is 12 kHz, but since the frequency
depends strongly on the radius of the star it varies greatly for different equations of state.
For example, for a very stiff equation of state the w-mode frequency may be as low as
6 kHz while for the softest equation of state in our set the typical frequency is around
14 kHz. Perhaps not surprisingly, the w-mode damping time is comparable to that of an
oscillating black hole with the same mass, i.e. typically less than a tenth of a millisecond.
Given the high frequencies involved the w-modes may prove difficult to detect, but they
have the potential to provide a distinct signature of a neutron star spacetime.

18.5 The evolving spectrum of adolescent neutron stars

Neutron stars evolve as they age. Born in the furnace of a supernova core collapse, they
start out extremely hot but cool rapidly (over 10s of seconds) through neutrino emission
(Burrows and Lattimer, 1986; Pons et al., 1999). As they cool, internal entropy gradients
are smoothed out and thermal effects become less prominent. At the same time, other
physics aspects come into play. The crust of the star forms and the core fluids become
superfluid/superconducting. During the early life of a neutron star, these changes are
rapid but they slow down to become much more gradual as the star matures (Ho et al.,
2012).

As much of the relevant physics is poorly understood, it is difficult to build models that
faithfully track this evolution. Nevertheless, many of the key features are clear and one
can make (some) progress on understanding how the evolution of the star impacts on its
oscillation spectrum. We will demonstrate this by considering two related problems. First,
we discuss the early evolution of a proto-neutron star, where entropy gradients support
a family of thermal g-modes (Ferrari et al., 2003). Second, we ask how the g-mode
spectrum changes once the thermal effect become weak and the internal composition
variation provides the main source of buoyancy (Reisenegger and Goldreich, 1992).
In essence, we track the evolution of the low-frequency features of a neutron star through
the first millennium of its existence.

Let us start by considering the first few tens of seconds. During this early phase
neutrino diffusion cools the neutron star, and as a result the neutrino mean-free path
increases. After less than a minute, the mean-free path becomes comparable to the stellar
radius. This means that the star is effectively transparent, so the neutrinos can escape.
In this initial phase, a neutron star contracts and its gravitational mass decreases slightly.
As a result—given that their frequency scales as (M/R3)1/2—the f-modes evolve.
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In addition, the internal entropy gradient supports a set of thermal g-modes, which also
evolve as the star cools. The composition of a hot proto-neutron star is also different—the
internal stratification is more prominent, leading to higher frequency g-modes (Ferrari
et al., 2003). The impact of these effects on the leading modes is illustrated in Figure 18.6
(ignoring the, potentially significant, effect of rotation).

The results show that the frequencies of the f-, p-, and w-modes are much lower than
those of a cold neutron star. Initially, they cluster in a narrow range of 900 − 1500 Hz.
The behaviour of the f-mode frequency is particularly interesting, because it does not
show the usual scaling at these early times. During the first second the mass of the star
remains approximately constant while the radius rapidly decreases (Pons et al., 1999).
One would expect the f-mode frequency to decrease, but the opposite appears to happen.
However, the behaviour can be understood if we also consider the leading g-mode. After
about 0.5 s this mode exhibits a so-called avoided crossing with the f-mode. At this
point, the modes exchange properties. In this particular example, the expected increase
in the f-mode frequency is probably obscured by this mode-crossing. The fact that
the frequencies evolve over the first few seconds is important. We need to keep this in
mind, especially if the mode features are expected to persist on this kind of timescale.
That the p- and w-mode frequencies are much lower than usual could be a bonus for
observers—it means that they (briefly) radiate in a regime where the detectors are more
sensitive.
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Figure 18.6 Frequencies of the lowest order oscillation modes of a proto-neutron star shown as
functions of the time elapsed from the gravitational collapse. The frequencies initially cluster in a narrow
range but move apart after the first second of evolution. After about 5 seconds the spectrum of a mature
neutron star is established and the evolution becomes more gradual. It is worth noting that, at least in
this model, the f-mode and the g-mode exhibit an avoided crossing after about 0.5 s. (Reproduced from
Ferrari et al. (2003).)
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We have seen that a neutron star’s oscillation spectrum evolves during the proto-
neutron star stage, when the emission of neutrinos leads to a loss of thermal support.
However, once the star cools to about 1010 K the thermal support becomes insignificant.
The star has radiated much of its binding energy. It has settled down to its final mass and
radius—a neutron star has been born. This does not mean that the star’s spectrum ceases
to evolve. The star continues to mature for several hundred years. We can explore this
phase by tracking the cooling of a given star from a minute or so after birth through
hundreds of years, paying particular attention to the changes in the thermal pressure
and the formation of that star’s elastic crust (Ho et al., 2012). State-of-the-art cooling
simulations lead to the results shown in Figure 18.7. We see that the star is (close to)
isothermal after about 100 years. We also need to keep track of the internal state of matter,
in particular, the formation of the star’s crust. Cooling calculations typically start above
the melting temperature of the crust, but it begins to crystallize after approximately one
day. Typically, it takes at least 100 years for the bulk of the crust to form. The plot thickens
further if we consider the formation of superfluid/superconducting components in the
star’s core. These also form gradually. In particular, the core superfluid may develop over
1,000 years (Ho et al., 2012). The upshot of this is that some observed young neutron
stars may still be in their formative period. After all, the remnant in Cas A is only about
300 years old.

We can use the cooling data as input for a detailed seismology analysis (Krüger et al.,
2015), accounting for density discontinuities associated with distinct phase-transitions,
interior composition gradients, thermal pressure, and the elastic crust which grows in
thickness as the neutron star cools.
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Figure 18.7 Left: The thermal evolution of a neutron star model with M = 1.45M�. As is
apparent from this graph, the neutron star is nearly isothermal after 100 years (without additional heat
sources). Right: The gradual formation of the solid crust over time (showing only the outer layers of a
particular model star). The area where the crust is crystallized (shaded in grey) is obtained using a sharp
threshold of �>173 (see Chapter 14). (Reproduced from Krüger et al. (2015), copyright (2015) by the
American Physical Society.)
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At different points in the thermal evolution we output the temperature profile and feed
it into the mode calculation (Krüger et al., 2015). The results of this exercise shed light on
the influence of thermal effects on the various oscillation modes of the star. As expected,
the fundamental f-mode and the various p-modes are only weakly affected by the gradual
change in temperature. Meanwhile, the gravity g-mode spectrum changes completely as
the thermal pressure weakens. We also find a set of interface (i-) modes (arising from
density ‘discontinuities’ associated with, for example, the edges of the crust (McDermott
et al., 1988)). The presence of the elastic crust enriches the spectrum by shear modes,
which also evolve as the star cools and the crust region grows. The results provide a
sequence of snapshots of how the star’s oscillation spectrum evolves as the star ages.

Typical results for (a large set of) low-frequency modes are shown in Figure 18.8.
These modes are all rather different from those of a nearly perfect fluid star. This
is not surprising—we have changed the physics. It is notable that all modes exhibit
avoided crossings (easily visible in the high-frequency part of the graph). Early on in the
evolution, we can identify a set of thermal g-modes. Their frequency decreases as the star
cools and after about 100 years almost all of them have frequencies below about 20 Hz.
At this point the temperature has decreased so much that the thermal pressure is
negligible. We are left with g-modes which owe the internal composition for their
existence. There is also a set of interface modes (distinguished by having more localized
eigenfunctions inside the star). As the star continues to cool, the frequencies of these
interface modes also change slightly, finally leaving us with the spectrum of a cold star.

200

100

50

m
od

e 
fr

eq
ue

nc
y 

[H
z]

20

–6 –4 –2 0 2

log(age of star [yr])

g0
i1
g1

g2
i2g3

g4

i4
i5

i2

4 6

Figure 18.8 The low-frequency spectrum of a maturing neutron star. The thermal g-modes rapidly
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modes are also affected by the thermal pressure (here labelled i1, i2, i4, and i5). After about 100 years of
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18.6 Magnetar seismology

We have argued that asteroseismology provides a strategy for probing stellar physics
through observed oscillation modes. The promise of the idea is clear, but for neutron
stars it may not be so easy to execute it in practice. We need precise observations along
with detailed models to test the observations against. In the case of neutron stars we have
until very recently had neither reliable observations nor sufficiently detailed models.

We have discussed how progress is made as the various theory issues are addressed.
When it comes to observations, the situation changed with the observations of quasiperi-
odic oscillations following giant flares in three soft gamma-ray repeaters (magnetars).
Analysis of the X-ray data unveiled a set of periodicities (Duncan, 1998; Israel et al.,
2005; Strohmayer and Watts, 2005; Strohmayer and Watts, 2006) with frequencies that
agree reasonably well with the expected torsional shear modes of the neutron star crust.
This was exciting because it allowed us to test—and improve—our models for neutron
star seismology. However, it also raised warning flags about the ‘missing physics’. As the
observed flares are thought to originate from the crust in a magnetar yielding due to
stresses that build up as the field evolves (Thompson and Duncan, 1995), one would
expect the strong magnetic field to play a role. This means that we (most likely) need to
account for the (likely superconducting) nature of the star’s interior magnetic field. This
is far from easy.

As the problem is complex, let us focus on the elastic aspects in order to illustrate
the involved principles. We need to include the crust elasticity in a relativistic calculation
of axial oscillations. As the crust region has low density it seems reasonable to assume
that we can neglect the dynamical nature of the spacetime. This simplifies the problem.
The main technology required for this calculation is the same as that used to quantify
the point at which the crust yields during binary inspiral (see Chapter 21) although we
must now consider the time-dependent situation. To make progress, we need the axial
perturbation equations for an elastic solid in the Cowling approximation (Samuelsson
and Andersson, 2007). These can be written

F ′ + A′F ′ + BF = 0, (18.43)

where a prime denotes a derivate with respect to the radial (Schwarzschild) coordinate
r and

eA = r4eν−λ(ε + p)v2 , (18.44)

B = e2λ

v2

[
e−2νω2 − v2(l − 1)(l + 2)

r2

]
. (18.45)

The amplitude of the oscillation is F, ε is the energy density, p is the pressure, and v is the
shear speed (for simplicity we assume that the crust lattice is isotropic; see Chapter 14).
The integer l is the usual multipole that enters when we expand in spherical harmonics
and ω is the angular frequency.
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In the case we are considering, the boundary conditions require the traction to vanish
at the top and the bottom of the crust. This leads to

eAF ′ = 0 at r = Rc and r = R. (18.46)

We can use these equations to calculate axial crust modes for stellar models with given
core mass and radius (as long as we ignore the magnetic field and viscosity, the core fluid
does not couple to the crust motion). This allows us to consider a variety of supranuclear
equations of state in the core (Samuelsson and Andersson, 2007). We can then combine
the results to outline a workable strategy to (i) identify the key parameters that govern
the various modes, and (ii) try to represent the results in such a way that a parameter
‘inversion’ becomes possible given actual observations. As in the case of the f-modes,
which we have already considered, it is useful to work with approximate relations based
on the numerical data. In order to justify such relations, it would be helpful to find an
approximate solution. To do this, we consider Eq. (18.43) and introduce a new (tortoise-
type) coordinate x through

dx
dr

= e−A. (18.47)

The perturbation equation then becomes

d2F
dx2 + e2ABF = 0. (18.48)

It is now written on a form that lends itself to a WKB-type approximation. Thus, we
assume that the solution can be written

F = C1eiw(x) + C2e−iw(x) , w(x) =
∫ x

Rc

eAB1/2dx =
∫ r

Rc

B1/2dr. (18.49)

At the base of the crust (r = Rc) we need to ensure the vanishing of the traction. Hence,
we impose the boundary condition

F ′ = iB1/2(C1 − C2) = 0 ⇒ C1 = C2. (18.50)

The analogous condition at the surface (r = R) implies that

F ′ = iC1B1/2
[
eiw(R) − e−iw(R)

]
= 0 ⇒ w(R) =

∫ R

Rc

B1/2dr = nπ. (18.51)

To make further progress, we make the approximation that the shear speed is constant
(an approximation which is good throughout much of the crust) and that the metric
coefficients ν and λ are constant (which is a reasonable assumption since the crust mass
is negligible compared to that of the core). Then, assuming that
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ω2  e2νv2 (l − 1)(l + 2)

r2 , (18.52)

we may Taylor-expand B1/2 to get

B1/2 ≈ eλ−ν ω

v

[
1 − e2νv2(l − 1)(l + 2)

2ω2r2

]
, (18.53)

which may be integrated to yield (after using the boundary condition at the surface)

ω2 − eν−λ nπv
�

ω − e2ν v2(l − 1)(l + 2)

2RRc
≈ 0, (18.54)

where � = R − Rc. This provides a useful first approximation to the frequencies of the
axial crust modes.

Let us first consider the fundamental crust mode, which corresponds to n = 0. For
this case we immediately find that

ω2 ≈ e2νv2(l − 1)(l + 2)

2RRc
. (18.55)

This provides useful insight into the scaling with various parameters. In particular, it
gives the dependence on l required to match the observed data with specific crust modes;
see Table 18.1.

Turning to the overtones, n �= 0 for any given l, we need to solve the quadratic equation
(18.54). Expanding the resulting square root in the small parameter �/R and ignoring
the negative root we arrive at

Table 18.1 Observed quasiperiodic oscillations
frequencies for the giant flares in SGR 1806−20
and SGR 1900+14 and the suggested corresponding
elastic crust modes. The identified modes are denoted as ntl
with l the multipole and n the order of the mode. (Data
from Samuelsson and Andersson (2007).)

SGR 1806−20 SGR 1900+14

f (Hz) Mode f (Hz) Mode

29 0t2 28 ± 0.5 0t2

92.7 ± 0.1 0t6 53.5 ± 0.5 0t4

150.3 0t10 84 0t6

626.46 ± 0.02 1tl 155.1 ± 0.2 0t11
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ω ≈ eν−λ nπv
�

[
1 + e2λ (l − 1)(l + 2)

2π2

�2

RRc

1
n2

]
, (18.56)

where the second term in the bracket is negligible for moderate l. In order to estimate
the overtone frequencies for any given M and R (say) we need the crust thickness �

which then leads to Rc. One can show that that the crust thickness is reasonably well
approximated by

�

R
≈
(

1 + M
αR

e2λ

)−1

, (18.57)

where α is a parameter that depends on the equation of state (essentially measuring
the average compressibility of the crust). For the (realistic) crust model considered by
Samuelsson and Andersson (2007) the relevant value is α = 0.02326.

It is straightforward to use the analytic approximations to analyse the observed
magnetar oscillation features. The requirement that a single model must allow for the
presence of all observed frequencies then leads to constraints on the neutron star
parameters. Let us first assume that we observe the fundamental quadrupole mode
together with the first overtone (n = 1). In the data for SGR 1806−20; see Table 18.1, it
seems reasonable to assume that the first is represented by the 29-Hz oscillation, while
the latter corresponds to the 626-Hz mode. From our approximate formulae we see that
the ratio of these modes provides an expression that depends only on the compactness.
In effect, we arrive at a curve in the M − R plane on which the true stellar model
should lie; see Figure 18.9. Solving this constraint for the compactness we find that
M/R ≈ 0.12, so R ≈ 8.1M. From Eq. (18.57) we also see that the relative crust thickness
is �/R ≈ 0.17. We can insert this value for β in the expression for (say) the fundamental
mode. This allows us to solve for the radius, and we find that R ≈ 11.4 km, which means
that M ≈ 1.41 km ≈ 0.96M� and � ≈ 1.9 km. These values do not seem unreasonable,
although the inferred mass is a bit too low and the crust would seem surprisingly thick.
Of course, we have used simple approximations and we also ignored the impact of the
star’s magnetic field. Be that as it may, the example demonstrates the main steps of this
kind of analysis.

Next, consider the fundamental modes for different values of l, noting that the scaling
with l allows us to immediately work out the ratio of the different mode frequencies.
If we assign the ≈30-Hz feature to the fundamental l = 2 mode we can infer the
multipoles of the various higher frequency modes in the observed data. This leads to the
identifications suggested in Table 18.1. Once we have determined the various multipoles,
our approximate formula for the fundamental modes can (again) be used to constrain
the stellar parameters. Let us take the quadrupole mode as an example. If the frequency
is known, then the approximate formula gives the stellar radius as a function of the
compactness β. Since M = βR we again have a constraint curve in the M − R plane.
In order to be consistent with the results for the n = 1 overtone, the two curves must
intersect. The point of intersection immediately provides us with the mass and radius of
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Figure 18.9 Seismology analysis based on numerical axial crust-mode results. For the flare in SGR
1806−20 we associate the lower frequency oscillations (approximately 29, 93, and 150 Hz) with
fundamental (n = 0) modes with l = 2,6,9, or 10, respectively. The inclusion of the 150-Hz mode does
not substantially change the picture. The higher frequency oscillation (626 Hz) is assumed to be
associated with an n = 1 mode of arbitrary l. Models allowed by the set of low frequencies form a rather
broad region orthogonal to the line corresponding to models that have an n = 1 overtone of the right
magnitude. The true stellar parameters should lie in the region of overlap. (Adapted from the results of
Samuelsson and Andersson (2007).)

the star. This is illustrated in Figure 18.9. The results for higher l-modes provide further
constraints that can be used to verify the consistency of the result. Of course, our model
is an idealization (i.e. a spherical star with an isotropic crust). One would expect the use
of real data to lead to a spread of the various curves in the M − R plane. This uncertainty
can (to some extent) be used to assess the faithfulness of the parameter extraction.

Let us now take a leap of faith and assume that the mechanism that generates the
magnetar flare also leads to gravitational-wave emission. On the one hand, this would
be expected as the process must involve asymmetries. On the other hand, if the event
mainly involves the crust, then the density is low and one would not expect significant
gravitational dynamics. It could perhaps be that the observed oscillations are associated
with shear waves in the crust, but are triggered by a more global event. For example, a
large-scale adjustment of the magnetic field configuration (tapping into the gravitational
potential energy) could lead to a change in the moment of inertia and the emission
of gravitational waves (Ioka, 2001), perhaps releasing as much as 1048 − 1049 ergs of
energy (Corsi and Owen, 2011). If this energy were to be channeled through the star’s
f-mode, the signal could be within reach of current detectors. Unfortunately, at the time
of the giant flare in SGR 1806−20 (27 December 2004), only one of the two LIGO
instruments were operational. The data from the Hanford detector sets an upper limit
of 7.7 × 1046 erg on the energy release in gravitational waves (Abbott et al., 2007a). An
upper limit was also set, albeit in a more narrow frequency range, by the AURIGA bar
detector (Baggio et al., 2005). As we have not seen a magnetar giant flare in the Advanced
LIGO era, other searches have focused on smaller (but more regular) burst events
(Abbott et al., 2008b; Abbott et al., 2009b; Abadie et al., 2011b). Future searches would
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benefit from theory developments, ideally providing robust estimates of the character
and strength of the expected signal.

18.7 The relativistic r-modes

Continuing the theme of axial modes, let us briefly consider how the r-modes are affected
by relativistic effects. If we assume that the modes can be obtained by a leading order
slow-rotation calculation (as in Chapter 13), then we need to consider two effects. The
frequency of the modes should exhibit the gravitational redshift and the rotational effects
have to allow for the frame-dragging (see Chapter 17). We will demonstrate the impact
of both effects at the first-order post-Newtonian level. We will also show that there are no
pure r-modes (modes whose limit for a spherical star is purely axial) in a barotropic star
(Lockitch et al., 2001). This is in contrast with the Newtonian case for which we found
a set of such modes (one for each for l = m); see Chapter 13. The Newtonian r-modes
with l = m ≥ 2 pick up relativistic corrections (with both axial and polar contributions),
making their relation to general inertial modes of a rotating star (which have this ‘mixed’
nature) more apparent (Lockitch and Friedman, 1999).

In order to understand the nature of the relativistic r-modes, it is helpful to start by
noting that stationary non-radial (l > 0) perturbations of a spherical star must have3

H0 = H2 = K = δε = δp = 0, (18.58)

and satisfy

0 = H1 + 16π(ε + p)

l(l + 1)
eλrW , (18.59)

0 = e−(ν−λ)/2
[
e(ν−λ)/2H1

]′ + 16π(ε + p)eλV , (18.60)

h
′′
0 − 1

2
(ν′ + λ′)h′

0 +
[
(2 − l2 − l)

r2 eλ − 1
r
(ν′ + λ′)− 2

r2

]
h0 = 2

r
(ν′ + λ′)U , (18.61)

where a prime denotes a derivative with respect to r, as before. If we use (18.59) to
eliminate H1 from (18.60) we obtain

V = e−(ν+λ)/2

l(l + 1)(ε + p)

[
(ε + p)e(ν+λ)/2rW

]′
. (18.62)

3 These results follow immediately from the time-independent version of the perturbation equations for
polar and axial perturbations.
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This result generalizes the conservation of mass equation from Newtonian theory. The
other two equations relate the dynamical degrees of freedom of the spacetime metric to
the perturbed fluid velocity. They vanish in the Newtonian limit.

The perturbations must be regular everywhere and satisfy the boundary condition
that the Lagrangian change in the pressure vanishes at the surface of the star, r = R.
In this case, this leads to W (R) = 0. If W and U are specified, then the functions H1,
h0, and V follow from the above equations. The solutions for the metric variables are
also subject to matching conditions to the exterior spacetime, which must be regular at
infinity.

We want to understand how the problem changes when the star is slowly rotating.
The relevant slow-rotation metric was already discussed in Chapter 12. We know that
slow rotation should be taken to mean that � is small compared to the Kepler velocity,
�K ∼√M/R3, the angular velocity at which the star is dynamically unstable to mass
shedding at the equator. Neglecting quantities of order �2 and higher, the star remains
spherical. This means that the Tolman–Oppenheimer–Volkoff equations from Chapter 4
remain valid. In addition, we need to work out the frame dragging, represented by
�(r) = �− ω(r), by solving (12.72).

Turning to the perturbations, rotation couples the different multipoles, leading to the
equations being more complicated than their non-rotating counterparts (Kojima, 1992).
In general, an l mode that is axial to leading order picks up polar rotational corrections
corresponding to the l ± 1 multipoles. In order to illustrate the results, let us consider a
uniform density star with

ε = 3M
4πR3 . (18.63)

In this case, we can write down an analytic solution for the background configuration
(Lockitch et al., 2001). We also find that if we truncate the solution at first order in a
2M/R expansion (the first post-Newtonian order), we have

�(r)
�

= 1 −
(

1 − 3r2

5R2

)(
2M
R

)
+O

(
2M
R

)2

. (18.64)

Working to this order of approximation, we find that the post-Newtonian corrections to
the Newtonian r-modes from Chapter 13 are such that (Lockitch et al., 2001)

κ = 2
(m + 1)

[
1 − 4(m − 1)(2m + 11)

5(2m + 1)(2m + 5)

(
2M
R

)
+O

(
2M
R

)2
]

, (18.65)

provides the rotating frame frequency κ� ≡ σ + m� (here we use σ for the mode
frequency in order to avoid confusion with the frame dragging).
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Figure 18.10 The (r/R)3 dependence of the Newtonian l = m = 2 r-mode eigenfunction (dashed
curve) compared to the post-Newtonian corrections to this mode for a uniform density star of
compactness 2M/R = 0.2 (the coefficients Ul(r), Wl(r), and Vl(r) with l ≤ 4, solid curves). The vertical
scale is set by normalizing U2(r) to unity at the surface of the star, and the other coefficients have been
scaled by a factor of 100. The results show that, while the relativistic corrections to the equilibrium
structure of the star are of order 20%, the relativistic corrections to the r-mode are at the 1% level.
(Reproduced from Lockitch et al. (2001), copyright (2001) by the American Physical Society.)

The corresponding eigenfunctions demonstrate the expected mixing of axial and
polar terms; see Figure 18.10. In addition, we see from (18.65) that the r-mode frequency
decreases with increasing neutron star compactness. It is natural that general relativity
has this effect. First of all, the gravitational redshift will tend to decrease fluid oscillation
frequencies measured by a distant inertial observer. Also, because these modes are
rotationally restored they will be affected by the frame dragging. The local Coriolis force
is determined not by the angular velocity � of the fluid relative to a distant observer but
by its angular velocity relative to the local inertial frame, �(r). Thus, the Coriolis force
decreases, and the modes are seen to oscillate less rapidly as the frame dragging becomes
more pronounced.

For m = 2 and canonical neutron star parameters we have κ ≈ 0.6 so the frequency
shift away from the Newtonian result is significant. In fact, calculations for a range
of proposed equations of state (Idrisy et al., 2015) show that the expected range of
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Figure 18.11 The spatial regions relevant to the relativistic r-mode problem.

frequencies for the relativistic r-mode does not include the Newtonian value. It is
important to keep this in mind when designing search strategies.

The overall conclusions are supported by detailed numerical calculations. In addition,
one can work out a consistent relativistic estimate for the growth rate of the unstable
r-modes (Lockitch et al., 2003). This part of the analysis is conceptually interesting
because it draws on the principles we used in our discussion of post-Newtonian theory.
Basically, the r-mode perturbation problem is somewhat different in different regions of
spacetime (see Figure 18.11). In the ‘near zone’, where σ r � 1, we can ignore second
time derivatives, whereas we cannot do this in the ‘wave zone’, the region where σ r  1.
However, the inertial modes we are interested in are restored by the Coriolis force, so
their frequencies scale with the angular velocity of the star, σ ∼ �. For slow rotation, this
implies that the near zone extends far away from the star into the non-relativistic region
(M/r � 1) and that the wave zone will be located entirely within this weak-field region.
These distinctions are crucial for a calculations of the energy radiated as gravitational
waves and the timescale on which gravitational radiation reaction drives an unstable
modes. The near-zone equations are sufficient to determine the modes, but we need
to extend these solution to the wave zone if we want to quantify the gravitational-wave
emission (Lockitch et al., 2003).

In order to illustrate the results for the r-mode growth timescale we keep the baryon
mass, MB, fixed at 1.4M� and set �2 = πGε. A log–log plot then reveals that the
timescale depends on the star’s compactness as (M/R)−(l+3) for low M/R. This can be
seen from the results in Figure 18.12, which compares the Newtonian and relativistic
growth timescales of the modes whose Newtonian analogues are the first five l = m
r-modes (Lockitch et al., 2003).

The results suggest that for very compact stars, the relativistic calculation tends to give
a slightly longer growth timescale than that of a Newtonian star with the same equation
of state, baryon mass, and compactness. General relativity tends to make the r-mode
instability (slightly) weaker than expected. That this should be the case is natural. Inertial
modes have relatively low frequencies, since σ ∼ �. One would generally expect low-
frequency modes to radiate less efficiently as the star becomes more compact, since the
gravitational waves will suffer backscattering by the spacetime curvature as they escape
to infinity.
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Figure 18.12 Gravitational radiation reaction timescales for the fastest growing l = m Newtonian
r-modes (dashed lines) and their relativistic counterparts (solid curves). The timescales are shown as a
function of compactness for n = 1 polytropes with fixed baryon mass, MB = 1.4M�. (Reproduced from
Lockitch et al. (2003), copyright (2003) by the American Physical Society.)

18.8 The unstable f-modes

If we neglect viscosity, the gravitational-wave-driven CFS instability is generic in rotating
stars (see Chapter 13). It may act through both polar and axial modes. We have already
discussed the axial case—in the form of the r-modes—in Chapter 15. Let us now consider
the polar case. Since polar modes, like the f-mode and the p-modes, are present already in
a non-spinning star, the instability sets in above some critical angular velocity, when the
frequency of the mode goes through 0 in the inertial frame (according to the instability
criterion from Chapter 13). The critical angular velocity is smaller for increasing mode
multipole l. Thus, there will always be a large enough value of l for which a slowly rotating
star will be unstable (Friedman and Schutz, 1978b).

Of course, just as in the case of the r-modes, shear and bulk viscosity suppress the
growth of the CFS instability outside a certain temperature window (Ipser and Lindblom,
1991). The effect of shear viscosity, in particular, increases for higher order multipoles,
as we are dealing with smaller scales. Combined with the fact that the gravitational-wave
emission is much less efficient for large values of l, one would expect only the lowest
multipoles to exhibit significant instabilities. Newtonian studies show that the f-mode
may become unstable near the mass-shedding limit, with the l = 4 mode leading to the
largest instability window (Ipser and Lindblom, 1991). The quadrupole f-mode is never
unstable in a uniformly rotating Newtonian star.

The situation is slightly different in a relativistic star. Relativity enhances the instability,
allowing it to occur in stars with (somewhat) lower rotation rates, so the quadrupole
f-mode may also come into play. In order to establish the point at which the instability
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sets in, we may try to find neutral modes along a rotating star sequence. The instability
sets in when a model has zero frequency in the inertial frame, so the problem is effectively
time independent. This simplifies the calculation. In full general relativity, neutral modes
have been determined for polytropic equations of state using a scheme which involves
finding an appropriate gauge in which the time-independent perturbation equations
can be solved numerically for δgab. The results confirm that relativity strengthens the
instability (Stergioulas and Friedman, 1998; Yoshida and Eriguchi, 1999).

For n = 1 polytropes, the critical angular velocity ratio �c/�K , where �K is the mass-
shedding limit at the same central energy density, can be reduced by as much as 15%.
The empirical formula

(
T
W

)
l=2

= 0.115 − 0.048
M

Mmax
, (18.66)

where Mmax is the maximum mass for a spherical star allowed by a given equation of
state, gives the critical value of T/W for the l = 2 f-mode instability with an accuracy of
about 5%, for a wide range of realistic equations of state (Koranda et al., 1997).

The results suggest that the f-modes—which efficiently emit gravitational waves—
may be unstable in rapidly rotating neutron stars. However, exploring this instability
is more challenging than studying, for example, the r-modes. We can no longer rely
on slow-rotation results and we obviously need a fully relativistic analysis. Until quite
recently, the effects of rapid rotation were not tested properly in linear perturbation
theory. Almost all formulations of the perturbation equations were prone to numerical
instabilities either at the surface or along the rotation axis of the neutron star. The first
results for the oscillations of rapidly rotating stars were, in fact, obtained from evolutions
of the full nonlinear equations (Font et al., 2000), albeit in axial symmetry (m = 0) where
the effects of rotation are less pronounced and where there are no gravitational-wave-
induced instabilities.

Eventually a tour-de-force effort led to progress in the modelling of non-axisymmetric
perturbations of rapidly rotating neutron stars. The basic strategy was to focus on time-
evolutions of the perturbation equations in 2+1 dimensions (Gaertig and Kokkotas,
2008; Gaertig and Kokkotas, 2011). The azimuthal angle can always be decoupled (into
the usual eimϕ Fourier modes) given that the unperturbed rotating star is axisymmetric,
but the polar angle generally leads to a complex system of equations coupled by the
rotation. So, rather than decomposing the problem in spherical harmonics one formulates
an initial-value problem in two spatial dimensions. With this computational technology,
the oscillation spectra of fast-rotating relativistic stars have been calculated. The effect
of rotation on f- and r-modes has been demonstrated and the critical point for the onset
of the f-mode instability has been determined (Gaertig et al., 2011). In parallel, there has
been progress on g-modes (Gaertig and Kokkotas, 2009) and differentially rotating stars
(Krüger et al., 2010). The current state-of-the-art assumes the Cowling approximation,
where the spacetime is assumed to be frozen. This approximation is expected to be
good for r- and g-modes, as well as higher order p-modes, but the frequency of the
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quadrupole f-mode may be altered by as much as 30%. We need to keep this in mind as we
move on.

A key advantage of working in the frequency domain, as one would usually opt to do
for non-rotating stars, is that mode frequencies and damping times are directly obtained
from the real and imaginary parts of each complex eigenfrequency. In contrast, in a time-
dependent evolution formulation one has to extract the modes through post-processing.
The frequency of a specific oscillation mode is obtained by Fourier transforming the
time series at different points inside the star into the frequency domain (so that the
time dependence of a mode is eiσ t, as in the previous section) and identifying the
corresponding peaks in the power spectrum. A typical result of this procedure is shown
in Figure 18.13. The results are extracted in a coordinate frame co-rotating with the
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Figure 18.13 An illustration of the splitting of the (power spectral density for) non-axisymmetric
|m| = 2 modes obtained from time evolutions of the perturbation equations of a sequence of rapidly
spinning neutron stars. The results are shown in a rotating reference frame with corresponding mode
frequency σr . The mass-shedding limit for this particular sequence corresponds to �/2π = 2.18 kHz.
(Reproduced from Gaertig and Kokkotas (2011), copyright (2011) by the American Physical Society.)
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star. As before, the frequency σr is related to the inertial frame mode-frequency, σi,
through

σi = σr − m�, (18.67)

where � is the rotation rate of the star according to a distant observer.
The results in Figure 18.13 show that, while the modes are degenerate in the non-

rotating limit (all values of m lead to the same frequency), the frequencies of modes
with the same multipole l but opposite azimuthal index m = ±|m| (co- and counter-
rotating modes) move apart as the spin of the star increases. In the non-rotating limit,
one can identify various peaks in the power spectrum. In the illustrated example, the
sharpest ones are located at σ1/2π = 3.837 kHz and at σ2/2π = 9.432 kHz. Inspection
of the corresponding eigenfunctions shows that the peak at σ1 belongs to the quadrupole
f-mode while σ2 matches the first p-mode. The rotational splitting can be clearly seen for
these two modes. Other modes are obviously also split, but as the corresponding peaks
are less pronounced this effect is more difficult to track.

One key motivation for working in the co-moving frame is that one can construct a
model-independent relation between the mode frequency and the rotation rate. This is
demonstrated in Figure 18.14, which shows how the f-mode frequency is affected by
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Figure 18.14 Normalized mode frequencies and fitting curves in the co-moving frame. Larger circles
represent more compact stellar models while the small circles are for less compact ones. σ0 is the frequency
of the f-mode in the non-rotating limit and �K represents the Kepler limit. (Reproduced from Gaertig
and Kokkotas (2011), copyright (2011) by The American Physical Society.)
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rotation for a set of equations of state. Quadratic fits to the results lead to (Gaertig and
Kokkotas, 2011) (similar relations for realistic equations of state can be found in Doneva
et al. (2013))

σr

σ0
≈

⎧⎪⎨
⎪⎩

1.0 − 0.27
(

�
�K

)
− 0.34

(
�

�K

)2
, m = −2 ,

1.0 + 0.47
(

�
�K

)
− 0.51

(
�

�K

)2
, m = 2.

(18.68)

We can use these relations to establish the onset of instability. Working out the mode
pattern speed in the inertial frame, we find that the co-rotating m = −2 mode is always
stable (as expected) while the counter-rotating m = 2 mode may become unstable above
a critical rotation rate. In order to estimate the critical rotation rate, we need the non-
rotating mode frequency, which is given by

1
2π

σ0 (kHz) ≈ 0.498 + 2.418
(

M
1.4M�

)1/2( R
10 km

)−3/2

, (18.69)

as well as an empirical relation for the Kepler frequency4

�K

2π
(kHz) ≈ 1.015

[
1 + 0.334

(
M

1.4M�

)(
R

10 km

)−1
](

M
1.4M�

)1/2( R
10 km

)−3/2

.

(18.70)

This exercise tells us that more compact stars become unstable earlier than less centrally
condensed ones. As an example of the onset of the instability, consider a 2M� star
described by the (often-used) APR equation of state (Akmal et al., 1998) with radius
10.88 km. From the above results it follows that this star becomes unstable above 97%
of the Kepler limit. This result is illustrated in Figure 18.15, alongside the results for the
l = 3 and 4 modes.

As we have already outlined for non-rotating stars, empirical relations like (18.68)
can be employed in an asteroseismology analysis, determining (say) the mass, radius, and
rotation rate of a neutron star from observed frequencies and/or damping times. Since we
now need to constrain three parameters we need (at least) three observables. However,
not all combinations of frequencies and damping times are suitable for solving the inverse
problem. For example, in the simplest case one might try to use three frequencies of
different modes. But we see from the empirical relations that this would only allow
us to infer the rotation rate � and the average density M/R3— not mass and radius
independently. The effect of the compactness M/R on the Kepler frequency is too weak
to have significant impact on the analysis. In order to break the degeneracy, we need
some additional observable (like one of the damping times).

4 Note that the parameters in this relation are different from those used in (12.82). However, the two results
are close for a given neutron star model.
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Figure 18.15 Instability window for f-modes of a rotating star. The results are for a star described by
the APR equation of state with gravitational mass, in the non-rotating limit, of M = 2.0M�. (Adapted
from Doneva et al. (2013).)

As we are working within the Cowling approximation, we need to use the quadrupole
formula to estimate the damping times of the modes. The analysis is analogous to that
for the r-modes (see Chapter 15) although now the main contribution comes from the
mass multipoles. For rotating stars, the damping time τgr depends crucially on how the
mode frequencies change with the rotation rate. Estimated damping times corresponding
to the modes from Figure 18.14 are provided in Figure 18.16. It is worth noting that
the behaviour is rather different for the two branches. The point at which the counter-
rotating m = 2 modes become unstable corresponds to the point where the damping time
crosses the dashed line in the left panel.

In order to explore the f-mode instability window, we need to also consider the effect
of shear- and bulk viscosity. This analysis follows the same steps as in the case of the
r-mode instability in Chapter 15. An example of the instability regions for the l = 2,3,
and 4 f-modes is provided in Figure 18.15. We see that, as per the estimate following
equation (18.70), the quadrupole modes are only marginally unstable—the instability
window only reaches down to about 97% of the Kepler limit. The l = 3 and 4 f-modes
lead to larger instability regions, reaching down to 80 − 85% of the Kepler limit. In these
cases, a newly born and rapidly rotating neutron star may remain in the instability window
long enough to make the gravitational-wave signal observable.

It makes sense to conclude the discussion of the f-mode instability with an astro-
physically motivated example. Consider the gradual evolution of a binary neutron star
remnant, on a timescale longer than can be tracked with fully nonlinear evolutions (see
Chapter 20). The remnant formed by merger is likely to be supramassive—it will collapse
once it has lost enough angular momentum—but it may survive long enough to leave
an observational signature. We can track the evolution of an unstable f-mode in such
a supramassive star with a set of equations analogous to those used for the r-modes in
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Figure 18.16 Estimated damping times for the f-modes of rotating neutron stars. Larger circles
represent the compact models while small circles are for the less compact configurations of each equation
of state. Left: Damping times (τ ) for the counter-rotating m = 2 branch (scaled in terms of the damping
time of the mode in a non-rotating star, τ0), which becomes unstable above the horizontal dashed line.
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Gaertig and Kokkotas (2011), copyright (2013) by the American Physical Society.)

Chapter 15. Moreover, as the evolution time is likely much shorter than the observation
time, we can make use of the usual argument leading to the effective gravitational-
wave amplitude. If we quantify the f-mode saturation amplitude in terms of an energy
Ef

sat = 10−6Mc2 we find that the signal may possibly be detectable at the distance to the
Virgo cluster with advanced detectors (Doneva et al., 2015). Of course, the formation
of a strong magnetic field and the associated dipole torque will impact on this signal
(cf. the discussion of constraints from the magnetar model for superluminous supernovae
in Chapter 14). The presence of an unstable r-mode will also sap angular momentum
from the system, potentially weakening the f-mode signal.

The first of these effects is quantified in the left panel of Figure 18.17, which shows
the gravitational-wave signal-to-noise ratio (associated with the quadrupole f-mode) as
a function of the dipole component of the magnetic field. The distance to the source
is taken to be d = 20 Mpc and the assumed sensitivity is that of Advanced LIGO (the
result for a third-generation instrument like the Einstein Telecope would be about an
order of magnitude larger). The most important conclusion is that, as long as the dipole
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Figure 18.17 Left: The estimated f-mode afterglow signal-to-noise ratio for Advanced LIGO as a
function of the dipole component of the magnetic field on the surface, B. Results are shown for the
l = m = 2 f-modes of three neutron star models: (i) WFF2 with baryon mass Mb = 2.9M� (squares),
(ii) WFF2 with Mb = 3.0M� (circles), and (iii) APR with Mb = 3.2M� (triangles). The saturation
amplitude is taken to be Ef

sat = 10−6 and the assumed distance to the source is d = 20 Mpc. Right: The
analogous signal-to-noise ratios for the case when the r-mode instability is active. The assumed r-mode
saturation amplitude is Er

sat from (18.71). (Based on data provided by D. Doneva, taken from Doneva
et al. (2015).)

component of the magnetic field is below 1014 G, i.e. we are not dealing with a magnetar,
the gravitational-wave signal may reach a detectable level (typically requiring a signal-
to-noise ratio of about of 8) for Advanced LIGO. For stronger magnetic fields, the
dipole radiation efficiently drains rotational energy from the system (as discussed in
Chapter 14). Hence, less energy is emitted through gravitational waves and the signal
becomes more difficult to detect.

