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Artificial intelligence (AI) robots can learn from their experiences, make decisions 
in real time, understand natural language and human gestures, and utilize computer 
vision to perceive and comprehend their environments. Beginning with the rudimen‑
tary concepts of AI, AI Robotics: Ethics, Algorithms, and Technology of Artificial 
Intelligence‑Powered Robots explores the intersection of robotics and physics and 
emphasizes the need for strict adherence to ethical principles in relation to overall 
progress and the development of humankind. Chapters on robots capable of talking, 
listening, and visual perception similar to human beings are followed by discussions 
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planning, a set of methods that help robot hardware achieve high‑level goals by break‑
ing down tasks into smaller, more manageable steps. Lastly, the text describes auton‑
omous robots that can make independent decisions and execute tasks on their own, 
utilizing sensors and AI‑enabled software programmed with predefined guidelines 
and data. Examples of autonomous robots are presented in a chapter on robot swarms 
that operate in a decentralized, self‑organizing manner through local communication 
to manage disaster relief, search‑and‑rescue operations, warehouse logistics, agricul‑
tural practices, and environmental exploration. Offering an up‑to‑date, expansive, 
and comprehensive treatment of the vast interdisciplinary field of AI robotics, this 
book will be an invaluable resource for postgraduate and doctorate students as well 
as academic researchers and professional engineers working on AI‑enabled robotics.
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AI with robotics
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Preface
Robotics and artificial intelligence (AI) are distinctly separate disciplines. Robotics 
is a branch of engineering that focuses on the design, construction, and application 
of programmable machines capable of executing instructions to perform assigned 
tasks, either semi‑autonomously or fully autonomously, without human intervention. 
AI is a branch of computer science that develops algorithms capable of completing 
tasks that would otherwise require human intelligence. While non‑AI programs are 
used to carry out predefined tasks, AI algorithms can learn and continually improve 
themselves. AI algorithms employ techniques such as search, logic, if‑then rules, 
decision trees, and machine learning (including deep learning) to handle logical and 
analytical reasoning, problem‑solving, language processing, and other tasks.

Until quite recently, all industrial robots could only be programmed to carry 
out a repetitive series of movements. Repetitive movements do not require AI. 
Non‑intelligent robots are quite limited in their functionality. AI algorithms are nec‑
essary to allow the robot to perform more complex tasks.

AI and robotics combine to create ‘Artificially Intelligent Robots’, serving as a 
bridge between robotics and AI. These are robots that are controlled by AI algo‑
rithms. They are built by integrating AI software into a robot’s hardware. In these 
robots, robotics technology is utilized to create the physical components, while AI is 
applied to program the intelligence. AI robots can be considered as intelligent auto‑
mation applications in which robotics provides the body, while AI supplies the brain.

This book is about the convergence of AI and robotic technologies. The text aims 
to explore the overlapping areas of AI and robotics with the goal of constructing 
robots that possess enhanced functionality. AI augments the capabilities of robots, 
enabling them to understand their surroundings and interact with human beings, 
greet customers in shops, and perform complex tasks in manufacturing industries 
such as cutting, grinding, welding, and inspection independently, thereby ensuring 
the safety of workers. The subject matter is organized into 15 chapters. Starting with 
the fundamentals of AI and robotics, it guides the reader step by step through a 
journey of robots that can see, listen, and talk, display emotions, plan their tasks and 
motions, drive themselves, and work in coordination as a team. The key benefit of 
this book is that it provides up‑to‑date information on a rapidly emerging and rapidly 
developing field of immense value, assisting human activities in inaccessible areas or 
hazardous situations where human operator presence is risky.

The idea of this book is simple. It follows a synergistic approach between an AI 
programmer and engineer. An AI developer or programmer, who primarily deals 
with coding and software development, is often less well‑acquainted with design 
and engineering aspects. An AI engineer seldom cares about programming. This 
is why there are often two teams involved in such projects: the design team and the 
programming team. Here a petite attempt is made to bridge this gap by focusing on 
the engineering and technological features of AI robotics, including its algorithmic 
framework. However, it is very difficult, if not entirely impossible, to do so.
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Robotics is expected to have a large impact on society. As robotics becomes more 
integrated into everyday life, ethical problems concerning its design, deployment, 
and use emerge, including concerns about prejudice and responsibility. To address 
the moral issues raised by robotics, numerous governments and organizations are 
building legal and regulatory frameworks.

Beneficence and nonmaleficence, noninfringement on human autonomy, protec‑
tion of privacy and data, and ensuring fairness, justice, transparency, safety, and 
security are some of the ethical standards that must be trustworthily adhered to in 
all robotics research.

The academic level of this book is graduate and above. Its target audience includes 
advanced undergraduate and graduate students in electronics and computer engineer‑
ing for supplementary reading, PhD students and scientists engaged in research and 
development on robotics, practicing electrical, electronic, and computer engineers, 
robotics enthusiasts, and hobbyists. This research and reference book is intended for 
graduate students as supplementary reading, as well as for PhD students, scientists, 
and engineers.

Robots are good servants but bad masters
Helping us to work efficiently and faster
Mistakes in robot design bring disaster
Our deep inner voice gives a strong gut feeling
No robot can replace a human being
Robots can only assist us
And make difficult tasks easy to hasten progress.

Let us be enthusiastic and passionate
For making robots friendly and affectionate
Benign, lovable, and affable
Trustworthy and reliable.

Robotic algorithms and technology
Must be developed with a clear methodology
Following standards of honesty, compassion, and loyalty
Fully adhering to ethical guidelines and morality
Always keeping in mind
The welfare and the best interests of humankind!

Vinod Kumar Khanna
Chandigarh, India
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About This Book
AI robotics integrates artificial intelligence (AI) techniques into robotics, enabling 
robots to learn, adapt, and perform tasks beyond simple programmed actions, thereby 
becoming more versatile and intelligent. This book examines the evolution of robots 
equipped with AI and machine learning algorithms, enabling them to perceive their 
environment, make informed decisions, and respond to situations, much like humans. 
It contains 15 chapters. The following is a summary of this book’s contents, high‑
lighting how AI synergizes with robotics to drive the evolution of AI‑driven robotics.

Chapter 1 introduces the core concepts of AI, machine learning, and deep learn‑
ing. Ethical issues are addressed to ensure the responsible development and use of 
AI in ways that benefit society, with a focus on fairness, transparency, and account‑
ability, while fully addressing privacy and security concerns.

Chapter 2 deals with the basics of robotics, robophysics, and roboethics, the trio 
of disciplines that work together in cooperation as a unified technology. Stringent 
adherence to roboethics is mandatory to ensure that robots do not pose a threat to 
humans in the long or short term. Robots should be designed and developed keeping 
potential hazardous situations in view.

Chapter 3 describes robotic sensors and actuators that work together in a feed‑
back loop, where sensors measure physical quantities such as temperature, pressure, 
light, and sound, and convert them into electrical signals. These signals are then fed 
to the robot’s control system. The control system uses the received information to 
instruct the actuators to take appropriate actions.

Chapter 4 explores methods for equipping robots with the ability to listen and 
speak, utilizing a combination of AI processor hardware and software. This includes 
microphones for input, speakers for output, and algorithms for speech recognition 
and synthesis, as well as natural language processing for understanding and generat‑
ing human language.

Chapters 5–7 survey the technologies for robotic vision, which stand at the fore‑
front of the AI robotic revolution, providing robots with the ability to see like humans. 
Unlike traditional robots, which have relied on cameras and sensors to navigate their 
environments, recent breakthroughs in computer vision and AI have propelled the 
development of robots with vision capabilities akin to human eyesight, enabling them 
to perceive depth and color and navigate complex and dynamic environments with 
precision.

Chapters 8 and 9 present the induction of emotions into robots to make them 
social entities that can freely interact with humans. Artificial emotional intelli‑
gence (AEI) involves endowing robots with the ability to recognize, understand, and 
express emotional features, thereby facilitating natural and harmonious human–robot 
interactions that are more intuitive and engaging. It’s a complex field that involves 
understanding human emotions, modeling human emotions, and enabling robots to 
respond appropriately.
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Chapter 10 discusses the methods employed by robots for planning their tasks 
and the necessary motions required for task execution. Robots break down complex 
goals into sequences of high‑level actions or steps and generate the specific trajec‑
tories needed for efficient and collision‑free execution, considering obstacles and 
constraints while optimizing for efficiency through the shortest or fastest path.

Chapters 11 and 12 outline technologies and tools for making robots capable of 
autonomous operation independent of human supervision and guidance by using a 
combination of sensors like cameras, LiDAR, and distance sensors to perceive their 
environments and using AI algorithms and machine learning models to make deci‑
sions, and execute tasks such as moving, manipulating objects, or interacting with the 
environment through actuators.

Chapters 13–15 explore the research challenges faced in using teams of robots to 
work cohesively and carry out mission projects. Robotic swarms work by leveraging 
the collective intelligence of many simple robots, enabling them to perform com‑
plex tasks such as efficiently combing for objects or resources in search‑and‑rescue 
missions or environmental monitoring that would be impossible for a single robot. 
Groups of robots work through decentralized coordination by distributing tasks 
among themselves utilizing algorithms drawing inspiration from natural swarms like 
bees, birds, or fish.

With an extensive bibliography for further reading, this book will be of immense 
value to postgraduate and PhD students, scientists engaged in research on AI robot‑
ics, as well as professional engineers working on the practical realization and uses of 
AI robotics technology.
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Abbreviations, Acronyms, 
and Symbols
A
A* A‑star (Search Algorithm)
ABC Artificial Bee Colony (Algorithm)
AC Alternating current
ACO Ant Colony Optimization (Algorithm)
AI Artificial intelligence
AiMP Associative‑in‑memory processor
AIST Advanced Industrial Science and Technology
AlexNet  A convolutional neural network architecture designed by Alex 

Krizhevsky
Android Greek ‘andro’ (man) + ‘eides’ (shape)
ANN Artificial neural network
APF Artificial Potential Field (Algorithm)
ASR Automatic speech recognition

B
BEV Bird’s eye view
BFO Bacterial Foraging Optimization (Algorithm)
BLDC Brushless direct current (Motor)
BO Bayesian optimization

C
CCD Charge‑coupled device
CCTV Closed‑circuit television
CIFAR‑10 dataset Canadian Institute for Advanced Research, ten classes
CIM Compute‑in‑memory
CMOS Complementary‑metal‑oxide‑semiconductor
CNN Convolutional neural network
COP Combinatorial optimization problem
CPU Central processing unit
C‑Space Configuration space
CSS Concatenating speech synthesis
CV Computer vision

D
1D/2D/3D One‑dimensional/two‑dimensional/three‑dimensional
DC Direct current
DL Deep learning
DNN Deep neural network
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DoF Degrees of freedom
DRL Deep reinforcement learning

E
ECG Electrocardiogram
E. coli Escherichia coli
EEG Electroencephalogram
EKF‑SLAM Extended Kalman filter‑simultaneous localization and mapping
EMG Electromyogram

F
FA Firefly algorithm
FastSLAM Fast simultaneous localization and mapping
FC Fully connected (layer)
FER Facial emotion recognition
FFNN Feedforward neural network
FFT Fast Fourier transform
FHMM Fuzzy hidden Markov model
FM Feature map

G
GA Genetic algorithm
GAN Generative Adversarial Network
gbest Global best (position)
GenAI Generative artificial intelligence
GG‑CNN Generative grasping convolutional neural network
GoogleNet  A 22‑layer‑deep convolutional neural network developed by Google 

for image classification
GPS Global Positioning System
GPU Graphical processing unit
GraphSLAM Graph‑based simultaneous localization and mapping
GVD Generalized Voronoi Diagram

H
HCI Human–computer interaction
HMM Hidden Markov model
HOG Histogram‑oriented gradient

I
ILSVRC 2014 ImageNet Large‑Scale Visual Recognition Challenge 2014
ImageNet A publicly available large image database with annotated images
IMU Inertial measurement unit
ISODATA Iterative self‑organizing data analysis technique algorithm

K
KASPAR Kinesics and Synchronization in Personal Assistant Robotics
kHz Kilohertz
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L
LiDAR  Light detection and ranging
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mapping
LRN  Local response normalization
LSTM  Long short‑term memory (network)

M
mAP  Mean Average Precision
MEMS  Micro‑electro‑mechanical systems
MFCC  Mel frequency cepstral coefficient
MIT  Massachusetts Institute of Technology
ML  Machine learning
MLP  Multilayer perceptron
MPC  Model predictive control
MRTA  Multi‑robot task allocation
MSE  Mean squared error
MV  Machine vision

N
NAS  Neural architecture search
NER  Named entity recognition
NLP  Natural language processing
NN  Neural network
NPU  Neural processing unit

O
OP‑AMP  Operational amplifier

P
PARO  Personal robot
Pascal VOC   Pattern analysis, statistical modeling, and computational learn‑

ing of visual object classes (dataset)
pbest  Personal best (position)
PCA  Principal component analysis
PID  Proportional‑Integral‑Derivative (control)
PIM  Processor‑in‑memory
PIXOR   ORiented 3D object detection from PIXel‑wise neural network 
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PNAS  Progressive neural architecture search
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PR Pattern recognition
PRM Probabilistic roadmap
PSO Particle Swarm Optimization (Algorithm)

Q
QPU Quantum processing unit

R
RADAR Radio detection and ranging
RAM Random access memory
R‑CNN Region‑based convolutional neural network
ReLU Rectified linear unit
RGB Red‑Green‑Blue
RL Reinforcement learning
RNN Recurrent neural network
ROI Region of interest
ROS Robot Operating System
RPN Region proposal network
RRT Rapidly exploring random trees
RTD Resistance temperature detector
RV Robot vision

S
SIFT Scale‑invariant feature transformation
SL Supervised learning
SLAM Simultaneous localization and mapping
SMBO Sequential model‑based optimization
SOM Self‑organizing map
SONAR Sound navigation and ranging or sonic navigation and ranging
SSA Salp Swarm Algorithm
SSD Single‑Shot MultiBox Detector
SVM Support vector machine
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T
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TPU Tensor processing unit
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F
f An objective function
fiti The fitness value of solution Xi

f(n) Global cost function
f(x) A function of variable x, objective function
f(Xi) The objective function value of the decision vector Xi

G
g(n) Cost function of the path traversed from the initial state to the node n

H
h(n)  Heuristic function representing the estimated cost from node n to the 

goal state
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K
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Kd Derivative Term
Ki Integral Term
Kp Proportional Term

L
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Lk Cost of the kth ant’s tour

M
m Number of artificial ants

N
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n Node
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P
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    A
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S
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Sp Current partial solution
Sp = ∅ An empty partial solution

W
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XNew New node
XRandom Random sampling point
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α
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𝛃
𝛽 Parameter to control the influence of ηij

𝚫
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𝛈
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𝜌 Pheromone evaporation coefficient

𝛔
𝜎 Standard deviation within each cluster in k‑means clustering
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1 Artificial Intelligence, 
Ethical Concerns, and 
Social Responsibility

1.1  INTRODUCTION

In this chapter, the interlinked fields of ‘data science (DS)’, ‘artificial intelligence 
(AI)’, ‘machine learning (ML)’, and ‘deep learning (DL)’ are defined. Their roles in 
the extraction of knowledge and insights from data are elucidated. Software agents, 
cognition, and concepts related to sentience are discussed. The arguments and impli‑
cations of Turing and Searle’s thought experiments are presented. The significance 
of following ethical guidelines and recommendations in AI practices is emphasized.

The interrelationship in which these basic ideas are considered places them in a 
proper perspective. Intelligent software agents are autonomous programs. These pro‑
grams are applied for perception, interpretation, and action on data without seeking 
any guidance from the user. Cognition and sentience are two important terms related 
to the mind and mental processes with distinctly different meanings. Information 
processing ability, known as cognition, is distinguished from sentience, the ability to 
experience feelings or sensations. The Turing test and the Chinese Room argument 
are two thought experiments that explore the boundaries of intelligence displayed by 
machines. AI ethics is the framework that safeguards the improper use of AI. The 
reason is that AI presents several concerns and difficulties for society, which must 
be controlled by formulating regulations. Strict adherence to ethics is warranted for 
building safe, secure, and environmentally friendly AI systems.

1.2  DATA SCIENCE

DS is one of the four resembling and related disciplines (DS, AI, ML, and DL) that 
play complementary roles toward the advancement of AI (AWS 2025). Figure 1.1 
shows four ovals, with the biggest oval representing DS. A smaller oval inside it 
symbolizes AI. A still smaller oval within AI corresponds to ML. The smallest oval 
enclosed within ML signifies DL. We shall successively clarify the terms ‘DS’, ‘AI’, 
‘ML’, and ‘DL’ in the sequel.

	 = +Data science Data Science	 (1.1)

Data is the raw information collected from various sources. It can be measurement 
results from sensors. Event highlights from public news and social media sites can 
be treated as raw information. Another example of raw information may be given 
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as an economic survey conducted by agencies, etc., either in a structured format as 
databases or in an unstructured format such as pictures, video, text, and so forth. It 
is also called unprocessed information, primary data, source data, or atomic data.

The term ‘Science’ is derived from the Latin word ‘Scientia’ meaning knowledge. 
It is the knowledge of the natural world about the physical, chemical, and biological 
universe. This knowledge is acquired by a systematic procedure consisting of recog‑
nition of a problem, its formulation, performing experiments, making observations, 
putting forward, and testing hypothesis. The combination of data with science leads 
to an interdisciplinary field. In this field, algorithms, statistical methods, and compu‑
tational tools are applied to data gathered about a subject for its analysis, examina‑
tion, and exploration to extract useful insights and discover hidden patterns. From 
these insights, predictions are made that assist in decision‑making aided by domain 
expertise (Grus 2015; Balusamy et al. 2021).

Big data refers to the large and complex datasets. These datasets include struc‑
tured, semi‑structured, and unstructured data from social media, transportation, 
and healthcare. They are too large to be easily managed and analyzed and require 
advanced technologies for processing and analysis. Data mining is the process of 
analyzing large datasets by cleaning, integrating, reducing, and transforming the 
data. Techniques such as clustering, classification, and association are applied to find 
patterns and relationships in the data that are not immediately obvious. These find‑
ings help businesses predict future trends and make better decisions, e.g., analyzing 
customer purchase history to identify patterns.

1.3 ARTIFICIAL INTELLIGENCE

 = +Artificial Intelligence Artificial Intelligence (1.2)

An artificial entity is a material, thing, or process. Its principal characteristic is that it 
has been developed by human beings, rather than found in nature. Intelligence is the 
ability to gain knowledge, learn skills, and understand phenomena. The knowledge 

FIGURE 1.1 Related fields of data science, artificial intelligence, machine learning, and 
deep learning that work in collaboration to build intelligent systems.
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thus gained is utilized to deal with new situations or solve complex problems. 
Decisions are made for taking appropriate actions.

AI is a field of computer hardware and software engineering. It is used to con‑
struct computers that can learn, perform analytical thinking, reasoning, deciding, 
recommending, and executing several advanced functions. These functions include 
visual perception, object recognition and categorization, understanding and trans‑
lating spoken/written language, and making forecasts in such a manner that intel‑
ligence similar to humans is displayed (Norvig and Russell 2022). John McCarthy 
coined the term ‘artificial intelligence’ in the year 1956 (McCarthy 2007; Strydom 
and Buckley 2019).

Generative AI (GenAI), or generative artificial intelligence, is a particular type of 
AI. It uses large AI models called foundation models. These models are built from 
encoders and decoders to create new content like text, images, videos, and music. 
GenAI learns from data through a process of observation and pattern matching to 
create new data instances and content. It is used in arts, entertainment, technology, 
communications, and healthcare. It helps to increase efficiency, productivity, and 
innovation.

In Table 1.1, we look at the distinguishing features of AI and DS.

1.4 MACHINE LEARNING

 = +Machine Learning Machine Learning (1.3)

A machine is a mechanically and electrically operated device or apparatus. It is 
built with several parts, each of which is assigned a defined role. All the parts of 

TABLE 1.1
Data Science and Artificial Intelligence

Sl. No.
Point of 

Comparison Data Science Artificial Intelligence

1 Focus It uses data, statistics, and 
computer science with the main 
intent to extract useful insights 
from data

It uses mathematics, cognitive thinking, 
and computer science with the aim to 
mimic human intelligence.

2 Goal Its objective is making decisions 
based on data analysis.

It drives innovation and creativity by 
solving problems, improving 
decision‑making, and automating tasks.

3 Process It collects, cleans, and analyzes 
large amounts of data. These 
methods reveal patterns and 
discernments for transforming 
raw data into actionable 
information.

It learns from the environment or 
experience in performing tasks to 
develop new models and create 
systems. The systems created can learn, 
reason, and adapt across a wide range 
of tasks.

4 Application 
examples

Visualization of data and predictive 
analysis

Recommendation engines, chatbots, and 
self‑driving vehicles
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a machine work together in harmony to accomplish a particular task. Learning 
is the process of acquisition of knowledge and skills. It results in behavioral 
changes or those in attitudes, values, and preferences. ML is a sub‑branch of AI 
dealing with machines. These machines can learn and adapt using data, algo‑
rithms, and models to work on unknown data, and draw inferences from them. 
They undertake execution of tasks without any explicit instructions with gradual 
improvement in accuracy (Mohri et  al. 2018; Burkov 2020). An algorithm in 
ML is a set of computational rules or procedures. These rules or procedures 
constitute a mathematical method through which a computer learns from data to 
identify patterns, discover relationships, and gain understandings to make pre‑
dictions on fresh unseen data.

ML is categorized into three main types:

 i. Supervised Learning (SL): It uses labeled data. By labeled data is meant the 
data in which the desired output of an input is already known. The model 
learns patterns based on this labeled data and thereafter, it can make predic‑
tions on new data.

 ii. Unsupervised Learning (USL): It works with unlabeled data. Using unla‑
beled data means the model works by identifying patterns and structure 
within the data. No predefined categories or labels are used.

 iii. Reinforcement Learning (RL): In this learning mechanism, an agent learns 
through trial and error by interacting with its environment. It receives 
positive feedback for good actions. Negative feedback is received for poor 
actions. Gradually, the agent optimizes its behavior to achieve a goal.

1.5 DEEP LEARNING

 = +Deep Learning Deep Learning (1.4)

‘Deep’ means extending downward far below the surface. DL is the most prevalent 
facet of AI. It is a type of ML that involves multiple layers of artificial neural net‑
works (ANNs; hence called deep to contrast with shallow) for the transformation 
of data (Voulgaris and Bulut 2018). The ANN is a model consisting of nodes called 
neurons and the connections between them serving as flow paths for data and com‑
putations that follow principles identical to those of biological neurons or nerve cells. 
The biological neurons in the brains of animals are composed of dendrites, cell bod‑
ies, and axons. They participate in the receipt of electrical signals from the external 
world and the firing of signals known as action potentials to other neurons, muscles, 
or organs.

Table 1.2 casts a view over the peculiarities of AI, ML, and DL side by side.
Table 1.3 sketches the domains of DL and GenAI.

1.5.1 Basic Layers of a NeuraL Network

A neural network comprises three basic layers:
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TABLE 1.3
Deep Learning and Generative Artificial Intelligence

Deep Learning Generative AI

It is a subfield of 
machine learning that 
uses neural networks 
to learn from large 
amounts of data to 
make predictions or 
classifications.

It is a subset of deep learning that creates new content 
such as text, images, videos, audio, and computer code 
based on existing data. Representative techniques 
applied include generative adversarial networks, which 
utilize two neural networks to generate and classify 
data, and variational autoencoders, learning a 
compressed representation of data.

 i. an input layer which receives the input data,
 ii. one or more hidden layers where all computations occur, and
 iii. an output layer producing the result for the supplied inputs.

The layers of the neural network contain interconnected nodes called artificial neu‑
rons. All the neurons in any given layer of the network are connected with neurons 
in the next layer (Figure 1.2).

1.5.2 weights aNd Biases iN a NeuraL Network

The weights and biases are the staple parameters that control flow of data through a 
neural network. Weights are numerical values assigned to the connections between 
neurons. The purpose of assigning numerical values to the connections is to control 
the strength of connections between them, thereby regulating the extent to which an 
input influences an output. They are initialized randomly.

The bias is a constant value. Biases shift the activation function by a constant 
amount. The shifting ensures that the neuron is always activated by a small amount, 
irrespective of inputs being zero. Weights impact the steepness of a curve. Biases 
cause shifting of the curve leftward or rightward.

TABLE 1.2
Artificial Intelligence, Machine Learning, and Deep Learning

Artificial Intelligence Machine Learning Deep Learning

It is a broad category of 
computer software, including 
the system software and 
application software, along 
with the supporting hardware 
that impersonates human 
thought and decision‑making.

It is a type of AI that uses 
algorithms to learn from data 
and perform tasks 
autonomously. It can be used 
to identify patterns in large 
sets of data. It continuously 
improves its performance and 
accuracy through experience.

It is a type of machine learning 
that utilizes artificial neural 
networks to learn from data to 
recognize complex patterns 
and make predictions.
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Each value of input data is multiplied by its corresponding weight. Then the 
weighted sums are added together. The bias term is added to the summation result, 
acting as an offset to the combined weighted sum. The weighted sum with bias 
added to it is passed through an activation function. This function is a mathemati‑
cal function, e.g., sigmoid, tanh (hyperbolic tangent), ReLU (rectified linear unit), 
leaky ReLU, and softmax (softargmax or normalized exponential function). It deter‑
mines whether a neuron should fire or not by introducing non‑linearity to the output, 
enabling it to learn complex relationships between the inputs and the output.

Hyperparameters of a neural network are essentially its configuration settings. 
They control the training process of the network and are set before commencement 
of training, e.g., number of neurons in each layer, the learning rate, the number of 
hidden layers, and the choice of activation function, among others. They are differen‑
tiated from the model parameters that are learned from the data itself.

FIGURE 1.2 An artificial neural network.
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1.5.3 BackpropagatioN iN a NeuraL Network

Backpropagation is a fundamental algorithm in the training of deep neural networks. 
It is used for training neural networks to improve their predictions. For training a 
network, first the weights of the network are initialized to random values. Then an 
input vector from the training dataset is fed into the network and propagated through 
it to generate an output. The difference between the predicted and the actual outputs 
of the network is found. This difference is called the cost function and measures the 
error. It is propagated backward from the output through the hidden layers of the 
network to adjust the weights and biases in the network.

The backpropagation works in conjunction with gradient descent. The gradient 
descent is an optimization algorithm to minimize the cost function. The gradients of 
the cost function are calculated with respect to each parameter, weight and bias, in the 
network by application of the chain rule. Using this rule, the partial derivatives of the 
cost function are determined with respect to each weight in the neural network. The 
partial derivatives indicate the contribution of each weight to the error. Accordingly, 
the weights and biases in the network are adjusted to enhance its accuracy.

1.5.4 categorizatioN of NeuraL Networks

A neural network is categorized into several types. Each of these types of networks 
has specific strengths for handling different kinds of data. A few types of neural 
networks are as follows:

 i. Feedforward Neural Network (FFNN): It is the most basic type of network. 
In this network, data flows in one direction only, and this direction is from 
input to output through multiple layers. There are no cycles or loops in this 
network.

 ii. Multilayer Perceptron (MLP): It is a type of feedforward network consisting 
of multiple layers of neurons. In this network, each neuron in a layer is fully 
connected to the neurons in the next layer. Hence, it can learn complex pat‑
terns in data. It is widely used for classification and regression tasks.

 iii. Convolutional Neural Network (CNN): It is a neural network designed for 
image processing. It contains convolutional layers to efficiently extract fea‑
tures from grid‑like data in images.

 iv. Recurrent Neural Network (RNN): It is a neural network suitable for analy‑
sis of sequential data like text or time series. In this network, information 
from previous steps is retained through feedback loops.

 v. Long Short‑Term Memory (LSTM) Network: It is a specialized type of 
RNN designed to effectively handle long‑term dependencies in sequential 
data. It uses memory cells to overcome the vanishing gradient problem. 
This problem is a common issue that occurs when training deep neural net‑
works. It happens when the gradients used to update the network weights 
become very small. The small gradients prevent the weights from updating 
properly, which can lead to poor performance.

 vi. Generative Adversarial Network (GAN): It is a generative model that uses 
two competing neural networks to produce realistic data. These networks 
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are the generator and discriminator networks. The generator and dis‑
criminator work in a competitive training process. The process constantly 
improves the generator’s output based on the discriminator’s feedback. The 
GAN produces new data that closely resembles existing data. Highly realis‑
tic data like images, audio, or text are thereby created.

 vii. Transformer Neural Network: It is a DL architecture used for analyzing 
complex relationships in data sequences. The relationships are analyzed by 
using a mechanism called ‘self‑attention’. By self‑attention, we mean that 
the model is able to analyze and understand the relationships between dif‑
ferent parts of an input sequence by assigning weights to each element based 
on its relevance to the others. The ability of a transformer neural network 
to capture long‑range dependencies within a sequence makes it suitable for 
natural language processing tasks like translation and text generation.

1.6 THEORETICAL NOTIONS AND THOUGHT EXPERIMENTS OF AI

After introducing the elementary terminology of AI in the preceding sections, we 
look at a miscellany of theoretical ideas and thought experiments by imagining sce‑
narios to explore concepts that are essential to grasp the fundamental principles of 
AI in letter and spirit.

1.6.1 iNteLLigeNt software ageNts

A software agent is an autonomously operating computer program or system. The 
special feature of this system is that it is endowed with capabilities of perceiving its 
environment, making decisions and taking proper actions (Figure 1.3). The diagram 
shows the agent equipped with sensors, signal processing circuit, and actuators. The 
agent is placed adjoining the investigated environment. The signal produced under 
the influence of the environment is fed to the sensors of the agent. It passes to the 

FIGURE 1.3 Operational mechanism of an intelligent software agent.
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circuit associated with the sensor where it is processed. The output signal from the 
processing circuit is supplied to the actuators of the agent. The actuators deliver the 
required action on the environment in accordance with input signal received from it.

The agents are subdivided into four architectural groups: reactive, deliberative, 
learning, and hybrid (Kirrane 2021).

1.6.1.1 Reactive Software Agents
These are modeled on the reflexive behavior of humans involving automatic, involun‑
tary responses to stimuli. They have two principal components:

 i. Condition‑Action Rules: In these agents, perception and action are firmly 
fastened by condition‑action rules. This tight perception‑to‑action coupling 
leads to a quick natural response. As soon as a specific condition is per‑
ceived by the sensor of the agent, the agent immediately retrieves the action 
associated with that condition. Without any delay, it applies the retrieved 
action to convey the required instruction to its actuator.

 ii. State: In advanced versions of reactive agents, the historical record of infor‑
mation regarding preceding interactions of the agent with its environment 
is maintained. This is done alongside the information about the whole envi‑
ronment as a state. When the agent is supplied with an entirely new percep‑
tion, it responds with an action based not only on its present perception but 
also on the historical record of previous perceptions. A reactive agent is pre‑
ferred in the circumstances demanding real‑time decision‑making where 
time limit is a crucial manifestation of performance.

1.6.1.2 Deliberative Software Agents
In these agents, the environment is modeled using a symbolic language. The deci‑
sions are made by logical reasoning. By reasoning logically, we mean performing 
a mental activity in which premises and relations between premises are utilized to 
arrive rigorously at conclusions that are implied by the premises and the relations. 
As an example, if every item left outdoors is wet when it is raining, and a person has 
kept his books on the outside table, logical reasoning will result in the inference that 
the books are drenched with water. In order to carry out its activities, this agent needs 
the following parts:

 i. Symbolically Encoded Knowledge Base: This knowledge base stores 
knowledge of the agent about the surrounding environment and the knowl‑
edge controlling its behavior and actions.

 ii. Logical Reasoning Mechanism: Perception of conditions by the sensor in 
the agent and the reasoning about possible actions and their influence on 
the environment serve as inputs to determine the instruction that must be 
delivered by the agent to its actuator.

 iii. Encoding of Goal: Desirable behaviors are described for guidance of deci‑
sion‑making by the agent.

 iv. Utility Function: It helps the agent in performing a comparative appraisal in 
view of preferences for maximization of its usefulness.
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1.6.1.3 Learning Software Agents
It is an agent in which the deliberative component is enhanced with the capability 
to learn and perform better with time by learning from experience. It is especially 
useful in cases where the environment is an unknown priori. The term ‘a priori’ 
is applied to knowledge that is considered as true, e.g., all rectangular shapes are 
polygonal. A priori reasoning works by theoretical deduction, rather than observa‑
tion. A learning agent must have:

 i. A Performance Component: It refers to the core inner responsibilities of the 
agent.

 ii. A Problem Generator: It suggests actions expediting new knowledge 
acquirement.

 iii. A Critic: It provides feedback to the agent as a penalty or reward by com‑
parison of its performance relative to a benchmark.

 iv. A Learning Element: Its jobs are execution of action allocated by the prob‑
lem generator and modification of the core inner functions of the agent 
based on the feedback received from the critic.

1.6.1.4 Hybrid Software Agents
Here the reactive and deliberative components are arranged in horizontal and/or ver‑
tical layers. The layering combines together the reactive, deliberative, and learning 
features. Controllers are used for scheduling, implementation, and supervision of 
activities. They also address the management of interactions between the activities.

1.6.2 cogNitioN

Cognition is the combination of all processes, conscious or unconscious, involved in 
the accumulation, storage, manipulation, and retrieval of knowledge. The processes 
involved are perception, recognition, conception, and reasoning to make decisions 
and produce appropriate responses through our senses, experience, and thought. They 
underpin several routine activities across the span of life for guiding our behavior. 
‘Cognition’ has its roots in the Latin word ‘cognoscere’, meaning ‘getting to know’. 
The received sensory information is very vast and intricate. So, cognitive functioning 
assists us in distilling this information to the essence level for easy understanding. 
The physical basis of cognition resides in the around 108 nerve cells or neurons in the 
brain. Each of these neurons has >104 connections with other neurons (Cambridge 
Cognition 2015).

1.6.3 seNtieNce

Sentience is the capacity of a creature, human or animal, to experience feelings, sen‑
sations, or emotions, i.e., have awareness and consciousness in distinction to percep‑
tions and thoughts. Sentient AI can think and feel the joy, fear, pain, and love akin to 
a human being. Fish exhibits an averse behavioral reaction against toxic stimuli that 
cause pain in humans and other animals (Sneddon 2009).
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1.6.4 the turiNg test

The Turing test is a thought experiment called the imitation game (Turing 1950). The 
objective of this experiment is to determine whether a computer can interact in the 
same way that a human being does. In this experiment, there are three participants: a 
computer labeled as X, a person named as Y, and a human Z. The participants X and 
Y are respondents while the participant Z is an interrogator or questioner. The X and 
Y respondents are located in two cabins II and III, while the Z interrogator is sitting 
in a separate cabin I. Thus, both the respondents X and Y are physically isolated from 
the interrogator Z.

Figure 1.4 displays the arrangement made for carrying out the experiment for the 
Turing test with a lady interrogator Z, a respondent computer X, and a respondent 
person Y, which are occupying three separate cabins. Messages are exchangeable 
between Z and X, and Z and Y.

FIGURE 1.4 Setup of the Turing test.
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The interrogator Z poses the same questionnaire to the respondents X and Y. The 
person Y tries to help the human interrogator Z to correctly identify the computer X. 
At the same time, the computer X tries to make the human interrogator Z erroneously 
conclude that person Y is the computer.

Turing said in 1950 that after a span of 50 years has elapsed, i.e., around the year 
2000, it will be possible to program computers in such a manner that they will play 
the imitation game so efficiently that the human interrogator Z will be left with 
less than 70% probability of correctly identifying the computer and discriminating 
between the computer X and person Y after a 5‑minute question–answer session 
(Oppy and Dowe 2003).

Thus, the Turing test is a deceivingly easy method of demonstration of human 
intelligence by a computer. A computer will be deemed as intelligent if it can take 
part in a conversation with a human interrogator without the human interrogator 
being able to know that he/she is in dialogue with a computer or another human. Yes, 
if the computer can dupe the human interrogator to such an extent, it is obviously an 
intelligent computer. The Turing test is a prime motivator in the development of AI.

1.6.5 the chiNese room argumeNt

The Chinese Room argument is a thought experiment proposed by the American phi‑
losopher John Searle (1980) challenging the Turing claim that computers can think, 
understand, and have cognition like humans. It is an objection to counter the veracity 
of the Turing test.

Figure  1.5 shows the preparations that are made for the experiment. Inside a 
locked room, there is a person (the insider) and a rule book or program which the 
person consults for manipulation of Chinese symbols. Outside the room near its wall, 
a person is standing (the outsider). Input is sent from the outsider to the insider while 
the output is transmitted in the reverse direction.

FIGURE 1.5 Performing the Chinese Room experiment.
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Supposing the experiment is done on me, it proceeds as follows:

 i. I do not know the Chinese language at all, either spoken or written. I am 
locked in a room and presented with a large batch of Chinese writing. This 
first batch is called a script. As I am inside the room, I am referred to as the 
insider.

 ii. I am presented with a second batch of Chinese writing by a person from 
outside the room, termed the outsider. This batch is called the story. Along 
with the second batch of Chines writing, I am given a set of rules or instruc‑
tions in English language (which I know very well) for correlation of the 
second batch with the first batch. The set of rules or instructions is known as 
a program. It is the rule book. By applying these rules, I am able to correlate 
one set of symbols with another set of symbols entirely from identification 
of the shapes of the symbols.

 iii. I am offered a third batch of Chinese writing. This third batch is called a 
questionnaire. Together with the third batch, I am provided with necessary 
instructions or program to correlate the symbols of the third batch with 
those of the first and second batches. The program also contains the instruc‑
tions enabling me to return certain Chinese symbols of given shapes called 
answers in response to symbols of particular shapes given to me in the third 
batch as questionnaire.

 iv. I am sent stories in English. I can understand the stories and can answer the 
questions posed in English about these stories in English.

 v. After sometime, I get skilled in following the instructions for manipulating 
the Chinese symbols and the outside people sending the programs become 
so adept in writing the programs that to somebody outside the room, the 
answers sent by me become indistinguishable from those given by a native 
Chinese expert. No one outside is able to discern from my answers in 
Chinese that I do not have any knowledge of the Chinese language.

The experiment conclusively proves that by programming a digital computer we may 
betray someone to appear as understanding a language (Cole 2023). However, this 
understanding is not real. It only seems to give an illusion of understanding. Staking 
the claim that a programmed computer understands stories is rebutted because I 
am illiterate to Chinese and so is the computer. The claim that program explains 
human understanding is also refuted because both the computer and the program 
are operational but no understanding results. Thus, the deficiency of the Turing test 
is highlighted. It is also reiterated that computers only use rules for manipulation of 
strings of symbols. They do not understand the underlying meaning of the contents 
of a writing.

1.7 AI ETHICS

At this stage, we understand the capabilities of AI. By extrapolation and generaliza‑
tion of its abilities, we can appreciate its enormous potential, and the likely risks 
accompanying its advancement and uncontrolled proliferation. Legal ramifications 
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of AI require proactive measures to protect humans from any detrimental conse‑
quences of its misuse. Responsible AI takes into consideration the lawful and ethical 
viewpoints for AI (Figure 1.6). The diagram shows the responsible AI block in the 
center surrounded on its sides by ten distinctive features characterizing it that can be 
seen as fairness, accountability, reliability, security and safety, sustainability, com‑
pliance, explainability, interpretability, transparency, and privacy (Floridi and Cowls 
2019; Dignum 2019).

AI ethics are a system of moral principles, guidelines, and techniques to demar‑
cate between right and wrongdoings for fair development and responsible use of AI. 
These principles aim to benefit society en bloc by restricting AI behavior within 
the bounds of human values. According to UNESCO (United Nations Educational, 
Scientific and Cultural Organization 2022), it is essential to ensure conformity to the 
following conditions during the entire life cycle of an AI system.

 i. Human dignity, rights, and fundamental freedoms must be respected, pro‑
tected, and promoted by all means. Cognizance and preservation of basic 
liberties are spotlighted.

 ii. Any harm or subordination of a person or community should not occur in 
any way whatsoever.

 iii. Interaction of persons with AI systems, such as for receiving assistance 
for those who are vulnerable, can take place throughout their life cycles. 
Unprotected and defenseless must be cared for.

 iv. Recognition, protection, and promotion of the flourishing of the environ‑
ment and the ecosystem should always be guaranteed, calling for policies 
prioritizing ecological integrity.

 v. Compliance with international/domestic laws is mandatory for all actors in 
the lifecycle of any AI system.

FIGURE 1.6 The salient features of responsible AI.
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 vi. Keen participation of all individuals or groups should be fostered without 
any racial, ethnic, or social origin or similar discrimination to confirm vari‑
ety and completeness.

 vii. During any stage of AI systems, the extent of lifestyle selections or ideas 
should not be constrained, i.e., the breadth of such choices or concepts 
should not be limited. Any deficiencies or flaws of the technological sub‑
structure should be overwhelmed by international cooperation.

 viii. The interrelation of all living beings with each other as well as with the natu‑
ral environment is emphasized along with the promotion of peace, justice, and 
equity. Thus, tranquility, righteousness, and evenhandedness are affirmed. 
Every human being is considered an integral part of a greater whole.

 ix. The possibility of any harm to human beings should be prevented by imple‑
menting risk assessment methods.

 x. The AI technique should be science‑based. It should be suitable to the con‑
text besides being proportional to the targeted goal, and non‑infringing on 
human rights.

 xi. Any undesired safety and security risks should be avoided.
 xii. Social justice and fairmindedness should be encouraged and promoted pro‑

viding motivational and advocational support.
 xiii. Reinforcement or perpetuation of biased applications and results should be 

eschewed. Their deliberate avoidance is mandated by moral grounds.
 xiv. All people should be equitably treated by taking digital and knowledge 

divides within/across nations. Digital divide refers to gaps between those 
who have access to and use of information and communication technolo‑
gies. Knowledge divide means disparities in access to knowledge, informa‑
tion, and opportunities for learning and developing skills.

 xv. Impact of AI technologies should be ascertained with due consideration 
for sustainability aspects encompassing the environmental, economic, and 
social foundations.

 xvi. Necessary data protection and governance mechanisms and algorithm sys‑
tems must be set up for respecting the right to privacy and protection of 
personal information from unauthorized access and disclosure.

 xvii. Human responsibility and accountability are not replaceable by AI systems.
 xviii. Transparency and explainability are essential prerequisites of AI systems 

with proper balancing for privacy and security. Transparency leads to dem‑
ocratic societies and mitigates corruption. In case the AI application influ‑
ences the end user in a permanent or irreversible manner, the underlying 
algorithm should be clearly explainable.

 xix. It is the ethical and legal responsibility of AI actors to protect human rights 
according to the applicable laws.

 xx. Required impact assessment mechanisms should be developed for assur‑
ance of accountability of AI systems.

 xxi. Understanding and awareness of AI technologies by general public must be 
encouraged, particularly with regard to the human rights and environmental 
protection.
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 xxii. Usage of data must be done keeping national sovereignty and international 
laws in mind.

 xxiii. Inclusive AI governance requires participation of all stakeholders enabling 
that the benefits of AI are shared by everyone.

1.8 ORGANIZATIONAL PLAN OF THIS BOOK

To reiterate the focal theme of this book, we will be largely dedicated to learning how 
AI robotics works, as well as the systematic algorithms, work plans, and procedures 
designed to tackle various issues faced by robots in their day‑to‑day activities. The 
focus will be on the algorithmic, engineering, and technological features of AI robot‑
ics. This is only one side of the coin. Let us inquire, ‘What is the other side of the 
coin?’ An equally important aspect of this subject is computer programming, the art 
of instructing computers through code. This field is largely based on computer sci‑
ence and related technologies. This is a complete subject in itself and requires sepa‑
rate, comprehensive treatment. The material presented in this book will serve as the 
foundation for the computational software development. Needless to say, all research 
in robotics, like any scientific endeavor, must adhere to ethical guidelines. This 
is essential to ensure the responsible development and deployment of technology. 
Human rights and well‑being must always be safeguarded and protected. Therefore, 
adherence to ethical principles will be emphasized throughout.

This book is divided into 15 chapters as follows:

Chapter 1: This chapter introduces the fundamentals of AI and emphasizes the 
establishment of clear ethical standards for ensuring the fair and above‑board 
practices of AI for the benefit of humanity at large in a compassionate and 
cooperative manner for innovation, progress, social cohesion, stability, and 
improved well‑being. AI brings with it ethical concerns primarily revolv‑
ing around issues like data governance, algorithmic fairness, transparency, 
explainability, potential for discrimination based on data used to train AI 
systems, privacy violations due to data collection, bias in decision‑making 
processes, and the potential for misuse of AI technology. All these issues 
highlight the importance of social responsibility in developing and deploy‑
ing AI systems with kindness, empathy, and altruism.

Chapter 2: This chapter presents an overview of robotics, robophysics, and robo‑
ethics. Robotics is the engineering and computer science field of designing, 
manufacturing, and operating intelligent programmable machines called robots 
used in many industries for improving efficiency and safety. Robophysics is the 
study about using physics methods like parameter space exploration, system‑
atic control, and dynamical systems, and applying the laws of motion, energy, 
and electromagnetism for making robots with life‑like movement and coordi‑
nation. Roboethics, an interdisciplinary subfield of ethics of technology com‑
bining ethics, law, and sociology, considers how robots are designed to act 
ethically without posing any threat to humans.

Chapter 3: This chapter covers robotic sensors and actuators. Robotic sensing 
involves vision systems and cameras, LiDAR, RADAR, proximity, touch, 
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force, and temperature sensors, accelerometers/gyroscopes, and chemical 
sensors. Robotic actuation entails DC, stepper motors, and servo motors; 
pneumatic, hydraulic, and piezoelectric actuators; shape memory alloy‑ and 
compliant materials‑based devices. Sensor fusion for comprehensive under‑
standing of the environment using multiple sensors, sensor calibration to 
ensure accuracy, and sensor control algorithms implementing software to 
process sensory data play a leading role in robotic systems.

Chapter 4: This chapter deals with the technology used in robot assistants, 
customer service chatbots, educational and medical robots enabling a robot 
to generate human‑like speech (text‑to‑speech synthesis), interpret spoken 
words from human operators (speech recognition), and comprehend the 
meaning behind those words (natural language understanding), allowing 
for natural interaction between a robot and a person.

Chapters 5–7: These chapters describe the techniques of computer and machine 
vision used by robots to perceive and interact with their environment by 
object detection and recognition, feature extraction not only to perform 
tasks in dangerous and hazardous conditions but also to recognize faces, 
interpret expressions, and interact socially.

Chapters 8 and 9: These chapters discuss the salient aspects of robots capable 
of emotional recognition, expression, self‑ and social awareness, adaptive 
response, and contextual understanding mirroring the key aspects of human 
emotional intelligence. Abilities to understand and respond to human emo‑
tions in a nuanced way create more natural interactions for healthcare, cus‑
tomer service, education and companionship.

Chapter 10: This chapter treats a field in robotics where a system combines both 
high‑level ‘task planning’ about deciding what actions to take to achieve a 
goal with low‑level ‘motion planning’, calculating the precise movements 
needed to execute those actions, to complete the job while avoiding obsta‑
cles, and coping with real‑world environmental constraints. Discrete deci‑
sions of task planning are merged with continuous movements considered 
in motion planning. The activities are useful for robots operating in unstruc‑
tured environments, like navigating a room and manipulating objects. 
Challenges faced are the uncertainties, unpredictabilities, and interactional 
and computational complexities encountered in practical scenarios.

Chapters 11 and 12: These chapters discuss machines that can perform tasks with‑
out human aid, e.g., self‑driving vacuum cleaners, cars, and industrial robot 
arms, using advanced sensors, information processing, decision‑making, and 
movement, unlike the customary remote‑controlled robots. Perception and 
sensing, real‑time decision‑making, human‑robot interaction, ethical and 
legal issues, data security and privacy, and, above all, safety concerns are 
decisive issues for robots that think for themselves.

Chapters 13–15: This set of concluding chapters focuses on swarm intelligence, 
which is a collective intelligence of a group of robots. It is a bio‑inspired AI 
field replicating the behavior and cooperation of large numbers of homoge‑
neous, self‑organized, and decentralized agents, e.g., birds, bees, ants, and 
even bacteria and micro‑organisms obeying simple rules and interacting 
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with each other to solve natural problems including foraging for food, prey 
evading, and task allocation in colonies such as finding the shortest path 
between their nest and food source or organizing their nests.

1.9 DISCUSSION AND CONCLUSIONS

This chapter presented the fundamentals of DS, AI, ML, and DL, and clarified the 
interrelationships and differences between them (Table 1.4). ML was presented as a 
subset of AI and DL as a subset of ML. AI theoretical topics, such as reactive/delib‑
erative approach to AI design, cognition, sentience, the Turing test, and the Chinese 
Room problem, were discussed.

With the rapid advancements in AI and its widespread application in data‑driven 
decision‑making, it is expected that the AI companies will sincerely follow ethical 
protocols to avoid possible infringements on human rights in order that AI’s poten‑
tial benefits reach a large human population without producing any adverse effects. 
Responsible AI is built on several pillars such as explainability, accountability, reli‑
ability, security, privacy, and so forth. AI ethics refers to the set of moral rules that 
must be followed in the development and applications of AI technology. Therefore, 
AI regulations are necessary to strictly monitor and ensure that AI systems do not 
exceed their limits and go beyond the achievement of a legitimate aim. AI ethical 
considerations and challenges were succinctly presented.

TABLE 1.4
Terminology Introduced, Basic Ideas Learned, and the Core Issues 
Raised in This Chapter

Sl. No.

Terminology/
Basic Ideas/

Issues Explanation

1 Summary The terms ‘data science’, ‘artificial intelligence’, ‘machine 
learning’, and ‘deep learning’ were defined. Various types of 
software agents were introduced, notably the intelligent, reactive, 
deliberative, learning, and hybrid software agents. Notions of 
cognition and sentience were explained. Thought experiments of 
AI were described, including the Turing test and the Chinese Room 
experiment.

2 Ethics The ethical concerns associated with the development of artificial 
intelligence raise moral dilemmas. These can be resolved by 
following responsible, equitable, and reliable practices to prevent 
the misuse of AI.

3 Organization The organizational structure and plan of this book were outlined by 
summarizing the contents of its chapters.

4 Keywords and 
ideas to 
remember

Data science, artificial intelligence, machine learning, deep learning, 
neural network, weights and biases, backpropagation, software 
agents, cognition, sentience, Turing test, Chinese Room argument, 
AI ethics.
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The organizational structure of this book was laid out.
From AI, we move on to AI‑driven robotics in Chapter 2, together with its sister 

branches of robophysics and roboethics, which share similar activities or other char‑
acteristics, whose association is of significant relevance to AI robotics.
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2 AI‑Driven Robotics, 
Robophysics, and 
Roboethics

2.1  INTRODUCTION

In this chapter, we study three closely interlinked domains of knowledge, namely, 
robotics, robophysics, and roboethics. Robotics is a technology built over the scien‑
tific foundation of robophysics. Robotics must strictly adhere to the moral values of 
roboethics for the welfare and progress of humanity. We begin by defining the main 
terms that will help in easily following the discussion ahead.

2.2  ROBOTICS AND RELATED TERMS

2.2.1 R obotics

Robotics is a branch of engineering, principally mechanical and electrical engi‑
neering, and computer science. It is concerned with the conception, design, manu‑
facturing, operation, and applications of machines that replicate human actions. 
These machines work jointly with their supporting computer and information sys‑
tems for sensory feedback, as well as their control instrumentation and actuators. 
They assist humans in a variety of ways to improve automation and innovation 
by performing repetitive tasks with greater efficiency and accuracy than humans 
(Craig 2022).

2.2.2 R obots

A robot is an automated machine that resembles a living creature and is capable 
of independently moving by walking or rolling on wheels and performing complex 
tasks. These tasks include grasping and working with objects. The robot executes its 
tasks with great speed and precision with little or without human intervention.

A humanoid robot is one designed to resemble the human body in shape and form. 
It is designed to interact with human environments and tools, but may still look like 
a machine. An android robot is a specific type of humanoid robot that aesthetically 
aims to look as human‑like as possible. Often it has features like realistic skin, hair, 
and facial expressions to closely mimic human appearance. All androids are human‑
oid robots, but the converse is not necessarily true because not all humanoid robots 
are androids.
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2.2.3 ai roBotics

Artificial intelligence (AI) robotics, or AI‑powered robotics, is robotics augmented 
with a diversity of sensors, e.g., 2D/3D cameras, vibration sensors, proximity/posi‑
tion sensors, accelerometers, and other sensors. These sensors feed robots with data 
that they can analyze using AI algorithms and specialized AI processors. Based on 
their responses to the environment and the overall mission goals, the robots make the 
requisite inferences. They implement appropriate real‑time actions from the infer‑
ences at par with human capabilities (Lu and Xu 2017; Murphy 2019).

2.2.4 ai roBots

AI‑enabled robots are robots embellished with AI capabilities to act on their own 
from gathered information provided by their sensors and their analysis using machine 
learning techniques (Govers III 2018, 2024).

Table 2.1 brings out a comparison between AI and robotics.
Table 2.2 shows the enhanced capabilities of AI‑powered robotics with respect to 

simple robotics.

TABLE 2.1
AI and Robotics

Sl. No. Point of Comparison AI Robotics

1 Primary field Computer science Electrical and 
Mechanical Engineering

2 Focus on software/
hardware

It aims at designing 
intelligent software

Its objective is to develop 
physical robots

3 Examples Data analysis, machine 
learning, and deep 
learning

Sensors, actuators, 
controllers, and 
associated electronics

4 Applications Solving problems and 
taking decisions by 
reasoning

Automation

TABLE 2.2
Simple Robotics and AI‑Powered Robotics

Sl. No.
Point of 

Comparison Simple Robotics AI‑Powered Robotics

1 Scope It is a less sophisticated field, 
largely devoted to mechanical 
motion and related actions with 
restricted use of information 
processing.

It is an advanced technology of robots 
enhanced with AI acting as the robot’s 
brain, elevating the robot’s status 
beyond that of a mechanically moving 
machine.

(Continued)



22 AI Robotics

2.3 GENERATIONS OF ROBOTICS

Robotics is divided into five generations (Perera 2022), characterized by the evolution 
of capabilities of robots from simple mechanical arms making precise, high‑speed 
movements in industrial manufacturing to intelligent, autonomous machines 
equipped with AI. The robots collaborate and co‑exist with humans, augmenting 
their capabilities and helping in day‑to‑day activities. Figure 2.1 shows the five gen‑
erations of robotics: first generation: manipulator robots, second generation: learning 
robots, third generation: reprogrammable robots, fourth generation: mobile robots, 
and fifth generation (ongoing): AI robots bestowed with advanced AI.

2.4 PARTS OF AN AI ROBOT

The AI robot has a physical structure, or body, containing many parts that enable it to 
perform various operations. Figure 2.2 shows the components of an AI robot: central 
processing unit (CPU), graphical processing unit (GPU), or other processor for run‑
ning AI algorithms; camera, LiDAR for vision; microphone for listening to sounds 
and speaker for talking; end effectors, sensors, fingers, robotic arms with actuators 
(electric motors, hydraulic/pneumatic devices) for manual tasks; controller and inter‑
faces (Wi‑Fi, Bluetooth) for information processing and communication; and power 
source for energy. The details of the parts are given below:

 i. Sensors: These are akin to human sensory organs to perceive the environ‑
ment, navigate without colliding against obstacles, and perform various 
other chores.

TABLE 2.2 (Continued)
Simple Robotics and AI‑Powered Robotics

Sl. No.
Point of 

Comparison Simple Robotics AI‑Powered Robotics

2 Focus It aims at the electromechanical 
design and construction of 
robots, including grippers and 
movement tools.

It is directed toward integration of 
robotics with artificial intelligence 
algorithms to enable robots to learn, 
reason, and adapt to their environment.

3 Capabilities A basic robot without AI 
assistance has limited 
information processing 
capability. It can handle simple 
tasks only, e.g., it can perform 
pre‑programmed tasks.

An AI robot has a more extensive 
information processing capability. It 
can handle complex tasks 
autonomously beyond simple 
programmed activities. For example, it 
can analyze data, make decisions in 
real time, and adjust its actions based 
on changing situations.

4 Examples A simple robotic arm used for 
repetitive assembly tasks in 
manufacturing.

A self‑driving car utilizing computer 
vision and path planning algorithms to 
navigate complex environments.
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FIGURE 2.1 The lineage of AI robotics.

 ii. Actuators: These are electric motors, pneumatic, and hydraulic devices that 
convert stored energy into mechanical work to move the robot and its arms 
and carry out heavy‑duty work.

 iii. Robotic Arms or Manipulators: They are identical to human shoulders, 
elbows, and wrists, with joints for easy movements

 iv. End Effectors: These are tools attached to the robot’s wrist that allow it to 
grip objects or perform painting or welding jobs.

 v. Controllers: They perform analog‑to‑digital and digital‑to‑analog conver‑
sion, PID (proportional‑integral‑derivative) control, an extensively deployed 
feedback control mechanism in industrial automation; robot trajectory 
interpolation, temperature regulation, etc.

 vi. AI Processors: These are integrated circuits acting as the brain of the robot 
(Liu and Law 2021; Kim and Deka 2021). They are designed to handle 
the mathematical operations necessary to execute AI, machine learning, 
and deep learning algorithms of AI robotics. They achieve the extraordi‑
narily high speed and efficiency of completing more computations per unit 
of energy consumed by incorporating huge numbers of smaller and smaller 
transistors, which run faster and consume less energy than larger transistors. 
Unlike the traditional chips, they also have AI‑focused design features to 
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dramatically accelerate the identical, predictable, independent calculations 
required by AI algorithms. These features include executing a large num‑
ber of calculations in parallel rather than sequentially, calculating numbers 
with low precision in a way that successfully implements AI algorithms but 
reduces the number of transistors needed for the same calculation, speeding 
up memory access and using programming languages built specifically to 
efficiently translate AI computer code for execution on an AI chip.

2.5 AI PROCESSOR CHIPS FOR ROBOTICS

Figure 2.3 shows some of the processors (Mishra et al. 2023; Gover 2025) that are 
either used presently or hold promises of being used in future robotics: the CPU, the 
GPU, the tensor processing unit (TPU), vision processing unit (VPU), neural process‑
ing unit (NPU), the associative‑in‑memory processor, the graph analytics processor, 
and the quantum processing unit (QPU). Their salient features are described as follows.

2.5.1 ceNtraL processiNg uNit

The CPU, a general‑purpose processor based on the von Neumann architecture, is 
the main component of a computer. It is responsible for processing data, executing 
instructions, and controlling all its operations. Owing to its flexibility, resilience, and 

FIGURE 2.2 The components of a typical robot.
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adaptability to a variety of computing situations, the CPU is utilized for tasks rang‑
ing from simple to highly complicated.

2.5.2 graphicaL processiNg uNit

The GPU, a processor to handle rendering 3D graphics and pictures faster than a 
traditional CPU, is specially designed with massive parallelism and enhanced pro‑
grammable capabilities. It can process many pieces of data simultaneously by incor‑
porating thousands of Arithmetic Logic Units in a single chip to provide improved 
support for neural network operations, such as matrix multiplication. These qualities 
make it a popular processor architecture in deep learning. The parallel structure of 
GPUs is well suited for algorithms that process large blocks of data in AI workloads.

FIGURE 2.3 Computer chips used in AI robots.



26 AI Robotics

2.5.3 teNsor processiNg uNit

The TPU is an application‑specific integrated circuit (ASIC) designed by Google 
for neural networks as a specialized processor for a high volume of low‑precision 
computation in neural network workloads by connecting a large number of multi‑
pliers and adders directly to form a systolic array architecture. In this architecture, 
several operations are performed with a single memory access by using the output 
of one structural unit as the input of the next. These improvements enable a drastic 
reduction of the von Neumann bottleneck. Its matrix multiply unit and proprietary 
interconnect topology make it ideal for accelerating AI training and inference.

2.5.4 VisioN processiNg uNit

The VPU is an AI accelerator for running machine vision algorithms such as CNN 
(convolutional neural networks) and SIFT (scale‑invariant feature transform), used in 
computer vision, image recognition, and object detection. It includes direct interfaces 
to receive data from cameras. It achieves a balance between power efficiency and 
computing performance by coupling highly parallel programmable computations 
with workload‑specific AI hardware acceleration in an architecture that minimizes 
data movement.

2.5.5 NeuraL processiNg uNit

The NPU imitates the function of the human brain by using artificial neurons and 
synapses that mimic the activity spikes and the learning process of the brain. It is 
used for various applications that require smarter and more energy‑efficient comput‑
ing, such as image processing, and face and speech recognition in robotics.

2.5.6 associatiVe‑iN‑memory uNit

The processor‑in‑memory (PIM) or compute‑in‑memory (CIM) or associative‑in‑mem‑
ory processor (AiMP)/associative processor is a non‑von Neumann architecture con‑
sisting of a single computer chip integrating a processor with RAM (random access 
memory). It allows data to be processed directly in memory instead of being stored 
on the disk. This strategy of using associative memory cells for data storage as well 
as processing speeds up processing times. It is able to do so by eliminating the need 
to transfer data between the processor and the memory. A resistive memory imple‑
mentation uses a resistive crossbar with peripheral circuitry. The associative processor 
was invented in the 1960s but was almost forgotten and cast aside until recently when 
advancements in big data data created a resurgence of interest in this technology.

2.5.7 graph aNaLytics processor

The graph analytics processor leverages a parallel processing architecture with mul‑
tiple cores or processing units connected via high bandwidth inter‑core or inter‑unit 
communication. It operates under specialized instructions, data structures, and 
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indexing techniques. All these are tailored for graph algorithms that are executed by 
storing in a sparse matrix format to conserve memory space.

2.5.8 QuaNtum processiNg uNit

The QPU, the central component of a quantum computer processor, contains a num‑
ber of interconnected quantum bits or qubits. The qubits are manipulated to compute 
quantum algorithms using the unique characteristics of particles, such as electrons or 
photons. The QPU works on properties like superposition, the ability of a particle to 
exist in many states at the same time. It performs specific types of calculations much 
faster than the processors in today’s computers called classical computers.

2.6 CLASSIFICATION OF ROBOTS

Robots are classified into myriad categories (Guizzo 2023) of which we name a few 
leading ones below.

2.6.1 cLassificatioN By size

Robots are distinguished into three types by looking at their dimensions. Figure 2.4a 
shows the classification of robots by size into categories named as nano‑, micro‑, 
and macro‑robot categories. Nanorobots are extremely small (nanometers). Precise 
manipulation at the cellular level is the main aim of designing such robots. Currently, 
they are mostly found in research stages. Microrobots are smaller than visible to the 
naked eye, typically in the micrometer range. They are used for targeted drug deliv‑
ery or microsurgery. Macro‑robots are visible to the naked eye, ranging in size from 
millimeters and above. Most industrial, service, and humanoid robots fall into the 
macro segment. These are the traditional robots that we are accustomed to seeing.

2.6.2 cLassificatioN By the type of coNtroL system used

Figure 2.4b shows the classification of robots by control system into three groups, 
namely, non‑servo, servo, and servo‑controlled categories. Non‑servo robots mean 
robots showing simple movement with limited control and no feedback mechanism 
to monitor position. They are often used in applications where precise positioning 
is non‑critical, e.g., a robotic arm with only on/off switches for movement. A servo 
robot has the capability of precise control over its position and movement. It utilizes 
a feedback loop to monitor its current position. It can be programmed to move to 
specific locations, e.g., a robotic arm with servo motors that can securely grasp an 
object at a specific location. A servo‑controlled robot is the same as a servo robot, 
but emphasizes the active control aspect. It actively adjusts motor output based on 
feedback to maintain the desired position.

2.6.3 cLassificatioN By moBiLities

Robots are divided into four categories in accordance with their movement capa‑
bilities. Figure 2.4c shows the classification of robots by their movement abilities 
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into groups labeled as robotic arms, automated guided vehicles, autonomous mobile 
robots, and cobots. Robotic arms help with tasks like handling materials and prod‑
ucts in factories and warehouses, their assembly, and transportation. Automated 
guided vehicles move on fixed paths, which are often marked on the floor with wires, 
magnetic strips, or lasers. They are preferred for carrying out repetitive tasks like 
moving materials or equipment between warehouse locations or factory locations. 
They reduce mistakes and accidents because they are programmed to execute their 
job precisely. Cobots, or collaborative robots, are usually industrial robots that can 
safely work alongside humans in a shared workspace.

2.6.4 cLassificatioN from appLicatioNs ViewpoiNt

Figure 2.4d shows the subdivision of robots from an applications perspective into 
five categories according to the sector of their intended use. These are designated 
as domestic, educational, medical, industrial, and military robots. Domestic robots 
are primarily used for household chores, e.g., vacuum cleaners, floor washers, and 
ironing robots. Educational robots are used in classrooms to teach robotics, computer 
programming, science, technology, engineering, and mathematics. Medical robots 
are utilized in healthcare settings for patient care, disinfection jobs, rehabilitation, 
and prosthetics. They are also used in performing critical surgeries, including ortho‑
pedics and cardiac surgery. Military robots aid in defense tasks, including reconnais‑
sance and surveillance, logistics, service and rescue, bomb disposal, and combat. 
Industrial robots are used in manufacturing and production lines. They can move on 
multiple axes and perform tasks like welding, pick‑and‑place jobs, and packaging.

An Educational Robot

I am an educational robot
I work in a school.
I follow discipline and obey all rules
I teach the students physics and chemistry
I teach biology and plant trees
Sometimes I teach mathematics too
In the games period, I wear my sports shoes
And take the students to the playground
Where we play and run around
Children eat cakes and buns
And have lots of fun.

A Medical Robot

I am a medical robot
I work in a hospital
I have a robot identity card and label
I sit with children in the nursery
Sometimes I assist doctors in microsurgery
I am delicate and do not injure anyone
I feel happy when the surgical operation is successfully done.
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An Industrial Robot

I am an industrial robot
I work in a factory
I draw heavy current from mains, no battery
I am very strong and can lift tons of weight
And load it on a heavy metal plate
I can put my hands in the furnace
And pull out the red‑hot iron
Do not dare to copy me
Your hands will burn!

2.7 ROBOPHYSICS

Robophysics is an emerging scientific field that pursues the study of the movements 
of robots in real‑world environments (Calderone 2016; Collins et al. 2021; Li et al. 
2023). The investigation is done by examination of the principles of self‑generated 
motion in mobile systems, and application of physics methods for exploration of loco‑
motion in laboratory devices. Essentially, it avails the services of physics to enhance 
robot movement and behavior in contrasting environments. Figure 2.5 shows typi‑
cal examples of physics underlying robotics, viz., robot motion analysis (kinematics 
and dynamics), understanding of friction and contact mechanics for making grip‑
pers, environmental interaction scrutiny, physics‑based simulation of robot behavior 
and associated experimentation, and application of physical principles of mechanics, 
heat, thermodynamics, optics, electricity, magnetism, and electromagnetics.

2.7.1 roBophysics Vs. Biophysics

Robophysics bears analogy to the familiar discipline of biophysics in many ways. 
Both fields are concerned with applying physics principles to complex systems. 
Robots are considered more controlled and carefully designed systems, whereas the 
biological organisms have an intricate and dynamic nature.

In robophysics, systems are largely mechanical or electromechanical in nature. In 
biophysics, they are biological systems, which are biomolecules and cellular materi‑
als. Robophysics focuses on robot motions, while biophysics tries to understand the 
physical phenomena taking place in biological organisms.

Clarifying further, robophysics is the physics of artificial movements of man‑made 
robots. It analyzes the mechanics of robots and their environmental interactions in 
an attempt to improve robotic design and locomotion. Biophysics is the physics of 
natural movements in living beings. It addresses the mechanics of biological mat‑
ter, e.g., membranes, muscles, and neurons. In biophysics, the attention is mainly 
directed toward understanding biological processes at the molecular level for devel‑
oping medical treatments.

An example aiding in visualization of robophysics is studying how a well‑designed 
truck carrying a heavy load moves through different terrains, such as smooth high‑
ways or rough, rocky, and sandy regions. Contemplating biophysics is like studying 
how a deer runs on grassy woodland.
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2.7.2 priNcipLes of roBophysics studies

The fundamental principles of robophysics studies are as follows:

 i. Applying Physics Methods: A prime aspect of robophysics studies is that 
techniques and approaches borrowed from physics are largely used to 
inquire into locomotion in laboratory devices. Generally, specialized equip‑
ment is used to analyze and measure the movement patterns of robots. The 
findings of robophysics shed light on various aspects of motor control or 
gait analysis of robots in different conditions.

