m MANNING

Hugging Face in Action

Hugoing Face in Action

WEI-MENG LEE

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

© 2026 Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

& Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book was correct
at press time. The author and publisher do not assume and hereby disclaim any liability to any party for
any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result
from negligence, accident, or any other cause, or from any usage of the information herein.

/l/l Manning Publications Co. Development editor: - Dustin Archibald
20 Baldwin Road Technical editor: Ninoslav Cerkez

PO Box 761 Review editor: Dunja Nikitovi¢

Shelter Island, NY 11964 Production editor: Keri Hales
Copy editor: Keir Simpson
Proofreader: Mike Beady

Technical proofreader: Sidharth Somanathan
Typesetter: Tamara Sveli¢ Sabljic

ISBN 9781633436718
Printed in the United States of America

Cover designer:

Marija Tudor

brief contents

O 00N W N R

10
11
12
13

Introducing Hugging Face 1

Getting started 12

Using Hugging Face transformers and pipelines for NLP tasks 31
Using Hugging Face for computer vision tasks 64

Exploring, tokenizing, and visualizing Hugging Face datasets 94
Fine-tuning pretrained models and working with multimodal

models 121

Creating LLM-based applications using LangChain and

Llamalndex 144

Building LangChain applications visually using Langflow 173
Programming agents 198

Building a web-based Ul using Gradio 229

Building locally running LLM-based applications using GPT4All 258
Using LLMs to query your local data 276

Bridging LLMs to the real world with the Model Context Protocol 304

contents

preface X

acknowledgments Xt

about this book xv

about the author XX

about the cover illustration xx1

Introducing Hugging Face 1

1.1
1.2
1.3
1.4

Hugging Face Transformers library 2
Hugging Face models 3
Hugging Face Gradio Python library 8

Understanding the Hugging Face mental model 10

Step 1: User need 10 = Step 2: Model Hub discovery 10
Step 3: Model card 11 = Step 4: Two execution paths 11
Step 5: Results delivered 11

Getting started 12

2.1

2.2

Downloading Anaconda 13

Creating virtual environments 13 = Starting Jupyter
Notebook 16

Installing the Transformers library 19

Support for GPU 20 = Using GPU in the pipeline object 22

CONTENTS

2.3 Installing the Hugging Face Hub package 23
Downloading files 24 = Using the Hugging Face CLI 27

Using Hugging Face transformers and pipelines for NLP
tasks 31
3.1 Introduction to the transformer architecture 32

Tokenization 34 = Token embeddings 36 = Positional
encoding 39 = Transformer block 40 = Softmax 41

3.2 Working with the Transformers library 41

What are pretrained transformers models? 41 = What are
transformers pipelines? 42 = Using a model directly 44
Using a transformers pipeline 46

3.3 Using transformers for NLP tasks 49

Text classification 49 = Text generation 51 = Text
summarization 52 = Text translation 54 = Zero-shot
classification 56 = Question-answering tasks 61

Using Hugging Face for computer vision tasks 64

4.1 Hugging Face computer vision models 64

4.2 Object detection 65

Using the model divectly 68 = Using the transformers pipeline 74
Binding to a webcam 76

4.3 Image classification 78

4.4 Image segmentation 81
Using the model programmatically 82 = Binding to Gradio 85

4.5 Video classification 88

Installing the prerequisites 89 = Downloading the videos for
testing 90 = Using the transformers pipeline object 91

Exploring, tokenizing, and visualizing Hugging Face
datasets 94

5.1 Whatare Hugging Face datasets? 95
Getting the list of datasets available 96 = Validating the
availability of a dataset 99 = Downloading a dataset 100
Shuffling a dataset 103 = Streaming a dataset 104
Getting the Parquet files of a dataset 105

viii

CONTENTS

5.2 Tokenizationin NLP 107
Types of tokenization methods 107 = ‘Tokenizing datasets 109

5.3 Visualizing datasets 112

Using the twitter-financial-news-topic dataset 112 = Using the
CIFAR-10 dataset 115

Fine-tuning pretrained models and working with multimodal
models 121

6.1 Fine-tuning pretrained models 122

Loading the yelp_polarity dataset 122 = Filtering the
yelp_polarity dataset 123 = Tokenizing the reduced dataset 125
Setting up a pretrained model for sequence classification 125
Configuring and initializing a trainer for fine-tuning a pretrained
model 127 = Using the fine-tuned model 129 = Fine-tuning
models for multiclass text classification 131

6.2 Working with multimodal models 136
Single-modal models 136 = Multimodal models 140

Creating LLM-based applications using LangChain and
Llamalndex 144

7.1 Introducing LLMs 145

7.2 Introducing LangChain 147

Installing LangChain 147 = Creating a prompt template 147
Specifying an LLM 148 = Creating an LLM chain 150
Running the chain 151 = Maintaining a conversation 151
Using the RunnableWithMessageHistory class 152 = Using
other LLMs 157

7.3 Connecting LLMs to your private data using
Llamalndex 160

Installing the packages 161 = Preparing the documents 161
Loading the documents 161 = Using an embedding model 162
Indexing the document 163 = Loading the embeddings 163
Using an LLM for querying 164 = Asking questions 165
Using Llamalndex with OpenAl 165 = Creating a web frontend

Jorthe app 166 = Holding a conversation 168 = Creating
a chatbot Ul 168

CONTENTS ix

Building LangChain applications visually using Langflow 173
8.1 Whatis Langflow? 174
Installing Langflow using the pip command 174 = Installing

Langflow using Docker 175 = Running Langflow in the
cloud 176

8.2 Creating a new Langflow project 178

Adding a Prompt component 180 = Adding a Models
component 182 = Adding a Chains component 183 = Adding
Chat Input and Chat Output components 184 = lesting the
project 185 = Maintaining a conversation using the Chat
Memory component 186

8.3 Asking questions on your own data 187

Loading PDF documents using the File component 188
Splitting long text into smaller chunks using the Parse Data
component 189 = Getting questions using the Prompt
component 189 = Using the Hugginglace component 190
Connecting to the Chat Output component 191 = Testing the
project 191 = Using an LLM with the OpenAl component 192

8.4 Using your project programmatically 192
c¢URL 194 = Python code 195

Programming agents 198
9.1 Whatare agents? 199

9.2 Developing agents using smolagents 200

Using built-in tools: DuckDuckGoSearch’Tool 200 = Using
built-in tools: PythonInterpreterTool 204 = Writing your
own custom tools 206

9.3 Developing agents with LangChain 207
Using the built-in Tool class 208 = Using custom tools 211

9.4 Developing agents using LangGraph 212

What is LangGraph? 213 = LangGraph agent basics 213
Using LangGraph with tools 219 = Using LangGraph with a
custom tool 224 = Using LangGraph with memory 225

CONTENTS

Building a web-based Ul using Gradio 229
10.1 Basics of Gradio 230

Using Gradio’s Interface class 230 = Configuring flagging
options 233 = Configuring authentication 234 = Customizing
the server and port 236 = Sharing your Gradio application 236
Deploying your Gradio application to Hugging Face Spaces 237

10.2 Working with widgets 239

Working with Textbox 239 = Working with Audio 240
Working with Images 242 = Working with selection widgets 247
Layout using the TabbedInterface class 250

10.3 Creating a chatbot Ul 252

Creating the basic chatbot Ul 253 = Wiring the Textbox’s submit
event 254 = Clearing the chatbot 256

Building locally running LLM-based applications using
GPT4All 258

11.1 Introducing GPT4All 259

11.2 Installing GPT4All 259

Installing the GPT4Al application 259 = Installing the gptdall
Python library 264 = Listing all supported models 264
Loading a specific model 266 = Asking a question 267
Binding with Gradio 270

Using LLMs to query your local data 276

12.1 Using GPT4All to query with your own data 277

Installing the required packages 277 = Importing the various
modules from the LangChain package 278 = Loading the PDF
documents 278 = Splitting the text into chunks 280
Embedding 281 = Loading the embeddings 282
Downloading the model 282 = Asking questions 283
Loading multiple documents 284 = Loading CSV files 286
Loading JSON files 289

12.2 Using LLMs to write code to analyze your data 292
Preparing the JSON file 293 = Loading the [SON file 295
Asking the question using the Mistral 7B model 296
Asking questions using OpenAl 299

CONTENTS

Bridging LLM:s to the real world with the Model Context
Protocol 304

13.1 Whatis MCP? 305

The problems MCP solves 305 = Understanding MCP 305
MCP server deployment 308 = Components in an MCP
server 309

13.2 Building an MCP server 310

Installingwv 311 = Initializing the project 311 = Installing
the packages 312 = Creating the MCP server 312 = Inspecting
the MCP server 313 = Implementing Resources 314
Implementing Tools 315 = Implementing a prompt 318
Testing the components 318

13.3 Testing the MCP server using Claude Desktop 324

Configuring Claude Desktop to use the MCP server 324

Getting the weather 325 = Getting the content of a text file 327
Getting the content of a PDF file 328 = Improving the

MCP server 330

13.4 Trying third-party MCP servers 331
Get My Location 331 = mcp-datetime 334

index 338

preface

When I started exploring Hugging Face, I was struck by how accessible and powerful
its tools were. Models that once required specialized knowledge and massive compute
resources were now available to anyone with a laptop and Python. I spent countless
hours experimenting—running pretrained models, fine-tuning them on my own data-
sets, and trying to figure out how to integrate them into real applications. That journey
was exciting, but I quickly realized that learning to use models was only part of the
story. The real challenge—and the real fun—comes from building Al systems that can
act, interact, and solve real-world problems.