The impact of the r-mode instability is illustrated in the right panel of Figure 18.17.
In this case, the unstable r-modes may drain a substantial amount of rotational energy
from the star (depending on the saturation amplitude), which again shortens the evolu-
tion time and makes the f-mode gravitational-wave signal less detectable. However, we see
from Figure 18.17 that, as long as the r-mode saturation amplitude, Er

sat, remains below
roughly 10−8 the signal-to-noise ratio is interesting for Advanced LIGO and significant
for the Einstein Telescope. In general, we need the r-mode saturation amplitude to be
roughly two orders of magnitude smaller than Ef

sat in order for the r-modes to not
significantly affect the f-mode evolution. Comparing the amplitudes used here (in terms
of energy) to the r-mode discussion in Chapter 15 we have
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Figure 18.18 Left: The lowest parametric instability threshold for f-mode coupling and hypothetical
evolution of a toy model for a supramassive neutron star formed following binary merger (in this
example, M = 2.5M�). The stellar model is a polytrope with � = 3 and adiabatic exponent �1 = 3.1.
The star enters the instability window during its cooling phase, rotating at its maximum angular
velocity, until thermal equilibrium is established (indicated by the vertical dashed line), at which point it
descends through the window at T ≈ 3 × 109 K. Right: The corresponding evolution of the f-mode
amplitude. (Reproduced from Pnigouras and Kokkotas (2016), copyright (2016) by the American
Physical Society.)
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Recalling that we expect αs to be smaller than 10−3 we see that the r-mode instability is
unlikely to have an adverse effect on any f-mode afterglow from supramassive merger
remnants (Doneva et al., 2015). This should be good news for gravitational-wave
searches.

Of course, we also need to establish at what level the unstable f-mode reaches
saturation. The theoretical framework for answering this question is pretty much the
same as in the case of the r-modes. We need to consider the nonlinear coupling between
the f-mode and other modes in the system (Pnigouras and Kokkotas, 2015). As the
f-mode is only unstable at high rates of rotation we have to account for rotational
corrections to mode frequencies and eigenfunctions. Moreover, as in the case of the
r-modes, the specific couplings that lead to the most efficient saturation will evolve as
the system evolves. Hence, the saturation problem is also key if we want to understand
the evolutionary path of stars that exhibit the f-mode instability. Figure 18.18 provides
a typical result from the only detailed study of this problem (Pnigouras and Kokkotas,
2016). The colour-coded results for the lowest parametric instability threshold exhibit
a complex brush-stroke pattern which arises from the fact that the coupling sensitively
depends on the parameters of the problem. This leads to a, potentially rapidly, varying
saturation amplitude along any evolutionary path. As in the case of the r-mode instability,
this leads to a complex gravitational-wave signal, for which it may be difficult to develop
reliable search templates.
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Colliding black holes

We have arrived at a point where we understand many aspects of gravitational-wave
astronomy. However, this understanding is incomplete. We used approximations to
explore the nature of gravitational waves and a range of relevant astrophysical sources.
This led to important insights and useful intuition, but, as Einstein’s theory is ultimately
nonlinear, the scope of this kind of modelling is limited. There will always be a concern
that we might be missing crucial aspects—lost in the linearization/simplification. In fact,
the most promising gravitational-wave sources involve nonlinear dynamics—explosive
hydrodynamics and/or nonlinear aspects of strong gravity.

If we want to explore scenarios like compact binary mergers or gravitational collapse
to form a neutron star or a black hole, we must resort to numerical simulations. As we turn
to this problem, we face a new set of challenges. We need to figure out how we best ‘put
Einstein’s equations on the computer’ and how we implement realistic physics in large-
scale simulations. The issues are both conceptual and practical. Yet, decades of effort
have led to (fairly) reliable simulations, either with (supernovae or neutron star mergers;
see Fryer and New (2011), Ott (2009), and Baiotti and Rezzolla (2017)) or without
(black-hole dynamics; see Sperhake (2015)) a realistic matter description or the inclusion
of magnetic fields (gamma-ray bursts; see Gehrels and Mészáros (2012)). In order to
understand the developments behind state-of-the-art simulations—which often involve
runs lasting months on the largest available supercomputers—it is natural to break the
discussion into two parts. The first part introduces the main strategy and leads us through
to successful simulations of the inspiral and merger black holes—a pure vacuum problem.
The second step adds flesh to these bones by providing a description for matter degrees
of freedom and a connection to the underlying physics. This chapter focuses on the first
part of the problem.

Before going into detail, it is worth asking why the problem is so difficult. In order
to appreciate the answer, let us strip away any complex matter physics. By focussing
on vacuum problems, we do not have to worry about hydrodynamics, equations of
state, matter shocks, thermodynamics, and so on. We are left with the vacuum Einstein
equations

Rab = 0.

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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We know that this is a set of coupled nonlinear partial differential equations, second order
in space and time, representing ‘wave equations’ for the metric variables. Naively, one
might think this problem should be straightforward. However, this is not the case. It is
clear from the outset that any numerical simulations will be both technically challenging
and computationally expensive. The difficulties are easy to demonstrate. Consider a set
of grid points in spacetime, each associated with a worldline of a fiducial observer (as in
Figure 19.1). The (time) step of a simulation is fundamentally limited by the speed of
light. Each numerical grid point is associated with a light cone. When the future worldline
of one of the observers (B, say) intersects the light cone of another (A) we must update
the information in the simulation to account for the history (and physics) of the second
observer. This constrains the time steps of a simulation. Ultimately, it also explains the
local nature of the problem and why making maximal use of parallel computing is tricky.

Simulations involving black holes introduce additional (practical) issues (see, for
example, Alcubierre (2008)). The evolution variables may develop large gradients,
degrading the numerical accuracy. The presence of singularities, e.g. at the ‘centre’
of a black hole, will make a code unstable. Even seemingly ‘simple’ problems require
serious thinking. For example, how do we move a black hole across a numerical grid?
As soon as we realize that this would involve grid points emerging from inside the event
horizon, we see that the question involves non-causal behaviour (at some level) which
may (obviously) not be trivial.

As a first step towards exploring these issues, we will outline the basic strategy
for solving the Einstein equations numerically, without introducing approximations or

 2

 1

A

B

Figure 19.1 An illustration of the fundamental limitation of the time step in a relativistic spacetime
simulation. As soon as the worldline of a fiducial observer associated with one of the numerical grid
points (B) intersects the (future) light cone of the observer associated with another grid point (A), we must
update the simulation to account for the history (and physics) associated with the different observers. The
speed of light ultimately limits all simulations by rendering the problem relatively local.
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imposing particular symmetries. The basic idea is first to cast the Einstein equations as
an ‘initial value problem’ and then develop an algorithm that allows the computer to
march from one time level to the next. In Newtonian physics this is straightforward—we
have a universal concept of time. In general relativity, the problem is not so easy as the
notion of time depends on the observer. We also have to deal with the coordinate freedom
of the problem. However, to some extent this is good news as we can turn the choice of
‘coordinates’ to our advantage.

In order to get started we have to reinstate the concept of time. Intuitively, Einstein’s
equations represent the ‘evolution’ of a given spacetime, and in order to carry out a
numerical evolution (tell the computer how to take a step towards the ‘future’) it is
necessary to introduce a slicing of spacetime. The standard approach to this problem is
based on our everyday intuition (Arnowitt et al., 2008). We introduce a time coordinate
and foliate spacetime into an ordered sequence of (spacelike) hypersurfaces, as in the
left panel of Figure 19.2. This leads to a fairly standard initial value problem with
boundary conditions to be imposed at some finite distance. Still, as we are dealing with
nonlinear problems, these boundary conditions may cause trouble. If we want to model
gravitational-wave signals, then we need to figure out a way to extract the waves at a finite
distance from the source. We will consider this issue in more detail in the following. We
will also outline an alternative formulation based on null coordinates, illustrated in the
right panel of Figure 19.2. This approach has the advantage of allowing us to include
spatial infinity on the computational grid, which enables a more precise measure of the
emitted waves.

spacelike surfacesspacelike surfaces null surfacesnull surfacesspacelike surfaces null surfaces

Figure 19.2 Two different slicings (thin lines) of a compactified black-hole spacetime. The grey
area represents the inside of the black hole. The left panel shows the standard 3+1 decomposition,
based on introducing a timelike coordinate and solving the evolution problem on a sequence of
spacelike hypersurfaces. The right panel illustrates a null slicing, where the problem is solved on null
hypersurfaces. This simplifies the analysis of the asymptotic behaviour and the extraction of emerging
gravitational waves.
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19.1 The 3+1 decomposition

The majority of simulations in numerical relativity have been based on the approach
introduced by Arnowitt, Deser, and Misner in the early 1960s. (hereafter ADM1) The
first step involves foliating spacetime into a family of spacelike hypersurfaces, �t, which
arise as level surfaces of a new scalar time, t. Given the normal to each surface2

Na = −α∇at, (19.1)

we have

Na = (−α,0,0,0), (19.2)

and the normalization NaNa = −1 immediately leads to α2 = −1/gtt. The function α is
called the lapse. The dual to ∇at leads to a time vector

ta = αNa + βa, (19.3)

which introduces the so-called shift vector βa. This vector is spatial, so, we have
Naβ

a = 0, and it follows that

Na = α−1
(
1,−β i

)
. (19.4)

The spacetime can now be written in the standard ADM form

ds2 = −α2dt2 + γij

(
dxi + β idt

)(
dxj + β jdt

)
, (19.5)

where the (induced) metric on each spatial hypersurface is

γab = gab + NaNb. (19.6)

For future reference, it is worth noting that γ a
b provides a projection orthogonal to Na

and (as a result) γab and its inverse can be used to raise and lower indices of purely spatial
tensors. For example, we have

βi = γijβ
j . (19.7)

1 See Arnowitt et al. (2008) for a reprinted version of the original paper and York (1979) for a seminal
contribution. Modern approaches are described in Alcubierre (2008), Baumgarte and Shapiro (2010), and
Shibata (2016).

2 The sign is chosen in such a way that time flows into the future.
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t normal

coordinates

αdt

t+dt

β i

Figure 19.3 Schematic illustration of the 3+1 decomposition of spacetime, indicating the meaning of
the lapse α and the shift β i .

It is also worth stressing the geometrical interpretation of the new variables. The lapse
determines how proper time advances from one time slice to the next along the normal
vector, while the shift vector determines how the coordinates are shifted on the next slice;
see Figure 19.3. Together, these two functions encode the coordinate freedom of general
relativity. They do not influence the physics.

Reading off the metric from the line element (19.5), we have

gab =
(−α2 + β2 βj

βi γij

)
, (19.8)

with inverse

gab =
( −1/α2 β j/α2

β i/α2 γ ij − β iβ j/α2

)
. (19.9)

We want to write down the equations of general relativity in this new framework. In
doing this it is natural to work with derivatives within each hypersurface. Hence, we
introduce the (totally) projected derivative

Da = γ b
a ∇b, (19.10)
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where (in general) all free indices should be projected into the surface. This new
derivative is ‘compatible’ with the spatial metric;

Daγbc = γ d
a γ e

b γ f
c ∇dγef = γ d

a γ e
b γ f

c ∇d(gef + NeNf )

= γ d
a γ e

b γ f
c
(
Nf ∇dNe + Ne∇dNf

) = 0, (19.11)

which follows since γ b
a Nb = 0. This means that we have a covariant derivative in the

surface orthogonal to Na and we can follow the derivation from the four-dimensional
case and construct a tensor algebra for the three-dimensional spatial slices. For example,
the Christoffel symbols associated with Da are simply obtained by repeating the steps
from Chapter 2.

19.2 Evolving the spacetime

Having laid out the required tools, let us consider the left-hand side of the Einstein
equations. First of all, we can introduce a (projected) three-dimensional Riemann tensor
which satisfies the condition

NaRa
bcd = 0. (19.12)

As in the full spacetime problem, this curvature tensor represents the failure of second
covariant derivatives to commute.

Have we now introduced all the quantities we need to represent Einstein’s equations?
Not yet, because we have not explained how each hypersurface is embedded in space-
time. The missing piece of information is encoded in the extrinsic curvature, Kab. This
is a spatial tensor, such that

NaKab = 0, (19.13)

which measures (roughly speaking) how the �t surfaces curve relative to spacetime. In
practice, we measure how the normal Na changes as it is parallel transported along the
hypersurface. Hence, we define

Kab = −DaNb = −γ c
aγ d

b ∇cNd = −∇aNb − Na(Nc∇cNb), (19.14)

where the second term is an analogue of the four acceleration. It is worth noting that Kab
is symmetric.

We also have the trace

K = Ka
a = gabKab = γ abKab = −DaNa = −∇aNa. (19.15)
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Alternatively, we can use the properties of the Lie derivative3 to show that

Kab = −2LNγab. (19.16)

Since

LN = 1
α

(Lt −Lβ) = 1
α

(∂t −Lβ), (19.17)

this relation is ideal for our present purposes. It links the extrinsic curvature to the way
the spatial metric γab changes along the vector field Na. As we are thinking of Na as
representing time, this is exactly what one would want to have for an evolution problem.

Noting that it is natural to use ta as the time coordinate (rather than Na), we have

∂tγij = −2αKij +Lβγij . (19.18)

This relation tells us how γij evolves and links this evolution to Kij . The fact that the two
quantities act like conjugate variables, in turn, suggests that we should try to identify an
evolution for the extrinsic curvature.

It is also worth noting that the trace of (19.18) leads to

αK = −∂t lnγ 1/2 + Diβ
i, (19.19)

where γ = gabγab and

γ ab∂tγab = ∂t lnγ . (19.20)

We now have the ingredients we need to write down a 3+1 decomposition of the
Einstein equations. In principle, the building blocks of the construction are obtained by
acting on the indices of the Einstein tensor, either by contraction with Na or by projecting
into the spatial hypersurface. If we project both indices into �t we arrive at the so-called
Gauss equation. We have

H = 2NaNbGab = R + K2 − KijKij = 16πNaNbTab = 16πρ, (19.21)

where we have defined ρ as the energy density of any matter source (as measured by an
observer moving along with Na; see Chapter 20).

Similarly, the so-called Codazzi equation results from one projection and one
contraction

Mi = DjK
j
i − DiK = −γ a

i N
bTab = 8πSi, (19.22)

3 The definition of the Lie derivative from Chapter 13 is easily extended to the present case. We only have
to replace spatial indices with spacetime ones.
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where Si is the momentum density of matter moving relative to an observer with Na.
To complete the description of the problem, we need evolution equations. One such

equation, (19.18), is already in hand. In addition, we have what is known as the Ricci
equation, which follows from two contractions and two projections on the indices of the
Riemann tensor. Combining the result with the Einstein equations we have an evolution
equation for the extrinsic curvature

(∂t −Lβ)Kij = −DiDjα + α(Rij + KKij − 2KikKk
j)

−8πα

[
Sij − 1

2
γij(S − ρ)

]
, (19.23)

where we have defined the spatial stress tensor as

Sij = γiaγjbTab, (19.24)

and S = γ ijSij .
We now have a set of equations, (19.18) and (19.23), that describe the evolution from

one hypersurface to the next, assuming the matter contribution is known. In addition,
we have the Hamiltonian constraint (19.21) and the momentum constraint (19.22).
As these constraints do not involve time derivatives they must hold on each spacelike
hypersurface without reference to neighbouring time levels. In fact, one can show that
(essentially by virtue of the Bianchi identities) if the constraints are satisfied on the initial
slice, then they will be preserved during the evolution. Of course, this is not guaranteed
in a numerical evolution—the constraints are never exactly satisfied. Numerical errors
introduce violations which may grow as we proceed. This suggests that, while the 3+1
formulation allows a free evolution (with no account of the constraints other than for
the initial data), it is important to monitor constraint violations as the evolution marches
on. In fact, in some cases, it may be advantageous to carry out a constrained evolution,
which actively enforces (19.21) and (19.22).

Before we move on, it is useful to sanity check the formulation by counting equations
and degrees of freedom. Focussing on the spacetime, the fundamental variables are the
three-metric γij and the extrinsic curvature Kij . After a bit of counting, we see we have
12 evolution equations, 4 constraints, and the 4 degrees of gauge freedom (the lapse and
shift) that we are used to. Moreover, given that the evolution equations are first order,
one can deduce that the number of unconstrained dynamical variables is consistent with
the presence to two gravitational-wave degrees of freedom (second order in time).

19.3 Initial data

The construction of relevant initial data for numerical simulations is a tricky problem.
The reason for this is obvious. Any astrophysical system has evolved to our initial time
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(t = 0, say) and the (possibly nonlinear) evolution up to this point will influence the
nature of spacetime (e.g. the gravitational-wave content) at some level.

Without access to the evolution that precedes the set initial time, the specification of
initial data becomes a non-trivial ‘guess’. There is, however, a well-developed framework
for obtaining suitable information (York, 1971; Cook, 2000). In order to explain the
procedure, recall that we need a solution to the Hamiltonian and momentum constraints,
(19.21) and (19.22). The data consist of the spatial metric γij and the extrinsic curvature
Kij alongside possible matter fields. These initial data clearly contain too much freedom.
Only 4 out of the 12 components of (γij , Kij) are fixed by the constraints. The remaining
parts—including matter variables—are freely specifiable and can be adjusted to the
situation under consideration. Furthermore, it is not obvious which 4 components of
(γij , Kij) should be obtained by solving the constraints. We have a lot of choice.

The standard procedure separates the freely specifiable data from that fixed by the
constraints (Cook, 2000). This method has the advantage that it provides a natural
framework for ‘superposing’ solutions. For instance, given data (γij , Kij) for individual
black holes, it is possible to ‘add’ the solutions and solve the constraints to obtain self-
consistent, fully nonlinear, initial data for a black-hole binary system.

In order to illustrate the method, let us focus on the vacuum problem. First of all, the
spatial metric γij is conformally transformed to ‘factor out’ a scalar component ψ ,

γij = ψ4 γ̃ij , (19.25)

where the tilde denotes a conformal quantity. Next, we split the extrinsic curvature in
such a way that

Kij = Aij + 1
3

γijK , (19.26)

noting that we have K = 0 in vacuum, and

Aij = ψ−10Ãij ↔ Aij = ψ−2Ãij . (19.27)

The new quantity Aij is traceless and we now find that the two constraints decouple. If we
further split Ãij into a longitudinal and a transverse-traceless part, then the momentum
constraint simplifies. Specifically, we can take the conformal metric γ̃ij and Ãij as free
data. Assuming conformal and asymptotic flatness, i.e. γ̃ij = ηij (where ηij is the flat
metric in arbitrary coordinates) and ψ |∞ = 1, one can arrive at an analytic solution to
the momentum constraint (Bowen and York, 1980)

Ãij = 3
2r2

[
Pinj + Pjni − 2(ηij − ninj)Pknk

]

+ 3
r3 (εkilSlnknj + εkjlSlnkni), (19.28)
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where ni = xi/r with r the radial coordinate. A closer inspection of this solution shows
that Pi and Si represent the linear and angular momentum of the spacetime, respectively.
Finally, we need to solve the Hamiltonian constraint, which now takes the form

D̃2ψ − 1
8

ψ−7Ãij Ãij = 0, (19.29)

where D̃i is the covariant derivative associated with γ̃ij . This is an elliptical problem,
which is typically solved using a standard relaxation scheme or a spectral approach
(Bonazzola et al., 1997).

Since the momentum constraint (19.22) is linear, we can superpose solutions. The
associated momenta simply add up. This way we can construct initial data for multiple
black holes from single black-hole solutions. A number of different multi-black-hole
solutions have been proposed and used in evolutions. We will consider three possibilities.
First of all, we can build relevant solutions by joining separate ‘universes’ through
a ‘wormhole’. This idea is natural given that the Schwarzschild solution has exactly
this kind of wormhole structure. The first such solution, proposed by Misner (1960),
represents two isometric, time-symmetric, conformally flat sheets connected by the black
holes. The solution is essentially given as an analytic series expansion, representing
two momentarily stationary ‘throats’ with proper separation L in a spacetime with
ADM mass4 M (so each black hole has mass M/2). It is also natural to introduce the
dimensionless separation μ0 = L/M. Initial data with larger values of μ0 then represent
infall from a larger separation.

An often used alternative is the initial data proposed by Brill and Lindquist (1963),
inspired by the form of the Schwarzschild solution in isotropic coordinates (see
Chapter 4):

ds2 = −M − 2r
M + 2r

dt2 +
(

1 + M
2r

)[
dr2 + r2(dθ2 + sin2 θdϕ2)

]
. (19.30)

The spatial part of this metric suggests the conformally flat, time-symmetric solution

ψ = 1 +
N∑

i=1

Mi

2ri
, (19.31)

where Mi is the mass of each black hole and ri is its coordinate distance.

4 The definition of mass is delicate in general relativity, especially if we are interested in a local measurement.
In numerical simulations, one would typically consider the so-called ADM mass (see Alcubierre (2008)), which
is obtained from the integral over a sphere (S) at a large distance (=‘infinity’),

M = 1
16π

∫
S
(∂j gij − ∂igjj)dV ,

where gij is the metric in geodesic coordinates.
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A final initial data set—of particular importance for modern evolutions—is based
on the idea of punctures (Brandt and Brügmann, 1997). In this scheme, one does not
imagine the presence of a wormhole. Instead, one introduces the central singularity into
the problem. The assumed conformal factor is

ψ = 1
χ

+ u, with
1
χ

=
N∑

i=1

Mi

2ri
, (19.32)

where the function u (assumed to be smooth) follows as a solution to the Hamiltonian
constraint

∇̃2u − 1
8

χ7Ãij Ãij(1 + χu)−7 = 0. (19.33)

19.4 Slicing conditions

Having formulated the evolution problem and considered the initial data, we have
everything we need to carry out an evolution (apart from boundary conditions, which we
will discuss later). However, we have not yet discussed the freedom associated with the
lapse α and the shift vector β i. From a formal point of view we know that these variables
have no physical meaning, but this does not mean that we can make arbitrary choices. In
fact, the gauge freedom has to be handled with care. This is perhaps the most important
and yet least understood aspect of numerical relativity (Alcubierre, 2008). We want the
coordinates to be chosen to our advantage; for example, to avoid singularities which
would cause a code to crash. It is also preferable to avoid stretching of the numerical
grid, as this would decrease the accuracy. The problem is complicated since choices that
aim to avoid singularities often lead to grid stretching, turning a desired property into an
undesired one.

A seemingly natural starting point would be to work with a set of freely falling
observers, such that the normal to each hypersurface is a geodesic. This geodesic slicing
simply involves setting α = 1. It is easy to see that this leads to

Nb∇bNa = Da lnα = 0. (19.34)

Moreover, if we set β i = 0 (exercising our right to ignore the shift vector), then ta also
satisfies the geodesic equation. However, this is not an ideal choice, because geodesics
can focus to create coordinate singularities. In order to avoid this problem, we may
consider the so-called maximal slicing, which specifically aims to prevent focussing. This
involves imposing K = 0, which ensures that volume elements remain constant. It has the
advantage that the slicing ‘avoids’ strong-field regions and, hence, is a common choice
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for spacetime evolutions. However, the desirable properties come at a cost—we now have
to solve an elliptic equation for the lapse. Still keeping β i = 0, we have (see (19.23))

DiDiα = αKijKij . (19.35)

Implementing this may be computationally expensive, as we have to do the calculation
at each time step. We also have to introduce suitable boundary conditions, and this may
not be straightforward on a finite size grid. A third option would be to provide the lapse,
or its time derivative, as an algebraic function of the geometric variables.

In order to understand the different options for the lapse, it is instructive to con-
sider the gauge degree of freedom for harmonic coordinates in linearized theory (see
Chapter 3). We know that, after introducing the Lorenz gauge conditions on the
linearized metric, there is still some freedom associated with the infinitesimal gauge
vector ξa. Specifically, any solution that satisfies �ξa = 0 will do. Inspired by this we
note that, combining the ADM decomposition with

∇a∇axb = 0, (19.36)

we have

(∂t +Lβ)α = −α2K . (19.37)

This leads to the so-called harmonic slicing. The key step is adding the lapse to the set of
evolved variables. This is advantageous as it avoids the computational issues associated
with solving an elliptic equation at each time step.

In fact, we can generalize the idea by introducing a function f (α) such that

(∂t +Lβ)α = −α2f (α)K . (19.38)

Modern evolutions tend to use slicing conditions based on this prescription, with a
particularly popular choice being f (α) = 2/α. This is known as 1+log slicing (Alcubierre,
2003). It is an attractive option because it is singularity avoiding and also prevents the
formation of (gauge) shocks.

Let us turn to the shift vector, which allows us to adjust the coordinate movement on
subsequent time slices. It is immediately clear that simply setting β i = 0 is not a clever
strategy. The shift vector controls the coordinate motion of specific physical features
and we have already met situations where such aspects play a key role. Consider, for
example, the frame dragging associated with a spinning black hole or a rotating star. The
shift vector can also be used to delay unwanted grid stretching. A classic choice is the so-
called minimal distortion shift. The idea is to minimize changes in the conformal metric
throughout the evolution. This leads to a condition that can be written

DjDjβ
i + 1

3
DiDjβ

j + Ri
jβ

j − 2
(

Kij − 1
3

γ ijK
)

Djα = 0. (19.39)
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However, yet again, we have to solve an elliptic equation so this choice may not be ideal.
As in the case of the lapse function, we may draw inspiration from the harmonic gauge
and consider dynamical choices for β i. A fairly natural way to approach this problem is
to, first of all, identify the property one would like to preserve (e.g. minimal distortion)
and then make the problem hyperbolic by introducing (phenomenologically) a suitable
time derivative, e.g. (∂t −Lβ)β i. As this is a phenomenological construction—aimed at
enabling a successful evolution—there is still a lot of freedom, and many different options
have been suggested. We will describe a particularly successful choice, the so-called
gamma-driver shift (Alcubierre et al., 2003), later.

19.5 Wave extraction

In the 3+1 formulation we inevitably have to deal with the presence of boundaries at
the edges of the computational domain. Inaccuracies introduced near any boundary
travel inwards and may (rather quickly) degrade an evolution. In simple one-dimensional
problems, the boundary issue can often be ignored. One can make the computational grid
large enough that the simulation of the relevant physics is unaffected on the timescale of
interest. For full three-dimensional simulations this is typically not affordable. Moreover,
we have to ensure that the constraint equations are satisfied. Hence, we need a detailed
analysis of the behaviour far away from a given system. We would like to understand
the problem to the point where we can ensure that the behaviour near the boundary
is appropriate. This is a complex issue. In practice, most present day simulations are
carried out either assuming the boundary is ‘far enough away’ or imposing (approximate)
outgoing-wave conditions for all fields (possibly including some kind of damping to
prevent reflection into the computational domain).

The asymptotic behaviour is also important if we want to work out the gravitational-
wave signal for a given scenario. As we have already discussed, it is only meaningful to
discuss the gravitational waves in the wave-zone, relatively far away from the source.
Intuitively, we can carry out this analysis sufficiently far away that we may consider
the problem at the linear perturbation level. This may not be practical for numerical
simulations, which are likely to be resource limited, but we can still try to adopt the
perturbation strategy. The problem is that we do not necessarily have an idea of what the
‘unperturbed’ background may be.

There are two distinct, and commonly used, wave-extraction procedures (see Bishop
and Rezzolla (2016) for a recent review). The first strategy is based on black-hole pertur-
bation theory. We know that vacuum perturbations are governed by wave equations like
the Zerilli equation from Chapter 16. Of course, we do not necessarily know the mass
of the ‘central object’. Nevertheless, assuming that we are in the weak-field region (so
that we can neglect second-order perturbations) we can assume that the numerically
generated spacetime represents a perturbation of the Schwarzschild solution. After
projecting on the tensor spherical harmonics, we can integrate over a sphere to extract
the corresponding multipole amplitudes at some finite extraction radius. In general, this
procedure provides us with axial and polar amplitudes, u−

lm and u+
lm, respectively, for each
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value of l and m. These amplitudes then provide the gravitational-wave strain in terms
of spin-weighted spherical harmonics (see Chapter 16)

h+ − ih× = 1√
2r

∞∑
l=0

l∑
m=−l

(
u+

lm − i
∫

u×
lmdt

)
−2Ym

l . (19.40)

In order to test the reliability of the result, we can compare the inferred amplitude for a
sequence of increasing radii (see Figure 19.4). If we truly are in the linear regime, then
we should arrive at the same amplitudes regardless of the radius of the extraction sphere.
If the numerical results converge in this sense, we have a reliable result.

An alternative approach builds on the Newman–Penrose formalism. From the dis-
cussion in Chapter 17, we know that the outgoing-wave content is encoded in the Weyl
scalar �4. Asymptotically, we have

ḧ+ − iḧ× = �4. (19.41)

In order to use this result, we need to introduce a suitable null tetrad. However, we can
usually assume that the spacetime is close to the Kerr geometry in the wave zone. As
long as this is the case, we can use the Kinnersley tetrad from Chapter 17 to determine
�4 from the numerical data. The veracity of the result can be confirmed by using a set
of extraction radii, just like in the Zerilli equation approach.

computational gridcomputational grid
extraction radiusextraction radius

computational grid
extraction radius

Figure 19.4 An illustration of the idea of wave extraction. Gravitational waves are extracted
(essentially by projecting the numerical data onto the basis used in a perturbation calculation; see
Chapter 16) at several radii and the results are considered as reliable when they converge.
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Once the gravitational waveform has been extracted, we have access to all related
quantities, like radiated energy, momentum, and angular momentum, from the standard
linear theory relations.

The presence of spacetime singularities also requires a careful treatment. Singularities
typically leads to diverging (or vanishing) metric components—recall the form of grr in
Schwarzschild coordinates, see Chapter 4—leading to numerical errors which rapidly
render a simulation useless. An intuitive way to handle this problem is to remove the
divergence from the computational domain. Since one would expect (due to Penrose’s
cosmic censorship hypothesis) any singularity to be cloaked by an event horizon, the
exterior spacetime should be causally disconnected from anything that goes on inside
the horizon. In particular, the exterior region should not be affected by the removal of a
finite region around the singularity from a numerical evolution. In practice, this involves
excising a region inside the apparent horizon, the location of which can be obtained
locally.5 The practical implementation of this kind of scheme is (still) non-trivial, but it
has been demonstrated to work in large-scale simulations (Alcubierre et al., 2001).

Improved technology has also allowed detailed studies of the geometrical and dynam-
ical properties of the black-hole horizon (Ashtekar and Krishnan, 2004). The event
horizon itself remains tricky as it (strictly speaking) requires an infinite evolution for
a precise identification, but the appearance of an apparent horizon provides a useful
diagnostic. Precise studies of the horizon dynamics allow the determination of both the
mass and angular momentum of the black hole, which help set upper limits on the energy
and angular momentum radiated during (for example) gravitational collapse.

19.6 2 + 2 and the Bondi news

An alternative formulation of the evolution problem is based on the use of null coordi-
nates (Bondi, 1960; Bondi et al., 1962; Sachs, 1962). The idea is inspired by the fact that
the speed of light is fundamental in Einstein’s theory and gravitational waves are expected
to travel along null hypersurfaces. The light-cone structure provides a fundamental
building block for the theory.

Instead of working with a traditional timelike coordinate, as in the 3+1 formulation, we
choose to work with outgoing null rays (analogues of the flat space coordinate u = t − r;
see Figure 19.5). Such a formulation has a number of advantages. In particular, we
can compactify spacetime, as indicated in Figure 19.2, which means that the issue of
boundary conditions becomes easier to deal with. It also turns out that the Einstein
equations lead to a simple hierarchy of equations with a minimal number of variables

5 In order to determine the location of the event horizon we need to know the complete future evolution of
the spacetime. The upshot of this is that it cannot be located from local geometry. In contrast, the apparent
horizon can be determined locally. Given a surface in a spacetime, a marginally trapped surface is one whose
future-pointing outgoing null geodesics have zero expansion. The apparent horizon is simply the outermost
boundary of these trapped surfaces. The presence of an apparent horizon always implies the existence of an
event horizon outside of it.
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u

r

xA

Figure 19.5 An illustration of the light-cone-inspired spacetime decomposition used in the 2+2
approach.

(Winicour, 2012; Mädler and Winicour, 2016). For our present purposes, perhaps the
most important feature is that we have a well-defined energy at future infinity, meaning
that we can read off the emerging gravitational waves without a specific extraction
procedure.

Let us start by assuming that x0 = u is a null coordinate. With ka = −∂au, the normal
to u =constant surfaces, we then have

gabkakb = 0, (19.42)

which implies that g00 = g11 = 0. Next, let the angular coordinates xA = (θ2,θ3) be
constant along these null rays. That is,

ka∇axA = 0, (19.43)

which implies that g0A = g1A = 0, as well. These angular coordinates label the null
surfaces. Finally, let x1 = r be an areal coordinate, in the sense that

det(gAB)

r4 = f (xA), (19.44)

from which it follows that g01 �= −1 and gAB = r2hAB.
With these assumptions, the line element takes the form

ds2 = −
(

V
r

e2β − r2hABUAUB
)

du2

−2e2βdudr − 2r2hABUAdxB + r2hABdxAdxB. (19.45)



OUP CORRECTED PROOF – FINAL, 24/10/2019, SPi

2 + 2 and the Bondi news 495

The spacetime is expressed in terms of the six functions β, V , UA, and hAB, with a clear
physical interpretation. V is an analogue of the Newtonian gravitational potential. The
scalar β measures the expansion of the light cone between the asymptotic frame and the
world tube, UA are angular shift components, and hAB encodes the two gravitational-
wave polarizations.

In order to develop the relevant evolution equations, let us focus on vacuum prob-
lems.6 We then have the Einstein tensor, Gab = 0, which we know satisfies the Bianchi
identities

∇aGa
b = 1√−g

∂a
(√−gGa

b

) + 1
2

(
∂bgad

)
Gad = 0. (19.46)

Inspired by the corresponding problem in electromagnetism (Tamburino and Winicour,
1966), one next introduces the so-called main equations

Gu
a = 0, (19.47)

and

GAB − 1
2

gAB(gCDGCD) = 0. (19.48)

If these equations are satisfied, it follows that, for the metric (19.45), we have

Ga
r = −e2βGua = 0, (19.49)

and therefore the a = r component of (19.46) reduces to

(
∂rg AB

)
GAB = −2

r
gABGAB = 0. (19.50)

Next, the retarded time and angular components of (19.46) lead to

∂r

(
r2e2βGr

X

)
= 0, where X = u,A. (19.51)

If they are satisfied at (say) future infinity, J +, then the Gr
X equations are satisfied

everywhere. This means that they play a secondary role in the evolution scheme and,
hence, they are referred to as the supplementary equations. Physically, they are related
to the conservation of energy and angular momentum.

The problem now reduces to a hierarchy, which can be solved in two steps. First we
have the hypersurface equations (19.47), which are solved by radial integration along

6 Problems involving matter are not naturally described in this formalism as fluids (say) have their own
characteristics associated with the speed of sound.
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each null surface. This provides us with β, UA, and V on the surface. After a bit of
massaging, Eq. (19.48) can be cast into evolution equations (involving the retarded time
derivative) for the two gravitational-wave degrees of freedom in hAB. These equations
are used to update the system to the next slice.

A conceptual advantage of the characteristic formulation is that we can carry out
measurements at infinity (J +). Asymptotically, the Bondi variables approach 0 with
known fall-off rates. Expressing the two degrees of freedom from hAB as a complex
scalar J, we have (anticipating the fact that we are dealing with radiation)

J = J1

r
+O(1/r2). (19.52)

Based on this behaviour, we define the Bondi news function as

N = 1
2

∂uJ1 = − lim
r→∞

1
2

r2∂r∂uJ, (19.53)

and the mass loss associated with the emerging radiation is determined by

dm
du

=
∫
J +

|N |2. (19.54)

From the fact that the integrand is positive, we see that the Bondi mass of the system (m)
must decrease if gravitational waves are emitted (if there is news). If there is no news,
N = 0, then the Bondi mass is constant. One can also show that the news function is
related to the outgoing wave Weyl scalar through

∂uN = −1
2

�̄4, (19.55)

with the bar representing complex conjugation. We see that the integral of the Bondi
news,

∫
Ndu, provides a direct measure of the gravitational-wave strain. Of course, we

still need to work out this integral and this may be tricky for noisy numerical data.

19.7 Milestones and breakthroughs

Numerical evolutions based on the original 3+1 formulation turn out to be problematic.
With the advantage of hindsight, there is no particular reason why it should not be so.
After all, we did not consider the underlying character of the problem. However, knowing
that the ADM formulation fails, we are forced to consider alternatives and/or fixes. How
do we achieve stable long-term evolutions?

As a starting point, it is useful to better understand the origin of the problem. After
all, this may provide useful hints at the solution. From a formal point of view the issue is
fairly clear. We need to ensure that we are dealing with a well-posed hyperbolic problem
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(Gundlach and Martín-García, 2006). In essence, we should be able to (schematically)
write the equations as

∂tu + A∂iu = s(u), (19.56)

where u is a vector containing the evolution variables. The characteristics of the problem
follow from the eigenvalues of the matrix A. An ideal formulation would be ‘strongly’
hyperbolic, in which case all eigenvalues are real. This ensures the existence of unique
solutions that vary smoothly with smooth changes of the initial data. The ADM equations
are, however, only weakly hyperbolic and this causes problems.

19.7.1 Head-on collisions

The issues with the ADM formulation became increasingly pressing as simulation
technology developed. Nevertheless, there was progress and one can identify a number
of milestone results.

The first attempts to collide black holes on the computer were carried out by Smarr
and Eppley already in the late 1970s (Smarr, 1979). The results were not particularly
precise, due to a low resolution, but they nevertheless brought out the expectation that
the signal would be dominated by quasinormal modes (see Chapter 16).

It would take 15 years and a grand alliance of dedicated numerical relativity groups
to make decisive progress. The first major milestone involved the head-on collision
of non-rotating black holes (Anninos et al., 1993; Anninos et al., 1995; Anninos and
Brandt, 1998). The problem was simplified by appealing to symmetries—for equal mass
black holes described by Misner-type initial data, the head-on problem is both time-
and axi-symmetric. The simulations allowed the first reliable extraction of gravitational
waveforms and emitted energy. The results confirmed the dominant role of the black-
hole quasinormal modes. Waves extracted at different radii agreed to 10–20%, indicating
the level of accuracy of large-scale simulations from the mid-1990s. Good enough for
qualitative insights, but limited in precision and (more critically) restricted to short
evolution times.

For two black holes, each with mass M, the total energy emitted was found to
be of order �E ≈ 2 × 10−3M. It is useful to contrast this with the expectations from
perturbation theory. Recall the result for a point particle falling radially into a black hole,
discussed in Chapter 16, for which the radiated energy was found to be

�E ≈ 0.01
m2

M
for m 	 M. (19.57)

From the quadrupole formula (see Chapter 3) we know that, if the two masses are similar
it would be natural to replace m with the reduced mass μ. In the equal mass case, this
leads to the predicted energy being a factor of 1/4 lower, in fairly good agreement with
the numerical simulations (Anninos et al., 1995).
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The obvious way to probe the nonlinear aspects of binary inspiral and merger is to
perform direct simulations of Einstein’s equations. Of course, it an expensive endeavour.
The physics of a binary merger typically involves a range of physical scales. The
wavelength of gravitational waves from near merger is about 100 times the size of the
black holes, so the simulated region should be at least an order of magnitude larger than
this. For fluid systems the problem is even more acute, as we then need to keep track of
local matter properties. In order to facilitate multidimensional simulations one may have
to draw on an aggressive use of adaptive mesh refinement. In addition, we need a handle
on the reliability of the results.