FIGURE 2.5 Concepts of robophysics.
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 ii. Exploring the Principles of Locomotion: In robophysics, simplified models 
of robots are used to explore the principles of their locomotion and validate 
hypotheses. Principles of robot locomotion include the following:

 a. Wheeled Locomotion: It is the most popular locomotion mechanism in 
man‑made vehicles that finds widespread utilization in mobile robotics. 
A sufficient power efficiency is achieved even at high speed. Stability is 
not an issue, as in legged locomotion.

 b. Legged Locomotion: Legged motion is known as gait. Legged robots 
move by lifting and stepping each leg in sequence. These robots are 
more versatile than wheeled robots. They can traverse many differ‑
ent terrains. Their main features are increased complexity and power 
consumption.

 c. Snake‑Like Locomotion: Snake‑like robots are very effective in con‑
fined, narrow, and irregular environments.

 d. Optimal Behavior: The optimal behavior for bipedal locomotion on two 
legs is slow‑speed walking and high‑speed running. The same for qua‑
drupedal robotic locomotion using four limbs is slow‑speed walking, 
intermediate‑speed trotting, and high‑speed galloping.

 e. Control and Sensing: The internal state and configuration of the robot 
are measured by proprioceptive sensors (accelerometers, gyroscopes, 
and optical encoders), while the information about the external envi‑
ronment and contact interactions is gathered by exteroceptive sensors 
(vision, tactile, ultrasonic, and temperature). Proprioception, or kines‑
thesia, represents a body’s ability to sense its position and movement in 
space for its balance, coordination, and motor control. Exteroception is 
the awareness of external stimuli to perceive and interact with the world 
around a body.

 iii. Performing Systematic Experimentation and Integrating Experiment, 
Theory, and Computation: Robophysics systematically integrates experi‑
ment, theory, and computation. Its studies rely on well‑planned and orga‑
nized experimental investigations coupled with theory and modeling. 
Real‑world experiments conducted in parallel with theoretical formulation 
and analysis, and strongly supported by computational modeling, provide 
an in‑depth understanding of a phenomenon. The experimental data verify 
the theoretical model and modify it, if necessary. Further experiments are 
designed based on the feedback received from modeling. New insights are 
obtained by the interpretation of results. Different robot designs and control 
strategies are tested for evaluation in virtual environments. Computational 
modeling and simulations are done before building physical prototypes of 
efficient and stable legged robots.

 iv. Using Simplified Robotic Devices: Robophysics studies use simplified 
robotic devices in controlled laboratory settings to complement the study 
of complex robots in complicated situations. A simplified robotic device 
is a basic, single‑function robot arm. This device displays movement capa‑
bilities within a restricted range. Precise tasks handled by it are picking up 
specific items, dispensing liquids, and transferring small samples between 
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containers. All these tasks are performed within a designated area with con‑
trolled parameters under minimal environmental variation. Complex robots 
in complicated situations refer to robotic systems designed to operate in 
environments with many variables and uncertainties. They require advanced 
capabilities in the form of sophisticated perception, decision‑making, and 
adaptation capabilities to navigate and perform tasks successfully. They 
often include scenarios with multiple moving parts, unpredictable interac‑
tions, and dynamic environments. Examples of such robots are the surgi‑
cal robots performing intricate procedures in hospitals, and autonomous 
vehicles navigating busy city streets. Humanoid robots interacting socially 
in a crowded space too fall in this class of robots. So also, the swarm robots 
working in close coordination and mutual cooperation to explore a vast, 
unknown terrain. Essentially, all these robots work beyond simple repetitive 
tasks. They are able to handle complex real‑world scenarios with high levels 
of autonomy.

 v. Parameter Space Exploration: Robophysics studies use parameter space 
exploration, systematic control, and techniques from dynamical systems to 
observe locomotor successes and failures. The parameter space is the set 
of all possible values for the parameters that are specified to define a math‑
ematical model. It is also called weight space. Parameter space exploration 
is the process of analyzing the patterns of changes in the dynamics of a 
system with variations in its parameters.

 vi. Interaction with Soft Materials: Robophysics studies discover principles of 
interaction of active or programmable objects with soft materials like mud, 
sand, grass, and litter. Soft materials comprise the stretchable elastomers 
and textiles that are pasted over the skin of a robot without interfering with 
its movement. Ferromagnetic soft materials self‑actuate in response to mag‑
netic fields. This property makes them remotely controllable and compat‑
ible with biological tissues. Silk fibroin sheets with Ag nanowires are used 
in highly sensitive stretchable capacitive sensors for low‑pressure detection.

2.7.3 sigNificaNce of roBophysics

The significance of robophysics is multifaceted:

 i. Bridging Disciplines and Improving Robot Design: The significance of 
robophysics is that it acts as a bridge connecting robotics technology with 
the theoretical framework of physics. The merger of the fields of robotics 
and physics allows engineers to leverage insights from physics to solve 
complex robotic challenges. A deep understanding of the physical princi‑
ples behind robot movement in different terrains and situations is essential. 
It becomes more relevant particularly in reference to complex environments 
such as soft materials or non‑uniform surfaces. The reason is that it allows 
robot dynamics, their locomotion, and interactions with their surroundings 
to be analyzed through a more fundamental perspective. It helps research‑
ers in designing more efficient, adaptable, and complex robots to work 
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in challenging environments. Researchers analyze the physics of robot 
locomotion to identify the critical design parameters that optimize move‑
ment, stability, and energy efficiency of robot motion in various terrains. 
Applying physics concepts like dynamics, mechanics, and control theory, 
innovative designs and control strategies are developed for robots. These 
designs are not readily apparent through purely engineering approaches. 
Robophysics inspires new areas of research within physics itself by survey‑
ing the dynamics of novel robotic designs, and opens doors to investigate 
novel concepts. An example is the emergent behavior in robotic systems, 
where complex behaviors originate from interactions between individual 
robot components.

 ii. Understanding Complex Interactions: Robophysics helps in studying the 
interaction of robots with their environments. These include factors such as 
friction, terrain variations, and contact forces. Their understanding leads to 
the development of better control algorithms for robot movements in varied 
circumstances.

 iii. Biomimicry Inspiration: The physics of locomotion in animals and other 
natural systems is studied. Robophysics fosters the design of robots that 
mimic biological movements. On this basis, more versatile robots with effi‑
cient and adaptable movement patterns are fabricated.

 iv. Exploration of New Physics Questions: Investigating the dynamics of novel 
robotic systems often leads to the discovery of new physical phenomena. It 
also gives impetus to theoretical advancements in several areas, such as soft 
matter physics and nonlinear dynamics.

2.7.4 appLicatioNs of roBophysics

Robophysics finds multifarious applications. The prominent among them are as 
follows:

 i. Designing Legged Robots for Rough Terrains: Robophysics helps in analyz‑
ing the physics of leg movements on uneven surfaces. The analysis deals 
with how animals walk, run, and jump. It helps to optimize gait patterns 
for stability and efficient locomotion of robots. Applying this knowledge, 
efficient and stable legged robots are realized.

 ii. Developing Soft Robots: Concepts of soft matter physics are applied to 
design robots with flexible bodies. Such robots can adapt to complex envi‑
ronments. Using the physics of soft materials, robots with compliant bodies 
are created that can adapt to complex environments.

 iii. Making Swimming Robots: Notions of fluid dynamics are used to design 
underwater robots that exhibit flexible swimming motions.

 iv. Simulating Robot Behavior in Complex Environments: Mathematical simu‑
lations are performed on computational models to study the interaction of 
robots with various terrains and obstacles. Physical prototyping of robots is 
done by utilizing the advisories derived from the simulations.



35AI-Driven Robotics, Robophysics, and Roboethics

2.8 ROBOETHICS

Roboethics or robot ethics is an interdisciplinary field at the intersection of robot‑
ics, computer science, psychology, and philosophy. In this field, the ethical, social, 
humanitarian, and ecological aspects of robotics are deliberated upon (Torresen 
2018; Bartneck et al. 2021). It is treated as an extension of machine ethics. It is essen‑
tially a subfield of ethics of technology, specifically information technology that is 
concerned with the ethics of human behavior toward advanced robots. Particularly, 
it discusses the legal and socio‑economic concerns about robotics posing a threat to 
humans in the long or short run. It aims to ensure that robots are morally designed 
and used for the benefit of humanity. The safety of the human race must always 
be kept at highest priority, e.g., momentous ethical issues arise in social assistive 
robotics (Boada et al. 2021). Ethical implications of integration of AI in robotics and 
healthcare demand scrupulous consideration (Elendu et al. 2023).

2.8.1 isaac asimoV’s Laws of roBotics

Seeking to create an ethical system for humans and robots, the science fiction author 
Isaac Asimov devised the laws to be followed by robots. He proposed these laws in 
his stories in anticipation of the likely nuisance of developing intelligent robots, and 
the consequent technical and social problems (Figure 2.6). Despite the fact that they 
are not scientific laws, they have received wide attention and recognition. This is 
because they provide ethical guidelines to robots preventing them from malfunction‑
ing in a dangerous manner (Asimov 1942):

Zeroth Law: The robot can neither inflict any harm on mankind nor by their 
inaction allow mankind to come to harm.

The law underscores the significance of welfare of humanity as a whole 
over that of an individual human being.

First Law: The robot must neither injure a human being nor by inaction allow 
a human being to come to harm.

The primary directive of this law is that a robot must never harm a human 
being, either deliberately or unintentionally. The secondary directive of this 
law is that a robot cannot stand by watching carelessly and allowing harm to 
befall a human being if it is capable of preventive intervention. Figure 2.6a 
illustrates laws 0 and 1 in the form of robot’s friendship with and protection 
for humans.

Second Law: The robot must follow the orders given to it by human beings as 
long as the orders do not conflict with the first law.

The robots are primarily designed to follow humans and execute their 
orders in order to ensure human safety by preventing humans from being 
harmed by the actions of robots. The underlying connotation of this law is 
that the robots are intended to be tools for human assistance. They operate 
by following human orders and working under their supervision and con‑
trol. Figure 2.6b illustrates law II by showing a robot obeying the orders of 
the human operator.
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Third Law: The robot must protect its own existence unless the protection does 
not conflict with first or second law.

The law implies that the robot must avoid any actions or situations that 
could cause it to harm itself in any way. Figure 2.6c illustrates law III by 
showing a robot fighting for defending its existence.

FIGURE 2.6 Visualization of laws of robotics propounded by Isaac Asimov: (a) law 0 and 
law I, (b) law II.
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2.8.2 order of prioritiziNg oBeyaNce of the Laws

The zeroth law takes precedence over the other three laws of robotics. It mandates 
robots to prioritize humanity as a whole over any individual. This law allows robots 
to override human commands if they can inflict long‑term harm to humanity.

When the remaining three laws conflict, the first law takes precedence. Then the 
second law takes precedence. Finally, the third law of self‑preservation and the safety 
of the robot is pursued. Suppose a human being orders a robot to attack another 
human being. Then the robot will not follow the order because the first law takes 
precedence over the second law. Notwithstanding, if a human being orders a robot 
to disassemble itself, the robot will obey the order. This happens because the second 
law takes precedence over the third law.

The aims and scope of AI ethics and roboethics are expounded in Table 2.3.

2.9  UNDERSTANDING THE INTERRELATIONSHIP AMONG 
ROBOTICS, AI ROBOTICS, ROBOPHYSICS, AND ROBOETHICS

2.9.1 BreakdowN iNto suBdomaiNs

Robotics is a broad field. It encompasses the design, construction, operation, and 
application of robots. The necessary mechanical systems, electrical components, 
sensors, actuators, and control algorithms fall under robotics. AI robotics is a spe‑
cialized subfield within robotics in which robots are empowered by AI techniques.

Robophysics is a specialized area. It is placed within robotics. It focuses on apply‑
ing physical laws like mechanics, dynamics, and control theory to understand and 
optimize robot movement, manipulation, and interaction with the environment.

Roboethics is an interdisciplinary field. It examines the ethical implications of 
robotic technology. The examination includes questions about robot autonomy, 

FIGURE 2.6 (CONTINUED) (c) law III.
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responsibility, safety, privacy, and their potential societal impacts as robots become 
more sophisticated.

2.9.2 iNterreLatioN of roBotics with roBophysics aNd roBoethics

Robophysics is a scientific foundation that deals with the design and development of 
robots within the field of robotics and its specialized sub‑branch AI robotics, while 
roboethics considers the ethical considerations that arise from these advancements 
in robotics.

2.9.3  aN exampLe of ai roBotics, roBophysics, 
aNd roBoethics iNterreLatioN

In robotics, we aim at designing a robotic arm for a factory assembly line. In AI 
robotics, we make a self‑driving car. In robophysics, we analyze the forces and 
torques acting on a robot’s joints to optimize its movement, calculating the optimal 
trajectory for a robot to navigate a complex environment. In roboethics, we debate 
whether an autonomous robot, such as an AI‑powered robot, should be programmed 
to prioritize human life over its own, considering the potential for bias in AI deci‑
sion‑making systems.

TABLE 2.3
AI Ethics and Roboethics

Sl. No.
Point of 

Comparison AI Ethics Roboethics

1 Scope It studies the ethical 
implications of artificial 
intelligence, including its 
algorithms and 
decision‑making processes.

It specifically examines the ethical concerns 
related to the design, development, and use 
of physical robots, often including how 
humans interact with them.

2 Focus It can apply to physical and 
non‑physical systems.

It places significant emphasis on the physical 
form of a robot.

3 Set/subset 
relationship

AI ethics is a broad field. Roboethics is a subset of AI ethics that 
focuses on the physical embodiment of AI 
in robots.

4 Issues 
discussed

Data privacy, bias in 
algorithms, and transparency.

Potential harm caused by robots, robot 
autonomy, and the robot‑human 
interactions.

5 Example 
concerns

Ensuring fairness in 
algorithmic decision‑making, 
and preventing biased data 
from influencing AI 
outcomes.

The central issue of paramount importance is: 
Should a robot be given the ability to make 
independent decisions? Can it pose a danger 
to humans?
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2.10 DISCUSSION AND CONCLUSIONS

This chapter dealt with the basic principles of robotics, robophysics, and the philoso‑
phy of roboethics (Table 2.4). Importance of roboethics, the ethical, legal, and social 
facets of robotics were emphasized, describing the ways in which robots must be 
designed in order that they act and behave ‘ethically’.

Physics plays a key role in the dynamics and kinematics of robot motion. This 
chapter reviewed the basics of robophysics, the study of robotic movement in com‑
plex real‑world environments using the methods of physics and theoretical models 
(Aguilar et al. 2016). Robophysics is an emerging scientific discipline that deals with 
the motion of robots analogous to biophysics, which studies the motion of biological 
systems. It is concerned with problems at the interface of nonlinear dynamics, soft 
matter, control, and biology. Its objective is to examine successful and failed locomo‑
tion in simplified robotic devices to create robots that have life‑like abilities.

TABLE 2.4
Looking at Significant Themes of This Chapter and the Findings

Sl. No.
Significant 

Themes Explanation

1 Robotics The meanings of common terms like ‘robots’, ‘robotics’, ‘AI robots’, 
and ‘AI robotics’ were explained. Chronologically, five generations of 
robotics are distinguishable. The primary components of an AI robot 
are sensors, actuators, arms or manipulators, end effectors, 
controllers, and AI processors. Important AI processor chips used in 
robotics include the central processing unit, the graphical processing 
unit, the tensor processing unit, the vision processing unit, the neural 
processing unit, the associative‑in‑memory unit, the graph analytics 
processor, and the quantum processing unit. A classification of robots 
was made according to size, by the type of control system used, by 
mobility, and from an application viewpoint. The interrelationship 
among robotics, AI robotics, robophysics, and roboethics was brought 
out by breaking them into subdomains, and illustrated with an 
example.

2 Robophysics Robophysics is an emerging scientific discipline in which physics 
methods are applied to enhance robot movement and behavior. The 
analogy of robotics with biophysics is drawn. The principles of 
robophysics studies were described. Its significance and applications 
are mentioned.

3 Roboethics Roboethics deals with the ethical, social, and humanitarian 
implications of robotics. Isaac Asimov’s laws of robotics were 
enunciated, followed by an understanding of the order in which 
obedience to the rules is prioritized.

4 Keywords and 
ideas to 
remember

Robotics and robots, AI robotics and AI robots, AI processor chips, 
CPU, GPU, TPU, VPU, NPU, AiMP, graph analytics processor, QPU, 
robophysics, biophysics, roboethics, Isaac Asimov’s laws.
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Robophysics studies have become essential for robotics because the present‑day 
autonomous robots possess limited locomotion capabilities and cannot robustly navi‑
gate in situations that require climbing on vertical surfaces, such as trees and hills, 
or moving on deformable surfaces like sand and mud. The ‘robophysics’ approach, 
which involves a systematic search for novel dynamical principles in robotic systems, 
can assist computer science and engineering, which have proven successful in less 
complex environments.

Anthropomorphism is concerned with ascribing human features to non‑human 
things, and seeks to develop robots with human‑like characteristics. Principles of 
natural phenomena must be emulated in robotics because laboratory‑created robots 
have to work in the real‑world environment, where they must have cognition, sensing, 
and decision‑making capabilities, which living creatures have acquired over long 
periods of evolution.

At this stage, the reader is acquainted with the fundamental concepts of AI and 
robotics, and it is time to look into the working of robotic systems. At the core of any 
robotic system is a combination of two key components: sensors and actuators. The 
wide‑ranging robotic applications permeating and spanning from industrial manu‑
facturing automation to prosthetic systems function with a high degree of autonomy 
through the harmonious integration of these components in robots. Chapter 3 will 
provide a brief description of the main sensors and actuators used in robotics.
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3 Robotic Sensing and 
Actuation Techniques

3.1  INTRODUCTION

Robotics works by the confluence of sensing, actuation, and electronic control. This 
chapter dwells upon the sensors, actuators, and electronic systems that are frequently 
used in robotics (Dahiya et al. 2023).

3.2  SENSING AND PERCEPTION BY ROBOTS

Sensing and perception are the abilities of a robot to gather information about its 
surroundings using various sensors. A few examples of sensors are cameras (vision), 
LiDAR (light detection and ranging), vision sensor, light sensor, SONAR (sound 
navigation and ranging), microphones (audio sensors), accelerometers (motion), tilt 
sensor, tactile or touch sensors, force sensor, pressure sensor, proximity sensor, tem‑
perature sensor, global positioning system (GPS), digital magnetic compass, current 
and voltage sensor, and chemical sensors.

The various sensors in a robot work around the clock, all day and all night, to 
record data about the environment in which the robot is deployed. This is similar to 
the non‑stop perception of environments by human beings through their senses of 
sight, odor, taste, touch, and hearing. The robot’s hardware processes the collected 
information about temperature, light intensity, distance, and chemical composition, 
using AI algorithms to extract meaningful information like object location, degree of 
hotness, distance, shape, texture, and movement. The information processing allows 
a robot to understand and interact with its environment effectively in a controlled 
manner in order to make informed decisions and actions (Guo et al. 2006; Wu et al. 
2022). These are the decisions made and actions taken after gathering all the useful 
information about a subject, considering potential benefits and risks and aligning 
with the goals.

3.3  ACTUATORS AND END‑EFFECTORS OF ROBOTS

3.3.1 A ctuators

Actuators of robots are equivalent to their muscles, by which they convert their ener‑
gies into mechanical motions. They are components producing a force, torque, or 
displacement to perform different types of actions for execution of tasks. The tasks 
involve handling of objects and carrying out numerous activities during the interac‑
tion of robots with their environment. A common actuator is the electric motor. A 
powerful precision servo motor offers a wide range of motion control mechanisms. 
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Different forms of pneumatic, hydraulic, and electric actuators are extensively used 
in robotics for industrial automation. They help state‑of‑the‑art humanoid robots in 
rotating their joints and simulating complex natural walking. The vast variety of 
robotic actuators encompass alternating current (AC) and DC servo motors, stepper 
motors, synchronous motors, pneumatic motors, linear DC actuators, hydraulic and 
pneumatic cylinders, ultrasonic piezoelectric actuators, and so on.

3.3.2 eNd‑effectors

End‑effectors of robots are the peripheral devices, mechanical or electromechani‑
cal. They range from legs and wheels to arms and fingers. Various implements are 
attached to a robot’s wrists, enabling it to interact with and manipulate its physi‑
cal environment. They are broadly classified as grippers and advanced‑function‑
ality process tools. Grippers of different shapes, sizes, and configurations are used 
for grasping and moving objects. Examples of process tools used by robots are as 
follows:

 i. The welding tools used in the automotive industry,
 ii. The grinding and sanding tools for smoothing and finishing the surfaces of 

workpieces,
 iii. The cutting tools, like blades for material removal and shaping,
 iv. The painting tools with brushes for applying consistent layers of paints and 

dispensers or syringes with nozzles, and
 v. The valves are for controlled liquid and adhesive flow.

Table 3.1 enlists the distinctive duties performed by sensors and actuators used in 
robotics.

3.4 ROBOT CAMERAS

The lens assembly of the camera focuses light onto an image sensor for the conver‑
sion of optical signals into electrical signals. The camera utilizes complementary‑ 
metal‑oxide‑semiconductor (CMOS) or charge‑coupled device (CCD) technology. 
Each pixel of the sensor takes care to cover a small area of the captured scene. The 
analog signals are converted to the digital domain by an analog‑to‑digital converter 
for processing by the robot’s computer. A robotic camera to detect the desired sub‑
ject, track, and focus it is reported (Rehman et al. 2023); the camera’s position is 
driven and controlled through movable motors.

3.4.1 types of roBot cameras

Several types of robot cameras have been developed:

 i. 1D or Line‑Scan Camera: It captures visual data along a line. Hence, it is 
useful for inspection of movements of objects on platforms like conveyor 
belts. A 1D camera is simplest and the least computationally intensive.
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 ii. 2D or Area Scan Camera: This is a standard camera that gives a flat planar 
image with length and breadth dimensions. From a planar image, the shape 
of the object is easily recognized, as well as its position is located. A 2D 
camera is moderately complex.

 iii. 3D or Depth Camera: Stereo vision or laser scanning techniques are used to 
reconstruct the geometry of an object in 3D. A 3D camera is highly sophis‑
ticated and requires extensive computational capabilities.

 a. Stereo Vision: Two cameras placed at a small distance apart acquire 
images of the object from two viewpoints. Depth information is 
obtained from the pixel disparities between the two images.

 b. Laser Scanning: Precise distance measurements of different points on 
the object from the robot are done by illumination of the object with a 
laser beam. Measurements of the time of return of the reflected laser 
beam are made from each point. An accurate 3D model of the object is 
built from these measurements.

3.4.2 coNsideratioNs for roBot camera mouNtiNg

Vital issues to be considered during the mounting of a robot camera are as follows:

 i. Selecting the Type of Camera to Be Used: A decision among 1D, 2D, and 
3D cameras is made depending on the application.

 ii. Choosing the Location of the Robot where the Camera Is to Be Fixed: The 
camera is fixed either on the wrist or the forearm of the robot. The camera is 

TABLE 3.1
Responsibilities of Robotic Sensors and Actuators

Sl. No.
Point  

of Comparison Sensors Actuators

1 Definition Sensors are devices that detect and 
measure robot’s environmental 
conditions, like detecting light, 
pressure, or estimating distance. The 
conditions are detected by converting 
the concerned physical parameters 
into electrical signals.

Actuators are components that 
take electrical signals from 
sensors and translate them 
into physical actions. They 
allow the robot to move 
around in its workplace and 
interact with its surroundings.

2 Function As implied by the name, sensors 
‘sense’ the environment.

In accordance with the name, 
actuators ‘act’ upon the 
information received from 
sensors.

3 Output Sensors produce electrical signals as 
output.

Actuators yield physical 
motion as output.

4 Examples Vision sensors (cameras), proximity 
sensors, force sensors, temperature 
sensors, ultrasonic sensors, etc.

Electric motors, e.g., servo 
motors; pneumatic cylinders, 
hydraulic actuators, etc.
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sometimes attached to the base of the robot or even on a separate dedicated 
fixture. The choice of mounting site is dictated by the desired field of view.

 iii. Picking the Appropriate Lens: This is determined by the field‑of‑view 
requirement.

 iv. Calibration Procedure to Be Followed: It depends on the control and vision 
system needs.

3.4.3 typicaL mouNtiNg coNfiguratioNs of roBot cameras

There are two principal configurations in which the robot cameras are mounted, 
namely:

 i. Eye‑in‑Hand: In this configuration, the camera is fitted directly to the 
end‑effector of the robot. The camera moves with the end‑effector provid‑
ing real‑time feedback for achieving accuracy in crucial grasping and con‑
trolling jobs, e.g., pick‑and‑place operations. However, the perspective of 
the camera continuously changes in this configuration causing difficulty in 
camera calibration.

 ii. Eye‑to‑Hand: In this arrangement, the camera is fixed and stationary. It 
watches the workspace and actions of the robot from its fixed viewpoint. The 
advantage gained by this positioning of camera is the resulting stable angle 
of view. Although the vision processing becomes relatively simple, extra cal‑
culations need to be done to find the position of the object with respect to the 
arm of the robot. A robot engaged in object recognition or navigation tasks is 
greatly benefited by the broader field of view offered by such camera fixation.

3.4.4 appLicatioNs of roBot cameras

Among the many applications of robot cameras, the following are the most common:

 i. Industrial Pick‑and‑Place Robots: These camera‑equipped robots work on 
assembly lines.

 ii. Warehouse Product Identification/Sorting Robots: These camera‑wearing 
robots make warehouse tasks easier.

 iii. Medical Surgery‑Assistance Robots: The visual feedback provided by cam‑
eras to these robots is very helpful to doctors in performing minimally inva‑
sive surgeries.

 iv. Robots Driving Autonomous Vehicles: The robots installed on these robots 
detect pedestrians, read traffic signs, and lane markings. So, they are able to 
guide the vehicle on a safe journey.

3.5 ROBOTIC LIDAR SENSOR

The robotic LiDAR sensor is a distance measurement sensor that the robot uses for 
measuring its separation from a target. It provides the robot with real‑time informa‑
tion about its surroundings. Therefore, it functions as the eyes of the robot to navigate 
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its environment. Furthermore, the LiDAR is an active remote sensing system. It itself 
generates energy in the form of light to illuminate the target area from which data is 
to be collected. This aspect differentiates it from a passive system. A passive system 
relies on naturally occurring radiation for distance measurement.

3.5.1 priNcipLe of operatioN

The robot’s LiDAR sensor is mounted on a cart carrying a load (Figure 3.1). The 
LiDAR sensor consists of a laser diode (transmitter), a photodiode (receiver), and a 
scanner (rotating mirror or prism) with associated optical assembly. A pulse genera‑
tor triggers the laser diode. The LiDAR sensor emits a beam of light as a laser pulse. 
This laser pulse is reflected from the objects in the environment such as the surfaces 
of roads, ground, buildings, and trees. Reflected light from the obstacle is detected by 
the photodiode. Incident and reflected light beams are shown. The electrical signal 
produced in the photodiode is amplified, digitized by an A‑to‑D converter, and fed to 

FIGURE 3.1 The principle of LiDAR is illustrated with reference to its use for distance 
measurement by a robot from a load‑carrying cart to an obstacle. The inset shows the inner 
structure and components of the LiDAR. The formula for distance calculation is given.
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a processing unit. The processing unit calculates the distance between the robot and 
the obstacle and provides the distance output. The distance is found by measuring the 
time t taken by the laser pulse reflected from an object called the back‑scattered light 
to reach the LiDAR sensor. The formula used in the calculation of distance is derived 
by noting that the laser pulse has traveled from the LiDAR sensor to the object and 
returned by rebounding. From knowledge of velocity c of light, the distance d of the 
target from the robot is calculated by the formula:

 =
2

d
ct

 (3.1)

where the factor 2 accounts for the two‑way journey of light from the robot to target 
and back.

3.5.2 priNcipaL compoNeNts of a Lidar seNsor

The LiDAR has four main components:

 i. Laser Source: The laser source emits pulses of near‑infrared (IR) light.
 ii. Scanner: It performs a continuous scanning of the environment by rotating 

and oscillating to point in different directions to direct the laser beam in 
different directions.

 iii. Detector: It contains a light sensor by which it converts the reflected light 
from distant objects into electrical signals.

 iv. Processing Unit: The electrical signals produced in the detector are ana‑
lyzed in the processing unit to calculate distances. A 3D point cloud is gen‑
erated providing a 3D representation of the scanned area, and precise X, Y, 
and Z coordinates for each point. From the detailed 3D maps thus gener‑
ated, the robot is able to perceive its surroundings accurately.

3.5.3 appLicatioNs of Lidar seNsor iN roBotics

The LiDAR sensor is the key element of several robotic systems, where it is used for:

 i. Object Detection:
 a. Geometric Shape‑Fitting: Ground segmentation and plane‑fitting algo‑

rithms are used to determine the 3D geometry of the objects in the point 
cloud.

 b. Deep Learning: Convolutional neural networks are used to identify 
critical features in images to accurately detect objects.

 ii. Simultaneous Localization and Mapping (SLAM): It allows a robot to con‑
struct a map of an unknown environment and track down its own position 
within that environment.

 iii. Collision Avoidance: The robot uses path planning algorithms, e.g., A* 
(A‑star), Dijkstra’s algorithm, and rapidly exploring random trees (RRT) 
to calculate and find routes along collision‑free paths. Global path planning 
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calculates the best path, while local planning determines the best speed of 
the robot’s movement. The collision Jacobian matrix relates the approach‑
ing velocity of the links to the obstacles with the end‑effector velocity. 
Accordingly, the end‑effector velocity is modified to avoid smashes against 
obstacles (Kaneko et al. 1999).

 iv. Navigation: By careful object detection, SLAM technique, and path plan‑
ning, the robot can move about easily in its surroundings. A LiDAR‑equipped 
mobile robot has been developed to navigate inside a room without any 
impact on the wall (Hutabarat et al. 2019).

3.5.4 adVaNtages of Lidar seNsor

The LiDAR sensor offers many advantages, among which the most relevant in robot‑
ics are as follows:

 i. Provision of fast and accurate target detection and ranging with an accu‑
racy of 0.15–0.25 m is assured. During its continuous movement, a 2D 
LiDAR‑mounted cleaning robot identifies if a person is lying on the 
ground after falling. A convolutional long short‑term memory (LSTM) 
neural network is trained for the classification of the processed sensor 
information. It can identify if a fall has occurred for monitoring the 
activities of elderly people living alone to assure emergency healthcare 
(Bouazizi et al. 2023).

 ii. Independence of distance measurements from lighting and weather con‑
ditions is achieved. Exceptions are heavy rain, cloud cover, fog, and 
snowstorms.

3.5.5 LimitatioNs of Lidar seNsor

The LiDAR has shortcomings too, which must always be properly accommodated 
when using it by making the requisite allowances:

 i. Obscuring of one object by another at LiDAR height inhibits its proper 
functioning.

 ii. It is difficult to detect transparent objects. Reflective surfaces too create 
confusion.

 iii. Adverse weather conditions introduce complexities in detection.

3.6 ROBOTIC SONAR SENSOR

SONAR is the short form of Sound Navigation and Ranging, developed in inspiration 
from the echolocation abilities of bats and dolphins. A robot uses SONAR to detect 
obstacles in its environment, measure distances to objects, and navigate effectively. 
The SONAR primarily acts as a sense of touch for the robot. It allows a robot to per‑
ceive its surroundings even in low‑light or obscured conditions. It is especially useful 
for underwater robots. Besides its regular activities, the robot uses SONAR to find 
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the distance, direction, and speed of underwater objects. It is used for mapping the 
seafloor topography and geological formations, the aquatic environment and marine 
life, finding shipwrecks, or identifying potential underwater obstacles/hazards for 
navigation. Robots in submarines use it for navigation and the detection of under‑
water vessels. The superiority of SONAR over LiDAR in underwater mapping, par‑
ticularly in deep and murky water conditions, arises from the fact that sound waves 
travel much farther and more effectively through water than light or radio waves. 
These properties make it suitable for underwater detection (Kleeman and Kuc 2008).

3.6.1 workiNg priNcipLe of a soNar seNsor

It works by sending high‑frequency sound waves in all directions and detecting the 
sound waves received after reflection from surrounding objects. In a SONAR system, 
the transmitter produces an electrical pulse. The pulse feeds a transducer, which 
converts the electrical pulse into sound waves. The sound waves propagate in the sur‑
rounding regions. During the course of their movement, they come across any object. 
On striking the object, they undergo reflection and bounce off. The reflected sound 
waves from the object return and hit the transducer, which transforms them into an 
electrical signal and sends it to a receiver.

In Figure 3.2a, a ship has a robot fitted with a SONAR. The ultrasound beam from 
the emitter of the SONAR propagates through the seawater and strikes the sea bed. 
The incident and reflected ultrasound beams are shown. The time difference between 
the electrical pulses corresponding to the incident and reflected signals is recorded. 
Using the velocity of sound waves in the concerned medium, the distance between 
the sensor mounted on the robot and the object is calculated. The SONAR works in 
a pulsed mode by periodically transmitting pulses of the 160 kilohertz (kHz) signal 
with a waiting time interval between successive transmissions to listen for the echo. 
A programmable divider and oscillator are used to transmit a series of closely spaced 
tones, called a pseudo‑chirp.

3.6.2 primary compoNeNts of soNar seNsor

Figure 3.2b shows the internal construction of a SONAR system. The SONAR has a 
transmitter‑cum‑receiver carrying a transducer which acts as an ultrasound emitter 
and detector. Other components include a power supply and measurement circuit. 
The processing unit calculates the sea depth and shows it on the display unit. The 
functions of the different components of SONAR are explained below:

 i. Transmitter‑Cum Receiver: It acts both as a transmitter and a receiver of 
sound waves; hence, it is called a transceiver.

 ii. Transducer: This is the core component of a SONAR, which is engaged 
in energy conversion from the electrical into mechanical domain during 
transmission and mechanical‑to‑electrical form during reception of sound 
waves using piezoelectric or magnetostrictive materials. It is built as an 
array of interconnected sensitive elements to improve the signal‑to‑noise 
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ratio. When working in transmission mode, it is referred to as a projector; in 
receiver mode, it is known as a hydrophone (Benjamin 2008).

 iii. Processing Unit: It analyzes the transmitted and received signals, measures 
the time taken by the echo signal to return, and calculates the distance of the 
object from the robot.

 iv. Display Unit: It provides a visual representation of the processed informa‑
tion in numerical form or through graphics, facilitating the planning of a 
robot’s course of action.

FIGURE 3.2 SONAR: (a) application of a SONAR for measuring the depth of sea water by 
a robot in a ship, and (b) parts of the SONAR unit.



51Robotic Sensing and Actuation Techniques

3.6.3 appLicatioNs of soNar seNsor iN roBotics

The SONAR sensor finds widespread usage in robotics. Its application areas are as 
follows:

 i. Obstacle Detection to Avert Collisions: A robot detects objects in its path to 
prevent colliding against them.

 ii. Blind Spot Detection: SONAR comes to rescue in places where the robot’s 
primary vision system is obstructed.

 iii. Room Navigation: SONAR acts as a cost‑effective room navigation tool, 
cheaper than LiDAR for a mobile robot in an enclosed space.

 iv. Mapping and Localization: The robot sketches a map of its surroundings by 
classifying landmarks and pinpointing its own location within the map.

 v. Underwater Robotic Activities: SONAR excels in underwater performance 
to overcome the limitations of LiDAR for low‑visibility light‑scattering 
afflicted jobs to be executed by a robot.

3.6.4 LimitatioNs of soNar seNsor

Due attention must be paid to the limitations of SONAR when using it in robotics to 
avoid errors:

 i. Range of Detection Restriction: A smaller range than LiDAR in open air 
makes SONAR unsuitable for long‑distance navigation of robots.

 ii. Lower Accuracy of Detection: Environmental noise and surface texture of 
the object impact SONAR output, affecting the robot’s actions. The LiDAR 
furnishes a higher 3D resolution in data for clear environments than SONAR.

 iii. Angular Dependence of Measurements: The angle of incidence of sound 
waves on the object influences SONAR readings, thereby degrading the 
robot’s performance.

3.7 ROBOT’S ACCELEROMETER

It is a device that measures acceleration, or the rate of change in velocity of the robot 
with respect to time (Liu and Pang 1999). It also measures a robot’s tilt. For a robot 
moving on an inclined surface, e.g., during its uphill or downhill motions, the mea‑
sured speed includes components due to gravity. These gravity components are not 
part of the actual robot speed. So, the computed speed is not the actual robot speed 
and the gravity components are compensated in the speed computations to ascertain 
the actual speed of the robot (Nistler and Selekwa 2011).

The accelerometer helps the robot to determine whether it is moving or stopped 
and to detect collisions or vibrations. It monitors the robot’s physical movement and 
maintains its balance from observed changes in speed and orientation. It can perform 
gait analysis by measuring the motion of the robot’s limbs or transient events.

Several types of accelerometers are fabricated using micro‑electro‑mechani‑
cal systems (MEMS) technology, e.g., piezoresistive, capacitive, and piezoelectric 
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MEMS accelerometers. They generally contain a small mass connected to a stiff 
spring. When the mass is accelerated, the spring is deflected. The accelerometer 
measures this deflection electrically.

Figure 3.3 shows the three types of accelerometers. In a piezoresistive accelerom‑
eter, as shown in Figure 3.3a, the values of piezoresistors located on flexure beams 

FIGURE 3.3 Robot’s accelerometers: (a) piezoresistive, (b) capacitive, and (c) piezoelectric.
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connected between the proof mass and a supporting frame change in response to the 
bending of the beams caused by acceleration. The change in resistance measures the 
acceleration. In the capacitive accelerometer shown in Figure 3.3b, a proof mass is 
suspended from anchors. It has electrodes projecting outward on both sides. These 
electrodes move in the gaps between electrodes projecting from fixed plates. The 
two sets of electrodes constitute an interdigitated pair of electrodes laid out in a vari‑
able capacitor configuration. In a piezoelectric accelerometer shown in Figure 3.3c, 
a piezoelectric crystal is mounted on the vibrating surface with electrodes on its two 
opposite sides. Over the crystal lies the seismic mass, which is held in its place with 
a spring. A damper is also fixed. The complete assembly is housed in a package. A 
voltmeter is connected across the electrodes of the crystal.

3.8 ROBOT’S TACTILE SENSOR

A robot’s tactile sensor, also known as a fingertip force sensor, is a device that mea‑
sures the physical properties of objects through contact (Yardley and Baker 1986; 
Tegin and Wikander 2005). It mimics the human sense of touch by detecting contact 
and pressure variations across a surface.

It is used by the robot for tasks like grasping objects with varying shapes and 
textures, collision detection, and human‑robot interaction. It allows more delicate 
manipulation of objects. A tactile sensor system for a robot manipulator is used in 
industrial processes, e.g., welding and inspection (Suwanratchatamanee et al. 2010).

The tactile sensor operates on the principle of converting mechanical pressure 
exerted on its surface into an electrical signal by utilizing changes in electrical resis‑
tance, capacitance, or electric charge produced (Figure  3.4). Accordingly, it is of 
three types:

 i. Piezoresistive Sensor: Conductive particles are embedded inside an elas‑
tomer. The distances between the particles change with pressure due to 
deformation of the elastomer, thereby altering the electrical resistance of 
the device. This sensor is easily microfabricated at an affordable cost. It has 
a good sensitivity and simple readout electronics.

Figure  3.4a shows an elastomer with suspended conductive particles 
inside and covered with electrodes on its two sides. When a force is applied 
to the sensor, the elastomer is squeezed, and the conductive particles come 
closer together, decreasing the resistance.

 ii. Capacitive Sensor: Here the capacitance between electrodes varies depend‑
ing on the separation or overlap between them caused by applied pressure. 
The capacitance changes indicate the pressure variations. Besides pressure, 
it measures shear forces and strain.

In Figure 3.4b, we see a fixed bottom electrode on a substrate. Spacers 
are fixed on two sides of the substrate and an electrode with a polydimeth‑
ylsiloxane (PDMS) film is suspended forming an air gap between the elec‑
trodes. When the PDMS film is subjected to a force, it bends along with 
the electrode fixed to it. Consequently, the air gap between the electrodes 
decreases and hence the capacitance of the device changes.
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 iii. Piezoelectric Sensor: It produces an electric charge and hence a potential 
difference that is proportional to the force, pressure, or vibrations applied to 
the sensor.

In Figure 3.4c, we see a substrate. There is a lower polyvinylidene fluoride 
(PVDF) layer with electrodes on both sides. Over this layer lies a soft film. 

FIGURE 3.4 Robot’s tactile sensors: (a) piezoresistive, (b) capacitive, and (c) piezoelectric.
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Upon the soft film, there is an upper PVDF layer with electrodes on both 
sides. Vibrations are produced in the lower PVDF layer by feeding an AC 
signal. These vibrations generate an output voltage across the upper PVDF 
layer. This voltage changes on applying a force on the upper PVDF layer.

3.9 ROBOT’S PROXIMITY, POSITION, AND DISTANCE SENSORS

A proximity sensor is used in robotics to detect the presence of nearby objects with‑
out making any physical contact with those objects (Tsuji and Kohama 2020; Alagi 
et al. 2022). It need not specify the exact distance of the object from the robot. It 
is sufficient for the robot to know that an object is close to it without touching the 
object. It works on capacitive or inductive principles. Proximity sensors using IR 
radiation and ultrasonic waves are also common. The robot uses proximity sensors to 
avoid obstacles on its path. A robot in a factory uses it to detect whether a workpiece 
on a conveyor belt is near it. The proximity sensor shown in Figure 3.5a consists of 
an LED and a photodiode along with the readout circuit. An IR beam emitted by the 
LED is reflected toward the photodiode. Incident and reflected IR beams are shown. 
The readout circuit discovers the presence of the obstacle.

The position sensor gives information to the robot about its current location. It 
also measures the angles of joints of the robot’s limbs with respect to a reference 
point. The position sensor helps the robot in controlling its motion or monitoring the 
positions of its joints.

Linear or rotary encoders or potentiometers are commonly used for position sens‑
ing. Figure 3.5b shows a linear potentiometer used for this purpose. A slider moves 
over a resistor connected to a battery and a voltmeter. The opposite end of the slider 
moves over a fixed plate. As the slider moves between the end points A and B, the 
output voltage varies because the path length traversed by the current changes.

A distance sensor accurately measures the distance of the robot from an object. 
Time‑of‑flight cameras and ultrasonic sensors are usually used for distance estima‑
tion. Laser range finders, too, are common.

Figure  3.5c shows a piezoelectric ultrasonic transducer acting as a transmit‑
ter‑cum‑receiver. The obstacle, incident, and echo ultrasonic waves are shown. The 
control circuit measures the time taken by ultrasonic waves to reach the obstacle and 
bounce back, and calculates the distance from the transducer to the obstacle.

The distance sensor is used by the robot for mapping its environment. It guides the 
robot’s hands during the manipulation of an object. It also tells the robot about any 
object detected on its path.

3.10 ROBOT’S TEMPERATURE SENSOR

A robot uses temperature sensors for performing various everyday jobs:

 i. Environmental Monitoring: The robot monitors the temperature of its surround‑
ings. Temperature monitoring allows it to adapt to changing environments.

 ii. Overheating Detection: The robot detects potential overheating in its com‑
ponents. Thus, its motors or batteries are prevented from damage.
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FIGURE 3.5 Sensors for proximity, position, and distance estimation by a robot: (a) prox‑
imity, (b) position, and (c) distance.
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 iii. Task Optimization: The robot adjusts its behavior based on temperature 
conditions, like slowing down in extreme heat.

Common temperature sensors used by robots include:

 i. thermistors which exhibit large resistance changes with temperature,
 ii. resistance temperature detectors (RTDs) where the resistance of a high‑ 

purity conducting metal, like platinum, changes with temperature, and 
sometimes

 iii. IR sensors for non‑contact temperature measurement which operate by 
measuring the heat of an object by converting the IR radiation emitted by it 
into an electrical signal.

The core principle is that the sensor translates the temperature change into an elec‑
trical signal in direct response to temperature fluctuations. This signal is read and 
interpreted by the robot’s control system.

Figure  3.6 shows a thermistor. In Figure  3.6a, a semiconducting film is sand‑
wiched between two electrodes with connection pins. In Figure 3.6b, the semicon‑
ducting film and electrodes are covered with an encapsulating coating.

A type of robot finger capable of precise temperature measurements from 303 to 
353 K consists of a flexible reduced graphene oxide‑based temperature sensor, an 
integrated circuit and a Bluetooth for wireless transmission of data (Zhou et al. 2019).

FIGURE 3.6 Robot’s thermistor: (a) without and (b) with encapsulation.
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3.11 ROBOT’S HUMIDITY SENSOR

A robot measures humidity to monitor environmental conditions. Humidity control 
is crucial for cleaning robots, agricultural robots, or robots operating in sensitive 
environments (Lee et al. 2007; Mariani et al. 2023). Different versions of humidity 
sensors include the following:

 i. Capacitive Humidity Sensor: Robots typically measure humidity using 
a capacitive humidity sensor (Figure  3.7a). The capacitive sensor detects 
changes in capacitance caused by moisture in the air. When moisture from 
the air condenses on the sensor’s dielectric material, it alters the electrical 
properties of the dielectric material between the two electrodes, and hence the 
capacitance between the electrodes. This change of capacitance is measured 
and translated into a digital signal representing the humidity level. Capacitive 
sensors are renowned for their high accuracy and rapid response time. These 
characteristics make them suitable for precise humidity measurements.

The capacitive humidity sensor shown in Figure 3.7a consists of a ceramic 
substrate over which an oxide or polymer dielectric film is sandwiched 
between a bottom electrode and a thin top moisture‑permeable electrode.

 ii. Resistive Humidity Sensor: This sensor uses a material whose electrical 
resistance changes based on the moisture content. But it is generally less 
accurate than a capacitive sensor. The resistive humidity sensor shown in 

FIGURE 3.7 Robot’s humidity sensors: (a) capacitive, (b) resistive, and (c) piezoelectric.
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Figure 3.7b consists of a ceramic substrate covered with a pair of interdigi‑
tated electrodes over which a hygroscopic film is deposited.

 iii. Piezoelectric Humidity Sensor: It measures the change in mass due to water 
vapor adsorption. The sensor works by measuring changes in oscillation 
frequency caused by mass bound to the surface of the piezoelectric crystal. 
In Figure 3.7c, a quartz crystal with two electrodes has a moisture‑sensitive 
coating to adsorb moisture from the air. The moisture adsorption causes a 
change in mass and hence the oscillation frequency of the crystal with the 
humidity level.

3.12 ROBOT’S MICROPHONE

A robot uses microphones for a variety of tasks, including (Tamai et  al. 2004; 
Löllmann et al. 2017):

 i. Speech Recognition: Robots use microphones to recognize speech. They 
are able to do so even against background noise.

 ii. Communication: Robots use microphones to communicate with their envi‑
ronment, enabling them to react to audio commands.

 iii. Sound Source Localization: Robots use microphones to determine the 
direction and place from which a sound is coming.

 iv. Source Separation: Robots use microphones to separate and identify simul‑
taneous sound sources for reacting to complex auditory environments with 
reverberation and noise.

 v. Sound Tracking for Rescue Missions: Robots use microphones to listen to 
sound of people who are calling for help, such as those trapped under a 
rubble.

Some types of microphones used in robotics are as follows:

 i. Dynamic Microphones: These microphones are known for their reliability 
and ruggedness. They do not require batteries or external power supplies. In 
the dynamic microphone shown in Figure 3.8a, a wire coil is attached to a 
diaphragm. The coil moves between the pole pieces of a permanent magnet 
marked as N and S. The sound waves impinging on the diaphragm produce 
vibrations in it. The vibrations make the coil move back and forth in the 
magnetic field between the pole pieces. The movement of the coil induces 
a voltage in it. This voltage is recorded as the output voltage signal, serving 
as a replica of the sound pressure variations.

 ii. Ribbon Microphones: These microphones use a light metal element to pick 
up both the velocity and displacement of air. This gives them improved 
sensitivity to higher frequencies.

 iii. Condenser Microphones: These microphones provide more detailed repro‑
duction of sound than dynamic microphones, but they require an external 
power supply to function. They are very sensitive and pick up sound from 
close sources, room sound, and background information.
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Robot microphones use a variety of techniques to help robots identify and under‑
stand sounds in their environment, including:

 i. Beamforming Microphones: These use multiple microphones to determine 
the direction of a sound source. The direction is determined by measuring 
the time it takes for the sound to reach each microphone and the strength of 
the received sound signal.

 ii. Microphone Arrays: They use a group of omnidirectional microphones. 
They are used to separate sounds and reduce noise.

3.13 ROBOT’S SPEAKER

A speaker developed specifically for a speaking or talking robot is custom‑designed 
and tailored to meet the unique needs of different robot applications. Vital factors 
considered are clear audio quality at various volumes, volume control, directionality, 

FIGURE 3.8 Robot’s listening and talking devices: (a) microphone and (b) speaker.
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and sometimes even specific sound characteristics to match the robot’s intended per‑
sonality. No less important is the compact size of the speaker to fit within the robot’s 
body design. The speaker must also have the ability to operate in harsh environ‑
ments, with personalized features like audible warnings in safety‑critical situations 
or pleasant voice interactions in social robots.

Figure 3.8b shows a moving‑coil loudspeaker. A moving coil connected to the 
input voltage signal is mounted between the pole pieces N and S of a permanent 
magnet. The current flowing through the coil produces a magnetic field around it. 
The magnetic field of the coil interacts with the magnetic field of the permanent mag‑
net. The interaction of magnetic fields induces vibrations in the diaphragm and cone 
attached to it and supported by suspensions from a chassis. The vibrating diaphragm 
produces sound waves that are transmitted through the air.

Many robot developers create unique speakers to optimize sound quality and fit 
within the robot’s physical constraints. Different robot applications might require 
different speaker characteristics, like high‑fidelity sound for social robots or loud, 
clear warnings for industrial robots. Depending on the robot’s design, some may 
utilize commercially available speakers adapted for robotic use, depending on the 
application and desired functionality. Others may require completely custom speaker 
systems to achieve desired functionalities. Speakers are often integrated into the 
robot’s design, sometimes even within the mouth area to enhance realism.

Social robots use artificial intelligence algorithms to identify the speaker and per‑
sonalize the conversation. They are programmed to deliver a speech while mimick‑
ing a human speaker’s gestures and body movements.

Design considerations for robotic speakers are as follows:

 i. Size and Shape: It must fit within the robot’s form factor. Compatibility with 
robot’s design and aesthetic appeal cannot be overlooked.

 ii. Durability: Depending on the robot’s environment, it must withstand vibra‑
tions, temperature fluctuations, and potential impacts.

 iii. Sound Quality: Clear and audible voice reproduction is crucial for commu‑
nication and interaction.

 iv. Directional Sound: Some robots require speakers that can project sound in 
specific directions for targeted communication.

The applications of robotic speakers are as follows:

 i. Human‑Robot Interaction: Social robots often use speakers for natural con‑
versation and providing feedback.

 ii. Industrial Automation: Industrial robots alert workers to potential hazards 
or provide status updates on machinery.

 iii. Navigation Assistance: Assistive robots guide users with voice commands.

Examples of specialized robotic speaker features are as follows:

 i. Multiple Speaker Arrays: These are used to create a more immersive sound 
experience or direct sound toward specific locations.
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 ii. Adaptive Volume Control: It automatically adjusts volume based on ambi‑
ent noise levels.

 iii. Audio Processing Algorithms: They enhance speech clarity and reduce 
background noise.

3.14 ROBOT’S TEXT‑TO‑SPEECH (TTS) SYNTHESIZER

It is a speaking device used by a robot. It converts written text into audible speech, 
allowing the robot to speak by playing back the generated audio through a speaker. 
It takes input in the form of text and produces an audible voice output. It has the fol‑
lowing components:

 i. Microphone: It captures spoken words from a user.
 ii. Speech Recognition Algorithm: It converts spoken words into digital data.
 iii. Text‑to‑Speech Engine: It converts text into spoken audio.
 iv. Speaker: It plays the generated audio.

It is worth noting that the TTS is combined with a microphone for speech recogni‑
tion. This enables the robot to understand spoken commands as well.

3.15 ROBOT’S ACTUATION MOTORS

Electric motors are the principal components of mobile robots engaged in transporta‑
tion, manufacturing, and surveillance industries (Coiffet and Chirouze 1983). They 
are used for the movement of these robots from place to place. They power their 
wheels, legs, or other locomotion parts through the conversion of electrical energy 
into mechanical motion. A wide variety of motors of different types, each with spe‑
cific capabilities suited to specialized actions, are available. The robot design engi‑
neer can choose the most befitting one from this variety for any application (Yuan 
2023; Tiwari 2025).

3.15.1 motor seLectioN criteria for roBotics

Essential considerations for choosing a proper robot motor are as follows:

 i. Continuous and maximum torque needed for handling the load without 
overheating or stalling of the motor.

 ii. Desired range of motor speed and requisite precision in speed control.
 iii. Efficiency of the motor to save power consumption and prolong battery life.
 iv. Physical dimensions and weight of the motor to fit within the robot’s  

body.
 v. Motor sealing and protection for protection from environmental hazards in 

robot’s workplace, e.g., dust, extreme temperatures, humidity, and exposure 
to chemicals.

 vi. Reliable and maintenance‑free operation of the motor, e.g., brushless motors 
are more robust with longer life spans and less frequent breakdowns.
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 vii. Complexity of motor control circuitry, e.g., stepper motors require intricate 
control algorithms, whereas the DC motors are easily controllable.

 viii. Compatibility with control electronics module of the robot for seamless 
integration with the microcontroller.

 ix. Easy scalability, upgradation, and acceptability of additional features.
 x. The available budget and economical aspects of the customer.

3.15.2 types of motors used iN roBotics

The common types of robot motors are as follows:

 i. DC Motors: These simple, affordable motors are easy to install and main‑
tain. They are used in battery‑operated applications. They provide continu‑
ous rotation with a high torque‑to‑inertia ratio. They respond quickly to 
control signals with precise speed and position control. However, they are 
prone to wear and tear due to the use of brushes. Moreover, they have lower 
efficiency than brushless motors.

Figure 3.9a shows a brushed DC motor. The rotor is the armature coil 
whose terminals are connected to the split‑ring commutator. A battery con‑
tacts the split‑ring commutator through carbon brushes to deliver the cur‑
rent to the rotor. The commutator reverses the direction of the current in 
every half cycle. Hence, the coil continues to rotate in the same direction.

 ii. Brushless DC (BLDC) Motor: Brushless motors show improved per‑
formance and longer lifespans compared to traditional DC motors. This 
is possible because the need for brushes is eliminated. These motors are 

FIGURE 3.9 DC motors for robot actuation: (a) brushed and (b) brushless.
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commonly used in mobile robots that require high efficiency. Undoubtedly, 
they offer quiet operation due to the absence of brushes and also require low 
maintenance. However, they have more complex control and drive circuitry. 
Also, their initial costs are higher compared to brushed DC motors.

Figure  3.9b shows a BLDC motor. The rotor is a permanent magnet 
marked N‑S. The stator consists of three separate coils. Three‑coil stator 
configuration generates a rotating magnetic field by selectively energizing 
two of the three stator coils at a time. This field causes a smooth, controlled 
motion of the rotor without brushes.

 iii. Servo Motors: A type of DC motor, they offer high precision and control. 
They are commonly used in robotic arms and autonomous vehicles. They 
allow for accurate positioning. They are capable of holding a specific 
angle even under load. But they offer a limited continuous rotation than 
other motors. Also, they have a relatively higher cost than standard DC 
motors.

 iv. Stepper Motors: They are brushless DC motors that can move in precise 
increments. Hence, they are used in applications that require accurate posi‑
tioning or smooth motion control, such as robotic arm movement and 3D 
printing. They operate by dividing a full rotation into a series of steps, giv‑
ing precise control and high torque output. But they have a higher power 
consumption when holding a position. Also, they experience resonance 
issues at certain speeds.

 v. AC Motor: The AC motors are used in large robotic arms and manipulators. 
They are used in industrial automation equipment requiring high power out‑
puts. They are robust and capable of delivering high torque. But they have 
more complex control than DC motors. Further, they require an external 
power inverter for variable speed control.

Figure 3.10a shows a synchronous motor. The rotor consists of perma‑
nent magnets. Three‑phase AC supplied to the stator windings generates a 

FIGURE  3.10 Three‑phase AC motors for robotic actuation: (a) synchronous and (b) 
induction.
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rotating magnetic field. The rotating field induces an electric current in the 
rotor, accompanied by a magnetic field. The interaction between the mag‑
netic fields of the stator and the rotor creates a torque. The torque enables 
the rotor to lock with the stator’s magnetic field and rotate at a synchronous 
speed.

Figure 3.10b shows an induction motor. A three‑phase AC is supplied 
to the stator, creating a rotating magnetic field. The rotating magnetic field 
cuts the rotor’s conductors, inducing an electromotive force and hence cur‑
rent in the rotor. The current induced in the rotor interacts with the rotating 
magnetic field. The resultant torque causes rotation of the rotor.

 vi. Linear Motors: These motors are used in high‑speed and high‑precision 
robotic systems. Such robotic systems are used in semiconductor manufac‑
turing equipment. They provide direct linear force, eliminating the need for 
additional mechanical components such as gears or pulleys. This advan‑
tage makes them suitable for applications requiring linear motion instead of 
rotational motion. They have higher costs than traditional rotational motors 
but are limited to specific linear motion applications.

 vii. Pneumatic Vane Motors: They use compressed air to generate rotational 
motion. Being lightweight and able to deliver high power‑to‑weight ratios, 
they are used in mobile robots. These robots require quick movements. 
They are also preferred in environments where electric motors may not be 
suitable, e.g., in explosive atmospheres. They require a reliable source of 
compressed air.

 viii. Hydraulic Motors: They use pressurized fluid to generate rotational motion. 
They deliver high torque and are commonly used in heavy‑duty applications 
that require significant power output, e.g., in large mobile robots, such as 
construction or agricultural machinery. They require a hydraulic fluid sup‑
ply and associated plumbing. They demand higher maintenance owing to 
the potential for fluid leaks.

Figure 3.11 shows a pneumatic/hydraulic motor. The rotating element is 
a slotted rotor mounted on a drive shaft. Each slot of the rotor is fitted with 
a freely sliding vane extended to the casing wall using springs. Compressed 
air or liquid is pumped through the gas/liquid inlet. It pushes the vanes 
to move ahead, creating the rotational motion of the central shaft. Then it 
comes out through the gas/liquid outlet.

 ix. Piezoelectric Motors: They are based on the piezoelectric effect of deforma‑
tion of a material when subjected to an electric field. They are commonly 
used in micro‑robotics or applications that require precise movements and 
fine adjustments. They are limited to low power output applications and 
operate on a small scale. They are more complex to control than traditional 
motors.

Figure 3.12 illustrates the working of piezoelectric motor. Figure 3.12a 
shows the motor consisting of a piezo stack fixed on one side, a contact 
point, a slider, and a bearing. No voltage is applied.

In Figure 3.12b, a voltage slowly increasing with time is applied. The 
piezo stack is slowly extended. The slider moves along with the moving 
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contact point owing to the frictional force between the contact point and the 
slider. This is the stick‑phase.

In Figure 3.12c, a voltage rapidly decreasing with time is applied. The 
piezo stack is rapidly retracted. The slider remains stationary due to inertia, 
but the contact point slips back to its original position. This is called the 
slip‑phase. A net displacement of the slider results.

A macroscopic movement is realized by repetition of the steps of 
Figure 3.12b and c.

 x. Magnetic Field Motors: These motors use the principles of magnetism to 
generate motion, like magnetic linear actuators. They offer high precision, 
so they are used in mobile robots that require accurate position control, 
such as medical robotics or laboratory automation. They need complex con‑
trol algorithms for optimal performance, and they are more expensive than 
other motor types.

3.16 DISCUSSION AND CONCLUSIONS

Sensors and actuators are essential components of robots that make them capable of 
environmental perception, physical action, and communication with other devices 
(Table 3.2). Electronic control systems consist of computational processors, storage 
devices, interfacing circuits, notably OP‑AMPs and analog‑to‑digital converters, 
and open‑loop and closed‑loop control systems. To name a few components/circuits, 
Arduino is a small computer serving as the robot’s brain that can be programmed 

FIGURE 3.11 A pneumatic/hydraulic motor for robotics.
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FIGURE 3.12 A piezoelectric motor for a robot in three different states: (a) without any 
applied voltage, (b) on applying a voltage slowly increasing with time, and (c) on applying a 
voltage rapidly decreasing with time.
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for controlling its lights and motors; RasberryPi is a versatile kit featuring system on 
chip with GPU, RAM, and connectivity; and Robot Operating System (ROS) is an 
open‑source framework to assist researchers in building and using codes between 
different robotic applications.

After familiarizing ourselves with the different kinds of sensors and actuators 
used for building robots, let us examine how these devices impart capabilities to 
robots similar to humans about sensing and interacting with their environments. 
As we know, human–human interaction is largely based on speaking to/listening to 
others, and acting in response. It is the natural and prevalent way by which people 
communicate and exchange information among themselves. Through speech, we 
convey our thoughts, ideas, and emotions to our colleagues and friends. Conversation 
by speech fosters social bonding and connections. We would surely like to inter‑
act with robots via speech. Speech is a convenient, fast, and efficient communica‑
tion mode with robots for controlling robots in industries, such as surgical robotic 
arms. Speech‑supported robots can take care of the sick and help people in dan‑
gerous environments more easily than deaf and dumb robots. Sinch speech enables 

TABLE 3.2
Reflecting Back on This Chapter and the Lessons Learned

Sl. No. Lessons Learned Explanation

1 Summary Sensing and perception by robots enable them to see, hear, and 
feel their surroundings in order to interact with their 
environment. Actuators and end‑effectors of robots power their 
movements and actions.

2 Robot cameras Considerations for robot camera mounting were described 
together with their typical mounting configurations and 
applications. Different types of robot cameras were mentioned.

3 LiDAR and SONAR The principle of operation, primary components, applications, 
advantages, and limitations of robotic LiDAR and SONAR 
sensors were elaborated.

4 Robot’s sensors Robots are equipped with various sensors, among which 
accelerometers, tactile sensors, proximity sensors, position 
sensors, distance sensors, temperature sensors, and humidity 
sensors are most commonly used in a typical robot.

5 Speaking/listening aids The robot also has a microphone, speaker, and text‑to‑speech 
synthesizer for easy interaction with humans.

6 Robot’s actuators Several types of actuation motors used in robotics were 
discussed and their selection criteria were outlined. Among 
these, the DC motors, brushless DC motors, servo and stepper 
motors, AC motors, linear motors, pneumatic vane/hydraulic 
motors, piezoelectric and magnetic field motors are prominent.

7 Keywords and ideas to 
remember

Sensing and perception, actuators and end‑effectors, robot 
cameras, LiDAR sensor, SONAR sensor, accelerometer, tactile 
sensor, proximity, position, distance, temperature, and humidity 
sensors, microphone, speaker, and actuation motors.
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more motivating and  satisfying robot–human interactions; we shall look into the 
techniques of speech processing for robotics in the forthcoming chapter. Speech 
processing becomes more complicated in noisy environments and those prone to 
reverberations.
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4 Talking and Listening  
Robots
Speech Synthesis, 
Recognition, and 
Understanding

4.1  INTRODUCTION

Robots speak, listen, and act using a combination of hardware and software technolo‑
gies. These technologies enable them to generate human‑like speech and commu‑
nication for robot‑to‑robot and robot‑to‑human interaction. The main technologies 
involved in these interactions are as follows:

	 i.	Text‑to‑speech (TTS) synthesis (Kuo and Tsai 2024)
	 ii.	Speech recognition (Zinchenko et al. 2017)
	 iii.	Natural language processing (NLP) (Supriyono et al. 2024)
	 iv.	Speakers, microphones, and actuators

Table 4.1 presents a comparative description of the fields of speech synthesis and 
recognition.

This chapter discusses the technologies used in natural language‑controlled 
robots, i.e., robots that speak and understand like humans, enabling the exchange of 
information by robots’ mouths and ears.

4.2  TTS SYNTHESIS AND VOICE GENERATION

TTS synthesis is referred to as speech synthesis. It is also called voice generation. It 
is an artificial intelligence technique based on machine learning models. It works by 
applying linguistic rules and pronunciation dictionaries to convert written text into 
spoken words. These words sound natural and human‑like (Rashad et al. 2010; Li 
and Lai 2022).

4.2.1 P hases of TTS

TTS is a three‑phase process. The three phases in TTS are text normalization, 
prosodic analysis, and concatenating speech synthesis (CSS) (Nair et  al. 2022; 
Ahmad and Rashid 2024). Explanatory details are given below:
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 i. Text Normalization: Text is the raw written input material. It is the material 
that needs to be converted into synthetic speech. Text normalization means 
the conversion of text into a consistent, canonical form before processing. 
By the canonical, normal, or standard form of a mathematical object is 
meant a form which presents the simplest representation of the object and 
allows it to be identified in a unique manner.

Figure 4.1 illustrates the step‑by‑step procedures and defines the tech‑
nical terms used in text normalization. The procedures are feeding the 
input raw text, case conversion, tokenization, removing punctuation marks 
and stop words, parts‑of‑speech tagging, and stemming/lemmatization to 
reduce words to their root forms.

All text is uniformly converted to either lowercase or uppercase. 
Spellings of words are checked for correctness. Extra characters or punc‑
tuation marks are deleted. The stop words like ‘the’, ‘a’, ‘an’, etc. are also 
obliterated. Words are reduced to their base forms, e.g., ‘walking’ to ‘walk’. 
The given piece of text is split into smaller units called tokens. These tokens 
are words, characters, or numbers, and the splitting process of the text is 
known as tokenization. The text is converted into a standard computer for‑
mat to a target specification. The string of phones to be synthesized together 
is included.

In phonetics, a phone is a distinct, discriminable speech sound. It is not 
specific to a language. The sounds [pʰ] and [p] are two separate phones. 
There are four phones: [s], [p], [ɪ], and [n] in the word ‘spin’.

A phoneme is the smallest unit of sound that carries a definite mean‑
ing in a language. It is a speech sound that can change the meaning of the 

TABLE 4.1
Speech Synthesis and Speech Recognition

Sl. No.
Point  

of Comparison Speech Synthesis Speech Recognition

1 Definition It is the process of converting 
written text into spoken language, 
thereby creating artificial speech 
from text.

It is the opposite of speech 
synthesis, converting spoken 
language into written text.

2 Fast definition It speaks what we type. It ‘types’ what we say.

3 Function It is used to generate human‑like 
spoken language from written text.

It is used to understand 
spoken words and translate 
them into the written format.

3 Input/output It takes text as input and produces 
an audio signal as output.

It takes an audio signal as 
input and produces text as 
output.

4 Examples A text‑to‑speech program reading a 
document audibly and distinctly to 
the audience.

A voice assistant listening to 
our voice commands and 
interpreting them as text.
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word. A new word is produced when a phoneme is swapped with another 
 phoneme. To illustrate, substitution of the phoneme /p/ in the word ‘peg’ 
with the phoneme /l/ generates the word ‘leg’. Similarly, the words ‘kid’ and 
‘kit’ terminate with two different phonemes, /d/ and /t/.

The phoneme is represented by a written letter or a group of letters 
known as a grapheme. Different variations of the same phoneme occur in 
dissimilar contexts. But they do not change the meaning of a word. These 
variants are known as allophones. To clarify, the letter ‘t’ is a grapheme; 
the sound of the letter ‘t’, e.g., in ‘top’, is a phoneme. However, the slightly 
dissimilar ’t’ sounds in ‘top’ and ‘stop’ are allophones.

The progress of phonetic conversion takes place in the order graph‑
eme‑phoneme‑allophone. Figure 4.2 illustrates the stages in phonetic con‑
version: grapheme‑to‑phoneme conversion, phonetic feature analysis, and 
phoneme‑to‑allophone conversion.

 ii. Prosodic Analysis: Prosody is a reflection of the nuanced emotional charac‑
teristics of the speaker. Prosodic analysis involves analyzing a text’s rhythm 
and emphasis patterns to identify elements such as stress patterns, pitch 
variations or intonation, and pauses. These elements are crucial for con‑
veying meaning and emotion to speech in order to create natural‑sound‑
ing speech (Totsuka et al. 2014; Corrales‑Astorgano et al. 2024). Prosodic 
patterns vary with languages and dialects. So, they need careful attention. 
Prosody influences the utterance segmentation into syllables and words 
(Dahan 2015).

Figure 4.3 shows the nine steps in prosodic analysis: input as a recorded 
audio signal of spoken language, transcription of a speech sample, identifi‑
cation of syllables, marking stress levels, analysis of pitch contour, pauses 

FIGURE  4.1 Depiction of the stages through which a supplied text is passed during its 
normalization.
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and junctures, interpretation and contextualization beyond literal words, 
and output as a detailed breakdown of the pitch contour, intensity, and dura‑
tion of speech segments.

 iii. Concatenation Speech Synthesis: It is also called unit selection speech synthe‑
sis. It means joining together textual forms of pre‑recorded speech‑segment 
waveforms to form a complete utterance. The linking is done by accessing a 
large library of pre‑recorded speech sounds like phonemes or syllables. The 
appropriate units for each phone segment are selected based on the text anal‑
ysis. This is done in such a manner that the output speech matches the input 
text with high naturalness of the sound. Then the units are joined together 
to produce the final spoken output. Post‑processing is performed to smooth 
potential discontinuities for removing concatenation artifacts (Rabiner and 
Schafer 2007; Oralbekova et al. 2024). Figure 4.4 shows the details of the 
concatenation of short samples of input text to produce a synthesized speech 
output. The six steps involved include: feeding the input text, text analysis, 
searching, matching, concatenation, and post‑processing.

Concatenation is essentially stitching together pieces of audio. Its purpose is 
to create free‑flowing speech. Naturalness is an essential ingredient for TTS. The 
speech looks natural because it uses real human speech segments. The real segments 
are able to capture subtle variations in pronunciation and intonation. But concatena‑
tion needs an extensive library of recorded speech to cover all possible combinations 
of sounds and variations. Such a vast, all‑embracing library is extremely difficult 
to compile. Further, the process of joining together different speech segments can 
sometimes create noticeable gaps or unnatural transitions. Therefore, the quality of 
the database and the joining algorithm play significant roles in concatenation.

