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Foreword

We, Information Technologists, are adept at coining picturesque names for new 
technological innovations. In the early part of this century, we saw the emergence of 
huge data centers established by vendors that were accessible to customers via the 
Internet from any place at any time. They provided on-demand and payment ser-
vices such as computing cycles, data storage, computing platforms, and software 
systems. They were multi-tenanted, elastic, and virtualized. Instead of calling them 
a “Computing Utility on the Internet,” the term Cloud Computing was coined befud-
dling non-professionals who wondered how Clouds could compute! Cloud 
Computing was inevitably followed by Fog Computing, Mist Computing, and Dew 
Computing—more picturesque names for cloud extensions. These computing envi-
ronments are visualized as layers: Cloud➔Fog➔Mist➔ and Dew. In between Dew 
and Mist, a more ordinarily named environment—Edge Computing—has emerged. 
It is a computing layer at the edge of the Internet that can access the cloud while 
processing locally critical data of systems they govern. The most important proper-
ties of Edge Computing are low latency and high security, both properties vital to 
process data acquired from a plethora of IoT devices. The data acquired from these 
devices are securely processed primarily by Edge computers.

Novel ideas from the emerging Artificial Intelligence paradigms are used to solve 
problems arising from the growing applications of computers in health care systems, 
manufacturing systems employing armies of robots, logistics in moving goods, and 
plenty of novel systems. Security and Intelligence are the two vital requirements in 
emerging computer-assisted systems and Edge Computing provides them.

This book by Naresh Kumar Sehgal, Manoj Saxena, and Dhaval N. Shah is a 
timely addition to the emerging area of Edge Computing—a direction in which 
technology is moving. The authors have several years of experience designing and 
delivering IT systems to clients worldwide, which is reflected in this book intended 
for students and professionals who wish to understand this new technology. I am 
sure you will gain immensely after reading this timely book. Happy reading!

Supercomputer Education and Research Centre� V. Rajaraman
Indian Institute of Science
Bangalore, India
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Preface

The idea for this book took birth in Fremont, California, in a meeting of Naresh 
Kumar Sehgal and Dhaval N. Shah with Prof. PCP Bhatt, who was visiting California 
from India in the Summer of 2023. Prof. Bhatt is the author of one of the most 
widely used Operating Systems book, which is in its 5th edition in India. He and 
Naresh had co-authored three books on Cloud Computing and noted a trend to move 
computing out of data centers closer to the customers. Serendipitously, Dhaval, in 
his AI Consulting work was sensing a need for a book in this area too. Thus a new 
book on Edge Computing was jointly conceived. Subsequently, Prof. Bhatt intro-
duced Naresh and Dhaval to Dr. Manoj Saxena, who had completed his Ph.D. with 
Prof. Bhatt. Manoj is operating a successful business related to Distributed and 
Edge Computing in India for over three decades.

A traditional data center consists of racks of servers, storage, and network 
devices in a large, air-conditioned facility. Then scores of clients and IoT (Internet 
of Things) devices interact with this data center over public and private networks. 
However, this setup causes latency which is unacceptable for real-time computing 
applications that can involve instant decision-making using AI. There is a need to 
support AI applications at or near the edge of computing networks to minimize 
latency and to address data privacy concerns. Such concerns currently cause many 
customers such as hospitals to not put their data in the Clouds. In this book, we 
review the solution architectures and algorithms to support AI in the edge comput-
ing devices.

Computing growth often mimics biology, which has recently resulted in an 
explosion of AI and ML applications to the real-life problems. Next step in this 
evolution is Intelligent IoT devices. Which can perform some AI and ML at the edge 
of networks. The net result will be alleviation of a need to transfer lots of data to the 
faraway datacenters and mimic intelligent entities making autonomous decisions 
while interacting with each other. Such a revolution will turn Cloud computing on 
its head to de-centralize the control back to the edge devices.

There are many books on IoT, Cloud Computing, and AI/ML, but these are 
treated as three different topics currently. We aim to connect the dots and show read-
ers the power of combining these in a single setup. Result will be lower electrical 
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power, latency, and higher security. Next generation of Cloud computing is needed 
to minimize latency and address privacy/security concerns of many customers. This 
book highlights the problems and proposes new solutions for performing AI and 
ML at the Edge of computing networks. We introduce some new concepts such as 
Collaborative Federated Learning in the context of data privacy and Edge Computing.

As a textbook, our target audience are students in Computer Science, Information 
Technology, and professionals practicing AI or Edge Computing. Readers will learn 
about new topics to prepare themselves for the next steps in evolution of Cloud 
Computing in context of Security, AI, and Edge.

The book assumes some background and understanding of basic hardware, oper-
ating systems, and some aspects of software engineering. To that extent it would suit 
senior under graduates or graduates in their early semesters. As a technical manu-
script, the book has enough in-depth coverage to interest IT managers and architects 
who need to develop solutions for Edge Computing. Our book provides a strong 
foundation of Cloud, Security, IoT, AI/ML, and Networking before building a case 
for “Secure AI on the Edge of the Cloud.” This enables our book to serve as a text-
book at the upper UG or graduate level of classes.

We recognize that a book has a limited shelf life so would like to plan ahead for 
an update. Thus, we invite the readers to send their inputs, comments, and any feed-
back to AIEdgeBookAuthors@gmail.com. These will be incorporated in the next 
edition. Many thanks!!

Santa Clara, CA, USA� Naresh Kumar Sehgal  
New Delhi, India� Manoj Saxena  
Fremont, CA, USA� Dhaval N. Shah  

Preface

mailto:AIEdgeBookAuthors@gmail.com
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Definitions

Acceptability	� Acceptability indicates the willingness of users to perform 
a particular action. It is used for evaluating factors accept-
able for authentication.

Access Control	� Access control is a mechanism that determines whether to 
allow or deny access to the requested data, equipment, or 
facility.

Attack Surface	� Attack surface for a system refers to the set of access 
points, which can be used to compromise security of 
that system.

Attestation	� Attestation is a process of certification. It enhances the 
trust level of remote users that they are communicating 
with a specific trusted device in the Cloud.

Authentication Factor	� An authentication factor is data or a measurement used to 
validate an identity claim.

Auto-scaling	� Auto-scaling is used by AWS to automatically add new 
servers to support an existing service, when more custom-
ers are using it and service may be slowing down.

Botnet	� A collection of systems successfully infected by an 
attacker to launch Web-based robot (aka Wobot) attack 
such as Denial of Service (DOS).

Breach	� A successful attack on a secured system.
Cache	� A cache is a high-speed memory included in a CPU (cen-

tral processing unit) package, for storing data items that 
are frequently accessed, to speed up a program. There may 
be multiple levels of cache memories.

Ciphertext	� Ciphertext is an encrypted message.
Client-Server	� Client-server is a computing model where a single server 

provides services to many client devices.



xiv

Cloud Bursting	� Cloud bursting is a process to request and 
access resources beyond an enterprise’s 
boundary, typically reaching into a Public 
Cloud from a Private Cloud, when user 
load increases.

Cluster	� Cluster refers to a group of interconnected 
servers, within a rack or combining a few 
racks, to perform a certain function such as 
supporting a large database or to support a 
large workload.

Cyber-Physical System	� A cyber-physicalsystem is a physical sys-
tem with an embedded computer control. It 
contains various physical devices being 
controlled by system software and mea-
surement devices.

Decryption	� Decryption is the algorithmic modification 
of a ciphertext using a key to recover the 
plaintext content of the message.

Denial of Service Attack	� A denial of service (DoS) attack is flooding 
a server with repeated service requests, 
thereby denying its services to other 
requestors.

Distributed Denial-of-Service Attack	� A distributed denial-of-service (DDoS) 
attack uses multiple clients on the Internet 
to repeatedly send excessive numbers of 
requests to a server. It prevents the recipi-
ent from providing services to other 
requestors. Frequently, this causes a 
Website to completely crash.

Edge Computing	� Edge computing refers to the notion of hav-
ing compute ability at the edge of a net-
work with local storage and 
decision-making abilities. Edge denotes 
the end point of a network.

Elasticity	� Elasticity is a property of computing and 
storage facilities in a Cloud to expand in 
view of a growing need and shrink when 
the need goes away.

Electronic Signature	� An electronic signature is a secure hash of 
a message with its author’s identification. 
This electronic hash is often used as a 
replacement of a physical signature on a 
paper document.

Definitions
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Encryption	� Encryption is the algorithmic modification of a message 
using a key to convert plaintext to ciphertext. This makes 
it difficult for an attacker to read the content of the mes-
sage except with a key.

Failure in Time	� Failure in time (FIT) is the failure rate measured as the 
number of failures per unit time. It is usually defined as a 
failure rate of 1 per billion hours. A component having a 
failure rate of 1 FIT is equivalent to having an MTBF of 
1 billion hours. FIT is the inverse of MTBF.

Fault Tolerance	� Fault tolerance is the property of a computer system to 
keep functioning properly in the presence of a hardware 
or software fault.

Grid Computing	� Combining compute servers, storage, and network 
resources to make them available on a dynamic basis for 
specific applications. Grid computing is a form of utility 
computing. Also, see Utility Computing.

Hashing	� Hashing is the calculation of a short fixed size number 
based upon the content of a message. Hashing can be 
used for error checking, authentication, and integrity 
checking.

Hybrid Cloud	� Hybrid cloud is a Cloud-computing environment, which 
uses a mix of on-premises, Private Cloud, and third-party, 
Public Cloud services with orchestration between the two 
platforms.

Identity Authentication	� Identity authentication is determination that a claimant is 
who it claims to be. It uses a process or algorithm for 
access control to evaluate whether to grant or deny access.

Imposter	� An imposter is a person or program that presents itself as 
someone or something else in order to gain access, cir-
cumvent authentication, trick a user into revealing 
secrets, or utilize someone else’s Cloud service. See also 
Masquerader.

Interoperability	� Interoperability is the ability of different information 
technology systems and software applications to commu-
nicate, exchange data, and use the information that has 
been exchanged.

Latency	� Latency refers to time delay in transmission of network 
packets or in accessing data from a memory.

Machine Learning	� Machine learning refers to the ability of computers to 
learn without being explicitly programmed.

Malware	� Malware is a program (such as virus, worm, Trojan horse, 
or other code-based malicious entity infecting a host) that 
is covertly inserted into a system with the intent of com-
promising the confidentiality, integrity, or availability of 
the victim’s data, applications, or operating system.

Definitions
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Mean Time Between Failures	� Mean time between failures is the downtime or 
basically mean time to failure plus the mean time 
to repair.

Mean Time to Failure	� Mean time to failure is the average time between 
failures.

Mean Time to Repair	� Mean time to repair is the average time from when 
a failure occurs until the failure is repaired.

Noisy Neighbors	� Noisy neighbor is a phrase used to describe a 
Cloud Computing infrastructure co-tenant that 
monopolizes bandwidth, disk I/O, CPU, and other 
resources and can negatively affect other users’ 
Cloud performance.

Observability	� Observability is a measure of how well internal 
states of a system can be inferred from knowledge 
of its external outputs.

Optimizations	� In computing, optimization is the process of modi-
fying a system to make some features of it work 
more efficiently or use fewer resources.

Private Cloud	� Private Cloud is dedicated to a single 
organization.

Public Cloud	� A Public Cloud offers its services to a full range of 
customers. The computing environment is shared 
with multiple tenants, on a free or pay-per-
usage model.

Quality of Service	� The overall performance for a Cloud service, as 
documented in a service-level agreement between 
a user and a service provider. The performance 
properties may include uptime, throughput (band-
width), transit delay (latency), error rates, priority, 
and security.

Reliability	� Reliability is a quality measure to reflect consis-
tency of operation such as failure frequency and 
consequent performance and/or security.

Self-Service	� Self-service Cloud Computing is a facility where 
customers can provision servers, storage, and 
launch applications without going through an 
IT person.

Side-Channel Attack	� An attempt to create a security breach by indi-
rectly attacking the secured information, such as 
guessing a secret by measuring power supply 
current.

Definitions
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Streaming	� Streaming is a technique for transferring data so that it 
can be processed as a steady and continuous stream. 
Streaming technologies are becoming important 
because most users do not have fast enough access to 
download large datasets. With streaming, the client 
browser or plug-in can start displaying the data before 
the entire file has been transmitted.

Threat Model	� Threat modeling is an approach for analyzing the secu-
rity of an application. It is a structured approach to 
identify, quantify, and address the security risks associ-
ated with an application.

Trusted Certificate	� A certificate that is trusted by the relying party (usually 
a third party) on the basis of secure and authenticated 
delivery. The public keys included in trusted certifi-
cates are used to start certification paths. See also Trust 
Anchor and Trusted Arbitrator.

Trusted Computing	� Trusted computing refers to a situation where users 
trust the manufacturer of hardware or software in a 
remote computer and are willing to put their sensitive 
data in a secure container hosted on that computer.

Usability	� Usability is a metric of user experience. It represents 
ease of use or how easily a product can be used to 
achieve specific goals with effectiveness, efficiency, 
and satisfaction for typical usage.

Utility Computing	� Delivering compute resources to users, who pay for 
these as a metered service on a need basis.

Verification	� Verification is the process of establishing the truth, 
accuracy, or validity of something.

Virtual Machine Monitor	� A virtual machine monitor (VMM) enables users to 
simultaneously run different operating systems, each in 
a different VM, on a server.

Virtual Machines	� A virtual machine (VM) is an emulation of a com-
puter system.

Virtual Private Cloud	� A Virtual Private Cloud (VPC) is an on-demand con-
figurable pool of shared computing resources allocated 
within a Public Cloud environment, providing a certain 
level of isolation between the different organizations.

Virus	� A computer program that can copy itself and infect a 
computer without permission or knowledge of the user. 
A virus might corrupt or delete data on a computer, use 
resident programs to copy itself to other computers, or 
even erase everything on a hard disk.

Definitions
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Vulnerability	� Vulnerability refers to the inability of a system to withstand the 
effects of a hostile environment. A window of vulnerability (WoV) 
is a time frame within which defensive measures are diminished and 
security of the system is compromised.

Web Service	� Web service is a standardized way of integrating and providing 
Web-based applications using the XML, SOAP, WSDL, and UDDI 
open standards over an Internet Protocol backbone.

Workload	� In enterprise and Cloud Computing, workload is the amount of 
work that the computer system has been given to do at a given time. 
Different types of tasks may stress different parts of a system, e.g., 
CPU-bound or memory-bound workloads.

Definitions
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Chapter 1
Edge Computing with AI: Introduction

1.1  �Introduction

Most human endeavors require intelligence. Our civilization has been built upon the 
intelligent use of available technologies and techniques. As civilizations evolve, so 
do their needs and requirements. Systems around us have grown in scale and com-
plexity. This growth has been sustained largely because more powerful and human-
friendly tools have been made available. Over the years, computer technology has 
supported this [1] growth in two major ways. One was by offering faster and higher 
instruction processing capabilities, which grew exponentially as per Moore’s law 
[2] (as hardware). The other was by offering higher levels of user-friendly and intel-
ligent software environments [3]. Newer software offers enhanced layers of abstrac-
tion to support different degrees of automation, bringing it tantalizingly close to 
human intelligence in its operation. The decade of the 1970s and early 1980s wit-
nessed many advances by bringing in computer and communications technology to 
work in mutually enriching mode. The result was the Internet, announced in 19831 
[4]. This ought to be considered a breakthrough. Among other things, the Internet 
offered an operational platform in the form of the client-server architecture [5] to 
drive further growth. This computing framework led to the emergence of seamless, 
scalable distributed computing. The computing scene has changed ever since. The 
distributed computing and client-server architecture with large server farms brought 
a significant change in the way computing was perceived and done. That has ush-
ered in the era of Cloud computing [6].

The Cloud computing paradigm seemingly offers unlimited capability. 
Consequently, the new millennium saw another tectonic shift in the software 
system designs and applications as artificial intelligence (AI) came out of its 

1 The evolution of the Internet was gradual, spreading over time. However, officially January 1, 
1983, is the date assigned as the date of birth of the Internet.
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second winter [7]. Within the precincts of Cloud computing, notwithstanding its 
myriad and multiple facets, what stands out is the embedding of AI at the Edge of 
the Cloud to direct system operations. This synergy brings Edge computing right 
into the center stage for most, if not all, IoT (Internet of Things) devices as well.

This book is primarily an effort to explore the foundations of the support tech-
nologies, techniques, and architecting methodologies that beget synergy by embed-
ding AI at the Edge of the Cloud.

This chapter, in fact, sets the tone and context for the rest of the book. As might 
be obvious, this book deals with three key areas, e.g., Cloud computing, Edge com-
puting, and use of AI for timely decision-making. The chapter begins with an expla-
nation of the terms and definitions used in the Cloud computing context. This is 
followed by a detailed explanation of why Edge computing is required and what 
kind of architectural framework is used. Later sections take the rationale further and 
offer first impressions of systems with embedded AI.  The final section briefly 
describes the organization of the book.

1.2  �Cloud Computing

This section covers the primary and ground level definitions in Cloud computing. 
These concepts are further elaborated with more technical details in later chapters. 
Readers who are familiar and know the basic terms used here may skip this section.

1.2.1  �Cloud Computing Terms

It is well known and understood that computers operate with a heartbeat provided 
by a powerful engine called CPU—short for central processing unit. The memory 
units and the peripherals do not match CPU speeds. In fact, way back in 1959, that 
was the raison d’être for “the time-sharing systems” [8]. This development was 
subsequently followed by invoking interactivity to additionally give each user an 
impression of exclusive control for operations on a main frame—essentially a cen-
trally located large system.

The Cloud computing works derive their inspiration from the early time-sharing 
interactive systems, albeit with a different paradigm. A typical Cloud service archi-
tecture that supports its users via the Internet is shown in Fig. 1.1.

The primary rationale in favor of Cloud computing is why own and maintain a 
system if it can be tenanted—essentially avail rental service pattern or pay-as-you-
use [6]. The reasons for considering this to be a paradigm shift are as follows:

	(a)	 The mainframe is replaced by a large pool of interconnected powerful servers 
to cater to computing and storage needs, however large and varied.

	(b)	 The services are offered using high-speed Internet infrastructure.

1  Edge Computing with AI: Introduction
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	(c)	 The Cloud is expected to accommodate varying user needs, i.e., computing 
services can be customized to meet the user needs.

	(d)	 The computing services can be availed by choosing from a variety of rental 
plans. For example, it may be consummated by subscription or pay-as-you-use, 
or by time of the day, duration, and required bandwidth, besides the extent of 
usage, etc.

	(e)	 The service quality is underwritten usually by offering a Service-Level 
Agreement (SLA).

	(f)	 The services also cover the extent and depth of security provisions.

Clearly, challenges lie in meeting varying workload demands and assurances of 
security in a multi-tenanted facility [6]. However, our limited objective here is to 
focus on the forms of services and how the Cloud computing paradigm succeeds in 
meeting a spectrum of service scenarios. Broadly, the Cloud computing services are 
provisioned using the following three modes of operations: IaaS (Infrastructure as a 
Service), PaaS (Platform as a Service), and SaaS (Software as a Service). A more 
detailed discussion on Cloud operations and services would be described in a later 
chapter. For now, it would be worthwhile to briefly define these terms to understand 
the modes of operation. Besides, this would also set the context for the Edge 
on Cloud.

Figure 1.2 shows the pyramid depicting the Cloud operations [6] at the three 
service levels, which are described below.

Fig. 1.1  The Cloud data center and user connectivity

1.2  Cloud Computing
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IaaS  Basically, the IaaS Cloud service providers provision infrastructure compo-
nents. The infrastructure components include configurable servers, storage devices, 
and network support. The client is free to create customized and virtual architectural 
configurations of choice using hypervisors.

PaaS  Quite in contrast to the IaaS, the PaaS allows developers to build a complete 
and customizable operating environment. They can do builds for applications, exe-
cute and manage them using the Web and database servers and operating systems of 
choice, availing tools, network services, and middleware.

SaaS  As an abstraction, SaaS is at a higher level than PaaS and IaaS as it proffers 
a software distribution model. SaaS allows independent application developers 
(also known as independent service vendors, or ISVs) to offer and support software 
services on contractual terms using the Cloud. The Cloud service provider (CSP) 
hosts the applications, and through them, the ISVs make these services available to 
the end users.

In addition to the broad definitions given above, the three modes of operation are 
compared in Table 1.1. The comparison reveals the context of use, and the Cloud 
environment caters to various user or organizational needs at different levels. 
Following this is a description of the way organizations and end users obtain access 
to the Cloud.

One additionally needs to know and understand the way organizations and end 
users obtain access to the Cloud. There are three ways this happens.

Private, Public, and Hybrid Cloud  The Cloud service provisioning may be pri-
vate, public, or hybrid. The connotations of these terms indicate where and how the 
data and associated systems are shared. For example, the private Cloud is owned 
and operated by an organization as a captive facility for internal users with very 

Fig. 1.2  Cloud computing pyramid depicting IaaS, PaaS, and SaaS operations [6]
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limited or no external access. The public Cloud is open to all end users primarily as 
a multi-tenancy mode with an agreed upon SLA often under best effort consider-
ations. The hybrid mode is used when an organization may choose to operate in a 
mixed mode. They secure their intellectual properties and critical systems and data 
private while sharing space for non-critical assets.

Like every human endeavor, the Cloud services too over time have been evalu-
ated, and efforts are always afoot to improve the range of service offerings and 
performance. The next subsection is devoted to explaining how services get ren-
dered and what time measurements are critical in the context of Cloud computing.

1.2.2  �Latency and Response Times

Let us consider an operational scenario as depicted in Fig. 1.3 where a user seeks 
resolution to a query. In general, query resolution requires access to and processing 
at the multiple backend servers. The application finally assembles the responses and 
sends it across to the user. The latency experienced at the client end is the result of 
cumulative delays and response times within the system. Note that professionals 
differentiate between the response times and latency. Latency refers to delays while 
the response time primarily refers to the processing time within the system. From 
our standpoint the Cloud latency shall be defined as the cumulative time required for 
the desired service.

The latency and response time studies are carried out under varying load condi-
tions. This may entail using different strategies. For instance, from a certain 

Table 1.1  A comparison of the three forms of Cloud operations and services

IaaS PaaS SaaS

User category System designers Product developers Application users
Nature of 
service 
available

Configuration control to 
create platform and 
system-based services

Development tools, to 
create and deploy portable 
apps in a virtual 
environment

Web services-based 
solutions, including 
specified executable 
middleware

Flexibility in 
use

One may even create a 
virtual machine IP 
address

Limited control for 
customizing the operating 
system (OS) environment

No control but flexibility 
for creating applications

Asset 
generated

A configured 
infrastructure or system 
architecture

A virtualized development 
platform

An application to provide 
specific class of solutions

Scalability Highly scalable Highly scalable Almost unlimited
Security Provided by the Cloud 

service provider (CSP)
CSP, OS in use or 
embedded in the solution 
stack

CSP infrastructure and 
application embedded

Some CSP 
examples

AWS, EC2, Rackspace Azure, Heroku Salesforce, DropBox, 
Google Apps

1.2  Cloud Computing
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workstation the same query is raised at randomly chosen times and latencies expe-
rienced are recorded. One may also generate workloads with multiple users seeking 
resolution to the same query. There are several strategies that can be adapted to 
simulate different workloads [9].

Clearly, the response times at client end would vary under different operating 
conditions. A brief analysis follows shows how the response times get impacted and 
where the delays occur in the system.

	(a)	 The servers queue up the requests received. Figure 1.3 shows that the servers 
may respond with different time lags. The three relevant servers (1, 3, and 5) 
respond in time duration x1, x3, and x5. Though the three servers are operating in 
parallel, the slowest one would be counted for recording the delay, i.e., if x3 > x1, 
and x3 > x5, then the delay is recorded as x3.

	(b)	 The server disk storage may have read conflicts and would contribute to 
the delays.

	(c)	 There may be a server node failure. In that case workload balancing is done. 
This too may result in delays as each server node may need to cater to greater 
workload.

	(d)	 The Internet infrastructure adds to the delay depending upon the network traffic.
	(e)	 Finally, the load at the Web application end would contribute its share of delay.

One would like to know how this reflects on CSPs and clients. It would be worth-
while to reflect on the following observations cited by Martin Kleppmann [9] (Refs. 
20–22 in his book):

	1.	 Amazon recorded that a 100-millisecond delay diminishes sales by 1%.
	2.	 Other extended studies quoted show that a 1 s delay results in a 16% decline in 

customer satisfaction.

Fig. 1.3  System response time—the latency

1  Edge Computing with AI: Introduction
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The client end determines the way the Cloud services are performing. So, a mea-
surement at that end makes sense. As alluded to earlier, one may send the query at 
random times and note the latencies observed. The average computed from latencies 
observed would be a good measure. However, the commercial world prefers a per-
centile of customers for whom services were rendered [9]. That would mean we 
look at the median or define latencies by indicating that 99.95 percentile. Regardless 
of the measure used, the latency is an issue of concern with the Cloud service pro-
visioning being ubiquitous. The nation states use it for sharing public information 
and governance; e-commerce businesses are firmly placed and use it to provide 
goods and services of all kinds, from travel to daily grocery; the media uses it to 
create and distribute content; the political parties perform analytics and use it to 
plan strategies, etc. The list goes on and on. The application scenarios get further 
enhanced by the emergence of IoT on the horizon catering to intelligent applications 
like smart buildings, home appliances, and climate monitors, etc. As a result, pres-
ently, the latency considerations and intelligent operations at the Edge are truly the 
two major compelling drivers for Cloud-based operations.

1.3  �Processing at the Edge

In continuum with the discussions so far, here is a list of a few representative sys-
tems where awareness of environment is required and latency matters.

	1.	 Patient monitoring systems in the health care domain

	(a)	 With connected contact lenses (for eyes), inhalers (for asthma), ingestible 
sensors for glucose, heart rate, depression, and mood monitors

	(b)	 Robotic surgery: real-time monitoring during robotic surgery

	2.	 In fully automated manufacturing plants with mobile robots or building con-
struction sites with material and crane movement

	3.	 Telemetering network gateways and instrument monitors that are often used for 
disaster management

	4.	 Practically all IoT devices used for transportation systems including railways, 
truck convoys and traffic diversion advisory required on high density traffic 
on roads

	5.	 Monitoring of CCTVs and communication with security cameras

All these systems are expected to operate as if they are self-aware. This is akin to 
how humans react to their environment. Therefore, the analogy offered in the next 
paragraph is very apt to understand why and how Edge computing with embedded 
intelligence helps in enhancing the efficacy in conjunction with Cloud-based 
operations.

In his book, Matthew Syed [10] makes a point about many winners ranging from 
Mozart, Beckham, Roger Federer, and others from a variety of vocations. The churn 
that precedes their success is the point of analogy here. Take the athletes, for 

1.3  Processing at the Edge
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instance. Besides storing strategies and winning patterns (as data) in their mind, 
they hone and chisel their skills with repeated practice2 (see the footnote) to build 
and enhance their muscle memories. This is equally true of musicians who train 
their vocal chords or instrumentalists who have practice sessions on their instru-
ments. Now if one imagines the brain as the main data center and our muscles with 
their kinetic links as active agents at the Edge of a human system, then the analogy 
for Edge computing reveals itself. The Edge, once trained to respond to its environ-
ment, can mitigate the latency issues inherent to Cloud operations and services.

Let us now embark on a journey to explore ways to achieve lower latency 
responses. To begin with, an understanding of Edge computing should be helpful. In 
certain ways, the processing at the Edge offers a compromise between a totally 
centralized system and a system with distributed capabilities. It would be preposter-
ous to suggest a fixed framework to achieve the desired goals for all operational 
scenarios.

However, there is a broader conceptual understanding about the nature of Cloud 
connectivity with the Edge as shown in Fig. 1.4. The Edge devices facilitate interac-
tion of the external agents with a data center. Invariably, the IoT or Edge devices are 
placed where the data is generated. These devices store data for local processing and 
action. They feed large volumes of data to be uploaded to the Cloud for longer-term 
analysis. The Cloud servers are at the bottom, and the switches connect Edge 
devices to the Cloud data center via the Internet routers.

2 Each practice session is like a supervised training session in AI or tweaking of weights in ANN.

Fig. 1.4  A conceptual architecture for data centers with connectivity at the Edge

1  Edge Computing with AI: Introduction
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At this point, it would be worthwhile to explore some diverse scenarios to show 
that the framework shown in Fig. 1.4 is generic enough, i.e., it can be adapted to suit 
specific operational needs.

1.3.1  �The Edge Architecture: Scenario 1

The example scenario captured has the backdrop of pre-Internet days when one of 
us was witness to a certain event. Back then (circa 1972), the communication and 
control were largely managed using telemetry. One of us was with the University of 
Manchester Institute of Science and Technology (UMIST) with a workspace on the 
fourth floor of a multistory building. One late afternoon the firefighters came rush-
ing and connected their hoses to the water outlet to extinguish the fire in room 
409—just two rooms away and diagonally placed. The sequence of events and the 
consequent response are described next:

–– A smoker faculty member had thrown a cigarette butt in trash can and left 
for lunch.

–– The butt was not fully extinguished and sat atop some crumpled sheets of paper—
perhaps a rejected technical manuscript.

–– The smoke arose from the trash can and was sensed by the smoke detector.
–– The relay on the fourth floor corridor identified that the problem was in room 

no. 409.
–– The foyer relay at the ground floor identified the problem location: floor no. 4.
–– The relays at the main entrance of UMIST identified the building location.
–– The city fire station identified that there was a fire at the UMIST campus.
–– The fire station personnel rushed to UMIST guided by guards at the entrance, 

reached the building master keys were collected from the foyer attendant guided 
by the detector relay system, the team reached the fourth floor guided by the floor 
relay display, and entered room 409 to extinguish the fire.

There are several key pointers here to show how differently this kind of situation 
would be handled today. The technological solutions evolve over time through a 
succession of improved choices. To begin with, the delays due to the human ele-
ments in the chain can be eliminated completely. Second, automated intelligent 
devices could be in place to facilitate movement at the campus and building entrance 
with precise location information. Also, the horizon of services offered by city 
agencies can be extended to ensure a coordinated response. For instance, there 
would be a medical team accompanying the fire personnel for handling medical 
emergencies. If the situation warrants, then the hospitals can be alerted to expect to 
receive the injured. This is precisely what a modern Edge architecture is expected to 
support. How this may be achieved today is shown in Figs. 1.5, 1.6, and 1.7.

The schematic in Fig.  1.5 corresponds to and can be easily derived from the 
generic framework shown in Fig. 1.4.

1.3  Processing at the Edge
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The narrative thus far is devoid of technical details. Therefore, it is imperative to 
provide some technical details about the IoT devices, sensor connectivity, and pro-
tocols to transform to connect to the Edge for processing. The key point is that the 
signals from sensors get converted into formatted data. IoT devices used for build-
ings typically include the following kinds of sensors:

–– Smoke detectors, fire alarms
–– Burglar alarms
–– Hierarchical power utility sensors for rooms, floors, and buildings
–– Sensors to monitor utilities like water supply in toilets and kitchens

Fig. 1.5  Edge servers at various premises connected to the city service center

Fig. 1.6  Protocols to transform sensor signals to data

1  Edge Computing with AI: Introduction



13

–– CCTV cameras at floors, public spaces, foyers
–– Parking lot entry authentication using RFID
–– Goods movement and monitoring
–– Biometric authentication for staff at the entrance to the building
–– Ultrasound devices for paramedic support

The systems in place ought to be compliant with protocols for near-field com-
munication (NFC), Wi-Fi, Bluetooth, etc. for device to device, device to gateway, 
etc. with minimally >128 kbps bandwidth while supporting Advanced Encryption 
Standard (AES) encryption. These devices provide core components of the micro-
services needed to monitor the safety and security of buildings.

For our model, each node provides at least one micro-service and is internally 
characterized by the layers that transform signals into actionable data, as shown in 
Fig. 1.6.

The reference no. 11 offers a more detailed description of how protocol layers 
transform sensor-generated signals into data. Figure 1.6, therefore, shall be reck-
oned to define a node fairly correctly. Note that the bottom two layers are required 
to adhere to the Institute of Electrical and Electronics Engineers (IEEE) 802.15 
suite of protocols [11]. The nodes so designed are expected to support data transfer 
upwards of 128 kbps for near real-time response. In fact, there are standards set by 
IoT organizations, such as https://csa-iot.org.

So, for our scenario, a typical building may be installed with IoT device-
supported nodes, each providing a micro-service.

In general, these nodes may be connected in hub-and-spoke formation or as a 
tree network to build a hierarchy. In the tree structure, the leaf nodes would be con-
nected to IoT devices, and the intermediate nodes would be typical multi-channel 
data acquisition systems or even gateways connecting to a hub or low-end Edge 
device. The hub could be a low-end Edge device to connect to an Edge server via a 

Fig. 1.7  Connection of the sensor networks to Edge servers
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router, as shown in Fig. 1.7. Some independent nodes may have a higher level of 
functionality and may be directly connected to the Edge server. Each building in the 
city may have an Edge server and gather data from all the sensors in the building. 
These servers would be connected to city service centers. The overall latency may 
range from 6 to 20 milliseconds to support near-real-time operations [12].

This example predominantly used IoT devices. The next example will be to show 
how mobile Edge devices may be utilized to support low-latency real-time opera-
tions to give another facet of Edge architectures.

1.3.2  �The Edge Architecture: Scenario 2

The modern mantra of economy of scale promotes mass production of consumer 
goods. This in turn entails immediate product distribution to the consumer loca-
tions. A major part of such distribution is undertaken by trucks. The fleet operators 
like to operate truck convoys for safety, security, and reliability, besides the econ-
omy of operations. The convoys sometimes fork into fragments and sometimes 
merge. Tracking the convoys as well as individual trucks is a real-time monitoring 
and control problem [13].

In the USA, the National Highway Traffic Safety Authority (NHTSA) records 
suggest that there are over 9 million registered trucks engaged in goods movement 
in the USA [14]. No wonder NHTSA mandates strict safety requirements, such as 
an onboard two-way radio system for vehicle-to-vehicle (V2V) communications (to 
be aware of other vehicles on the road).

Modern trucks have a lot of embedded electronic controls and monitoring instru-
ments connected on a local intercommunication network (LIN), an automotive 
Ethernet network or a very sophisticated controller area network (CAN). These net-
works collect data and display it on the truck’s dashboard. Various sources of data 
are the fuel injection system and the engine management system, transmission sys-
tems for speed regulation, automotive brakes, safety air bags, vehicle suspensions, 
and power windows, besides various channels for audio (notifications) and video 
visuals (traffic, GPS location, etc.). The convoys additionally require information 
about the convoy chain. When and if it fragments, the chain status is updated. For 
complete convoy management, our solution recommends positioning an Edge 
device on each truck. Therefore, it would be desirable to understand the character-
istics of Edge devices. Edge devices have the following two key characteristics:

	1.	 It sits at the boundary of two networks, basically connecting them.
	2.	 Minimally, it is an entry-exit gateway like a firewall or connects a campus net-

work to a WAN. Maximally, it can regulate and monitor to control transmission 
rates and decide on routing with some degree of filtering, translation, or transfor-
mation in addition to a fair amount of dynamic storage.

In the backdrop of the fact that NHTSA also reckons that 80% of goods movement 
in the USA [14] is by trucks operating with continuous connectivity with Cloud 
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backup support, real-time monitoring is desirable. Besides the USA, large geogra-
phies like the European Union or other parts of the world, including India, have 
good cellular coverage. So, if each truck in the convoy has an Edge device, then it is 
assured of continuous connectivity comparable to a 4G or 5G cellular device. This, 
then, gives us the basis to beget a convoy management solution. In fact, such a solu-
tion would be part of a fleet operator’s Cloud-based management platform. At all 
points in time, a fleet operator may have many convoys to track and manage. This is 
achieved by operating base stations that are geographically spread out to collect 
real-time data about the convoys that are in their well-demarcated area.

It is obvious that the convoy management requires near-real-time distributed data 
management that must satisfy consistency and reliability of operations [9]. The 
solution architecture using Edge devices is described in Figs. 1.8, 1.9, and 1.10 with 
the accompanying explanations offered next.

The explanation of Fig. 1.8 is as follows:

	(a)	 Each truck has an RFID tag for unique identification.
	(b)	 The convoy chain is formed by the RFID tags on the trucks.
	(c)	 The Edge device on the truck may store biometric information for secure 

operation.
	(d)	 Each convoy has a clearly identified leader.
	(e)	 The Edge device on a leader has an additional task of convoys data collation.
	 (f)	 Each truck in the convoy is capable of acting as a leader.
	(g)	 A single truck forking out is also a leader.

Fig. 1.8  Data for convoy composition, location, speed, timekeeping, etc
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Fig. 1.9  Convoys move forward and transition to the next cellular zone

Fig. 1.10  Schematic of Edge computing–based convoy management
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	(h)	 The convoy chain may fork and merge, generating new convoy formations.
	 (i)	 Trucks use cellular networks to communicate with each other and the leader.
	 (j)	 The onboard network collects operational data for display on the truck’s 

dashboard.
	(k)	 The Edge device interfaces the onboard network with the cellular network.
	 (l)	 The Edge device also stores summarized data for each truck for later analytics. 

It is important to do this to ensure that the vehicles return for regular mainte-
nance and even being retired.

	(m)	 The leader summarizes convoy data to the fleet’s base Edge server (see 
Fig. 1.9).

The operational details captured in Fig. 1.9 are described next.

	(a)	 The convoy communicates with the fleet’s base station via cell towers.
	(b)	 A convoy may move over a vast region, connecting with different cell towers.
	(c)	 The leader keeps uploading the summarized convoy track data and the health 

information to the fleet’s closest monitoring base station. The fleet base station 
can also respond when and only if an emergency arises.

	(d)	 As the convoy moves, the fleet base station Edge servers hand over and take 
over convoy monitoring. This is similar to the way air traffic control systems 
work. An aircraft’s movement is monitored in near-real-time over distinctly 
identifiable flight information regions.

	(e)	 The Edge servers may upload each convoy’s data to the Cloud for longer-term 
analysis (see Fig. 1.10).

The operational details captured in Fig. 1.10 are described next.

	(a)	 The fleet’s base station is connected to a Cloud.
	(b)	 The Cloud may be a private Cloud or multi-tenanted facility provided by a CSP.
	(c)	 The Cloud collects data from all the fleet base stations.
	(d)	 This data can be analyzed for decision support that can help in the follow-

ing ways:

•	 Forming convoys
•	 Loading and unloading of goods (how not to return empty trucks instead 

carry different goods)
•	 Route planning
•	 Profitability of routes of operations
•	 Augmenting capacities or rerouting, etc.

The convoy and fleet management system schematic shown in Fig. 1.10 is easily 
derivable from the high-level framework shown in Fig. 1.4.

Though not mentioned earlier, the Edge devices may also interface with digital 
assistants like Alexa and Siri. Edge devices may also be connected with IoT sensors, 
actuators, or robotic channels using ultrasound, Bluetooth and other near-field com-
munication (NFC) devices. When endowed with AI capabilities and as part of filter-
ing operations, Edge devices perform tasks like spam filtering and encryption [15]. 
The enterprises have used Edge devices for preferred customer face and voice 
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recognition for shopping. Busy airport hubs in the USA use it for frequent flier face 
recognition to manage heavy traffic [16].

It is obvious that Edge is expected to respond to its environment with timely 
decisions and seeming intelligent actions. This assertive mode of operation entails 
that the judgment be judicious. Only then embedding AI capabilities at the Edge 
would make sense. So, we first need to briefly explore the AI models and how these 
models influence decision-making.

1.3.3  �AI and ML on the Edge: Scenario 3

This example illustrates the value and modality of adding AI and ML capability to 
an Edge server. Consider an office building with a large cafeteria that has many 
tables and chairs spread across a wide area. There are celling lights in the cafeteria, 
along with heating and cooling vents for temperature control. Since people come 
and go for breakfast, lunch, and an evening snack at different times, there is no need 
to have lighting and air flow be available on a 24 × 7 basis. These can be easily regu-
lated by timers and temperature sensors. However, even during the times when 
people are present in the cafeteria, not all the tables would be occupied. Controlling 
energy expenditure on a need basis will result in substantial financial savings.

With this view, an Edge server with several sensors can be installed in the build-
ing. It can detect as people start to stream in, grab their food, and occupy a table. 
Then light and air vents overhead can be turned on. When people finish eating and 
leave, then an empty table is detected to turn off lights and air vents. This by itself 
does not need AI, but if a pattern can be established over time, then selectively air 
vents can be turned on in advance to ensure that people walking over to a table will 
immediately experience cooler or warmer temperatures instead of waiting for the 
air-conditioning or a heater to turn on and take effect in a few minutes. Furthermore, 
via an app, immediate control can be granted to the people sitting on the table to 
adjust their local temperature and lighting as they desire without affecting other 
tables or cafeteria occupants.

An intelligent system may remember personal settings, so when a specific person 
or a group of people occupy a table, then environmental controls can be personal-
ized to their previous settings. Note that the goal of such a system is to save money 
for the cafeteria operator but also offer a pleasant environment to its users.

1.4  �Building Blocks for AI on the Edge

Artificial intelligence (AI)-endowed systems are increasingly finding acceptance. It 
is largely because the current computing capabilities and support systems presently 
available make it possible to translate some hyped systems and concepts to be in 
fact realizable. A minimal understanding of AI, which encompasses machine 
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learning (ML), requires exploration of the AI models. The topic of AI (and ML) is 
too vast to be covered in detail. We will restrict to the essentials. For a more detailed 
coverage readers may explore the books [17, 18]. The book by Stuart Russell and 
Peter Norvig recommends incorporating software intelligent agents in the software, 
which is like embedding an AI model in the devices.

1.4.1  �AI Models

Depending upon the context, AI models are used primarily for three kinds of ML 
tasks. These are: classification, prediction, and clustering. For example, a task like 
spam detection qualifies to be a classification task. Similarly, a prediction task may 
reflect on the expected time of arrival at the destination based on the current location 
and traffic pattern on the way. As for the clustering task, a discovery of a hidden data 
pattern is required.3 This may be based on some data attribute, as that is very helpful 
in creating groups or clusters. For example, in a social gathering, one tends to gravi-
tate to form a cluster with no intent except perhaps the topic of discussion like jazz, 
tennis, the stock market, etc. Sometimes clustering appears like a classification of 
some kind, but it has to be noted that classification always requires a priori defini-
tion of classes, whereas clusters are formed in situ and have dynamic membership.

Note that currently AI models are trained using a lot of historic data, then vali-
dated using some test data sets, and lastly deployed in the field for inference in real 
time. However, in the future, this flow may need to evolve as training is not a one-
time activity if the nature of the problem keeps changing. Then we will need to 
consider incremental training and model updates in the field.

1.4.2  �Information Security Trends

Edge computing is a combination of distributed intelligent sensors and computing 
devices connected to centralized servers. Security problems in Edge computing 
arise from a large attack surface due to computing devices, data transfer over the 
communication equipment, and storage facilities. These span across the location of 
Edge devices, large data centers, and networks connecting them. Threat vectors 
include malicious actors accessing information content for observation and altera-
tion, interfering with the operational capability for unauthorized access, etc. 
Solutions need to consider prevention from and response to any security threats [6].

3 An example of a cluster is the collection of documents retrieved based on content from a search 
on the Web.
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1.4.3  �Edge Computing Challenges

A traditional data center consists of racks of servers, storage, and network devices 
in a large, air-conditioned facility. Then scores of clients and IOT (Internet of 
Things) devices interact with this datacenter over public and private networks. 
However, this setup causes latency, which is unacceptable for real-time computing 
applications that can involve instant decision-making using AI. There is a need to 
support AI applications at or near the Edge of computing networks to minimize 
latency and address data privacy concerns. Such concerns currently cause many 
customers, such as hospitals, to not put their data in the Cloud.

The current setup limits Edge computing to deploying sensors for data collec-
tion, but all or most of the AI tasks are done on central servers in a large datacenter. 
This needs to change so intelligent devices can be deployed at the Edge of a network 
and be used for making on-the-spot AI-based decisions.

1.5  �This Book’s Organization

The next generation of Cloud computing is needed to minimize latency and address 
privacy/security concerns of many customers. This book highlights the problems 
and proposes new solutions for AI on the Edge of computing networks. The book 
has two parts: Foundations in the first six chapters and practices in the next four 
chapters.

The first chapter introduces the notion of Edge computing with AI. Then the next 
four chapters lay the foundations of computing on the Edge, IoT, AI, and informa-
tion security, respectively. Each of these foundational chapters introduces the basic 
concepts, examines the historic evolution and current limitations, and then enumer-
ates the emerging needs in respective domains. The first part of the book concludes 
with Edge artificial intelligence in the sixth chapter.

The second part of the book consists of current practices. It starts with the secu-
rity concerns and performance issues on the Edge in the seventh chapter, proposing 
a new distributed trust model and solutions using federated learning. Then we look 
at some use cases for the intelligence of the Edge computing, with examples of 
smart building energy management, medical data sharing by hospitals, and social 
media consumption in Chap. 8. Next, the role of regulatory agencies is examined in 
the ninth chapter, including the FDA and laws such as Health Insurance Portability 
and Accountability Act (HIPAA) and General Data Protection Regulation (GDPR). 
The book concludes with the tenth chapter by proposing AIaaS (AI as a Service), its 
price and performance considerations, and some emerging trends at the Edge.

Each of these chapters includes points to ponder as an exercise for the readers to 
stretch their learning boundaries and our proposed answers for these questions.

1  Edge Computing with AI: Introduction
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1.6  �Summary

Currently, many sensors are deployed at the Edges of a network for data collection, 
which is then sent to central servers in a datacenter. This model introduces latency 
in training an AI model and using it for inference on  the Edges of the network. 
Adding sufficient intelligence and storage capacities to the Edge devices will enable 
them to do incremental updates to the model and use it to perform AI inference 
operations in the field.

References

1.	https://www.livescience.com/20718-computer-history.html
2.	https://www.wallstreetmojo.com/moores-law/
3.	https://medium.com/@micahyost/a-brief-history-of-software-development-f67a6e6ddae0
4.	https://www.usg.edu/galileo/skills/unit07/internet07_02.phtml
5.	https://en.wikibooks.org/wiki/A_Bit_History_of_Internet/Chapter_5_:_Client-Server
6.	Sehgal, N. K., Bhatt Pramod Chandra, P., & Acken, J. M. (2023). Cloud computing with secu-

rity and scalability. Springer.
7.	https://en.wikipedia.org/wiki/AI_winter
8.	https://en.wikipedia.org/wiki/Time-sharing#Notable_time-sharing_systems
9.	Martin, K. (2017). Designing data intensive systems. Book, O’Reilly.

10.	Syed, M. (2010). “Bounce” Harper Collins.
11.	https://www.digi.com/solutions/by-technology/zigbee-wireless-standard
12.	https://en.wikipedia.org/wiki/Real-time_computing
13.	https://www.truckinginfo.com/149411/mobile-communication-making-it-all-work
14.	https://www.its.gov
15.	https://edge-technology.com/spam-internet-security/
16.	https://www.cyberlink.com/faceme/insights/articles/204/Facial-Recognition-at-the-Edge- 

The-Ultimate-Guide
17.	Stuart, R., & Peter, N. (2010). Artificial intelligence: A modern approach. Prentice Hall.
18.	Gupta, P., & Sehgal, N. (2021). Introduction to machine learning in the cloud with python: 

Concepts and practices. Springer.

References

https://www.livescience.com/20718-computer-history.html
https://www.wallstreetmojo.com/moores-law/
https://medium.com/@micahyost/a-brief-history-of-software-development-f67a6e6ddae0
https://www.usg.edu/galileo/skills/unit07/internet07_02.phtml
https://en.wikibooks.org/wiki/A_Bit_History_of_Internet/Chapter_5_:_Client-Server
https://en.wikipedia.org/wiki/AI_winter
https://en.wikipedia.org/wiki/Time-sharing#Notable_time-sharing_systems
https://www.digi.com/solutions/by-technology/zigbee-wireless-standard
https://en.wikipedia.org/wiki/Real-time_computing
https://www.truckinginfo.com/149411/mobile-communication-making-it-all-work
https://www.its.gov
https://edge-technology.com/spam-internet-security/
https://www.cyberlink.com/faceme/insights/articles/204/Facial-Recognition-at-the-Edge-The-Ultimate-Guide
https://www.cyberlink.com/faceme/insights/articles/204/Facial-Recognition-at-the-Edge-The-Ultimate-Guide


23© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
N. K. Sehgal et al., AI on the Edge with Security, 
https://doi.org/10.1007/978-3-031-78272-5_2

Chapter 2
Foundations of Computing at the Edge 
of Networks

2.1  �Historic Evolution of Computing

For more than a half century, computing technologies have been evolving in several 
phases, as described below. Though there appears to be a cyclic relationship between 
them, in reality, computing has grown as an outward-going spiral, as shown in 
Fig. 2.1.

	1.	 Phase 1 (Mainframes): This was the era of large mainframe systems in the back-
rooms connected to multiple users via dumb terminals. These terminals were 
electronics, or electromechanical hardware devices, using separate devices for 
entering and displaying data. They had no local data processing capabilities. 
Even before the keyboard or display capabilities were card-punching systems 
with JCL (job control language). JCL was an early form of scripting language to 
give instructions to mainframe computers [1].

The main takeaway of this era is the concept of multiple users sharing the 
same large machine in a backroom and each unaware of other users. At an 
abstract level, this is similar to Cloud computing with users on thin clients 
connected to racks of servers in the backend data centers. Information 
Security (INFOSEC) relied entirely upon restriction of physical access to the 
computational machinery.

	2.	 Phase 2 (PCs and Workstations): This was the era starting in the 1980s with the 
advent of personal computers (PCs), many of which were stand-alone or con-
nected to mainframes via slow modems [2, 3]. Each user interacted with a PC on 
a one-on-one basis, with a keyboard, a mouse, and a display terminal. All the 
storage, computing power, and memory were contained within a PC box. Any 
needed software was installed via floppy disks with limited storage capacity to 
run on the PCs. These PCs evolved in the early 1990s to laptops with integration 
of display, keyboard, mouse, and computing in a single unit. There was also an 
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attempt in the early 1990s to create a network computer, which was diskless and 
connected to more powerful computers in the back end. Perhaps the idea was 
before its time, as networks were still slow with 28.8 kbit/s dial-up modems [3]. 
A more practical paradigm that became prevalent is the client-server solution 
[4], which enabled remote devices with a little computing power to connect with 
servers over corporate Ethernet networks.

The main takeaway of this era was the birth of an online desktop to emulate 
the desk of working professionals. It represented multiple tasks that were 
simultaneously kept in an open state on the PC. With graphical user interface 
(GUI) and operating system (OS) utilities, it was possible to create the notion 
of a desktop on a computer, to go from a single user-single job model to sin-
gle user-multiple jobs running simultaneously. This caused user interactions 
to move from command prompts to mouse-driven clicks.

	3.	 Phase 3 (Client-Server Computing): In the mid-1990s, the era of Web browsers 
[5] became prevalent. These are software applications to retrieve, present, and 
traverse information resources on the World Wide Web (WWW). These came 
out of a research project but became popular with everyday computer users to 

Fig. 2.1  Evolution of computing models in a spiral of growing computing needs
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access information located on other computers and servers. Information often 
contained hyperlinks, clicking which enabled users to traverse to other Websites 
and locations on the WWW. These browsers needed full-fledged PCs to run on, 
which were more powerful than dumb terminals.

The main takeaway of this era was the birth of WWW, with PCs forming a 
gateway for connecting users to the Internet. It used Internet infrastructure to 
connect with other devices through the Transmission Control Protocol/
Internet Protocol (TCP/IP) protocol for accessing a large set of resources.

	4.	 Phase 4 (Mobile Phones and Apps): The new century heralded an era of full-
fledged Internet browsing with PCs and a mobility revolution with cell phones. 
It was inevitable that the twain shall meet, launching innovative mobile applica-
tions running on cell phones. Cell phones created yet another gateway to the 
Cloud. This enabled users to book hotels, rent rooms, and buy goods on the move.

The main takeaway of this era was the birth of mobile clients, similar to the 
client-server model, except with limited compute power in small form fac-
tors. Thousands of powerful servers were located in large and, often remote, 
data centers. It may be noted that this represented one revolution of spiral 
akin to mainframes, as depicted in Fig. 2.1.

	5.	 Phase 5 (Internet of Things): When companies discovered that the population of 
the world limits the number of smartphones and mobile devices they can sell, 
they started to look for new business opportunities. These came in the form of 
the Internet of Things (IoT) paradigm, which enables everyday common objects 
such as a television, a refrigerator, or even a light bulb to have an IP (Internet 
Protocol) address. This gives rise to new usage models; for example, to conserve 
energy, IoT objects can be remotely monitored and turned on or off. This also 
includes consumer services for transportation and a utilitarian phase for user 
interactions with appliances, leading to higher productivity and improved qual-
ity of life. Computing reach resulted in better-informed decision-making and 
extended social relationships. Lately, the information security considerations 
have also become critical and will be briefly discussed later in this chapter.

This era completes the cycle of computing evolution, with many front-end 
devices connected to the powerful servers in the Cloud on the back end, as shown in 
Fig. 2.1.

Another way to look at the computing transitions is by imagining a pendulum 
that oscillates between centralized servers on one end and client devices on the 
other. In phase 1, computing power was concentrated on the mainframe side, while 
in the next phase, it shifted to the PC side. Such oscillations continued across differ-
ent phases of the spiral shown in Fig. 2.1. Now we are evolving beyond phase 5 with 
Edge computing, with some limited storage and compute capacity on local devices, 
while large data centers in the Cloud are used for data backups or deeper analysis. 
This is also referred to as Fog computing. In this usage model, computing resources 
may be located somewhere between the data sources on the Edge and the Cloud 
data center.

2.1  Historic Evolution of Computing
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2.2  �Historic Evolution of Networking

Two models prevailed in the networking domain: peer-to-peer and client-server. In 
the former, each computer that wants to talk to another computer needs a dedicated 
line, so N machines will need N^2 connections. This while being fast was obviously 
not scalable; also, when no data is being transferred, then network capacity is unuti-
lized. Meanwhile, the client-server model with a central server supporting multiple 
clients was economical and scalable for the enterprises, as data and files could be 
easily shared between multiple users, as shown in Fig. 2.2.

In networked systems with a client-server model, a computer system acting as a 
client makes a request for service, while another computer acting as a server pro-
vides a response when a request is received, as shown in Fig. 2.3.

The greatest advantage of the networking model was its scalability [6], i.e., one 
could add any number of servers and clients. It offered an opportunity to create 
open-source software that offered interoperability. The network protocol was based 
on TCP/IP, and going forward, this growth led to several interconnecting networks, 
eventually leading to the Internet using the HTTP protocol. The protocol-based con-
trol meant that one could operate without vendor lock-in, i.e., not be dependent on 
any single supplier. Networks within an enterprise grew as LAN (local area net-
work) and WAN (wide area network). LAN-connected computers in confined areas, 
such as within a single office building, or there could be several LANs within indi-
vidual confined areas, e.g., one for each floor. WAN-connected computers spread 
over larger geographical areas, such as across the cities. Several LAN standards 
were developed over time, such as Institute of Electrical and Electronics Engineers’ 
IEEE 802.2, Ethernet or IEEE 802.3, IEEE 802.3u for faster Ethernet, IEEE 802.3z 
and 802.3ab for Gigabit Ethernet, IEEE 802.5 for token rings, and IEEE 802.12 for 

Fig. 2.2  Two networking models
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100VG on any LAN. The Internet in turn is simply a net of networks, using a TCP/
IP suite of protocols. These were mostly packet switching protocols, with each 
packet having a structure offering a virtual connection and no single dedicated path 
committed to maintain the connection between a source and its destination. Paths 
were temporarily created to maintain connections as needed between users and/or 
machines. Sometimes, time division multiplexing was used to share the same physi-
cal line between different pairs of users, and every pair was given a short time slot. 
As an example, if a time unit has ten slots, then ten pairs can communicate simulta-
neously, oblivious to the presence of others. Connections are made over a network 
of switched nodes, such that nodes are not concerned with the content of data. The 
end devices on these networks are stations such as a computer terminal, a phone, or 
any other communicating device. Circuit switching operates in three phases: to 
establish a connection, transfer data, and then disconnect. Networking routers use 
an intelligent algorithm to determine the optimal path that takes the least time or to 
minimizes cost to establish a path of communication.