However, we have seen that we can get useful insight from perturbation theory.
Taking another step in this direction, we may assume that the two black holes start
off so close together that they are surrounded by a common horizon. Then one can
consider the situation as corresponding to a single perturbed black hole (Price and
Pullin, 1994). That the ‘perturbation’ is sufficiently ‘small’ to make the approach sensible
is not obvious, but the idea leads to surprisingly accurate results—and the strategy is
relatively straightforward. After expressing the initial data as ‘Schwarzschild background
+ something else’ one ends up with an initial-value problem for the Zerilli equation from
Chapter 16.

In the case of Misner data—characterized by the parameter μ0 = L/M where L is
the initial separation of the two black holes and M is the total mass of the spacetime,
as before—one finds that the black holes are surrounded by a common horizon for
μ0 < 1.36. However, it turns out that the parameter μ0 enters the calculation through a
multiplicative factor. As a result, it affects only the amplitude of the gravitational waves
and a single perturbation calculation can be used to describe all initial separations. This
leads to significant savings compared to nonlinear simulations.

The perturbative evolutions do not provide additional qualitative insight—the wave-
forms are dominated by quasinormal-mode ringing and at late times they follow the
expected power-law tail (discussed in Chapter 16). However, the agreement with
numerical simulation of the full nonlinear equations is surprising. Moreover, the agree-
ment extends well beyond the small μ0 regime. The perturbation calculation remains
reasonably accurate even when the two black holes are not initially surrounded by a
single horizon. In essence, the close-limit approach provides an efficient way of getting
a handle on the gravitational waves from a merger event.

The seemingly unreasonable accuracy of the perturbative approach has a simple
explanation. The spacetime is strongly distorted only in the region close to the horizon.
Because of the existence of the potential barrier (with peak at roughly r = 3M) in the
Zerilli equation most of this initial perturbation never escapes to infinity. Much of the
‘error’ associated with the approximation leads to radiation that is swallowed by the black
hole—the predicted waveform in the outer region is quite accurate.

The close-limit approach can be extended to allow the black holes to have initial linear
and angular momentum (Baker et al., 1997; Brandt et al., 2000). This way it was found
that the radiation efficiency (�E/E) saturates at about 2%. This suggests that, no matter
how large the initial momentum is, it is not possible to achieve high efficiency in black-
hole collisions.
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19.7.2 Inspiral and merger

The head-on collision results showed promise, but the problem was still far from solved.
Progress stalled (again), largely due to the presence of instabilities preventing longer
simulations. In order to avoid the problems, different groups explored different directions
and options ranging from minor fixes to complete reformulations of the evolution
equations (Baumgarte and Shapiro, 2010; Shibata, 2016). In essence, there are many
approaches to the problem. This is easy to see as we have the freedom to add any multiple
of the constraints to the evolution equations without affecting the physics. The new
equations will have the same physical solutions, but they may be better behaved, both
mathematically and from a stability point of view.

Current state-of-the-art simulations adopt one of two competing strategies. The first
strategy aims to cure the problems associated with the original ADM approach. The
standard approach is inspired by electromagnetism and involves the introduction of
additional evolution variables (Shibata and Nakamura, 1995; Baumgarte and Shapiro,
1999). The second approach is quite different. It takes us back to the discussion of
linearized theory, which provides the underlying wave nature of dynamical solutions to
Einsteins’ equations. One can try to preserve this aspect by generalizing the harmonic
coordinates (Pretorius, 2005). Both strategies have merits (and perhaps also drawbacks).

Let us first outline how we can fix the issues associated with the ADM formulation.
An important step in this direction was taken by in the late 1990s. Baumgarte and
Shapiro (1999) achieved dramatically improved stability by adapting an idea that had
been pioneered for neutron star simulations by Shibata and Nakamura (1995). The key
idea behind this (so-called BSSN) formulation is to conformally decompose the three-
metric γij in such a way that

γ̃ij = e−4φγij , (19.58)

and use the conformal factor as a new evolution variable, along with the constraint
det γ̃ij = 1. The trace of the extrinsic curvature K = γ ijKij is also used as a separate
variable. Introducing

φ = 1
4

logψ , (19.59)

we have

Ãij = e−4φ

(
Kij − 1

3
γijK

)
. (19.60)

Finally, the conformal connections

�̃i = γ̃ jk�̃i
jk = −∂j γ̃

ij (19.61)

are also evolved.
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This leads to a system of equations that is larger than the ADM set—we now
have as many as 17 evolution equations. However, the formulation fixes many of the
problems with the original approach. In particular, the stability is much improved. As
a result, about 10 years after the head-on collisions, the first simulations of orbiting
black holes were carried out (Brügmann et al., 2004). This involved adding another
key ingredient—a clever use of co-moving coordinates. The simulations combined the
1+log slicing along with a version of the so-called gamma-driver condition for the shift
(Alcubierre et al., 2003)

∂tβ
i = 3

4
αpψ−nBi, (19.62)

with

∂tBi = ∂t�̃
i − ηBi. (19.63)

Here ψ is the time-independent conformal factor of the Brill–Lindquist initial data used
in the simulations. The main idea is that, the coefficient η introduces damping that relaxes
the solution towards the desired behaviour.

With a black hole moving across the computational grid, the stage was set for a
breakthrough.

The first successful simulation of inspiralling and merging black holes came from
an unexpected direction (Pretorius, 2005). Instead of following the mainstream, Frans
Pretorius developed a numerical code based on a generalization of harmonic coordinates.
This has obvious conceptual advantages. For example, one can use a compactified
coordinate system where the outer boundaries of the grid are at spatial infinity, so the
physically correct boundary conditions can be used. In his first simulations, Pretorius
was able to extract the gravitational waves from the final orbit and merger of two equal
mass, non-spinning black holes; see Figure 19.6. The simulations showed the formation
of a Kerr black hole with angular momentum parameter a ≈ 0.7 and the emitted energy
was estimated to be about 5% of the initial rest mass of the system. As it turns out, these
results are in very good agreement with the level of energy associated with the discovery
event GW150914 (see Chapter 1).

When the breakthrough came, the standard 3+1 simulations were close, but they still
required a minor tweak. Successful simulations followed the introduction of a clever
‘trick’—the use of moving punctures (Baker et al., 2006b; Campanelli et al., 2006). Recall
the discussion of punctures for black-hole initial data. In that problem, the metric on the
initial slice was given by

γab = (ψ + u)4 δab, (19.64)

with ψ given by (19.31). The key difference between the puncture data and (say)
the description of a black hole in isotropic coordinates is the additional control asso-
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Figure 19.6 Left: The orbit of the first successful inspiral+merger simulation. The figure shows the
coordinate position of the center of one black-hole apparent horizon relative to the other, in the orbital
plane. Units have been scaled to the mass (M0) of a single black hole, and curves are shown from
simulations with three different resolutions. Overlaid on the figure are reference ellipses of eccentricity 0,
0.1, and 0.2, suggesting that if one were to attribute an initial eccentricity to the orbit it would be in the
range 0 − 0.2. Right: A sample of the gravitational waves emitted during the merger, as estimated by the
Newman–Penrose scalar �4. The real part of �4 multiplied by the coordinate distance r from the centre
of the grid is shown at a fixed angular location, for several distances r. The waveform has been shifted in
time (by amounts shown in the plot) so that the oscillations overlap. (Reproduced from Pretorius (2005),
copyright (2005) by the American Physical Society.)

ciated with the smooth (and finite) function u. If the puncture positions are fixed
through an evolution, then the singular behaviour in the metric can be treated ana-
lytically. However, this leads to coordinate distortions and simulations tend to crash
before a common horizon forms. The new approach ‘simply’ allowed the punctures
to move. In practice, this was still far from straightforward, but the key step was
conceptual—many of the established building blocks, like lapse and shift conditions,
could be immediately brought to bear on the simulations. Before long, several groups
had adapted their codes, allowing them to carry out increasingly precise simula-
tions of inspiral and merger. The black-hole problem was, for all practical purposes,
solved.

Numerical relativity waveforms are crucial to the development of data analysis
strategies and they also provide important validation for any claimed detection. The
results of a modern simulation (from the group at Georgia Tech; see Jani et al.
(2016)), aimed at reproducing the GW150914 event, are shown in Figure 19.7. This
kind of simulation remains expensive and it may be that we will never be able to
use numerical data across the entire parameter space of interest. Instead, as a more
efficient alternative, sets of high-resolution simulations are used to guide the develop-
ment of phenomenological schemes, like the effective-one-body approach discussed in
Chapter 11.
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Figure 19.7 The different stages of binary black-hole coalescence. The upper panel shows the emitted
gravitational-wave strain for the two polarizations, h+ and h×. The waveform has been scaled to the
total mass and distance of the discovery event GW150914. The bottom panel shows the energy emitted
at each stage alongside the corresponding trajectories and apparent horizon shapes of the individual
black holes. The energy contained in the radiated modes (l = 2 − 6, m = −l − l, red line) is compared to
the dominant mode of radiation (l = 2,m = ±2, grey dashed line). (Figure provided by K. Jani, based on
data from Jani et al. (2016).)

19.8 Recoil and kicks

When we discussed how gravitational waves carry energy and angular momentum away
from a system (back in Chapter 3), we did not consider the linear momentum. Yet, it
seems perfectly reasonable to ask whether there are situations where gravitational waves
carry linear momentum and, as a result, impart a ‘kick’ on the emitting system. Indeed,
this should be the generic case for a binary inspiral as long as there is some asymmetry
in the system.

Linear momentum is generated due to a beating of the mass octupole and current
quadrupole moments. The mechanism is quite intuitive. Consider a system with one
body lighter than the other. If the two objects are in a circular orbit, the lighter mass
will be moving faster and will be more effective in beaming gravitational radiation in the
forward direction. This leads to net momentum ejection in the direction of motion of the
lighter mass, causing a recoil of the system in the opposite direction; see Figure 19.8. The
rate of momentum emission is (as usual) obtained by integrating the flux over a sphere
far away from the system. We have

dPi

dt
=

∫
dE

d�dt
nid�, (19.65)
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Figure 19.8 Asymmetric momentum ejection leading to recoil of a binary system. (Adapted from
Wiseman (1992).)

where ni is the (unit) normal vector. We also have (in the TT-gauge)

dE
d�dt

= r2

32π

(
ḣTT

ij ḣij
TT

)
. (19.66)

From the (schematic) form of the waveform

hij
TT ≈ 2μ

r

[
Qij +

(
δM
M

)
Pij

1/2 + Pij
1 +

(
δM
M

)
Pij

3/2 + . . .

]
, (19.67)

where μ is the reduced mass (as in Chapter 11), Qij is the leading quadrupole moment,
Pij

n are the post-Newtonian corrections, and the mass difference is δM = M1 − M2, we
see that the leading order momentum emission arises from the cross term of Qij and
Pij

1/2. The effect is linear in δM. A slow-motion weak-field analysis, essentially leads to
(Wiseman, 1992)

Ṗn ∼ η2
(

M
r

)5
δM
M

(
M
r

)1/2

, (19.68)

where M = M1 + M2 is the total mass and η = M1M2/M2 is the symmetric mass ratio.
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Recalling that the energy flux scales as (see Chapter 3)

Ė ∼ η2
(

M
r

)5

, (19.69)

we have the rough estimate

dP
dE

∼
(

δM
M

)(
M
r

)1/2

, (19.70)

which leads to (Wiseman, 1992)

vkick ∼ c
(

dP
dE

)(
�E
M

)
∼ 180 km/s

(
dP/dE
0.02

)(
�E/M
0.03

)
. (19.71)

We see that a significant velocity may be imparted on a merger remnant.
As the result may have important astrophysical consequences, the kick problem has

been explored with numerical simulations. Typical results are shown in Figure 19.9. The
linear momentum can be inferred via the usual Weyl scalar �4. In general, we have

�4 = κF(t)−2Y2
2 + λF̄(t)−2Y2−2, (19.72)
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Figure 19.9 Magnitude of the radiated momentum, as a function of time, extracted from three different
black-hole merger simulations, with different initial coordinate separations leading to slightly different
kick velocities. For comparison, the second-order post-Newtonian radiated momentum is also shown.
The anti-kick during the late stages (after the peak at time ≈ 0) is significant in all simulations.
(Reproduced from Baker et al. (2006a) by permission of the AAS.)
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in terms of spin-weighted spherical harmonics. This leads to

dE
dt

= r2

16π

(
κ2 + λ2

)∣∣∣∣
∫ t

−∞
F(t′)dt′

∣∣∣∣
2

(19.73)

and

dP
dt

= 2
3

r2

16π

(
κ2 − λ2

)∣∣∣∣
∫ t

−∞
F(t′)dt′

∣∣∣∣
2

. (19.74)

It follows that

vkick ≈ c
κ2 − λ2

κ2 + λ2

(
�E
M

)
. (19.75)

Numerical results broadly bring out the expectations, see Figure 19.9, but there are
surprises. In particular, simulations show that the final merger event leads to an ‘anti-
kick’ which reverses some of the linear momentum induced during the inspiral. This
effect can be understood from the horizon dynamics (Rezzolla et al., 2010). In essence,
an anisotropic curvature distribution on the horizon correlates with the direction and
intensity of the recoil.

A fit to numerical results for non-spinning black holes suggests that (Sopuerta et al.,
2006; González et al., 2007)

v ≈ 750 km/s (4η)2
√

1 − 4η(1 − 0.93η). (19.76)

This indicates that the maximal kick velocity will be v ≈ 175 km/s for η ≈ 0.195. We can
also use the fit to estimate the kick associated with particular gravitational-wave events.
For example, in the case of GW150914 the two masses, M1 = 36M� and M2 = 29M�,
lead to η ≈ 0.247 and a modest kick of v ≈ 61 km/s. However, this may be a poor estimate
as the result can be significantly different for spinning black holes.

The black-hole spin enters the problem is several distinct ways: (i) the spin terms
contribute to the orbital decay, and therefore contribute to the accumulated phase of the
gravitational waveform, (ii) the spins cause the orbital plane to precess, which changes
the orientation of the orbital plane with respect to an observer, thus causing modulation
of the shape of the waveform, and (iii) the spins contribute directly to the gravitational-
wave amplitude of the waveform. The effects can be quite complicated, but the main
impact on the kick velocity can be estimated from (Kidder et al., 1993b; Kidder, 1995)

ṖSO ∼ η2
(

M
r

)5 (|r̂ ×�| + |v̂ · �|) , (19.77)
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where

� = 1
M

(M2a2 − M1a1), (19.78)

with a1 and a2 the two spin vectors.
Spin effects introduce a second surprise. By fine-tuning the two spins one can

demonstrate the existence of super-kicks, with velocities well above 1,000 km/s (González
et al., 2007). In order for this to happen, the spins must be directed away from each other
in the orbital plane, which may seem an unlikely configuration. One would expect the
spins to be aligned with orbital angular momentum if the inspiral is driven by torques
from a circumbinary disk. Still, different configurations may arise if the accretion is
chaotic. One may also get a random spin orientation in binaries formed through captures,
e.g. in clusters. Noting that a super-kick would likely lead to the final black hole breaking
free from the host galaxy, see Figure 19.10, it is interesting to ask whether there is any
astrophysical evidence for such roaming black holes.

Even relatively modest kicks on the order of 100 km/s may have implications for the
growth of massive black holes in the early Universe (Merritt et al., 2004). In essence, dark
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Figure 19.10 Central escape velocities (in units of km/s) for four types of stellar system that could
harbour merging black holes: giant elliptical (E), dwarf elliptical (dE), and dwarf spheroidal (dSph)
galaxies and globular clusters (GCs). The solid line provides the mean escape velocity from the dark
matter halos associated with the luminous matter. It is easy to see that a kick in excess of 100 km/s may
lead to a central black hole becoming unbound. (Reproduced from Merritt et al. (2004) by permission of
the AAS.)
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matter halos are expected to merge as part of a hierarchical structure formation, and their
central black holes are also assumed to come together. If the resulting kick exceeds the
escape velocity of the merged halo, the black hole is likely to depart. This may impact on
the number of black-hole mergers in the early Universe, as issue that will be probed by
LISA (see Figure 22.7).
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Many relevant astrophysical phenomena involve violent matter dynamics. The modelling
of such scenarios requires fully nonlinear multidimensional simulations taking into
account both the live spacetime of general relativity and the matter degrees of freedom.
We have already considered the main issues associated with the spacetime dynamics. Let
us now see what happens when we add substance to the discussion.

In recent years there has been considerable progress in developing the tools required
for the modelling of archetypal gravitational-wave sources like a supernova core collapse
(Ott, 2009) or a neutron star merger (Baiotti and Rezzolla, 2017). The computational
technology has reached the level where more detailed matter issues are being considered.
In the case of supernova modelling, it is well known that neutrinos play an important
role in triggering the explosion (Janka, 2012) and the role of magnetic fields may also be
significant (Burrows et al., 2007). For neutron star mergers, finite temperature effects are
crucial as shock heating ramps up the temperature to levels beyond that expected even
during core collapse. In addition, dynamical magnetic fields are likely to have decisive
impact on the post-merger dynamics and may leave an observational signature, e.g. in
terms of a short gamma-ray burst (Rezzolla et al., 2011). Similarly, viscous effects may
impact on the violent dynamics of a neutron star merger (Alford et al., 2018; Fujibayashi
et al., 2018).

20.1 Simulating fluids

The astrophysical problems we want to model involve (often rather complex) matter
components. Hence, it is important to understand how matter is incorporated in the
3+1 formulation. To some extent, we have seen this already. The evolution equations for
the spacetime (from Chapter 19) introduce a decomposition of the stress–energy tensor

Tab = ρNaNb + 2N(aSb) + Sab. (20.1)

This expression is general enough that it can account for (pretty much) anything we
want. However, the description is adapted to the Eulerian observers associated with Na

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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and involves quantities—the energy ρ, the momentum flux Sa and the stresses Sab—
measured accordingly. These variables are unlikely to represent the local physics of a
given fluid element.

To make progress we need to relate the ingredients from the 3+1 foliation to a
specific matter model. As an example, we consider a perfect fluid represented by
a barotropic equation of state ε = ε(n) where ε is the energy density and n is (for
example) the baryon number density (see Chapter 12)—including the various many-
body interactions prescribed by the microphysics. One of the main steps involves relating
these thermodynamic variables, which are naturally associated with an observer that
moves along with the flow, to the quantities used by the (Eulerian) observer associated
with Na.

In order to work out the required ‘translation’, we need the four-velocity of the fluid,
ua, which can be decomposed as

ua = W (Na + va), (20.2)

where Nava = 0 and the Lorentz factor is given by

W = −Naua = αut = (1 − v2)−1/2, (20.3)

(the last equality follows from uaua = −1). From this we see that

vt = 0, vi = ui

W
− Ni = 1

α

(
ui

ut + β i

)
, (20.4)

and it follows that

vt = gtivi = βivi, vi = γijv j = γij

α

(
uj

ut + β j

)
. (20.5)

Next we want to translate the equations of fluid dynamics into the 3+1 form. Let us
start with the simple case of baryon number conservation. We have

∇a(nua) = ∇a[Wn(Na + va)] = 0, (20.6)

and, noting that the particle number density measured by the Eulerian observer is

n̂ = −Na(nua) = nW , (20.7)

we have

Na∇an̂ + ∇i(n̂vi) = −n̂∇aNa = n̂K , (20.8)
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since va is spatial and we recall that K is the trace of the extrinsic curvature Kab. Making
use of the Lie derivative from (19.17), we have

Na∇an̂ = LNn̂ = 1
α

(∂t −Lβ)n̂ = −∇i(n̂vi)+ n̂K , (20.9)

or

∂t n̂ + (αvi − β i)∇i n̂ + αn̂∇ivi = αn̂K . (20.10)

Finally, since va and βa are already spatial, we have

∂t n̂ + (αvi − β i)Din̂ + αn̂Divi = αn̂K = −n̂∂t lnγ 1/2 + n̂Diβ
i , (20.11)

where Di is the spatially projected derivative (as in Chapter 19). Thus, we have

∂t

(
γ 1/2n̂

)
+ Di

[
γ 1/2n̂(αvi − β i)

]
= 0, (20.12)

where we have used the fact that

(−g)1/2 = αγ 1/2, (20.13)

so

∇a(−g)1/2 = ∇a(αγ 1/2) = 0. (20.14)

Now that we have seen what is involved, the other fluid equations readily follow. In
the case of a perfect fluid, we have the stress–energy tensor

Tab = (p + ε)uaub + pgab, (20.15)

where p is the pressure. After the relevant projections, cf. (20.1), we have

ρ = NaNbTab = εW 2 − p
(
1 − W 2

)
, (20.16)

Si = −γ i
aNbTab = (p + ε)vi, (20.17)

and

Sij = γ i
aγ

j
b Tab = pγ ij + (p + ε)W 2vivj , (20.18)
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With these relations in hand, it is practical to work out the equations of motion from
(20.1). Starting from

∇aTab = 0, (20.19)

we first of all project along Nb. This leads to an equation for the energy

Na∇aρ + ∇aSa = ρK − SbNa∇aNb − Sab∇aNb, (20.20)

which becomes

1
α

(
∂t −Lβ

)
ρ + ∇aSa = ρK − SiDi lnα + SijKij , (20.21)

and finally

∂t

(
γ 1/2ρ

)
+ Di

[
γ 1/2

(
αSi − ρβ i

)]
= γ 1/2

(
αSijKij − SiDiα

)
. (20.22)

If we instead make an orthogonal projection (using γ a
b), we arrive at an equation for

the momentum. We get

ρNa∇aNc + γ c
bNa∇aSb + Sc∇aNa + Sa∇aNc + γ c

b∇aSab = 0, (20.23)

which leads to

(
∂t −Lβ

)
Si − Sj (∂t −Lβ

)
γij − αKSi + ρDiα + αγijDkSik = 0, (20.24)

and the final result

∂t(γ
1/2Si)+ Dj

[
γ 1/2

(
αSj

i − Siβ
j
)]

= γ 1/2
(
SjDiβ

j − ρDiα
)

. (20.25)

As in the case of spacetime simulations from Chapter 19, the evolution equations
may require massage to get into suitable shape. In the fluid problem, sharp gradients
may lead to the formation of shocks and a numerical simulation must be able to
handle such features. In order to deal with this issue, the relativistic hydrodynamics
equations are usually written in flux-conservative form (Font, 2008). In effect, the
evolved (conservative) variables U (say) satisfy equations of the form

∂tU + ∇ · F(U) = S(U), (20.26)
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where the fluxes F and sources S are functions of U but not of their derivatives. A
conservative shock-capturing scheme is then built around a reconstruction method,
where fluid quantities on either side of a computational cell are fed into a solution to
the classic Riemann problem that provides the required fluxes across each cell face.

Once we have the equations we need to evolve the fluid from one hypersurface to
the next, we can turn our attention to the thermodynamics. We need to connect the
evolved variables, n̂ and Si, to the physics encoded in the equation of state. This problem
can be messy. In our simple model setting, the equation of state leads to the chemical
potential

μ = dε

dn
, (20.27)

and the pressure p is defined by

p = nμ− ε. (20.28)

In order to connect with the evolution equations, we need to work out the number density.
The evolution system (20.12) and (20.25) provides (assuming that γ 1/2 is known from
the evolution of the Einstein equations)

n̂ = nW = n(1 − v2)−1/2, (20.29)

and

Si = γ 1/2(p + ε)vi = γ 1/2nμvi. (20.30)

We need to invert these two relations to get n and vi. This will enable us to work out the
source terms in the evolution equations, as required to take another step. Of course, we
need to know n in order to work out μ from the equation of state, so this inversion is not
going to be a simple algebraic operation. In principle, we have to solve

n2 = n̂2 + 1
γ

(
S
μ

)2

. (20.31)

This is a one-dimensional root-finding problem. Starting from a guessed value for n we
calculate μ for the right-hand side and then carry out an iteration to identify the correct
value for the number density.

This procedure can be computationally expensive, and we have only outlined the very
simplest case. As we make the model more realistic – the more complex the matter model
is—the more involved the conversion from conservative (evolved) to primitive variables
becomes. In particular, the introduction of magnetic fields significantly complicates the
analysis (Font, 2008; Dionysopoulou et al., 2013).
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20.2 The bar-mode instability

An archetypal fluid problem—that has attracted considerable attention—is that of the
bar-mode instability of a rotating star. We outlined the theory behind this instability in
Chapter 13, establishing that a spinning ellipsoid is dynamically unstable above a critical
value βd ≈ 0.27, where the parameter β represents the ratio of kinetic to potential energy
(= T/|W |; see Chapter 12). In addition to the obvious astrophysical interest, there is
a very practical reason why the bar-mode scenario is attractive for simulations. The
instability is dynamical. It sets in by its own accord and grows rapidly (on the dynamical
timescale). Through simulations, one would hope to explore how the instability evolves
once it reaches a nonlinear amplitude and what the associated gravitational-wave signal
may be (New et al., 2000; Fryer and New, 2011).

The first step of a bar-mode simulation involves building a rotating model, along the
lines discussed in Chapter 12. Doing this, we find that realistic neutron star equations
of state do not allow values of β much larger than 0.1 in uniformly rotating neutron
stars (see Chapter 12 and Stergioulas and Friedman (1995)). Different scenarios may
nevertheless lead to a compact star becoming dynamically unstable to the bar-mode. For
example, since β ∼ 1/R one might expect a collapsing star to suffer the instability at some
point during its evolution. Moreover, the maximum attainable β changes dramatically if
the star is differentially rotating. Differential rotation may lead to an increase of the mass-
shedding limit simply by allowing the equator to rotate slower than the central parts of
the star.

Newtonian simulations have established that the critical value at which the bar-mode
becomes dynamically unstable remains close to the result for Maclaurin spheroids,
βd ≈ 0.27, for models with varying compressibility. Moreover, it turns out that the onset
of instability is only weakly dependent on the chosen differential rotation law. Having
said this, there are extreme angular momentum distributions for which βd becomes very
small (Centrella et al., 2001; Shibata et al., 2002). This is interesting, as it indicates that
dynamical instabilities could play a role also for relatively slowly rotating stars. This
possibility has been demonstrated by numerical simulations of differentially rotating
polytropes which indicate the presence of a dynamical instability for βd ≈ 0.14 (close
to the point where secular instabilities are expected to set in; see Chapter 13). These
simulations show that an m = 1 mode plays a dominant role in determining the evolution
of the system (Ou and Tohline, 2006). Closer studies of this result have established a new
class of dynamical instabilities, thought to be associated with the nature of the shearing
flow (Watts et al., 2005). The nature of these low-T/W instabilities, and whether they
are likely to play a role in neutron star astrophysics, continues to be investigated.

Let us return to the classic bar-mode instability. Simulations show that the nature of
the bar-mode instability depends on the magnitude of β compared to the critical value
(New et al., 2000; Baiotti et al., 2007). For large values, β � βd , the initial exponential
growth of the unstable mode (on the dynamical timescale) is followed by the formation
of spiral arms. Gravitational torques on the spiral arms lead to the shedding of mass and
angular momentum. The unstable mode saturates and the star reaches a dynamically
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stable state. In this scenario gravitational waves are emitted in a relatively short burst.
For some time it was thought that this was the typical behaviour, but more recent
work indicates that, when β is only slightly larger than βd , a long-lived ellipsoidal
structure may be formed. If this is the case, the bar-mode could decay rather slowly
(on the viscosity/gravitational-wave timescale) until the star reaches the point where
it is secularly stable. This may, in turn, lead to a relatively long-lasting gravitational-
wave signal. Snapshots from a typical bar-mode evolution are shown in Figure 20.1.
However, throwing a slight spanner in the works, other simulations indicate that a long-
lived instability requires extreme fine-tuning (Baiotti et al., 2007). The generic bar-mode
configuration, quenched by the nonlinear coupling to other modes in the system, may
not last long (see Figure 20.2).

It is fairly straightforward to estimate the strength of the gravitational waves emitted
by a sizeable bar-mode. Let us assume that the mode saturates at an amplitude η

represented by the axis ratio of the ellipsoidal structure. Typical values may lie in the
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Figure 20.1 Snapshots from a nonlinear simulation showing the development of the bar-mode
instability. The different panels show sets of isodensity contours from which the development of a
(temporary) bar structure is evident. (Reproduced from Baiotti et al. (2007), copyright (2007) by the
American Physical Society.)
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Figure 20.2 Time evolution of the bar-mode instability. The top panel shows the behaviour of the
quadrupole distortion parameter η while the bottom panel provides the power in the m = 1 − 4 modes.
The results suggest that the growth of higher order modes saturates the instability and prevents a
long-lasting gravitational-wave signal. (Reproduced from Baiotti et al. (2007), copyright (2007) by the
American Physical Society.)

range η ≈ 0.2 − 0.4 (Shibata et al., 2000). From the standard results for a rotating solid
body with a given ellipticity (see Chapter 6) we then have

dE
dt

≈ −η2 GM2R4	6

c5 , (20.32)

which leads to

h ≈ 4 × 10−23
( η

0.2

)(
f

2 kHz

)2 (
M

1.4M�

)(
R

10 km

)2 (
15 Mpc

d

)
, (20.33)

where we have used the fact that the gravitational-wave frequency f is twice the
rotation frequency. This estimate compares reasonably well with results from simulations.
A signal with this strength could be detectable from sources in local galaxy group. Of
course, the detectability of the signal would be significantly improved if the instability
leads to the formation of a persistent bar-like structure. Should a long-lived bar form
and last for hundreds of rotation periods, one can easily gain a factor of 10 in the
signal-to-noise ratio. Such factors could be crucial, so it is important that the long-term
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evolution of the bar-mode instability, and the nonlinear saturation, are understood in
detail.

Given the breakthroughs in numerical relativity it is feasible to carry out bar-mode
simulations in full general relativity, with a live spacetime. Such work—for varying
degrees of differential rotation—tends to show good agreement with the Newtonian
results (Shibata et al., 2000). Relativistic effects enhance the dynamical instability only
very slightly and hardly change the critical value βd at all. Overall, the results of the
simulations also seem to be in agreement with the Newtonian estimates of the strength
of the gravitational-wave signal.

20.3 Tidal disruption

As a further step along the road to relativistic matter simulations with a dynamical
spacetime, let us consider tidal disruption events. This is a problem where the main
features may, to some extent, be understood by considering matter flowing in a fixed
spacetime (representing the gravitational interaction with a binary partner).

To get a first impression, we extend the discussion of Roche lobe overflow from
Chapter 6, adding a twist to the discussion of binary inspiral. When we considered
compact binaries in Chapter 5 we assumed that the two stars (or black holes) would
gradually approach each other until they touched, or reached the innermost stable orbit,
at which point they would crash together. However, the evolution of the system may
be affected by mass transfer at an earlier stage. As this could leave an imprint on the
gravitational-wave signal—and there may be an electromagnetic counterpart signal, as
well (Kobayashi et al., 2004; Shcherbakov et al., 2013)—it is relevant to explore the range
of possibilities.

The estimates in Chapter 6 showed that, if the mass ratio exceeds q = M2/M1 = 5/6
then the mass transfer will be dramatic (for a brief period). This may be relevant, as it
means that an inspiralling system could be tidally disrupted before merger. This would
lead to a cut-off in the gravitational-wave chirp, providing a measure of the size of the
compact star (essentially a handle on the equation of state; see Kyutoku et al. (2011),
Pannarale et al. (2015)). In this context, mixed binaries—with a neutron star spiralling
into a black hole—are of particular interest. However, in order to properly understand
such systems we need dynamical simulations. Before we consider that problem, let us
illustrate how the matter equation of state makes a difference. This also provides us with
an opportunity to comment on issues that impact on any attempt to make back-of-the-
envelope estimates for this kind of problem.

To be specific, we focus on the case of stable mass transfer (see Chapter 6), assuming
that the lighter star expands sufficiently rapidly that it continues to fill its Roche lobe. The
orbital separation then increases, which means that the gravitational-wave amplitude and
frequency should both decrease. The signature of stable mass transfer would therefore
be rather different for gradual tidal disruption and a direct plunge.

As an illustration of how the equation of state enters the problem, let us contrast
a system where the donor star is a neutron star to one with a self-bound quark
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star (Prakash and Lattimer, 2004). As usual, we assume that the orbit decays by the
emission of gravitational radiation, according to the quadrupole formula (to leading
order; see Chapter 3). In terms of the total mass M = M1 + M2 and the reduced mass
μ = M1M2/M, the rate of change of orbital angular momentum J is then (see Chapter 5)

J̇gw = −32
5

G7/2

c5

μ2M5/2

a7/2 = −32
5

G7/2

c5

q2M9/2

(1 + q)4a7/2 , (20.34)

where a is the orbital separation, and the angular momentum of the system is

J2 = GMμ2a = GM3aq2

(1 + q)4 . (20.35)

We focus on circular orbits since we know that the timescale for decay of orbital
eccentricity is much shorter than the inspiral timescale.

The binary orbit gradually shrinks until tidal disruption or the system reaches the
innermost stable circular orbit (ISCO, see Chapter 10), whichever happens first. Mass
transfer sets in when the compact star fills its Roche lobe, at which point matter begins to
flow onto the companion. Given that the Roche radius is approximated by (see Chapter 6
and Paczyński (1971))

RL ≈ 2a
34/3

(
M2

M

)1/3

= 2a
34/3

(
q

1 + q

)1/3

, (20.36)

mass overflow begins when RL ≈ R2, the radius of the secondary star. Mass transfer
continues in a stable fashion (for fixed M and J) if the star’s radius, after a period of
mass transfer, is less than RL, so that continued gravitational-wave emission maintains
the process. For this to happen, we need

d lnR
d lnM2

≡ α ≤ d lnRL

d lnM2
= d lna

d lnM2
+ (1 + q)

d ln(RL/a)

d lnq
, (20.37)

where we have introduced the parameter α, which is a function of the equation of state
and M2, the companion mass. This parameter determines both the onset of stable mass
transfer and the subsequent evolution.

If the mass transfer conserves angular momentum the evolution of the system is
determined by

d lnJ
dt

= 1
2

d lna
dt

+ 1 − q
1 + q

d lnq
dt

= J̇gw

J
= −32

5
G3

c5

qM3

(1 + q)2a4 . (20.38)
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Combining this with Eq. (20.37), we arrive at

J̇gw

J
≥

(
d lnq

dt

)
1

2(1 + q)

[
α + 2(1 − q)− (1 + q)

d ln(RL/a)

d lnq

]
, (20.39)

and, since both J̇gw and q̇ are negative, the condition for stable mass transfer becomes

α ≥ 2q − 5
3

(20.40)

(which follows from making sure that the square bracket in (20.39) is not negative).
Let us now consider specific ‘equations of state’. For hadronic matter, the equation of

state is (typically) such that the radius is relatively constant for a range of masses around
1.4M� (recall Figure 12.2). In effect, we have α ≈ 0, which means that q � 5/6 is the
condition for stable mass transfer (just as in the conservative case from Chapter 6).
Strange quark stars, on the other hand, are nearly incompressible (away from the
maximum mass) so α ≈ 1/3, which leads to the condition q < 1. These simple estimates
suggest that binaries containing quark stars would be more likely to have epochs of stable
mass transfer. During such an episode, ȧ > 0 and, as a result the binary companions spiral
apart, leaving a (potentially) clean imprint on the gravitational-wave signal (Prakash and
Lattimer, 2004).

The question is to what extent these Newtonian estimates can be trusted for neutron
star binaries. Our approximations gloss over a few well known facts. First of all, we need
the mass transfer to set in before the merger. As a rough estimate of the likelihood of this,
we can compare the tidal disruption radius to the ISCO. From (20.36) we have

a
R2

= a
RL

� 34/3

2

(
M
M2

)1/3

. (20.41)

In the case of a neutron star binary, the masses will be similar so mass transfer will set in
roughly when

a � 2.7R2 ≈ 14M2, (20.42)

where we have used R2/M2 ≈ 5 (in geometric units), a typical value for a neutron star.
If the primary is also a neutron star, and we use the test particle result for the ISCO,
aisco ≈ 6M1, then we see that the mass transfer should start before the end of the inspiral.
Of course, it may well be that the late stage inspiral proceeds so rapidly that the actual
effect will be small.

Turning to the case of a mixed binary, with a neutron star falling towards a black hole,
it is natural to assume that M1 � M2 in which case mass transfer kicks in when
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a
aisco

� 1.8
(

M2

M1

)2/3

. (20.43)

Basically, only low-mass black holes can disrupt neutron stars outside the ISCO. Of
course, as we are discussing an effect that would only be relevant at the late stage of
inspiral, we have to use these estimates with caution. To do better, we need simulations.

20.4 Black hole–neutron star mergers

We have seen that, for massive black holes, the tidal forces are typically too weak to disrupt
a neutron star before it reaches the ISCO. If we want to make more precise statements,
we need to include relativistic effects (noting, for example, that the location of the ISCO
shifts when we account for the mass of the secondary). The spin of the black hole may
also affect the result.

The development of simulations of mixed binaries, with a live spacetime, have
tended to lag behind pure vacuum black-hole binary work. The reason for this is
easy to understand as we have to combine the difficulties associated with black-hole
‘singularities’ and the event horizon with the subtleties of hydrodynamics. In order to
study the tidal disruption problem, we need to track several binary orbits. Moreover, the
initial orbital separation must be large enough that the tidal disruption takes place during
the evolution. These requirements make simulations costly. Adding to this, simulations of
systems with large mass ratios are more expensive than their equal mass cousins. Before
disruption the numerical time step is limited by the minimum spacing of the grid, which
scales as the size of the smaller object. Large mass ratio simulations require many more
time steps per orbit in order to reproduce the same accuracy. The merger phase adds
to the challenge. The rapid accretion of matter onto the black hole can only be resolved
with a fine numerical grid, again requiring small time steps. The prohibitive cost has led
to a focus on low-mass black holes. Large mass ratio binaries have almost exclusively
been studied using approximations (like a fixed black-hole spacetime).

Interestingly, the ‘moving puncture’ breakthrough for vacuum simulations (see Chap-
ter 19) also led to progress on the mixed binary problem (Shibata and Uryu, 2007;
Etienne et al., 2008). Geometrical arguments suggest that the standard 1+log slicing
condition leads to dynamical simulations approaching finite area surfaces around black-
hole singularities. That is, they never reach the singularity itself, which means that moving
puncture simulations may be successful also for problems involving the accretion of
matter. Since the simulations only cover ‘regular’ regions of the spacetime, the matter
flow never encounters the black-hole singularity. This approach may seem somewhat
pragmatic but it is appealing as it does not require explicit excision of the black-hole
interior.

Largely as expected, numerical simulations demonstrate that mergers of low eccen-
tricity black hole–neutron star binaries fall into two categories (Kyutoku et al., 2011).
In the first, the neutron star is tidally disrupted before the system reaches the ISCO.
Material from the star is then either accreted onto the black hole or ejected in a tidal tail.
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As matter in the tail falls towards the black hole, it forms an accretion disk. These disks
tend to be thick, with temperatures of a few MeV (significantly above 1010 K), and may
contain a significant fraction of the initial mass of the neutron star (up to a few tenths of a
solar mass). Moreover, the evolution may maintain a baryon-free region along the black
hole’s rotation axis—basically setting the system up in such a way that the interaction
with the star’s magnetic field may lead to the launch of a relativistic jet (Rezzolla et al.,
2011). An example of this kind of simulation is provided in Figure 20.3. In the second
category, the star simply reaches the ISCO before it fills its Roche lobe. No tidal tail is
formed, and there is a prompt merger.