FIGURE 4.2 The three stages constituting a phonetic conversion.
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FIGURE 4.3 The progression of a prosodic analysis of speech.
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4.2.2 cost fuNctioNs aNd their optimizatioN

Two cost functions, namely, target cost Ct(ui,ti) and concatenation cost Cc(ui−1,ui) are 
minimized for unit selection:

 i. Target Cost: This cost function signifies the desired cost of a single acoustic 
unit, e.g., a phoneme, which is necessary to attain a specific quality level, 
as determined by the acoustic properties of the unit such as pitch, duration, 
and energy. It is determined by considering factors such as quality, clarity, 
and overall prosody expected from speech.

The primary use of the target cost is in selecting the best unit from a 
database during speech synthesis. The selection is done on the basis of its 
matching with the target pronunciation. Hence, its value expresses the mis‑
match between the target speech unit specification ti and a candidate unit ui 
from the database.

 ii. Concatenation Cost: This cost function is representative of the additional 
cost sustained when two acoustic units are connected together. It mea‑
sures how evenly one sound transitions to the successive sound. Its atten‑
tion is concentrated on the potential discontinuity or unnaturalness of 
sound. Factors taken into account are the transition between phonemes, 
pitch changes, and spectral uniformity between adjoining units aspiring to 
produce natural‑sounding connected speech. Therefore, it is used to select 

FIGURE 4.4 Combining the input text representing pre‑recorded speech segments to create 
a synthetic voice.
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units that seamlessly join with the previous unit. Seamless joining of units 
 contributes to a smoother, more natural‑sounding speech. The value of the 
concatenation cost expresses the acoustic or perceptual mismatch of the 
joint between the candidate unit ui and the preceding unit ui−1.

       Cost Function Optimization Procedure: When synthesizing speech, a sys‑
tem first selects the acoustic unit with the nearest target cost to the desired 
pronunciation. Then it has to decide which unit to place next to ensure a 
smooth transition. So, it considers the concatenation cost. Thus, the target 
and concatenation cost functions are jointly optimized to enable the speech 
synthesis system to produce high‑quality speech with natural‑sounding 
connected speech. Ideally, all the target units should be found according to 
the specification. Ushering of acoustic mismatches at the edges of concat‑
enated units should be prevented (Hunt and Black 1996; Gupta 2008).

4.2.3 use of tts By roBots

Robots exploit TTS synthesis technology to convey information fluently. Speech 
enables audible messaging to users. Robots use TTS as an assistive technology for 
reading text aloud. Narrations are created for movies and screen captures for peo‑
ple who prefer to listen to reading. Championing oratorial variety, these systems 
often support numerous languages. These features make them useful across varied 
environments.

4.3 SPEECH RECOGNITION AND UNDERSTANDING

Robotic speech recognition and language understanding is an umbrella technology 
dealing with the ability of a robot to listen to human speech, interpret its underly‑
ing meaning within context, and respond properly. It essentially allows the robot to 
understand natural language commands and instructions, facilitating natural, intui‑
tive, and seamless interaction between human operators and robots through spoken 
language. Speech recognition must be clearly differentiated from voice recognition, 
as explained in Table 4.2.

Various technologies used in speech and language understanding include speech 
recognition (conversion of spoken words into digital text using algorithms), NLP 
(analysis of the recognized text to comprehend its meaning), context awareness 
(interpretation of speech with respect to the surroundings/situations), semantic pars‑
ing (breaking down a sentence into its core meaning for triggering the intended 
action), and dialogue management (maintaining a conversation flow by tracking the 
conversational context).

4.3.1 speech recogNitioN

Speech recognition is sometimes called automatic speech recognition (ASR). 
Another name used is computer speech recognition. Speech recognition is essentially 
speech‑to‑text conversion. It necessitates the execution of commands for spoken 
words using sophisticated machine learning algorithms. These algorithms process 
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and understand human speech in real time. They are able to function correctly irre‑
spective of variations in accents, slang, pitch, speed, etc. (Chen et al. 2024; Goetzee 
et al. 2024).

The recognized language or command is utilized for transcription. It is sometimes 
used to operate a device. Instructions are frequently given to a virtual assistant.

4.3.1.1 Human Speech to Readable Written Text Conversion
Figure 4.5 shows the process of transforming the spoken words from a person’s voice 
into easily understood text in written form. It comprises the stages of capturing the 
audio signal, preprocessing it, generating a Mel‑scale spectrogram, post‑processing, 
model processing, feature extraction, and output. They are implemented as follows:

 i. A microphone picks up and records speech samples. The recorded signal is 
as an analog audio signal.

 ii. The raw analog signal shows amplitude of sound wave in decibels with 
respect to time. It is preprocessed, by amplification, noise reduction, etc.

 iii. The next step is analog‑to‑digital conversion. During analog‑to‑digital con‑
version, the sound wave is divided into 1s‑wide segments.

 iv. The Fast Fourier Transform (FFT) algorithm is applied to the digitized data. 
It converts the signal into a spectrogram, which is a plot of frequency on the 
Y‑axis and time on the X‑axis.

 v. The spectrogram is matched to the phonemes. As already said, a phoneme 
is a distinct unit of sound in a given language. The speakers of a language 
perceptually regard it as a single basic sound, e.g., there are ~40 phonemes 
in the English language.

TABLE 4.2
Speech Recognition vs Voice Recognition

Sl. No. Point of Comparison Speech Recognition Voice Recognition

1 Definition It is the process of 
understanding spoken words.

It is the process of identifying a 
speaker.

2 Purpose It performs a transcription of 
spoken words into text.

It aims at the identification of a 
speaker based on the voice 
characteristics in the supplied 
signal.

3 Principle It uses AI to analyze an audio 
signal and identify words, 
phrases, or language patterns 
in the signal.

It uses AI to analyze vocal 
biometrics, such as pitch, tone, 
and rhythm, in a given audio 
signal.

4 Applications Transcription services, virtual 
assistants, voice search, 
accessibility, creation of 
computer‑generated captions 
that capture dialogue in 
multimedia content, etc.

Security purposes like 
unlocking, voice assistants, 
executing voice commands, 
etc.
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 vi. There are variations in speaking phonemes called allophones. These varia‑
tions arise owing to differences in the gender, age, accent, and emotional 
state of the speaker. Nonetheless, the phonemes constitute the basic building 
blocks used by a speech recognition algorithm, such as the hidden Markov 
model and deep neural networks (DNNs). These algorithms arrange them in 
the correct order to form meaningful words and sentences.

A speech recognition system aims to find the most likely sentence that 
was uttered by a user given the speech input, as expressed by the equation

 
( )= ∈ 













ˆ argmax  S S L P
S

A  (4.1)

where ‘argmax’ is the abbreviation of ‘argument of the maxima’, represent‑
ing the input value(s) at which the output value of the function is maximized, 

FIGURE  4.5 Recognizing words spoken by a person, and converting them into textual 
format.
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L is the given language, S ∈ L are possible sentences within it, A is the 

observed audio input, and 



P

S

A
 is the Ŝ  probability of S given A is true 

(Jurafsky and Martin 2009).
Applying Bayes’ rule, this equation may be written as
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where 



P

A

S
 is the probability of occurrence of A given S is true, and P(S) 

and P(A) are absolute probabilities of S and A, respectively. The denomina‑
tor P(A) is a common factor among all candidate sentences. Hence, it can 
be ignored.

 vii. Hidden Markov Model: Correct order in phoneme arrangement is main‑
tained using statistical probabilities in a three‑layered process:

Layer 1: The algorithm examines the acoustic level and the probability 
of the phoneme. This is done to confirm that the correct phoneme has been 
detected by comparing it with well‑known words, phrases, and sentences.

Layer 2: The algorithm scrutinizes the succeeding phonemes. It checks 
the probability that they should be following each other.

Layer 3: The algorithm inspects the word level. The objective is to find 
that the adjoining words make a sensible meaning. This is done by verifying 
the probability that they should be in succession.

A thorough probability analysis is carried out, followed by checking and 
re‑checking. Then, the most likely text is presented as the output. The algo‑
rithm adequately fits the sequential speech content. Hidden Markov models 
have been the backbone of speech recognition. This is because they model 
speech as a sequence of states. In this sequence, each state represents a 
phoneme or a group of phonemes. The hidden Markov models provide a 
simple and effective framework for temporal modeling of speech signals as 
well as the consecutive phoneme arrangements for building a word. Albeit, 
the existence of a wide variety of phonemes and their possible combinations 
often renders it difficult to achieve perfection. Further information on hid‑
den Markov models is given in Section 9.2.

 viii. Deep Neural Networks: The DNNs represent complex connections between 
the speech input and the resulting text output through a hierarchy of layers. 
They can learn hierarchical representations of data. Thus, learning ability 
makes them particularly effective at modeling intricate patterns found in 
human speech. They are used for acoustic modeling to better understand 
the audio content of speech. They are used for language modeling as well to 
predict the likelihood of certain word sequences.

Neural networks can improve over time, offering a great flexibility 
advantage. The neural network is trained. All the different connections ini‑
tially have the same weight. Necessary input data for training is supplied 
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to the neural network. Specification of its accurate output is also made. 
The neural network then proposes a certain output. If the output from the 
neural  network does not agree with the desired output, more training is 
needed. This difference between the actual and desired outputs is the error. 
The neural network adapts itself with the adjustment of weights to reduce 
the error. A neural network requires plenty of input training data to improve 
itself for error elimination. The necessity for abundant input data before 
becoming perfect is one of the drawbacks of neural networks in speech rec‑
ognition. The other pitfall is that it fits the sequential nature of speech badly.

On a positive note, neural networks provide a supple approach. This 
approach grasps the varieties of the phonemes, making them capable of 
detecting the uniqueness of accents, emotions, age, gender, and so forth. 
Therefore, a hybrid strategy combining hidden Markov models with neural 
networks is adopted. In this hybrid strategy, each method compensates for 
the deficiencies of the partner, thus firming up complementarity.

4.3.1.2 NLP Algorithms
NLP algorithms are mathematical formulae used for training computers in under‑
standing natural language (Wang et al. 2023; Khurana et al. 2023). They include the 
following:

 i. Sentiment Analysis: It is the process of classification of text into positive, 
negative, or neutral sentiment categories. It can classify a movie review as 
either positive or negative from the language used inside it. It consists of the 
following steps:

 a. Tokenization: The text is broken down into individual words or tokens 
for separate analysis.

 b. Removal of Stop Words: The words like ‘is’, ‘an’, and ‘the’ have insignif‑
icant meaning. Therefore, they are removed to focus on the main words.

 c. Text Normalization: It is also known as stemming or lemmatization. 
It converts words into their base or root form, e.g., ‘going’ to ‘go’.

 d. Feature Extraction: Key words that will help to determine sentiment are 
extracted. Adjectives like decent, evil, splendid, etc. are pulled out.

 e. Classification: The sentiment is classified using machine learning 
algorithms. Binary classification consists of positive and negative. A 
multi‑class classification is represented by choosing more than two 
classes, e.g., delighted, gloomy, and annoyed, or on a scale (rating from 1 
to 10). Sentiment finding becomes difficult whenever irony, sarcasm, or 
slang are encountered. Irony is a figure of speech that communicates the 
opposite of what is said. Sarcasm is an ironic remark made for mocking 
in which the speaker says something different from what the speaker 
actually means. Slang is the vocabulary of informal language between 
two persons of the same social group who know each other well.

 ii. Keyword Extraction: This is the process of extracting relevant keywords or 
phrases from a single document. Keyword extraction helps identify topics 
or trends.
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 iii. Named Entity Recognition (NER): It identifies predefined groups of  entities, 
such as names of persons, organizations, locations, etc.

 iv. Topic Modeling: It aims to discover latent themes or topics across a collec‑
tion of documents. It works by analyzing the frequency and co‑occurrences 
of words across them. By such analysis, it clusters word groups and similar 
expressions that best characterize a set of documents.

 v. Intent Classification: This process tries to determine the intent behind a 
textual message, which can be a customer query, request, or complaint.

 vi. Knowledge Graph: It creates a graph network of important entities, such 
as people, places, and things. The graph allows easy understanding of the 
context and shows how different concepts are related.

 vii. Word Cloud: This is a graphical representation of the frequency of words 
used in the text. The intent is to gain insights about prominent themes, sen‑
timents, or buzzwords around a particular topic. An example is identifying 
trends and topics in customer feedback.

 viii. Text Summarization: The text summarization algorithm creates summa‑
ries of long texts into shorter versions to make it easier for humans to 
understand their contents quickly for better analysis. Extractive summa‑
rization selects and combines the most important sentences or phrases. 
Abstractive summarization produces new sentences that capture the 
essence of the original text.

Robots should be able to report in natural language what they have done by providing 
concise summaries. They should be able to respond to questions about themselves. 
They should be able to learn from the natural language responses they receive to 
their summaries (DeChant and Bauer 2022).

4.3.2 uNderstaNdiNg the deeper meaNiNg of speech

4.3.2.1 Context‑Aware Speech Recognition
Context awareness is the ability of a speech recognition system to extricate informa‑
tion from the previous utterances of an excerpt, the present circumstances, or domain 
knowledge for accurate interpretation of spoken words (Haase and Schönheits 2021; 
Chevalier et al. 2022). The system easily understands the likely meaning of a recent 
utterance by considering the words spoken previously. Incorporating knowledge spe‑
cific to a particular domain can help the system disambiguate words that might be 
vague in general language, e.g., physics terminology in an automotive electronics 
setting provides a valuable guide in understanding the content. Integrating visual 
information aids in interpreting speech more exactly based on the visual scene.

Most speech recognition systems depend on language models. These models pre‑
dict the next word based on the preceding words. Advanced techniques consist of 
attention mechanisms in neural networks. They allow the system to focus on specific 
parts of the input speech based on the prevailing context. A few systems process con‑
textual information separately using dedicated context encoders. They later integrate 
the processed information with the acoustic features of the speech.
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Context‑aware speech recognition is a boon to accuracy improvement. The system 
interprets ambiguous words and phrases more competently by utilizing contextual 
information. Thereby more explicit transcriptions are enabled. System robustness is 
further enhanced by quashing the interfering effects of background noise or accented 
speech by appreciating the intent.

Voice assistants are examples of context‑aware speech recognition applications. 
These assistants use the previous conversation to understand the meaning of a query 
faultlessly when a question is asked. Intelligent speakers in smart homes exploit con‑
textual information to interpret commands based on the ongoing activities in a room. 
A transcription system improves the accuracy of transcribing complex conversations. 
It considers the role of the speaker in reference to the complete topic of a discussion.

4.3.2.2 Semantic Parsing in Speech Recognition
It is the process of translating a spoken utterance into an expressly structured, 
machine‑interpretable representation of its deeper meaning, inclusive of the entities, 
actions, and relationships. This is not merely translation into pure text (Erdogan et al. 
2005; Corona 2016). Largely, it works by grabbing the key concepts and relationships 
within the spoken words. Hence, the computer is enabled to realize the intent behind 
a statement. It goes beyond the literal meaning of the words used in it. The parsed 
meaning is usually represented in a structured format. This format could be a knowl‑
edge graph or a definite command. Therefore, it is directly usable by a computer 
program, e.g., a voice assistant needs to catch a customer’s intent to perform actions 
like scheduling a reminder or a wake‑up call, playing songs, or arranging meetings. 
From a statement ‘Set a reminder to wake up at 5 am on Tuesday’, the parser would 
extract the action ‘set reminder’, the target ‘wake up at 5 am’, the time ‘5 am’, and 
the day ‘Tuesday’.

Semantic parsing uses NLP techniques, such as part‑of‑speech tagging, entity rec‑
ognition, and dependency parsing. It is done after the speech has been transcribed 
into text. In semantic analysis, the system plucks out the meaning of the utterance. 
The plucked‑out meaning is mapped to a formal representation from the linguis‑
tic structure and context. Contextual information from previous interactions or the 
user’s current situation is incorporated to enhance accuracy.

Ambiguities in natural language originate from words having multiple mean‑
ings depending on the context. These ambiguities frequently pose difficulties for a 
machine to correctly interpret the intent. Handling of grammatical complexities in 
sentence structures and variations in speech patterns introduces complications in the 
execution of semantic parsing algorithms.

4.3.2.3 Dialogue Management in Speech Recognition
Dialogue management is the speech recognition component responsible for maintain‑
ing the context of a conversation by tracking crucial information, e.g., intent of the 
customer, entities mentioned, and the present stage of the dialogue (Passonneau et al. 
2012; Reimann et al. 2024). It enables a natural and coherent interaction between 
a user and a voice‑based system. Usually, in such systems, the recognition process 
becomes erroneous in scenarios where multiple user inputs are needed to complete 
a task.
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The dialogue management workflow involves:

 i. Recognition of Intent: This aims to identify the user’s primary action or goal.
 ii. Entity Extraction: Its purpose is recognizing specific pieces of information 

within the speech, e.g., names, dates, locations, or quantities.
 iii. Dialogue State Tracking: This is done using information already provided 

by the user.
 iv. Prompting and Clarification: These are done by asking follow‑up questions 

or requesting additional information when necessary.
 v. Error Handling: It is useful in managing situations where the speech recog‑

nition system makes mistakes on encountering ambiguous input, allowing 
for graceful recovery and re‑prompting.

Dialogue management works by:

 i. Speech Recognition: Here, the spoken words are converted into text by the 
speech recognition engine,

 ii. Natural Language Understanding: Here, the text is analyzed to identify the 
user’s intent and extract relevant entities,

 iii. Dialogue State Update: In this part, the system updates its internal represen‑
tation of the conversation based on the recognized intent and entities,

 iv. Dialogue Policy: Herein, the system decides what to do next, such as provid‑
ing information, asking for clarification, or completing a task based on the 
current dialogue state, and

 v. Response Generation: In this period, the system generates a response, either 
in the form of spoken text or an action, based on the dialogue policy.

Practical dialogue management systems include smart home assistants, e.g.,

 i. For implementing the instruction, ‘Adjust the oven at 90°C degrees,’ the sys‑
tem needs to understand that ‘oven’ is the equipment, ‘90°C’ is the desired 
temperature, and then to update the dialogue state accordingly; and

 ii. A virtual customer service agent when asked, ‘What are office hours?’ the 
system will recognize the intent as ‘check office hours’ and provide the 
relevant information ‘9 am to 5 pm’.

4.4 DISCUSSION AND CONCLUSIONS

In this chapter, use of speech synthesis and recognition, the two subbranches of 
speech processing, was discussed for facilitating human‑robot interaction (Table 4.3). 
Recent advances in this field were surveyed. Service robots in restaurants and con‑
versational robots in healthcare and interviews should be able to respond in natural 
language. The responses of these robots should include scientific terminology wher‑
ever applicable. Moreover, they should operate in an emotional manner for wide 
acceptability by people.
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An Eloquent Robot

I am a conversational robot
Chattering and gossiping
Questioning and Answering
My actions are never boring
My capabilities to talk and listen
Connect me easily to humans.
Robotic voice communication
Improves human‑robot interaction.

Robot speech synthesis uses AI to create human‑like speech. After analysis of the 
written text, it predicts how it sounds naturally and realistically, and produces a 
waveform played by the robot’s speakers.

In speech recognition, a sentence spoken by a human operator is recognized by the 
robot using an ASR system (Tada et al. 2020). Then it applies syntactic and seman‑
tic parsing to determine the sequence of commands that it is expected to follow. 
Practically, the system is susceptible to inevitable errors. Errors also creep in because 
of environmental noises and distance of robot microphone from the speaking person. 
Recurrent neural networks can apply semantic parsing from sequences of letters and 
phonemes. Recognition error‑resistant semantic parsers have been developed.

TABLE 4.3
Ideas and Information Gained from This Chapter

Sl. No.  Information Gained Explanation

1 Summary Speech recognition and understanding involve several operations, 
such as the conversion of human speech into readable written text, 
application of natural language processing algorithms, context 
awareness, semantic parsing, and dialogue management, all of 
which play vital roles in the process. Salient aspects of speech 
technology were elucidated in order to clarify how robots can 
communicate effectively with humans through spoken language.

2 TTS synthesis Text‑to‑speech synthesis and voice generation for robotics were 
described in reference to the phases of text normalization, prosodic 
analysis, and concatenation of speech segments, as well as the 
target and concatenation cost functions.

3 Speech recognition It consists of several operations, such as speech‑to‑text conversion, 
language processing, contextual  adaptation and procedures 
beyond simple text processing for literal interpretation of speech, 
where each step contributes significantly to the overall outcome. 

4 Keywords and ideas to 
remember

Text‑to‑speech synthesis, voice generation, cost functions, speech 
recognition, human speech to readable written text conversion, 
natural language processing, context‑aware speech recognition, 
semantic parsing, dialogue management.
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Following the discussion of robot speech technology in this chapter, let us turn our 
attention to making robots capable of seeing by equipping them with vision facili‑
ties. A robot lacking in this ability will struggle to avoid obstacles while negotiating 
complex spaces. It will not be able to pick up specific items or sort objects to per‑
form tasks like assembly or inspection. Of course, a blind robot can navigate using 
LiDAR, SONAR or touch sensors but that will make matters more complicated. 
So, in the next three chapters we shall be engaged in investigating how robots are 
enabled to see their surroundings, as vision is the primary means to perceive the 
environment. Nevertheless, it should be borne in mind that robots may be required to 
work in in dark areas or in limited visibility conditions such as underground explora‑
tion of tunnels or in caves plunged in darkness, or in medical surgery. These robots 
rely on non‑visual sensors, e.g., surgery is done using tactile sensors to manipulate 
delicate tissues.
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5 Robots Able to See
General Aspects of 
Robot Vision

5.1  INTRODUCTION

A robot without vision is essentially blind. Although blindness may prima facie appear 
to be a serious impediment to robots’ performance, it is not a hindrance to robots in 
performing certain tasks. Notwithstanding, robot vision (RV) is desirable in some 
situations. In others, it becomes an essential prerequisite. Therefore, we undertake 
to pursue the multiple facets of RV in depth in the present and the next two chapters.

This chapter outlines the fundamental principles of RV, distinguishing it from 
computer vision (CV). Although the inputs to both these techniques are images, the 
output of CV is information or features, whereas the output of RV is physical action 
performed by the robot. RV incorporates kinematics and reference frame calibra‑
tion in its algorithms. Problems unique to RV arise from the fact that the data are 
collected hurriedly from a moving robot’s sensor. Often, the position and orienta‑
tion of the robot’s sensor are not known clearly. Moreover, the motion of the sensor 
usually causes blurring of the images. Techniques to overcome these problems will 
be explained, notably active vision, anomaly and interest detection, semantic scene 
understanding, place recognition, simultaneous localization and mapping (SLAM), 
vision‑based scene understanding, and 3D object detection.

5.2  IMAGES, VIDEO, AND VISION

5.2.1 I mage and Video Processing

The combination of optics with signal processing gave birth to image and video process‑
ing. The image is treated as a two‑dimensional signal. An image file represents a single, 
static frame. Video processing is a type of signal processing in which the input and out‑
put are video files or streams. A video is the recording, reproduction, and broadcasting 
of moving images, which is done by electronically representing a sequence of images 
or frames and combining them together for the simulation of the illusion of motion and 
interaction. A video file comprises a sequence of frames stored in various formats.

5.2.2 C omputer Vision

By combining image and video processing with machine learning, we obtain CV. 
Hence, computer vision = Optics + Image/video signal processing + Machine learn‑
ing. CV is a branch of artificial intelligence for the automation of image analysis by 
training computers to understand images and provide their interpretations.
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5.2.3 machiNe VisioN aNd patterN recogNitioN

Machine vision (MV) is a subset of CV that utilizes CV for industrial applications, 
such as automatic inspection and process control in factories. A related, though dis‑
tinct, branch is pattern recognition (PR) or feature recognition, which deals with the 
identification of particular patterns or features in visual data. These patterns could be 
faces of individuals or objects of different shapes.

5.2.4 roBot VisioN

RV is built by integrating all the preceding techniques and using additional com‑
ponents. Although RV is sometimes used synonymously with or interchangeably 
with MV, it must be distinguished from it. Some applications of MV, such as visual 
inspection, involve simply placing an optical sensor in front of machine parts for 
fault detection. Such applications are not connected with robotics.

RV unifies the concepts of robotics into its algorithms and methodology. Examples 
of robotic concepts include kinematics, calibration of reference frames, and the 
robot’s ability to interact with the environment physically.

RV and action triggering involve capturing images of the scene, analyzing the cap‑
tured images to recognize relevant features/objects in the images, and initiating desired 
actions to execute a job. It is a multi‑stage process, as illustrated in Figure 5.1. A robot 
arm is shown near a workpiece from which objects will be picked up for an industrial 
process. The robot arm is properly illuminated and photographed with a CCTV camera. 
The captured image undergoes digitization, pre‑processing, segmentation, and feature 
extraction. The resulting more informative dataset is used for image classification and 
interpretation. On the basis of these investigations, the requisite actions are triggered 
through the actuator, enabling the robot arm to execute the job. It is noted that the two 
main stages of this activity are image segmentation and feature extraction. For segmen‑
tation, the pixels constituting the image are treated as data points. They are partitioned 
into discrete groups based on their characteristics. A k‑means clustering algorithm 
divides the pixels in the image into k clusters, generating a set of segments that cover 
the entire image. The features are extracted from these segments. The features are the 
individual measurable properties within a recorded dataset, e.g., numerical (integral or 
float), categorical (red, green, blue), ordinal (such as small, large, extra‑large shirt size), 
binary (yes/no), or textual. Autoencoders or principal component analysis (PCA) are 
used. Autoencoders work by training a neural network in the recreation of its input data, 
thereby constraining it to discover structures in the data. PCAs entail dimensionality 
reduction of datasets to emphasize variations and reveal patterns/relationships.

The Watchful Robot

I am a robot with vision
I can see with my eyes like humans
I walk fearlessly without hesitation
To reach my destination
I am a smart sprinter
Whom no obstacles can hinder.
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5.2.5  differeNces amoNg sigNaL aNd image/Video 
processiNg, pr, cV, mV, aNd rV

The subtle differences of RV with its kin techniques can be easily visualized by look‑
ing at and comparing their inputs and outputs. The input to signal processing is an 
electrical signal, the raw signal. Its output, too, is an electrical signal, the processed 
signal. Both the input and output of image and video processing are images: the raw 
and processed images. For image processing, these are still images, while for video 
processing, they are moving images. The input as well output of PR is information. 
From CV, the input and output begin to differ. CV takes images or videos as input 
and dumps out information about the image or video, or its relevant features. Similar 
is the case with MV also. However, RV takes in images or video as inputs to generate 
physical actions as outputs. Briefly, we can state that:

Input and Output of Signal Processing: Electrical signals
Input and Output of Image Processing: Images
Input and Output of PR: Information
Input of CV: Images/video, Output: Information

FIGURE 5.1 Stages comprising robot vision and action tasks.
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Input and Output of MV: Same as for CV
Input of RV: Images/video, Output: Physical action

Table 5.1 presents the major contrasting features between RV and CV.

5.3 COMPUTER VISION

CV is supported on three technological pillars, viz.,

 i. image classification,
 ii. image classification with localization, and
 iii. object detection.

5.3.1 image cLassificatioN

Image classification is a two‑step process consisting of:

 i. Categorization of Pixels: Groups of pixels or vectors found in an image are 
subdivided into different categories on the basis of pre‑specified rules, and

 ii. Labeling of Pixel Categories: Labels are assigned to the categories of pixels 
or vectors contingent on the particular rules.

The various techniques used in image classification fall into one of the two types:

 i. Unsupervised Image Classification: It is a fully automated method that does 
not require any data for training. Instead, it applies machine learning algo‑
rithms for analyzing and clustering the given unlabeled sets of data. The 
clustering is done by discovering hidden patterns or groups of data within 

TABLE 5.1
Difference between Robot Vision and Computer Vision

Sl. No.
Point of  

Comparison Computer Vision Robot Vision

1 Scope It is a field of artificial 
intelligence.

It applies computer vision to robots. Hence, it 
is a computer vision subfield that is 
particularly relevant to robotics.

2 Function It analyzes images  
and videos.

It incorporates robotic techniques, such as 
kinematics, into computer vision to enable 
robots to interact effectively with their 
environment.

3 Applications Face recognition, video 
surveillance, and  
medical diagnostics.

Assistance in production lines and factories; 
in hospitals (to perform surgical 
procedures); in reconnaissance, surveillance, 
and space operations; and in search and 
rescue missions in difficult terrains.
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the supplied data. Two common machine learning algorithms used are 
k‑means clustering and the iterative self‑organizing data analysis technique 
algorithm (ISODATA).

 ii. Supervised Image Classification: In this approach, previously classified 
samples of data or pixels, called known reference samples, are used to train 
the unknown samples of data or pixels. Two popular algorithms used are 
support vector machine (SVM) and artificial neural networks (ANNs).

We shall describe k‑means clustering, ISODATA, and SVM algorithms, and then 
explain the image classification procedure. Thereafter, we shall move to neural 
networks.

5.3.1.1 K‑Means Clustering
As we know, the k‑means clustering is an unsupervised machine learning algorithm 
(Ikotun et al. 2023). It is used to group unlabeled data points into k clusters. The clus‑
tering is performed by randomly selecting a set of central points, known as centroids. 
Then the data points are assigned to one of the k clusters. Assignment of data points 
is based on the nearness of a data point to the centroid of a particular cluster. In this 
way, all the data points are assigned to their respective clusters. Once this assign‑
ment has been completed, the clusters with new centroids are chosen to minimize 
the sum‑of‑squares distances between each data point and its corresponding cluster 
center. This minimizes the mean squared error (MSE), indicating the within‑cluster 
variability. The process is iteratively repeated until satisfactory clustering is achieved.

5.3.1.2 ISODATA
ISODATA is a data analysis technique for unsupervised classification of data. It is 
iterative and self‑organizing (Memarsadeghi et  al. 2007). It is a modified version 
of k‑means clustering designed to overcome its shortcomings. k‑Means clustering 
assumes prior knowledge of the number of clusters, whereas ISODATA allows for 
a variable number of clusters. In the ISODATA technique, the centers of clusters 
are placed randomly. The data points are assigned to a cluster based on the short‑
est distance between the data point and the cluster center. The standard deviation σ 
within each cluster, as well as the distance d between the centers of the clusters (the 
inter‑center distance), is calculated. Each cluster is decomposed into two clusters if σ 
exceeds a user‑predefined threshold and the number of pixels is double the threshold 
value for the minimum number of data points. On the opposite side, the clusters are 
blended together if d is less than a threshold distance or if the number of data points 
in a cluster falls below a threshold value. An iteration is performed using the new 
centers of clusters. The iterations are repeated until the distance d decreases to less 
than the threshold value or the average change in d between successive iterations 
decreases below a threshold.

5.3.1.3 The SVM Algorithm
The SVM is a supervised machine learning algorithm used for classification and 
regression tasks. It works by finding the hyperplane that separates the different 
classes in the feature space. The features are the colors of pixels, the textures, and the 
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edges in the images. SVM determines the hyperplane that maximizes the distance 
between the closest points of the different classes, known as the margin. The points 
located closest to the hyperplane are designated as the support vectors. It exhibits 
less vulnerability to overfitting than a neural network. Overfitting occurs when an 
algorithm fits too closely and tightly to its training data, such that it cannot generalize 
and cannot predict accurately when exposed to new data.

5.3.1.4 Image Classification Procedure
The image classification setup shown in Figure 5.2 applies supervised machine learn‑
ing algorithms to train a model, known as the classifier, by feeding sample images 
along with their corresponding class labels. The trained model is then applied to 
classify unknown images submitted for analysis.

On the left‑hand side of the diagram in Figure 5.2 is the training side, consisting of 
an image database from which specimen images are pre‑processed, feature extraction is 
performed on the pre‑processed sample images, and they are annotated with associated 
ground truth labels. The classifier model is trained using the features and class labels.

On the right‑hand side of the diagram, there is the testing side. After the learn‑
ing process is completed, unknown images are pre‑processed, followed by feature 
extraction. The features of the query image are fed into the classifier, yielding the 
class label of the image.

5.3.1.5  The ImageNet 2012 Challenge and the Deep Learning  
Revolution in Image Classification

September 30, 2012, is a red‑letter day in the annals of deep learning. On this day, 
a convolutional neural network (CNN) named AlexNet (Krizhevsky et  al. 2017) 
successfully met the ImageNet challenge. It displayed excellent performance on 
ImageNet, the contemporary dataset of that time. The participants in this compe‑
tition were required to accurately detect various objects and scenes, and classify 
images from a truncated list of 1,000 ImageNet classes. The AlexNet scored lower 
than a 25% error rate. The runners‑up model was 9.8% points behind the winner. 
We shall first describe the main aspects of ImageNet, and then move on to the deep 
learning models, starting with AlexNet.

5.3.1.6 ImageNet: The Dataset for Image Classification
The ImageNet is a hierarchical database of images for vision research (Deng et al. 
2009). This ontology of images is highly useful for training machine learning models 
in image classification and other image processing tasks. Ontology in AI refers to a 
set of concepts and categories within a knowledge domain that represent their prop‑
erties and mutual relationships. The ontology of images, therefore, holds the key to 
the retrieval of images based on their contents.

By a hierarchical database is meant a model of data representation in which data 
is organized in the form of a tree structure. Such data organization makes navigation 
and searching easier. A tree is a data structure consisting of several nodes. The node 
is a point of intersection or branching of lines or pathways. The nodes are joined to 
each other by links. The single node at the highest level is referred to as the root node. 
Each element of the tree data structure has one parent node. It has either zero or more 
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child nodes. The parent‑to‑child relationship is one‑to‑many. The child‑to‑parent 
relationship is one‑to‑one.

ImageNet utilizes the hierarchy of WordNet for the organization of images. 
WordNet® is a structured collection of information about words of the English lan‑
guage, commonly called a lexical database. In this database, English nouns, verbs, 
adjectives, and adverbs are arranged into sets of synonyms known as synsets.

Constructed on the WordNet spinal structure, ImageNet seeks to populate most of 
the synsets of WordNet, numbering ~80,000 with around 500–1,000 tidy images of 
high resolution, providing an open‑source dataset of ~5 × 107 annotated clean photos 
for research purposes.

FIGURE 5.2 Workflow of image classification.
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5.3.1.7 Deep Learning Models for Image Classification

 i AlexNet: The AlexNet is a pioneering CNN architecture. It is a deep CNN 
comprising five convolutional layers, numbered 1–5, and three fully connected 
layers, 6–8 (Figure 5.3). The input image to AlexNet is a 227 × 227 × 3 RGB 
image (227 pixels wide and 227 pixels high image with three color channels). 
The first convolutional layer has 96 filters of size 11 × 11 × 3 and a stride of 4. 
The output image from this layer has the dimensions 55 × 55 × 96 (a 3D volume 
with dimensions of 55 pixels in width, 55 pixels in height and 96 pixels in depth, 
indicating the number of layers in the stack). The max‑pooling layer (with a 
filter size of 3 × 3 and a stride of 2) reduces image dimensions to 27 × 27 × 96. 
The second convolutional layer has 256 filters of size 5 × 5 × 96, a stride of 

FIGURE 5.3 Detailed AlexNet architecture.
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1, and a padding of 2. The output image dimensions after this layer become 
27 × 27 × 256. Then the max‑pooling layer (with a filter size of 3 × 3 and a stride 
of 2) reduces the image dimensions to 13 × 13 × 256. The third convolutional 
layer has 384 filters of size 3 × 3 × 256, a stride of 1, and a padding of 1. The 
output dimensions after this layer are: 13 × 13 × 384. The fourth convolutional 
layer has 384 filters of size 3 × 3 × 384, a stride of 1, and a padding of 1. The 
output dimensions after this layer are: 13 × 13 × 384. The fifth convolutional 
layer has 256 filters of size 3 × 3 × 384, a stride of 1, and a padding of 1. The 
output dimensions after this layer are: 13 × 13 × 256. The max‑pooling layer 
(with a filter size of 3 × 3 and a stride of 2), decreases the image dimensions to 
6 × 6 × 256. In the sixth layer, the output from the previous layer is flattened to 
9,216 units. Next to that, a fully connected layer consists of 4,096 units, all of 
which are fully connected to the previous 9,216 units. Dropout has been used 
for avoiding overfitting. The seventh layer is a fully connected layer with 4,096 
units, which are all fully connected to the units of the previous layer. Dropout 
has been used as in the preceding layer. The eighth layer feeds into a softmax 
classifier having 1,000 classes distribution.

A CNN is a feed‑forward neural network containing a stack of convolutional lay‑
ers. A convolutional layer is contemplated as made of many square templates known 
as convolution kernels, which are mathematically matrices of weights. The kernels 
slide over the image looking for patterns. When the pattern of the kernel matches 
a portion of the image, the kernel gives a large positive value. Otherwise, a value 
of zero or a smaller value is registered. Padding means adding extra pixels, usually 
zeros, around the edges of the input image before convolution to ensure that the 
output feature map maintains the same spatial dimensions as the input image. Stride 
determines the size of the step by which the filter moves across the input image.

The sequence of layers in AlexNet is represented by the equation:
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Convolution layer 1+ ReLU activation function + Local response normalization
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Convolution layer 2 ReLU activation function Local response normalization
Maxpooling

Convolution layer 3 ReLU activation function
Convolution layer 4

ReLU activation function

Convolution layer 5 ReLU activation function Maxpooling

Fully connected layer 6 ReLU activation function Dropout

Fully connected layer 7 ReLU activation function Dropout

Fully connected layer 8 Softmax activation function

 (5.1)
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The convolution layer of a CNN is the feature extractor layer. It slides a filter over the 
image to identify features and build a feature map of the image.

The rectified linear unit (ReLU) activation function is the mathematical function 
expressed by the equation

 ( )( ) =ReLU  max 0, f x x  (5.2)

It converts all the negative values to zero, thereby introducing non‑linearity in the 
deep learning model. It overwhelms the vanishing gradient problem, enabling the 
neural network to learn more complicated data relationships.

Unlike the tanh and sigmoid functions, the value returned by the ReLU activation 
function is not restricted within a defined range. This non‑restriction imposes the 
constraint of local response normalization (LRN).

The LRN is a neurobiological phenomenon‑based concept of lateral inhibition in 
which the output of neurons is locally normalized. The LRN assists neurons in learn‑
ing from intricate data patterns in three ways:

 a. By suppression of feeble activations and laying emphasis on the intense 
activations,

 b. By contrast creation in a region through the production of a local maximum 
to improve sensory perception, and

 c. By raising the sensitivity of a neuron to its proximate neurons.

LRN is implemented in two modes:

Mode 1: Within‑Channel Normalization: Here, local regions undergo spatial 
extension, but they remain in separate channels.

Mode 2: Across‑Channel Normalization: In this case, the local regions extend 
across neighboring channels, but they do not have a spatial limit.

Some of the LRN/CNN layers are followed by max‑pooling layers. The max‑pooling is 
a down‑sampling operation. It involves the sliding of a window called the filter or ker‑
nel across the input image data and picking up the maximum value within the window.

The fully connected (FC) layer is a neural network layer that obeys the condition 
that every neuron in the present layer is connected to every neuron in the preceding 
layer, thus producing complete linkages. It generates the final output predictions of 
the network.

Dropout is a regularization method used for prevention of overfitting of a neural 
network. It does so by modification of the structure of the network. Dropout prevents 
co‑adaptation, a condition in which the neural network becomes heavily dependent on 
certain connections. During dropout, the input and output layers remain untouched. 
But some neurons of a chosen layer, along with their connections, are randomly 
deleted with a specified probability. The network parameters are then updated in 
accordance with the learning process. In the subsequent iteration, additional neu‑
rons are deleted, and network training is redone. Dropout rates vary from 0.2 to 0.5, 
depending on the neural network depth or the extent of the dataset. The larger the 
dataset, the lower the dropout rate needed, and hence, the less aggressive the dropout.
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The softmax activation function is used in the final layer of an NN model for the 
transformation of raw output scores called logits into probability values. This is done 
by taking the exponential of each output. The values thus obtained are normalized 
by division by the sum‑total of all the exponentials taken. Through this process, all 
values are confined within the bounds of (0, 1). Also, they add up to 1. Hence, they 
are construed as probabilities.

The AlexNet model could not be accommodated in a single graphical processing 
unit’s (GPU) memory. So, it was split into two halves. Each half was run on one GPU 
by placing ½ the total number of kernels or neurons on each GPU. By cross‑GPU 
parallelization, the GPUs were able to directly read from/write to each other’s mem‑
ory. This resulted in the omission of routing via the memory of the host CPU.

The AlexNet has 6 × 107 parameters and 6.5 × 105 neurons, and is trained for the 
classification of 1.2 × 106 images into 103 classes. The top‑1 error rate is 37.5% and 
the top‑5 error rate is 17% (Krizhevsky et al. 2017).

The AlexNet demonstrated the successful application of deep neural networks 
to extremely large datasets. Prior to the advent of AlexNet, CV was predominantly 
done using a machine learning model known as an SVM, and by shallow neural net‑
works. An Alex‑based technique is developed for the detection and classification of 
the grasped objects in robotics (Abbas et al. 2020).

5.3.1.8 The Visual Geometry Group‑16 (VGG‑16) Architecture
The VGG‑16 is a deep CNN architecture (Simonyan and Zisserman 2015; Bagaskara 
and Suryanegaran 2021; Hussain et al. 2024) consisting of 16 layers, 13 convolutional 
layers, and three fully connected layers (Figure 5.4). Let us explain the top of the 
diagram in Figure 5.4: The 13 convolution layers are numbered 1, 2, 3, …, 13. The 
convolution layers 1, 2, and 3 each have a ReLU layer. Max‑pooling layers are placed 
after (convolution layer 2 + ReLU), and convolution layers 4, 7, 10, 13. Input image 
dimensions are: 224 × 224 × 3 pixels. The output image dimensions after the convolu‑
tion layer 2 + ReLU are: 224 × 224 × 64 pixels, and that after the next pooling layer 
are: 112 × 112 × 64 pixels. The output image dimensions after the convolution layer 
4 are: 112 × 112 × 128 pixels, and that after the next pooling layer are: 56 × 56 × 128 
pixels. The output image dimensions after the convolution layer 7 are: 56 × 56 × 256 
pixels, and that after the next pooling layer are: 28 × 28 × 256 pixels. The output 
image dimensions after the convolution layer 10 are: 28 × 28 × 512 pixels, and those 
after the next pooling layer are: 14 × 14 × 512 pixels. The output image dimensions 
after the convolution layer 13 are: 14 × 14 × 512 pixels, and that after the next pooling 
layer are: 7 × 7 × 512 pixels. The output image dimensions after the fully convolution 
layer 1 are: 1 × 1 × 4,096 pixels, that after fully convolution layer 2 are: 1 × 1 × 406 
pixels and that after fully convolution layer 3 are: 1 × 1 × 1,000 pixels.

The bottom of the diagram in Figure 5.4 provides a simple representation of the 
dimensional changes in the image. The convolution layers are shown by white rectan‑
gular boxes with gray sides, the pooling layers by black rectangular boxes, the fully 
convolutional layers by white rectangular boxes and the softmax layer by a dotted box.

A comparative assessment of neural networks with varying depths was con‑
ducted using an architecture with very small (3 × 3) convolution filters. When the 
network depth was increased to 16–19 weight layers, an appreciable enhancement in 
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network performance was observed for large‑scale image recognition compared to 
existing techniques.

A deep learning method for human facial expression recognition is developed 
based on an improved VGG‑16 CNN (Wu and Zhong 2021).

5.3.1.9 Very Deep CNNs
Inception v1 (GoogLeNet) was a cutting‑edge deep neural network technology in the 
ImageNet Large‑Scale Visual Recognition Challenge 2014 (ILSVRC 2014; Szegedy 
et al. 2015). It is a 22‑layer deep network for image classification and detection.

CNNs having up to 34 weight layers can perform efficient optimization over long 
sequences, such as a vector of size 32,000 demanded for processing acoustic wave‑
forms (Dai et al. 2017). A CNN with 18 weight layers has more than 18% higher 
absolute accuracy than a CNN with 3 weight layers.

FIGURE 5.4 Structural details of VGG‑16 Net.
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5.3.2 NeuraL architecture search

The neural architecture search (NAS) is a technique for the automation of the design 
of ANNs using search algorithms for exploration and discovery of ideal neural net‑
work architectures for assigned tasks (Elsken et al. 2019; Chitty‑Venkata and Somani 
2022). A search space of possible architectures is defined. Deep reinforcement learn‑
ing (DRL) methods are applied to find the most effective architecture in solving CV 
problems, e.g., landmark detection, object detection/tracking, registration on 2D/3D 
image data, image segmentation, and video analysis (Le et al. 2021).

5.3.3 progressiVe NeuraL architecture search

The progressive neural architecture search (PNAS) is a method for learning the 
structure of CNNs using a sequential model‑based optimization (SMBO) strategy. 
The SMBO is a formalization of Bayesian optimization (BO) (Lacoste et al. 2014). 
The BO is a Bayesian theorem‑based approach for optimizing decision‑making about 
which parameter needs to be set next for an iteration by applying a real‑valued func‑
tion called the objective function, with conditional equations defining constraints. 
The objective function calculates the quantity to be optimized in terms of certain 
decision variables that can be chosen for their maximization or minimization to 
understand how the prior settings were performed. Two main components of BO are: 
a probabilistic model that approximates the objective function (surrogate model) and 
an acquisition function for guiding the choice of the next evaluation point in line with 
the surrogate model using the predicted mean and variance produced by the model.

In SMBO, the search algorithm is entrusted with the work of searching a neural 
network architecture space of cell structures, rather than a complete CNN (Liu et al. 
2018). After learning a cell structure, it is stacked the required number of times to 
produce the final CNN. For stacking, the highest‑ranked structure is nominated.

The search begins with simple models and forges ahead toward complex ones. 
During this search, the unlikely structures encountered on the way are pruned out. 
Concurrently with the quest for cell structures in an increasing order of complexity, 
another process is carried out, namely, the learning of the surrogate model that regu‑
lates the search in the structure space.

This method yields accuracies comparable to ultra‑modern technological achieve‑
ments on the CIFAR‑10 dataset (Canadian Institute for Advanced Research, 10 
classes) and ImageNet. It is fivefold more efficient than the RL‑aided technique and 
eightfold faster than it (Zoph et al. 2018).

5.4 DISCUSSION AND CONCLUSIONS

In this chapter, we learnt the key terms of RV, followed by the basic principles of 
image processing to transform raw visual data into usable information for robots 
(Table 5.2). Image processing lays down the foundation for RV by allowing the robots 
to interpret visual data captured by their cameras as meaningful information. Before 
analysis, the quality of the input image is enhanced by performing operations such 
as filtering, smoothing, and color conversion. Image classification tells robots what 
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object is present in an image. The identified object is assigned a category label such 
as a person, a table, or a car. However, the knowledge about the identity of an object is 
insufficient for manipulating the object. The robot must be able to identify the loca‑
tions of different objects within an image. For navigating autonomously, the robot 
must recognize objects and locate definite landmarks. Beyond basic image classifica‑
tion lies a more complex technique called object detection, which identifies multiple 
objects in an image. It pinpoints the exact positions of the objects within an image 
by marking their boundaries with bounding boxes. Object detection is the topic of 
the next chapter.
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6 Robot Vision
Object Detection by Robots

6.1  INTRODUCTION

In this chapter, we delve into object detection, a more intricate process compared to 
image classification because it involves both image categorization and localization, 
and therefore requires more computational power than image classification (Bai et al. 
2020; Sun et al. 2024).

6.2  2D OBJECT DETECTION

2D object detection is a robot vision technique employed by robots to identify and 
locate various objects in images. It is implemented by collecting a variety of images 
that contain the objects that need to be detected. Then, boxes are drawn around the 
objects, and the objects are labeled with an annotation tool. Neural networks are 
trained for recognizing the objects in images.

2D object detection provides a fundamental level of visual understanding to robots 
by identifying objects’ presence, location, and category within a 2D image plane. It is 
used in various robotic operations for:

	 i.	Robot navigation to identify obstacles, lane markings, or waypoints on a flat 
plane surface,

	 ii.	Robotic pick‑and‑place operations for locating specific objects on a table or 
conveyor belt,

	 iii.	Robotic inspection to identify components on a product platform and its 
defects, and

	 iv.	Automating barcode/QR code reading by identifying barcodes for inventory 
management and tracking of items in warehouses by robots.

But 2D object detection only provides planar information. The appearance of an 
object varies with the angle of view, raising issues of perspective. Therefore, it is 
unsuitable for tasks that require precise 3D object localization. 3D object detection 
is similar to 2D object detection, with the additional capability to understand depth 
and spatial relationships. 2D object detection is preferred for a robot operating in a 
well‑structured environment with minimal variations in depth. The primary reasons 
are the lower cost and easier implementation of 2D cameras compared to their 3D 
counterparts. Furthermore, 2D cameras can process images much faster than 3D 
cameras and are well‑suited to high‑speed production lines.
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Essentially, 2D object detection performs two operations entailing 2D image clas‑
sification and localization (Zou et al. 2023):

 i. Classification or Identification of Objects in an Image: It determines which 
objects are present in a given image and assigns them the correct class 
labels.

 ii. Localization: It gives the bounding boxes for the identified object(s). Thus, 
the locations of the objects detected are marked.

6.2.1  differeNce BetweeN image cLassificatioN with 
LocaLizatioN aNd oBject detectioN

Like 2D object detection, image classification with localization performs the dual 
task of classification of the main object in an image, along with its localization within 
the image. Its purpose is split up into the two sub‑tasks:

 i. Main Object Classification: The main object in the image is classified by 
determining its category.

 ii. Localization of the Main Object: The position and size of the classified 
object are ascertained by defining a box surrounding the main object found 
in the image to indicate its exact location. The box is known as the bound‑
ing box.

Image classification with localization is a simpler process concerned with the clas‑
sification of the main object found in an image and its localization within the image. 
Object detection is a complicated process of classifying and localizing all the objects 
in an image. It is essential to emphasize and clarify that image classification with 
localization is a sub‑activity of 2D object detection (Kniazieva 2023).

6.2.2  pascaL VisuaL oBject cLasses (Voc) dataset 
for BeNchmarkiNg oBject detectioN

The PASCAL VOC (Pattern Analysis, Statistical Modeling, and Computational 
Learning Visual Object Classes) dataset is a publicly available and widely used ref‑
erence dataset for evaluation of computer models for object detection and localiza‑
tion (Everingham et al. 2010). It consists of 20 object categories, including animals, 
dining tables, sofas, TVs/monitors, boats, bicycles, cars, airplanes, and people. It 
features annotations such as pixel‑level segmentation, bounding boxes, and class 
labels, as well as appraisal matrices, e.g., mean Average Precision (mAP) for object 
detection and classification, and segmentation masks for image segmentation. The 
PASCAL VOC dataset comprises three subsets:

 i. Training subset containing images for model training,
 ii. Validation subset with images for model validation, and
 iii. Test subset with images for benchmarking trained models.
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6.2.3 traditioNaL sLidiNg wiNdow aLgorithm for oBject LocaLizatioN

A practical example of object detection using a sliding window is a service for the 
visualization of the location of a desired book in a library. In this example, CCTVs 
connected to a cloud server having databases of book title images provide the images 
for feature matching (Lee et al. 2017).

The algorithm consists of the determination of a quality function, e.g., a clas‑
sifier score at several rectangular subregions of the image. The position at which 
the classifier score has the maximum value is decided as the location of the object. 
Accordingly, a fixed‑size rectangular window slides across the image in left‑to‑right 
and top‑to‑bottom directions. As sliding takes place, a portion of the image is con‑
fined within the window. Features such as pixel intensities and histogram‑oriented 
gradients (HOGs) are extracted from the portion of the image that falls within the 
window. These features are supplied to a classifier, e.g., a support vector machine 
(SVM) or a convolutional neural network (CNN), to determine whether the object of 
interest is enclosed within the window. If the answer is affirmative, a bounding box 
is drawn surrounding the object found.

In the sliding window algorithm shown in Figure 6.1, a small square/rectangular 
fixed‑size window smaller than the examined image is created at the top‑left corner 

FIGURE 6.1 The sliding window algorithm.
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of the image. The image is cropped and fed to the CNN. CNN analyzes the contents 
in the section of the image presented to it, looking for the objects or patterns that it 
has been trained to recognize. After analysis of one section of the image, the window 
slides a small distance to the right. Similar image analysis is performed for this sec‑
tion also. In this way, the image analysis is carried out for the N sections in the image, 
covering the complete image analysis. The cropped images with classified objects 
obtained during all these sliding operations are delivered as the output.

The sliding window algorithm is supplemented with image pyramids to detect 
objects of different sizes. The image pyramids consist of a stacking of images with 
the highest‑resolution image at the foundation or base and the lowest‑resolution 
image at the uppermost point or apex, resembling a pyramidal shape. The sliding 
window plus image pyramid combined effort entails resizing of the image to multiple 
scales and running the sliding window algorithm at each scale.

The sliding window method provides a straightforward implementation that 
accommodates a wide range of classifiers. It must be noted that complex‑shaped 
objects or those varying considerably in appearance, as well as situations demanding 
window sliding at multiple scales, are more computationally intensive. Therefore, 
these cases are tricky and demand a lot of effort. To address these cases, the search 
effort is reduced by limiting it to a coarse grid of possible locations. Along these 
lines, the speed of computation is increased. However, this high speed is achieved at 
the cost of sacrificing the accuracy of localization.

6.2.4 BraNch‑aNd‑BouNd scheme‑Based efficieNt suBwiNdow search

A targeted search is carried out in place of the complete search space. The targeted 
search is performed by decomposition of the parameter space into disjoint subsets at 
the primary stage of the search process. During decomposition, some portions of the 
parameter space are rejected. These are the portions where the quality function score 
is below a certain score from some earlier probed state. The search ceases as soon as 
a rectangle is identified that has a quality score on a par with the upper bound of the 
remaining prospective regions. Average precision scores of 0.240 for cats and 0.162 
for dogs are obtained on the PASCAL VOC 2007 dataset (Lampert et al. 2008, 2009).

6.2.5 r‑cNN: regioN‑Based cNN

The R‑CNN was a pioneering effort toward the application of CNNs in object detec‑
tion (Girshick et al. 2014). It is a machine learning model consisting of three modular 
sections:

 i. Category‑Independent Region Proposal Generation Module: Classification 
of a huge number of regions is unnecessary. To bypass this lengthy and 
cumbersome process, the selective search algorithm is applied to extract 
merely 2,000 regions from the image. We proceed with these extracted 
regions further. These are named as region proposals.

In the selective search algorithm, the image is over‑segmented on the 
basis of the intensities of pixels. The bounding boxes of the segmented parts 
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are added to the list of region proposals. Then the adjoining segments are 
grouped based on similarity considerations. The list of region proposals is 
fittingly updated. In this way, the segments grow in size. Thus, the region pro‑
posals are crafted from smaller to larger segments. This crafting takes place 
in a bottom‑up fashion. Class labels are ascribed to the region proposals.

 ii. Feature Vector Extraction Module: A large CNN extracts fixed‑length fea‑
ture vectors from each region proposal in this module. These feature vectors 
are extracted for predicting the class and the bounding box of the region 
proposal. To this end, the region proposals are warped into a square and 
feed‑propagated through the CNN, producing a 4,096‑dimensional feature 
vector. The features are fed from the output layer of the CNN to SVMs, 
which perform classification of the regions.

 iii. Category‑Specific Linear SVM Module: It performs classification of the 
regions. Multiple SVMs are trained for object classification. Each machine 
individually determines whether the input supplied contains a specific class. 
A linear regression model specially trained for the purpose predicts the 
ground‑truth bonding box. This box is the hand‑labeled bounding box of an 
object used for data training and testing.

In the R‑CNN pipeline displayed in Figure 6.2, a selective search is performed on 
the image to produce ~2,000 region proposals. These are the bounding boxes around 

FIGURE 6.2 The R‑CNN pipeline.
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the objects of interest. From these region proposals, the warped regions 1, 2, 3, …, N 
are generated by resizing to a predefined size. The warped regions are conveyed to 
a pretrained CNN to extract a feature vector of length 4,096 from each region pro‑
posal. The features are sent to a SVM engaged in classification to predict the class of 
the object. The features are passed through a regressor to make the bounding boxes 
of the detected objects.

Thus, the R‑CNN combines CNNs with region proposals for an image. Hence, it 
enables the production of bounding boxes that contain objects and their correspond‑
ing classes.

6.2.5.1 The Bottleneck Faced by an R‑CNN
The crux of the difficulty arises from the independent feed‑forwarding of individual 
region proposals. Obviously, these proposals overlap in certain regions. So, the same 
region may be subjected to feature extraction on several occasions. Repeated feature 
extraction from the same region is exasperating. It leads to repetitive computation, 
resulting in the wastage of time and resources.

6.2.5.2 Fast R‑CNN: Fast Region‑Based CNN
It is an improved version of the original R‑CNN. In this version, the input image 
undergoing feature extraction is the complete image, rather than region proposals. 
Thus, the overlapping issues encountered with R‑CNN are circumvented (Girshick 
2015; Shahin et al. 2021). A convolutional feature map of the full image is generated. 
From this feature map, the regions of interest (ROIs) of varying shapes are extracted. 
From the ROIs, features of the same shape are pulled out for easy concatenation. In 
order to do this, the fast R‑CNN incorporates an ROI pooling layer. From the ROI 
feature vector, a softmax layer predicts the class of the proposed region. The regres‑
sor also provides the offset values for the bounding box.

The fast R‑CNN flowline is depicted in Figure 6.3. A selective search is applied to 
the image to generate a set of region proposals. The generation of the region proposal 
set is followed by the creation of warped regions 1, 2, 3, …, N. Simultaneously with 
the selective search performed on the image, a CNN extracts features from the entire 
image, FM‑1, FM‑2, …, FM‑N. The region proposals and the features are fed to the 
ROI pooling layer. This layer divides each region proposal into a grid of cells. Max 
pooling is done on each cell of this grid. The max pooling returns a single value for 
the features within the cell. The fixed‑length feature vectors for each region proposal 
are sent to fully connected (FC) layers. The softmax classifier is a machine learning 
algorithm. It gives probabilities for each class label. The regressor predicts the loca‑
tion of an object by training a model to determine the coordinates of the boundary 
box surrounding the object.

6.2.5.3 Faster R‑CNN: Faster Region‑Based CNN
It is an improved version of fast R‑CNN (Ren et al. 2015, 2017). The procedure fol‑
lowed in faster R‑CNN differs from that of fast R‑CNN. It substitutes the large number 
of regional proposals of R‑CNN with a jointly trained region proposal network (RPN). 
Here, a ROI alignment layer is used in place of the ROI pooling layer in fast R‑CNN. 
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FIGURE 6.3 The fast R‑CNN flowline.

The alignment layer applies bilinear interpolation. By this interpolation, it maintains 
the spatial information on the feature maps, thereby facilitating pixel‑level prediction.

Figure 6.4 shows the faster R‑CNN workflow. The input image is fed into a 
CNN, which acts as a feature extractor for the entire image. The extracted features 
are supplied to a RPN. This is a CNN. The RPN slides filters over the features 
received from the first CNN to make region proposals. These region proposals 
and the feature maps are subjected to the ROI pooling operation. Max pooling is 
performed on non‑uniformly sized inputs to produce fixed‑size feature maps for 
various ROIs. The fixed‑size patches move to the fully convolutional layers. A 
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FIGURE 6.4 Flow sequence of a faster R‑CNN system.

softmax classifier layer predicts the class of the object within the region proposal. 
The bounding box regression layer forecasts the refined bounding box coordinates 
for the classified object.

6.2.5.4 Mask R‑CNN: Mask Region‑Based CNN
Mask R‑CNN is an R‑CNN for instance segmentation. It is an extension of faster 
R‑CNN (He et al. 2017; Le et al. 2018). It is simple in training and offers easy gen‑
eralization to other tasks, such as human poses, which can be estimated in the same 
framework. In Mask R‑CNN, a branch is added in parallel with the bounding box rec‑
ognition branch. The added branch makes a prediction of an object mask. It thereby 
endows the capability for precise fine‑grained segmentation and identification of the 
pixel‑wise boundaries of each object, in addition to the usual object detection job. 
Thus, it can predict the shape of the object.

6.2.6 uNsuperVised oBject discoVery aNd its LocaLizatioN

A part‑based region matching method applies a probabilistic Hough transform‑ 
supported matching algorithm. A standout score is introduced for foreground local‑
ization (Cho et al. 2015). The probabilistic Hough transform employs a small random 
sample of edge points instead of the entire set of edge points. This quickens the algo‑
rithm (Kiryati et al. 1991). Evidently, the sample should not be so small that detection 
of features becomes unfeasible.

For object detection experiments, a set of bounding boxes is formed around the objects 
and object parts. These object‑containing participating regions are matched across 
images using the Hough transform. The Hough transform assigns a confidence value to 
each participant. The confidence is determined from both appearance and consistency 
viewpoints. The dominant objects are marked by comparing the scores of the contending 
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regions. The formulated procedure is evaluated on PASCAL‑2007 dataset by choosing 
the regions whose scores are higher than those of other regions containing the objects.

6.2.7 oBject detectioN By seLf‑superVised feature LearNiNg

During the training for self‑supervised learning, a premeditated excuse task called 
the pretext task is designed for solution by a CNN (Jing and Tian 2019). As exam‑
ples of pretext tasks, image generation models learn by training on large datasets of 
images to understand and generate images based on visual features. Context‑based 
tasks utilize context features, e.g., the context similarity and spatial relations among 
patches. In semantic labeling (assignment of class labels to pixels), the network is 
trained through extemporaneous labels. In a cross‑modal strategy, the network is 
trained through the verification of correspondence between two channels of input 
data. The downstream tasks include image classification and object detection.

Based on the attributes of data, pseudo labels for the pretext task are spontane‑
ously produced. In so doing, the neural network undergoes self‑supervised training 
to learn the object functions of the pretext task. Thenceforth, the learned features 
are ferried to postliminary tasks as pretrained models to subdue overfitting. Features 
from only the first several layers are usually conveyed because the shallow layers 
capture low‑level features, e.g., corners, edges, and texture. The deeper layers seize 
the high‑level features of the task.

The performance of self‑supervised and supervised methods on downstream 
object detection missions differs by less than 3% on standard datasets. This per‑
formance comparison suggests the generalizability of learned features by self‑ 
supervised mechanisms.

6.3 DISCUSSION AND CONCLUSIONS

2D object detection is essential for robot vision. It allows robots to identify and locate 
objects within their 2D camera view. It is crucial for basic tasks like navigation, 
manipulation, and interaction of robots with their environment. It provides valuable 
assistance to robots in obstacle avoidance by detecting walls, furniture, or people in 
a 2D camera view. It facilitates easy grasping of an object by a robot by precisely 
locating the position of an object in a 2D image. The requisite guidance is furnished 
to a robot manipulator to enable it to grasp the object. Object detection through 2D 
camera vision helps in identifying defects or specific objects.

On the whole, the robots can understand the layout of their environment. They 
can identify obstacles and plan movement paths. The main advantage of 2D object 
detection is that the algorithms employed here are faster and more computationally 
efficient than 3D algorithms. Hence, they enable real‑time robot vision applications, 
even in complex scenarios that require advanced 3D perception. The basic under‑
standing provided by 2D object detection is readily augmented with techniques like 
depth estimation to construct a more comprehensive 3D picture of the environment. 
Thus, it prepares the groundwork for advanced perception of the environment by 
robots. Table  6.1  gives glimpses of important insights gained from Chapter 6. A 
perusal of advanced topics in robot vision is deferred to the ensuing Chapter 7.
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We continue our discussion of robot vision in Chapter 7, highlighting some of the 
unique and unexpected challenges that robots face regarding vision. These exclusive 
problems arise out of the blue during a field operation and must be solved skillfully.

TABLE 6.1
Central Theme and Knowledge Gained from This Chapter

Sl. No.
Knowledge 

Gained Explanation

1 Summary 2D object detection, a robot vision technique that allows 
robots to identify and locate multiple objects in planar 
images, is broader in scope than image classification with 
localization, which ascribes a single label to an entire image. 
Features of the PASCAL Visual Object Classes (VOC) 
dataset were presented. It is a widely acclaimed dataset used 
by researchers for benchmarking object detection algorithms 
and comparing their relative performances. Several methods 
of 2D object detection were outlined.

2 Sliding window 
algorithm

A traditional sliding window algorithm for object localization 
was described. It systematically moves a fixed‑size window 
across an image and analyzes the content within each 
window to determine the presence of an object of interest.

3 Branch‑and‑bound 
scheme‑based 
efficient 
subwindow search

Compared to a brute‑force exhaustive search, the 
branch‑and‑bound scheme‑based efficient subwindow search 
is an optimization technique to efficiently search through a 
large set of potential sub‑images to find the optimal location 
of an object within an image, thereby significantly reducing 
the computational cost.

4 Deep learning model A deep learning model that identifies objects within an image 
was discussed. Referred to as the region‑based convolutional 
neural network (R‑CNN), it generates potential regions of 
interest in the image and then extracts features from those 
regions using a convolutional neural network. Its 
successively enhanced variations are fast R‑CNN, Faster 
R‑CNN, and Mask R‑CNN.

5 Unsupervised/
supervised learning

The unsupervised object discovery and its localization were 
explained, followed by object detection by self‑supervised 
feature learning.

6 Keywords and ideas to 
remember

Images, video and vision; signal, image and video processing; 
computer vision, machine vision, pattern recognition, robot 
vision, image classification, K‑means clustering, ISODATA, 
SVM algorithm, the ImageNet 2012 challenge, deep learning 
models for image classification, AlexNet, the visual 
geometry group‑16 architecture, very deep CNNs, neural 
architecture search, progressive neural architecture search
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7 Robot Vision
Exclusive Challenges 
Faced by Robots

7.1  INTRODUCTION

Robot vision encounters several embarrassing and awkward situations during the 
robot’s operation in practical settings in the real‑world context. Robots experi‑
ence difficulties and struggle to distinguish objects from complex backgrounds. 
Identifying and tracking moving objects in dynamic environments, too, is a fiddly 
issue. Therefore, the handling of variations in lighting and texture is necessary 
because they impact the quality of the acquired images. Adaptation of robots to 
occlusions and clutter is not easy. On numerous occasions, it is necessary to inter‑
pret 3D geometry from 2D images. To further exacerbate matters, all this must be 
done fast enough to ensure real‑time performance in demanding scenarios. Robots 
must attain the ability to accurately perceive and react to a constantly changing, 
often messy, and sometimes ambiguous visual world. Humans often navigate intui‑
tively in these cases. A few such bothering situations are mentioned in the subsec‑
tions below, along with possible remedial suggestions (van Eden and Rosman 2019; 
Owen‑Hill 2025).

7.2  MISCONSTRUED CIRCUMSTANCES IN ROBOT VISION

Several occasions arise when there are chances of misinterpretation of images 
(Figure  7.1). Misinterpretation of practical situations by a robot occurs owing to 
errors induced from various sources, including errors from robot’s inaccurate posi‑
tion or orientation, errors from the effects of robot’s motion on the collected data, 
errors from environmental effects on the collected data, and errors from blockage of 
the object robot’s field of view.

7.2.1 � Lack of Knowledge about the Precise Position 
or Orientation of the Robot

This occurs because the data is acquired during the robot’s use by a sensor in motion, 
rather than by a fixed and stationary, vibration‑free camera at a particular location, as 
was done during its training. Therefore, the conditions of the robot’s training differ from 
those during its field operation. This difference may sometimes cause intolerant errors.
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7.2.2 iNfLueNce of motioN of the roBot oN the coLLected data

The images captured by the sensor of a mobile robot are vulnerable to motion‑induced 
blurring. Further, as the robot is continuously moving around the space under exami‑
nation, the scales or orientations at which the objects are seen may not match with 
those at which the robot was trained (Nertinger et al. 2023).

7.2.3 iNfLueNce of eNViroNmeNtaL parameters oN the coLLected data

It is not necessary that the lighting conditions during the robot’s field application are 
exactly identical to those that were employed during its training. The sensors of the 
robot are prone to errors arising from the variations in lighting conditions during the 
robot’s training and its use in new situations.

7.2.4 occLusioN aNd NoN‑VisiBiLity of oBjects of iNterest

During the course of its motion, the robot may often find itself in a location where it 
is positioned in such a manner that the object of interest is not within its field of view. 
It may be blocked by intervening structures obstructing the view. These issues intro‑
duce serious complexities in the detection and localization of the object (Yoshioka 
et al. 2021).

7.3 MEETING THE CHALLENGES TO ROBOT VISION

The problems are solved by robots using various techniques (Figure 7.2). Methods 
for the mitigation of errors to meet challenges to robot vision are: active computer 
vision, anomaly detection, image‑of‑interest detection, semantic vision, visual place 

FIGURE 7.1 Confusing situations likely to be misinterpreted by robots.
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recognition, simultaneous localization and mapping (SLAM), vision‑based scene 
understanding, and 3D Object detection, which are discussed in the subsections 
hereunder.

7.3.1 actiVe computer VisioN

In the traditional passive computer vision, the robot’s sensor seizes the entire scene 
and tries to extract useful information from the scene. The active computer vision 
approach is formulated around the interaction of the sensor with the environment 
(Yuille and Blake 1992; Zeng et al. 2020). Through this interaction, the robot can 
understand the environment in an effective and efficient fashion. During the robot’s 
movement, the sensory data recorded by the camera vision are analyzed decisively 
while selectively rejecting irrelevant information. Utilizing this information, the 
viewpoint of the camera sensor is manipulated in order to make adjustments for 
proper investigation of the environment. These adjustments make it possible for the 
robot to obtain the necessary information that it wants to deal with the instanta‑
neous issues it encounters. Active vision solves the problem of object occlusion by 

FIGURE 7.2 Robots overcoming the difficulties encountered in vision.
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overcoming the limitations of the field of view. Additionally, difficulties caused by 
poor resolution of the camera are also overcome.