This book is the result of that journey. It’s designed to take you from the basics of nav-
igating Hugging Face to building end-to-end Al applications—from natural language
processing (NLP) and computer vision tasks to autonomous agents, interactive web
interfaces, and locally running models. Along the way, I explore advanced concepts
such as multimodal models, LangChain for AI workflows, retrieval-augmented gen-
eration (RAG) for querying documents, and the Model Context Protocol (MCP) for
connecting Al systems to tools and data. My goal is to give you not just code examples
but also a framework for thinking about Al applications—how to design them, extend
them, and make them useful in the real world.

Each chapter is hands-on and practical. You’ll find exercises, examples, and tips
drawn from real projects so you can learn by doing. I hope this book helps you move
beyond experimenting to building intelligent systems that can learn, reason, and inter-
act; I hope it inspires you to explore new possibilities with Al

Whether you're a developer, data scientist, or Al enthusiast, my hope is that this book
becomes a companion on your own journey, helping you turn curiosity into skill, and
skill into impactful applications.

acknowledgments

Writing this book was a journey made possible by the support, guidance, and inspira-
tion of many people. First, I'd like to thank the team at Manning Publications for their
encouragement, patience, and valuable feedback throughout the writing and editing
process.

In particular, I'm grateful to all the Manning staff, especially Dustin Archibald, my
development editor, for his thoughtful guidance and detailed suggestions, and Jona-
than Gennick, my acquisitions editor, for believing in this project and helping bring
it to life. Their support helped shape this book into a practical, hands-on guide that I
hope will be useful to developers and Al enthusiasts alike. Thanks also to the produc-
tion team, whose behind-the-scenes work helped make this book what you see.

I’'m deeply grateful to the Hugging Face community, whose open source contribu-
tions, forums, and resources have been invaluable sources of learning and inspiration.
The work of the developers, researchers, and engineers behind Hugging Face models
and tools made the ideas in this book possible.

Special thanks to friends and students who provided feedback on early drafts, tested
examples, and shared insights from their own experiences. Your questions, challenges,
and curiosity helped refine the explanations and examples in this book.

In addition, thanks to all the reviewers: Abhijeet Rajwade, Ankur Padia, Astha Puri,
Baskar Sikkayan, Bonny Albo, David Yakobovitch, Dhirendra Kumar Choudhary,
Georgerobert Freeman, Giovanni Alzetta, Justin Reiser, Lokeshwar Reddy Vangala,
Madiha Khalid, Manish Jain, Marco Massenzio, Marco Seguri, Michael Bright, Nino-
slav Cerkez, Parmanand Sahu, Paul Silisteanu, Rahul Raja, Ritobrata Ghosh, Robert
Rozploch, Saurabh Aggarwal, Sriram Selvam, Stefano Priola, Steven Edwards, Sub-
hash Chandra Bose Naripeddy, Sukanya Moorthy, Todd Jobson, Vignesh Govindarajan

xiii

ACKNOWLEDGMENTS

Ravichandran, Vikram Kulothungan, Vinod Goje, Vinod Veeramachaneni, and Yilun
Zhang. Your suggestions helped make this book better.

Finally, I want to thank my family for their patience and encouragement. Your sup-
port made the long hours of writing and experimentation not only possible but also
truly enjoyable.

To all of you, this book is a reflection of your inspiration and contributions. Thank
you.

about this book

Artificial intelligence is no longer confined to research labs; it’s becoming a tool that
anyone can use to build intelligent, interactive real-world applications. This book is
your gateway to the Hugging Face ecosystem, guiding you step by step from under-
standing pretrained models to creating fully functional Al applications. You’ll learn
how to harness the power of transformers for NLP; explore computer vision models;
fine-tune models on your own datasets; and even work with multimodal models that
handle text, images, and more.

But this book goes beyond simply using models; it also shows you how to make Al
work for you. You’ll discover how to build autonomous agents that can make decisions,
interact with tools, and retrieve information; create web-based interfaces that allow oth-
ers to experience your Al; run models locally for privacy and speed; and connect Al to
the real world through protocols such as MCP.

With hands-on examples, practical projects, and clear explanations, this book equips
you to move from experimentation to building intelligent end-to-end Al systems—
applications that can learn, adapt, and interact in meaningful ways. By the end of
this book, you won’t just understand Hugging Face; you’ll also have the skills to build
Al-powered solutions that solve real problems, automate tasks, and engage users in
entirely new ways.

Who should read this book

This book is for developers, data scientists, and Al enthusiasts who want to move
beyond simply calling APIs and start building end-to-end Al applications using the
Hugging Face ecosystem and related frameworks. If you're curious about how to use
pretrained models for NLP and computer vision tasks, fine-tune them for your own

Xv

ABOUT THIS BOOK

datasets, or integrate them into real-world applications with interactive Uls, this book
is for you. No deep learning expertise is required, though a working knowledge of
Python will be helpful.

This book is designed for readers with varying levels of expertise in NLP and machine
learning. It caters to both beginners and intermediate practitioners who are interested
in harnessing the capabilities of Hugging Face’s platform. The content covers a wide
range of topics, from using the Transformers library for NLP tasks to performing com-
puter vision tasks such as object detection in images and videos. It also explores build-
ing applications with large language models (LLMs) using LangChain and Langflow.
The target audience includes those who are looking to prototype visually, create LLM-
based chat applications with private data, and build user interfaces using Gradio. Over-
all, this book serves as a comprehensive guide for anyone who wants to use Hugging
Face for diverse NLP and machine learning applications.

Prerequisites

Before you begin, it’s important to ensure that you have the necessary background
knowledge and tools to follow the material covered in this book effectively. The fol-
lowing prerequisites will help you get the most out of this book. You should already
be comfortable with programming in Python and working with essential data-analysis
libraries. In addition, familiarity with Jupyter Notebooks is required because many of
the exercises and demonstrations are conducted in that environment.

Python (intermediate)—

— Fluency with basic Python language constructs

— Familiarity with data structures such as lists, tuples, dictionaries, and sets

— Familiarity with intermediate concepts such as iterables and generators

— Ability to work with various data formats, such as CSV and Microsoft Excel

— Ability to create an independent Python program and run it in Terminal or
Anaconda Prompt

NumPy and pandas (intermediate)—
— Experience using NumPy’s array to manipulate data

— Experience using the pandas Series and DataFrame data structures to manip-
ulate structured data

— Familiarity with the various functions and methods in NumPy and pandas
— Basic knowledge of data analytics

Jupyter Notebooks—

— Creating environments in, and starting and loading Jupyter Notebooks

— Ability to save and load Jupyter Notebooks

— Familiarity with Markdown syntax for documentation

— Ability to find documentation for functions and methods within Jupyter
Notebooks

ABOUT THIS BOOK xvii

How this book is organized: A road map

The book is designed as a hands-on, practical guide. Each chapter introduces key con-
cepts and then walks you through examples and code that you can adapt for your own
projects. You’ll begin with the foundations of Hugging Face and progress toward build-
ing full-fledged applications powered by LLMs.

The chapters are structured to be read sequentially, with later chapters building on
earlier ones. If you're already familiar with the basics of Hugging Face, however, you
can jump directly into the sections that interest you, such as fine-tuning models, build-
ing LangChain agents, or creating user interfaces with Gradio. Each chapter is self-
contained, with runnable examples and explanations. By the end of the book, you’ll be

able to do the following:
Use Hugging Face models for NLP and computer vision tasks.
Fine-tune and customize models for your own datasets.
Build applications powered by LLMs using LangChain, Langflow, and
Llamalndex.
Design autonomous Al agents that integrate with tools and services.
Create web interfaces for your models with Gradio.

Run lightweight LLMs locally with GPT4AIL.
Extend your applications to the real world using MCP.

This book will equip you with the knowledge and practical skills to take advantage of
the latest developments in Al, from pretrained models to agentic systems and beyond.
Here is a brief overview of the chapters:

Chapter 1, Introducing Hugging Face—A high-level overview of Hugging Face, its
role in democratizing Al, and the ecosystem of tools it provides

Chapter 2, Getting started—Setting up your environment and learning how to use
Hugging Face resources such as the Hub and model repositories

Chapter 3, Using Hugging Face transformers and pipelines for NLP tasks—Applying
pretrained models to text classification, translation, summarization, and more
Chapter 4, Using Hugging Face for computer vision tasks—Exploring image classifica-
tion, object detection, and other vision tasks using Hugging Face models

Chapter 5, Exploring, tokenizing, and visualizing Hugging Face datasets—ILearning to
prepare, tokenize, and explore datasets for NLP and computer vision tasks
Chapter 6, Fine-tuning pretrained models and working with multimodal models—Train-
ing models on your own data and experimenting with models that handle multi-
ple input types, such as text and images

Chapter 7, Creating LLM-based applications using LangChain and Llamalndex—
Building applications that augment LLMs with tools, memory, and data retrieval

ABOUT THIS BOOK

Chapter 8, Building LangChain applications visually using Langflow—Designing
and deploying Al workflows without writing code, using a visual programming
interface

Chapter 9, Programming agents—Exploring agent-based architectures in which
models make autonomous decisions and interact with external tools

Chapter 10, Building a web-based UI using Gradio—Creating user-friendly interfaces
to showcase and interact with your Al models

Chapter 11, Building locally running LLM-based applications using GPT4All—
Running lightweight, open-source LLMs on your own machine without relying
on the cloud

Chapter 12, Using LLMs to query your local data—Applying RAG to answer questions
about your files, databases, and knowledge bases

Chapter 13, Bridging LLMs to the real world with the Model Context Protocol—
Connecting LLLMs with real-world tools, APIs, and services for more practical and
integrated applications

What’s required to use this book

To follow along, you’ll need

A computer with Python 3.11 or later installed

Access to the internet for downloading models and datasets and using Hugging
Face Hub

(Optional) A GPU for training and fine-tuning tasks, though most examples can
be run on a CPU or in cloud-hosted environments such as Google Colab

About the code

This book contains many examples of source code both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes, code is also in bold to highlight
changes from previous steps in the chapter, such as when a new feature adds to an
existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the book.
In rare cases, even this was not enough, and listings include line-continuation markers
(*). Additionally, comments in the source code were removed from the listings when
the code is described in the text. Code annotations accompany many of the listings,
highlighting important concepts.