To change the behaviour one must either consider eccentric orbits (for which partial
disruption is possible) or ramp up the black-hole spin. It is easy to explain why disk
formation tends to be favoured for large spins. We know from the geodesics of the Kerr
spacetime (see Chapter 17) that the ISCO radius is smaller for a prograde orbit around
a rotating black hole—it approximately halves when the spin increases from a = 0 to
0.75M. Meanwhile, the orbital separation at the onset of mass transfer depends only
weakly on the black-hole spin. The decrease of the ISCO radius thus enhances the
possibility of disruption before merger compared to the non-spinning case. A retrograde
spin plays the opposite role. The ISCO radius increases slightly so tidal disruption is less
likely.

The range of behaviour is encoded in the emerging gravitational-wave signal from
the late stages of inspiral; see Figure 20.4. Low-spin simulations have spectra similar
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Figure 20.3 Evolution of the rest-mass density profile (in units of g/cm3) and the location of the
apparent horizon (filled circle) of the black hole (in the equatorial plane) for a typical tidal disruption
event involving a neutron star falling towards a more massive black hole. In this case the mass ratio is
Q = Mbh/Mns = 3, with Mns = 1.35M� and black-hole spin a = 0.75M. (Adapted from Kyutoku
et al. (2011), copyright (2011) by the American Physical Society.)
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Figure 20.4 Schematic spectrum of effective amplitude heff for mixed neutron star-black hole mergers.
During the inspiral phase, heff scales as f −1/6. If the neutron star is tidally disrupted before reaching the
ISCO, the gravitational-wave emission will cut off at ftidal ∼ 2 − 4kHz. If the neutron star plunges into
the black hole without being tidally disrupted, the plunge cuts off the emission and excites the
quasinormal modes of the black hole, which ring down emitting gravitational waves at frequency fqnm.
(Reproduced from Bartos et al. (2013).)

to that of a black-hole binary. The power slowly decreases with increasing frequency
during inspiral and then peaks at the time of merger (at approximately 1 kHz). It
then drops exponentially as the remnant black hole rings down. In contrast, when
the spin is significant the neutron star disrupts and there is no longer a peak in the
gravitational-wave spectrum. Instead, the high-frequency signal depends on the details
of the tidal disruption. Lower spins lead to less disruption, with most of the mass
rapidly falling into the black hole, while higher spins lead to more significant disruption
and a lower frequency cut-off in the spectrum. Information of the tidal disruption is
reflected in a clear relation between the compactness of the neutron star (Mns/Rns) and
an appropriately defined ‘cut-off frequency’ in the gravitational-wave spectrum, above
which the spectrum falls off exponentially.

These merger simulations are of interest beyond gravitational-wave astronomy. The
formation of a black hole surrounded by a massive, hot accretion disk from the remains
of a disrupted neutron star provides the ideal conditions to power short gamma-
ray bursts. Such systems could radiate a significant amount of energy (1048 erg) via
neutrino emission or the Blandford–Znajek mechanism (Blandford and Znajek, 1977)
in a timescale of a couple of seconds. This could launch the jet associated with observed
gamma-ray bursts. The remnant disk, which may be as massive as 0.1M� and involve
velocities of 0.2 − 0.3c, may also produce an electromagnetic counterpart signal in the
form of a kilonova (Metzger and Berger, 2012). This emission is powered by decay of
unstable r-process elements and non-thermal radiation from electrons accelerated at blast
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waves between the merger ejecta and the interstellar medium. The decay of unbound
neutron-rich material powers an infrared transient, observable days after the merger.

These are exciting ideas, but they make complete simulations even more challenging.
In fact, the different objectives demand very different kinds of simulations. To model
the gravitational-wave signal, we need accurate simulations of the final tens of orbits
before merger. During this phase, the main physical effects can be recovered using
relatively simple models for the neutron-star matter. Meanwhile, to assess to what extent a
given binary can power detectable electromagnetic signals and to predict nucleosynthesis
yields, we need shorter inspiral simulations with a more detailed description of the
physics: magnetic fields, neutrino emission, nuclear reactions, and the composition and
temperature dependence of the properties of neutron-rich, high-density material. Ejected
material must also be tracked far from the merger site, requiring reliable evolutions in a
much larger region than during the inspiral.

20.5 Magnetohydrodynamics

As we turn to possible counterpart signals, it is clear that we need to make our simulations
more sophisticated. This raises the level of technical difficulty and there is a legitimate
concern that the physics we require may not be that well understood. Nevertheless, the
first step towards increased realism is clear—we have to account for electromagnetism.
We have already seen how a neutron star’s magnetic field dictates much of the observed
phenomenology, and we know that electromagnetism is of central importance for many
astrophysical scenarios. However, as soon as we start thinking about the problem, we
realize that we may not want to work directly with the electric and magnetic fields, Ea

and Ba. The concepts are intuitive, which helps understanding and interpretation of
results, but they are observer dependent—a moving electric field generates a magnetic
field and view versa, and this can be confusing.

Electromagnetic dynamics is fully specified in terms of the vector potential, Aa,
through the anti-symmetric Faraday tensor

Fab = 2∇[aAb], (20.44)

and in the 3+1 decomposition, where the observer is associated with Na, we have

Fab = 2N[aEb] + εabcdNcBd , (20.45)

That is, the electric and magnetic fields (measured in the Eulerian frame) are

Ea = −NbFba, (20.46)
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and

Ba = −Nb
(

1
2

εabcdFcd
)

≡ 1
2

εacdFcd , (20.47)

where we have introduced the short-hand notation εabc for later convenience. Both fields
are manifestly orthogonal to Na, so each has three components—just as in non-relativistic
physics. The electromagnetic contribution to the stress–energy tensor is

TEM
ab = 1

μ0

[
gcdFacFbd − 1

4
gab(FcdFcd)

]
, (20.48)

where the permeability μ0 is typically taken to be constant.1 This leads to

∇aTab
EM = jaFab ≡ −f b

L, (20.49)

which defines the Lorentz force, f a
L .

In addition to the fluid equations of motion, which follow from the divergence of the
total stress–energy tensor (as in Chapter 4 and which now also account for the Lorentz
force), we need Maxwell’s equations. First of all,

∇aFba = μ0jb, (20.50)

with

ja = σNa + Ja, and JaNa = 0, (20.51)

leads to

γ ab∇bEa = μ0σ + εabc (∇aNb)Bc, (20.52)

where σ is the charge density. In effect, we have

γ b
a ∇bEa − μ0σ = −εabcKabBc = 0, (20.53)

1 In general, Maxwell’s equations involve not just Ea and Ba, but Da = ε0Ea and Ha = Ba/μ0, as well. The
permittivity ε0 and the permeability μ0 combine to give the speed of light (in vacuum)

c2 = 1/(μ0ε0) .

In astrophysics it is common to work in so-called gauss units where ε0 = 1/(4πc) and (it follows that) μ0 =
4π/c. In geometric units, which are natural for spacetime, we then only have to keep track of factors of 4π .
Connecting with physical measurements, it is natural to work with cgs units in which case the magnetic field is
obtained in gauss (G).
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since Kab is symmetric, and it follows that

DiEi = μ0σ . (20.54)

We also get

γabNc∇cEb − εabc∇bBc + μ0Ja = −EbKba + EaK + εabc(Nd∇dNb)Bc, (20.55)

where Ja is the spatial charge current. This leads to

(
∂t −Lβ

)
Ei − εijkDj(αBk)+ αμ0Ji = αKEi. (20.56)

The second pair of Maxwell equations follow from

∇[aFbc] = 0. (20.57)

First of all, we have

γ b
a ∇bBa = εabcEaKbc = 0, (20.58)

or

DiBi = 0. (20.59)

Finally,

γabNc∇cBb + εabc∇bEc = −εabc(Nd∇dNb)Ec − BbKba + BaK , (20.60)

leads to

(
∂t −Lβ

)
Bi + εijkDj(αBk) = αKBi. (20.61)

Large-scale simulations tend to make use of the magnetohydrodynamics approxima-
tion. This involves simplifying the dynamics by (essentially) ignoring the inertia of the
electromagnetic charge current. In practice, this involves introducing a closure condition
for the equations by assuming that the current follows from an Ohm’s law of form
(depending on the assumptions involved; see Andersson et al. (2017))

Ei + εijkvjBk = RJi, (20.62)

where R represents the resistivity. In the ideal magnetohydrodynamics limit we have
R = 0, so the electric field vanishes according to an observer moving along with the
fluid. In this case, the Lorentz force simplifies to
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f L
i = εilmJlBm, (20.63)

which leads to the usual expression

f L = J × B. (20.64)

Similarly, the weak-field version of Maxwell’s equations follow by setting α = 1 and β =
K = 0 in the various relations. We then have

∇ · E = μ0σ , (20.65)

∂tE − ∇ × B = −μ0J , (20.66)

∇ · B, (20.67)

and

∂tB + ∇ × E = 0. (20.68)

At this level, the assumptions of magnetohydrodynamics involve charge neutrality
(effectively ignoring small-scale variations in the charge density by setting σ = 0) and
neglecting the displacement current (leaving out ∂tE in (20.66)). The current is inferred
from the curl of the magnetic field and one can write down a closed system of equations,
without involving the electric field.

20.6 The magnetorotational instability

The presence of a magnetic field impacts on many of the phenomena we have considered.
It also adds new features. Of particular importance is the so-called magnetorotational
instability (MRI), which generates turbulence and may lead to a dramatic amplification
of the magnetic field in a dynamical setting (Balbus and Hawley, 1991). The MRI is
thought to be the main mechanism for angular momentum transport in accretion disks.
It can also play a role in core-collapse supernovae—powering the explosion in the first
place, or generating magnetically driven outflows. This is particularly important in the
context of gamma-ray bursts.

In order to establish the presence of the instability, let us carry out a plane-wave
analysis of an axisymmetric magnetized system with a shearing flow. That is, we
assume a fluid rotation profile 	(r), with r the cylindrical radius, and consider small
perturbations (away from a given equilibrium) such that exp(−iωt + ikz), where z
represents the symmetry axis. Filtering out the sound waves (e.g. by means of a low-
Mach approximation where the waves are assumed to be slow compared to the speed of
sound) we arrive at a dispersion relation

ω4 −
(
κ2 + 2k2v2

A

)
ω2 + k2v2

A

(
κ2 − 4	2 + k2v2

A

)
= 0, (20.69)
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where we have introduced the Alfvén wave velocity

v2
A = B2

4πρ
, (20.70)

with ρ the mass density, and the epicyclic frequency

κ2 = 4	2 + 2r	
d	

dr
. (20.71)

Let us first consider uniform rotation; i.e. take 	 to be constant. In that case, we have
the two roots

ω2 = 2	2 + k2v2
A ±

[(
2	2 + k2v2

A

)2 − k4v4
A

]1/2

, (20.72)

and it is easy to see that, if we ignore the rotation, we are left with the Alfvén waves

ω ≈ ±kvA. (20.73)

Meanwhile, for a rotating star with a weak magnetic field we basically retain a set of
modified inertial modes (see Chapter 13).

Switching on the shearing flow, it is easy to identify the onset of instability. In order for
a mode to become unstable, the frequency must pass through the origin (an originally
positive ω2 must become negative). Thus, the instability comes into play when

κ2 − 4	2 + k2v2
A ≤ 0, (20.74)

(since the coefficient of ω2 in (20.72) is always positive). We see that we need the
rotational velocity to decrease with increasing distance. In this case, wavelengths such
that (Balbus and Hawley, 1991)

k2 ≤ 1

v2
A

∣∣∣∣ d	2

d ln r

∣∣∣∣ , (20.75)

are unstable and the fastest growing mode grows on a timescale

1
τMRI

≈ 1
2

∣∣∣∣ d	

d ln r

∣∣∣∣ . (20.76)

The astrophysical relevance of the MRI is obvious since the condition required for its
presence should be satisfied in a Keplerian accretion disk (Balbus and Hawley, 1991).
The instability may also be relevant for compact binary mergers. If the merger produces
some kind of disk the MRI may induce turbulence, leading to angular momentum
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transport and dissipation that drives accretion. The MRI may also enhance the magnetic
field in the merger remnant (Kiuchi et al., 2015).

However, resolving the length scales required to confirm these expectations—and
tracking the saturation of the instability—is challenging with current simulations. The
wavelength of the fastest growing mode is proportional to the magnetic field strength,
and is typically much smaller than the size of system under consideration. As a result,
the instability has mostly been explored using local simulations—generally demonstrating
agreement with the expectations (Riquelme et al., 2012)—but so far there have been few
multidimensional studies. Nevertheless, there is convincing evidence (Siegel et al., 2013;

(a) Δx=120m
Δx=160m
Δx=202m
Δx=270m

(b) Δx=120m
Δx=160m
Δx=202m
Δx=270m

(c)

Δx=120m
Δx=160m
Δx=202m

t-tmrg[ms]

0.00

0.02

0.04

0.06

0.08

0.04
0.06
0.08
0.10
0.12
0.14

10–2

100

10–1

101

10–7
10–6
10–5
10–4
10–3
10–2

 0  10  20  30  40  50  60

(d)

Δx=120m
Δx=160m
Δx=202m
Δx=270m

M
ej

e 
[M

su
n]

M
to

ru
s [

M
su

n]
M·

B
H

 [
M

su
n/

s]
E

B
 /E

in
t

Figure 20.5 Numerical evolutions demonstrating the presence of the magnetorotational instability in
the case of a neutron star which is tidally disrupted by a black hole to form a thick accretion torus. The
four panels show, from top to bottom; the ejecta mass, torus mass, mass accretion rate onto the black hole,
and ratio of the magnetic field energy, EB, to internal energy, Eint, as functions of time. Crucially, the
bottom panel shows that (irrespective of grid resolution) the magnetic field energy grows exponentially
and eventually saturates, at EB about 0.1% of Eint. The growth rate observed between 10 ms � t −
tmrg � 20 ms corresponds to a conversion of 7–8% of the orbital angular velocity. This accords
reasonably well with the expectations from a perturbative analysis. (Reproduced from Kiuchi et al.
(2015), copyright (2015) by the American Physical Society.)



OUP CORRECTED PROOF – FINAL, 24/10/2019, SPi

528 Cosmic fireworks

Kiuchi et al., 2015; Kiuchi, 2018) that the instability acts in the hot remnant following a
neutron star merger. Rapidly growing periodic structures are seen to form, reproducing
features associated with the MRI in local simulations. The growth time and wavelength
of the fastest growing mode can be extracted and compared to analytical predictions.
An example is provided in Figure 20.5, which shows results from simulations of black
hole–neutron star mergers.

20.7 Gravitational collapse

Gravitational collapse of rotating stars to form black holes is a central problem for any
theory of gravity, and it is (naturally) a long-standing issue in general relativity (May and
White, 1966). We touched upon some of the early work in Chapter 12 and we have now
advanced to the point where we can consider numerical simulations. The problem is of
obvious relevance for gravitational-wave astronomy, it is central to the gamma-ray burst
phenomenon and it is of conceptual importance for the theory itself. It is only through
numerical simulations that we may hope to improve our understanding of issues like
cosmic censorship and the black-hole no-hair theorems.

If we want to understand the collapse process in absence of symmetries and for a
realistic matter description, we have to turn to numerical relativity. This is not a simple
task, but there has been huge progress towards understanding collapse dynamics since
the landmark simulations of Stark and Piran (1985). They used an axisymmetric code
to calculate the gravitational radiation produced when a rotating star collapsed to a black
hole, triggering the collapse by (arbitrarily) reducing the star’s pressure by at least a factor
of 60% (up to 99% for the fastest spinning models). The results provide a picture that
remains relevant today. The main features are simple—the gravitational waveforms show
the familiar ‘precursor-burst-ringdown’ signature of a particle falling into a black hole
(see Chapter 16).

One of the challenges of the collapse problem involves dealing with matter falling
through the black-hole horizon. Once inside the black hole, this matter should no longer
influence the exterior dynamics—it would require superluminal motion for information
to exit the horizon. However, the physical speed limit may not be respected by a
numerical scheme. One has to treat the horizon with care. The typical solution involves
removing the black-hole interior (along with the central singularity, which would also
cause grief) together with a suitable boundary condition that prevents an unphysical
flow of information (see Chapter 19). However, despite significant improvements
of such excision of the black-hole interior along with the use of an adaptive mesh
(which automatically refines the resolution as required) the qualitative picture remains
unchanged. The main difference is that full 3D simulations tend to be less ‘optimistic’
when it comes to the amplitude of the emerging gravitational waves. This is likely due to
the use of less severe pressure reductions to trigger the collapse in the first place. For a
uniformly rotating neutron star near the mass-shedding limit collapsing at a distance of
10 kpc (in our Galaxy) the signal-to-noise ratio is expected to be at the level of a few for
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Advanced LIGO (Fryer and New, 2011). Given the expected event rate, one would be
very lucky to observe the gravitational waves from such an event.

The generic collapse dynamics is summarized by spacetime diagrams like that in
Figure 20.6—essentially an accurate version of the sketch from Figure 9.4. Initially, the
matter contracts in an almost homologous way. In the illustrated case it maintains its
axisymmetric distribution until t ∼ 175M�. At high densities (r � 2M�) the contour
lines slightly expand before collapsing. An apparent horizon is first found at t ∼ 188M�.
Shortly after horizon formation, all the matter has fallen into the black hole.

While the gravitational-wave signal from a collapsing compact star will be difficult to
detect, the situation may be different for massive stars collapsing in the early Universe.
This process is related to the formation of the supermassive black holes found in the
centre of galaxies—a long-standing problem in astrophysics (Rees, 1984). A possible
scenario involves the direct collapse of a supermassive star of mass ∼ 105M� to form a
heavy seed black hole. Recent star-formation models suggest that, if a high mass-
accretion rate of ∼0.1M�/yr continues through the period of nuclear burning (∼2 ×
106 yr), a supermassive star with mass ∼2×105M� may, indeed, form (Hosokawa et al.,
2013). The core of this star would eventually collapse directly to a black hole.
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Figure 20.6 Spacetime diagram illustrating typical collapse dynamics—an actual simulation version
of the schematic illustration from Figure 9.4. A set of fixed density contours are traced in both the
equatorial plane (black solid) and the perpendicular plane (black dashed). The apparent horizon forms
at 188M� (blue line). (Reproduced from Dietrich and Bernuzzi (2015), copyright (2015) by the
American Physical Society.)
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Simulations of rotating supermassive stellar cores collapsing to a black hole have been
carried out (Shibata et al., 2016). The results show that the peak gravitational-wave
amplitude is h ≈ 5 × 10−21 at a frequency of f ≈ 5 mHz for an event at a cosmological
redshift, z = 3, if the collapsing core is in the hydrogen-burning phase. Such gravitational
waves could be detectable by an instrument like LISA (with a signal-to-noise ratio ≈ 10;
see Figure 20.7), indicating that future observations may be able to test the direct collapse
scenario for the formation of massive seed black holes.

As in the case of the collapse of a star with a more modest mass, the gravitational-wave
signal is characterized by a quasinormal-mode ringdown with frequency (cf. the results
from Chapter 16)

f ≈ 20
(

M
6.3 × 105M�

)−1

(1 + z)−1 mHz, (20.77)

and strain amplitude

h ≈ 5 × 10−21
(

M
6.3 × 105M�

)(
d

25Gpc

)−1

, (20.78)

where M is the mass of the original stellar core, z is the cosmological redshift, and d
is the luminosity distance (about 26 Gpc for z = 3 in the standard �CDM model; see
Chapter 22). The total energy emitted as gravitational waves is

�E ≈ 1.1 × 10−6M, (20.79)
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Figure 20.7 The gravitational-wave spectrum for collapsing supermassive stars. The results represent
a hydrogen-burning model (H) at z = 1,2 and 3, and a Helium-burning model (He) at z = 1. The
gravitational-wave strain, represented by 2f |h(f )|, is compared to the expected noise level for two
space-based detector configurations; eLISA (upper) and LISA (lower). The unresolved contribution of
gravitational waves emitted by galactic binaries is also shown (as a shaded region in the lower left part of
the figure). (Reproduced from Shibata et al. (2016), copyright (2016) by the American Physical Society.)
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far below the level expected for black-hole mergers, for which as much as ∼ 0.1M may
be radiated (see Chapter 19).

20.8 Supernova core collapse

Towards the end of its life—as it runs out of light elements to fuel the nuclear furnace—a
massive star (above 8 − 10M�) develops an iron core that eventually becomes unstable
and collapses from 1000 km or so to 30 km in a few 100 ms (Janka et al., 2016). For
relatively low-mass progenitors with highly degenerate cores, the collapse is triggered
by a reduction in electron degeneracy pressure following electron captures. For more
massive stars, radiation pressure and photo-disintegration of heavy nuclei also contribute
to the gravitational instability. As the core collapses and matter is compressed, electron
captures lower the lepton fraction, release neutrinos, and make the matter increasingly
neutron rich. The core shrinks homologously (as in Figure 20.6) until it reaches
supranuclear densities (enclosing a mass of about half that of the Sun). At this point,
the equation of state stiffens due to the strong nuclear force and the infalling matter
rebounds (‘bounces’). The collapse abruptly halts, sending a shock wave through the
(supersonically) infalling material. However, this prompt shock is not strong enough
to push through the entire star. It loses energy and stalls. What happens next is key to
the supernova story. We need to understand how the shock is revived and a successful
explosion is launched.

The post-bounce dynamics depends on the interplay of a number of mechanisms. We
have to combine aspects of stellar structure and evolution, nuclear and neutrino physics,
hydrodynamics, kinetic theory, and strong gravity. There are (at least) two possible routes
to explosion (Janka et al., 2016). The shock may revive, on a timescale of hundreds of
milliseconds, because of neutrino heating or (in potentially rare cases of rapidly rotating
progenitors) magnetohydrodynamic effects. Hours later, the shock reaches the stellar
surface and the supernova becomes visible across the electromagnetic spectrum.

The complex processes involved in the supernova scenario may produce gravitational
waves through different channels (Ott, 2009). Some are associated with the dynamics of
the proto-neutron star and its immediate environment (usually leading to high-frequency
components of the signal), while others depend on the convective zone behind the
stalled shock front (giving rise to a low-frequency signal). The distinction is important—
the gravitational-wave signal may provide a unique probe of the multidimensional flow
during the first second or so of core-collapse supernova explosions.

The detailed physics dictates the character of the gravitational-wave signal. The
electron fraction, Ye, of the inner core determines the mass of the inner core, which,
in turn, influences the emitted waves. In order to explore this issue we need to reliably
account for the neutrino losses during the collapse. This is a serious computational
challenge as it involve tracking multiple neutrino species. At present, large parameter
studies based on multidimensional simulations are simply inconceivable. In fact, the
emergence of mature (and increasingly successful) simulations of the collapse and
explosion of massive stars is fairly recent (Janka et al., 2016). The progress builds on
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decades of effort aimed at understanding the role of neutrinos (starting in the 1960s,
Colgate and White (1966)) and the interplay with hydrodynamical instabilities.

A typical supernova explosion releases of the order of 1053 erg of energy. As it is a
violent phenomenon, naturally involving some degree of asymmetry, one might expect
a significant amount of this energy to be released as gravitational waves. In fact, in
the early days of efforts to detect gravitational radiation, supernovae were considered
prime source targets. However, as the understanding of the supernova mechanism(s)
improved and multidimensional simulations became possible, the promise faded. We
now know that most of the energy (99%) is released through neutrinos. A tiny amount
(likely less than the equivalence of 10−6M�) is channeled through gravitational waves
(Müller et al., 2013). This is yet another example of how the devil is in the detail. The
gravitational-wave emission depends not on how much energy may be available, but
rather on how asymmetric the process is. In essence, we should not expect to detect
supernova signals from distant galaxies. However, Advanced LIGO should be able to
see events throughout the Milky Way out to the Magellanic Clouds and perhaps the
local group of galaxies (Powell et al., 2016). The event rate may be low, but a detection
would be richly rewarded as the gravitational-wave signal brings detailed information
about the explosion mechanism—information that is otherwise hidden from view.

Despite the caveats, observations and theory have shown that core-collapse supernova
explosions exhibit strong asymmetries. Observed supernova remnants have inhomo-
geneities that may be a smoking gun for an asymmetric explosion. Inferred kick velocities
are also suggestive. For slowly rotating progenitors, asymmetries arise early on as
neutrino heating drives convective overturns behind the shock or from the large-scale
‘standing accretion shock instability’ (SASI, Blondin and Mezzacappa (2006)). This
large-scale asymmetry is illustrated in Figure 20.8. The SASI plays an important role
in the neutrino-driven explosion mechanism. Basically, a small fraction (5–10%) of
the outgoing neutrino luminosity is deposited behind the stalled shock. This drives
turbulence and increases the thermal pressure. These effects may revive the shock. The
mechanism has been successfully demonstrated in simulations (Janka et al., 2016), and
seems to explain the vast majority of core-collapse supernovae.

In the case of convection and the SASI in neutrino-driven explosions, asymmetric
mass motion in the neutrino heating layer leads to gravitational-wave emission from the
post-bounce phase due to time variations in the mass quadrupole moment (Murphy
et al., 2009). Simulations typically show several distinct phases; see Figure 20.9. Shock
ringing after prompt convection leads to a low-frequency signal around 100Hz lasting
about 50ms. This is followed by a signal at several hundred Hz, with stochastic amplitude
modulations. There may also be a ‘tail’ of radiation from an asymmetric shock expansion
in the explosion phase. Simulations in 2D and 3D differ in the predicted gravitational-
wave amplitude by as much as a factor of 10 (with the 3D models being less ‘optimistic’,
Janka et al.(2016)), so further progress is needed to make our understanding quantitative.

Due to the stochastic character, it may be far from easy to infer physics from this kind
of signal. Without a clear relation between the physical parameters that influence the
convection and the accretion flow it would also be difficult to create a reliable theoretical
template to facilitate searches. Realistically, gravitational-wave searches will have to rely
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Figure 20.8 An example of a successful explosion based on a self-consistent 3D neutrino-
hydrodynamics simulation. The panels show isoentropy surfaces of neutrino-heated, buoyant matter for
a 20M� progenitor at different times of evolution. The supernova shock is indicated as a blue,
enveloping surface. During the evolution large convective plumes push out neutron-rich material at high
velocities. In this particular case, strong SASI activity is observed between around 120 and 280 ms.
(Reproduced from Melson et al. (2015) by permission of the AAS.)

on generic burst algorithms. However, we can still get an intuitive understanding of the
signal. For excitation by convection, we can estimate the maximum amplitude around the
onset of the explosion by expressing the involved energy, Ekin, in terms of the mass of the
gain region, Mgain, and the typical velocity involved, v. First we express the post-shock
sound speed cs in terms of the shock radius rsh as (Müller, 2017)

cs =
(

GM
3rsh

)1/2

. (20.80)
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Figure 20.9 A sample of gravitational-wave strain (h+) times the distance, D, vs. time after core
bounce. The signal was extracted from a simulation using a 15M� progenitor model and an
electron-type neutrino luminosity of Lνe = 3.7 × 1052 erg s−1. Prompt convection, resulting from a
negative entropy gradient left by the stalling shock, leaves a distinctive feature in the signal lasting up to
∼50 ms after bounce. From ∼50 to ∼550 ms post bounce, the signal is dominated by convection.
Afterwards and until the onset of explosion (∼800 ms), strong nonlinear SASI motion dominates the
signal. The most distinctive features are spikes that correlate with dense and narrow down-flowing
plumes striking the ‘proto-neutron star’ surface (∼50 km). After ∼800 ms the model starts to explode.
(Reproduced from Murphy et al. (2009) by permission of the AAS.)

Then we make use of the quadrupole formula (see Chapter 3)

hTT
ij ∼ 2αGEkin

dc4 , (20.81)

where α represents the unknown overlap with the quadrupole motion, to estimate the
gravitational-wave amplitude. This way we arrive at

(
c4d
G

)
hmax ∼ αMgainv2Ma ∼ α

GMMgain

3rsh
Ma3, (20.82)

where Ma = (v/cs)
2 is the Mach number in the convective region. Finally, relating the

mass in the gain region to the explosion energy, Eexpl, via a residual recombination energy
εrec per baryon of around 5–6MeV, we arrive at

(
c4d
G

)
hmax ∼ α

Eexpl

εrec

GM
3rsh

Ma3, (20.83)
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Explicitly using rsh ≈ 200km and a typical value of Ma2 = 0.3 at shock revival, this
suggests that (Müller, 2017)

hmax ∼ 3 × 10−22α

(
Eexpl

1051 erg

)(
10 kpc

d

)
, (20.84)

which accords fairly well with the results of numerical simulations. The estimate
also demonstrates the trend towards stronger signals from more energetic explosions.
Basically, one would expect the observed spread in supernova explosion energies to lead
to a range of gravitational-wave amplitudes.

In contrast, in the case of rotating collapse the gravitational-wave signal is primarily
determined by the mass and the ratio of rotational kinetic energy to gravitational energy
(T/|W |; see Chapter 6) of the inner core at bounce (Dimmelmeier et al., 2008; Richers
et al., 2017). The nuclear equation of state comes into play through its effect on the mass
of the inner core at bounce and the central density of the post-bounce proto-neutron
star. However, as the gravitational-wave signal depends on the interplay of different
nuclear physics aspects, it may be difficult for instruments like Advanced LIGO to
distinguish between theoretical matter models. Moreover, rotating core collapse does
not probe physics above about twice nuclear density, so very little exotic physics (like
deconfined quarks) can be probed by gravitational-wave observations. These conclusions
are illustrated by results like those shown in Figure 20.10 (assuming the j-constant
rotation law; see Chapter 12).

Simple estimates suggest a linear relationship between the bounce amplitude and
T/|W | of the inner core. As usual, the gravitational-wave amplitude depends on the
second time derivative of the mass quadrupole moment, I ∼ M(x2 − z2), where M is the
mass of the oscillating inner core and x and z are the equatorial and polar equilibrium
radii, respectively. Treating the inner core as an oblate sphere, we can take the radius of
the inner core in the polar direction to be z = R and the larger radius in the equatorial
direction (due to the centrifugal support) x = R + δR. To first order in δR, the mass
quadrupole moment then becomes

I ∼ M[(R + δR)2 − R2] ∼ MRδR . (20.85)

Adapting the argument that led to the Kepler limit in Chapter 6, one may use

(R + δR)2	2 + GM
(R + δR)

= GM
R

, (20.86)

where 	 is the rotation rate. Assuming δR is small, we then find that

δR ∼ 	2R4/GM . (20.87)
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Figure 20.10 Sample waveforms of the core bounce signal for three models with varying initial
rotation states (with a fixed progenitor mass and equation of state). Note the relatively small signal peak
at the time of core bounce and the significant late-time contribution from post-bounce convection for the
slowly rotating model (top), and the overall lower signal frequency for the rotation-dominated and
centrifugally bouncing model (bottom). The three signals cover the waveform morphology of the
simulations by Dimmelmeier et al. (2008). (Adapted from Röver et al. (2009), copyright (2009) by the
American Physical Society.)

As we are only looking for an order-of-magnitude estimate, we can replace the time
derivatives in the quadrupole formulate with the inverse of the timescale of core bounce

t−2
dyn ∼ GM

R3 . (20.88)

We can also approximate (see Chapter 6)

T/|W | ∼ R3	2

GM
. (20.89)
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This way we arrive at

h ∼ GM	2R2

c4d
∼ T

|W |
(GM)2

Rc4d
, (20.90)

or

h ∼ 10−19
(

T/|W |
0.1

)(
10 kpc

d

)
. (20.91)

The linear dependence of the bounce signal amplitude on T/|W | is brought out by
simulations; see for example Figure 20.11. In this case, the different simulations were
initiated by imposing rotating initial conditions for the same 12M� progenitor model,
assuming a pre-collapse rotation profile

	(�) = 	0

[
1 +

(�

A

)2
]−1

, (20.92)

where � is the cylindrical radius and models A1–5 shown in Figure 20.11 represent
increasing values of A.

As discussed in Chapter 13, the bar-mode instability operates at very high spin rates
(in terms β = T/|W | the limit is about 0.25 in general relativity), which are not expected
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Figure 20.11 The difference between the maximum and minimum gravitational-wave strain �h+,
assuming a distance of 10kpc, as a function of the ratio of rotational to gravitational energy T/|W | of
the inner core at bounce. Each (2D) simulation is represented a single point. Simulations for different
equations of state and rates of differential rotation (set by the value of A) behave similarly for
T/|W | � 0.06, but branch out when the rotation becomes dynamically important. (Reproduced from
Richers et al. (2017), copyright (2017) by the American Physical Society.)
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even in more extreme collapse scenarios. Moreover, as we have already discussed, once it
is active the instability may not persist for long due to nonlinear mode coupling. However,
if the proto-neutron star is sufficiently differentially rotating, the low T/|W | instability
(Centrella et al., 2001) may be active. This could lead to substantial deformations and a
stronger signal. The associated signal-to-noise ratio depends (essentially) on the number
of cycles and the saturation level of the instability. A typical value for the maximal strain
obtained in numerical simulations is 10−21 at 10kpc with a frequency of 400 − 900Hz
(Ott et al., 2007).

To summarize the conclusions from available core-collapse simulations: for slowly
rotating iron cores, bounce and initial ringdown are expected to lead to signals with peak
frequencies in the range of 700 − 900Hz and dimensionless strain amplitudes of less
than 5 × 10−22 at a distance of 10 kpc, i.e. within our Galaxy. Fast rotation amplifies
the bounce signal. If the iron core has moderate rotation, the peak frequencies span
the larger range of 400 − 800Hz with amplitudes of 5 × 10−22 up to 10−20. Very rapid
rotation leads to bounce at subnuclear densities, and gravitational-wave signals in a lower
frequency band of hundreds of hertz with strains around 5 × 10−21 at 10 kpc.

Prompt convection occuring shortly after core bounce due to negative lepton gra-
dients leads to galactic signal amplitudes in the range 10−23 to 10−21 at frequencies
of 50 − 1000Hz, whereas signals of convection in the proto-neutron star may have
strains of up to 5 × 10−23 for a somewhat wider range of frequencies. Neutrino-driven
convection and the instability of the accretion-shock (SASI) could be relevant sources
as well, with strain amplitudes up to 10−22 at 100 − 800Hz. In addition, an acoustic
mechanism has been proposed for supernova explosions (Burrows et al., 2006). This
mechanism is connected with low-order g-mode oscillations in the proto-neutron star. If
this mechanism is active, large strain amplitudes of up to 5 × 10−20 at 10 kpc could be
reached in extreme cases.

The different emission mechanisms have characteristic signatures, but the estimated
signal-to-noise ratios make a detection of an extragalactic core-collapse supernova from
a slowly rotating (canonical) iron core seem unlikely with the current generation of
instruments. Even if fast core rotation rates are assumed, detections will be possible
from a distance of at most 1 − 2Mpc. Since the rate of (successful) supernovae is known
from observations, we know that galactic events happen every 30 − 100 years. Even at
a distance of 1 Mpc—that is, for very optimistic detection estimates—the event rate will
be low enough that we have to be lucky to see a single event during the operation of
Advanced LIGO. However, at a distance of 3 − 5 Mpc, a range which could admit a
detectable signal in a third-generation detector like the Einstein Telescope, the event rate
could be a few per year.

A major uncertainty connected with supernova models is the initial state, in particular
the angular momentum distribution in the evolved iron core. Expectations from stellar
evolution calculations suggest a very slowly rotating core would be typical (Heger et al.,
2005). This is further supported by the observation that neutron stars seem to be
born with comparatively low rotation rates, and by recent evidence for loss of angular
momentum of stars before the white-dwarf stage. Strong gravitational-wave signals can
only be obtained by invoking processes which break the approximate spherical symmetry
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of the system. If the core rotates faster than expected, for example for collapsing stars
that lead to gamma-ray bursts, then rotational instabilities may become relevant sources
of gravitational waves. Of course, these instabilities (or magnetic fields) must be efficient
enough to spin down young neutron stars after birth, in order to reconcile this scenario
with the observed neutron-star spin distribution. Also, magnetic wind-up may in some
cases open channels to magnetically driven explosions, which could give rise to detectable
signals (Mösta et al., 2014). These cases may be rare, but they are nevertheless very
interesting, especially since they may have an electromagnetic counterpart.

20.9 Hypernovae

Supernovae are the most powerful explosions in the Universe, but (as we have seen)
most of the energy is released in neutrinos. These neutrinos are not likely to be observed
unless we are lucky enough to have a nearby event. The brightest cosmic explosions, in
terms of electromagnetic radiation, are the gamma-ray bursts. Some observed bursts are
bright enough to convert the rest mass of the Sun (2 × 1054 erg) into gamma-rays in less
than 10 seconds. One of the main challenges in understanding these enigmatic bursts
involves the central engine. What astrophysical mechanism(s) can possibly accelerate
matter up to ultra-relativistic speeds and at the same time collimate the emission into a
powerful jet?

The answer may involve an alternative supernova explosion mechanism (MacFadyen
and Woosley, 1999; Woosley and Bloom, 2006). In the magnetorotational mechanism
(Mösta et al., 2014), rapid rotation and a strong magnetic field conspire to generate jet-
like outflows (naturally asymmetric) that explode the star. This mechanism can, at least in
principle, drive explosions up to ten times more energetic than regular supernovae. This
may explain the observed gamma-ray bursts. These so-called hypernovae (Paczyński,
1998; Hartmann and MacFadyen, 2000) are expected to be rare, but they could make
up about 1% of core-collapse events.

The key issue for this mechanism is the required fast core spin, leading to the
formation of a proto-neutron star (possibly a magnetar) spinning with a period of about
a millisecond. This is problematic as most massive progenitor stars are thought to have
slowly spinning cores (Heger et al., 2005).

Observed gamma-ray bursts exhibit a diverse phenomenology (Piran, 2004). The
burst duration ranges from a millisecond to a thousand seconds, with a (very roughly)
bimodal distribution of long bursts (lasting longer than ∼ 2 s) and short bursts; see
Figure 21.16. The radiation is beamed into a narrow solid angle, increasing the intensity
of the emission. The (geometrically corrected) energy of long gamma-ray bursts typically
lies in the range E ∼ 1050−52 erg, much smaller than the isotropic energy Eiso ∼ 1052−54

ergs and more in line with the energy associated with core-collapse supernovae. The
required energy budget and the timescales involved suggest that long gamma-ray bursts
involve the formation of a black hole. In the case of rotating collapse, the newly born
black hole is likely to be surrounded by a massive disk of material. The combined effects
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of rotation and the remnant magnetic field may collimate and launch the observed jet
(Mösta et al., 2014).

The collapse scenario has been confirmed by the discovery of supernovae associated
with gamma-ray bursts. Some of the associated supernovae show evidence for broad
emission lines indicating high-velocity ejecta and an inferred explosion energy of order
1052 ergs. The connection between a subclass of supernovae (type Ic) and long gamma-
ray burst was first established in the case of GRB 980425 and SN 1998bw. Other events,
like GRB 030329/SN 2003dh and GRB 031203/SN 2003lw, strengthen the connection
(Nakamura et al., 2001; Nomoto et al., 2007).

The hypernova scenario adds complexity to the—already challenging—problem of
modelling supernovae. In addition to the original explosion, a viable gamma-ray burst
model must deliver a powerful focused jet. The jet will typically have an opening angle
of about 0.1 radians and involve a power of ∼ 1050 erg/s. In addition, the model must (at
least in some instances) deliver ∼ 1052 erg of kinetic energy to a larger solid angle (up
to about 1 radian) to produce supernovae like SN 1998bw. This is ten times the level of
emission from an ordinary supernova.

The phenomenology suggests that long gamma-ray bursts originate from metal-
poor progenitors with degenerate iron cores, ending their lives in type Ibc core-collapse
supernovae (Nakamura et al., 2001; Nomoto et al., 2007). In some cases, the supernova
explosion may fail, leading to the formation of a black hole rapidly accreting fallback
material. The engine that converts energy from the accretion may power a jet in
excavated polar regions. Depending on the black-hole mass and the angular momentum
of the collapsing envelope, this central engine may operate for several seconds—enough
to explain a long gamma-ray burst. Parts of this story are supported by numerical
simulations, but some pieces are still missing. In particular, the actual launch of the jet
presents a problem.