TCP/IP is a fault-tolerant protocol [6], so if a packet is lost or corrupted, then the 
connection is retried and the packet is sent again. It was originally designed by 
DARPA (Defense Advanced Research Projects Agency) during the Cold War era to 
survive a nuclear attack. TCP/IP is a layered protocol where TCP provides reliabil-
ity of a connection by attempting to send the same packet again if the previous 
transmission failed, while IP provides routability between the communicating nodes 
by finding an optimal path.

When computing needs exceed what can be reasonably supported by a single 
server, an effort is made to share the workload among multiple servers. Note that in 
sharing a workload, the latencies on servers that are loosely connected shall be 
determined by the TCP/IP suite of protocols. The concern often is that these laten-
cies would be in far excess of what may be acceptable. Therefore, an alternate 
approach is to use server clusters. The latency in tightly bound server clusters is far 
less than the networked servers. One of the techniques for clustering is by sharing 

Fig. 2.3  The networking model
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I/O switches between the servers [7]. The switches connect individual classes of 
controllers, such as Ethernet controllers, in an enterprise network, as shown in 
Fig. 2.4.

Clustering ensures that large applications and services are available whenever 
customers and employees need them. This enables IT managers to achieve high 
availability and scalability for mission-critical applications, such as corporate data-
bases, email, Web-based services, and support external-facing retail Websites. 
Clustering forms the backbone of enterprise IT’s servers and storage elements. 
Clustering may operate with storage area network (SAN) or Internet small com-
puter system interface (iSCSI) architectures [7] as shown in Fig. 2.5.

2.3  �Roots of Cloud Computing

The term “Cloud computing” became popular about two decades ago [6]. However, 
its roots extend at least half a century back when users sat in front of blinking ter-
minals far away from mainframe computers connected via cables. Telecommunication 
engineers about a century ago used the concepts of the Cloud. Historically, telecom-
munications companies only offered single dedicated point-to-point data connec-
tions. In the 1990s, they started offering virtual private network (VPN) connections 
with the same quality of service (QoS) as their dedicated services but at a reduced 
cost. Instead of building out physical infrastructure to allow for more users to have 
their own connections, telecommunications companies were now able to provide 
users with shared access to the same physical infrastructure. Later on, notions of 

Fig. 2.4  Connecting multiple servers in a cluster
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utility computing, server farms, and corporate data centers formed the foundation of 
the current generation of large Cloud data centers. The same theme underlies the 
evolution of Cloud computing, which started with mainframes and now has evolved 
to 24 × 7 services (24-h service available 7 days a week, i.e., no downtime). The 
following list briefly explains the evolution of Cloud computing:

•	 Grid computing: Solving large problems using parallelized solutions, e.g., in a 
server farm

•	 Utility computing: Computing resources offered as a metered service
•	 SaaS: Network-based subscriptions to applications
•	 Cloud computing: “Anytime, anywhere” access to IT resources delivered dynam-

ically as a service

Server farms didn’t have any application programming interface (API). Each 
user was made to think that they had full access and control of a server, but in real-
ity, time-sharing and virtual machine isolation kept each user’s processes indepen-
dent of others.

According to National Institute of Standards and Technology (NIST) [8], any 
Cloud must have the following five characteristics, as listed below:

	1.	 Rapid Elasticity: Elasticity is defined as the ability to scale resources both up and 
down as needed. To the consumers, the Cloud appears to be infinite, and they can 
purchase as much or as little computing power as they need. This is one of the 
essential characteristics of Cloud computing in the NIST definition.

	2.	 Measured Service: In a measured service, aspects of the Cloud service are con-
trolled and monitored by the Cloud provider. This is crucial for billing, access 
control, resource optimization, capacity planning, and other tasks.

	3.	 On-Demand Self-Service: The on-demand and self-service aspects of Cloud 
computing mean that a consumer can use Cloud services as needed without any 
human interaction with the Cloud provider.

	4.	 Ubiquitous Network Access: Ubiquitous network access means that the Cloud 
provider’s capabilities are available over the network and can be accessed 
through standard mechanisms by both thick and thin clients.

Fig. 2.5  Connecting multiple storage elements in a cluster
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	5.	 Resource Pooling: Resource pooling allows a Cloud provider to serve its con-
sumers via a multi-tenant model. Physical and virtual resources are assigned and 
reassigned according to consumers’ demand. There is a sense of location inde-
pendence in that the customers generally have no control or knowledge of the 
exact location of the provided resources but may be able to specify a geographi-
cal location (e.g., country, state, or data center).

2.3.1  �Types of Cloud

Clouds can be broadly defined in the following three categories:

	1.	 Private Cloud: Private Cloud is owned and used by a single organization. An 
example is Intel’s own data centers, which are used to run its chip design tasks. 
These are not put in a shared public facility for perceived security and calculated 
cost-saving reasons.

	2.	 Public Cloud: Public Cloud offers its services to a full range of external custom-
ers. The computing environment is shared with multiple tenants on a free or 
pay-per-usage model. Examples include Amazon Web Services (AWS), 
Google Cloud Platform (GCP), and Microsoft’s Azure Cloud offerings.

	3.	 Hybrid Cloud: Hybrid Cloud is a computing environment that uses a mix of on-
premises private Cloud and third-party public Cloud services with orchestration 
between the two platforms.

While economics is the main driver of public Cloud computing, its customers 
want the same performance and security aspects that they enjoy on a private server. 
This is a classic case of wanting to have your cake and eat it too. Specifically, public 
Cloud users want full observability and controllability for their workloads. This 
refers to the applications and data they deploy on a remote server. They also expect 
a Cloud server to be secure as if it were on their own premises behind a firewall. 
These requirements are well captured in NIST’s five essential characteristics that 
we listed in the previous section. However, there are some ambiguities; for example, 
“on-demand self-service” requires that a consumer can unilaterally provision com-
puting capabilities without requiring human interaction with a Cloud service pro-
vider. This implies automation on the Cloud service provider’s site but doesn’t 
specify anything on the user side. In reality, for a user to provision hundreds of jobs 
at a moment’s notice or to monitor them requires some automation. Furthermore, if 
a particular application is not behaving well, then the user will need some diagnos-
tics to identify the root cause of problems and be able to migrate the job to another 
Cloud server. This implies the availability of suitable monitoring and alerting tools. 
Automation of actions is such that the user environment and the Cloud provider’s 
environment work in unison. This will help to realize the full potential of Cloud 
computing. In Fig.  2.6, different phases and options for Cloud architectures are 
shown. In practice, one of these or a combination of these is adopted by users.
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Most enterprises already own some servers and storage facilities in their private 
data centers. These form a private Cloud for the owning entity, in which only its jobs 
can run. In contrast, a public Cloud is open to anyone on the internet who can pay 
for it as a utility service on demand. The last category shown in Fig. 2.6 is hybrid 
Clouds, which are a mix of both private and public Cloud facilities used by some 
enterprises.

For customers with confidential or performance-sensitive workloads, public 
Cloud providers offer a virtual private Cloud, which can be thought of as a hosted 
service, or a group of dedicated servers that are cordoned off for such a customer. 
These offer dedicated facilities but at a higher cost since the Cloud service provider 
can’t share this infrastructure with other customers. This is preferable for some 
Cloud users who do not wish to maintain their own IT services but want the assur-
ance of privacy.

Users may experience large variations in the Cloud consumption profiles, some 
of which exceed their internally installed server base. Then they have two choices, 
either to buy more servers or let some computing demand remain unsatisfied at peak 
usage time periods.

A private Cloud requires more capital investment and operational costs; how-
ever, some of these servers may remain idle during off-peak times. This is a case 
where the need is less than the installed capacity. The second case is when the need 
is greater than the installed capacity. It has an implication of lost business opportu-
nities as user tasks will need to wait in a queue, or worse yet, customers will switch 
to somewhere else to meet their need. This is particularly true for online retailers 
who can’t respond to their shoppers in a timely manner. This dilemma is depicted in 

Fig. 2.6  A phased approach to adoption of Cloud computing
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Fig. 2.7, where one way to meet the unsatisfied demand is via the migration of com-
puting tasks to a public Cloud.

“Cloud bursting” is a term used to define the jobs that were running in an internal 
data center but are moved out to a public Cloud at peak usage and then return back 
to a private Cloud when the internal capacity is available. Since public Cloud charge 
on a pay-per-use basis, this proposition is attractive. However, as we will see in later 
chapters, this is nontrivial because computing jobs typically require a setup, which 
includes an operating system environment, sometimes with a plethora of supporting 
tools and often a large amount of data. Such jobs can’t be easily migrated between 
private and public Cloud at a moment’s notice, which means that computing envi-
ronments on both sides need to be kept in synchronization. One way to do this is by 
data mirroring between the data centers, so only computing programs need to 
migrate, while associated databases always stay in synchronization. However, this 
adds to the operational cost of keeping the public Cloud environment always ready 
to go at a moment’s notice.

2.4  �Information Security Basic Concepts

The previously defined Cloud computing business models and implementation 
architectures have extended access to a wide variety of capabilities. Consequently, 
its security needs have also increased beyond the basic information security issues. 
However, basic security concepts still apply. Information security or INFOSEC 
begins with access control. Access control includes several abilities, including 

Fig. 2.7  Variations in computing needs of an organization
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issuing control commands, sending information, reading information, and physical 
access to locations or machinery. Access control is based upon identity authentica-
tion. The entity to be identified can be a person, a device, or a computational pro-
cess. There are four basic factors of identity authentication: information, physical 
item, biological or physical characteristics, and location. These factors involve 
answering the four key questions of identity authentication:

	1.	 What do you have?
	2.	 What do you know?
	3.	 What you are?
	4.	 Where you are?

Examples of the information factor are username and password, birthdate, or 
mother’s maiden name. Examples of the physical item factor include a car key, 
credit card, debit card, or employee badge. What you are as a person is called bio-
metrics. Examples of what you are include fingerprints, blood, DNA, eye scans, and 
voice patterns. Examples of location metrics are GPS coordinates, city or state, cur-
rent time, current temperature, and altitude. The most common form of access con-
trol is based upon the single factor of what you know, specifically username and 
password. Another common form of authentication is based upon the single factor 
of what you have (a credit card) or sometimes what you know (your credit card 
number). A common two-factor authentication (2FA) is a debit card with a pin. The 
card is the physical device you have, and the pin is the information you know. In 
general, access control is improved with added factors for authentication, that is, by 
using multifactor authentication (MFA). There are many trade-offs for identity 
authentication and access control. The trade-offs include level of security, speed of 
performance, usability, and acceptability of method.

The next category of security for Cloud computing is protecting information 
both during transmission and during storage. Protection of information includes 
keeping secrets and private data away from unauthorized entities, preventing 
changes by unauthorized entities, and detection of attempts at tampering with the 
data. Separate from security is the detection of errors due to transmission noise or 
equipment problems. While the methods for this are related to security methods, 
they are not sufficient in the presence of malicious participants. The primary basic 
technique for preventing unauthorized reading of data is encryption. The originator 
(person A) encrypts the data using a key to convert the original plaintext to cipher-
text. The ciphertext is then stored or transmitted. The recipient or reader (person B) 
uses their key to decrypt the ciphertext to obtain the original information. An unau-
thorized person (person E) only sees the ciphertext, and upon this idea rests the 
secrecy of the message. There are two basic classes of encryption: symmetric 
encryption and asymmetric encryption. In symmetric encryption, the same key is 
used to encrypt and decrypt the message. For asymmetric encryption, a different key 
is used to encrypt a message from the key to decrypt the ciphertext. Symmetric 
encryption is also called private key encryption because the key must be kept secret. 
Asymmetric encryption is also called public key encryption because the encryption 
key can be made public and only the decryption key needs to be kept secure for the 
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message to be secure. Where encryption hides information, hashing is used to detect 
data tampering. Specifically, changes in information (such as the terms of a con-
tract) must be reliably detected. This involves creating a digest of the data that can 
be used to check for tampering. Calculating the digest for the tampered data can be 
compared to the digest of the original data to detect (but not identify) changed data. 
The common information protection techniques in today’s Cloud environment and 
the Internet are Advanced Encryption Standard (AES) for symmetric encryption, 
RSA (Rivest–Shamir–Adleman) for asymmetric encryption, and SHA-2 (Secure 
Hash Algorithm 2) or SHA-3 (Secure Hash Algorithm 3) for information hashing.

While access control and information protection are required for preventing 
security breaches, some security attacks will occur. The detection of positional 
attacks and an appropriate response mechanism are required. For example, a person 
trying to login and repeatedly getting the password wrong is suspicious. Hence, 
many systems limit the number of failed attempts (detection of an attack) and then 
close the login access (response to a suspected attack). This is a straightforward 
approach for access control. However, most attacks are of the type denial of service 
(DOS). The goal is not about getting or changing information by accessing the 
resources, but about preventing others from utilizing the resources. Here a device or 
several devices repeatedly and rapidly attempt to perform a normally permitted 
activity at such a volume and rate with a view to prevent other entities from access-
ing the resources. A common example is many rapid Website inquiries resulting in 
the overload and crash of servers. The trade-off here is that techniques for the detec-
tion of malicious activity slow down the performance of legitimate normal activities.

The fundamental information security concepts will be described in more detail 
in later chapters, especially as they apply to Cloud computing. Information security 
traditionally identifies the security boundary, and that leads to identifying potential 
security attack scenarios. The systems are then designed to defend against those 
attacks. The first thing to note is that in many information security breaches, the 
problem was not the theoretical security of the system, but the implementation. A 
current trend away from passwords uses smartphones and/or biometric feature rec-
ognition for access control. The second thing to note is that with Cloud computing, 
the identification of the security boundary is difficult and always changing.

2.5  �An Example of a Remote Security Attack

DNS is used to resolve IP addresses. It allows users to type a human-readable 
address, such as www.cnn.com for the Cable News Network (CNN) site, and trans-
late it to an IP address. Attackers have found ways to manipulate the DNS records 
[9] located on a DNS.

Hackers can replace a legitimate IP address with a booby-trapped address and 
then carry out some malicious activities, such as harvesting users’ login informa-
tion. Furthermore, attackers can cover their tracks by substituting the site’s security 
certificates. The Internet uses Transport Layer Security (TLS) and Secure Sockets 
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Layer (SSL) protocols to provide privacy and integrity [10]. A Certificate Authority 
issues TLS/SSL certificates. These are digital files, also called root certificates, that 
contain the keys, which are trusted by browsers. This attack happens in the follow-
ing five steps:

	1.	 The attacker sets up a fake site resembling the real target name.
	2.	 Then somehow the attacker compromises the login credentials of a DNS pro-

vider server. The attacker changes the IP address of a targeted domain, such as a 
bank’s Website, to the fake one. The attacker also generates a new valid TLS 
certificate for the malicious Website.

	3.	 The victim inadvertently approaches the DNS provider looking for a real site.
	4.	 Using the DNS record of the compromised site, the user is directed to the 

fake site.
	5.	 The fake site asks for the victim’s user credentials and records this information 

in the attacker’s database. Later, it is harnessed to access the victim’s records 
from the target site.

This process is illustrated in Fig. 2.8, which may lead unsuspecting users to think 
that they are on a legitimate Website and then enter their passwords, such as for a 
bank account. The attackers can later on use this information to steal money from 
the actual bank account.

The root cause of this attack is an improperly secured DNS server and ability to 
generate valid digital certificates for a new target site. Like other attacks that we 
shall study in this book, understanding the root cause is key to preventing these 
attacks.

Fig. 2.8  Process of redirecting incoming IP traffic to a different Website

2.5  An Example of a Remote Security Attack
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2.6  �Edge Software Security Requirements

Traditionally, software must meet functional and performance requirements. 
However, security needs to focus on minimizing the attack surface and vulnerabili-
ties. It is also required that even under an attack, software will perform as speci-
fied [11].

The US Department of Defense’s Cyber Security and Information Analysis 
Center (CSIAC) [10] has specified that all software must meet the following three 
security needs:

	1.	 Dependability: Software should be dependable under anticipated operating con-
ditions and remain fairly dependable under hostile operating conditions.

	2.	 Trustworthy: Software should be trustworthy in its own behavior and robust. 
That is its inability to be compromised by an attacker through exploitation of 
vulnerabilities or insertion of malicious code.

	3.	 Resilience: Software should be resilient enough to recover quickly to full opera-
tional capability with a minimum of damage to itself, the resources and data it 
handles, and the external components with which it interacts.

This means that security needs should be considered during all phases of devel-
opment, starting with architecture, implementation, validation, and deployment. 
From an Edge user’s point of view, security is subtle, invisible, and almost taken for 
granted. However, Cloud developers and operators need to observe the following 
practices to assure security:

	1.	 Language options: Start by considering strengths and weaknesses of available 
options, preferring a language with strong type checking and built-in security 
measures. For example, because C is a weakly typed high-level language, it is 
therefore unable to detect or prevent improper memory allocation, resulting in 
buffer overflows. So, a program will need to check for boundary limits. Whereas 
Java is a strongly typed high-level language, it has intrinsic security mechanisms 
based on trusted byte code interpretation, which prevent the use of uninitialized 
variables and language constructs to mitigate buffer overflows.

	2.	 Secure coding: Adopt coding practices that eliminate incidents of buffer over-
flows, strings overwrites, and pointer manipulations, preferably by adding 
checks on the array sizes, string lengths, and pointer overrides, respectively.

	3.	 Data handling: Separate sensitive or confidential data and identify methods to 
securely handle it, e.g., using encryption during storage and transmission and at 
run time.

	4.	 Input validation: Add additional checks to ensure that the range and type of data 
entered by users are correct before passing it to the downstream APIs.

	5.	 Physical security: All equipment connected to Cloud servers should have 
restricted physical access. System logs must be maintained and reviewed to trace 
back the root cause of attacks.
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Overall, ensuring security is a matter of following the “trust but verify” approach, 
based on a quote by the late President Ronald Reagan, which is even truer for Cloud 
computing.

2.7  �Rising Security Threats

Security is no longer just a theoretical concern but is costing our world’s economy 
more than half a trillion dollars per year, as shown in Table 2.1.

Each year, prominent breaches are happening and affecting hundreds of millions 
of people. Some of the largest impacts during the past decade are shown in Table 2.2.

Lastly, cybercrime is starting to drag down the gross domestic product (GDP) of 
many national economies, as shown in Fig. 2.9. Beyond these figures, there is a 
multiplier effect on the economy as productivity slows down. It is due to additional 
security checks that need to be implemented as preventive measures.

There is a continuous battle to outdo each other between the hackers and security 
professionals. In the subsequent chapters of this book, we will study methods that 
will help the latter.

2.8  �Summary

Cloud computing emerged only a decade ago. It is based on basic technologies that 
have been around and under development for more than half a century. These tech-
nologies were hardened in other environments, such as defense applications, per-
sonal computing, mobile products, etc. Note that as we advance into a Web 
application domain, it also expands the hacking attack surface. Business models and 
relationships have to be completely reevaluated due to the fundamental technolo-
gies of Cloud computing. Threat agents can have multiple entry points on the client-
side browsers, network in-between, and server-side hardware or software. Each risk 
needs to be evaluated and mitigation strategies developed in advance to prevent 
harm to the users of Web applications.

Table 2.1  Cost of security 
breaches [12]

Security incidents Results

Cost of security breaches/year globally $600 B
Insiders contributing to security incidents in 
2017

46%

Security experts expect a major attack in the 
next 90 days

30%

2.8  Summary
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Fig. 2.9  Drag of cybercrime on national economies [14]

Table 2.2  Biggest data breaches of this century, so far [13]

Year Enterprise compromised Number of people impacted

2018 Marriott 500 M
2017 Equifax 143 M
2016 Adult Friend Finder 412.2 M
2014 eBay 145 M
2013 Yahoo 3 B

2.9  �Points to Ponder

	1.	 What led to the desire of people with PCs to connect with one another?
	2.	 What led to the growth of thin clients? How thick should thick clients be, and 

how thin should thin clients be? Which use cases suit each category (e.g., an 
information panel at the airport vs. an enterprise handheld computer)? Or given 
a usage class which client they should use? Besides usage, software update fre-
quency and security are also a consideration.

	3.	 What’s the minimal precaution an Edge Cloud user should take?
	4.	 What are the trade-offs of securing information during transmission?
	5.	 Why is the NIST cyber security framework applicable to Edge computing?
	6.	 Multi-tenancy drives load variations in a public Cloud. Different users running 

different types of workloads on the same server can cause performance varia-
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tions. How can you predict and minimize the undesirable effects of performance 
variability?

	7.	 Does a private Cloud always provide a higher level of security than a pub-
lic Cloud?

2.10  �Answers

	1.	 What led to the desire of people with PCs to connect with one another?

•	 Professionals wanted to share data and programs with other users.
•	 People wanted to share music with their friends.
•	 Socially motivated sharing of content, e.g., pictures, stories, and news 

between family and friends, gave rise to social networks. This in turn gave 
rise to sites such as Facebook. This phenomenon brought many new consum-
ers and devices to the Cloud connected networks and databases.

	2.	 What led to the growth of thin clients? How thick should thick clients be, and 
how thin should thin clients be? Which use cases suit each category (e.g., an 
information panel at the airport vs. an enterprise handheld computer)? Or given 
a usage class which client they should use? Besides usage, software update fre-
quency and security are also a consideration.

•	 The previously mentioned trend of people wanting to stay connected at all 
times through various means, such as while traveling on vacation with a 
smartphone but not carrying a PC, meant that phones evolved to have a larger 
screen and mobile applications. However, phones have limited compute capa-
bility due to smaller form factors and users’ desire to make the phone charge 
last a full day. This is the essence of a thin client. Another example of thin 
clients is an airport display terminal with little or no local processing or stor-
age capability.

•	 A laptop PC is a thick client due to its larger form factor, as compared to a 
smartphone. However, a laptop should be comfortable to carry around, have 
a reasonable battery life, and not get overly hot during its operation.

•	 Thickness of a thin client depends on the usage model for each category (e.g., 
an information panel at the airport needs a larger display vs. an enterprise 
handheld computer in the hands of an Amazon parcel delivery driver needs 
more storage and a larger battery vs. a smartphone to fit in the vacation-going 
tourist’s pocket). Besides usage, software update frequency and security 
requirements are also a consideration. Enterprises typically need encryption 
on their mobile handheld devices to protect confidential data, which needs 
more compute and battery power.

2.10  Answers
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	3.	 What’s the minimal precaution any Cloud user should take?

•	 A user needs to ensure that any secure Website connection starts with https://, 
wherein the last “s” means secure. Also, if a user arrives at a Website by click-
ing on a link through an email or text message, then the spellings need to be 
checked to ensure that it is the correct service provider’s site instead of a 
phishing attack to steal financial information.

	4.	 What are the trade-offs of securing information during transmission?

•	 During transmission, any sensitive information, such as users’ passwords, 
credit card information, or any sensitive data, needs to be protected. This 
information may be traveling over public nodes, which are susceptible to a 
man-in-the-middle attack. It can be protected with encryption. However, the 
process of encryption by the sender and decryption by the receiver requires 
time and compute resources. Hence, an appropriate trade-off must be done on 
the need and level of encryption requirements, e.g., 128 bits vs. 256 bits.

	5.	 Why is the NIST cyber security framework applicable to Edge computing?

•	 Even though users of Edge computing may be more worried about the secu-
rity of their devices, the Cloud managers care about the security of their infra-
structure as well as the security of their customers’ data. This situation is akin 
to the operators of a public airline, who can’t assume that all passengers have 
good intentions. Thus, security checking is done for anyone wishing to fly on 
a commercial plan. Similarly, the public Cloud managers are on a constant 
lookout to avert any threats in their datacenter, potentially coming from insid-
ers, hackers, or their own customers.

•	 Multi-tenancy drives load variations in a public Cloud. Different users run-
ning different types of workloads on the same server can cause performance 
variations. How can you predict and minimize the undesirable effects of per-
formance variability?

•	 Analytics can be used to predict periodic patterns of workloads, e.g., for 
enterprise users, weekdays may be busy, while for recreational users, week-
days may use more compute on the weekends. For example, Netflix custom-
ers watch more movies on the weekend using Amazon’s data centers. Their 
jobs can be scheduled to run at complementary times to balance the overall 
server utilization in a Cloud.

•	 Sometimes, in a multi-tenancy environment, execution of one task impacts 
the performance of other tasks. This is also known as a noisy neighbour prob-
lem. It exists due to shared resources on a server, such as frequent accesses to 
shared memory, disk drives, or network cards.

•	 In a public Cloud, once a persistent, noisy neighbour presence is detected, it 
is beyond the scope of an individual user to avoid it. The reason is that one 
user has no control over another user’s tasks. However, it can be avoided by 
stopping the task and requesting a different machine. This may interrupt the 
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service, so a better way is to start another server in parallel and migrate the 
task in a seamless manner, if possible.

	6.	 Does a private Cloud always provide a higher level of security than a pub-
lic Cloud?

•	 It is a misconception that information on private Cloud servers and storage 
systems is always more secure than the information stored in public Clouds. 
Some private hospitals and energy companies have recently suffered well-
publicized hacker attacks. Research from Verizon’s 2021 report* suggests 
that insiders are responsible for around 22% of security breaches at private 
enterprises. Since public Clouds operate at a hyperscale, they hire many secu-
rity professionals and deploy state-of-the-art tools that smaller or private 
organizations may not be able to afford. Also, public Clouds operators are 
cognizant of the fact that their revenues depend on reputation for security and 
reliability. Therefore, they operate with more conservative strategies and take 
extra care to minimize or eliminate any undesirable incidents.

•	 *https://www.verizon.com/business/resources/reports/2021/2021-data-
breach-investigations-report.pdf
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Chapter 3
Foundations of the Internet of Things (IoT)

3.1  �Introduction

In today’s interconnected world, we take good connectivity as a given in every 
aspect of our lives, right from coffee machines and air-conditioner thermostats to 
smartwatches and cars suggesting alternate routes in case of traffic congestion. All 
this has been possible due to smart devices that have emerged and are connected to 
the Cloud all the time. These devices are connected using a technology called the 
Internet of Things (IoT). IoT has emerged as a transformative technology used in a 
wide variety of industries, right from healthcare and manufacturing to retail and 
smart homes.

The IoT technology is not very old and first appeared in 1999 [1] but was adopted 
very fast by the industry due to various other advancements that were happening in 
the supporting technologies/ecosystem, such as (1) faster connectivity and network 
capabilities, (2) improvement in Cloud computing, (3) availability of data analytics 
tools and processing capability of large datasets by computers, and (4) availability 
of low-cost devices and corresponding cost reduction in computing and storage.

Starting with the simple connectivity of a device with an on/off switch commu-
nicating information over the internet, the IoT has undergone a significant evolution 
over the period, resulting in an intricate smart ecosystem of interconnected devices. 
These systems have revolutionized all industries by increasing efficiency, cost sav-
ings, and improved customer service. IoT has also impacted the daily lives of every-
body by making everyday tasks easier, safer, and more efficient.

In this chapter, we will cover the history of the evolution of IoT devices, starting 
with a humble beginning, present-day reality, and exciting future possibilities that 
will emerge as IoT gets integrated with artificial intelligence and machine learning. 
We will also look at the new and exciting applications and emerging use cases and 
why industries are adopting this technology so fast. We will get a glimpse of the 
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limitations and risks that come along with the adoption of IoT technology in 
Sect. 3.6.

Let us start by looking at the evolution of the IoT as a technology before getting 
into other interesting aspects of the adoption of IoT.

3.2  �Historic Evolution of IoT Devices

Machines have been communicating with each other since the time the telegraph 
was developed in the 1830s. From that time the communication between machines 
has evolved, and now the machines communicate information over the Internet. 
This progress has led to the development of the Internet of Things (IoT).

The history of IoT can be traced to the development of Advanced Research 
Projects Agency Network (ARPANET) as a public network in the early 1980s. With 
time, it evolved into the Internet of today. Table 3.1 gives a brief history of the evo-
lution of IoT as a timeline of milestones [1, 2].

As per the available studies [4], it is estimated that there are 15.14 billion con-
nected IoT devices as of 2023, and over 83% of the organizations have improved 
their efficiency by introducing IoT devices in their technical landscape. IoT is con-
sidered the main driver for the “Next Industrial Revolution.” This has been made 
possible due to advancements in technologies such as 5G networks, Edge comput-
ing, and machine learning. These technologies have allowed real-time data analysis 
and decision-making at the Edge devices while improving reliability and reducing 
latency significantly. These issues have been discussed in detail in Chap. 4 of 
this book.

The growth of IoT is not without its challenges. One of the major challenges 
concerning the wide use of IoT is Cyber Security. This issue has been dealt with in 
detail in Chap. 5 of this book.

3.3  �IoT Computing Environment

A typical IoT installation is a complex system with connected devices at the heart 
of the system. There are various layers as well as components that make up this 
complex infrastructure, right from the sensors that collect the data from the devices/
equipment (things) in the field in analog format to the applications that allow 
humans to interact with the devices/equipment in the field.

The IoT environment can be considered an integrated, mutually reinforcing 
structure consisting of four layers that are designed to carry value-laden data from 
the various networked “things” to traditional IT systems [5]. For example, energy 
companies use connected sensors to measure vibrations in turbines, which are fed 
through the network to the computing systems of the companies that analyze it to 
predict when machines will need maintenance. Similarly, jet engine manufacturers 
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embed sensors that measure temperature, pressure, and other conditions of the 
engines to predict their failures or to carry out scheduled maintenance.

The four layers of a typical IoT system are the Sensing Layer or Physical Layer, 
Network Layer, Processing or Middleware Layer, and Application Layer [6]. 
Depending on the usage and installation of the IoT system, these layers may be 
implemented using different elements. In this section and the following section, we 
will discuss how these layers are implemented right from simple to complex 
systems.

Table 3.1  Evolution of the Internet of Things

1982 A graduate student with the help of two fellow students and a research engineer in 
Carnegie Mellon University’s Computer Science Department developed a code to 
monitor a Coca-Cola vending machine connected through ARPANET to let anybody 
on the network know if the machine has cold soda bottles.

1989 Tim Berners Lee, an English computer scientist, proposes the framework of the 
World Wide Web and lays the foundation of the Internet.

1990 John Romkey at the Massachusetts Institute of Technology (MIT) invents a toaster 
that can be turned on or off via the Internet. It can be considered the first connected 
“thing” in the Internet of Things.

1993 The two researchers, Quentin Stafford-Fraser and Paul Jardetzky, at the University of 
Cambridge developed a room coffee pot in their lab to enable people to check the 
level of coffee.

1999 Kevin Ashton, cofounder and Executive Director of Auto-ID Labs at MIT, coined the 
term Internet of Things (IoT) in a presentation to Proctor & Gamble to describe the 
system where the Internet is connected using RFID sensors in their supply chain.

2003 The term “IoT” started making its public appearance and was used widely in 
mainstream publications like The Guardian and Scientific American.

2005 The United Nations International Telecommunications Union published its 7th 
Edition of the Internet Report [3] titled Internet of Things, acknowledging the impact 
of IoT in its report.

2008 The first IoT conference is held in Zurich, bringing together researchers and 
practitioners from academia and industry to take part in the sharing of knowledge.
The US National Intelligence Council recognized IoT as one of the six disruptive 
civil technologies.

2011 The Cisco Internet Business Solutions Group (CIBSG) presented in the White Paper 
that IoT gained popularity between 2008 and 2009 when the number of things 
connected to the internet exceeded the number of people connected to it.

2011 Internet Protocol Version 6 (IPv6) public launch: The new protocol allows (2128) 
addresses.

2013 
onwards

As companies like Apple and Samsung make waves with their smartphones, there is 
a proliferation of AI-powered personal assistants like Google Home and Amazon 
Alexa.
Some devices control individual things in our homes, all working in concert with our 
computers and phones to share data and interact.

3.3  IoT Computing Environment
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3.3.1  �IoT Computing Architecture

As explained earlier, a typical architecture of IoT is a layered structure with many 
Devices (things) connected at the end that generate the raw data, which is then com-
municated through a network using some form of Gateway to the backend server 
(typically a Cloud server) that is running the IoT Platform that helps in integrating 
the IoT information into the existing enterprise database so it can be used by the 
Applications.

The roles of the devices, gateways, and Cloud platforms are well defined [7], and 
each one of them provides specific features and functionality required by the IoT 
system. The interaction between each of the layers is depicted in Fig. 3.1.

Let us discuss the function of each of the layers in the architecture in some detail.

3.3.1.1  �Physical Layer

This is the outermost layer, or sensing layer, which is the basis of an IoT system. In 
this layer of physical devices, both sensors and actuators are connected. The sensors 
gather raw data from their environment, and actuators take required actions as may 
be decided by the higher levels within the architecture.

The sensors can be anything from temperature sensors, surveillance cameras, 
and security cameras in a smart home system to heart rate monitors in wearable 
technology. In the case of industrial scenarios, they may cover everything from 
legacy industrial devices to robotic camera systems, water-level detectors, air qual-
ity sensors, and accelerometers. For example, deploying a sensor on an automotive 
assembly line can be used to assess quality control through robotic functions with 
its output relayed to higher layers for processing purposes.

Fig. 3.1  A typical IoT system architecture
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An actuator might, for example, shut off a power supply, adjust an airflow valve, 
or move a robotic gripper in an assembly process as may be directed by the system.

3.3.1.2  �Network Layer

The network layer is responsible for providing communication and connectivity 
between devices in the IoT system. It includes protocols such as Hypertext Transfer 
Protocol (HTTP), Message Queuing Telemetry Transport (MQTT) [8, 9], and 
Advanced Message Queuing Protocol (AMQP) to facilitate transmission from one 
application/device to another and with the internet. The network technologies that 
are commonly used in IoT include Wi-Fi, Bluetooth [10], Zigbee [11], and cellular 
networks such as 4G and 5G.

The network layer may include gateways and routers that act as intermediaries 
between devices and the Internet and may include security features such as encryp-
tion and authentication to protect against unauthorized access.

These devices are often located near the sensors and actuators for the reasons of 
reliable communication and energy conservation. For example, a pump might con-
tain numerous sensors and actuators that feed data into a data aggregation device 
that also digitizes the data. This device might be physically attached to the pump 
and will communicate the digitized data to the adjacent gateway for further 
communication.

The basic gateway capabilities can be enhanced by adding capabilities of analyt-
ics, malware protection, and data management to make them intelligent gateways. 
These gateways will be able to analyze the data streams in real-time.

3.3.1.3  �IoT Cloud Platform

The IoT Cloud platform, or the data processing layer of IoT architecture, refers to 
the software and hardware components that are responsible for collecting, analyz-
ing, and interpreting data from IoT devices.

The layer includes a variety of technologies and tools, such as data management 
systems, analytics platforms, and machine learning algorithms. These tools are used 
to extract meaningful insights from the raw data received from devices to enable 
businesses to make decisions and streamline their operations. We can also consider 
Edge analytics along with AI techniques supported by intelligent gateways to form 
part of this layer.

The processing may take place on-premises, in the Cloud, or in a hybrid Cloud 
system, but the type of processing executed remains the same, regardless of the 
platform.
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3.3.1.4  �Application Layer

The application layer of IoT architecture is the topmost layer that interacts directly 
with the end user. It is responsible for providing user-friendly interfaces and func-
tionalities that enable users to access and control IoT devices. The layer includes 
various software and applications such as mobile apps, Web portals, machine learn-
ing algorithms, data visualization tools, and other advanced analytics capabilities 
that are designed to enable humans to interact with the underlying IoT 
infrastructure.

For example, when someone uses an application specifically designed for smart 
homes, he will be able to activate coffee makers simply via the app’s button-tapping 
function, or when there is unusual energy consumption, it may indicate faults or 
inefficiencies. Similarly, in the case of industrial applications, if vibration levels in 
machinery go beyond normal limits, maintenance can be scheduled before costly 
breakdowns occur.

3.3.2  �Development Frameworks

To enable the development of IoT solutions, there is a need to have software running 
on various hardware devices at each layer of IoT architecture [12]. We will be look-
ing at the three stacks of software that will be running on the hardware of these three 
layers to enable a secure and seamless flow of data from sensors to the backend 
servers of the IoT systems.

3.3.2.1  �Stack for Physical Layer Devices

The “Things” as the sensors and actuators are called in IoT parlance and are the 
starting point of the IoT solutions. These devices are generally constrained in terms 
of size or power supply and often use microcontrollers that have very limited capa-
bilities. These microcontrollers are designed to carry out specific task(s) with the 
aim of mass production and low cost.

The software for these microcontroller devices is also designed to support spe-
cific tasks. The software stack is depicted in Fig. 3.2. The key features of the soft-
ware stack running on a device include:

	1.	 IoT Operating System: Most of the devices will run with “bare metal,” but some 
will have embedded or real-time operating systems that are particularly suited 
for microcontrollers and can provide IoT-specific capabilities.

	2.	 Hardware Abstraction: It is a software layer that enables access to the hardware 
features of the microcontroller, such as flash memory, GPIOs, and serial 
interfaces.
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	3.	 Communication Support: This includes drivers and protocols enabling the 
devices to connect using a wired or wireless protocol like Bluetooth, MQTT, 
CoAP, etc., thereby enabling device communication.

	4.	 Remote Management: This functionality enables the device to remotely control 
the upgrade of its firmware or to monitor its battery level.

3.3.2.2  �Stack for Network Layer or Gateways

The gateways act as the aggregator for a group of sensors and actuators and coordi-
nate the connectivity of the connected devices to each other and an external net-
work. Typically, a gateway is physical hardware, but sometimes the functionality 
may be incorporated into a larger “thing” that is connected to the network. For 
example, an automobile or a home automation appliance [13] may act as a gateway.

An IoT gateway may often have the capability of processing the data at the Edge 
and storage capabilities to overcome network latency and provide reliability. The 
IoT gateways are generally dependent on software to implement the core function-
alities. The software stack for gateway is depicted in Fig. 3.3. The key features of 
the gateway software stack are:

	1.	 Operating System: It is typically a general-purpose operating system having a 
small footprint, such as Linux.

	2.	 Application Runtime Environment: IoT gateways often can run small application 
code (applets), and allow the applications to be dynamically updated. For exam-
ple, a gateway may have support to run Java, Python, or Node.js code.

	3.	 Communication and Connectivity: The gateways need to support different con-
nectivity protocols (e.g., Bluetooth, Wi-Fi, Zigbee) to allow different devices to 
connect with them. They also need to connect to different types of networks 
(e.g., Ethernet, Wi-Fi, cellular, etc.). While providing connectivity using differ-
ent protocols, the gateways need to ensure the reliability, security, and confiden-
tiality of the communications.

Fig. 3.2  Software Stack 
for physical layer devices
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	4.	 Data Management and Messaging: This capability is needed to provide local 
persistence to overcome network latency, offline mode, and real-time analytics at 
the Edge. It also provides the ability to forward device data consistently to an IoT 
platform.

	5.	 Remote Management: It enables the ability to remotely provision, configure, and 
start/shut down the gateway as well as the applications running on it.

3.3.2.3  �Stack for IoT Cloud Platform

The IoT Cloud Platform provides the software and services required to enable IoT 
solutions to perform and deliver their functionality. It typically operates on a Cloud 
infrastructure or inside an enterprise data center. The platform should provide flex-
ibility to scale both horizontally (e.g., to support a large number of devices con-
nected) as well as vertically (e.g., to address the variety of IoT solutions). It also 
enables the interoperability of the IoT solution with existing enterprise applications 
and other IoT solutions.

The core features of the IoT platform are depicted in Fig.  3.4 and are 
described below:

	1.	 Connectivity and Message Routing: The IoT platform should be able to interact 
with very large numbers of devices and gateways using different protocols and 
data formats. It should be able to normalize to allow for easy integration into the 
rest of the enterprise.

	2.	 Device Management and Device Registry: A Central Registry to identify the 
devices/gateways running in an IoT solution and the ability to provision new 
software updates and manage the devices. It should also be capable of registering 
new devices and gateways as the network scales.

Fig. 3.3  Software Stack 
for network layer gateways
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	3.	 Data Management and Storage: A scalable data store that supports the volume 
and variety of IoT data.

	4.	 Event Management and Analytics: A scalable event processing capability with 
the ability to consolidate and analyze data; shall also have the ability to create 
reports, graphs, and dashboards as may be required by the user.

	5.	 Application Enablement: Ability to create reports, graphs, and dashboards to use 
API for application integration.

In addition to the above functionalities that need to be provided at different layers, 
there is a need to have cross-Stack functionality to ensure secure and seamless oper-
ations of the IoT system. The required functionalities are:

	1.	 Security: Security needs to be implemented across the network, right from the 
devices to the Cloud. Features such as authentication, encryption, and authoriza-
tion need to be part of each stack.

	2.	 Ontologies: The format and description of device data are required to enable data 
analytics and data interoperability. The ability to define ontologies and metadata 
across heterogeneous domains is a key area for IoT system interoperability.

	3.	 Development Tools and SDKs: IoT developers will require development tools 
that support the different hardware and software platforms involved.

There are many open-source and proprietary solutions available for the same 
[14]. Some of the popular open-source frameworks are DeviceHive, Mainflux, 
Thinger.io, and Kaa Enterprise IoT Platform, to name a few [15]. The source code 
can be obtained on GitHub [16]. All major Cloud service providers (CSPs) have a 
proprietary IoT solution. Some of the popular frameworks are Amazon Web Services 
IoT, Azure IoT, Cisco IoT Solutions, and Google Cloud IoT.

Fig. 3.4  Software Stack 
for IoT Cloud platform
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3.4  �Intelligent IoT Devices at the Edge

In the last section, we looked at a simplified version of the IoT architecture. The 
architecture had several limitations, as discussed. The major issues with the simpli-
fied architecture are the latency and security concerns, especially when a system is 
deployed for critical or sensitive applications.

As depicted in Fig. 3.1 and explained in the earlier section, the processing is 
centralized on the Cloud platform. This results in latency, as the data must be trans-
ported to the Cloud, and after processing, the results are transferred back to the 
Edge device to carry out the actions.

To overcome this drawback, many approaches have been suggested. The two 
most popular approaches are Edge computing and Fog computing [17]. A lot of 
people use these terms interchangeably as both are concerned with leveraging the 
computing capabilities within a local network. These capabilities are used to carry 
out computation tasks that would have been ordinarily done in the Cloud. In other 
words, both Edge computing and Fog computing are computing methods that bring 
computing and data processing closer to the site where data is initially generated 
and collected. As both methods process data closer to the source, they reduce latency 
and conserve IoT network resources—crucial for timely insights.

Before we proceed further in terms of the requirements of intelligent devices, it 
is crucial to understand the differences that set apart these two methods.

3.4.1  �Edge Computing

Edge computing [18] [19], as the name implies, brings the computation to the Edge 
of a network, i.e., at the source where data is produced. The storage and computa-
tion powers are embedded within the devices to collect and process sensor-generated 
data. This decentralized approach to data processing and storage improves response 
time by drastically cutting the latency associated with transmitting large volumes of 
data to the Cloud server. This enhances the Edge device’s overall functionality and 
optimizes its performance.

This distributed model plays a pivotal role in IoT systems requiring real-time 
reactions. Some of the examples where Edge computing becomes a necessity due to 
response time criticality are (A) Can the robotic arm performing a surgery cut an 
artery? (B) Will the car crash? (C) Is the aircraft approaching the threat detection 
system a friend or a foe? Under such situations, there is no time to send the data to 
the Cloud platform; the decision processing needs to be done on the device itself.

However, Edge computing devices currently do not have the computing and stor-
age that are necessary to perform advanced analytics. Due to this limitation, the 
processed data is forwarded to Cloud servers for analysis, review, and archival.
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3.4.2  �Fog Computing

Fog computing [20], as the name suggests, is the computing layer between the 
Cloud and the Edge. It is typically nearer to the Edge, and that is how it derives its 
name (the word “fog” in Fog computing is a metaphor, as fog in general terms refers 
to the clouds close to the ground). The Fog computing resources are typically 
located in the same or nearby premises where the sensors are located. They are con-
nected to the Edge devices on a Local Area Network.

In cases where Edge devices may send huge streams to the Cloud, Fog comput-
ing can receive its data from the Edge layer before it reaches the Cloud and then 
decide what is relevant and what is not. The Fog layer may forward the relevant data 
to the Cloud, while the irrelevant data can either be deleted or analyzed at the Fog 
layer for remote access or to inform localized learning models. In some cases, the 
analyzed data may also be forwarded to the Cloud layer for storage and archival 
purposes.

Figure 3.5 captures the relationship among the various storage and processing 
layers, namely, Edge computing, Fog computing, and Cloud computing, in a more 
complex IoT environment [21].

A real-life example of Fog computing would be an embedded application on a 
production line, where a temperature sensor would measure the temperature every 
single second. This data would then be forwarded to the Fog server over a local area 
network. The Fog server will then decide whether the data should be forwarded to 
the Cloud or not, based on the local model or certain other parameters. For simple 
temperature readings, these data savings might seem negligible, but imagine the 
volume of all the temperature measurements; every single second of a 24/7 

Fig. 3.5  Enhanced IoT environment with Edge computing and Fog computing layers
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measurement cycle is sent to the Cloud. Consider the case of the data being gener-
ated by security cameras, which are constantly streaming complex information or 
large files such as images or videos. The impact on network bandwidth and latency 
could be massive.

3.4.3  �Edge Computing vs. Fog Computing

As may be clear from the description above, Edge and Fog computing have many 
commonalities, but they are still very different computing methods. Let us discuss 
the similarities and differences between the two models.

3.4.3.1  �Similarities Between Edge and Fog Computing

Both Edge and Fog computing are viable solutions to handle tremendous amounts 
of data generated by the IoT devices at the Edge.

Both technologies have been designed to keep data closer to where it originated 
and perform computations that otherwise would need to be done in the Cloud. This 
approach offers better bandwidth efficiency, resulting in minimal expenses. This 
also results in reducing the latency.

Both approaches offer increased security and privacy by encrypting data by 
using local computing power. They can also identify potential cyberattacks, thus 
enabling them to respond with security measures quickly.

Each of these computing methods is designed to support autonomous operations, 
even in locations where connectivity is intermittent or bandwidth is limited. These 
two technologies can process data locally.

3.4.3.2  �Differences Between Edge and Fog Computing

The significant difference between Edge and Fog computing is where computation 
and data analysis occur [22]. In the case of Edge computing, it takes place right on 
the devices attached to the sensors. In some cases, processing may occur on a gate-
way device closer to sensors. In the case of Fog computing, it takes place on devices 
or servers that are further away from the sensors that generate data.

Edge computing allows data to be analyzed and acted upon in real time, thereby 
optimizing the performance of the system. The data is also more secure as it is not 
transported [23]. In some use cases, Edge computing can send results directly to the 
Cloud. Therefore, Edge computing can be done without the presence of Fog 
computing.

Fog computing cannot exist without Edge computing because it cannot produce 
data on its own. Its main objective is to reduce the workload at both the Edge and 
the Cloud. This is done by performing the necessary processing tasks.
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Edge computing is typically used for minor resource-intensive applications 
because devices have limited capabilities in terms of data storage and processing. It 
has been found useful in healthcare applications in the form of patient monitoring 
[24], predictive maintenance, and large-scale multiplayer gaming. On the other 
hand, Fog computing is primarily used for applications that process large volumes 
of data gathered across a network of devices. It is useful for use cases such as smart 
grids [25] and autonomous vehicles.

3.4.3.3  �Comparison of Edge and Fog Computing

The above discussion and comparison [26] of the two approaches have been sum-
marized in Table  3.2. in terms of their advantages, disadvantages, and typical 
use cases.

The main advantages of both these computing methods are improved user expe-
rience and systematic data transfer with minimal latency. Both methods apply to 
multiple problems. The decision as to which one to choose for a specific problem 
depends on the cost, response time required, and management complexity.

3.4.4  �Additional Requirements

In addition to the storage, computing, and analytics capabilities, intelligent devices 
also have additional requirements to ensure a secure and better user experience.

3.4.4.1  �Security

With the expansion of IoT systems, security has become an important requirement 
to ensure data is safe as it moves from the Edge layer to the Cloud layer [26]. In 
addition to data security, there is a need to keep devices and connections also secure. 
This requires that any deployment shall have a security layer to provide encryption 
for reliable data transmission, authentication services for user verification purposes, 
as well as access control elements that can be used to restrict certain resources if 
required.

Integrating a sophisticated security system helps protect against any potential 
threats that might breach through vulnerabilities within the entire IoT network 
architecture. The security layer provisions and enforces multiple levels of security 
protocols at various stages to deter malicious attacks against devices and connectiv-
ity. The access control mapping guards the protection of data collected and shared 
by a network participant or user. More details about the security features required 
for reliable communication and processing are discussed in Chap. 5. The best prac-
tices to be followed to build a reliable security layer are discussed in Chap. 7 of 
this book.
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Table 3.2  Comparison of Edge and Fog Computing

S. No. Edge computing Fog computing

Advantages

1 Provides flexible remote connectivity Connectivity flexibility in terms of wired, 
Wi-Fi, or high-speed 5G networks

2 Data sovereignty compliance by keeping 
data close to its source

Reduced Cloud dependency resulting in 
cost savings by minimizing data transfer 
costs and Cloud service consumption

3 Enhanced security by providing data 
encryption before transmission

Reduced bandwidth consumption resulting 
in bandwidth efficiency and latency 
improvement

4 Local intelligence enables the device to 
host AI and machine learning models 
locally, enabling them to make intelligent 
decisions

Distributed intelligence across the network, 
enabling decision-making at various levels

5 Offline operation even when disconnected 
from the Cloud

Local data processing helps filter and 
preprocess data before sending it to the 
Cloud

Disadvantages

1 Edge computing disperses computing 
resources, making centralized monitoring 
and management more complex

As the computing resources are restricted to 
a physical location, it restricts computing to 
that specific location

2 Adding more devices to the Edge requires 
careful management and configuration to 
maintain consistent performance and 
reliability

It is exposed to potential security threats 
like IP spoofing and Man in the middle 
attacks

3 Edge devices depend on network 
connectivity for communication and data 
transfer and, therefore, require reliable 
network connectivity under normal 
operations

Implementing Fog solutions requires 
integration with both Edge and Cloud 
systems. This requires additional finances at 
the setup time

4 Deployment of Edge networks involves 
setting up and configuring Edge devices 
that require specialized skills and expertise

Use Cases

1 In industrial settings, Edge computing is 
extensively used for real-time monitoring 
and control of machinery, optimizing 
production processes, and enabling 
predictive maintenance to prevent costly 
downtime

For smart cities and urban infrastructure 
Management, typically Fog computing is 
deployed to enhance the functioning of 
applications such as traffic management, 
street lighting, waste management, and 
public safety

2 It is crucial for self-driving cars and 
vehicles, where immediate decision-
making based on sensor data is essential to 
ensure safe navigation and collision 
avoidance

Fog computing plays a pivotal role in 
energy management systems by analyzing 
data from smart meters, sensors, and power 
grids. It aids in load balancing, fault 
detection, and energy consumption 
optimization

(continued)
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3.4.4.2  �Business Layer

To derive the business advantage and provide a better user experience, there is a 
need to have a business layer that serves as a bridge between IoT data and existing 
operations. The business layer helps in better decision-making and strengthening 
collaboration. It also simplifies application complexity by automating procedures 
through rule enforcement. By confirming data validity, it guarantees protection 
from breaches and maintains its robustness.

3.5  �Use Cases for IoT Devices

This section discusses three use cases where IoT devices are connected to AI/ML 
applications running on an IoT-enabled Cloud platform. The use cases cover appli-
cations right from smart home to remote monitoring of solar power plants.

3.5.1  �Smart Home Systems

A smart home is any home that includes automated IoT devices connected to the 
Internet [13]. Using these IoT devices, users can control lighting, heating, and other 
home appliances (such as washing machines, dishwashers, and dryers) to make life 
simple. Smart home applications give automatic control of things around the home, 
turning them from “dumb” to smart.

Smart homes make life more convenient and can even save money on heating, 
cooling, and electricity bills. They also lead to greater safety with Internet of Things 
devices like security cameras and systems. These devices are connected to the 
Internet, which allows them to be controlled remotely. For example, one can put 
lights on schedules so that they turn off during the night at sleep time or turn the A/C 
up about an hour before one returns from the office so the house is comfortable. It 

Table 3.2  (continued)

S. No. Edge computing Fog computing

3 For smart home devices like thermostats, 
security cameras, and voice assistants, 
Edge computing enables local processing 
for quicker response times and enhanced 
privacy

For oil and gas exploration in remote 
locations such as oil rigs, Fog computing 
can process data from various sensors to 
monitor equipment performance, detect 
anomalies, and ensure the safety of workers

4 Edge computing facilitates local AI 
processing for applications like image 
recognition, natural language processing, 
and machine learning on devices like 
smartphones and cameras

In agriculture, Fog computing assists in 
monitoring soil conditions, weather 
forecasts, and crop health using sensors. 
This enables precise irrigation, fertilization, 
and pest management for improved yield 
and resource efficiency
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can also monitor the air quality and open or close windows as required to ensure the 
house has a constant supply of fresh and filtered air.

Typically, smart home applications are linked to a voice assistant like Alexa, Siri, 
or OK Google. These voice assistants can be used to control lights, adjust room 
temperature, answer phone calls, check who is at the front door, or trigger an entire 
sequence of events from a single command [27].

A smart home system has three main elements: sensors, controllers, and actuators.

•	 Sensors can monitor changes in daylight, temperature, or motion detection. 
Home automation systems can then adjust sensor settings (and more) based on 
user preferences.

•	 Controllers refer to devices like personal computers, tablets, or smartphones. 
These devices are used to send and receive messages about the status of auto-
mated features.

•	 Actuators may be light switches, motors, or motorized valves that control the 
actual mechanism, or function, of a home automation system. They are pro-
grammed to be activated by a remote command from a controller.

The IoT devices are connected to an Internet gateway using any of the different 
communication protocols, i.e., Wi-Fi, Bluetooth, ZigBee, or others. Many of these 
IoT devices have sensors that monitor changes in motion, temperature, and light so 
the user can gain information about the device’s surroundings. The gateways are 
connected to an IoT platform hosted on a Cloud server.

Smart homes work at three levels:

•	 Monitoring: It allows a user to check in on remote devices through an applica-
tion. For example, one can view the live feed from a smart security camera.

•	 Control: It allows the user to control these devices remotely, like panning a secu-
rity camera to see more of a living space.

•	 Automation: It allows setting up devices to trigger one another, like having a 
smart siren go off whenever an armed security camera detects motion and 
informs the security services of a breach.

A typical smart home system topology is shown in Fig. 3.6.
Typically, smart home systems offer a variety of functions. Some of the common 

functions offered by these systems are:

•	 Alarm Systems
•	 Appliance Control
•	 Digital Personal Assistant
•	 Fire and Carbon Monoxide Monitoring
•	 Home Automation Security Systems and Cameras
•	 Keyless Entry
•	 Real-time Text and Email Alerts
•	 Remote Lighting Control
•	 Surveillance Systems
•	 Thermostat Control
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•	 Voice-activated Control

Smart home systems offer many benefits. Some of them are:

•	 Remote Access: The devices at home can be controlled using mobile applications 
from anywhere, even if it is a remote location thousands of miles away from home.