You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/hugging-face-in-action. The complete
code for the examples in the book is available for download on the Manning website at
https://www.manning.com/books/hugging-face-in-action and on GitHub at https://
github.com/weimenglee.

https://livebook.manning.com/book/hugging-face-in-action
https://www.manning.com/books/hugging-face-in-action
https://github.com/weimenglee
https://github.com/weimenglee

ABOUT THIS BOOK Xix

liveBook discussion forum

Purchase of Hugging Face in Action includes free access to liveBook, Manning’s online
reading platform. Using liveBook’s exclusive discussion features, you can attach com-
ments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the
author and other users. To access the forum, go to https://livebook.manning.com/
book/hugging-face-in-action/discussion. You can also learn more about Manning’s
forums and the rules of conduct at https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where meaningful dia-
logue between individual readers and between readers and authors can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions lest his interest stray! The forum and the
archives of previous discussions will be accessible on the publisher’s website as long as
the book is in print.

https://livebook.manning.com/book/hugging-face-in-action/discussion
https://livebook.manning.com/book/hugging-face-in-action/discussion
https://livebook.manning.com/discussion

about the author

WEI-MENG LEE is a technologist and the founder of
Developer Learning Solutions (http://calender.learn2
develop.net), a company specializing in helping com-
panies adopt the latest I'T technologies. Wei-Meng pro-
vides consultancy services to companies on adopting
blockchain and Al solutions for their businesses.

http://calender.learn2develop.net
http://calender.learn2develop.net

about the cover tllustration

The caption for the illustration on the cover of Hugging Face in Action is “Chiosgchi,
musicien, turc jouant du Chiosq,” or “Turkish drummer,” taken from an album of
Turkish costumes in the British Museum collection.

In those days, it was easy to identify where people lived and what their trade or station
in life was by their dress alone. Manning celebrates the inventiveness and initiative of
the computer business with book covers based on the rich diversity of regional culture
centuries ago, brought back to life by pictures from collections such as this one.

Introducing
Hugoing Face

This chapter covers

What Hugging Face is known for

The Hugging Face Transformers library

The various models hosted by Hugging Face
The Gradio library

Hugging Face is an Al community that promotes the building, training, and
deployment of open source machine learning models. It has state-of-the-art mod-
els designed for different problem domains, such as natural language processing
(NLP) tasks, computer vision tasks, and audio tasks. Besides providing tools for
machine learning, Hugging Face provides a platform for hosting pretrained models
and datasets. With Al at its peak, Hugging Face is at the epicenter of the Al revolu-
tion because

It unleashes a new wave of applications that capitalizes on the large amount of
data available.

Many complementary technologies are being developed, such as prototyping
tools for large learning model (LLM)-based applications.

1.1

CHAPTER 1 Introducing Hugging Face

Instead of focusing on the fundamentals (such as building neural networks
from scratch or learning machine learning algorithms), developers can focus on
building Al-based apps to solve their problems immediately. Al is now a tool that
developers can use directly rather than having to build it from scratch.

Hugging Face’s philosophy is to promote open source contributions. It is the
hub of open source models for NLP, computer vision, and other fields in which
Al plays vital roles.

This book highlights some of the key services and platforms provided by Hugging
Face. You get a glimpse of the kinds of applications we will be building throughout
the book. Hugging Face is best known for its Transformers library for developing NLP
applications, its platform for sharing machine learning models and datasets, Hugging
Face Spaces for hosting user-developed machine learning apps, and the Gradio Python
library for rapid Ul creation. In the next few sections, I introduce some of the features
available through the Hugging Face Hub. Later in this book, I cover advanced topics
such as the following:

Building your own LLM-based applications using the LangChain framework
Visually prototyping your LLM-based application with Langflow

Exploring alternatives to OpenAl’s generative pretrained transformer (GPT)
models, such as GPT4All

Developing LLM-based applications without compromising the privacy of your
data

Creating agents that integrate tools such as search engines and code interpreters

Using the Model Context Protocol (MCP) to connect Al assistants to external
data sources

Hugging Face Transformers library

The Transformers library is a Python package that contains open source implementa-
tions of the Transformer architecture models for text, image, and audio tasks. It
provides APIs for developers to download and use for pretrained models. By using pre-
trained and state-of-the-art models, developers don’t have to spend time and resources
building models from scratch. As an example, consider the following code snippet (I

explain the code in more detail and show you how to install the libraries in chapters 2
and 3):

from transformers import pipeline

classifier = pipeline('text-classification',
model = 'distilbert-base-uncased-finetuned-sst-2-english',
revision = 'af0f99b')

In this code snippet, I use the pipeline() function from the transformers package to
perform a text-classification task. In particular, I want to create an application to detect

1.2

Hugging Face models 3

the sentiments in a particular paragraph of text. The code specifies that I want to use
this model, 'distilbert-base-uncased-finetuned-sst-2-english', and its version,
'af0f99b'. That’s it! I don’t need to know how text classification works; neither do I
need to know how to train a model to perform this task.

In Hugging Face’s Transformers library, a pipeline is a high-level, userfriendly API
that simplifies building and using complex NLP workflows. It makes it easy to perform
asequence of NLP tasks (text classification, named entity recognition, translation, sum-
marization, and so on) with a few lines of code. You will learn more about transformers
and pipelines in chapter 3.

To put this code to the test, I call the pipeline object and pass it a paragraph of text.
The object returns this result:

import pandas as pd

text = '

I thought this was a wonderful way to spend time on a too hot summer
weekend, sitting in the air conditioned theater and watching a
light-hearted comedy. The plot is simplistic, but the dialogue is
witty and the characters are likable (even the well bread suspected
serial killer). While some may be disappointed when they realize

this is not Match Point 2: Risk Addiction, I thought it was proof
that Woody Allen is still fully in control of the style many of us
have grown to love.

This was the most I'd laughed at one
of Woody's comedies in years (dare I say a decade?). While I've never
been impressed with Scarlet Johanson, in this she managed to tone
down her "sexy" image and jumped right into a average, but spirited
young woman.

This may not be the crown jewel of his career
, but it was wittier than "Devil Wears Prada" and more interesting
than "Superman" a great comedy to go see with friends.

result = classifier(text)
pd.DataFrame(result)

This paragraph of text comes from the Internet Movie Data-
base (IMDb) dataset (https://huggingface.co/datasets/
stanfordnlp/imdb), a binary sentiment-analysis dataset 0 POSITIVE 0.99919
consisting of 50,000 reviews from the IMDb website labeled

positive or negative. The result returned by the pipeline Figure 1.1 The result of
object is formatted nicely as a pandas DataFrame (see fig- ~ the sentiment analysis

label score

ure 1.1), which shows that the sentiment is positive.

As you can see from this code snippet, you can perform a relatively complex task of
sentiment analysis in a couple of statements by using the Transformers library and the
pipeline API from Hugging Face.

Hugging Face models

The Hugging Face Hub’s Models page (https://huggingface.co/models; see figure
1.2) hosts many pretrained models for a wide variety of machine learning tasks. All the

https://huggingface.co/datasets/stanfordnlp/imdb
https://huggingface.co/datasets/stanfordnlp/imdb
https://huggingface.co/models

4 CHAPTER 1 Introducing Hugging Face

pretrained models are stored in repositories, and Hugging Face makes exploring the
details of the models easy.

C e M~ < > |)] & huggingface.co e @ M + O
*~ Hugging Face # Models Datasets Spaces Docs w Solutions Pricing [ET3LIM Sign Up
Libraries Datasets Languages Licenses Models 337,45 ter by new Fulltextsearch T4 Sort: Trending

Other

£ microsoft/phi-1_5

Multimodal
Feature Extraction Text-to-Image ** coqui/XTTS-v1
Image-to-Text Text-to-Video

Visual Question Answering @ Deci/DecilM-6b
Document Question Answering Text G it Upd
Graph Machine Learning
= tiivae/falcon-180B
Computer Vision Text Generat Update
Depth Estimation 4 Image Classification
Object Detection B luageSaginintstion 5. stabilityai/stable-diffusion-x1-base-1.0
Image-to-Image

Unconditional Image Generation £ monster-labs/control_vip_sd15_gqrcode_monster

® Video Classification

Zero-Shat Image Classification

~ meta-1lama/Llama-2-7b

Figure 1.2 Exploring the pretrained models hosted at Hugging Face Hub

Many models have a widget that allows you to test them directly by running inferences
in the web browser. To demonstrate, search for a pretrained model named facebook/
detr-resnet-50. This Detection Transformer (DETR) model was trained end-to-end
using the Common Objects in Context (COCO) 2017 object detection dataset (118 KB
annotated images for training and 5 KB images for validation). COCO is a large-scale
object detection, segmentation, and captioning dataset.