A crucial part of active vision is the planned sensing of perceptions from the 
environment. Sensor planning involves the determination of the pose and settings of 
the vision sensors of the robot to execute a task. It requires a multiplicity of views of 
the object to be handled (Chen et al. 2011). Thus, active vision bequeaths the robots 
with intelligent information‑gathering capability by controlling the motion of their 
information‑collecting visual sensors.

7.3.2 aNomaLy detectioN

The adoption of anomaly detection techniques greatly enhances the robustness and 
reliability of robots. An anomaly is a spatial, temporal, or spatio‑temporal depar‑
ture from the anticipated behavior and performance of a robot. The anticipated 
behavior and performance are defined in terms of the sequence of operational states, 
and the form and mode of the robot’s interaction with its environment (Kim et al. 
2022; Nandakumar et al. 2024). Anomalies of minor or major nature originate from 
unforeseen impediments or variations in the environment. They also arise from sen‑
sor/actuator failures. Anomalies are detected by model‑ and data‑driven methods.

7.3.2.1 Model‑Based Methods
Models are constructed based on advanced knowledge of a robot’s dynamic behavior. 
Any deviation from the modeled behavior is an indicator of an anomaly (Xinjilefu 
et al. 2015). Model predictive control (MPC) applies a model of the system for the 
prediction of its future behavior (Saputra et al. 2021). A comparison of the observed 
robot’s behavior with the predicted behavior helps in recognizing anomalies. Then, 
remedial actions are taken in real time. Kalman or particle filters are used to deter‑
mine the internal state of a robotic system from practical measurements supplemented 
by a model of the system. Anomalies are identified by comparing the determined 
state with the actual state. Necessary corrections are made (Amoozgar et al. 2013).

7.3.2.2 Data‑Based Methods
A method is described for the detection of an anomalous face (Bhattad et al. 2018). 
In this method, a feature vector is constructed that has unfailingly large entries for 
anomalous images. Unsupervised learning is used for scoring an image based on this 
feature. A peeking behavior in an autoencoder defeats obvious constructions.

The feature construction eliminates rectangular patches from an image. It gives 
a prediction about the probable content of the patch conditioned on the remainder of 
the image. A specially trained autoencoder is used for the prediction. The result of 
the prediction is compared with the image. When the score is high, it is surmised that 
the autoencoder faced difficulty in making a prediction. Likelihood of an anomaly 
is therefore implied.

The autoencoder is a neural network. It works by compression of the input data 
into its vital features. The input data compression is followed by reconstruction of the 
initial input from the compacted depiction. The compression is called encoding, and 
reconstruction is termed decoding. Latent variables in input data are discovered by 
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training the autoencoder using unsupervised learning. The hidden or random vari‑
ables inform us about the manner of distribution of data (Bergman and Stryker 2023).

7.3.3 image‑of‑iNterest detectioN

Robots produce a voluminous quantity of images of the environment. Examination 
of this huge amount of information is a time‑consuming and labor‑intensive process. 
This wastage of time is easily avoidable by evolving a mechanism by which the infor‑
mation is arranged and ranked in accordance with its usefulness or likely interest to 
the user. This mechanism automatically flags the information of interest to quicken 
the image analysis. The interest aspect is directly included in a method developed 
to remedy this situation (Burke 2017). In this method, random pairs of images are 
presented to a human operator. The presentation is used for the selection of images 
of interest to the application being run. A Gaussian process smoother dramatically 
decreases the number of comparisons than those required in standard probabilistic 
algorithms. This is achieved by utilizing the resemblances between features of images 
extracted by a convolutional neural network (CNN) that has been previously trained.

In another approach, histogram features are extracted from saliency maps, which 
highlight the pixels or regions of an input image that contribute most to the mod‑
el’s prediction. These features are applied to determine the existence of interesting 
objects in images (Scharfenberger et al. 2013).

7.3.4 semaNtic VisioN

Semantics is the study of the meaning of data. Semantic vision involves understand‑
ing the objects found in an image. Their spatial and functional interrelationships 
are examined (Sevilla‑Lara et al. 2016). Semantics analyses objects with respect to 
the layout and 3D structure of the scene. It works by segmentation of an image into 
regions of interest. Classification of each pixel in a segment is done, and it is assigned 
to one of several classes, e.g., a car, a road, a tree, and sky. Traffic scene understand‑
ing is provided by semantic vision. This understanding is essential for a self‑driven 
autonomous vehicle (Geiger et al. 2014).

7.3.5 VisuaL pLace recogNitioN

Place recognition is the process of accurately spotting the location of a given query 
image. The spotting is done from the locations of images of the same place in an 
extensive geotagged database (Zeng et al. 2018). Weather conditions and illumina‑
tion alter the appearance of the image of a particular place appreciably. So, they pose 
hurdles in this process. Therefore, changes in appearance within the environment 
must be taken into account. The accounting is obligatory, and must be done either 
explicitly or implicitly in place recognition solutions to prevent chances of failure 
(Lowry et al. 2016).

A traditional method of place recognition is distinctive invariant feature extrac‑
tion on a scale‑invariant basis. The Scale‑Invariant Feature Transformation (SIFT) 
algorithm described in the next section is widely used for extracting distinctive 
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invariant features. Of late, CNNs have become the predominant image representa‑
tion extractors.

7.3.5.1 Scale‑Invariant Feature Transformation
Individual features are matched to a database of features of known objects (Lowe 
2004; Guo et  al. 2018). A fast nearest‑neighbor algorithm is used. It is a method 
of determining the closest point to a specified point in a set. A Hough transform is 
applied for the identification of clusters pertinent to a single object. The Hough trans‑
form is a technique for the detection of shapes, such as lines and circles in an image 
by converting them into mathematical representations. It makes recognition easier, 
even for obscured or broken shapes. Verification is performed through a least‑squares 
solution, which solves the equation Ax = b as closely as possible, minimizing the 
error. The features are invariant to the scale of the image and its rotation. The match‑
ing is robust across variations in illumination, 3D viewpoint, and distortion.

7.3.5.2 CNN‑Based Approach
This approach is explained in Sections 5.3.1.7–5.3.1.9.

7.3.6 simuLtaNeous LocaLizatioN aNd mappiNg

The SLAM algorithm is a method which concurrently and recursively performs two 
real‑time operations (Durrant‑Whyte and Bailey 2006; Bailey and Durrant‑Whyte 
2006; Khairuddin et al. 2015):

 a. Determining the location of the robot’s camera within the test environment.
 b. Updating the map of the environment.

It assists the robot in understanding the place at which it is located in the environ‑
ment in relation to the structure of the environment, e.g., it helps an autonomous 
vehicle to map out the environment and pinpoint its location in that map.

Let us see how SLAM improves the functionality of a home vacuum cleaner robot. 
The SLAM uses the onboard camera and other sensors to create a map of the cleaning 
area. This map illustrates the potential obstacles that the robot may encounter during its 
movement. The map guides the robot’s motion and prevents it from cleaning the same 
area twice. By localizing itself, the robot estimates the amount of motion required to 
move from its current position to a nearby location. The estimation is performed using 
camera sensor data and information on the number of wheel movements. On the other 
hand, a robot without an SLAM facility will wander randomly through the room. It 
will clean certain areas multiple times, while leaving other areas unclean. It will con‑
sume a lot of power, thereby excessively draining the battery (MathWorks 2024).

7.3.7 VisioN‑Based sceNe uNderstaNdiNg

For the execution of grasping and manipulation jobs, a robot is required to compute 
grasps for a large number of objects in dynamic and cluttered environments. These 
can arise from a change in the workplace of the robot, noise effects, or inaccuracies 
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in control. Modified forms of CNN architectures necessitate exact camera calibra‑
tion and accurate robot control. They take disproportionately long computation times 
even in static conditions, leading to their infrequent use.

A real‑time, object‑independent grasp synthesis method is developed for 
closed‑loop grasping (Morrison et al. 2018). Depth images of the region around the 
object to be grasped are recorded by a camera sensor mounted on a robot’s wrist. A 
generative grasping convolutional neural network (GG‑CNN) is applied. It produces 
antipodal graphs.

In generative AI, CNNs are utilized within generative adversarial neural networks 
(GANs) to produce and discern visual content. CNNs are engaged in determining 
whether a picture contains a certain object. This is a recognition task. GANs strive to 
make a picture of the same object. This is a generation task. Both networks are con‑
structing a representation of a distinctive picture of the object. The term ‘antipodes’ 
refers to diametrically opposite points on a body.

The grasps are parameterized in terms of quality of grasp, angle, and gripper 
width for each and every pixel in the image. This step usually takes a fraction of a 
second to complete. After computation of the best grasp, a velocity command is sent 
to the robot. The system works by closed‑loop control. Therefore, dynamic objects 
are graspable. Errors in control can also be corrected.

For proactive planning and action, the robot should holistically perceive the infor‑
mation of a workplace. For a holistic understanding of a scene based on vision, the 
cognition of objects, humans, and the environment is taken into consideration along 
with visual reasoning. Thus, the visual information is compiled into semantic knowl‑
edge. This compilation enables a robot’s collaboration with humans in making deci‑
sions (Fan et al. 2022).

7.3.8 3d oBject detectioN

7.3.8.1 Point Clouds, Depth Maps, and Stereo Images
We collect data points in a 2D space represented by an (X, Y) coordinate system to 
draw the 2D image of an object. Likewise, we can collect data points in 3D space 
represented by the (X, Y, Z) coordinate system to sketch the 3D shape of an object. 
A collection of data points for drawing the 3D shape of an object in a 3D (X, Y, Z) 
system of coordinates is referred to as a point cloud. Each point in a point cloud is 
characterized by a set of (x, y, z) coordinates. Point clouds are used for mapping fea‑
tures such as buildings, infrastructure, terrains, and roads (Zheng et al. 2023). A 3D 
scanner or a LIDAR is employed for the creation of point clouds. LIDAR is an active 
remote sensing device. It emits laser pulses. The reflected pulses from an object are 
captured. The time of flight is measured. Then the formula calculates the distance of 
the point on the object from itself
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Finally, it converts the distance traveled into elevation. Photogrammetry software is 
a computer program that takes multiple overlapping photographs of an object from 
different angles. The patterns of electromagnetic radiant pictures are analyzed to 
produce a 3D model of the object.

A depth map is an image formed by real or integral values that are measured with 
respect to the viewpoint. A pair of images of an object taken from different perspec‑
tives constitutes a stereo image (Häne et al. 2011).

7.3.8.2 The 2D vs. 3D Object Detection
In 2D object detection, the images are annotated by drawing boxes around the objects 
in them and labeling them. Using the annotated images as input data, a 2D object 
detection model is trained for the recognition and localization of objects in these 
images through patterns and features. After training, the model is applied to new 
images for object detection by inference.

In 3D object detection, annotations include the depth or distance from the camera 
as an additional parameter. A 3D object detection model is trained with the annotated 
data. The new 3D object data is exposed to the trained model to draw inferences 
about 3D objects.

The input data for 2D object detection are red‑green‑blue (RGB) images, whereas 
the same for 3D object detection are RGB images, point clouds, depth maps, and 
stereo images.

Annotation for 2D object detection is relatively simple in nature, involving 2D 
bounding boxes, while the annotation for 3D object detection is intricate, entailing 
3D bounding boxes.

Models used for 2D object detection are: YOLO (You Look Only Once) and SSD 
(Single‑Shot MultiBox Detector). YOLO uses a single CNN to split an image into 
grids. It enables the prediction of bounding boxes and class probabilities or con‑
fidence scores. It processes images at 45 frames−1 while its smaller version, Fast 
YOLO, does so at 155 frames−1 (Redmon et al. 2016).

SSD is a neural network model. It works by discretizing the output space of 
bounding boxes into a group of default boxes. These boxes range over dissimilar 
aspect ratios and scales for feature map locations. The SSD is easily trained with a 
smaller number of images to yield more accurate predictions than other single‑stage 
methods (Liu et al. 2016).

Indoor robotics needs reliable 3D object detection. For exploiting RGB‑D imagery 
to perform 3D object detection, the objects in the world are represented in terms of 
3D cuboids. This is done by extending the automatic object segmentation using the 
constrained parametric min‑cuts (CPMC) framework to 3D. The CPMC is a frame‑
work for generating and ranking conceivable hypotheses regarding the spatial extent 
of objects in images (Carreira and Sminchisescu 2012).

The physical and statistical interactions between the objects and the environment 
are modeled along with interactions between objects. On the basis of this model‑
ing, an integrated framework is proposed to detect and recognize 3D cuboids in 
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indoor scenes. Experiments demonstrate that the approach gives an effective com‑
bination of segmentation features and geometrical properties apart from contextual 
relations between objects (Lin et al. 2013).

A model for 3D object detection is the PointNet. It is a unified, effective, and effi‑
cient architecture for classification of objects, part segmentation, or semantic parsing 
of a scene (Charles et al. 2017). The architecture takes the point cloud as input. For 
object detection, the point cloud consists of samples from the shape of the object. For 
semantic parsing, the input is a single object or a small part of a scene.

PIXOR (ORiented 3D object detection from PIXel‑wise neural network predic‑
tions) is an accurate, single‑stage, real‑time 3D object detector. It operates on 3D 
point clouds by representing the scene from the Bird’s Eye View (BEV) for 3D object 
localization in applications like autonomous driving (Yang et al. 2018).

2D object detection is computationally less demanding, while 3D object detection 
is highly computationally intensive.

2D object detection offers sufficient accuracy for surveillance and basic aug‑
mented reality applications. 3D object detection is imperative where spatial context 
is indispensable, e.g., in self‑driving cars. It yields deeper insights into a situation 
than its 2D counterpart.

7.4 DISCUSSION AND CONCLUSIONS

This chapter presented glimpses of situations in which robot vision suffers from 
practical limitations. When the background in an image is cluttered or has similar 
colors and patterns, differentiating an object from its surrounding environment is 
liable to errors. Changes in lighting conditions like shadows, glare, and different 
intensities significantly affect the interpretation of images. Identification and inter‑
pretation of objects partially hidden behind other objects is a confounding process. 
Another bottleneck arises during the reconstruction of 3D information about an 
object’s shape and spatial relationships from 2D camera images, with limited view‑
points. Analysis of visual data fast enough to enable immediate robot responses in 
dynamic situations leaves them in a quandary. Sophisticated algorithms are nec‑
essary to account for relative motion for tracking objects in motion. The issue is 
aggravated, particularly when the robot is also in motion. Table  7.1 provides a 
quick look back at this chapter.

After a thorough exposure to robot vision in the preceding chapters, we now 
probe into the ways of building emotional intelligence in robots. Emotional intel‑
ligence allows robots to understand and respond to human emotions in a better 
way. Through emotional intelligence, more natural and effective robot‑human 
interactions are rendered feasible. Applications like healthcare, education, and 
customer service greatly benefit from fostering trust. The overall user experience 
is improved with the utilization of emotional robots. The next chapter is concerned 
with making robots more relatable and helpful to humans. The robots behave cor‑
dially by recognizing emotional cues like facial expressions and tone of voice of 
their human colleagues.
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TABLE 7.1
A Quick Retrospection of This Chapter

Sl. No. Takeaway Explanation

1 Summary Possible situations in which the robots are likely to make vision‑related misjudgments were discussed, e.g., when there is a lack of knowledge 
about the precise position or orientation of the robot, the collected data is influenced by the motion of the robot or affected by environmental 
parameters or when the object of interest is occluded and not visible due to obstruction. Several techniques have been developed to address 
the challenges of robot vision. After all these methods were explained, a comparison was made between 2D and 3D object detection.

2 Active vision In active vision, the robot can move its sensors to gather more useful information about its surroundings. The use of model‑ and data‑based 
methods for anomaly detection was explained.

3 Anomaly 
detection

Anomalies in the kinematic or dynamic behavior of a robot are detected by comparing its observed motion with the expected motion. The use 
of model‑ and data‑based methods for anomaly detection was explained.

4 Image‑of‑interest 
detection

During the examination of the vast amount of data, image‑of‑interest detection is employed as a time‑saving measure, where visual 
representations are provided with specific regions, such as corners and edges, highlighted.

5 Semantic vision In semantic vision, the relationships between objects in an image are understood.

6 Visual place 
recognition

Visual place recognition gives the robot the ability to recognize a place from its visual features, such as color and shape. Scale‑invariant 
feature transformation is an algorithm that detects, describes, and matches local features in images. A convolutional neural network‑based 
approach is also useful for this purpose.

7 SLAM Simultaneous localization and mapping (SLAM) constitutes a technology that helps robots build maps of their environments and use these 
maps to navigate while keeping track of their locations.

8 Vision‑based 
scene 
understanding

It analyzes visual data to interpret and derive meaningful information about a scene, e.g., the objects, their relationships, spatial layout, and 
context.

9 3D object 
detection

Point clouds (3D representation of a scene with each point representing a specific location in space), depth maps (2D image with each pixel 
representing the distance of the corresponding point in the scene from the camera), and stereo vision (using two cameras for depth 
information) are the strategies adopted to help the robot in 3D object detection.

10 Keywords and 
ideas to 
remember

Uncertainty about the precise position or orientation of the robot, influence of motion of the robot and environmental parameters on the 
collected data, occlusion of objects of interest, active computer vision, anomaly detection, model‑ and data‑based methods, image‑of‑interest 
detection, semantic vision, visual place recognition, scale‑invariant feature transformation, convolutional neural networks‑based approach, 
simultaneous localization and mapping, vision‑based scene understanding, 3D object detection, point clouds, depth maps, and stereo images.
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8 Emotionally 
Intelligent Robots
Bayesian Inference 
and Fuzzy Logic

8.1  INTRODUCTION

Emotions are psychological states connecting human thoughts, behaviors, and bodily 
reactions. They are triggered by events which a person perceives as important to his/
her well‑being. In fact, they are complex neurophysiological behaviors rooted in the 
amygdala, hippocampus, and prefrontal cortex of the human brain. Conceptualized 
as experiences, evaluations, and motivations, they consist of three fundamental 
components:

	 i.	Experiential Component: It is the subjective, personal feeling or awareness 
of the emotion, such as happiness, sadness, anger, or fear.

	 ii.	Behavioral Component: It is the outward manifestation of emotion, such as 
through facial expressions, body language, or actions.

	 iii.	Physiological Component: It includes the increased heart rate, sweating, or 
changes in breathing associated with emotional feelings.

Emotional intelligence deals with understanding, utilizing, and managing emotions. 
It is made possible by thoughts and feelings, enabling the perception and manage‑
ment of human emotions. It concerns the observation and interpretation of the emo‑
tions of friends, colleagues, and other people. Accordingly, it allows one to respond 
and react to those feelings in a manner of reciprocity, returning the favor of some‑
one’s act of kindness with an equivalent action. As a result, various individuals in 
a society engage in emotional exchanges. Besides the accomplishment of effective 
person‑to‑person communication, strong interpersonal relationships are built among 
people.

Also called affective robots, the emotional robots can spontaneously interact with 
humans in a more natural way (Spezialetti et  al. 2020; Khare et  al. 2024). They 
recognize human emotions through facial expressions, tone of voice, and body lan‑
guage, including gestures of human beings. Based on the detected emotions, they 
adjust their behavior and responses for performing everyday jobs and professional 
roles.

Social robots are robots built to directly engage and communicate with people 
while adhering to established social conventions (Bryant 2019). These robots help 
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kids with autism. They assist the elderly by interacting with them fervently in a warm 
and engaging manner, using both verbal and nonverbal communication. They are 
applied in the diagnosis of autism spectrum disorder, a neurological and develop‑
mental disorder impacting an individual’s interaction and socialization with others 
(Arrent et al. 2022). Table 8.1 brings out the special attributes and traits that tell apart 
an emotional robot from a regular robot (Kolling et al. 2016).

This chapter reviews the advancements in the field of robotics that replicate the 
emotional behavior of humans to work in a friendly and hospitable fashion bringing 
an emotive aroma to the environment. They differ from conventional robots, display‑
ing a monotonous and heartless machine‑like behavior. Although emotional robots 
are very welcoming and lovable, a word of caution from such robots is given by the 
following poem:

Safeguarding human identity!

In my dream, I was going to the market one day
When I was greeted by a person on the way
A simple man on the street
With a smiling face and walking briskly on his feet
His behavior was very pleasing,
He looked very natural and amazing, but a little surprising

TABLE 8.1
Regular Robot and Emotional Robot

Sl. No.
Point of 

Comparison Regular Robot Emotional Robot

1 Purpose of 
design

It aims to perform 
specific tasks based on 
programmed 
instructions.

It is intended to recognize and respond to human 
emotions, allowing for more nuanced and 
empathetic interactions between robots and 
individuals.

2 Functionality It primarily focuses on 
completing tasks such as 
cleaning, assembly, or 
manufacturing.

It understands and reacts to human emotions, 
potentially offering moral comfort or support.

3 Sensory 
capabilities

It utilizes basic sensors, 
such as accelerometers 
and proximity detectors.

It is equipped with advanced sensors, 
sophisticated cameras, and microphones to 
detect facial expressions, tone of voice, and 
body language of humans.

4 AI algorithms It mainly uses algorithms 
designed for task 
execution.

It leverages complex AI models to interpret 
emotional cues and generate appropriate 
responses to emotions.

5 Examples A vacuum cleaner that 
navigates a room and 
cleans the floor.

A companion robot designed to interact with 
elderly or sick individuals, providing 
conversational responses to queries, mixed with 
emotional care.



128 AI Robotics

So, I asked him, “Was he a human or a robot?”
To which he replied, “A social robot”.
Imagine if it happens, it will be very confusing
With eyes watching but stubbornly refusing
To distinguish robotics from reality
In a mixed man‑robot society
Therefore, ethical laws must protect human rights and dignity
To avert any danger of a human getting a mistaken robotic identity.
Or a robot posing as a human entity.

8.2 EMOTIONAL AI

Emotional artificial intelligence (AI) entails endowing a robot with the gift to exhibit 
humanoid emotion (Yan et al. 2021). Emotional AI, also known as affective comput‑
ing, is the process by which human emotions are imitated by computer systems (Wu 
2024). This becomes possible through the analysis of gigantic amounts of data for 
the identification of patterns and the prediction of the emotional states of people. The 
process of emotional AI development consists of three stages involving the collection 
and analysis of emotion‑related data and the generation of reactionary responses to 
the emotions, as shown in Figure 8.1.

Stage 1: Collection of Emotion‑Related Data: The sources of these data are human 
facial expressions in the form of motion and configurations of the small micromotor 
muscles underneath the skin of a person’s face. The facial expressions are supple‑
mented with voice intonations, namely the rise and fall of pitch in sound, to highlight 
an expression. Human body language adds more flavor to emotions. There are several 

FIGURE 8.1 The three stages in building emotional AI.
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different physical behavior‑based nonverbal communication ways in which emotions are 
expressed. Eye contact, posture, gestures, handshakes, happiness, surprise, fear, anger, 
sadness, and disgust are a few such expressions. No less important are the physiologi‑
cal signals of emotion arousal, such as respiratory changes, changes in heart rate, blood 
pressure, sweating, skin temperature, galvanic skin response, electrocardiogram (ECG), 
electroencephalogram (EEG), electromyogram (EMG), etc. All these signals contribute 
toward formulating the overall pattern of emotional behavior exhibited by humans.

Stage 2: Analysis of Collected Emotion Data: Interpretation of the data is per‑
formed using machine learning (ML) algorithms. These algorithms identify emo‑
tional cues. These cues are the verbal or nonverbal signals. They provide indications 
about how someone is feeling, thinking, or reacting to a given situation or incident.

Stage 3: Generation of Necessary Response to Input Emotion Data: Appropriate 
human responses are quickly developed in answer to the interpreted emotional state. 
The responses take the form of textual, speech, or visual outputs.

There are four facets to emotional AI: perception, utilization, understanding, and 
management of emotions (Seyitoğlu and Ivanov 2024).

8.3 EMOTIONAL ROBOT ALGORITHM

8.3.1 maiN compoNeNts of the aLgorithm

The emotional robot algorithm is an exciting and thought‑provoking idea. Figure 8.2 
shows the four components of an emotional robot algorithm. The first component 
is preprocessing of acquired sensory input. The second component is emotion 

FIGURE 8.2 The structural constitution of an emotional robot algorithm.
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recognition. The third and fourth components are, respectively, the representation of 
emotional state and the generation of an appropriate response to the detected emo‑
tion. Each of these components is split up into subcomponents. These are elaborated 
alongside the mentioned components.

An emotional robot algorithm is a composite algorithm. It is formed by the com‑
bination of several ML algorithms. This algorithm generally consists of the following 
(Thilmany 2007):

 i. Preprocessing of Acquired Sensory Input: The raw signals are converted 
into a suitable form for analysis. The preprocessing is a complex, multifac‑
eted process consisting of a series of operations:

 a. Data Cleaning, Normalization, and Submission for Processing: The 
data received from various sensors is cleaned by identifying sources 
of noise in the signal, removing the noise and disturbances that affect 
it, handling missing values, and validating data sources in the signal. 
The data are normalized by eliminating repetition and redundancy. 
Repeated and irrelevant portions are deleted. In addition, related mul‑
tiple relationships are isolated. These measures are necessary to prepare 
the data for analysis of human facial expressions, body language, and 
voice tone using ML techniques, as they have a significant influence on 
the results if not taken into account.

 b. Feature Selection: The relevant features in the input sensory data that 
are most indicative of emotions are identified. Optionally, emotion 
detection is enhanced by measuring physiological data. Heart rate and 
skin conductance measurements are vital biological parameters con‑
nected with a person’s emotional feelings.

 c. Visual Feature Extraction: Facial expressions are examined by com‑
puter vision techniques. Key features like eyebrow position, lip curva‑
ture, and eye gaze are identified during this examination and brought 
into the limelight.

 d. Audio Feature Extraction: The voice tone and pitch variations are pro‑
cessed. These help to detect emotional cues and must be paid due attention.

 ii. Emotion Recognition: ML algorithms are employed to analyze various 
emotions for their accurate recognition in order that their formal response 
greeting can be triggered in acknowledgment.

 a. Facial Expression Analysis: Convolutional neural networks (CNNs) are 
used to identify facial features. They can classify emotions based on 
patterns discerned in facial expressions.

 b. Body Language Recognition: Body posture, gestures, and movement 
patterns are scrutinized. Their scrutiny makes inference of emotional 
states easier.

 c. Voice Analysis: Speech recognition and analysis are applied to voice 
pitch, intonation, and pace. Voice analysis is a valuable tool for detect‑
ing emotions.

 iii. Emotional State Interpretation: ML techniques are applied for performing 
emotion classification and understanding.
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 a. Contextual Understanding: The emotional meaning of cues behind the 
detected emotions is understood and interpreted more deeply by taking 
into account the current situation and its correlation with previous inter‑
actions. Relating emotions to the context makes the experience livelier 
and more impactful.

 b. Emotional Intensity Assessment: The strength or severity of the detected 
emotion is determined. This is needed to impart strength to the emo‑
tions that are articulated more emphatically, and provide a debilitated 
answer to feebly expressed emotions.

 c. Emotion Classification and Labeling: Algorithms such as support vector 
machines (SVM), neural networks, or deep learning models are trained 
on large datasets of labeled emotional data to achieve fast and accurate 
emotion classification. They categorize the detected emotions into basic 
classes like happiness, sadness, anger, fear, and surprise. An emotional 
label like ‘happy’, ‘sad’, or ‘angry’ is assigned to the recognized emo‑
tional state based on the output of the model.

 iv. Generating an Appropriate Response to the Detected Emotion: This is 
achieved through a dual strategy of emotional expression and adaptive 
behavior. It includes adjustment of the robot’s facial expressions, tone of 
voice, or physical actions. These adjustments reflect empathy or understand‑
ing toward the interacting human operator using ML.

 a. Emotional Expression: Appropriate facial expressions, voice tone, or 
body movements are chosen to convey an empathetic response that is 
aligned with the user’s perceived emotion.

 b. Adaptive Behavior: Adjustments are made to the robot’s actions, conver‑
sation style, or responses in response to the interpreted emotional state.

8.3.2 coNsideratioNs aNd coNcerNs duriNg aLgorithm formuLatioN

When designing an emotional robot algorithm, one has to consider several factors to 
ensure the accuracy of results and to safeguard ethics. Let us list some of these fac‑
tors that come to mind immediately.

 i. Cross‑Cultural Variations in the Human Race: There are wide cultural dif‑
ferences in facial expressions and emotional displays across various societies 
of the human race (Mohan et al. 2021). As common knowledge, expressions 
like smiling for happiness and crying or weeping for sorrow are believed 
by consensus among people without any disagreement. Nevertheless, subtle 
distinctions and gradations in intensities of these expressions differ signifi‑
cantly. The differences depend on cultural norms and interpretations across 
the globe. In some places, people rely more on eye movements to convey 
emotions. In other localities, the focus is principally on the mouth region. 
Therefore, both universal and cultural expressions can vary significantly. 
Indeed, it is a well‑supported argument worthy of consideration. These 
variations must be considered for training emotion recognition algorithms.

 ii. Provision of Built‑in User Feedback Loop: Customer feedback mechanisms 
must be duly incorporated. They will enable the users to provide input on 
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the emotion recognition accuracy of the robotic system. The user feedback 
will improve the system over time

 iii. Issues of Privacy and Ethical Concerns: The privacy of emotional states of an 
individual requires clear consent mechanisms and guidelines regarding data 
collection and usage. Ethical considerations must be strictly adhered to when 
using sensors to detect emotions. Emotions significantly influence ethical 
judgments. They create situations where individuals might be exploited due to 
their emotional states. There exist possibilities and potentialities that can lead 
to biased decisions based on feelings like anger, fear, or sympathy instead 
of rational reasoning. These issues are particularly problematic in situations 
that require objective analysis. Emotional appeals may be utilized to persuade 
people. These can become harmful, especially when they exploit the vulner‑
abilities of people or employ deceptive tactics. Risks of this nature raise ethi‑
cal worries about the intent and impact of emotional manipulation. Empathy 
can promote ethical behavior by encouraging compassion and understanding 
toward people. But the lack of empathy leads to harmful actions.

8.4  SPECIFIC ALGORITHMS USED IN 
EMOTIONALLY INTELLIGENT ROBOTS

Considering the diversity of emotional behavior, it is evident that emotional robots 
cannot function with a single algorithm, but rather with an intermixed algorithmic 
technique. Figure 8.3 presents a broad view of the algorithms employed by emo‑
tionally intelligent robots. Familiar emotional robot algorithms include Bayesian 
inference, fuzzy logic, Markov models, self‑organizing maps, SVMs, decision trees, 
natural language understanding and reinforcement learning.

8.4.1 BayesiaN iNfereNce for roBot emotioN detectioN

As emotions exhibit an overlapping nature, emotional states can be modeled as prob‑
ability distributions, indicating a likelihood of experiencing a particular feeling in a 
given situational context. Let us inquire about the probabilistic aspect of emotions. It 
sounds simple, but it is easier said than done.

8.4.1.1  Building a Probabilistic Inference Perspective 
of Emotion Recognition

Bayesian inference is a computational model in ML. It is widely used in image pro‑
cessing and cognitive science (Kato et al. 2006; Martinez‑Hernandez et al. 2016). It 
looks upon the process of emotion recognition as a probabilistic inference problem. 
This probabilistic problem is solved by applying Bayesian statistical methods to emo‑
tions. Bayesian methods are applied toward understanding the ways in which people 
experience emotions and draw inferences about them. They use Bayes’ theorem to 
fit a probability model to a set of data from prior evidence. Before encountering new 
information, individuals have pre‑existing beliefs about emotions. These beliefs are 
instinctively derived from their past experiences and cultural practices within the 
respective society in which they are brought up. They act as a prior distribution of 
emotions in the Bayesian framework. Figure 8.4 shows the stages in the Bayesian 
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FIGURE 8.3 Common algorithms of induction of emotional response behavior in social 
robots.
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inference process for emotion recognition, viz., input layer consisting of sensory data 
acquisition and feature extraction, prior distribution depicted as a probability graph, 
the likelihood function given as a representation of probability of observation of cur‑
rent sensory data for a given emotion, the Bayesian update calculation in which the 
prior belief is combined with a likelihood function using Bayes’ theorem to deter‑
mine a posterior probability distribution, and the output layer as a posterior distribu‑
tion displaying the probability of each possible emotion.

Individuals continuously update their beliefs about the emotional state of some‑
one. This updating of beliefs is based on newly acquired sensory information. The 
intent of updating is to combine prior knowledge with new data. The incorpora‑
tion of prior knowledge enhances the accuracy of emotion detection in real‑time 
applications.

When new cues, such as facial expressions, are observed, a likelihood function is 
used. It represents the probabilities of occurrence of those cues when a specific emo‑
tion is given. From the perspective of Bayesian methods, the prior beliefs are com‑
bined with the likelihood function using Bayes’ theorem. Doing so helps individuals 
to update their beliefs about the most probable emotion. As a result, a posterior dis‑
tribution of emotions is obtained. This distribution reflects the current understanding 
of individuals about emotions based on the new information.

The gist of the discussion is that Bayesian inference is employed in robot emotion 
detection to enable robots to interpret human emotions more accurately. The inter‑
pretation is done by incorporating prior knowledge about emotional expressions into 

FIGURE 8.4 The Bayesian inference process for robots.
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new data. Beliefs are updated based on new sensory data, such as facial expressions 
and voice tone. The analysis provides a probabilistic assessment of the most likely 
emotional state. It enables more nuanced and adaptive interactions between robots 
and humans.

8.4.1.2 Applications of Bayesian Inference
How is Bayesian inference helpful in emotion detection? Bayesian inference helps 
robots improve emotion detection by leveraging prior knowledge and integrating new 
evidence through probability. As a result, more nuanced and context‑aware emo‑
tion recognition is achieved in human–robot interaction. Fascinating areas where 
Bayesian inference has made progress are as follows:

 i. Multimodal Integration for Emotion Recognition: A Bayesian model can 
easily combine information from multiple sensory modalities like facial 
expressions, voice tone, body posture, and body language. By incorporating 
this information, it is able to provide a more comprehensive understanding 
of emotions. Thus, it helps to build a more robust emotion detection system 
(Bera et al. 2019).

 a. Analysis of Facial Expression: A Bayesian model analyzes facial fea‑
tures like eye gaze, brow position, and mouth curvature of a person. 
The analysis of facial features is applied to infer the most likely emotion 
based on a probability distribution.

 b. Analysis of Voice Tone: A Bayesian model analyzes prosodic features 
like pitch, volume, and speech rate of a person. The analysis of prosodic 
features enables the estimation of a speaker’s emotional state.

 c. Social Interaction of Robots: A Bayesian network is used to model the 
emotional state of a group of persons participating in a social engage‑
ment. This modeling allows a robot to respond appropriately to the 
overall sentiment of the people in the group.

 ii. Contextual Understanding of the Situation: A Bayesian network incorpo‑
rates contextual information about the situation. This could be in the form 
of a conversation topic or social cues. As a consequence, an improved emo‑
tion recognition accuracy is achieved.

 iii. Modeling and Handling of Uncertainty: The assessment of uncertainty 
plays a crucial role in understanding the way in which people behave emo‑
tionally. Particularly, it makes us aware about the ways the people navigate 
abstruse situations or react to complicated emotional expressions.

We recognize that a primary aspect of Bayesian inference is its excellent 
ability to quantify and manage uncertainty in emotion perception. It works by 
continuously updating probability distributions as new information from sen‑
sors like facial expressions, voice tone, and body language becomes available. 
By naturally accounting for uncertainty in emotion detection, Bayesian infer‑
ence is able to provide a probability distribution over possible emotional states 
rather than a single categorical prediction. This specialty has a meaningful 
impact on emotion recognition because of the ambiguous nature of this process.
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 iv. Generation of Adaptive Response by Dynamic Updates: As the robot inter‑
acts with a person, it continuously refines its understanding of the person’s 
emotional state and probability of different emotions by updating the pos‑
terior probability based on new observations, Hence, the robot dynamically 
adjusts its responses to better suit the perceived emotional state of the user. 
These improvements make the robot more adaptive to changing situations.

 v. Learning from Interaction with Humans: A Bayesian model updates its prior 
beliefs about emotion expression based on new data obtained through con‑
tinuous interaction with humans. This belief‑updating mechanism allows 
for personalized and adaptive emotion recognition over time.

8.4.1.3 Advantages of Bayesian Inference
Let us scrutinize the resources offered by Bayesian inference that can be gainfully 
utilized. In robot emotion detection, Bayesian inference offers significant advantages 
in a multiplicity of ways. It allows for the dynamic updating of probabilities based on 
new sensory data. It effectively handles uncertainty in complex emotional situations. 
It incorporates prior knowledge about human emotions and provides a framework 
to reason about the likelihood of different emotional states. Therefore, a robust and 
adaptable emotion recognition is implemented in robots through Bayesian inference. 
Let us enlist the key advantages of Bayesian inference in robot emotion detection. 
These are as follows:

 i. Probabilistic Interpretation of Results: Bayesian inference provides a clear 
probabilistic interpretation of the results. It allows for a better understand‑
ing of the confidence level associated with the predicted emotion.

 ii. Explanatory Power of Bayesian Inference: The analysis of the posterior dis‑
tribution helps developers to gain insights into the main features that are 
most influential in determining the emotional state. These insights allow for 
the refinement of the emotion detection model.

As an example of the application of Bayesian inference, a robot interacting with a 
human might initially have a neutral prior belief about the person’s emotion. As the 
robot watches the facial expressions and tone of voice of the person, it updates its 
belief about the person’s emotion. It gradually shifts and leans in drawing inference 
toward happy or sad situations, depending on the new evidence.

8.4.1.4 Limitations of Bayesian Inference
The inherent duality of situations suggests that where there are advantages, there are 
also disadvantages. When using Bayesian inference for robot emotion detection, an 
infuriating limitation arises from the difficulty of selecting appropriate prior distri‑
butions. There is a chance of overfitting to the training data. Real‑time applications 
add computational complexity. The handling of nuanced emotions is difficult. Large, 
diverse datasets are necessary to capture the full spectrum of human emotional 
expressions accurately. All these quandaries hinder the accuracy and reliability of 
emotion recognition in robots. A more detailed explanation of limitations will clarify 
the types of technical snags and hitches.



137Emotionally Intelligent Robots

 i. Complexity Arising from Selection of Prior Distribution: Bayesian infer‑
ence relies heavily on the choice of prior distribution of probabilities of 
emotions. The preceding distribution represents initial beliefs about the 
data. Selecting an accurate prior distribution for complex emotions is not 
easy. The reason is that emotions often overlap with each other and vary 
significantly between individuals.

 ii. Complexity in Model Designing: Development of a robust Bayesian model 
for emotion detection is a complicated task. It requires careful design and 
selection of appropriate features and prior distributions.

 iii. Dependency on Extensive Datasets: Accurate emotion detection with 
Bayesian inference heavily relies on the availability of large, well‑annotated 
datasets. These datasets must represent a wide range of emotional expres‑
sions. Hence, they are difficult to acquire and maintain.

 iv. Risk of Overfitting: The model might overfit to specific patterns if the train‑
ing data is not sufficiently diverse. Then, poor performance is observed on 
unseen data with subtle emotional nuances.

 v. Computational Burden and Cost: Bayesian inference involves complex 
calculations. Hence, it is computationally expensive for real‑time robot 
interactions. Serious issues are encountered, especially when deal‑
ing with large datasets. An intricate Bayesian emotional model, too, is 
troublesome.

 vi. Challenges Due to Nuanced Emotional Behavior: Emotions are not dis‑
cretely categorized. They would rather exist on a spectrum. These charac‑
teristics of emotions make it difficult to accurately capture subtle variations 
and complex emotional states within a Bayesian framework.

8.4.1.5 Potential Solutions to Limitations of Bayesian Inference
As already said, Bayesian methods involve incorporating prior beliefs. Their incorpo‑
ration introduces some level of subjectivity into the analysis. It can be a double‑edged 
sword with positive and negative consequences. It carries inherent risks because of 
the biasing of results if the prior beliefs are poorly specified. Recognizing limitations 
helps us identify areas where improvement is needed, allowing us to focus our efforts 
in the right direction. Strategies have evolved to overcome the different inadequacies. 
A few notable ones are given below:

 i. Adoption of Adaptive Prior Distributions: Adaptive prior distributions are 
employed. These distributions can learn and update themselves based on 
new data encountered during interaction. They can help in the mitigation of 
the issue of selecting the right initial prior distribution.

 ii. Formulation of Hybridized Approaches: Bayesian inference is combined 
with other ML techniques. In particular, deep learning improves the accu‑
racy and robustness of emotion detection.

 iii. Practicing Dimensionality Reduction: Applying dimensionality reduction 
techniques helps in the management of the complexity of feature space. It 
reduces the computational load.
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 iv. Use of Continuous Emotion Models: Models that represent emotions as con‑
tinuous variables rather than discrete categories are preferable. They cap‑
ture nuances in emotional expression far better than those using discrete 
variables.

8.4.2 fuzzy Logic iN roBot emotioN detectioN

We have seen how Bayesian inference allows for the probabilistic updating of beliefs 
based on new evidence. Rather than clinging to and brooding about a single race 
course, exploring different possibilities leads to new opportunities. Another distinct 
approach to emotion recognition is fuzzy logic, which deals with uncertainty and 
imprecision. Its indispensability originates from the need to help robots handle vague 
and imprecise information about emotions.

Fuzzy logic is a valuable tool for handling uncertainty in emotional interpreta‑
tion (Hsu et al. 2013; Nicolai and Choi 2015). The foremost reason is that it allows 
for the representation of emotions as degrees of truth by utilizing fuzzy rules rather 
than simply distinguishing between true and false. Here, strict binary classifications 
of propositions are not used. Such a representation makes fuzzy logic well‑suited 
to the subtleties and often vague nature of human emotions. Sometimes a person 
may experience a blend of feelings at the same time or express them in a decep‑
tive manner. In traditional logic, somebody is either happy or sad. Dissimilar to 
traditional logic, fuzzy logic allows for partial membership of a person in multiple 
emotional states. The person may be slightly happy, somewhat happy, or very happy. 
A person may be in a melancholy, wistful, bittersweet, or pensive mood. Instead of 
categorizing a person as absolutely happy or completely unhappy, fuzzy logic allows 
robots to express the emotional state in fractional terms as partially happy (0.7) and 
partially sad (0.2). This kind of expression reflects the nuanced nature of human 
emotions (Cardone et al. 2023; Martin et al. 2023). Salient features of fuzzy logic 
are as follows:

 i. Use of Linguistic Variables: Fuzzy logic uses linguistic variables to rep‑
resent emotional intensity. Variables like ‘very angry’, ‘a little surprised’, 
or ‘quite disappointed’ are compatible with our natural way description of 
emotions in everyday life.

 ii. Definition of Fuzzy Rules: Robotic systems can interpret complex emo‑
tional differences by defining fuzzy rules for relating input signals for facial 
expressions or voice tone to emotional states.

 iii. Handling Ambiguity: Emotional cues are often indistinguishable or incon‑
sistent in real‑world interactions. Fuzzy logic effectively handles such 
situations.

A typical fuzzy logic rule for emotion interpretation of ‘happiness’: If the corners of 
the mouth curve upward, revealing teeth, the person is feeling happy. A fuzzy model 
of emotion and behavior selection for a robot is proposed (Ho et al. 1997).
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8.4.2.1 Main Steps of Fuzzy Logic
To prepare a list of steps, we brainstorm and write down every possible intermediate 
stage on the way to reach the goal. The steps in fuzzy logic for emotion detection 
are shown in Figure 8.5. They include the input variables from face, voice and body; 
fuzzification by mapping of input variables to fuzzy sets; laying down the fuzzy rules 
for combining the fuzzy input values for estimating the degrees of different emo‑
tions; inference engine for application of the fuzzy rules to fuzzified input values; and 
defuzzification for conversion of the calculated degrees of membership of emotions 
into a single output value signifying the final emotion classification.

 i. Input variables: These include the face, voice, and body indicators.
 ii. Fuzzification: Input data like facial features or voice pitch are converted into 

fuzzy sets e.g., ‘slightly smiling face’, ‘moderate pitch of sound’, etc. Membership 
values indicate the degree to which they belong to a particular category.

 iii. Definition of Fuzzy Rules: A set of rules is defined to map the fuzzy input 
values to corresponding emotional states. If the facial expression is slightly 
smiling and the voice pitch is moderate, then the emotion is likely ‘happy’.

 iv. Inference Engine: The fuzzy logic system uses the defined rules to calculate 
the degree of membership for each possible emotion based on the input data.

 v. Defuzzification: The calculated membership values are converted back into 
a clear emotional state, e.g., ‘happy with a confidence level of 0.8’.

8.4.2.2 Applications of Fuzzy Logic
How is fuzzy logic useful in developing emotional AI for robots? This is a ques‑
tion that must be answered to clarify our expectations from fuzzy logic in this field. 
In robot emotion detection, fuzzy logic is primarily used to handle the inherent 

FIGURE 8.5 Stages in the application of fuzzy logic to robot emotion detection.
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ambiguity and uncertainty in interpreting human emotional cues like facial expres‑
sions, tone of voice, and body language. It allows robots to identify and respond 
to complex emotions more accurately. Robots accomplish this by translating vague 
input into meaningful emotional states through the use of fuzzy rules and member‑
ship functions.

To mention a few applications of fuzzy logic in robot emotion detection, we state 
the following:

 i. Analysis of Facial Expression: Fuzzy logic is used to interpret subtle facial 
expressions. Examples are slightly raised eyebrows or slightly parted lips. 
They are vital to identify emotions like surprise or uncertainty.

 ii. Analysis of Voice Tone: Fuzzy logic is used to analyze variations in pitch, 
volume, and speech rate. Determination of emotional states like anger or 
sadness is done.

 iii. Social Interaction of Robots: A robot dynamically adjusts its responses by 
incorporating fuzzy logic. The emotional state of the user is perceived. A 
more natural and engaging interaction is made.

 iv. Interpretation of Vague Emotional Data: Fuzzy logic handles situations 
where emotional indicators are not clear‑cut. A slightly furrowed brow or a 
slightly raised voice might represent a combination of emotions like confu‑
sion and slight annoyance.

 v. Creation of Nuanced Emotional States: Fuzzy membership functions are 
used by robots to represent emotions on a spectrum. This kind of function 
allows for a more nuanced understanding of emotions. The understanding 
extends beyond simple ‘happy’ or ‘sad’ categories. A robot endowed with 
six universal human emotions (happiness, anger, fear, sadness, disgust, and 
surprise) is designed and simulated (Leu et al. 2014).

 vi. Integration of Multiple Sensory Inputs: Fuzzy logic combines information 
from various sensors like facial expressions, speech patterns, and body 
movements. Amalgamating varied information creates a more comprehen‑
sive picture of a person’s emotional state.

 vii. Adaptation to Individual Differences: Fuzzy rules are adjustable based on 
the context and individual user behavior. This adjustability allows robots to 
interpret emotions across different individuals in a better way.

8.4.2.3 Advantages of Fuzzy Logic
In contrast to explicit logic, which relies on clear and definite statements, fuzzy logic 
offers several advantages in robot emotion detection. The primary reason is its abil‑
ity to handle the uncertainty and vagueness inherent in human emotions. This ability 
allows for more nuanced and robust emotion recognition. Traditional binary classi‑
fications fail to do so. Fuzzy logic is particularly useful for interpreting subtle facial 
expressions and complex emotional states in human–robot interactions.

 i. Handling of Ambiguities: Emotions are complex and often blend together. 
Fuzzy logic can effectively represent these blurred boundaries between dif‑
ferent emotional states. Crisp classifications require clear‑cut distinctions.
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 ii. Adaptability to Context: Fuzzy logic rules can incorporate contextual infor‑
mation about the situation or tone of voice. Better interpretation of facial 
expressions and body language is achieved. Therefore, more accurate emo‑
tion detection becomes possible.

 iii. Intuitive Rule‑Based System: Fuzzy logic rules can be formulated using 
natural language. This facility enables developers to incorporate expert 
knowledge about human emotions more easily. The inclusion of such exper‑
tise enables emotions to be incorporated into the decision‑making process 
of a robot.

 iv. Robustness to Noise and Occlusion of Image: Fuzzy logic systems can toler‑
ate noisy or incomplete data. Such data is common in real‑world scenarios. 
Frequently, sensor readings are imprecise. A fuzzy inference method is pre‑
sented for emotion recognition from facial expression that can recognize 
emotions from partially occluded facial images (Ilbeygi and Shah‑Hosseini 
2012).

 v. Gradual Response to Emotional States: Unlike binary classifications, fuzzy 
logic allows for a gradual transition between emotional states. The gradual 
transition enables robots to respond more naturally to subtle changes in 
human emotions.

 vi. Integration of Fuzzy Logic with Other Techniques: Fuzzy logic can be con‑
joined with other ML algorithms to enhance emotion detection accuracy. It 
can be combined with deep learning for feature extraction.

An example of the application of fuzzy logic in emotion detection will make its use 
clear. A robot could use fuzzy logic to interpret a slightly furrowed brow and slightly 
downturned mouth by taking into account the surrounding context for a more accu‑
rate emotional interpretation. This might mean a state of ‘mild sadness’, rather than 
classifying it definitively as either ‘happy’ or sad’.

8.4.2.4 Limitations of Fuzzy Logic
The Human‑to‑Humanoid robot communication is particularly challenging (Mogos 
2022). The main difficulty of fuzzy logic in emotion detection lies in accurately 
capturing complex nuances of emotions. Due to our customary overdependence 
on well‑defined rules, there is a potential for misinterpretation when dealing with 
ambiguous data. Challenges are faced in handling the context. Computational com‑
plexity increases when dealing with large amounts of sensory data. These draw‑
backs make it less ideal for robust emotion recognition in real‑world scenarios. They 
become dominant, especially when dealing with subtle or multifaceted emotions. 
Some limitations of fuzzy logic in emotion detection are outlined here.

 i. Oversimplification of Emotions in Fuzzy Logic Representation: Fuzzy logic 
often categorizes emotions into a limited set of fuzzy states. These fuzzy 
states may not adequately capture the full spectrum of human emotions. 
Subtle variations and combinations may be difficult to express.

 ii. Limitations of Fuzzy Rules in Context‑Dependent Situations: Defining 
clear fuzzy rules for emotion detection is not a piece of cake. This happens 
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because human emotions are often context‑dependent. They are influenced 
by various factors beyond easily quantifiable data.

 iii. Difficulty in Incorporation of Contextual Information: Fuzzy logic may not 
effectively incorporate contextual information. This failure is crucial for 
accurate emotion recognition. The same facial expression can signify dif‑
ferent emotions depending on the context of the situation being considered.

 iv. Dilemmas due to Ambiguity in Interpretation of Data: Fuzzy logic can 
struggle to interpret ambiguous or inconsistent sensory data. The chances 
of potential misinterpretation of emotions are unavoidable.

 v. Requirement of a High Computational Overhead: Implementation of com‑
plex fuzzy logic systems for emotion detection requires substantial compu‑
tational power. As real‑time data processing is more power hungry, major 
issues arise with these applications.

8.4.2.5 Alternatives to Fuzzy Logic
If fuzzy logic is not useful, what are the options available? Then one can beat a retreat 
and solicit intervention by:

 i. Resorting to ML Models: Deep learning techniques like CNNs can learn 
complex patterns from large datasets. They are capable of achieving higher 
accuracy in emotion recognition.

 ii. Adopting Hybrid Approaches Based on Combination of Techniques: 
Combining fuzzy logic with other techniques, such as statistical analysis or 
sentiment analysis, is helpful. It leverages the strengths of each method to 
improve emotion detection accuracy.

8.5 DISCUSSION AND CONCLUSIONS

In order to achieve the symbiosis between humans and robots, the aspect of emotions 
must be integrated into robotic systems (Loghmani et al. 2017). The importance of emo‑
tional intelligence in robots deserves due appreciation for its multi‑pronged benefits.

 i. Enhancement of Human–Robot Interaction: Robots create a more positive and 
engaging experience for users by recognizing and responding to human emo‑
tions. The friendly behavior of robots makes humans feel more comfortable. 
Emotionally responsive robots that can simulate empathy increase the accept‑
ability of users toward them (Marcos‑Pablos and García‑Peñalvo 2022).

 ii. Improvement of Human–Robot Communication: Robots are able to inter‑
pret nonverbal cues like facial expressions and tone of voice, paving the way 
to more nuanced and natural communication.

 iii. Delivery of Personalized Support to Users: Robots can tailor their responses 
based on a user’s emotional state. Customized support and comfort for users 
are provided in situations where it is needed most.

 iv. Applications in Sensitive Fields: In healthcare, robots can provide emo‑
tional support to patients. In education, robots can adapt teaching methods 
to meet the individual needs of students.
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 v. Building Trust in Users: A greater sense of trust and acceptance from users 
is fostered by a robot demonstrating an ability to understand and respond to 
emotions.

The crux of the discussion in this chapter centered on Bayesian inference and 
fuzzy logic methods (Table 8.2). In the context of robot emotion, we deliberated on 
Bayesian inference. It is a computational method that allows a robot to continuously 
update its understanding of a human’s emotional state by incorporating new sensory 
data like facial expressions, tone of voice, etc., with its prior beliefs about emotions. 
Such robots can more accurately and dynamically interpret human emotions dur‑
ing interaction. Bayesian inference employs a probabilistic approach based on prob‑
ability values to represent the likelihood of different emotional states. Robots can 
consider uncertainty and update their beliefs as new information becomes available. 
Starting with an initial ‘prior’ belief about the human’s emotional state, the robot 
continuously refines the belief based on new sensory data. Upon receipt of new data 
from the human‑like facial expressions, tone of voice, etc., the robot uses Bayes’ rule 
to calculate the ‘posterior’ probability of each possible emotion. Thus, it effectively 
updates its understanding of the human’s emotional state in real‑time.

Bayesian inference allows a robot to analyze facial expressions, body language, 
and speech patterns to infer a human’s emotional state. Based on the inferred human 
emotion, the robot adjusts and adapts its own behavior and communication style. A 
robot creates a more natural and engaging interaction with humans by demonstrat‑
ing an ability to understand and respond to human emotions. It thus builds trust and 
rapport with the human user.

In the context of robotics, fuzzy logic is often employed to model and simulate a 
robot’s emotions. It allows for a more nuanced and human‑like expression of feelings. 

TABLE 8.2
Takeaways from This Chapter at a Glance

Sl. No. Takeaway Explanation

1 Summary Emotionally intelligent robots are able to recognize, interpret, and respond 
to human emotions by utilizing machine learning, natural language 
processing, and robot vision to analyze facial expressions, voice, and other 
cues. The main components of an emotional robot algorithm were 
outlined, highlighting the considerations and concerns that must be 
accounted for during algorithm formulation. Specific algorithms used in 
emotionally intelligent robots were discussed, namely Bayesian inference 
and fuzzy logic.

2 Bayesian 
inference

Bayesian inference provides a probabilistic perspective on emotion 
recognition.

3 Fuzzy logic Fuzzy logic is a platform to handle the ambiguous nature of human 
emotional behavior by interpreting uncertain or vague information about 
emotions based on a range of input stimuli.

4 Keywords and 
ideas to 
remember

Emotional AI, emotional robot algorithm, Bayesian inference for robot 
emotion detection, probabilistic inference perspective, and fuzzy logic in 
robot emotion recognition
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This becomes possible by utilizing degrees of emotions in lieu of strict binary states. 
Therefore, the robot can experience a range of emotions in response to various input 
stimuli and situations. Such expressions of feelings make a robot’s responses appear 
more natural and adaptable.

Unlike traditional logic with clear true/false values, fuzzy logic allows for gradual 
transitions in terms of degrees of truth, meaning a robot can be ‘moderately happy’ 
or ‘slightly frustrated’. Fuzzy logic systems often utilize linguistic rules based on 
human language, e.g., if the battery is low, then the robot feels anxious. These rules 
determine emotional states based on input data like sensor readings or user inter‑
actions. Factors like battery level, environmental conditions, user interactions, and 
task completion status are inputs to the fuzzy logic system that influence the robot’s 
emotional response. The robot’s emotional state generated by fuzzy logic can then 
be translated into observable output behaviors like facial expressions, tone of voice, 
or movement patterns. To give an example, when a robot assistant is tasked with 
performing a complex task and encounters unexpected difficulties, fuzzy logic deter‑
mines that it experiences a mix of ‘frustration’ and ‘uncertainty’. The robot will 
request clarification or seek assistance from the user.

Fuzzy logic allows robots to express a wider range of emotions. It makes their 
interactions with humans feel more natural, relatable, and realistic. These systems 
can be easily adjusted to accommodate different situations and user preferences by 
modifying the linguistic rules. They are well‑suited for dealing with ambiguous or 
uncertain information, which is often present in real‑world interactions.

The survey of algorithms for embellishing robotics with intelligence will be con‑
tinued in the next chapter, starting with hidden Markov models. Fuzzy logic and 
hidden Markov models can be combined to build fuzzy hidden Markov models 
(FHMMs) for emotion recognition from recognition from various modalities, such as 
speech, EEG, and ECG signals enabling capturing of complex relationships between 
input features and emotional states with smoother transitions between states, making 
them more adaptable to real‑world application.
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9 Emotionally 
Intelligent Robots
Unlocking More 
Opportunities

9.1  INTRODUCTION

Robot emotion models exhibit a wide heterogeneity and manifoldness in their 
approaches to the representation and generation of emotions. These include varia‑
tions in the number of emotions considered and the underlying theoretical frame‑
works used in the development of the models. The triggering of emotions by external 
stimuli greatly differs, and so do the methods for expressing emotions through robot 
behavior (Zhao 2023). A spectrum of models exists that can adapt to context and 
user interactions. In this chapter, the discussion of algorithms related to emotional 
intelligence will be continued to provide readers with a deeper understanding of this 
extensive field. We begin with the hidden Markov models (HMMs).

9.2  HMMs FOR ROBOT EMOTION DETECTION

A Markov model for emotions is a mathematical framework that utilizes the concept 
of Markov chains. A Markov chain is a stochastic process unfolding a sequence of 
events. A stochastic process is a phenomenon in which the outcome at any given 
time is a random variable. It is a collection of random variables indexed by time. The 
future state of a stochastic process is therefore not entirely predictable, but rather 
depends on probabilities and randomness.

The Markov chains are used for the representation of dynamic changes in emo‑
tional states with time. The HMMs add a layer of complexity within the model (Kulic 
and Croft 2006; Inthiam et al. 2019a,b). This layer incorporates hidden states. The 
hidden states allow for a more nuanced representation of emotions.

A Markov model represents affective states of robots, e.g., relaxed, stressed, 
engaged, and bored. The probability of transition to a new emotional state is gov‑
erned only by the current state. This characteristic property enables the modeling 
of shifting and evolution of emotions within a sequence of events or interactions. 
Figure 9.1 is a depiction of the components and working mechanism of the HMM in 
robotics. Figure 9.1a shows the main elements of HMM as: states (discrete emotional 
states represented by nodes in the diagram), transitions (arrows between states labeled 
with transition probabilities), and observations (inputs such as facial expressions). 
Figure 9.1b sketches the workflow of HMM. First, the facial muscle movements are 
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extracted. Second, the probability of transitioning from the current emotional state 
to any of the possible next states is calculated using the transition matrix. Third, the 
likelihood of observation of current features is ascertained. The fourth stage involves 
determining the most likely sequence of emotional states that explains the observed 
emotional features over time in the most effective way.

The staple component of a Markov model is the transition matrix (Christopher 
2024). It defines the probability of transition from one emotional state to another. The 
transition probabilities between different emotional states are indicators of the likeli‑
hood of moving from one state to another in a Markov model. So, a transition matrix 

FIGURE 9.1 Hidden Markov model for emotion recognition by robots: (a) components and 
(b) workflow.
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is a matrix that organizes the transition probabilities. Each entry in the transition 
matrix is the probability of moving from one state to another. The transition matrix 
is used to calculate the probability of occupying any state at any given time. So, the 
transition matrix is a representation of the probabilities of changing between distinct 
states of the robot when given its current state.

A transition diagram is a weighted directed graph. This graph represents a Markov 
chain. Each vertex of the graph is a state. Each directed edge signifies a transition 
probability.

9.2.1 appLicatioNs of markoV modeLs

Markov models are used in robot emotion detection to analyze sequences of sensory 
data like facial expressions, voice tone, or body language over time. They allow the 
robot to deduce the underlying emotional state of a human. Changing patterns in 
these observations are identified. Hence, more natural and responsive human–robot 
interactions are enabled through the assistance of these models. Among the applica‑
tions of Markov models in robot emotion detection, mention may be made of:

 i. Analysis of Facial Expressions: The transitions between different facial expres‑
sions of a person are modeled as states in a Markov chain. The modeling of 
transitions allows the robot to predict the current emotional state of the person. 
The prediction is based on a sequence of facial features observed over time, 
notwithstanding the fact that the expressions are subtle or partially obscured.

 ii. Recognition of Speech Emotion: HMMs are used to analyze the dynamic 
changes in pitch, volume, and speech rate discovered in a person’s voice. 
This analysis allows for the identification of the emotional tone in the per‑
son’s speech.

 iii. Multimodal Emotion Recognition: A Markov model combines information 
from assorted heterogeneous sources such as facial expressions, voice tone, 
and body language of an individual. A multi‑sensor arrangement is used for 
collecting information from these sources. The information is coalesced by 
integrating data from various sensors like cameras and microphones. The 
combined information provides an all‑inclusive understanding of a person’s 
emotional condition.

 iv. Adaptation of Robot Behavior: When a robot detects a person’s emotion 
using a Markov model, it adjusts its responses and behaviors accordingly. 
The robot offers comfort if the person appears to be sad. It provides encour‑
agement if the person seems to be frustrated. Thus, the robot’s response 
correctly answers the person’s emotion.

 v. Contextual Understanding of Emotion: Markov models are able to incor‑
porate contextual information like the current situation or past interactions. 
This understanding helps in the interpretation of emotional cues in a better 
way. More nuanced and relevant responses are then offered by the robot.

 vi. Modeling of Emotional State Transitions: The modeling enables prediction 
of changes of a robot’s emotional state based on user interactions. The pre‑
diction allows for generating more natural and adaptive responses.
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 vii. Estimation of Emotion Intensity: The intensity of an emotion is determined 
by analyzing the transition probabilities between different states within a 
Markov model.

 viii. Personalized Emotion Recognition: A Markov model is customized for each 
user by learning the unique emotional patterns and behaviors of the con‑
cerned user. Model customization provides enhanced alignment with the 
user’s needs. Consequently, its performance is improved for the intended 
application.

9.2.2 adVaNtages of markoV modeLs

Markov models, particularly HMMs, offer several advantages in the detection of 
robot emotions. To understand this, we must be aware of the specific areas where 
HMMs can make a dent in processing emotions. They equip the robots with the abil‑
ity to handle sequential data and model dynamic emotional states. Further, the robot 
can infer hidden emotional states from observed behaviors. It can adapt to chang‑
ing contexts, too. Hence, real‑time emotion recognition in human–robot interactions 
materializes. The chief advantages of using Markov models for robot emotion detec‑
tion are as follows:

 i. Modeling Temporal Dependencies: Unlike static classification methods, 
Markov models can capture the temporal relationships between different 
emotional states. The capturing of temporal relationships allows these mod‑
els to understand the evolution of emotions over time. This understanding 
is based on previous observations. Natural human–robot interactions are 
therefore conceivable and workable.

 ii. Handling Dynamic Changes in Emotions: Markov models can effectively 
pick up the dynamic nature of emotions. This allows processing of expres‑
sions and behaviors that change rapidly over time.

 iii. Real‑Time Processing of Emotions: The relatively simple structure of 
Markov models allows their efficient implementation for real‑time emotion 
detection. So, robots using these models can respond promptly to changing 
human emotions.

 iv. Probabilistic Inference of Emotions: HMMs leverage probability theory. 
Hence, they can provide confidence levels in emotion predictions. This capa‑
bility makes them suitable for emotion recognition in ambiguous situations.

 v. Inference of Hidden Emotional States: HMMs examine observable behav‑
iors, such as facial expressions, voice tone, and body language, meticu‑
lously. By conducting a thorough examination, they recognize hidden 
emotional states, such as ‘frustration’ or ‘joy’. These states might not be 
directly measurable.

 vi. Adaptability to Contextual Information: Markov models incorporate con‑
text information into their formalism. By adopting this strategy, they can 
adjust their emotion recognition based on the current situation. Therefore, 
more accurate interpretations of human emotions in different scenarios are 
obtainable.
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 vii. Flexibility in Feature Selection: Different features like facial expressions, 
speech prosody, and body posture can be integrated into a Markov model. A 
more comprehensive understanding of human emotions is thereby achievable.

 viii. Computational Efficiency: Compared to more complex models, Markov 
models are computationally efficient. The high efficiency allows for 
real‑time emotion detection on robots with limited processing power.

9.2.3 LimitatioNs of markoV modeLs

What drawbacks make Markov models inadequate for emotion modeling? Markov 
models have limitations in modeling robot emotions due to their inherent lack of 
long‑term memory. They can only consider the current state and not the full con‑
text or history of interactions. The history of interactions is necessary for accurately 
representing complex human emotions. The reason is that emotions often build over 
time. They depend on previous experiences. Consequently, emotion recognition and 
expression in robots lack accuracy.

The limitations of Markov models in robot emotion include:

 i. Restrictions of Context Awareness: Although Markov models display adapt‑
ability to contextual information, they only consider the current state. They 
neglect the influence of past interactions or events. The past events can sig‑
nificantly impact emotional responses.

 ii. Inability to Capture Nuanced Emotions: Human emotions are often com‑
plex and multifaceted. They show varying intensities and subtle transi‑
tions. A simple Markov model cannot accurately represent these variations 
faithfully.

 iii. Difficulty Faced with Long‑Term Emotional Dynamics: Emotions build up 
over time or change based on past experiences. Such building up of emotions 
is not properly portrayed by the short‑term memory of a Markov model.

 iv. Oversimplification of State Transitions: Markov models often assume dis‑
crete emotional states with fixed transition probabilities. These discrete 
states may not accurately reflect the continuous nature of human emotions.

 v. Challenges with Complex Social Interactions: In real‑world scenarios, 
social interactions involve multiple factors and participants. This depen‑
dence of emotions on several parameters makes it difficult to model emo‑
tions accurately using a simple Markov chain.

 vi. Demand for Quantity and Quality of Data for Model Training: Training 
a robust Markov model for emotion detection is a conscientious job. It 
requires a large amount of high‑quality data on human emotional expres‑
sions and behaviors, ornamented with accurate emotion labels, to ensure 
reliable emotion detection.

 vii. Necessity of Taking Cultural Variations into Account for Model Training: 
Emotional expressions vary significantly across cultures. So, the data used 
for training Markov models should be representative of the target user 
population, unifying intercultural, cross‑cultural, multicultural, and inter‑
national aspects.
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 viii. Complexity of Markov Models: The Markov models are no doubt efficient 
for basic emotion recognition. But complex emotional states might require 
more sophisticated Markov models. Additional hidden states may be needed 
in these models, making them more difficult and muddled.

 ix. Associated Privacy Concerns: Privacy concerns must be properly addressed 
when using facial expressions or voice analysis for emotion detection. 
Obtaining prior user consent is compulsory.

9.2.4  poteNtiaL soLutioNs to oVercome  
the LimitatioNs of markoV modeLs

The understanding of the limitations of HMMs prompts us to the exploration of bet‑
ter alternatives that can overcome their aforementioned hurdles.

 i. Recurrent Neural Networks (RNNs): RNNs can learn long‑term dependen‑
cies in data. This capability enables them to describe the temporal aspects 
of emotions and context in a better way.

 ii. Emotion Appraisal Models: These models incorporate cognitive factors. 
Situational appraisal is included for understanding the underlying causes of 
emotions in detail.

 iii. Multimodal Input Integration: A richer picture of emotional states is sketched 
by combining various sensory data. Facial expressions, speech, and body 
language are combined with basic parameters in building the model.

9.3 SELF‑ORGANIZING MAPS IN ROBOT EMOTION DETECTION

Let us look around eagerly for other opportunities for emotion detection. From 
the HMMs, which prototype the probability of a sequence of events based on a set 
of hidden states and transition probabilities between those states, we transition to 
self‑organizing maps (SOMs), also known as Kohonen maps. These algorithms facil‑
itate dimensionality reduction and data clustering, offering a visual representation of 
the data (Simplilearn 2023).

A SOM is an artificial neural network (Jitviriya and Hayashi 2014; Jitviriya et al. 
2015). The SOM neural network is an unsupervised learning model. It is able to 
distinguish patterns in data without any pre‑labeled emotion categories. The SOM is 
trained to categorize and visualize emotional states by clustering data points repre‑
senting different emotions. It is used for clustering of emotional data for easy under‑
standing (Figure 9.2). Figure 9.2a shows the three layers in an emotion recognition 
SOM: the input layer (representing extracted facial features from an image), hidden 
layer (representing potential emotional states by nodes in a 2D grid of nodes) and 
output layer (displaying the final emotion classification based on the winning node in 
the SOM grid). Figure 9.2b shows the six operations in an emotion recognition SOM: 
feature extraction, its presentation to SOM, identifying the node in the SOM grid 
with smallest distance with input feature vector as the winning node, calculating the 
distance between the input feature vector and each node in the SOM grid, updating 
of neighboring nodes to the winning node in the SOM grid toward the input feature 
vector, and repetition of the process for many images for training.
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FIGURE 9.2 Self‑organizing network for emotional robot: (a) layers and (b) operations.
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The SOM effectively reduces high‑dimensional emotional data displaying facial 
features into a lower‑dimensional space. How is this beneficial? It helps because 
the relationships between different emotions are easily visualized and interpreted. 
Complex emotional landscapes are explored with SOM. From an SOM, the research‑
ers identify patterns and relationships between various emotional expressions. These 
expressions are often based on facial features or physiological data. The topologi‑
cal structure of the input space is maintained. Hence, similar emotions tend to be 
mapped to nearby nodes on the SOM grid in close proximity. Topological preserva‑
tion is thereby attained.