•	 Comfort and Convenience: The system allows you to control devices remotely or 
via voice commands, set them on schedules, and even sync them with the sunrise 
and sunset. The systems are user-friendly to allow anybody to operate them with-
out any knowledge of underlying technologies.

•	 Energy Efficiency: Due to the programming capabilities of smart devices like 
thermostats and motion detection, the system reduces energy consumption, 
thereby reducing electricity bills.

•	 Safety: Many smart security products increase safety at home. For example, sen-
sors for doors and windows, security cameras that can detect people, and video 
doorbells that greet whoever is knocking on the door.

There are certain issues when using these smart devices, as listed below. These 
major concerns relate to cost, security, and privacy.

•	 Cost: Smart IoT devices are more expensive than their non-connected 
counterparts.

•	 Security Issues: Anything that is connected to the Internet can be hacked, includ-
ing smart IoT devices. There is a need to be aware of these concerns and adhere 
to best digital security practices as described in Chap. 7 of this book.

Fig. 3.6  Smart home systems
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•	 Privacy: Privacy is a huge concern when dealing with smart cameras, as users 
can livestream footage from a camera’s application, which hackers can intercept.

3.5.2  �Remote Monitoring and Management for Solar Plants

The solar power plant [28] consists of a sophisticated infrastructure that works in a 
manner that maximizes electricity production. The primary components of a solar 
power plant are solar panels, inverters, solar controllers, transmission, and energy 
storage systems. There is a need to closely monitor the performance of solar power 
plants to ensure maximum productivity and availability. In addition to monitoring 
the performance of solar plants, there is a need to monitor other parameters as well 
to ensure smooth running. The monitoring helps in scheduling plant maintenance, 
parts replacement, or solar panel cleaning to ensure the long-term performance of 
the power plant.

As solar plants are generally located in remote locations due to space require-
ments, remote monitoring of the plant is the only viable option available. The 
remote monitoring system keeps users well-informed about every minute detail of 
the solar power system. It also keeps details of the overall health of the solar system 
by keeping track of potential defects and issues that may arise [29].

The solar plant monitoring and management system is a collection of hardware 
and software. They work together to monitor faulty solar panels, and dust accumu-
lates on panels, thus lowering the output, connection loss, and many such issues. 
The system gathers data from various sensors, analyzes, and synthesizes it to make 
decisions concerning solar energy systems.

The system integrates with various sensors like current sensors, voltage sensors, 
energy meter sensors, and weather sensors. These sensors are nothing but smart IoT 
devices. They also monitor the inverter performance, which converts the direct cur-
rent (DC) generated by solar panels into usable alternating current (AC). The data 
generated from these IoT devices is analyzed in the Cloud, giving detailed and intri-
cate performance feedback on the solar energy system and offering real-time data 
on energy generation, solar panel efficiency, and overall system performance.

The topology used for the system is a simplified classic remote monitoring solu-
tion with a cellular connectivity device at its core for connectivity to the Cloud. An 
example of system topology is shown in Fig. 3.7.

The remote monitoring and management system based on smart IoT devices 
provides multiple benefits:

•	 Downtime Reduction: The timely detection of issues enables prompt mainte-
nance, minimizes downtime, and maximizes energy production, resulting in 
higher system efficiency.

•	 Repair and Replacement Cost Reduction: The early identification of defects or 
anomalies prevents minor issues from snowballing into major problems. This 
results in reduced repair and replacement costs.
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•	 Managing Multiple Installations: The control system can manage multiple solar 
energy sites from a centralized location. This scalability multiplies operational 
efficiency and streamlines maintenance procedures.

•	 Improving Plant Efficiency and Performance: The insights provided by remote 
monitoring systems empower users to refine system parameters, address ineffi-
ciencies, and optimize energy output, thereby elevating overall plant 
performance.

3.5.3  �Smart Helmet

In case of a road accident involving a two-wheeler rider, medical help must be pro-
vided to the injured at the earliest to save their life. This is a perfect use case for an 
IoT-enabled helmet with an AI-enabled application to provide immediate medi-
cal help.

The smart helmet is a collection of sensors, hardware, and software [30]. These 
work together to constantly monitor the driving pattern and behavior of the rider. 
The system integrates with various sensors like an accelerometer [31], a gyroscope, 
LDR, IR, and barometric pressure and altitude sensors [32]. The data generated 
from these IoT devices is analyzed in the Cloud, giving detailed and intricate per-
formance feedback to the rider about the speed and behavior pattern on the road. 
The analytics are performed by an AI engine in the Cloud.

In the event of an accident, the device detects the occurrence and severity of the 
accident using an AI model trained to detect the accident based on the data from 

Fig. 3.7  Remote monitoring and management of solar plants
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various onboard sensors. The location of the accident is detected using the GPS-
GSM satellite system [33]. The location is also communicated to the Cloud along 
with other data from smart helmet.

Based on the location data, the application running in the Cloud alerts the nearest 
emergency response team (hospital/ambulance) using SMS messages along with 
the system communication channel. SMS messages are also sent to the mobile 
phones of friends and relatives of accident victims to inform them about the acci-
dent. This helps in providing medical help at the earliest to the injured to minimize 
the risk of casualty.

The complete system consists of the IoT-enabled helmet, the IoT Cloud plat-
form, the communication channel between the device and the Cloud, and the user 
interface, which may be based on mobile and laptop/desktop. The topology of such 
a system is shown in Fig. 3.8.

The advantage of such a system is that it is self-activated and informs the stake-
holders (hospital, friends, and relatives) about the accident, its severity, time, and 
location, thereby reducing response time to provide medical help. It also gives con-
fidence to the rider that he is not alone but is always traveling with a virtual road 
safety companion who can act on his behalf.

3.6  �Current Limitations of IoT Devices

IoT devices are being installed in homes and businesses for many different applica-
tions. These devices have their limitations in terms of computational power, privacy, 
and security. The security risks associated with IoT devices are discussed in more 

Fig. 3.8  Smart helmet for safety of two-wheeler riders
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detail in Chap. 5 of this book. The other limitations associated with IoT devices and 
systems are listed below.

•	 Limited Computation Capability: IoT devices at the Edge typically have limited 
computing power as they are mainly concerned with converting analog data gen-
erated by sensors to digital format. Digital data is then sent to the Cloud server 
for further processing.

•	 Limited Storage Capacity: IoT devices at the Edge are often not designed to store 
large datasets, as these devices have limited storage capacity.

•	 Privacy Concerns: IoT devices are more vulnerable to cyberattacks due to lim-
ited storage and computational capability. These attacks can compromise the 
security and privacy of the data being collected and transmitted. The privacy 
issue is especially critical if the system leads to financial losses or reputa-
tional damage.

•	 Security Risks: With many interconnected IoT devices at the Edge and to the 
Cloud servers, these devices are more vulnerable to cyberattacks. These attacks 
can be in the form of hacking or unauthorized access leading to data breaches. 
Different kinds of cyberattacks are described in more detail in Chap. 5 of this 
book. Due to limited resources at the Edge, IoT devices often lack robust security 
mechanisms such as encryption, authentication protocols, and regular software 
updates.

•	 Complexity and Integration: Implementing IoT Edge devices is a complex task 
as it involves the integration of a wide range of technologies, including sensors, 
actuators, communication networks, and data analytics. This complexity is espe-
cially more challenging for businesses with existing infrastructure and legacy 
systems.

•	 Limited Interoperability: At present, there is no universally accepted standard for 
IoT device compatibility and connectivity. IoT systems often rely on proprietary 
technologies and protocols [34], which makes it difficult to establish communi-
cation and exchange data between IoT devices from different vendors.

•	 Scalability: As mentioned earlier, due to limited interoperability, it is difficult for 
different IoT devices to communicate and exchange data. This limits the scal-
ability and flexibility of IoT systems and makes it costly and resource-intensive 
to implement and maintain them. Moreover, the sheer volume of data generated 
by IoT devices may strain existing IT infrastructure and may require investment 
in data storage and processing capabilities.

•	 Reliability and Downtime Risks: For most of the applications, IoT Edge devices 
rely on continuous connectivity and power supply to function effectively. Any 
disruptions in network connectivity or power outages can impact the perfor-
mance of IoT devices. There is a need to have contingency plans in the event of 
IoT device failures or connectivity issues.

•	 Data Overload and Analysis Challenges: Sensors generate enormous amounts of 
data. Extracting meaningful insights from this data requires advanced analytics 
capabilities. As IoT devices have limited processing capabilities, this data needs 
to be sent to Cloud servers for effective analysis and to derive actionable insights.

3.6  Current Limitations of IoT Devices
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•	 High Costs: The cost of IoT devices is higher as compared to regular devices, 
resulting in an initial higher cost of deployment. The ongoing maintenance and 
support of IoT systems can also be costly. This cost needs to be reduced so these 
devices can be deployed easily.

3.7  �Emerging Needs for IoT Devices

The Internet of Things (IoT) has revolutionized many industries, right from health-
care to automotive and smart cities. This rapid adoption of IoT has resulted in a 
much broader range of devices on the Internet. These devices include medical 
devices, vehicles, household appliances, electric meters, street lights, traffic lights 
and controllers, smart TVs, and digital assistants such as Amazon Alexa and Google 
Home [35]. These are driving innovations in creating new opportunities for prod-
ucts, services, and businesses. These innovations are putting demands on IoT 
devices in terms of higher processing and storage capacity, as described below.

The IoT devices of the future must meet the following needs to support emerging 
products and services:

•	 Distributed Data Storage and Processing: There will be many new IoT applica-
tions that have to make decisions in real time and cannot tolerate delays due to 
network latency. These devices must handle data-related functions locally instead 
of transmitting data to the Cloud server. For example, motor vehicles and surgi-
cal robots.

•	 The decentralized storage of data requires that all locations maintain the same 
level of security; otherwise, the hackers may break in and corrupt the data, result-
ing in erroneous results. To avoid this, IoT systems need to incorporate mecha-
nisms to ensure the accuracy and consistency of data at the decentralized nodes. 
This needs to be consistent with the proper functioning of the overall system.

•	 Edge Computing: Edge computing is becoming a popular approach to reduce the 
latency and bandwidth requirements associated with Cloud computing. This 
requires that the IoT Edge devices must have sufficient computing and storage 
capacity. These capabilities can be achieved by using low-power microcon-
trollers and single-board computers, which are connected to IoT devices and 
sensors. Integrating AI applications directly on the Edge devices (IoT devices) 
further enhances Edge computing capabilities. As Edge computing distributes 
data processing and analytics across multiple devices, it often creates redundant 
systems that are less prone to failure. The sensitive data can be kept more secure, 
as it does not need to be transmitted to a centralized server.

•	 Secured Sensors and Devices: IoT devices incorporate sensors that collect data 
from the physical world; these can be subjected to electromagnetic radiation that 
may cause them to malfunction. For example, spoofing location data can cause a 
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connected car to veer off course. As IoT devices are also connected to the 
Internet, a cyberattack may corrupt them to malfunction. There is a need to incor-
porate mechanisms to protect devices from such an attack.

•	 Implementing Strong Authentication and Encryption: These methods protect IoT 
devices and data from unauthorized access and tampering. Encryption also 
ensures the integrity of data and communications. The IoT devices need to pro-
vide support for biometrics, tokens, and private keys, which offer a secure and 
reliable means of user authentication. These will reduce the risk of cyberattacks 
and ensure the security of sensitive data.

•	 Regular Software Updates and Patch Management: To improve security and 
minimize vulnerabilities of IoT devices, there is a need for regular software 
updates and patches. The IoT devices should be capable of running automated 
patching tools and employ secure patching protocols [36].

•	 AI and Machine Learning: The integration of AI with IoT devices can create new 
opportunities as it can help to analyze large amounts of data that is generated by 
sensors to gain insights and make predictions. The future trend is toward decen-
tralized architectures where AI processing can be done on Edge devices. This 
requires the IoT devices to have more processing and storage capabilities. This 
capability can be used to optimize heating, ventilation, and air-conditioning 
(HVAC) systems, reducing energy consumption and improving comfort.

•	 Support for 5G Networks: The increased speed and lower latency of 5G networks 
make it possible to support real-time applications like remote surgery and aug-
mented reality. The newer IoT devices should support 5G network connectivity 
natively. This will improve the speed, reliability, and security of IoT systems.

•	 Sustainability and Green IoT: Climate change is forcing humans to look for 
renewable energy sources, such as solar or wind power, to power IoT devices. 
Organizations are working on developing IoT devices that are designed to reduce 
energy consumption and minimize waste [37]. They are also looking at using 
eco-friendly materials and manufacturing processes, reducing the environmental 
impact of IoT devices.

3.8  �Summary

The Internet of Things (IoT) is a transformative technology that connects various 
devices to the Cloud, enabling better connectivity in various industries such as 
healthcare, manufacturing, retail, and smart homes.

The chapter discusses a typical architecture to support an IoT computing envi-
ronment, covering various layers and functionalities provided by each layer to cre-
ate a seamless system. It also discusses the development framework for building 
robust and reliable IoT systems, covering Fog computing and Edge computing mod-
els. Each model has its advantages and disadvantages, which were highlighted by 
relevant use cases. The three use cases covering smart home systems, remote moni-
toring and management of solar plants, and the use of smart helmets in providing 
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immediate emergency healthcare services in accidents were discussed to highlight 
the advantages offered by intelligent Edge devices. The chapter highlights the cur-
rent limitations of IoT devices at the Edge and the functionalities that need to be 
provided by these Edge devices to support emerging applications in the future.

3.9  �Points to Ponder

	1.	 Given that IoT is a relatively new technology and lacks standards, how can you 
make IoT devices from different vendors work together?

	2.	 Mission-critical IoT devices are expected to communicate continuously and 
seamlessly with the Cloud, even in difficult situations, without failure. How can 
this be planned?

	3.	 With billions of connected IoT devices, rapid identification and authentication of 
devices is a challenge. What can be done to simplify this?

	4.	 Data security is a major concern across prominent businesses and government 
agencies. How can the security of IoT systems be enhanced?

	5.	 How can an individual’s privacy be reasonably maintained without impacting the 
benefits obtained by deploying IoT systems?

	6.	 What are the ethical and legal considerations that a business must consider when 
deploying IoT systems?

	7.	 Is Fog computing required when Edge computing becomes prevalent?

3.10  �Answers

	1.	 Given that IoT is a relatively new technology and lacks standards, how can you 
make IoT devices from different vendors work together?

We can follow the guidelines given below while designing IoT systems for 
compatibility and integration:

	1.	 Establish universally accepted specifications and protocols for full interoper-
ability between devices and applications.

	2.	 The systems should be built within the universal framework to establish open 
and transparent communications.

	3.	 IoT devices work much better with one another when developed with 
software-driven technologies instead of hardware-driven technologies. This 
allows flexibility that may be needed for integration.

	4.	 The devices should maintain an open-sourced messaging protocol for effec-
tive data transfer.

	5.	 Guarantee secure communication between devices.
	6.	 Enable developers to create applications that are compatible with different 

devices.
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	2.	 Mission-critical IoT devices are expected to communicate continuously and 
seamlessly with the Cloud, even in difficult situations, without failure. How can 
this be planned?

Wireless connectivity is highly complex, and its standards are fast-evolving. 
Under such circumstances, the best way to plan a fail-proof system is to incorpo-
rate highly flexible, configurable, and upgradeable designs. These designs should 
be able to work in both R&D and production environments and meet future 
needs. The design should avoid having a single point of failure by having distrib-
uted and redundant systems.

	3.	 With billions of connected IoT devices, rapid identification and authentication of 
devices is a challenge. What can be done to simplify this?

There is a need to have a mechanism of strong authentication and identifica-
tion of IoT devices. This ensures that connected devices can be trusted to com-
municate securely with other devices as well as the backend infrastructure. This 
requires that every device should have a unique identity that can be used to con-
nect to a gateway or central server. This will also assist IT and system adminis-
trators in tracking each device throughout its life cycle, communicating with it 
securely, and preventing any harmful behavior.

	4.	 Data security is a major concern across prominent businesses and government 
agencies. How can the security of IoT systems be enhanced?

There are many approaches available to enhance security and safeguard IoT 
systems against cyberattacks. For example, the redundancy inherent in the dis-
tributed nature of the IoT can guard against cyberattacks, including zero-day 
attacks on a single device. It can be done using an accountability approach. IoT 
systems can assign some nodes to recheck the calculations of other nodes peri-
odically. If the majority of the nodes assigned to rerun the calculation come to a 
different result, the node being checked is declared to be at fault and isolated 
from the system.

Another technique known as state estimation can protect against sensor 
attacks. This approach takes the early experiences with a particular environment 
to estimate the reasonable range of possible values that a sensor might report. If 
the system receives data from the sensor that falls outside that range, it can flag 
that sensor for additional scrutiny or even go so far as to isolate it from the system.

	5.	 How can an individual’s privacy be reasonably maintained without impacting 
the benefits obtained by deploying IoT systems?

With the large-scale use of IoT systems, the concerns are no longer limited to 
the protection of privacy and sensitive data, but our health and habits can become 
the target of a security attack.

To protect the privacy of an individual, we can adopt a scheme known as dif-
ferential privacy. This scheme can prevent data from being attributed to any spe-
cific person in situations when individual data points are combined and reported 
as an aggregate value. This can be achieved by adding a predefined range of 
random noise to each data point. If the number of observations being aggregated 
is large enough, the central limit theorem of statistical analysis dictates that the 
randomness of the noise will tend to cancel itself out.

3.10  Answers
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Companies need to develop policies that respect the privacy of every indi-
vidual. In addition, they need to plan and implement these policies while deploy-
ing IoT technology or innovative services.

	6.	 What are the ethical and legal considerations that a business must consider 
when deploying IoT systems?

The businesses must consider issues associated with data collection, privacy, 
and consent. Businesses must ensure that they have clear policies and procedures 
in place to address data privacy and protection. Additionally, they must comply 
with relevant regulations and standards to avoid potential legal consequences. 
Transparent communication with customers regarding data collection and usage 
is essential to maintain trust and uphold ethical standards.

	7.	 Is Fog computing required when Edge computing becomes prevalent?
In Edge computing, the Edge devices send huge amounts of data to the Cloud, 

this may consume a lot of bandwidth and introduce delays. The Fog computers 
receive the data from Edge devices and analyze what is important to create ana-
lytical summaries. This metadata is then shared with a central Cloud platform, 
where it is further analyzed to generate actionable insights. The unimportant data 
may be either deleted or kept with Fog computers for further analysis.

Wearable smart devices such as fitness trackers are an excellent example of 
using Fog computing. Such devices rely on linked smartphones to process the 
data they collect and instantly show the output to the user. In this case, smart-
phones serve as Fog computing devices.
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Chapter 4
Foundations of Artificial Intelligence

4.1  �Introduction

Artificial intelligence (AI) is a multidisciplinary field that encompasses the creation 
of intelligent agents, which are systems that can reason, learn, and act autono-
mously. AI research has been highly successful in developing effective techniques 
for solving a wide range of problems, from game playing to medical diagnosis [1]. 
Artificial intelligence stands at the forefront of technological innovations, aiming to 
replicate and augment human-like intelligence in machines.

The idea of creating AI dates back to ancient times, with myths and legends from 
many cultures featuring stories of intelligent machines. However, the field of AI as 
we know it today has emerged in the mid-twentieth century, with the development 
of computers and the formalization of the concept of intelligence [2].

AI is a vast field that can be classified along various aspects as follows:

•	 Capabilities
•	 Learning
•	 Techniques
•	 Ethical considerations

We cover each of these classifications in detail below.

4.1.1  �AI Classification Based on Capabilities

As shown in Fig. 4.1, AI capabilities can be classified as:

•	 Artificial Narrow Intelligence (ANI): Also known as weak AI, ANI systems are 
designed to perform specific tasks, often mimicking human capabilities in a nar-
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row domain. Examples include chess-playing computers, spam filters, facial rec-
ognition software, etc.

•	 Artificial General Intelligence (AGI): Also known as the strong AI, AGI systems 
aim to possess human-level intelligence across a broad range of cognitive tasks. 
While AGI has not yet been achieved, it remains a central goal of AI research [3].

•	 Artificial Super Intelligence (ASI): Hypothetical AI systems that would surpass 
human intelligence. The impact and feasibility of ASI are widely debated.

4.1.2  �AI Classifications Based on Learning

As shown in Fig. 4.2, AI learnings can be classified as:

•	 Supervised Learning: This refers to learning from labeled data, where each data 
point is associated with a correct output. The algorithm learns to map the input 
data to the expected output labels.

•	 Unsupervised Learning: This refers to learning from unlabeled data, where the 
algorithm identifies patterns and structures in the data.

•	 Reinforcement Learning: This refers to learning by interacting with an environ-
ment. The algorithm receives rewards or penalties for its actions and learns to 
take actions that maximize its rewards. An algorithm strives to improve its output 
in an iterative manner.

AI Capabilities

Artificial Narrow Intelligence Artificial General Intelligence Artificial Super Intelligence

Fig. 4.1  AI capabilities

AI Learning

Supervised Unsupervised Reinforcement

Fig. 4.2  AI learning
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4.1.3  �AI Classification Based on Techniques

As shown in Fig. 4.3, AI techniques can be classified as:

•	 Symbolic AI: This uses symbols to represent knowledge and to reason about 
the world.

•	 Search-Based AI: This uses search algorithms to find solutions to problems by 
exploring a space of possible solutions.

•	 Planning and Scheduling: This refers to AI systems that can plan and schedule 
complex tasks.

•	 Expert Systems: These refer to AI systems that capture the knowledge and exper-
tise of human experts based on codified rules. Often probabilities are used to 
traverse the decision trees.

•	 Neural Networks: These refer to AI systems inspired by the structure and func-
tion of the human brain. These work by using training data to set the weights in 
a neural network, which are then used during the inference phase.

•	 Deep Learning: This is a type of machine learning that uses artificial neural net-
works with multiple layers to learn from data.

•	 Convolutional Neural Networks (CNNs): These are a type of neural network that 
is well-suited for analyzing visual imagery.

•	 Generative Adversarial Networks (GANs): This uses a type of deep learning 
model that consists of two competing neural networks, i.e., a generator and a 
discriminator. The goal is to improve the output with competition between the 
two networks.

4.1.4  �AI Classification Based on Ethical Considerations

As shown in Fig. 4.4, AI ethical considerations can be classified as:

•	 Benevolent AI: This AI benefits humanity and promotes positive outcomes.
•	 Malevolent AI: This AI could pose risks to humanity, intentionally or 

unintentionally.
•	 Aligned AI: This AI aligns with human values and goals, ensuring its benefi-

cial use.
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•	 Explainable AI: This refers to AI that can provide explanations for its decisions, 
fostering transparency and trust.

•	 Responsible AI: This is the AI developed and used in a responsible manner, 
addressing ethical concerns and potential risks.

4.2  �Historic Evolution of AI

Artificial intelligence (AI) has a rich and fascinating history, spanning over centu-
ries of philosophical inquiries, technological advancements, and ground-breaking 
research. The pursuit of AI has captivated minds for generations, fuelled by the 
dreams of creating machines that are capable of intelligent thoughts and behaviors.

The historical evolution of AI is a tale of continuous progress, setbacks, and 
reinvention. From the early philosophical musings about artificial intelligence to the 
modern-day AI systems that permeate our lives, AI has undergone a remarkable 
transformation. As AI continues to evolve, it will undoubtedly play an increasingly 
significant role in shaping our future.

4.2.1  �Early Foundations of AI (Pre-1950s)

The notion of artificial intelligence can be traced back to ancient mythology, with 
stories of self-moving automatons and artificial beings. However, the formal study 
of AI emerged in the mid-twentieth century, driven by advancements in mathemat-
ics, computer science, and philosophy.

•	 Alan Turing’s Turing Test: In 1950, Alan Turing published his seminal paper, 
“Computing Machinery and Intelligence,” introducing the Turing Test as a stan-
dard for measuring machine intelligence. The test proposes that a machine can be 
considered intelligent if it can carry on a conversation indistinguishable from a 
human [4].

•	 The Dartmouth Conference (1956): The Dartmouth Summer Research Project 
on Artificial intelligence, held in 1956, is widely considered the birth of AI as a 
distinct field of study. This landmark event brought together leading researchers 
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(including John McCarthy, deemed as the Father of AI) and established AI as a 
legitimate academic discipline [5, 6].

4.2.2  �The Rise of AI (1950s–1970s)

The 1950s and 1960s marked a period of rapid growth and enthusiasm for AI 
research. Early AI systems demonstrated promising capabilities in problem-solving, 
game playing, and language processing, fueling optimism about the potential of AI 
to achieve human-level intelligence.

•	 Symbolic AI and Expert Systems: Symbolic AI, also known as the expert sys-
tems, focused on representing knowledge and reasoning using symbolic expres-
sions and rules. Expert systems gained popularity in the 1970s, demonstrating 
success in applications such as medical diagnosis and financial planning [7].

•	 Search Algorithms and Heuristics: During this era, search algorithms and heuris-
tics became essential tools for AI problem-solving [8, 9]. Search algorithms sys-
tematically explore a space of possible solutions, while heuristics provide 
informed guidance to reduce the search space and find solutions efficiently.

4.2.3  �Challenges and Setbacks (1970s–1980s)

The 1970s and 1980s saw a period of challenges and setbacks for AI research. Initial 
optimism waned as the complexity of real-world problems and the limitations of 
early AI techniques became apparent. This period was marked by a focus on specific 
AI subfields and a reassessment of the goals and approaches to AI research.

AI Winter: The term “AI winter” refers to a period of reduced funding and enthu-
siasm for AI research in the late 1970s and early 1980s. This period was character-
ized by a recognition of the difficulty of achieving true artificial general intelligence 
(AGI) and a focus on more practical and attainable AI applications.

4.2.4  �The Resurgence of AI (1990s–Present)

The 1990s witnessed a resurgence of AI research, driven by advancements in com-
puting power, data availability, and machine learning algorithms. AI applications 
began to make significant impacts in various domains, leading to renewed interest 
and investment in AI research.

•	 The Rise of Machine Learning: Machine learning emerged as a distinct subfield 
of AI, focusing on algorithms that can learn from data without explicit program-

4.2  Historic Evolution of AI
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ming. Techniques like decision trees, neural networks, and statistical learning 
became increasingly prominent [10].

•	 The Rise of Deep Learning: Deep learning, a subfield of machine learning, 
emerged in the 2000s and revolutionized AI. Deep learning algorithms [11], par-
ticularly artificial neural networks with multiple layers, demonstrated remark-
able performance in tasks like image recognition, natural language processing, 
and speech recognition.

•	 AI in the Real World: AI applications became increasingly prevalent in various 
aspects of our lives, from self-driving cars to personalized recommendations to 
virtual assistants. AI is transforming industries like healthcare, finance, transpor-
tation, and manufacturing.

Below is a brief look at the progress of AI during the last two centuries, as 
shown in Table 4.1:

4.3  AI Computing Environment

The AI computing environment consists of the infrastructure, hardware, software, 
and networking components that collectively support the development, training, and 
deployment of artificial intelligence (AI) systems. This specialized environment 
plays a crucial role in enabling the capabilities of AI, encompassing various tech-
nologies and configurations tailored to the unique demands of AI workloads.

4.3.1  �Components of AI Computing Environment

These consist of several hardware and software components as described below.

4.3.1.1  �Hardware Accelerators

•	 Graphics Processing Units (GPUs): These are widely used for accelerating 
deep learning tasks. GPUs excel in parallel processing and are well-suited for 
training large neural networks [14].

•	 Tensor Processing Units (TPUs): Tensors are mathematical objects that gener-
alize scalars, vectors and matrices to higher dimensions. TPUs, designed by 
Google, are hardware accelerators optimized for machine learning workloads 
offering high performance with lower power consumption [15].

4  Foundations of Artificial Intelligence
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Table 4.1  Evolution of artificial intelligence [12, 13]

1800s Babbage’s analytical engine: Charles Babbage’s design for the analytical engine, a 
mechanical computer, laid the foundation for modern computing and artificial 
intelligence

1842 Ada Lovelace, considered the first computer programmer, recognized the potential of the 
analytical engine for artificial intelligence

1943 McCulloch and Pitts’ work on the mathematical model of a neuron laid the foundation 
for artificial neural networks

1950 Alan Turing introduced the Turing test as a standard for measuring machine intelligence
1956 The Dartmouth Conference is considered the birth of artificial intelligence as a distinct 

field of study
1957 John McCarthy’s coining of the term “artificial intelligence”
1958 Frank Rosenblatt developed the perceptron, a simple artificial neural network, marking a 

significant step in AI research
1960s Symbolic AI and expert systems became prominent, focusing on representing knowledge 

and reasoning using symbolic expressions and rules
1965 John McCarthy developed the List Processing (LISP) programming language, widely 

used in AI research
1966 The SHAKEY robot, developed at Stanford Research Institute (SRI) International, 

demonstrated the potential of AI in robotics
1958 Frank Rosenblatt developed the perceptron, a simple artificial neural network, marking a 

significant step in AI research
1969 Marvin Minsky and Seymour Papert’s book Perceptrons highlighted the limitations of 

early perceptrons and led to a period of decline in AI research
1970s The AI Winter period was characterized by reduced funding and enthusiasm for AI 

research due to the perceived limitations of early AI techniques
1979 Nils Nilsson’s book provided a comprehensive overview of problem-solving methods in 

AI working in concert with our computers and phones to share data and interact
1980s Machine learning emerged as a distinct subfield of AI, focusing on algorithms that can 

learn from data without explicit programming
1982 John Hopfield introduced the Hopfield network, a type of recurrent neural network, 

demonstrating the potential of neural networks for complex tasks
1986 The Rumelhart-Hinton-Williams back propagation algorithm, a method for training 

multi-layer neural networks, revitalized research in deep learning
1990s AI research regained momentum due to advancements in computing power, data 

availability, and machine learning algorithms
1997 IBM’s Deep Blue computer defeated world chess champion Garry Kasparov, marking a 

significant milestone in AI
2000s Deep learning, a subfield of machine learning, gained prominence, leading to 

breakthroughs in areas like image recognition, natural language processing, and speech 
recognition

2001 Google DeepMind’s AlphaGo program defeated world Go champion Lee Sedol, 
demonstrating the power of deep learning in complex games

2007 The ImageNet large -scale visual recognition challenge (ILSVRC) became a major 
benchmark for image classification and object detection, fueling the development of 
deep learning algorithms

(continued)
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4.3.1.2  �High-Performance Computing (HPC) Systems

Clusters and Supercomputers  AI applications often require significant computa-
tional power. HPC systems, comprising clusters of interconnected computers or 
supercomputers, provide the necessary resources for training complex models.

4.3.1.3  �Storage Solutions

Distributed Storage  AI workloads are likely to generate and consume massive 
datasets. Distributed storage solutions, often in the form of clustered file systems or 
object storage, are essential for managing and accessing large volumes of data 
efficiently.

4.3.1.4  �Cloud Computing Platforms

Based on the requirements and Cloud abstraction level required, here are the various 
types of Cloud computing platforms [16]:

•	 Software as a Service (SaaS): This is focused on the end users of Cloud, to 
provide them with application-level access such that multiple users can execute 
the same application binary in their own virtual machine or server instance. 
These application sessions may be running on the same or different underlying 

Table 4.1  (continued)

2012 AlexNet, a convolutional neural network, won the ILSVRC 2012, sparking a resurgence 
of interest in deep learning

2014 Apple’s Siri virtual assistant became widely popular, demonstrating the potential of 
conversational AI

2016 Google DeepMind’s AlphaGo Zero program defeated its predecessor, AlphaGo, without 
human intervention, highlighting the ability of deep learning to learn and improve 
autonomously

2017 An Uber self-driving car accident in Arizona resulted in a fatality, highlighting the 
challenges and safety concerns of autonomous driving systems

2018 Google Translate achieved human parity on a benchmark test of 111 languages, 
demonstrating the remarkable progress in natural language processing

2020 AI played a role in various aspects of the COVID-19 pandemic, including contact 
tracing, drug discovery, and vaccine development

2021 Advancements in reinforcement learning, self-supervised learning, and AI ethics. 
OpenAI’s ChatGPT, potentially the AI “Killer App,” demonstrated remarkable 
capabilities in natural language processing, further advancing the state of AI

2022 AI is being explored for various applications related to climate change, such as 
renewable energy development, weather forecasting, and ocean monitoring

2023 The ethical implications of AI, such as bias, fairness, and privacy, are becoming 
increasingly important and need to be addressed responsibly
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hardware, and SaaS enables application providers to upgrade or patch their bina-
ries in a seamless manner. Examples of SaaS providers are Salesforce.com pro-
viding CRM (customer relationship management), Google.com serving 
documents and Gmail, etc., all of which are hosted in the Cloud.

•	 Platform as a Service (PaaS): This is focused on application developers with 
varying computing needs according to their project stages. These are met by 
servers that can vary in number of CPU cores, memory, and storage at the user’s 
will. Such servers are called elastic servers. Their services can autoscale, i.e., 
new virtual machines can start for load balancing with a minimal administrative 
overhead. Examples of PaaS providers are Google’s App Engine, Microsoft’s 
Azure, Red Hat’s Makara, Amazon Web Services (AWS) Elastic Beanstalk, 
AWS Cloud Formation, etc. These Cloud service providers (CSPs) have the 
capability to support different operating systems on the same physical server.

•	 Infrastructure as a Service (IaaS): This is the bottom-most layer in a Cloud 
stack, providing direct access to virtualized or containerized hardware. In this 
model, servers with given specifications of CPUs, memory, and storage are made 
available over a network. Examples of IaaS providers are AWS EC2 (Elastic 
Compute Cloud), OpenStack, Eucalyptus, Rackspace’s CloudFiles, etc.

4.3.1.5  �Frameworks and Libraries

•	 TensorFlow, PyTorch, and Keras: These popular open-source frameworks pro-
vide a foundation for building and training machine learning models. They are 
optimized to work seamlessly with hardware accelerators.

•	 CUDA and cuDNN: NVIDIA’s CUDA is a parallel computing platform that 
allows developers to use GPUs for general-purpose processing, while cuDNN is 
a GPU-accelerated library for deep neural networks.

4.3.1.6  �Data Pipelines and Preprocessing Tools

•	 Apache Spark, Apache Flink: Big data processing frameworks are essential for 
handling large datasets efficiently. They enable distributed data processing and 
are often used in conjunction with AI applications [17].

4.4  �AI Edge Computing

AI Edge computing refers to the practice of processing data and running AI algo-
rithms locally on the Edge devices, such as sensors, smartphones, or IoT devices, 
rather than relying solely on centralized Cloud servers. This distributed computing 
paradigm has gained prominence due to the advantages it offers in terms of reduced 
latency, improved privacy, bandwidth efficiency, and the ability to operate in 
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real-time. The AI Edge computing environment is a specialized setup that caters to 
the unique requirements of deploying and running AI models at the Edge

4.4.1  �Components of AI Edge Computing Environment

A typical AI Edge computing environment consists of various components.

4.4.1.1  �Edge Devices

•	 IoT Devices: These consist of sensors, cameras, and other Internet of Things 
(IoT) devices that act as the front-line data collectors at the Edge.

•	 Intelligent IoT Devices: These devices often have limited processing power and 
storage, such as face recognition cameras and motion detection sensors.

4.4.1.2  �Edge Servers

•	 Embedded Systems: These are systems with some embedded computing capa-
bilities, such as Edge gateways and microcontrollers, that play a crucial role in 
preprocessing data before it is sent to centralized servers.

•	 Local Servers: In some Edge computing setups, local servers with moderate 
computing power may be deployed to handle more complex AI tasks, allowing 
for faster processing without relying on a distant data center.

4.4.1.3  �Edge AI Processors

•	 Low-Power AI Chips: These are specialized AI processors optimized for power 
efficiency. These are designed to run AI models on Edge devices with limited 
resources.

•	 Field-Programmable Gate Arrays (FPGAs): These are usually add-on compo-
nents in an Edge server. FPGAs provide flexibility and can be programmed to 
accelerate specific AI workloads, making them suitable for Edge computing 
environments.

4.4.1.4  �Edge Computing Frameworks

•	 TensorFlow Lite, ONNX Runtime: These frameworks are tailored for Edge 
computing and allow developers to deploy and run lightweight versions of AI 
models on Edge devices [18].
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•	 EdgeX Foundry: This is an open-source framework that facilitates interopera-
bility between IoT devices and Edge computing systems [19].

4.4.1.5  �Edge-Focused Machine Learning Models

•	 Model Optimization: AI models are often optimized for Edge deployment, 
involving techniques such as quantization, pruning, and compression to reduce 
their size and resource requirements.

•	 Federated Learning: This approach enables AI models to be trained across 
multiple Edge devices while keeping all data localized and preserving privacy. 
Code and model travel to the site of participating parties.

4.4.1.6  �Edge-to-Cloud Connectivity

•	 Low-Latency Networks: Edge computing relies on low-latency networks to 
ensure quick communications amongst the Edge devices and, if needed, to cen-
tralize Cloud resources. Usually, if Edge devices are distributed across different 
sites, then they may not communicate with each other and only connect to the 
central Cloud servers.

•	 5G Networks: The deployment of 5G networks enhances connectivity, making 
it more feasible to process and transmit data in real time from Edge devices [20].

4.4.2  �Challenges and Considerations

•	 Resource Constraints: Edge devices often have limited computing power, 
memory, and energy resources, requiring AI models to be lightweight and opti-
mized for efficiency.

•	 Security and Privacy: Securing Edge devices against physical and cyber threats 
is crucial. Additionally, handling sensitive data locally raises concerns about pri-
vacy, necessitating robust security measures [21].

•	 Orchestration and Management: Coordinating and managing AI workloads 
across a diverse range of Edge devices can be challenging. Orchestration tools 
are essential for optimizing resource utilization [22].

•	 Interoperability: Ensuring interoperability between different Edge devices and 
frameworks is crucial for building a cohesive and collaborative Edge computing 
environment. This is done through standard protocols [23].

4.4  AI Edge Computing



82

4.4.3  �Future Trends

•	 Decentralized AI Architectures: AI processing occurs on Edge devices in 
decentralized AI architectures. This trend is likely to continue as technology 
advances and devices become more powerful.

•	 AI at the Network Edge: The integration of AI directly into network infrastruc-
ture, known as AI at the network Edge could further enhance Edge computing 
capabilities. This would be by enabling intelligent decision-making within the 
network itself [24].

4.4.4  �Edge AI Ecosystem Growth

The growth of an ecosystem around Edge AI, including the Edge AI market [25] and 
developer communities, is expected to drive innovation and standardization in 
the field.

In conclusion, AI Edge computing represents a paradigm shift in how AI is 
deployed and utilized, bringing computation and intelligence closer to the data 
sources. As technology evolves, the AI Edge computing environment will play a 
pivotal role in enabling a wide range of applications, from smart cities and autono-
mous vehicles to industrial automation and healthcare.

4.5  AI Analytics

AI analytics refers to the use of advanced analytics techniques powered by AI to 
derive insights, patterns, and valuable information from data [26]. This combination 
of AI and analytics aims to enhance the efficiency and effectiveness of data analysis. 
This provides organizations with a deeper understanding of their datasets and 
enables data-driven decision-making.

4.5.1  �Key Aspects of AI Analytics

These consist of various items as detailed below.
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4.5.1.1  �Data Processing and Integration

•	 Data Preparation: AI analytics involves the preprocessing and cleaning of raw 
data. AI algorithms can automate tasks such as data cleansing, imputation for 
missing data, and normalization. This ensures that the data is ready for analysis.

•	 Data Integration: AI analytics often deals with diverse datasets, integrating 
structured and unstructured data from various sources. So, integrating this data is 
a crucial step in gaining a comprehensive view for analysis.

4.5.1.2  �Machine Learning and Predictive Analytics

•	 Predictive Modeling: AI analytics leverages machine learning algorithms for 
predictive modeling. This includes regression analysis, decision trees, and more 
advanced techniques such as neural networks to forecast future trends or out-
comes based on historical data.

•	 Anomaly Detection: Machine learning models can identify anomalies or outli-
ers in data, helping organizations detect irregular patterns that may indicate 
fraud, errors, or unusual behaviors.

4.5.1.3  �Natural Language Processing (NLP)

•	 Text and Sentiment Analysis: NLP allows AI analytics to analyze and under-
stand human language. Organizations can extract insights from textual data, such 
as customer reviews, social media comments, and news articles, to gauge senti-
ment and make informed decisions [27].

•	 Chatbots and Virtual Assistants: AI-driven chatbots [28] and virtual assistants 
utilize NLP to understand and respond to user queries, providing a more interac-
tive and user-friendly experience.

4.5.1.4  �Image and Video Analysis

•	 Computer Vision: AI analytics can analyze images and videos to recognize pat-
terns and objects. Applications include facial recognition, object detection, and 
quality control in manufacturing.

•	 Medical Imaging: In healthcare, AI analytics is used to analyze medical images, 
aiding in the early detection of diseases and improving diagnostic accuracy [29].
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4.5.1.5  �Prescriptive Analytics

AI analytics goes beyond predicting outcomes by suggesting actions to optimize 
results. This involves the use of optimization algorithms that recommend the best 
course of action based on the predicted outcomes [30].

4.5.1.6  �Continuous Learning and Adaptation

AI analytics models can adapt and improve over time through reinforcement learn-
ing. This involves learning from user interactions and feedback from the relevant 
environment to continually enhance model performance.

4.6  �Edge AI Analytics

Edge AI analytics refers to the deployment of AI and advanced analytics directly on 
Edge devices, such as sensors, cameras, or Internet of Things (IoT) devices. This 
approach brings the power of AI algorithms closer to the data source, allowing for 
real-time processing, reduced latency, and improved efficiency. Edge AI analytics 
techniques and tools are relevant in scenarios where immediate insights are crucial, 
bandwidth constraints exist, or privacy concerns necessitate local data processing.

4.6.1  �Key Components of Edge AI Analytics

Here are the various key components:

4.6.1.1  �Edge Devices

•	 IoT Devices: Sensors, cameras, and other IoT devices serve as the primary data 
sources at the Edge [31]. These devices may be equipped with processing capa-
bilities to execute AI algorithms locally.

•	 Edge Gateways: These consist of intermediate devices positioned between Edge 
devices and centralized servers. Edge gateways preprocess and filter data before 
it is sent to the Cloud. These may also host certain AI analytics functions [32].
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4.6.1.2  �Edge AI Processors

•	 Low-Power AI Chips: This refers to customized AI processors optimized for 
low power consumption. These may be designed for deployment in Edge devices 
with limited compute and storage resources. Note that some Edge AI devices 
may be deployed in the field to run on battery or solar power.

•	 FPGAs (Field-Programmable Gate Arrays): FPGAs provide flexibility and 
can be programmed to accelerate specific AI workloads. This makes them suit-
able for Edge AI analytics. FPGAs also offer advantages due to rapid deploy-
ment as compared to ASICs and faster run times as compared to software-only 
applications.

4.6.1.3  �Lightweight AI Models

•	 Model Optimization: Edge AI analytics often involves deploying lightweight 
and optimized versions of AI models [33]. This ensures efficient execution on the 
Edge devices with limited computational resources.

•	 Quantization and Compression: Quantization [34] is the process of mapping a 
large set of values to a smaller set of discrete, finite values. Techniques such as 
quantization and model compression reduce the size of models, making them 
more suitable for deployment on Edge devices.

4.6.1.4  �Real-Time Inference

•	 Low-Latency Processing: Edge AI analytics focuses on minimizing processing 
delays, enabling real-time inference and decision-making. This is particularly 
critical in applications such as autonomous vehicles, industrial automation, and 
healthcare.

4.6.2  �Applications of Edge AI Analytics

•	 Smart Cities: Edge AI analytics is used in smart city applications for real-time 
monitoring of traffic, waste management, and public safety. It enables quicker 
response times and more efficient resource allocation.

•	 Industrial IoT (IIoT): Edge AI analytics, in industrial settings, supports predic-
tive maintenance, quality control, and process optimization. This reduces down-
time and improves overall operational efficiency.

•	 Healthcare: Edge AI analytics in healthcare allows for real-time analysis of 
patient data, enabling early detection of health issues. It also facilitates remote 
patient monitoring and personalized medicine.
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•	 Retail: Retailers use Edge AI analytics for in-store analytics, customer behavior 
analysis, and inventory management. It enables personalized customer experi-
ences and efficient supply chain operations.

•	 Autonomous Vehicles: Edge AI is crucial in autonomous vehicles for real-time 
object detection, path planning, and decision-making. Local processing ensures 
timely responses, enhancing safety and reliability.

•	 Surveillance and Security: Edge AI analytics enhances video surveillance sys-
tems by enabling on-device object detection, facial recognition, and anomaly 
detection, reducing the need for constant data transmission to centralized servers.

4.6.3  �Challenges and Considerations

•	 Resource Constraints: Edge devices often have limited processing power, 
memory, and energy resources. Designing AI models and algorithms that can 
operate efficiently under these constraints is a key challenge.

•	 Security: Securing Edge devices against physical and cyber threats is crucial. 
Since these devices are often deployed in uncontrolled environments, ensuring 
data integrity and confidentiality is a priority for IT managers.

•	 Model Maintenance: Updating and maintaining AI models on a large number of 
distributed Edge devices can be complex. Strategies for efficient model updates 
and version control are essential.

•	 Interoperability: Ensuring interoperability between different Edge devices, 
processors, and frameworks is crucial for creating a seamless and collaborative 
Edge AI analytics environment.

4.6.4  �Future Trends

•	 AI at the Network Edge: The integration of AI directly into network infrastruc-
ture, known as AI at the network Edge, could further enhance Edge AI analytics 
capabilities by enabling intelligent decision-making within the network itself.

•	 Decentralized AI Architectures: The trend towards more decentralized AI 
architectures, where AI processing occurs on Edge devices, is expected to con-
tinue as technology advances and devices become more powerful.

•	 Edge AI Ecosystem Growth: The growth of an ecosystem around Edge AI, 
including Edge AI marketplaces and developer communities, is expected to drive 
innovation and standardization in the field.

•	 Federated Learning: Federated learning [24], where models are trained across 
multiple Edge devices while keeping data localized, is gaining attention as a 
privacy-preserving approach to collaborative AI analytics.
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In summary, Edge AI analytics represent a paradigm shift in how AI is deployed, 
enabling on-device processing and real-time decision-making. As technology con-
tinues to advance, the integration of AI at the Edge is expected to play a pivotal role 
in numerous applications across various industries.

4.7  �Emerging Applications

Below are some of the emerging applications of AI and Edge AI:

•	 Autonomous Vehicles: AI is playing a crucial role in the development of self-
driving cars and drones. Edge AI is used to process data in real-time, enabling 
these vehicles to make split-second decisions without relying heavily on Cloud-
based processing or manual interventions.

•	 Healthcare: AI is being applied in medical imaging for the early detection of 
diseases, personalized medicine, and drug discovery. Edge AI can enable real-
time analysis of patient data at the Edge devices, improving diagnostic speed and 
efficiency.

•	 Industrial Internet of Things (IIoT): AI and Edge AI are used in industrial set-
tings for predictive maintenance, quality control, and process optimizations. 
Edge devices can help process data locally, thereby reducing latency and improv-
ing response times.

•	 Smart Cities: AI is used in smart city applications for traffic management, pub-
lic safety, and resource optimization. Edge AI is employed to process data from 
various sensors and devices deployed throughout the city.

•	 Retail: AI is used for customer analytics, inventory management, and personal-
ized shopping experiences. Edge AI can be applied in retail environments to 
analyze customer behavior in real time and optimize store operations.

•	 Agriculture: AI and Edge AI are employed in precision agriculture for crop 
monitoring, pest detection, and yield predictions. Edge devices on farm equip-
ment can process data locally, enabling timely decision-making on the farm.

•	 Energy Management: AI is used to optimize energy consumption, predict 
equipment failures, and improve overall energy efficiency. Edge AI can be 
applied in energy consumption systems to process data at the Edge, and make 
local real-time decisions simultaneously, reducing the need for constant com-
munication with remote servers.

•	 Edge Computing in General: Edge AI is a critical component of Edge comput-
ing, where processing is done closer to the data source rather than relying solely 
on remote Cloud servers. This is particularly important for applications that 
require low latency and real-time decision-making.

•	 Natural Language Processing (NLP) at the Edge: NLP applications, such as 
voice assistants and language translation, are increasingly being implemented at 
the Edge. This allows devices to interpret and respond to user commands without 
relying on constant internet connectivity.
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•	 Cyber Security: AI is used for threat detection and anomaly detection in cyber 
security. Edge AI can enhance cyber security by monitoring and processing data 
locally to identify potential security threats in real-time.

Despite a diverse set of AI and Edge AI applications, there are limitations, as 
discussed in the next section.

4.8  �Limitations of AI and Edge AI

AI and Edge AI both have their own limitations.

4.8.1  �Limitations of AI

Several limitations persist in the field of artificial intelligence.

•	 Lack of Common Sense and Generalization: AI systems often struggle with 
common sense reasoning and generalizing knowledge across different domains. 
They may perform well on specific tasks they were trained on but can lack a 
broader context.

•	 Data Dependency and Bias: AI models rely heavily on the data they are trained 
on. If training data is biased or incomplete, an AI system can inherit and perpetu-
ate these biases. This raises ethical concerns, especially in applications such as 
recruitment, financial lending, or criminal justice.

•	 Interpretable AI: Many AI models, particularly using deep neural networks, are 
often considered “black boxes” because understanding their decision-making 
process can be challenging. This lack of interpretability is a concern in critical 
applications where transparency is crucial.

•	 Explainability and Accountability: AI systems should be able to explain their 
decisions, especially in high-stakes applications like healthcare or finance. 
Establishing accountability for the actions of AI systems is essential for gain-
ing trust.

•	 Robustness and Adversarial Attacks: AI models are susceptible to adversarial 
attacks. Small, carefully crafted changes to input data can lead to incorrect pre-
dictions. Ensuring the robustness of AI systems, especially in security-critical 
applications, remains a challenge.

•	 Computational Resources: Training and running complex AI models, espe-
cially deep neural networks, demand significant computational power. This can 
limit the accessibility of advanced AI technologies in resource-constrained 
environments.

•	 Ethical and Societal Implications: AI raises ethical questions, such as job dis-
placement due to automation, biases in decision-making, and a potential misuse 
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of AI technologies. Formulating ethical guidelines and policies to address these 
concerns is an ongoing challenge.

•	 Transfer Learning Challenges: While transfer learning [35] has shown prom-
ise, the ability to efficiently transfer knowledge learned in one domain to another 
remains a challenge. AI models may struggle to adapt quickly to new, unseen 
scenarios.

•	 Security Concerns: AI systems can be vulnerable to attacks and manipulations. 
Ensuring the security of AI models and preventing unauthorized access or mali-
cious use are ongoing challenges.

•	 Resource and Energy Consumption: Training large AI models requires sub-
stantial computational resources, leading to high energy consumption. 
Developing more energy-efficient algorithms is crucial for sustainable AI 
development.

•	 Researchers and practitioners continue to address these limitations, and the field 
of AI is dynamic, with ongoing efforts to enhance the capabilities, reliability, and 
ethical considerations associated with AI technologies. While these AI chal-
lenges exist, limitations on the Edge are exacerbated by a lack of computational 
power and storage in the Edge devices.

4.8.2  �Limitations of Edge AI

Below are some common limitations of Edge AI:

•	 Limited Computational Power: Edge devices, such as sensors, cameras, or IoT 
devices, often have limited computational resources compared to powerful Cloud 
servers. This constraint can impact the complexity and speed of AI algorithms 
that can be deployed on the Edge.

•	 Storage Constraints: Edge devices typically have limited storage capacity. 
Storing and managing large AI models or datasets on these devices can be chal-
lenging, especially for applications that require extensive data processing, such 
as chatGPT and Bard.

•	 Energy Consumption: Edge devices are often battery-powered, and running 
resource-intensive AI algorithms can drain the battery quickly. Developing 
energy-efficient algorithms is crucial for the widespread adoption of Edge AI, 
particularly in remote settings.

•	 Security Concerns: Edge devices may be more vulnerable to physical attacks or 
unauthorized access compared to centralized Cloud servers. Ensuring the secu-
rity of AI models and data on Edge devices is a significant challenge.

•	 Model Update and Maintenance Challenges: Managing and updating AI mod-
els on a large number of distributed Edge devices can be complex. Ensuring that 
all devices are running the latest models and updates is crucial for maintaining 
optimal performance and security.

4.8  Limitations of AI and Edge AI
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•	 Lack of Standardization: There is currently a lack of standardization in Edge 
AI technologies. Different devices may have varying hardware specifications, 
communication protocols, and software frameworks, making it challenging to 
create universal interfaces that work seamlessly across all Edge devices.

•	 Data Privacy Concerns: Edge AI processes data locally, which can be advanta-
geous for privacy. However, it also raises concerns about how sensitive data is 
stored on the device and whether there are potential privacy breaches. This is 
especially relevant in applications such as surveillance or healthcare.

•	 Scalability Issues: Scaling Edge AI solutions to a large number of devices can 
be challenging. Coordinating the deployment and management of AI models 
across a vast network of Edge devices requires efficient protocols and 
infrastructure.

•	 Limited Connectivity: In some remote scenarios, Edge devices may have lim-
ited or intermittent connectivity. This limitation can affect the ability to update 
AI models, receive real-time support, or share data with a remote server.

•	 Trade-off between Accuracy and Resource Constraints: Due to limited com-
putational resources, Edge devices may need to trade off accuracy for efficiency. 
This compromise is essential for real-time processing but can impact the overall 
performance of certain AI applications.

It is important to note that ongoing research and advancements are continuously 
addressing these limitations. The field of Edge AI is evolving rapidly to overcome 
these challenges. As technology progresses, solutions to these limitations are likely 
to become more refined and accessible.

4.9  �Summary

In this chapter, we have introduced AI and explained various AI classifications 
based on capabilities, learning, techniques, and ethical considerations. We then give 
a detailed historical evolution of AI. This is followed by coverage of AI computing 
environments, AI Edge computing, and AI analytics. We conclude by describing 
emerging applications in AI and various limitations of AI.

4.10  �Points to Ponder

	 1.	 What is the key difference between AI and ML?
	 2.	 What type of problems are suitable for unsupervised learning to solve?
	 3.	 What are the advantages and concerns of using ML in a public Cloud?
	 4.	 What is the meaning of overfitting and why is it not desirable?
	 5.	 What are the differences between machine learning (ML) and deep learn-

ing (DL)?
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	 6.	 What are the advantages of DL?
	 7.	 What are the drawbacks of DL?
	 8.	 If a Cloud service provider wants to offer ML at the IaaS layer, what will be the 

features of such a service?
	 9.	 If a Cloud service provider wants to offer ML at the PaaS layer, what will be the 

features of such a service?
	10.	 If a Cloud service provider wants to offer ML at the SaaS layer, what will be the 

features of such a service?

4.11  �Answers

	 1.	 What is the key difference between AI and ML?

•	 Artificial intelligence (AI) is the broader concept of machines acting in a 
smart manner, such as for playing chess. Machine learning (ML) is a sub-
domain of AI based on the idea that, given a sufficient amount of data, 
machines can learn the rules without explicit instructions or programming. 
Thus, ML is one of the ways for machines to develop AI capabilities.

	 2.	 What type of problems are suitable for unsupervised learning to solve?

•	 In unsupervised learning, machines find meaningful relationships and pat-
terns in a given dataset. It is useful when labeled data is not available, in 
cases such as finding groups or clusters, extracting generative features, or for 
exploratory purposes.