You can use the facebook/detr-resnet-50 model to detect objects in an image. You
can read more about this model on Hugging Face’s website at https://huggingface
.co/facebook/detrresnet-50 (see figure 1.3). More important, Hugging Face provides
the Hosted Inference API, which allows you to test the model directly in your web
browser.

The Hosted Inference API enables developers to test and evaluate (for free) more
than 150,000 publicly accessible machine learning models or their own private models
via simple HTTP requests, with the fast inference hosted on Hugging Face’s shared
infrastructure.

https://huggingface.co/facebook/detr-resnet-50
https://huggingface.co/facebook/detr-resnet-50

Hugging Face models 5

/. ee M~ < > 0D © & huggingface.co e ® m -
*~ Hugging Face # Madels Datasets Spaces ' Docs i« Solutions Pricing = Login (LulV
facebook ‘'detr-resnet-50 T O like :
Object Detection & Transformers () PyTorch coco detr vision 3 arcivi2005.12872 @ License: apache-2.0
Model card Files » Community [@ i S Trin - 7 Deploy - <> Use in Transformers

. Edit model card
DETR (End-to-End Object Detection) model with Ay e A
ResNet-50 backbone

DEtection TRansformer (DETR) model trained end-to-end on COCO
2017 object detection (118k annotated images). It was introduced in
the paper End-to-End Object Detection with Transformers by Carion
et al, and first released in this repository.

+ Hosted inference API

5 Object Detection Examples v

Disclaimer: The team releasing DETR did not write a model card for
this model so this model card has been written by the Hugging Face

team.

Model description

The DETR model is an encoder-decoder transformer with a

convolutional backbone. Two heads are added on top of the
decoder outputs in order to perform object detection: a linear layer

for the class labels and a MLP (multi-layer perceptron) for the

bounding boxes. The model uses so-called object queries to detect rabie s

objects in an image. Each object query looks for a particular object _— 0.959
in the image. For COCO, the number of object queries is set to 100, o

zebra L

The model is trained using a "bipartite matching loss": one m— 0.979

compares the predicted classes + bounding boxes of each of the N = -
100 object queries to the ground truth annctations, padded up to ginstts

! JSON Qutput O Maximize

the same length N (so if an image only contains 4 objects, 96
isplay a menu ; .

Figure 1.3 You can test the model directly on Hugging Face Hub using the Hosted Inference API

As an example, I dragged an image (see figure 1.4) to the Hosted Inference API sec-
tion of the page for the facebook/detr-resnet-56 model on the Hugging Face website.
The objects detected in the image are shown automatically, with the level of confi-
dence displayed next to each object’s name.

In addition, you can use this model for your own Python code. To do so, first click
the Use This Model button (see figure 1.5); then, on the menu, click the Transformers
button. In figure 1.6, you see code samples that show how to use the model.

You will learn more about using the Transformers library with various models for
object detection in chapter 4.

CHAPTER 1 Introducing Hugging Face

+ Hosted inference APl

Ep Object Detection Examples v

Computation time on Intel Xeon 3rd Gen Scalable cpu: 1.862 s

0.942
truck

0.964
truck
e 0.938
truck

0.981
truck

0.998
person

0.998
pexson
truck
5 0.963
truck

< 0.998

airplane

0.997
pexson
/> JSON Output Y Maximize

Figure 1.4 Performing object detection using my uploaded image (image: CC BY-SA 3.0)

Hugging Face models
C e M1 -~ & % =, huggingface.ca (i ® th +
v' Hugging Face ¢ Models Datasets Spaces ~ Docs Pricing *= Logln
detr-resnet-50 T ke w0 Follow o AlatMeta 6ok
&5 Object Detection 2 Transformers &) PyTorch %% Safetensors | coco detr vision ariv:2005.12872 &L 2 apache-2.0
Model card Files ocwet 2 Community ED @, Train ~ 7 Deploy ~
Libraries
= . - Downloads last it =
= DETR (End-to-End Object Detection) model with S eesmantl 18 Transformers
ResNet-50 backbone ’ Noteboalks
. <2 Google Colab
DEtection TRansformer (DETR} model trained end-to-end on COCO & Safetensors
. . L - I Kaggle
Y
2017 object detection (118k annotated images). It was introduced Wodel size | 41,66 paranes T
k inthe naner Fod-tn-Fnd Ohiect Detactinn with T formers bu
Figure 1.5 Locating the Use This Model button
') ® ED - G '] & huggingface.co @ [I] = @

</> How to use from the (& /transformers library

from transformers import pipel

pipe =

ine

pipeline("object-detection”, model="facebook/detr-resnet-50")

from transformers import AutoFeatureExtractor, AutoModelForObjectDetection

extractor =
model =

Quick Links

’ Read model documentation
< Read docs on high-level-pipeline

Read our learning resources

AutoFeatureExtractor.from_pretrained("facebook/detr-resne
AutoModelForObjectDetection. from_pretrained("facebook/detr-resnet-50")

50")

Figure 1.6 Using the model with the Transformers library

1.3

CHAPTER 1 Introducing Hugging Face

Hugging Face Gradio Python library

As an Al developer, you spend a lot of time building and training your machine learn-
ing or deep learning models. When your model is trained to your satisfaction, the next
logical step is to let your users try it. Typically, this means building your dedicated Ul
(commonly, a web app) or exposing your models using a REST API, but you have to
spend time building all these user interfaces. Wouldn’t it be nice to have a package
that automatically exposes your model so users can try it quickly? This is where Gradio
comes in.

Gradio is an open source Python library that makes it easy to create customizable
user interfaces for machine learning models and data science workflows. With a few
lines of code, you can wrap your model in a simple web-based interface where users
can upload inputs (such as text, images, or audio) and view the outputs in real time.
It’s widely used for demoing models, collecting user feedback, and building interactive
machine learning applications. Gradio also integrates seamlessly with Hugging Face
Spaces, allowing developers to share their apps with the community.

Gradio was founded by Abubakar Abid, a PhD student at Stanford University, who
was focusing on deep learning applied to medical images and videos. During his stud-
ies, he developed Gradio (https://github.com/gradio-app/gradio), an open source
Python library for creating GUIs for machine learning models. On December 21, 2021,
Hugging Face announced its acquisition of Gradio.

To understand how Gradio works, consider an example. Suppose that you have a
function named transform_image () that accepts an image and returns the same image
in grayscale format:

from skimage.color import rgb2gray

def transform_image(img):
return rgb2gray(img)

To try this function, you must write your own Ul to accept an image from the user;
then, when the image is converted to grayscale, you must display the image to the user.
Gradio greatly simplifies the process: it creates a web-based UI that allows users to drag
and drop an image and then displays the converted image. The following code snippet
shows how Gradio binds to the transform_image () function:

import gradio as gr

demo = gr.Interface(fn = transform_image,
inputs = gr.Image(),
outputs = "image")
demo.launch()

When you run this code, Gradio hosts your code on the local machine and creates a Ul
(see figure 1.7).

https://github.com/gradio-app/gradio

Hugging Face Gradio Python library 9

enve M - [} 127.0.04 ® |i'| + O

A img = output

Drop Image Here
-or- A
Click to Upload

Clear Submit Flag

UseviadPl & - Builtwith Gradic &
\

Figure 1.7 Gradio provides a customizable Ul for your machine learning projects.

Drop an image on the left side of the page, and click the Submit button to send the
image to the transform_image() function. The result is displayed on the right side of
the page. Figure 1.8 shows my image after conversion to grayscale.

[eve B < > 9 120001 & @t + O
= img % 2 eutput
Clear Submit
Flag
Usevia APT & - Built with Gradio &
“ Dsplay & menu J

Figure 1.8 Viewing the result of the converted image

10 CHAPTER 1 Introducing Hugging Face

I'will talk more about Gradio throughout this book. In the upcoming chapters, you will
learn various ways to customize Gradio’s look and feel.

1.4 Understanding the Hugging Face mental model

As you have seen, Hugging Face isn’t just a model repository. It’s also a complete Al
pipeline that systematically moves users from problem to solution.

Think of Hugging Face as the world’s largest Al model library combined with an exe-
cution platform. Every day, millions of developers, researchers, and businesses follow
this basic pattern to go from having an Al problem to getting results.

Figure 1.9 shows a visual mental model of Hugging Face’s core process: taking users
from an Al model to a result. This process happens millions of times daily across the
platform.

Inference API
Serverless inference

POST /models/distilbert...
GPU acceleration

Model Card
« Usage examples
« Performance
metrics
« Training details
« API endpoints
* Download links

User need Model Hub

“I need to Results

{"label":"POSITIVE",
"score":0.9998}

Mission accomplished!

text as analysis
positive or Finds: distilbert-
negative.” base-uncased

Download
Git LFS repository

Download | Model weights + config
Local execution

Figure 1.9 A visual mental model showing Hugging Face’s core process

In the following sections, I explain the mental process a user follows to solve a problem
with Hugging Face.