Not surprisingly, given the intimate connection with the core-collapse problem, the
level of gravitational-wave emission associated with the hypernova scenario is ‘disap-
pointing’. An intermittent period of turbulent, low-amplitude emission ends, leading to
a pronounced spike in the waveform associated with the formation of the black hole
(Ott et al., 2011). The collapse signal then evolves into the familiar black-hole ringdown.
However, the emission is quenched as the axisymmetric accretion flow does not excite
the quasinormal modes to a significant amplitude. In essence, Advanced LIGO should be
able to see gravitational waves from this scenario at a galactic distance, but the signal will
not be observable from the cosmological distances where these events regularly occur.
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Anatomy of a merger

Neutron star mergers provide rich cosmic laboratories which can be used test our
understanding of extreme physics. The wealth of information one may glean from these
events was clearly illustrated by the first detection on 17 August 2017 (Abbott et al.,
2017i). With a signal that lasted over 100 seconds in the detector sensitivity band,
GW170817 was the largest signal-to-noise ratio event detected and the precise sky
localization allowed rapid follow-up searches with a range of telescopes. When the event
was found to be shining across the electromagnetic spectrum it was clear that we were
witnessing the birth of multi-messenger astronomy involving gravitational waves (Abbott
et al., 2017f ; Abbott et al., 2017j; Troja et al., 2017; Cowperthwaite et al., 2017).

21.1 GW170817

The first binary neutron star event was detected with a (combined) signal-to-noise ratio
of just over 32 and a false-alarm-rate estimate of less than one event every 80,000
years. (Abbott et al., 2017i) The source was localized within a sky region of about 30
square degrees and had a luminosity distance of 40 Mpc, making it the closest and most
precisely localized gravitational-wave signal in the first two Advanced LIGO observing
runs. The detection enabled a swift electromagnetic follow-up campaign that identified,
first of all, a gamma-ray flash just under two seconds after the merger (Troja et al., 2017;
Kasliwal et al., 2017; Goldstein et al., 2017). This was followed by an optical counterpart
near the galaxy NGC 4993, consistent with the position and distance inferred from
the gravitational-wave data (Hjorth et al., 2017; Coulter et al., 2017); see Figure 21.15.
The event was well inside the detector horizon for binary neutron stars—the maximum
distances from which the LIGO-Livingston and LIGO-Hanford detectors would have
been able detect such a system (with signal-to-noise-ratio of 8), were 218 Mpc and 107
Mpc, respectively. At the same time, the horizon for the Virgo instrument was 58 Mpc.
The relative weakness of the signal in the Virgo detector helped pinpoint the source
location, as it is had to be in one of the detector’s dark spots.

From the roughly 3,000 gravitational-wave cycles in the observed frequency range, the
chirp mass in the detector frame was precisely constrained to Mdet ≈ 1.1977M�. The
mass in the detector frame is related to the rest-frame mass of the source by the redshift

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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z (see Chapter 22) as Mdet = M(1 + z). Assuming the standard �CDM cosmology,
the gravitational-wave distance measurement implied a redshift of z ≈ 0.008, consistent
with that of NGC 4993, strengthening the association with this galaxy. The source-frame
chirp mass is thus found to be M ≈ 1.188M� (with slightly larger error bars due to
uncertainties in the redshift). This is the most accurately measured combination of the
two masses. The individual mass estimates are affected by a degeneracy between the
mass ratio and the aligned spin components. As a result, estimates of the mass ratio and
the component masses depend on assumptions made about the spins. This is apparent
from the probability distributions in Figure 21.1. However, by extrapolating the spins
of known binary neutron stars, one may assume that the merging stars were unlikely to
be rapidly spinning. This leads to tighter constraints on the masses. Restricting the spin
to be consistent with the observed population (χ = a/M ≤ 0.05 in Figure 21.1), one
arrives at the mass ratio 0.7 ≤ q ≤ 1.0 and component masses 1.36 ≤ m1/M� ≤ 1.60
and 1.17 ≤ m2/M� ≤ 1.36.

1.4

1.2

1.2

1.1

1.0

m
2 

[M
�]

m1 [M�]

0.9

0.8

0.7

0.6
1.25 1.50 1.75 2.00 2.25

|χz| < 0.05

|χz| < 0.89

2.50 2.75

Figure 21.1 The posterior distribution for the two component masses (m1 and m2) in the rest frame of
the GW170817 merger for a low-spin scenario (|χ | < 0.05, blue) and a (less likely based on the known
radio pulsar population) high-spin scenario (|χ | < 0.89, red). The coloured contours enclose 90% of the
probability from the joint posterior probability density function for the masses. The shape of the two-
dimensional posterior is determined by a line of constant total mass M and its width is determined by
the uncertainty in this quantity. The widths of the marginal distributions (shown on the individual axes
as dashed lines enclosing 90% probability away from equal mass of 1.36M�) are strongly affected by the
choice of spin priors. The result for the low-spin prior (blue) is consistent with the masses of all known
binary neutron star systems. (Reproduced from Abbott et al. (2017i), Creative Commons Attribution 4.0
licence.)
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21.2 Tidal deformation

As an inspiralling binary gets tighter and the gravitational-wave frequency increases, the
stars’ internal structure becomes increasingly important (see Figure 21.2). For neutron
stars, the tidal field of the companion introduces an additional quadrupole moment,
which accelerates the inspiral.

This is an extreme version of a familiar phenomenon. When a body is exposed
to an external gravitational field it responds by changing shape. This is most easily
understood by considering the gravitational effect the Moon has on the Earth. The
oceans move to reach equilibrium as the Moon orbits, leading to the observed tides.
The effect also deforms the Earth’s elastic crust, again to reach an equilibrium with
the passing body (although this effect is much less pronounced). The tidal deformation
can be expressed in terms of dimensionless quantities known as the Love numbers
(Flanagan and Hinderer, 2008; Hinderer, 2008). The effect may leave an observa-
tional imprint on the gravitational-wave signal from a neutron star in a close binary
system, in principle encoding information about the supranuclear equation of state
(Hinderer et al., 2010).

The tide raised by a binary companion (here treated as a point particle, which should
be a good approximation) induces a linear response in the primary. In order to quantify
this response we need to solve the linearized fluid equations, with a driving force given
by the tidal potential (χ) associated with the companion star. In the Newtonian case, this
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Figure 21.2 An illustration of the late stages of binary neutron star inspiral. When the system enters
the sensitivity band of ground based detectors, it can be accurately represented by post-Newtonian theory,
but as the orbital separation decreases finite size effects become increasingly important. When the signal
reaches a few 100 Hz we must account for the tidal deformation of the two bodies. The violent dynamics
of the final merger (leading to a signal above 1 − 2 kHz) must be modelled using nonlinear numerical
simulations. (Adapted from an original figure by J. Read based on data from Read et al. (2013).)
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tidal potential is given by a solution to ∇2χ = 0, and (in a coordinate system centred on
the primary) we have (Press and Teukolsky, 1977; Ho and Lai, 1999)

χ = − GM2

|r − a(t)| = −GM2

∑
l≥2

l∑
m=−l

Wlmrl

al+1(t)
Ylme−imψ(t). (21.1)

The orbit of the companion (with mass M2) is taken to be in the equatorial plane
with a the binary separation and ψ the orbital phase. For l = 2, which makes the
dominant contribution to the gravitational-wave signal, we have the coefficients (Press
and Teukolsky, 1977)

W20 = −√
π/5, W2±2 = √

3π/10, and W2±1 = 0. (21.2)

The last result follows from the symmetry of the tidal potential; Wlm must vanish for all
odd l + m.

If we assume that the inspiral, driven by gravitational-wave emission, is adiabatic then
the tidal deformability is obtained from the ‘static’ part of the tidal potential (21.1). For a
system in circular orbit, the distance a is constant and χ is time independent. The induced
response is obviously time independent, as well, so we only need the zero-frequency
solution to the perturbation problem. That is, we need to solve

1
ρ

∇δp − 1
ρ2 δρ∇p + ∇δ� = −∇χ , (21.3)

along with

∇2δ� = 4πGδρ. (21.4)

We also know that the equation of state will (effectively) be barotropic (as long as the star
is assumed to have time to reach chemical equilibrium). see Andersson and Pnigouras
(2019)). This means that

δp = c2
s δρ, (21.5)

where c2
s is the adiabatic sound speed. Finally, the background is such that

∇p = −ρ∇� −→ p′ = −ρ�′ = −ρg, (21.6)

where a prime indicates a radial derivative and we have introduced the gravitational
acceleration g.

As in the f-mode problem (see Chapter 13), we expand in spherical harmonics, such
that (for m = 0)

δp =
∑

l

plYl0, (21.7)
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and similar for the other variables, and introduce

Ul = �l + χl . (21.8)

This leads to the radial component of (21.3)

p′
l −

p′

ρ
ρl = −ρU ′

l , (21.9)

the angular part

pl = −ρUl, (21.10)

and the Poisson equation

r2U
′
l + 2rU ′

l − l(l + 1)Ul = 4πGr2ρl , (21.11)

where we have used the fact that χl solves the corresponding homogeneous equation.
It is worth noting that the problem seems to be overdetermined. We appear to have

too many equations for the number of variables. However, taking a radial derivative of
(21.10), we get

p′
l = −ρ′Ul − ρU ′

l = ρ′

ρ
pl − ρU ′

l . (21.12)

Using this in (21.9) we have

ρ′

ρ
pl − p′

ρ
ρl = 0 −→ ρ′pl = p′ρl , (21.13)

which is consistent with (21.5). This reduces the number of equations, so the problem
is well posed, after all.

Now we have

r2U
′
l + 2rU ′

l +
[

4πGρr2

c2
s

− l(l + 1)

]
Ul = 0. (21.14)

This equation is solved by integrating from the centre to the surface of the star. At
the surface we match to the exterior potential. In general, this provides the multipole
moments of the body, Il , according to (as we have m = 0)

�l = − 4πG
2l + 1

Il

rl+1
. (21.15)
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We also know that

χl = 4π

2l + 1
dlrl , (21.16)

where d2 can be read off from (21.2).
At the surface of the star we match Ul and its derivative to the exterior solution. This

matching allows us to extract the Love number, kl , which is defined by the relation

GIl = −2klR2l+1dl . (21.17)

Taking a simple n = 1 polytrope as an example, we find that k2 ≈ 0.26 (Poisson and Will,
2014). The Love number measures how easy it is to deform the bulk of the matter in the
star. If most of the star’s mass is concentrated at the centre then the tidal deformation
will be smaller. For polytropes, matter with a larger polytropic index n is softer and more
compressible, so these polytropes are more centrally condensed. As a result, k2 decreases
as n increases. For example, for n = 2 we get k2 ≈ 0.07. For realistic equations of state
and in general relativity (see later), the value of k2 tends to lie in the range 0.05 − 0.15.
The Love number also decreases with increasing compactness. This explains the features
in Figure 21.4.

In order to illustrate the impact of the tidal deformability on the gravitational-wave
signal, let us focus on the phasing. The idea is simple; once an additional mechanism
leads to an overall shift of about half a cycle in the waveform there would be no
further accumulation of signal-to-noise in a matched filter search (see Chapter 8
and Flanagan and Hinderer (2008)). Hence, if the total number of cycles is N (f )
(where f is the gravitational wave frequency) then a shift 	N > 0.5 (or equivalently,
a phase shift 	� = 2π	N of order a few radians) would mean that the effect could
be distinguished. This rough criterion will be sufficient for now. Basically, we assume
that an additional dynamical effect would i) suppress detectability and impact on
parameter extraction with a given search template (that does not account for the effect)
if 	N > 0.5, but it should be safe to assume that, ii) the effect will not be distinguishable
if 	N 	 1.

We take the leading-order gravitational radiation reaction from Chapter 5 as our
starting point. That is, we assume that gravitational-wave emission drains energy from
the orbit at a rate

Ėgw = −32M


5c5 (GM
)7/3 , (21.18)

where the chirp mass is given by

M = μ3/5M2/5 = M1

(
q3

1 + q

)1/5

, (21.19)
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with the total mass M = M1 + M2, reduced mass μ = M1M2/M and mass ratio
q = M2/M1. In the case of a pair of 1.4M� neutron stars (which we take as our canonical
example) we have M = 1.2M�, close to the observed result for GW170817.

As we are interested in using observations to constrain neutron star physics, it is
important establish to what extent the various parameters are already known. For the
mass ratio q, we know from radio observations that double neutron star systems may be
asymmetric, as in the case of PSR J0453+1559 where the two masses are 1.174M� and
1.559M�; see table 9.2. Given this, the inferred range for the mass ratio in GW170817
(taking the primary to be the heavier companion) 0.7 ≤ q ≤ 1, is not too surprising.

As usual, the orbital frequency 
 follows from Kepler’s law


2 = GM
a3 , (21.20)

which links the observed gravitational-wave frequency f = 
/π to the orbital separation
a. Given the Newtonian orbital energy

Eorb = EN = −GM1M2

2a
= −M

2
(GM
)2/3 , (21.21)

it follows that the orbit evolves in such a way that


̇



= −3

2
ȧ
a

= 3
2

Ėorb

Eorb
≈ 3

2
Ėgw

EN
= 96

5c5 (GM
)5/3
 ≡ 1
tD

(21.22)

defines the inspiral timescale tD (as in Chapter 5). That is, we have

tD ≈ 140
( M

1.2M�

)−5/3 (
f

30 Hz

)−8/3

s. (21.23)

The two neutron stars merge about 2 minutes after the system enters the frequency
range above 30 Hz. The result also manifests the well-known fact that the leading order
gravitational-wave signal only encodes the chirp mass, which is why this quantity was
better constrained than any other combination of the masses in the case of GW170817.

A determination of the individual masses requires higher order post-Newtonian
corrections. These effects are, of course, subtle and a key question concerns to what
extent unmodelled features may limit the precision of the parameter extraction. It is
important to keep in mind that, while one may expect to obtain fairly good estimates
for the masses (as in Figure 21.1), it will be more difficult to infer the spin rates (the
spin–spin and spin–orbit coupling effects are likely to be weak).

As long as it is safe to ignore other aspects, the binary signal is associated with a total
number of cycles
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Ngw =
∫ tb

ta
fdt =

∫ fb

fa

f

ḟ
df =

∫ fb

fa
tDdf

= c5

32π (GMπ fa)5/3

[
1 −

(
fa
fb

)5/3
]

. (21.24)

As an example, consider a signal between a frequency f = fa, when the signal first enters
the detector band, and fb, above which it is suppressed by the detector noise. Inspired by
the case of GW170817, we may use the (somewhat conservative) frequency range from
fa ≈ 30 Hz to fb ≈ 300 Hz for which the total number of cycles would be Ngw ≈ 2,500.

Let us now consider the possibility that tidal dynamics introduces an additional change
of orbital energy, say at a rate Ėtide, leading to a change in the number of wave cycles in
the observed frequency range. With

Ėorb = Ėgw + Ėtide, (21.25)

we have

N = 2
3

∫ fb

fa

Eorb

Ėorb
df ≈

∫ fb

fa
tD

(
1 − Ėtide

Ėgw

)
df = Ngw + 	N , (21.26)

where the last step should be a good approximation as long as Ėtide 	 Ėgw. We see that
the additional torque leads to a contribution

	N = −
∫ fb

fa
tD

(
Ėtide

Ėgw

)
df , (21.27)

allowing us to estimate the relevance of any mechanism that is active in the observed
frequency range.

However, the problem is a little bit more complicated. In general, we also need to
account for changes to the orbital energy associated with the tidal effect. If we do this
by letting

Eorb = EN + Et, (21.28)

then we arrive at

N = 2
3

∫ fb

fa

Eorb

Ėorb
df ≈

∫ fb

fa
tD

(
1 + Et

EN
− Ėtide

Ėgw

)
df . (21.29)

In order to progress, let us assume that we are in the adiabatic regime where the
orbital evolution can be estimated from the energy of the system and the rate at which
gravitational waves are emitted. The tidal contribution to the energy E and luminosity
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dE/dt for a quasi-circular inspiral, which adds the following leading-order terms to the
post-Newtonian point-particle corrections (pN), are (Flanagan and Hinderer, 2008)

E(x) = −1
2

Mηx
[
1 + [pN] − 9

M2

M1

λ1

M5 x5 + 1 ↔ 2
]

, (21.30)

Ė(x) = −32
5

η2x5
[
1 + [pN] + 6

M1 + 3M2

M1

λ1

M5 x5 + 1 ↔ 2
]
. (21.31)

In these relations λ1 = λ(M1) and λ2 = λ(M2) are the tidal deformabilities of stars 1
and 2, respectively. The parameter η = M1M2/M2 is the dimensionless reduced mass,
and x is the (dimensionless) post-Newtonian parameter x = (
M)2/3 (see Chapter 11).
Notably, the tidal deformability enters (21.30) and (21.31) only through the combination

λ

M5 = 2
3

k2

(
R
M

)5

∼ 102 − 105. (21.32)

Note that, even though the tidal effect formally enters at 5th post-Newtonian (order x5

in (21.31)), the numerical prefactor is large. In principle, this is a reflection of the fact
that the internal dynamics of the binary companions do not obey the post-Newtonian
ordering of the binary motion—there is no reason why the tidal deformability should fit
neatly into the usual scheme.

For a given equation of state, these results allow us to predict the tidal phase
contribution for a given binary system. Since both stars will be deformed, it is natural to
discuss the problem in terms of the weighted average (Hinderer et al., 2010)

λ̃ = 1
26

[
M1 + 12M2

M1
λ(M1)+ M2 + 12M1

M2
λ(M2)

]
, (21.33)

which reduces to λ in the equal-mass case. Making contact with (21.29), we find that

Ėtide = Ėgw
4(1 + 3q)
(1 + q)5/3

(
π f

0

)10/3

k2, (21.34)

with


0 =
(

GM1

R3
1

)1/2

≈ 2π × 2,200 Hz
(

M1

1.4M�

)1/2 (
R1

10 km

)−3/2

, (21.35)

where R1 is the radius of the neutron star, together with a similar expression for the tidal
change to the orbital energy. The tidal contribution to the number of gravitational-wave
cycles (from one of the stars) then follows from
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2π	N ≈ −13
2

1
q(1 + q)4/3

(
c2R1

GM1

)5/2 (
π f

0

)5/3

k̃2, (21.36)

where q is the mass ratio and k̃2 is given by

k̃2 = 1
26

(1 + 12q)k2. (21.37)

Typical estimates, for an equal mass binary of Newtonian n = 1 polytropes, are shown
in Figure 21.3. As expected, the tidal deformability comes into play at late stages of
inspiral. In the illustrated example the effect would not be ‘detectable’ below f ≈ 400 Hz
or so. However, this is only an indication that this tidal imprint could be relevant for real
systems. In order to make the argument quantitative, we need to consider more realistic
neutron star models.
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Figure 21.3 A schematic illustration of the impact of tidal deformability on a binary neutron star
signal. We indicate the estimated shift in the number of gravitational wave cycles |	N | as a function of
the gravitational-wave frequency f . The grey band follows from (21.36) if we assume a Newtonian
n = 1 polytrope (for which k2 ≈ 0.26), two equal 1.4M� neutron stars (thus doubling the value of 	N )
and the ‘reasonable’ range of radii 10 − 14 km. The dashed curves show how this band shifts if we
consider the (likely unrealistic) case of two 1.1M� stars. The dashed horizontal line represents the
indicative level of |	N | ≈ 0.5 above which the effect should leave an imprint in a matched filter search,
and the vertical shaded region represents an example observed frequency range between 30 and 300 Hz
(similar to the actual range for GW170817). (Reproduced from Andersson and Ho (2018), copyright
(2018) by the American Physical Society.)
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21.3 The relativistic Love number

Our estimates suggest that observational constraints on the tidal deformability may allow
us—assuming that the individual masses can be inferred from the inspiral waveform—to
infer the neutron star radius. Let us try to quantify how well one would expect to be able
to do this in reality. First of all, we need to formulate the problem in general relativity. This
is crucial if we want to confront realistic matter equations of state with observational data.

As in the Newtonian case, we consider a non-rotating spherically symmetric star in a
static external (quadrupolar) tidal field Eij . The star responds to the tidal interaction by
developing a quadrupole moment Qij . At large distances, r in the star’s local asymptotic
rest frame, the metric coefficient gtt is then given by (Hinderer, 2008)

1 − gtt

2
= −M

r
− 3Qij

2r3

(
xixj

r2 − 1
3

δij

)
+ 1

2
Eijxixj , (21.38)

where we have dropped terms of order O(1/r3) and O(r3). To linear order we relate the
quadrupole moment to the tidal moment and introduce the Love number as

Qij = −λEij = −2k2

3G
R5Eij . (21.39)

In essence, we extract the Love number, k2, from the asymptotic behaviour of the
gravitational field of the tidally deformed body. As we have assumed the star to be non-
rotating, this involves solving the problem of static perturbations (the time-independent
version of Eqs. (18.9)–(18.15) from Chapter 18), and connecting the two problems via

gtt = −
(

1 − 2M
r

)
(1 − H0Ylm) . (21.40)

Outside the star, the static perturbation problem leads to a single equation for H0

H ′′
0 +

(
2
r

− λ′
)

H ′
0 −

[
l(l + 1)eλ

r2 − (λ′)2
]

H0 = 0, (21.41)

where we have used ν = −λ, as appropriate for the Schwarzschild solution (see
Chapter 4). This equation may be solved in terms of associated Legendre polynomials,
leading to

H(r) = aPPl2

( r
M

− 1
)

+ aQQl2

( r
M

− 1
)

, (21.42)

where we have kept both the decreasing (Plm) and growing solution (Qlm).
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Inside the star, the static perturbation equations reduce to (the relativistic analogue
of (21.11))

r2H ′′
0 +

[
2
r

+ 1
2

(
ν′ − λ′)] r2H ′

0

+
[
2
(
1 − eλ

) − l(l + 1)eλ + 2r(2ν′ + λ′)− r2 (
ν′)2

]
H0

= −8πr2eλ(δp + δε) . (21.43)

and

8πr2δp = 1
2

re−λ(ν′ + λ′)H0. (21.44)

Once we provide an equation of state δp = c2
s δε, where c2

s is the sound speed, we can
solve this equation for H0 to obtain the coefficients aP and aQ by matching to the exterior
solution at the star’s surface. Since the problem is studied within perturbation theory the
overall amplitude of the solution is arbitrary, so we only need the ratio al = aQ/aP . In the
case of quadrupole deformations (l = 2), we then have

k2 = 4G
15

(
M
R

)5

a2. (21.45)

For a given equation of state, this procedure leads to results similar to those shown in
Figure 21.4.

The question is how accurately one would expect to be able to infer the tidal
deformability from an observed signal. In order to consider this issue, we first need to
work out λ (or k2) for a range of equations of state. Typical results from this exercise
show that the value of λ may span about an order of magnitude; see Figure 21.5. It
should be noted that the values of λ for a given set of equations of state vary over a much
wider range than the corresponding results for k2 simply because of the factor of R5 in
the relation between the two quantities.

There are two aspects to the problem of detecting the tidal imprint. First of all, we
may consider whether we will be able to extract the information from a single event. We
can bring the Fisher-matrix approach (see Chapter 8) to bear on this question (Hinderer
et al., 2010). This leads to the constraints in Figure 21.5. The measurement error in λ

generally increases with the total mass of the binary. By comparing the predicted errors
to the expected range of values for λ, one finds that Advanced LIGO observations of
binaries at a distance of 100 Mpc will be able to probe only unusually stiff equations of
state. However, a third-generation instrument like the Einstein Telescope should be able
to see a clean tidal signature. The tenfold increase in sensitivity allows a more precise
discrimination between equations of state leading to the tidal signature being detectable
across the expected neutron star mass range.
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Figure 21.4 Left: Mass–radius relation for a sequence of stellar models determined form the APR
equation of state (Akmal et al., 1998), demonstrating consistency with the observational constraint on the
maximum mass (upper dashed horizontal line, representing the lower limit of the mass range for the most
massive known pulsar, PSR J0348+0432) and the expected radius range 10 − 14 km (grey region).
Right: The Love number k2 (upper curve) as a function of the stellar compactness M/R. We also show
the relative influence of the crust on the tidal deformability, represented by 	k2/kfluid

2 (lower curve). As
expected, the crust has a small effect on the tidal signal. This contribution can probably be ignored,
although it introduces a systematic effect that limits the ultimate precision of the parameter extraction.
(Reproduced from Penner et al. (2012) by permission of the AAS.)
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Figure 21.5 Tidal deformability, in terms of λ, of a single neutron star as a function of mass for a range
of realistic equations of state (including only npeμ matter models). The dashed lines between the various
shaded regions represent the expected uncertainties in measuring λ for an equal-mass binary inspiral at
a distance of d = 100 Mpc as it passes through the frequency range 10–450 Hz. This leaves out the last
20 or so cycles in the gravitational-wave phase (which are expected to be significantly affected by
nonlinear effects). Observations of single events with Advanced LIGO will be sensitive to λ in the
unshaded region, while the Einstein Telescope will be able to measure λ in the unshaded and light shaded
regions. (Reproduced from Hinderer et al. (2010), copyright (2010) by the American Physical Society.)
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Figure 21.6 Representative results from a Bayesian analysis of the tidal deformation detectability
problem, showing the evolution of the medians and 95% confidence intervals in the measurement of
c0 = λ(m0), the tidal deformability at the reference mass m0 = 1.35M�, for three injected equations of
state. The neutron star spins are set to 0 both in the injections and the templates and the injected masses
are drawn from a peaked Gaussian distribution. (Reproduced from Agathos et al. (2015), copyright
(2015) by the American Physical Society.)

The Fisher-matrix analysis is, however, not particularly reliable for low signal-to-noise
ratios. Hence, it makes sense to consider the problem from a Bayesian point of view.
This can be done through numerical experiments which simulate a realistic data analysis
setting (Agathos et al., 2015). Representative results from such an effort are provided
in Figure 21.6. The analysis coherently adds the binary signal to simulated stationary
Gaussian noise following the predicted Advanced LIGO and Virgo design sensitivities.
The neutron star masses are drawn from a peaked distribution and the sky positions,
inclinations and polarizations of the sources are taken to be uniform on the sphere. In
the illustrated case it is assumed that the stars are not spinning. Sources are distributed
uniformly in co-moving volume, with luminosity distances between 100 and 250 Mpc, so
that the majority of events will be near the threshold of detectability, chosen at a network
signal-to-noise ratio of 8. The results suggest that the detection of the tidal imprint on the
signal, to sufficient accuracy to distinguish the equation of state, will require the stacking
of several tens of observations.

But sometimes you get lucky... Since the GW170817 event was closer than we
assumed in the various estimates (at a distance of about 40 Mpc), we can make progress
on constraining the matter. Results from such an analysis are provided in Figure 21.7
(assuming slowly spinning binary components). The shaded regions represent the values
of the tidal deformabilities, λ1 and λ2, for models consistent with the inferred masses
(from Figure 21.1). The results do not favour equations of state that predict less compact
stars, which is consistent with radii inferred from X-ray observations (see Chapter 12).
The best constraints on the neutron star radius (Abbott et al., 2018d) are obtained
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Figure 21.7 Marginalized posterior for the tidal deformabilities of the two components of GW170817.
The green shading shows the posterior obtained assuming a common equation of state for the two bodies,
while the green, blue, and orange lines denote 50% (dashed) and 90% (solid) credible levels for the
posteriors obtained using equation-of-state insensitive relations, a parameterized equation of state
without a maximum mass requirement, and independent equations of state, respectively. Assuming a
common equation of state shrinks the uncertainty region by about a factor of 3. The grey shading
corresponds to the unphysical region λ2 < λ1, while the diagonal line represents λ1 = λ2. As a
comparison, results for a set of representative equations of state are shown (as shaded filled regions).
Some of these models are clearly not favoured. (Adapted from Abbott et al. (2018d).)

if one assumes that both stars are determined by the same equation of state (which
seems eminently reasonable) and that they spin slowly (in line with all known galactic
binary neutron stars). If one also accounts for the need for the equation of state to allow
neutron stars with a mass above 1.97M� (the lower limit of the mass range for the most
massive known pulsar, PSR J0348+0432, see Figure 21.5), then the neutron star radius
is constrained to the range 10.5 − 13.3 km (at 90% credible level).

Before we move on, it is also worth pointing out that the Love number is closely related
to both the moment of inertia and the star’s quadrupole moment. One can identify robust
(seemingly universal) relations between these quantities, similar to the empirical relations
for the oscillation modes discussed in Chapter 18. These so-called I-Love-Q relations
may have important implications for gravitational-wave observations (Yagi and Yunes,
2013b). In particular, they may help break the degeneracy between the spins and the
quadrupole moment in non-precessing binaries (Yagi and Yunes, 2013a). The neutron
star quadrupole moment is degenerate with the stars’ individual spins, because there is a
spin-spin interaction term in the gravitational-wave phase that enters at the same order in
v/c as the quadrupole one. This kind of degeneracy may prevent simultaneous extraction
of the quadrupole moment and the spins from a detected signal. However, one can use
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the Love-Q relation to break this degeneracy by rewriting the quadrupole moment as
a function of the Love number. If the Love number can be extracted from the inspiral
signal, then one can also ‘measure’ the spins.

21.4 Dynamical tides: resonances

In addition to the static deformation, the tidal field (21.1) has time-dependent compo-
nents. This drives motion in the stellar fluid, which is interesting because it may lead to
resonances between the orbit and the various oscillation modes in the star (Reisenegger
and Goldreich, 1994; Kokkotas and Schafer, 1995; Ho and Lai, 1999; Andersson and
Ho, 2018).

In order to quantify this effect, we add the tidal potential to the Lagrangian perturba-
tion problem for a non-rotating star (see Chapter 13). Thus, we have

ρ∂2
t ξ + Cξ = −ρ∇χ , (21.46)

where Cξ is a messy expression. We want to examine the driven response of the star’s
fluid in terms of a set of normal modes, corresponding to solutions ξα (where α is a label
that identifies the modes, say in terms of the number of nodes in the radial eigenfunction
and the corresponding spherical harmonics). Letting the (real) mode-frequency be ωα,
we have

ξ =
∑
α

aα(t)eiωα tξα(r). (21.47)

The individual modes then satisfy

− ρω2
αξα + Cξα = 0. (21.48)

We normalize the modes using the inner product from Chapter 13, such that

〈ξα′ ,ρξα〉 =
∫

ρξ∗
α′ξαd3x = δαα′ . (21.49)

We can use this orthogonality to rewrite (21.46) as an evolution equation for the
amplitudes bα. This leads to

b̈α + ω2
αbα = −〈ξα,ρ∇χ〉. (21.50)

Finally, making use of the perturbed continuity equation

δρα = −∇ · (ρξα), (21.51)
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and integrating by parts, we have

〈ξα,ρ∇χ〉 =
∫

ρξ∗
α∇χd3x = −

∫
χ∇ · (ρξ∗

α )d3x =
∫

χδρ∗
αd3x. (21.52)

In general, e.g. when the star is spinning, it may be practical to express the stellar
perturbations with respect to a different set of spherical harmonics, perhaps symmetric
with respect to the spin axis rather than the axis pointing toward the binary partner. In
order to allow for this, we note the general transformation

Ylm(θ ,ϕ) =
∑
m′

D(l)
mm′Ylm′(θ ′,ϕ′), (21.53)

where the Wigner D-function D(l)
mm′ is given by, for example, Ho and Lai (1999). In

effect, we then have the final equation for the driven modes (Lai, 1994)

b̈α + ω2
αbα =

∑
lmm′

GM′

al+1(t)
WlmD(l)

mm′Qα,lm′e−imψ(t) , (21.54)

where we have introduced the ‘overlap integral’

Qα,lm′ =
∫

δρ∗
αrlYlm′(θ ′,ϕ′)d3x′. (21.55)

This is the main result. In general, we have a driven set of oscillations that become
resonant when (since ψ = 
t)

|m|
 = |ωα|. (21.56)

However, in order for this resonance to be relevant, we must have l + m =even (otherwise
Wlm = 0 due to the symmetry of the tidal potential). We must also have

D(l)
mm′Qα, lm′ �= 0. (21.57)

Now, if we assume that the resonant mode is associated with its own spherical harmonics,
in such a way that δρ = δρ̄Yjk then we must have m′ = k otherwise Qα,lm′ = 0. There
will also be a constraint associated with the symmetry of the mode. For example, for
(spheroidal) modes like the f-modes, we much have l + j =even. Finally, we see from
(21.55) that the eigenfunction of the mode should ideally be as ‘similar’ to rl as possible.
When the mode has a number of radial nodes (as in the case of the p- and g-modes from
Chapter 13) there are cancellations in the integral and the effective overlap with the tidal
driving force will be weaker (Lai, 1994; Andersson and Ho, 2018). In order to quantify
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the impact of a resonance, we need

	N ≈ −
∫ fb

fa
f

dEtide

da
1

Ėorb
da. (21.58)

After integration, this leads to

	N ≈ −
(

f 	Etide

Ėorb

)
f =fα

≈ −
(

3
2

ftD	Etide

EN

)
f =fα

, (21.59)

where 	Etide is the total energy transferred from the orbit to the resonant mode, and the
expression should be evaluated at the resonance frequency, f = fα.

Let us first consider the case of a non-rotating star, for which the different m
harmonics are degenerate. In this case, we have (Lai, 1994)

	Etide ≈ − π2

512

(
GM2

1

R1

)
ω̂1/3

α Q2
α

(
R1c2

GM1

)5/2

q
(

2
1 + q

)5/3

, (21.60)

suppressing the harmonic indices on the overlap integral and introducing the dimension-
less mode frequency ω̂α through

ωα = ω̂α
0. (21.61)

We also have the resonance condition

ωα = 2π fα = 2
 = 2π f . (21.62)

It is important to note that, in the quadrupole case, the oscillation frequency of the
resonant mode ( fα) is equal to the observed gravitational-wave frequency ( f ).

Quantifying the impact of a given mode at the corresponding resonance radius (Ho
and Lai, 1999),

aα =
[

4GM1(1 + q)
ω2

α

]1/3

, (21.63)

we find that

EN = − 1
25/3

(
GM2

1

R1

)
ω̂2/3

α

q
(1 + q)1/3 , (21.64)
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and

	Etide

EN
≈ π2

128 × 21/3 (π f̂ α)−1/3Q2
α

(
R1c2

GM1

)5/2 (
2

1 + q

)4/3

, (21.65)

where f̂ α = ω̂α/2π . At resonance, we also have

ftD = 5
96π

(π f̂ α)−5/3
(

c2R1

GM1

)5/2
(1 + q)1/3

q
, (21.66)

and it follows from (21.59) that

	N ≈ −4 × 10−4 f̂ −2
α Q2

α

(
c2R1

GM1

)5
1

q(1 + q)
. (21.67)

As one might have expected, this is a small effect. Nevertheless, it is instructive to consider
to what extent the different contributions can be considered known. We have some handle
on the range for the mass ratio q from radio pulsar observations (see Table 9.2. The star’s
compactness is also constrained by observations. From X-ray observations of accreting
neutron stars (and the GW170817 results!) one would expect the radius of a 1.4M�
star to lie in the range 10 − 14 km (see Figure 12.2). As the mass–radius curve tends to
rise steeply in the relevant mass range (for a typical equation of state) we might assume
the radius to be inside this range for all plausible binary masses.1 This constrains the
compactness to the range

0.12 ≤ GM1

c2R1
≤ 0.24, (21.68)

which introduces an uncertainty of about a factor of 30 in the estimate for 	N ,
illustrating the importance of obtaining tighter constraints on the neutron star radius.
This is, of course, one of the main targets of the observations in the first place. One
would hope to (eventually) get a tighter radius constraint from the tidal imprint. In
addition, a measurement of the neutron star radius to within 5% is a key science aim
of the NICER mission which is currently flying on the International Space Station
(Gendreau et al., 2016).

With a narrower region of uncertainty for the stellar compactness, one may be able
to use observed deviations from a pure radiation reaction inspiral to constrain the
value of Qα for any resonant mode in a given frequency range. We illustrate this idea
in Figure 21.8. Imagine that one sets an upper limit on the deviation from a post-
Newtonian radiation reaction inspiral of order 	N ≤ 0.5 in a given frequency range,

1 Note that this argument does not account for the softening effect of internal phase transitions.
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say f = 100 − 150 Hz. Then, we know from (21.67) (assuming canonical neutron star
parameters) that

Qα ≤ 10−2
(

f
100 Hz

)
|	N |1/2. (21.69)

This constraint is shown in Figure 21.8. We see that the chances of observing the
imprint of a tidal resonance is better at frequencies below a few tens of hertz, where the
detectors start to become less sensitive. Moreover, given the dependence on the stellar
compactness, the effect would be more prominent for a larger neutron star radius. In fact,
given a reliable theoretical calculation for Qα one can turn this argument into a constraint
on the radius.

50 100 150 200 250 300

f (Hz)

0.0001

0.001

0.01

Qα

10 km

14 km

17 km

Figure 21.8 Constraints on Qα if a limit |	N | ≤ 0.5 were to be inferred from inspiral data. The thin
black lines represent equal mass 1.4M� binaries with neutron star radius 10 km (upper curve) and
14 km (lower curve). The grey region represents the expected radius range from X-ray observations. As
an indication, the thick horizontal (red) line represents the largest values of Qα expected for the g-modes
of a non-rotating star (Lai, 1994). This should be taken as indicative of what is expected from theory.
Finally, the shaded vertical region relates to an example where the observational constraint is obtained
for a distinct frequency band (here taken to be 100–150 Hz). This figure illustrates that the resonant
modes of a non-rotating star may be difficult to detect, but there could be a relevant effect below 50 Hz or
so, if the neutron star radius were to be surprisingly large (the dashed curve shows the result for a radius
of 17 km). One should also keep in mind that rotation may lead to slightly larger values of Qα , in which
case the chance of detection would improve. (Reproduced from Andersson and Ho (2018), copyright
(2018) by the American Physical Society.)
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In order to understand the wider implications of this kind of constraint for neutron
star physics, we need to consider the nature of specific oscillation modes. For non-
rotating stars, the most likely set of modes to exhibit tidal resonance are the gravity
g-modes (Lai, 1994). In a mature (cold) neutron star, these modes are associated with
internal composition stratification (see Chapter 13). If the motion of a moving fluid
element is faster than the nuclear reactions that would equilibrate the fluid to its new
surroundings, then the chemical differences lead to buoyancy that provides the relevant
restoring force. In the simplest models, the g-modes are associated with a varying proton
fraction (Reisenegger and Goldreich, 1992). This typically leads to mode frequencies
below a few 100 Hz and a dense spectrum of high overtone modes at lower frequencies.
The lowest order (highest frequency) mode couples the strongest to the tide, with a
typical value of the coupling constant Qα ≈ 10−4 − 10−3 (Lai, 1994; Kokkotas and
Schafer, 1995). Most likely, this makes the effect too weak to be detected by the current
generation of instruments; see Figure 21.8.

The problem is nevertheless interesting. The g-modes rely on physics beyond the bulk
properties of the star, reflecting how the strong interaction determines the composition
of matter at high densities. The state of matter is also important. For example, if the
star’s core contains a superfluid, then the charged components (in the simplest case,
protons and electrons) can move relative to the neutrons. As a result, as long as we
assume that the electrons and protons are electromagnetically coupled, the origin of the
buoyancy is removed and there will no longer be any g-modes (Lee, 1995; Andersson
and Comer, 2001a). This would obviously remove any related resonances, as well.
However, there are twists to this story. The composition of a neutron star core is more
complex than pure npe matter. Close to the nuclear saturation density the formation of
muons becomes energetically favourable. This leads to stratification (now associated with
the electron–muon fraction) also in a superfluid star, which reinstates the composition
g-modes (Gusakov and Kantor, 2013; Passamonti et al., 2016). These new g-modes are
expected to have higher frequencies, perhaps by a factor of a few, which means that
resonances become relevant at later stages of the inspiral. The first estimates of the tidal
coupling for these modes suggest that they may be associated with an increased transfer
of energy but this is compensated for by the fact that the inspiral is accelerated at the
higher frequencies (Yu and Weinberg, 2017). As a result, the estimated values of Qα

are similar to those of the original g-modes. The example in Figure 21.8 then suggests
that the higher frequency g-mode resonances are likely to leave a weaker imprint on the
gravitational-wave signal.