	 3.	 What are the advantages and concerns of using ML in a public Cloud?

•	 Cloud-based machine learning is good for applications that need to analyze 
large quantities of data. If that data is coming from many different sources 
over a period of time, then Cloud storage is an attractive place to store that 
data for the long term. An example of such cases is the Internet of Things 
(IoT) and healthcare diagnostics. However, some businesses have privacy 
and security concerns about storing their data in a public Cloud, for exam-
ple, all medical data storage and transmission must abide by Health Insurance 
Portability and Accountability Act (HIPAA) protocols.

•	 A new research area of federated learning is emerging to address these con-
cerns while still being able to use ML in a public Cloud.

	 4.	 What is the meaning of overfitting and why is it not desirable?

•	 Overfitting is a modeling error that occurs if a function is defined to closely 
fit to a limited set of data points during the training phase. It makes a model 
conform to mimic a dataset that may not be fully representative of other data 
points that the model may encounter in the future. Thus, it may result in 
substantial errors when a model is used for inference.

4.11  Answers
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	 5.	 What are the differences between machine learning (ML) and deep learn-
ing (DL)?

•	 Recall that ML is a branch of AI that can self-learn based on a given dataset 
and improve its decisions over time without human intervention. Similarly, 
DL is a sub-branch of ML, which can be applied to extremely large datasets. 
The word deep comes from multiple layers in an artificial neural net-
work (ANN).

	 6.	 What are the advantages of DL?

•	 DL breaks down a complex problem in stages and uses layered solution 
processes to create an artificial human brain-like structure to make intelli-
gent decisions. Each layer in the DL system represents a stage where param-
eters can be tuned for making complex decisions, e.g., for Netflix to decide 
which movie to suggest next based on past viewing habits of a subscriber.

	 7.	 What are the drawbacks of DL?

•	 DL requires a very large amount of data to perform better than other AI solu-
tions. A DL model is computationally expensive to train due to a complex 
data model with many variables. It may require expensive GPUs and other 
specialized hardware machines. A DL system is hard to debug in case of any 
errors in the output.

	 8.	 If a Cloud service provider wants to offer ML at the IaaS layer, what will be the 
features of such a service?

•	 A user of IaaS wants to avoid capital expenditure and uses Cloud facilities to 
pay for it on a per-use basis. IaaS users are mostly concerned with the quality 
of service in terms of a Cloud server’s compute, memory, and network laten-
cies. ML in IaaS can be used to track the response time for users’ hosted 
applications, enabling them to schedule tasks so as to maximize their com-
pute efficiency. Any idle servers can be shut down and workloads consoli-
dated to maximize the utilization of the running servers. New servers can be 
started up as users’ workload demands increase. ML can be helpful for 
tracking usage metrics, predicting costs when scalability is needed to main-
tain a constant Quality of Service (QoS), etc.

	 9.	 If a Cloud service provider wants to offer ML at the PaaS layer, what will be the 
features of such a service?

•	 Users of PaaS are mostly concerned about the specific tasks related to their 
hosted services, such as database I/O transactions and customer activities on 
their hosted Web sites. Examples of PaaS are a Python integrated develop-
ment environment or MatLab tools and facilities. ML can be helpful for 
generating metrics related to end user experiences such as search times for 
catalog items, wait times, and optimizations related to other services such as 
payments.

4  Foundations of Artificial Intelligence
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	10.	 If a Cloud service provider wants to offer ML at the SaaS layer, what will be the 
features of such a service?

•	 A user of SaaS, such as Netflix or Salesforce, may be mostly concerned 
about the statistics and preferences related to their applications’ end users. 
These services need to be provided on an expeditious basis. ML can be help-
ful to track the SaaS customers’ preferences and make suggestions based on 
AI models and past behavior to suggest new movies, etc.
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Chapter 5
Foundations of Information Security

5.1  �Information Security Background

Today’s information technology environment contains a wide variety of computing 
devices and multiple communication channels between various participants. 
Economics drove the creation of large datacenters, and Cloud computing was 
devised to distribute this enormous computing power. As the capability of inexpen-
sive computing devices continued ahead of the communications capabilities, com-
putational power has moved back to the end nodes of wide area networks. The age 
of Internet of Things (IoT) arrived a decade ago, as demonstrated by the fact that 
more things are now connected to the Internet than people in the world [1]. The 
“things” connected to Internet include sensors, controllers, and intelligent devices 
[2]. These devices have limited power to pose security problems but have an even 
more limited ability to provide any security solutions. To date the biggest security 
breaches in the IoT world have been instructions sent to the IoT devices, which are 
then used to launch massive denial of service attacks on central servers. The top 
three examples are Mirai, Hajime, and Persirai codes [3].

Information security can be viewed as composed of three functions, namely, 
access control, secure communications, and protection of private data. Alternatively, 
a common three-pillar split is confidentiality, integrity, and availability (the CIA 
triad of security policies and objectives). Sometimes, information security is short-
ened to INFOSEC. Access control includes both the initial entrance by a participant 
and the reentry of that participant, followed by the access of additional participants. 
Note that a participant can be an individual or some computer process. The secure 
communications include any transfer of information among any of the participants 
and devices. The protection of private data includes storage devices, processing 
units, and even cache memory [4].

The first function encountered is access control, i.e., who can rightfully access a 
computer system or data. The access control can be resolved at a hardware level 
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with a special access device, such as a dongle connected to the USB port or built-in 
security keys. Access control is usually addressed at the operating system level with 
a login step. An example of access control at the application level is requiring login 
and password.

After access control is granted, secure communication is the next function, which 
requires encryption. The most commonly recognized function of a secure system is 
the encryption algorithm, and the most common problem in a secure system is the 
encryption key management. At the hardware level, the communication encryption 
device can be implemented at the I/O port. At the operating system level, encrypted 
communications can be implemented in the secure driver software. At the applica-
tion level, the encryption algorithm is implemented in any routine performing 
secure communication.

Some of the other functions and issues for Edge security systems are hashing (for 
checking data integrity), identity authentication (for allowing access), electronic 
signatures (for preventing revocation of legitimate transactions), information label-
ing (for tracing location and times for transactions), and monitors (for identifying 
potential attacks on the system). Each of these functions affects the overall security 
and performance of a system. The weakest security element for any function at any 
level limits the overall security and risk. In addition to accepting the security pro-
cess, an Edge computing user may have concerns regarding the protection of private 
data. Protection of data includes both limiting availability to authorized recipients 
and integrity checks on the data. The level of security required is not universal. Ease 
of access is more important for low-security activities, such as remotely turning on 
light bulbs. More difficult access is required for medium security, such as control-
ling the environment in a building. High security is required for high-value tasks, 
such as controlling entry doors in a building or operating industrial equipment on a 
factory floor. Very strict and cumbersome access procedures are expected for nuclear 
weapon applications. These examples provide a clue to security in an Edge Cloud 
computing environment with shared resources [5]. Specifically, in the same com-
puting environment, different applications are running at a variety of security levels. 
Security solutions must also consider the trade-offs of security versus performance. 
Some straightforward increases in the security cause inordinate degradation of per-
formance. As described previously, the security implementations can be done at 
multiple levels for each of the functions. Because security is a multifunction, multi-
level problem, high-level security operations need access to low-level security mea-
surements. This is true in monitoring both performance and security. The current 
environment requires any Cloud user or provider to consider security in many 
places. Such security considerations have performance impact and many trade-off 
points, as depicted in Fig. 5.1.

Impact of security is a measure of drop in the performance due to computation 
overhead of encryption and decryption. As shown, the performance cost of full data 
and data encryption is very high but needed for highly sensitive data in a public 
Cloud. On the other hand, access control and login passwords may be sufficient for 
a single-user access device, such as a surveillance camera at home. Then hash 
checking and secure handshakes, using techniques such as virtual private networks 
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(VPN), between an Edge device and Cloud may be considered sufficiently secured. 
If there is a desire to balance security and performance, then sensitive data and code 
can be partitioned to run in a secure environment in a public Cloud.

Three environmental factors directly affect the evolution of information security: 
computing power available, growing user base, and sharing of Edge resources. The 
first factor has been and continues to be the computer power available to both sides 
of the information security battle. Computing power continues to follow Moore’s 
law with increasing capacity and speeds increasing exponentially with time. 
Therefore, while the breaking of a security system with brute force may take many 
years with the present computer technology, in only a few years quantum computer 
capacity may be available to achieve the same break-in in real time. The second 
environmental factor is the growing number of people accessing Edge devices. The 
world has changed from a relatively modest number of financial, governmental, 
business, and medical institutions having to secure information to nearly every busi-
ness and modern human needing support for Edge-based information security. The 
sheer number of different people accessing Edge devices has increased the impor-
tance of different levels of security. The third environmental change that has a sig-
nificant impact on security is the sharing of devices on the Edge of a network, which 
is the crux of this chapter.

Fig. 5.1  Trade-offs between security required and its performance impact

5.1  Information Security Background
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5.2  �Evolution of Edge Security Considerations

Edge computing represents a combination of distributed computing connected to 
centralized servers. Historically, centralized versus distributed models have alter-
nated as computing and communication capabilities have grown, while the limiting 
factor has alternated between computational capability and communication capac-
ity. The present environment of Cloud and Edge computing is a complex mixture of 
computing capability, communication capacity, and security considerations. In this 
chapter, we will focus on the security aspects of Edge computing. Any such investi-
gation must include multiple subtopics, e.g., protecting information content from 
observation and alteration, protection of operational capability from unauthorized 
access, protection of normal operation in the presence of malicious overloaded 
requests, etc. Solutions need to consider prevention from and response to any secu-
rity threats [5].

Examples of prevention include encryption to protect content from observation 
and alteration, access checking protocols to prevent unauthorized accesses, tracking 
mechanisms to identify attempted attacks, and blocking messages except from 
trusted devices.

In the past, information communication was routinely, although not universally, 
protected with encryption. As the evolution of computation leads to Edge-based 
Cloud computing, now everything is accessible to everyone. The physical boundar-
ies are gone. When connected to and using the Cloud, providers and users can be 
using resources anywhere. In fact, that is the goal for Cloud computing: to separate 
delivering the desired service from the underlying implementation of the capability 
to deliver the service. This makes a huge difference in security, as nothing can be 
assumed to be secure. In addition to the protection of information, now there is a 
new security problem of protecting access to Edge devices. An unauthorized user 
can attempt to access a resource with enough effort that it interferes with the usage 
by authorized users. This is called a denial-of-service attack. For example, exces-
sive requests to a Web server can cause a Website to crash. This type of attack, bar-
ring physical attacks, did not exist in earlier computer environments. Another 
security issue is privacy. The information required to access and utilize one device 
should neither reveal that information to unauthorized parties nor to unauthorized 
use by parties authorized to have that information. Additionally, the environment 
includes the security risk of attackers falsifying or changing information. This 
includes changing messages in transit or initiation of false messages. This requires 
an electron signature or checksum to detect any data tampering.

In parallel to the changing environment affecting the evolution of Edge security 
considerations, the changes in performance directly affect security considerations. 
When communication and performance were slow, minimum information security 
was required because the attackers had simple tools to get access. Simple tools 
included automated password guessing or brute force encryption hacking. Due to a 
low level of computational performance, all of these techniques were far too slow to 
be a serious threat. One method to increase security is to increase the encryption key 
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size. The key size is limited to the performance used to encrypt, as larger keys 
require more computation. On the other hand, the security of the key size must be 
large enough to exceed the performance available to the attackers. As Edge-based 
computational capacity increases, the keys must get bigger because the attackers 
have more capacity, and the keys can get bigger because the devices also have more 
capacity. Thus, for encryption, there is a continuous race between defenders and 
attackers. The Edge computing environment oscillated between when the commu-
nication channel was the performance limiter and when the computational capabil-
ity was the limiting factor. In the present world of Edge-based Cloud computing, the 
attackers have access to significant computational ability; therefore, security is now 
a universal serious problem.

5.3  �Edge Security Players

Traditional computing environments had a clear delineation between “inside” and 
“outside.” Physically, “inside” might be in Alice’s office or “inside” the bank build-
ing. With the dawn of networks, and especially the Internet, the networks were 
partitioned as “inside the firewall” and “outside,” which could be anywhere. This is 
one of the differences between a public Cloud and a private Cloud. Secure commu-
nication was only needed when the communication went from “inside” to “outside.” 
With Edge-based Cloud computing, “inside” is not clearly defined as computers in 
multiple devices and data centers across different geographies can be pooled 
together to appear as a large virtual pool.

To visualize a wide variety of elements and security requirements in the IoT 
domain, consider Fig. 5.2. The standard Internet communication security approach 
(including virtual private networks, i.e., VPN) is to establish a link between Alice 
and Bob using access control to identify the authorized individuals and then to use 
encryption for information exchange between the “islands” of security containing 
Alice and Bob. Alternatively, Dave may want to do a remote transaction with his 
bank. Dave’s transaction requires a higher level of security than Dave’s normal 
activities. Carol may want to turn on her light bulbs at home since she will be arriv-
ing after dark. While this does not require a high level of security, Carol certainly 
does not want some random person turning her lights on and off. Other examples of 
low levels of security are household appliances, such as a toaster or a refrigerator. 
The high levels of security examples include remotely opening a home garage, 
accessing banks, or operating factories.

5.3  Edge Security Players
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5.4  �Edge to Cloud Secure Communications

In the era of Edge computing, another consideration is due to multiple connection 
paths for each device. Each element on the Edge can connect using a choice of paths 
or even multiple paths between the same endpoints. Specifically, any computing 
element on the Edge can connect via the Internet, telephone lines, cell phone con-
nections, wireless local area service networks (Wi-Fi), or local wireless point-to-
point connections such as Bluetooth or near-field communication). See Fig. 5.3 for 
multiple paths from Alice to Bob, to a local server hub, to the Internet, or to the 
house alarm system. Edge computing continues to mature and encompass more of 
our world. Standards are being created, such as Waggle [6], which is an open sensor 
platform for Edge computing, which has been introduced to reduce some of the 
foreseen compatibility problems. Edge computing security issues encompass end-
to-end devices and the networks in between.

The common protocol for communication on the Internet is the Hypertext 
Transfer Protocol (HTTP) for basic nonsecure communication. A client contacts the 
server, the server sets up a channel, and then communication continues between the 
client and server as shown in Fig. 5.4.

However, at the present time, almost all communication uses the secure version, 
which is Hypertext Transfer Protocol Secure (HTTPS). For HTTPS, the client 
makes an initial contact the same way as with HTTP [5]. However, now the client 
and server must establish a secure link. For efficiency, the secure link uses symmet-
ric encryption. For symmetric encryption, both parties must have the same key. This 

Alice
Bob

Carol

Dave .Terminals and computers that have 
“access control” are little islands of “inside”
secure environments connected by encrypted

messages on the open information highway

Cloud computing does not have an 
“inside”

Resource Security must be provided 
By process and resource associations. 

Disk, CPU,
applica�ons

Disk farms

CPU, applica�ons access 
control 

Bank
$ gas

Fig. 5.2  Information security on the Edge of a network
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is a shared secret requiring a secure mechanism to exchange the secret key securely. 
Asymmetric encryption can be used to exchange the secret key. The server gener-
ates a public/private key pair. In asymmetric encryption for communication, the 
public key is used to encrypt and the private key is used to decrypt. The server 
makes available the public key so that anyone can encrypt a message. However, the 
server keeps the private key secret so only the server can decrypt and read the mes-
sage. This is shown in Fig. 5.5. The client generates a secret key for symmetric 
encryption to be used just for this one session. The client sends this key to the server 
using the server’s public key for asymmetric encryption. Both the client and the 
server now have the secret session key and use it for the rest of the secure commu-
nications between the server and the client. After the session is over, the private key 
is discarded.

Alice

Bob

Server/hub

Rest of internet including:  
Cloud providers, other 
internet users, service 

provers,  and  various IoT 
devices.

Server/hub

IoT device, 
such as home

security system
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Blue
tooth
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Fig. 5.3  Communication connectivity from the Edge

Fig. 5.4  HTTP nonsecure communication in the Cloud
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5.5  �Edge Security Storage and Computations

The trade-offs between performance and security described for transmission also 
apply to storage and computation. A common solution for Edge security and integ-
rity checking of networked storage environments is encrypted data file systems [7]. 
The cryptographic file systems (CFSs) are a significant performance burden. Using 
a CFS is especially needed when the data storage is farmed out to untrusted storage 
sub-providers [8]. A big difference is the wide range of storage lifetime. For storage 
such as copyrighted movies on DVD, there is a longtime value (several months or 
even years); however, for storage such as main memory, there is a short-time value 
(perhaps microseconds). The emphasis in the main memory security should be on 
read-write efficiency. A small loss of time here has a huge impact on the perfor-
mance of a computer system due to repeated operations.

Hence lighter and faster encryption schemes can be applied to data of ephemeral 
value, such as being held in a system memory, which will be short-lived. For long-
term data, companies such as financial institutions have invested in hardware secu-
rity modules (HSMs). A HSM is a physical computing device acting as a vault to 
hold and manage digital keys for strong authentication and provides crypto process-
ing services. This can be a plug-in card or an external device, attached directly to a 
network server. These HSMs are certified as per the internationally accepted stan-
dards, such as Federal Information Processing Standard (FIPS) in the USA, to pro-
vide users with a security assurance.

5.6  �Side-Channel Security Attacks on the Edge

Edge computing enables unexpected attacks because physical hardware alone does 
not define the security boundary and is normally not in the control of the remote 
user. Direct attacks attempt to get a user’s information by attacking the secured data 
directly. Direct attacks include attempting to decrypt by guessing keys with repeated 

Fig. 5.5  HTTPS secure communication using server-provided public key
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trials or by attempting to gain access with password guessing. Side-channel attacks 
(SCA) attempt to gain information by looking at peripheral locations or measuring 
usage effects rather than the user’s data itself [9]. Traditionally, side-channel attacks 
were not significant because they required some level of access to the secured hard-
ware. In the IoT, the hardware is everywhere, and in the Cloud hardware is shared, 
providing remote access to hackers.

The side-channel attacks (SCA) can be grouped into several categories [5]. The 
first category is cache side-channel attacks. In this type of attack, the attacker 
attempts to access memory locations that are outside its authorization. While sepa-
rate processes are assigned different segments of main memory, the data must pass 
through the same cache for both processes. Of course, when data is in the cache, it 
is assigned a memory tag associated with its own process. However, depending 
upon the cache coherency algorithm, the cache may not be cleared between process 
swaps. Also, the bound checking implementation limits what can be learned about 
the data in the cache. However, with some speculative executions or branch predic-
tion algorithms, the bound checks are suspended to improve run times. It opens up 
an avenue to carry out successful SCA.

The next category of attack is the timing attack. Here the attacker monitors the 
target process to measure how long certain operations take. This can be a cache tim-
ing tack or a calculation timing attack. For a calculation timing attack, some algo-
rithms for multiplication increase performance by doing a bit-by-bit add and skip or 
just skip the add step when the bit is 0. Thus the timing attacker has a sense of how 
many (and sometimes when) bits are zero in a key. This can significantly reduce the 
search space for potential keys, making them easier to guess.

The next category of attack is the power-analysis attack. This is an indirect attack 
because it is not looking at the binary data, although it is using the binary data. For 
example, the pattern of the power supply current is compared for guessed keys to 
the normal operation. This happens because the electrical charge required for tran-
sistors to turn on is higher than to keep them off, which is for binary 1 or 0, respec-
tively. When there is a match in the power usage pattern, then the key has been 
found. Another category of attack is fault side-channel attack. Here the security 
algorithm or hardware has an intentional error injected while encrypting. The 
change in the resulting performance gives a hint for the secret information.

A huge problem for Edge computing is the variety of systems employed in a data 
center. Thus, while one component may be protected against a particular side-
channel attack, other components will not be protected. This is exacerbated by the 
legacy hardware problem, which in widely connected Edge computing environ-
ments, the IoT includes systems with the latest security precautions and many more 
old systems lacking sufficient security implementations. One needs to do end-to-
end penetration testing in a Cloud deployment to ensure its security.
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5.7  �Hardware-Based Security Solutions

Hardware-based security can occur on the Edge device as well as the central server 
in a datacenter. This, including encrypted communications from the Edge to a data-
center, will ensure an end-to-end security profile. Trusted computing in Fig.  5.6 
refers to a setup where users trust the manufacturer of hardware or software on a 
remote computer and are willing to put their sensitive data in a secure container 
hosted on that computer [11] in the datacenter.

As we noted in a previous section, using hardware as a root of trust in a Cloud 
environment increases Cloud customers’ confidence, as their VMs are running on 
the known and attested remote servers. Furthermore, such servers may also be run-
ning other tenants’ VMs in a shared pool of resources. Thus, our security-conscious 
customers want to ensure that there is no in-memory attack or inadvertent data cor-
ruption from other tasks. Both confidentiality and integrity of sensitive data can be 
protected using special hardware features now beginning to be available.

One such example is Intel’s Software Guard Extension (SGX), which provides a 
set of security-related instructions built into the latest CPUs [10]. These allow user-
level as well as privileged OS or Virtual Machine Monitor (VMM) code to define 

Fig. 5.6  Basis of trusted computing [10]
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private regions of memory called enclaves. These enclaves are used to protect code 
and data, which can’t be read or saved by processes outside the enclave. This 
includes even processes running at higher privileged levels. The enclave is decrypted 
at runtime only within the CPU package and only for the code and data running 
from within the enclave itself.

In Amazon’s EC2 Cloud, server platforms can execute software at four different 
privilege levels, as shown in Fig. 5.7. This is based on a ring structure, akin to a 
scout camp, such that the innermost, or Ring 0, is most secure. Software running at 
a less privileged level, such as Ring 3, can freely read or modify the code or data. 
System management mode (SMM) at the top is used by motherboard manufacturers 
to implement protected regions of BIOS (basic input-output system). VMX refers to 
virtual machine extensions to support hypervisors or VMMs. VMX non-root is 
where the guest operating system runs in Ring 0 and user applications in Ring 3.

An enclave’s code execution always happens in protected mode, at Ring 3, and 
uses the address translation setup by the OS kernel or a VMM. Even to service an 
interrupt, to protect the private data, the CPU must perform an asynchronous enclave 
exit to switch from the enclave context to regular Ring 3. Then it services the inter-
rupt, fault, or VM exit. CPU saves the state into a predefined area inside the enclave 
and transfers control to a pre-specified instruction outside the enclave. After servic-
ing the external system call, the CPU switches the state back to an enclave, restoring 
the register values and flags, etc.

The first step in any secure computing is certification or attestation. It proves to 
remote users that they are communicating with a specific trusted platform. This 
reduces the probability of a man-in-the-middle attack. Proof of attestation is a 

Fig. 5.7  Privilege levels in a server platform [10]
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signature produced by the platform’s secret and unique attestation key, as shown in 
Fig. 5.8. It convinces the remote users that their sensitive code and data will reside 
in a secure container or enclave. Execution flow can enter an enclave only via spe-
cial SGX instructions, similar to the mechanics for switching from the user mode to 
kernel mode. Thus, the trusted compute boundary (TCB) for the SGX threat model 
is limited only to the processes resident in an enclave. In other words, anything 
outside of an enclave including the OS or VMM is excluded from the TCB. A code 
or process outside the enclave trying to read it will see cipher or encrypted text. 
SGX is useful for implementing secure remote computation, secure Web browsing, 
Digital Rights Management (DRM), etc. Other applications can conceal security 
keys or proprietary algorithms using SGX.

Edge-based Cloud customers want their data to be protected at rest (in storage), 
during transit (during transportation), and at run time (in execution). SGX enables 
users to protect their data while it is being processed in the Cloud.

As of this writing, Microsoft’s Azure Cloud [12] provides confidential comput-
ing using Intel’s SGX capability. It provides trusted execution environment (TEE), 
which enables users to:

–– Safeguard information from malicious and insider threats while in use.
–– Maintain control of data through its lifetime.
–– Protect and validate the integrity of code in a public Cloud.
–– Ensure that data and code are opaque to the Cloud platform provider.

Another US public Cloud provider using SGX is IBM [13]. They reported that 
while external attacks outnumber internal incidents as causes of breaches, internal 
security incidents are on the rise. In 2022, 46% of attacks were malicious insider 

Fig. 5.8  Attesting the authenticity of a trusted platform to a remote user [11]
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incidents. IBM Global Cloud deploys SGX-enabled non-virtualized servers, also 
known as bare metal servers, to provide run-time protection for users’ sensitive 
application code and data.

Alternatively, let us consider attestation in the ARM architecture [14]. ARM 
CPUs are used in many Edge-based devices. Local attestation for ARM TrustZone 
is dependent on several measurements taken during the boot process and requires a 
secure boot. During power-on, implicitly trusted code resident in a secure Read 
Only Memory (ROM) or Static Random Access Memory (SRAM) is executed. The 
boot loading process occurs in 3 stages, as shown in Fig.  5.9. Boot loader 1 is 
responsible for authenticating the boot loader 2 stage. Boot loader 1 verifies the root 
of trust (RoT) public key in the boot loader 2. Boot loader 1 then verifies the boot 
loader 2’s content certificate using the enclosed RoT public key. Boot loader 1 loads 
boot loader 2 into memory and verifies the hash. Execution is then transferred to 
boot loader 2. Boot loader 2 is responsible for authenticating all of the possible boot 
loader 3 stages. Boot loader 2 verifies the RoT public key in the certificate against 
the RoT public key stored in the hash. Boot loader 2 then verifies the certificate 
using its RoT public key and saves the trusted world (TW) and normal world (NW) 
public keys. Boot loader 2 uses the TW public key to verify the boot loader 3’s cer-
tificate and verifies the boot loader 3’s content certificate using the boot loader 3’s 
public key. Boot level 2 extracts and saves the boot level 3 hash used for boot level 
3 image verification. Finally, execution is transferred to the verified boot level 3 
images. During execution, both TW and NW coexist. After the secure boot, any 
secure monitor software should be loaded to run in the highest privilege level [15].

ARM’s approach using the multistage boot provides a higher level of security 
than a single stage of attestation, as in SGX. The rationale here is similar to multi-
factor authentication (MFA), which relies on the fact that it is harder to breach the 
security of multiple devices or locations. With a multistage boot, a hacker would 
have to replace boot code at multiple locations.

Fig. 5.9  Arm trust zone attestation at boot time [14]
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5.8  �Security Practices for Edge Computing

While Edge Cloud computing and security practices continue to evolve, many users 
have already migrated their mission-critical applications to the Cloud driven by 
economic value and convenience factors [5]. This has made both public and private 
Cloud attractive targets for security hackers. Hence, we propose the following prac-
tices for the users and practitioners of Edge Cloud computing to ensure that assets 
remain secure:

	1.	 Continuous Monitoring: This is needed for any unexpected usage patterns or 
changes in your Cloud resources. You can’t protect what you can’t see.

	2.	 Attack Surface Management: It refers to the set of access points that are exposed 
to an unauthorized user. An organization needs to limit the devices or methods 
that can access its mission-critical data [16]. Besides the obvious methods of 
using encryption, one needs to ensure that the devices that are authorized to 
access this data themselves are not vulnerable or hacked.

	3.	 No Residual Footprints: Looking into bins for any trashed paperwork is an old 
spying practice. The online equivalent of this is to try reading the leftover bits in 
the memory or disk after a target VM stops using these resources in a Cloud. By 
zeroing out its contents of memory and disk, a VM upon exit can ensure that the 
next VM will have no residual data to exploit. This operation may cost some 
extra time and money but is well worth the trouble of avoiding your valuable 
data falling into wrong hands.

	4.	 Strong Access Control: While obvious to any IT manager, many recent attacks 
came through unexpected entry points on the Edge. Many companies use 
Internet-connected heating, ventilation, and air-conditioning (HVAC) systems 
without adequate security, giving hackers a potential gateway to the key corpo-
rate systems. An example [17] shows how hackers stole login credentials belong-
ing to a company that provides HVAC services and used that access to gain a 
foothold on another target company’s payment systems. A strong chain is as 
weak as its weakest link, so analyze your system and its access points to find its 
most vulnerable spots.

	5.	 Damage Controls: With always evolving sophisticated hacking techniques, no 
system is 100% hack-proof, and it is not a question of if but when a security 
attack can happen on your Cloud infrastructure or data. Each organization and 
user needs a plan to minimize the damage in such cases. For an individual, it 
might be a matter of canceling their credit cards, changing banking passwords, 
or perhaps closing some online accounts if they are compromised. For an orga-
nization, mitigation strategies may be more complex, involving an alternative 
control and command network or quickly shutting down infected servers, 
etc. [18].

As security intelligence shows [19, 20], available technology is not restricted to 
firewalls. Any Edge computing solution must protect the access in the most effective 
way possible, such as by including the following capabilities:
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•	 Intrusion detection tools
•	 Application firewall
•	 New generation firewall
•	 Attack mitigation tools for distributed denial of service (DDOS) attacks
•	 Log correlation

5.9  �Machine Learning for Security

From previous chapters, we learned that machine learning (ML) techniques are 
being applied in many areas of life, such as smart grids, factory floors, and automo-
biles. Since cyber security incidents across all these domains are also growing, there 
is a need to apply ML techniques to curb unauthorized transactions.

In any transaction involving humans, the most common cybercrime is phishing 
[21]. It is an attempt to fraudulently obtain personal information such as passwords 
and bank or credit card details by posing as a trustworthy entity. There are some 
excellent ML-based solutions in the following three areas:

	1.	 Detective Solutions: By monitoring an Edge device’s activities and flagging any 
unusual transactions. Incoming packets can be prevented by denial of service 
(DOS)/distributed denial of service (DDOS) attack detection. Web content can 
be filtered using anti-malware software. ML can help to strengthen these tech-
niques by training with known vulnerabilities and then looking for some unex-
pected patterns.

	2.	 Preventive Solutions: Incoming login requests to an Edge device can be checked 
using multifactor authentication. In addition to usual techniques such as sending 
one-time password (OTP) verification codes by email or mobile addresses, ML 
techniques can be used to avoid SIM hijacking attacks [22].

	3.	 Corrective Solutions: After recognizing repeated attacks from a particular set of 
IP addresses, or geographies, it is possible to detect the location of phishing sites 
and pull them down. ML techniques can be used for forensics and investigation. 
A comparison of the following six ML classifiers pegs their error rates between 
0.075 and 0.105; the detailed discussion can be found at reference [23]:

	 (a)	 Logistic regression (LR)
	 (b)	 Classification and regression trees (CART)
	 (c)	 Bayesian additive regression trees (BART)
	 (d)	 Support vector machines (SVM)
	 (e)	 Random forests (RF)
	 (f)	 Artificial neural networks (ANN)

Interestingly, hackers are also using ML techniques. An example is the usage of 
machine learning tools to break human interaction proofs (HIP aka CAPTCHA). 
CAPTCHA stands for completely automated public Turing test to tell computers 
and humans apart. It is a challenge-response test used in computing to detect if the 
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user is a human. This involves distorted characters often hidden, so it becomes a 
recognition challenge for a regular computer. However, the ML approach trains by 
using the segmentation steps of hidden characters and then uses neural networks to 
recognize characters in new challenges [24]. Historically, the training stages were 
computationally expensive due to complex segmentation functions. With the advent 
of Edge-based Cloud computing and the elasticity of affordable resources, hackers 
can now overcome the difficulties in the identification of valid characters. This 
requires the bar to be raised for public-facing Edge devices connected to the Cloud.

5.10  �Summary

The present state of Edge computing is an environment of vastly different comput-
ing capabilities connecting via a wide variety of communication paths. This situa-
tion creates both great operational capability opportunities and unimaginable 
security problems.

Edge security issues exacerbate with the growth of the Internet as more people 
and devices join the Web, opening new ways to compromise an ever-increasing 
amount of information and potential for damages. However, an even bigger chal-
lenge to information security has been created with the implementation of remote 
access via Cloud computing. This chapter gave a brief general description of infor-
mation security issues and solutions. Some information security challenges that are 
specific to Edge Cloud computing have been described. Security solutions must 
make a trade-off between the amount of security and the level of performance cost. 
The key thesis of this chapter is that any security solutions applied to Edge devices 
must span multiple levels and across all the functions from end to end.

5.11  �Points to Ponder

	1.	 How could one improve the Cloud’s performance and support for Edge-based 
devices?

	2.	 Why is Edge computing needed for self-driven cars in the future?
	3.	 Can you think of another example of Edge computing devices on a road?
	4.	 What is the trust and security model for Edge devices?
	5.	 What kinds of attacks are possible using IoT and Edge devices?
	6.	 Can hardware be the sole root of trust?
	7.	 Does ARM’s approach using the multistage boot provide a higher level of secu-

rity than a single stage of attestation in SGX, and why?
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5.12  �Answers

	1.	 How could one improve the Cloud’s performance and support for Edge-based 
devices?

	 (a)	 By having distributed and redundant systems for a failsafe solution.
	 (b)	 Avoid having a single point of failure.
	 (c)	 Backend Cloud services are needed to log data and results for audits and 

machine learning inferences.
	 (d)	 Sensors can generate enormous data requiring Cloud storage and compute 

power. However, moving data in and out of Cloud is slow and expensive. So 
input-output considerations will require local compute and storage power.

	2.	 Why is Edge computing needed for self-driven cars in the future?

	 (a)	 Sensors in a moving car can generate enormous data, requiring Cloud stor-
age and compute power. Examples of this are forward-looking and side-view 
cameras. However, moving data in and out of Cloud is slow and expensive. 
A car may need to react quickly due to changing road conditions. So input-
output considerations for the sensor data will require local compute and stor-
age power. However, any learning and performance data can be reconciled 
with backend servers during the night or when the car is safely parked.

	3.	 Can you think of another example of Edge computing devices on a road?

	 (a)	 A network of traffic lights can communicate and coordinate between them 
for adjusting to an accident that may be sending scores of cars to other roads. 
Normally, such a scenario can cause bottlenecks, while other roads may be 
empty. Using a combination of artificial intelligence and machine learning 
methods, in the future a network of traffic lights may be able to adapt their 
sequence of red-yellow-green to ease the wait times on critical junctions.

	4.	 What is the trust and security model for Edge devices?

	 (a)	 Edge devices in a Cloud need backend Cloud services that are needed to log 
data and results for audits and machine learning inferences. However, 
devices need to trust the Cloud servers, and Cloud needs to trust the incom-
ing device data.

	5.	 What kinds of attacks are possible using IoT and Edge devices?

	 (a)	 It has been shown that an army of botnets (a term used for devices on the 
Internet) can be hijacked by hackers and used for launching distributed 
denial of service (DDOS ) attacks on unsuspecting Cloud servers. An exam-
ple is of home surveillance cameras that had unsecured IP addresses used for 
bringing down a security journalist’s blog site.
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	6.	 Can hardware be the sole root of trust?

	 (a)	 As we previously noted, multifactor authentication offers a better defense 
strategy. Having any single piece of hardware or software as the sole root of 
trust is risky. One possible solution is mutual attestation by various devices 
that are not located at the same place or are not under the same control. Thus, 
an attacker will need to simultaneously compromise multiple devices, which 
is harder to accomplish than altering any single root of trust.

	7.	 Does ARM’s approach using the multistage boot provide a higher level of secu-
rity than a single stage of attestation in SGX, and why?

	 (a)	 Yes, ARM’s approach using the multistage boot indeed provides a higher 
level of security than a single stage of attestation as in SGX. The rationale 
here is similar to multifactor authentication (MFA), which relies on the fact 
that it is harder to breach the security of multiple devices or locations. With 
a multistage boot, a hacker would have to replace boot code at multiple loca-
tions. There is no absolute or 100% security, but it can be improved in stages, 
as ARM has done. They have enhanced the integrity of their boot process.
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Chapter 6
Edge Artificial Intelligence

6.1  �Introduction

Edge AI refers to the deployment and execution of AI and ML models on Edge 
devices. These include smartphones, IoT sensors, industrial controllers, and other 
resource-constrained devices located at the Edge of the network and closer to the 
data sources. In addition, on-premise servers, including those located in a hybrid 
Cloud setup, are content delivery networks [1]. This approach contrasts with tradi-
tional Cloud-based AI, where data is transmitted to powerful centralized servers for 
training. Then inference is done on the remote devices. In the expanded realm of 
Edge AI, remote devices can perform limited training or re-training activities on the 
remote devices. This includes smart/intelligent Edge data collection, data de-
identification/re-identification, and fine tuning of models on Edge.

6.1.1  �Key Aspects of Edge AI

Edge AI tasks include decentralized data processing, real-time responsiveness, 
enhanced privacy and security, reduced bandwidth and cost, resilience and reliabil-
ity, specialized hardware, federated learning, and diverse applications that are cov-
ered in detail below:

•	 Decentralized Data Processing: AI models are deployed on Edge devices, 
enabling local data processing and decision-making. This reduces the need for 
constant data transmission to the Cloud, minimizing latency and bandwidth 
requirements.

•	 Real-time Responsiveness: Edge AI enables real-time processing and decision-
making, crucial for applications that require instantaneous responses, such as 
autonomous vehicles, predictive maintenance, and robotics. By eliminating the 
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need to send data to the Cloud and wait for a response, Edge AI provides faster 
reaction times.

•	 Enhanced Privacy and Security: Sensitive data can be processed locally on 
Edge devices, reducing the risk of data breaches during transmission or storage 
on centralized servers. Edge AI enables compliance with data privacy regulations 
and enhances security for sensitive applications.

•	 Reduced Bandwidth and Cost: By processing data locally, Edge AI minimizes 
the amount of data that needs to be transmitted over the network, reducing 
bandwidth requirements and associated costs. This is particularly beneficial for 
applications with limited connectivity or in remote locations.

•	 Resilience and Reliability: Edge AI systems can continue to operate even when 
network connectivity is disrupted or unavailable, ensuring uninterrupted service 
delivery. This is crucial for mission-critical applications in industries like manu-
facturing, healthcare, and transportation.

•	 Specialized Hardware: Edge AI often leverages specialized hardware, such as 
AI accelerators, field-programmable gate arrays (FPGAs), and application-
specific integrated circuits (ASICs), optimized for efficient AI processing on 
resource-constrained devices. These hardware solutions enable the deployment 
of complex AI models on Edge devices with limited compute resources.

•	 Diverse Applications: Edge AI has potential applications across various indus-
tries, including manufacturing (predictive maintenance, quality control), health-
care (remote patient monitoring, medical imaging), smart cities (traffic 
management, environmental monitoring), and consumer electronics (voice assis-
tants, augmented reality).

Next, we will examine the traditional AI approach, where learning mainly hap-
pens in a centralized environment and data travels from remote locations to the 
central data centers. This will be followed by a brief review of decentralized learn-
ing, also known as federated learning. After that, we will examine the emerging area 
of generative AI using vector databases and transformer architecture. We will con-
clude this chapter by looking at how load balancing can be applied to Edge AI and 
describing the need for embedded AI in the Edge devices.

6.2  �Centralized Learning

Centralized learning in the context of AI refers to the traditional approach where 
data is collected from various sources and transmitted to a central server or data 
center for processing, training, and model development. This method contrasts with 
decentralized learning, where data remains distributed across multiple devices or 
locations, and only model updates are shared. Decentralized learning, also known as 
federated learning [2], will be covered in detail later in this chapter. Centralized 
learning has been the dominant paradigm in AI due to its simplicity and the 
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availability of powerful centralized computing resources. Below, we explore the key 
aspects, benefits, and challenges of centralized learning in AI.

6.2.1  �Key Aspects of Centralized Learning in AI

These consist of data collection, model training, model deployment, and monitoring 
and management that are covered in detail below.

•	 Centralized Data Collection: Data from various sources is aggregated and 
stored in a central repository, such as a data warehouse or Cloud storage. This 
centralization facilitates comprehensive data analysis and model training.

•	 Centralized Model Training: AI models are trained on the aggregated data 
using powerful centralized computing resources, such as graphics processing 
units (GPUs) [3] and tensor processing units (TPUs) [4]. This approach lever-
ages the full computational power of data centers to train complex models 
efficiently.

•	 Centralized Model Deployment: Once trained, AI models are deployed from 
the central server to various applications and devices. Updates and improve-
ments to the models are managed centrally and distributed as needed.

•	 Centralized Monitoring and Management: The performance of AI models is 
monitored centrally, allowing for consistent oversight and management. 
Centralized systems can quickly identify and address issues, ensuring optimal 
model performance.

6.2.2  �Benefits of Centralized Learning in AI

The benefits consist of access to large datasets, efficient use of computational 
resources, consistency and standardization, and simplified management and 
maintenance.

•	 Access to Large Datasets: Centralized learning allows for the aggregation of 
large and diverse datasets, which can improve the accuracy and robustness of AI 
models. This is particularly beneficial for training deep learning models that 
require vast amounts of data.

•	 Efficient Use of Computational Resources: Centralized data centers can lever-
age high-performance computing resources, such as clusters of GPUs and TPUs, 
to train models more efficiently. This reduces the time required for model train-
ing and enables the development of more complex models.

•	 Consistency and Standardization: Centralized learning ensures that all data is 
processed and analyzed using the same standards and methodologies. This con-
sistency is crucial for maintaining the quality and reliability of AI models.
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•	 Simplified Management and Maintenance: Centralized systems simplify the 
management and maintenance of AI models, as updates and improvements can 
be implemented in a single location. This reduces the complexity of deploying 
and maintaining AI models across multiple devices or locations.

6.2.3  �Challenges of Centralized Learning

These consist of data privacy and security, latency and bandwidth constraints, scal-
ability issues, single points of failure, etc.

•	 Data Privacy and Security: Centralized learning requires the transfer of data to 
a central server, which can raise concerns about data privacy and security. 
Sensitive data may be at risk during transmission or while stored in centralized 
repositories. These concerns can be addressed by solutions such as data encryp-
tion/decryption or data anonymization [5] and data de-identification/re-
identification [6].

•	 Latency and Bandwidth Constraints: Transmitting large volumes of data to a 
central server can result in high latency and bandwidth consumption. This can be 
problematic for applications that require real-time processing and decision-
making. One possible solution is to pick a centralized data center close to the 
data generation and consumption locations [1].

•	 Scalability Issues: As the volume of data and the number of devices increase, 
centralized systems may struggle to scale efficiently. This can lead to bottlenecks 
and reduced performance. The methods to  scale using network, compute and 
data are well known [2] but come at a higher cost.

•	 Single Point of Failure: Centralized systems can be vulnerable to failures or 
attacks, as a single point of failure can disrupt the entire AI infrastructure. 
Ensuring the reliability and resilience of centralized systems is a significant chal-
lenge. This can be done with regular backups of critical data and having hot 
standby servers in a data center.

6.3  �Federated Learning

In many instances, machine learning data is owned by different entities that do not 
trust each other or do not wish to share their data even for a common purpose of 
training a model. Such is the case with medical data spread between different hos-
pitals. They are also bound by laws (such as HIPAA in the USA) to protect their 
patient identities. Hence, a new technology has emerged to train ML models at scale 
across multiple medical institutions without moving the data between them. It is 
called federated learning (FL) [7], an instance of which is depicted in Fig. 6.1.
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FL enables data to stay local and algorithms to travel across the participating 
institutions for training a deep learning algorithm while preserving privacy and 
security of the patients’ data. However, FL has a performance penalty that we shall 
discuss in the next chapter.

6.3.1  �Balancing Centralized and Decentralized Learning

To address the limitations of centralized learning, many organizations are exploring 
hybrid approaches that combine the strengths of both centralized and decentralized 
learning. This hybrid model allows for various aspects outlined below.

•	 Centralized Training for Core Models: Core AI models are trained centrally 
using aggregated data and powerful computing resources to ensure high accu-
racy and robustness.

•	 Decentralized Learning for Local Adaptation: Localized models are trained 
on Edge devices or local servers using decentralized learning techniques, allow-
ing for real-time processing and enhanced privacy. Only model updates, rather 
than raw data, are shared with the central server, reducing bandwidth consump-
tion and enhancing data privacy.

Fig. 6.1  Federated learning architecture. 1 is local model sharing. 2 is global model sharing 
updates. Image used courtesy of Intel [7]

6.3  Federated Learning



120

•	 Enhanced Collaboration and Flexibility: Central and local AI teams collabo-
rate to share insights, best practices, and model updates, fostering a more inte-
grated and adaptive AI ecosystem.

Centralized learning in AI offers significant advantages in terms of data aggrega-
tion, computational efficiency, and consistency. However, it also presents challenges 
related to data privacy, latency, scalability, and resilience. By adopting a balanced 
approach that incorporates elements of both centralized and decentralized learning, 
organizations can create a more effective and adaptable AI strategy that meets the 
diverse needs of their applications and users.

6.4  �Generative AI

Generative AI (GenAI) [8] represents a revolutionary advancement in AI focusing 
on creating new content rather than simply analyzing existing data. This rapidly 
evolving technology has the potential to positively transform numerous industries 
and aspects of our daily lives. It can lead to increased productivity and reduced costs.

6.4.1  �Introduction to Generative AI

At its core, GenAI relies on complex neural networks and machine learning algo-
rithms to process and learn from vast amounts of training data. These systems 
employ techniques such as deep learning, natural language processing, and rein-
forcement learning to understand patterns and relationships within the data.

Interacting with GenAI typically begins with a prompt, which can be in the form 
of text, an image, or other input that the AI system can process. The AI then uses its 
trained algorithms to generate new content in response to this prompt. This content 
can range from text and images to audio and even synthetic data that closely resem-
bles human-created content.

6.4.2  �Key Components of GenAI

•	 Large Language Models (LLMs): These are deep neural networks trained on 
massive amounts of text data, enabling them to understand and generate human-
like text.

•	 Multimodal LLMs: These are models designed to process and generate data 
across multiple types of modalities, such as text, images, audio, and video. While 
traditional LLMs are primarily focused on text, multimodal models combine 
various types of input and output, enabling richer, more versatile capabilities.
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•	 Neural Networks: These structures, loosely modeled after the human brain, 
consist of interconnected nodes that work together to process information.

•	 Tokenization: This process breaks down input text into smaller units called 
tokens, helping the AI understand the structure and meaning of the input.

6.4.3  �Vector Database

A vector database [9] is a specialized storage system designed to efficiently manage 
and query high-dimensional vector data. This is crucial for various AI and ML 
applications. Here are the key aspects of vector databases:

6.4.3.1  �Definition and Functionality

Vector databases store and index vector mappings, i.e., numerical representations of 
data objects, thus allowing for fast retrieval and similarity searches. Unlike tradi-
tional databases that rely on exact matches, vector databases enable searches based 
on the semantic similarity of the data, making them particularly useful in AI con-
texts where understanding relationships and patterns is essential. For example, 
words “lamb” and “sheep” are closer to each other vs. words “lamb” and “apple” 
that are distant to each other. In the same way, words “apple” and “orange” are 
closer to each other vs. words “apple” and “lamb” that are distant to each other.

6.4.3.2  �Key Features

•	 High-Dimensional Data Handling: Vector databases are optimized to manage 
vectors that can have hundreds to thousands of dimensions, where each dimen-
sion corresponds to a specific feature or attribute of the data being represented.

•	 Approximate Nearest Neighbor (ANN) Search: Vector databases implement 
algorithms that facilitate efficient ANN searches, allowing users to find vectors 
that are closest to a given query vector. This capability is vital for applications 
like recommendation systems and semantic search.

•	 Scalability and Flexibility: Vector databases are designed to handle large vol-
umes of vectored data, providing horizontal scalability and dynamic data man-
agement capabilities. This is essential for modern AI applications.

•	 Integration with AI Models: These databases often work in conjunction with 
large language models (LLMs) and other AI systems, enabling tasks such as 
retrieval-augmented generation (RAG), where relevant information is retrieved 
to enhance model responses [10].

•	 Applications: Vector databases are utilized in various domains, including rec-
ommendation systems, natural language processing (NLP), image recognition 
and retrieval and anomaly detection.
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6.4.3.3  �Differences from Traditional Databases

Unlike traditional databases that store data in tabular formats and require exact 
matches for queries, vector databases focus on storing data as vectors and allow for 
similarity-based searches. This shift enables a broader scope of results and the abil-
ity to handle complex data relationships, making vector databases particularly 
suited for AI and ML applications.

Vector databases represent a significant advancement in data management, par-
ticularly in the context of AI and ML. Their ability to store, retrieve, and query 
high-dimensional data efficiently opens up new possibilities for applications that 
require an understanding of complex relationships and patterns within data. For 
example, these are very useful in NLP activities such as sentiment analysis, docu-
ment similarity, and semantic searches. As AI technologies continue to evolve, the 
role of vector databases will become increasingly critical in enabling sophisticated 
data-driven solutions.

6.4.4  �Transformer Architecture

The Transformer Architecture [11] has revolutionized the field of AI since its intro-
duction. Originally designed for NLP, transformers have become the backbone of 
numerous AI applications, extending their influence beyond text to areas such as 
computer vision, robotics, and more. This section provides a comprehensive over-
view of the transformer architecture, its components, functionality, applications, 
and implications for the future of AI.

6.4.4.1  �Overview of Transformer Architecture

Transformers are a type of neural network architecture that utilizes self-attention 
mechanisms to process sequential data. Unlike traditional recurrent neural networks 
(RNNs), which process input data sequentially, transformers can evaluate all ele-
ments of the input simultaneously. This parallel processing capability allows for 
more efficient training and improved performance on tasks involving long-range 
dependencies.

The architecture is typically divided into two main components:

•	 Encoder: The encoder processes the input sequence and generates contextual 
embeddings for each token. It captures the relationships between tokens through 
self-attention mechanisms.

•	 Decoder: The decoder takes the encoder’s output and generates the final output 
sequence. It uses both the encoder’s context and its own previous outputs to pro-
duce the next token in the sequence.
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6.4.4.2  �Core Components of Transformers

•	 Embedding Layer: The input tokens are first converted into numerical represen-
tations (embeddings) that capture their semantic meanings. This layer also 
includes positional encodings to retain information about the order of tokens in 
the sequence.

•	 Self-Attention Mechanism: This mechanism allows the model to weigh the 
importance of different tokens in the sequence relative to each other. Each token 
attends to all other tokens, enabling the model to capture contextual relationships 
effectively.

•	 Multi-Head Attention: Instead of a single attention mechanism, transformers 
utilize multiple attention heads that operate in parallel. Each head learns differ-
ent aspects of the relationships between tokens, enhancing the model’s ability to 
capture diverse patterns in the data.

•	 Feed-Forward Neural Network: After the attention mechanism, the output is 
passed through a feed-forward neural network, which applies nonlinear transfor-
mations to the data. This layer is applied independently to each position in the 
sequence.

•	 Layer Normalization and Residual Connections: Each sub-layer (attention 
and feed-forward) is followed by layer normalization and residual connections, 
which helps stabilize training and improve convergence.

•	 Output Layer: The final output from the decoder is transformed into probabili-
ties for each token in the vocabulary, allowing the model to generate the next 
token in the sequence.

6.4.4.3  �Advantages of Transformer Architecture

•	 Parallelization: The transformer architecture allows for parallel processing of 
input data, significantly speeding up training times compared to RNNs, which 
require sequential processing.

•	 Handling Long-Range Dependencies: Transformers effectively capture rela-
tionships between distant tokens in a sequence, overcoming the limitations of 
RNNs in managing long-term dependencies.

•	 Flexibility: The architecture can be adapted for various tasks, including text gen-
eration, translation, summarization, and even image processing through variants 
like vision transformers (ViTs).

The transformer architecture has fundamentally changed the landscape of artifi-
cial intelligence, enabling significant advancements in natural language processing 
and beyond. Its ability to process data efficiently and capture complex relationships 
has made it a cornerstone of modern AI. As research continues to evolve, the trans-
former architecture will likely remain a key player in shaping the future of AI tech-
nologies, driving innovations across diverse fields and applications.
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6.4.5  �GenAI Applications and Impact

GenAI has a wide range of applications across various industries:

•	 Art and Design: It can create unique artworks, assist in product design, and 
generate architectural layouts.

•	 Writing and Content Creation: It can produce articles, essays, and even code.
•	 Music: It can compose original melodies and complete unfinished musi-

cal pieces.
•	 Healthcare: It can aid in drug discovery and design new molecules.
•	 Business: It can help redesign business processes, transform supply chains, and 

generate marketing content.

The impact of GenAI extends beyond these specific applications. It has the 
potential to enhance creativity and productivity, streamline workflows, and solve 
complex problems in ways previously unimaginable. For instance, in scientific 
research, GenAI can assist in generating hypotheses, analyzing data, and even writ-
ing parts of research papers.

6.4.6  �Challenges and Ethical Considerations

While GenAI offers immense potential, it also presents several challenges:

•	 Accuracy and Bias: Early implementations have shown issues with accuracy 
and can perpetuate biases present in training data [12].

•	 Hallucinations: AI systems can sometimes produce fabricated or inaccurate 
information with high confidence [13].

•	 Copyright and Authorship: The use of AI-generated content raises questions 
about intellectual property rights and authorship [14]. This includes getting per-
mission from the content owner before the content is used for training.

•	 Job Displacement: There are concerns about AI potentially replacing human 
workers in certain creative fields [15].

Addressing these challenges requires on-going research, ethical guidelines, and 
potentially new legal frameworks. It’s crucial to develop GenAI systems that are 
transparent, accountable, and aligned with human values.

6.4.7  �The Future of Generative AI

The field of GenAI is rapidly evolving, with on-going research aimed at improving 
accuracy, reducing biases, and expanding capabilities. Future developments may 
include:
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•	 More sophisticated models are capable of generating increasingly complex and 
nuanced content.

•	 Better integration with other AI technologies for more comprehensive solutions.
•	 Improved user interfaces make GenAI more accessible to nontechnical users.
•	 Advancements in ethical AI to address concerns about bias and misinformation.
•	 Emotion analysis is natural language processing that can provide information on 

customer sentiment with rules-based or keyword-based approaches.

As GenAI continues to advance, it has the potential to revolutionize various 
aspects of our lives, from how we create art and solve problems to how businesses 
operate and innovate. However, it is crucial to approach this technology with careful 
consideration of its ethical implications and potential societal impacts. GenAI rep-
resents a significant leap forward in artificial intelligence, offering unprecedented 
capabilities in content creation and problem-solving. As we continue to explore and 
develop this technology, it is essential to balance its immense potential with respon-
sible implementation and ethical considerations. The future of GenAI is bright, and 
its impact on society is likely to be profound and far-reaching.

6.5  �Load Balancing in Edge AI

Load balancing is important because it helps distribute traffic across the network 
Edge, which can improve performance and reliability. When combined with Edge 
computing, load balancing can create a highly responsive system that can handle 
large amounts of data and traffic.

In Edge AI, load balancing is a critical consideration to ensure efficient use of 
resources, maintain performance, and provide reliability across distributed systems. 
As Edge AI applications continue to grow, managing workloads effectively becomes 
paramount to maximize the benefits of low latency, bandwidth optimization, and 
local processing. Here is a detailed exploration of the load balancing in Edge AI:

6.5.1  �Key Considerations for Load Balancing in Edge AI

The key considerations are distributed architecture, dynamic workload distribution, 
resource constraints, data localization and privacy, network connectivity, scalability, 
flexibility, latency sensitivity, reliability, and redundancy.
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6.5.1.1  �Distributed Architecture

As shown in Fig. 6.2, we have several end devices. Traffic from these devices gets 
redirected by an intelligent Edge gateway and subsequently loads balanced on the 
server farm with servers marked in green.

•	 Edge Nodes: Unlike centralized Cloud computing, Edge AI involves multiple 
Edge nodes located near data sources [16]. Load balancing must account for the 
distribution of these nodes to different servers for optimized processing. Each 
Edge node should have multiple application instances running, and traffic to 
them can be managed via an Edge intelligent gateway that ensures that the load 
is spread out and that servers do not become overloaded [17].

•	 Hierarchical Structure: Often, Edge AI systems use a hierarchical structure 
where local Edge devices communicate with regional Edge servers before reach-
ing the Cloud. Load balancing needs to address each level of this hierarchy.