14.1 Step 1: User need

Everything starts with a specific problem. A developer sits at their computer thinking,
“I need to classify this customer review as positive or negative” or “I need to translate
this text from English to French.” This problem isn’t abstract; it’s a concrete business
need with real data waiting to be processed.

14.2 Step 2: Model Hub discovery

The user heads to Hugging Face’s Model Hub, which contains more than 1 million
pretrained models. This hub isn’t a dumping ground; it’s a sophisticated search and

143

14.4

1.4.5

Summary 11

filtering system. Users can search by task (such as sentiment analysis, translation, or
image classification), model architecture (such as BERT, GPT, or ResNet), language,
or performance metrics. The platform guides users from “I have a problem” to “Here’s
the specific model that solves it.”

Step 3: Model card

This step is where Hugging Face shines. Every model comes with a detailed model
card that serves as both documentation and gateway. The card contain use examples
(such as copy-and-paste code snippets), performance benchmarks, training details,
and information about using the model. The model card is the bridge between discov-
ery and implementation.

Step 4: Two execution paths

At this point, users choose their adventure:

Path A: Hosted Inference API—This option is the faster route. Users can send HTTP
requests directly to Hugging Face’s servers, which host the models in graphics
processing unit (GPU) clusters. No setup is required; send your text in a POST
request and get JSON results. This path handles millions of API calls daily and
autoscales based on demand.

Path B: Direct download—This option is for users who want to run models locally
or integrate them into their own infrastructure. Behind the scenes, this path uses
Git Large File Storage (LFS) to handle multigigabyte model files. Users down-
load the model weights and configuration files and run them using the Trans-
formers library.

Step 5: Results delivered

Both paths converge where the user gets their answer. The sentiment classifier returns
{"label": "POSITIVE", "score": 0.9998}, and the user’s problem is solved. Mission
accomplished.

Summary
Hugging Face is a complete Al problem-solving pipeline that systematically
moves users from problem to solution.
The Transformers library is a Python package that contains open source imple-
mentation of the Transformer architecture models for text, image, and audio tasks.
In Hugging Face’s Transformers library, a pipeline is a high-level, userfriendly
API that simplifies the process of building and using complex NLP workflows.
The Hugging Face Hub’s Models page hosts many pretrained models for a wide
variety of machine learning tasks.
Gradio is a Python library that creates aweb Ul you can use to bind to your machine
learning models, making it easy to test your models without building the UL

Getting stariéd

This chapter covers

Using Anaconda

Creating virtual environments with conda
Using GPU in the pipeline () function
Using the Hugging Face Hub package

In chapter 1, you saw some of the exciting projects you will be creating through-
out this book using the Hugging Face pretrained models and services such as Auto-
Train. The main programming language you’ll be using is Python, and you’ll also
be using my favorite IDE, Jupyter Notebook. Jupyter Notebook is an open source
web application that allows you to create and share documents containing live code,
equations, visualizations, and narrative text. It’s widely used in data science, scien-
tific research, machine learning, and education due to its interactive and explor-
atory nature. In the following sections, you’ll learn how to set up Jupyter Notebook
and create a virtual environment to work with all the examples in this book.

12

2.1

2.1.1

Downloading Anaconda 13

Downloading Anaconda

The easiest way to install Jupyter Notebook is to download Anaconda, a distribution of
Python and R programming languages that comes with a set of preinstalled libraries
and tools commonly used in data science, machine learning, and scientific computing.
It includes the conda package manager, which simplifies package management and
environment creation. Jupyter Notebook is one of the core components of Anaconda.
Therefore, installing Anaconda gives you access not only to Jupyter Notebook but also
to many commonly used packages.

To obtain Anaconda (free for personal use), go to https://www.anaconda.com/
download/success. Then click the download icon for your operating system (see fig-
ure 2.1). When the installer is downloaded, double-click the installer, and follow the
onscreen instructions to install Anaconda on your computer.

ese M - < & anacenda.com ¢ @M+ O

) ANACONDA.

Anaconda Installers

= (™ o)

Window Mac Linux
s
Python 3.11 Python 3.11
Python 3.11 ok 64-Bit Graphical by 64-Bit (xB6)
Instailer {728.7M) Instaliar (997.2M}
by 54-Bit Graphical
Installer (904,48 d—_, 64-Bit Command L-_lu B4-BIt [AWS
Line Installer Graviton2 |
[731.2M) ARME 4] Installer
(728.5M)
by G4-Bit (M1)
Graphical by Ba-bit [Linux on
Installer (B97.4M} 1BM Z &
LinuxONE]
by B4-Bit M1} Instalier (91.8M)

Cammand Line
installer {700 M}

Figure 2.1 Downloading Anaconda for the three major platforms: Windows, macO0S, and Linux

Creating virtual environments

With Anaconda downloaded and installed, you are ready to start using it. But before
you launch Jupyter Notebook and start writing code, I recommend that you create a

https://www.anaconda.com/download/success
https://www.anaconda.com/download/success

14 CHAPTER 2 Getting started

virtual environment—a self-contained environment that allows you to install and man-
age Python packages separately from your systemwide Python installation. It’s a useful
tool for isolating dependencies and managing different project requirements.

To create a virtual environment, launch Terminal (macOS) or Anaconda Prompt
(Windows). Figure 2.2 shows how to launch Anaconda Prompt in Windows.

Body Bogy 1 _Bold callout - | |8 Raph

ler

& m Apps Documents Web Settings Folders Fh P 3wr W W e % ling

Best match

Anaconda Prompt
I - App ’ u
ﬁ Apps Anaconda Prompt

2. Click Anaconda App

. _) Anaconda Mavigator >
Prompt to launch it.
B Anaconda Powershell Prompt » [Qgen
B Anaconda Prompt (Miniconda) > 68 Runas administratar
B Open lile location i
Anaconda Powershell Prompt 5
(Miniconda) £ Pin to Start
Pin to taskb L
Search the web X Fin o esioer ‘
W Uninstall
Q1 anacon - See mare ssarch results >
D) anaconda unable to create g
process using
Q) anaconda >
Cy anaconda python]
1. Type anacon.
YP Folders (13+)
oL TRV LU Y L U LTI L LY s a s ana s s s nana s sasnasasasnsnssanabasnananssnanasdsasssnanasasnananass
Q anacor 2 BN CEmdadE

Figure 2.2 Launching Anaconda Prompt in Windows

Anaconda Prompt vs. command prompt

For Windows users, Anaconda Prompt looks just like the usual command prompt. In
fact, they are the same, with one notable exception: Anaconda Prompt has the Ana-
conda environment variables and paths already set up. This means that when you
open Anaconda Prompt, it's ready to use the Python interpreter, conda package man-
ager, and other tools without additional configuration.

Downloading Anaconda 15

Next, use the conda command to create a new virtual environment, as follows:

$ conda create -n HuggingFaceBook python=3.11 anaconda

This command creates a virtual environment named HuggingFaceBook in Python 3.11.
It also includes the Anaconda distribution. You’ll be prompted to install the various
packages (see figure 2.3). Type Y, and press Enter.

[@® weimenglee — python « conda create -n HuggingFaceBook python=3.11 anaconda — 94x27
webencodings pkgs/main/osx-armé4: :webencodings-0.5.1-py311hca@3dab_1 B8
viebsocket-client pkgs/main/osx-armé4: :websocket-client-@.68.0-py311hca@3dab_4
verkzeug pkgs/main/osx—armé4: :werkzeug—-2.2.3-py31lhca@3dab_o
whatthepatch pkgs/main/osx—armé4: :whatthepatch-1.8.2-py311hca@3dab_0@
viheel pkgs/main/osx—armé4: :wheel-8.41.2-py311hca@3dab_0@
widgetsnbextension pkgs/main/osx-armé4::widgetsnbextension-3.5.2-py311hca@3da5_1
wrapt pkgs/main/osx—armé4: :wrapt—1.14.1-py311h80987f9_0
wurlitzer pkgs/main/osx-armé4: :wurlitzer-3.0.2-py311hca@3da5_o
xarray pkgs/main/osx—armé4: :xarray-2023.6.0-py311hca@3da5_0
x1lwings pkgs/main/osx—armé4: :x1lwings—8.29.1-py311hca@3da5_8@
Xyzservices pkgs/main/osx—armé4: :xyzservices—2022.9.0-py311hca®3dab_1
xXZ pkgs/main/osx—armé4: :xz-5.4.6—-hBB987f9_0
yaml pkgs/main/osx—armé4: :yaml-9.2.5-h1a28f6b_0
yapf pkgs/main/osx—arméé: :yapf-0.40.2-py311hca@3da5_»o
yarl pkgs/main/osx—arméé4::yarl-1.9.3-py311h80987f9_0
zeromg pkgs/main/osx—armé4: :zeromg—4.3.5-h313beb8_0
zfp pkgs/main/osx—armé4::zfp-1.8.8-h313beb8_0
Zact pkgs/main/osx-arméé4::zict-3.08.8-py311hca@3da5_0
zipp pkgs/main/osx—armé4::zipp-3.17.0-py31lhca@3da5_@
z1ib pkgs/main/osx-armé4::z1ib-1.2.13-h6a@b863_0
zlib-ng pkgs/main/osx-armé4::z1ib-ng-2.08.7-hB0987f9_0
zope pkgs/main/osx—armé4: :zope—1.8-py311hca®3da5_1
zope.interface pkgs/main/osx—armé4::zope.interface—5.4.0-py311h80987f9_0
zstd pkgs/main/osx-armé4::zstd-1.5.5-hd9@d995_0

\Proceed ([yl/n)? A7 |

Figure 2.3 Creating a new virtual environment and installing all the required packages

Anaconda distribution

The Anaconda distribution is a comprehensive package manager, environment man-
ager, and Python distribution designed to simplify package management and deploy-
ment of Python and R data science and machine learning applications. It includes
popular libraries such as NumPy, pandas, Matplotlib, scikit-learn, TensorFlow, PyTorch,
and Jupyter Notebook.