In principle, the star’s fundamental f-mode provides the most promising overlap
with the tidal potential. However, since the f-mode frequency tends to be relatively
high, this resonance is unlikely to happen before merger (Kokkotas and Schafer,
1995). Nevertheless, the interaction with the f-mode causes an increasing (dynamical)
correction to the tide (Hinderer et al., 2016; Steinhoff et al., 2016). This effect can
be significant, and should be included in any robust gravitational-wave template; see
Figure 21.9. As a result, one would end up with an effective description that encodes
both the (static) tidal deformability and the f-mode frequency. It is important to note that
the relevant mode frequency is not the redshifted one measured by a distant observer.
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Figure 21.9 Left: Dimensionless effective tidal deformability from a two timescale approximation (for
the H4 equation of state and a neutron star mass of 1.35M�). The index l refers to the multipoles, with
k2 is the quadrupolar tidal deformability and k3 the corresponding octupolar one. Right: The l = m = 2
mode gravitational waveform for a merging neutron star binary and an effective-one-body model
including the tidal corrections (red curve) as well as numerical relativity simulations (blue curve), for the
neutron star model used in the left panel. The lower panel shows the phase difference between the
numerical simulation and different template models. (Reproduced from Steinhoff et al. (2016) and
Hinderer et al. (2016), respectively. Copyright (2016) by the American Physical Society.)

Instead, we need the mode in the rest frame of the star. Similarly, from the point of view of
the star, the frequency of the driving tidal force is higher than inferred by an asymptotic
observer. This enhances the dynamical contribution to the tide by shifting the f-mode
resonance to a lower orbital frequency. This means that the system spends more time
close to resonance and, hence, transfers more energy from the orbit to the tide.

The resonance problem also becomes more intricate for rotating stars. First of all, the
resonance condition involves the mode frequency in the inertial frame. That is, we have
(again for the quadrupole tide)

ω(i)
α = 2
s. (21.70)

Secondly, rotation breaks the degeneracy associated with the azimuthal angle and modes
associated with different values of m become distinct (i.e. we need to separately consider
m = ±2). To leading order, the mode frequency is then given by (as before)

ω(i)
α = ω(r)

α − m
s, (21.71)

where ω
(r)
α is the frequency of the mode in the rotating frame and 
s is the spin of the star.

If the star rotates rapidly then the change in shape due to the centrifugal force provides
an additional correction, but (as we have already suggested) it seems reasonable to argue
that most binary systems will be old enough that the neutron stars will have slowed down
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by the time they become detectable with ground-based interferometers. Nevertheless,
it is clear from (21.71) that low-frequency modes may be significantly affected by the
rotation. This adds parameters to the problem (and the individual spin rates may be
difficult to extract from the inspiral waveform) which complicates any effort to use an
observed signal to constrain the physics.

The rotation-induced shift of the mode frequency (21.71) may also make a given
mode susceptible to the CFS instability (discussed in Chapter 13), where the oscillation
is driven unstable by the emission of gravitational waves. The instability sets in when a
retrograde mode in the rotating frame becomes prograde in the inertial frame. Effectively,
the mode energy then becomes negative. In an isolated star one would not expect the
instability of g-modes to be particularly relevant because these modes are not efficiently
emitting gravitational waves and the instability does not overcome viscous damping (Lai,
1999). The case of tidal driving is different. The main impact of a mode being unstable
is that the growth of the mode pumps energy back into the orbit. This would alter the
sign of Ėtide, slow down the inspiral and lead to an increase in N , rather than a decrease.
This is an important feature, which if observed would provide exciting insight into the
stellar dynamics.

We have also seen that (see Chapter 13), a spinning star has a richer spectrum of
oscillation modes. In particular, the Coriolis force provides an additional restoring force,
which brings new sets of modes into existence. These inertial modes scale with the
rotation frequency. This means that one may confuse the identification of an observed
resonance. However, if the inspiral signal provides an independent constraint on the star’s
spin then one could potentially rule out inertial modes as they have to lie in the range
−2
s ≤ ω

(r)
α ≤ 2
s. The first estimates of tidal inertial-mode excitation suggested that

the impact would be minor, but the gravito-magnetic coupling enhances the importance
of the inertial modes (Flanagan and Racine, 2007). In the specific case of the r-modes,
the phase shift may amount to

	N ≈ 0.1
2π

(
R1

10 km

)4 (
M1

1.4M�

)−10/3 (
fs

100 Hz

)2/3

, (21.72)

where fs = 
s/2π . Based on the available results, this could be the strongest relevant
mode resonance. As the r-modes are generically unstable to gravitational-wave emission
(obviously assuming that the star spins fast enough that the system is above the relevant
instability curve; see Chapter 15), the main resonance effect may then tend to slow down
the inspiral. Moreover, as the r-mode frequency is (not accounting for relativistic effects;
see Chapter 18) given by f = 4fs/3, an observational constraint on the star’s spin would
directly indicate the frequency of the associated resonance.

21.5 Shattering the crust

In addition to affecting the gravitational-wave phasing during inspiral, the tidal interac-
tion (and related mode resonances) may trigger an electromagnetic counterpart signal.
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A particularly interesting scenario involves releasing energy stored in the star’s crust. If
the crust were to shatter during the inspiral, it may lead to an observable precursor to
the merger event (Troja et al., 2010; Tsang et al., 2012; Penner et al., 2012). In order to
estimate the likelihood of this happening, we revisit the neutron star mountain problem
from Chapter 6, but from a different point of view.

Let us consider a star of mass M1, radius R1, a distance a from a binary companion
of mass M2. We focus on the situation where the star is axisymmetric, deformed away
from sphericity such that its quadrupole moment is changed by a fractional amount ε.
The difference from the discussion in Chapter 6 is that the star is now deformed due to
the tidal field of the companion. The star’s energy can then be written

E(ε) = E0 + Egravity + Etidal + Eelastic, (21.73)

where E0 denotes the energy of the equivalent fluid star in the absence of a companion,
Egravity the perturbation in the star’s self-gravity, Etidal the energy perturbation due to
the tidal interaction, and Eelastic is the elastic energy. Since the self-gravity is minimized
for a spherical configuration, we have Egravity ∼ Aε2, where A ∼ GM2/R. Assuming that
the elastic energy is minimized when the star is spherical (which would make sense for
an inspiralling binary), we have Eelastic ∼ Bε2, where B is of order the Coulomb binding
energy of the solid phase (as before). The gravitational field of the binary partner is, of
course, −GM2/rc, where rc = 0 is the centre of mass of the companion. Expanding this
about the centre of mass of the star of mass M1, defined by r = 0, leads to the tidal field

�tidal(r) = 1
2

r2 GM2

a3 [δij − 3ninj]r̂i r̂j , (21.74)

where ni is a unit vector along the line separating the two stars. The corresponding energy
perturbation is

Etidal ∼ �tidal(εM) ∼ A
M2

M1

(
R1

a

)3

ε. (21.75)

The perturbation in the star’s quadrupole moment is simply found by multiplying by the
moment of inertia I. Thus, we have

Qtidal = −1
2

M2

M1

(
R1

a

)3

I. (21.76)

It follows that strain builds in the star’s crust in such a way that

σtidal ∼ εtidal ∼ Qtidal/I. (21.77)

This estimate shows that the crust elasticity will not have a significant effect on the tidal
problem (as, indeed, demonstrated by the results in Figure 21.4). However, we can now
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estimate at what point during inspiral the crust fails. Combining (21.76) and (21.77)
with Kepler’s law, we find that the crust fails (σtidal = σbr) when

f break
GW ≈ 3kHz

(
M1

1.4M�

)1/2 (
106 cm

R1

)3/2 ( σbr

0.1

)1/2
, (21.78)

for an equal mass system. We have scaled the order-of-magnitude result to the estimated
breaking strain σbr ≈ 0.1 from molecular dynamics simulations (Horowitz and Kadau,
2009). Comparing to the estimated gravitational-wave frequency at the innermost stable
orbit

f isco
GW ≈ c3

π63/2GMtotal
= 1.6kHz

(
1.4M�

M

)
, (21.79)

(again, for an equal-mass binary) we see that crust failure should not be expected
significantly before coalescence. This expectation is brought out by detailed (fully
relativistic) calculations (Penner et al., 2012).

What happens if the crust fails? Again, key insights are provided by the molecular
dynamics simulations. The indications are that when the critical strain is reached, there
is a catastrophic failure, with energy released throughout the strained volume, rather
than the formation of a lower-dimensionality crack. What happens next is less clear.
Two extreme scenarios can be envisaged. The relieved strain is either dissipated locally
as heat, or converted into phonons/seismic waves and transported throughout the star
prior to dissipation. An interesting question is whether the relieved strain is capable of
melting the crust, but estimates suggest that this is not likely to happen (Penner et al.,
2012).

The crust may not melt, but a significant amount of energy is still being released.
Could this have observable consequences? Given the importance of neutron star binary
mergers for gravitational-wave astronomy, and the association of such events with short
gamma-ray bursts (see later), a precursor signal would be interesting. An interesting
argument (Tsang et al., 2012) involves the energy being released into seismic waves that
generate Alfvén waves in the magnetosphere, eventually leading to a gamma-ray signal.
In principle, such an event could be as energetic as the largest observed magnetar flare
(the 27 December 2004 event in SGR 1806-20), as long as all the available strain energy
is transferred to the magnetosphere. Such a signal—which would precede the merger
itself by a fraction of a second—could be observable from a distance of 100 Mpc and the
corresponding merger signal would be comfortably detectable by the Advanced LIGO–
Virgo detector network.

21.6 Merger dynamics

The gradual inspiral, moderated by tidal effects, finally gives way to the dramatic
dynamics of the merger. This leads to a complex, high-frequency gravitational-wave
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signal (see Figure 21.2) encoding the transition from binary system to either a solar-
mass black hole or a more massive neutron star. Regardless of the eventual outcome, the
merger is likely to initially lead to the formation of a hypermassive neutron star supported
by thermal pressure and rotation (Baiotti and Rezzolla, 2017). The gravitational-wave
energy released during the first ∼10ms of the life of this object is about twice the energy
emitted over the entire inspiral history, comparable to the emission from a black-hole
merger.

We have already discussed the different inspiral phases of the gravitational-wave
signal. As the binary orbit shrinks due to the energy lost to radiation, the gravitational-
wave amplitude rises and the frequency increases as well. We have seen that the inspiral
chirp is well modelled by post-Newtonian methods (see Chapter 11), as it does not
depend (much) on the physics of the compact objects involved. In contrast, the merger
encodes a rich amount of interesting information. However, in order to catch this part
of the signal, we need the detectors to be sensitive at higher frequencies. The tidal
disruption that precedes the merger occurs above 600 Hz or so (Read et al., 2013) and
the oscillations of the remnant typically leads to a signal at several kHz. Simulations show
that 1 − 3% of the original binary’s mass-energy is released at these frequencies. This is
a lot of energy, but we may nevertheless need third-generation instruments to detect this
signal (Sathyaprakash et al., 2012; Clark et al., 2016). However, the information it encodes
is extremely valuable. In particular, the merger signal should tell us whether a massive
neutron star or a black hole is formed, placing constraints on the (hot) supranuclear
equation of state.

Increasingly precise numerical simulations illustrate the complexity of the merger
(see Baiotti and Rezzolla (2017) for a recent review). This complexity is ‘problematic’
because, given the amount of ‘unknown’ physics involved, we are unlikely to reach a
stage where we have truly reliable signal templates. Nevertheless, we can make progress
by identifying ‘robust’ characteristics of the signal.

On a dynamical timescale (on the order of a millisecond) the two stars form a single,
massive, differentially rotating object (see Figure 21.10). As the merger proceeds, streams
of matter are squeezed out of the interface between the two stars. Part of this material
becomes unbound while the rest forms a thick torus around the merger remnant. The
nonlinear shock associated with the matter interface ramps up the temperature to levels
as high as ∼ 50MeV—hotter than a neutron star born in core collapse. Combined with
the rotational support, the thermal pressure may prevent gravitational collapse even if
the total binary mass significantly exceeds the maximum mass of non-rotating neutron
stars. In fact, simulations show that prompt collapse only takes place for very massive
binaries. The most likely (immediate) remnant is thus a massive, hot, differentially
rotating ‘neutron star’.

Large amplitude oscillations are induced by the merger, and the impact of the matter
equation of state is apparent in the post-merger dynamics. In particular, the fundamental
mode of the remnant tends to dominate the post-merger gravitational signal (Bauswein
and Janka, 2012; Bauswein et al., 2014; Takami et al., 2014; Bose et al., 2018). The
reason for this is easily understood from the sequence of snapshots in Figure 21.10. The
initial ‘shape’ of the merger remnant—basically a dumbbell—resembles a large amplitude
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Figure 21.10 Evolution of the lapse function, which can be seen as a relativistic proxy for the
gravitational potential, of a 1.35–1.35 M� neutron star merger (with the DD2 equation of state from
Hempel and Schaffner-Bielich (2010) and Typel et al. (2010)) in the equatorial plane. (Reproduced from
Bauswein et al. (2016) with kind permission from the European Physics Journal (EPJ).)

quadrupole f-mode. The overall impact of the equation of state is also readily explained.
Stiff equations of state lead to large neutron stars. These are more easily deformed by
the tidal field; see Figure 21.5. Consequently, finite size effects set in at a larger orbital
separation and the stars merge at a lower orbital frequency. In contrast, soft equations of
state yield more compact neutron stars, which are more difficult to deform and reach
higher orbital frequencies before they merge. This implies a higher impact velocity.
The stiffness also affects the dynamics of the post-merger phase and, in particular, the
frequencies of the excited oscillation modes (just as in the case of mature neutron stars;
see Chapter 13). A stiff equation of state leads to a relatively large merger remnant, with
lower frequency oscillations (scaling approximately with the average density). In the case
of a soft equation of state, the merger remnant is more compact and thus oscillates
at higher frequencies. In addition, the higher impact velocity during merger leads to
a stronger excitation of the quasi-radial oscillation mode—essentially inducing a large
amplitude ‘breathing’ of the remnant.
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Figure 21.11 Gravitational-wave spectrum for a 1.35–1.35 M� neutron star merger (for the equation
of state used in Figure 21.10) along the polar direction at a distance of 20 Mpc (blue solid curve). The
vertical axis shows heff = f h̃(f ) with the Fourier transform of the waveform and frequency f . The
distinct peaks at fpeak, fspiral, and f2−0 are features of the post-merger phase, which can be associated with
specific features of the remnant. The expected sensitivity of Advanced LIGO and the Einstein Telescope
are shown as red curves. (Reproduced from Bauswein et al. (2016) with kind permission from the
European Physics Journal (EPJ).)

These are the stand-out features of the gravitational-wave spectrum; see Figure 21.11.
For a fixed total binary mass there appears to be a tight correlation between the dominant
post-merger oscillation frequency ( fpeak) and the radii of non-rotating neutron stars
(Bauswein et al., 2016). This suggests that one may be able to infer the neutron star
radius from an observed merger signal (perhaps with an accuracy of a few hundred
meters (Clark et al., 2016). Additional features in the spectrum relate more specifically
to the merger dynamics. These features tend to evolve during the post-merger phase, cf.
Figure 21.12. A determination of the frequencies of the quadrupole f-mode ( fpeak) and
the radial mode ( f0) suggests that a secondary peak should be expected (due to nonlinear
mode-coupling) at fpeak − f0. This is, indeed, seen in Figure 21.11 (where this feature
is labelled f2−0). The final feature ( fspiral) in the spectrum shown in Figure 21.11 is
generated by a spiral deformation created during merger. This deformation cannot follow
the faster rotation of the inner remnant. Instead, the deformation forms antipodal bulges,
which orbit around the central part of the remnant for several milliseconds (Bauswein
et al., 2016). Being associated with a non-axisymmetric deformation, the antipodal bulges
generate a gravitational-wave signal at twice their orbital frequency.

One can use time-frequency maps of the gravitational-wave signal (like that in
Figure 21.12) to analyse the post-merger dynamics (Clark et al., 2016). The spectral
features are broad, reflecting the nontrivial time-evolution of the frequencies. In terms
of detectability, the peak frequency should be measurable by a coherent burst search
analysis. A Fisher-matrix study provides an estimate of the typical uncertainty in the
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Figure 21.12 Time-frequency analysis for a 1.35–1.35 M� neutron star merger waveform (for an
optimally-oriented source at 50 Mpc). The top and right panels show the time-domain waveform-
component h+ and its Fourier spectrum, respectively. The time-frequency map is constructed from the
magnitudes of the coefficients of a continuous wavelet transform. Horizontal red lines emphasize the
locations of the peak frequency fpeak and the secondary peak which, in this case, corresponds to fspiral .
(Reproduced from Clark et al. (2016).)

determination of the frequency, δfpeak ∼ 50 Hz. Making use of the correlation between
the frequency and the neutron star radius, this suggests a possible constraint on the radius
of a fiducial neutron star of ∼ 200 m. However, such measurements may only be possible
for nearby (∼ 30 Mpc) sources with Advanced LIGO. Such precision measurements
may require future instruments—although it is worth noting that the sensitivity of the
detectors during the O2 run was not too far away from being able to distinguish the
GW170817 merger; see Figure 21.13. An identification of this part of the signal may
eventually lead to independent constraints on the equation of state, complementing those
from the inspiral phase.

The nature of the GW170817 remnant has not (yet) been established observationally.
A LIGO search for short (� 1 s) and intermediate duration (� 500 s) emission did
not identify a signal in the data (Abbott et al., 2019a). However, as is evident from
Figure 21.13, the upper limits achieved in the relevant frequency range were about one
order of magnitude above the amplitudes expected from simulations.

The eventual fate of the remnant depends on a range of factors. The total mass is
obviously of paramount importance, but factors like the mass ratio and the nature of the
differential rotation induced in the remnant are also relevant. The former determines
how much mass is ejected from the system and the latter helps support an object that is
too massive to survive as a uniformly rotating star. Microphysics also comes into play.
The efficiency of energy transport (mainly due to neutrinos) and the redistribution of
angular momentum (likely due to the internal magnetic field and the magneto-rotational
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Figure 21.13 The 90% credible upper limits on the gravitational-wave strain from the GW170817
merger signal for the Hanford detector. The noise for each instrument is shown for comparison, and
indicative results from numerical simulations are also shown. The analysis suggests that, at this level the
signal-to-noise associated with the merger signal is about 0.5. This provides an indication of the
improvement in detector sensitivity required to detect post-merger dynamics. (Reproduced from Abbott
et al. (2019a).)

instability) dictates the evolution of the object. The problem is messy, but a clever
argument allows us to constrain the maximum neutron star mass. The key part of this
argument is a robust relation between the maximum mass of a non-rotating star (M0,
determined by the Tolman–Oppenheimer–Volkoff equations) and the largest mass that
can be supported by uniform rotation (Mmax; see Breu and Rezzolla (2016))

Mmax ≈ 1.20+0.02
−0.05M0. (21.80)

That is, a rotating star can support about 20% more mass than a non-spinning one.
In the case of GW170817 we have some idea of the amount of mass ejection, and it
seems reasonable (based on what we think we know) to assume that the emergence of
a gamma-ray burst within 2 seconds of the merger indicates a fairly prompt collapse to
a black hole. Still, in order to produce ejected material with the relatively high electron
fraction indicated by the electromagnetic signal, the merged object needs to survive for
some time. Taken together, these arguments point to a collapse close to Mmax. This
then allows us to estimate the maximum mass of a non-rotating neutron star sequence
(Rezzolla et al., 2018)

M0 ≈ 2.16+0.17
−0.15M�. (21.81)

With future gravitational-wave observations we should be able to refine this argument.
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Finally, there appears to be a strong correlation between the pre- and post-merger
signals (Bernuzzi et al., 2015). Specifically, one can show that fpeak is correlated with a
coefficent, κT

2 , that characterizes the tidal interaction during the late stages of inspiral

κT
2 = 2

M

[
M2

M1
k1

2R5
1 + M1

M2
k2

2R5
2

]
∝ 1

M
λ̃, (21.82)

with λ̃ given by (21.33) (and we have assumed that the two masses are similar). The
correlation is robust, and depends weakly on the binary total mass, the mass ratio, and
the equation of state; see Figure 21.14. This is an interesting result, indicating that
measurements of the inspiral signal (which determine κT

2 ) could be used to constrain
fpeak (and vice versa).

These conclusions obviously come with caveats. The post-merger signal may be
affected by thermal effects, magnetohydrodynamics, various instabilities and dissipation
channels (like neutrino emission). State-of-the-art simulations tend to include some (not
all) of these aspect at different levels of realism. One may argue that the timescale of
gravitational-wave emission is so short that only hydrodynamics and shock-heating are
likely to affect it. Neutrino cooling would be inefficient and magnetic field effects may
be too subtle. However, these aspects may significantly contribute to the overall picture.
Magnetic field features (like the MRI and its ability to redistribute angular momentum)
may drive the hypermassive neutron star towards collapse. The dynamics of the magnetic
field is also key to the expected electromagnetic counterpart signals.
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Figure 21.14 As an illustration of the robust correlations between the pre- and post-merger signals for
a neutron star binary, the dimensionless frequency Mfpeak is shown as a function of the tidal coupling
constant κT

2 . The colour code indicates different values of the total binary mass. The black solid line is a
functional fit, with the grey area marking the 95% confidence interval. (Adapted from Bernuzzi et al.
(2015), copyright (2015) by the American Physical Society.)
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21.7 Gamma-ray bursts

The slow crescendo of the inspiral cues a spectacular fireworks display. Just under
two seconds after the GW170817 merger time, NASA’s orbiting Fermi Gamma-ray
Space Telescope detected a short pulse of gamma rays (GRB 170817A; see Abbott
et al. (2017f ), Goldstein et al. (2017), and Kasliwal et al. (2017)). Other telescopes
immediately took aim at the suggested position in the sky (see Figure 21.15). Within
11 hours, teams of optical and infrared astronomers had found a bright new beacon on
the edge of the galaxy NGC 4993 (Abbott et al., 2017j). This source faded over several
days from bright blue to dimmer red. After 9 days it began to glow in X-rays (Troja et al.,
2017). Finally, just over two weeks after the merger, the radio astronomers were able to
join the party (Alexander et al., 2017).
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Figure 21.15 Sky localization of the gravitational-wave, gamma-ray, and optical signals associated
with the GW170817 neutron star merger. The left panel shows an orthographic projection of the 90%
credible regions from LIGO (190 deg2; light green), the initial LIGO–Virgo localization (31 deg2; dark
green), triangulation from the time delay between Fermi and INTEGRAL (light blue), and Fermi–GBM
(dark blue). The inset shows the location of the apparent host galaxy NGC 4993 in the Swope optical
discovery image at 10.9 hr after the merger (top right) and the DLT40 pre-discovery image from 20.5
days prior to merger (bottom right). The position of the transient is indicated in both images.
(Reproduced from Abbott et al. (2017j).)
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This spectacular cosmic event was a virtual gold mine for modern astronomy. It has
long been known that the detection of electromagnetic counterpart signals is essential for
a full exploration of the merger physics. It can provide a precise location by pinpointing
the event to a specific galaxy (and hence provide a measured redshift). This may also
associate the event with a specific stellar population (old and evolved or relatively young
in an active star-forming region). Electromagnetic signals may probe the behaviour of
matter following the merger, including the formation of relativistic jets and outflows.
This may, in turn, address the question of whether mergers are responsible for r-process
nucleosynthesis, and shed light on the nature and evolution of the merger remnant.

Before 17 August 2017 we had circumstantial evidence for some of these features.
Following the event, we have convincing and detailed insight. In particular, the extremely
low probability of the near-simultaneous temporal and spatial observation of GRB
170817A and GW170817 occurring by chance (5.0 × 10−8) confirms neutron star
mergers as a progenitor of short gamma-ray bursts (Abbott et al., 2017f ). The arguments
in favour of this explanation had been building for decades (Piran, 2004; Fernández and
Metzger, 2016), but it was expected that one might need third-generation gravitational-
wave detectors to confirm the connection. Basically, the bulk of observed short gamma-
ray bursts have been found at redshifts z > 0.1, at luminosity distances dL > 460 Mpc
(assuming standard �CDM cosmology) beyond the Advanced LIGO design sensitivity
horizon (∼ 200 Mpc) for neutron star mergers. Moreover, estimated event rates suggest
a few per year in the Advanced LIGO era. A solid identification of a short gamma-
ray burst with a gravitational-wave signal would require either years of observation or a
nearby event. Sometimes you just get lucky...

The gamma-ray flash GRB 170817A lasted roughly half a second; see Figure 1.5.
It was well described by a single pulse and consistent with a single intrinsic emission
episode, with no evidence for significant substructure. In terms of the burst duration, the
event was towards the long end of bursts typically characterized as short (usually taken
to mean T90 < 2 s; see Figure 21.16). The observation accorded with expectations, but
the event was nevertheless rather unusual. In particular, the gamma-ray emission was
faint. In terms of isotropic emission—an upper bound on the true energetics, given that
a typical gamma-ray burst is observed within the beaming angle of the brightest part
of the jet (Piran, 2004)—the energy released in gamma-rays was estimated to be Eiso ≈
1046 erg. This makes the event a distinct outlier among observed bursts with measured
redshifts; see Figure 21.17.

The detailed dynamics of the engine that drives these cosmic explosions remains
poorly understood (Paschalidis, 2017). From both duration and variability of the
gamma-ray signals, we know that the emission region is confined to volumes tens of
kilometers across. Since this region will always be hidden from direct electromagnetic
observations, we need gravitational-wave detections to provide the evidence. In par-
ticular, there will be a clear difference between bursts originating from gravitational
collapse (see Chapter 20) and those from mergers. The latter scenario is much brighter
in terms of gravitational-wave emission—and it is, obviously, preceded by the inspiral
phase. Still, in all cases, the formation of a massive accretion disk is thought to be crucial
for launching the gamma-ray emission. Such a disk may form via tidal disruption of a
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neutron star during the merger with a black hole—although we know from the discussion
in Chapter 20 that this only happens for modest mass ratios. For heavy black holes,
there would be a direct plunge, no significant remnant disk and most likely no gamma-
ray burst. In the case of binary neutron stars, material with centrifugal support can be
left outside the newly formed remnant black hole. Whether such a disk forms or not
depends on the binary properties (mass, spin, etc.), as well as the matter equation of
state (Sekiguchi et al., 2016). It is generally expected that a disk mass of ∼ 0.01M�
would be sufficient to supply the energy for the creation of a short gamma-ray burst.
A comparison between numerical simulations and observations, indeed, indicate disk
masses � 0.01M� (Fernández and Metzger, 2016). This favours ‘high-mass’ neutron
star mergers (M � 3M�). The black hole that eventually forms from a hypermassive
merger remnant (which may survive for � 10ms) will be limited to dimensionless spins
� 0.7. Larger spins can be obtained only if the remnant collapses promptly. In the case
of mixed binaries, one may need a rapidly spinning black hole (with spin � 0.9). Since
both avenues seem viable, it is important to note that their gravitational-wave signature
would be distinct; see Figure 21.18.

After about two decades of simulations of binary systems in full general relativity we
are beginning to understand the ingredients that are necessary for these systems to launch
jets (Rezzolla et al., 2011; Ruiz and Shapiro, 2017), but we are still far from simulating
gamma-ray bursts, starting from inspiral and merger all the way to jet acceleration
and the emergence of the gamma rays. Simulating the launch of the jet is particularly
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Figure 21.18 Schematic spectrum of effective amplitude heff for binary neutron star coalescences.
During the inspiral phase, up to ≈ 1kHz and the early-merger phase up to fcut ∼ 3kHz, the system
retains its binary structure and heff scales as f −1/6. If a black hole is promptly formed, matter quickly
falls in the black hole, losing angular momentum through emitting gravitational waves around a peak
frequency fpeak ∼ 5 − 6kHz. If a proto-neutron star is formed, it may radiate gravitational waves
through its quasiperiodic rotation at fqpd ∼ 2 − 4kHz. Once matter falls into the black hole, it rings
down, emitting gravitational waves at ≈ 6.5 − 7kHz with exponentially decaying amplitude.
(Reproduced from Bartos et al. (2013).)
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problematic. It is easy to understand why this is so. First of all, we need the jet to launch
sharply after merger, given the limited simulation time. We simply can not afford to
track systems where the hypermassive neutron star survives for an extended period.
This is unfortunate, given the indications that the hypermassive remnant may last for
a considerable time (Fernández and Metzger, 2016). A significant fraction (perhaps a
quarter) of short gamma-ray bursts are followed by extended X-ray emission, which lasts
for a minute or longer after the initial burst. The variability of this emission suggests that
it is powered by continued activity from the central engine (Piran, 2004). This is in
contrast to any gamma-ray burst afterglow, which originates at much larger radii. The
total isotropic energy of the emission in some cases exceeds that of the initial gamma-ray
burst itself.

Moreover, even if a jet emerges shortly after merger, tracking its evolution until it
reaches the ultimate Lorentz factor involves following the outflow to distances of several
hundreds of thousands to millions of kilometers away from the central engine (Uzdensky
and MacFadyen, 2007; Xie et al., 2018). At the same time, we need to resolve small
scale magnetohydrodynamics features (like the MRI) which may be a pre-requisite for
launching the emission in the first place. The vast difference in scales illustrates why
the problem is so challenging. State-of-the-art numerical relativity simulations capture
the merger through to collapse. Within the MHD approximation (typically with the
magnetic field confined to the stellar interior, and sometimes including resistivity; see
Dionysopoulou et al. (2015)), some evidence for relatively empty polar region and the
early alignment of what may develop into a jet have been seen (see Figure 21.19). The
involved Lorentz factors are, however, typically much lower than required. Moreover,
efforts designed to explore the jet dynamics make use of additional approximations, like
a fixed black-hole spacetime. Further progress is needed before we can compare these
models to detailed observations.

Nevertheless, the available hydrodynamics simulations provide qualitative insight
into the phenomenon and we can meaningfully compare the GW170817 event to the
emerging understanding. Immediately following the observations, several models seemed
viable. One possible explanation for the dim nature of the observed gamma-ray burst
would be that we are witnessing a standard paradigm explosion, but we are not looking
down the barrel of the jet (Kasliwal et al., 2017). Standard gamma-ray burst models
would involve a narrow (opening angle θjet ∼ 10◦) and ultra-relativistic (Lorentz factor
� > 100) jet in the line-of-sight of the observer, but such event would have to be much
brighter in order to explain the bulk of the observations in Figure 21.17. The isotropic
electromagnetic emission level from GW170817 is about four orders of magnitude lower.
Of course, it could be that we are simply seeing an extremely weak version of this scenario.
The successful breakout of a narrow, ultra-relativistic jet would only require <3×10−6

M� of material. If the jet opening angle were wider, it would need to involve even less
material to successfully break out. However, such a low ejecta mass is in contradiction
with the observed bright UV-Optical-Infrared (UVOIR in Figure 21.20) counterparts,
which hints at ≈ 0.05 M� of ejecta. This scenario also fails to account for the delayed
onset of X-ray and radio emission. However, the case of an off-axis observation of
a standard event is also problematic. In particular, given the sharp drop in observed



OUP CORRECTED PROOF – FINAL, 24/10/2019, SPi

Gamma-ray bursts 577

Figure 21.19 Snapshots of the rest-mass density throughout a magnetized neutron star merger. Green
arrows indicate plasma velocities and white lines show the magnetic-field structure. The final panel
suggests that a jet may be launched. (Reproduced from Ruiz et al. (2016) by permission of the AAS.)
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Figure 21.20 An illustration of the most likely scenario for the gamma-ray burst associated with
GW170817—a wide-angle, mildly relativistic, weak cocoon with a successful off-axis jet. (Based on the
discussions of Kasliwal et al. (2017) and Mooley et al. (2018).)
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luminosity with observing angle, this scenario would involve fine-tuning. One would also
expect a bright afterglow at all wavelengths roughly one day after the merger, when the
external shock decelerates to � ∼10, and this was not seen.

Based on the electromagnetic observations, one can estimate that a few hundredths
of a solar mass of ejecta were propelled into the surrounding medium with velocities
spanning a few tenths of the speed of light. If the jet were launched with a slight delay—
perhaps representing the brief lifetime of the hypermassive remnant—then it would have
to drill through the ejecta. The material enveloping the jet may then inflate to form a
pressurized cocoon that expands outwards at a mildly relativistic speed. This leads to
two possibilities. If the jet has a wide angle (≈30◦), it will choke and fail to drill through
the enveloping cocoon. If, on the other hand, the jet is narrow (≈10◦) and long-lived, it
may penetrate the ejecta and look like a classical short gamma-ray burst to an on-axis
observer. Initially, both scenarios seemed consistent with the features of the GW170817
event.

Continued monitoring with very long baseline radio interferometry (Mooley et al.,
2018) provides a possible resolution, with evidence of superluminal apparent motion
between 75 and 230 days after the GW170817 event. This helps break the degeneracy
between the choked- and successful-jet cocoon models and suggests that the late-time
emission was most likely dominated by an energetic and narrowly collimated jet (with
opening angle of less than 5 degrees), observed from a viewing angle of about 20
degrees. This leaves us with the situation illustrated in Figure 21.20 as the most likely
scenario.

21.8 The signature of a kilonova

The precise localization of the electromagnetic counterpart to GW170817 opened the
floodgates, quickly making it one of the most closely studied astronomical events in
history. The obtained UV/optical/IR light curves and spectra of the transient are unlike
any previously seen, exhibiting a rapid decline in brightness and a transition of the
spectral peak from UV to IR (Cowperthwaite et al., 2017; Villar et al., 2017). Spectra in
different bands show a similar evolution from an initial featureless (black-body) shape,
peaking in the UV about 1 day after merger, to an IR-dominated spectrum with broad
absorption features only a few days later; see Figure 21.21. The observations confirm
the hypothesis that neutron-star mergers produce short gamma ray bursts and bolstered
the kilonova model in which neutron-rich matter flung into space by colliding neutron
stars hosts a chain of nuclear interactions known as the r-process (Metzger, 2017). This
process is thought to produce half the elements heavier than iron. The heaviest of these
elements would soak up blue light, tinting the glowing radioactive cloud red.

The light curves and spectra observed for the GW170817 counterpart closely
resemble theoretical kilonova predictions (Evans et al., 2017; Cowperthwaite et al., 2017;
Tanaka et al., 2018), making the event another first in astronomy: A clear demonstration
that r-process nucleosynthesis occurs in neutron star binary mergers (Lattimer and
Schramm, 1974). The observed slow, red evolution is a generic feature of all kilonova
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Figure 21.21 Observed light curves for the optical counterpart to the GW170817 merger event. UV,
optical, and near-IR data points are compared to a thee-component model for r-process heating and
opacities (shown as solid lines). (Reproduced from Villar et al. (2017) by permission of the AAS.)

models regardless of matter dynamics, outflow geometry, nuclear heating, opacities and
radiation transfer. Meanwhile, the observed luminosity, temperature and time evolution
roughly matches predictions for an ejecta mass of ∼ 0.05 solar masses (M�) and
velocities of ∼ 0.1c The presence of transient UV emission, followed by longer term IR
emission hints at two ejecta components: a lower-mass, high-velocity component (with a
low lanthanide—heavier elements with A � 140—abundance), and a slower, higher-mass
component (rich in lanthanides). One may interpret the emission as arising from distinct
physical regions. The high velocity (v ≈ 0.3c) of the blue ejecta suggests that it originates
from the shock-heated polar region created when the neutron stars collide. Meanwhile,
the low-velocity (v ≈ 0.1c) red component may originate from the dynamically ejected
tidal tails in the equatorial plane of the binary, in which case the relatively high ejecta mass
� 0.01M� suggests an asymmetric mass ratio of the merging binary (q � 0.8, consistent
with the possible mass ratio for GW170817).

The combination of high inferred velocities, rapid optical decline, slow infrared
evolution and broad peaks in the infrared spectra accord with theory, which hold that
about 2% of the combined mass of the stars would escape the fate of the rest. Within one
second of the collision, this material expands to a cloud tens of thousands of kilometres
across, but still about as dense as the Sun. In this cauldron, protons and neutrons
clump together to form neutron-rich nuclei, which then start to decay radioactively.
This radioactivity keeps the cloud glowing hot for several days, even as it reaches the
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size of our Solar system. Within a million years, the ejected material spreads across an
entire galaxy.

The previous evidence was not entirely convincing. A single data point hinting at
a late-time infrared excess associated with GRB 130603B had been interpreted as a
signature of r-process nucleosynthesis (Tanvir et al., 2013), and there were a few similar
candidates events. The August 2017 event was a game changer. The origin of heavy
elements like gold, platinum, and uranium is no longer a mystery—they are synthesized
by the rapid capture of neutrons in matter ejected from neutron star mergers.

The ejecta mass inferred for the GW170817 counterpart and the expected merger
rate suggest that similar neutron star events could be the dominant r-process site.
The solar abundance pattern shows that the first of three r-process peaks accounts
for about 80% of the total abundance. To account for the observed solar abundance
in all three r-process peaks with neutron star mergers, one would need a rate of
500Gpc−3 yr−1 (Mej/0.05M�)−1. In order to explain the observed abundance in the
two heavier r-process peaks with mergers, the rate would only have to be something
like 100Gpc−3 yr−1. It makes sense to compare this requirement to the rate inferred
from gravitational-wave searches. Based on the detection of GW170817, one arrives
at a neutron star merger rate of 320–4,740 Gpc−3 yr−1 (Abbott et al., 2017i). This
is larger than the beaming-corrected rate for short gamma-ray bursts and also larger
than the merger rate estimated from the galactic population of neutron star binaries
(see Chapter 9). The picture seems consistent. The large ejecta mass and the high rate
estimates from GW170817 are consistent with the scenario that mergers are the main
production sites of r-process elements of the Milky Way (Lattimer and Schramm, 1974).
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Whispers from the Big Bang

The Universe is a bit of a mess. We have to deal with things we know and ‘understand’;
planets, stars, galaxies, galaxy clusters, voids of empty space, and things we know we do
not understand particularly well (if at all), like dark matter and dark energy. In order to
describe the Universe at large, we need to account for all different ‘energy’ contributions
and how they combine and interact with each other (Frieman et al., 2008). This is an
extraordinarily challenging problem.1 In many ways it is remarkable that we know as
much as (we think) we do. As our observational capabilities continue to improve, we
should be able to advance this understanding. Gravitational-wave searches may play an
important role, complementing the electromagnetic data. The detection of cosmological
signals may allow us to probe aspects of the Universe that are beyond the reach of
traditional astronomy.

Gravitational-wave cosmology involves a range of issues. First of all, we need to con-
sider how the evolution of the Universe affects gravitational waves that reach our detec-
tors from large distances. This involves accounting for the expansion of the Universe
when working out waveforms. We also need to consider effects like gravitational lensing,
which may affect the signal strength and confuse a detection algorithm. As we start
to see sources from cosmological distances, the detection volume obviously increases.
Along with this, the number of potential events goes up and we may have to deal with an
unresolved gravitational-wave background composed of the difference source categories
we have already considered. The detection of such a stochastic background brings its own
specific challenges. Finally, we have new classes of sources, which owe their existence to
the evolution of the Universe. We know, for example, that density fluctuations in the early
Universe should generate gravitational waves (at some level). The end of the inflationary
era, during which the Universe expanded exponentially, marks the beginning of the first
time when detectable gravitational radiation may have been generated. Such waves would
originate when the Universe was something like 10−40 s old. This is is sharp contrast
with the information contained in the cosmic microwave background (CMB), which

1 This chapter is, quite naturally, focussed on the gravitational-wave aspects of cosmology. The wider scope is
covered in many books, for example, Liddle (2003) and Weinberg (2008). A number of additional gravitational-
wave aspects are analysed in detail by Maggiore (2018).