•	 The load balancers in the Edge nodes can also use global server load balancing 
(GSLB) [18] to work with peers in other Edge data centers and in the Cloud to 
manage and spread the load over multiple sites in a region as required to main-
tain the best response times.

6.5.1.2  �Dynamic Workload Distribution

•	 Real-time Processing: Edge AI applications often require real-time processing, 
which demands dynamic workload distribution to avoid delays. This means load 
balancers must quickly adjust to changing conditions.

•	 Variable Demand: Different Edge nodes may experience varying demand based 
on user activity or sensor inputs, necessitating adaptive load balancing strategies.

Fig. 6.2  Edge computing load balancing architecture [16]
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6.5.1.3  �Resource Constraints

•	 Limited Capacity: Edge devices often have limited computing power, memory, 
and energy resources. Load balancing strategies need to optimize resource use 
without overwhelming individual devices.

•	 Energy Efficiency: Balancing workloads to minimize energy consumption is 
crucial for battery-powered devices and contributes to sustainability efforts.

6.5.1.4  �Data Localization and Privacy

•	 Local Data Processing: Load balancing must consider data locality to ensure 
that sensitive data is processed locally, enhancing privacy and compliance with 
data protection regulations.

•	 Regional Constraints: Certain data might be restricted to specific regions due to 
privacy laws, requiring careful management of where processing occurs.

6.5.1.5  �Network Connectivity

•	 Intermittent Connections: Edge devices may experience intermittent network 
connectivity, requiring load balancing solutions that can adapt to connectivity 
changes.

•	 Bandwidth Management: Efficiently distributing workloads to manage band-
width usage is essential, particularly in environments with limited connectivity.

6.5.1.6  �Scalability and Flexibility

•	 Scaling Workloads: As the number of Edge devices increases, load balancing 
mechanisms must scale to accommodate additional devices and workloads.

•	 Flexible Architectures: Load balancers should support flexible architectures 
that can adapt to new devices, applications, and changing demands.

6.5.1.7  �Latency Sensitivity

•	 Proximity Considerations: Load balancing must minimize latency by consider-
ing the physical proximity of Edge devices to the data source and the process-
ing node.

•	 Time-critical Applications: Applications with stringent latency requirements, 
such as autonomous vehicles or industrial automation, need specialized load bal-
ancing strategies to ensure timely processing.
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6.5.1.8  �Reliability and Redundancy

•	 Fault Tolerance: Load balancing should provide redundancy to ensure reliabil-
ity in the face of hardware failures or network disruptions.

•	 Failover Mechanisms: Implementing failover mechanisms that reroute traffic to 
available nodes is crucial to maintaining service continuity.

6.5.2  �Load Balancing Techniques in Edge AI

•	 Round Robin Simple Allocation: Distributes tasks evenly across Edge nodes in 
a cyclic manner. It’s simple to implement but doesn’t consider the current load or 
capacity of nodes.

•	 Least Connections Dynamic Load Adjustment: Assigns new tasks to the node 
with the fewest active connections, balancing the load based on current activ-
ity levels.

•	 Weighted Distribution Resource-Based Allocation: Assigns weights to nodes 
based on their capacity, directing more traffic to more powerful devices. This 
considers the heterogeneity of Edge devices.

•	 Geo-Location-Based Proximity Optimization: Directs tasks to the closest 
Edge node geographically, reducing latency and improving performance for 
location-sensitive applications.

•	 AI-Driven Load Balancing

–– Predictive Analysis: Uses AI algorithms to predict workloads and adjust dis-
tribution proactively. Machine learning models can analyze historical data to 
forecast demand and optimize resource allocation.

–– Adaptive Algorithms: Continuously learns and adapts to changes in demand 
patterns, optimizing load balancing decisions in real time.

•	 Fog Computing Intermediate Layer: Utilizes fog nodes as an intermediate 
layer between Edge devices and the Cloud, distributing tasks based on current 
load and proximity to end users.

•	 Multi-access Edge Computing (MEC) Network Edge Integration: Integrates 
computing capabilities at the network Edge, enabling more efficient load balanc-
ing by closely coupling processing with network operations.

6.5.3  �Load Balancing Implementation Challenges

•	 Complexity of Distributed Systems: Managing a large number of Edge devices 
with varying capabilities adds complexity to load balancing strategies.
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•	 Real-time Decision-Making: The need for immediate processing and decision-
making requires load balancers to operate with minimal delay.

•	 Security Concerns: Ensuring secure communication and data integrity during 
load balancing operations is vital to preventing unauthorized access or data 
breaches.

•	 Heterogeneity of Devices: Edge AI systems often involve devices with different 
hardware and software configurations, complicating uniform load balancing 
strategies.

•	 Cost Management: Balancing the cost of computation, data transmission, and 
energy consumption requires careful consideration to maximize efficiency while 
minimizing expenses.

6.5.4  �Load Balancing Future Trends

•	 Edge-to-Cloud Continuum Seamless Integration: Future load balancing solu-
tions will seamlessly integrate Edge and Cloud resources, optimizing the flow of 
data and computation across the entire continuum.

•	 AI-Enhanced Load Balancing Intelligent Automation: Increasing use of AI to 
automate and enhance load balancing processes, leveraging machine learning for 
predictive and adaptive distribution.

•	 5G and Beyond Enhanced Connectivity: The proliferation of 5G networks will 
improve connectivity and enable more sophisticated load balancing strategies 
with higher data throughput and lower latency [19].

•	 Collaborative Edge Environments Resource Sharing: Edge nodes may col-
laborate to share resources and balance workloads across different locations, 
enhancing overall system performance and resilience. This is covered in detail in 
Chap. 8 with regard to provisioning considerations of mission-critical vs. non-
mission-critical apps.

•	 Advanced Optimization Algorithms Innovation: Development of advanced 
algorithms to tackle the complexity and dynamism of Edge environments, 
improving efficiency and adaptability [20].

Load balancing in Edge AI is essential for maximizing the potential of distrib-
uted computing environments. By considering factors such as resource constraints, 
latency, scalability, and network connectivity, effective load balancing strategies can 
enhance performance, reliability, and efficiency in Edge AI applications. As tech-
nology evolves, innovative solutions and advancements will continue to shape the 
landscape of load balancing in Edge AI, enabling new possibilities and driving fur-
ther growth in this field.
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6.6  �Embedded AI at the Edge

Embedded AI at the Edge [21] refers to the integration of AI capabilities directly 
into Edge devices. This enables these devices to process data and make decisions 
locally without the need for constant communication with centralized Cloud infra-
structure. This approach leverages Edge computing, where data is processed near its 
source, delivering numerous advantages across various applications. Here is a broad 
look into embedded AI at the Edge.

6.6.1  �Key Components of Embedded AI at the Edge

•	 Edge Devices: These are hardware components equipped with computational 
resources to perform AI tasks. Edge devices include sensors, cameras, microcon-
trollers, and more sophisticated devices such as smartphones, industrial machin-
ery, and autonomous vehicles. They are designed to handle specific AI tasks 
locally, such as image recognition, anomaly detection, and speech processing.

•	 AI Models: AI models used at the Edge are typically lightweight and optimized 
for efficiency, enabling them to run on devices with limited computational power. 
Techniques such as model compression, pruning, and quantization are used to 
reduce the size and complexity of AI models while maintaining their accuracy 
and performance.

•	 Edge Computing Infrastructure: This refers to the distributed computing 
framework that allows data processing to occur on the Edge devices or nearby 
servers. Please refer to Chap. 3 of this book for detailed treatment on this. Edge 
infrastructure often reduces the need to send data back to the Cloud, thus mini-
mizing latency and bandwidth usage while enabling real-time decision-making.

6.6.2  �Advantages of Embedded AI at the Edge

•	 Low Latency: By processing data locally, embedded AI at the Edge significantly 
reduces the time required to analyze and respond to data inputs. This is critical 
for real-time applications such as autonomous vehicles, industrial automation, 
and augmented reality, where delays can lead to inefficiencies or safety hazards.

•	 Improved Privacy and Security: Data processed on Edge devices can remain 
local, reducing the risk of exposure during transmission to centralized servers. 
This enhances privacy and security, particularly for sensitive data in industries 
like healthcare, finance, and retail.

•	 Reduced Bandwidth Costs: With data processing occurring locally, there is less 
need to transmit large volumes of data over networks. This can significantly 
reduce bandwidth costs and alleviate network congestion, especially in environ-
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ments with numerous connected devices, such as smart cities and industrial 
settings.

•	 Reliability and Availability: Edge devices can continue to operate and make 
decisions even when Cloud connectivity is intermittent or unavailable. This 
ensures continuous service delivery in critical applications and enhances system 
resilience against network failures.

•	 Energy Efficiency: Local data processing can be more energy-efficient than 
constantly sending data to and from the Cloud, especially for battery-powered 
devices. This efficiency is crucial for extending the operational lifespan of IoT 
devices and supporting sustainable development goals.

6.6.3  �Applications of Embedded AI at the Edge

•	 Smart Homes: In smart home environments, devices such as smart speakers, 
thermostats, and security cameras use embedded AI to personalize user experi-
ences, automate home management tasks, and enhance security without relying 
heavily on Cloud services. For instance, AI-enabled cameras can detect and 
respond to unusual activities in real time.

•	 Industrial IoT: Embedded AI at the Edge enables predictive maintenance, real-
time monitoring, and quality control in manufacturing and industrial settings. By 
analyzing sensor data locally, Edge devices can quickly detect anomalies and 
optimize operations, reducing downtime and improving productivity.

•	 Healthcare: Wearable devices and medical sensors equipped with embedded AI 
can monitor patient vitals, detect anomalies, and provide immediate feedback. 
This improves patient care, reduces the burden on healthcare systems, and 
enables remote monitoring and telemedicine applications.

•	 Autonomous Vehicles: Self-driving cars and drones rely on embedded AI at the 
Edge to process data from sensors and cameras in real time. This enables them to 
navigate, detect obstacles, and make decisions without relying on Cloud-based 
systems, which is essential for safety and efficiency.

•	 Retail: In retail environments, Edge devices use AI to analyze customer behav-
ior, manage inventory, and optimize operations. This enhances customer experi-
ences by providing personalized recommendations and streamlining checkout 
processes while improving operational efficiency.

6.6.4  �Challenges and Considerations of AI at the Edge

•	 Resource Constraints: Edge devices often have limited processing power, 
memory, and storage, requiring AI models to be highly optimized for efficient 
performance. This necessitates the careful selection and adaptation of AI algo-
rithms to fit within these constraints.

6.6  Embedded AI at the Edge
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•	 Model Deployment and Management: Deploying and updating AI models on 
numerous Edge devices can be complex, requiring robust management and 
orchestration systems. Ensuring consistency and reliability across a distributed 
network of devices is crucial.

•	 Interoperability: Ensuring compatibility and seamless communication between 
different Edge devices and platforms is essential for effective implementation. 
This requires standardized protocols and interfaces to facilitate integration and 
collaboration.

•	 Security: Protecting Edge devices from cyber threats is critical, as they can be 
vulnerable entry points into broader networks. Implementing strong security 
measures, such as encryption and authentication, is essential to safeguarding 
data and systems.

•	 Data Quality: Ensuring the accuracy and relevance of data collected and pro-
cessed by Edge devices is crucial for reliable AI performance. High-quality data 
is essential for training accurate models and making informed decisions.

6.6.5  �Future Trends

•	 Advancements in Hardware: The development of specialized AI chips and pro-
cessors, such as neural processing units (NPUs) and tensor processing units 
(TPUs), will enhance the capabilities of Edge devices. These advancements will 
enable more complex AI models to run efficiently at the Edge.

•	 Federated Learning: This technique allows Edge devices to collaboratively 
train AI models using local data while preserving privacy. By aggregating model 
updates rather than raw data, federated learning reduces the need for centralized 
data storage and enhances privacy protection.

•	 5G and Beyond: The rollout of 5G networks will enable faster and more reliable 
connectivity, supporting more advanced Edge AI applications by facilitating 
seamless communication between devices. This will enable new use cases, such 
as augmented reality and remote-controlled robotics.

•	 Edge AI Platforms: The growth of platforms and frameworks designed to sim-
plify the deployment and management of AI on Edge devices will accelerate 
adoption across industries. These platforms will provide tools and services for 
model deployment, monitoring, and optimization.

Embedded AI at the Edge is poised to revolutionize numerous sectors by bring-
ing intelligence closer to the source of data generation. As technology continues to 
advance, the potential for innovative applications and solutions will expand, driving 
further growth and transformation in this space.

6  Edge Artificial Intelligence
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6.7  �Summary

Edge AI is an emerging area that is a crucial part of the overall AI rollout. We have 
covered an introduction to centralized AI learning vs. federated learning. Together 
with that, the emerging areas of generative AI, load balancing and embedded Edge 
AI have been described in detail. All these have given birth to many new exciting 
Edge AI applications with more diverse expansion in the future.

6.8  �Points to Ponder

	1.	 What role does load balancing play in achieving scalability?
	2.	 Does Edge computing help in scaling for IoT systems?
	3.	 What are the characteristics of systems where centralized learning would be 

appropriate and where federated learning would be appropriate?
	4.	 How can a mixed-mode architecture overcome the limitations of federated 

learning?
	5.	 How does Edge computing affect the overall performance of an AI system?

6.9  �Answers

	1.	 What role does load balancing play in achieving scalability?
Note that scalability is not linear, as bottlenecks inevitably arise in a network 

or some other I/O (input-output) path within a computer. Then, parallel comput-
ers or servers are deployed in a data center to handle larger workloads. However, 
load balancing is needed to ensure that all the servers are evenly loaded. This is 
akin to checkout lines at a grocery store. Having more cash registers and clerks 
will help only if customers are evenly distributed in different lines. This reduces 
overall system-level latencies.

	2.	 Does Edge computing help in scaling for IoT systems?
Yes, because scaling in the context of IoT systems means ability to handle a 

larger number of sensors and end points. However, if all of them need to send 
their data to a centralized server, it will inevitably result in delays. By introduc-
ing additional processing and storage at local sites closer to the end points, we 
can minimize the dependence on a centralized server. An Edge server may serve 
as a data aggregation device and can make localized decisions for IoT without 
going back to the central server. The central database can be updated in a slack 
operational mode or with periodical backups when the workload is known to 
be less.

	3.	 What are the characteristics of systems where centralized learning (CL) would 
be appropriate and where federated learning would be appropriate?

6.9  Answers
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CL is appropriate when all the parties that are contributing data in a central-
ized data center trust each other or data can be appropriately de-identified. For 
example, from many different Tesla vehicles, car data is de-identified and rolled 
up in the data center for training. However, in an environment where parties do 
not trust each other or laws require separation, such as healthcare data of differ-
ent patients in different hospitals needs to be protected under Health Insurance 
Portability and Accountability Act (HIPAA), then FL is appropriate.

	4.	 How can a mixed-mode architecture overcome the limitations of federated 
learning?

Federated learning architecture is used when participants in a machine learn-
ing solution do not trust each other and want to keep their datasets locals. This 
helps in improving security. However, it results in additional delays as machine 
learning code needs to be copied from one customer site to another. A compro-
mise is mixed-mode architecture, where only most sensitive or private parts of a 
dataset are kept local, while considerable parts of de-identified data can be 
shared in a centralized location. This improves the run time for machine learning 
algorithms.

	5.	 How does Edge computing affect the overall performance of an AI system?
Edge computing tends to improve the overall AI performance in a manner 

similar to a local cache memory on a server. Datasets are stored locally, closer to 
where they are generated and processed, without transferring back and forth 
between the Edge of a network and a central server. This definitely helps in 
reducing latency.
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Chapter 7
Security and Performance at the Edge

7.1  �Background

Federated learning (FL) is a machine learning solution architecture where many 
clients within an organization, or across multiple organizations, collaboratively 
train a model. This is done under the orchestration of a central server (e.g., a service 
provider), while keeping the training data decentralized. FL can mitigate many of 
the systemic privacy risks and costs resulting from traditional, centralized machine 
learning and data science approaches. The central server receives the dataset contri-
butions from all clients. FL is typically used when one needs to train models on a 
larger dataset than any one single entity owns and is not willing to share its data with 
others (e.g., for legal, strategic, or economic reasons). FL trains an algorithm keep-
ing the training data locally on users’ decentralized systems rather than contributing 
it to a single data center for training. The distributed locations are used as nodes 
performing computation on their local datasets to update a global model [1]. This is 
in contrast to traditional centralized machine learning techniques, where all the 
local datasets are uploaded to a shared server location. If data types at different loca-
tions are different, then FL enables multiple participants to build a common, robust 
machine learning model without sharing their data, thus addressing critical issues 
such as data privacy, security, and access rights. FL solutions for Clinical and 
Biomedical research are already exploring cross-device FL solutions [2].

7.2  �Security Concerns with Centralized Learning

With many IoT devices and use cases, it is imperative to have localized compute 
power and data storage. An example is a car [3], as shown in Fig. 7.1, which can 
generate up to 5 TB of data/day. This comes from onboard cameras, Infrared (IR) 

https://doi.org/10.1007/978-3-031-78272-5_7#DOI
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sensors, and data collected from the engine, brakes, etc. However, an autonomous 
car cannot pause for a server in the Cloud to make a decision to accelerate or brake. 
Hence, it needs sufficient compute power in the car to drive safely. This capability 
has been dubbed a “data center on the wheels.” It can synch up with a remote data 
center in the Cloud overnight while parked, but on the road, it must focus on safe 
driving with real-time decision-making. Hence, a part of the Cloud is migrated from 
remote data center to the field, termed Edge computing.

However, some functions are still best guided by a central server, such as naviga-
tional decisions for routing to a destination. The server can guide the car on which 
exit to take, but the onboard computer on a self-driven car must decide when to turn 
the wheels to take that exit.

Security concerns abound with the emergence of Edge computing. In the car 
example, its computers are not behind a firewall but physically accessible to many 
people besides the owner. When a car is taken to a mechanic for an oil change or 
another repair, there is a risk of someone tampering with the hardware or software 
components, setting up a future failure of the self-driven car. It is also possible for 
someone to access private data stored in the car, e.g., its travel points. Vulnerabilities 
in other unprotected devices such as home appliances (TV, fridge) on a network can 
be used to launch a cyberattack. A recent DDOS (distributed denial-of-service) 
attack was launched using hijacked home security cameras, while in another 
instance private video clips were stolen and posted on the Internet [4].

Even a simple home automation system, such as an intelligent door lock, needs 
the following security features for safety:

	1.	 A firewall to dissuade remote hackers with login authentication.

Fig. 7.1  A car’s self-driving system with multiple sensors [3]
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	2.	 Authentication requires identification of phone numbers, passwords, or biomet-
rics such as face recognition, thumbprint, and retina scan.

Note that any single biometric can be easily defeated, e.g., a pictured mask to 
fool a face recognition or copy of a thumbprint image, presented to the door camera. 
It is desirable to have a multifactor authentication (MFA) system. Furthermore, a 
data-logging system is needed to record who opened or locked the door and when. 
This data is immediately backed to a remote Cloud to avoid local tampering. 
Machine intelligence can be used to create a regular usage pattern and flag anoma-
lies, e.g., when a door is opened at unexpected hours or with unusual frequency.

7.3  �Performance Issues with Federated Learning

Imagine that multiple parties need to collaborate for a common purpose but do not 
trust each other with their data sharing. An example is the research for a new drug 
that needs multiple hospitals to provide patient data, pharmaceuticals to provide 
their drug data, and medical researchers to explore new treatment protocols. Neither 
party may want to give away its dataset, but all are interested in knowing new drug 
protocols that are effective in treating a disease. In this situation, a multiparty Cloud 
is a feasible solution. In such a scheme, multiple participants collaborate using 
shared hardware to accomplish their common goal. This also requires the data of 
each party to be kept private from other users while sharing the computed models 
for all to use.

A proposed framework [5] for secure multi-party computation (SMPC) has four 
entities, namely, proxy server, Cloud server, analyzer, and parties that are taking 
part in the shared computations. Upon receiving all required users’ data, a central 
Cloud server is used to perform desired computations. A proxy server hides the 
identities of all users to provide anonymity. Each user can send its data for computa-
tions after authenticating into the system. The proxy server hides traceability of 
every message sent by each user to the Cloud server. Incoming data is encrypted to 
provide protection and integrity against a man-in-the-middle attack. There are obvi-
ous questions on the performance and efficiency of Cloud environments to deploy 
such a model while enforcing the security requirements of all user entities. We pro-
pose a sophisticated collaborative federated learning (CFL) algorithm that enables 
knowledge transfer among parties (clients). At the same time, our approach main-
tains private data locally and improves communication efficiency, as shown in 
Fig. 7.2.

FL enables data to stay local, while algorithms travel across participating institu-
tions, to train a deep learning algorithm. This solution preserves privacy and secu-
rity of users’ data. However, with no data sharing with a central server, the training 
time for ML is very high as code needs to travel across multiple client sites in every 
iteration.

7.3  Performance Issues with Federated Learning
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Since federated learning can be implemented where shared data is collected cen-
trally and analyzed in the central location, data can remain distributed and the analy-
sis (i.e., shared code and neural network weights) moves from location to location. 
In the first case, performance is primarily limited by the one-time movement of the 
data and the subsequent multiple iterations are done centrally. In the second case, 
performance is limited by the multiple movements of the analysis mechanism (i.e., 
shared code and neural network weights), done once for each iteration, and the cal-
culation is done in a distributed manner in Fig.  7.3. As the previous examples 
showed, at some point performance of the centralized implementation outperforms 
the distributed case [6]. The downside is the security and privacy issues with collect-
ing the data centrally.

7.4  �Collaborative Federated Learning (CFL)

We propose collaborative federated learning (CFL) as a combination of centralized 
and decentralized machine learning algorithms. Each client has data on a different 
set of subjects, while the data of every client has the same set of features. Examples 
of such data include smartphone users’ word-typing histories (from the same word 
dictionary), which are stored on individual devices with the same dataset features 
and analyzed by private machine learning algorithms.

In centralized learning (CL), all the data is aggregated from multiple databases 
in a central location, where AI algorithms do the training and inference computa-
tions. Then results are distributed back to different clients. Each client can see only 

Fig. 7.2  Collaboration among clients in federated learning
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its own data and the final results of centralized computations, but not other clients’ 
datasets. Hence, data and models are shared.

In decentralized or distributed learning (DL), each client keeps its data private, 
whereas the AI algorithm travels to each client’s site, does some computations, and 
partial results are then copied back to a central location. From there, AI algorithms 
go to the next client’s site, do more computations, and update the central database. 
A client cannot see the data of others but only accesses the shared FL model. A key 
difference is that if clients don’t trust each other, they never have to give their private 
data away. In this case, data won’t get shared; only FL code is shared.

We propose to divide the data into two parts: private and public, as shown in 
Fig.  7.4. Private data may consist of a patient’s identifiable information in the 
healthcare domain [7]. This information can be removed and replaced by an ID, 
which is only known to the data-owning party [8]. We reckon that 80% of data is not 
private such that it can be safely shared. In a blood test report, once the patient’s 
identification information is anonymized, the actual values of measurement in the 
blood sample can be shared. For a non-healthcare example, people share their work 
profiles, designations, etc. on social networking platforms (e.g., LinkedIn) without 
sharing their Social Security Number (SSN) or personal salary information. This 
enables some meaningful computations to be done on a shared basis without having 
sensitive code or data travel between the sites, resulting in unacceptable delays. 
Then computation results can be shared between the contributing parties, which can 
then do reverse mapping of public IDs to private information for their own 
interpretation.

Thus, applying a similar collaborative approach to our prior medical examples 
may result in hospitals offering personalized treatments to critical patients by com-
paring anonymized patients with similar cases in other hospitals for better 

Fig. 7.3  Architecture of centralized and decentralized machine learning [6]

7.4  Collaborative Federated Learning (CFL)



144

diagnostic matches. In addition, collaborative-mode approaches also provided valu-
able data to pharmaceuticals and academic researchers, resulting in new treatments 
using AI and ML [9].

7.5  �Performance of Collaborative Federated Learning

Consider three entities: a hospital = A, a drug company = B, and a medical research 
unit = C, with a single centralized server. All three need to communicate and share 
data for new drug discovery, based on which patients need help, how they react to 
the current drugs, and which ones may be appropriate for a future clinical trial. An 
obvious solution is for all three to put their data in a shared central server. We will 
examine the time taken for data transfers and execute a machine learning algorithm 
to compute neural network weights before the results are distributed to each partici-
pating party. Now assume a second case where these entities do not fully trust the 
others or, due to some regulations, are not willing to share their data on a central 
server. In this case, the data stays local and code travels to each site for the training 
algorithm to be completed. Next, we will examine both cases of centralized and 
decentralized trainings and the resulting run times as T1 and T2, respectively. Some 
notations are below:

tda = Data copying delays from hospital A to the central server

Fig. 7.4  A collaborative federated learning architecture [7]
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tdb = Data copying delays from drug company B to the central server
tdc = Data copying delays from medical company C to the central server
tpa = Time for codes and weights of the neural network program to travel from the 

central server to hospital A
tpb = Time for codes and weights to travel from the central server to drug company B
tpc  =  Time for codes and weights to travel from the central server to medical 

researcher C
tpx = Program execution time for one iteration
n = Number of training iterations required

So, the worst-case (asynchronized) data copy time to the central database is 
=tda + tdb + tdc. and in a completely centralized model, total worst-case run time will 
be T1 = tda + tdb + tdc + n ∗ tpx

For a fully decentralized federated learning system, the total worst run time will 
be T2 = n ∗ (tpa + tpb + tpc + tpx)

For larger n, T2 ≫ T1, because in T1 we copy data only once to a central server 
where all the code runs, whereas in T2, the program has to travel for every iteration 
to access data on various local sites.

In addition, consider a third case, where a fraction of data is shared while the rest 
is kept local. Let this fraction be m, so T3 = m*T1 + (1 − m)*T2. Note that for 100% 
sharing, m  =  1, which is also the centralized training model, and then T3  = T1. 
Similarly, for a completely decentralized model, m = 0, which means T3 = T2.

Below are the results in Fig. 7.5, when the program size is smaller than the data-
set size with 50% data sharing. As expected, CFL run times fall in between the 

Fig. 7.5  Run time with 50% data sharing
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centralized and decentralized training models. The sample code for our model is in 
the appendix following this chapter.

However, if 80% of data is shared centrally, the CFL model performance is closer 
to the centralized training case, as shown in Fig. 7.6.

In summary, a decentralized model is slower most of the time because code and 
model data need to travel to different locations. However, it is often preferred for 
security and privacy reasons. A preferred solution is partial data sharing, to keep the 
private data locally and share the rest of the data on a central server. This is also 
known as differential privacy [7].

7.6  �Edge Computing Security Challenges

Unbalanced and non-identically distributed data partitioning across a massive num-
ber of unreliable devices with limited communication bandwidth poses a problem. 
Perimeter defense has long been insufficient for IoT security. Fixed protocols for 
boundaries of security with individual devices’ security implementations will fail. 
Specifically, Edge computing exacerbates security concerns in the following ways:

	1.	 Definition of a Cloud has been expanding and getting out of a data center.
	2.	 Perimeter defense is insufficient, as there is no fixed perimeter.
	3.	 Fixed protocols for boundaries of security fail in a shared security model.
	4.	 A fixed universal security policy is inadequate, as each party owns their data.

Fig. 7.6  Run time with 80% data sharing
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	5.	 Resources on Edge need to be adaptive for varying amount of compute.

It is clear that no existing FL methods can meet the above requirements, but the 
proposed CFL method can improve the overall security profile with a shared respon-
sibility model. CFL also offers a crucial trade-off between runtime performance and 
data control considerations.

7.7  �Distributed Trust Model

We need to remember that IoT devices are periodically collecting data about an 
environment or individuals, which can be potentially shared with third parties, com-
promising privacy. It can range from personal preferences of Web browsing habits, 
TV channel selection, or images from home security cameras. Some devices can be 
programmed to selectively transmit data to a Cloud service for processing, e.g., a 
security camera that has a buffer of 15 s but records and transmits a 30-s clip only if 
some motion (event activity) is detected for 15 s before and 15 s after the occurrence 
of the event. This reduces storage requirements but increases chances of a mistake. 
Such devices are designed to render service with minimal intervention, and yet they 
need to be directed using voice activation or image recognition. On the other hand, 
if there is a continuous recording dashcam, which is a forward-looking recording 
device in a car, the purpose of this dashcam is to establish the other party’s guilt in 
case of an accident in a vehicle. It will also record voice conversations of passengers 
potentially violating their privacy rights. It is recommended for the vehicle driver to 
inform passengers and seek their consent in advance.

For ensuring trust in Edge computing, it has to start with a trusted environment, 
trusted protocols, and tamper-proof components. Vendors need to provide “anti-
tamper” solutions to start with. Software upgrades in the field are needed for bug 
fixes during the lifetime of an Edge computing device. A secure channel must exist 
to provide signed binary packets that are transmitted and installed in the field, e.g., 
on a car or TV at home. In our door example, the vendor needs to provide an anti-
tamper solution to prevent someone locally changing the firmware or settings in an 
unauthorized manner. Even remote software upgrades are authenticated. Otherwise, 
unprotected home appliances can be used to launch cyberattacks. For example, 
someone can open garage doors via remote Internet attacks. Besides security, there 
are privacy concerns, as home sensors are collecting data about individuals that can 
be shared with third parties for commercial purposes.

Undesirable consequences may emerge if a third party can remotely gain control 
of a self-driven car, causing an accident on the road, or someone with malice can 
access the medicine drip meters in a hospital with fatal consequences for the 
patients. This can be avoided with a balanced approach to interoperability and 
access control. This needs to be addressed at different layers of architecture and 
within the protocol stacks between the devices. Standardization and adoption of 
communication protocols should specify when it is optimal to have standards. Some 
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vendors like to create a proprietary ecosystem of compatible IoT products. This cre-
ates user lock-in to their particular ecosystem, which from a vendor’s point of view 
is desirable because a closed ecosystem approach can offer benefits of security and 
reduce costs. However, from a user’s point of view, such practices can create 
interoperability issues in communicating with solutions from other vendors, thereby 
limiting the end user’s choices for upgrades or future system expansion.

Solution-level cost considerations involve technical factors such as limited inter-
nal processing, memory resources, or power consumption demands. Vendors try to 
reduce the unit cost of devices by minimizing parts and product design costs. It may 
be more expensive to incorporate interoperability features and test for compliance 
with a standard specification. A non-interoperable device may lack standards and 
documented best practices, limiting the potential use of IoT devices.

7.8  �Quantifying Edge Security

We look at the hardware and software stack of a simple home surveillance camera 
system to analyze its attack surface and threat model. Then a novel method is pre-
sented to apply series-parallel reliability calculations to propose a system security 
scoring computation. We close this section and the book with an analysis of meth-
ods to improve the system-level reliability.

Attackers have often exploited component-level vulnerabilities. Most security 
systems are designed using capability models. A capability model usually takes into 
account how various services are utilized. An example of such a model starts with a 
multidimensional representation composed of:

	1.	 Hardware: an application-specific integrated circuit (ASIC) or programmable 
microcontroller.

	2.	 Operating System: Windows, Linux, Android, etc.
	3.	 Applications: nature of application and its privilege level.
	4.	 Setup: Manner in which various components, services, and utilities are deployed:

	 (a)	 Kernel, library services, file access, etc.
	 (b)	 Manner in which objects such as username, application, and function get 

authenticated
	 (c)	 The kind of cryptography used: MD5 (Message Digest Algorithm 5)  vs. 

SHA256 (Secure Hash Algorithm with a digest size of 256 bits)

We propose to evaluate components of a given HW and SW solution of one or 
more Cloud-connected IoT devices based on the robustness and trustworthiness of 
their entire solution stack, with a multiplicative serialized model in the follow-
ing order:

	1.	 Native compiled code is trusted more than interpreted code.
	2.	 Code uses external libraries.
	3.	 Third-party SW is attempting to integrate with the platform.
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Using the above method, it is possible for us to evaluate the trust of different 
operating systems with applications from diverse fields. Our goal is to create a 
framework for evaluating and assigning a security score to each layer, which is used 
to compute a composite score. An application can be disassembled to see whether it 
uses a kernel service, a utility in the user space, or a built-in library, etc.

For each component in the stack, a list of orthogonal properties is established, 
followed by an objective scoring system for each property. The numerical score for 
a utility function depends on the manner in which it is accessed, e.g., read (as a call 
by value) or write (a call by reference). A security score can be computed by answer-
ing a set of questions by a user or automatically computed by a testing tool. 
Examples of questions include:

•	 Whether a salt is used for hash passwords?
•	 Which algorithm is used for hashing: MD5 or SHA256?
•	 Does the communication channel use SSL, and which version of TLS is 

being used?
•	 What is the version of MYSQL in operation?

Another security score determination method is whether port 3306 used by 
MySQL is open to the world or just to the application servers that use the MySQL 
database. This score can be continuously updated during the operations. More 
importantly, it needs to be updated after a maintenance or upgrade action is 
completed.

Security score questionnaires may also focus on the best practices during devel-
opment. Automated score calculation focuses on the system operations hygiene: an 
OS without the latest patch can be at a security risk.

Security score computations have two outputs:

	1.	 Probability of a successful attack: What is the probability that an attack on this 
device will succeed?

	2.	 Probable impact of a successful attack: What is the probable impact if the 
attack succeeds?

Here:

Pa = Probability of the attack from 0 to 1
Pi = Probable impact of a successful attack from 0 to 1

Thus, Pa∗Pi = the expected loss
The security score (S) can be computed as follows:

	 S Pa Pi= - *1 , 	

This is the score for a single component. By describing the series-parallel rela-
tionships among the different components and their individual security scores, the 
whole system security score can be computed.

The factors that affect the probability of an attack include:
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•	 Presence of an existing vulnerability that is known to attackers
•	 Hackers’ focus on products of this type
•	 History of exploitation of this type of product

The probable impact of a security attack is defined as the sum of any regulatory 
fines, reputational damage, and operational losses, representing a loss of trust in the 
product and services. This needs constant monitoring for security breaches and 
policy updating [10].

The first step in the modeling of probable impact is to describe the whole system 
in terms of its components, hierarchy, organization, and security-wise connections 
between the components, which could be in series or parallel.

The directional lines in the figure below represent the security-wise relationship 
between different blocks in a system. In Fig. 7.7, all the blocks should be secure for 
the system to be secure and provide the required functionality. In Fig. 7.8, any one 
block should be available for the system to provide the required functionality. 
Composite security score can be computed by applying series-parallel reliability 
rules [7, 11], as shown in Figs. 7.7 and 7.8:

7.8.1  �An Example of Trust-Based Security Scoring

Raspberry Pi is the de facto choice and starting point for many IoT devices. This 
choice is driven by its ubiquity and low price, making it a popular controller for 
many home and entry-level appliances. A higher installed base also makes it an 
attractive target for hackers, making it a good evaluation choice for our IoT trust 
model. For our sample system, we restricted probability values to high (0.9), 
medium (0.6), and low (0.3). Similarly, the impact values were also high (0.9), 
medium (0.6), and low (0.3).

We took an implementation of a Raspberry Pi Model 3B with Raspbian OS Ver. 
4.14, released on April 18, 2018, as a reference system for trust-based scoring [12]. 
The base Raspberry Pi system comes with a microSD card, which holds the OS and 
can be used to install additional software. The factory settings and factory-shipped 
software packages for the OS were used for trust scoring. No packages were 
updated. Once the basic model trust scoring was complete, we proceeded to com-
plete the Raspberry Pi-based security camera setup. We added the software compo-
nents listed below, and the data flow for the system is depicted in Fig. 7.9.

	1.	 MongoDB
	2.	 Rabbit MQ

Fig. 7.7  Risk levels of 
series systems
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	3.	 AWS IoT client
	4.	 MotionPie software

We use MongoDB to store images on a network-attached storage (NAS) drive. 
Cloud storage uses Amazon’s backend services and is accessed by an AWS IoT cli-
ent. Motion Pie image processing software is used to detect motion and decide 
which video clips are saved or discarded. Note that camera images in Fig. 7.9 are 
stored simultaneously and immediately in both the local and Cloud storage locations.

A problem with this security camera prototype, as shown in Fig. 7.10, is that 
someone with physical access to the local system can easily switch off the system 
or alter the system software. There is no authentication of system software at boot 
time, so the base hardware setup has a high probability (0.9) of an attack. The impact 
probability of such an attack is also high (0.9), as the base system can be fully 
compromised.

In the default setup, the username is “admin,” and the password is blank. It is 
easy for someone to remotely hijack the system and use its camera in a Mirai botnet 
attack [4]. Once the password has been changed and the camera is moved behind a 
secure firewall, the probability of such an attack is lowered to medium (0.6). 
However, the impact probability remains high (0.9). Our proposed system uses the 
AWS IoT security model [14], compliant with X.509 certification with asymmetric 
keys [4]. The backend environment used to store images is protected by high secu-
rity, so the probability of an attack is low (0.3). The impact probability is also low 
(0.3) because the images are stored in two physically separate places: local storage 
and Cloud-based storage. As a consequence, the higher attack (0.9) and impact (0.6) 
probabilities of the local system do not sway the overall assessment.

Overall, we have the Raspberry hardware and software components in series 
security-wise, which itself is in series with two parallel storage systems security-
wise. Note that Sc is the security of the camera, Ss is the security of the software, 

Fig. 7.8  Risk levels of 
parallel systems

Fig. 7.9  Series-parallel 
implementation of our 
prototype
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Sgc is the security of Cloud storage, and Sgl is the security of local storage. At 
component level, here is what we have so far:

	
Sc = *( ) = - =1 0 9 0 9 1 0 81 0 19– . . . .

	

	
Ss = *( ) = - =1 0 6 0 9 1 0 54 0 46– . . . .

	

And for the storage systems:

	
Sgc = *( ) =1 0 3 0 3 0 91– . . .

	

	
Sgl = *( ) =1 0 9 0 6 0 46– . . .

	

As Cloud storage and local storage are in parallel, as shown in Fig. 7.9, and they 
provide redundant functionality, their combined security score can be computed 
using the reliability parallel chaining rule:

	

Sg Sgc Sgl= - -( )* -( )
= - ( )* -( )
= - *( ) =

1 1 1

1 1 0 91 1 0 46

1 0 09 0 54 0 9

– . .

. . . 5514
	

Finally, the end-to-end system-level security protection score for an attack is a 
composite of three scores = Sc*Ss*Sg = 0.19∗0.46∗0.9514 = 0.07, which is only 7% 
or very low. This means that the entire camera system is prone to attacks. However, 
we can still use it due to our added security measures of a strengthened password, 
dual storage on local HW and the Cloud, and moving the camera behind a secure 

Fig. 7.10  A simple Raspberry Pi-based camera system [13]
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firewall. Thus, one of the two paths needs to be secured to continue the required 
functionality:

	 PathA Camera Software Local: ® ® NAS 	

	 PathB Camera Software CloudStorage: ® ® 	

Note that all past images will still be preserved even if the system is compro-
mised up to the point of intrusion, say if someone physically removes the microSD 
card on a security camera. If a home or business uses such a system, it may need 
multiple cameras, so if one of them is compromised, others will continue the sur-
veillance. An example setup would consist of a system with five Pi cameras moni-
toring the same location, using shared local NAS, and common Cloud storage. The 
improved security score for the camera and software part is computed as 
1 − (1–0.19∗0.46)5 = 0.36. Note that we have parallel image streaming from five 
cameras going to a single Cloud and local storage system. The entire system secu-
rity will be 0.36∗0.9514 = 0.34, or 34%, improving the total system security.

Another way to achieve better security is by making it harder to compromise a 
single camera system, say by putting it in a cage with a backup battery, so its 
microSD card can’t be easily replaced and the system remains powered on. This 
action drives the probability of a physical attack lower, from high to low, such that 
Sc = 1–0.3 ∗ 0.9 = 1–0.27 = 0.73. The overall score for such a single camera system 
would be = Sc*Ss*Sg = 0.73∗0.46∗0.9514 = 0.32, or 32%, which is almost the same 
as our five parallel camera systems and at a much lower cost. A system with one 
camera also presents a single point of failure, making a combination of multiple 
cameras with physical security a better approach. Both redundancy and cost control 
can be achieved by using just two physically secured camera systems in parallel 
instead of five cameras.

7.9  �Summary

Edge computing represents a combination of distributed computing connected to 
centralized servers. Actors on the Edge may interact with each other as well as a 
central data center. Their concerns include multiple subtopics, e.g., protecting infor-
mation content from observation and alteration, protection of operational capability 
from unauthorized access, protection of normal operation in the presence of mali-
cious overloaded requests, etc. Therefore, trust requires a distributed solution. In 
centralized learning, the central server potentially represents a single point of fail-
ure, which is one of the bottlenecks for performance as well. Another issue is the 
need for all participants to trust the central authority with their datasets. In contrast, 
a decentralized federated learning solution needs parties to run a common binary on 
each of their datasets and trust the incoming program, thus avoiding a single point 
of failure but potentially creating a security hazard with malicious code. Another 
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issue is the long training run time due to multiple hops between different dataset 
locations. In this chapter, we propose a novel collaborative federated learning (CFL) 
solution that combines the advantages of centralized and decentralized federated 
schemes without compromising security. We concluded this chapter with a method 
to compute security scores for composite hardware and software systems using 
series and parallel methods. This enables system architects to compare security of 
various proposals to make appropriate choices between cost, performance, and 
security.

7.10  �Points to Ponder

	1.	 How can one improve Cloud performance and support for IoT?
	2.	 Why is Edge computing needed for self-driven cars in the future?
	3.	 What is the trust and security model for Edge devices?
	4.	 Who owns data in a secure multi-party Cloud (SMPC)?
	5.	 Can hardware be the sole root of trust?

7.11  �Answers

	1.	 How can one improve Cloud performance and support for IoT?

•	 By having distributed and redundant systems for a failsafe solution.
•	 Avoid having a single point of failure.
•	 Backend Cloud Services are needed to log data and results for audits and 

machine learning inferences.
•	 Sensors can generate enormous data, requiring Cloud storage and compute 

power. However, moving data in and out of Cloud is slow and expensive. So, 
input-output considerations will require local compute and storage power.

	2.	 Why is Edge computing needed for self-driven cars in the future?

•	 Sensors in a moving car can generate enormous data, requiring Cloud storage 
and compute power. Examples of this are forward-looking and side-view 
cameras.

•	 However, moving data in and out of Cloud is slow and expensive. A car may 
need to react quickly due to changing road conditions.

•	 So, input-output considerations for the sensor data will require local compute 
and storage power.

•	 Any learning and performance data can be reconciled with backend servers 
during the night or when the car is safely parked.

	3.	 What is the trust and security model for Edge devices?

7  Security and Performance at the Edge



155

•	 It has been shown that an army of botnets (a term used for devices on the 
Internet) can be hijacked by hackers and used for launching distributed 
denial-of-service (DDOS) attacks on unsuspecting Cloud servers.

•	 An example is of home surveillance cameras that had unsecured IP addresses 
used for bringing down a security journalist’s blog site.

•	 So, security and trust models for Edge need to account for local vulnerabili-
ties for the devices. A method to compute system-level security was shown in 
this chapter.

	4.	 Who owns data in a secure multi-party Cloud (SMPC)?

•	 No single party owns the entire dataset in a SMPC environment, as each con-
tributes a subset for the common good.

•	 All participants have the right to use others’ data for their computations and 
can only extract results in an agreed-upon output format.

•	 Any personally identifiable information (PII) must be removed from 
the output.

	5.	 Can hardware be the sole root of trust?

•	 Having any single piece of hardware or software as the sole root of trust 
is risky.

•	 Multifactor authentication (MFA) offers a better defense strategy.
•	 Another possible solution is mutual attestation by various devices that are not 

located at the same place or are not under the same control.
•	 Thus, an attacker will need to simultaneously compromise multiple devices, 

which is harder to accomplish than altering any single root of trust.

7.12  �Sample Code for CFL Performance
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Chapter 8
Intelligent Edge Computing: Design Use 
Cases

8.1  �Introduction

In Chap. 3, we reviewed some of the use cases for Intelligent IoT devices. We dis-
cussed the functionality and a high-level connectivity diagram to illustrate various 
components used to build systems using such devices.

In this chapter, we will look at some use cases for Intelligent Edge computing. 
For each use case, we will give a high-level description and describe the best prac-
tices, architecture, and system design. The best practices section will detail regula-
tory compliances, security, and privacy of the data and correct ways to document the 
complete requirements and workflows for the system. The architecture section will 
define the system’s architecture to ensure that it is compliant with the best practices, 
supports interoperability with other systems and devices, follows industry stan-
dards, and uses design patterns to ensure it is easily implementable. The last section 
will cover system design principles to support industry standards, interoperability, 
and how to avoid falling into the trap of proprietary products and protocols.

We have picked three use cases covering:

	1.	 Smart Building Energy Management System: It describes an energy management 
system (EMS) that can be deployed in a smart building to optimize energy usage 
without inconveniencing the occupants.

	2.	 Medical Data Sharing by Hospitals: The data related to patients needs to be 
shared using the Cloud to allow AI and machine learning (ML)-based solutions 
to look for hidden data patterns. This also enables collaboration with other medi-
cal professionals to decide the course of treatment for a patient. This brings in 
the issues related to data privacy, security, and compliance with Health Insurance 
Portability and Accountability Act (HIPAA) and General Data Protection 
Regulation (GDPR) laws. In this case study, we shall describe how to design the 
system so that it is compliant with the regulatory requirements while enabling 
collaboration and use of AI/ML algorithms in the Cloud.

https://doi.org/10.1007/978-3-031-78272-5_8#DOI
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	3.	 Solar Energy Power Plant Management: It describes an intelligent system to 
reduce the cost and improve the effectiveness of operations and maintenance 
(O&M) for a solar energy power plant. It also covers the combined photovoltaic 
(PV) and energy storage systems to increase the power plant’s performance.

In the next section, let us start by looking at the smart building energy manage-
ment system.

8.2  �Smart Building Energy Management System

Energy management is a proactive process involving systematic coordination of 
procurement, conversion, distribution, and use of energy to meet the requirements, 
considering environmental and economic objectives. For example, using daylight-
ing responsive controls for electrical lighting as well as adjusting the heating, ven-
tilation, and air-conditioning (HVAC) operational schedule in response to weather 
changes.

The continuing growth of energy usage by commercial buildings has created a 
need to develop innovative techniques to reduce and optimize energy usage. 
Buildings are increasingly being made intelligent by installing systems that encour-
age sustainable technologies and decrease carbon emissions and operational costs 
but at the same time increase the productivity, well-being, and comfort of the occu-
pants. The buildings can save up to 29% of total energy costs [1] through the imple-
mentation of energy management systems.

Often there is confusion about building management systems (BMS) and build-
ing energy management systems (BEMS). They are sometimes used interchange-
ably. It is important to understand the difference between the two:

	1.	 Building Management System (BMS): It is a centralized, computer-based control 
system that monitors and controls a building’s mechanical and electrical equip-
ment, such as HVAC, lighting, power, and security systems. These systems 
enable building managers to optimize the performance of the equipment, enhance 
occupants’ comfort, and reduce energy consumption.

	2.	 Building Energy Management System (BEMS): It is a specialized subset of BMS 
that focuses on monitoring, controlling, and optimizing the energy usage of the 
building. It integrates with various building systems and energy sources to pro-
vide a holistic view of energy consumption and identify improvement 
opportunities.

Before going further into BEMS, it is important to understand the building concepts 
based on design goals, as intelligent buildings are designed to meet different goals. 
Figure 8.1 depicts three types of intelligent building concepts, namely, green build-
ings, net zero buildings, and smart buildings.

	1.	 Green Buildings: These are designed to be environmentally friendly.
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	2.	 Net Zero Buildings: These are designed to make the building supply its energy 
by conservation and renewable energy generators.

	3.	 Smart Buildings: These are designed to balance the requirements of the occu-
pants’ comfort and energy consumption.

BEMS has existed in various forms since the 1970s. Initially, these systems mon-
itored and controlled mainly HVAC systems. They used electronic-based equipment 
to control and manage HVAC systems.

Current BEMS are mostly installed in smart buildings with automated smart 
systems. They use digital technologies like sensor technologies, data analytics, and 
machine learning [2]. These advancements enable BEMS to become more advanced 
and effective at reducing energy consumption by allowing real-time monitoring and 
control of a wider range of building systems, like lighting, HVAC, security, and fire 
safety. As a result of this integration, various building systems can be controlled, 
optimized, and coordinated effectively, allowing a holistic approach to building 
management. Figure  8.2 describes a modern BEMS as a hierarchical system of 
control layers/levels.

8.2.1  �Best Practices for Energy Management

Three major factors have driven BEMS adoption:

	1.	 Advancement in Technology: Development of new technologies for making sen-
sors and actuators. The availability of faster communication through 4G and 5G 
networks has reduced latency. It is now possible to carry out data analytics and 
run machine learning algorithms in the Cloud to bring in efficiency.

	2.	 Increased Energy Prices: The cost of fossil fuel is increasing worldwide and has 
adverse effects on the environment, forcing governments to put in levies to 
reduce carbon emissions.

Fig. 8.1  Building concepts based on design goals
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	3.	 Government Regulations: Across the world and especially in Europe and the 
USA, governments are coming up with Energy Performance of Buildings 
Directives [3], which impose certain energy efficiency standards on all new and 
existing buildings [4].

While thinking of implementing a BEMS, one should consider every aspect of the 
delivery, right from planning and implementation to post-occupancy administration, 
including maintenance. The aspects to be considered include the building, people, 
environments, systems, usage time, and budget. Figure 8.3 shows the interaction 
among these factors [5]. The occupant(s) may interact with BEMS to satisfy the 
overall comfort needs (including thermal, visual, acoustic, and indoor air quality). 
This interaction may result in a significant change in energy consumption.

The BEMS should be designed in such a manner that it monitors and analyzes 
every aspect of energy consumption, right from lighting to air circulation, heating, 
cooling, etc. It should help in identifying where energy savings can be made. The 
requirements, workflows, and other factors should be well documented while 
designing the BEMS. The best practice is to capture these requirements in a tabular 
form, as shown in Table 8.1. The specific requirements elicited from stakeholders 
should be tabulated and assigned appropriate priority, frequency of operations, and 
area of functionality. This helps in streamlining the design and development pro-
cess, thereby helping in tracking them. It is always better to include links to use case 
documentation and other key reference material as needed to make the requirements 
as complete and understandable as possible. The value of priority of the requirement 
is given in Table 8.2.

Table 8.3 enumerates some of the requirements of BEMS in the format specified 
by Table 8.1. It is not comprehensive, and it is just a sample to illustrate how require-
ments should be captured. The requirements should be categorized as follows:

•	 Base requirements
•	 Security requirements

Fig. 8.2  Control layers in a building energy management system
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•	 Reporting and analytics requirements
•	 Usability requirements
•	 Audit requirements

It is best to incorporate the functional and nonfunctional requirements separately. 
Table 8.4 gives the format in which the nonfunctional requirements should be cap-
tured. While designing the system, the functional and nonfunctional requirements 
can be put into a traceability matrix that can be followed throughout the project.

Once the requirements of BEMS have been captured and recorded completely, 
one should document the guiding principles that should be considered while defin-
ing the architecture and design of the system. It ensures that we incorporate issues 
related to interoperability, industry standards, social responsibilities, transparency, 
privacy, etc. [6]. Some of the guiding principles for the BEMS can be as given 
below. It is not a complete and exhaustive list but includes guidelines that have 
maximum impact:

	1.	 BEMS should improve energy efficiency in buildings by monitoring, control-
ling, and optimizing HVAC systems, lighting, and equipment that con-
sume energy.

	2.	 BEMS should significantly reduce utility costs and energy consumption by iden-
tifying energy wastage, optimizing equipment schedules, and applying energy-
saving strategies.

	3.	 BEMS should implement centralized control and automation for HVAC, light-
ing, and equipment. It should be capable of implementing real-time energy-
saving measures by adjusting the settings of the equipment through integration 
with the system.

	4.	 BEMS should organize the data according to various purposes, for example:

Fig. 8.3  Principal drivers of building energy management system [5]

8.2  Smart Building Energy Management System
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•	 Within facility hierarchy (zones, buildings, floors, rooms)
•	 Within the organization hierarchy (departments) or
•	 Within a system (chillers, air handling units, solar thermal zones)

This will enable the analysis of data using advanced algorithms and analytics, 
which can be used by building managers, energy purchasers, agents, and 
technicians.

	5.	 BEMS should have an integrated dashboard that can display iterative measure-
ments to operations managers and experts. This will enable experts to improve 
energy efficiency and detect problems by visualizing building subsystems. A 
timely scenario can provide meaningful outcomes regardless of influencing fac-
tors (climate change, behavior changes, technological advancements).

	6.	 BEMS should be based on open systems and industry standards so it can be 
integrated with other building systems. This integration will facilitate controlling 
and monitoring the building centrally. Scalability is also critical, as BEMS 
should be able to accommodate future expansions, additional sensors, and tech-
nological advancement.

	7.	 Sustainability and energy efficiency are being increasingly emphasized by gov-
ernments and regulatory bodies. BEMS architecture and design should be driven 
by codes, regulations, and energy efficiency standards. It should maintain com-
pliance with these regulations, standards, and certification programs like LEED 
(Leadership in Energy and Environmental Design) [7] and BREEAM (Building 
Research Establishment Environmental Assessment Method) [8].

Once the guidelines are captured for the design of BEMS, one should focus on the 
drivers of BEMS as described earlier. Building energy performance is affected by 
occupants’ interactive behavior in addition to weather conditions. For example, the 
occupants’ decision to open windows, adjust the thermostat, or turn off the lights 
can have a significant effect on energy consumption. In this section, we will explain 
the design of BEMS considering occupants’ energy-related behavior in a commer-
cial/office building.

Based on the above discussions, by placing the building occupants in the focus 
while designing BEMS, we need to consider the following:

Table 8.2  The value of priority of the requirements for BEMS

Value Rating Description

1 Critical This requirement is critical to the success of the project. The project 
will not be possible without this requirement

2 High This requirement is a high priority, but the project can be implemented 
at a bare minimum without this requirement

3 Medium This requirement is somewhat important, as it provides some value, 
but the project can proceed without it

4 Low This is a low-priority requirement, or a “nice-to-have” feature if time 
and cost allow it

5 Future This requirement is out of scope for this project and has been included 
here for a possible future release

8.2  Smart Building Energy Management System
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Table 8.4  Sample nonfunctional requirements for our use case BEMS

ID Requirement

NFR-001 The system should be designed to keep the occupants comfortable and productive
NFR-002 The system should minimize environmental impact by operating optimally, 

removing energy inefficiency
NFR-003 The system should use new and innovative technologies and products
NFR-004 Human health and safety should be one of the top priorities of the system
NFR-005 After the installation of the system, the carbon footprint should reduce

•	 Occupants’ behavior can significantly affect the energy efficiency of existing 
buildings [9].

•	 Employees content with the work environment significantly affects their produc-
tivity [10].

•	 Buildings ultimately exist to serve their occupants and keep them satisfied [11].

Figure 8.4 represents the interaction among the various factors discussed above 
on energy consumption. This influence is very important and should be taken care 
of while designing any BEMS. It can be easily inferred from the diagram that occu-
pants’ behavior affects the energy performance of the building, energy manage-
ment, and business performance. On the other hand, building energy management 
also affects the behavior of occupants.

8.2.2  �Defining BEMS Architecture

The architecture framework of BEMS has significantly improved from 1985 until 
today due to enhancements in technologies in sensors, actuators, data analytics, 
communication, and command and control systems. These are all critical compo-
nents of BEMS.