When the installation is done, activate (switch to) the virtual environment using the
conda activate command:

$ conda activate HuggingFaceBook

16

212

CHAPTER 2 Getting started

This command activates the HuggingFaceBook virtual environment. When you have
switched to a particular virtual environment, Terminal or Anaconda Prompt prefixes
the prompt with the environment name (see figure 2.4).

f. (O £ weimenglee — -zsh — 85x18

(B
$ conda activate HuggingFaceBook
#

To deactivate an active environment, use

#

% conda deactivate

{base) weimenglee@wWeiMengacStudio ~ % conda activate HuggingFaceBook
[(HuggingFaceBook)| weimenglee@WeiMengacStudio ~ % J

/
(

Name of virtual
environment

Figure 2.4 The virtual environment name prefixes the prompt.

Starting Jupyter Notebook

After you create a virtual environment, you are ready to launch Jupyter Notebook. I
prefer to launch it via Terminal or Anaconda Prompt.

In Terminal, start by creating a folder in which you want to save your projects. Let’s
call this folder HF_Projects:

uggingFaceBook) weimenglee@WeiMengacStudio ~ % mkdir HF_Projects
(H ingF Book) i Tlee@WeiM Studi % mkdir HF_Project

Then change the current directory to the new one:

(HuggingFaceBook) weimenglee@WeiMengacStudio ~ % cd HF_Projects

To launch Jupyter Notebook, type jupyter notebook:

(HuggingFaceBook) weimenglee@WeiMengacStudio HF_Projects % jupyter notebook

The web browser launches and displays Jupyter Notebook’s main page (see figure 2.5).

Downloading Anaconda 17

-

ece M - ¢ © t +

~ Jupyter

File View Settings

B Files © Running

Select items to perform actions on them. ~New & Upload C

-,/

~| Name - Last Modified File Size

Figure 2.5 The web browser displays Jupyter Notebook’s main page.

To create a notebook, click the New button and then click Notebook on the menu (see

figure 2.6).
1. Click New.
eoe M -~ localhost ® /M +
— Jupyter

File View Settings Help

I Files o Running

Select items to perform actions on them.

-/

Name

= New T Upload 4

™ Notebook 4——_|

Terminal
L&
B console

ize
= New File
B2 New Folder

|_ 2. Click Notebook.

Figure 2.6 Creating a notebook

A new Untitled tab appears. (If you don’t see it, your web browser may be blocking
pop-up windows; clicking the address bar should reveal the tab.) Choose the Python 3

18

CHAPTER 2 Getting started

(ipykernel) option from the pull-down menu (see figure 2.7), and click the Select but-
ton. You should see the notebook, ready for you to start coding (see figure 2.8).

(... el & > localhost & ® [:Tj + O

I3 Home L5 Untitled

Select Kernel

Select kernel for: "Untitled.ipynb"
| Python 3 (ipykernel) v J

[1Always start the preferred kernel

Figure 2.7 Selecting a kernel for your notebook

(eee M- < > | localhost ¢ © M + B
15 Home | 15 Untitled
" Jupyter Untitled Last Checkpoint: 1 minute ago A
| Fllejiit _View_ Run Kernel Stfings_ Help Trusted I|
&

I o I

-

Figure 2.8 The notebook is ready to use.

TIP If you are new to Jupyter Notebook, I suggest that you check out the offi-
cial documentation at https://mng.bz/eB4P.

https://mng.bz/eB4P

Installing the Transformers library 19

Finally, rename the notebook by clicking the default filename and entering a new
name for your notebook in the Rename File dialog box (see figure 2.9). For this exam-
ple, enter Chapter 2.ipynb. Click Rename when you’re done. The Chapter 2.ipynb file
is saved in the HF_Projects directory.

1. Click the default 2. Give your notebook
notebook name. a new name.
A\)
(ooo ED-/(> localhost & ©@ Bt +
15 Home 5 untitled

Rename File

File Path
Untitled.ipynb

New Name

| chapter Zipynb]

Cancel Rename

Figure 2.9 Renaming your notebook

22

Installing the Transformers library

In this book, you will use the Hugging Face Transformers library extensively. The
Transformers library, an open source library developed by Hugging Face, provides an
easy-to-use interface for working with state-of-the-art pretrained models for various
natural language processing (NLP) tasks such as text classification, named entity
recognition (NER), text generation, and question answering. In chapter 3, I discuss the
Transformerslibraryinmore detail. For now, it’sagoodideatoinstallit. You caninstall the
transformers Python package directly in Jupyter Notebook using the following statement:

Ipip install transformers

If you prefer, you can install it in Terminal or Anaconda Prompt using the following
command:

$ pip install transformers

20

221

CHAPTER 2 Getting started

Support for GPU

In Hugging Face, you use the Transformers library to perform various machine learn-
ing tasks such as NLP and image recognition. Behind the scenes, the library is pri-
marily built on PyTorch, a popular deep learning framework developed primarily by
Facebook Al Research (FAIR). It uses PyTorch’s capabilities to build neural network
architectures, train models, and optimize performance on tasks related to NLP.

NOTE The Transformers library also supports TensorFlow, a widely used deep
learning framework developed by Google. This support allows users to use the
capabilities of the Transformers library in their TensorFlow-based workflows,
enabling tasks related to NLP and other machine learning tasks. This book
focuses on using the Transformers library with PyTorch.

PyTorch’s notable feature is its graphics processing unit (GPU) support, which enables
smooth integration with Nvidia’s Compute Unified Device Architecture (CUDA),
a parallel computing platform and programming model designed for GPUs. This
support allows PyTorch to use CUDA to enable GPU acceleration for computations.
PyTorch can offload tensor operations and computations to the GPU, significantly
speeding training and inferencing for deep learning models. Best of all, PyTorch’s API
can automatically handle the details of moving data between CPU and GPU memory as
needed. Finally, PyTorch supports model parallelism, allowing you to split large mod-
els across multiple GPUs. This support allows large models that can’t fit into a single
GPU to be distributed across GPUs.

If you have a CUDA-supported GPU, you should use it to speed your training and
inferencing tasks. To do so, you need to install PyTorch (plus a few other packages)
from a location that contains the PyTorch wheels compatible with CUDA. The follow-
ing command installs the torch (PyTorch), torchvision, and torchaudio packages from
https://download.pytorch.org/whl/cul21:

$ pip install torch torchvision torchaudio
--index-url https://download.pytorch.org/whl/cul21 -U

When the packages are installed, you can test them to see whether your GPU is sup-
ported. In Jupyter Notebook, you can use the following statements to check whether
CUDA is available on your system:

import torch
print(torch.cuda.is_available())

If you get a True response, your system supports CUDA. The following code listing
prints more information about the GPU you have in your system.

Listing 2.1 Using the torch package to find details on your GPU

import torch
use_cuda = torch.cuda.is_available()

https://download.pytorch.org/whl/cu121

Installing the Transformers library 21

if use_cuda:
print('__CUDNN VERSION:', torch.backends.cudnn.version())
print('__Number CUDA Devices:', torch.cuda.device_count())
print('__CUDA Device Name:', torch.cuda.get_device_name(0))
print('__CUDA Device Total Memory [GB]:',
torch.cuda.get_device_properties(0).total_memory/1e9)

On my laptop, which is equipped with an Nvidia RTX 4060 GPU, the preceding code
produces this result:

__CUDNN VERSION: 8801

__Number CUDA Devices: 1

__CUDA Device Name: NVIDIA GeForce RTX 4060 Laptop GPU
__CUDA Device Total Memory [GB]: 8.585216

You can also use the GPUtil package to find details about your GPU, such as total num-
ber of GPUs, utilization load, temperature, and memory used. First, install 6PUtil with
the pip command:

Ipip install GPUtil

The following statements get the number of available GPUs on your system via the
getAvailable() method:

import GPUtil
GPUtil.getAvailable()
For my system, which has one GPU, this code returns the following result:

(ol

You can retrieve information about each GPU in your system by using the getGPUs()
method. Iterate through GPUs to fetch details such as name, utilization, memory use,
temperature, and total memory, as shown in the following listing.

Listing 2.2 Using the GPUtil package to get details on each GPU

import GPUtil
gpus = GPUtil.getGPUs()

for gpu in gpus:
print("GPU ID:", gpu.id)
print("GPU Name:", gpu.name)
print("GPU Utilization:", gpu.load * 100, "%")
print("GPU Memory Utilization:", gpu.memoryUtil * 100, "%")
print("GPU Temperature:", gpu.temperature, "C")
print("GPU Total Memory:", gpu.memoryTotal, "MB")

22

222

CHAPTER 2 Getting started

Using GPU in the pipeline object

For the pipeline object to use the GPU, you need to explicitly specify the device
parameter when calling the pipeline() function. The following code snippet shows
the pipeline() function using the first (or single) GPU in your system:

from transformers import pipeline

question_classifier = pipeline("text-classification",
model="huaen/question_detection",
device = 0)

Transformers pipeline

In Hugging Face’s Transformers library, a pipeline is a high-level, user-friendly API
that simplifies the process of building and using complex NLP workflows. A pipeline
makes it easy to perform a sequence of NLP tasks—such as text classification, NER,
translation, and summarization—in a few lines of code.