9.3.1 appLicatioNs of som iN emotioN research studies

SOMs are used for recognizing facial emotion as well as physiological emotion offer‑
ing a two‑pronged benefit. They are also applied to investigating other indicators of 
emotional states.

 i. Recognition of Facial Emotion: Facial expressions divulged by images or 
videos are probed to classify emotions (happiness/sadness/anger/surprise). 
The facial feature points are mapped onto the SOM grid (Majumder et al. 
2014).

 ii. Detection of Physiological Emotion: Physiological signals, namely, heart 
rate, skin conductance, or electrocardiogram data, are mapped onto the SOM 
grid. Identification of related emotional states is sought from the maps.

 iii. Analysis of Emotion in Text: Textual data are appraised. The sentiment or 
dominant emotion within a piece of text is identified by mapping word vec‑
tors onto a SOM.

 iv. Investigation of Emotional Dynamics: Sequences of emotional data are 
mapped onto the SOM. An analysis is performed of the mapped data. The 
analysis reveals the transition and evolution of emotions over time. Thereby, 
fluctuations of emotions over time, their underlying processes, and down‑
stream consequences come into view and become known.

9.3.2 LimitatioNs of soms for emotioN recogNitioN

In what ways is the utilization of SOMs restricted? The utilization of SOMs is ham‑
pered by the subjectivity of emotions, their personalization, variation from person to 
person, and shaping by individual, unique experiences and interpretations of situa‑
tions. The quality of data supplied too determines the veracity of results.

 i. Subjectivity of Emotion: Emotions are subjective and context‑dependent. 
Hence, their accurate mapping onto a fixed SOM grid is fastidious.

 ii. Data Quality Dependence: The accuracy of the SOM analysis is always at 
the mercy of the quality of the input data. Being grabbed in their clutches, 
facial expressions, physiological signals, etc., in input data play vital roles in 
the emotion detection of robots.
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9.4  SUPPORT VECTOR MACHINES FOR ROBOT 
EMOTION CLASSIFICATION

While SOMs reduce dimensionality to extract meaningful features, let us investi‑
gate the utilization of a classifier machine learning algorithm in this matter. A sup‑
port vector machine (SVM) is a machine learning algorithm (Tsai et al. 2009; Kang 
2025). It is commonly used as a classifier to categorize different emotional states 
from data like speech or facial expressions. The classification is done by identifying 
patterns in extracted features. The identified patterns are assigned to specific emo‑
tions like happiness, sadness, anger, or neutrality.

The SVM effectively distinguishes between different emotional categories based 
on the input data by finding the optimal decision boundary between them. Figure 9.3 
displays the main elements and workflow of a SVM for emotion recognition by a 
robot. Figure 9.3a shows the principal elements of the SVM: data points (extracted 
features representing the facial image), feature space (multidimensional space for 
visualizing the data distribution), hyperplane (optimal separating plane subdivid‑
ing the data points), support vectors (data points most proximate to the hyperplane) 
and the kernel function (a mathematical function for data transformation to higher 
dimensional space). Figure 9.3b shows the sequential flow of the SVM algorithm: 
feature extraction, feature mapping, calculation for creating an optimal hyperplane, 
and classification of a new facial image.

9.4.1 usiNg sVm for emotioN cLassificatioN

The SVM works as an emotion classifier by following a supervised machine learning 
approach. It learns from labeled data to create a model that predicts emotions based 
on input features (Alhussan et al. 2023).

 i. Feature Extraction: Relevant features like pitch, energy, Mel frequency 
cepstral coefficients (MFCCs), or facial landmarks are extracted from the 
input speech or image data before classification by SVM. The MFCCs con‑
stitute a set of features representative of the spectral envelope of a sound 
signal. The spectral envelope is a curve of amplitude values of the signal on 
the Y‑axis and frequency on the X‑axis.

 ii. Hyperplane Separation: SVM finds the hyperplane in the feature space 
that best separates different classes of emotions. It maximizes the margin 
between them. A robust classification is enabled, which is less sensitive to data 
uncertainty.

 iii. Using Kernel Functions: SVM handles non‑linear relationships between 
features by employing kernel functions that implicitly map the input data 
into a higher dimensional space. Complex emotion classification scenarios 
can therefore be handled.

9.4.2 appLicatioNs of sVm iN emotioN cLassificatioN

Applications of SVM extend across a broad range, from speech emotion recognition 
to facial emotion recognition (FER) and text sentiment analysis. To name a few, we 
mention:
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 i. Recognition of Speech Emotion: Features such as the pitch and intensity of 
sound form the basis of classifying emotions from spoken words.

 ii. Recognition of Facial Emotion: Features from facial landmarks are extracted 
as descriptors of emotions from facial expressions.

 iii. Analysis of Text Sentiments: Emotional cues are utilized for determining 
the sentiment (positive, negative) underlying a written textual document.

FIGURE 9.3 Using the support vector machine algorithm for emotion recognition in robot‑
ics: (a) the chief elements and (b) the process flow.
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9.4.3 adVaNtages of sVm for emotioN cLassificatioN

As an emotion classifier, the SVM offers many advantages for improved customer 
satisfaction.

 i. Effective Management of Small Datasets: Training data for emotion recog‑
nition is often limited. SVM performs well even with limited training data.

 ii. Potential of High Accuracy: A high classification accuracy for emotion rec‑
ognition tasks is achievable by properly tuning SVM.

9.4.4 LimitatioNs of sVm for emotioN cLassificatioN

Using SVM in emotion classification is profoundly swayed by parameter tuning and 
interpretability issues. So, attention must be drawn to its limitations.

 i.  Complexity of Parameter Tuning: Choice of the right kernel function and 
hyperparameters for attaining optimal performance is frequently intriguing.

 ii. Issues in Interpretability: The decision‑making process behind an SVM is 
wearisome to comprehend than other algorithms.

9.5  CONVOLUTIONAL NEURAL NETWORKS FOR  
ROBOT EMOTION PROCESSING

While SVMs typically require pre‑extracted features to make classifications, convo‑
lutional neural networks (CNNs) are a group of widely used algorithms for emotion 
detection (Ghayoumi and Bansal 2006; Fuertes et al. 2023). They can learn hierarchi‑
cal features from raw input data, such as images or text, through their convolutional 
and pooling layers in an extemporaneous manner. The CNNs are used principally in 
facial expression recognition. They are really top‑notch at automatically extracting 
features from images of faces. The extracted features are used to classify emotions 
of happiness, sadness, anger, and surprise. Accurate emotion identification is pos‑
sible from a person’s face using CNNs. Figure 9.4 shows the seven layers in a CNN 
and describes the role of each layer. These layers are: the input layer receiving the 
facial image, the convolution layer performing feature extraction by applying convo‑
lution filters (small matrices sliding across an image); the activation function layer 
for introducing nonlinearity in the features; the pooling layer for downsampling the 
feature maps; the flattening layer for collapsing the spatial dimensions of data into a 
one‑dimensional array; the fully connected layer for learning the high‑level relation‑
ships between features; and the output layer delivering the predicted emotion for the 
supplied image.

9.5.1 workiNg of cNNs for emotioN detectioN

What workflow do the CNNs follow? Instead of preprocessing data for deriving 
features, the CNN works through a layered structure as follows (Mehendale 2020; 
Angel et al. 2024):
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 i. Convolutional Layers: These layers apply a convolution operation to the 
input data. This operation uses a learnable filter or kernel that slides over 
the input image. During sliding, it performs element‑wise multiplications 
and sums the results. By applying these filters, local patterns like edges 
and textures are extracted from different parts of the face. A feature map is 
generated representing the presence and location of specific features in the 
input.

FIGURE 9.4 Layers of the convolutional neural network used for emotion recognition by 
a robot.
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 ii. Pooling Layers: The feature maps are downsampled. The downsampling 
reduces the spatial dimension. Nonetheless, the most significant informa‑
tion is preserved.

 iii. Fully Connected Layers: These are the final layers of the network. They 
combine the extracted features to predict the emotion.

9.5.2 usiNg cNNs for emotioN detectioN

Special considerations in using CNNs are as follows:

 i. Feature Extraction: Important facial features for emotion recognition are 
eye shape, mouth curvature, and eyebrow position. These features are 
spontaneously learnt by CNNs. So, manual feature engineering is hardly 
necessary.

 ii. Image Classification: After feature extraction, the CNN classifies the image 
into different emotion categories. An emotion label is assigned for the input 
face.

 iii. Training Data Amount and Quality: Large datasets of labeled facial images, 
corresponding to various emotions, are required for training CNNs. The 
data used for CNN training must be diverse in nature. It must represent a 
range of different facial expressions and demographics. Then, only high 
accuracy is achieved. Demographics are the statistical characteristics of a 
human population.

9.5.3 fer iN humaN–computer iNteractioN

A cursory, concise description of FER will provide the background information for 
further discussion. FER in human–computer interaction (HCI) is a computer vision 
technology. It aims to analyze facial expressions to identify and classify emotional 
states, and adapt behavior and output accordingly for emotional interaction. It thus 
creates a user‑friendly and engaging system that provides a more intuitive and per‑
sonalized experience. Conspicuous traits of this technology are as follows:

 i. Remarkable Adaptation of System Behavior: Facial expressions are ana‑
lyzed in real‑time for adapting system behavior based on user emotions.

 ii. Outstanding Security and Surveillance Assistance: Facial expressions of 
people in public spaces are monitored to identify potential threats or suspi‑
cious behavior.

 iii. Affective Computing: Systems are developed for understanding and 
responding to human emotions.

9.5.4  perpLexiNg situatioNs duriNg use of cNNs  
for emotioN detectioN

There are several bizarre and quaint occasions in which it is really strenuous and 
demanding to read people’s emotions and decipher what they are actually feeling.
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 i. Analysis of Complex Facial Expressions: Emotion classification is difficult 
due to subtle variations in facial expressions.

 ii. Variations of Lighting and Pose: Recognition accuracy is adversely affected 
by changes in lighting and head position.

9.6 DECISION TREES FOR ROBOT EMOTION DETECTION

The CNNs are particularly strong for tasks like image recognition, where they can 
automatically learn relevant features. Aside from CNNs, what more can be found in 
the portfolio of algorithms for emotion? Contrastingly, decision trees are non‑para‑
metric supervised learning methods used for classification and regression. They are 
capable of handling various types of data and excel in interpretability. They allow 
users to understand the reasoning behind the emotion predictions. A decision tree is a 
machine learning algorithm that uses a tree‑like structure and pre‑programmed rules 
to select appropriate responses based on detected emotions (Lee et al. 2011; Noroozi 
et al. 2017). The responses help to predict and classify human emotions. The basis of 
classification encompasses various input features, including facial expressions, voice 
tone, and text analysis. Each node in the tree represents a decision based on specific 
criteria. The tree displays a final classification of the emotion expressed. Figure 9.5 
shows the four components of the decision tree: root node which is the starting point 
of the tree, internal nodes representing specific features of the image, branches which 
are the lines interconnecting the nodes, and the leaf node which are the final nodes at 
the ends of the branches representing the class of predicted emotion.

FIGURE 9.5 Structural organization of the decision tree structure.
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9.6.1 workiNg of decisioN trees for emotioN detectioN

The building blocks of a decision tree are its nodes. In a decision tree, there are three 
different types of nodes:

 i. Root Node: It is the initial node of the tree. Here, the most important feature 
is evaluated.

 ii. Decision Nodes: Each subsequent node represents a further evaluation of a 
feature. It splits the data into separate branches based on the criteria.

 iii. Leaf Nodes: At the end of each branch is the leaf node. It represents the final 
emotion classification.

9.6.2 usiNg decisioN trees for emotioN detectioN

How are decision trees used in emotion analysis? Decision trees are used by  learning 
patterns in data like facial expressions or voice tone to predict emotions. The approach 
followed consists of the following stages:

 i. Classification: Emotion categories like happiness, sadness, anger, fear, sur‑
prise, etc. are predefined. The emotions in the input data are categorized 
under these headings.

 ii. Feature Extraction: First, relevant features are extracted from the input data. 
These features are facial landmarks from an image or pitch variations from 
speech. Then the decision tree is applied.

 iii. Hierarchical Structure: The decision tree structure allows for a step‑by‑step 
analysis. In this analysis, each node represents a question about the features. 
The branches of the tree lead to further decisions based on the answers.

 iv. Interpretability: One can easily understand how the model reached a par‑
ticular emotion classification by following the path through the tree.

9.6.3 appLicatioNs of decisioN trees for emotioN detectioN

Decision trees are used in emotion detection by classifying emotions based on fea‑
tures extracted from various sources, like facial expressions, speech, or text, and 
using a tree‑like structure to make predictions (Sun et al. 2019). A few application 
areas are as follows:

 i. Emotion Recognition in AI Robotic Systems: Chatbots are built to under‑
stand the emotional tone of user interactions.

 ii. Affective Computing: Emotional states are analyzed from video or audio 
data for applications like sentiment analysis.

 iii. Healthcare: Emotional states of patients are monitored through speech 
analysis.
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9.6.4 chaLLeNges coNfroNtiNg decisioN trees iN emotioN detectioN

At what point does the decision tree begin to pose problems? Difficulties arise with 
an increase in algorithmic complexity in dealing with large data sets and tree struc‑
ture complexity. Plausibly, a tree with many nodes and branches is difficult to inter‑
pret and debug. The frustration is manifested in various ways.

 i. Detection of Complex Emotions: It is difficult to discriminate between sub‑
tle emotional nuances.

 ii. Context Dependence of Emotions: Context incorporation in a tree structure 
is difficult. Emotions that are influenced by context are therefore not effi‑
ciently managed.

 iii. Desired Data Quality: To achieve good performance, the data used for 
training must be accurate and well‑labeled.

9.7  NATURAL LANGUAGE PROCESSING ALGORITHMS 
FOR ROBOT EMOTION DETECTION

We understand that decision trees are a flowchart‑like structure that makes fea‑
ture‑based sequential decisions. In the decision tree algorithm, each internal node 
represents a test on an attribute or feature, each branch represents an outcome, and 
each leaf node represents a class label or decision. On the opposite side, natural 
language processing (NLP) algorithms generate empathetic and contextually rele‑
vant verbal responses. They analyze the text of a message or other content to deter‑
mine the emotions or sentiment expressed within it. For detecting emotions in text, 
the most commonly used approaches include sentiment analysis algorithms, lexi‑
con‑based methods, machine learning algorithms, e.g., SVMs and Naive Bayes clas‑
sifiers; and deep learning algorithms like RNNs and transformers which can analyze 
the context and sentiment of a piece of text to identify the expressed emotions like 
happiness, sadness, anger, or fear (Graterol et al. 2021; Maruf et al. 2024). Figure 9.6 
shows the stages in NLP: input text; text preprocessing including tokenization, nor‑
malization and stemming/lemmatization; lexicon lookup consisting of emotion lex‑
icon and word sentiment scoring; feature extraction comprising N‑gram analysis, 
parts‑of‑speech tagging and intensity analysis; machine learning algorithm for emo‑
tion classification; and the predicted emotion as the output in two forms as emotion 
label and emotion intensity.

9.7.1 emotioN detectioN with NLp aLgorithms

Let us survey the composite structure of the NLP algorithm technology. NLP algo‑
rithmic methodology incorporates a multiplicity of techniques (Kumar and Geetha 
2024), for example:

 i. Lexicon‑Based Methods: Predefined dictionaries contain words associated 
with specific emotions. The sentiment of a text is calculated by counting the 
occurrences of these words.
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 ii. Rule‑Based Approaches: Linguistic rules are used as pointers toward emo‑
tional cues in text. Exclamation marks show excitement. Negative words 
imply sadness.

 iii. Machine Learning Models:
 a. Naive Bayes Classifiers: These offer a simple and efficient method for 

identifying sentiment from word frequencies and their association with 
emotions.

 b. SVMs: These are effective for complex classification tasks, chiefly 
when dealing with high‑dimensional data.

 iv. Deep Learning Models (Guo 2022):

FIGURE  9.6 The complete workflow from input to output stages in a natural language 
processing operation.
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 a. RNNs: They can handle sequential information in text. Hence, they are 
well‑suited for understanding context and sentiment.

 b. Transformers: Pre‑trained models exceling in capturing complex lin‑
guistic relationships are often used for fine‑tuning of specific emotion 
detection tasks.

9.7.2 coNsideratioNs for NLp aLgorithms iN emotioN detectioN

Our inquisitiveness compels us to inquire about the vital factors that need attention 
with regard to using NLP algorithms for detection of emotions. In the development 
and deployment of NLP algorithms, several factors must be taken into account, e.g., 
data quality and quantity, understanding the context and intent behind user input, and 
management of ambiguities. Equally important are handling cultural and linguistic 
diversity such as different dialects, slang, and formal vs. informal language styles, 
along with privacy and security concerns.

 i. Data Quality: A diverse and well‑labeled training dataset is essential for 
NLP models for accuracy in emotion detection.

 ii. Context Awareness: The context of a sentence must be understood clearly 
for a correct interpretation of emotions.

 iii. Multi‑Emotion Classification: Not only purely positive or negative senti‑
ments, but also more nuanced emotions like joy, anger, and fear need to be 
identified.

9.7.3 appLicatioNs of NLp iN emotioN detectioN

Applications of NLP algorithms span a wide range, transcending geographical 
and social divisions, from analyzing social media and customer feedback for sen‑
timent analysis to developing personalized chatbots and supporting mental health 
monitoring.

 i. Social Media Sentiment Analysis: It helps in understanding public opinion 
on various topics through social media posts.

 ii. Customer Service Chatbots: Customer sentiment is identified to provide 
better service and support.

 iii. Market Research: It is a valuable tool for analyzing customer reviews and 
feedback.

 iv. Mental Health Status Monitoring: Potential emotional distress in text‑based 
communication is detected to ascertain the mental health status of a patient.

9.8  REINFORCEMENT LEARNING FOR ROBOT  
EMOTION DETECTION

How can reinforcement learning methods augment the performance of NLP algo‑
rithms? Standard NLP algorithms focus on understanding the overall emotional 
tone of a text. Reinforcement learning algorithms are applied to train artificial 
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intelligence systems to recognize and respond to human emotions (Moerland 
et  al. 2018; Akalin and Loutfi 2021). These approaches can enhance the NLP 
algorithms by learning from sequential interactions and feedback. Responses are 
adjusted based on feedback from interactions by maximizing positive outcomes 
and minimizing negative ones. The machines are made capable enough to learn 
decision‑making from the emotional state of a user by providing positive or neg‑
ative feedback, as determined from the outcome of their actions. Therefore, a 
more nuanced and context‑aware understanding of emotions becomes possible, 
particularly in dialogues (Figure 9.7). Figure 9.7a shows the six components of 
reinforcement learning‑based emotion recognition for a robot: agent, the core 
of the system; environment, the source of input data; state, the current informa‑
tion available to the agent about the environment; action, the decision made by 
the agent after examining the current state; reward, the feedback signal received 
from the environment indicating the correctness or inaccuracy of the action; and 
policy, the strategy applied by the agent to choose actions suitable for a given 
state. Figure 9.7b shows the five steps in the process sequence for emotion rec‑
ognition: visual data input, feature extraction, emotion classification, appropriate 
action selection for responding to the detected emotion, and reward feedback by 
the environment to the agent through a reward signal.

9.8.1 usiNg reiNforcemeNt LearNiNg for emotioNs aNaLysis

Let us ask, ‘In what ways is the use of reinforcement learning beneficial for emotion 
analysis?’ Reinforcement learning enhances emotion analysis by enabling agents to 
learn optimal actions through trial and error. Guidance is received through feedback 
from the environment. Improvements in understanding of emotions are achieved by 
analyzing how agents react to different situations and external stimuli. It works as 
follows:

 i. Emotion Recognition: A system is developed to accurately detect emotions 
from various input modalities, including physiological signals and body lan‑
guage cues, rather than relying on commonly used modalities such as facial 
expressions, voice tone, or text analysis.

 ii. Design of the Reward Function: A reward function is defined that impels 
the AI to respond appropriately to different emotions in order to guide its 
learning process.

 iii. Decision‑Making by the AI Agent: The AI agent chooses actions that are 
considered suitable for the emotional context of the recognized emotion. A 
possible action could be offering comforting words in response to sadness. 
Another likely action consists of providing encouragement in situations that 
require motivation.

9.8.2 appLicatioNs of reiNforcemeNt LearNiNg iN emotioN systems

Why is it necessary to incorporate reinforcement learning into emotion systems? 
Reinforcement learning is integrated with emotion systems to enable agents to 
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FIGURE 9.7 Reinforcement learning: (a) components and (b) the series of actions performed to achieve a desired outcome.
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learn and make decisions from emotional responses (Huang et al. 2021). Its integra‑
tion with emotion systems makes them more adaptable and effective in complex, 
real‑world scenarios. A few examples are as follows:

 i. Chatbots and Virtual Assistants: They enhance the conversational experi‑
ence by tailoring responses to the emotional state of the user.

 ii. Customer Service Systems: They identify customer frustration/dissatisfac‑
tion and provide appropriate support.

 iii. Educational Platforms: Teaching methods are adapted in the light of the 
student’s emotional engagement.

 iv. Healthcare Systems: Emotional distress in patients is recognized and per‑
sonalized interventions are made.

9.8.3  oNerous situatioNs faced duriNg use of 
reiNforcemeNt LearNiNg iN emotioN systems

We would like to know: Are there any disadvantages to using reinforcement learning 
in emotion systems? Significant drawbacks of reinforcement learning are faced in 
some situations, a few of which are as follows:

 i. Complex Emotional Nuances: Subtle emotions evade accurate identification 
and interpretation.

 ii. Data Variability: Large amounts of diverse data are needed by emotion rec‑
ognition models to perform well across different contexts and individuals. 
The data requirements are massive because reinforcement learning is sus‑
ceptible to high variance and instability during the learning phase

 iii. Ethical Considerations: Ethical concerns arise from the potential for misuse 
of emotional intelligence in AI systems.

9.9 DISCUSSION AND CONCLUSIONS

Several researchers have developed robots capable of recognizing gestures and 
emotions. An example is the RYAN SYSTEM (Abdollahi et al. 2023). Deep learn‑
ing methods are applied for recognizing multimodal emotions. The output of this 
framework is integrated with RYAN’s dialogue management system. The dialogue 
management facility is created by writing scripted conversations on many topics. 
Topics of science, history, nature, music, movies, and literature are covered. RYAN 
detects the facial expressions and analyzes the language sentiments of the user. Then 
it empathizes with the user via emotional conversation. It also mirrors the positive 
facial expressions of the user.

KISMET (a Turkish word meaning ‘fate’ or ‘luck’) is a socially assistive human‑
oid robot. It is located at the Massachusetts Institute of Technology (MIT) Museum, 
Cambridge, Massachusetts. It displays several emotions, such as calmness, anger, 
happiness, and sadness. It displays body postures and facial expressions, too, accom‑
panied by voice tones.
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KASPAR (Kinesics and Synchronization in Personal Assistant Robotics) is a 
child‑sized robot. It is built by University of Hertfordshire, United Kingdom (UK). 
It has a range of facial gestures. The purpose is to make social interaction easier for 
children. This robot is especially helpful for children with autism.

PARO (Personal Robot) is a robot developed by the National Institute of Advanced 
Industrial Science and Technology, known as AIST. The AIST is a public research 
institute, Tokyo, Japan. The PARO is used for stimulating patients with dementia.

KODOMOROID {Japanese word ‘kodomo’ (child) + ‘android’; ‘android’ derived 
from the Greek ‘andro’ (man) + ‘eides’ (shape)} is a child android robot. It is a 
humanoid robot with a child‑like appearance interacting with people as a child will 
do. This robot is seen at Miraikan, The National Museum of Emerging Science and 
Innovation in Tokyo. It can recite news and weather reports from around the world. 
It is capable of speaking in various voices and languages.

The Emotional Robot

I am an emotional robot
I usually laugh and play
The whole day
Greeting everybody with hello and hi
But when I am teased by some naughty guy
I like to weep and cry.

Table 9.1 provides the sum and substance of the emotional AI algorithms discussed 
in this chapter. In the next chapter, we make a transition from emotion detection to 
task and motion planning. An emotion is a subjective feeling or mental state, e.g., 

TABLE 9.1
Takeaways from This Chapter at a Glance

Sl. No. Takeaway Explanation

1 Summary A wide cross‑section of emotionally intelligent robot 
algorithms was described in terms of their working 
mechanisms and advantages and drawbacks. Algorithms 
discussed included hidden Markov models, self‑organizing 
maps, support vector machines, convolutional neural 
networks, decision trees, natural language processing, and 
reinforcement learning.

2 Hidden Markov models These are statistical models that analyze sequences of data.

3 Self‑organizing maps These maps are artificial neural networks to project 
high‑dimensional data onto a low‑dimensional grid.

4 Support vector machines These machines are supervised learning algorithms for 
classification tasks.

5 CNNs These neural networks are deep learning architectures for 
image recognition and analysis.

6 Decision trees These are tree‑like structures for classification.

(Continued)
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happiness, sadness, or anger, that arises from a particular situation or experience. 
A task is an objectively defined operation or assignment that must be completed. 
It has a distinct goal. It requires some form of activity or process to be carried out. 
Succinctly speaking, an emotion is a feeling, whereas a task is an action. An emotion 
is an internal experience of an individual, while a task is an external action done by 
the individual. Excitement aroused by a project is an emotion. Writing its completion 
report is a task.
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10 Robot Task and 
Motion Planning

10.1  INTRODUCTION

The daily routine of an individual begins with a lot of planning, either done subcon‑
sciously or consciously, starting from what to eat for breakfast, what dress to wear 
for going to the office, what conveyance and route to take for reaching the office, and 
continuing to include how to face the business meetings or participate in scholarly 
discussions, how to reduce stress and anxiety, and so on. Planning is an inseparable 
part of our everyday life, both intrinsically and inherently. It improves efficiency and 
productivity and increases accountability.

If robots are to be used for various jobs, they must also plan their activities in a 
manner similar to humans. Robot activity planning is the process of formulating a 
sequence of actions or a train of events necessary to be performed by the robot, i.e., 
creation of a list of actions that must be taken by a robot for the execution of a piece 
of work. The work is done by transitioning from a starting or initial state to a final 
goal state. The robot may be engaged in working in a static or dynamic environment. 
Robotic activity is a combination of two fundamental sub‑activities, namely:

	 i.	The task to be performed by the robot, and
	 ii.	The necessary motion undertaken by it to complete the task.

Accordingly, there are two distinct sub‑branches catering to the two sub‑activities: 
robot task planning and robot motion planning. In this chapter, we address both of 
these sub‑branches. Firstly, they are considered separately, showcasing their indi‑
vidual characteristics. Then they are dealt jointly by fusion of the two approaches 
to coalesce them and form a unified whole or amalgamated entity representing their 
inseparability. Subsequently, we systematically study the search algorithms used for 
robot task and motion planning (TAMP). These are used for finding optimal paths 
for robot movements while avoiding obstacles.

10.2  ROBOT ACTIVITY PLANNING

10.2.1 R obot Task Planning

How are the robot tasks planned? Robot task planning works with self‑reasoning 
by a robot using an internal AI algorithm (Hertzberg and Chatila 2008). The robot 
reasons with itself to finalize a sequence of actions to accomplish a given objec‑
tive for reaching a desired goal in an environmental setting containing plenty of 
objects or items (Morecki and Knapczyk 1999). Obviously, task planning is a discrete 
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operation. The reason for its discrete nature is that it aims to select a set of actions 
from a range of possibilities.

10.2.2 roBot motioN pLaNNiNg

Robot motion planning is the step following its task planning. In other words, motion 
planning is the successor of task planning. Robot motion planning involves deciding 
the motions to be executed by a robot in a given environment to accomplish a cer‑
tain objective for reaching a specified goal (Latombe 1991; Owen‑Hill 2019). Motion 
planning is a continuous operation because it focuses on the constant movements 
of an individual robot in space. Table 10.1 explicates the aspects of task planning 
vis‑à‑vis motion planning (Marcelina 2022).

TABLE 10.1
Differences between Robot Task Planning and Robot Motion Planning

Sl. No.
Point of 

Comparison Robot Task Planning Robot Motion Planning

1 Definition It is concerned with determining 
the sequence of actions needed 
to be performed by a robot to 
complete a task, irrespective of 
whether it is simple or 
complex.

It deals with the continuous movement 
of the robot, calculating the precise 
path to execute each individual action 
within the task plan, while avoiding 
obstacles and respecting the robot’s 
physical constraints.

2 Purpose The robot decides what work it 
has to do, i.e., determines its 
tasks.

The robot determines how to do those 
tasks.

2 Abstraction level It focuses on the high‑level 
decision‑making of a robot, 
considering the actions 
involved, e.g., picking up an 
object or navigating to a room.

It operates at a lower level, focusing on 
precise joint angles and trajectories to 
control the robot’s movement.

3 State space It typically employs a discrete 
state space, where each state 
represents a distinct action or 
decision.

It usually operates in a continuous state 
space, considering all possible 
positions and orientations of the 
robot.

4 Input/output Its inputs include the goal of the 
task and available actions, 
outputting a sequence of 
actions to achieve the goal.

Its inputs include the initial and goal 
positions, obstacles in the 
environment, and robot kinematics, 
outputting a collision‑free trajectory.

5 Example scenario: 
A robot is asked 
to make a cup of 
tea for a guest

The task planner would decide 
the sequence of actions: go to 
the tea machine, press the 
button for a cup of tea, grab a 
mug, pour the tea into the mug, 
move the mug to the guest, and 
serve tea.

For each action in the task plan, the 
motion planner would calculate the 
precise movements of the robot’s arm to 
reach the tea machine, press the button, 
grasp the mug, pour the tea while 
avoiding any obstacles in its path, and 
finally serve the tea to the guest.
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10.2.3 roBot tamp

Robot TAMP is the compounding of task and motion aspects. It is an encyclopedic 
term embracing the sum‑total efforts necessary for the robot to create a sequence 
of actions to be executed by a robot in a given environment to reach a specified 
goal (Dantam 2021; Antonyshyn et al. 2023). The creation of sequential actions 
is done by taking into consideration the physical motions required for the execu‑
tion of actions. So, TAMP stretches beyond task planning and has a broader scope 
than that. Unlike task planning, TAMP is not restricted to planning a series of 
actionable steps. It simultaneously considers the practicable robot movements to 
execute those actions. Therefore, TAMP deals with a combination of discrete and 
continuous operations. It is a mixed activity formed by blending a discrete opera‑
tion (task planning) with a continuous operation (motion planning). Naturally, 
integration of discrete planning with continuous planning makes it a complicated 
activity comprising computationally intensive and economically expensive phases 
(Pan et al. 2024).

A few examples of robot TAMP are as follows:

 i. Object manipulation involving moving the robot’s arm to reach an object, 
grasping it, and then moving it to the suggested location; placing an 
object in the chosen location by avoiding collisions with other objects; and 
sorting an assortment of objects based on their shape, size, and color.

 ii. Navigating a building to reach a specific room, avoiding walls and stairs; 
exploring unknown environments for relief and rescue operations in disas‑
ter areas; and driving cars on roads without accidents and following traffic 
rules.

 iii. Manufacturing and assembly, e.g., welding and painting components to 
ensure quality and efficiency, and packaging parts on assembly lines.

 iv. Robotic surgery to perform complex life‑saving medical procedures.
 v. Domestic chores for cleaning, laundry, and providing care for aged or crip‑

pled people.

10.3 ROBOT TASK PLANNING ALGORITHMS

10.3.1 key poiNts aBout the roBot task pLaNNiNg aLgorithm

Laying down a plan leads to the formulation of an algorithm. In pursuance of the def‑
inition of robot task planning given in Section 10.2.1, a robot task planning algorithm 
is a computational method used to generate a sequence of actions to be undertaken 
by the robot. These actions, taken together, constitute a plan designed for a robot to 
complete a complex task. The actions are decided by considering the current state 
of the environment, available robotic capabilities, and the desired goals. Taking all 
these factors into account, a task planning algorithm begins by defining the task. The 
next stage is the decomposition of the task into sub‑goals. This is done by break‑
ing down the complex task into smaller, manageable actions. The decomposition 
process keeps in sight the capabilities of the robot. The limitations imposed by the 
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environmental conditions must not be forgotten. A state‑space representation is con‑
structed based on the task definition and its decomposition. A search is initiated for a 
feasible sequence of actions. Techniques like state‑space search, heuristic functions, 
and constraint satisfaction are utilized to optimize the plan. These are the core con‑
cepts in AI problem solving. State‑space search is a technique of solving problems in 
which an exploration of the space of possible configurations or states is carried out 
to find a solution to the problem. The heuristic function gives the estimated cost or 
distance from a particular state to the goal state, thus helping the search algorithm 
in prioritization of states that lead to the goal more efficiently. Constraint satisfac‑
tion concerns finding the values to be assigned to variables for satisfying a set of 
constraints.

It is easy to draw an analogy between robot task planning and human task plan‑
ning, namely, identifying the goal, breaking down the task into manageable steps, 
sequencing and scheduling the steps, allocating resources, setting timelines and 
deadlines, monitoring progress, and developing mitigation strategies for bottlenecks 
encountered.

10.3.2 maiN steps of the roBot task pLaNNiNg aLgorithm

Let us draw a roadmap for planning a task for a robot mission. A roadmap is a visual 
way for quickly communicating a plan. Figure 10.1 shows the roadmap for planning 
a task by a robot. The steps in the roadmap for robot task planning are: task defini‑
tion, its decomposition and state‑space representation, action modeling, executing a 
search algorithm, state‑space search, and constraint checking. These are finalized 
after significant brainstorming and are delineated below:

 i. Definition of Robot’s Task: An explicit statement of the desired outcome 
of the robot’s action is made. Specification of the initial and final states of 
the robot is unequivocally finalized. A clear mention and recognition of the 
relevant objects, locations, and conditions within the task environment is 
included.

 ii. Decomposition of Robot’s Task: The complex defined task is broken down 
into smaller, more manageable sub‑goals to reduce overwhelm. The hierar‑
chy of actions is laid out. In this hierarchical organization, completion of the 
different sub‑goals leads to the achievement of the overall goal.

 iii. State‑Space Representation of Robot’s Task: The possible configurations 
(states) of the robot during the task are defined. The state space is repre‑
sented using appropriate data structures. Graphs or trees are used.

 iv. Modeling of Robot’s Actions: A formal definition is crafted stating the 
available actions that the robot can perform in each state. It includes the 
constraints imposed on the robot. The constraints derive from joint limits, 
reachable workspace, and environmental limitations.

 v. Running a Search Algorithm: A search algorithm, such as A* or Dijkstra’s 
algorithm, is utilized to find the optimal sequence of actions that constitutes 
the path from the initial state to the goal state of the robot. The applicable 
cost function, e.g., distance and time associated with each possible action, is 
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evaluated. The cost function quantifies the error in terms of the difference 
between the prediction of the algorithm and the actual value. It assesses the 
performance of the algorithm and guides its optimization.

 vi. State‑Space Search: The possible states of the robot are explored by itera‑
tively applying actions. Algorithms used for this exploration are breadth‑first 
search, depth‑first search, or A* search to find a path to the goal state. The 
breadth‑first search performs exploration of the graph level by level. The 
depth‑first search explores as deeply as possible along a branch before back‑
tracking. The A* search determines the shortest path based on the cost of 
traversing the edges.

 vii. Checking for Constraints and Undertaking Readjustments: A verification of 
the adherence of the planned sequence of actions to all enforced constraints 
is done, e.g., collision avoidance, joint limits, etc. If any violations come to 
notice, replanning is done. The plan is revisited and reviewed. The path of 
the plan is adjusted accordingly.

FIGURE 10.1 The robot’s roadmap for task planning from definition of the task objective 
to plan finalization.
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10.4 ROBOT MOTION PLANNING ALGORITHMS

10.4.1 key poiNts aBout the roBot motioN pLaNNiNg aLgorithm

To understand the central issues of interest, we revisit Section 10.2.2. Building on 
the definition of robot motion planning provided in Section 10.2.2, a typical robot 
motion planning algorithm defines the possible configurations of the robot in the 
environment in terms of its positions and orientations. It checks for collisions and 
then iteratively builds a path from the starting point to the goal. Care is taken to avoid 
obstacles and blockades while building this path. Often, a search algorithm is uti‑
lized to find the best route. Figure 10.2 shows the constituent steps in the roadmap for 
robot motion planning: environment representation, collision detection, sampling, 
node connection/path building, searching for optimal path, trajectory optimization, 
and path execution. These steps are further expounded below.

10.4.2 maiN steps of the roBot motioN pLaNNiNg aLgorithm

These are conceptualized and conjured up after circumspect reflection:

 i. Representation of the Environment (Configuration Space): Possible positions 
and orientations of the robot in the workspace are precisely put into words 
to corroborate insistently that what has been said is correct. Oftentimes, 
these positions and orientations are represented as a configuration space. 
Each point in this space represents a unique pose of the robot. Configuration 
space (C‑Space) is a mathematical space. It represents and means all pos‑
sible robot configurations. For the identification of the collision areas, the 
obstacles within the workspace are suitably modeled.

 ii. Detection of Possible Collisions: It means taking a glance to check for the 
intersection of a robot’s configuration with any obstacles. A rigorous check 
is done for each potential robot configuration to find whether any part of 
the robot intersects with any obstacle in the environment. The cruciality of 
this step can be appreciated by realizing that making a guarantee that the 
planned path is collision‑free is a compulsory requirement of motion plan‑
ning that cannot be circumvented in any way because it is a safety precau‑
tion to avert accidents.

 iii. Sampling of Points in the Configuration Space: Sampling‑based methods 
are algorithms like rapidly exploring random trees (RRT). They randomly 
sample points in C‑space to find a path. After the points in the configuration 
space are randomly sampled, they are vigilantly observed and checked to be 
collision‑free. If a point is found to be collision‑free, the point is accepted 
and added as a node in the search tree. Otherwise, it is declined inclusion.

 iv. Connections of Nodes/Path Building: The newly sampled node is connected 
to existing nodes in the search tree. Checking is done again to make sure 
that there is no collision between the robot and any impediment along the 
connecting path. This step builds a network of potential paths within the 
configuration space.
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 v. Search for Optimal Path: The graph search utilizes search algorithms like 
A* or Dijkstra to navigate a graph. The graph represents possible robot 
movements to find the shortest or most efficient path from the start configu‑
ration to the goal configuration within the constructed tree. Heuristics are 
used to guide the search toward the goal. They are cognitive strategies, like 
mental shortcuts or practical guidelines.

 vi. Optimization of Trajectory (Optional): The planned path is smoothed and 
refined for a more even and efficient trajectory. For path smoothing and 

FIGURE 10.2 The roadmap for motion planning by a robot.



178 AI Robotics

streamlining, the velocities and accelerations are modified to make sure that 
the robot can physically follow the trajectory.

 vii. Execution of the Planned Path: The computed path is sent to the robot con‑
troller. The controller executes its responsibility to actualize the movement 
of the robot in reality, as decided in the plan.

10.5 ROBOT TAMP ALGORITHMS

10.5.1 key poiNts aBout tamp aLgorithm

We recall the discussions in Section 10.2.3. In accordance with the definition of robot 
TAMP given in Section 10.2.3, and unifying the procedures outlined in Sections 
10.3 and 10.4 to create a comprehensive composite picture, robot task and motion 
algorithms refer to a set of algorithms in robotics that integrate high‑level task plan‑
ning (deciding what actions to take) with low‑level motion planning (calculating the 
robot’s physical movements) (Akbari et al. 2020). The intent is to achieve a complex 
goal through concerted effort. The goal could be assembling a product in a factory. 
Alternatively, it could involve navigating the robot through an environment by gen‑
erating a sequence of feasible actions with corresponding robot trajectories, as noted 
in Section 10.2.

10.5.2 maiN steps of tamp aLgorithm for soLViNg a roBotic proBLem

We can now combine the robot task and motion ingredients to create a cocktail. The 
key steps of a robot TAMP algorithm typically involve an admixture of task and 
motion scheduling operations: definition of the assigned task domain including states 
and actions, representation of the robot’s configuration space, identification of con‑
straints faced in problem solving, decomposition of the assigned task into sub‑goals, 
generation of a sequence of actions to execute the task, planning of the corresponding 
motions for each action to be performed during the task, and finally, checking for 
collision avoidance by the robot while optimizing the overall path for task comple‑
tion and motion to be undertaken. Following in the footsteps of robot TAMP, let us 
draw a roadmap for the same. Figure 10.3 depicts the roadmap for TAMP by a robot 
consisting of problem definition, TAMP, and finally optimization and refinement of 
the plan, as explicated below:

 i. Definition of the Robotic Problem: It is a methodical and structured organi‑
zation of three parts.

 a. Description of the Task: The overall goal of the robot is defined. The 
definition includes the initial state and the desired final state. Any inter‑
mediate objectives are unambiguously spelled out.

 b. Modeling of the Environment: An across‑the‑board representation of 
the robot’s workspace is done. This sweeping representation consists 
of obstacles and relevant objects in the environment, along with their 
properties.

 c. Robot Kinematics: The robot’s configuration space is defined. The defi‑
nition is inclusive of all the robot joint angles and reachable positions.
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 ii. Task Planning for Solving the Robotic Problem: Various algorithms like 
A* search, RRT or potential field methods are used depending on the com‑
plexity of the task and environment. The particular algorithm is decided by 
looking at the trials and tribulations of the case. As discussed in Section 
10.3, task planning entails:

 a. Decomposition of Assigned Task: The complex task is dissevered into 
smaller, more manageable subtasks or actions. Each sub‑task should be a 
single, achievable piece of work. It must be plainly and concisely stated.

 b. Selection of Actions: Appropriate actions are chosen based on the cur‑
rent state and desired goal. Constraints like object manipulation or envi‑
ronmental interactions are given due attention.

 c. Sequencing of Actions: The order of the selected actions is decided. 
The purpose is to produce a systematized tableau showing the logical 
sequential actions for performing the task.

 iii. Motion Planning for Executing the Solution to the Robotic Problem: 
Recalling discussions in Section 10.4, it involves:

FIGURE 10.3 The roadmap for combined task and motion planning by the robot.
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 a. Path Planning: A collision‑free path is generated connecting the start 
and goal configurations for each sub‑task. Proper consideration of the 
robot’s kinematic constraints is essential for success.

 b. Generation of Robo’s Trajectory: The planned path is converted into a 
smooth trajectory in an uninterrupted, seamless progression. The veloc‑
ities and accelerations of the robot are specified.

 c. Detection of Robot’s Collision with Obstacles: An incessant checking is 
done for potential collisions of the robot with obstacles throughout the 
planned trajectory, considering each and every point on the trajectory.

 iv. Optimization and Refinement of the Robotic Problem:
 a. Evaluation of the Cost Function: The planned motion is evaluated. 

Metrics like path length, execution time, energy consumption, etc., are 
used in this evaluation process.

 b. Readjustments and Replanning: The robot’s plan is adjusted if found 
necessary. The adjustments are made to the plan based on feedback 
received from sensors regarding unexpected changes in the environment.

 c. Integration of Sensor Data: The sensor data, e.g., vision sensor and 
LiDAR readings, are utilized to update the environment model. 
A real‑time adaptation of the robot’s TAMP is achieved.

 d. Incorporation of Learning‑Based Approaches: Machine learning tech‑
niques are utilized to improve motion planning. These algorithms ben‑
efit by learning from experience or adapting to dynamic situations.

10.6 SEARCH ALGORITHMS USED IN ROBOT TAMP

10.6.1 a* search aLgorithm

The greatness of A* search is that it is optimal, efficient, and flexible, and so very 
special. It is a heuristic‑based algorithm commonly used in robot motion planning 
and navigation (Xin et al. 2019; Ji et al. 2023). It is also used in other circumstances 
in which the determination of the most optimal path through a tangled and  puzzling 
environment is imperative. A heuristic algorithm is an intuition or empirically guided 
rule of thumb for expeditious decision‑making. It gives a feasible solution for each 
instance of a combinatorial optimization problem at an acceptable cost in terms of 
computing time and space. A feasible solution is the set of values that satisfy all 
the constraints of an optimization problem. The optimal solution is a feasible solution 
resulting in the best value of the objective function. The optimal solution is always a 
feasible solution. But the antithesis of this statement is not necessarily true because a 
feasible solution need not be an optimal solution. The objective function is the linear 
formula used to maximize or minimize a value.

The A* algorithm allows a robot to efficiently find the shortest path from a start‑
ing point to a goal location, which is fixed beforehand. While following this route, 
the robot navigates around obstacles in its environment. The navigation takes place 
under the supervision and watchful eye of a global cost function. The global cost 
function is defined as a function expressed by the equation

 f(n) = g(n) + h(n) (10.1)
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where g(n) is the cost function of the path traversed from the initial state to the node 
n, and h(n) is the heuristic function representing the estimated cost from node n to 
the goal state. The cost function is a mathematical formula measuring the difference 
between the predicted output of an AI algorithm and the authentic expected output. 
Formally, we state that

 Cost Function = Predicted output − Expected output (10.2)

Examination of the cost function values allows the algorithm to prioritize the nodes 
that are closer to the goal sate.

The key component of the A* algorithm is the heuristic function h(n). The func‑
tion h(n) estimates the remaining cost to reach the goal from a given node. Based on 
the remaining cost, the algorithm lays down priority on the nodes that are likely to 
be nearer to the desired destination. The algorithm works by exploration of the neigh‑
boring nodes, calculating their total cost given by the equation

 Total cost function = Cost from initial state to the node  
                                                 + Estimated cost from the node to the goal (10.3)

and selecting the node with the lowest cost to expand thereafter. The shortest path is 
calculated by taking into consideration both the costs. These costs include:

 i. the cost of reaching a node, and
 ii. an estimated cost to reach the goal from that node.

It is re‑emphasized that heuristic algorithms provide computationally feasible 
approximate solutions. They are not accurate algorithms. Their principal merit is 
that they are excellent at finding ‘good enough solutions’ with low execution times, 
though not axiomatically the optimal ones. This is of course expected from their 
basic approach to the problem. It can be easily envisaged by noting that the heuris‑
tic‑based algorithms do not conduct an exhaustive search for every possible solution. 
So, they are very useful when exact solutions are computationally impractical or 
expensive to determine. Optimality is sacrificed to gain speed for finding the solution 
in a reasonable time frame.

Two lists are maintained up to date in order to run the A* search algorithm. These 
lists are named OPEN and CLOSED (Figure 10.4).

The list OPEN is a data structure representing the set of potential paths that have 
not been assessed yet. It contains all the nodes awaiting exploration and evaluation by 
the heuristic function during the search process. These nodes have not been expanded 
into successors yet. Expansion of a node is the process of applying operators to the 
node, producing a set of nodes. The list OPEN is implemented as a priority queue. 
The node with the lowest f(n) value is selected next to expand upon.

The list CLOSED contains the nodes that have already been visited. Its purpose is 
to prevent the algorithm from revisiting them unnecessarily. An already visited node 
is a node in the search space that has been explored and added to the list CLOSED. 
The algorithm has, by now, calculated the best path to reach that node from the 
starting point. It will not re‑evaluate that node again during the search process. 
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This means that it is a node that has been definitively considered. Therefore, it is no 
longer part of the active search area.

Figure 10.4 illustrates the steps to be followed in the A* search algorithm, start‑
ing with the definition of two lists, OPEN and CLOSED. If the OPEN list is empty, 
failure is returned. If NO, the algorithm progresses by calculating the cost function. 
A node n with the smallest f(n) value in the OPEN list is chosen. This node is trans‑
ferred to the CLOSED list while its index is saved. It is checked whether the node n 
is the target end node. If NO, the node n is expanded by producing all its neighboring 
nodes and placing them in the OPEN list. Then the cost function is calculated for 
each node produced. The algorithm returns to the stage of selection of the node with 
the smallest value of f(n). If YES, the optimal path is calculated using pointers of the 

FIGURE 10.4 The A* search algorithm.
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saved indices, and the algorithm stops. A thorough explanation of the procedures of 
the algorithm is as follows (Kumar 2024):

 i. A list OPEN is defined consisting of the nodes to be evaluated. The OPEN 
list is a priority queue. It stores the nodes with their estimated costs.

 ii. The list CLOSED is defined.
 iii. The node n in the list OPEN with the smallest value of f(n) is selected.
 iv. The node n is removed from the list OPEN. It is transferred to the list 

CLOSED. Its index is saved; the index of a node in an A* search is its posi‑
tion in the OPEN list.

 v. If the list OPEN is empty, failure is returned, followed by exiting.
 vi. If the node n is a goal state, success is returned, followed by exiting.
 vii. The current node n in the search tree is examined and expanded by generat‑

ing its possible neighboring nodes.
 viii. If any successor to n is the goal node, success and solution are returned 

by tracing the path from the goal node to node n; otherwise, the algorithm 
moves to the next step.

 ix. For each succeeding node, the evaluation function is applied to the node; if 
the node has not been in either list, it is added to OPEN.

 x. The steps are repeated until the goal node or destination is reached.

10.6.2 dijkstra’s aLgorithm

Dijkstra’s algorithm is a popular algorithm used in robotics to find the shortest path 
between a given node and all other nodes in a graph (Sniedovich 2006; Fan and 
Shi 2010; He 2022). It was conceived by a Dutch computer scientist, programmer, 
software engineer, and mathematician, Edsger Wybe Dijkstra, in 1956, and so is 
named after the scientist. It is a useful tool for mobile robots to navigate warehouses 
and other spaces. It helps the robots to optimize their routes and avoid collisions 
with obstacles. While not guaranteeing efficiency, Dijkstra’s algorithm provides the 
shortest path between nodes in a weighted graph. Its core utility is in solving the 
shortest‑path problem.

Dijkstra’s algorithm uses the weights of the edges to minimize the total distance 
between the source node and all other nodes. In Dijkstra’s algorithm, the weights 
of edges are positive integers or real numbers. They represent the distance or cost 
between two nodes in a graph. Suppose a graph is used to represent the map of a store. 
The vertices of the graph are specific points in the store. Its edges are the pathways 
in the store. The weight of an edge could be the length of the pathway. If the graph is 
used to represent the cost of a robot’s movement between two particular points, the 
weight of an edge could represent the cost of moving between those points.

The algorithm maintains two sets: one for visited vertices and another for unvis‑
ited vertices. The source vertex is the starting point. The algorithm finds the shortest 
path from the source vertex to all other vertices in the graph. It starts at the source 
vertex and iteratively selects the unvisited vertex with the smallest tentative distance 
from the source. It then visits the neighbors of this vertex. It persistently updates the 
tentative distance of the vertex if a shorter path is found. This process continues until 
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the goal node or destination vertex is reached, or all reachable vertices have been 
visited and explored.

The main steps of Dijkstra’s algorithm are shown in Figure 10.5: creation of a list 
of unvisited vertices, designation of the current vertex, and checking whether this 
vertex is the destination vertex. If NO, all the vertices leading to the current vertex 
are found. Then the distances between the source vertex and each unvisited neighbor 
of the current vertex are calculated. If the new distance is shorter than the previous 
distance, the distance is updated. If NO, the current vertex is removed from the list of 
unvisited vertices, and the algorithm returns to the stage of designation of the current 
vertex. However, if the current vertex is found to be the destination vertex, the search 
is deemed to be completed, and the algorithm terminates. Specific details of the steps 
are furnished as follows (Navone 2020):

 i. Initialization and Marking of the Source Vertex: The source vertex is 
marked. The distance of the source vertex is set to 0. The distances of all 
other vertices are set to infinity.

 ii. Designating the Current Vertex: The unvisited vertex with the shortest  
distance from the source is chosen. The unvisited vertex with the smallest 
distance is set as the current vertex

 iii. Finding and Calculating the Distances to the Current Vertex: All the verti‑
ces leading to the current vertex are found. The distance from the source to 
each unvisited neighbor of the current vertex is calculated.

 iv. Updating Distance: The distance is updated if the new distance is found to 
be shorter than the previous one.

 v. Marking the Current Vertex as Visited: Once all neighbors of the current 
vertex have been visited, the current vertex is marked as visited. This vertex 
again will never be looked at again.

 vi. Repetition: Steps (ii)–(v) are repeated until all vertices are visited.

Dijkstra’s algorithm is based on the principle of the greedy algorithm. A greedy 
algorithm is a problem‑solving strategy. It chooses the best option at each step with‑
out considering the future consequences or possibilities. This means that it always 
chooses the solution with the lowest cost. The goal is to find a globally optimal solu‑
tion by making locally optimal choices.

Table  10.2 presents the similarities and dissimilarities between A* search and 
Dijkstra’s algorithms.

10.7 RRT ALGORITHM

Dijkstra’s algorithm is a deterministic algorithm operating in a static space. The RRT 
algorithm is a probabilistic algorithm that iteratively grows a tree to find paths in a 
continuous, dynamic space (Caccavale and Finzi 2022; Ding et al. 2023; Xu 2024). 
The tree is grown by arbitrarily sampling points in the environment. Sampling is 
a method of estimating the characteristics of a population by selecting individual 
members or a subset of the population. It helps to make statistical inferences about 
the whole population from these members. A sampling‑based technique is a method 
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FIGURE 10.5 Dijkstra’s algorithm.

that utilizes sampling to achieve a specific outcome. It first samples the possible 
configurations. It then builds a graph that approximates the connectivity of the space.

In the RRT algorithm, the indiscriminately sampled points are connected to the 
nearest existing node in the tree. During this process, it is always ensured that the 
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connection is collision‑free. Freedom from collision is maintained until the desired 
goal configuration is reached.

Figure  10.6 shows the steps of the RRT algorithm, viz., initialization of the 
random tree, setting the starting point XStart and the goal point XGoal, and checking 
whether the tree reaches the goal point XGoal. If YES, the algorithm backtracks from 
the node XGoal to the node XStart to trace the planned path. If NO, a random sampling 
point XRandom is selected. All the nodes in the tree are traversed to find the node XNearest 
at the shortest distance from XRandom. Then, a new node XNew is generated by expan‑
sion from the node XNearest along the direction of the node XRandom. The path from the 
node XNearest to the new node XNew is checked and confirmed to be collision‑free. If 
YES, the node XNearest is added to the random tree. The algorithm returns to finding 

TABLE 10.2
A* Search and Dijkstra’s Algorithms

Sl. No.
Point  

of Comparison A* Search Algorithm Dijkstra’s Algorithm

1 Commonality A* search is used to find the 
shortest path in a graph.

Dijkstra’s algorithm too is used to 
find the shortest path in a graph.

2 Heuristic function It utilizes a heuristic function to 
estimate the remaining distance 
to the goal. This function 
allows it to prioritize paths 
closer to the goal. Hence, it is 
more likely to lead to the 
solution. Thus, it aids in 
making more informed 
decisions about which node to 
explore next.

It does not use a heuristic function. 
So, it explores all nodes based 
solely on their distance from the 
starting point.

3 Efficiency It is usually faster than Dijkstra’s 
algorithm. This is especially 
true for large graphs. The path 
prioritization feature of the 
algorithm is the root cause 
behind the fast computing.

It can be slower due to its exhaustive 
search strategy.

4 Optimality It may not always find the 
optimal solution. Optimality is 
sacrificed if the heuristic is not 
properly designed.

It always guarantees to find the 
shortest path. The reason is that it 
explores all possible routes.

5 When preferred  
to be used?

It is favored when one needs to 
find the shortest path quickly, 
especially in large graphs. It is 
also chosen when a possibility 
exists for designing a reliable 
heuristic function to guide the 
search toward the goal.

It is chosen when finding the 
absolute shortest path is necessary, 
and the graph is relatively small. It 
is also preferred when the accuracy 
of the solution is more important 
than the speed of execution of the 
algorithm.
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FIGURE 10.6 The RRT algorithm.
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whether the random tree reaches the goal point, accompanied by backtracking from 
the node XGoal to the node XStart to trace the planned path. Then the algorithm stops. 
If the answer is NO for the path from the node XNearest to the new node XNew as colli‑
sion‑free, then the algorithm goes back to the selection of a random sampling point 
XRandom. Further clarifications are given below (Sarkar 2024):

 i. Initialization of a Random Tree at the Starting Point: The mobile robot con‑
structs a search random tree. This random tree is based on the initial pose 
and target pose obtained from the scene map. It is constructed at the starting 
point XStart of the two‑dimensional state space. Then the starting point XStart 
of the robot is set as the root node of the random tree. The goal point XGoal 
of the robot is also stipulated.

 ii. Random Generation of a Sampling Point: A random sampling point XRandom 
is haphazardly generated in the free search space. The search space is the 
configuration space of all possible positions and orientations of the robot. It 
is used to guide the expansion of the random tree.

 iii. Nearest Neighbor Search: The nodes that have been generated in the whole 
random tree structure are traversed. After completing this traversal of 
nodes, the tree node that is closest to the randomly sampled point XRandom is 
found. It is selected and defined as XNearest.

 iv. Extension of a New Node from the Nearest Neighbor Toward the Sampled 
Point by Taking a Predefined Step Size: The appropriate step size is 
expanded from the node XNearest along the direction of the node XRandom as 
the extension direction. A suitable step size is set as the branch length to 
generate a new node XNew. It is the new tree node.

 v. Checking Possibility of Collisions: A verification test is undertaken to vali‑
date whether or not the new node path collides with any obstacles in the 
environment.

 vi. Expansion Cancelation on Encountering an Obstacle: If an obstacle is 
encountered in the expansion process, the expansion is canceled. After the 
cancelation, the sampling is performed again.

 vii. Addition of Node in Absence of Collision: If no collision is detected, the 
new node is added to the tree.

 viii. Iteration of Steps: Steps (ii)–(vii) are repeated until a node in the tree is 
close enough to the goal configuration. The algorithm repeats the above 
iterative process until the target node exceeds the specified number of itera‑
tions. Eventually, a fast‑expanding random tree path is formed, ending the 
search.

10.8 PROBABILISTIC ROADMAP

Like the RRT algorithm, the probabilistic roadmap (PRM) method is a  sampling‑based 
technique (Zhang et  al. 2013; Zhang 2022). While the RRT algorithm employs a 
local approach that starts from the initial position, the PRM algorithm adopts a 
global approach that encompasses the entire space. The RRT algorithm may not 
find optimal paths, but the PRM algorithm can do so. The RRT algorithm incurs 
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a lower computational cost than the PRM algorithm. But the RRT algorithm can 
handle dynamic obstacles, whereas the PRM algorithm is not ideal for dynamic 
environments.

The PRM algorithm is particularly suitable for robots with a high  number 
of degrees of freedom (DoFs). Such robots are required to perform multiple 
point‑to‑point motions in a known workspace. The DoF of a robot is the number of 
independent movements that the robot can make. It is a measure of a robot’s motion 
capabilities and flexibility. The principal steps of the PRM method for robot path 
planning are presented in Figure 10.7. Beginning from the random distribution of 
N nodes, the start node is set as the current node. The neighbor nodes of the cur‑
rent node are defined. A collision‑free edge is created between the current node and 
the neighboring nodes. An exhaustive check is carried out to corroborate whether 
there are any more nodes. If YES, the next node is set as the current node, and the 
 algorithm returns to the definition of neighbor nodes. If NO, the algorithm stops. 
More details are given as follows (Khokhar 2021):

FIGURE 10.7 The PRM method.
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 i. Preprocessing: A network of collision‑free configurations (nodes) is created. 
The network is produced by randomly selecting configurations and testing 
them for collisions. This step is done only once for a given environment.

Collision detection is a process that determines if two or more objects 
are intersecting. The steps for collision detection generally involve check‑
ing if the objects are overlapping or lying within a certain distance of each 
other. The bounding volume hierarchy is a tree structure composed of a set 
of bounding volumes. It is wrapped around geometric objects, which form 
the leaf nodes of the tree. The leaf nodes are grouped as small sets. They 
are enclosed within larger bounding volumes. These, in turn, are grouped 
and enclosed within further larger bounding volumes in a recursive fashion. 
Ultimately, a tree structure is obtained. It has a single bounding volume at 
the topmost point of the tree. Collision is determined by undertaking a tree 
traversal starting from the root and proceeding ahead. If the bounding vol‑
ume of the root does not intersect with the object of interest, the traversal is 
stopped. If, however, there is an intersection, the traversal proceeds further. 
Those branches are checked for which there is an intersection.

 ii. Planning: The initial and final configurations of the robot are connected 
to two nodes in the network. A path is then computed through the network 
between these two nodes.

10.9 DISCUSSION AND CONCLUSIONS

This chapter outlined the various methods employed in robot task planning, motion 
planning, and TAMP all of which play a crucial role in robotics and require inten‑
sive debating and deliberation (Table 10.3). Task planning aims to build a structured 
plan to reach a prescribed goal (Zhang et al. 2022). It works by decomposition of the 
complicated long‑horizon task into elementary short‑duration subtasks. Hierarchical 
methods, heuristic searching methods, and operator planning methods have been 
used for task planning. Logic programming offers several advantages, such as greater 
expressivity and interpretability, which are helpful in making safe and reliable robots 
(Meli et al. 2023).

Motion planning is the extension of path planning, seeking to generate interac‑
tive trajectories in the workspace when robots interact with a dynamic environment, 
necessitating consideration of kinetic features and velocities of robots and moving 
objects nearby as they move toward the goal.

TAMP allows robots to not only plan high‑level actions like picking up an object 
but also generate the precise movements necessary to execute those actions while 
avoiding collisions. It bridges the gap between abstract tasks and the physical motions 
required to achieve them. It enables robots to be more autonomous and adaptable in 
complex environments.

Task planning operates at a higher level, deciding on the overall sequence of 
actions, such as ‘grasp the tea cup, move to the guest’, while motion planning han‑
dles the lower‑level details of how to physically move the robot to accomplish those 
actions (refer back to the example in Table 10.1). Task planning often involves dis‑
crete choices about which object to pick up and which path to take. Motion planning 
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deals with continuous variables like joint angles and velocities to generate smooth 
trajectories. By integrating task and motion concepts in TAMP, robots perform intri‑
cate manipulation tasks like assembling components or navigating cluttered environ‑
ments, which are difficult to program manually. Advanced TAMP systems allow 
real‑time adaptation. The robots can react to changes in the environment or unex‑
pected situations by adjusting the robot’s actions on the fly.

Several robot path and motion planning algorithms, collision avoidance, and navi‑
gation were delved into. Path planning determines the path between the origin and 
destination within the workspace, which is the area where an algorithm operates 
or a task exists. It applies strategies based on the shortest distance or the shortest 
time. The traditional path planning algorithms can meet most requirements. Motion 
planning algorithms comprise traditional planning algorithms, and classical machine 
learning algorithms, including reinforcement learning (Zhou et al. 2022). Combined 

TABLE 10.3
Takeaways from This Chapter at a Glance

Sl. No. Takeaway Explanation

1 Summary Robot activity planning consists of task planning, motion 
planning, and combined robot task and motion planning. Key 
points and main steps of all types of algorithms for robot 
activity planning were described. Search algorithms used in 
robot task and motion planning were discussed, including the 
A* search algorithm, Dijkstra’s algorithm, the rapidly 
exploring random tree algorithm, and the probabilistic 
roadmap.

2 A* search algorithm It is a graph traversal and pathfinding algorithm that utilizes a 
heuristic function to estimate the distance to the goal from 
each node.

3 Dijkstra’s algorithm It is a classic, deterministic method to determine the shortest 
path between two points in a graph.

4 RRT algorithm It involves randomly sampling points in the search space, 
connecting them to the existing tree, and gradually expanding 
the tree until it reaches the goal point.

5 Probabilistic roadmap 
algorithm

It operates by randomly sampling points in the free space to 
create a network of connected nodes and then searching for a 
path between the start and goal nodes within this roadmap.

6 Comparison of  
algorithms

A* and Dijkstra are ‘informed search algorithms’ prioritizing 
exploration of closer nodes to the goal, while the rapidly 
exploring random tree algorithm and the probabilistic 
roadmap are both randomized algorithms used in complex, 
high‑dimensional spaces.

7 Keywords and ideas to 
remember

Robot activity planning, robot task planning, robot motion 
planning, robot task and motion planning, A* search 
algorithm, Dijkstra’s algorithm, rapidly exploring random 
tree algorithm, probabilistic roadmap.
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TAMP is receiving extensive attention. TAMP solutions are required in situations 
such as self‑governing robots engaged in ground drilling for the extraction of materi‑
als (Mansouri et al. 2021; Guo et al. 2023).

A self‑driving car utilizes TAMP to determine when to change lanes, navigate 
intersections, and avoid obstacles, while generating smooth driving trajectories. 
Robots in industrial manufacturing can use TAMP to pick and place objects, assem‑
ble components, and perform complex manipulations while optimizing movement 
efficiency. A service robot assisting humans could use TAMP to plan a sequence of 
actions like fetching a drink, opening a door, and placing items on a table.

Integrating high‑level task planning with detailed motion planning is computa‑
tionally elaborate and expensive, especially in dynamic environments. Handling 
of uncertainties, such as dealing with sensor noise and imprecise environmen‑
tal information, is extremely enervating and backbreaking for accurate motion 
planning. Physical constraints must be considered to ensure that the generated 
motions are mechanically feasible for the robot, duly considering its joint limits 
and dynamics.

In the next two chapters, we dedicate ourselves to the subject of autonomy in 
robotics. It refers to the ability of a robot to work without human control by perceiv‑
ing its environment, using AI to make decisions and acting on those decisions by 
initiating the requisite movements voluntarily and of its own accord, in a given situ‑
ation at the right moment.
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11 Autonomous Robots
SLAM, APF, and 
PID Algorithms

11.1  INTRODUCTION

Autonomy is the quality of being self‑governing. Autonomous individuals are com‑
manded by their own personal rules. Autonomy is synonymous with self‑determina‑
tion, self‑reliance, independence, and sovereignty.

Autonomous robots are intelligent devices that can work without recourse to 
human control. They are able to perceive their environment through advanced sen‑
sors. Indeed, they can also analyze the situation with AI assistance in real time, make 
decisions, and respond to the real world independently. These capabilities help them 
in performing tasks in various working and congested environments. The compe‑
tencies and skills built into them render them smart enough in adapting to dynamic 
conditions with minimal‑to‑no human intervention, either through a guide or tele‑
operator control. Therefore, the actions of autonomous robots deeply contrast with 
those of traditional industrial robots. Illustrious examples of autonomous robots are 
self‑moving vacuum cleaners, self‑driving automobiles, and space probes. On the 
flip side, primordial and less advanced robots can only be programmed for execut‑
ing repetitive tasks/movements in controlled environments (Mukhopadhyay and Sen 
Gupta 2007; Liu et al. 2023).

The Autonomous Robot

I am an independent robot
I am my own master
A real‑time decision maker
I never falter
Helping the homemaker
As a domestic aid and house caretaker
I plan my tasks meticulously
And wander in the house freely
Working silently and gracefully.
By evening, all my jobs are done
And I am praised by everyone.

This chapter describes the multi‑talented autonomous robots possessing qualities for 
independent operation. These robots can be programmed to perform various simple 
and complex tasks in production environments, working tirelessly for long hours 
with superhuman efficiency. By surpassing human limits, they can achieve more in 
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less time. ‘Superhuman’ is a fictional concept that has a real‑world focus on reach‑
ing high productivity and throughput in factories with effective tools and strategies.

We first compile a list of algorithms useful for autonomous robotics and then 
embark on a tour from one algorithm to another, gaining insights into their prin‑
ciples, merits, and demerits.

11.2 ALGORITHMS USED IN AUTONOMOUS ROBOTS

Algorithms play an important role in autonomous robot navigation. They hold the 
secret to robot action planning. They help to produce optimal paths distinguished by 
features such as being short in length, apart from being smooth, sturdy, and safe to 
tread. They are the routes that are free from obstacles and hurdles.