Fig. 8.4  Interaction among occupant behavior, energy performance, business productivity, and 
energy management
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	1.	 Environmental Quality and Occupancy Sensors: Environmental quality sensors 
play a key role by providing data about environmental conditions such as indoor 
air quality. This helps in addressing the health and safety issues of occupants 
while supporting the management of energy consumption. BEMS must integrate 
these along with the metering and HVAC functions in traditional building 
systems.

Occupancy sensors are already a common way to regulate energy consumption 
based on how many people are using a space. An intelligent EMS can make real-
time adjustments to building systems like HVAC and lighting in response to 
occupancy data.

BEMS also uses many other wireless sensors that gather data on several conditions, 
including temperature, humidity, energy usage, etc. It uses actuators to accept 
electrical input to act on what an analytics software recommends.

	2.	 Data Analytics: While analytics within an energy management system has mul-
tiple purposes, a key function involves managing energy usage. As smart devices 
(sensors) gather more data, this data becomes more detailed, allowing analytics 
software to examine and resolve increasingly complex problems.

By including machine learning (ML), the analytics programs become more power-
ful to modify operations and increase energy efficiency. They can be used for 
forecasting energy consumption, detecting and predicting faults, seasonality, and 
pre-cooling or pre-heating modeling.

Data analytics and ML algorithms can also be used for optimizing the process of 
receiving and storing power from electricity generated onsite. It can decide when 
to share the excess electricity with a neighborhood microgrid to ensure optimal 
utilization of energy.

	3.	 Active Command and Control: Active command and control of energy-
consuming systems is an important task to meet the business demand for flexible 
workspaces. The system should allow control of equipment more effectively to 
help reduce energy consumption. This will enable reduced consumption during 
low traffic times while ensuring occupants have what they need when they 
need it.

The conceptual architecture of BEMS with different layers as mentioned above is 
shown in Fig. 8.5. The diagram also shows the integration of BEMS with a smart 
grid and a local renewable energy source. This increases energy efficiency by moni-
toring and controlling energy consumption while reducing energy costs and carbon 
emissions.

The functions of various layers in the architecture are:

	1.	 Physical Layer: It uses sensors and meters for data collection regarding building 
energy consumption. The data include information on the consumption of elec-
tricity, gas, and water, as well as the temperature, humidity, and occupancy of the 
building.

	2.	 Automation Layer: It uses electronic control systems and processors to ensure 
that HVAC, lighting, and other appliances are operated as efficiently as possible. 

8.2  Smart Building Energy Management System
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The control of renewable energy sources such as batteries and solar panels can 
also be integrated with it (if available in the system).

	3.	 Intelligence Layer: It performs data analysis on data that is collected from the 
sensors. It uses advanced machine learning algorithms and data analytics tech-
niques to detect patterns in energy consumption, detecting areas with high 
energy consumption, and tracking energy consumption over time. It also opti-
mizes energy efficiency and reduces waste by analyzing the data and adjusting 
the building’s energy system through the automation layer. For example, adjust-
ing the heating and cooling systems can maintain a comfortable temperature 
while minimizing energy consumption. This layer is typically implemented in 
the Cloud but may be available at the Edge if required.

	4.	 Management Layer: This layer provides the user interface and reporting func-
tionality to the users (covering both service providers and end users). The system 
can generate reports on energy usage, cost savings, and environmental impacts. 
It is possible to use these reports to track progress over time and to make data-
driven decisions to further optimize the energy efficiency of the building.

8.2.3  �System Design for Efficient Energy Management

While designing BEMS, we need to consider functional and nonfunctional require-
ments covering all aspects that we should be addressing using the system. To illus-
trate the design process, we consider occupants’ comfort as the main driver, but we 
need to follow the same process for all the drivers as shown in Fig. 8.3.

Fig. 8.5  Conceptual architecture of BEMS
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We first need to identify and define the workflows to meet the requirements. The 
next step should be to define the control strategy to achieve the objectives. As a last 
step, we need to address communications between the users and the system. Once 
all these elements are in place, we can define the specifications of the equipment 
needed to implement the system as designed. We need to take care of the other 
requirements, like support for open standards and interoperability, to avoid falling 
into the trap of proprietary products and protocols. We will be following this meth-
odology to design our BEMS, which is occupant-centric.

8.2.3.1  �BEMS Workflows

Two major contributors to building energy consumption are HVAC and building 
lighting. These are impacted by the occupants’ actions and weather conditions. The 
workflow for these factors is captured in Fig. 8.6. As can be seen from the diagram, 
there is a need to have building information modeling (BIM) information and com-
putational fluid dynamics (CFD) analysis calculations. BIM contains information 
like location, orientation, and glazing properties, while CFD analysis involves fluid 
flow and heat conduction. These two can be implemented by the intelligent layer as 
proposed in the BEMS architecture either in the Cloud or at the Edge as per the 
requirements.

The interaction between BIM and CFD is shown in Fig. 8.7. It is important to 
understand and capture this interaction as the action of an occupant to open a win-
dow can change the flow of air within the room. It needs to be captured in the model 
that we build to control BEMS.

Fig. 8.6  BEMS conceptual workflow
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8.2.3.2  �BEMS Management Strategy

The BEMS model also needs to incorporate a management strategy that enables it 
to interact dynamically with the automation control unit of the BEMS control layer 
to improve energy efficiency. The management strategies can be classified into four 
types based on the approach. These are model predictive control, demand-side man-
agement, optimization, and fault detection and diagnosis [12]. These are shown in 
Fig. 8.8 and are explained in the following paragraphs:

	1.	 Model Predictive Control: Model predictive control (MPC) can foresee building 
responses to control requests and can act sufficiently to accomplish the neces-
sary operations. There are three methods for forecasting building energy 
usage, namely:

	 (i)	 The white box model is a physics-based method that utilizes a straightfor-
ward procedure dependent on calculations to explain the energy perfor-
mance of buildings. These are typically used for temperature control, 
forecast energy consumption, predictive whole building heat and moisture, 
and optimal control of HVAC.

	 (ii)	 The black box model is a data-driven method that is dependent on statistical 
evaluations and artificial intelligence to evaluate and estimate building 
energy utilization. These are typically used for boilers, predictive control 

Fig. 8.7  Schematic interaction workflow between BIM and CFD
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for HVAC systems, peak load, thermal comfort, renewable energy storage, 
and sustainable power sources.

	 (iii)	 The grey box model is based on a hybrid method that is a combination of 
white box and black box approaches. These are typically used for optimiz-
ing the airflow volume and the air supply temperature setpoints, instant 
balance point temperature, and thermal building modeling.

	2.	 Demand-Side Management: Demand-side management (DSM) is an arrange-
ment of actions to enhance BEMS on the user side. It goes from enhancing 
energy efficiency by utilizing improved resources over intelligent energy rates 
with motivators for certain utilization arrangements. There are two approaches 
for DSM, namely demand response (DR) and energy efficiency (EE). The DR 
approach is very useful for nonresidential buildings for controlling HVAC sys-
tems, while the EE approach is more suitable for controlling appliance consump-
tion and HVAC systems.

	3.	 Optimization: It is a way to deal with optimization of the system and related 
issues. There are two approaches, namely atochastic optimization (SO) and 
robust optimization (RO).

	 (i)	 Stochastic optimization requires that the dissemination of information 
whether genuine or dubious, must be known or assessed. It is generally used 
for maximizing the comfort index utilizing minimum power consumption, 
effective policy measures, identifying energy consumption patterns, maxi-
mizing the general energy efficiency, load demand prediction of PV-
integrated intelligent buildings, and energy savings. This is accomplished 
through analytics of actuators and information sources. It is useful for both 
residential and nonresidential buildings. It typically uses particle swarm 
optimization [13] and neural networks.

	 (ii)	 Robust optimization presumes hard constraints. For example, the building 
temperature cannot be more than 76 degrees. It is generally used for optimal 
planning of the components of the local energy system, supervising multi-
HVAC systems, managing occupants’ comfort and energy utilization, and 

Fig. 8.8  BEMS management strategies

8.2  Smart Building Energy Management System



176

coordinating the cooling system. It is mostly used for nonresidential 
buildings.

	4.	 Fault Detection and Diagnosis: Fault detection and diagnosis (FDD) is a pro-
grammed procedure of detecting and separating flaws in BEMS to prevent any 
harm to the system. There are two techniques, namely data-driven and knowledge-
driven. Both approaches are mainly used in nonresidential buildings.

	 (i)	 Data-driven approaches use AI to resolve challenges. It requires adequate 
training information to build a robust model for fault detection. It is gener-
ally used for the detection of faults in the heating system and for recognizing 
irregular operation patterns.

	 (ii)	 Knowledge-driven approaches depend on specialists to recognize and detect 
faults more viably and dependably, particularly in cases where analytic data 
is deficient and unsure. It is typically useful for analytic analysis of an air 
handling unit (AHU), recognizing potential reasons for inconsistencies for 
an AHU, distinguishing and assessing chosen faults in a cooling system, and 
distinguishing undetected flaws.

The designer of a BEMS needs to select a suitable management strategy to meet the 
business objectives. Typically, the most effective management strategy for 
BEMS is a combination of the abovementioned strategies. It can be implemented 
at the intelligence and automation layers of BEMS architecture, as was shown in 
Fig. 8.5. We recommend that while implementing the management strategy, a 
modular approach as described in Fig. 8.9 be followed.

The management system may consist of six modules: two core modules, namely 
learning and simulation, a sensing/data collection module, diagnostics and 

Fig. 8.9  High-level design for BEMS management
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recommender modules that rely on the core modules and process their results to 
either diagnose or recommend [14], and finally, a module that is responsible for 
making building occupants involved and delivering the actions in a user-friendly 
and user-cooperative manner, i.e., the communication module. Each of the modules 
is described in the following paragraphs:

In this case, the BEMS management system can recommend the following types 
of actions to be taken:

•	 Lighting
•	 HVAC
•	 Maintenance
•	 Inform/explain

It is good practice to have the last action (inform/explain) implemented to ensure 
communications between the system, the building manager, and the occupants.

	1.	 Communication/Feedback Module: The communication/feedback module is 
responsible for successful bidirectional communication with occupants. This 
module ensures that the system runs in coordination with the needs of occupants. 
It should incorporate various interaction options, like support for mobile phones, 
tablets, or laptops/desktops. It should have a user-friendly interface that is easy 
to navigate for the user with little or no training to operate computers. The mod-
ule should also support voice commands and speech outputs. It should provide 
all the status and operational reports that may be needed by the building man-
ager, administrator, or BEMS operators.

The module should allow the users to provide feedback to the system. The feedback 
can be used by the learning module to learn and build a model of how occupants 
perceive certain configurations. A configuration would consist of the occupant’s 
description, heating/cooling level, outside temperature, time of the day, date in 
the calendar, etc. The communication/feedback module relies largely on the 
sensing/data collection module.

	2.	 Sensing/Data Collection Module: The sensing/data collection module’s task is to 
sense, collect, filter, and process data from buildings, occupants, and businesses. 
These would include movements (room entry/exit), window/door opening/clos-
ing, lighting, temperatures, etc. It would also signal obvious outliers and abnor-
mal behavior. It generally works closely with the communication/feedback 
module. It can work independently, only in cases where it needs to automatically 
sense certain data without explicit communication with occupants. Otherwise, 
its actions will need to be coordinated by the communication/feedback module. 
It will also serve to store historical data that has been collected, which would 
further be utilized and processed by the core modules (learning and simulation 
modules).

	3.	 Diagnostics Module: The diagnostics module is responsible for diagnosing 
issues and energy gaps when the energy systems do not behave as predicted by 
the simulation and learning modules. The learning module will support the diag-
nostics module by learning models from data that would be utilized to determine 
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the causes of deviations in the system’s behavior. Input to the diagnostics mod-
ule would be deviations and problems in the energy management system, and the 
output would be the list of possible causes, ordered by their probabilities. 
Depending on the nature of the cause, the recommender module could be com-
municated to calculate a list of possible remedial actions.

The diagnostics module can generate system alarms for equipment failure or viola-
tion of normal conditions. It can also identify both planned and unplanned main-
tenance requirements (e.g., systems can record the number of hours that motors 
have run or identify filters on air supply systems that have become blocked).

	4.	 Learning Module: The learning module is responsible for learning from col-
lected data and building models and classifiers that could further be used by the 
diagnostics module and the recommender module. The learning module would 
utilize machine learning and data mining algorithms, such as support vector 
machines or Bayes networks. To consider occupants’ comfort, the module will 
also incorporate occupants’ perceptions gathered through the communication/
feedback module and utilize them for the classification of conditions that achieve 
optimal energy efficiency with minimal occupants’ discomfort.

	5.	 Recommender Module: The recommender module processes the results obtained 
by the learning and simulation modules and suggests a set of recommended 
actions, ordered by priority. Each of the recommended actions would be assigned 
a value that would assess the level of improvement if implemented. The recom-
mended actions are generated based on a set of predefined goals, which could be 
assigned different weights based on their relevance for the building management.

The building energy manager can either automate some of the processes and allow 
the system to proceed with the most favorable action or intervene by manually 
selecting one of the suggested remedial actions. Thus, the system can be made to 
operate in either a fully or semiautomated manner.

	6.	 Simulation Module: The simulation module runs various what-if scenarios for 
further optimization of parameters. The simulation module is used either by the 
recommender module, the diagnostic module, or by the building manager 
directly to test and evaluate various scenarios. The simulation module gathers 
data from the data collection module and utilizes this to build prediction models 
for both optimization and diagnostics.

8.2.3.3  �BEMS User Interface

Ensuring good user interfaces with BEMS is essential. A modern BEMS can be 
accessed in several ways using Web browsers via the Internet, through hand-held 
tablets and laptops, or palm devices and smart mobile phones. Providing multiple 
access methods allows building operators to use the BEMS in a way that fits their 
role and the way they work and encourages them to utilize the system as a building 
energy optimization tool. A poorly designed user interface discourages operators 
from using it, resulting in BEMS being ignored for improving energy usage. To 
optimize internal conditions and make ongoing savings, BEMS need to be regularly 
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maintained. BEMS settings need to be checked at least every month and check that 
settings meet actual building requirements. The user interface should also support 
these functions, including any alerts as may be needed.

8.2.3.4  �Selection of BEMS Components

As described in BEMS architecture, the system is made up of various components, 
such as sensors, actuators, controllers, and other automation subsystems. All these 
components must be able to communicate with each other easily. For instance, 
within the HVAC system, the thermostat must be able to communicate with the air 
handler unit and fan coil unit to cool a space properly. While selecting the compo-
nents for building the BEMS, each piece of equipment must support open protocols 
like Bluetooth, Wi-Fi, and Zigbee to communicate with other components/devices. 
They should also be capable of connecting to different types of networks, like 
Ethernet, and cellular networks (such as 4G and 5G), depending on the communica-
tion requirement with the external world. The system should be able to support 
protocols such as HTTP, MQTT, and AMQP to facilitate transmission from one 
application/device to another and with the Internet. It is important to ensure that the 
need for reliability, security, and confidentiality of communications is not sacrificed 
while providing connectivity using different protocols.

It is equally important to ensure that the operating system and application run-
time environment on the components/devices also support open standards. It is 
desirable to have a general-purpose operating system like Linux with a small foot-
print for the devices. Similarly, open-source runtime environments like Java, Python, 
or Node.js are preferred. They allow small application codes (applets) to run on the 
devices.

Integration capabilities are not only required at the device/component level but 
also at the application level. BEMS should be built upon a smart building integra-
tion platform that enables interoperability between systems. As part of this integra-
tion capability, it should command and control connected systems to help improve 
productivity and efficiency.

Scalability is an important aspect of designing BEMS. It should provide the abil-
ity to quickly onboard new assets (sensors, actuators, and other devices) so that they 
can be easily integrated into the system. There should be a single repository for all 
assets for building data, analysis, reporting, and control. It will enable the leverag-
ing of machine learning and other features from a single, easily accessible point. We 
must ensure that extra hardware, especially, sensors is readily available so that they 
can be replaced when necessary.
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8.2.3.4.1  Device Security

A prime concern for any connected device is security. While selecting the devices 
for BEMS, it is important to choose those devices that provide clear and concise 
documentation on cyber security measures, protocols, and practices.

It is preferable to select those devices that come with preinstalled applications 
that can control access to the devices and data. To ensure that the system is not com-
promised, devices should always send messages using encrypted data and automati-
cally log out after a certain time. Some of the features to look for while selecting the 
devices are support for user authentication, encrypted traffic, JSON Web tokens, 
TLS authentication, and/or zero trust.

There are other things that must be done to improve the security of BEMS, 
such as:

•	 Keeping a detailed and up-to-date inventory of connected devices. The inventory 
should have information about device manufacturers, including models, serial 
numbers, firmware, hardware, and software.

•	 Maintaining information on configurations and operating systems for each device.
•	 Determining the risk profiles for each device and how it interacts with other 

devices within the network.
•	 Dividing the network into at least two subsections to limit vulnerable areas and 

reduce damage in the event of an attack.
•	 Using the most up-to-date firewall protocols and virtual local area networks 

(VLANs) to keep IT assets separate from smart devices.
•	 Monitoring and reporting the alerts in real time when managing risks.

8.3  �Medical Data Sharing by Hospitals

The importance of data sharing in healthcare has become increasingly important 
recently, especially after the COVID-19 pandemic. During the pandemic, the ability 
to share patient information between healthcare providers, hospitals, and other 
healthcare organizations helped in the development and deployment of effective 
treatments. It helped to improve patient outcomes, reduce medical errors, and 
enhance the overall quality of care.

As the industry works toward finding treatments for chronic diseases impacting 
the world population, it must have access to recent and accurate clinical data. The 
major problems in sharing clinical data are ensuring data integrity and protecting 
patient privacy. The systems deployed by the healthcare providers must ensure that 
these problems are addressed. Any solutions should be able to differentiate between 
private data and clinical observations of a patient by de-identifying healthcare data 
[15]. This de-identified data can be used in clinical trials to discover new therapies 
and improve patient health outcomes. To ensure that any healthcare data is shared 
securely and efficiently, certain standards must be put in place, as described in the 
next section.
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8.3.1  �Best Practices for Medical Data Sharing

Medical data about a patient encompasses information collected by healthcare pro-
viders from a variety of sources, including the patient’s diagnosis, test results, medi-
cations, treatment plans, and family medical history. This data is used to determine 
an approach to providing care to the patient. If required, it may have to be shared 
within and across networks of healthcare providers to augment existing therapies to 
improve patient outcomes. While sharing the data, it may be required to be de-
identified to protect the privacy of the patient.

The healthcare provider should follow best practices and government regulations 
for the entire life cycle of patient data. It covers the process of how data is collected, 
stored, shared with other stakeholders, and archived.

As a first step, hospitals should improve patients’ confidence in the use of their 
data. It can be achieved by ensuring that the data is accurate and secure. The second 
step to building the confidence of the patient is to ensure that hospital systems are 
transparent on how and where their data is shared, as well as the precautions being 
taken to keep it secured.

The third and most critical step is to invest in modern data management infra-
structure that eliminates data silos among hospital departments, allowing for more 
easily transmissible and accurate data across networks.

In addition, healthcare providers should prioritize working with the right part-
ners and hiring employees who understand and respect the criticality of the informa-
tion they manage.

Finally, healthcare providers must have well-defined operating procedures to 
take care of the entire life cycle of patient data. The standard procedures of health-
care providers should cover how they collect and manage healthcare data, not only 
to build trust with patients but also to help them understand the true impact of that 
shared data.

Systems must be developed based on universally acceptable standards to enable 
all stakeholders to exchange patient information securely and seamlessly [16]. Data 
standards encompass representation, access, and distribution that define the 
approach and practices for developing, approving, and instituting compliance. 
Figure 8.10 summarizes these standards and brings them together for clarity. These 
requirements are fundamental to establishing control over the data layer for the 
efficient use and exchange of information.

•	 Data Representation Standards: These standards deal with business terms and 
definitions, allowed values, formats, logical and physical naming and abbrevia-
tion standards, model management standards, etc. These are also referred to as 
terminology standards [17] because they are used for identifying and exchanging 
common codes, for example, diagnosis codes, procedures, clinical codes, lab 
codes, and pharmacy codes. Some of the commonly used codes include ICD-10, 
CPT, HCPCS, SNOMED-CT, LOINC, NDC, CDT, and RxNORM.

•	 Data Access Standards: These standards deal with common data services, 
information exchange standards (e.g., XML), standard methods for bulk data 
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movement and point-to-point interfaces, and data integration standards (e.g., 
extract, transform, load standards, etc.). They are also referred to as exchange or 
transport standards [17], as they typically help in “exchanging” or “transporting” 
data and define a framework that helps data exchange across systems. Some of 
the common standards are X12 EDI, HL7 v2.x, HL7 C-CDA, FHIR, NCPDP, 
DICOM, CDISC, and DIRECT.

•	 Data Distribution Standards: These standards deal with ownership and authority, 
requesting and approving access, internal and external data provisioning (e.g., 
portals, Web services, etc.), distribution controls and criteria-based access 
restrictions, distribution models (e.g., push, pull, publish, and subscribe, etc.), 
regulatory authority and audit, etc. Since these standards deal with the privacy 
and security of patient data, they are also referred to as privacy and security stan-
dards [17]. These standards help protect sensitive and confidential health infor-
mation. Healthcare organizations should comply with these regulations to 
implement robust and secure health systems. Some of the most used standards 
are Health Insurance Portability and Accountability Act (HIPAA ) in the USA 
and General Data Protection Regulation (GDPR ) in the EU.

While designing medical data sharing systems, it is critical to document the 
guiding principles that should be considered while defining the architecture and 
design of the systems. It ensures that issues related to patient privacy, data security, 
interoperability, incorporating industry standards, and government-mandated com-
pliances are addressed. Some of the important guidelines to be considered for 
improving data sharing among healthcare organizations are:

	1.	 Only Share Necessary Data: We should first identify the purpose for which data 
is being shared. While sharing the data, it should be limited to the essential infor-
mation required to achieve the desired outcome. For example, if the primary 

Fig. 8.10  Healthcare data standards
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mission is to deliver a specific care, then only data that will help provide that care 
should be shared.

	2.	 Limit Data Access to Those Who Need It: There should be a very clear data gov-
ernance policy. As part of the policy, it should be mentioned that data access is 
limited only to the individuals or departments that need access to that data. This 
helps in reducing the likelihood of data leakage by helping in tracking and moni-
toring access. This enables one to identify the cause in case something goes 
wrong. Reviewing and updating data access should be part of the data gover-
nance review plan. The hardware and software deployed should support the data 
governance policies.

	3.	 Invest in IT Infrastructure: The software used for healthcare applications must be 
updated regularly. Outdated software working on obsolete hardware presents a 
significant risk to the integrity and security of healthcare data. This is especially 
true when sharing data over a network. Investment in new hardware and soft-
ware, or managed IT services, is essential to update and maintain IT infrastruc-
ture. This ensures that IT infrastructure is updated and free of any weaknesses 
that can be exploited to launch cyberattacks. If public Cloud infrastructure is 
used, special care must be taken to ensure healthcare data security [15].

	4.	 Adopt Strong Data-Sharing Security Measures: Once the data is shared with an 
organization, the organization sharing the data loses control over the data. It is 
important to share only the necessary data with proper access control and pass-
word protection. The data is most vulnerable when in transit, as the methods 
used to secure data in transit come with limitations. At the very least, HTTPS 
and TLS1.3 protocols should be used. Standard data-sharing security in health-
care includes tokenization and encryption.

When developing systems for healthcare applications that involve the sharing of 
data, we must capture the requirements, identifying the security and compliance 
needs. Table 8.5 provides a template to capture the system requirements. It is similar 
to Table 8.3 except that here we have captured the applicable standards (concerning 
privacy, security, distribution, and interoperability). The requirements should be 
categorized as:

•	 Base requirements
•	 Security and privacy requirements
•	 Reporting requirements
•	 Usability requirements
•	 Audit requirements

Base requirements cover the specific functionalities and features that software 
must provide to satisfy user needs. It typically covers requirements related to busi-
ness rules, transaction corrections, adjustments, external interfaces, and administra-
tive functions.

Security and privacy requirements cover user validation and authentication, 
access control, security measures to protect against data theft, personal privacy 
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issues related to data owners, and compliance with legal and government 
regulations.

Reporting requirements cover operational, administrative, management informa-
tion systems (MIS), and reporting that may be mandated by government 
regulations.

Usability requirements cover user experience and how easily users can interact 
with the software systems. They include ease of use, intuitiveness, responsiveness, 
and accessibility.

Audit requirements cover transaction logging to cover data usage and sharing, 
historical data storage, archival, software license compliances, etc. These are impor-
tant to support software audits by external parties or government agencies.

It is best to incorporate the functional and nonfunctional requirements separately. 
Nonfunctional requirements cover issues related to scalability, capacity, availability, 
reliability, recoverability, maintainability, serviceability, manageability, environ-
ment, interoperability, performance, etc.

To capture nonfunctional requirements, the format shown in Table 8.4 can be 
used. While designing the systems, the functional and nonfunctional requirements 
can be put into a traceability matrix that can be followed throughout the project.

Once the functional and nonfunctional requirements have been captured, there is 
a need to document the guiding principles. These should be considered while defin-
ing the architecture and design of the system. Guiding principles should address 
issues related to interoperability, industry standards, social responsibilities, trans-
parency, privacy, etc.

The applications providing medical data-sharing functionalities shall follow the 
guiding principles as given below at the minimum.

	1.	 The application should follow stringent data privacy and security guidelines. 
These should cover user authentication and allow access to those who require it. 
A secure, monitored environment should also be used to store data to prevent 
unauthorized access or disclosure.

	2.	 Sensitive patient data should be safeguarded against unauthorized access by 
encrypting data in transit and at rest.

	3.	 Use secure application programming interfaces (APIs) that adhere to industry 
standards, especially for encryption, etc. Use a protocol like Fast Healthcare 
Interoperability Resources (FHIR) to develop software that communicates with 
other systems for exchanging data.

	4.	 Need to create an audit trail that tracks the access and use of personal healthcare 
data of an individual. It should record who accessed what data and when. This 
audit trail can help identify security breaches or violations.

	5.	 It is important to conduct thorough testing and validation to ensure the software 
is compliant with regulations like HIPAA and GDPR. The testing should check 
for security flaws and validate compliance with industry standards.

	6.	 The application should follow industry standards and others that may be man-
dated by government regulations for data storage and exchange and ensuring 
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privacy and security. It will ensure interoperability and systematic data exchange 
among different healthcare providers.

	7.	 Compliance with healthcare regulations like HIPAA and HITECH to ensure 
patient privacy and data security.

	8.	 The system should be designed to avoid noncompliance with regulations. 
Noncompliance can result in various repercussions, including legal liabilities, 
data breaches, a loss of patient confidence, and reputational harm. In addition, it 
may also result in financial penalties and the loss of business.

8.3.2  �Defining Data-Sharing Architecture

The healthcare industry has been adopting new technologies such as the Internet of 
Things (IoT), artificial intelligence (AI), and big data to provide better healthcare 
outcomes. However, the amount of data generated from healthcare devices and 
applications brings a lot of challenges in medical data sharing. This gets exacer-
bated due to different healthcare standards, multiple protocols, system diversity, and 
incompatibility of data formats.

To overcome these challenges, multiple technical architectures have been pro-
posed to meet the medical data-sharing requirements among healthcare providers 
through healthcare information exchanges (HIEs). These can be categorized broadly 
into three architectural types: centralized, federated, and hybrid [18]. They fall 
along a continuum from fully centralized on one end to fully decentralized on the 
other, with several hybrid permutations in between. There are distinctions within 
each model and variations in how a model may be implemented.

	1.	 Centralized Architecture: In this model, all data that needs to be shared is nor-
malized in a common format and terminology and is housed together in a central 
data repository. The stored data can be accessed and used by authorized users per 
defined policies and procedures. Figure 8.11 shows a centralized medical data-
sharing architecture. More than one repository may exist for different kinds of 
data; for example, digitized radiographic images might be housed in a separate 
repository given their large size and specialized usage. The centralized approach 
may offer the best technical performance when measured by patient data avail-
ability and response time to user queries. It costs the most to set up and maintain 
because it requires a large upfront investment in technology in the form of large 
servers, which need to be monitored and stored in a secure location. This model 
also requires all participants to trust the central authority that stores and manages 
the data.

	2.	 Federated Architecture: In this model, each participant organization maintains 
separate control of its data, typically in an Edge server at its location. The patient-
specific data is shared with other users based on their requests. In a strictly 
decentralized model, every request for patient data must be made to every par-
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ticipating data owner. This effectively limits it to relatively low-volume applica-
tions. The federated architecture is shown in Fig. 8.12.

To overcome this limitation, a centralized patient registry is maintained by one of 
the participants. To retrieve patient data, the requester sends query messages to 
the patient registry. The patient registry contains a virtual roadmap of where 
patient health records are located. It transmits the record’s physical location back 
to the requester. The requester then requests the patient information from the 
data source where it is located. The data can be sent to the requester using any of 
the secure methods, like secure email, secure Web services, or through a VPN 
connection.

The federated model is considered less interoperable than the Centralized model 
because it does not allow a simple exchange of information between systems. It 
offers security but may lead to unacceptable performance limitations.

	3.	 Hybrid Federated Architecture: This model builds on the decentralized model by 
adding a record locator service (RLS). RLS tracks where patients have received 
care and from where their source data can be requested. The hybrid-federated 
architecture is shown in Figure 8.13. Two forms of the hybrid-federated models 
are very common. In the first model, the participating organization manages data 
(copies of the original) in separate Edge servers at a central location, but without 
a shared central repository. This model is useful for clinical applications, in 
which healthcare providers access data for one individual patient at a time.

In the second model, the functionality of a centralized model is achieved for ana-
lytic purposes, either by layering a central repository of normalized shared data 

Fig. 8.11  Centralized medical data sharing architecture
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Fig. 8.12  Federated medical data sharing architecture

Fig. 8.13  Hybrid federated medical data sharing architecture
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on top of the hybrid-federated architecture or by normalizing data in one com-
puter where the data are partitioned by source. This model thus facilitates data 
use about multiple individuals by providers and other users. Another variation of 
hybrid-federated architecture is possible where data is partitioned and only de-
identified data is shared centrally, whereas Personal Health Information (PHI) 
stays local.

Cloud, Blockchain, and AI technologies have been extensively used for develop-
ing Healthcare Information Exchanges (HIEs). This is irrespective of the architec-
ture that is used for building the HIE. Each of these technologies has advantages and 
limitations while implementing medical data-sharing applications.

	1.	 Cloud Technology: Records stored in the Cloud can be easily retrieved anywhere 
and anytime using the Internet. It is noted that their users do not always trust 
third-party Cloud providers. There is a probability of someone breaking into 
Cloud servers that contain sensitive information, such as patient medical records. 
One practical method to overcome this limitation is to encode sensitive informa-
tion before storing it in the Cloud. This technique is called client-side encryp-
tion. The advantage of client-side encryption is that data is encrypted in the 
user’s system. The encrypted data is then transferred to a Cloud server. Data 
encryption ensures a low probability that attackers can steal the data when sent 
to the Cloud server. The medical record is accessible to customers with a decryp-
tion key while remaining inaccessible to everyone else. However, data needs to 
be retrieved and decrypted before usage on the client side. If the usage is on the 
server side, then keys will need to be shared and Cloud operators will need to be 
trusted.

The main issues with the Cloud are data security, availability, integrity, information 
confidentiality, and network security. API, data encryption, and authentication 
are some security measures available to reduce security concerns for Cloud 
infrastructure. Cloud providers must ensure the confidentiality, integrity, and 
availability of data. Confidentiality helps to prevent intentional or unintentional 
access. Integrity helps reduce unauthorized modifications to the data by unau-
thorized or authorized users or processes. Availability helps users access medical 
records stored in the Cloud from anywhere using any authorized device con-
nected to the Internet.

	2.	 Blockchain Technology: Blockchain technology can be used for storing and 
recording an individual’s electronic health record (EHR). A typical EHR is a 
compilation of health-related data that contains personal details (e.g., name, age, 
gender, weight, and billing information) and medical history, medications, and 
health problems (such as illnesses). Blockchain can play an important role in 
remote health, especially as it can certify trusted devices [19]. The decentralized 
feature of blockchain offers users anonymity and allows them to always keep 
their information safe. This ensures audit transparency and accountability, pre-
serving medical data confidentiality and privacy, both at rest and in transition, 
thereby increasing trust in the data.
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A typical solution based on blockchain technology may consist of creating and 
using structured contracts for data access, standardized audits, and cryptographic 
algorithms to maintain data security and integrity. The majority of EHR data 
remain unmodified once they are posted to the system. As a result, strongly pro-
tected EHRs saved using blockchain technology can be accessed with higher 
reliability by many collaborating medical institutions and individuals (such as 
doctors, hospitals, labs, and insurance companies).

Blockchain technology is useful for different kinds of healthcare applications. 
Some of the uses of the technology cover taking patient history data, storing it 
securely on a blockchain network, detecting fraudulent claims, or even tracking 
patient outcomes.

	3.	 Artificial Intelligence: Artificial intelligence (AI) and machine learning (ML) 
have helped automate physician tasks, resulting in enhancements of clinical 
capabilities and access to care. Access to large, well-designed, well-labeled, 
diverse, and multi-institutional datasets is critical for model development and 
model deployment. The diverse datasets also mitigate racial and socioeco-
nomic biases.

Blockchain technology can be used for storing and recording model parameters, 
training data, inputs, and outputs, thereby increasing audit transparency and 
accountability. By combining AI and blockchain technology, one can establish a 
safe connection to access external AI models and data. This allows multiple 
institutions to collaboratively train an ML model (i.e., federated learning), lead-
ing to enhanced efficacy.

The most popular applications of AI are clinical trial automation, fraud detection, 
and automated pharma dispensing. It has also been used for risk adjustment, 
predictive analytics, and automated monitoring.

Despite the broad adoption of AI, additional layers of security must be implemented 
to guarantee the confidentiality of sensitive personal information,

such as prescriptions for medications [20].

The Office of the National Coordinator for Health Information Technology (ONC) 
in the USA is working on standardizing a framework for the exchange of health 
information. It released Version 2.0 of the Common Agreement on April 22, 2024. 
Common Agreement Version 2.0 updates Common Agreement Version 1.1, pub-
lished in November 2023, and includes enhancements and updates to require sup-
port for Health Level Seven (HL7) Fast Healthcare Interoperability Resources 
(FHIR)-based transactions. The Common Agreement sets forth the requirements 
each participant and sub-participant must agree to and comply with to participate in 
TEFCA. It incorporates all applicable standard operating procedures (SOPs) and 
the Qualified Health Information Network Technical Framework (QTF) [21].

The Trusted Exchange Framework and Common Agreement (TEFCA) has 
three goals:

	 (i)	 To establish a universal governance, policy, and technical floor for nationwide 
interoperability
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	(ii)	 To simplify connectivity for organizations to securely exchange information to 
improve patient care, enhance the welfare of populations, and generate health 
care value

	(iii)	 To enable individuals to gather their health care information

8.3.3  �System Design for Secure Data Sharing

While designing applications for secure data sharing, we need to consider both 
functional and nonfunctional requirements. In addition, we need to take care of the 
other requirements, such as support for open standards and interoperability, to avoid 
falling into the trap of proprietary products and protocols.

The proposed methodology for the development of applications for secure 
exchange of medical data consists of seven steps. The process is very similar to any 
other software development except that there is a need to consider compliance with 
the existing standards and follow protocols for secure data transfer across the ser-
vice providers.

Step 1: Define Target User
There is a need to identify the target market and user needs. It is important because 

each geography has a different compliance requirement. For example, in the 
USA, the software must be compliant with HIPAA, whereas in the case of the 
EU, it needs to comply with GDPR, etc. Not complying with these regulations 
can result in significant penalties for the developer and users.

Step 2: Collect Requirements
Before developing the software, we need to consider both functional and nonfunc-

tional requirements. In addition, we need to take care of the other requirements, 
like support for open standards and interoperability, to avoid falling into the trap 
of proprietary products and protocols. FHIR and HL7 [17] are two of the impor-
tant standards and regulations; they establish how health data should be 
exchanged and shared.

Adopting HL7 and FHIR standards results in more efficient, accurate, and secure 
data sharing. This benefits the patients with improved care coordination and 
access to their records. Applications developed using these protocols are interop-
erable, providing greater productivity, reduced costs, and better outcomes overall.

Step 3: Design a Prototype
A prototype is an interactive working model of the application. The prototype 

should include a wireframe using a computer interface that allows users to inter-
act with the product. Prototyping is important for the following reasons:

•	 It allows to test the user experience before fully creating the application.
•	 Before investing a significant number of resources in development, it is pos-

sible to collect feedback and make sure the final product has all the right 
user inputs.
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While designing the prototype, we should also finalize the features that should be 
included and the technology (Cloud computing, Blockchain, AI/ML, Internet of 
Things) that will be used to develop the application.

Step 4: Develop the Final Prototype
Once the feedback from the users has been received using the initial prototype, the 

final prototype should be developed incorporating the feedback received from 
the users. This should be the basis for the development of the full application. It 
should be designed to keep up-to-date with changes in the underlying 
technologies.

Step 5: Write Code for the Application
The application should follow strict data privacy and security protocols. It should be 

able to authenticate users and only permit access to those who require it. A 
secure, monitored environment should also be used to store data to prevent unau-
thorized access or disclosure.

While developing the application, we can use secure application programming 
interfaces (APIs) and encryption. Sensitive patient data should be safeguarded 
against unauthorized access by encrypting data in transit and at rest. It should 
adhere to industry standards, such as Fast Healthcare Interoperability Resources 
(FHIR), to communicate with HIE networks.

It is essential to create an audit trail that tracks the access and use of EMR. This 
records who accessed what data and when, which can help identify security 
breaches or violations.

Step 6: Test and Validate for Compliance
It is crucial to conduct thorough testing and validation to ensure that software meets 

the HIE compliance criteria. The software testing should also cover security 
flaws and compliance with industry standards such as FHIR.

In addition, the software should also be tested and reviewed by users before being 
released. Any changes suggested by users should also be incorporated into the 
application.

Step 7: Deliver the Software
The last step of the process is making sure that the application is delivered in the 

best way possible. The application should be delivered with all needed updates, 
including documentation. It may need to be tested again after deployment in the 
target environment.

While developing any healthcare application, HIPAA compliance should be a 
priority. It can build the trust of patients and providers in the application. However, 
complying with HIPAA and HITECH regulations can be challenging, especially for 
smaller healthcare organizations and startups with limited resources. One should be 
aware that failing to adhere to HIE standards and regulations can result in various 
repercussions. These repercussions can be legal liabilities, data breaches, a loss of 
patient confidence, and reputational harm. Financial penalties and the loss of busi-
ness possibilities are also further consequences of noncompliance.
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8.4  �Solar Energy Power Plant Management System

Solar power plants represent a key tool for developing a new long-term sustainable 
energy generation model that is completely eco-friendly. The Earth receives solar 
energy in the form of light and heat. Solar power plants convert these energy forms 
from the sun into electricity. Depending on how the solar plant harnesses sun energy, 
there are two main types of solar plants: solar thermal power plants and solar pho-
tovoltaic plants. The photovoltaic technology will directly convert the sunlight into 
electricity, while the solar thermal technology will capture the heat of the sun.

	1.	 Solar Thermal Power Plants: Solar thermal plants use a conventional thermody-
namic cycle to convert solar energy into electricity, unlike thermal power plants, 
which use fossil fuels. It concentrates the solar radiation on a small area by plac-
ing mirrors or lenses over a large area. Due to this, a huge amount of heat is 
generated at the focused area, which is used to heat a fluid until it is converted 
into steam. The steam is then fed to a turbine, where the thermal energy is con-
verted to mechanical energy. This mechanical energy is used to run the alterna-
tor, which generates electricity. Once the thermodynamic cycle has been 
completed, the steam is returned to a condenser, where it recovers its liquid state, 
and the process is repeated.

This method is difficult and is not efficient in producing electrical power on a large 
scale. Figure  8.14 gives the schematic to show how a solar thermal power 
plant works.

There are two main types of solar thermal power plants:

	 (i)	 Central Tower Solar Thermal Power Plant: It consists of a tower of large 
mirrors called heliostats. These are capable of changing direction to capture 
the maximum solar radiation and concentrate the mirrors on a specific point. 
The heat so generated is then transmitted to a thermally conductive fluid, 

Fig. 8.14  Schematic diagram of a solar thermal power plant
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which is converted to steam due to the rise in temperature. This starts a ther-
modynamic cycle to generate the electricity.

	 (ii)	 Collector Solar Thermal Power Plant: It uses high-temperature collectors to 
capture sunrays. The collectors are concave mirrors that are mounted on a 
structure that allows their position to be modified to increase the intensity of 
the solar radiation, reaching temperatures greater than 250 °C. It also then 
uses the conventional thermodynamic cycle to generate electricity.

	2.	 Solar Photovoltaic Power Plant: A solar photovoltaic (PV) power plant is based 
on light energy from sun rays. It works on the principle of the photovoltaic effect, 
which produces direct current electricity. It uses panels consisting of photovol-
taic solar cells made of silicon (monocrystalline or polycrystalline solar panels) 
or other materials with photovoltaic properties (amorphous solar panels). The 
solar panels are connected in parallel and are connected to a current inverter, 
where the direct current coming from the photovoltaic cells is transformed into 
alternating energy. The electricity is then directed to a transformer that changes 
the voltage so that it can be transported through the electrical grid lines to the 
consumption centers.

There are three types of photovoltaic systems according to their implementation.

	 (i)	 PV Direct Systems: These systems supply the load only when the Sun is 
shining. These systems do not have batteries and hence provide no storage 
for the power generated. An inverter may or may not be used depending on 
the type of load. If the load is AC, then an inverter is provided.

	 (ii)	 Off-Grid Systems or Standalone Systems: The off-grid system is an inde-
pendent power plant. It is not connected to the grid. This type of system is 
used at locations where power from the grid is not available or not reliable, 
such as forests and hilly areas. It consists of solar panel arrays, storage bat-
teries, and inverter circuits. Generally, this type of system is not used to 
generate electrical power in bulk amounts. This type of plant is used to 
sustain small loads.

The standalone system can be categorized as below, based on the configuration 
and the components used in the system.

•	 Direct-coupled standalone system
•	 Standalone system with battery storage
•	 Standalone system with batteries and charge controller
•	 Standalone system with AC and DC loads
•	 Hybrid standalone system

	 (iii)	 Grid-Connected Systems: These solar power systems are connected to a 
grid and are generally used for generating bulk power. They typically use a 
large number of solar panels. As they are connected to the grid, the output 
frequency and voltage must be matched with the grid’s frequency and 
voltage for proper functioning. The energy generated from the plant is 
transmitted to the load using the grid.
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Figure 8.15 gives the generic schematic to show how a solar photovoltaic power 
plant works. The components that are optional based on the type of PV solar plant 
it is are marked in the diagram.

8.4.1  �Best Practices for Solar Power Plant Management

Managing a solar power plant is a difficult task as it consists of a complex system of 
components that must work together seamlessly to ensure optimal performance. For 
our use case, we will consider a management system for a PV solar power plant 
connected to the grid. The components of a typical grid-connected solar power plant 
are shown in Fig. 8.16. They are a PV array, inverter, battery, transformer, and moni-
toring system (typically located remotely).

The array of solar panels is a key component of the system that needs to be man-
aged. The solar panel is responsible for capturing sunlight and converting it into 
electricity. The efficiency of the panel is critical to the overall performance of the 
system. It is important to ensure that it is properly maintained and cleaned to maxi-
mize its output.

The inverter is responsible for converting the direct current (DC) energy gener-
ated by the solar panels into alternating current (AC) energy that can be used to 
power appliances and other electrical devices. It is a critical component for the 
operation of the power plant. If it fails, then the whole system will come down.

Fig. 8.15  Schematic diagram of a solar photovoltaic power plant
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Fig. 8.16  Components of PV grid-connected solar power plant

Battery storage allows excess energy generated by the solar panels to be stored 
and used later. This is particularly useful during times when there is low sunlight or 
during power outages. Note that battery life is affected by the operating conditions 
and number of charging cycles. The charging capacity should be monitored, and 
batteries may need to be replaced over time.

The transformer is used to connect the power plant to the grid so that electricity 
generated by the plant can be transmitted to the end consumer of the energy.

Monitoring and control systems provide real-time data on the performance of the 
solar panels, inverter, and battery storage, allowing for proactive maintenance and 
troubleshooting. This helps to ensure that the system operates at optimal levels, 
maximizing energy output and minimizing downtime.

The goal of the PV solar power plant management system is to reduce the cost 
and improve the effectiveness of operations and maintenance (O&M) and energy 
storage systems. In addition, the system should also include asset management, 
monitoring, operations, preventive maintenance, corrective or condition-based 
maintenance (repair), and end-of-performance period (disposition).

For the management system to operate effectively, it should be able to collect 
data from the various components of the power plant. It should also be able to guide 
the field staff to carry out regular checks of the PV panels and associated components.

Some of the requirements of the system are:

	 (i)	 PV Panel Checking/Monitoring: Solar panels are exposed to open air, making 
them susceptible to airborne particles, fallen leaves, debris, bird dropping, 
snow, and buildups of ice. These accumulations make cleaning solar panels 
mandatory; they can reduce energy production by blocking the reception of 
sun rays.
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	(ii)	 Inverter Monitoring: The inverter also needs to be monitored regularly as it is 
a critical component of the plant, and its failure can lead to total shutdown of 
the plant.

	(iii)	 Battery Storage Monitoring: The performance of the battery bank should be 
monitored constantly to ensure it is performing as expected. If there is any 
deviation, the system should be able to identify the fault and replace the faulty/
failing battery.

	(iv)	 Transformer Monitoring: The parameters of the transformer, such as operating 
temperature, oil temperature, winding temperature, and oil level, should be 
monitored to ensure that it is working properly.

Table 8.6 provides a template to capture the system requirements. The require-
ments should be categorized as follows:

•	 Base requirements
•	 Security requirements
•	 Reporting and analytics requirements
•	 Usability requirements
•	 Audit requirements

The nonfunctional requirements should be captured separately using the format 
given in Table 8.4. Using functional and nonfunctional requirements, a traceability 
matrix can be prepared. The matrix can be used throughout the project to ensure that 
development is as per the requirements.

There is a need to document the guiding principles for the design of the system. 
They can be used for defining the architecture and design of the system. Guiding 
principles should address issues related to interoperability, industry standards, secu-
rity, social responsibilities, etc.

Some of the guiding principles for the solar power plant management system 
(SPPMS) are given below. It is not a complete and exhaustive list but includes 
guidelines that have maximum impact:

	1.	 SPPMS should improve the efficiency of energy generation at the solar 
power plant.

	2.	 SPPMS should incorporate the best practices for data presentation, quality of 
monitoring equipment, and transparency of measurement protocols and 
procedures.

	3.	 SPPMS should have good reporting capability to obtain value from monitoring 
data. This will enable the analysis of data using advanced algorithms and analyt-
ics that can be used by plant operators.

	4.	 The system should use the instrumentation, sensors, and actuators based on the 
performance measurement model used, the required accuracy, and other consid-
erations to improve performance.

	5.	 SPPMS should have an integrated dashboard that can display iterative measure-
ments to operations managers and experts. This will enable experts to improve 
energy efficiency and detect problems by visualizing subsystems.
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Fig. 8.17  Conceptual architecture of solar power plant management system

	6.	 SPPMS should be based on open systems and industry standards for information 
and data communication. Scalability is also critical, and the system should be 
able to accommodate future expansions, additional sensors, and technological 
advancement.

8.4.2  �Defining the Solar Power Plant Management 
System Architecture

As mentioned earlier, the objective of a PV solar power plant management system 
is to reduce the cost of energy generation and maintenance. The system should also 
be able to improve asset management, monitoring, and preventive maintenance to 
reduce system downtime.

For the management system to operate effectively, it should be able to collect 
data from the various components of the power plant, analyze it, and initiate actions 
based on the data analysis.

To meet these objectives, the architecture of the system should be modular and 
flexible to accommodate new technology and protocols. Figure 8.17 shows the con-
ceptual architecture meeting these requirements. It consists of five layers each hav-
ing a definitive function to perform. The functions of various layers in the 
architecture are:

	1.	 Physical Layer: It uses sensors and meters for data collection regarding the 
atmospheric condition, PV solar panel performance, electricity generation, 
inverters, transformers, and electricity being transferred to the grid.
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	2.	 Automation Layer: It uses electronic control systems and processors to ensure 
that solar plant equipment is operating at optimal performance. It gives suitable 
commands to actuators to take necessary action for optimal operations.

	3.	 Communication Layer: Solar power plants are generally located at remote loca-
tions and need to be connected to the central command and control center con-
tinuously. The communications ensure that there is always a fast, secure, and 
reliable connection maintained between the plant and the control center. It also 
handles the communication among various components of the solar power plant. 
The layer should support open standards and protocols for interoperability and 
ensure that all external communication from the system is encrypted.

	4.	 Intelligence Layer: It performs data analysis on data collected from the sensors. 
It uses advanced machine learning algorithms and predictive analysis for plant 
maintenance. It helps to identify anomalies to prevent catastrophic failures or 
other costly issues before they occur. It also forecasts the remaining useful life 
of assets.

In addition to preventing asset failure, these AI-driven insights help operators to 
optimize energy generation, compare asset performance, and diagnose anoma-
lies. It helps the power plants to stay in regulatory compliance and help meet 
contractual obligations by enabling better asset and process outcomes. This layer 
is typically implemented in the Cloud but may be available at the Edge if 
required.

	5.	 Management Layer: This layer provides the user interface and reporting func-
tionality to the users (covering both service providers and end users). It allows 
the operators at the control center to visualize data to increase operational aware-
ness and collaboration across functional departments. The system generates 
reports on energy generated, cost savings, and environmental impacts. It is pos-
sible to use these reports to track progress over time and to make data-driven 
decisions to further optimize the operations of the solar plant.

8.4.3  �System Design for Efficient Plant Management

The goal of a PV solar power plant management system is to increase the efficiency 
of energy generation while reducing the cost of operations and maintenance. It 
should cover all components of the solar plant, including energy storage systems. 
The system should also include asset management, monitoring, operations, preven-
tive maintenance, corrective maintenance (repair), and disposition or replacement 
of the equipment.

The solar power plant management system should provide an integrated view of 
the operations. It is good practice for the system to provide the following function-
alities at the minimum:

•	 Archive complete plant documentation for upkeep and reference.
•	 Monitor the dashboard with actual performance compared to expected for the 

day, month, or year.
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•	 Customer/plant interaction tracking logs.
•	 Ticket or incident tracking.
•	 Mobile work-order flow management and documentation systems.
•	 Budget tracking.
•	 Workflow and decision support system.
•	 Asset Management.
•	 Integration and interoperability with the existing enterprise applications.

Standard data encryption techniques should be employed to protect the confiden-
tiality and integrity of the data in transit over wide area networks. Onsite data stor-
age is required to prevent data loss during communication network outages. It is 
recommended to have an onsite capacity for 6 months of data storage.

The system must standardize trouble-report code definitions, corrective actions 
taken, and results for auditing. This allows more definitive tracking of cause and 
effect, repetitive problems, and corrective action taken. This also leads to better 
operating efficiencies, better preventive techniques, and the identification of large-
scale equipment problems.

The system should be designed based on the best practices for

•	 Monitoring
•	 Maintenance and measurement checklists
•	 Open standards
•	 Data presentation
•	 Machine learning and predictive analytics

8.4.3.1  �Monitoring

Monitoring is an important aspect of solar plant operations. The objective of the 
monitoring should be to provide enough information to evaluate the number of solar 
resources available and the losses in each energy conversion process.

While designing the monitoring system, it is important to recognize that data is 
valuable and should be protected by appropriate measures. It should be established 
clearly who owns the monitoring data, who will access it, and for what purposes. In 
a monitoring system, one must take care that the system meets these basic 
requirements:

•	 Transparency of measurement protocols and procedures
•	 Ability to audit measurement protocols and procedures
•	 Ability to maintain hardware and software by a variety of service providers, 

including calibration and servicing requirements
•	 Ability of systems to share information with stakeholders securely
•	 Ability to ensure “operational continuity” (backup and restore)
•	 Support of third-party access for custom application development
•	 Security of software and applications
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In addition, the system should have the capability to analyze data to evaluate 
solar power plant performance. It should be able to measure the following key per-
formance indicators (KPIs) [22] at the minimum:

	1.	 Specific Yield: Specific yield (kWh/kWp) is the energy (kWh) generated per 
kWp module capacity installed over a fixed period. For example,

	
Daily specific yield Daily energy capacitykWh kWp DC/ /� � � 	

It indicates the number of full equivalent hours a plant produced energy during a 
specific time frame. The specific yield can be used for comparison of the produc-
tion of a plant with different power plants or even different power production 
technologies. By comparing inverter-level-specific yields within a power plant, 
it is possible to detect which of the inverters is performing better than others.

	2.	 Capacity Utilization Factor: Capacity utilization factor (CUF) is the output of 
the plant compared to the theoretical maximum output of the plant in a specific 
period. For example,

	
Daily Daily energy Plant capacityCUF kWh kWp% /� � � � � � ��� �24

	

	
Yearly Year energy Plant capacityCUF kWh kWp% /� � � � � � �� �� �24 365

	

	3.	 Performance Ratio: Performance ratio (PR) is indicated in percentage. It is the 
ratio between the actual and theoretical energy outputs of the PV plant. It indi-
cates the proportion of the energy that is available after the deduction of energy 
loss (e.g., due to thermal losses and conduction losses).

8.4.3.2  �Maintenance and Measurement Checklists

Maintenance of solar plants is critical for proper operations. Maintenance covers all 
components of the plant, including the cleaning of solar panels. If panels are not 
clean, then they impact the generation capacity of the plant. The impact on genera-
tion capacity can be reduced by periodic cleaning of the solar panels. The system 
should have provision to keep a complete record of the cleaning process, covering 
details like date, panels cleaned, and any problems that were identified during the 
cleaning process.

In addition, the system should maintain a standardized inspection checklist for 
the components. The system should record the details related to the inspection being 
carried out by the team. The checklist below for inspecting the components is not 
comprehensive but covers most of the items to be inspected. It can be customized to 
meet specific requirements of an installation.

	1.	 Photovoltaic Modules (Solar Panels)
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•	 Inspect modules for damage.
•	 Address array shading issues.
•	 Adjust array tilt for optimal sun exposure.

	2.	 Mounting Systems

•	 Ensure proper functioning of the solar panel mounting system.
•	 Check for cracks or damage.

	3.	 Solar Charge Controllers

•	 Check the functioning of solar charge controllers.
•	 Inspect for any visible damage.
•	 Verify the tightness of electric connections.

	4.	 Energy Storage System
Inspection and testing of energy storage systems are required to ascertain the actual 

capacity over time. The checklist items include:

•	 Noninvasive tests such as impedance and voltage testing.
•	 Internal resistance/impedance.
•	 Voltage measurements.

–– Local-test batteries to assess performance.
–– Inspect the battery enclosure for any issues.
–– Inspect battery terminals and connections.

	5.	 Inverter

•	 Inspect the interior cabinet for dust or debris.
•	 Verify the proper functioning of the inverter.
•	 Check for any signs of damage.

The system should maintain a history of the inspection of different components 
so that an analysis can be done to diagnose problems that require corrective mainte-
nance or replacement of the components. The machine learning and analytics layer 
of the system carries out these analyses.

8.4.3.3  �Open Standards

The selection of correct components and instruments is critical for the proper func-
tioning of the plant. The component requirements may vary depending on the per-
formance measurements, the model used, the required accuracy, and other 
considerations. The system should be developed using open standards for informa-
tion and data communications.

The open standards must be used for the following four processes to ensure scal-
ability and interoperability.