The preceding code sample creates a pipeline object that performs question clas-
sification. It takes in a string and returns a result indicating whether the string pre-
sented is a question.

Besides specifying a number for the device parameter to specify that you want to use
the GPU for processing, you can set it to a string. You could rewrite the preceding state-
ment this way:

question_classifier = pipeline("text-classification",
model="huaen/question_detection",

device = "cuda:0")
cuda:0 refers to the first
GPU in your system.

On a Mac, you can accelerate Hugging Face pipelines by using Apple’s Metal Perfor-
mance Shaders (MPS) for faster inference on Apple silicon. Set device to "mps:0":

question_classifier = pipeline("text-classification",
model="huaen/question_detection",
device = "mps:0")

Table 2.1 shows the values you can use for the device parameter.

Table 2.1 Values for the device parameter in the pipeline() function

Numeric value String value Description

-1 "cpu" Uses the CPU for processing. The CPU is the default
device to use for the pipeline () function.

0 "cuda" Uses the single/first GPU in your system.

"cuda:0Q"

2.3

Installing the Hugging Face Hub package 23

Table 2.1 Values for the device parameter in the pipeline() function (continued)

Numeric value String value Description
1 ‘ "ecuda:1" ‘ Uses the second GPU in your system.
n ‘ "cuda:n" ‘ Uses the (n+1)th GPU in your system.
0 "mps:0" Refers to the MPS backend in PyTorch, which allows

machine learning models to run on Apple’s built-in GPU
(M1, M2, and M3 chips).

If you’re not sure whether your pipeline object uses the CPU or GPU, you can print it
by using the device.type attribute:

print(question_classifier.device.type)
A reliable approach to selecting the optimal inference device is to check for CUDA or

MPS support. If neither is available, the system defaults to the CPU. The following list-
ing demonstrates how to implement this approach.

Listing 2.3 Autodetecting CUDA, MPS, or CPU for PyTorch Inference

from transformers import pipeline
import torch

if torch.cuda.is_available():

device = "cuda"

elif torch.backends.mps.is_available():
device = "mps"

else:
device = "cpu"

question_classifier = pipeline("text-classification",
model="huaen/question_detection",
device=device)

print(f"Using device: {device}")

Installing the Hugging Face Hub package

The Hugging Face Hub (https://huggingface.co; see figure 2.10) is the go-to place for
all things related to Hugging Face: pretrained models, demos, datasets, and more.

Although you can use a web browser to visit the Hugging Face Hub, you can interact
with the Hub directly by using the huggingface_hub command-line package. With this
package, you can perform tasks such as the following:

Managing project repositories
Uploading and downloading files
Fetching models

https://huggingface.co

CHAPTER 2 Getting started

ry Cohere Command R+ on HuggingChat

The Al community

building the future.

The platform where the machine learning community
collaborates on models, datasets, and applications.

'/; e @ < # huggingface.co ® th + \
* Hugging Face Models Datasets Spaces Posts Docs Pricing = (K74 Sign Up

stabilityai/stable-di

WizardlM/WizardCoder-158-v1

a-diffusion-v1-

Figure 2.10 The Hugging Face Hub

23.1

To install the huggingface_hub package, use the pip command:

I'pip install huggingface_hub

Downloading files

On the Hugging Face Hub, you’ll find many pretrained models that you can freely use.

Often, when you use a model for the first time, the Transformers library automatically

downloads the files associated with the model and stores them locally on your com-

puter. At times, however, it’s more useful to download the files you need manually so

that you can run your code offline.

To download a file from the Hugging Face Hub, go to the model’s page and click the

Download button. Consider the model named google/pegasus-xsum (https://mng.bz/

gmXx), for example. On the model’s page, if you want to download the config.json

file, click its download icon (see figure 2.11).

https://mng.bz/gmXx
https://mng.bz/gmXx

Installing the Hugging Face Hub package 25

m -~ < & huggingface.co & @t + D

= Hugging Face 2, Search mi + Models Datasets Spaces @ Posts ' Doecs Pricing = Login @Y
le pegasus-xsum T ©like |

Summarization # Transformers ~ (PyTorch T TensorFlow o8 JAX @ English pegasus text2text-generation 4 EvalResults

@ Inference Endpoints Y arxiv:1912.08777
Model card Files Community i &, Train » < Deploy ~ <> Use in Transformers

¥ main~ pegasus-xsum £ IBED ¢ contributors @ History: 46 commits
@ joaogante Adding generation config file(s) adsffcl about 1 year ago

.gitattributes Byt & ad

README.md 6 kB [k id

flax_model. msgpack 8 @LFrs [

generation_config.json & Addi

\

File to download Click to download file

Figure 2.11 Downloading a file directly from a model’s page

If you're using the huggingface_hub package, you can download the file programmati-
cally using the hf_hub_download() function:

from huggingface_hub import hf_hub_download

hf_hub_download(repo_id="google/pegasus-xsum",
filename = "config.json")

The config.json file is downloaded to the following directory:

<home_directory>/.cache/huggingface/hub/
models--google--pegasus-xsum/snapshots/
8d8ffcl58a3bee9fbb03afacdfc347c823c5ec8h/

By default, the latest version of the file from the main branch is downloaded. In some
cases, however, you want to download a particular version of the file (e.g., from a spe-
cific branch, pull request (PR), tag, or commit hash). To do so, first click the file you
want to download (see figure 2.12).

26 CHAPTER 2 Getting started

P mainv pegasus-xsum

& joaogante 1A Adding generation config file(s) 8¢
.gitattributes 391 Bytes &
README.md 7
config.json &
flax_model.msgpack .28 GB @LFs L

Click the file you
want to download.

Figure 2.12 Selecting the file to download

Then click the file’s history link (see figure 2.13).

¥ main~ pegasus-xsum config.json T

& valhalla add flax model a0Daa553

<r raw ry | blame & contribute T delete

i
Figure 2.13 Viewing
Click to view the the historical commits
history of the file. for a project

Finally, copy the commit hash of the specific version of the file you want to download
(see figure 2.14).

When you’ve copied the commit hash of the file you want to download, you can set it
as the value for the revision parameter in the hf_hub_download() function:

hf_hub_download(
repo_id="google/pegasus-xsum",
filename="config.json",
revision="aBaa5531c00f59a32a167h75130805098b046F9c"

Installing the Hugging Face Hub package 27

¢+ Model card Files and versions % Community

F main~ pegasus-xsum = config.json T

© Commit History Click to copy the

commit hash.

A/\/

add flax model a0aa553| T

& valhalla commited on Sep 14, & copy full commit hash to cliphoard

upload model ef6460f T
3 patrickvonplaten commited on Jan 11,2021

Update config.json 48d7b60 T
system HFSTAFF commited on Sep 14, 2020

Update config.json 4d33bo1 T

system HFSTAFF commited on Aug 9, 2020

Figure 2.14 Copying the commit hash for a file

2.3.2 Using the Hugging Face CLI

The huggingface_hub package also includes the Hugging Face CLI, a command-line-
interface tool that allows you to authenticate your applications using tokens. In Termi-
nal or Anaconda Prompt, type huggingface-cli to view the various options you can use:

$ huggingface-cli
usage: huggingface-cli <command> [<args>]

positional arguments:
{env,login,whoami, logout, repo,upload,download,
1fs-enable-largefiles, 1fs-multipart-upload,
scan-cache,delete-cache}
huggingface-cli command helpers

env Print information about the environment.

login Log in using a token from
huggingface.co/settings/tokens

whoami Find out which huggingface.co account
you are logged in as.

logout Log out

repo {create} Commands to interact with

your huggingface.co repos.
upload Upload a file or a folder to a repo on the Hub

28

CHAPTER 2 Getting started

download Download files from the Hub
1fs-enable-largefiles
Configure your repository to enable
upload of files > 5GB.

scan-cache Scan cache directory.
delete-cache Delete revisions from the cache directory.
options:
-h, --help show this help message and exit

Using the CLI, you can log in to Hugging Face Hub programmatically. First, though,

you need to create an account at https://huggingface.co/join (see figure 2.15).

-

eee M ~ < & huggingface.co () @ ETJ =+

Hugging Face

A

Join Hugging Face

Join the community of machine learners!

Email Address

Hint: Use your orga

Password

Next

Already have an account? Login

Figure 2.15 Signing up for a Hugging Face account

Hugging Face uses access tokens to authenticate users who need to download private

repositories, upload files, create PRs, and so on. After you sign up as a Hugging Face

https://huggingface.co/join

Installing the Hugging Face Hub package 29

user, you should create an access token for yourself at https: //huggingface.co/settings/
tokens. Then you can log in to Hugging Face Hub using the following command:

$ huggingface-cli login

A token is already saved on your machine. Run “huggingface-cli
whoami® to get more information or “huggingface-cli logout™ if
you want to log out.
Setting a new token will erase the existing one.

To login, “huggingface_hub’ requires a token generated from
https://huggingface.co/settings/tokens .

Enter your token (input will not be visible): <HuggingFaceAccessToken>

Add token as git credential? (Y/n) n

Token is valid (permission: read).