Autonomous robots function through the agency of various algorithms. All 
these algorithms work together in unison to enable a robot to perceive its envi‑
ronment, navigate, and make decisions on its own. Autonomous robot algorithms 
are listed in Figure 11.1. These algorithms are: pathfinding algorithms, short path 
finder algorithm, simultaneous localization and mapping (SLAM) algorithm, arti‑
ficial potential field (APF) algorithm, PID (proportional‑integral‑derivative) con‑
trol algorithm, decision matrix algorithm, bug algorithm, vector field histogram 
(VFH) algorithm, generalized Voronoi diagram (GVD), perception algorithms, 
and reinforcement learning algorithms. A cursory description of these algorithms 
is given below; it will be followed by an in‑depth treatment in impending sections 
of this chapter:

 i. Pathfinding Algorithms: They use data to predict and pre‑scan the paths of 
robots from their current positions to destinations. They aid in discovering 
the best driving route on a map, taking into account the state of the traffic. 
Traffic condition refers to the status at a given location at a particular instant 
of time. The A* and Dijkstra’s algorithms are two indelible instances that 
have stood the test of time.

 ii. Short Path Finder Algorithm: It is used to find the shortest and easiest way 
of traversing a maze, a confusing network of passages with twists and turns. 
Dijkstra’s algorithm works by iteratively selecting the node with the small‑
est distance from the starting point. Then it updates the distances to its 
neighbors. Thus, it effectively creates the shortest route from the source to 
all reachable nodes.

 iii. SLAM Algorithm: It is used by a robot for sketching a map of an unknown 
environment and tracking down its own location inside the map (Jain 
et al. 2021).

 iv. APF Algorithm: It is a magnetic field‑inspired method for path planning 
in robotics that employs a notion akin to magnetic forces to guide a robot 
toward a target point (Al Jabari et al. 2022).

 v. PID Control Algorithm: It maintains the desired behavior of the robot by 
adjusting the control signals fed to it. The adjustments are based on the 
error measured by the difference between the current state and the wanted 
or wished‑for state of the robot (Wang 2025).
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FIGURE 11.1 Algorithms used in autonomous robotics.
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 vi. Decision Matrix Algorithm: Here, a robot analyzes the sensor readings and 
environmental parameters in light of possible necessary actions by organiz‑
ing them in a matrix format to make a selection of the best path of action to 
reach its final location (Li 2023).

 vii. Bug Algorithm: This is a simple obstacle avoidance strategy known as the 
wall‑following method. In this strategy, the robot uses proximity sensors 
(ultrasonic or infrared) to consistently follow a wall from a distance until it 
finds a path to the goal (Sivaranjani et al. 2021).

 viii. VFH Algorithm: It is an obstacle avoidance algorithm. A histogram rep‑
resentation of the surrounding environment is the main idea underpinning 
this algorithm; the histogram is a graphical visualization of a distribution 
of data using bars with data values on the X‑axis and the frequency of data 
points on the Y‑axis (Yim and Park 2014).

 ix. GVD Algorithm: It is used for robot path planning in environments replete 
with complicacies of multiple obstacles, where traditional methods strug‑
gle and grapple to find a solution. It guarantees safe collision‑free routes 
by defining the closest areas to different points in the environment (Chen 
et al. 2022).

 x. Perception Algorithms: These algorithms use sensory data, including sight, 
sound, and touch, to understand the environment. An example is computer 
vision, specifically object detection, where convolutional neural networks 
are utilized for image processing. Robot vision was discussed at length in 
Chapters 5–7.

 xi. Reinforcement Learning Algorithms: These algorithms enable robots 
to learn optimal actions through a trial‑and‑error practice of repeated 
attempts and refinements in complex environments (Wen et  al. 2025). In 
this hit‑and‑miss or cut‑and‑try method, solutions are cyclically tried at ran‑
dom and refined until one works.

11.3 SLAM ALGORITHM

11.3.1 priNcipLes of mappiNg aNd LocaLizatioN

What do we do when we navigate an unknown environment? We access tools like 
Google Maps on our mobile phones and enter the starting and destination points to 
get travel directions and an estimated time. Alternatively, if we have a physical map 
and a compass, we can find directions and keep track of recognizable landmarks 
to stay on the right path. If we get lost, we can also ask locals for help. But how do 
robots work in such situations? One possible method is to use the SLAM algorithm.

The SLAM algorithm is employed as a computational method in robotic vision. 
It allows moving platforms such as robots and autonomous systems to navigate 
unknown spaces and environments, such as uncharted territories or novel, obscure 
places, safely and effectively (Liu et al. 2021; Qiao et al. 2024). During the motion of 
the robot through an unfamiliar and outlandish environment, it takes sensor readings 
from its camera or laser scanner to identify landmarks. Landmarks are the features 
that are easily noticeable in the landscape from a distance. The robot then uses this 
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information to create a map of its surrounding environment. The map is continuously 
updated and regularly refreshed by integrating new landmark information with the 
existing map in a consistent and accurate manner. Robotic activity is not restricted 
to map building only. We know that a job half done is as good as none. So, the 
robot concurrently determines its own position within that map. Further, it regularly 
updates both the map of the environment and its own estimated position in real time. 
In this way, the usefulness of the algorithm is demonstrated in allowing robots to 
navigate without reliance on pre‑existing maps.

11.3.2 maiN steps of the sLam aLgorithm

The typical SLAM robot algorithm follows a pipeline consisting of many steps of 
which the principal ones are: data acquisition by the robot’s sensors, extraction of 
landmarks in the acquired data, data association by linking sensor measurements to 
landmarks, state estimation by calculating robot’s current position and orientation 
(pose) from sensor data and updating it through new measurements, map building, 
and loop closure detection when the robot revisits a previously mapped area (loop 
closure is the process of determining that a robot has visited a previously investigated 
location). These are divided into front‑end and back‑end operations.

Figure  11.2 shows the steps involved in SLAM. The algorithm begins when 
the robot’s camera and LiDAR sensors start functioning. The front‑end operations 
are composed of: data acquisition, feature identification, landmark extraction, data 
estimation, and position determination, while the back‑end operations entail the 
calculation of the robot’s current position and pose. Any of the SLAM variants are 
used, viz., EKF‑SLAM, FastSLAM, GraphSLAM. Accordingly, the robot’s posi‑
tion and pose are updated, followed by exploration, map building, and updating. 
After this process, the algorithm stops. Loop closure detection and map refine‑
ment are completed, as indicated. Further minutiae of steps in the algorithm are 
presented below:

 i. Sensor Data Acquisition: The robot continuously senses its environment. It 
uses sensors like LiDAR, cameras, or a combination of sensors to collect 
environmental data. The sensors capture information such as distances to 
obstacles and visual features of the robot’s surroundings. The data is in the 
form of images or laser scans about the robot’s circumjacent areas.

Different types of sensors used for acquiring data have their assets and 
flaws. The accuracy and complexity of the SLAM algorithm are impacted 
by the individual, specialized, and dedicated sensors used. This means that 
the algorithm is sensor‑dependent.

 ii. Feature Identification and Landmark Extraction from the Sensor Data: 
Depending on the sensor type, distinctive features in the sensor data, nota‑
bly corners or edges, or specific patterns, monuments, or prominent and dis‑
tinctive constructions, are identified to serve as landmarks. The algorithm 
uses these landmarks to refine the robot’s position and orientation.

 iii. Data Association and Position Determination by Matching with Landmarks: 
The robot matches landmark observations across different viewpoints. It 
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attempts to match newly detected landmarks to previously observed ones 
(existing features in the map) to determine correspondences between them. 
The correspondences are applied to find the robot’s position relative to the 
landmarks and update its position and map. Incorrect matches are filtered 
out based on distance or other criteria; this process is termed outlier rejec‑
tion. Noise and potential ambiguities render landmark matching really labo‑
rious and exhausting.

 iv. State Estimation or Pose Update: The algorithm calculates the robot’s cur‑
rent poses within the map. These calculations are done using wheel encod‑
ers, motion sensors (odometry) to estimate relative movement between robot 
positions and orientations (poses), and a filtering technique like a Kalman 
filter or particle filter. Based on its current estimated pose and the sensor 
data, the robot updates its estimated position.

Note 1: Odometry is a method that applies motion sensor data to estimate 
a robot’s position from a starting point.

Note 2: The Kalman filter is a popular mathematical algorithm. It uti‑
lizes noisy data and a predictive mathematical model of the system to esti‑
mate the system’s state, enabling real‑time process monitoring. A series of 
measurements is performed over time to calculate the state of a system, 

FIGURE 11.2 The simultaneous localization and mapping algorithm.
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and a recursive filtering method is applied to minimize the mean squared 
error (MSE). The recursive filtering method is a computational approach 
that continuously updates its approximations of the robot’s state and the 
map of the environment using new sensor data by reusing the results from 
the prior calculations. A combination of linearity (where the change in 
output is proportional to the change in input) and Gaussian noise (normal 
or random noise) is considered for predicting and correcting real values. 
Thus, mathematically tractable calculations are done to form an impres‑
sion of real‑world values with noisy data. The noise is assumed to follow a 
Gaussian or normal distribution characterized by a bell‑shaped curve. It is a 
common archetype for casual and unplanned fluctuations.

 v. Exploration, Map Building, and Updating: The location of identified fea‑
tures on the map is stored as 3D points or other suitable data structures. The 
robot persists in its exploration of the area until it has adequate landmarks 
to create a map of the environment. It then builds a map by integrating 
new landmark information with the existing one, ensuring consistency and 
accuracy.

The robot continuously updates the map based on new information by 
adding new landmarks and their relative positions with sustained explo‑
ration, incorporating information from the state estimation. To maintain 
computational efficiency, optimization algorithms such as bundle adjust‑
ment  –  a nonlinear least‑squares method for refining visual reconstruc‑
tions – are often used to refine the map and robot pose estimates.

 vi. Loop Closure Detection: To correct for accumulated errors, the algorithm 
detects loops in the path, i.e., situations where the robot reenters a formerly 
mapped area. This is done by making a similarity identification in which 
current sensor data is compared to previously stored map information. 
Whenever a loop closure is detected, the robot’s estimated pose and map are 
adjusted to minimize inconsistencies and variabilities. Thus, loop closure 
detection corrects for potential errors by allowing for map refinement.

11.3.3 differeNt VersioNs of the sLam aLgorithm

There are several approaches to the SLAM algorithm, as well as various types of 
SLAM algorithms.

11.3.3.1 Visual SLAM (vSLAM) Algorithm
In this SLAM, cameras are primarily used to capture visual data of an environment. 
The visual data is unscrambled and interpreted to build a map of the environment. 
Computer vision is used for identification, confirmation, and cataloging of features 
and patterns in the images. It is an economical method. Detailed color and texture 
information is obtained. It is suited to well‑illuminated scenes and augmented real‑
ity applications, e.g., medical training, education, entertainment, manufacturing, 
and retail. It is used in indoor robotics. But changes in lighting conditions, natu‑
ral light or artificial illumination, or presence of textureless or featureless surfaces 
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lacking any notable characteristics create difficulties to sabotage the algorithm 
functionality.

11.3.3.2 LiDAR SLAM Algorithm
It utilizes laser scanners to acquire depth information for more precise mapping of 
the environment (Malik 2023). A 3D map is created by measuring distances to vari‑
ous objects and generating a 3D point cloud, a dataset containing numerous points in 
a 3D X, Y, Z coordinate system with each point representing a specific spatial mea‑
surement on the surface of an object. The method is highly accurate. Soft, low light‑
ing‑based dimly illuminated scenes evoking serene and tranquil to mysterious and 
somber moods, as well as environments containing several obstacles, are mapped. 
The hardware used is more expensive than that of vSLAM. Difficulties are experi‑
enced with reflective surfaces, e.g., curved mirrors, which cause waves to bounce off 
in different directions. It is useful for autonomous vehicles, industrial robotics, dark 
spaces, and outdoor terrains.

11.3.4 commoN sLam aLgorithms

 i. Extended Kalman Filter‑SLAM (EKF‑SLAM) Algorithm: The EKF‑SLAM 
algorithm is an extension of the standard Kalman filter, which is enhanced 
for a definite purpose. It is designed to handle nonlinearity by linearizing 
the equations of the system around its estimated current state. Its need arises 
because the robotic motion is not always necessarily linear. The robot’s 
position, velocity, and acceleration are modeled as a nonlinear system.

 ii. Rao‑Blackwellized Particle Filter‑SLAM (FastSLAM) Algorithm: It pro‑
vides an improvement over the EKF‑SLAM algorithm. Here, particle filters 
are used for handling uncertainty and nonlinearity. Hence, mapping is effi‑
ciently done in complex environments

 iii. GraphSLAM Algorithm: The map and robot path in the environment are 
graphically represented. The nodes of the graph are the landmarks. Its 
edges denote the movement of the robot between the nodes. Therefore, 
map updating, its optimization, and loop closure detection can be effi‑
ciently done. Particle filters are recursive Bayesian filters. They constitute a 
sequential Monte Carlo method for estimating the state of a dynamic system 
when confronted with nonlinearities and non‑Gaussian noise. Here, a set of 
weighted samples or particles is used for approximating the posterior prob‑
ability distribution.

11.3.5 appLicatioNs of the sLam aLgorithm

The SLAM algorithm is the foundation of robot navigation. It allows computers to 
perform computationally intensive tasks much faster than humans. A few examples 
of situations of its utilization are:

 i. Navigation of Autonomous Robots: SLAM is used to plot the robot’s tra‑
jectory and steer its mobility along the plotted course. It can be applied to 
unknown indoor or outdoor environments.
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 ii. Navigation of Self‑Driving Cars and Other Autonomous Vehicles: Maps of 
the road and surroundings are sketched using SLAM. These maps aid in 
planning routes for vehicle transportation.

 iii. Navigation of Drones: Maps of difficult terrains are built with SLAM with 
regard to their physical features. Aerial exploration of the mapped region is 
conducted using drones, which seek guidance from these maps.

 iv. Augmented Reality: Virtual objects are computer‑generated digital images. 
These are accurately positioned in the real world with the help of SLAM by 
allowing a device to build a map of the surroundings and at the same time 
understand its location. Precise appearance of virtual overlays on real‑world 
surfaces is thereby ensured with the user’s movement.

11.3.6 adVaNtages of the sLam aLgorithm

The advantages of an algorithm refer to the situations, qualities, or opportunities 
that result in a positive outcome. Let us see the ways in which the SLAM algorithm 
proves beneficial in robotics.

 i. Provision of Self‑Governing Navigation to Robots: Robots can navi‑
gate without pre‑existing maps, permitting robot activity for exploration 
of dynamic environments. Non‑requirement of a map is a boon in many 
situations.

 ii. Offering Real‑time Mapping Facility: Maps of the environment are continu‑
ously generated as the robot moves around. The map generation enables the 
planning of a secure path for robot’s motion avoiding obstacles.

 iii. Affording Capability of Sensor Fusion: Data from multiple sensors such 
as cameras, LiDAR, and inertial measurement unit (IMU) are integrated 
for increasing accuracy and robustness of the algorithm. The IMU is a 
device that measures and reports the acceleration, angular rate of motion 
and acceleration of an object. It contains accelerometer, gyroscopes and 
magnetometers.

 iv. Furnishing Adaptability: Changes in environment of robot can be handled 
by SLAM. Their handling allows the robots to adapt to new situations.

11.3.7 LimitatioNs of the sLam aLgorithm

Reliance on an algorithm without understanding its limitations leads to unforeseen 
and potentially negative outcomes. We would like to mention the following draw‑
backs of the SLAM algorithm.

 i. High Computational Cost Demands: Real‑time data processing using 
SLAM algorithm needs significant power consumption. The power require‑
ment increases especially when dealing with large spaces and complicated 
lighting conditions.

 ii. Loop Closure‑Related Issues: Identification of errors and making the neces‑
sary corrections is difficult when revisiting previously mapped areas. As 
a consequence, drifts are noticed in the map. The issue is intensified with 
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increasing complication of environment because cumulative errors creep in. 
They accumulate over time leading to significant deviation from true value, 
which is observed as an underestimation or overestimation of the value.

 iii. Environmental Dependences and Effects of Circumstantial Variability on 
SLAM: Poor lighting, textureless monotonous surfaces, or cluttered envi‑
ronments are detrimental to SLAM performance impacting its utilization 
adversely.

 iv. Sensor Noise‑Induced Errors: SLAM is extremely sensitive to noise from 
sensors, e.g., undesired fluctuations or variations in the output that do not 
reflect the true state of the measurand. The noise introduces inaccuracies in 
the map and robot localization.

 v. Maintenance of Correct Calibration of Sensors: A precise calibration of 
sensors is warranted to guarantee accuracy in SLAM. As the sensors are 
prone to drift with time, maintenance of correct calibration is a painstaking 
necessity that cannot be oversighted. Corrections for temporal drifts in sen‑
sor characteristics must be invariably applied.

11.4 APF ALGORITHM

The APF algorithm is a robot path planning algorithm. The APF algorithm can be 
used in conjunction with SLAM to provide local path planning capabilities for robots 
that already utilize SLAM for localization and mapping. APF focuses on the specific 
task of path planning and obstacle avoidance, whereas SLAM concentrates on the 
overall problem of mapping and localization.

In the APF algorithm, the location of the robot’s goal is represented by an attrac‑
tive potential and the obstacles in its path are represented by repulsive potentials. The 
attractive and repulsive forces are used to create a virtual potential field. The motion 
of the robot is controlled within this virtual potential field. The algorithm guides the 
robot toward a goal location while simultaneously avoiding obstacles (Rimon and 
Koditschek 1992; Tao 2024; Bharali et al. 2025).

11.4.1 apf aLgorithm terms

The algorithm primarily involves creating a potential field around a robot. It works 
by impersonating a magnetic field concept through simulation of the attractive and 
repulsive forces. As already indicated, the attractive forces pull the robot toward 
the goal whereas the repulsive forces push it away from obstacles. Before going into 
details of the algorithm, the main terms of the algorithm are defined in the context of 
robotics and navigation. Figure 11.3a shows a robot and a target on the opposite sides 
of an obstacle which is located in the middle. The directions of the attractive and 
repulsive forces between the robot and the target are shown by arrows. With refer‑
ence to the diagram, we introduce the algorithm terms and then explain its working.

APF: This field is a mathematical representation of the attractive and repulsive 
forces acting at each point in the environment surrounding the robot.

Attractive force: This force is a representation of pull exerted from the robot toward 
the goal. It pulls the objects together. It is generated by the distance and direction 
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FIGURE 11.3 The artificial potential field algorithm: (a) key terms and (b) execution steps.
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to a designated goal point. Its direction points directly toward the goal. Therefore, 
the closer the robot is to the goal and the more directly it is aligned with the goal, 
the stronger is the attractive force. The goal acts as a source of attraction (positive 
potential).

Repulsive force: This force is a representation of the push of the robot away from 
obstacles. It pushes the objects away. It is generated by the distance and direction to 
obstacles. Hence, the closer the robot is to an obstacle and the more directly the robot 
is aligned with the obstacle, the stronger is the repulsive force pushing it away from 
the obstacle. The obstacle is a source of repulsion (negative potential).

Working of the Algorithm: An environment is modeled as a landscape in which 
obstacles are represented as high‑potential areas represented as hills, and the goal is 
a low‑potential area at the bottom of a valley. The robot is guided toward the goal by 
following the gradient of the potential field.

The algorithm proceeds as the robot navigates by following the gradient of 
this potential field. Effectively, the robot moves toward the goal while avoiding 
any impediments on the way. The gradient attracts the robot toward the target 
but repels it away from obstacles. During the course of its motion, the velocity 
of the robot is determined by summing up all the forces acting on it (Rostami 
et al. 2019).

11.4.2 maiN steps of the apf aLgorithm

The algorithm formulation consists in formalizing the status of the various terms 
mentioned in the preceding subsection for the robot whose motion is being studied 
(Xia et al. 2023). Figure 11.3b illustrates the steps in the algorithm. It starts by defin‑
ing the robot’s environment and the potential field. Then the field functions are cre‑
ated. Setting t = 1, the resultant force vector acting on the robot is calculated and the 
robot movement takes place. It is checked whether the robot has reached the goal. If 
NO, iteration t = t + 1 is set and the algorithm returns to the force vector calculation 
stage. If YES, the algorithm stops. The steps of the algorithm are elucidated below to 
dispel any doubts (Figure 11.3b).

 i. Definition of the Environment: The definition involves formal identification 
of the important positions regarding the robot’s movement and in reference 
to the robot. These are the starting and goal positions of the robot as well as 
locations of all obstacles in the workspace.

 ii. Definition of the Potential Field: The definition entails the creation of a 
mathematical function that generates an attractive potential around the goal 
and a repulsive potential around obstacles.

 iii. Creation of Potential Field Functions: These are the two parts comprising 
the potential field.

 a. Attractive Potential Field: This field is created by introducing a func‑
tion that generates an attractive force toward the goal. It decreases with 
distance to the goal, and is designed to have a minimum at the goal.

 b. Repulsive Potential Field: This field is created with a function that gen‑
erates a repulsive force away from obstacles. It increases as the robot 
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gets closer to an obstacle, and is designed to be inversely proportional 
to the distance from an obstacle.

 c. Calculation of the Potential at Each Point: The calculation is performed 
to determine the combined potential by summation of the attractive 
potential from the goal and the repulsive potential from all obstacles. 
Regarding the calculation points, the calculation is done for each point 
in the environment or workspace of the robot.

 iv. Computation of the Resultant Force Vector Acting on the Robot: Computation 
is performed to find the gradient of the potential field at the current position 
of the robot. The gradient of the potential represents the resultant force act‑
ing on the robot. This computation is done at each iteration.

 v. Movement of the Robot: For motion of the robot, the position of the robot is 
updated based on the calculated resultant force vector. It is always ensured 
that the robot moves toward the goal while sidestepping any obstacles stop‑
ping it from moving.

 vi. Repetition: Iteration is continued through the previous steps until the robot 
reaches the goal location or encounters a situation where it cannot move fur‑
ther. Such a situation arises when the robot is trapped in local minima where 
the gradient is zero. The trapping of robot causes it to oscillate around that 
point.

11.4.3 importaNt coNsideratioNs aBout the apf aLgorithm

Correctness, clarity, and efficiency of the algorithm and the optimal use of resources 
are ensured by adopting various measures:

 i. Selection of Potential Function: For ensuring a smooth navigation of the 
robot, one must stay away from becoming cemented in local minima. 
Hence, the choice of appropriate functions for the attractive and repulsive 
potentials is an important consideration. They must be chosen after careful, 
appropriate judgments made by thoughtful evaluation and discernment.

 ii. Detection of Obstacle: Accurate detection of obstacle is necessary for cre‑
ation of a trustworthy repulsive potential field. This is made achievable by 
using a reliable sensor and associated unswerving instrumentation system. 
An ultrasonic sensor, a camera providing depth information, or a LiDAR are 
employed for this intent. The instrument is equipped with sophisticated data 
processing techniques. The instrument’s methods must be such that they 
provide precise data about the distance and location of obstacles through 
accurate identification and modeling of the boundaries of the obstacle. The 
data processing techniques of interest must include:

 a. Segmentation of Obstacle: The pixels or points in sensor data attributed 
to obstacles must be correctly identified. They must be unmistakably 
disassociated from background noise.

 b. Filtration of Obstacle: False positives that are likely to interfere with the 
potential field calculation must be eliminated. So must be the noisy data 
points.
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 c. Modeling of the Obstacle Shape: The shapes of obstacles should be 
approximated with geometric primitives. Circles, rectangles, or more 
complex mathematical models are used depending on the situation at 
hand.

 iii. Issues about Local Minima: APF algorithm sometimes gets fastened to local 
minima. In these situations, the resultant force becomes zero. Zeroing of the 
force happens even when the goal is not reached. Techniques are available to 
alleviate this issue. Addition of random noise or modification of the potential 
field are beneficial. The current position of the robot and the robot’s envi‑
ronment must be taken into account. Then the parameters of the potential 
field must be dynamically adjusted. Espousing this procedure helps in avoid‑
ing the robot’s getting trapped in local minima. Application of a smoothing 
algorithm to the calculated potential field further blunts or softens the abrupt 
and sharp gradients. Consequent to this rounding and evening out, the path 
becomes smoother, making it easier for the robot to follow.

11.4.4 appLicatioNs of the apf aLgorithm

The APF algorithm helps to automate several operations in robotics, such as:

 i. Navigation of Mobile Robots: It is used for guiding robots through cluttered 
or disorganized and congested or jammed areas while avoiding hindrances. 
This is done by identifying suitable pathways and adjusting movements of 
the robot based on real‑time obstacle detection, and adapting to dynamic 
environmental changes.

 ii. Planning of Autonomous Vehicle Path: It is used for creating collision‑free 
trajectories for self‑driving cars. On these trajectories, cars can navigate 
from place to place without bumping into each other and dashing into the 
pedestrian crowd.

 iii. Navigation of Unmanned Aerial Vehicle (UAV): The flying of drones in gorged 
environments bursting at the seams is successfully regulated with APF.

11.4.5 adVaNtages of the apf aLgorithm

The APF algorithm offers the advantages of efficiency and clarity in robotic prob‑
lem‑solving. Among its potential benefits, we would like to give prominence to the 
following:

 i. Intuitive and Easy Implementation of the Algorithm: The concept of attrac‑
tive and repulsive forces is relatively simple to understand in principle. It is 
also easy to implement in coding.

 ii. Real‑Time Capability: The calculation of force is computationally efficient 
with minimal computational overhead requirement. The computational 
efficiency allows for near‑instantaneous decision‑making and adaptation 
to changing conditions. Therefore, its recommendation for real‑time path 
planning is obvious and incontrovertible.
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11.4.6 disadVaNtages of the apf aLgorithm

Among the main downsides of the APF algorithm, the following stand out clearly:

 i. Problem of Local Minima: In complex environments, the robot might get 
jammed in local minima (Zhu et al. 2006). Here, the forces from obstacles 
annul each other, thus preventing the robot from reaching the goal. As the 
robotic vehicle does not reach the destination, there is no assurance of suc‑
cess of the algorithm in such configurations. A hang‑up ensues.

 ii. Oscillation of Robot Path: The robot might oscillate around obstacles due to 
rapidly changing forces. It appears to be locked in a repetitive back‑and‑forth 
bouncing in the form of an oscillatory or vibratory motion. The design 
efforts made for potential field play a vital role in producing such oscilla‑
tions. An ill‑chosen potential function leads to sharp gradients. The sharp 
gradients coerce the robot to make overreactions to small changes in dis‑
tance to obstacles or the goal. Non‑balancing of the attractive and repulsive 
forces is another cause of occurrence of oscillations. Then one force domi‑
nates over the other, and oscillations are instigated. Local minima too are 
the likely responsible factors for swaying and swinging behavior.

11.5 PID ALGORITHM

While the APF algorithm is devoted to robot path planning, the PID algorithm is a 
feedback control system that adjusts the state of a system to match a desired setpoint 
or target value (Figure 11.4). It is used to control the movement of a robot precisely 

FIGURE 11.4 The proportional‑integral‑derivative controller.



210 AI Robotics

through the regulatory action. The regulatory action is calculated by combining three 
parameters, namely, the current error, the accumulated error over a duration of time, 
and the rate of change of the error. In this manner, the algorithm allows the robot to 
maintain a desired position or trajectory. The algorithm is frequently used for robotic 
tasks such as tracking a defined path by adjusting the speeds of robot’s motors based 
on the feedback signals received from on‑board sensors (Carmona et al. 2018; Minh 
Nguyet and Ba 2023).

11.5.1 compoNeNts of the pid aLgorithm

As its name suggests, the PID algorithm has three principal components (Waseem 
2023; Smith 2024):

 i. Proportional (P) Component: This component reacts and responds directly 
to the current error. It provides an immediate correction proportional to the 
magnitude of error.

 ii. Integral (I) Component: This component accumulates the error over time. 
Building up the mistake with time helps in elimination of steady‑state 
errors. A gradual adjustment of the control signal based on the past errors is 
utilized.

 iii. Derivative (D) Component: This component measures the rate of change of 
the error to make a prediction of the future behavior of error. The pace at 
which the error changes with time helps in reducing oscillations. It improves 
the response time by allowing to counterpoise any sudden changes rapidly 
and damping overshoots.

11.5.2 steps of the pid aLgorithm

The PID algorithm works with the help of sensors, calculations, and adjustments. 
The sensors used by the robot include ultrasonic/infrared proximity sensors, 
encoders, GPS, and line sensors. The line sensor detects the presence of a contrast‑
ing black line on a white surface by emitting infrared radiation and measuring the 
reflected radiation intensity. A phototransistor indicates whether the line is present 
or absent, thus ensuring that the robot follows its designated path.

The sensors measure the current state of the robot and compare it to the desired 
state. This comparison allows calculation of the error to be applied. The PID algo‑
rithm then calculates a control output. This calculation is based on the proportional, 
integral, and derivative components of the error. The control output is used to 
adjust the speed of the robot’s motor, its steering, and other actuators. These adjust‑
ments help the robot to correct the error and enable it to reach the desired position 
satisfyingly.

Figure 11.4 shows the PID controller containing blocks on proportional, integral 
and derivative terms and the summation block. The setpoint is defined. The control 
signal is fed to the robot’s actuators. The feedback signal is compared with the set‑
point to calculate the error. The steps of the algorithm are detailed below:
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 i. Definition of the Robot Setpoint: This is done by specification of the desired 
position, velocity, or other parameters of the robot that are to be maintained 
by the algorithm.

 ii. Measurement of the Feedback Signal: Sensors acquire information about 
the current state of the robot, e.g., its actual position and velocity.

 iii. Calculation of Error Signal: This signal is found by computing the differ‑
ence between the setpoint and the measured feedback value.

 iv. Proportional Term (Kp) Computation: A control output signal is calculated. 
It is directly proportional to the current error.

 v. Integral Term (Ki) Computation: The error signal is accumulated over time. 
It provides a correction for persistent errors.

 vi. Derivative Term (Kd) Computation: The rate of change of the error is cal‑
culated. It helps to anticipate future locomotion behavior of the robot. It 
intends to avert potential overrun. So, the robot is prevented from any likely 
overshoot.

 vii. Combination of Three Terms: The proportional, integral, and derivative 
terms are added together to determine the final control output.

 viii. Application of Control Output Signal: The calculated control signal is trans‑
mitted to the actuators, usually motors of the robot to adjust its movement.

11.5.3 importaNt aspects of pid coNtroL iN roBotics

To make the PID algorithm more accessible and useful, it is necessary to lay empha‑
sis on the aspects that cannot be ignored. Some of these are:

 i. Tuning of PID Controller Gains (Kp, Ki, Kd): Choosing suitable values for 
the proportional, integral, and derivative gains is an essential prerequisite 
for attaining responsive and steady robot control serving as a necessary 
precondition for robot’s stability.

 ii. Selection of Suitable Sensors Fulfilling Specifications: The performance of 
the PID controller is greatly impacted by the accuracy and precision of the 
sensors used to measure the error. Therefore, they should be selected after 
careful thought.

 iii. Comprehension of Dynamics of Robot Motion: Effectively designing and 
tuning of a PID controller is highly reliant on understanding the mechanical 
characteristics of the robot with which the designer must be fully conversant.

11.5.4 appLicatioNs of the pid aLgorithm

The PID algorithm finds widespread usage in robotics. The following applications 
merit special attention:

 i. Tracking of Robot’s Path and Accurate Adherence to its Moving Line: It 
is used for following and maintaining a predefined path for the robot. The 
direction and speed of the robot are continuously adjusted to force it to stay 
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exactly on the intended trajectory line by varying motor speeds based on the 
sensor readings from a line‑following sensor. It makes the robot capable of 
detecting lines by measuring reflected light emitted by its own infrared LED.

 ii. Avoidance of Obstacles: The movement of the robot is controlled on the 
basis of proximity sensor data for maintaining a safe distance of the robot 
from obstacles. Maintaining safe distances from nearby objects is a reliable 
collision avoidance precaution.

11.5.5 adVaNtages of the pid aLgorithm

The PID algorithm offers several advantages for autonomous robots, including its 
implementation simplicity and ability to provide precise control in various situations. 
It is reiterated that the algorithm is often a favorite choice in robotics in view of the 
following plus points and privileges (Yuldashev and Solovev 2024):

 i. Simple and Easy Implementation: From the software viewpoint, PID con‑
trollers are relatively straightforward to understand and implement. They 
allow rapid prototyping and deployment on robots.

 ii. Broad Range of Applicability: PID controllers are effectively used for a 
wide range of robotic motion control tasks. The variety of tasks include the 
controlling of position, velocity, and acceleration of robots.

 iii. Precision of Control: PID algorithms achieve accurate and stable robotic 
control by combining proportional, integral, and derivative actions. 
Steady‑state errors are minimized in this multipart process.

 iv. Tunability of Gains: Based on the particular robot system, the gains of the 
P, I, and D components are altered to fine‑tune and tailor the response of the 
controller to achieve desired performance characteristics of the robot.

 v. Robustness to Environmental Disturbances: PID controllers are able to han‑
dle external disturbances to the system. They can maintain control even in 
dynamic environments.

11.5.6 LimitatioNs of the pid aLgorithm

The limitations of this algorithm include the possibility of instability in case of 
improper tuning of gains, trouble in managing highly nonlinear systems, and sensi‑
tivity to noise, particularly in the derivative component. These restrictions degrade 
its utility for monitoring discombobulated, dynamic environments. Exact robotic 
modeling is difficult in these cases.

 i. Complexity of Tuning: Although appearing to be conceptually simple at 
the first sight, determination of optimal PID gains is often perplexing. 
This is done by trial and error manifestly for complicated robotic systems. 
Sometimes advanced tuning techniques are resorted to.
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 ii. Sensitivity to Noise: The derivative component of PID amplifies noise in 
the system. Instability ensues if noise is not properly filtered to improve the 
quality of the signal.

 iii. Limitations Concerning Nonlinear Systems: PID controllers are designed 
for linear systems. Naturally, these controllers do not perform optimally in 
scenarios with highly nonlinear dynamics. Additional control strategies are 
necessary for tackling these situations.

 iv. Possibility of Overshooting Response: Improper tuning causes significant 
overshooting of the response of a robotic system. Consequently, the accu‑
racy and stability of the system are negatively affected.

 v. Limited Adaptability to Changing Environments: In general, the PID con‑
trollers are not designed to automatically adapt to significant changes in the 
environment or robot dynamics. Re‑tuning of the controller is required to 
cater to such variations.

Overall, PID algorithms serve as invaluable tools for controlling autonomous robots. 
Their simplicity and effectiveness make them favorites of design engineers in many 
scenarios. Notwithstanding these benefits, careful consideration of their drawbacks 
and making appropriate tuning are crucial for optimal performance. Expressly, 
dynamic environments must be handled with caution.

11.6 DISCUSSION AND CONCLUSIONS

Autonomous robots can work in hazardous conditions inside nuclear reactors 
or aero‑engines where humans obviously will not even dare to imagine getting 
entry. They can improve efficiency, safety, and productivity in many industries 
by consistently handling repetitive tasks with precision avoiding errors associ‑
ated with manual operations and reducing production downtime. Humans can 
focus on more complex work. Autonomous robots can assemble parts. They can 
weld parts and paint finished products. They can help with inspection, moni‑
toring, and quality assurance in manufacturing. They can be engaged in logis‑
tics and warehousing to optimize picking, sorting, and storing items. They can 
prepare orders and transport heavy payloads in the supply chain. They can be 
employed in healthcare to work for disinfection, and delivering medical supplies. 
They can assist in agriculture with harvesting, weeding, crop monitoring, and 
optimizing irrigation systems. They can reduce labor costs wherever applicable. 
Owing to their adaptability to changes in their environments, they can perform 
myriad other operations in dynamic and unpredictable environments of several 
sectors to usher in a new revolution in robotized, computerized, and mechanized 
manufacturing.

In this chapter, the SLAM, APF, and PID algorithms in autonomous robotics were 
reviewed (Table 11.1). This discussion of autonomous robotic algorithms will be con‑
tinued in the next chapter to unearth some of its boundless potentialities.
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12 Autonomous Robots
Broadening the Perspective

12.1  INTRODUCTION

As technologically advanced robots, including ground robots, underwater robots, 
and unmanned aerial vehicles, are being increasingly utilized in industry, secu‑
rity, and military applications, a multitude of autonomous robot algorithms have 
been developed to achieve robots’ autonomy. The technical literature has a virtual 
deluge of research papers on this topic. Each algorithm demonstrates its problem‑ 
solving ability, mettle, and fortitude in a distinct area, and finds befitting applica‑
tions depending on the robot’s environment and the desired task. The autonomous 
robot algorithms primarily focus on the themes of path planning, obstacle avoid‑
ance, and decision‑making for a robot within a dynamic environment. Some algo‑
rithms rely heavily on accurate sensor data for decision‑making. Others are based on 
pre‑programmed paths and behaviors, and therefore, can operate independently of 
sensors. Plain and modest environments benefit from easier algorithms, while intri‑
cate and dynamic settings require advanced methods. Algorithms with faster com‑
putation times are essential for applications that require quick, reactionary responses 
to changing conditions. Therefore, it will be expedient to expand our coverage of 
autonomous robot algorithms in Chapter 11. Building on this, we present numerous 
ingenious algorithms in this chapter to enable the reader to gain a holistic under‑
standing of the status quo in autonomous robotics.

12.2 � GENERAL ASPECTS OF THE DECISION 
MATRIX ALGORITHM FOR ROBOTS

Effective decision‑making underpins all management processes. In fact, it is the 
cornerstone of successful management, leading to the sustainability of individuals 
and organizations. A decision matrix within the framework of autonomous robotic 
algorithms refers to a structured approach for analyzing problems that a robot will 
encounter (Venkata Rao and Padmanabhan 2006; Ralfs et al. 2022). In this approach, 
a robot analyzes various germane factors related to it. These factors include the data 
recorded by its sensors, conditions of the environment, and potential actions taken by 
the robot. The prime aspect of this analysis is the use of a matrix format as a rectan‑
gular arrangement of numbers or symbols laid out in rows and columns to systemati‑
cally evaluate and choose the best course of action based on predefined criteria. In 
essence, it facilitates the process of making well‑informed decisions by a robot in 
intricate circumstances. A well‑informed decision‑making involves arriving at deci‑
sions after gathering all the relevant circumstantial information about a problem and 
considering numerous possibilities and options for redressal.
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12.2.1 purpose of a decisioN matrix

A weighted decision matrix is polyonymous, being known by various names. Some 
of these names are grid analysis, Pugh matrix, decision grid, or problem selection 
matrix. The decision matrix is a powerful method for assessing and selecting the 
optimal choice from a range of opportunities. It is particularly useful if one has to 
hand‑pick many options with several different factors involved in influencing the 
outcome. It is relatively easy to use and is most effective when deciding between a 
few comparable choices. Using a decision matrix is strongly endorsed when one is 
presented with several comparable options. It is also recommended when an indi‑
vidual must select only one choice from many given alternatives. It is persuasively 
suggested in cases where a rational decision should be made rather than one based on 
an emotional standpoint. It is instrumental for decision‑making in robotics.

12.2.2 creatioN of a decisioN matrix

For generating a decision matrix, one must thoroughly comprehend the issues that 
arise when handling a given situation, as well as their ramifications and relative sig‑
nificance in determining the solution to address the situation. After all these issues 
are properly understood, one can frame an analytical table or matrix containing rows 
and columns. In this table, decision alternatives are listed as rows of the matrix. The 
columns of the table list the relevant factors such as effectiveness, ease, and costs 
related to these alternatives. An evaluation scale is set up. This scale assesses the 
value of individual alternatives and combinations. Normally, the scale has the follow‑
ing form: the highest importance is assigned a value of 10, and the lowest importance 
is equated to 0. This scale must be consistent and unwavering throughout the matrix. 
To appraise the score of an entry in the matrix, the original ranking of that entry is 
multiplied by the corresponding weight, which is a numerical value expressing its 
importance in relation to other entries in determining the consequence. Then all the 
factors under each option are added together to get a weighted sum for that option.

12.2.3 steps iN makiNg a decisioN matrix

Creating a decision matrix algorithm is a multi‑phase process comprising seven pri‑
mary steps (Figure 12.1): conceptualization, parameterization, organizing the deci‑
sion matrix, filling in the entries, assigning weights, calculating weighted scores, 
and aggregating them to obtain the total score. If the desired criteria are satisfied, 
the algorithm is stopped. Otherwise, we return to the step of constructing the deci‑
sion matrix, unless we arrive at the best concept. These steps are elaborated below 
(UMass 2025):

 i. Identification of Alternatives from Which a Selection Is to Be Made: The 
available options catering to the problem in hand are found and listed in 
order to choose between similar choices.

 ii. Formulation of Criteria for Making Decisions: The vital factors that influ‑
ence decisions are clearly defined and laid down. Outlining the crucial 
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FIGURE 12.1 Flowchart of the decision matrix algorithm.
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factors aids in focusing on the best decision while steering clear of subjec‑
tivity. Subjectivity refers to the unique and personal perspective, feelings, 
opinions, and experiences of an individual. These qualities shape the indi‑
vidual’s understanding and interpretation of the world. They contrast with 
objective facts or universally agreed‑upon truths.

 iii. Creation of a Decision Matrix in a Grid Format: A grid is constructed 
to evaluate and compare the multiple considerations and options that are 
visible.

 iv. Filling the Entries in the Decision Matrix. A predetermined scale is agreed 
upon for rating the considerations on a single benchmark. A 1–3 scale suf‑
fices if variations between options are limited. But a 1–5 or, 1–10 scale 
becomes necessary if there are several options.

 v. Assignment of Weights to the Criteria: There is a hierarchy of importance of 
the criteria in the decision‑making process. Some criteria or variables need 
to be prioritized over others. Therefore, numerical weights are assigned to 
each criterion. The allotted weights reflect their relative impacts on the deci‑
sion in order to indicate the best option.

 vi. Generation of the Weighted Scores of the Options: The more significant 
an option is, the higher its weight. As more important criteria are assigned 
higher values of weights, the weighted score assists in ranking the options 
for selecting the optimal choice.

 vii. Calculation of the Total Score for Each Option: As a last action in the deci‑
sion matrix, the total score is calculated. The total score provides a clear 
picture of the problem, allowing for the best decision to be made. It is easy 
to select the choice that best fits the desired criteria by merely looking at this 
picture.

12.2.4 adVaNtages of decisioN matrix

As already mentioned in the beginning of Section 12.2, perhaps the most formidable 
task in everyday life is making correct decisions, especially those that affect an 
entire team and their performance. Various aspects must be observed. The tech‑
nique aids in making difficult and complex decisions, particularly in cases of a team 
of people working together to achieve a target. When stakeholders participate in this 
process, several skewed viewpoints are involved. So, one cannot rely on everybody. 
The decision matrix promotes introspection among team members. It makes them 
analyze their decisions impartially. In such cases, the decision matrix technique 
is regarded as the most effective tool for making decisions for intricate situations 
plagued by perplexities.

Following a decision matrix approach, one is able to give precedence to tasks 
in order of their significance, one can construct arguments, and solve problems. 
Therefore, a decision matrix is a perfect instrument when one encounters several 
quantitative criteria. It helps in selecting among seemingly comparable solutions 
to dispel the confusion and bewilderment originating from the blurred similarities 
between them.
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12.2.5 disadVaNtages of decisioN matrix

The disadvantages arise from the likely errors introduced during the evolution of a 
decision matrix. The criteria alternatives for framing the decision matrix are cho‑
sen randomly. This arbitrariness means that there is no way to know whether the 
list is complete. It is likely that some important criteria have been overlooked. It is 
equally probable that some less important criteria are included or given more weight. 
The less important ones distract the decision‑maker from making the right choice. 
Ultimately, the values that are attributed to guesses are derived from quantitative 
measurements. So, the decision matrix sometimes gives a deceptive and incredibly 
illusory appearance of being scientific without providing any quantitative measures.

12.2.6  speciaLized aspects of a decisioN matrix iN 
autoNomous roBot artificiaL iNteLLigeNce (ai)

The main aspects of a decision matrix for an autonomous robot are (Medrano‑Berumen 
and İlhan Akbaş 2020):

 i. Collection of Data: The robot collects data from the sensors installed on it, 
e.g., the cameras, LiDAR, and ultrasonic sensors. Raw data is not fed into 
the decision matrix. Translation of the gathered data into relevant param‑
eters contributing to decision‑making for the problem is done for the prepa‑
ration of decision matrix.

 ii. Matrix Structuring and Organization: The matrix is organized into a 
row‑and‑column format. As already mentioned, the rows of the matrix rep‑
resent potential actions. The columns in the matrix signify different factors 
or criteria, e.g., the distance of the obstacle, the type of terrain, and the level 
of safety.

 iii. Assignment of Weighting Factors for Criteria in the Matrix: Each criterion 
in the matrix is assigned a weight. The weight assignment is based on the 
importance of the criterion for the decision in order that the considerations 
are correctly prioritized. After weights have been allocated, the vital con‑
siderations stand out clearly among the less influential ones.

 iv. Evaluation Process of Input Data for Decision‑Making: The robot compares 
the sensor data to the matrix. It calculates a score for each possible action. 
The assistance of weighted criteria is sought for this calculation. Ultimately, 
the robot chooses the action with the highest score and implements the 
same.

12.2.7  commoN ai aLgorithms used with decisioN 
matrices iN autoNomous roBots

An instance of the use of a decision matrix is understood from the example of robot 
navigation in a chaotic setting, where a robot uses a decision matrix to choose the 
best path. Factors like distance to obstacles, type of terrain, and potential risks are 
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preconceived and premeditated by the robot. The robot assigns higher weights to fac‑
tors that significantly contribute to safe navigation. It utilizes several AI algorithms 
for acting independently, notably (IIoT World 2018):

 i. Bayesian Inference Algorithm: This algorithm enables the robot to incor‑
porate uncertainty into its analysis. The robot updates its beliefs about the 
environment based on new sensor data. This makes it possible for the robot 
to judge the situations more deeply. Hence, it can decide correctly and con‑
gruously, rendering the right verdicts.

 ii. Reinforcement Learning (RL) Algorithms: These algorithms allow the 
robot to learn through a trial‑and‑error approach. In these algorithms, the 
robot is rewarded for its positive actions and penalized for any negative 
actions performed by it. Through this reward‑and‑penalty procedure, the 
robot’s decision‑making process undergoes continuous refinement over 
time.

 iii. Deep Learning (DL) Algorithms: Decision trees and neural networks are 
used to train the robot in two different ways. First, the robot is trained on 
the critical factors that are most important for decision‑making. Second, it 
is trained to assign weights to these factors, keeping their criticality levels 
in mind.

12.2.8 chief coNsideratioNs wheN usiNg decisioN matrices

The following considerations ought to be given careful thought:

 i. Management of Complexity of Decision Matrix: The larger the number of 
factors involved in making decisions, the higher is the complexity of the 
decision matrix. The more complications introduced, the greater is the need 
for careful design and optimization of the decision matrix.

 ii. Examination of Unforeseen Cases: Unexpected events and potential set‑
backs are likely to be encountered during the use of a decision matrix. The 
matrix must, therefore, be designed to manage such issues by furnishing 
clear‑cut answers.

 iii. Explainability of the Decision‑Making Process: The decision matrix should 
provide a perspicuous exposition of the process by which the robot reached 
a particular decision. The decision‑making process must be crystal clear 
from the structure of the decision matrix and weight assignment consider‑
ations. It must be understandable with as little effort as feasible.

12.2.9 decisioN matrix for a seLf‑driViNg roBotic VehicLe

A decision matrix for a self‑driving vehicle is structured in a row‑and‑column for‑
mat, similar to a normal matrix, with horizontal and vertical lines (Umbrello and 
Yampolskiy 2022). This structure presents an assessment of several possible courses 
of action in light of the environmental characteristics detected by the sensors of the 
vehicle. On the basis of this assessment, the vehicle can determine the safest and 
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best‑suited line of action in real time. Factors such as road conditions, status of traf‑
fic congestion, presence of pedestrians and potential roadblocks are envisaged and 
properly accommodated in the computation. Each cell in the matrix represents a pos‑
sible decision. This decision is worked out from the combination of input parameters.

12.2.9.1 Key Elements of a Self‑Driving Vehicle Decision Matrix
The main elements of a matrix are its constituent rows and columns. These are 
ascribed separate roles in the following ways:

 i. Rows of the Matrix: The entries in the rows of the matrix illustrate many 
possible environmental conditions that the vehicle will face during travel‑
ing, e.g.,

 a. The road is clear or jammed,
 b. The vehicle is getting closer to an intersection,
 c. The vehicle is approaching a pedestrian crossing,
 d. The vehicle is nearing a spot where lane changing is needed, or
 e. There is a sharp turn ahead.
 ii. Columns of the Matrix: The entries in the columns of the matrix show the 

possible courses of action that the vehicle will take, e.g., whether it will 
maintain its speed, apply acceleration, or press its brakes to slow down; 
other possibilities are that the vehicle will change lanes, turn left/right, or 
go straight.

Vital factors included in the decision matrix are as follows:

 i. Real‑time sensor information on a range of topics:
 a. Object Detection: Type of object, whether pedestrian, vehicle, or bicy‑

cle; distance of the object from the vehicle; speed of the object if it is 
moving,

 b. Lane Markings: Transverse/longitudinal, lane width, text/symbols, 
present/absent, clear/vague,

 c. Traffic Signals: Red (stop), yellow (caution), green (go), whether present/
absent,

 d. Weather conditions, including whether it is sunny, cloudy, raining, 
foggy, windy, or snowing, along with temperature and humidity levels.

 e. Visibility or other atmospheric conditions limiting the sightline, whether 
clear or poor,

 f. Road Geometry: These could be specified in different forms, e.g., a 
bend or curve in the road or a sharp turn where one cannot see around 
the corner; a sloppy/bumpy road or a smooth, flat road with no incline.

 ii. Vehicle State: Current speed of the vehicle, its acceleration and the angular 
direction of its steering determine the state of the vehicle

 iii. Ethical Considerations: They must be categorically complied with. Notable 
among them are:

 a. Reduction of the chances of injury to the passengers and driver of the 
vehicle, as well as other road users, must be rigorously followed.
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 b. Road users vulnerable to unintentional injuries by accidents, e.g., chil‑
dren, pedestrians, cyclists, etc., must be prioritized.

12.2.9.2 Decision‑Making Process
The process from sensory input to actuation of the vehicle mechanism consists of:

 i. Sensor Inputs: The self‑driving vehicle uninterruptedly seeks data from its 
sensors about the present status of the surrounding environment.

 ii. Analysis of Sensor Data: The system processes the sensor data. Relevant 
information for driving a vehicle is extracted. This includes the location and 
movement of other vehicles, the presence of any pedestrians or perambula‑
tors on/near the road, and the indications of markings on the road.

 iii. Evaluation of Decision Matrix: The data is analyzed. Based on the analysis, 
the system looks up at the applicable cell in the decision matrix. From the 
cell, it determines the best action to be initiated.

 iv. Execution of Action by the Vehicle: The vehicle executes the selected action. 
The action could involve braking or accelerating the vehicle, or changing 
lanes, as required during the finalization of the decision.

12.2.9.3 Challenges in Vehicle Decision Matrix Design
Many difficult situations arise during the designing of a decision matrix, viz.

 i. Handling Complex Scenarios on Roads: There are occasions that require 
negotiating rare or unexpected situations regarding which no clear rules, 
transparent policies, and defined guidelines exist. What happens when a 
person talking on a mobile phone and carelessly crossing the road without 
looking at the traffic suddenly comes in front of the vehicle? Then emer‑
gency braking is the only solution.

 ii. Dealing with Borderline Cases: Suitable answers and responses to abstruse 
or edge situations are not described. These responses require detailed dis‑
cussion and clarification.

 iii. Getting Caught in Ethical Dilemmas: These quandaries arise when deci‑
sions are to be made in grave, life‑threatening situations where there is no 
definite outcome. A decision is to be made from multiple options. None of 
these options might be completely morally right, thus forcing the robot to 
choose between conflicting ethical principles. They might potentially cause 
harm to different parties. Negative consequences are likely to occur regard‑
less of the decision made. Careful attention and amendments are therefore 
necessary.

12.3 BUG ALGORITHM

While a decision matrix helps robots make choices based on various factors, the 
bug algorithm is a path‑planning strategy that enables them to reach their destina‑
tion. The bug algorithm is an effective and efficient method for autonomous robots 
to avoid obstacles on their paths (Yufka and Parlaktuna 2009; McGuire et al. 2019).  
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Its utility varies with context. It is mostly utilized by autonomous robots that have 
local sensor information to guide them toward a target goal. It is particularly useful 
when the robot does not have a complete map of its environment beforehand. It is 
highly useful in scenarios such as indoor robotics, where it controls robots for clean‑
ing jobs and those that move around in crowded areas. Therefore, circumstance‑based 
benefits for the algorithm can be availed by the user.

The bug algorithm is a path‑planning algorithm based on the principle of a robot 
following a wall. It enables a robot to navigate effectively around obstacles in an 
environment by essentially following the wall of an obstacle. The robot follows the 
wall until it reaches a point on the boundary of the obstacle that is closest to its goal 
(in the simplest Bug0 variant of the algorithm). Then it continues its motion toward 
the goal until it encounters another obstacle. The wall‑following robot repeats the 
process until it reaches its prescribed destination (Buniyamin et al. 2011; Liu 2024).

We shall look into further details about the departure point of the robot because 
it depends on the particular variant of the bug algorithm. So, we shall talk about this 
point further when we come to the discussion of variants.

12.3.1 maiN features of the Bug aLgorithm

What are the characteristics of the bug algorithm? Let us give a rejoinder to this 
query.

 i. Basic principle of the Algorithm: Suppose an obstacle is detected by a robot 
while it is moving toward the goal. Immediately upon detecting the obstacle, 
the robot begins to follow the edge of the obstacle. How long does the robot 
do so? The robot follows the edge of the obstacle until it reaches a point on 
the boundary that is closest to the goal (in the Bug0 variant). Thereafter, a 
resumption of the robot’s movement toward the goal takes place.

 ii. Local Sensing of Obstacle and Non‑requirement of Complete Environmental 
Map: A striking feature of the bug algorithm is that, unlike some other 
path‑planning algorithms, the bug algorithm does not require a pre‑existing 
map of the environment. What is the significant advantage of this feature? 
The feature makes it suitable for situations where a robot needs to navigate 
in unknown or dynamically changing environments. Then the robot relies 
solely on local sensor data, like proximity sensors, to detect obstacles. Such 
reliance on sensor readings makes it possible to dispense with the need for 
a pre‑drawn map of the environment. The sensor data is its sole guide.

 iii. Variants of the Algorithm: Several variations of the bug algorithm have 
been developed. Examples of variants are Bug0, Bug1 and Bug2. These 
variants have varying levels of elaborateness, involvement and memory 
requirements. They are designed to deal with specific challenges. They 
improve algorithm efficiency thereby allowing its adaptation to specialized 
needs.

Bug0 variant is the most basic type in the series of bug algorithm versions. In this 
variant, the robot simply follows the boundary of the obstacle in one direction. 
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It  moves in the clockwise direction until it reaches the closest point to the goal. 
In the Bug1 variant, the robot first completes a full circle around the obstacle. Then 
it exits from the location on the obstacle’s boundary that is closest to the goal. In the 
Bug2 variant, the robot follows the contour of the obstacle but says goodbye to it no 
sooner than it can move directly toward the goal along the line connecting the cur‑
rent position of the robot to the goal. The Bug0 algorithm does not guarantee that the 
robot will reach the goal in all scenarios, whereas the Bug1 algorithm does, albeit 
at the cost of inefficiency. Bug2 results in shorter distances of traveling than Bug1. 
However, it can be inefficient in some situations. Let us take up the Bug1 algorithm.

12.3.2 steps of the Bug1 aLgorithm

Taking the Bug1 version as a case study, let us survey its main steps. The steps of the 
Bug1 algorithm (Figure 12.2) are as follows (Kurtipek 2020): robot movement, obsta‑
cle detection, activation of obstacle avoidance, and following the boundary of the 
obstacle (Kurtipek 2020). If the robot does not reach the point on the obstacle bound‑
ary nearest to the goal, the obstacle avoidance behavior is repeated. If it reaches that 
point, it continues moving toward the goal. At this stage, it is examined whether the 
robot has reached the goal. If YES, the algorithm is stopped. If NO, the algorithm 
returns to the step from which the robot’s movement started.

 i. Movement of the Robot toward the Goal: The robot starts by moving in a 
straight line. This line points directly in the direction the intended goal position.

 ii. Detection of Obstacle by the Robot: As soon as the robot detects an obstacle 
on its path, it initiates the obstacle avoidance behavior built into its machinery.

 iii. Movement of the Robot while Following the Obstacle Boundary: The 
robot follows the edge of the obstacle in a chosen direction, which is usu‑
ally clockwise. The robot continues moving until it reaches the point on the 
boundary that is closest to the goal. This persistence of motion ensures that 
the robot can move directly toward the goal again.

 iv. Storage of the Closest Point to the Goal by the Robot: While following the 
obstacle, the robot stores in its memory the coordinates of the point on the 
boundary that is closest to the goal. It thus remembers the specific location 
on the edge of the obstacle that is located at the shortest distance away from 
the goal. The remembrance of this point is necessary for the robot, as it 
marks the correct position for the robot to later navigate around the obstacle. 
The robot will access it when deciding to leave the obstacle and resume its 
straight‑line path toward the goal. Hence, this point serves as the departure 
point or leave point for the robot.

 v. Return of the Robot to the Closest Point to the Goal: Once the robot has 
navigated around the obstacle, it recalls the leave point. Thus, it moves back 
to the previously stored closest point on the obstacle boundary.

 vi. Resumption of Robot Movement toward the Goal: From the closest point, 
the robot continues moving toward the goal. The motion persists, and the 
robot keeps moving until it encounters another obstacle on the way. Then 
the obstacle avoidance steps stated above are repeated.
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FIGURE 12.2 The bug algorithm.

12.3.3 appLicatioNs of the Bug aLgorithm

The bug algorithm streamlines the daily activities of many types of robots, a few of 
which captivate our attention:

 i. Robot Vacuum Cleaners: These robots navigate around furniture, other domes‑
tic items, or moving persons in a room to reach the desired area to be cleaned. 
The furniture, domestic items, and persons act as obstacles to robot movements.
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 ii. Warehouse Robots: These robots navigate a passageway in a warehouse 
while dodging obstructions like bundles, bags, baskets, containers, and 
other packages in the warehouse.

 iii. Service Robots: These robots circumnavigate a home environment with 
fixed furniture and people. They move around in the home providing the 
services to people, e.g., healthcare, hospitality, and logistics.

 iv. Autonomous Vehicles Negotiating Complex Environments: These robots 
are useful in situations where a full map of the robot’s surroundings is not 
available to seek guidance for its locomotion. An example is a robot navi‑
gating through a crowded outdoor space.

12.3.4 adVaNtages of the Bug aLgorithm

Recognizing and utilizing the advantages of the bug algorithm drive innovation 
and progress.

 i. Comfort of Comprehension and Application: It is an easy‑to‑understand 
and easy‑to‑implement algorithm on robots having limited computational 
power. Its straightforward nature makes it a good starting point for robot 
navigation.

 ii. Robustness in Dealing with Unforeseen Conditions: It is capable of han‑
dling unexpected obstacles in real time.

 iii. Low computational Cost: It does not require computationally intensive and 
expensive operations.

12.3.5 disadVaNtages of the Bug aLgorithm

Understanding potential disadvantages of the algorithm helps us anticipate problems 
well in advance and take proactive steps to avoid them.

 i. Non‑optimality of Robot Operation: The robot may wander about irregu‑
larly. During its dawdling and rambling, the robot may take longer paths 
than those obtained by optimal solutions.

 ii. Arrogance of Following Boundaries on Getting Stuck in Certain Situations: 
The robot gets stuck in some environments. Depending on the obstacle lay‑
out, the robot may end up traveling a considerable distance by following 
the boundaries of obstacles. Such insistence on adhering to the boundaries 
renders the exercise inefficient and futile, making it an unproductive and 
wasteful activity.

12.4 VECTOR FIELD HISTOGRAM ALGORITHM

Another algorithm used for path planning in autonomous robotics is the vector field 
histogram (VFH) algorithm, a real‑time obstacle avoidance algorithm in robotics 
(Borenstein and Koren 1991). It is used by autonomous robots predominantly for 
local path planning. It differs in approach from the bug algorithms, which follow 
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obstacle boundaries until reaching the goal or a point close to it. Unlike the bug 
algorithms, the VFH algorithm identifies obstacle‑free paths from a polar histogram 
of sensor data.

For robot path planning, the VFH algorithm calculates the steering directions 
based on sensor data supplied in the form of range readings to navigate around obsta‑
cles. The size of the robot and its turning radius are taken into account during navi‑
gation. In effect, the robot is securely guided toward a desired target direction while 
eschewing collisions with objects on the track.

12.4.1 chief poiNts aBout the Vfh aLgorithm

The main ideas of the VFH algorithm are (Chen et al. 2019):

 i. Sensor Input: The algorithm primarily relies on range sensors, such as ultra‑
sonic or LiDAR. Using these sensors, the obstacles around the robot are 
detected. From the information gathered by its sensors, a realistic represen‑
tation of the robot’s environment is evolved.

 ii. Data Representation by Histogram: The sensor data is converted into a 2D 
polar histogram or density heatmap in which data points specified by their 
(x, y) rectangular Cartesian coordinates are grouped into bins in polar coor‑
dinates (r, θ) where the radius r represents the distance of the data point from 
the origin and the angle θ represents its angle. Such grouping of data points 
in terms of radius r and angle θ produces a circular or radial grid. Application 
of an aggregation function to each bin, like counting the number of points in 
each bin or summing a value associated with each point, produces a density 
plot of the data distribution where the color or intensity of each bin represents 
the aggregated value. In the 2D polar histogram thus generated, each cell of 
the histogram represents a direction and distance from the robot. Hence, it 
enables easy visualization of potential obstacles that the robot may encounter 
in different directions as it moves toward the goal.

 iii. Logic for Obstacle Avoidance: By analyzing the histogram, the algorithm 
identifies the directions with minimal obstacle density. These directions are 
called openings. Then it performs calculations to find a steering direction 
that directs the robot toward the most suitable open space to avoid collisions.

 iv. Considerations for Robot Geometry: VFH takes into account the physical 
dimensions of the robot and its turning radius. Therefore, the calculated 
steering commands are easily abided by the robot to execute its operation.

12.4.2 maiN steps of the Vfh aLgorithm

The principal steps of the VFH algorithm for autonomous robots are (Figure 12.3): 
sensor data acquisition by sensing the environment surrounding the robot using 
a range of sensors; creating a polar histogram graphically representing obstacle 
density around the robot in polar coordinates that is subdivided into slices (single 
wedge‑shaped sections of the circular graph in the form of angular sectors or bins 
representing specific directions or angles around the robot with the heights of the 
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FIGURE 12.3 The VFH algorithm.
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slices showing the likelihood of encountering obstacles in those directions); identi‑
fying high‑density points in the histogram representing obstacles; recognizing val‑
leys, defined as low‑obstacle‑density areas in the histogram; selecting the steering 
direction corresponding to the most desirable valley to avoid obstacles; and moving 
toward the obstacle‑free target direction (Babinec et al. 2012; Kumar and Kaleeswari 
2016; Alagić et al. 2019). If the robot reaches the goal, the algorithm is stopped. If it 
does not reach the goal, the algorithm goes back to the stage of acquiring data from 
sensors. All these steps are carried out within a two‑stage data reduction process to 
calculate the desired control commands for the robot, as detailed in point (iii) in the 
description of operating procedure given below:

 i. Acquisition of Data about the Robot and Its Environment by Sensors: The 
robot is equipped with range sensors like sonar or LiDAR. The robot’s 
sensors perform an all‑round scanning operation to collect distance infor‑
mation from the surrounding environment. The information is about any 
obstacles to the robot movement present in its neighborhood.

 ii. Creation of a Polar Histogram: The range data from the sensors is trans‑
formed into a 2D polar coordinate system centered on the robot forming 
a polar histogram. Each cell in the histogram represents a direction and 
distance from the robot. It corresponds to a specific angle around the robot, 
creating a circular view of the surrounding environment. The value in each 
cell typically represents the number of obstacles detected in that direction. 
It is an indicator of obstacle density in that direction, with higher values 
showing the presence of more obstacles.

 iii. Detection of Obstacles: The algorithm identifies high‑density areas in the 
histogram. The high‑density areas are the regions in which potential obsta‑
cles are found.

 a. Data Reduction (Stage A): Obstacle density values in the histogram are 
smoothed to reduce noise. Hence, a more continuous representation is 
created. This step involves filtering or averaging neighboring cells.

 b. Data Reduction (Stage B): The algorithm searches for openings in the 
histogram. These are directions with low obstacle density. Valleys in the 
histogram are identified, which correspond to directions with minimal 
obstacle density. The valley that is closest to the desired target direction 
is selected while considering the robot’s current heading.

 iv. Calculation of the Steering Command: Based on the identified openings and 
the chosen valley, the algorithm calculates the necessary steering angle giving 
the direction to navigate the robot toward the obstacle‑free path.

12.4.3 VariaNts of Vfh aLgorithm

The basic VFH algorithm has been improved with several variants:

 i. VFH+: It is an improved version of VFH algorithm that takes into account 
the robot’s physical size and incorporates a cost function for more refined 
direction selection. It has additional features such as better handling of 
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narrow openings and improved robustness to sensor noise (Ulrich and 
Borenstein 1998).

 ii. VFH*: It is a further enhanced version of VFH, embellished with addi‑
tional considerations beyond VFH+, like a look‑ahead verification mecha‑
nism to anticipate potential future collisions of the robot. Such refinement 
of the algorithm provides more reliable robot path planning (Ulrich and 
Borenstein 2000).

12.4.4 appLicatioNs of the Vfh aLgorithm

The VFH algorithm is primarily used in autonomous robotics for real‑time obstacle 
avoidance in dynamic environments. It allows the robots to navigate around obstacles 
by calculating a preferred steering direction based on sensor readings, particularly 
from range sensors like LiDAR or SONAR. The need for detailed environmental 
maps is avoided. These qualities make it an ideal algorithm for applications like 
mobile robot navigation, cleaning robots, and autonomous vehicles moving in mud‑
dled and disarranged spaces.

 i. Navigation of Mobile Robots: The VFH algorithm is commonly employed 
in mobile robots to navigate environments with numerous obstacles. It helps 
by providing steering directions to avoid collisions while reaching a desired 
destination.

 ii. Controlling the Robots Used for Indoor Cleaning: Cleaning robots utilize 
the VFH algorithm to detect furniture, walls, and other obstacles in a room. 
The detection of obstacles enables them to maneuver around objects while 
cleaning the room efficiently.

 iii. Guidance of Autonomous Vehicles in Cluttered Environments: The VFH 
algorithm helps autonomous vehicles to navigate around obstacles like 
pedestrians, pallets, or parked cars in scenarios such as warehouses or 
crowded streets.

 iv. Performing Robotic Manipulation Tasks: The VFH algorithm is used for 
obstacle avoidance during robotic arm movement for robots engaged in 
manipulation tasks. Thus, it prevents their collisions with surrounding objects.

12.4.5 adVaNtages of the Vfh aLgorithm

Knowing the advantages leads to greater success and positive outcomes when using 
the algorithm.

 i. Real‑Time Processing Capability: VFH is a computationally efficient algo‑
rithm. It is designed for fast obstacle avoidance in real‑time applications. 
The underlying reasons are its quick data reduction process and steering 
direction calculation, critical for dynamic environments.

 ii. Flexibility of Operation: VFH is adaptable to various robot geometries and 
sensor configurations.
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 iii. Simplified Practical Realization: The concept of using a histogram for 
obstacle representation is relatively straightforward to understand and 
implement without difficulty. It can be integrated with various robot control 
systems.

 iv. Use of Sensor‑Based Navigation: The algorithm relies on sensor data. This 
advantage makes it adaptable to changing environments without requiring a 
pre‑built map.

 v. Following a Robot‑Centric Approach: The algorithm takes into account the 
robot’s physical properties in order to proclaim realistic steering commands.

12.4.6 LimitatioNs of the Vfh aLgorithm

Understanding limitations of the algorithm helps us develop resilience and the ability 
to overcome difficulties.

 i. Restriction to Local Planning Only: VFH is primarily a local planner, 
focusing on immediate obstacle avoidance. It may not lead to the most opti‑
mal path in complex environments. It is not designed for long‑term global 
path planning. Furthermore, it may not always account for the dynamic con‑
straints of the robot, such as its maximum turning radius.

 ii. Possibility of Becoming Stuck: VFH might not always find a clear path 
in complex environments. It gets trapped in tight spaces. It may wiggle 
through narrow passages or environments characterized by closely located 
obstacles.

 iii. Potential for Oscillatory Behavior: VFH might lead to oscillations in tight 
spaces as the robot continuously struggles to avoid obstacles.

12.5 GENERALIZED VORONOI DIAGRAM ALGORITHM

Like the VFH algorithm, the generalized Voronoi diagram (GVD) is a crucial mem‑
ber of the family of algorithms employed in autonomous robotics for path plan‑
ning and obstacle avoidance. While the VFH is a local, sensor‑based algorithm, the 
GVD algorithm follows a global, graph‑based approach. While VFH is a real‑time 
algorithm, GVD is a pre‑planned algorithm. The VFH algorithm is based on an 
implicit sensor‑based environmental model. The GVD algorithm uses an explicit, 
map‑based environmental model. The VFH algorithm is less complex. The GVD 
algorithm is relatively more complex. The VFH algorithm provides simple naviga‑
tion in a dynamic environment. The GVD algorithm is suited to complex navigation 
in a static environment.

12.5.1 fuNctioNaL mechaNism of the gVd aLgorithm

Let us now explain the functional details of the GVD algorithm. A GVD is a com‑
putational geometry structure used in autonomous robotics (Garrido and Moreno 
2015; Li et  al. 2020; Chi et  al. 2022). It is a roadmap that provides all possible 
path homotopy classes in an environment containing obstacle regions, offering 
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maximum clearance from these regions. ‘Homotopy’ is a concept from topology 
(the investigation of the fundamental properties of a robot’s configuration space 
and their impact on robot motion planning and control) for the classification of 
trajectories that a robot can follow. This classification is done by taking into consid‑
eration which paths can undergo continuous deformation into one another without 
encountering obstacles. The homotopy classes constitute a way to categorize robot 
trajectories based on their ability to be continuously deformed into one another 
without intersecting obstacles. Thereby they significantly reduce the search space 
for finding a valid path.

The GVD algorithm is a path‑planning algorithm that leverages a GVD to navi‑
gate a robot through an environment. For smooth robot navigation, it divides an envi‑
ronmental space into regions based on the distance to multiple obstacles. Each region 
represents the area closest to a specific point, such as a robot’s potential position. The 
robot’s shape and movement constraints are duly considered. Not only is the center 
point of the robot kept in sight, but also its full geometry and possible  orientations. 
By keeping an eye on the robot’s center, navigation of non‑point‑like robots is ren‑
dered possible. Therefore, large vehicles or robots with articulated limbs are auto‑
matically taken care of. In this manner, the algorithm defines the safe zones for a 
robot to navigate through successfully without meeting any obstruction. In brief, the 
algorithm accomplishes efficient path planning and obstacle avoidance by creating a 
roadmap of safe paths within a complex environment based on the identification of 
the safest or most accessible areas and routes with maximum clearance from obsta‑
cles, and delineating safe corridors between obstacles, allowing for an efficient and 
collision‑free movement of the robot.