	1.	 Device communication and plant sensor readings

8.4  Solar Energy Power Plant Management System
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	2.	 Data collection and storage at the plant
	3.	 Information transmission from the plant to the information database
	4.	 Information access to the database from applications

Additionally, it is important to maintain transparency of procedures being imple-
mented in the system.

8.4.3.4  �Data Presentation

The data collected from the sensors should be of good quality. Data anomalies, such 
as missing data or highly inaccurate instrument readings for some time, should be 
highlighted immediately so that they do not skew the reported results.

A good data presentation of the collected data is equally important for the sys-
tem. The reporting system should be powerful to extract meaningful insights into 
the functioning of the power plant. It should have accurate performance measure-
ments, the ability to easily pinpoint issues, and prompt, cost-effective repair of any 
defects.

Reports should include the following information:

•	 Site name, location, size of PV plant, and other reference information.
•	 Insolation (onsite or satellite data, plane of array, kWh/m2), temperature (ambi-

ent, module).
•	 Real power and energy delivery (kW, kWh).
•	 Peak power delivery (kW).
•	 Other advanced meter data, such as reactive power (kVAR).
•	 Estimate of power that should have been produced and performance ratio.
•	 Time-based and energy-based availability.
•	 Inverter efficiency.
•	 Operations and maintenance plans should be built to notify actionable personnel 

on critical production or safety issues at the earliest.
•	 Fire alarms and intrusion detection alarms should be sent out immediately to the 

on-call personnel.

An Internet-accessible portal should be available with facilities to download raw 
data and a user-configurable dashboard with charts and tables to interpret this data. 
It increases operational awareness and collaboration across functional departments.

A data visualization tool lets users tap into a wide variety of data to create graph-
ical displays or conduct ad hoc analyses to get insights into plant operations. It 
increases efficiency, resiliency, and sustainability by providing fast, easy, and secure 
access to real-time or historical data.

The system should provide reliable data backup and storage. The best practice is 
to store data from the logger for 6  months and then back up the data to Cloud 
storage.

8  Intelligent Edge Computing: Design Use Cases
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8.4.3.5  �Machine Learning and Predictive Analytics

Traditionally, the maintenance strategies are reactive and rely on visualization and 
alerting tools to identify a problem after it has occurred.

With advancements in machine learning, it is possible to identify anomalies by 
using deep learning tools to prevent catastrophic failures or other costly issues 
before they occur. The system should have deep learning tools to analyze the data 
collected from monitoring the components to forecast the remaining useful life of 
the assets. This will enable teams to manage maintenance plans based on urgency, 
criticality, and spare parts availability.

Machine learning algorithms and data analytics tools should provide teams with 
critical information based on analysis, such as (i) how to trade off costs versus risk 
and (ii) how to devise plans that maximize efficiency and profitability. The analytics 
should be able to determine how even subtle changes will influence asset perfor-
mance based on user-defined operating criteria. The information also helps compa-
nies optimize energy use, compare asset performance, and diagnose anomalies.

These inputs are critical for power companies to stay in regulatory compliance 
and meet contractual obligations by enabling better asset and process outcomes. It 
also allows maintenance and engineering teams to work together proactively to 
evaluate assets before they fail, optimize maintenance schedules, and ensure that the 
best teams and resources are available to minimize downtime and disruptions.

8.5  �Summary

Edge computing is becoming critical for developing scalable, efficient, and sustain-
able systems as it reduces latency, costs, and security risks. In this chapter, we have 
discussed three use cases for building energy management systems, medical data 
sharing among healthcare providers, and solar energy power plant management 
from a design perspective. For each use case, the best practices for designing the 
system, its architecture, and design have been described. These use cases should 
help any person who wishes to design an intelligent Edge computing application. It 
is important to follow these best practices and ensure that the system is designed 
based on industry standards and uses open protocols. The system should be designed 
for interoperability with other systems and devices. It should use design patterns to 
ensure it is easily implementable and compliant with regulatory requirements.

8.6  �Points to Ponder

	1.	 What are the obstacles in managing energy efficiently in intelligent buildings?
	2.	 What data inputs does BEMS provide that lead to building operations insights?

8.6 � Points to Ponder
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	3.	 A physician wants to quickly send patient data anonymously to an external spe-
cialist, e.g., a neurologist at a hospital, for consultation and advice. How it can 
be done?

	4.	 A healthcare software provider is developing a machine learning model that 
needs to be trained on large, well-designed, well-labeled, diverse, and multi-
institutional datasets to mitigate racial and socioeconomic biases. How it can be 
achieved?

	5.	 Why is solar energy considered one of the best alternatives to fossil fuel-based 
energy? What are some of the popular use cases for solar energy?

	6.	 What factors should be considered while designing a solar power plant manage-
ment system to have maximum solar panel efficiency?

8.7  �Answers

	1.	 What are the obstacles in managing energy efficiently in intelligent buildings?
Three of the biggest obstacles in intelligent building energy management systems 

(BEMS) are:

•	 BEMSs need to provide a certain degree of comfort to building occupants, as 
every person has a different idea about what a comfortable environment feels 
like. Creating a comfortable environment and increasing energy efficiency 
are often seen as conflicting goals, especially in commercial high-rise 
buildings.

•	 Lack of service contracts is an obstacle. Without service contracts in place 
that can address small but necessary repairs, small issues can easily turn into 
much bigger problems.

•	 Competing interests between building owners and tenants, or even between 
different tenants, can make energy management more difficult. Generally, 
those paying the utility bills will seek energy-efficient solutions that lower 
costs, while occupant businesses prioritize the comfort of employees and 
clients.

	2.	 What data inputs does BEMS provide that lead to building operations insights?
Some of the data inputs provided by BEMS that will lead to insights include:

•	 Total energy consumption of systems and equipment connected to the electri-
cal network: Some of the systems are always operational, while other pieces 
of equipment and machinery may be connected only occasionally. BEMS 
provides both the total daily electrical consumption of the building and the 
role individual devices play in the overall energy usage.

•	 Occupants’ behavior: Activity levels, behavior patterns, and comfort prefer-
ences of occupants are considered for all energy efficiency measures. BEMS 
provides this insight to formulate saving strategies.

8  Intelligent Edge Computing: Design Use Cases
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•	 Energy usage patterns: BEMS provides the pattern of how and when the 
building uses energy. Reshaping these patterns is a key to cost reduction 
strategies.

•	 Utility time of use charges: BEMS provides insights into the timings of usage 
of various equipment. Shifting energy usage away from high-priced periods 
set by utility companies is a common way to generate savings.

•	 Cyclical or seasonal factors: Over time, BEMS captures information about 
the building’s energy consumption patterns. The analytics module can con-
sider these when generating proposed solutions.

•	 Weather data: Weather conditions can have a direct impact on energy use, 
specifically as it relates to HVAC systems. Collecting, compiling, and analyz-
ing weather data enables BEMS to be proactive about HVAC energy con-
sumption, especially on hot or cold days.

	3.	 A physician wants to quickly send patient data anonymously to an external spe-
cialist, e.g., a neurologist at a hospital, for consultation and advice. How it can 
be done?

The physician can automatically anonymize identifiable personal information, such 
as name, medical number, or address, in medical reports, protocols, doctor’s let-
ters, and images and videos before sending them to third parties. It is a best 
practice to remove personal information before the data is shared.

For example, the personal medical data is:

Name: Mary Andrew
Address: 111 La Strada, Rome, Italy
Date of birth: 23 February 1986
Sex: Female
Medical conditions: Asthma

Medical data with personal information removed will look like this:

Case number: 1
Area of residence: Rome, Italy
Age group: 35–40 years
Sex: Female
Medical conditions: Asthma

	4.	 A healthcare software provider is developing a machine learning model that 
needs to be trained on large, well-designed, well-labeled, diverse, and multi-
institutional datasets to mitigate racial and socioeconomic biases. How it can be 
achieved?

It can be achieved by using the federated learning model. Federated learning is a 
paradigm for training ML models when decentralized data are used collabora-
tively under the orchestration of a central server [23]. The process is shown in 
Fig. 8.18.

In contrast to centralized training, where data from various locations is moved to a 
single server to train the model, federated learning allows for the data to remain 
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in place. At the start of each round of training, the current copy of the model is 
sent to each location where the training data are stored. Each copy of the model 
is then trained and updated using the data at each location. The updated models 
are then sent from each location back to the central server, where they are aggre-
gated into a global model. The subsequent round of training follows, the newly 
updated global model is distributed again, and the process is repeated until the 
model converges or training is stopped.

The data never leaves a particular location or institution, and only individuals asso-
ciated with an institution have direct access to its data. This mitigates concerns 
about privacy breaches, minimizes costs associated with data aggregation, and 
allows training datasets to quickly scale in size and diversity.

	5.	 Why is solar energy considered one of the best alternatives to fossil fuel-based 
energy? What are some of the popular use cases for solar energy?

Solar energy is a clean and renewable energy source harnessing power from the sun 
without producing harmful pollutants or greenhouse gases. It is an almost inex-
haustible source of energy. Solar energy has many advantages that make it popu-
lar as an alternate source of energy:

•	 Once installed, solar panels have relatively low operating and mainte-
nance costs.

•	 Distributed solar power generation can enhance grid stability by reducing the 
need for centralized power plants and long-distance transmission lines.

Fig. 8.18  Cross-silo federated learning for healthcare [24]
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•	 Solar energy systems are scalable and adaptable to various needs, from small 
installations to large utility-scale solar farms.

•	 Solar power allows individuals, businesses, and communities to generate 
their electricity, leading to reduced dependence on traditional utility grids.

Some of the popular applications of solar energy are:

•	 Solar water heating
•	 Solar distillation
•	 Solar heating of buildings
•	 Solar pumping
•	 Solar furnaces
•	 Solar greenhouses
•	 Solar cooking
•	 Solar electric power generation

However, solar energy requires the Sun to shine and be visible for energy generation.
	6.	 What factors should be considered while designing a solar power plant manage-

ment system to have maximum solar panel efficiency?
The management system should consider the following factors that affect the effi-

ciency of solar cells:

•	 Temperature: Due to the intrinsic characteristic of the semiconductor mate-
rial, solar cells’ efficiency depends on the ambient temperature. The effi-
ciency of solar cells is high at lower temperatures and reduces as the 
temperature increases.

•	 Sun Intensity: The intensity of the sun varies throughout the day. It is maxi-
mum in the afternoon and lower during evening and morning time. The effi-
ciency of solar cells is maximum in the afternoon. The system should ensure 
the position of the panel in such a way that it gets the maximum sun through-
out the day.

•	 Solar Shading: The efficiency of solar cells is highly dependent on solar shad-
ing. On a cloudy, rainy day, the solar cells do not generate energy at full 
capacity.

•	 Reflection: The solar cell works on the principle of photon energy. If the light 
is reflected away from the cell surface, the cell will not function optimally. To 
avoid this situation, an antireflection coating is used on the surface of the 
solar cells.

•	 Cleaning of PV Panels: The cleanliness of PV panels impacts the plant’s gen-
eration capacity. The impact on generation capacity can be reduced by peri-
odic cleaning of the solar panels. The system should have provisions to keep 
a complete record of the cleaning process.
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Chapter 9
Role of Regulatory

9.1  �Introduction

The regulatory landscape for Edge AI, while still evolving, overlaps with the broader 
AI regulatory ecosystem but also presents some unique challenges. These chal-
lenges pertain to how existing regulations and emerging considerations apply to 
Edge AI. The role of existing regulatory bodies as applied to AI Edge computing is 
crucial to ensuring ethical, legal, and responsible development and deployment of 
AI technologies. As AI is increasingly integrated into Edge devices, regulatory 
frameworks become essential to address potential risks and ensure accountability. 
Here is a detailed exploration of the role of regulatory bodies in the context of AI 
Edge computing.

9.1.1  �Early Stages

In the early stages of AI Edge computing, regulatory bodies began to recognize the 
potential of these technologies and the need for a regulatory framework to address 
their unique challenges.

9.1.2  �Key Regulatory Considerations

Regulatory considerations span domains of data protection and privacy, security 
standards, interoperability and standards, ethical and responsible AI, and human 
rights and bias mitigation. We shall cover each of these in detail below.
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9.1.2.1  �Data Protection and Privacy

Regulatory bodies, especially those focused on data protection and privacy, such as 
the FDA [1, 2], play a crucial role in defining guidelines for handling personal and 
sensitive data at the Edge. The General Data Protection Regulation (GDPR) [3, 4] 
in the European Union and the California Consumer Privacy Act (CCPA) [5] in the 
USA are examples of regulations that emphasize the rights of individuals in data 
processing.

9.1.2.2  �Security Standards

Regulatory bodies are responsible for establishing security standards to safeguard 
AI Edge computing systems from cyber threats and unauthorized access. These 
standards help ensure the integrity, confidentiality, and availability of data processed 
at the Edge.

9.1.2.3  �Interoperability and Standards

Regulatory efforts focus on promoting interoperability and setting standards for AI 
Edge computing systems. Standardization facilitates the seamless integration of 
diverse Edge devices, fostering a more cohesive and efficient ecosystem.

9.1.2.4  �Ethical and Responsible AI

Regulatory bodies such as the FTC [6], FDA, and FCC [7] are increasingly inter-
ested in promoting ethical and responsible AI practices. Guidelines may include 
principles such as fairness, transparency, accountability, and inclusivity in the 
development and deployment of AI at the Edge.

9.1.2.5  �Human Rights and Bias Mitigation

Regulators work toward ensuring that AI Edge computing technologies respect fun-
damental human rights. Efforts are made to address biases in AI algorithms, espe-
cially those that may lead to discriminatory outcomes.

9  Role of Regulatory
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9.1.3  �Evolving Regulatory Landscape

This refers to the continuous changes and developments in laws, regulations, and 
policies such as security that govern various industries and sectors. This landscape 
is influenced by factors such as technological advancements, societal trends, eco-
nomic conditions, geopolitical shifts, security, and emerging risks.

Security for some medical companies using Cloud computing, patient data col-
lected in Europe contains Protected Health Information (PHI) [8], but it cannot be 
brought to servers in the USA for processing under existing laws. This leaves com-
panies with two options. Either they move their intellectual property and crown 
jewel algorithms to Europe, thereby exposing them to potential leakage. Else, the 
company has to de-identify/anonymize patient data when bringing it to the USA for 
processing, and results are taken back to Europe for re-identification. This adds 
considerable overheads that include latency and data input-output (I/O) expense. 
There is an ongoing effort to evolve the laws so that healthcare businesses can con-
tinue to serve their patients.

9.1.3.1  �Adaptability to Technological Advances

Regulatory bodies must maintain flexibility and adaptability to keep pace with the 
rapid evolution of AI Edge computing technologies. As new capabilities and use 
cases emerge, regulations need to be updated to address novel challenges.

9.1.3.2  �International Collaboration

Given the global nature of AI Edge computing, regulatory bodies often engage in 
international collaboration. This involves harmonizing standards and regulations to 
create a cohesive framework that spans borders, fostering innovation while ensuring 
global compliance.

9.1.4  �Enforcement and Compliance

This consists of Enforcement Mechanisms and Corporate Accountability as 
detailed below.

9.1  Introduction
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9.1.4.1  �Enforcement Mechanisms

Regulatory bodies establish enforcement mechanisms to ensure compliance with AI 
Edge computing regulations. This may involve audits, inspections, and penalties for 
noncompliance to deter unethical or illegal practices.

9.1.4.2  �Corporate Accountability

Regulators hold organizations accountable for the ethical use of AI at the Edge. 
Companies are encouraged to adopt transparent practices, conduct impact assess-
ments, and implement measures to address potential risks associated with their AI 
systems. Companies are also encouraged to involve independent industry reviewers 
for better transparency.

9.1.5  �Challenges and Future Directions

Regulations are evolving continuously as detailed below.

9.1.5.1  �Regulatory Challenges

Regulatory bodies face challenges in keeping up with the rapid pace of technologi-
cal advancements, the global nature of AI Edge computing, and the need to strike a 
balance between promoting innovation and safeguarding public interests.

9.1.5.2  �Continued Evolution

The regulatory landscape for AI Edge computing will continue to evolve. Future 
regulations may focus on emerging issues such as explainability, accountability of 
autonomous systems, and the ethical use of AI in mission-critical sectors like 
healthcare and finance.

In conclusion, the role of regulatory bodies in AI Edge computing is multifac-
eted, encompassing data protection, security, ethical considerations, and interna-
tional collaboration. A well-defined regulatory framework ensures that the 
deployment of AI at the Edge aligns with societal values, protects individual rights, 
and fosters innovation in a responsible and accountable manner.

9  Role of Regulatory
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9.2  �Federal Trade Commission

The Federal Trade Commission (FTC) is an independent agency of the US govern-
ment established in 1914 by the Federal Trade Commission Act [6]. The FTC serves 
as the primary federal agency responsible for protecting consumers and promoting 
competition in the marketplace. The FTC’s mission is to prevent unfair or deceptive 
trade practices, maintain competition, and enforce antitrust laws to ensure a level 
playing field for businesses and consumers.

9.2.1  �Historical Background

The FTC was established in response to concerns about unfair business practices, 
monopolistic behavior, and deceptive advertising prevalent in the early twentieth 
century. The Federal Trade Commission Act empowered the FTC to investigate and 
prosecute unfair methods of competition and unfair or deceptive acts or practices in 
commerce. Over the years, the FTC has evolved to address new challenges and 
emerging issues in the marketplace, including the rise of the digital economy, glo-
balization of commerce, and technological advancements.

9.2.2  �Key Functions and Responsibilities

Consumer Protection  One of the primary functions of the FTC is to protect con-
sumers from unfair, deceptive, or fraudulent business practices. The FTC investi-
gates and takes enforcement actions against companies that engage in deceptive 
advertising, fraudulent marketing schemes, or other unfair trade practices. This 
includes false or misleading claims about products or services, deceptive pricing 
practices, and failure to disclose important information to consumers [9].

Competition Enforcement  The FTC enforces antitrust laws to promote competi-
tion and prevent anticompetitive behavior in the marketplace. This includes investi-
gating mergers and acquisitions that may harm competition, prosecuting 
anticompetitive conduct such as price-fixing or monopolization, and challenging 
anticompetitive practices in various industries. The FTC works to ensure that con-
sumers have access to a wide range of choices and that businesses compete fairly to 
offer the best products and services at competitive prices.

Consumer Education and Outreach  The FTC provides consumer education and 
outreach programs to empower consumers with information and resources to make 
informed decisions in the marketplace. This includes publishing consumer guides, 
educational materials, and online resources on topics such as identity theft, privacy 
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protection, credit reporting, and online safety. The FTC also conducts public aware-
ness campaigns and outreach events to raise awareness about consumer rights and 
responsibilities.

Privacy and Data Security  The FTC plays a leading role in protecting consumer 
privacy and data security in the digital economy. It enforces laws and regulations 
related to the collection, use, and sharing of consumer data by businesses and online 
services. The FTC investigates data breaches, identity theft, and other cybersecurity 
incidents and takes enforcement actions against companies that fail to protect con-
sumer information or engage in deceptive or unfair data practices.

Enforcement Authority  The FTC has broad authority to investigate and prosecute 
violations of consumer protection and antitrust laws. It can issue subpoenas, con-
duct investigations, file administrative complaints, and seek civil penalties, injunc-
tions, and other remedies against violators. The FTC also works closely with law 
enforcement agencies, regulatory bodies, and international partners to combat 
cross-border fraud, deceptive practices, and anticompetitive conduct.

Take the case of an enforcement action in July 2023 by the FTC related to illegal 
telemarketing calls to US consumers [10]. These were either personnel manually 
making the calls or devices at the Edge using Edge AI technologies including auto-
mated robocalls in humanlike voices. The intent was to falsely bait and dupe US 
consumers.

Here is another case of an enforcement action in April 2024 by the FTC related 
to employment [11]. FTC banned noncompete clauses from employment contracts 
even though it meant setting up a clash with businesses. Banning noncompete 
allows most employees to switch jobs between competing employers.

In summary, the FTC plays a vital role in safeguarding consumer interests, pro-
moting competition, and enforcing laws to ensure a fair and transparent market-
place. As the economy and technology continue to evolve, the FTC remains 
committed to its mission of protecting consumers and promoting competition to 
benefit all Americans. As we live in a connected world, FTC actions indirectly ben-
efit people living outside the USA too (e.g., scam calls in India).

9.3  �Food and Drug Administration

The Food and Drug Administration (FDA), founded in 1930, is a regulatory agency 
of the US Department of Health and Human Services responsible for protecting and 
promoting public health. This is through the regulation and supervision of food 
safety, dietary supplements, prescription, and over-the-counter pharmaceutical 
drugs. FDA’s purview includes medicines, vaccines, biopharmaceuticals, blood 
transfusions, medical devices, electromagnetic radiation-emitting devices (ERED), 
cosmetics, animal foods and feed, and veterinary products. The FDA also enforces 
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other laws, notably Section 361 of the Public Health Service Act [12, 13] and asso-
ciated regulations, many of which are not directly related to food or drugs. These 
include sanitation requirements on interstate travel and control of disease-carrying 
insects, rodents, and other pests. Additionally, the FDA is responsible for advancing 
public health by helping to speed innovations that make medicines more effective, 
safer, and more affordable. FDA also helps the public get accurate, science-based 
information they need to use medicines and foods to maintain and improve 
their health.

9.3.1  �Historical Background

The origins of the FDA can be traced back to the late nineteenth and early twentieth 
centuries, a time when concerns about food and drug safety were growing in the 
USA. The passage of the Pure Food and Drug Act in 1906 marked the first federal 
regulation of food and drugs, leading to the establishment of the Bureau of Chemistry 
within the Department of Agriculture. Over the years, the agency underwent several 
reorganizations and expansions, culminating in the creation of the FDA in its cur-
rent form.

Since then, the FDA has played a central role in shaping public health policy and 
protecting consumers from health risks associated with food, drugs, and other prod-
ucts. The agency has faced numerous challenges and controversies over the years, 
including drug safety scandals, foodborne illness outbreaks, and regulatory issues 
related to emerging technologies. Despite these challenges, the FDA has continued 
to adapt and evolve its regulatory framework to address new threats and promote 
public health.

In recent years, the FDA has focused on initiatives to modernize its regulatory 
processes, enhance transparency and communication with stakeholders, and pro-
mote innovation in healthcare. These efforts have included the implementation of 
new regulatory pathways for expedited drug approvals and the development of guid-
ance documents for emerging technologies such as digital health and gene therapy. 
FDA efforts further include expansion of regulatory oversight to address global 
health threats such as antimicrobial resistance and pandemic preparedness. FDA 
was effective in accelerating emergency use approval of COVID-19 vaccines [14].

9.3.2  �Key Functions and Responsibilities

Regulatory Oversight  One of the primary functions of the FDA is to regulate vari-
ous products to ensure their safety, efficacy, and quality. This includes setting stan-
dards, conducting inspections, and issuing approvals for products such as drugs, 
medical devices, and food items. The FDA regulates products throughout their life 
cycle, from development and testing to manufacturing and distribution.
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Product Approvals  The FDA reviews and approves new drugs, biologics, medical 
devices, and other products before they can be marketed and sold to the public. This 
process involves evaluating data from clinical trials and assessing the risks and ben-
efits of the product. The FDA may also require post-market surveillance to monitor 
the safety and effectiveness of approved products.

Labelling and Advertising  The FDA regulates the labeling and advertising of 
food, drugs, and other products to ensure that they are accurate, truthful, and not 
misleading. This includes requirements for product labeling, package inserts, and 
advertising materials. The FDA also monitors direct-to-consumer advertising and 
promotional activities to ensure compliance with regulations.

Inspections and Enforcement  The FDA conducts inspections of facilities involved 
in the manufacturing, processing, and distribution of regulated products to ensure 
compliance with regulatory standards. When violations are identified, the FDA may 
take enforcement actions, such as issuing warning letters, seizures, injunctions, or 
product recalls, to protect public health.

Public Health Education  The FDA provides information and resources to the 
public to promote health and safety. This includes consumer advisories, educational 
materials, and outreach campaigns on topics such as healthy eating, medication 
safety, and disease prevention. The FDA also collaborates with healthcare profes-
sionals, industry stakeholders, and other organizations to disseminate accurate and 
science-based information.

Research and Innovation  The FDA conducts research and fosters innovation to 
support its regulatory mission. This includes efforts to develop new regulatory 
approaches, evaluate emerging technologies, and improve scientific methods for 
assessing product safety and effectiveness. The FDA also collaborates with aca-
demic institutions, industry partners, and other government agencies on research 
initiatives.

9.3.3  �Regulatory Medical Device Classifications

The FDA categorizes medical devices into different classes based on the level of 
risk they pose to patients and the regulatory controls needed to provide reasonable 
assurance of safety and effectiveness. The FDA’s medical device classifications con-
sist of three main classes, namely class I, class II, and class III (Fig. 9.1). They are 
described in detail below [15, 16].

Class I Medical Devices
Class I devices are considered low risk and are subject to the least regulatory con-
trol. They are typically simpler in design, pose minimal potential harm to patients, 
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and are often well understood. Examples include tongue depressors, bandages, non-
powered wheelchairs, and elastic bandages. Most class I devices are exempt from 
the requirement of premarket notification, but they still need to comply with general 
controls, such as good manufacturing practices, labeling requirements, and registra-
tion with the FDA.

Class II Medical Devices
Class II devices are considered moderate risk and require greater regulatory control 
compared to class I devices. They may include devices that are more complex in 
design, have a higher potential for harm if used improperly, or are intended to sup-
port or sustain human life. Examples include infusion pumps, X-ray machines, cer-
tain types of catheters, and powered wheelchairs. Most class II devices require 
premarket notification through the 510(k) process. Manufacturers must demonstrate 
that the device is substantially equivalent to a legally marketed predicate device in 
terms of intended use, technological characteristics, and performance. Some class II 
devices may also require clinical data to support their safety and effectiveness.

Class III Medical Devices
Class III devices are considered high risk and are subject to the highest level of 
regulatory control. They are typically used to sustain or support life, are implanted 
into the body, or pose a significant risk of illness or injury. Examples include 
implantable pacemakers, heart valves, ventricular assist devices, and certain types 
of diagnostic imaging equipment. Class III devices require premarket approval 
(PMA) from the FDA before they can be marketed. This process involves a 

Fig. 9.1  FDA medical device classifications [15]
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comprehensive review of scientific evidence, including clinical data, to ensure the 
device’s safety and effectiveness. PMA is required for new devices or modifications 
to existing devices that raise new questions of safety or effectiveness.

Take the case of defective robotic procedure equipment being removed from the 
market due to the risks associated and harm to patients [17].

These classifications help ensure that medical devices are appropriately regu-
lated based on their potential risk to patients, and they guide manufacturers through 
the regulatory pathways necessary to bring their devices to market. Additionally, the 
FDA may also classify certain medical devices as “combination products” when 
they involve a combination of a medical device with a drug or biological product.

9.3.4  �Software as a Medical Device

Software as a Medical Device (SaMD) refers to software intended for medical pur-
poses that performs its intended function without being part of a hardware medical 
device [18, 19]. SaMD plays a crucial role in modern healthcare, offering innovative 
solutions for diagnosis, treatment, monitoring, and management of various medical 
conditions. Unlike traditional medical devices that rely on physical components, 
SaMD operates solely through software algorithms, data processing, and user inter-
faces. This distinction introduces unique regulatory considerations, as SaMD pres-
ents challenges related to safety, efficacy, and data security.

Overall, the FDA plays a critical role in safeguarding public health and promot-
ing the safety and effectiveness of food, drugs, and other products. Its regulatory 
authority extends across a wide range of industries and areas of public health, mak-
ing it one of the most influential and important regulatory agencies in the USA.

9.4  �Federal Communications Commission

The Federal Communications Commission (FCC) is an independent agency of the 
US government that regulates interstate and international communications by radio, 
television, wire, satellite, and cable. Established in 1934 by the Communications 
Act [20, 21], the FCC’s primary mission is to ensure that communication services 
are accessible, reliable, and affordable for all Americans while promoting competi-
tion and innovation in the telecommunications industry.
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9.4.1  �Historical Background

The FCC traces its origins to the Federal Radio Commission (FRC), established in 
1927 to regulate radio broadcasting in response to concerns about interference and 
chaos in the airwaves [22]. In 1934, Congress passed the Communications Act, 
which abolished the FRC and created the FCC as a successor agency with expanded 
authority to regulate all forms of interstate and international communication.

Since its creation, the FCC has played a central role in shaping the development 
of the communication industry and adapting to technological advancements and 
changes in the marketplace. It has overseen the transition from analog to digital 
broadcasting, the growth of cable and satellite television, the expansion of wireless 
and broadband Internet services, and the emergence of new communication tech-
nologies such as voice over IP (VoIP) and streaming media.

9.4.2  �Key Functions and Responsibilities

Spectrum Allocation  One of the FCC’s most significant responsibilities is the 
allocation and management of radio frequency spectrum. The FCC assigns frequen-
cies to various users, including broadcasters, wireless carriers, satellite operators, 
and government agencies, to prevent interference and ensure efficient use of the 
spectrum. It also licenses spectrum for commercial and noncommercial use through 
auctions and other mechanisms.

Licensing and Regulations  The FCC issues licenses and regulates broadcasters, 
telecommunications providers, cable operators, satellite providers, and other enti-
ties involved in the communication industry. It sets technical standards, licensing 
requirements, and operating rules to ensure that communication services meet qual-
ity and reliability standards and comply with applicable laws and regulations.

Media Ownership Rules  The FCC establishes rules and policies to promote 
diversity and competition in the media industry and prevent excessive consolidation 
of media ownership. It regulates ownership of broadcast stations, newspapers, and 
other media outlets to ensure that a diverse range of voices and viewpoints are avail-
able to the public.

Consumer Protection  The FCC protects consumers by enforcing rules and regu-
lations related to billing practices, service quality, privacy, and accessibility of com-
munication services. It investigates consumer complaints, takes enforcement actions 
against companies that violate consumer protection laws, and educates consumers 
about their rights and responsibilities.
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Public Safety and Homeland Security  The FCC plays a critical role in ensuring 
the reliability and resilience of communication networks during emergencies and 
national security events. It works with industry stakeholders, government agencies, 
and public safety organizations to develop and implement strategies for maintaining 
communication services during disasters, terrorist attacks, and other emergencies.

Promotion of Innovation  The FCC promotes innovation and investment in the 
communication industry by fostering competition, removing barriers to entry, and 
supporting research and development of new technologies. It encourages the deploy-
ment of advanced communication networks, such as 5G wireless and broadband 
Internet, to expand access to high-speed connectivity and drive economic growth.

In summary, the FCC plays a critical role in regulating and overseeing the com-
munication industry to promote competition, protect consumers, and advance pub-
lic policy goals such as universal access, public safety, and innovation. As technology 
continues to evolve and reshape the communication landscape, the FCC will face 
ongoing challenges and opportunities to adapt its regulatory framework and address 
emerging issues in the digital age.

9.5  �General Data Protection Regulation

The General Data Protection Regulation (GDPR) is a comprehensive data privacy 
and protection law that was enacted by the European Union (EU) in May 2018 [3, 
4]. It replaced the Data Protection Directive of 1995 and represents one of the most 
significant reforms in data protection regulation in recent years. The GDPR aims to 
harmonize data protection laws across EU member states, strengthen the rights of 
individuals regarding their personal data, and impose strict obligations on organiza-
tions that collect, process, or store personal data.

9.5.1  �Key Principles of GDPR

GDPR has the following key principles [23]:

Lawfulness, Fairness, and Transparency  Personal data must be processed law-
fully, fairly, and transparently. Organizations must have a legal basis for processing 
personal data, and individuals must be informed about how their data is being used.

Purpose Limitation  Personal data should be collected for specified, explicit, and 
legitimate purposes. Data should not be further processed in a manner that is incom-
patible with those purposes.
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Data Minimization  Organizations should only collect and process personal data 
that is adequate, relevant, and limited to what is necessary for the intended purpose.

Accuracy  Personal data must be accurate and kept up-to-date. Organizations are 
required to take reasonable steps to ensure that inaccurate or incomplete data is cor-
rected or erased.

Storage Limitation  Personal data should be stored in a form that permits identifi-
cation of individuals for no longer than is necessary for the purposes for which it is 
processed.

Integrity and Confidentiality  Organizations must implement appropriate techni-
cal and organizational measures. This is to ensure the security of personal data and 
protect it against unauthorized or unlawful processing, accidental loss, destruction, 
or damage.

Accountability  Organizations are responsible for complying with the principles of 
GDPR and must be able to demonstrate compliance through documentation, poli-
cies, and procedures.

9.5.2  �Key Rights of Individuals Under GDPR

Right to Access  Individuals have the right to obtain confirmation from organiza-
tions as to whether their personal data is being processed. If so, they also have the 
rights to access their personal data and obtain information about how it is being used.

Right to Rectification  Individuals have the right to request the correction of inac-
curate or incomplete personal data.

Right to Erasure (Right to Be Forgotten)  Individuals have the right to request the 
deletion or removal of their personal data in certain circumstances. An example of 
this is when the data is no longer necessary for the purpose for which it was col-
lected or when the individual withdraws their consent.

Right to Restriction of Processing  Individuals have the right to request the restric-
tion of processing of their personal data in certain situations. An example of this is 
when the accuracy of the data is contested or when the processing is unlawful.

Right to Data Portability  Individuals have the right to receive their personal data 
in a structured, commonly used, and machine-readable format. An example of this 
is the ability to transmit that data to another controller without hindrance.
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Right to Object  Individuals have the right to object to the processing of their per-
sonal data for direct marketing purposes or on grounds relating to their particular 
situation. Organizations must stop processing the data unless they can demonstrate 
compelling legitimate grounds for the processing that override the interests, rights, 
and freedoms of the individual.

9.5.3  �Key Obligations for Organizations Under GDPR

Data Protection Officer (DPO)  Some organizations are required to appoint a Data 
Protection Officer responsible for overseeing GDPR compliance.

Data Protection Impact Assessments (DPIAs)  Organizations must conduct 
DPIAs for processing activities that are likely to result in a high risk to the rights and 
freedoms of individuals.

Data Breach Notification  Organizations must notify the relevant supervisory 
authority of data breaches within 72 h of becoming aware of them, unless the breach 
is unlikely to result in a risk to the rights and freedoms of individuals.

Privacy by Design and Default  Organizations are required to implement techni-
cal and organizational measures to integrate data protection principles into the 
design of systems, products, and services. This is to ensure that only minimally 
necessary personal data is processed by organizations.

Data Transfers  Organizations must ensure that any transfer of personal data to 
countries outside the European Economic Area (EEA) is done in compliance with 
GDPR requirements, such as by implementing appropriate safeguards or obtaining 
explicit consent from individuals.

Consent  Organizations must obtain freely given, specific, informed, and unam-
biguous consent from individuals for the processing of their personal data. Consent 
must be easy to withdraw, and organizations must be able to demonstrate that con-
sent was obtained.

9.5.4  �Enforcement and Penalties

GDPR is enforced by National Data Protection Authorities (DPAs) in each EU 
member state, with the European Data Protection Board (EDPB) providing guid-
ance and coordination at the EU level. DPAs have the power to investigate com-
plaints, conduct audits, and impose administrative fines for violations of GDPR. Fines 
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can be significant, with penalties of up to €20 million or 4% of the organization’s 
global annual revenue, whichever is higher, for serious infringements.

9.5.5  �Impact and Global Reach

Although GDPR is an EU regulation, its impact extends far beyond the borders of 
the EU. Many organizations around the world are subject to GDPR if they process 
personal data of individuals located in the EU, regardless of where the organization 
itself is based. GDPR has influenced data protection laws and regulations in other 
jurisdictions, and its principles have become widely recognized as best practices for 
data privacy and protection globally.

In summary, GDPR represents a comprehensive framework for protecting the 
privacy and rights of individuals in the digital age. By establishing clear principles, 
rights, and obligations for organizations, GDPR aims to create a more transparent, 
accountable, and trustworthy environment for the processing of personal data. 
Compliance with GDPR requires ongoing efforts by organizations to ensure that 
personal data is collected, processed, and protected in a lawful and ethical manner. 
GDPR prioritizes the rights and freedoms of individuals.

9.6  �California Consumer Privacy Act

The California Consumer Privacy Act (CCPA) is a landmark data privacy law 
enacted by the state of California in 2018 [5]. It represents one of the most compre-
hensive privacy regulations in the USA and has had a significant impact on data 
protection practices for businesses operating in California.

9.6.1  �Key Provisions of CCPA

CCPA has the following provisions:

Consumer Rights  CCPA grants California consumers several rights regarding 
their personal information. These include the right to know what personal informa-
tion is being collected, the right to access personal information, the right to request 
deletion of personal information, and the right to opt-out of the sale of personal 
information.

Notice and Disclosure  Covered businesses must provide consumers with clear and 
conspicuous notice about data collection and processing practices. These include 
the categories of personal information collected, the purposes for which the infor-
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mation is used, and the categories of third parties with whom the information 
is shared.

Data Minimization  CCPA requires covered businesses to limit the collection of 
personal information to what is necessary for the purposes disclosed to consumers 
and to avoid collecting unnecessary or excessive information.

Data Security  Covered businesses must implement reasonable security measures 
to protect consumers’ personal information from unauthorized access, disclosure, 
alteration, or destruction. This includes safeguards such as encryption, access con-
trols, and regular security assessments.

Nondiscrimination  CCPA prohibits covered businesses from discriminating 
against consumers who exercise their privacy rights, such as by denying them goods 
or services, charging them different prices, or providing them with a different level 
or quality of service.

Children’s Privacy  CCPA includes additional protections for minors under the 
age of 16, requiring opt-in consent for the sale of personal information of minors 
under 13 and providing the right to opt-out for minors aged 13–16.

9.6.2  �Applicability and Enforcement

CCPA applies to for-profit businesses that meet certain criteria, including having 
annual gross revenues exceeding $25 million and processing the personal informa-
tion of at least 50,000 California consumers, households, or devices annually. CCPA 
also applies to for-profit businesses deriving at least 50% of their annual revenues 
from selling California consumers’ personal information.

The enforcement of CCPA is overseen by the California Attorney General’s 
Office, which has the authority to investigate violations, issue warnings or fines, and 
bring enforcement actions against noncompliant businesses. CCPA provides for 
civil penalties of up to $2500 per violation, or up to $7500 for intentional violations, 
and allows consumers to bring private lawsuits against businesses for certain data 
breaches.

In summary, CCPA represents a significant step forward in consumer privacy 
rights and data protection in the USA, providing consumers with greater control 
over their personal information. CCPA also imposes new obligations on businesses 
to safeguard consumer data and respect privacy preferences. Compliance with 
CCPA requires ongoing attention and investment from businesses, but it also pres-
ents opportunities for organizations to build trust with consumers and differentiate 
themselves in the marketplace as privacy-conscious entities.
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9.7  �Health Insurance Portability and Accountability Act

The Health Insurance Portability and Accountability Act (HIPAA) [24] was enacted 
in 1996. It has two main purposes: to provide continuous health insurance coverage 
for workers who lose or change their jobs, and to ultimately reduce the cost of 
healthcare by standardizing the electronic transmission of administrative and finan-
cial transactions. Signed into law by President Bill Clinton on August 21, 1996, 
HIPAA has evolved significantly in response to the increasing prevalence of data 
breaches and cyber threats within the healthcare sector.

HIPAA comprises several key components, notably its Titles and Rules, which 
establish standards for the protection of health information. The act is divided into 
five main titles, with Title I focusing on health insurance reform and Title II 
addressing administrative simplification through privacy and security regulations 
for Protected Health Information (PHI).

9.7.1  �Key Titles of HIPAA

Here are the five titles of HIPAA in detail.

9.7.1.1  �Title I: Health Care Access, Portability, and Renewability

This title ensures that individuals who change or lose their jobs can maintain their 
health insurance coverage. It prohibits group health plans from denying coverage 
based on pre-existing conditions and mandates that insurers provide alternatives for 
individuals leaving group plans.

9.7.1.2  �Title II: Administrative Simplification

Title II is crucial as it mandates national standards for electronic healthcare transac-
tions and establishes privacy and security rules to protect PHI. This title includes 
several specific regulations:

•	 Privacy Rule: This rule sets national standards for the protection of PHI, limit-
ing its use and disclosure without patient consent. It grants patients’ rights 
regarding their health information, including access to their records.

•	 Security Rule: This rule outlines requirements for safeguarding electronic PHI 
(ePHI) through administrative, physical, and technical safeguards to prevent 
unauthorized access.

•	 Breach Notification Rule: Organizations must notify affected individuals and 
the Department of Health and Human Services (HHS) in the event of a breach 
involving unsecured PHI.
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•	 Enforcement Rule: This rule establishes procedures for compliance investiga-
tions and penalties for violations of HIPAA regulations.

9.7.1.3  �Title III: Tax-Related Health Provisions

This title includes provisions related to tax treatment of medical care and standard-
izes pre-tax medical expenditure accounts.

9.7.1.4  �Title IV: Application and Enforcement of Group Health 
Plan Requirements

Title IV addresses requirements for group health plans, ensuring that they comply 
with HIPAA mandates while providing coverage.

9.7.1.5  �Title V: Revenue Offsets

This title deals with revenue offsets related to health insurance coverage but is less 
frequently referenced compared to the other titles.

9.7.2  �Protected Health Information Details

PHI refers to any individually identifiable health information held or transmitted by 
a covered entity or business associate. According to HIPAA, PHI encompasses a 
broad range of data that relates to an individual’s past, present, or future health sta-
tus [25]. Specifically, PHI includes:

•	 Demographic information such as names, addresses, birth dates, and Social 
Security numbers.

•	 Medical histories and records.
•	 Test results and laboratory findings.
•	 Insurance information related to healthcare services.

PHI does not include de-identified information that cannot be used to identify an 
individual. For instance, if an individual’s health information is stripped of all iden-
tifiers, it is no longer considered PHI under HIPAA regulations.
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9.7.3  �HIPAA Compliance and Covered Entities

HIPAA compliance is mandatory for covered entities—healthcare providers, health 
plans, and healthcare clearinghouses that electronically transmit any health infor-
mation. Additionally, business associates—entities that perform functions or activi-
ties on behalf of a covered entity involving the use or disclosure of PHI—are also 
subject to HIPAA regulations.

To ensure compliance with HIPAA’s Privacy and Security Rules, covered entities 
must implement various safeguards:

•	 Administrative Safeguards: Policies designed to manage security measures 
protecting ePHI include training employees on compliance and limiting access 
to authorized personnel.

•	 Physical Safeguards: Measures such as securing physical locations where ePHI 
is stored and restricting access to sensitive areas.

•	 Technical Safeguards: Technology-based protections like encryption, firewalls, 
and secure user authentication processes aimed at preventing unauthorized access.

9.7.4  �Impact of HIPAA

HIPAA has significantly impacted how healthcare providers manage patient infor-
mation. By establishing national standards for privacy and security, it has enhanced 
patient trust in healthcare systems. Noncompliance can lead to severe penalties 
ranging from fines up to $50,000 per violation and possible jail time depending on 
severity.

In recent years, the rise in cyber threats targeting healthcare data has intensified 
HIPAA’s relevance. Organizations must continuously adapt their practices to safe-
guard sensitive patient information against breaches while complying with evolving 
regulatory frameworks.

HIPAA remains a cornerstone of patient protection in the USA, balancing the 
need for privacy with efficient healthcare delivery. The ongoing challenge lies in 
maintaining compliance amid rapid technological advancements and increasing 
cyber threats while ensuring that PHI is handled securely across all platforms.

9.8  �Regulatory Policies in Emerging Markets Case Study

Among a number of emerging markets, India has the highest growth rate [26].
Regulatory practices in India encompass a wide range of regulations, laws, and 

institutions that govern various sectors of the economy, society, and environment. 
India, being a diverse and populous country with a rapidly growing economy, 
requires robust regulatory frameworks to ensure fair competition, consumer 
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protection, environmental sustainability, social welfare, and overall economic 
development. Here is an overview of regulatory practices in India across different 
sectors as relevant to Edge computing:

Environmental Regulation  The Ministry of Environment, Forest and Climate 
Change (MoEFCC) formulates policies and regulations related to environmental 
protection and conservation. Additionally, the National Green Tribunal (NGT) has 
been established as a specialized body to handle cases related to environmental 
protection and enforcement of environmental laws [27]. For remote monitoring of 
environmental conditions such as pollution levels, it would require Edge devices 
and sensors. This may drive up market growth and new business opportunities, as 
described in a separate chapter of this book.

Food Safety Regulation  The Food Safety and Standards Authority of India 
(FSSAI) is the regulatory body responsible for ensuring food safety and regulating 
the manufacture, storage, distribution, sale, and import of food products in India 
[28]. This would require remote sensors and monitoring of food products during 
transportation and storage.

Healthcare Regulation  The Central Drugs Standard Control Organization 
(CDSCO) regulates the pharmaceutical industry in India. It ensures the quality, 
safety, and efficacy of drugs and medical devices through the enforcement of regu-
latory standards and guidelines [29]. This impacts data collection using remote 
medical devices.

These are just a few examples of regulatory practices in India, and the regulatory 
landscape is constantly evolving to address emerging challenges and opportunities 
in a rapidly changing economic and social environment. Effective regulation 
requires coordination among various government agencies, stakeholder engage-
ment, transparency, and enforcement mechanisms to ensure compliance and 
accountability while using Edge computing.

9.9  �Future Developments

Here are some likely future developments regarding AI regulation in the USA:

National AI Strategy  The USA may develop a comprehensive national strategy to 
guide AI research, development, and deployment across various sectors. This strat-
egy may prioritize investments in R&D, promote talent development, have ethical 
and societal implications, and foster international collaboration on governance.

AI Ethics and Transparency Guidelines  There is increasing recognition of the 
need for ethical and transparent systems. The US government may work with indus-
try stakeholders and research organizations to develop ethics guidelines and stan-
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dards that promote fairness, accountability, transparency, and privacy in development 
and deployment.

Regulatory Framework for AI  The US government may introduce a regulatory 
framework specifically tailored to technologies to address concerns related to safety, 
bias, discrimination, privacy, and security. This framework may involve updating 
existing laws and regulations, such as the Fair Credit Reporting Act and the Civil 
Rights Act, to address AI-related challenges.

Data Governance and Privacy  Data governance and privacy regulations may be 
strengthened to address the increasing use of systems that rely on vast amounts of 
data. This may include updates to data protection laws, such as the HIPAA [30] and 
the CCPA, to address new challenges posed by AI technologies.

AI Regulatory Agencies or Task Forces  The US government may establish spe-
cialized regulatory agencies or task forces to oversee governance and regulation. 
These agencies could be responsible for monitoring developments, conducting risk 
assessments, issuing guidelines, enforcing regulations, and promoting public aware-
ness and engagement on AI-related issues.

Sector-Specific Regulations  The US government may introduce sector-specific 
regulations for AI applications in critical sectors such as healthcare, finance, trans-
portation, and defense. These regulations may address sector-specific risks and 
requirements, such as clinical validation for medical systems, algorithmic trading 
regulations for financial systems, and safety standards for autonomous vehicles.

International Collaboration  The USA may engage in international collaboration 
and cooperation on AI regulation to exchange best practices, harmonize standards, 
and address cross-border challenges. This may involve participation in international 
forums, such as the Global Partnership on Artificial Intelligence (GPAI) and the 
Organisation for Economic Co-operation and Development (OECD) AI Policy 
Observatory [31].

Stakeholder Engagement  The US government may adopt a multi-stakeholder 
approach to AI governance and regulation, involving government agencies, industry 
stakeholders, academia, civil society organizations, and the public. This may include 
establishing platforms for dialogue, consultation, and collaboration to ensure that 
AI regulation reflects diverse perspectives and interests.

Innovative Products and Services  By establishing clear guidelines for Edge AI, 
the US government can assist in the creation of a trustworthy environment that 
encourages innovation. For instance, stringent safety standards for autonomous 
vehicles and medical devices ensure these technologies can be deployed confidently, 
leading to advancements in transportation and healthcare. Additionally, interopera-
bility standards promote seamless integration of various Edge AI systems, driving 
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the creation of smart cities and homes. As regulations evolve to keep pace with 
technological advancements, they enable the responsible and widespread adoption 
of innovative Edge AI solutions, transforming industries and improving daily life.

Overall, the emerging future developments in AI regulation in the USA are likely 
to be driven by the need to balance innovation and economic competitiveness with 
ethical considerations, risk mitigation, and societal values. By proactively address-
ing AI regulation, the USA can harness the transformative potential of AI while 
minimizing potential risks and maximizing societal welfare.

9.10  �Summary

As AI continues to pervade all aspects of our lives, incidents of intentional or unin-
tentional misuses may also continue to rise. In response, societies will demand new 
regulations, and governments are expected to respond commensurately. Businesses 
using Edge computing need to be cognizant of evolving regulatory environments 
and remain compliant. This will represent additional costs of doing business. 
However, in a number of cases, this will also offer opportunities for innovative prod-
ucts and services.

9.11  �Points to Ponder

	1.	 What’s the role of regulations in the medical industry?
	2.	 In which cases one may treat software as a separate medical device vs. an adjunct 

to a medical device?
	3.	 Why FDA has reservations in using AI/ML-based techniques for medical 

diagnosis?
	4.	 What is the medical value of data de-identification?
	5.	 Is it sufficient to remove a patient’s information for broad data sharing?
	6.	 Should a patient be given access to his own medical data?
	7.	 What are similarities and differences between GDPR and CCPA?
	8.	 Under what conditions does the FTC take legal action against companies 

and M&A?
	9.	 Do regulatory agencies in developed nations overreach in their actions?

9.12  �Answers

	1.	 What’s the role of regulations in the medical industry?
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The role of medical regulation is to protect the interests of medical service 
consumers and patients.

	2.	 In which cases one may treat software as a separate medical device vs. an adjunct 
to a medical device?

If a software application is used to collect data from another medical device 
and display it along with historical values, then the software is not treated as a 
separate medical device. However, if the software application is used to identify 
abnormal values or give interpretations of the data, then it is treated as a separate 
medical device and FDA approval is required.

	3.	 Why FDA has reservations in using AI/ML-based techniques for medical 
diagnosis?

FDA is not opposed to the use of AI/ML techniques being used for medical 
diagnosis but does require the presence of a human element in the final decision-
making. This is no different from the role of software in self-driving cars. In case 
of an injury or accident, the question of liability arises. Invariably, the software 
providers or car manufacturers may not be willing to accept that kind of liability. 
It is for this reason they currently make it a requirement for human drivers to be 
always behind the wheel, even in the autopilot mode. For the same reason, the 
FDA requires a medical doctor to certify reports and results for the final diagno-
sis. However, doctors can use the software to assist and speed up their decision-
making process. Consider the example of examining X-ray or MRI results of 
patients with bone injuries. The orthopedic analysis support software can high-
light current as well as potential locations with displacement, gaps, or cracks. 
However, in the end, a doctor must examine and agree with the suggestions 
before a treatment can begin.

	4.	 What is the medical value of data de-identification?
Medical science advances by building upon knowledge of how patients react 

to the treatment and drawing generalized inferences for applying this knowledge 
to other patients with similar symptoms. However, due to human biases, some-
times a patient may feel discrimination in their careers or society if the news of 
their diseases is spread beyond a strict need-to-know basis. Another example is 
a future employer not wanting to hire a heart patient, thinking it will increase 
future health care costs for the company. Similarly, health information of politi-
cal leaders is often a highly guarded secret. For instance, Pakistan’s founder, Mr. 
Jinnah’s, deteriorating health condition was kept highly secret. Even today, some 
people argue that if this information were known publicly, then the partition of 
India may not have happened. Thus, medical data needs to be de-identified 
before being shared across the medical community, as not sharing any data is 
detrimental to the progress of medical sciences.

	5.	 Is it sufficient to remove a patient’s information for broad data sharing?
While it is important to remove a patient’s identifiable information, it is also 

important to replace it with a uniquely hashed token. This will enable future data 
and results for the same patient to be correlated, so doctors can observe the pro-
gression of a disease and the efficacy of a treatment.

	6.	 Should a patient be given access to his/her own medical data?
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Current practice is to share medical data with the patient on a need-to-know 
basis. Also, since a patient may not be medically savvy, there is a tendency for 
doctors to up-level or obfuscate the details. This becomes a hindrance if a patient 
needs to seek health care away from home base. Hence, there is a need to give 
full access to a patient for his own medical records. This is fully supported 
by HIPPA.

	7.	 What are similarities and differences between GDPR and CCPA?
Similarities are that both require data to be stored in local geoservers and both 

protect the privacy of individuals.
The difference is that GDPR is for the entire EU, but CCPA is California-

focused. Also, CCPA is less restrictive than GDPR.
	8.	 Under what conditions does the FTC (and in general regulatory agencies) take 

legal actions against companies, and does it overreach in its actions sometimes?
FTC takes legal action in various situations.
For example, FTC investigated Amazon, alleging anti-competitive practices, 

alleging the company used anticompetitive practices to keep its competitors 
from getting a foothold in the digital retail space.

As another example, FTC got involved when Nvidia announced a $40 billion 
acquisition of Arm Holdings, a chipmaker whose designs are used in over 95% 
of the world’s mobile devices. However, the deal was terminated in 2022 after 
facing significant regulatory opposition from around the world, including China. 
Regulators were concerned that the acquisition would give Nvidia an unfair 
advantage over its competitors and that Nvidia could use Arm’s technology to 
harm them.

But also, “with great power comes great responsibility.” Regulatory agencies 
in developed nations are active in protecting consumer interests and preventing 
monopolies from forming, and in doing so, they can overreach in their actions.

For example, FTC also took legal action against the acquisition of Activision 
by Microsoft. It was allowed to happen after Microsoft agreed to some conces-
sions to make sure it did not impede competition through vertical integration.

As another example, consider the breakup of AT&T in the 1980s. In 1984, 
AT&T’s local telephone service was broken up into seven Baby Bells. The 
breakup gave consumers access to more choices and lower prices for long-
distance service and phones. The breakup may have delayed the availability of 
high-speed Internet service for many consumers.
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Chapter 10
Future of Edge AI

10.1  �Introduction

The rapid adoption of artificial intelligence (AI) applications by various industries 
across the globe has risen in the last few years. The need for real-time responsive-
ness, minimal latency, and stringent privacy drives this escalating demand for AI 
applications. To meet these requirements, a solution is needed to enable data pro-
cessing on the local devices to reduce dependence on the central servers for faster 
response times, better reliability, and higher security. These requirements are 
addressed elegantly by Edge computing. As the name suggests, Edge computing is 
a distributed computing paradigm that brings computing resources closer to the data 
sources. This convergence of AI with Edge computing has given rise to Edge AI.

With time, Edge AI will continue to mature, allowing for more robust real-time 
analytics and decision-making at the Edge. With advancements in communication 
networks, hardware and software developments, and artificial intelligence break-
throughs, Edge AI will become increasingly precise and effective.

Chapter 8 of this book shows how Intelligence at the Edge has fundamentally 
altered numerous industries by facilitating immediate decision-making, enhancing 
safety protocols, and optimizing operational effectiveness through different use 
cases. However, the progress and adoption of Edge AI are not without challenges. 
One of the biggest challenges facing Edge AI today is resource-constrained environ-
ments that are holding back Edge AI in terms of data processing and AI modeling.