Gravitational-Wave Astronomy: Exploring the Dark Side of the Universe. Nils Andersson, Oxford University Press (2020).
© Nils Andersson. DOI: 10.1093/oso/9780198568032.001.0001
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describes a Universe some 50 orders of magnitude older. As these gravitational waves
will (essentially) not have interacted with matter since they were generated, they carry
pristine information about the Universe as it was being born. The existence of such
primordial gravitational waves is predicted by some of the simplest and most compelling
models of the early Universe, leading to a stochastic signal with a characteristic signature
in the so-called tensor modes of the CMB. This would tell us what these waves looked
like at the time of decoupling, on scales comparable to the corresponding horizon size.
If we want information about shorter wavelengths, as required to probe earlier times, we
have to examine the spectrum at higher frequencies today.

Figure 22.1 Artist’s impression of the evolution of the Universe, indicating the key stages. (Illustration
by O. Dean.)
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The first stars were formed during an era lasting about 1 billion years, known as
the cosmic dawn (see Figure 22.1). Ultraviolet emission from the first galaxies ionized
the cosmos and the nature of the first generation of stars (Abel et al., 1998a; Abel
et al., 1998b) impact on many of the astrophysical scenarios we have discussed. The
basic story of how primordial gas collects in dark matter mini halos to form the
first stars is well known (Tegmark et al., 1997), but the subsequent stages introduce
uncertainties (Norman et al., 2018). If the primordial stars are massive, they will be
luminous and short lived (a few million years). Their death is supernovae chemically
enriches the Universe and leave behind stellar remnants (neutron stars and black holes;
see Heger and Woosley (2002) and Chapter 9). This is the standard scenario. Alternatives
involve low-mass primordial stars, but at least some of these must have been massive
enough to create the first heavy elements of the periodic table (at this stage there is
no other mechanism available). This should also leave a generation of compact objects,
but they may be less common. In the not too distant future, when gravitational-wave
observations allow us to consider populations, we should be able to constrain the different
scenarios.

22.1 The standard model of cosmology

We have come a long way since 1929, when Edwin Hubble first noted that the light from
distant galaxies is redshifted—they tend to move away from us (Hubble, 1929). This was
the trigger that led to the development of the Big Bang theory and a relativistic Universe
described the Friedmann equations (from Chapter 4). The serendipitous detection of the
cosmic microwave background (Penzias and Wilson, 1965) provided the smoking gun
for the model and a sequence of increasingly precise CMB experiments—from COBE in
the 1990s to WMAP in the 2000s and most recently Planck2—have provided exquisite
information about the Universe at an age of a few hundred thousand years, when the
radiation decoupled from matter.

Compared to the situation today, the early Universe was simple—a homogeneous and
isotropic soup of particles, where the temperature and density were nearly identical from
one place to the next at any given time. The CMB provides a dramatic demonstration
of this level of homogeneity. When the signal was imprinted, density and temperature
varied from one point to another by about one part in 10,000. The statistical properties
of these minuscule cosmological variations encode information about the very early
Universe, pretty much immediately after the Big Bang. If we consider these variations as
perturbations away from perfect homogeneity, then they belong to one of three different
kinds: scalar, vector, and tensor perturbations. Scalar perturbations (e.g. variations in
the energy density) are the easiest to measure, and we know a lot about them from
the fluctuations in the CMB (see Figure 22.2). The anisotropies can be treated as
small deviations from the Friedmann–Robertson–Walker metric, the evolution of which

2 http://sci.esa.int/planck/

http://sci.esa.int/planck/


OUP CORRECTED PROOF – FINAL, 30/10/2019, SPi

584 Whispers from the Big Bang

0

1000

2000

3000

4000

5000

6000

30 500 1000

ℓ

1500 2000 2500

–60
–30
0
30
60

2 10
–600

Δ
D

ℓT
T

D
ℓT

T
 [

μK
2 ]

–300

0

300

600

Figure 22.2 Temperature power spectrum (with foreground and other parameters fixed to their best-fit
values) from the 2015 data release of the Planck experiment. The top panel shows the power spectrum
multipole-by-multipole and the red line shows the temperature spectrum for the best-fit �CDM
cosmology. The error bars show ±1σ uncertainties. The lower panel provides the power spectrum
residuals with respect to this model. The first three peaks in the spectrum determine the relative
contribution from dark energy, matter, and dark matter. (Reproduced from Adam et al. (2016) with
permission from Astronomy and Astrophysics. Copyright ESO.)

is described by general relativity (Chapter 4). Combined with observations this has
helped establish the standard �CDM model of cosmology (Frieman et al., 2008) and
the understanding that inflation played a crucial early role. The scale of the fluctuations
indicate that the Universe is (very close to) flat (with k = 0) and the first three peaks in
the CMB spectrum (see Figure 22.2) give the relative contribution from dark energy,
matter, and dark matter (Adam et al., 2016). An early epoch of exponential expansion
is needed to explain both large-scale homogeneity and isotropy, as well as the structure
that has evolved on smaller scales.

In essence, we live in a Universe that expands monotonically, approaching the simple
de Sitter model at late times (when the cosmological constant/dark energy dominates).
The expansion decelerated at early times, but will accelerate at late times and the Universe
eventually ends in a ‘Big Chill’.

The �CDM model is the simplest parameterization of a Big Bang cosmology that
is (broadly) consistent with observations. The model has two principal ingredients: �

refers to the cosmological constant (often described as the energy density of the vacuum,
the ‘dark energy’), and CDM stands for cold dark matter (Spergel and Steinhardt,
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2000), an invisible matter contribution required to explain observed galaxy rotation
curves and gravitational lensing. Since it does not emit or absorb light like ordinary
matter, its distribution must be inferred from gravitational effects. That the dark matter
component plays a crucial role in structure formation is brought out by large scale
numerical simulations (Springel et al., 2005). The model also assumes that there was
an epoch of inflation shortly after the Big Bang.

Although this is the ‘standard model of cosmology’ it is more at the level of a
paradigm than a complete theory. The two main ingredients are poorly understood. No
first principle calculations predict the magnitude of the dark energy contribution and,
although there are many competing ideas for the composition and properties of dark
matter none of the associated particles have yet been detected (Bertone et al., 2005).
Still, it is generally accepted that cosmological observations are most simply explained
by assuming that dark matter is ‘cold’, i.e. that the involved particles move slowly.

The picture that emerges is that of a Universe which began in a Big Bang explosion
some 13.7 billion years ago. For a brief time, it expanded rapidly (inflation) and it
has continued expanding ever since. The structures we observe, galaxies and clusters,
developed as a result of gravitational interactions involving dark matter and the ordinary
(baryonic) matter we see with our telescopes. An example of how the different contri-
butions to the Universe are constrained by modern datasets is provided in Figure 22.3.

As an impression of the quantitative picture, let us consider the results from the
2015 data release from the Planck experiment (Adam et al., 2016). The high-multipole
peaks in the obtained CMB spectrum (see Figure 22.2), are extremely well extremely

JLA

C11

Planck+WP

WMAP9

Planck+WP+JLA

Planck+WP+BAO

JLA

Planck+WP

Planck+WP+BAO

C11

1.0 –0.4

–0.6

–0.8

–1.0

–1.2w

–1.4

–1.6

–1.8

–2.0

0.8

0.6

0.4

Ω
Λ

Ωm Ωm

0.2

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.15 0.20 0.25 0.30 0.35 0.40 0.450.8

Figure 22.3 Left: An illustration of inferred contributions from �m and �� (showing 68% and 95%
confidence contours) for the standard �CDM model. Labels for various data sets correspond to the
supernova compilation from Figure 22.4 (JLA), an earlier SN Ia compilation (C11), the combination of
Planck temperature and WMAP polarization measurements of the CMB fluctuations (Planck+WP),
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corresponds to the cosmological constant hypothesis. (Reproduced from Betoule et al. (2014) with
permission from Astronomy and Astrophysics. Copyright ESO.)
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well described by the �CDM model with a power-law spectrum of adiabatic scalar
perturbations. Within the context of this model, one can then infer the relevant cos-
mological parameters. First of all, the data is consistent with spatial flatness to percent
level precision, so the k = 0 assumption should be accurate (see Chapter 4). Regarding
the Hubble constant, there is some tension between the Planck result

H0 = 67.4 ± 1.4 kms−1Mpc−1, (22.1)

and other experiments (see Figure 22.5), but the difference is now smaller than the
discrepancy that plagued cosmology for decades. Still, given the uncertainty it is useful
to introduce a parameter h such that3

H0 = 100h100 kms−1 Mpc−1, (22.2)

in order to express the different energy contributions. We then find that the Universe
is dominated by the dark energy (which tends to make gravity push instead of pull, as
required to drive the accelerated expansion)

�� = 0.686 ± 0.020. (22.3)

The total matter contribution is

�mh2
100 = 0.1423 ± 0.0029, (22.4)

while the baryon contribution (mainly Hydrogen and Helium) is

�bh2
100 = 0.02207 ± 0.0033. (22.5)

We also learn that the dark energy component is such that

w = −1.13+0.13
−0.08, (22.6)

consistent with a cosmological constant, for which we would have w = −1.
The overall conclusions are corroborated by a range of experiments, as illustrated in

Figure 22.3. In essence, the evolution of the Universe can be described by a six-parameter
model. But there are open questions. For example, it is apparent from Figure 22.2 that the
model does not provide a good fit to the temperature power spectrum at low multipoles.
At a conceptual level, we also need to be mindful of the fact that something like 95% of
the energy content of the Universe remains a mystery. There are many proposed dark

3 Here, and in the following, h100 is the scaled Hubble parameter and should not be confused with a
gravitational-wave strain. The meaning should be clear from the context.
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matter scenarios, but we need observations to make progress. When it comes to the dark
energy... just because we have given something a name, it does not mean we understand it.

22.2 The cosmological redshift

The cosmological redshift is the key measure of distance in the Universe. As distant
galaxies move away from us, the light they emit (as well as any gravitational waves)
is redshifted. As this will impact on the detailed nature of any signals that arrive at
our detectors, we need to quantify the effect. In order to do this, let us focus on the
Friedmann–Robertson–Walker model from Chapter 4. That is, we have

ds2 = −dt2 + [R(t)]2
[

dr2

1 − kr2 + r2
(
dθ2 + sin2 θdϕ2

)]
, (22.7)

where R is the cosmological scale-factor. In a flat Universe, with k = 0, it follows from
the equation for radial (null) geodesics that

d|v|
dt

= − Ṙ
R

|v|, (22.8)

where

v = dr
dt

. (22.9)

We see that, in the frame of the chosen observer, |v| remains zero if it vanished initially. In
essence, this is the statement that the coordinates are co-moving and stretch along with
the cosmological expansion. For a given gravitational-wave signal, e.g. from a binary, the
implication is that the coordinate distance will remain the same even though the Universe
expands. This is important because it means that much of our previous analysis will
remain unchanged. Of course, we know that coordinate distances have no real meaning.
We should be using the proper (spatial) distance

dr2
p = gijdxidx j . (22.10)

In the general case, the distance from the origin to a radial location r is given by

dr2
p = R2dr2

1 − kr2 −→ rp = R(t)
∫ r

0

dr
(1 − kr2)1/2 , (22.11)

and in the case of a flat Universe we simply have rp = R(t)r.
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Now consider a source at a distance r as seen by an observer at the origin. The signal
travels along null geodesics. That is, we have ds2 = 0, which leads to

∫ to

ts

cdt
R

=
∫ r

0

dr
(1 − kr2)1/2 , (22.12)

where ts and to are the time at which the signal is emitted by the source and observed,
respectively. Noting that the right-hand side remains the same for a pulse emitted a small
time interval �t later, we have

∫ to

ts

cdt
R

=
∫ to+�to

ts+�ts

cdt
R

, (22.13)

which, after linearizing, leads to

�to = R(to)
R(ts)

�ts. (22.14)

As the observer and source clocks are related by

dto = (1 + z)dts, (22.15)

it follows that the cosmological redshift is given by

1 + z = R(to)
R(ts)

, (22.16)

leading to the frequency relation

fo = fs
1 + z

. (22.17)

Let us now make the connection between these results and a given gravitational-wave
signal. For a source emitting radiation with a given luminosity we have

L = dEs

dts
, (22.18)

in the rest-frame of the source. In the typical case of a binary inspiral, this would
correspond to the luminosity we worked out back in Chapter 5. This leads to the energy
flux (the energy per unit time and area)

F = L

4πd2
l

, (22.19)
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which defines the luminosity distance dl . Of course, in our expanding Universe we have
(since energy if proportional to frequency, it is redshifted by the same factor)

Eo = Es

1 + z
, (22.20)

so

dEo

dto
= 1

(1 + z)2

dEs

dts
. (22.21)

Noting that the surface of a sphere with co-moving radius r has area 4πR2(to)r2 we have

F = L
4πR2(to)r2(1 + z)2 −→ dl = (1 + z)R(to)r, (22.22)

where we should take to to be the present time.
Finally, for small redshifts we can make a connection with the cosmological parameters

(introduced in Chapter 4) by Taylor expanding

R(t)
R(t0)

= 1 + z ≈ 1 + H0(t − t0)− 1
2

q0H2
0 (t − t0)2. (22.23)

After a bit of algebra this leads to

H0dl

c
= z + 1

2
(1 − q0)z2, (22.24)

which shows why it is natural to work with the luminosity distance, dl(z), for large
redshifts.

22.3 Scaling the distance ladder

Having outlined the link between cosmic distance and the main parameters, let us
consider how we best make use of the idea. For nearby objects we can obtain an accurate
distance using parallax measurements (observing how an object’s position in the sky
changes at two opposing points of the Earth’s orbit). However, this only allows us to
measure distances out to (perhaps) a few kpc—we only measure distances within the
Galaxy. In some cases, we may also be able to directly measure the redshift of spectral
lines. In order to reach further we have to make use of the theory. This inevitably involves
additional assumptions.

Traditionally, the next rung on the cosmic ladder involves the characteristic variability
of a particular class of white dwarfs, the Cepheids (Liddle, 2003). In essence, the
timescale of pulsation is thought to be linked to the star’s brightness. A comparison of
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the inferred (true) brightness to the observed (apparent) value, reveals the distance.
The systems act as ‘standard candles’—providing both the observed flux F and the
intrinsic luminosity L—from which we can work out the luminosity distance, dl . The
measurements are calibrated using direct observations at low redshifts. This way we may
reach distances of a few Mpc, a bit beyond the Andromeda galaxy.

At larger distances, we need more powerful events. The next level is reached via
type Ia supernovae, associated with explosions of accreting white dwarfs that reach the
critical mass (and hence would have an internal calibration, as well). Such supernova data
provided the first evidence (in the early 2000s) that we live in an accelerating Universe,
leading to the introduction of the vexing dark energy (Schmidt et al., 1998; Riess et al.,
1998; Perlmutter et al., 1999). Direct redshift measurements may also be possible for
remote galaxies, but this will only yield distance estimates within an assumed theory.

The results in Figure 22.4 illustrate the current data (Betoule et al., 2014). The
figure combines cosmological constraints from a joint analysis of type Ia supernova
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The distance modulus redshift relation of the best-fit �CDM cosmology for a fixed H0 = 70 km s−1

Mpc−1 is shown as the black line. Bottom panel: Residuals from the best-fit �CDM cosmology as a
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observations obtained by the Sloan Digital Sky Survey (SDSS-II) and the Supernova
Legacy Survey (SNLS) collaborations. The data set includes low-redshift samples (z <

0.1), all three seasons from the SDSS-II (0.05 < z < 0.4), and three years from SNLS
(0.2 < z < 1), involving a total of 740 confirmed type Ia supernovae with high quality
light curves.

22.4 Standard sirens

Interestingly, we can use gravitational-wave observations to measure cosmological dis-
tance, as well (Schutz, 1986). Such measurements would be extremely valuable as they
are independent of the electromagnetic distance ladder. They also involve a totally
different internal ‘calibration’.

In order to outline the argument, consider the problem of inspiralling binaries in light
of what we have learned. We know that, in a curved spacetime, the time measured by a
clock at the source and one at the observer location will be different. When we derived
the quadrupole formula (in Chapter 3), we worked in a flat background so this difference
did not enter the discussion. Neither does it impact on the result if we imagine a ‘local’
wave zone relatively close to the source. The results still hold. However, they will change
when we consider cosmological distances. To make progress, we need to figure out how
the cosmology enters the problem.

Let us focus on the case of a spatially flat Universe, with k = 0 (an assumption
supported by observations). Then we know, from the above discussion, that we should
first of all replace r → R(to)r, with to the time at the observer location. Later we will
show that the two polarizations decouple (at least as long as the geometrical optics
approximation is valid) as the waves propagate across the Universe, so let us not worry
about this issue for the moment. We do, however, need to note that the frequency of
the wave f gw

s is measured in the retarded time of the source tret
s . That is, we have the

characteristic amplitude (see Chapter 5)

hc = 4
rR(to)

(
GM

c2

)5/3 (
π f gw

s (tret
s )

c

)2/3

. (22.25)

However, from (22.17) it follows that

∫ tret
s

f gw
s dts =

∫ tret
o

f gw
o dto, (22.26)

which means that the redshift factors cancel! At the observer’s location the frequency
is redshifted but the time interval has changed by the same amount so the two effects
compensate for each other. This is important, because it means that the gravitational-
wave phasing does not change.
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We also have

rR(to) = dl

1 + z
, (22.27)

so

hc = 4
dl

(1 + z)5/3
(

GM
c2

)5/3 [
π f gw

o (tret
o )

c

]2/3

. (22.28)

Introducing a redshifted chirp mass Mz = (1 + z)M (which makes intuitive sense if we
recall the equivalence between mass and energy), we have the final result

hc = 4
dl

(
GMz

c2

)5/3 [
π f gw

o (tret
o )

c

]2/3

. (22.29)

At the end of the day, we have (formally) the ‘same’ result as in the flat spacetime
case (as long as we replace r → dl and M → Mz). Of course, searching for the signal
we need to keep in mind that the frequency is redshifted. The redshift of the chirp mass
makes binaries seem more massive, which leads to a louder gravitational-wave signal and
therefore the ability to see sources at larger distances.

We now have the results we need to explain how binary inspirals can be used as
‘standard sirens’ (Schutz, 1986; Holz and Hughes, 2005). First of all, if we detect the
two polarizations and the rate of change of the frequency ḟ gw, then we can infer the
orbital inclination from the relation between h+ and h×. We get Mz from ḟ gw, as in the
flat spacetime case. This fixes everything in (22.29), apart from the luminosity distance
dl , which is therefore determined by the observation. If we want to make contact with a
cosmological model, then we need an independent (electromagnetic, say) measurement
of z. Combining such results we can work out H0(z). This is a robust argument, although
it obviously requires an electromagnetic counterpart (Nissanke et al., 2010).

Luckily we now have such an event. The proposed strategy was executed following
the GW170817 neutron star merger (Abbott et al., 2017a). In this case, analysis of the
gravitational waveform yielded a distance estimate of about 44 Mpc assuming that the sky
position of the event was exactly coincident with the optical counterparts. This distance
estimate comes with an uncertainty of about 15%, due to a combination of instrumental
noise and the fact that we do not precisely know the inclination of the orbital plane of
the binary system. In order to estimate H0 one also has to combine the gravitational-
wave distance with the galaxy’s radial velocity, keeping in mind that the expansion of
the Universe is not uniform on the relevant scale. We need to account for ‘lumpiness’
which distorts the Hubble expansion on smaller scales—galaxies have additional motion
(‘peculiar velocities’) due to the gravitational attraction of other galaxies, clusters and
dark matter.
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The initial analysis, based on the gravitational-wave data, led to a value for the Hubble
constant consistent with other measurements

H0 = 74+16
−8 km s−1Mpc−1. (22.30)

The precision of the result is not spectacular, but it was an important first—future obser-
vations will improve on this. In fact, continued radio monitoring (Mooley et al., 2018)
has helped break the degeneracy between the source distance and the viewing angle,
which dominated the uncertainty. This leads to a significantly improved measurement
(see Figure 22.5 and Hotokezaka et al. (2019))

H0 = 68.9+4.7
−4.6 km s−1Mpc−1. (22.31)

Estimates suggests that 15 (or so) similar events events could bring resolution to
the tension between the Planck (Ade et al., 2016a) and SHoES (Riess et al., 2016)
measurements.

Interestingly, we can also hope to make progress without optical counterparts. By
combining information from ∼ 100 independent gravitational-wave detections, each
with a set of potential host galaxies, a ∼ 5% estimate of H0 can be obtained even without

0.08

0.10

0.06

0.04

p(
H

0)

H0 (km s–1 Mpc–1)

0.02

0.00
50 60 70 80 90 100 110 120

GW+VLBI+LC (PLJ)
GW
Planck
SHoES

Figure 22.5 Posterior distributions for H0. The results of the pure gravitational-wave analysis and the
first combined analysis with electromagnetic data are shown (vertical dashed lines show symmetric 68%
credible interval for each model). The 1 and 2σ regions determined by Planck (green, see Ade et al.
(2016a)) and SHoES (orange, see Riess et al. (2016)) are also shown as vertical bands. It is worth noting
the tension between these results and the simple fact that the single gravitational-wave event is consistent
with both. (Reproduced from Hotokezaka et al. (2019).)
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the detection of any transient counterparts (Del Pozzo et al., 2011). This is relevant given
that we expect to catch many binary black-hole mergers in the next few years.

22.5 Geometrical optics and lensing

We have learned that, when we consider the Universe at large, we need to account for
the effect of the cosmology on any given gravitational-wave signal. We also need to
understand to what extent the signal changes as it propagates from the source to the
detector. We know that gravitational waves interact very weakly with matter so we do not
have to worry too much about the signal deteriorating (in some sense). However, we still
need to account for effects like gravitational lensing, just as we do for electromagnetic
signals (Schneider et al., 1992). In essence, this turns out to be a two-stage argument.
First we show that gravitational waves are lensed in the same way as light, then we worry
about the effect this may have on our signal searches.

Let us start by extending our description of gravitational-wave propagation. Math-
ematically, the problem boils down to an expansion using the ratio of the reduced
wavelength λ– to the average spacetime curvature R as a small parameter, as in the
discussion of general perturbations in Chapter 3. For obvious reasons, this is often
referred to as the short-wavelength approximation. We now add the assumption that
the wavefront has curvature L and require that λ– � L. In essence, we are considering the
region far away from the source.

Under these conditions we are (to a good approximation) dealing with plane waves.
Then we can use the geometrical optics approximation, where (Isaacson, 1968a)

hTT
ab = Re

[
Aabeiφ

]
. (22.32)

The amplitude Aab is slowly varying, on the scale L or R (whichever is the shortest),
while the phase φ = kaxa, where ka is the wave vector, varies rapidly on the scale λ–.

In order to understand the results it is helpful to consider a monochromatic wave
propagating in the z-direction of flat space. Then φ = ω(z − t), so

∂zφ = ω and ∂tφ = −ω. (22.33)

In terms of the wave vector we have

ka = ∂aφ → kt = kz = ω. (22.34)

Motivated by this, we return to the gravitational-wave problem and define

ka ≡ φ|a, (22.35)
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where the | represents the covariant derivative with respect to the (presumably) curved
background (as in Chapter 3). Then the Lorenz gauge condition (3.110) implies that

Aabkb = 0, (22.36)

which means that the waves are transverse. Meanwhile, expanding in powers of λ– over
L or R, the wave equation (3.111) leads to the two equations

kaka = 0, (22.37)

Aab|ckc = −1
2

Aabk |c
c . (22.38)

The first of these equations shows that the wave vector is null, and since φ|ab = φ|ba one
readily finds that

0 = (kaka)|b = 2kaka|b = 2kakb|a. (22.39)

In other words, ka is tangent to a null geodesic of the background (often called a ray in
this context).

The second equation shows that

kcAab|c = −1
2

(kc|c)Aab, (22.40)

the interpretation of which is that the change in amplitude is governed by the divergence
of the wave vector.

These results confirm what we already knew—gravitational waves move along
geodesics at the speed of light. We should encounter the same lensing effects as for
light. This is important. Gravitational lensing has developed into an powerful tool for
astrophysics and cosmology, e.g. shedding light on the dark matter component of the
Universe (Schneider et al., 1992). At the same time, lensing distorts images of distant
sources, so it can have a detrimental effect as well. Having shown that gravitational
waves will be lensed in the same way as electromagnetic waves we can see how this can
be an advantage, e.g. by focussing the waves to enhance a distant signal, and a problem,
e.g by distorting the wave phasing in such a way that our search templates no longer
match the signal. It would be particularly concerning if lensing were to mix up the
wave polarizations. However, as we will now show, we do not need to worry (too much)
about this.

In order to discuss the implications of the geometric optics results, let us first of all note
that, if we consider the gravitational wave as a deviation from an otherwise flat spacetime
(as in the first part of Chapter 3) then it follows from (22.34) that

hab(t,x) ∼ hab(t − k̂ × x), (22.41)
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for a wave moving in the k̂ direction. Moreover, working in the TT-gauge, it is natural
to introduce a basis [m̂, n̂] in the plane orthogonal to the direction of propagation (as in
Figure 22.8). We can then make use of the polarization tensors

e+ij = m̂im̂j − n̂i n̂j , (22.42)

and

e×ij = m̂in̂j + m̂j n̂i, (22.43)

in terms of which we have

hij = h+e+ij + h×e×ij =
∑

P=+,×
hPeP

ij . (22.44)

It is also worth noting that

∑
P

eij
PeP

ij = 4, (22.45)

a result we will make use of later. Finally, one would often opt to work in the frequency
domain. That is, we express the signal in terms of the Fourier transform

hij(t,x) =
∑

P=+,×

∫
h̃P( f ,x)eP

ij (k̂)exp
[
−2π if

(
t − k̂ · x

)]
df . (22.46)

Returning to the discussion of geometrical optics, we can (obviously) write

kchab|c = kc(h+e+ab + h×e×ab)|c = 0 −→ eiφkcAab|c = 0. (22.47)

It is natural to assume that the polarization tensors are parallel transported along
geodesics, i.e. to take

kceP
ab|c = 0, (22.48)

which means that we have, cf. Eq. (22.40),

kchP|c = −1
2

(kc|c)hP. (22.49)

This can be rewritten as
(
h2

Pka
)

|a = 0, (22.50)
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i.e. as a conservation law. In a local inertial frame we have

∂

∂t
(h2

Pk0)+ ∇j(h2
Pk j) = 0, (22.51)

which we can compare to, for example, the continuity equation from fluid dynamics from
Chapter 4. The result suggests that it would be natural to introduce a ‘number flux four
vector for gravitons’ as

Na
P = h2

Pka, (22.52)

the interpretation of which would be

N0
P = h2

Pk0 graviton number density, (22.53)

N j
P = h2

Pk j graviton flux . (22.54)

One can also show that

h2
PA = constant along a given ray, (22.55)

where A is the cross section area of a particular bundle of rays. This shows that there is
no mixing of the polarizations and allows us to discuss the effects of gravitational-wave
lensing for cosmological sources.

Consider, for example, the situation illustrated in Figure 22.6. Let us assume that
the problem is stationary and that the impinging gravitational waves have pure plus-
polarization. Then we have

(hf+)2Af = (hi+)2Ai, (22.56)

or

hf+ =
√

Ai

Af
hi+. (22.57)

b

M Af

Ai

=4M/b

Figure 22.6 A schematic illustration of the effect of gravitational-wave lensing by a gravitating centre,
a star like the Sun or a distant galaxy.
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For a strong lens (not the Sun!) there may be a significant amplification of the
gravitational-wave amplitude in cases that lead to the focussing of rays. At a focal
point the amplitude formally diverges. The associated singularity is known as a caustic,
and its presence signals the breakdown of the geometric optics approximation. In the
neighbourhood of a caustic the amplitude changes significantly over a wavelength,
introducing diffraction phenomena and possible constructive/destructive interference
(Takahashi and Nakamura, 2003).

Lensing may have significant impact on the gravitational waves that reach us from
cosmological sources, e.g. from coalescing black-hole binaries. In order to quantify the
effect, we need to i) understand the matter distribution in the Universe, and ii) work out
how the signal would be affected. Somewhat simplistically, lensing may make intrinsically
too faint mergers observable. Strong lensing may also confuse parameter extraction—as
the actual source is further away than it appears the masses in the source frame may
be reduced by a factor of 1 + z (Sereno et al., 2011). Lensing effects should become
more important as the sensitivity of the detectors improves and signals from greater
distances come within reach. In practice, this may require third-generation ground based
instruments or space-based observations. It has, for example, been suggested that the
Einstein Telescope may register as many as 50–100 lensed events each year (Biesiada
et al., 2014). In the case of LISA, which may detect massive black hole signals out to
a redshift of 10–15, the impact of lensing may be significant (Sereno et al., 2011). It
could, in turn, shed light on the formation history of the merging binaries as lensing
amplification might help identify the host galaxies.

22.6 Astrophysical backgrounds

As the gravitational-wave instruments become more sensitive we expect to probe
events throughout a significant fraction of the Universe. In particular, a space bourne
interferometer like LISA should be able to detect the merger of supermassive black holes
(with masses in the range 103 − 106M�) for much of cosmic history; see Figure 22.7
(Amaro-Seoane et al., 2017). Meanwhile, third-generation ground-based detectors like
ET will be able to catch lower mass systems out to a redshift of several (Sathyaprakash
et al., 2012). As the number of detectable systems increases, it becomes increasingly
likely that we will not be able to resolve individual systems. We need to worry about the
overall population and—if we reach deep enough—we will be dealing with a stochastic
background.

Many classes of astrophysical sources may lead to the presence of an unresolvable
background. However, in order to provide a concrete example, let us focus on binary
mergers. We will start by demonstrating a simple relationship between the spectrum of
the gravitational-wave background produced by a cosmological distribution of discrete
sources, the total time-integrated energy spectrum of an individual source, and the
present-day co-moving number density of remnants (Phinney, 2001; Sesana et al., 2008).
This is useful because it shows that the background is (essentially) independent of the
cosmology and only weakly dependent on the evolutionary history of the sources.
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Figure 22.7 Massive black-hole binary coalescences detectable with the LISA mission. Contours of
constant signal-to-noise for the baseline observatory in the plane of total source-frame mass, M, and
redshift, z (left axis, assuming standard �CDM cosmology), and luminosity distance, dl (right axis), for
binaries with constant mass ratio q = 0.2. Overlaid are the positions of threshold binaries used to define
the mission requirements. (Reproduced from Amaro-Seoane et al. (2017).)

First of all, we let fs be the frequency of gravitational waves in the rest frame of the
source (as before), while f is the frequency of the waves observed today on Earth. This
means that we have fs = (1 + z)f . We assume that the energy emitted in gravitational
waves in the frequency interval between fs and fs + dfs is

dEgw

dfs
dfs. (22.58)

This energy, like the frequency fs, is measured in the source frame. It is also integrated
over all angles and the lifetime of the source.

Secondly, we take the number of events per unit co-moving volume between redshift z
and z + dz to be N(z)dz. As in Chapter 8, we define �gw(f ) to be the present-day energy
density per logarithmic frequency interval, divided by the energy density (ρc) required to
close the Universe (see Chapter 4). With these definitions, the total (present day) energy
density in gravitational radiation is

Egw ≡
∫ ∞

0
ρcc2�gw(f )

df
f

≡ π

4
c2

G

∫ ∞

0
f 2h2

c (f )
df
f

, (22.59)
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where hc is the characteristic amplitude of the gravitational-wave spectrum over a
logarithmic frequency interval.

It is easy to see that, in a homogeneous and isotropic Universe, the present day energy
density Egw should follow from the sum of the energy densities radiated at each redshift,
divided by (1 + z) to account for the overall effect. This means that we have

Egw ≡
∫ ∞

0

∫ ∞

0

N(z)

1 + z
dEgw

dfs
fs

dfs
fs

dz =
∫ ∞

0

∫ ∞

0

N(z)

1 + z
fs

dEgw

dfs
dz

df
f

. (22.60)

Equating the expressions from (22.59) and (22.60) for Egw, frequency by frequency, we
arrive at (Phinney, 2001)

ρcc2�gw(f ) = π

4
c2

G
f 2h2

c (f ) =
∫ ∞

0

N(z)

1 + z

(
fs

dEgw

dfs

)∣∣∣∣
fs=f (1+z)

dz . (22.61)

This is the main result. The interpretation is that the energy density in gravitational
waves per logarithmic frequency interval is equal to the co-moving number density of
events, multiplied by the (redshifted) energy each event produced (again, per logarithmic
frequency interval). Notably, the result does not depend on the cosmology (apart from
the assumption of a homogeneous and isotropic Universe). Moreover, it only involves the
time-integrated energy spectrum of the sources, as long as they are randomly oriented
with respect to the detector. If more than one type of source is of interest, the right-hand
side of Eq. (22.61) is simply summed over the different source categories.

As an application of the result, let us estimate the low-frequency background from a
cosmic ensemble of (adiabatically inspiralling) massive binaries. We then know from the
quadrupole formula that (see Chapter 3)

dEgw

dfs
= π

3G
(GM)5/3

(π fs)1/3 for fmin < fs < fmax , (22.62)

where M is the chirp mass.
The low-frequency cut-off, fmin, is determined by the separation of the system at birth

(or circularization, whichever comes first), and we obviously consider only systems with
small enough initial separation that their merger time is shorter than the Hubble time.
Over their lifetime, such systems radiate a broad spectrum of frequencies, up to an upper
limit, fmax, set by the frequency at which the two bodies either ‘come into contact’ or
plunge. It is natural to assume that this frequency is associated with the last stable orbit
(the ISCO; see Chapter 10), in which case we have

fmax ≈ 4 × 10−4 1
1 + z

(
M

109M�

)−1

Hz. (22.63)
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Combining Eq. (22.62) with (22.61) we obtain the gravitational-wave background
(at f < fmax) from such a binary population (Phinney, 2001)

�gw(f ) = 8π5/3

9
(GM)5/3f 2/3

c2H2
0

N0〈(1 + z)−1/3〉, (22.64)

where

N0 =
∫ ∞

0
N(z)dz, (22.65)

is the present-day co-moving number density of merger remnants, and

〈(1 + z)−1/3〉 = 1
N0

∫ zmax

zmin

N(z)

(1 + z)1/3 dz. (22.66)

The limits of integration

zmin = max[0, fmin/f − 1] (22.67)

and

zmax = fmax/f − 1, (22.68)

can (effectively) be set to 0 and ∞, respectively, except for frequencies just below
fmin or fmax. In practice, the value of 〈(1 + z)−1/3〉 is also not very sensitive to
the details of N(z) (for a flat Universe one would expect 〈(1 + z)−1/3〉 ≈ 0.74; see
Phinney (2001)).

The main conclusion from this exercise is that one would expect the effective
amplitude to scale as

hc ∼ 1
f
�

1/2
gw ∼ f −2/3. (22.69)

In order to complete the picture, we need to combine (22.64) with some model for
the distribution, N(z). For binaries, this boils down to providing dN/dM for a given
cosmology, together with some mechanism for assembling massive black holes. Starting
from some (model-dependent) prescription for the history of massive black-hole growth,
one can generate a population of massive binaries using Monte-Carlo sampling. In
essence, one has to work out the integral in Eq. (22.64). Typical results suggest that
the result is not very sensitive to the nature of the massive black hole seeds. The main
uncertainties, up to a factor of (perhaps) a few, are associated with the massive black-
hole mass function at low redshifts, the variation in the halo merger rate and the accretion
model (Sesana et al., 2008).
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Based on simulations (Rajagopal and Romani, 1995) one might expect a typical value
for the comoving density of merger remnants to be N0 ≈ 10−4 Mpc3. For equal-mass
binaries, with mass 109M�, one then arrives at

hc ≈ 2 × 10−16
(

f
yr−1

)−2/3

. (22.70)

This is indicative of what one might expect from a cosmological background of massive
binaries.

22.7 Pulsar timing arrays

We know that supermassive black holes reside at the heart of massive galaxies. As part
of cosmic evolution, galaxy mergers should form massive binary systems, which (even-
tually) emit gravitational waves and merge (Rees, 1984). Such mergers are a key part
of hierarchical assembly scenarios, the backbone of modern structure formation models.
Binaries with masses in the range 104 − 1010M� generate low-frequency signals that
may be detectable with LISA at the low end and pulsar timing arrays at the high end of
the mass-range. We have already argued that LISA will be able to detect individual events
throughout cosmic history (see Figure 22.7). Meanwhile, pulsar timing experiments are
most likely to detect the background generated by an incoherent superposition of the
cosmic population of supermassive binaries (Manchester et al., 2013).

In order to get an idea of how the pulsar timing array setup works, we first of all
recall that each individual pulsar is a regular clock (with frequency ν0, say). A passing
gravitational wave impacts on the effective travel time of the radio pulses (Detweiler,
1979). The radio signal moves along null geodesics of a perturbed spacetime and if a
gravitational wave crosses the line of sight the pulses arrive earlier/later than expected.
When the signal arrives on Earth, it has accumulated a frequency redshift. That is, even
if the pulsar emission is stable, we would observe a time-varying frequency such that

z(t) = ν(t)− ν0

ν0
= δν

ν0
, (22.71)

where ν(t) is the observed frequency. By comparing the arrival time of the pulses to
predictions, we infer a timing residual which may—in addition to variations in the inter-
stellar medium, the effects of the solar wind, and so on—encode the effects of a passing
gravitational wave. In order to identify a gravitational-wave background, we can correlate
data from an array of pulsars across the sky and exploit the fact that a gravitational wave
would affect all pulsars in the same way, while intrinsic timing noise does not.

The strain sensitivity of a pulsar timing array depends (roughly) on the timing
residuals, δt ∼ 1/δν, and the observation time, T , as

h ∼ δt
T

. (22.72)
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From the discussion (leading to (22.70)) of the stochastic background from supermas-
sive black-hole binaries, we know that hc ∼ 10−15 for f ∼ 1 nHz. In order to detect such
a signal, we need a set of pulsars with timing residuals of order

δt ∼ 3.2 × 10−7
(

hc

10−15

)(
T

10 yr

)
s. (22.73)

The road to detection is now (relatively) clear. We need to accumulate longer and more
accurate timing data for large arrays of monitored pulsars. The first requires patience
and the second involves an element of luck, as we need to find suitably stable pulsars.
Over the last decades, different international pulsar timing collaborations have made
impressive progress (see Manchester et al. (2013)). For example, the recently released
dataset from the NANOGrav collaboration involves 45 pulsars timed with the Green
Bank Telescope over a period of 11.4 years (Arzoumanian et al., 2018). This has led to
results like those shown in Figure 22.10, setting upper limits close to the predicted level
for the gravitational-wave background.

The analysis of the timing problem proceeds in the same way as spacecraft Doppler
tracking (see Chapter 7). One would typically analyse the problem with the solar system
barycentre representing the ‘detector frame’ [x̂, ŷ, ẑ]; see Figure 22.8. For a wave hij(t,x)

moving in the direction k̂ incident on a pulsar located in direction p̂ a distance L away
(as in Figure 22.8), the observed redshift is then

z(t) = 1
2

p̂i p̂ j
∫ t

tp
dt′ ∂

∂t′
hij(t′,x). (22.74)

L1L2

pulsar 1

wavefront plane

pulsar 2

x̂

ŷ

m̂

n̂

ẑ k̂

Figure 22.8 The geometry assumed in the analysis of the impact of a gravitational wave on a pulsar
timing array. We distinguish the ‘detector frame’ [ x̂, ŷ, ẑ] from the wave frame with propagation
direction k̂ and wavefronts in the plane [ m̂, n̂].
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For a plane gravitational-wave (an appropriate assumption for sources at a cosmolog-
ical distance), the redshift follows from

z(t, k̂) = 1
2

p̂i p̂ j

1 + k̂ · p̂

[
hij(t, k̂)− hij

(
τ , k̂

)]
= 1

2
p̂i p̂ j

1 + k̂ · p̂
�hij(t, k̂). (22.75)

In general, the redshift is given by the difference between the wave at Earth and at the
pulsar.