12.5.2 maiN steps of the gVd aLgorithm

A review of the main steps clarifies how the algorithm performs its operation. 
Figure 12.4 presents the steps of this algorithm. These steps are (Özcan and Yaman 
2019; Lee et al. 2023): representing the obstacle and building its environmental map, 
GVD construction, distance metric selection, Voronoi cell generation, graph produc‑
tion, path planning, and deciding about the optimality of the determined path. If the 
path found is optimal, the algorithm stops. Otherwise, it reverts back to path plan‑
ning and continues unless satisfactory results are obtained. Details of the steps are 
given below.

 i. Representation of the Obstacle: Obstacles are defined as polygons or other 
geometric shapes. Their full extent in the environment is considered.

 ii. Mapping of the Environment: The robot builds a map of its environment. 
Sensors like LiDAR are used for creating a representation of obstacles.

 iii. Construction of GVD: Based on the map, the algorithm calculates the GVD. 
The GVD essentially creates a network of interconnected points. This net‑
work represents the most accessible paths within the environment.

 iv. Selection of the Distance Metric: GVDs utilize a distance metric that takes 
into account the robot’s geometry and orientation. Instead of the simple 
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FIGURE 12.4 The GVD algorithm.
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Euclidean distance, it often uses the Minkowski distance. The Minkowski 
distance, a generalization of several well‑known distance measures, is cal‑
culated by adding the absolute differences between two points raised to a 
power or parameter p. The value of the power, or parameter p determines 
the type of distance metric used. Various values of p represent different 
distance measures. The p = 1 value represents the Manhattan distance, 
p = 2 gives the Euclidean distance and p = ∞, the infinite norm.

 v. Generation of Voronoi Cell: The algorithm calculates the set of points closer 
to a specific robot configuration than any other. Hence, it creates a Voronoi 
cell for each potential robot pose.

 vi. Construction of Graph: The boundaries of the Voronoi cells are connected 
to form a graph structure. The graph represents the accessible paths within 
the environment.

 vii. Planning of the Robot Path: After the GVD is generated, the robot uses a 
simple graph search algorithm like A* to find the optimal path from its cur‑
rent location to the desired goal. The robot navigates along the GVD points 
to avoid obstacles.

12.5.3 appLicatioNs of the gVd aLgorithm

Applications of the GVD algorithm make routine robot tasks easier. Let us elaborate 
on these tasks.

 i. Robot Path Planning: Collision‑free paths are generated for robots navigat‑
ing through environments filled with numerous obstacles.

 ii. Robot Motion Planning: Feasible motions for robots with non‑holonomic 
constraints are calculated. The non‑holonomic constraints refer to the 
path‑dependent constraints on the velocity of a robot’s mechanical  system 
that are not derivable from position constraints, e.g., those faced with wheeled 
 robots with limited turning radius.

 iii. Exploration of Unknown Environments: The GVD algorithm guides auton‑
omous robots to explore unknown environments by identifying areas with 
high information gain indicating a more effective splitting of data.

 iv. Autonomous Navigation in Indoor Environments: Robots, such as cleaning 
robots or delivery bots, can utilize GVDs to navigate around furniture and 
other obstacles.

 v. Coordination of Multi‑robot Teams: The GVD algorithm is utilized to coor‑
dinate the movement of multiple robots by providing a shared understand‑
ing of the environment, considering their mutual interference and ensuring 
safe distances.

 vi. Industrial Robotics: The GVD algorithm is used for robot path planning in 
manufacturing settings with layouts of various types.

12.5.4 adVaNtages of the gVd aLgorithm

The benefits of the GVD algorithm enable better outcomes in robot navigation, giv‑
ing it a competitive edge over other algorithms:
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 i. Efficient Planning of Robot Path and Selection of Route: The GVD algo‑
rithm provides a high‑level representation of the environment. Such a repre‑
sentation allows for faster path calculation compared to raw sensor data.

 ii. Efficient Route Selection: The GVD structure allows for quick identification 
of the most accessible paths between start and goal points. The robot’s size 
and limitations are taken into consideration, which is an obvious advantage.

 iii. Robustness to Complex Environments: The GVD algorithm can handle a 
variety of obstacle layouts and is particularly useful for navigating com‑
plex environments with multiple obstacles or tight spaces where traditional 
Voronoi diagrams may not be sufficient.

 iv. Avoidance of Collisions: The GVD algorithm enables efficient path  planning 
to avoid collisions by identifying the closest point to an obstacle for a given 
robot configuration.

 v. Flexibility to Different Situations: The GVD algorithm can be easily 
adapted to different robot sizes and motion constraints.

12.5.5 LimitatioNs of the gVd aLgorithm

Limitations of the GVD algorithm are important for ensuring risk avoidance during 
its application.

 i. Difficulties faced in Dynamic Environments: The GVD algorithm needs to 
be recalculated frequently if the environment changes significantly, which 
can be a troublesome and tedious activity.

 ii. High Computational Cost: Generating a GVD can be computationally 
expensive, especially in large or highly dynamic environments.

12.6 DISCUSSION AND CONCLUSIONS

This chapter dealt with the algorithms used for designing autonomous robots 
(Table  12.1). The most well‑known example of the autonomous robot is the self‑ 
driving robot, a self‑sufficient decision‑making system which processes data inputs 
from various sensors, and models it using DL algorithms (Mogaveera et al. 2018; 
Reda et  al. 2024). A perception, localization, prediction and decision‑making 
approach is adopted for path planning and motion control.

A dataset of path following behavior is constructed by manually driving a robot 
along steep mountain trails and recording video frames from the camera mounted 
on the robot along with the corresponding motor commands (Hwu et al. 2017). This 
dataset is used to train a deep convolutional neural network. The neural network mod‑
ule, which was mounted on the robot and powered by the robot’s battery, leads to a 
self‑driving robot that could successfully traverse a steep mountain path in real time.

After consideration of robotic speech, vision, emotional intelligence, robot task 
and motion planning, and autonomous robots in the foregoing chapters, all of which 
involve a single robot, it is high time now to divert our attention to a collection of 
robots working together as a swarm. Union is strength. When robots are organized 
as a disciplined team of workers, they can perform tasks involving heavy loads and 
toxic substances, thereby preventing many accidents and saving human lives, time, 
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TABLE 12.1
Takeaways from This Chapter at a Glance

Sl. No. Takeaway Explanation

1 Summary This chapter described four algorithms used for making autonomous 
robots, namely the decision tree, the bug, VFH, and GVD 
algorithms. These four algorithms operate with different approaches 
to obstacle avoidance and path calculation.

2 Decision tree 
algorithm

The general purpose of a decision matrix and the procedure for its 
creation were explained, together with steps in making it, indicating 
its advantages/disadvantages. Specialized aspects of a decision 
matrix in autonomous robot AI were dealt with. Common AI 
algorithms used with decision matrices in autonomous robots are 
Bayesian inference, reinforcement learning, and neural networks. 
Chief considerations when using decision matrices are complexity 
management, examination of unforeseen cases, and the 
explainability of the decision‑making process. Key elements of a 
self‑driving vehicle decision matrix, including its decision‑making 
process and challenges involved, were outlined.

3 Bug algorithm The bug algorithm is a simple, reactive obstacle avoidance strategy 
where a robot follows the edge of an obstacle until it can resume its 
path toward the goal.

4 VFH algorithm The vector field histogram is a real‑time motion planning algorithm 
that utilizes a polar histogram to represent the density of obstacles in 
different directions, thereby identifying obstacle‑free directions for 
steering a robot based on sensor data.

5 GVD algorithm The generalized Voronoi diagram algorithm works by partitioning a 
space into regions based on proximity to multiple seed points, such 
as landmarks and waypoints, for planning a path that finds the most 
efficient route around obstacles.

6 Keywords and ideas 
to remember

Decision Matrix in autonomous robot AI and for a self‑driving robotic 
vehicle, bug algorithm, vector field histogram algorithm, generalized 
Voronoi diagram algorithm

and money. The concluding three chapters of the book will explore the opportunities, 
prospects, and technical snags of swarm robotics.
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13 Robotic Swarms
Preliminaries

13.1  INTRODUCTION

Hitherto, our attention has been concentrated on the functioning of the single robot, a 
solitary machine designed to work independently, diligently, and indefatigably, applying 
forces and controlling movements of various forms to perform actions. It is abundantly 
clear that a single robot will fail to solve large‑scale problems, despite carrying an exten‑
sive gadgetry of sophisticated sensors, actuators, and processing electronics. While a 
single robot excels in precise, repetitive tasks, tasks distributed over large areas are not 
within its domain of implementation. We know that a large group of insects, e.g., bees, 
wasps, ants, termites, or locusts, moving together constitutes a swarm. Motivated by the 
swarms of gregarious insects observed in natural settings, a robotic swarm is contem‑
plated as a large population of simple, small, and inexpensive robots. The robots in a 
swarm are its members. The member robots work collectively in a decentralized manner 
through local interactions and sensing among themselves and with the environment to 
accomplish confounding tasks without access to global information. In a decentralized 
system, the control, power, or activities are not concentrated in a single, central author‑
ity. Rather, they are distributed among many separate entities or locations.

A few instances of commendable tasks performed by robotic swarms are rescue 
missions in times of catastrophe and mayhem, surveillance and defense activities, 
warehouse automation, logistics, oil spill response, precision agriculture, and envi‑
ronmental monitoring. Swarm robotics is a cohesive strategy to coordinate several 
relatively simple robots working collegiately sharing liabilities and accountability. It 
can scale up to the inclusion of hundreds or thousands of robots (Şahin 2005).

Single Robot vs. Robotic Swarm

Robotic teamwork
Can make many dreams work
Two robot minds are better than one
To finish the job and get the work done
If one robot fails, its partner takes over immediately
And the work progresses uninterruptedly
Some jobs are big, others are small,
Together, robots can do them all.

Due to their simpler design, robotic swarms can be significantly cheaper to manufac‑
ture than a single, highly complex robot. Moreover, swarms can adapt to changing 
environments and unexpected, often surprising situations more effectively than a single 
robot. Additionally, the damage and crippling of one individual robot in the swarm 
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has minimal impact on the overall system. Thus, multiple, often simpler robots col‑
lectively complete a compound task through coordinated interactions and distributed 
intelligence, offering increased adaptability and redundancy. The collective behavior 
of the robot swarm duly compensates for the failure of individual robots. Essentially, 
a swarm leverages the power of a large number of robots and local communication. It 
achieves seemingly impossible and ambitious goals that a single robot might struggle 
with. Therefore, from this chapter onward, we shift our focus to swarms of robots in 
lieu of the single robot that has been in the spotlight in the foregoing chapters. Swarm 
robotics can do wonders and become a game‑changer. It is a paradigm‑shifter that will 
bring a transformative change, leading to improved performance and innovation.

13.2 BIO‑INSPIRED ALGORITHMS USED IN SWARM ROBOTICS

Nature is collaborative, with members of a species working together for survival, fully 
knowing that union is strength. Collective action and unity build a powerful com‑
munity. We can learn valuable lessons from the nature. Therefore, in swarm robotics, 
various algorithms inspired by biological phenomena are employed (Hereford and 
Siebold 2010). Apart from genetic algorithm (GA), which originates from the process 
of natural selection in genetics, these algorithms are mainly derived from a sense of 
enthusiasm and excitement that nature provides through the collective behaviors of 
animals like birds, bees, ants, etc. The motive of all these algorithms is to solve tortu‑
ous problems by coordinating a large group of robots with simple rules. The coordi‑
nation compels them to work in an interwoven and integrated fashion for achieving 
their pursued outcome (Bhowmick et al. 2024).

Each algorithm mimics the collective behavior of a natural swarm. The connotation 
of word ‘mimicking’ can be negative depending on the context and intent. So, let us clar‑
ify. ‘Mimicking’ here is not done for mocking but as a part of the learning process. This 
caricature is not any playful or derisive attempt but a respectful, solemn, and praisewor‑
thy activity for a beneficial purpose. It is called biomimicry. It is the science of learning 
from nature, imitating natural processes, and emulating natural ecosystems to create 
more sustainable and efficient solutions to real‑world challenges faced by humans. It is 
a powerful approach to designing swarm robotics methods, building upon the principles 
of collective intelligence and the behaviors of natural swarms. Biomimicry draws its les‑
sons from nature’s solutions to problems, encouraging a hands‑on, experiential approach 
that fosters creativity and deeper understanding. Through billions of years of evolution, 
nature has developed incredibly effective ways to address various types of problems, 
and we, too, can gain from this expert knowledge base gifted by nature. Sustainability 
is a cardinal ingredient and the lifeblood of this knowledge base because nature works 
in ways that meet the demands, necessities, and exigencies of the present generation 
without compromising the needs of future generations.

In a natural‑like swarm, the individual robots make local decisions like ants or 
bees based on limited information. Such local decisions translate for culmination into 
an emergent global behavior. These algorithms are often used to optimize numerous 
tasks, e.g., activities of path planning, target searching, foraging, and obstacle avoid‑
ance within a swarm of robots. A few commonplace examples of these algorithms 
are given in Figure 13.1. The diagram shows a swarm of robots and conscripts the 
seven bio‑inspired swarm robotic algorithms as given below:
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FIGURE 13.1 Examples of algorithms for swarm robotics that are developed by inspiration 
from biological phenomena.
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 i. Genetic Algorithm: The GA is a computational method. It is used to opti‑
mize the behavior of a group of robots by mimicking the principles of 
natural selection. In this algorithm, the robot’s behaviors are represented 
as chromosomes containing parameters defining its actions. The actions 
are movement patterns, decision‑making rules, or sensor interpretations. 
The best robot behaviors are selected, combined, and mutated to produce 
improved behaviors for the swarm over time. Thus, the robots can collec‑
tively solve complex tasks more effectively (Wahab et al. 2024).

 ii. Particle Swarm Optimization (PSO) Algorithm: It is a pivotal algorithm 
for searching for plans of action to achieve the desired results in swarm 
robotics. The inspiration for this computational model is sparked by bird 
flocking. The flocking of birds is their instinctive behavior to fly together 
in formations for finding food and staying safe from predators. In this algo‑
rithm, the particles representing robots move toward the best solution found 
by the swarm (Hereford et al. 2007; Zhang and Wang 2024).

 iii. Ant Colony Optimization (ACO) Algorithm: This algorithm is formulated 
by the inspiration received by humans from observation of the ant colony 
behavior. Ants are known to lay down pheromone trails to indicate opti‑
mal paths between their nest and food sources. Pheromone is a chemical 
signal. It is secreted by a species to elicit a particular behavioral response 
from other individuals of the same species. So, subsequently, moving ants 
use these pheromone trails to tread the paths defined by their predeces‑
sors when finding the shortest route. Hence, by following the pheromone 
trail laid down by previously searching ants, their new colleagues can easily 
reach the food sources. In the ACO algorithm, the robots are considered as 
the artificial ants that iteratively build solutions by choosing paths based on 
pheromone levels (Sharan et al. 2023; Lingkon and Ahmmed 2024).

 iv. Artificial Bee Colony (ABC) Algorithm: It emulates the foraging behavior 
of honeybees to collect nectar and pollens from blooming plants; nectar is a 
sugary liquid while pollens are powdery substances. The algorithm is mod‑
eled after the fascinating world of honeybees, which is depicted as compris‑
ing different bee types, namely employed, onlooker, and scout bees. These 
bee classes search for food sources with distinct roles assigned to different 
classes. In this distribution of labor, the employed bees exploit local food 
sources. The onlooker bees choose food sources according to the quality of 
the material. The scout bees wander about exploring and looking for new 
areas of food sources (Izaguirre et al. 2021).

 v. Firefly Algorithm (FA): It is based on the social behavior of fireflies, the 
so‑called lightning bugs or beetles belonging to the family Lampyridae, 
which originates from the Greek word ‘lampein’, purporting ‘to shine’. The 
individual fireflies move toward their brighter associates, representing bet‑
ter solutions in the optimization problem. Drawing an analogy from this 
movement, the robots mimic the flashing behavior of fireflies, with isolated 
robots migrating toward brighter fireflies, which represent better solutions. 
The brighter the firefly, the greater is the emphasis on attraction and conver‑
gence toward optimal points (Chaudhary et al. 2024).
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 vi. Bacterial Foraging Optimization (BFO) Algorithm: It models the movement 
and chemotaxis behavior (movement toward nutrient gradients) of bacteria 
in search of nutrients. Chemotaxis focuses on local search with occasional 
global exploration through repel and swim phases, allowing for a more thor‑
ough search in intricate environments (Hossain and Ferdous 2015). ‘Local’ 
relates to a particular place or area, while ‘global’ refers to a wide area.

 vii. Salp Swarm Algorithm (SSA): It is a computational optimization technique 
inspired by the natural swarming behavior of barrel‑shaped, gelatinous 
marine animals related to vertebrates. The algorithm closely follows the 
behavior of salps to form chain‑like structures while foraging to solve com‑
plex problems by iteratively updating the positions of salp agents within 
a search space. During this process, a designated leader salp guides the 
swarm toward the optimal solution. Essentially, it is a swarm intelligence 
method leveraging the coordinated movement of salps to explore and exploit 
a solution space effectively (Cheng et al. 2022).

Five noteworthy features of swarm robotics algorithms are underscored. These are 
their simplicity of approach, scalability to any population size, along with capabili‑
ties for decentralization (low‑cost communication between agents without the ser‑
vices of a central coordinator), localization (local communication and interaction), 
and parallelism (breaking down resource‑intensive tasks into smaller parts to be 
executed concurrently for simultaneous solution) (Tan and Zheng 2013).

13.3 GENETIC ALGORITHM

The GA is an algorithm used to optimize the behavior and decision‑making of 
robots in a swarm akin to the evolutionary approach in biology following the natu‑
ral selection process (Rezk et al. 2014; Bahaidarah et al. 2023; Zhu and Pan 2024). 
The ‘swarm’ suggests a population of robots in which each robot has its own set of 
parameters that can be modified through the GA. Each robot in the swarm represents 
a potential solution. The parameters of the robots, called genes, are adjusted on the 
basis of their performance in the environment, favoring the fittest robots to produce 
better future generations. Through such adjustments, the best solutions for a given 
task are identified, for example, in robot navigation within a complex environment 
or robot movement coordination within a swarm. The algorithm proceeds by itera‑
tively improving the parameters called traits of the robots, controlling their actions. 
Operations like selection, crossover, and mutation in genetics are performed.

13.3.1 operators iN a ga

These operators, called genetic operators, are defined as (Lamini et al. 2018):

 i. Selection: This operator chooses the best‑performing robots to pass on their 
traits.

 ii. Crossover: This operator combines traits from selected robots to create new 
offspring.
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 iii. Mutation: This operator randomly alters specific traits of robots to intro‑
duce diversity in the exploration of the solution space.

Figure 13.2a illustrates the vital operations performed in a GA: initialization, selec‑
tion, crossover, mutation, and replacement. In the initialization step, three samples 
are taken: 000, 111, 222, from which two samples are selected: 000, 111. In the 
crossover step, 00 from 000 and 1 from 111 are taken to form 001, which is mutated 
to 011. This mutated sample is supplied to the replacement step, which feeds it back 
to the selection step.

13.3.2 BreakdowN of the key steps iN ga

The steps are framed by studying genetics in biology and concepts like heredity, 
selection, and mutation. When using a GA to optimize a robot swarm, the key steps 
are (Figure  13.2b): initializing a population of robot behaviors by representing 
potential solutions as chromosomes, evaluating the fitness of each behavior based 
on the swarm’s performance in the task, selecting the best‑performing behaviors 
for reproduction, applying genetic operators like crossover and mutation to gener‑
ate new behaviors. It is checked whether the newly generated population represents 
a satisfactory swarm behavior or meets the stopping criterion. If YES, the process 
is stopped. If NO, it reverts to the step of calculation of fitness function, repeating 
this process until a satisfactory swarm behavior emerges. These steps essentially 
simulate natural evolution to find the most efficient collective behavior for the robot 
swarm (McKee 2024).

 i. Initialization of the Robot Population: A diverse initial population of robot 
behaviors is created. Each behavior is represented as a chromosome char‑
acterized by parameters like movement patterns, sensing strategies, com‑
munication protocols, etc. The representation is done randomly or using 
heuristics based on the problem domain, the specific field, phenomenon or 
discipline where the problem exists.

 ii. Evaluation of Fitness: The robot swarm is simulated in the environment 
using the individual behaviors of robots from the population. The perfor‑
mance of the swarm is measured based on the desired task, e.g., coverage, 
foraging efficiency, and obstacle avoidance. A fitness function is used for 
measurement. It is a function that assesses the performance of each robot 
based on the task at hand. A fitness score is assigned to each behavior based 
on performance. The score determines which robots are more likely to be 
selected for reproduction.

 iii. Selection (Genetic Operator): The best‑performing behaviors having high 
fitness scores are selected from the population to be used for reproduction. 
Methods like roulette wheel selection, tournament selection, or elitism are 
applied. The roulette wheel or fitness‑proportionate selection assigns a 
probability of selection to each individual based on the fitness of that indi‑
vidual relative to the total fitness of the population. Tournament selection 
randomly selects a small group of individuals from the population, with 
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FIGURE 13.2 Genetic algorithm: (a) principal operations and (b) the algorithm.
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the fittest individual within that selection chosen for reproduction. Elitism 
is a scheme in which the best individuals from the current generation are 
directly copied to the next generation.

 iv. Crossover (Genetic Operator): The genetic information from selected par‑
ent behaviors is combined to create new offspring behaviors. Variations are 
generated by swapping parts of chromosomes or mixing parameters.

 v. Mutation (Genetic Operator): Certain parameters of the new offspring’s 
behavior are randomly modified to introduce diversity for exploring the 
solution space.

 vi. Replacement: The lower‑performing behaviors in the population are 
replaced with the newly generated offspring.

 vii. Iteration: The steps of fitness evaluation, selection, crossover, mutation, and 
replacement are repeated. The repletion is done until a satisfactory swarm 
behavior is achieved or a stopping criterion is met.

13.3.3 appLicatioNs of ga

To appreciate the significance and relevance of GAs in swarm robotics, we highlight 
a few applications of the algorithm as follows.

 i. Planning of the Robot Paths: The movement paths of robots are optimized 
within a swarm so that they can navigate vexing environments efficiently.

 ii. Controlling the Desired Robot Formation within a Swarm: The desired for‑
mations of robots, like a line or a circle, are maintained within a swarm. For 
their maintenance, the movement patterns of individual robots are adjusted.

 iii. Coordination of Multiple Robots for Performing Cooperative Tasks: The 
actions of multiple robots are coordinated to achieve a collective goal. The 
goal could be collaborative manipulation of an object.

13.3.4 adVaNtages of ga

When using GAs to control robot swarms, the main advantages include their ability 
to find near‑optimal solutions in entangled environments, explore a wide range of 
potential behaviors, and adapt to changing conditions. The advantages are:

 i. Exploration of Diverse Solutions and Exploitation of Best Solutions: GAs 
effectively search through a vast space of possible robot behaviors. The 
search allows for exploration of diverse solutions. It also allows exploitation 
of the best ones. Both benefits are necessary for involuted swarm tasks.

 ii. Adaptation to Changing Environments: The swarm adapts its behavior 
dynamically to changing environmental conditions. This becomes possible 
by incorporating evolutionary mechanisms, such as mutation and crossover.

 iii. Robustness of Algorithm toward Noise: GAs can withstand noise and toler‑
ate uncertainties in the environment. These advantages make them suitable 
for real‑world robot swarm applications.
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 iv. Design Flexibility: The design of a GA can be tailored to specific swarm 
tasks. This is achieved by adjusting the representation of robot behaviors, 
specifically the chromosome encoding and fitness function.

 v. Emergent Behavior: The individual robots are allowed to evolve based on 
their local information and interactions with the swarm. Hence, complex, 
collective behaviors can emerge without explicit centralized control.

13.3.5 LimitatioNs of ga

Principal limitations of GAs include potential for premature convergence, sensitivity 
to parameter tuning, and high computational cost associated with large populations, 
especially in real‑time scenarios. These, along with the other limitations, are:

 i. Premature Convergence of the Algorithm: In some cases, the GA may con‑
verge prematurely to a local optimum. Then it misses potentially better 
solutions in the search space.

 ii. Challenges of Parameter Tuning: The performance of a GA heavily depends 
on the proper tuning of parameters like population size, mutation rate, and 
crossover rate. Parameter tuning is often a bothersome activity.

 iii. High Computational Cost: Evaluation of the fitness of a large population of 
robot behaviors is computationally expensive. Real‑time applications with 
many robots are costly.

 iv. Difficulty of Interpretation: It is sometimes difficult to comprehend the 
behaviors evolved by a GA. Interpretation is not straightforward when deal‑
ing with complex swarm dynamics.

 v. Concerns of Scalability: Management of the communication and computa‑
tion required for the GA becomes highly complex when there are a large 
number of robots in a swarm.

13.4 PSO ALGORITHM

From the Darwinian evolution‑based GA, we move to the PSO algorithm based on 
the social behavior of birds/fishes. Both are population‑based algorithms. But while 
GA follows the evolution of species, the PSO algorithm works using swarm intel‑
ligence. While GA is good and robust for complex problems, the PSO algorithm is 
easily implemented and converges fast. Both are prone to local minima. A detailed 
comparison is deferred for a later discussion.

To introduce the PSO algorithm, we consider an organization comprising a group 
of robots engaged in a mission. Then the robots in this group constitute a robotic 
swarm. These robots interact with each other and with their environment using 
a metaheuristic optimization algorithm as the core mechanism. The algorithm is 
referred to as the PSO algorithm. The term ‘metaheuristic’ is a combination of two 
words. It is a combination of the Greek prefix meta (meaning ‘beyond’ in the sense of 
high level) with heuristic (meaning ‘search’), which implies a higher‑level search pro‑
cedure. In the PSO algorithm, the robots seek out the best feasible answer to any dif‑
ficult problem faced by the group by addressing it collaboratively among themselves. 
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This problem could be regulating and organizing the movements and activities of the 
individual robots within the robotic cluster. The problem is solved by modifying the 
relative locations of participating robots and scheduling the actions to be done by 
them, making use of the collective intellect of the swarm. Figure 13.3a illustrates the 
particle movements in the PSO algorithm. Four positions of the particle are marked: 
its current, personal best pbest, global best gbest, and new positions. The three veloc‑
ities of the particle are represented by respective vectors, which are arrows pointing 
in their respective directions. These velocities are: its current velocity, velocity based 
on personal best performance, and velocity based on global best performance. The 
continuous lines indicate the tendencies of particle motion, while the dashed lines 
indicate how the particle is carried away under the influence of these tendencies.

13.4.1 particLe represeNtatioN of roBots

How does the PSO algorithm represent and treat robots? The PSO algorithm 
espouses a particle representation of robots wherein each robot is treated as a sepa‑
rate particle. The position of the robot e.g., a robot’s location in a navigation task, 
represents a potential solution to the optimization issue. The PSO is classified as 
a stochastic search strategy. It is a problem‑independent method using randomness 
for search‑space exploration. As opposed to the precise input‑based deterministic 
techniques, it incorporates randomness and uncertainty. It functions on the iterative 
interaction of each particle that forms the swarm (Hamami and Ismail 2022). Its 
working mechanism involves regularly updating the relative positions of a swarm of 
particles from one iteration to another. This process of updating buoys up and sup‑
ports the PSO algorithm to execute the search in the best possible way (Gad 2022).

13.4.2 swarm iNteLLigeNce aNd the idea of fitNess fuNctioN

Swarm intelligence is the fundamental mechanism underlying the PSO algorithm. 
Duplicating the organized movements of birds in a flock that congregate to forage 
and travel conjointly; and on similar lines to fish schooling, e.g., a group of fish mov‑
ing together in the same direction at the same speed; and in consonance with human 
social behavior of interaction, cooperation, and conflict; each robot in the swarm 
communicates with other robots in the group to share information about its current 
position and the best solution. Such inter‑robot communication influences the move‑
ment of the entire group of robots, leading toward a better overall outcome.

The swarm intelligence enables the robot to change its movement based on its 
earlier performance as well as the performance of other robots in the swarm. A fit‑
ness function is defined keeping an eye on the desired goal for directing the swarm 
toward the optimal answer. The fitness function is an objective function that defines 
the objective of the problem in relation to its constraints. It is used as a figure of 
merit summarizing the closeness of the designed solution to the target. It determines 
the quality of the potential solutions regarding the position of the robot. The quality 
ratings are expressed by assigning scores that guide the algorithm on the way to an 
optimal solution.
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FIGURE 13.3 The PSO algorithm: (a) particle movements and (b) portrayal of the procedures of the particle swarm optimization algorithm by break‑
ing down into discrete steps in the algorithm workflow.
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13.4.3 VeLocity updates

The PSO algorithm works by velocity updating. It blends together the local search 
methods with global search methods. It advances with the notion that the most effec‑
tive method of conducting the search is to follow the particle that is nearest to the 
best position, which means the position in the search space that represents the most 
excellent solution found so far. It is usually called the global best (gbest) position. 
The ‘gbest’ attribute indicates that it is the best position discovered by any particle 
within the complete swarm.

Each particle maintains a record of its own best position encountered thus far. 
This is known as personal best (pbest) position. For determining the best position, 
the position of each particle is evaluated as found from the fitness function. Then, the 
position with the highest fitness value is deemed the best position.

The algorithm utilizes velocity updates during its operation. During each itera‑
tion, each robot updates its velocity. The basis of updating is its current position, its 
best previous position pbest, and the best position found by the whole swarm gbest. 
The aim is to ascertain the required motion of the robot to make headway toward 
progressively better solutions.

13.4.4 steps of the pso aLgorithm

The working procedure of the algorithm becomes evident by learning about its step‑
wise progress. Figure 13.3b depicts the principal steps of the PSO algorithm. The 
algorithm begins with the initialization of algorithm constants, setting t = 1, and the 
initialization of particle positions and velocities. Fitness function calculations are 
followed by velocity calculations for each particle. The particle’s velocity and posi‑
tion updating come next. If the stopping criteria are met, the algorithm stops. If not, 
iteration t = t + 1 is done by returning to the fitness function determination. Further 
details of the workflow of the algorithm are (Market Brew™ 2025):

 i. Initialization of Algorithm by Considering a Population of Particles and 
Randomly Assigning Positions and Velocities to Them: Every particle in 
the population has its position and velocity initialized with values selected 
arbitrarily.

 ii. Calculation of Fitness Value of Every Particle by Evaluation of Its Objective 
Function: For each particle, a calculation of the objective function is done to 
estimate its fitness value at the current position.

 iii. Mathematical Determination of Particle Velocity: The velocity of each par‑
ticle is calculated on the basis of its current position, its best previous posi‑
tion (pbest), and the best position found by the entire swarm (gbest).

 iv. Updating the Particle Velocity: The velocity of each particle is modified.
 v. Amendment of Particle Position: The position of each particle is revised 

using its new velocity value.
 vi. Checking for Fulfillment of the Stopping Criteria for the Algorithm: A 

scrupulous comparison of objective functions calculated using updated 
 positions is made with objective functions reckoned through old positions. 
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In case no noticeable improvements in consecutive objective function val‑
ues are found, a cessation of the process is warranted.

 vii. Process Repetition: If the updated positions improve the objective function 
values, the process is repeated until arrival at the stopping criterion.

13.4.5 appLicatioNs of roBotic pso aLgorithm

Robotic PSO is applied to carry out varied responsibilities in dealing with robots 
engaged in teamwork:

 i. Planning and Organization of the Path of Robot’s Journey: Since the most 
effective path must be found while avoiding any obstacles or barriers, mov‑
ing several individual robots through a complicated environment requires 
careful optimization to find the most efficient route to the destination.

 ii. Cooperative Control and Manipulation of Several Robots: When a multi‑
plicity of robots is involved in grasping and manipulating objects together, 
their motions and actions must be properly coordinated with accuracy.

 iii. Optimization of Sensor Network: In a sensor network for robots, the choice 
of the positions of placement of sensors is made keeping in view that the 
largest feasible coverage area is accounted for. At the same time, the network 
communication expenses must be cut down to the lowest level. Therefore, a 
trade‑off process is performed for achieving the desired outcome by com‑
promising between the sensor positioning plan and the consequent commu‑
nication expenditure.

 iv. Performing Search and Rescue Activities: A squad of robots must be prop‑
erly coordinated to ferret out designated targets through an expansive area.

13.4.6 adVaNtages of the pso aLgorithm

The primary benefits of the PSO algorithm include its simplicity, ease of use, robust‑
ness to parameter changes, computational efficiency, and the ability to search an 
extremely vast solution space effectively. These assets make it suitable for a broad 
spectrum of optimization problems. Fewer tuning parameters in the PSO algorithm 
need to be adjusted compared to other optimization techniques.

 i. Simplistic Idea and Easy Execution: The central idea of the PSO algorithm 
is easily comprehended and implemented, making it accessible to a broader 
audience.

 ii. Fewer Parameters/Settings to Adjust: Rivaled against other optimization 
algorithms, the PSO method usually requires a smaller number of param‑
eters to be tuned, thereby enormously simplifying the process of setting up 
the algorithm.

 iii. Good Capability of Global Search: The PSO algorithm can effectively 
explore a vast search space. Premature convergence to local optima is 
averted.
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 iv. Rapid Convergence of Algorithm: The PSO algorithm exhibits rapid conver‑
gence to a near‑optimal solution when the parameters are carefully tuned.

 v. Adaptability for Compliance with Different Problem Domains: The PSO 
algorithm can analyze a variety of optimization problems spanning multiple 
domains, including those from finance, engineering, and machine learning 
fields.

 vi. Potentiality for Parallel Processing: The particle‑based nature of the PSO 
algorithm makes it capable of easy parallelization to achieve faster compu‑
tation on multi‑core processor systems.

13.4.7 difficuLties faced duriNg roBotic pso usage

Awareness about the limitations of the algorithm warns us not to venture into areas 
where we are likely to encounter trouble of some kind or another. The following are 
the problems encountered when using the PSO algorithm:

 i. Tuning of Algorithm Parameters: The three main parameters in the PSO 
algorithm are the inertia weight (w), the cognitive coefficient (c1), and the 
social coefficient (c2). The inertia weight w‑value determines the extent 
of retention of the previous velocity of a particle. Thus, it strikes a bal‑
ance between local and global exploration. The coefficient c1 is a mea‑
sure of the influence exerted on a particle by its own best position. The 
coefficient c2 determines the extent of influence exerted on a particle by 
the best positions of its neighboring particles. The performance of the 
PSO algorithm is critically influenced by the choice of these parameters. 
Therefore, the appropriate selection of these is essential to achieve satis‑
factory results.

 ii. Avoidance of Inter‑Robot and Robot‑to‑Obstacle Collisions: Robot‑to‑robot 
collision as well as collisions of robots with any obstacles during their 
motion in the environment should be unfailingly prevented. In particular, 
the caution against collision is an issue of paramount importance when 
dealing with an environment that is highly densely inhabited with robots.

 iii. Overhead for Communication: Establishment and maintenance of commu‑
nications in large swarms of robots is not only a formidable job but demands 
an exorbitant expenditure in computational overhead.

13.5 ACO ALGORITHM

Like the PSO algorithm, following bird flocking and better suited for continuous 
optimization, the ACO is also a swarm intelligence technique copying the ant for‑
aging behavior for food, and is suitable for combinatorial problems. The ACO is 
an important technique for swarm optimization that was introduced in the early 
1990s (Blum 2005; Brand et al. 2010). It is used for the planning of robot routes 
for the purpose of autonomous control and navigation of robot manipulators under 
dynamic conditions. Let us peek inside the society of ants to get knowledge about 
its organization.
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13.5.1 eusociaL BehaVior of aNts

Ants are essentially eusocial insects that live in colonies with only some individuals 
capable of reproduction. Their primary eusociality traits are:

 i. Cooperative Brood Care: This kind of parental care implies a social system 
in which the offsprings of a colony are attended by ant members other than 
their biological parents who reproduced them. In this system, individual 
ants contribute to raising the young of multiple generations. These genera‑
tions are not necessarily the offspring of the caretaker ants personally.

 ii. Overlapping Generations within a Colony of Adults: This social structure 
features the typical characteristic of the simultaneous coexistence of mul‑
tiple adult generations within a colony. Hence, young adults are present 
alongside older adults, resulting in a mixed population.

 iii. Division of Labor into Reproductive and Non‑reproductive Groups: An ant 
colony functions as a superorganism partitioned into specialized castes. 
The castes named as workers, soldiers, queens, etc., perform different roles 
and undertake various responsibilities. Within a colony, certain individuals, 
generally a queen, solely bear the burden of reproduction. Other members 
of the colony are allocated tasks in a dedicated format, such as duties of 
foraging, defense, and nurturing the young.

13.5.2 the workiNg priNcipLe of the aco aLgorithm

It is interesting to note that it is a metaheuristic algorithm. As already mentioned, a 
metaheuristic algorithm is a systematic problem‑solving procedure in computer sci‑
ence that proceeds by imitating natural intelligent phenomena, following an instinc‑
tive yet methodical approach. For the ACO algorithm, this approach originates from 
the experience gained through observation of the tiny ants using their pheromone 
trails to communicate with each other in a self‑organizing process. The pheromone 
trail is a chemical scent left by ants on their paths to food sources, nests, and other 
stopping places. Leaving this trail is a part of the foraging behavior of ant colonies. A 
natural consequence of this characteristic is the emergence of a combined, intelligent 
behavior among ant colonies.

The inception thought underlying the ACO algorithm is to seek the assistance of 
the pheromone trail laid down by ants during their search for food. Other members of 
the ant colony use this trail to establish communication among themselves. It marks 
an opportune path on the ground for other members of the colony to follow, as it is 
the shortest route to their source of food (Blum 2005; Dorigo et al. 2006; Dorigo and 
Stützle 2019). Hence, it becomes a path‑guiding aid to direct the incoming members 
of the ant colony. These members have to simply adhere to the pheromone path, pre‑
venting the unnecessary repetition of exploratory efforts that their coworkers have 
already done. Figure 13.4a shows two possible paths for ants to tread upon between 
their nest and food. Figure 13.4b shows one way in which the ants move from their 
nest to food along path X and return to their nest along Y. Figure 13.4c shows the 
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FIGURE 13.4 The ant colony optimization algorithm: (a)–(d) ant movements and (e) the algorithm.
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shortest path pursued by ants from their nest to food. Figure 13.4d shows the shortest 
path followed by ants to return from food to their nest.

The ACO algorithm for robots follows a similar approach to ants in finding the 
optimal solutions to problems. It is a favorite and eligible choice for solving opti‑
mization problems across multiple realms through various fields that were hitherto 
difficult to decipher by routine methods.

The ACO is a probabilistic technique integrating randomness and uncertainty 
notions. In this technique, artificial ants are employed to solve computational prob‑
lems. Good paths are prescribed by taking the help of graphs. The ACO algorithm 
works as shown in Figure 13.4e along the track: initialization, setting t = 1, construc‑
tion of solutions by ants, and updating of pheromone trail. If the termination condi‑
tion is satisfied, the algorithm stops. If not, we set t = t + 1 and return to constructing 
solutions by ants.

 i. Transformation of the Optimization Problem into a Weighted Graph: The 
goal of this conversion of the problem into a graphical format is to find the 
shortest path to the destination.

 ii. Construction of a Solution by Each Ant: Each ant randomly constructs a 
solution to the problem. This solution specifies the order in which the edges 
of the graph are to be traversed.

 iii. Path Comparison: The paths found by the various ants are mutually 
compared.

 iv. Updating the Pheromone Levels: The pheromone levels are made up‑to‑date 
on each edge of the graph according to the fresh findings.

13.5.3 steps of the aco aLgorithm

The ACO algorithm is a multi‑stage process consisting of the following steps (Fresco 
Innovation Labs 2023):

 i. Initialization of the Algorithm: The algorithm commences its chain of 
events by generating a colony of artificial ants. These ants have no idea 
about the problem they are supposed to solve. Quite randomly, they engage 
themselves in their search for food. In this search process, each ant travels 
over the solution space. During its movement, the ant creates candidate solu‑
tions. A combinatorial optimization problem (COP) ensues. A model of the 
COP is defined in the form of a triplet (S, Ω, f). In this notation, S denotes a 
search space, which is defined over a finite set of discrete decision variables. 
The symbol Ω stands for a set of constraints applied to the variables. The 
symbol f connotes an objective function that is to be minimized while solv‑
ing the problem.

 ii. Construction of Solutions by Ants: In this step, each ant constructs its own 
solution. It does so by applying a probabilistic rule. The rule allows the ant 
to choose the next point in the solution space. Obviously, the ants prefer 
paths with higher concentrations of pheromone. So, the probability that an 
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ant moves to the next point is determined by the amount of pheromone 
dumped by the previous ants on that specific path.

Mathematically speaking, a set of m artificial ants constructs solu‑
tions from elements of a finite set of available solution components C {cij}. 
A  solution construction starts with an empty partial solution sp = ∅. Then, 
at each step, the current partial solution sp is extended. The extension is 
achieved by adding a feasible solution component from the set of feasible 
neighbors N(sp) ⊆ C. As already stated, the choice of a solution component 
from the set N(sp) is done probabilistically at each step. The probability that 
an ant k located in node i will choose to move to another node j is given by 
the  equation (Blum 2005)
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where τij is the amount of pheromone deposited for transition from state i to 
j, α ≥0 is a parameter to control the influence of τij on ants, ηij is the desir‑
ability of state transition ij, the heuristic value associated with the compo‑
nent cij; and β ≥ 1 is a parameter to control the influence of ηij. The symbols 
τil and ηil represent the trail level and attractiveness for the other possible 
state transitions. The trail level represents the pheromone concentration, 
while attractiveness is the a priori assessment that represents the extent to 
which a path is considered appropriate. It is based on factors like distance or 
cost. The values of positive real parameters α and β determine the relative 
importance of pheromone versus heuristic information.

 iii. Updating the Pheromone Trail: The pheromone trail is updated after all ants 
have constructed their solutions. The amount of pheromone deposited on a 
particular edge is a function of the quality of the solution constructed by the 
corresponding ant. The pheromone level is raised if the solution is good; 
otherwise, the pheromone level is lowered. In other words, pheromone 
update increases the pheromone values associated with good solutions and 
decreases those that are associated with bad ones. The increase or decrease 
of pheromone is accomplished by:

 a. increasing the pheromone levels associated with a chosen set of good 
solutions, and

 b. decreasing all the pheromone values through pheromone evaporation.
The equation used is (Dorigo et al. 2006)

 (1 )
1∑τ ρ τ τ← − + ∆

=
ij ij

k

k

m

ij  (13.2)

where τij is the amount of pheromone deposited for a state transition ij, ρ is 
the pheromone evaporation coefficient, m is the number of ants, and ∆τij

k  is 
the amount of pheromone deposited by kth ant; it is given by
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where Lk is the cost of the kth ant’s tour (typically length) and Q is a constant.
 iv. Cessation of the Algorithm: The aforesaid steps are cyclic. The calcula‑

tions are repeated by the ACO algorithm until the optimal solution is found. 
As the iteration continues, the quality of the solution shows improvement. 
The iteration terminates when either the optimal solution is found or a pre‑
defined number of iterations are reached.

13.5.4 appLicatioNs of the aco aLgorithm

The ACO algorithm has found widespread application in solving various complex 
optimization problems. Its common applications are briefly described below:

 i. Robots as Substitutes for Unavoidable Engagements of Workers in 
Hazardous Conditions: In many dangerous situations, using robots is advis‑
able, e.g., robots are successfully deployed when the environment is dirty, 
hazardous, likely to cause death or injury to workers as in case of mining, 
or during detection of leakage in gas pipe, etc. (Joshy and Supriya 2016).

 ii. The Traveling Salesman Problem (TSP): A salesman travels to different cit‑
ies. The TSP problem involves finding the shortest possible path for the 
traveling salesman to visit all cities and return to the starting city.

 iii. The Vehicular Routing Problem: This problem involves determining the 
optimal route for a vehicle that visits several locations, taking into consider‑
ation the constraints, e.g., time windows, vehicle capacity, and related crite‑
ria. Numerous investigations have been carried out to solve this problem.

 iv. The Knapsack Problem: It is a classical optimization problem. In this prob‑
lem, a specific weight of objects is placed in a knapsack (backpack) to maxi‑
mize profit or value. The algorithm is used to solve the knapsack problem 
subject to different constraints. It is a combinatorial problem of selecting 
a subset of items having weights and values to fit into the container with a 
maximum capacity, with the intent to maximize the total value.

13.5.5 adVaNtages of the aco aLgorithm

A few advantages of the ACO algorithm are worth mentioning. These guide us to 
make a suitable choice from the list of available algorithms that will be most effective 
for a given swarm robotic problem.

 i. Availability of a Fast‑Processing Scheme: Optimal solutions for complex 
problems are effectively searched in a shorter time period using the ACO 
algorithm than possible by traditional methods.
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 ii. Pursuit of a Metaheuristic Approach: It is basically a metaheuristic approach 
applied to solve various optimization problems. The metaheuristic feature 
makes it an attractive choice for handling any optimization problem.

 iii. Easy Implementation and Maintenance Capabilities: It is easily imple‑
mentable, maintainable, and refinable with updates. Therefore, it demands 
a comparatively lesser number of iterations to attain convergence in opposi‑
tion to the orthodox complex methods.

 iv. Provision of an Efficient Solution: Good‑quality solutions to optimization 
problems are efficiently determined using the ACO algorithm at a faster 
speed than other algorithms. The appreciably shorter computation time 
required to run the algorithm is a significant benefit of the method.

13.5.6 disadVaNtages of the aco aLgorithm

Knowing about the disadvantages of the algorithm is just as important as learning 
about its advantages, as they inform us about potential sources of errors and situa‑
tions where algorithmic analysis is prone to failure. The prominent drawbacks of the 
ACO algorithm are:

 i. Instability of Algorithm Performance: The algorithm’s performance 
becomes unstable with an increase in problem size. So, it may not pro‑
vide the best solution for larger problem sizes. The hindrance to arriv‑
ing at the best solution occurs when time runs out while trying different 
combinations.

 ii. Dependency on Parameter Fine‑Tuning: Several parameters must be 
fine‑tuned in difficult problems to arrive at optimal results. Then, multiple 
time‑consuming iterations of the algorithm are obligatory.

 iii. Indispensability of a Large‑Scale Memory: Various probabilities are 
involved in the calculation of the next state. Therefore, a large‑scale mem‑
ory storage is necessary to store the data.

13.6 DISCUSSION AND CONCLUSIONS

Swarm robotics, with its small, agile robots, opens up new possibilities owing to its 
scalability, robustness, and parallel processing capabilities. Researchers are develop‑
ing sophisticated, decentralized control algorithms inspired by biological behaviors. 
These algorithms allow swarms to make collective decisions without relying on a 
central leader. They make them more robust to failures and adaptable to changing 
environments. Three ground‑breaking algorithms, the GA, the PSO, and ACO algo‑
rithms, were treated in this chapter. Table 13.1 gives an overview of the discussions 
in Chapter 13. The succeeding chapter will present more swarm robotic algorithms 
to reveal the vast expanse of this field.
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TABLE 13.1
Takeaways from This Chapter at a Glance

Sl. No. Takeaway Explanation

1 Summary Swarm robotics, the coordination of many simple robots to work 
together, is guided by algorithms derived from the observed behaviors 
of natural swarms, including communication, local interactions, and 
emergent intelligence. Three important algorithms in swarm robotics 
were described.

2 GA In the genetic algorithm, a group of robots optimizes their collective 
behavior to solve a problem by drawing inspiration from natural 
selection principles in genetics. The best solutions are evolved through 
processes such as selection, crossover, and mutation.

3 PSO 
algorithm

In the particle swarm optimization algorithm, each individual robot is 
treated as a particle with attributes like position and velocity, and the 
collective movement of all the robots is determined by information 
about their own best previous position and the best position found by 
the entire swarm, allowing them to search for the optimal solution 
collaboratively (similar to how a flock of birds or a school of fish 
behaves in nature) for tasks such as path planning, target tracking, and 
the coordinated movement of multiple robots.

4 ACO 
algorithm

The ant colony optimization algorithm treats the robots as analogous to 
artificial ants. Their navigation is based on the pheromone levels on 
different paths, which are updated based on the quality of previous 
solutions.

5 GA vs. PSO 
vs. ACO

GA is better for solving complex problems with diverse constraints, 
utilizing its crossover and mutation operators, while PSO is favored due 
to its faster convergence. PSO is typically better suited for continuous 
optimization problems where solutions can exist across a range of 
values. At the same time, ACO excels at discrete optimization problems, 
where solutions are selected from a predefined set of options.

6 Keywords 
and ideas to 
remember

Swarm robotics, bio‑inspired algorithms, genetic algorithm, particle 
swarm optimization algorithm, particle representation of robots, fitness 
function, velocity updates, ant colony optimization algorithm; GA, 
PSO, and ACO algorithms
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14 Robotic Swarms
Exploring Additional 
Avenues and Vistas

14.1  INTRODUCTION

In this chapter, we continue our study of swarm robotic algorithms. As we persevere 
in our learning efforts, we consider two well‑known optimization techniques, the 
artificial bee colony (ABC) algorithm (Cui et al. 2022, 2024) and the firefly algo‑
rithm (FA) (Bisen and Kaundal 2020; Wei et al. 2023), used to solve complex prob‑
lems concerned with robot path planning, motion control, and obstacle avoidance. 
These methods make use of swarm intelligence concepts to deal with the problems 
faced in robotics. They can effectively find solutions across a large solution space.

14.2  ABC ALGORITHM

The ABC algorithm is a much sought‑after swarm‑based meta‑heuristic optimization 
algorithm in robotics (Li et al. 2018; Xu et al. 2020). As its name suggests, this algo‑
rithm functions by simulating the activities of honeybees. It is used in searching for 
an optimal numerical solution among a large number of alternatives, such as in plan‑
ning robot paths and solving convoluted robot movement optimization problems. It 
allows the robots to efficiently explore a space to find the solution that addresses the 
given problem expertly in the most effective manner. An eloquent example is finding 
the most optimal route to navigate a labyrinth (Bansal et al. 2013).

We know that the natural activity of honeybees during searching for a food source 
is based on the distribution of sub‑activities among the bees. The sub‑activities are 
related to communication, task allocation, nest site selection, reproduction, mating, 
floral foraging, pheromone deposition, and patterns of bee navigation. All these traits 
of the bees are mimicked in the ABC algorithm. Hence, the ABC algorithm is a 
bio‑inspired swarm intelligence optimization technique prompted by the collective 
foraging behavior of honeybees.

14.2.1 C lassification of Bees into Three Groups

Three types of bees participate in the ABC algorithm, each with a disparate assigned 
role (Zhou et al. 2025).

	 i.	Scout Bees: The scout bees haphazardly look for new food sources when 
one area becomes exhausted of food. These food sources are the potential 
solutions being pursued by bees.
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 ii. Employed Bees: These bees are entrusted with the exploratory labor in 
areas near known food sources, which represent the current robot positions. 
They bring nectar into the hive. They test and evaluate the quality of nectar 
food sources obtained from the scout bees. They also inform the onlooker 
bees about the quality of the nectar source.

Incipiently, the employed bees search for new food sources in response 
to unplanned, sporadic stimuli. A food source is identified as a candidate 
solution. The suitability or fitness of the same is computed. Subsequently, 
suppose a new food source is discovered by these bees as a potential can‑
didate solution. Furthermore, suppose that this food source shows a greater 
suitability than the previous one. In that case, the new source is adopted. 
Otherwise, the new one is rejected.

 iii. Onlooker Bees: These bees are occupied in the evaluation of the quality of 
food sources. They examine the solutions found by employed bees. They 
select the best food sources to conduct further exploration. To this end, the 
onlooker bees obtain the data from the employed bees. The employed bees 
share the fitness information with the onlooker bees. The onlooker bees 
select their food sources based on the probability values derived by calculat‑
ing the ratio of the fitness function of a source to the sum of the fitness func‑
tions of all sources. In the circumstance of a failure of the bees to improve 
the fitness functions of the food sources, their solutions are spurned.

Figure 14.1a shows the two‑way interaction between different categories of bees as 
follows:

Scout and Employed Bees: The scout bees randomly search for food sources, 
and the employed bees assess the quality of food sources obtained from 
scout bees.

Employed and Onlooker Bees: Employed bees share the fitness information 
with onlooker bees, and the onlooker bees evaluate the quality of food 
sources found by employed bees.

Onlooker and Scout Bees: Onlooker bees abandon non‑improved food sources, 
and scout bees find new food sources.

14.2.2 phases of the aBc aLgorithm

It consists of the rudimentary stages mentioned in Figure 14.1b: start, initialization 
phase, set t = 1, employed bee and onlooker bee phases; two decision steps: Is a scout 
bee present in the colony? If YES, go to the scout bee phase leading to the termina‑
tion condition, which is a decision step. If NO, move to checking compliance with the 
termination condition. If YES, seek the best solution and stop. If NO, set t = t + 1 and 
move to the employed bee phase. More details are given below (Nozohour‑leilabady 
and Fazelabdolabadi 2016):
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FIGURE 14.1 The artificial bee colony algorithm: (a) different types of bees and (b) the flowchart of the algorithm.
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14.2.2.1 Initialization Phase
 i. Definition of the Problem Space: The parameters of the problem are laid 

down. Principal parameters to be defined are the starting and ending points 
of the robot, indicating the beginning and conclusion of the robot’s journey; 
the permissible directions of movements of the robot; and the relevant con‑
straints or obstacles likely to be faced by the robot during the course of its 
movements.

 ii. Creation of Initial Robot Population: A set of potential paths for the 
robot movements is randomly generated within the search space of the 
problem. The paths represent sequences of steps taken by the robot to 
reach food sources. Each food source is described by parameters such as 
coordinates and movement directions. Thus, an initial set of solutions is 
created in a random fashion. This randomly distributed set of solutions 
is given by the equation (Karaboga 2010; Yurtkuran and Emel 2016; 
Chaudhary 2023)

 ( )( )= + −x x x xi j j j jRandom number 0,1, minimum, maximum, minimum,  (14.1)

where i = 1, 2, 3, …, SN (SN is the size of solutions, i.e., food sources), j = 1, 
2, 3, …, D (D is the dimension of optimization parameters), xij is the solution 
numbered as ith solution with dimension j, xminimum,j is the lower bound for 
the dimension j and xmaximum,j is the upper bound for the dimension j.

 iii. Assignment of Bee Roles: The bee population is divided into three 
categories:

 a. Employed Bees: These are the bees that are associated with food 
sources.

 b. Onlooker Bees: These consist of bees that are observing the employed 
bees.

 c. Scout Bees: These comprise the bees that are exploring unsystematically.

14.2.2.2 Employed Bee Solution Search Phase
After the initialization of the algorithm, the population of food sources or solutions 
undergoes a series of repeated cycles. The stages in this phase are:

 i. Appraisal of Nectar Amount or Fitness Value: Each employed bee performs 
a local search around its assigned food source. During this search, the nec‑
tar amount or fitness value of the assigned food source is calculated. The 
chief considerations for this calculation are the distance to the target and 
collision avoidance. The metrics used in this calculation are the shortest 
distance and the least collision risk. The quantity of nectar in a food source 
is a reliable indicator of the quality of the corresponding solution.

 ii. Updating to Change Position: Each employed bee slightly modifies its 
parameters, such as the current food source position or robot path, based 
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on its nectar amount or fitness value. This is a means of attempting to 
improve the solution or the path potentially. The new solution is expressed 
as (Karaboga and Basturk 2007a,b)

 φ ( )= −v x x xi j i j i j i j k j+, , ,   , ,  (14.2)

where k = 1, 2, 3, …, SN, and j = 1, 2, 3, …, D. k and j are randomly generated, and k 
must be different from i; and ϕi,j is a random number in the interval [−1,1].

Briefly stated, each employed bee compares the nectar amount or fitness value of 
the new source for any randomly selected solution from the swarm with reference to 
its original value. If the nectar amount of the latest source is higher than that of the 
previous one in its memory, the employed bee memorizes the new position. It forgets 
and ignores the old one. If the new source has a lower nectar amount, the employed 
bee preserves the position of the previous source in its memory.

14.2.2.3 Onlooker Bee Solution Search Phase
The stages in this phase are as follows:

 i. Probability Calculation: The onlooker bees search for solutions probabi‑
listically. A technique known as roulette wheel selection is used. Roulette 
wheel selection, also referred to as fitness proportionate selection, does an 
impersonation of a casino roulette wheel. Here, individuals are assigned 
slices proportional to their fitness. The fitter is an individual, the higher its 
probability of being selected for reproduction.

The onlooker bees conduct their search based on better solutions. A prob‑
ability is calculated for each employed bee to be selected by an onlooker 
bee. This is obtained from the nectar amount or fitness value of each food 
source. Therefore, each solution in the swarm is associated with a selection 
probability calculated by an onlooker bee. This onlooker bee evaluates the 
nectar information taken from all employed bees and calculates a probabil‑
ity related to its nectar amount as (Huang and Chuang 2020)

 

∑
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where fiti denotes the fitness value of solution Xi. The fitness value fiti is 
defined as follows:
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 ( ) ( )= <f X f Xi i ifit 1+ if 0 (14.5)

where f(Xi) represents the objective function value of the decision vector Xi.
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 ii. Selection and Updating of Positions of Food Sources: As in the case of the 
employed bee, the onlooker bee checks the nectar amount of the candidate 
source and produces a modification of the source position in its memory. 
Based on the fitness values, onlooker bees choose food sources with higher 
quality, suggestive of better robot paths, and therefore with higher probabil‑
ity. The onlooker bees perform similar position updates as employed bees, 
further refining the good solutions. Similar to employed bees, the onlooker 
bees perform local search around the selected food sources.

14.2.2.4 Scout Bee Solution Search Phase
The stages under this phase are as follows:

 i. Stagnation Assessment Check: An important control parameter in the ABC 
algorithm is the limit or abandonment criteria. It is stipulated as a predeter‑
mined number of cycles or trials. When a solution cannot be improved after 
reaching this limit, i.e., if the food source or robot path of an employed bee 
does not improve after the permissible number of iterations defined in the 
limit, then that food source or path is treated as stagnant. It is relinquished 
and substituted by a new one in the scout phase. This means that the cor‑
responding employed bee that is assigned to that solution assumes the role 
of a scout bee.

 ii. Random Search by Scout Bee: This freshly produced scout bee is sent to 
randomly explore the search space to find a potentially new promising path, 
and a new food source is generated. All other solutions in the swarm follow 
the same process.

14.2.2.5 Repetition and Updating Food Sources
The steps in Sections 14.2.2.2–14.2.2.4 are repeated. After each phase, the food 
sources are updated based on the best solutions found by the bees. A gradual improve‑
ment of the overall path quality is thereby achieved. Iterations are continued through 
the employed, onlooker, and scout bee phases until a termination condition is met, 
such as reaching a maximum number of iterations or finding a satisfactory solution, 
as mentioned above.

14.2.3 oBjectiVe fuNctioN for guidiNg the Bees iN the aBc aLgorithm

The objective function holds crucial significance in the ABC algorithm because it 
serves as the yardstick that determines the quality of potential solutions to the prob‑
lem, which is represented by the positions of food sources. The objective function is 
used to calculate the fitness or quality of that solution. It allows the bees to compare 
different options offered.

How is the objective function calculation utilized in the algorithm? The ABC 
algorithm uses the objective function values to guide the movement of bees. The 
bees tend to explore areas with better objective function values, which leads them 
toward the optimal solution. The information from the objective function is used 
by the onlooker bees to decide which food sources or solutions to focus on. Food 
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sources with higher quality or better objective function values are prioritized. The 
algorithm frequently reaches a conclusion and halts when the improvement in the 
objective function value becomes negligible, signifying that a near‑optimal solution 
has been found.

14.2.3.1 Objective Function as a Measure of the Robot Swarm Performance
In an ABC algorithm applied to a robot swarm, the objective function represents a 
measure of the proficiency with which the swarm is performing its designated task. 
The measurement of the proficiency is inclusive of operations such as minimizing the 
total distance traveled to reach a target, maximizing coverage area in an exploration 
scenario, or optimizing the collective decision‑making process, depending on the 
specific application. It quantifies the quality of the current configuration or behavior 
of the swarm. Therefore, it provides supervisory recommendations to the algorithm 
for adjusting robot positions and actions to improve the overall performance.

14.2.3.2  Considerations about Choosing the Objective 
Function in a Robot Swarm

Vital considerations to be kept in mind during the selection of the objective function 
in a robot swarm ABC algorithm are:

 i. Foundation of the Objective Function Formula: The specific formula for the 
objective function is directly related to the desired outcome of the swarm. 
Possible outcomes are minimizing the average distance to a target, maxi‑
mizing the number of points covered in a search operation, or balancing 
resource allocation among robots.

 ii. Modeling and Simulation of Collective Swarm Behavior: As each robot 
within the swarm contributes to the overall objective function depending on 
its current position, actions, and sensory data, the algorithm evaluates the 
collective behavior of the swarm, and its values portray the same.

 iii. Assessment of Fitness Score: The objective function bears an analogy to the 
concept of nectar in a bee colony. Its value acts as a fitness score for each 
potential solution or robot configuration. A higher value of the objective 
function for a solution reflects better performance for that solution.

14.2.3.3 Dependence of Objective Functions on Robot Swarm Goals
For a robot swarm using ABC, the objective function is chosen in accordance with 
the goal to be reached:

 i. For Area Coverage Responsibility: Aiming to distribute robots evenly 
across the area, the sum of the distances between each robot and its nearest 
neighbors is taken as the objective function.

 ii. For Target Search Job: Focusing on the target, the minimum distance 
between any robot in the swarm and the target location is preferred as the 
objective function.

 iii. For Task Allocation Duty: Good counseling to the swarm is provided by a com‑
bination of factors like completion time, efficiency, and workload distribution 
among robots. So, the objective function is defined with these issues in mind.
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14.2.3.4  Objective Function for ABC Algorithm Applied 
to Organizing Robot Navigation

In the ABC algorithm applied to robot navigation, the objective function typically 
represents the shortest path distance between the starting point of the robot and its 
goal. At the same time, it considers obstacles and other constraints in the environ‑
ment. So, it smartly aims to minimize this distance to find the optimal path.

Prime features of the objective function in the ABC algorithm for robots are

 i. Emphasis on Minimization of Objective Function Value: The objective 
function is usually designed to be minimized. This statement means that 
the algorithm seeks the path that yields the lowest total distance traveled.

 ii. Incorporation of Path Parameters: The objective function incorporates 
parameters such as the coordinates of locations or landmarks along the 
robot’s path. Then the ABC algorithm works for the adjustment of these 
parameters to optimize the route.

 iii. Penalty Term Inclusion for Obstacle Avoidance: When navigating through 
obstacles, the objective function includes penalty terms for reaching in close 
vicinity of obstacles, encouraging the robot to find a safe path, e.g.,

Objective function for  Distance between consecutive  Penalty value if the robot 

obstacle avoidance points on the path of the robot reaches very close to
an obstacle

= +

 (14.6)

 iv. Multi‑Objective Optimization in Complex Scenarios: The objective func‑
tion takes multiple factors into account. These factors are the travel time, 
energy consumption, or smoothness of the path. As a result, the end task 
becomes the optimization of a multi‑objective problem.

14.2.4 appLicatioNs of the aBc aLgorithm iN roBotics

The ABC algorithm finds applications not only in robot path planning and multi‑robot 
coordination but also in robot arm manipulation. Significant areas where it makes an 
impact are:

 i. Robot Path Planning and Navigation: The ABC algorithm is widely used 
in robotics for robot path planning. It helps in finding the best, optimal, 
or near‑optimal collision‑free routes for robots. Mirroring the eating hab‑
its of honeybees, it navigates through cluttered environments by optimiz‑
ing the sequence of waypoints and movement parameters. It takes factors 
like distance, time taken, obstacles, terrain, and other constraints into 
consideration.
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 ii. Multi‑robot Coordination: The ABC algorithm aids in coordinating the 
movement of multiple robots to achieve a collective goal. These could be 
assigning tasks and optimizing their paths to avoid collisions and maxi‑
mize efficiency. The algorithm is particularly useful in scenarios with 
obstacles.

 iii. Robot Arm Manipulation: The ABC algorithm is used for optimizing the 
trajectory of a robotic arm to precisely reach a target position while circum‑
venting the limits imposed by the joints of the robot and the obstacles on its 
way. This activity of the robot is based on:

 a. Optimization of Joint trajectory: The movement of robot joints is 
adjusted to achieve smooth and efficient motion.

 b. Grasp Planning: The best hand configuration to grasp an object is 
determined.

 c. Object Maneuvering: The movements of the robot are controlled to 
manipulate objects precisely.

 iv. Adaptive Robot Control: The ABC algorithm is applied to dynamically 
adjust the parameters of a robotic control based on changing environmental 
conditions, thereby enhancing its performance in real‑time situations.

14.2.5 adVaNtages of the aBc aLgorithm iN roBotics

The ABC algorithm offers several benefits in robotics. These include its simplicity, 
ease of use, robust exploration skills, the ability to strike a proper equilibrium between 
exploration and exploitation, the capacity to manage intricate, high‑ dimensional 
search spaces, and the capability for fast convergence. These recompenses make it 
suitable for solving various optimization problems. These include robot path plan‑
ning and motion control, particularly when talking about non‑linear or multimodal 
scenarios. The advantages are enumerated below:

 i. Simple in Understanding and Easy in Implementation: The ABC algorithm 
is based on the foraging behavior of bees. It translates to a relatively straight‑
forward concept, making it easier to implement compared to other complex 
optimization methods. The straightforward structure of the ABC algorithm 
with a few parameters makes it easy to integrate into robotic systems.

 ii. Effectiveness of Exploration and Exploitation: The ABC algorithm bal‑
ances exploration (searching new areas of the solution space) and exploita‑
tion (focusing on promising areas and refining favorable solutions) through 
its distinct bee types: employed bees, onlooker bees, and scout bees. This 
balancing allows it to find good solutions in complex environments.

 iii. Capability of Handling Complex Problems: Due to its swarm intelligence 
nature, the ABC algorithm can efficiently tackle multifaceted optimization 
problems with many variables and constraints. It can effectively handle 
multiple constraints in robotic issues, such as joint limits, obstacle avoid‑
ance, and energy consumption. These kinds of problems are common in 
robotic applications.
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 iv. Fast Convergence to a Solution: The ABC algorithm usually converges 
quickly to a near‑optimal solution. The quick convergence is crucial for 
real‑time robotic decision‑making. However, quick convergence sometimes 
evades thorny problems.

 v. Adaptability: The algorithm is easily modified and hybridized with other 
optimization techniques to suit specific needs in robotics.

 vi. Parallelization Potential: The independent behavior of bees allows for par‑
allel processing. The parallelism approach can significantly improve com‑
putation speed in multifarious robotic scenarios.

14.2.6 LimitatioNs of the aBc aLgorithm iN roBotics

When applied to robotics, the ABC algorithm suffers from several limitations, includ‑
ing: slow speed of convergence with increasing problem complexity, vulnerability to 
local optima, poor exploitation ability, and anticipated difficulty in handling com‑
plex, high‑dimensional robotic problems. These shortcomings lead to suboptimal 
solutions and inefficient path planning in real‑time scenarios.

 i. Weakness in Exploitation: ABC excels in exploration. This means it is able 
to search a wide range of solutions but struggles to refine solutions near the 
optimal point. Every so often, it gets stuck in local minima due to its basic 
search mechanism.

 ii. Slow Convergence in Solving Complex Problems: The algorithm requires 
a substantial number of iterations to reach a near‑optimal solution for intri‑
cate problems. The large number of iterations is problematic in time‑critical 
robotic applications.

 iii. Parameter Tuning Sensitivity: The performance of the ABC algorithm is 
sensitive to the selection of appropriate parameters, such as the population 
size and the number of iterations (i.e., the iteration count). It requires careful 
parameter tuning for solving specific robotic problems. A casual approach 
to tuning can severely impact algorithm performance.

 iv. Limited Dimensionality Handling Capability: The standard ABC algorithm 
struggles with high‑dimensional search spaces commonly encountered in 
complex robotic tasks. In these cases, many variables must be optimized 
simultaneously.

 v. Likelihood of Premature Convergence: In certain situations, especially 
when dealing with inexplicable, non‑convex optimization landscapes, the 
ABC algorithm converges too quickly to a local minimum, suboptimal 
solution. The potential for unduly hasty, untimely convergence necessitates 
modifications to enhance exploration.

14.2.7 addressiNg the aBc aLgorithm LimitatioNs

After knowing the limitations of the ABC algorithm, one can devise suitable strat‑
egies to overcome its shortcomings. To cope with these limitations, the principal 
strategies that evolved are:
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 i. Hybrid Approaches: The ABC algorithm is combined with other optimi‑
zation algorithms like the particle swarm optimization (PSO) algorithm. 
This unification of algorithms is beneficial because it enables leveraging 
the strengths of both methods to improve exploration and exploitation 
capabilities.

 ii. Adaptive Parameter Tuning: The algorithm’s parameters are dynamically 
adjusted, taking the search progress into account. The dynamic adjustment 
procedure helps in addressing the sensitivity of the algorithm to the setting 
of parameters.

 iii. Improved Search Operators: The core search equation of the ABC algo‑
rithm is modified with a view to enhancing the exploitation phase and navi‑
gating weird search spaces in a better way.

 iv. Multi‑objective Optimization: It involves the utilization of multi‑objective 
variants of ABC algorithm. This allows handling of multiple competing 
objectives in robotic tasks. Robot path planning is conducted while consid‑
ering factors such as distance, safety, and energy consumption.