In this chapter, we will explore the latest innovations in Edge AI and how they 
are poised to influence its adoption in the future, especially in sectors such as health-
care, manufacturing, transportation, retail, and entertainment. We also discuss the 
new and upcoming developments in Edge AI.

https://doi.org/10.1007/978-3-031-78272-5_10#DOI
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10.2  �Evolution of AI at the Edge

Edge AI is not a new concept and has been used since the beginning of this century. 
Akamai Technologies pioneered the Edge computing concept in 1998 with a revo-
lutionary content delivery network (CDN) approach to data processing. CDN 
brought the computing power closer to data sources rather than relying entirely on 
centralized data centers [1]. Initially, the focus was on shifting computing from 
centralized servers to local devices to reduce latency. Over the past decade, with 
advancements in communication and hardware technologies, Edge AI adoption has 
grown exponentially due to other advantages such as reduced bandwidth usage and 
enhanced privacy. Network bandwidth usage is reduced due to Edge AI because all 
the data is not transmitted to a central server, and some of it gets processed locally. 
Hardware capabilities have increased further to support AI and machine learning 
models at the Edge. This has enabled sophisticated decision-making capabilities on 
the Edge devices, introducing a new era in computing and data analysis where deci-
sions can be made faster and more efficiently.

Edge AI is evolving to collect and process data using a pre-trained AI, machine 
learning, or deep learning model to make predictions and decisions. In some cases, 
Edge AI can use real-time data for ongoing performance improvements of existing 
trained models without continuous reliance on Cloud computing and central storage.

10.2.1  �Key Drivers of Edge AI Growth

Several factors are driving the growth of Edge AI. These factors are best represented 
by BLERP [2], which stands for Bandwidth, Latency, Economics, Reliability, and 
Privacy. These have been major drivers for the adoption of Edge AI in industries like 
healthcare and manufacturing.

	1.	 Bandwidth: Traditional Cloud-based AI systems require all new data (or images, 
in the case of vision) to be collected and uploaded to the Cloud for processing 
and analysis. This requires a large bandwidth to function normally. Since Edge 
AI keeps data processing local to the device, there is a minimal requirement to 
transfer the data to the Cloud platform. Therefore, the bandwidth usage for Edge 
AI-powered devices is not as high as those using traditional Cloud AI.

	2.	 Latency: Edge AI uses local processing for inferencing and results. It eliminates 
the delays in data transfer (due to network traffic), provisioning, and execution 
on a centralized Cloud server. Depending on the Edge devices and their process-
ing capabilities, the latency in delivering inference results can be measured in 
milliseconds instead of seconds.

	3.	 Economics: Bandwidth usage of Edge AI devices is not high. The reduction in 
high-bandwidth network communication provides significant potential cost sav-
ings. Another cost of Cloud-based AI systems is large-scale data storage at the 
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central Cloud servers. For example, a camera-based Edge AI device does not 
require that all images be sent to the Cloud as these are processed locally.

Edge AI is more scalable than the Cloud in terms of local deployments. The 
Edge AI-enabled devices are relatively inexpensive and easy to deploy for many 
applications. Cloud-based AI systems expanding the Cloud data processing and 
storage services are not linearly scalable, often time-consuming, and costly.

	4.	 Reliability: One of the most important characteristics of Edge AI is the increased 
independence it provides to all endpoint Edge devices by moving processes from 
the Cloud to the Edge. This allows the devices to perform uninterruptedly even 
if there are temporary disruptions in the network services. It improves the 
availability and reliability of the system as the processing is not halted due to the 
loss of network. The performance of the Edge devices is more reliable, with 
minimal lag and no single point of failure.

	5.	 Privacy: The traditional AI systems transfer all the data to the central Cloud 
server for processing, which can be a major cause of data loss. Edge AI, on the 
other hand, processes the data locally, thereby reducing the chances of a breach 
or leakage of data. In addition, users can easily firewall the native data for exter-
nal connections and define rules as to who can access the data stored within Edge 
devices. The entire system can easily be protected as an on-premise system. 
These measures minimize the chances of a data breach resulting in better system 
security while addressing user concerns regarding data privacy.

10.2.2  �Key Technologies Behind Edge AI

Edge AI-enabled systems are complex and require support at multiple fronts to 
deliver the promised benefits. Listed below are some of the key technologies that are 
required to power the various functions and capabilities of Edge AI-enabled systems.

	1.	 Reliable Edge Computing Infrastructure: The Edge infrastructure should be 
deployed using devices and gateways that can process and analyze data locally. 
These devices should have sufficient computational power, storage capacity, and 
connectivity to manage the data generated by IoT devices. The devices should 
support protocols that can provide secure data transfer from Edge to the Cloud. 
Edge computing infrastructure should also be able to support hybrid 
architectures.

	2.	 AI-Capable Edge Devices: Edge devices should be based on low-power GPUs 
and TPUs that are capable of processing machine learning algorithms and neural 
networks. These devices can execute AI models to process data in real time, 
enabling intelligent decision-making at the Edge without the need to send data 
to centralized servers. The advancement in GPUs and TPUs has reduced the size 
and cost of Edge devices, making them accessible for a wide range of applications.

	3.	 AI Algorithms and Models: The advancements in AI Algorithms and Models 
enable them to run on Edge devices with limited computing resources [3]. These 
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models are optimized for efficiency and performance, enabling real-time analyt-
ics and decision-making.

	4.	 Distributed Intelligence: Edge AI is based on the premise that processing 
occurs at the Edge, but Cloud platforms remain crucial for tasks like model train-
ing and updating with global insights. A typical AI-enabled Edge system relies 
on distributed intelligence, where decision-making is not solely centralized but 
shared between Edge devices and Cloud platforms. It is important to have intel-
ligent algorithms that can collaborate and adapt to changing conditions. A con-
structive interaction between Edge and Cloud is vital for optimal performance of 
the system.

	5.	 Data Preprocessing: IoT devices generate a lot of data based on the applica-
tions. This data may be too voluminous or noisy, so it may not be possible to 
process it entirely at the Edge. It is important to have an effective mechanism to 
preprocess the data to extract relevant information before transmitting it to Cloud 
servers.

	6.	 Energy Efficiency: Most of the Edge devices are located at remote locations, 
and it is not always possible to power them through a stable and reliable power 
supply. These Edge devices are mostly battery- or solar-powered. Therefore, 
these should be energy efficient. Optimizing algorithms and resource usage can 
extend the lifespan of Edge devices by reducing energy consumption.

	7.	 Security and Privacy: Edge devices must have strong security measures in 
place to protect against cyber threats and unauthorized access to data and algo-
rithms. Data privacy is equally important, especially when dealing with sensitive 
information. For example, medical data can be deidentified at the Edge before 
being sent to the central server for processing [4].

	8.	 Industry Standards Compliance: The Edge systems must adhere to data gov-
ernance regulations and industry standards to ensure ethical and legal use of data.

10.3  �Distributed Artificial Intelligence

Distributed artificial intelligence (DAI) is a subfield of artificial intelligence research 
dedicated to the development of distributed solutions for problems. It emerged as a 
subfield of artificial intelligence in 1975, mainly dealing with interactions of intel-
ligent agents [5]. DAI systems were conceived as a group of intelligent entities, 
called agents, that interacted through cooperation, coexistence, or competition. 
Multi-agent systems and distributed problem solving are the two main DAI 
approaches. In multi-agent systems, the focus is on how agents coordinate their 
knowledge and activities. For distributed problem solving, the major focus is how 
the problem is decomposed and the solutions are synthesized.

DAI takes advantage of large-scale computation and spatial distribution of com-
puting resources. DAI systems do not require all the relevant data to be aggregated 
in a single location, in contrast to monolithic or centralized AI systems, which have 
tightly coupled and geographically close processing nodes. Therefore, DAI systems 
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often operate on sub-samples or hashed impressions of very large datasets. In addi-
tion, the source dataset may change or be updated during the execution of a 
DAI system.

These properties allow it to solve problems that require the processing of very 
large data sets. DAI systems consist of autonomous learning processing nodes 
(agents) that are distributed, often at a very large scale. DAI nodes can act indepen-
dently, and partial solutions are integrated by communication between nodes, often 
asynchronously [6, 7]. By their scale, DAI systems are robust, elastic, and loosely 
coupled. Furthermore, DAI systems are built to be adaptive to changes in the prob-
lem definition or underlying data sets due to the scale and difficulty in 
redeployment.

10.3.1  �Evolution of Distributed Artificial Intelligence

There are minimum requirements that need to be met before an approach can be 
considered a distributed artificial intelligence (DAI). The three main characteristics 
of DAI are [8]:

•	 Distribution of tasks between agents.
•	 Distribution of powers.
•	 Method of communication of the agents.

These can be further detailed to differentiate DAI systems [9]. Some of the 
aspects that can be considered to differentiate DAI systems are:

•	 Granularity of Agents: The agents can be either acting at a task-level or a 
statement-level problem decomposition.

•	 Agent’s Knowledge: This could be either redundant or specialized, but is gener-
ally heterogeneous.

•	 Control Distribution in the system: The control is distributed to ensure conver-
gence of the problem to a solution. There are multiple classifications for control 
systems, such as benevolent or competitive; team or hierarchical; and static or 
shifting roles.

•	 Communication Method: The communication can happen through a black-
board model or a message model, and either at low or high-level content.

From a DAI system perspective, based on the approach adopted while designing 
the system, one can classify it as a distributed problem solving (DPS) system or 
multi-agent system (MAS). In the case of DPS, several branches work together to 
achieve a common goal. In the case of MAS, multiple independent agents work 
together, and their interactions lead to a solution and look for an emerging solution 
from their interactions.

10.3  Distributed Artificial Intelligence
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10.3.1.1  �Distributed Problem Solving

In the case of a distributed problem solving (DPS) system, multiple agents work 
together to solve a specific problem [10]. Cooperation among the agents is the key 
to solving the problems since no individual agent has sufficient information, knowl-
edge, and capabilities to solve the whole problem. A challenge for DPS is to make 
sure that information and capabilities are correctly allocated in such a way that 
agents complement rather than conflict with each other.

The DPS approach is well suited to solve problems in the areas of distributed 
planning and control, interpretation, cooperating expert systems, cognitive models 
of cooperation, and human cooperation backed by digital tools. A typical approach 
adopted for DPS systems is to reduce a larger problem into interdependent sub-
tasks—spatial, temporal, or functional. The partial solutions are then integrated to 
fit into an overall solution. Figure 10.1 shows the process adopted for distributed 
problem solving.

There are multiple advantages of DPS:

	1.	 It is relatively cheap to connect multiple devices from a hardware standpoint, 
even cheaper than having a centralized processor.

	2.	 Many applications are distributed by nature and design. The ability to modular-
ize the problem into subproblems is a great advantage, as modules are easier to 
check, debug, and maintain.

Fig. 10.1  Distributed problem-solving process
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	3.	 It facilitates the integration of AI with human intervention.

DPS is not without its challenges. The major challenge is cooperation among 
multiple agents, which increases the complexity of the system exponentially.

10.3.1.2  �Multi-agent Systems

Multi-agent systems (MAS) are based on the principle that individual agents inter-
act with each other based on predetermined rules/constraints and, because of this 
interaction, they can come to an acceptable solution to the problem.

The interactions cover two aspects: (i) between agents and (ii) between agents 
and the environment. An individual agent does not know the full problem space and 
can only partially solve the problem. Therefore, it must discover the solution by 
learning. Typically, multi-agent systems use reinforcement learning, deep learning, 
or deep convolutional networks to know about the environment.

Machine learning can use agent-based models (ABM) as an environment and a 
reward generator while ABM can use machine learning to refine the internal models 
of the agents. The learning can be improved by integrating it with Mean-Field 
Games [11]. This facilitates not only the interaction between individual agents but 
also tracks the decision-making process in huge groups of agents. This approach 
enables us to understand how a single agent acts in response to a group (and 
vice versa).

ABMs are used in several applications, from urban planning to epidemiology, 
from economics to transportation. Regardless of the application, multi-agent sys-
tems have similar characteristics, as shown in Fig. 10.2:

•	 Many agents (whether “intelligent” or not) at various scales.
•	 An environment where they operate.
•	 A set of learning rules and decision-making heuristics to regulate the exchanges 

with other agents.
•	 A map of what interactions are possible and how.

10.3.1.3  �Swarm Intelligence

The inspiration for swarm intelligence (SI) comes from Mother Nature. Swarm or 
collective intelligence consists of multiple agents (autonomous entities performing 
the task) that are decentralized and capable of self-organizing. The term was first 
coined by Bloom [12] in 1995 while researching complex adaptive systems.

Swarm intelligence uses this indirect coordination mechanism, called stigmergy 
[13]. When a task is performed in the environment, a trace is left intentionally by the 
agent. The leftover trace then triggers another event. In this manner, the whole series 
of tasks are performed until the defined goal is achieved.

A typical swarm system has the following properties:
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•	 It has many agents, which are homogeneous (either identical or belonging to few 
typologies).

•	 Agents interact according to basic rules that only exploit local information 
exchanged directly with another agent or via the environment.

•	 The group of agents eventually self-organizes and results emerge from the sys-
tem’s overall behavior.

The individual behaviors can be described in probabilistic terms, i.e., each agent 
stochastically acts based on his local perception of the neighborhood. The stochastic 
behavior of the agents and the above properties ensure that the system can be scaled, 
parallelized, and made fault-tolerant (they keep working even when parts malfunc-
tion), as well as completely decentralized and unsupervised.

The difference between the multi-agent system and the swarm intelligence is that 
MAS has heterogeneous agents whereas SI has homogeneous agents.

10.3.2  �Research in Distributed Artificial Intelligence

Research in distributed AI is gaining attention due to the need for efficient resource 
management and reliable operations. The prime focus is on improving efficiency, 
scalability, and decision-making capabilities through the integration of AI tech-
niques and distributed architectures.

Fig. 10.2  Multi-agent systems
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The large amount of data produced by IoT-driven applications requires data-
driven solutions for resource management. Multiagent systems distribute problem-
solving tasks among autonomous processing nodes to handle this large amount of 
data. The research is focused on designing algorithms to optimize such large-scale 
distributed AI systems. This section will discuss optimizing algorithms for various 
DAI approaches, from swarm intelligence to federated learning.

10.3.2.1  �Swarm Intelligence Algorithms

Swarm intelligence (SI) algorithms have been designed by looking at the natural 
swarm agents’ behaviors. Swarm intelligence is used in controlling robots and 
unmanned vehicles, predicting social behaviors, optimizing telecommunication and 
computer networks, etc. Some of the common SI algorithms are described below:

	1.	 Particle Swarm Optimization: Particle swarm optimization (PSO) [14] is 
inspired by the social flocking behavior of birds and the schooling behavior of 
fish. The algorithm makes use of all agents to locate the optima in a multidimen-
sional space. The initial optimum is assigned with any random position and 
velocity in space. With the passage of time and continuous exploration and 
exploitation, the optima may be found. This algorithm has been used for dimen-
sionality reduction in machine learning and hyperparameter tuning in deep 
learning.

	2.	 Ant Colony System: The ant colony system (ACS) [15] is inspired by the com-
munication of the ants, which is done by using a harmonic chemical known as a 
pheromone. The ant’s probability of choosing the path is a function of the chemi-
cal intensity and the distance between the locations. The algorithm uses histori-
cal information and constructs the solution for the individual agent using a 
probabilistic step-wise approach. The probability of selecting any component for 
constructing a solution depends on that component’s heuristic contribution to the 
overall cost function. Once the cost function is calculated, the history related to 
that path is also updated. This approach is used to achieve the desired goal by the 
collective behavior of simple robotic agents.

	3.	 Artificial Bees Colony: Artificial bees colony (ABC) [16] is inspired by the 
natural communication and distribution within the beehive. The scout bees are 
sent from the hive to locate the nectar. They return to the hive and give informa-
tion about the hive’s location, fitness, and distance of food using a waggle dance. 
The algorithm can be used as an alternative optimization function to traditional 
gradient descent algorithms. It can also be used for solving clustering problems 
as an alternative to traditional clustering approaches.
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10.3.2.2  �Multi-agent System

Multi-agent systems have been in existence since the start of distributed artificial 
intelligence. The initial research in MAS was confined mainly to the game theory 
and negotiation theory. The advancement of machine learning and deep learning has 
enabled multi-agent systems to explore newer technologies, such as reinforcement 
learning.

Reinforcement learning [17] is concerned with how an intelligent agent should 
act in a dynamic environment to maximize the cumulative reward. It works by learn-
ing a policy or a function that maps an observation obtained from its environment 
to an action. To maximize the reward, the focus is on finding a balance between 
exploration (of uncharted territory) and exploitation (of current knowledge)

Multi-agent reinforcement learning (MARL) is about developing multiple rein-
forcement learning agents. These agents learn by dynamically interacting with the 
environment in which they are present. MARL makes it possible for multiple agents 
to interact with the environment and one another to collaborate, coordinate, com-
pete, or collectively learn to accomplish a particular task. It can be further broken 
down into three broad categories:

•	 Cooperative: All agents working toward a common goal. The agents get the 
same rewards, and therefore they are playing with each other.

•	 Competitive: Agents competing with one another to accomplish a goal. The 
agents’ rewards are exactly opposite to each other, and therefore they are playing 
against each other.

•	 Mixed Mode: It combines elements of both cooperation and competition.

MARL is a new field of research and has many promising use cases to which it 
can be applied. For example:

	1.	 Online resource allocation in a computing network.
	2.	 For cellular network optimization, it can guide base stations to maximize mobile 

service quality.
	3.	 Smart traffic control systems can control traffic lights to minimize wait time for 

each car in a city. This makes traffic lights more adaptable based on estimates of 
expected wait time.

10.3.2.3  �Federated Learning

We learned about federated learning basics in both Chaps. 6 and 7 of this book. In 
traditional machine learning approaches, the machine learning models are trained 
on data that is aggregated from several Edge devices like smartphones, laptops, etc. 
and brought together to a centralized server. The learning process happens in this 
centralized data store, where machine learning algorithms like neural networks train 
themselves on the aggregated data and make predictions on new data.
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The major concern while training machine learning models centrally is the risk 
of compromising data security or privacy. Federated learning is a way to develop 
and validate accurate, generalizable AI models from diverse data sources while 
mitigating the risk of compromising data security or privacy. It enables AI models 
to be built from a vast range of data located at different sites without the data ever 
leaving individual sites. It is very useful in the case of healthcare, where privacy is 
a major concern.

Federated learning is simply the decentralized form of machine learning. The 
learning methods are distributed across the Edge devices themselves. At the start of 
each round of training, the current copy of the model is sent to each location where 
the training data are stored. Each copy of the model is then trained and updated 
using the data at each location. The updated models are then sent from each location 
back to the central server, where they are aggregated into a global model. The sub-
sequent round of training follows, the newly updated global model is distributed 
again, and the process is repeated until the model converges or training is stopped.

This decentralized machine learning approach has several advantages, including 
improved data privacy, and reduced bandwidth requirements compared to sending 
raw data. Due to its various advantages, federated learning is gaining traction 
beyond healthcare and is moving into financial services, cybersecurity, transporta-
tion, high-performance computing, energy, and drug discovery.

Federated learning is still in its infancy, and research is required to address the 
issues related to:

	1.	 Heterogeneity: The heterogeneity comes from three aspects: data, model, and 
system, as different organizations are collaborating to train the model.

	2.	 Limited Visibility of Data: As data is distributed across organizations, there is 
limited visibility of the training data and a potential lack of trust among partici-
pants training a single model.

	3.	 Potential Privacy Inferences: The parameters of the uploaded models may also 
be exploited by attackers to infer user privacy information. There is a need to 
have rigorous encryption or obfuscation methods to ensure privacy.

	4.	 Limited or Unreliable Connectivity: The participants in federated learning 
come from various parties with different data resources that may have limited or 
unreliable connectivity. There is a need to have federated models that go beyond 
average accuracy to take care of this unreliability.

	5.	 Security and Performance: Federated learning requires participating parties to 
run a common binary code on each dataset and trust the incoming program. This 
can potentially create a security hazard with malicious code. Another issue is the 
training run time due to multiple hops between different dataset locations. There 
is a need to come up with models that balance the trade-offs between higher 
performance and better security.
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10.4  �AI as a Service

Artificial Intelligence as a Service (AIaaS) is a service offered by third-party ven-
dors that allows businesses to incorporate AI-powered tools and capabilities in their 
systems. It is a low-risk and cost-effective model for enterprises to experiment with 
AI and check its suitability for their business processes.

AIaaS provides out-of-the-box platforms and is easy to set up, making it simple 
to test out various platforms, services, and machine learning algorithms. Users can 
access application programming interfaces (APIs) and tools without having to write 
any complex code to harness the capabilities of AI. If successful, enterprises can 
invest in resources to build and implement AI systems from scratch.

Different AI provider platforms offer various services that enterprises can lever-
age differently depending on operational needs. Like the Software as a Service 
(SaaS) business model, companies can subscribe to AIaaS services. Given below 
are some of the common types of AIaaS and their use cases.

•	 Bots and Virtual Assistants: Bots and virtual assistants are types of conversa-
tional AI that use machine learning algorithms and natural language processing 
(NLP) to learn from human interactions. These are widely employed across all 
industries. They are generally used in customer self-service, such as trouble-
shooting common issues or providing relevant answers to customers’ most fre-
quent queries. Some of the common examples are ChatGPT, Alexa, Siri, or 
Google Assistant.

•	 Machine Learning Frameworks: Machine learning frameworks (MLF) are 
Cloud-based software libraries and tools that allow developers to build custom 
AI models. Enterprises can use them to build customized models to investigate 
and identify trends in their data and make predictions. MLF comes in a variety of 
options, from pre-trained models to models designed for a particular use case. 
Some of the common examples are Google Cloud AI and Microsoft Azure 
machine learning.

•	 Application Programming Interfaces: Application programming interfaces 
(APIs) are software bridges that enable communication between two applica-
tions, especially from third-party service providers. They can be used by enter-
prises to integrate bots and voice assistants with their live chat software or Web 
site without code. Other common uses for APIs include machine vision and NLP 
applications such as urgency detection or sentiment analysis. Some of the com-
mon examples are IBM Watson Natural Language Understanding API and 
Amazon Rekognition API.

•	 AI of Things: Artificial Intelligence of Things (AIoT) embeds AI technology 
and machine learning capabilities into IoT. It helps in analyzing data to identify 
patterns, gather operational insights, and detect and fix problems. Generally, 
AIoT providers offer forecasting services that enable IoT devices to predict when 
a machine and equipment may need maintenance, helping businesses avoid 
expensive interruptions. Some of the common examples are AWS Cloud IoT 
services, Google Cloud IoT Core, and Microsoft Azure IoT.
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10.4.1  �Key Architectural Components

Delivering AIaaS requires a well-defined architecture supported by underlying 
infrastructure, tools, and processes like any other service. AIaaS architecture has 
four basic components: AI infrastructure, AI services, APIs, and AI tools, as shown 
in Fig. 10.3.

	1.	 AI Infrastructure: AI infrastructure supports underlying AI and ML models. 
Data and compute resources constitute the AI infrastructure required to support 
ML models.

•	 AI Data: ML models rely heavily on input data that can be sourced from 
multiple sources. These models are built to learn from patterns in the existing 
data. The accuracy of the predictions of these models depends on the volume 
and diversity of data. This data can come from relational databases, unstruc-
tured data (binary objects), stored annotations in NoSQL databases, and a 
pool of raw data in a data lake [18].

•	 AI Compute: Advanced ML techniques require combining central process-
ing units (CPUs) and graphic processing units (GPUs). Cloud providers offer 
clusters of CPU-GPU combination-backed virtual machines (VMs). AIaaS 
requires computing resources like VMs, serverless computing, and batch pro-
cessing. These computing methods are used to enhance parallel processing 
and automate ML tasks.

	2.	 AI Services: The AIaaS vendors provide services that are readily available and 
do not need custom ML models for their consumption. The common AI services 
offered are

•	 Cognitive Computing: Cognitive computing services include speech, text 
analytics, voice translation, and search. Developers access these services as 
REST [19] endpoints and integrate with the applications with API calls.

Fig. 10.3  Key architectural components of AIaaS
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•	 Custom Computing: Although cognitive computing serves the generic 
cases, there is a shift toward custom computing, enabling users to experience 
cognitive computing using custom datasets. The user employs his data to train 
cognitive services. Some examples of custom computing services are virtual 
assistants, chatbots, and automated email response services.

•	 Conversational AI: The AIaaS providers are helping developers integrate 
bots (voice, text) across platforms by leveraging bot services. Using this ser-
vice, Web and mobile developers can add digital assistants to their applications.

	3.	 Application Programming Interface (API): The AIaaS vendors provide read-
ily available APIs. These APIs use the underlying infrastructure. The common 
APIs offered are:

•	 Business Process APIs: These APIs allow the developers to integrate AI ser-
vices with enterprise applications to complete the business workflows.

•	 Human-Centric APIs: These APIs are used by developers to integrate voice, 
text, or images in the applications developed by them without doing much of 
the coding.

	4.	 AI Tools: These tools promote the usage of VMs, storage, and databases as tools 
are built in sync with the data and compute platforms.

•	 Wizards: Wizards reduce the complexity of training ML models. At the 
backend, these tools in totality offer a multi-tenant development environment.

•	 Integrated Development Environment (IDE): IDEs and notebooks 
(browser-based) help in easy ML model testing and management, thereby 
enabling users to build smart applications with ease.

•	 Data Preparation Tools: The performance of ML models heavily depends 
on the quality of data. To ensure the quality of data, the service providers are 
providing data preparation tools that can perform the extract, transform, load 
(ETL) jobs. The output of these ETL jobs is then fed into the ML pipeline for 
training and evaluation purposes.

•	 Frameworks: The AIaaS providers offer ready-to-go VM templates with 
frameworks such as TensorFlow, Apache MXNet, and PyTorch. Such VMs 
train complex neural networks and ML models as VMs are GPU-supported 
entities.

10.4.2  �AI as a Service at the Edge

AIaaS can accelerate the deployment of data-intensive and computation-intensive 
AI applications with the support of an Edge computing environment. In this distrib-
uted computing paradigm, data and its processing are pushed close to the Edge. AI 
services at the Edge are critical in a wide range of industries, where collecting and 
analyzing data in real time to make instant local decisions is important. Some indus-
tries that can benefit are security and surveillance, transportation, agriculture, 
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medical care, etc. Given below are some of the common AI services that are offered 
at the Edge by service providers.

	1.	 Edge Development and IoT Ready Platforms

•	 Edge Hardware Library: It allows one to choose the right hardware from a 
wide variety of choices. These include best-in-class, proven production-ready 
solutions with assured support and guarantees.

•	 Edge Software/Firmware Stack: The functionality provided includes device 
and service management, AI modules, and security features. It helps to 
develop specific applications faster and with less code.

•	 Custom Software Application Development: Custom application develop-
ment requires support for workflow automation, monitoring, diagnostics, 
application integration, and AI algorithms. These are offered as application 
development stack services at the Edge.

	2.	 Communication Services

•	 Connectivity Options: Modular interfaces supporting multiple protocols for 
local and Cloud connectivity. They can be deployed in various 
environments.

•	 Support for Multiple Protocols: Software drivers for G5, LTE, GSM, and 
Wi-Fi for local and Cloud connectivity.

•	 Gateway Compatibility: Software drivers and modules are available as 
plug-and-play to support connectivity to customer gateways at the Edge. This 
enables the developers to connect and communicate with multiple soft-
ware stacks.

	3.	 Platform Integration

•	 IoT Platform Integration: Seamless integration with Cloud platforms such 
as Azure IoT Edge, Google IoT, or AWS IoT services. This reduces the effort 
of creating Edge instances for customers.

•	 Integration of Third-Party API/Applications: The access to APIs from 
third-party vendors’ applications ensures a seamless experience and business 
continuity.

•	 Continuous Integration and Continuous Delivery/Deployment of CI/CD 
Environments: To support large deployments that are distributed, the user 
needs to be able to test and deploy changes across the entire system.

	4.	 Custom Algorithm Development, Training, and Testing

•	 AI Models: Customized ML models are developed especially for the Edge 
that can read patterns from existing data and use learning to make future pre-
dictions. These models are designed such that they do not need big data to 
operate or work. As a result, these are suitable for all types of deployments, 
i.e., at the Edge or in a central data center.
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•	 Embedded AI Testing: AI components require extensive testing and valida-
tion before they can be deployed. Companies can use testing services to test 
their AI setups. This will considerably reduce capital expenditure on robotics, 
skilled staff, and embedded systems.

10.4.3  �Future of AI as a Service

AIaaS will grow exponentially as more and more businesses go for digital transfor-
mation with AI. AIaaS provides access to tools and capabilities in a flexible and 
scalable Cloud environment. It will help businesses harness technologies like natu-
ral language processing, machine learning, or deep learning capabilities. Some of 
the common applications that will drive AIaaS growth are:

	1.	 Natural, Human-Like Conversational Experiences
AI-powered bots use data from the customer’s knowledge base to generate 

accurate, conversational replies. Large enterprises can automate repetitive tasks 
by buying ready-made and pre-built bots and customizing them to create a 
unique chatbot persona to match the voice and tone of the brand.

As chatbots employ natural language processing (NLP) algorithms to identify 
language patterns from human conversations, they can learn from each interac-
tion and provide answers based on the identified patterns. With AI, the conversa-
tions will only get better and provide an enhanced customer experience.

	2.	 Better Collaboration and Reduced Data Silos
AIaaS provides technology that makes it easy to consolidate fragmented data 

in one place and collaborate more efficiently. This will enable businesses to 
merge teams and responsibilities, thereby nurturing cross-functional collabora-
tion to increase operational efficiency.

	3.	 Develop More Computing APIs
APIs are built to add functionalities to any kind of application. The develop-

ers can identify the features that need to be offered as AIaaS and build the respec-
tive APIs. Smaller updates or patches can be made as and when the need arises. 
Common API services include voice recognition, emotion detection, NLP, lan-
guage translation, and computer vision.

	4.	 Build In-house Foundational Capabilities
AIaaS calls for systematic coordination between AI service providers and 

users to prevent sensitive data from being compromised. Businesses using AIaaS 
are expected to train their employees who work with sensitive systems to keep 
them cyber-safe. Over the years, it will become essential for all working staff to 
know, understand, and engage in security practices to collaborate with AIaaS 
seamlessly.

	5.	 AI Test Setups
Before AI components or applications can be deployed, there is a need to test 

and validate them extensively. The developers can use AIaaS to test their AI 
setups. This will considerably reduce capital expenditure on robotics, skilled 
staff, and embedded systems.
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10.5  �Price, Performance, and Security Considerations

The adoption of Edge AI offers significant advantages, as discussed in the earlier 
section of this chapter, but it is not without its challenges. These challenges contrib-
ute to complexities in Edge AI implementation, resulting in hurdles for deployment 
in practical scenarios. Some of the common challenges faced are data management, 
data privacy, security, cost, performance, and scalability.

In the following paragraphs, we describe the impact that these factors have on 
Edge AI implementation and suggest some of the possible ways the challenges can 
be overcome.

	1.	 Data Management: Data management needs to be considered at three levels, 
namely data movement, data storage, and data governance. Each of these impacts 
the performance and security of the Edge system.

•	 It is important to reduce data movement to minimize latency and maximize 
real-time decision-making with Edge AI systems. To achieve this objective, 
one of the approaches is distributed intelligence. It employs federated learn-
ing, which leverages distributed data across multiple Edge devices to train AI 
models and enhance data quality, privacy, and diversity. In this case, the data 
in its original form always stays on the device and is never gathered in one 
central location.

•	 Limited storage capacity on the Edge devices necessitates the employment of 
data compression techniques to optimize memory usage and accommodate 
larger data volumes.

•	 Data governance requires that the data at the Edge complies with regulations. 
Data governance requires dedicated frameworks especially designed for this 
purpose, based on state-of-the-art technology like blockchain to ensure Edge 
devices are secure, efficient, and reliable.

	2.	 Security and Privacy: Security is a primary concern for Edge AI, given the 
sensitive nature of data processed by Edge devices. Ensuring data privacy and 
protection against cyber threats is a significant challenge in Edge AI deployment.

When designing a secure Edge AI solution, organizations must assume that a 
malicious person could get physical access to a machine. In other words, some 
unauthorized person could steal the machine and take it off-site to extract sensi-
tive data, maliciously patch the operating system, or even change system drivers. 
To counter these physical threats, software techniques using hardware security 
features [4], such as a secure and measured boot, remote attestation, and drive 
encryption, are used. In addition, the stored data at the Edge is encrypted, and the 
hard drive is partitioned so that the boot partition is made immutable and cannot 
be easily rewritten or changed.

To secure communication between nodes at the Edge and the Cloud, authen-
ticated and encrypted communication between these systems is needed. In addi-
tion, anomaly detection methods can identify and mitigate attacks targeting 
Edge AI systems, thereby ensuring the entire system’s security.
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	3.	 Performance: For Edge AI systems to be effective in making predictions and 
decisions, there is a need to train ML models over the vast data contributed by 
multiple Edge devices. There are two approaches to achieving this goal: central-
ized or federated learning. Each approach has some risks associated with it. 
Centralized learning has risks of a single point of failure, security, and privacy 
issues as data must travel to the central location and data providers need to trust 
the central authority. In the case of federated learning, there is a risk of security 
with training codes traveling to remote locations, as each distributed site needs 
to trust the incoming code. Note that in this case, data stays on the Edge with the 
participants. However, due to latency and multiple training iterations, federated 
learning has performance concerns. There is a need to balance the security ver-
sus performance trade-off. One of the approaches is to use a collaborative feder-
ated learning (CFL) [20] solution that combines the advantages of centralized 
and decentralized machine learning schemes, without compromising security.

	4.	 Cost: The lack of standardization, especially in hardware and varying comput-
ing capabilities across different Edge devices, makes it difficult for developers to 
create universally compatible Edge AI applications. This tends to increase the 
cost of Edge AI applications. There is a need to establish industry-wide hardware 
standards for Edge devices across diverse environments.

In addition to hardware cost, there is a cost associated with training and oper-
ations of models across widely distributed Edge devices. There is a need to work 
on different approaches to reduce this cost.

	5.	 Scalability: Edge AI systems face scalability challenges in three key areas: com-
putational, data, and system scalability. These are described below:
•	 Computational scalability is the ability of a system to handle increasing data 

volumes without exceeding device capacity without compromising accuracy 
and responsiveness.

•	 Data scalability is the ability of a system to manage large data volumes with-
out performance impact.

•	 System scalability is the ability to manage the growing number of Edge 
devices and users.

In addition to the above scalability issues, another challenge is to integrate 
Edge AI into existing systems. This requires ensuring consistent performance 
across different platforms and technologies. As mentioned earlier, a lack of stan-
dardization creates problems with the seamless integration and scalability of 
Edge AI solutions. Initiatives such as Open Neural Network Exchange (ONNX) 
[21] offer promising pathways to address these concerns.

Many groups are working on solving these issues, but still a lot of work needs to 
be done before Edge AI systems can be deployed at scale by enterprises.
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10.6  �Emerging Trends at the Edge

In this section, we will look at some of the emerging trends that will shape the future 
of Edge AI. The technological advancements in the design and development of (i) 
low-cost Edge devices; (ii) energy-efficient hardware; (iii) compact machine learn-
ing models; and (iv) robust, easy-to-use, and easy-to-deploy software and tools will 
fuel the rapid adoption of Edge AI and related applications. This will result in more 
developers, applications, and use cases leading to more adopters of Edge AI in all 
verticals, especially industrial IoT, healthcare/wellness, consumer electronics, and 
smart everything.

	 1.	 Hybrid Implementation of Edge AI: More powerful and energy-efficient 
Edge devices will be used for data ingest, preparation, model development, and 
training. A hybrid approach may emerge where external Cloud computing plat-
forms will be used for model development. These models will then automati-
cally or manually be deployed to the Edge AI devices for inference, 
decision-making, and implementation.

This type of hybrid implementation of Edge and Cloud may provide a more 
seamless architecture for model maintenance, management, and continuous 
learning. This approach will result in a significant reduction in the amount of 
data that must be sent to the Cloud offering a balance between scalability and 
low-latency processing. For example, Microsoft Azure provides seamless inte-
gration between Cloud services and Edge, facilitating the deployment of AI 
applications across distributed Edge networks [22].

	 2.	 Development of Energy-Efficient Edge Devices: To reduce the cost and for 
reasons of sustainability, there is a need to develop energy-efficient Edge 
devices. A lot of work is being done on the development of low-power, high-
performance computing, such as neuromorphic computing [23] and data-
efficient AI.  Neuromorphic chips consist of numerous artificial neurons and 
synapses, mirroring the behavior of brain spikes [24]. These chips offer signifi-
cant advantages for scaling Edge AI applications. They consume less power, 
offer faster processing speeds, and equip Edge AI systems with human-like 
reasoning capabilities. It enables the development of AI-enabled Edge devices 
capable of real-time learning and adaptation. These are highly beneficial for 
various applications like obstacle avoidance and robust acoustic perception.

BrainChip, IBM, and Intel are some of the key players in the development of 
neuromorphic chips [25]. BrainChip’s Akida™ neural processor supports on-
device learning, allowing for personalization and customization without Cloud 
connectivity. With the addition of temporal event-based neural nets (TENNs), 
Akida is capable of processing complex time-series data applications, enhanc-
ing efficiency while maintaining accuracy. IBM’s TrueNorth chip embodies 
neuromorphic principles, exhibiting remarkable energy efficiency while deliv-
ering cognitive capabilities suitable for Edge AI applications. In the future, the 
devices will become smarter with on-device learning capabilities at the 
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individual and network levels with the help of approaches such as collaborated 
federated learning.

	 3.	 Edge AI for Automation: The industrial Internet of Things (IIoT) is similar to 
IoT but focused on industrial automation devices. IIoT devices often perform 
critical tasks and handle high amounts of data used to make real-time decisions 
in a demanding, high-security environment that requires reliability. IIoT is the 
backbone for smart manufacturing and Industry 4.0, making machines and pro-
cesses better [26].

By using AI and ML in an IIoT environment, the devices can be trained 
based on the massive amounts of available data in the industrial environment. 
ML algorithms running on these devices are used for predicting maintenance, 
production tracking, and even energy optimization that reduce costs and 
increase productivity. While it is still evolving, AIoT and Edge AI are the future 
of industrial automation.

	 4.	 Automating the Edge Operations with AI Assistants: Managing large Edge 
deployments is a complex task and takes a lot of effort. Research is being done 
to explore how GenAI and co-pilot-based Edge automation development tools 
can significantly reduce the development process complexity. This automation 
of code generation can help meet the stringent requirements of Edge operations 
workloads, such as low latency and high security.

Next-generation Edge platforms will include AI-based policy-driven deploy-
ments. These policies will include dynamic workload migration and resource 
optimization algorithms to ensure seamless workload distribution and efficient 
task execution.

	 5.	 Generative AI at the Edge: Generative AI (GenAI) can create new content, 
images, and videos that are at the near-human creativity level. The integration 
of generative AI at the Edge can deliver richer and more immersive user experi-
ences while preserving data privacy and minimizing reliance on centralized 
Cloud infrastructure.

This requires large language models’ (LLMs) convergence with Edge 
devices. To deploy LLMs on the Edge devices, their model sizes need to be 
reduced. There is a need to work on techniques such as pruning, quantization, 
and distillation to produce smaller models while maintaining high performance. 
Many companies are working in this area; TinyChat, the NVidia IGX Orin 
Developer Kit, and Qualcomm’s Stable Diffusion are all examples of serious 
efforts being made to bring generative AI to the Edge [27].

Advancements in computer vision at the Edge have enabled real-time analy-
sis of visual data, enabling applications to have contextual awareness and situ-
ational understanding. This has enabled the development of applications for 
smart surveillance and industrial automation.

GenAI at the Edge has enabled natural interfaces such as voice commands, 
gestures, and facial expressions. These interfaces allow users to interact with 
devices intuitively and efficiently without the need for traditional input methods 
like keyboards or touchscreens. The ability of Edge AI systems to accurately 
interpret and respond to various natural inputs enhances the user experience.
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	 6.	 Micro AI for Edge: The current LLMs are too computationally demanding to 
be usable for inferencing at the Edge devices. Efforts are being made to develop 
lightweight, hyper-efficient AI models designed specifically for resource-
constrained Edge devices. These ML models will yield smaller, more sophisti-
cated, multi-modal models, including transformers, without sacrificing 
accuracy.

Efforts are underway to develop lightweight models in the following 
categories:

•	 Domain-Specific and Task-Focused Models: These models are trained on 
machine-driven translation, text summarization, or question-answering 
tasks. Similarly, domain-specific Models are trained on data from respective 
domains like healthcare, finance, legal documents, etc. They have a smaller 
footprint but offer a deeper understanding of the targeted domain so can 
deliver more accurate and relevant outputs.

•	 Smaller Models: These models are advantageous for deployment on Edge 
devices with limited resources or for minimizing computational overhead. 
This allows resource-sensitive model development for the Edge. TensorFlow 
Lite is an example of this approach.

	 7.	 Data-Efficient AI: This enables AI algorithms to operate effectively with mini-
mal data requirements. Ongoing research on data-efficient AI explores many 
techniques, ranging from augmenting and using pre-trained models with 
domain knowledge to paradigms that engage humans in the data-labeling pro-
cesses. These methods eliminate the need for extensive data collection, thereby 
reducing computing power on the Edge devices. Other data-efficient tech-
niques, such as model pruning, enable models to fit on the Edge devices without 
compromising performance. Moreover, emerging approaches like one-shot 
learning and few-shot learning inherently enable models to learn from minimal 
data samples [27].

	 8.	 Incremental Learning: In the case of incremental learning, machine models 
process new information over time, maintaining and building upon previous 
knowledge. Incremental learning has the potential to become one of the popular 
methods of training ML models due to the advantages offered by it [28]. The 
main driving forces for the adoption of this methodology are:

•	 Efficient Use of Resources: It requires storing less data at a time, which 
leads to a significant reduction in memory space at the Edge devices. For 
example, a fraud detection system in a bank can update its model with each 
transaction, rather than storing all transactions to process them later.

•	 Real-Time Adaptation: Using incremental learning methodology, the mod-
els can adapt to changes in real time. For example, a news recommendation 
system can learn a user’s changing preferences over time and recommend 
articles based on their most recent interests.

•	 Efficient Learning: Breaking a task into smaller parts can enhance the 
machine learning model’s ability to learn new tasks quickly and effectively.
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•	 Learning from Nonstationary Data: Incremental learning models are 
highly valuable where data evolves rapidly. For example, a weather predic-
tion model can continuously adapt its forecasts based on the most recent 
climate data.

Many groups are working on adapting incremental learning methodology 
for training deep learning models, especially recurrent neural networks (RNNs) 
and certain types of convolutional neural networks (CNNs). These models learn 
from new data by updating their weights incrementally, allowing them to han-
dle streaming data or environments that change over time.

Incremental learning has its challenges, such as models forgetting old infor-
mation, difficulty in handling concept drift, and the risk of overfitting. While 
implementing incremental learning, these concerns should be addressed.

	 9.	 Distributed AI: Distributed AI leverages decentralized learning and collabora-
tive intelligence to enhance Edge computing capabilities. NVIDIA’s Federated 
Learning Toolkit [29] empowers Edge devices to collaboratively train AI mod-
els without sharing raw data, preserving data privacy while improving model 
accuracy. This distributed approach enables Edge AI systems to adapt dynami-
cally to changing environments and diverse user needs, paving the way for 
more resilient and responsive Edge applications.

Federated learning and swarm learning are extensively used for training 
Edge devices. While federated learning allows Edge devices to collaboratively 
train a shared machine learning model without sharing raw data, swarm learn-
ing fosters decentralized and self-organizing AI systems. These decentralized 
learning approaches promise scalable, efficient, and privacy-preserving solu-
tions for future Edge AI deployments.

	10.	 Digital Twins: A digital twin is a digital representation of a physical object, 
person, or process that can be used to simulate its behavior to understand better 
how it works in real life [30]. It spans the object’s life cycle and is updated from 
real-time data, machine learning, and reasoning to help make decisions. Digital 
twins have the potential to deliver more agile and resilient operations. Many 
large enterprises are already exploring and investing in digital twins. This 
investment will grow in the future with advancements in the underlying IoT and 
ML technologies. There are different types of digital twins depending on the 
area of application. Some of these are described below:
•	 Product Twins: A product twin is a representation of a product and includes 

products at various life cycle stages. It gets live, real-time data on a product 
to represent its current state.

•	 System Twins: A system twin represents how different products come 
together to form an entire functioning system. System twins provide visibil-
ity regarding the interaction of different products and may suggest perfor-
mance enhancements.

•	 Process Twins: A process twin reveals how systems work together to create 
an entire production facility. Process twins can help determine the precise 
timing of events that ultimately influence overall productivity and 
effectiveness.
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•	 Production Plant Twins: A production plant twin represents an entire man-
ufacturing facility. It may consist of many different systems and process 
twins that work together to form an entire functioning production plant. 
Production plant twins provide visibility regarding the interaction of differ-
ent systems and processes, which can be used to suggest improvements in 
performance and cost reduction.

•	 Infrastructure Twins: Infrastructure twins are similar to production plan 
twins as these represent complete physical infrastructure such as a highway, 
a building, or even a stadium.

Digital twins are being used by enterprises across the world for implement-
ing large projects because of the potential advantages. The use of digital twins 
enables more effective research and design of products, with an abundance of 
data created about likely performance outcomes. It helps companies make 
required product refinements before starting production, thereby reducing cost 
and improving quality. Even after a new product has gone into production, digi-
tal twins can help mirror and monitor production systems to achieve and main-
tain peak efficiency throughout the entire manufacturing process. Digital twins 
enable what-if simulation of a complex system, such as an aircraft or a large 
ship, during operation without risking the actual system.

Some of the use cases where digital twins are beneficial are:
•	 Physically large projects: Buildings, bridges, and other complex structures.
•	 Mechanically complex projects: Jet turbines, automobiles, and aircraft.
•	 Power equipment: It covers both power generation and transmission.
•	 Healthcare services: To track various health indicators and generate key 

insights. Efforts are underway to mimic digital twins of a patient for per-
sonal healthcare [31].

10.7  �Summary

The demand for AI applications at the Edge is driven by requirements of real-time 
responses, minimal latency, less bandwidth consumption, and privacy—best repre-
sented by BLERP factors. To deliver these solutions, there is a need to have reliable 
Edge computing infrastructure supported by AI-capable Edge devices that can exe-
cute AI algorithms and models. As the Edge computing environment is inherently 
distributed, we also discussed the concepts of distributed artificial intelligence 
(DAI), such as distributed problem solving, multi-agent systems, and Swarm 
Intelligence. We also described how DAI takes advantage of large-scale computa-
tion and spatial distribution of computing resources.

This chapter also described the concept of AI as a Service (AIaaS) offered by 
third-party vendors that allows businesses to incorporate AI-powered tools and 
capabilities in their systems. We explained the reasons for the rapid adoption of 
AIaaS in sectors such as healthcare, manufacturing, transportation, retail, and 
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entertainment. We reviewed major challenges prohibiting the large-scale adoption 
of Edge AI, such as price, performance, and security. We concluded the chapter with 
new and upcoming developments such as energy-efficient Edge devices, data-
efficient micro AI, automation, digital twins, and generative AI at the Edge.

10.8  �Points to Ponder

	1.	 What are the main drivers for the Edge AI? Which industries have most benefit-
ted from Edge AI? List some use cases from these industries.

	2.	 Explain how smart traffic control systems can use multi-agent reinforcement 
learning.

	3.	 What are the benefits and challenges of Artificial Intelligence as a Service 
(AIaaS)?

	4.	 What are the limitations of Swarm Intelligence?
	5.	 Suggest some methods to improve the performance of Edge AI.

10.9  �Answers

	1.	 What are the main drivers for the Edge AI? Which industries have most benefit-
ted from Edge AI? List some use cases from these industries.

The main drivers for Edge AI’s exponential growth are collectively referred to 
as BLERP, which stands for Bandwidth, Latency, Economics, Reliability, and 
Privacy.

Healthcare, Utilities, Retail, Manufacturing, and Automobile are some of the 
industries that have most benefited from Edge AI. These are also the main growth 
engines for Edge AI adoption.

Use cases for some of the industries listed above are given below:
Healthcare:

	 1.	 Patient Monitoring: Using local AI models and wearable devices, heart rate, 
blood pressure, glucose levels, and breathing can be monitored, and patient 
condition can be assessed for proactive alerts.

	 2.	 Maintaining Privacy: Edge AI patient monitoring processes data locally to 
maintain privacy while enabling timely notifications.
Utilities:

	 1.	 Edge AI energy management: Enterprises can manage their energy consump-
tion better by using Edge computing and smart grids.

	 2.	 Remote asset monitoring: In the oil and gas industry, assets can be monitored 
remotely using Edge AI capabilities of real-time analytics by processing data 
much closer to the assets.
Retail:
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	 1.	 Edge AI at checkouts: Edge AI cashier-less services such as Amazon Go 
automatically counts items placed into a shopper’s bag without a separate 
checkout process.

	 2.	 Speech recognition: Speech recognition algorithms are used on local devices 
to provide a better customer experience, such as Apple Siri or Amazon Alexa.
Manufacturing:

	 1.	 Robotic arms: Robot arms gradually learn better ways to grasp packages on 
the production lines, thereby improving efficiency and productivity.

	 2.	 Fault detection: Edge AI helps manufacturers analyze and detect changes in 
the production lines before a failure occurs.
Automobiles:

	 1.	 Self-driving cars: Edge AI is used in autonomous vehicles to improve safety, 
enhance efficiency, reduce accidents, and decrease traffic congestion.

	 2.	 Autonomous truck convoys: Autonomous vehicles can facilitate automated 
platooning of truck convoys, removing drivers from all trucks except the one 
at the front.

	2.	 Explain how smart traffic control systems can use multi-agent reinforcement 
learning.

The problem can be formulated as a discounted cost Markov Decision Process 
(MDP) [32]. Each traffic signal junction can be modeled as an independent 
agent. The agent decides the signal duration of its phases in a round-robin man-
ner using multi-agent Q-learning with ε-greedy or double Q-learning method-
based exploration strategies [33]. This eliminates the overestimation problem 
during exploration. Mean field approximation can be used to model interactions 
among the agents. It helps in making agents learn a better cooperative strategy. 
The agent can update its Q-factors based on the cost feedback signal received 
from its neighboring agents. To improve the stability and robustness of the learn-
ing process, a reward allocation mechanism and a local state-sharing method 
should be introduced. This approach is effective in minimizing the average delay 
of vehicles in the network.

	3.	 What are the benefits and challenges of Artificial Intelligence as a Service 
(AIaaS)?

AIaaS is an off-the-shelf AI service offering that helps organizations imple-
ment AI tools and technologies without the complexities of developing AI solu-
tions in-house. It offers the following benefits to the organization:

•	 Advanced infrastructure at a fraction of the cost: Businesses use plug-
and-play AI functionality to keep up with evolving business needs. They need 
to pay for the actual usage and AI functionality without making an upfront 
investment.

•	 Quick deployment: AIaaS is the quickest way to introduce AI within the 
organization as it is very easy to install and setup.

•	 Scalability: AIaaS allows businesses of all sizes to deploy and scale AI based 
on business needs.
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•	 Low- to no-code skills required: AIaaS can be used even if a company lacks 
an in-house AI developer or programmer.

•	 Usability. AIaaS is a ready-out-of-the-box solution that can be deployed by 
even non-technical people.

•	 Boost team productivity and efficiency: AIaaS allows the use of Generative 
AI, and sentiment analysis to streamline workflows to improve team produc-
tivity without additional headcount.

•	 Enhance the customer experience: AIaaS allows businesses to implement 
AI faster to deliver personalized, conversational support, thereby increasing 
customer experience.

AIaaS implementation is not without its challenges. Some of the common 
challenges faced while implementing AIaaS are given below:

•	 Concern about data privacy and security: AIaaS vendors will have access 
to business data so that AI and ML algorithms can work as per the business 
requirements. This increases the risk of exposing data during transit or stored 
on servers in case of a security breach.

•	 Risk of biased or unreliable data: The results and decision-making could be 
inaccurate if the AIaaS providers train an AI model on unreliable, biased, or 
unethical data.

•	 Reduced transparency: Since only inputs and outputs are known, there is no 
understanding of the inner workings of AI systems, like which algorithms are 
being used, whether the algorithms are updated, and which versions apply to 
which data.

•	 Compliance with regulatory standards: Regulations governing the use of 
AI may vary across industries or locations. The AIaaS vendor shall meet the 
compliance standards as required. The vendor should be transparent and pro-
active in sharing any compliance changes.

•	 Long-term costs: AIaaS costs can quickly spiral as is the case with any ser-
vice offering. To control the cost there may be a need to hire and train staff 
with AI specific experience.

	4.	 What are the limitations of Swarm Intelligence?
Swarm Intelligence has generated the interest of AI scientists who are work-

ing to improve its performance. The major challenges faced by Swarm 
Intelligence are:

•	 Behavior Coordination: It is very difficult to predict the behavior of the 
group. Coordination of many agents in a group is complex and may require 
sophisticated communication and control mechanisms.

•	 Limited Individual Knowledge and Capabilities: Individual agents may 
have limited cognitive abilities. It is important to know the functioning of an 
individual agent before the functions of the group can be understood.

•	 Lack of Predictability: The group behavior of the agents can change even 
with a small change in the simplest of the rules. This makes it difficult to 
understand how the system will behave in different scenarios.

10  Future of Edge AI



265

•	 Action Scalability: The action of the group is driven by a stochastic process 
and therefore the action of an agent looks like a noise. Managing many agents 
can lead to computational and organizational complexities.

	5.	 Suggest some methods to improve the performance of Edge AI.
There are multiple methods to improve the performance of Edge AI systems 

and applications. They can be broadly classified under the following categories.
•	 Hardware Optimization: Selecting the right-sized compute engines to meet 

or exceed the required performance levels. For an AI application, these com-
pute engines must perform the functions of the entire cycle. For this purpose, 
a dedicated AI accelerator may be required. Performance scaling can be 
achieved by using AI accelerators in module format or with additional AI 
accelerator chips. Application Specific Integrated Circuit (ASIC) that are 
designed for specific purposes can also be used. ASICs are more energy effi-
cient and smaller in size. There are different types of ASICs available, for 
example, Tensor Processing Units, Vision Processing Units, and Neural 
Processing Units, etc.

•	 Model Optimization Methods: There are three major techniques for opti-
mizing AI models:

	1.	 Quantization: It reduces the precision of weights, parameters, biases, 
and activations so that they occupy less memory. This reduces the size 
of the model so that it can fit easily on memory-constrained Edge 
devices. For example, quantizing to 8 bits from 32 bits reduces the 
model size by 4×.

	2.	 Pruning: It is a process of identifying and eliminating connections or 
neurons (parameters) that are redundant or unimportant. It produces 
models having a smaller size for inference. With reduced size, the 
model becomes both memory and energy-efficient, thereby faster at 
inference with minimal loss while maintaining similar accuracy 
as before.

	3.	 Knowledge Distillation: It is the process of training a smaller model 
with the help of a large, trained AI model. This results in model size 
reduction often many times smaller than the original model while 
maintaining similar accuracy.

•	 Federated Learning: It is a distributed collaborative learning method that 
allows different Edge devices with different datasets to work together to train 
a global model. It is useful to meet the needs of modern IoT-based applica-
tions from a privacy protection perspective. It has the potential to be the basis 
for next-generation artificial intelligence learning.

•	 Hyperparameter Tuning: Hyperparameters are used to get optimal perfor-
mance of the model. In complex models, many hyperparameters are required 
to be tuned, whereas in a lightweight model, each parameter must be tuned 
strictly to a particular range.

•	 Energy Efficiency Optimization Techniques: Edge devices are battery-
operated devices that store the power in a battery. The computing capacity of 
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a device is defined as the maximum number of inferences per watt. There is a 
need to optimize this computational capacity. There are many techniques to 
optimize energy consumption per inference. Some of the techniques employed 
are Neural Architecture Search (NAS) and Hardware-Aware NAS, Algorithm-
Accelerator Co-Design Method, Memory Optimization, and Energy-Efficient 
Communication Protocols, etc.
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