For the configuration in Figure 22.8, the pulsar location is such that

tp = t − L xp = Lp̂, (22.76)

and it follows from (22.46) that

τ = tp − k̂ · xp = t − L(1 + k̂ · p̂). (22.77)

The expression for the redshift (22.75) then shows that, if the gravitational-wave source
is located right behind the pulsar we have τ = t and the effect vanishes. This should be
no surprise—it is a reflection of the fact that the waves are transverse. In practice, the
second term in (22.75)—the pulsar term—can be considered as an extra noise term,
which should vanish after averaging over a set of pulsars.

To be specific, let us focus on stochastic gravitational waves from sources distributed
across the sky. That is, we consider the statistical distribution of signals from an
unresolvable collection of events. Moreover, we assume that the sources are likely to be
randomly distributed throughout the Universe. As long as the Universe is homogeneous
and isotropic on large scales, the gravitational-wave background is then likely to be
isotropic, as well. In this case, we effectively need the frequency shift over the whole
sky, which follows from the integral

z(t) =
∫

z(t, k̂)dk̂. (22.78)

Moreover, a timing experiment would not measure the redshift, but rather the timing
residual

R(t) =
∫ t

0
z(t′)dt′. (22.79)

The effect of a stochastic background is then encoded in the correlation collected from
pairs of pulsars at different sky locations. To demonstrate this, first of all note that all
pulsar signals, and the Earth, are affected by the same gravitational-wave induced metric
perturbation.
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Using the solar system barycentre as our reference and introducing the usual polar-
ization basis, we have

�hij =
∑

P=+,×

∫
h̃P( f , k̂)eP

ij (k̂)exp(−2π ift)
{
1 − exp

[
2π ifL

(
1 + p̂ · k̂

)]}
df . (22.80)

Thus, we identify the Fourier transform of the redshift

z̃(f , k̂) =
{
1 − exp

[
2π ifL

(
1 + p̂ · k̂

)]} ∑
P=+,×

∫
h̃P( f , k̂)FP(k̂), (22.81)

where

FP(k̂) = 1
2

1

1 + p̂ · k̂

[
p̂i p̂ j eP

ij (k̂)
]

. (22.82)

This function is, essentially, the pulsar timing equivalent of the detector antenna pattern
(see Chapter 7). From our previous results, it is easy to see that we have

F+ = 1
2

1

1 + p̂ · k̂

[
( p̂ · m̂)2 − (p̂ · n̂)2

]
, (22.83)

and

F× = 1

1 + p̂ · k̂
( p̂ · m̂)( p̂ · n̂). (22.84)

The stochastic background can be characterized by a one-sided power spectral density
Sh (see Chapter 8) through the expectation value

〈h̃∗
P(f , k̂)h̃P′(f ′, k̂′)〉 = 1

2
Shδ

(2)(k̂, k̂′)δPP′δ( f − f ′), (22.85)

where δ(2)(k̂, k̂′) is the delta-function on the sphere. We can use this result to work out
the expectation of the product of signals from two pulsars in directions p̂1 and p̂2. This
leads to

〈z̃1( f )z̃∗
2( f ′)〉 = 1

2
Sh( f )δ( f − f ′)�( f ), (22.86)
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where

�(f ) =
∑

P=+,×

∫ ∫
S2

{
1 − exp

[
2π ifL1

(
1 + p̂1 · k̂

)]}

×
{
1 − exp

[
2π ifL2

(
1 + p̂2 · k̂

)]}
FP

1 (k̂)FP
2 (k̂)dk̂. (22.87)

The result simplifies, as the distance to the pulsars is expected to be large compared to
the gravitational-wave wavelength. In this case �(f ) limits to a constant value, and we
have

�(f ) ≈ �0 =
∑

P=+,×

∫ ∫
S2

FP
1 (k̂)FP

2 (k̂)dk̂. (22.88)

This is the frequency domain equivalent of neglecting the pulsar term in (22.75).
Evaluating the integral, we arrive at an expression with depends only on the angle θ

between the pulsars. This leads to the famous Hellings and Downs curve (Hellings and
Downs, 1983), illustrated in Figure 22.9.

In summary, the basic technique used to search for a gravitational-wave imprint
consists in correlating the timing residuals from N pulsars. In general, the residual from
a given pulsar is given by

δt = δtn + δth, (22.89)
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Figure 22.9 The expected correlation in timing residuals of pairs of pulsars as a function of angular
separation for an isotropic gravitational-wave background. The theoretical result is compared to a
simulated background of inspiralling binaries (each ‘+’ represents a pulsar pair of idealized noiseless
data). (Reproduced from Hobbs et al. (2010a).)
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where δth ∼ h/f and δtn are the gravitational-wave signal and noise contribution, respec-
tively. Taking the case of two pulsars as an example, we have N = 2 and the minimum
detectable stochastic signal is characterized by

h2�gw( f ) ∝ δt2rms f 4
√

T�f
, (22.90)

where δtrms = √〈δt2〉 is the root-mean-square value of the timing residuals and �f the
bandwidth of the search. This is the pulsar-timing equivalent of the result one obtains
by considering direct searches for a stochastic background using the cross-correlation
of data from two interferometers (discussed in Chapter 8). If instead of two, one has
many pulsars, then the optimal signal-to-noise ratio is given by the combination of all
statistically independent correlations that can be formed. For N sufficiently large, this
signal-to-noise ratio scales as N2. In effect, we have

h2�gw( f ) ∝ δt2rms f 4

N
√

T�f
. (22.91)

Making contact with the discussion of astrophysical backgrounds, this leads to

hc( f ) ∝ δtrms f
N1/2(T�f )1/4 . (22.92)

The sensitivity of a given timing array scales as hc( f ) ∝ f and reaches a minimum
detectable frequency f ∼ 1/T . This leads to a characteristic wedge-like sensitivity curve
with a sharp low-frequency cut-off.

As an example of the state-of-the-art, let us consider the recent data release from the
NANOGrav collaboration, leading to the results shown in Figure 22.10. The top panel
shows 95% upper limits for free-spectrum amplitudes (jagged black line), which indicate
the sensitivity of the dataset to individual monochromatic signals. The anticipated f −2/3

power law is also shown. The coloured dashed lines and bands indicate a selection of
theoretical expectations for the stochastic background. The models differ in the choice
of black-hole–host-galaxy mass relationship and the impact of possible selection biases
in dynamically measured masses (see Colpi and Sesana (2017) for discussion). These
same results are shown in the bottom panel, expressed in terms of the stochastic energy
density (per logarithmic frequency bin) in the Universe as a fraction of closure density,
�gw( f )h2

100, where the scaling by h2
100 removes the impact of the specific value of the

Hubble constant (as before). The fractional energy density scales as �gwh2 ∝ f 2hc( f )2.
The results in Figure 22.10 correspond to a (95%) upper limit on the gravitational-

wave strain of

hc < 1.45 × 10−15
(

f
yr−1

)−2/3

. (22.93)
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Figure 22.10 Top: Inferred upper limit on a stochastic low-frequency gravitational-wave-amplitude
(95% upper limits for an uncorrelated common process with a f −2/3 power law (straight black line) or
with independently determined free-spectrum components (jagged black line)). The dash-dotted line
shows the expected sensitivity scaling behaviour for white noise. The coloured dashed lines and bands
show median and 1σ ranges for the amplitudes predicted by different models (see Arzoumanian et al.
(2018) for the original references). Bottom: As in the top panel, except showing the results in terms of the
stochastic background energy density (per logarithmic frequency bin) in the Universe as a fraction of the
closure density, �gw(f )h2

100. (Reproduced from Arzoumanian et al. (2018) by permission of the AAS.)

The timing data will improve with continued observations and we should (hopefully)
soon reach the sensitivity where several scenarios (and/or parameter values within a given
model) may yield a detection. If there are no detections, we may still be able to rule out
proposed scenarios. In the next decade, the Square Kilometer Array (SKA) will provide
a major increase in pulsar timing capability (Stappers et al., 2018). Assuming that the
SKA will be able to monitor 20 millisecond pulsars for 10 years at a precision level of
δtrms ∼ 10 ns, it will allow us to not only detect the stochastic background, but also study
its spectrum in the frequency range 3 × 10−9 � f � few × 10−8. This would provide
detailed information about the formation and evolution history of supermassive black
holes.
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22.8 AC/DC

The intuition from linear theory suggests that gravitational waves created by an astro-
physical event typically consists of a short-lived high-frequency signal. In addition, the
nonlinear theory unveils a non-oscillatory low-frequency part of the signal. In the case of
a binary merger, this contribution grows rapidly during the merger and—remarkably—
leaves a permanent metric change once the wave burst has passed. In effect, the spacetime
relaxes to a configuration that differs from the original one. This effect if known as the
gravitational-wave memory (Christodoulou, 1991; Favata, 2009; Garfinkle, 2016). In an
electromagnetic analogue it would represent a DC complement to the AC signals we
have so far considered. This memory depends on the entire past history of the source.

As a direct illustration of the memory effect, let us consider the specific case of the
black-hole merger GW150914. In essence, we want to consider the detectability of the
memory with instruments like Advanced LIGO. We know that the gravitational-wave
strain scales with the mass of the binary, but the energy involved only makes up a
small fraction of the total energy release. This is apparent from the results shown in
Figure 22.11. This example shows that the imprint of the memory on the GW150914
signal is too weak to be detected (Lasky et al., 2016). However, it is not negligible. One
may be able to detect it by combining data from an ensemble of events. This is promising,
as black-hole mergers appear to be common. However, it could be that GW150914
represents a relatively high-mass binary compared to the overall population. If this is
the case then the number of events required to detect the gravitational-wave memory
obviously increases.

22.9 Astrometry

In addition to introducing a timing residual, a cosmological gravitational-wave signal may
cause the apparent position of distant stars to fluctuate. It is easy to see that this should
happen. The argument is a straightforward variation of the timing calculation we have
already done. The angular deflection should simply be proportional to the gravitational-
wave strain. These fluctuations will be tiny but they may nevertheless be detectable with
accurate astrometry (Book and Flanagan, 2011; Moore et al., 2017), an approach that
is particularly well suited to constraining the polarization content of gravitational waves
(O’Beirne and Cornish, 2018). This idea is relevant given that Gaia4 will make high-
precision observations of the positions of about a billion stars in our Galaxy and several
hundred thousand distant quasars.

Gaia’s sensitivity to gravitational waves relies on observing a large number of stars.
Since stars are typically separated by many gravitational wavelengths, each ‘star term’
will be different. Just as in the pulsar timing case, this means that the signal is dominated
by the ‘Earth term’, which is common to all stars. A gravitational-wave background will

4 sci.esa.int/gaia/
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Figure 22.11 Gravitational-wave strain for parameters consistent with GW150914. The top panel
shows the strain including (blue curve) and excluding (black) the memory effect. The bottom panel shows
only the memory-induced strain. The red dotted and dashed curves are binaries assumed to be at the
same distance (410 Mpc) and with the same orientation, but have equal masses with M1,2 = 20M�
and 50M�, respectively (compared to 65M� for the blue curve). Inset: the solid blue curve shows a
zoomed-in version of the blue curve from the bottom panel, while the dashed curve is after a high-pass
filter to show the signal visible in an Advanced LIGO instrument. (Reproduced from Lasky et al. (2016),
copyright (2016) by the American Physical Society.)

lead to deflections that are correlated over the sky and vary randomly with time. The rms
deflection is roughly given by (Book and Flanagan, 2011)

δrms ∼ hrms ∼ H0

f

√
�gw. (22.94)

Suppose we track N sources in the sky with angular precision �θ for a total time T . For
a single source one may detect an angular velocity of order ∼ �θ/T and the precision
improves with the number of sources as 1/N. The angular rms velcocity is

ωrms ∼ f δrms ∼ H0
√

�gw, (22.95)

and it follows that one should be able to obtain an upper limit of order

�gw ∼ (�θ)2

NT2H2
0

. (22.96)
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To be specific, by tracking the position of N ∼ 106 quasars over a time of T ∼ 1 yr with
an angular resolution of �θ ∼ 10 μas we would reach (Book and Flanagan, 2011)

�gw ∼ 10−6, (22.97)

a level comparable to the limit expected from pulsar timing. Gravitational-wave
astronomers should keep a keen eye on the releases of Gaia data in the early 2020s.

22.10 Detecting a primordial background

Gravitational waves decouple from matter very early in the history of the Universe, much
earlier than the electromagnetic radiation (see Chapter 4). This means that one may, at
least in principle, be able us to use gravitational-wave data to probe the very first stages of
cosmic evolution. As this may include the inflationary era, this kind of observation would
(arguably) be the most fundamental observation in all of physics. The question is if it is
a realistic prospect. After all, the basic effect of inflation is to smooth things out—density
variations and spatial curvature wash out. On the other hand, we know from quantum
mechanics that there will always be some level of fluctuation.

In order to assess to what extent we can expect to detect primordial gravitational
waves, we need to better understand the nature of such signals (see Caprini and Figueroa
(2018) for a recent review). Perhaps not surprisingly, this leads to a new set of questions.
First of all, the wave-generation mechanisms will (most likely) be stochastic in nature.
This means that, as in the case of pulsar timing, we have to consider the statistical
distribution of signals from an unresolvable collection of events. As in the case of distant
astrophysical sources, we expect an isotropic gravitational-wave background. This means
that we are unlikely to be able to distinguish different contributions from one another. In
fact, astrophysical stochastic backgrounds may swamp the primordial signal in different
frequency bands.

A number of processes in the Universe may generate gravitational waves. The most
commonly considered sources are (Maggiore, 2000):

- fluctuations amplified during inflation,

- first-order phase transitions,

- cosmic strings.

We will focus on these three mechanisms, even though the list goes on (including
different pre-Big-Bang scenarios, branes, and quintessence; see Maggiore (2018)). Our
aim is to introduce the main detection strategy and provide a rough idea of the level of
detectability. The same logic applies to other mechanisms.

The gravitational-wave spectrum for any given mechanism typically covers a range
of frequencies and scales. The lowest possible frequency will always correspond to the
largest wavelength of oscillation—bounded by the scale of the Universe, this should be
on the order of Hubble radius at any given time. That is, we have λ ∼ H−1

0 , leading
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to the lowest frequency today of fgw ∼ 10−18 Hz. Meanwhile, the highest frequencies
correspond to the highest temperature of the primordial Universe. Taking this to be
the Planck scale T ≈ 1032 K (above this temperature quantum gravity effects would be
important), the high end of the frequency band today is on the order of 1012 Hz (taking
into account the redshift in an expanding Universe). The main message is that we should
expect stochastic gravitational waves across up to 30 decades in frequency.

As discussed in Chapters 4 and 8, it is useful to express any gravitational-wave
estimates in terms of the corresponding energy spectrum and compare the result to the
standard critical density ρc from (4.72). That is—as in (8.49)—we consider the energy
spectrum

�gw = 1
ρc

dρgw

d log f
= f

ρc

dρgw

df
. (22.98)

In order for this to be useful we need to make contact with the gravitational-wave
amplitude. To do this, we recall that a stochastic background can be thought of as a
superposition of waves coming from all angles and with all possible frequencies. Building
on the previous plane-wave results, we express such signals as

hij(t,x) =
∑

P=+,×

∫ +∞

−∞
df

∫
dk̂ hP(f , k̂)e−2π iftεP

ij (k̂)eik·x + c.c., (22.99)

where k̂ is the incoming unit vector of the propagation and the polarization tensors are
defined to be normal to this vector. As before, the key information is encoded in the
Fourier transform hP(f , k̂). Moreover, in the isotropic and unpolarized case, we simply
have hk (in terms of k = 2π f ), given by

hij(t,x) =
∫

d3k
(2π)3/2 hkeik·x ∑

P

εP
ij (k̂)+ c.c.. (22.100)

This gives us a spectrum of gravitational waves, expressed in terms of hk. The final
connection is made via the expression for the gravitational-wave energy

ρgw = 1
32πG

〈ḣij ḣij〉, (22.101)

which involves averaging over a range of wavelengths. As we are dealing with a stochastic
signal this amounts to taking an ensemble average. In order to complete the model,
and work out the abundance of gravitational waves in the present Universe, we need
to be able to (for each given mechanism) track the evolution of hk back to the
source.
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22.11 Parametric amplification of quantum fluctuations

As an example of a robust mechanism for primordial gravitational waves, let us consider
the amplification of quantum fluctuations during the inflationary epoch (Grishchuk,
1975; Grishchuk, 1993). The idea behind the mechanism is simple. The very early
Universe deviated from absolute homogeneity due to quantum fluctuations. As the
Universe expanded, some of these fluctuations were amplified. After the end of inflation,
the amplified perturbations continued to propagate as waves, redshifted in the usual way.

In order to illustrate the mechanism, let us consider small deviations away from the
standard Friedmann–Robertson–Walker model (see Chapter 4). The background metric
is then given by (22.7) (with k = 0, not to be confused with the wave number in the
following) and one can show that the metric perturbations are governed by the wave
equation

�hij(t,x) = 0. (22.102)

In this case we have
√−g = R3(t) and it follows that

[
−∂2

t − 3
Ṙ
R

∂t + 1
R2 ∇2

]
hij(t,x) = 0. (22.103)

If we assume that the signal is isotropic (for simplicity), we have

[
∂2

t + 3
Ṙ
R

∂t + k2

R2

]
hk(t) = 0. (22.104)

At this point it is useful to introduce a new (conformal) time coordinate η, such that
dt = adη. This leads to

h′
k(η)+ 2

R′

R
h′

k(η)+ k2hk(η) = 0, (22.105)

where

h′
k = dhk

dη
= Rḣk. (22.106)

Moreover, we can solve the equation by changing the dependent variable to

ψk = a(η)hk(η). (22.107)
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This leads to the final equation

ψ ′
k +

(
k2 − R′

R

)
ψk = 0. (22.108)

This is the equation for a parametric oscillator, with frequency depending on time. The
time-dependent part depends on the cosmology.

We get an intuitive picture of what is going on by considering two extreme limits. In
the first limit, let k2 � R′/R. In this regime—representing what we will call sub-Hubble
modes, since the wavelengths are much shorter than the Hubble scale—we simply have
a harmonic oscillator, so the solution is

ψk ∝ 1√
2k

e±ikη. (22.109)

In the opposite limit, when k2 � R′/R, the evolution of the (super-Hubble) modes is
such that

ψk ∝ R
(

Ck + Dk

∫
dη

R2

)
, (22.110)

where Ck and Dk are integration constants. The two solutions should be matched in the
intermediate regime, but as our discussion is qualitative we do not need to work out the
details. In terms of the gravitational-wave amplitude, we have

hk ∝ 1√
2kR

e±ikη, (22.111)

and

hk ∝ Ck + Dk

∫
dη

R2 . (22.112)

We see that the sub-Hubble modes are suppressed as the Universe expands while
the amplitude of the super-Hubble modes is constant. Effectively, modes that remain
outside the Hubble radius are amplified relative to modes inside. However, as the
Universe expands, the amplified modes may re-enter the Hubble radius (as sketched
in Figure 22.12). Once they do, they turn into propagating gravitational waves

ψk = Ake+ikη + Bke−ikη. (22.113)

Finally, we make contact with (22.101). Basically, we need

ḣ = ψ ′

R2 − ψ

R2

R′

R
, (22.114)
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Figure 22.12 A schematic illustration of how perturbation modes of different wavelengths exit and
eventually re-enter the Hubble radius in an inflationary Universe.

leading to

〈ḣij ḣij〉 = 1
R4 〈ψ ′

ijψ
′ij − 2Hψ ijψ ′

ij + H2ψijψ
ij〉 ≈ 1

R4 〈ψ ′
ijψ

′ij〉. (22.115)

For the sub-Hubble modes we get

〈ψ ′
ijψ

′ij〉V = 16π

V

∫ +∞

0
k2ψ ′

kψ
′∗
k dk, (22.116)

where we have used εP
ij ε

ij
P = 4 (from before) and

∫
dk̂ = 4π . In terms of our wave solution,

and after averaging, we get

〈ψ ′
kψ

′∗
k 〉 = k2

2

(
|A2

k| + |B2
k|

)
, (22.117)

so

ρgw = 1
4GR4V

∫
k4

(
|A2

k| + |B2
k|

)
dk, (22.118)

and

�gw ∝ k3〈ψ ′
kψ

′∗
k 〉. (22.119)

However, we are not quite done. We still need to work out the amplitudes Ak and Bk
for a given scenario. This turns out to be the messy part of the problem, as the result is
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sensitive to the assumed inflationary model. In the simple, but perhaps unrealistic, model
of deSitter expansion the Hubble parameter stays constant (= HI) and we have

R = − 1
HIη

for − ∞ < η < ηI , (22.120)

where ηI represents the end of inflation. In this case one can find an analytic solution for
the amplitudes we are interested in

Ak = 1

2
√

2k5/2η2
I

, (22.121)

and

Bk = 1√
2k

(
1 − i

kηI
− 1

2k2η2
I

)
. (22.122)

This leads to a flat (k-independent) spectrum with

h2�gw ≈ 4 × 10−14
(

HI

6 × 10−5MPl

)2

, (22.123)

where MPl is the Planck mass

MPl =
(

h̄c
G

)1/2

. (22.124)

A more realistic model for inflation is the so-called slow-roll model, in which the
expansion is driven by a scalar field φ governed by a potential V (φ) that satisfies specific
conditions (Liddle, 2003). The main difference between this model and the deSitter
case is that the Hubble radius varies during the inflationary epoch (as indicated in
Figure 22.12). As φ rolls down the potential towards the minimum, the Hubble radius
decreases. As a result the model is not scale invariant—the spectrum depends on k
and acquires a small tilt. In principle, this could be good news for the prospects of
detection, but detailed models suggest that the tilt tends to make the situation worse
(see Figure 22.16).

22.12 Phase transitions

The early Universe cooled as it expanded. As the temperature dropped below critical
values (typically associated with some mass scale, like that of the Higgs boson for the
electroweak transition), there should have been a series of phase transitions. If these phase
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transitions were first order they may have generated gravitational waves (Caprini et al.,
2009; Binétruy et al., 2012).

The basic idea is that, at high temperatures the Universe is in a metastable vacuum
phase and—as the temperature drops—a new ‘true’ vacuum emerges, separated from
the old ‘false’ vacuum by a potential barrier. This potential barrier prevents the transition
from being instantaneous. Instead, the transition proceeds via quantum tunneling driven
by random fluctuations. As bubbles of the new phase expand into the old phase they may
collide and generate gravitational waves. The process also leads to heating, which may
trigger turbulence and additional gravitational-wave emission.

The calculation of the gravitational-wave signature associated with phase transi-
tions is complex, but one typically finds that it is characterized by a peak frequency
which depends on the temperature at with the transition happened. In the case of the
electroweak transition, which happened at kBT ≈ 100 GeV, the peak frequency would
be fpeak ∼ 4 × 10−3 Hz (Apreda et al., 2002). Basically, this phase transition might
leave a signature in the sensitivity range for space interferometers like LISA. Detailed
calculations also show that the spectrum rises as f 3 towards the peak and then drops off
as f −1.

The amplitude estimated for bubble collisions suggests that the gravitational-wave
signature may be within reach of future detectors, but the scenario is speculative. There
are two well-known phase transitions that should have taken place in the early Universe,
the QCD phase transition and the electroweak one. The first of these (when baryonic
matter went from a quark-gluon plasma to the confined state, with neutrons and protons,
we see today) was a smooth crossover rather than a first-order transition. Within the
Standard Model, as similar crossover is predicted for the electroweak transition. These
would not be very promising in terms of gravitational-wave production. Supersymmetric
models may lead to first-order transitions, but at the moment there is little observational
support for these suggestions.

22.13 Cosmic strings

Phase transitions associated spontaneous symmetry breaking may also generate a net-
work of cosmic strings (topological defects) through the so-called Kibble mechanism
(Hindmarsh and Kibble, 1995). The dynamics of these cosmic strings may lead to
an observational gravitational-wave signature, opening up a fascinating window to
fundamental physics at very high energies.

Cosmic strings are, essentially, one-dimensional massive objects with extraordinary
density. The relevant quantity is the mass per unit length, μ, which can reach values
as high as 1022 g/cm if the string formation takes place at scales above 1016 GeV.
A network of such strings may lead to intersections, the formation of kinks and small
loops being detached from the main body of each string. The dynamics shares many
aspects familiar from superfluid turbulence in the laboratory setting (Schwarz, 1982;
Tsubota et al., 2003). As the tension is remarkably high, similar to the mass per
unit length, the interactions will lead to the string vibrating at relativistic speeds. The
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vibrations would be damped by gravitational radiation. Small loops decay the fastest,
roughly on the timescale needed for light to travel across their diameter. It is easy to
understand how the string vibrations lead to quadrupole variations and the emission of
gravitational waves. Unfortunately, the signal is strongly model dependent (Allen and
Shellard, 1992; Caldwell et al., 1996; Damour and Vilenkin, 2000).

Considering the statistics of such a cosmic string network one may argue that, at any
given time, a Hubble-sized volume contains a constant number of strings passing through
it and a large number of small strings that are decaying and replaced by new ones. Loops
of a variety of sizes are formed and radiate at different frequencies as they shrink. This
would lead to a relatively flat gravitational-wave spectrum, with a small bump at low
frequencies. However, many of the proposed cosmic strings scenarios are already ruled
out by astrophysical constraints; see Figure 22.13.

About 50 days of coincident data from the two LIGO detectors, collected during
the O1 run in 2016, were used to constrain the string tension for different models
(Abbott et al., 2018a). Focusing on the classic scenario (Damour and Vilenkin, 2000;
Damour and Vilenkin, 2005), where all loops chopped off the infinite string network are
formed with the same relative size, the limits for stochastic and burst signals are shown in
Figure 22.13. The obtained limits are not as strict as those obtained from pulsar timing,
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Figure 22.13 Exclusion regions (at 90% confidence) for the classic cosmic string model where all loops
are formed with the same relative size. Shaded regions are excluded by the (O1) Advanced LIGO
stochastic and burst measurements. Bounds from the S6 LIGO–Virgo stochastic measurement are also
shown, along with constraints from the indirect Big Bang Nucleosynthesis, CMB bounds and pulsar
timing array measurements. The anticipated design sensitivity of Advanced LIGO–Virgo detectors is
also indicated (Design, Stochastic, in the upper left corner of the figure). The excluded regions are below
the respective curves. (Reproduced from Abbott et al. (2018a), copyright (2018) by the American
Physical Society.)
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which correspond to Gμ < 3.8 × 10−12 for this specific model. Future detector upgrades
are expected to make the interferometer constraint competitive.

22.14 E/B-modes

Gravitational waves from the very early Universe may leave an imprint on the cosmic
microwave background (Kamionkowski et al., 1997). However, in order to extract this
signature we need to consider the fineprint of the CMB. As gravitational waves are
transverse and area-conserving (stretch one way—squeeze the other) they do not pro-
duce density or temperature variations. Rather, they leave an imprint in the polarization.
Detecting this imprint is far from easy and, in addition, cosmic magnetic fields and
foreground dust may affect the polarization.

Let us, nevertheless, consider the expected gravitational-wave signature. A gravita-
tional wave moving directly towards the Earth pushes the particles in the plasma apart
in one direction and together in the perpendicular direction. This produces a bias in the
polarization of the scattered photons and leads to a slight excess along directions in which
the scatterers are being pushed. Since the gravitational waves are themselves polarized,
this leads to a rotation of the polarization map vectors (which will be arbitrary). A map
of the polarization takes the form of line segments on the sky, representing the direction
of the net oscillation in the electric field. With a single point, this is all the information
we have, but with a map of some area, one can decompose the polarization into E-
modes (due the scalar density variations) and B-modes (due to tensor perturbations);
see Figure 22.14. The main difference is that B-modes have a net twist as you travel
around in a circle.

One would typically quantify cosmological perturbations by two numbers: the overall
amplitude, A, and the ‘spectral tilt’, n, which tells you how the perturbations vary from
large wavelengths to shorter ones. For density perturbations, we have a reasonably good
idea of what these numbers are. The amplitude is about 10−5; see Figure 22.14, and the
tilt is n ≈ 0.96 (Ade et al., 2016b). For historical reasons, scalar (density) perturbations
that are the same on all wavelengths are taken to have nS = 1, while tensor (gravitational-
wave) perturbations that are the same on all wavelengths have nT = 0. It is common to
relate the different perturbations by giving the amplitude ratio r = AT/AS.

In early 2014 the BICEP2 team announced the discovery of B-modes (on an angular
scale of a few degrees; see Ade et al. (2014)). They suggested that the power in
the B-modes corresponded to a tensor-to-scalar ratio r ≈ 0.2, compared to the value
r = 0.13 expected from simple (single-field) slow-roll inflation. However, the analysis
assumed dust contamination was negligible. The immediate question was to what extent
foreground dust might corrupt the conclusions. This is an important issue because
(at the relevant frequency) polarized emission in the sky is expected to be dominated
by dust. Indeed, a closer inspection demonstrates that the uncertainties are significant
enough that a detection can not be claimed (Ade et al., 2015; Gott and Colley, 2017).
By correlating the BICEP2 polarization maps to those from the Planck experiment one
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Figure 22.14 Left: The Planck data for the cosmological background. Maps like this show differences
in temperature from point to point in the sky. It is these tiny differences (one part in 105) that grow into
stars, galaxies, and clusters as the Universe evolves. Right: The different nature of scalar density
variations (E-modes) and gravitational-wave tensor perturbations (B-modes). We can (at least in
principle) distinguish the different modes from the shape of the polarization pattern in the sky. (Left
panel reproduced from Adam et al. (2016) with permission from Astronomy and Astrophysics.
Copyright ESO.)

finds that r = 0.09+0.06
−0.04, suggesting that the gravitational-wave contribution is much less

significant than initially claimed. The search for primordial gravitational waves goes on.

22.15 Twenty-nine decades of frequency

We have learned that gravitational-wave astronomy spans a frequency range of many
decades. We have seen how astrophysical systems radiate at specific frequencies and
how different frequency ranges—from fluctuations in the CMB at the very lowest
frequencies to the high-frequency oscillations of neutron stars—are probed by distinct
observation strategies. The different observations pose (to some extent) unique data
analysis challenges, but there are overlaps. For example, systems like the black-hole
binary GW150914 detected by LIGO could also have been seen (at an earlier stage of
evolution) by a space interferometer like LISA. We are searching for gravitational waves
from rotating neutron stars, but at the same time we are trying to use pulsar timing
to detect cosmological gravitational waves. Still, there is only one problem that brings
together results from all available observation channels—the stochastic background,
which can be constrained across about 29 decades of frequency.

As often is the case, electromagnetic data allow us to rule out the most ‘ambitious’
gravitational-wave predictions. We have already considered indirect bounds obtained
from pulsar timing and CMB measurements. We also gain insight from Big Bang
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Nucleosynthesis models. Detailed calculations predict the abundances of light elements
in the Universe. The bulk of today’s deuterium, the helium isotopes 3He and 4He, and 7Li
was created during the primordial nucleosynthesis, the outcome of which was sensitive
to the coupling constants of the fundamental interactions and the expansion rate of the
Universe (Pagano et al., 2016). Basically, a change in H0 alters the freeze-out temperature
at which nucleosynthesis takes place, affecting the ratio of proton and neutron production
and the light-element abundances.

It is relatively straightforward to account for the impact of gravitational waves on
the nucleosynthesis. We know that the expansion of the Universe relates to the energy
density through the Friedmann equations (see Chapter 4). If the total energy density of
gravitational waves, �gw, is too large at the time of nucleosynthesis, then the temperature
at freeze out would be too high. If we assume that the gravitational-wave spectrum is flat,
this leads to the constraint

h2
100�gw ≤ 5 × 10−6. (22.125)

It is instructive to compare this limit to the different upper limits we have discussed.
We may also add the most recent constraint from ground-based detectors. This is
relevant, as we know from the successful detections during the LIGO O1-2 runs that the
rate and masses of coalescing binary black holes may be greater than expected. It could
perhaps be that the stochastic background from unresolved compact binary coalescences
is also surprisingly loud.

As we have seen, one may represent many of the possible sources for a stochastic
background in terms of a simple power-law spectrum such that

�gw = �α

(
f

fref

)α

, (22.126)

where we expect α ≈ 0 for an inflationary model and α = 2/3 for a background of
inspiralling binaries. An analysis of the data from the O1 run did not display evidence of a
stochastic gravitational-wave signal (Abbott et al., 2017m), but the observations improves
on previous (direct) constraints on energy density of gravitational waves by about a factor
of 30. The new limit corresponds to

�0 < 1.7 × 10−7, (22.127)

with fref in the most sensitive part of the LIGO band (20–86 Hz). The constraints
obtained for a range of values of α are shown Figure 22.15. In the case of binary systems,
the dominant contribution to the background comes from the inspiral phase (α = 2/3)
and it is worth noting that systems beyond a redshift of 5 or so contribute little to the
overall integral due to the small number of stars formed at such high redshifts.

The O1 results are summarized in Figure 22.16 and compared to upper limits
from the range of observations we have discussed. The comparison highlights why it
may be difficult to detected a primordial background with either ground- or space-
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Figure 22.15 Observational limits for a stochastic background in the �α − α plane. The region above
each curve is excluded at 95% confidence. The different curves represent constraints from the final
science run of initial LIGO-Virgo detectors and from the first Advanced LIGO detector run (O1). The
projected design sensitivity limit for Advanced LIGO–Virgo is also shown. (Reproduced from Abbott
et al. (2017m), copyright (2017) by The American Physical Society.)
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Figure 22.16 Constraints on the stochastic gravitational-wave background across 29 decades of
frequency. The limits from the final science run of initial LIGO–Virgo, the co-located detectors at
Hanford (H1–H2), Advanced LIGO (aLIGO) O1, and the projected design sensitivity of the advanced
detector network assuming two years of coincident data, are compared to constraints from other
observations. These include CMB measurements, Big Bang nucleosynthesis results, pulsar timing, and
the ringing of the Earth’s normal modes. The figure also shows projected limits from a space-based
detector like LISA. In addition to an estimate background level from slow-roll inflation, the estimated
contribution from compact binaries (both neutron star and black-hole binaries), extended using the
expected α = 2/3 power-law to low frequencies, is indicated, with a cut-off imposed where the inspiral
timescale is of the order of the Hubble scale. (Reproduced from Abbott et al. (2017m), copyright (2017) by
the American Physical Society.)
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based interferometers. The expected signal may simply be overwhelmed by astrophysical
counterparts. A stiff equation of state may lead to the primordial spectrum rising fast
enough for the signal to become relevant, but it is not clear how seriously this suggestion
should be taken. If our main interest is in unveiling the details of the origin of the
Universe, this is bad news. However, in terms of detecting stochastic signals in general,
there is a glimpse of promise. As the advanced detectors reach design sensitivity, there
is a reasonable chance that we will detect the background due to binary black holes.
The situation should further improve with third-generation detectors like the Einstein
Telescope or the Cosmic Explorer, and the launch of LISA in the 2030s could help
unveil the spectral shape of the gravitational-wave background. This would provide
insights into the formation of these systems and may also help constrain cosmological
parameters. The measurement of tiny spacetime wiggles may not, in the end, help us
probe the very first moments of the Universe but we should still learn a lot about its
subsequent evolution.
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Apologies and thanks

The effort to understand, catch, and explore gravitational waves stretches over more than
a century. The short version is simple: 50 years of confusion, 50 years of frustration,
and a few years of celebration. The real story is much more complicated, with many
individuals making key contributions along the way. It is impossible to credit them all. It
is also impossible to include—or give justice to—all the different ideas in such a narrative.
There are choices to make and this is far from easy. At the end of the day, many decisions
will be subjective. So it is with this book. This is my version of the story, based on my
particular experience and interests. I have tried to give credit where it is due, but I am
(painfully) aware that I have not managed to include all original work in the reference
list. The literature is simply too vast... so I have to apologize to anyone who feels left out.

I should also take the opportunity to apologize for mistakes and misunderstandings
that have made their way (sneakily) through the many edits. If I knew where they were
I could do something about them, but I don’t so I can’t. Maybe next time.

In a more positive vein, I want to thank everyone that helped out along the way. Many
friends and colleagues have contributed to my understanding (as it is) of gravity over
the years. I would like to express my heartfelt gratitude to all of you! I am not going to
attempt making a list—you know who you are. I will, however, single out three people
without whom this book would certainly not have been written. First of all, Bernard
Schutz, who gave me the opportunity to join his group all those years ago and pushed
me in all sorts of interesting directions. Secondly, Kostas Kokkotas, who introduced me
to many aspect of gravitational-wave physics and continues to be a great collaborator.
Finally, Greg Comer, who keeps trying to teach me stuff. This book is for all of you—I
am honoured to be your friend.
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accreting neutron stars,
gravitational-wave
emission 346

accreting neutron stars,
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accreting neutron stars,
magnetic field burial 348
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deformation 351
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quadrupole moment 346
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active galaxies 203
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alternative theories 86
angular momentum flux
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antenna pattern 140
apparent horizon 493
asteroseismology 282, 452
astrometry 609
axial perturbations 454
axial perturbations, fluid

velocity 293, 454

bar detectors 126
bar detectors, cryogenic 127
bar-mode instability 305,
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basis vectors 29
Bayesian analysis 168
beta equilibrium 252
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binary inspiral 12, 177
binary inspiral,

effective one body
description 91, 247

binary inspiral, matched
filtering 157

binary inspiral, post Newtonian
approach 242

binary inspiral, spin effects 246
binary inspiral, tidal

effects 543, 556
Binary Pulsar PSR

B1913+16 99, 223
binary system, evolution 196
binary system, mass

function 193
binary system, post-Keplerian

parameters 222
black hole, Cygnus X1 193
black hole, energy

extraction 424
black hole, ergosphere 424
black hole, Kerr solution 418
black hole, Schwarzschild

solution 74
black hole, Sgr A∗ 205
black hole, stability 392
black hole-neutron star

mergers 519
black-hole candidates 195
black-hole collisions, close-limit

approximation 498
black-hole collisions, energy

emitted 225, 497
black-hole mergers 198
black-hole mergers,

GW150914 1, 167, 440, 502
black-hole mergers,

GW170814 87, 138
black-hole mergers,

rates 202
black-hole mergers, recoil and

kicks 503
black-hole mergers,

simulations 497, 501
black-hole perturbations,

axial 401
black-hole perturbations,
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black-hole perturbations, late

time tail 399

black-hole perturbations,
polar 402

black-hole perturbations,
test-particle motion 409

Blandford–Znajek
mechanism 521

Bondi news function 496
braking index 112, 188, 377
breaking strain 319, 326,
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bulk viscosity 365
bulk viscosity, hyperons 371
burst searches 161

canonical angular
momentum 309, 373

canonical energy 308, 374
Chandrasekhar mass 184
Chandrasekhar–Friedman–

Schutz (CFS)
instability 309, 361, 470

characteristic amplitude 156,
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characteristic amplitude,
r-mode instability 381

chemical potential 76,
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chirp time 97
Christoffel symbols 41
common envelope phase 197
conformal factor 83, 487
connection coefficients 41
conservation laws 50, 511
contact binaries 113
continuity equation 81
continuous waves, matched

filtering 159
continuous waves,
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contrast with conventional

astronomy 151
contrast with

electromagnetism 6
coordinate basis 36
cosmic dawn 583
Cosmic Explorer 145
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cosmic microwave
background 583

cosmic strings 617
cosmological constant 83, 585
cosmological perturbations,

E/B-modes 619
cosmological redshift 588
cosmological scale factor 82,
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cosmology, dark energy 584
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Einstein field equations, polar
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Einstein field equations,
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collapse 530
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frequency evolution,
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Friedmann equations 83
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geodesics, gravitational
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orbits 228
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gravitational lensing 215, 595
gravitational redshift 211
gravitational self-force 412
gravitational-wave
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gravitational-wave amplitude,

precessing neutron star 355
gravitational-wave cycles,

binaries 104, 245
gravitational-wave cycles, tidal
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gravitational-wave phase,
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gravitational-wave strain
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phenomenology 342
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neutron-star crust, melting 314
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f-mode instability 471
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numerical relativity,
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equations 511
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thermodynamics 76
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tidal potential 544
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