14.3 FIREFLY ALGORITHM

Like the algorithms treated in foregoing sections, the FA is a nature‑inspired opti‑
mization technique (Fister et al. 2013; Patle et al. 2017, 2018, 2023). It facsimiles the 
social behavior of fireflies for the coordination and guidance of a group of robots 
toward a desired goal. It helps robots find the best path through a messy and chaotic 
environment by sidestepping obstacles.

In this algorithm, each robot is considered a firefly. Each firefly represents a poten‑
tial solution to the problem. The intensity of light emitted by it indicates the quality 
of that solution. The movements of fireflies are determined by their attraction to each 
other. The attraction depends on the luminous intensity, or brightness, of the fireflies. 
The less bright fireflies move toward the better‑performing brighter ones. So, each 
firefly migrates toward the brighter fireflies in the swarm (Figure 14.2a). Figure 14.2a 
shows a Firefly 1 in its initial state. It has the lowest brightness value. The brightness 
of fireflies increases in the order 1, 2, 3, 4, with Firefly 1 at the minimum and Firefly 
4 at the maximum level. So, the fireflies move in the sequence 1, 2, 3, 4. Firefly 5, 
which is less bright than Firefly 4, is also attracted toward Firefly 4, after which the 
goal state is reached.

Each firefly or robot starts with a random position. At the starting point, it evalu‑
ates the quality of its initial path. The algorithm effectively allows the robots to 
explore and find optimal solutions to complex problems collaboratively. Robot path 
planning, target tracking, and environmental mapping are the types of issues that are 
resolved.

14.3.1 esseNtiaL poiNts aBout the fa

Some vital features and ideas related to the FA warrant the reader’s attention:
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FIGURE 14.2 The firefly algorithm: (a) firefly movements and (b) the algorithm flowchart.
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 i. Origination of Algorithm from Bio‑Inspiration: The algorithm does an 
impersonation of the flashing behavior of fireflies to solve optimization 
problems. A brighter firefly attracts a less brilliant one. The brighter firefly 
represents a robot that is moving toward a better solution, dependent on a 
fitness function correlated to the task at hand.

 ii. Dynamics of Robot Motion: Each robot calculates its fitness value, viz., the 
brightness. Based on the fitness value, it moves toward the brighter robots 
in its proximity. As a consequence, a simulation of the attraction between 
fireflies is performed.

 iii. Exploration and Exploitation: The algorithm balances two activities. These 
activities are exploration and exploitation. Exploration is concerned with 
searching a wide area. Exploitation focuses on promising regions. The bal‑
ancing of activities is done by adjusting parameters such as attractiveness 
and randomness. This process of balancing enables the swarm to stumble 
upon diverse solutions and then converge on the best solution among the 
discovered ones.

14.3.2 importaNt parameters of the fa

Fundamental parameters specific to the FA must be defined. These are as follows:

 i. Brightness Function: It is a mathematical function determining the bright‑
ness of a robot. The brightness depends on the current state of the robot 
or its performance on the given task. The brightness of a robot firefly is 
directly proportional to the intensity of light radiated by it.

Light Intensity: It represents the fitness value of a firefly and governs its 
attractiveness to other fireflies. The light intensity I(x) of a firefly is related 
to the objective function by the equation (Mashhour et al. 2020)

 ( ) ( )∝I x f x  (14.7)

where 𝑓(𝑥) is the value of the objective function.
 ii. Attractiveness Parameter: It controls the strength with which a firefly is 

attracted to other brighter fireflies, i.e., how strongly a robot is attracted 
to a brighter neighboring robot. It is usually measured by a parameter that 
depends on the distance between the robots.

 iii. Randomness Parameter: It introduces random movement of robots to pre‑
vent premature convergence of the algorithm. Hence, the search space is 
explored more effectively.

14.3.3 maiN steps of the fa

The principal steps of the FA in swarm robotics are shown in Figure 14.2b: start, ini‑
tializing a population of fireflies by placing the fireflies at random positions, setting 
t = 1, determining the brightness of each firefly from a fitness function, updating the 
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brightness of fireflies according to their fitness, checking if the prefixed maximum 
number of iterations is reached, if NO setting t = t + 1, iteratively moving each firefly 
toward brighter fireflies in the population, and repeating the process until a suitable 
solution is found. If YES, record the best solution and stop. The algorithmic process 
is essentially a representation of the social behavior of fireflies. In their society, the 
fireflies are attracted to brighter individuals. The attraction of fireflies allows the 
swarm to converge toward an optimal solution. Further specifics about the algorithm 
stages are declared as follows (Banerjee et al. 2022):

 i. Initialization: A random population of fireflies is generated. This popula‑
tion represents potential solutions in the search space. A brightness value is 
assigned to each firefly based on its fitness function. The higher the fitness, 
the brighter the firefly.

Firefly Movement and Attraction: For each firefly:
 a. The distance to every other firefly in the population is calculated.
 b. If another firefly is brighter, the firefly under consideration moves toward 

it based on the distance and brightness difference between fireflies.
 c. From the calculated movement of the current firefly, the position of the 

current firefly is updated.
 ii. Brightness Update: After each movement, the brightness of each firefly is 

re‑evaluated by feeding its updated position and the fitness function.
 iii. Iteration and Termination: The firefly movement and brightness update 

steps are repeated for a predefined number of iterations. The best solution is 
usually the one having the brightest firefly at the end of the iterations.

 iv. Convergence: In order to avoid getting stuck in local optima, the algorithm 
should balance between the activities of exploration (searching a large area) 
and exploitation (focusing on promising regions).

14.3.4 appLicatioNs of fa

Besides robot path planning, the FA helps in target localization and tracking, coop‑
erative exploration and decision‑making in a group of robots, and in many other 
ways.

 i. Robot Path Planning: The algorithm uses fireflies to find optimal routes for 
locomotion of mobile robots in complex environments, taking cognizance 
of the obstacles and terrain variations, and maximizing energy efficiency. 
The robotic navigation is rendered possible by collectively finding the most 
efficient route. As the brighter fireflies represent better paths, each robot is 
attracted to the brightness‑steered best path discovered by other robots in 
the swarm.

 ii. Target Localization and Tracking by Robots: A swarm of robots collabora‑
tively track a moving target. They do so by adjusting their positions based 
on the brightness signal received from the target, i.e., by moving toward 
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brighter signals emitted from the target. In this way, they are collectively 
able to locate a target.

 iii. Cooperative Exploration and Decision‑Making in a Robotic Swarm: A 
robotic swarm collectively makes decisions by simulating firefly behavior. 
The best solution emerges based on the brightness of different alternative 
options. Along these lines, the robots can explore a large area by moving 
toward regions with the highest brightness, which represent the most inter‑
esting features.

 iv. Facilitating Swarm Robotic Jobs: The movements and task allocations of 
multiple robots in a swarm are coordinated to achieve collective goals like 
coverage or exploration

 v. Sensor Deployment and Fusion: Robots collectively build a more accurate 
picture of the environment by sharing information about their brightness 
values indicated by sensor readings. This pictorial representation of the 
environment is used to optimize the placement of sensors in a given area, 
maximizing coverage and efficiency.

 vi. Robot Arm Manipulation: Robot arm trajectories are optimized for carry‑
ing out precise manipulation tasks satisfactorily.

14.3.5 adVaNtages of the fa

The FA offers several advantages in robotics. Among these, the benefits that are 
most worthy of attention include its ability to handle complex, multi‑dimensional 
optimization problems and find near‑optimal solutions in dynamic environments. 
Additionally, it enables efficient path planning, effective multi‑robot coordination, 
and generally provides a good balance between exploration and exploitation. These 
capabilities make the algorithm suitable for multifaceted robotic applications like 
swarm robotics and sensor deployment strategies.

The advantages of the FA in robotics are:

 i. Global Optimization Capability: FA can effectively search for near‑global 
optima in complex problem spaces. This benefit offered by FA is crucial for 
finding optimal robot paths or coordinating a swarm of robots in challeng‑
ing environments.

 ii. Adaptability to Dynamic Environments: The algorithm adapts to chang‑
ing conditions by adjusting the movement of fireflies representing robots 
in response to real‑time information. Flexible path planning in dynamic 
environments can therefore be made.

 iii. Multi‑robot Coordination: The FA can facilitate coordinated movement 
and task allocation among multiple robots in a swarm by simulating the 
attraction behavior of fireflies. This facilitation makes efficient collabora‑
tive behaviors possible.

 iv. Easy Implementation: The FA is relatively simple to implement and under‑
stand. Hence, it can be rapidly prototyped to carry out experiments in 
robotic applications.



278 AI Robotics

 v. Non‑requirement of a Good Initial Solution: FA does not require precise initial 
guesses, unlike some other optimization algorithms. Abdication of guesswork 
makes it suitable for scenarios where the initial state of a robot is uncertain.

 vi. Ability to Handle Complex Constraints: The algorithm is adaptable to 
incorporate various constraints related to robot movement. Examples of 
constraints are obstacle avoidance or energy consumption, while searching 
for optimal solutions.

14.3.6 disadVaNtages of the fa

In robotics, the main disadvantages of the FA include its tendency to get fastened to 
local optima and provide a slow convergence speed. Besides these shortfalls, sensi‑
tivity to parameter tuning and potential for premature convergence hinder its ability 
to find optimal solutions in complex robotic navigation scenarios. The issues are 
especially aggravated when dealing with multimodal problems having multiple solu‑
tions, including one or more global solutions.

The FA disadvantages in robotics are as follows:

 i. Local Optima Trap: The algorithm follows the principle of movement toward 
brighter fireflies. As it progresses, it easily gets stuck in a local optimum. This 
happens whenever a firefly encounters a seemingly better solution at an early 
stage. In such a situation, the exploration of the wider search space is thwarted.

 ii. Slow Convergence of the Algorithm: In certain scenarios, FA makes a large 
number of iterations to reach a satisfactory solution. This slow convergence 
process makes it less efficient for real‑time robotic applications.

 iii. Premature Convergence of the Algorithm: In some cases, the algorithm 
converges too quickly to a suboptimal solution. This is likely especially 
when dealing with high dimensionality or complex environments.

 iv. Parameter Sensitivity: The performance of FA heavily depends on the cor‑
rect selection of parameters like attractiveness and randomness coefficients. 
Such over‑reliance has unfavorable repercussions. Optimization of these 
parameters is often an uphill task in complicated robotic problems.

 v. Limited Exploration Ability: The movement of fireflies is primarily directed 
toward brighter ones. This approach restricts the exploration of diverse 
areas in the search space, often resulting in the missing of better solutions.

14.3.7 possiBLe soLutioNs to mitigate disadVaNtages of fa

Knowledge of the drawbacks of the FA aids in developing methods to alleviate 
the deficiencies. Among these methods, the following are regarded as exigent and 
demanding:

 i. Hybrid approaches: Exploration ability is improved along with the possibil‑
ity to escape from local minima when FA is combined with other optimiza‑
tion algorithms, e.g., genetic algorithms or simulated annealing.
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 ii. Adaptive Parameter Tuning: Mechanisms can be implemented to adjust 
parameters based on the optimization progress dynamically. These adjust‑
ments can enhance the performance of the algorithm.

 iii. Improved Attractiveness Function: The attractiveness function is modified 
to better represent the problem and encourage more varied exploration.

 iv. Algorithm Based on Leader Strategy: The problem of unbalanced explora‑
tion and exploitation, and the insufficient diversity of the algorithm result in 
a firefly search algorithm based on the leader and follower population model 
being proposed (Zhang and Wang 2023).

14.4 DISCUSSION AND CONCLUSIONS

Table 14.1 gives a presentation of the discussions in this chapter in a terse tabular 
format. An important consideration when using the ABC and FAs in robotics is the 
correct formulation of the problem because successful optimization depends on the 
accurate definition of the objective function. No less significant is the incorporation 
of constraints of robot kinematics and dynamics into the optimization process. As 
robotic systems require real‑time decision‑making, a high computational efficiency 
of the algorithm used is yearned for.

TABLE 14.1
Takeaways from This Chapter at a Glance

Sl. No. Takeaway Explanation

1 Summary Two popular swarm intelligence optimization techniques used for robot 
path planning, motion control, obstacle avoidance, and multi‑robot 
control were described, namely, the artificial bee colony (ABC) and the 
firefly algorithm (FA).

2 ABC algorithm The ABC algorithm mimics the foraging behavior of honeybees, where 
bees work in different roles, such as employed, onlooker, and scout 
bees, collaborating to find the best food source. The algorithm 
iteratively updates potential solutions (representing robot movements) 
based on the quality of the food source (fitness function), allowing for 
both exploration (searching new areas) and exploitation (refining good 
solutions).

3 FA The FA is based on the flashing behavior of fireflies, where brighter 
fireflies attract the less bright ones. Each firefly represents a potential 
solution, and the fireflies move toward brighter (better) solutions based 
on their relative brightness, gradually converging toward the optimal 
solution.

4 ABC algorithm 
vs FA

The ABC algorithm is better suited for solving problems that involve 
exploring a large search space, thanks to its diverse bee roles. FA is 
more suitable for solving complex, high‑dimensional problems and 
fine‑tuning solutions due to its attraction mechanism.

5 Keywords and 
ideas to 
remember

Artificial bee colony algorithm; employed bee, onlooker bee, and scout 
bee solution search phases; objective function, firefly algorithm, 
comparison of ABC algorithm, and FA
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Swarm robotics utilizes a variety of algorithms, allowing the robots to coordinate 
and solve entwined tasks by exploring and exploiting search spaces. As a multitude of 
swarm robotic algorithms have come into the limelight and continue to do so (Nayak 
et al. 2020), the discussion of algorithms will be continued in the ensuing chapter.
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15 Robotic Swarms
Expanding Horizons

15.1  INTRODUCTION

This chapter further extends our coverage of swarm robotics, continuing the dis‑
cussion from the previous chapter. Herein, we undertake the study of bacterial for‑
aging optimization (BFO) algorithm (Yang et al. 2014; Majumder et al. 2019) and 
salp swarm algorithm (SSA) (Romeh and Mirjalili 2023; Yang et al. 2024). These 
algorithms are used to determine the optimal paths for robots to navigate through 
complex environments, taking into account obstacles on the route and variations in 
terrain. They escort robots to avoid collisions with obstacles during navigation. The 
algorithms are also utilized in multi‑robot collaboration, facilitating the coordinated 
movement and decision‑making of a team of robots to work cooperatively and com‑
plete challenging tasks. Hence, they are indispensable components in the toolkit of 
robotic algorithms.

Advancing still further in this chapter, a comparative analysis of the various swarm 
robotic algorithms discussed in Chapters 13–15 will be performed. It is predicated 
on the optimality of the path, the complexity of computation, adaptability to various 
environments, real‑time performance, and suitability for specific robotic activities. 
The advantages and disadvantages of the algorithms are emphasized to determine 
the best choice for a particular situation. Comparing the pros and cons of each option 
provides a structured and logical approach to making a decision.

15.2  BFO ALGORITHM

The BFO is a swarm intelligence optimization algorithm. It borrows its root working 
idea from the collective food searching behavior of bacteria like Escherichia coli (E. 
coli) (Guo et al. 2021; Wang et al. 2022). It treats each robot as a bacterium. Bacterial 
actions, such as chemotaxis, reproduction, and elimination‑dispersal, serve as mecha‑
nisms that can be applied to solve robotic problems. In these mechanisms, the bacterium 
moves toward nutrient‑rich areas by swimming and tumbling, eventually falling head 
over heels (Figure 15.1a and b). Figure 15.1a shows an E. coli bacterium moving straight 
in the running mode, while Figure 15.1b shows the bacterium in the clockwise tumbled 
position. The algorithm essentially simulates the process of searching for the best solu‑
tion in a complex problem space. Indeed, it is used to find optimal solutions to Byzantine 
optimization problems across various fields of engineering, data science, and robotics.

15.2.1 E ssential Features of the BFO Algorithm

The four prominent characteristics of the BFO algorithm are (Fiveable 2024):
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 i. Chemotaxis: It concerns the directed movements of cells, organisms, or 
their parts in response to a chemical stimulus. It is the primary behavior of 
bacteria as they move toward a nutrient source. In this behavioral style, the 
bacteria adjust their swimming direction based on the concentration gradi‑
ent of the nutrient. Chemotaxis essentially represents the algorithm’s hunt 
for better solutions.

 ii. Swarming: This occurs when bacteria gather around a high concentration of 
nutrients, representing a local search phase. Here, the algorithm focuses on 
refining promising solutions within a specific area.

 iii. Reproduction: High‑fitness bacteria or good solutions are allowed to repli‑
cate. The propagation of better solutions is thereby proliferated.

 iv. Elimination‑Dispersal: Low‑fitness bacteria or poor solutions are elimi‑
nated from the population. Their stamping out prevents stagnation and 
encourages exploration and investigation of new areas in the search space.

15.2.2 maiN steps of the Bfo aLgorithm

Figure 15.1c depicts the course of actions followed in the execution of the BFO algo‑
rithm. The stages in the BFO algorithm are: start, initialization phase, evaluation of 
the fitness function, beginning and ending of the chemotaxis phase, commencing and 
closing of the reproduction phase, start and end of the elimination‑dispersal phase, 
optimization of values, the best solution phase, and then the algorithm comes to a 
halt. The ends of chemotaxis, reproduction, and elimination‑dispersal phases mark 
decision steps after which further progress is made through self‑examination of the 
status of calculations and, accordingly, determining what to do next. If YES, the 
algorithm moves forward. If NO, it moves back to the step of evaluation of the fitness 
function. The output from the step of optimization of values is fed back to the ini‑
tialization phase. We explore these stages in depth as follows to uncover more details 
(Gan and Xiao 2020):

 i. Initialization: A randomly distributed population of bacteria is dispersed 
within the search space. This random distribution represents the potential 
solutions or fixes to the problem.

 ii. Chemotaxis Phase: Each bacterium moves toward a better solution. During 
movement, a bacterium freely adjusts its position based on the fitness func‑
tion. A mechanism of tumbling or randomly changing direction acts as a 
means of escaping precarious episodes. It helps to avoid situations in which 
the bacterium becomes immobilized in local optima.

 iii. Reproduction Phase: Bacteria with higher fitness values are allowed to 
replicate. By replication, new bacteria are created, possessing similar 
characteristics.

 iv. Elimination‑Dispersal Phase: Bacteria with low fitness are eliminated from 
the population. In reciprocation, new bacteria are randomly introduced into 
the population to maintain diversity and heterogeneity.
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FIGURE 15.1 The swarm robotic algorithm enthused by the mechanisms of the natural process of bacterial foraging optimization: (a) running mode 
of the bacterium, (b) tumbling mode of the bacterium, and (c) the algorithm.
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15.2.3 appLicatioNs of the Bfo aLgorithm

The BFO algorithm finds applications in swarm robotics primarily for efficient allo‑
cation of tasks that require decision‑making in a decentralized manner with a dis‑
persed approach, and coordinated movements among a group of robots. It capitalizes 
on the natural bacterial properties to optimize collective behavior, such as area cov‑
erage, path planning, and resource search, within a swarm environment.

 i. Area Coverage by Robots: The BFO algorithm effectively distributes robots 
across a given area by simulating the bacteria’s chemotaxis behavior. Each 
robot navigates toward nutrients, representing target points. Vigilance is 
maintained to avoid collisions and optimize coverage efficiency.

 ii. Robot Path Planning: The BFO algorithm is used to plan optimal paths 
for individual robots within a swarm to navigate complex environments by 
simulating the movements of bacteria toward food sources. The bacteria 
move by avoiding obstacles to reach the targeted destinations efficiently.

 iii. Resource Search by Robots: The BFO algorithm guides robots to search 
different areas based on chemical gradients representing resource concen‑
trations. Faster and more comprehensive search operations are rendered 
possible by this algorithm in scenarios where a swarm needs to locate dis‑
seminated and scattered resources.

 iv. Task Allocation to Robots: Robots dynamically adapt their roles within the 
swarm by adjusting the reproduction and elimination steps in the BFO algo‑
rithm. These steps are designed for allocating tasks based on their current 
position, capabilities, and environmental conditions.

 v. Robot Swarm Coordination: The decentralized nature of BFO allows each 
robot to make local decisions. The decision made by a robot is based on 
its immediate entourage or neighborhood. The robot’s decision facilitates 
emergent behaviors, such as the aggregation of the swarm, its splitting, and 
re‑grouping when needed.

15.2.4 adVaNtages of the Bfo aLgorithm

Calling attention to the benefits of the BFO algorithm, mention may be made of:

 i. Easy Comprehension and Implementation: The basic BFO algorithm is 
relatively simple to understand in principle and easy to apply in practice. 
These favorable features make it suitable for real‑time applications on robot 
swarms.

 ii. Effective for Complex Optimization Issues: The BFO algorithm offers 
diverse search mechanisms. Therefore, it is capable of handling problems 
with multiple local optima.

 iii. Good Balance between Exploration and Exploitation: The tumbling behav‑
ior in chemotaxis allows for exploration of the search space. At the same 
time, focus on refining promising solutions is maintained.
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 iv. Global Search Capability: BFO effectively explores a large search space. 
This ability of the BFO algorithm ensures that the swarm can find optimal 
solutions even in complex and tangled environments.

 v. Environmental Adaptability: The BFO algorithm can adapt to dynamic 
environments and changing task requirements. This adaptation is achieved 
by adjusting parameters like the size of the chemotaxis step.

 vi. Parallel Processing: The independent behavior of individual bacteria or 
robots allows for efficient parallel processing. Parallel operation is crucial 
for robotic large‑scale swarm systems.

15.2.5 LimitatioNs of the Bfo aLgorithm

The BFO algorithm has several limitations, primarily its slow convergence speed and 
susceptibility to becoming trapped in local optima due to a fixed chemotactic step 
size. Difficulty is experienced in balancing exploration with exploitation. Exploration 
is trying new things. Exploitation is utilizing what is known. Potentially weak con‑
nections between bacteria incite suboptimal solutions. Such limitations hamper its 
efficacy in real‑time robotic applications. In these cases, making a fast and accurate 
decision is a mandatory requirement.

 i. Fixed Step Size: The standard BFO algorithm uses a constant chemotaxis 
step size. The constant size of the step is the cause of the algorithm’s poor 
performance in complex environments. In such situations, different levels of 
exploration are required, depending on the circumstances. The action will 
vary with the specific context.

 ii. Local Optima Trapping: Due to the fixed step size, the BFO algorithm read‑
ily gets trapped in local optima. When so trapped, it delivers a suboptimal 
solution instead of the global best solution.

 iii. Slow Convergence of the Algorithm: In certain scenarios, the BFO algo‑
rithm takes a long time to reach a satisfactory solution. The slow con‑
vergence makes it less appropriate for real‑time robotic applications that 
require rapid response.

 iv. Need for Algorithm Parameter Tuning: For specific robotic problems, it has 
been found that optimizing the parameters of the BFO algorithm, such as 
the chemotaxis step size and reproduction rate, becomes difficult, requiring 
precise execution, and thus needs to be carefully performed.

 v. Limited Applicability of the Algorithm: The BFO algorithm is not the best 
choice, especially when dealing with highly dynamic or unpredictable situ‑
ations, which depend on the task and environmental complexity.

15.2.6 poteNtiaL soLutioNs to address the Bfo aLgorithm LimitatioNs

Several alternative methodologies are suggested to deal with the limitations of the 
BFO algorithm:
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 i. Making Chemotaxis Self‑Adaptive: A self‑adaptive chemotaxis step size is 
adopted. The size of the step is adjusted based on the search process. This 
adjustment improves exploration and exploitation capabilities.

 ii. Hybrid Approaches: The BFO algorithm is often combined with other opti‑
mization algorithms, such as evolutionary algorithms. This combination 
helps in overcoming its limitations. Furthermore, it offers improved perfor‑
mance in specific robotic tasks.

 iii. Improvement in Population Diversity: Strategies to maintain population 
diversity prevent premature convergence of the algorithm and improve the 
search process. Introduction of random perturbations and incorporation of 
diversity measures are examples of such strategies.

15.3 SALP SWARM ALGORITHM

From the foraging behavior of bacteria, we transition to the swarming behavior of 
salps moving in a chain‑like structure. The SSA is a computational optimization 
technique in swarm robotics. It intimately parallels the collective behavior of marine 
creatures called salps to solve optimization problems (Faris et  al. 2019; Houssein 
et al. 2020; Castelli et al. 2022). A group of robotic agents, copying the chain‑like 
formation of salps, work together to solve Gordian problems. The problems are 
solved by iteratively updating the positions of salps based on the position of the 
leader salp. Efficient exploration and exploitation of the search space can therefore 
be made within a given environment. It is time and again used for path planning and 
organizing coordinated movement in robotic swarms.

15.3.1 saLieNt poiNts aBout the ssa aLgorithm

Before proceeding further, a few words are in order regarding the biological inspira‑
tion, search mechanism, and suitability for application of the SSA algorithm.

 (i) Biological Inspiration: Salps are known to form chain‑like formations while 
swimming (Figure 15.2a and b). Figure 15.2a shows the leader salp, while 
Figure 15.2b shows the follower salp; the leader salp is drawn with thick 
lines to distinguish it from the follower salp, made in thin lines. The basis 
for the algorithm structure is a single leader guiding the group. This leader 
salp directs the movement of the other follower salps. The primary objective 
is to identify the source of food within the search space. Figure 15.2c shows 
a salp chain with the leader salp (thick lines) in the front reaching near the 
food, and several follower salps (thin lines) behind it forming a circular ring.

 (ii) Search Mechanism: It utilizes a balance between exploration and exploi‑
tation. A wormhole mechanism is employed; a wormhole is a theoretical 
passageway connecting two points in spacetime. Salps move in different 
directions depending on their positions in the chain.

 (iii) Application Suitability: It is especially helpful for solving complicated 
optimization problems involving high dimensionality owing to its diverse 
search capabilities.
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15.3.2 maiN steps of the ssa aLgorithm

The steps of this algorithm are shown in Figure  15.2d. The stages in the salp 
algorithm are: start, initialization of the robot population, calculation and sort‑
ing of fitness values, setting the food fitness value and food position as the best 
parameters, updating the iteration parameter, leader and follower salp positions, 
followed by exploration versus exploitation. If the stopping condition is reached, 
the best salp is obtained and the process stops. Otherwise, the process goes back 
to the stage of sorting fitness values. The algorithmic procedures are clarified 
below (Hegazy et al. 2020):

 i. Initialization of Robot Population: Each robot in the swarm is initialized 
as a salp. To get started, it is assigned a random position within the search 
space.

 ii. Fitness Value Calculation and Sorting: The fitness value of the initial salp 
population is determined. The fitness values obtained are sorted.

 iii. Setting the Food Fitness and Position: The food fitness is set as the best salp 
fitness. The food position is considered the optimal salp position.

 iv. Iteration Parameter Update: The iteration parameter represents the current 
number of cycles or loops that the algorithm has undergone during the opti‑
mization process. This number is updated.

 v. Leader Update: The leader salp position is updated. The updating is based 
on the best solution found so far, attracting the other salps toward the opti‑
mal area.

 vi. Follower Update: The follower salps update their positions by following the 
movement of the salp in front of them. Hence, the chain‑like structure of 
salps is maintained.

 vii. Exploration vs. Exploitation: The algorithm dynamically balances between 
searching an extensive area (exploration) against concentrating on promis‑
ing regions (exploitation). Balancing is achieved by adjusting the parameters 
based on the progress of the iteration.

15.3.3 appLicatioNs of the ssa aLgorithm

Apart from its use in robot path planning, and cooperative manipulation, the SSA 
algorithm is also useful for the optimized placement of sensors in a network.

 i. Robot Path Planning: The SSA algorithm optimizes the route for efficient 
movement and collision avoidance of robots. It thus helps a group of robots 
to navigate through a baffling and convoluted environment. In order to opti‑
mize the search for food sources in a distributed robot system, the SSA 
algorithm simulates the foraging behavior of salps.

 ii. Cooperative Manipulation: Multiple robots are coordinated to manipulate 
an object collaboratively. For this purpose, a chain‑like formation is utilized 
to maintain stability and adjust positions.
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 iii. Sensor Network Deployment: The placement of sensors in a network is 
optimized to achieve maximization of coverage area and minimization of 
energy consumption.

15.3.4 adVaNtages of the ssa aLgorithm

Special characteristics of the SSA algorithm can be beneficially exploited to get 
meaningful results in swarm robotics.

 i. Simplicity of the Basic Algorithm Concept. Conceptually, the SSA algo‑
rithm is relatively easy to understand. Putting the concept into practice also 
requires minimal effort.

 ii. Flexibility of the Algorithm: The algorithm is adaptable to different swarm 
robotics tasks. The parameters of the algorithm are varied, and additional 
constraints are incorporated to facilitate adaptation.

 iii. Global Search Capability: Salps form chain‑like structures called aggre‑
gates. The chains comprise many identical salps. This structure allows for 
efficient exploration of a large search space.

15.3.5 LimitatioNs of the ssa aLgorithm

To prevent failures during the application of the algorithm and minimize the likeli‑
hood of obtaining erratic results, the limitations of the SSA algorithm must not be 
overlooked.

 i. Parameter Tuning: The performance of the SSA algorithm is sensitive to 
parameter values. Careful tuning of parameters is essential for specific 
applications.

 ii. Potential for Local Optima: In certain scenarios, the algorithm gets stuck in 
a local optimum. This happens when it is not properly designed.

15.4 COMPARISON OF GA WITH PSO ALGORITHM

From this section onward, we attempt to make a series of comparisons among the 
swarm robotic algorithms that we have discussed so far (Warnakulasooriya and 
Segev 2025). Comparison is a powerful learning technique that can be leveraged to 
discover a new breadth of view and develop a correlational vocabulary. By making 
comparisons, one can acquire a better overall view of the entire landscape of these 
algorithms. Comparisons encourage analysis of information and bring to the fore‑
front the subtleties and nuanced differences among algorithms. They foster critical 
thinking, thereby preparing us to make the most suitable choices compatible with the 
needs and priorities of the situation, while also providing a clear, cogent, and articu‑
late explanation for the decisions made.

We start by comparing Genetic Algorithm (GA) with the PSO algorithm (Wihartiko 
et al. 2018). Both GA and PSO algorithm are population‑based optimization algorithms. 
The key difference between them lies in their approach to exploring the search space. 
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GA relies more on survival of the fittest through crossover and mutation operations. 
The PSO algorithm mimics the collective behavior of a swarm. In the PSO algorithm, 
the individuals adjust their movements based on their own best position and the best 
position in the swarm. The PSO algorithm generally leads to faster convergence but is 
potentially more prone to getting stuck in local optima compared to GA. GA is better 
for complex problems with diverse solutions. The PSO algorithm is more suitable for 
faster convergence in continuous optimization problems. Table 15.1 presents a com‑
parison between the GA and the PSO algorithm with respect to specific points.

15.5 COMPARISON OF PSO, ABC, AND ACO ALGORITHMS

When comparing PSO, artificial bee colony (ABC), and ant colony optimization 
(ACO) algorithms, the significant difference lies in their inspiration from natural 

TABLE 15.1
Genetic Algorithm and PSO Algorithm

Sl. No.

Specific Feature/
Aspect 

Considered Genetic Algorithm PSO Algorithm

1 Evolutionary 
inspiration

GA draws inspiration from 
biological evolution, utilizing 
concepts such as selection, 
crossover, and mutation to 
generate new solutions.

The PSO algorithm is based on the 
collective behavior of bird flocks or 
fish schools.

2 Exploration vs. 
exploitation

GA generally has a stronger 
exploration capability due to its 
diverse genetic operations. The 
stronger exploration capability 
allows it to search a wider 
range of solutions.

PSO tends to focus more on 
exploitation. Although it rapidly 
converges toward a solution, it 
potentially gets stuck in a local 
optimum.

3 Complexity in 
implementation

GA can sometimes be 
considered more complex to 
implement due to the need to 
design appropriate crossover 
and mutation operators.

The PSO algorithm typically has a 
simpler structure with fewer 
parameters to adjust.

4 Suitable situations 
in which 
particular 
algorithms are 
preferred

GA is used in situations where:
 (i) A large, complex search 

space with diverse solutions 
is to be explored

 (ii) The problem involves 
discrete variables or 
constraints.

 (iii) Premature convergence to a 
local optimum is desired to 
be avoided.

PSO is used in cases where:
 (i) A fast convergence to a solution 

and high computational efficiency 
are needed.

 (ii) There are continuous variables 
and a well‑defined search space 
in the problem.

 (iii) A simple implementation with 
fewer tunable parameters is 
desirable.
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phenomena: PSO mimics bird flocking behavior, ABC simulates honeybee forag‑
ing, and ACO models the foraging patterns of ant colonies (Selvi and Umarani 2010; 
Arora et al. 2023). Each algorithm has distinct strengths and weaknesses in various 
optimization scenarios. Generally, the PSO algorithm is better for continuous opti‑
mization problems. The ACO algorithm excels in combinatorial optimization tasks 
due to its path‑building nature. The ABC algorithm is effective in both domains, 
depending on the complexity of the problem.

The differences among these algorithms are pointed out in the context of their 
search mechanisms, strengths, weaknesses, and applications, as outlined in Table 15.2.

15.6 COMPARISON OF FIREFLY, ABC, AND ACO ALGORITHMS

When comparing firefly, ABC, and ACO algorithms, it is found that the main differ‑
ences lie in their biological inspiration: The Firefly algorithm (FA) shadows the flash‑
ing behavior of fireflies. Brighter fireflies attract less bright ones. The ABC algorithm 
simulates the foraging behavior of honeybees. The ACO algorithm models the way 
ants find food using pheromone trails (Lazarowska 2023). Each algorithm has its own 
lustiness and frailty depending on the optimization problem at hand. The comparisons 
among the three algorithms are made in Table 15.3 with reference to the mechanism of 
movement of individuals, strengths/weaknesses, and from an all‑inclusive viewpoint.

15.7 COMPARISON OF BFO, ABC, AND ACO ALGORITHMS

BFO, ABC, and ACO are all swarm intelligence algorithms, but they differ in their 
ways of drawing inspiration from nature. The BFO algorithm takes the lesson from 
bacteria searching for food. The ABC algorithm simulates the foraging behavior of 
honeybees. The ACO algorithm replicates the pathfinding behavior of ants. Distinct 
propitious and unpropitious aspects are observed in their optimization approaches.

The important differences are brought out in Table 15.4.

15.8 COMPARISON OF FIREFLY AND BFO ALGORITHMS

Both the firefly and BFO algorithms are swarm intelligence algorithms that are used 
to control robot swarms. Both these algorithms gain insight from different biolog‑
ical behaviors. Generally, the FA is more suitable for swarm robotic tasks where 
precise localization and coordinated movement are given a high priority. The BFO 
algorithm excels in handling dynamic environments with uncertain conditions. Its 
ability to adapt and explore a wider search space effectively is beneficial in these cir‑
cumstances. Distinct favorable and unfavorable traits of these algorithms are noticed 
depending on the intended application.

The differences between these algorithms are given in Table 15.5.

15.9 COMPARISON OF SSA, ABC, AND ACO ALGORITHMS

All three algorithms are swarm intelligence algorithms used for optimization prob‑
lems. They differ in the stimulus for encouragement they receive from nature. The 
salp algorithm follows the movement of salps in the ocean. The ABC algorithm 
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TABLE 15.2
PSO, ABC, and ACO Algorithms

Sl. No.

Specific Feature/
Aspect 

Considered PSO Algorithm ABC Algorithm ACO Algorithm

1 Basic search 
mechanisms of the 
algorithms

The particles update their positions by 
considering their own best position and 
the best position discovered by the swarm, 
adjusting their velocities accordingly to 
navigate toward the optimal solution 
within the search space.

The food sources are updated 
based on the quality of their 
nectar or the fitness function.

The ants probabilistically choose paths. The 
path selection is based on pheromone levels. 
The best paths accumulate more pheromone.

2 Advantages and 
strengths of 
algorithms

Easy in implementation, fast in 
convergence, and performs well in 
continuous optimization problems.

Effective in solving complex 
problems, balancing 
exploration and exploitation.

Excellent for combinatorial optimization 
problems, and capable of finding near‑optimal 
solutions in complex constraint scenarios.

3 Disadvantages and 
weaknesses of 
algorithms

The algorithm becomes trapped in local 
optima, necessitating careful parameter 
tuning to solve complex problems.

The algorithm is slower than 
other algorithms for certain 
problems. Also, it is sensitive 
to the selection of parameters.

The algorithm has a low efficiency for solving 
high‑dimensional problems. It gets stuck in 
suboptimal solutions if the pheromone update 
is not properly managed.

4 Typical application 
examples of 
algorithms

Processing of images, optimization of 
engineering designs, optimization of 
functions.

Clustering of data, scheduling 
problems, and selection of 
features.

Traveling Salesman Problem, Route 
Optimization, and Resource Allocation.
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TABLE 15.3
Firefly, ABC, and ACO Algorithms

Sl. No.

Specific Feature/
Aspect 

Considered Firefly Algorithm ABC Algorithm ACO Algorithm

1 Movement 
mechanisms of 
individuals

Individual fireflies move toward brighter 
or better solutions. The strength of 
attraction between individuals decreases 
as the distance between them increases.

Bees explore the search space. They update 
their positions based on the quality of their 
current food source.

Ants update pheromone levels on 
potential paths. The pheromone levels 
influence the probability that other ants 
will choose those paths.

2 Advantages and 
strengths of 
algorithms

Problems with complex search spaces are 
easily solved due to the attraction 
mechanism, which serves as the basis of 
the algorithm. The algorithm can also 
handle continuous optimization problems 
well.

The algorithm is efficient in local search. 
Additionally, it is able to balance 
exploration and exploitation, leveraging its 
diverse bee types.

The algorithm is effective in finding 
optimal paths in graph‑based problems. 
Combinatorial optimization issues are 
efficiently handled.

3 Disadvantages and 
weaknesses of 
algorithms

The algorithm gets stuck in local optima 
whenever parameter tuning lacks 
optimality.

The algorithm is sensitive to the selection of 
parameters. It may not perform well in 
high‑dimensional spaces.

The algorithm suffers from stagnation if 
the pheromone updates are not carefully 
managed.

4 Overall comparison 
of algorithms

For problems requiring global exploration 
with a focus on finding better solutions 
based on attractiveness, like feature 
selection, the firefly algorithm is a good 
choice.

For problems with well‑defined local search 
requirements, where exploitation of good 
solutions is crucial, the ABC algorithm is 
more suitable.

If a problem involves finding optimal 
paths in a graph structure, the ACO 
algorithm is preferable.
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TABLE 15.4
BFO, ABC, and ACO Algorithms

Sl. No.

Specific Feature/
Aspect 

Considered BFO Algorithm ABC Algorithm ACO Algorithm

1 Search 
mechanisms of 
algorithms

This algorithm utilizes chemotaxis, a 
process by which cells move in a 
directed manner toward a chemical 
gradient. Occasional random 
perturbations occur to prevent 
stagnation.

This algorithm employs a combination 
of local search, performed by 
employed bees, and global search, 
carried out by onlooker bees, with 
scout bees responsible for diversifying 
the search space.

It iteratively updates pheromone levels on 
potential solutions. The updating of 
pheromone levels guides subsequent ants 
to follow better paths, benefiting from 
the accumulated pheromone strength.

2 Advantages and 
strengths of 
algorithms

This algorithm is effective in solving 
problems with complex search 
spaces. Its diverse local search 
mechanisms and ability to escape 
local optima are helpful in these 
situations.

This algorithm strikes a good balance 
between exploration and exploitation. 
The distinct roles of bee types serve 
as a blessing in this regard. It 
performs correctly in multimodal 
optimization problems.

It demonstrates efficiency in handling 
combinatorial optimization problems, 
such as routing. In routing problems, the 
graph structure is well‑defined. 
Therefore, a good solution quality is 
achieved with a relatively simple 
implementation.

3 Disadvantages and 
weaknesses of 
algorithms

This algorithm is sensitive to 
parameter tuning. So, a careful 
adjustment of parameters is 
necessary for specific problems.

This algorithm suffers from premature 
convergence if not properly managed. 
High‑dimensional problems are 
afflicted by such difficulties.

It gets stuck in local optima if pheromone 
updates are not carefully designed. 
Large‑scale problems experience this 
setback.

4 Summary The BFO algorithm displays strength 
in its ability to explore diverse areas 
of the search space.

The ABC algorithm excels at balancing 
local and global search.

The ACO algorithm is suited for 
graph‑based optimization problems. In 
these problems, the path selection is a 
crucial activity.
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simulates the behavior of honeybees looking for food. The ACO algorithm mirrors 
the pathfinding procedure of ant colonies. Distinct optimism and pessimism are seen 
when applying these algorithms in different scenarios. Generally, the SSA algorithm 
is better for complex, high‑dimensional problems. Its diverse search strategy is the 
main cause for this superiority. The ABC algorithm is effective in facing problems 
with well‑defined search spaces. The ACO algorithm outshines other algorithms in 
finding optimal paths in graph‑based problems.

The chief differences among these algorithms are listed in Table 15.6.

15.10 DISCUSSION AND CONCLUSIONS

Progress in BFO and salp swarm robotic algorithms was reviewed in this chap‑
ter. Table 15.7 presents a brief sum‑up of Chapter 15. In swarm robotics, several 
robots are organized for search and rescue missions. Each robot in the swarm 
has its own sensing, processing, and communication capabilities. Coordination 
of a large number of tasks among robots engaged in teamwork demands efficient 
multi‑robot task allocation or MRTA methods (Khamis et al. 2015; Chakraa et al. 
2023). Several challenges are posed by real‑life MRTA applications, e.g., simulat‑
ing fleets of robots in a congested shopping center (Surma et al. 2021). Disaster 
response, environment monitoring, and reconnaissance operations deserve special 
mention. These challenges are encountered in the form of dynamically occur‑
ring tasks that have deadlines. Robots with payload capacity and ferry range con‑
straints are involved. Such combinatorial optimization problems have been solved 
by several approaches (Park et al. 2022).

TABLE 15.5
Firefly and BFO Algorithms

Sl. No.
Specific Feature/

Aspect Considered Firefly Algorithm BFO Algorithm

1 Advantages and 
strengths of 
algorithms

It is efficient in finding 
local optima due to the 
attraction mechanism 
built into this algorithm. 
It performs well in tasks 
requiring precise 
coordination and 
movement patterns.

It works well in dynamic 
environments where changing 
conditions need to be 
addressed. It is capable of 
exploring a wider search space. 
Its random movement and 
chemotaxis behavior help in this 
exploration.

2 Applications of 
algorithms

Planning of path, 
avoidance of obstacles, 
localization of target, 
and aggregation of 
swarm.

Problems of optimization in 
complex environments, 
deployment of sensor networks, 
and dynamic task allocation.
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TABLE 15.6
The SSA, ABC, and ACO Algorithms

Sl. No.

Specific 
Feature/
Aspect 

Considered SSA Algorithm ABC Algorithm ACO Algorithm

1 Inspiration of 
algorithms

This algorithm is created by closely 
watching the movement patterns 
of salps in the ocean. It applies 
their chain‑like formations during 
navigation and foraging.

This algorithm is developed by copying 
the foraging behavior of honeybees. The 
roles played by employed bees, onlooker 
bees, and scout bees contribute to the 
common aim.

It moves in the way ants communicate through 
pheromone trails to find the shortest path to a 
food source.

2 Search 
mechanisms 
of algorithms

This algorithm utilizes a balance 
between exploration and 
exploitation through a wormhole 
mechanism. The salps move in 
different directions depending on 
their position in the chain.

This algorithm employs a combination of 
local search, using employed bees, and 
global search, via onlooker bees, to 
explore the solution space. Local and 
global searches unite to form an efficient 
search strategy.

The ants iteratively update pheromone levels on 
potential paths. By such updating, valuable 
guidance is provided to subsequent ants, leading 
to better solutions and preventing the wastage of 
time in further efforts required to find the path if 
it has not been previously decided and marked 
with pheromone by predecessor ants.

3 Application 
suitability of 
algorithms

It is particularly useful for solving 
complex optimization problems 
with high dimensionality. Its 
diverse search capabilities are 
beneficially utilized to address 
these cases.

It is well suited for dealing with problems 
having clearly defined search spaces. 
Also, it is befitting to tackle issues where 
balancing between exploration and 
exploitation is compulsory.

It is commonly used for solving path planning 
problems. When dealing with graphs and 
network optimization, it supersedes other 
algorithms in many respects.



298
A

I R
o

b
o

tics

TABLE 15.7
Takeaways from This Chapter at a Glance

Sl. No. Takeaway Explanation

1 Summary This chapter described the bacterial foraging optimization (BFO) and salp swarm algorithm (SSA) used in 
robotic path planning and navigation. Detailed comparisons were made among the GA and PSO algorithms; 
the PSO, ABC, and ACO algorithms; the firefly, ABC, and ACO algorithms; the BFO, ABC, and ACO 
algorithms; the firefly and BFO algorithms; and the SSA, ABC, and ACO algorithms.

2 BFO algorithm The BFO algorithm mimics the foraging behavior of E. coli bacteria, including chemotaxis (movement toward 
nutrients), swarming (clustering around food sources), and a reproduction, elimination, and dispersal 
mechanism. A population of virtual bacteria navigates the search space, updating their positions based on local 
information about the nutrient (the optimal solution) and adjusting their movement according to chemotaxis, 
swarming, and reproduction steps.

3 Salp algorithm The SSA is motivated by the schooling behavior of salps, where individuals follow a leader and maintain a 
certain distance from each other while moving in a coordinated manner. A population of salps is represented as 
points in the search space, with a leader salp guiding the movement of the others. The salps update their 
positions based on a balance between exploration (random movement) and exploitation (moving toward the 
best solution found so far).

4 BFO vs Salp 
algorithm

The BFO algorithm tends to excel in exploration due to its random movement during chemotaxis and dispersal 
phases, while SSA strikes a good balance between exploration and exploitation by adjusting the influence of 
the leader salp. The BFO is relatively simpler to implement, while SSA requires more fine‑tuning of 
parameters due to its leader‑follower structure.

5 Keywords and 
ideas to 
remember

Bacterial foraging optimization algorithm, salp swarm algorithm, comparison of genetic algorithm and PSO 
algorithm; PSO, ABC, and ACO algorithms; firefly, ABC, and ACO algorithms; BFO, ABC, and ACO 
algorithms; firefly and BFO algorithms; SSA, ABC, and ACO algorithms.
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The Robotic Rescue Team

The robotic team
Is held in high esteem
On accomplishing the rescue scheme
Very dreadful it may have seemed
But when the distressed screamed
Robots brought a hopeful gleam
Miraculous, real, and supreme.

Although the swarm robotic technology has a promising future, it must be ardently 
and categorically declared that the technology is relatively new and there is ample 
scope for improvement before it is widely accepted and becomes commonplace in 
solving practical, real‑life problems. The technology is considered to be in its infancy. 
Currently, most swarm robotic demonstrations are limited to controlled laboratory 
conditions. Moreover, the research work is primarily focused on developing founda‑
tional concepts. In this early childhood stage of the technology, the design of control 
algorithms and suitable hardware platforms for swarm robots is a hot topic. The 
technical hurdles that need to be addressed include managing interactions among 
a large number of robots, ensuring decentralized decision‑making, and overcoming 
the uncertainties of the environment. The development of AI techniques, particularly 
distributed learning algorithms in AI, which require limited computation and can 
operate with CPUs and AI‑optimized processors in small, reasonably priced robots, 
will enable robot swarms to gradually increase their autonomy (Dorigo et al. 2021). 
An emerging field of interest concerns swarms of flying robots. This burgeoning 
field offers unique capabilities, including aerial mobility, rapid maneuverability, and 
the ability to cover large areas quickly, thereby providing advantages such as afford‑
ability, multitasking, scalability, resilience, and flexibility (Alqudsi 2024; Alqudsi 
and Makaraci 2025).

Welcoming the Era of AI Robotics

Robots working in labor‑intensive jobs, robots working in hazardous 
conditions

Robots guiding vehicles on roads and assisting doctors in critical 
surgical operations

Affable, cordial, and well‑behaved robots are working everywhere
To look after human security and welfare
Robots working side‑by‑side with humans
With the enthusiasm of a mechanical acumen
To evolve a happy robot‑cum‑man society
Filled with joy and gaiety
Let’s unify manly and robot efforts
To bring a new quality of life and comforts
Robots are good friends, sharing emotions
In moments of stress and commotion
Welcome to the age of Robotics and AI
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Gazing from the horizon in the blue, expansive blue sky
Let our thoughts fly into dreams and soar high
And think of a beautiful, peaceful earth
Drenched in merriment and mirth!
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Appendix
Interactive Mini Glossary of 
AI Algorithms and Related 
Terms for Robotics in 
Question–Answer Format

AlexNet: It is a deep learning algorithm. What specifically does it represent? It is 
a convolutional neural network architecture. What is the purpose of this 
architectural design? It is designed for image recognition and classification. 
What are the applications of AlexNet in robotics? It is utilized in robotics 
for object detection, scene understanding, and autonomous navigation. It is 
also used to guide robotic arms in picking objects or performing complex 
manipulations.

Ant Colony Optimization: It is a pathfinding algorithm inspired by the foraging 
behavior of ants. What is its use in robotics? It is a popular choice for robot 
path planning. How does it work? In this algorithm, the robots find optimal 
paths by simulating pheromone trails. Is the algorithm adaptable? Yes, the 
algorithm is adaptable to dynamic environments. For adaptation, phero‑
mone levels are updated based on the current state of the environment.

Artificial Bee Colony: It is a swarm intelligence optimization technique. How many 
types of bees are differentiated in this technique? In this technique, three 
types of artificial bees—employed, onlooker, and scout—are used to search 
for food sources. How do the bees find the best path? The bees communi‑
cate their findings to other bees to find the best path. How is the method 
applied in robotics? The technique is particularly effective for robot path 
planning. It optimizes both the robot’s path length and the smoothness of 
the path. It is also used for multi‑robot path planning, ensuring their colli‑
sion‑free movement.

Artificial Potential Field Algorithm: It is a path‑planning technique. How is the 
robot’s environment simulated? The robot’s environment is simulated as a 
potential field. How does the algorithm guide the robot? It guides a robot 
toward a goal by an attraction‑repulsion mechanism, attracting it toward the 
goal and repelling it away from obstacles.

A* Search Algorithm: It is a pathfinding algorithm used to find the shortest path 
between two points in a graph. Are obstacles and constraints considered? 
Yes, the barriers and limitations on the robot’s path are duly taken into con‑
sideration. What special tool does the algorithm use? The algorithm works 
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by leveraging a heuristic function to estimate the cost of reaching the goal 
from any given node.

Backpropagation: It is a core component of neural networks. Where is it used in 
robotics? It is used to train robots to learn and make decisions. How does 
the robot learn? The robot learns by adjusting network weights to minimize 
errors between the predicted and actual outputs.

Bacterial Foraging Optimization: It is an algorithm designed to solve optimization 
problems. What are these problems? These problems include robot path 
planning, obstacle avoidance, and the coordination of a swarm of robots. 
What does the algorithm do? The algorithm enables robots to search for 
optimal solutions in dynamic environments efficiently. What natural phe‑
nomenon does the algorithm mimic? It operates by mimicking the foraging 
behavior of E. coli bacteria.

Bayesian Inference: It is a statistical method that utilizes Bayes’ theorem as the 
guiding principle for operation. How is Bayes’ theorem applied? Bayes’ 
theorem is used to update the probability of a hypothesis or belief by com‑
bining prior knowledge with new sensor data received from the robot. The 
probability updating yields an estimate of the posterior probability, which 
represents the updated belief about the robot’s state. In what ways does 
Bayesian inference help robots? Bayesian inference allows robots to learn, 
adapt, and perform tasks in changing environments.

Branch‑and‑Bound Scheme: It is a general algorithm design paradigm. What is it 
used for? It is used for solving discrete or combinatorial optimization prob‑
lems. How does it operate? Its operation is based on the systematic explo‑
ration of a tree of candidate solutions. As it progresses, it prunes branches 
that cannot contain the optimal solution. For pruning the branches, it uses 
bounds, namely the upper and lower estimates. Thereby, it reduces the 
search space. The reduction of the search space improves the efficiency of 
finding the optimal solution.

Bug Algorithms: These are a class of simple, sensor‑based path‑planning techniques. 
How are they exploited in robotics? They are applied by robots for navigat‑
ing unknown environments. By using these algorithms, the robots can move 
in an organized manner without needing a map of the environment. What 
are the principal measurements and data on which robots depend? For 
their motion, the robots rely on sensor measurements for guidance. Local 
sensor data, such as contact or range sensors, are used by robots to deter‑
mine their positions and the presence of obstacles.

CNN: It is an artificial neural network for analyzing visual data. In what fields does 
it give excellent performance? It excels at recognizing patterns and features 
in images. What are the main tasks at which CNN is highly skilled, and 
where are its capabilities used in robotics? Three primary image‑related 
tasks are expertly handled by it: object detection, image classification, and 
scene understanding. Due to these beneficial features, it is used in robotics 
for obstacle avoidance based on real‑time camera images, enabling robots 
to navigate and plan their paths.

Convolutional Neural Network: See CNN.
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Decision Tree: It is a supervised machine learning technique. Where does the name 
‘decision tree’ come from? The name ‘decision tree’ originates from its 
tree‑like structure. What are the parts of the decision tree? The tree has a 
root node, internal nodes, branches, and leaf nodes. What are the functions 
of the different parts of the decision tree? Each internal node of the tree 
represents a test carried out on an attribute. Each branch represents the out‑
come of the test. Each leaf node represents the final outcome or prediction. 
What types of tasks is the decision tree used for? The decision tree is used 
by robots for executing both classification and regression tasks. It enables 
robots to classify situations or predict actions. Classification predicts cat‑
egories. Regression predicts continuous values.

Dijkstra’s Algorithm: It is a pathfinding algorithm used in robot navigation. What 
does the algorithm give to robots? It provides them with efficient and col‑
lision‑free path planning. How is the pathfinding implemented? The path‑
finding is done by transforming the robot’s environment into a graph. The 
shortest path between two points is easily found once a graph is drawn.

Firefly Algorithm: It is an optimization algorithm used in robotics for path plan‑
ning. How are the robots represented in this algorithm? In this algorithm, 
the robots are described as fireflies. What rule do the robot fireflies follow, 
and what do they achieve? The less bright robot fireflies move toward the 
brighter ones. Following this brightness rule, the robot fireflies move toward 
brighter or better locations in the environment to establish a suitable path.

Generalized Voronoi Diagram: It is a roadmap that provides a comprehensive global 
overview of the robot’s environment. What does a global overview show? 
The global overview shows all possible paths in an environment containing 
obstacles. How is the depiction of paths helpful? An inspection of all feasi‑
ble paths facilitates efficient path planning by robots. They can focus on the 
free space or areas of maximum clearance from obstacles. What other facil‑
ities and services does the generalized Voronoi diagram provide? Besides 
path planning, the Voronoi diagram enables stealthy navigation. The robots 
move surreptitiously, minimizing their visibility. The generalized Voronoi 
diagram is also used for surveillance and area coverage.

Genetic Algorithm: It is a type of evolutionary algorithm that simulates the biologi‑
cal process of natural selection to find optimal solutions to problems. How 
does it find optimal solutions to problems, such as robot path planning? It 
finds optimal solutions by simulating this natural selection process. How 
does the algorithm work? The algorithm operates by iteratively evolving 
a population of potential solutions, known as chromosomes. It advances 
through selection, crossover, and mutation, always aiming for the fittest 
individuals.

Hidden Markov Model: It is a probabilistic model. In this model, the observed 
data are generated by a sequence of hidden states. What is meant by hidden 
states? The hidden states refer to the robot’s position or environmental con‑
ditions, as determined by its sensors. These hidden states are inferred based 
on the observed data. In what ways does the hidden Markov model assist 
robots? The hidden Markov model enables a robot to estimate its position 
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or location in an unknown environment based on the sensor readings it has 
acquired.

Image‑of‑Interest Detection: It is an algorithm that uses computer vision tech‑
niques. What is its main purpose? Its purpose is to identify and locate spe‑
cific objects or regions of interest within images or videos. What does it 
do for robots? It enables robots to understand their surroundings. Hence, 
robots navigate, manipulate objects, and perform tasks that require visual 
perception.

ISODATA: It is an algorithm to find compact clusters. How does it work? It works 
by grouping data points into clusters based on similarity. During operation, 
it iteratively updates cluster representatives. The updating is based on the 
mean of the vectors assigned to each cluster. How is data clustering utilized 
in robotics? In robotics, this clustering technique is used for object recogni‑
tion, scene segmentation, and data analysis.

k‑Means Clustering: It is an unsupervised machine learning algorithm. What is it 
used for? It is used to partition a given dataset into k clusters. What is the 
basic partitioning approach of the algorithm? The approach for partition‑
ing involves minimizing the sum of squared distances between each data 
point and its assigned centroid. What does the symbol k in this algorithm 
stand for? The symbol k represents a user‑defined parameter, denoting the 
desired number of clusters. What is the relevance of the algorithm in robot‑
ics? In robotics, it groups similar data points, such as robot locations or 
sensor readings, into clusters. Thus, it facilitates the coordinated movement 
of a group of robots.

NAS: It is an automated approach to designing efficient and high‑performing neu‑
ral network architectures. What is its specialty? It represents a departure 
from the manual, trial‑and‑error approach. It leverages learning algorithms 
and deep learning techniques to find optimal architectures without manual 
intervention. How is the use of the NAS approach beneficial? Using NAS 
can lead to the discovery of architectures that outperform hand‑crafted 
designs. How are the designs evaluated? The designs are evaluated in terms 
of performance, efficiency, and resource utilization.

Neural Architecture Search: See NAS.
Neural Networks: These are algorithms inspired by the functioning of the human 

brain. What is the unique feature of these algorithms? Their exceptional 
feature is the ability of learning and making predictions from data. What 
role do these algorithms play in robotics? These algorithms enable robots 
to perceive and understand their environment using techniques such as 
computer vision. They allow robots to make autonomous decisions based 
on learned patterns and real‑time data. In this way, they aid in developing 
sophisticated control systems for robot movement. These include robot path 
planning and manipulation.

Particle Swarm Optimization: It is a population‑based stochastic algorithm. What 
natural phenomenon does this algorithm impersonate? It mimics the 
social behavior of birds flocking or fish schooling. How is the solution to 
a problem found? Each potential solution to the problem is represented as 
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a particle with a certain velocity. Particles move through the search space, 
updating their velocity and position. The update is based on two criteria: 
their own best position and the best position of the swarm. The global opti‑
mum is found by iteratively updating the positions of the particles. Where is 
this algorithm applied in robotics? The algorithm is used to find the optimal 
path for robots in a given environment. It is also used to optimize various 
aspects of robot behavior, including task allocation and resource manage‑
ment. Furthermore, it is used for target tracking where robots need to find 
and track specific objects or locations. It is particularly well‑suited for coor‑
dinating the behavior of multiple robots in a swarm to achieve a common 
goal.

PID Algorithm: It is a feedback control mechanism. How does this mechanism oper‑
ate? It operates within a closed‑loop system to regulate the robotic system’s 
output. It works by continuously adjusting a control variable based on the 
error between the desired set point and the actual value. During this work, 
it utilizes the proportional, integral, and derivative terms. The proportional 
(P) term responds to the current error. The integral (I) term accounts for 
accumulated error over time. The derivative (D) term responds to the rate 
of change of the error. Where are PID controllers used in robotics? PID 
controllers are used to control the speed, position, and orientation of robotic 
arms, wheels, and other actuators, enabling motion control. They are also 
used to maintain a robot’s path, speed, and heading, enabling autonomous 
navigation. Another use of PID controllers is to control the force exerted by 
a robotic gripper or other actuators during manipulation. A further use of 
these controllers is to maintain a specific temperature in a robotic system 
for temperature control.

PNAS: It is a method for automatically designing convolutional neural networks. 
What is its functional approach? It works by sequentially searching the 
space of cell structures in a step‑by‑step manner. In the course of work, it 
optimizes cell structures. These structures are the building blocks of larger 
networks. This approach begins with simple models and progresses to more 
complex ones. It often leads to the discovery of CNN architectures that 
outperform those designed manually.

Probabilistic Roadmap: It is a path‑planning technique for robots. What is its gov‑
erning principle? It constructs a graph of possible paths by randomly sam‑
pling nodes in free space and connecting them. Thus, it enables efficient 
pathfinding between a start and goal configuration while avoiding obstacles. 
It starts by randomly sampling points or nodes within the robot’s free space 
(sampling). In this space, the robot can move without colliding. Then the 
algorithm determines if a robot can move safely and smoothly between them 
(connectivity). If two nodes are connected, an edge or connection is created 
between them, forming a roadmap through graph construction. Then, the 
algorithm can efficiently find paths between a start and goal configuration 
by searching the graph, a process known as pathfinding.

Progressive Neural Architecture Search: See PNAS.
Proportional‑Integral‑Derivative Algorithm: See PID algorithm.
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Rapidly Exploring Random Tree Algorithm: It is a probabilistic motion planning 
algorithm. What is its basic working principle? The algorithm works by 
iteratively expanding a tree of possible paths from a starting point, known 
as the root of the tree. Then it iteratively generates random samples (points) 
within the search space. For each new sample, the algorithm identifies the 
nearest node in the existing tree, called the nearest neighbor. A new node 
is added to the tree and connected to the closest neighbor. Thereby, the tree 
is effectively extended toward the randomly sampled point (tree extension). 
The process continues until the tree reaches the goal or a desired number 
of iterations are completed. At this point, a path is extracted from the tree 
by tracing back from the goal to the starting point. This process is known 
as pathfinding. RRT handles obstacles by ensuring that the tree nodes 
and paths do not collide with obstacles (obstacle avoidance). How is this 
algorithm used in robotics? It is used in robotics for finding paths through 
complex, high‑dimensional spaces. It is particularly suitable for spaces 
with obstacles and non‑holonomic constraints. Such constraints restrict the 
velocities of a system, rather than its positions. They are not integrable into 
the position constraint.

R‑CNN: It is a type of machine learning model. What are its primary features? 
R‑CNN excels at identifying and localizing objects within images or videos. 
It leverages the power of CNNs, which are adept at extracting features from 
visual data. What special technique does R‑CNN use? The R‑CNN uses a 
method called region proposals to identify potential object regions in an 
image. Once these regions are proposed, CNNs extract features from them. 
These features are then used to classify the objects within those regions. 
R‑CNN also refines the bounding boxes around the detected objects. Thus, 
it ensures accurate localization of objects. What are the uses of R‑CNN?: 
It is used for object detection and localization in computer vision. It is used 
in robotics for object recognition and scene understanding. R‑CNNs are 
utilized in self‑driving cars for object detection and lane‑keeping purposes. 
Warehouses or hospitals use R‑CNNs to identify and pick up objects. In 
industrial automation, R‑CNNs are used for quality control and inspection 
tasks in manufacturing.

Region‑Based Convolutional Neural Network: See R‑CNN.
Salp: It is a population‑based optimization algorithm. What biological phenom‑

enon does it imitate? It mimics the swarming behavior of salps. What 
are salps? The salps are marine organisms that move in chains to forage 
for food. What is the working approach of the algorithm? The algorithm 
employs a leader‑follower approach. The leader salp explores the search 
space, and the follower salps follow the leader’s path. The salps iteratively 
refine their positions to find the optimal solution. What role does this algo‑
rithm play in robotics? The algorithm is used to find optimal paths for 
robot movements in dynamic and complex environments, known as path 
planning. It is used to assign tasks to robots in a multi‑robot system. It is 
also used in optimization engagements to achieve efficiency and optimize 
resource utilization, including task assignment. Another use is to optimize 
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various robotics‑related parameters, such as robot arm movements, sensor 
placement, and control algorithms, in robotics optimization.

Scale‑Invariant Feature Transformation: See SIFT.
Self‑Organizing Map It is a type of artificial neural network. What is its primary 

objective? It helps to visualize and cluster high‑dimensional data. How 
does it function? It functions by mapping the data onto a lower‑dimensional 
grid, typically a 2D grid. During data mapping, relationships between data 
points are preserved. It is a type of unsupervised learning algorithm. How 
is a self‑organizing map utilized in robotics? The algorithm is used to cre‑
ate maps of the environment and assist robots in navigation by identifying 
regions and paths, thereby facilitating navigation and path planning. It clus‑
ters similar objects together, making it easier to identify and classify objects 
in the robot’s environment. This clustering is called object recognition. It 
detects unusual patterns or behaviors in the robot’s sensor data, alerting the 
robot to potential problems through anomaly detection. It helps visualize 
complex sensor data, making it easier for humans to understand the robot’s 
environment and behavior through data visualization.

Semantic Parsing: It is the process of mapping natural language, like spoken or 
written commands, into a formal representation of its meaning. How is this 
representation done, and what is its use? This representation is done in a 
machine‑understandable format. Thus, it allows computers to interpret and 
act upon the meaning of the input. What are the roles of semantic parsing 
in robotics? It facilitates human‑robot interaction, robotic task execution, 
navigation, and manipulation by enabling robots to understand and execute 
human instructions. It thus makes them more intuitive and easier to control. 
Hence, it enables robots to perform tasks based on natural language instruc‑
tions. It helps robots to navigate to specific locations, manipulate objects, or 
perform actions based on natural language commands.

SIFT: It is a powerful algorithm for extracting distinctive features from images. 
What main jobs does it accomplish? It enables robust object recognition and 
matching across different scales, rotations, and partial occlusions. It helps 
robots identify objects in their environment. Identification is possible even 
when objects are viewed from different angles or at varying scales, demon‑
strating object recognition and scale invariance. How is the SIFT algorithm 
applied in robotics? It is used to create maps of an environment and assist 
robots in navigation by recognizing landmarks, enabling robotic mapping 
and navigation. It is used to stitch together multiple images of a scene to 
create a panoramic view, a process known as image stitching. It is used 
to reconstruct 3D models of objects from 2D images, a process called 3D 
modeling.

Simultaneous Localization and Mapping: See SLAM.
SLAM: It is an algorithm that enables a robot to build a map of an unknown environ‑

ment (mapping) while simultaneously determining its own position (loca‑
tion tracking) within that map. What help does mapping and localization 
provide to robots? It enables robots to navigate and interact with unfamiliar 
environments.
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Sliding Window Algorithm: It is an analysis and pattern recognition technique for 
processing streams of data or sequences. How does it function? It func‑
tions by examining the data through a fixed‑size or variable‑size window. 
The window moves across data to find patterns, subarrays, or subsequences 
that meet certain criteria within a larger dataset. For what purposes is the 
algorithm used in robotics? The algorithm is used for performing image 
processing and path mapping in robotics.

Support Vector Machine: It is a supervised machine learning algorithm. What are 
its main uses? It is used for classification and regression tasks. How does 
it perform these tasks? It performs these tasks by finding optimal decision 
boundaries or hyperplanes that maximize the margin between data classes. 
Where is it applied? It is particularly effective for object recognition, path 
planning, and robot control.

Transformer Network: It is a type of neural network architecture that excels at 
processing sequential data, like text or sensor data. It accomplishes the data 
processing by using a mechanism called self‑attention. How do robots use 
transformer networks? Robots utilize transformer networks to comprehend 
and respond to spoken natural language commands, as well as for speech 
generation. These networks enable robots to communicate with humans 
through more intuitive interactions, including speech recognition, genera‑
tion, and natural language processing. They also help predict the optimal 
sequence of actions for a robot to perform a task, based on the current situa‑
tion and goals, facilitating action planning and sequencing. They are applied 
to interpret sensor data (e.g., images, sounds) and understand the surround‑
ings of the robots. In this way, they enable more autonomous navigation and 
manipulation, including perception and understanding of the environment. 
Furthermore, they are used to predict the optimal movements for a robot’s 
arm or other actuators to perform specific tasks, such as grasping an object 
or assembling parts (robotic manipulation).

VCG‑16: It is a convolutional neural network architecture. It works as a powerful 
type of deep learning model used for processing image data. Who devel‑
oped this model? The Visual Geometry Group developed it at the University 
of Oxford. Where is it used in robotics? It is used in robotics for image 
classification, object detection, and feature extraction. How does it perform 
its duties? It does so by leveraging its pretrained capabilities for such tasks.

Vector Field Histogram: It is a real‑time motion planning technique in robot‑
ics. How does it use sensor data? It utilizes range sensor data to compute 
obstacle‑free steering directions, taking into account the robot’s dynamics 
and shape. What is its working principle? It works by creating a polar his‑
togram of obstacle density. The areas devoid of obstacles, called valleys, 
are identified. The valley closest to the target direction is selected. Thus, a 
computationally efficient and robust method is provided for mobile robots to 
navigate and avoid obstacles while moving toward a target.

Velocity Updates: It is the process of adjusting or modifying a robot’s speed and 
direction in response to real‑time information about its environment or task 
requirements. How are velocity updates applied in practice? Sensors and 
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controllers are used to ensure that the robot moves efficiently and safely. 
Velocity updates allow robots to avoid collisions. The robots maintain sta‑
bility, and any accidents are prevented. Thus, the robots adapt to obstacles, 
changes in terrain, and dynamic situations.

Visual Geometry Group‑16: See VGG‑16.
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