Your token has been saved to /Users/weimenglee/.cache/huggingface/token

Login successful

Note that when you type your token (or, more likely, paste it from your clipboard),
you’ll see no feedback onscreen. The token you entered is saved in the file named
token, located in the <home_directory> /.cache/huggingface/ directory. To see which
account you've signed in to, use the whoami option:

$ huggingface-cli whoami

You see the name of the user account you used to sign in. Another way to log in to Hug-
ging Face Hub is to use the login() function in Python:

from huggingface_hub import login

login()

The login() function displays the UI, as shown in figure 2.16. Enter your token and
then click the Login button.

NOTE If you encounter an error related to ipywidgets in Jupyter Notebook,
you should be able to fix it by updating ipywidgets to the latest version:

Ipip install -U ipywidgets

https://huggingface.co/settings/tokens
https://huggingface.co/settings/tokens

30

CHAPTER 2 Getting started

Copy a token from your Hugging Face tokens page and paste it below.
Immediately click login after copying your token or it might be stored in

plain text in this notebook file.
Token:
Add token as git credential?
Login
Pro Tip: If you don't already have one, you can create a dedicated

'notebooks' token with 'write' access, that you can then easily reuse for all

notebooks.

Figure 2.16 Logging in to Hugging Face Hub from Jupyter Notebook

Summary

The Anaconda package comes with the conda package manager, which simpli-
fies package management and environment creation. It also comes with Jupyter
Notebook.

Creating virtual environments allows you to install and manage Python packages
separately from your systemwide Python installation. Virtual environments are
useful for isolating dependencies and managing project requirements.

The easiest way to start Jupyter Notebook is to launch it from Terminal or Ana-
conda Prompt.

The Transformers library is built on PyTorch, a popular deep learning frame-
work primarily developed by FAIR.

PyTorch supports GPU, enabling smooth integration with CUDA, a parallel com-
puting platform and programming model designed for GPUs.

The Hugging Face Hub package allows you to download files, upload files, and
perform authentication using the CLI.

Using Hugoing Face
transformers and

pipelines for NLPdasks

This chapter covers

Understanding the transformer architecture
Using the Hugging Face Transformers library
Using the pipeline() function in the
Transformers library

Performing NLP tasks using the Transformers
library

You’ve had a glimpse of the Hugging Face Transformers library and seen how to use
it to perform object detection using one of the pretrained models hosted by Hug-
ging Face. Now we will go behind the scenes to learn about the transformers pack-
age: the transformer architecture and the various components that make it work.
The aim of this book is not to dive into the detailed workings of the transformer
model, but I want to discuss it briefly so that you have some basic understanding of
how things work.

Next, we will use the pipeline() function that ships with the transformers pack-
age to perform various natural language processing (NLP) tasks such as text classifi-
cations, text generation, and text summarization.

31

32

3.1

CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

NOTE When I talk about Transformers, I'm referring to the open source library
created by Hugging Face that provides pretrained transformer models and
tools for NLP tasks. Transformer, on the other hand, refers to the neural net-
work architecture discussed in section 3.1.

Introduction to the transformer architecture

The transformer architecture, introduced in the paper “Attention is All You Need” by
Ashish Vaswani et al. (https://arxiv.org/pdf/1706.03762.pdf), has become the foun-
dation for many state-of-the-art models in NLP. It relies heavily on the self-attention
mechanism to process input data in parallel, making it more efficient and effective for
many tasks compared with previous neural network architectures, such as recurrent
neural networks (RNNs) and long short-term memory networks (LSTMs). Figure 3.1
shows the transformer architecture taken from the “Attention Is All You Need” paper.

Output
probabilities

Feed
Forward
I Add & Norm ﬁ
) Multi-Head
Feed Attention
Forward T 7 Nx
—
Nix Add & Norm
p-b{ Add & Norm |]
Multi-Head Multi-Head
Attention Attention
T S , R, T
& J \,)
Positional D Positional
encoding @ encoding
Input Output
embedding embedding
I 1 Figure 3.1 The transformer
Inputs Outputs architecture (Source: “Attention
(shifted right) Is All You Need” paper)

DEFINITION The self-attention mechanism is a crucial component of the trans-
former architecture. It enables the model to weigh the importance of different
words in a sequence when encoding a particular word, allowing the model to

https://arxiv.org/pdf/1706.03762.pdf

Introduction to the transformer architecture 33

capture dependencies and relationships between words irrespective of their dis-
tance in the sequence. This mechanism allows transformers to handle long-range
dependencies and parallelize the processing of input sequences effectively.

At a high level, the transformer architecture consists of two main blocks: Encoder and
Decoder (see figure 3.2).

Output
probabilities

Add & Norm =
Feed
Forward
[] J

[[Add & Norm Je=

g L Multi-Head

Feed Attention

Forward T 7 Nx
Encoder
\ I_%: Decoder
Nx Add & Norm
~—| Add & Norm | Vasked
Multi-Head Multi-Head
Attention Attention
A& 3 At
k_ J/ \ —
Positional @_(3 @ Positional
encoding > encoding
Input Output
embedding embedding
Inputs Outputs

(shifted right)

Figure 3.2 A transformer model contains an Encoder and a Decoder.

The Encoder gets the inputs and builds a representation of them. The Decoder uses
the Encoder’s representation, along with other inputs, to generate a target sequence
(the outputs’ probabilities). One intriguing aspect of this model is that each compo-
nent can function independently. You can use a model solely featuring the Encoder
component, for example. This model is beneficial for tasks such as sentence classifi-
cation and named entity recognition (NER), in which comprehension of the input is
paramount. Conversely, models that employ only the Decoder are suitable for tasks
such as text generation. Furthermore, models incorporating both the Encoder and
Decoder are well suited to endeavors such as text summarization and text translation.

34

3.11

CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

Following are some of the key components of the transformer architecture:

Input Embedding—

— Converts input tokens to dense vectors of fixed size.

— Adds positional encodings to retain information about the order of the tokens
because the model processes input in parallel and lacks inherent sequential
information.

Encoder—Comprises multiple identical layers, each containing two main

components:

— Multi-Head Attention—Computes the attention scores between each pair of
input tokens to capture dependencies regardless of their distance.

— Feed-Forward Neural Network (FFIN)—Comprises two linear transformations with
a Rectified Linear Unit (RelLU) activation in between.

Decoder—Also consists of multiple identical layers with additional components to

handle the target sequence:

— Masked Multi-Head Attention—Similar to the Encoder’s Multi-Head Attention
but prevents attending to future tokens in the target sequence (to ensure
autoregressive properties during training).

— Multi-Head Attention—Allows the decoder to attend to the Encoder’s output.

Positional Encoding—

— Adds information about the position of each token in the sequence because
self-attention operates without considering token order.

— Typically implemented using sine and cosine functions of different frequencies.

Layer Normalization and Residual Connections—

— Layer Normalization—Stabilizes and accelerates training by normalizing the
input across the features.

— Residual Connections—Adds the input of each sublayer to its output to help
with gradient flow and prevent vanishing/exploding gradients.

Final Linear and Softmax Layers—In the Decoder, after processing the sequence

through multiple layers, a final linear transformation followed by a Softmax layer

is used to produce probabilities for the next token.

Tokenization

In the context of NLP and machine learning, a token is a chunk of text that a model
processes as a single unit. A token can represent an individual word, punctuation mark,
or other linguistic element, depending on the specific tokenization strategy employed.
Tokenization is the process of converting a text document or sentence to smaller units.
Generally, there a few types of tokenization strategies:

Word tokenization—Splits text into individual words based on whitespace or punc-
tuation characters. Figure 3.3 shows how the sentence “I love cats” is tokenized
into three tokens.

Introduction to the transformer architecture 35

Subword tokenization—Breaks text into
| love cats

smaller linguistic units such as prefixes,

suffixes, or root words. This strategy is / \
commonly used for languages with com-

plex morphology or tasks like machine |
translation. Figure 3.4 shows how the

love cats

word unhappiness is tokenized into three

. Figure 3.3 Tokenizing a sentence into
tokens. Subword tokenization enables

three tokens using the word tokenization
the model to encompass a broad, varied technique

vocabulary while circumventing the con-
straints imposed by a rigid word-level
vocabulary. This technique is especially
useful for comprehending and generat-

ing text across diverse contexts, lan- / \
guages, and domains, enhancing the

model’s capability to accommodate lin- un- happi- -ness

unhappiness

guistic variations and diminish vocabu-

lary dimensions. Figure 3.4 Tokenizing a sentence
into three tokens using the subword

Character-level tokenization—Segments o :
tokenization technique

text into individual characters, including
letters, digits,and punctuation marks. Fig-
ure 3.5 shows how the word Hello is toke-
nized into five tokens. Character-level Hello
tokenization is ideal for tasks that require
meticulous analysis at the character level, ‘/)/ \\
particularly when you’re handling lan-
guages with intricate word structures
(such as Chinese). Nonetheless, this

Figure 3.5 Tokenizing a sentence into

strategy entails a larger vocabulary and five tokens using the character-level
may result in reduced interpretability at tokenization technique

H e | | o

advanced linguistic levels.

Here is an example of subword tokenization using the BERT model:

from transformers import AutoTokenizer Loads a pretrained tokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

input_text = "What is unhappiness?"

tokens = tokenizer.tokenize(input_text, return_tensors="pt") <F441
ut text

print(f"{tokens = }") Tokenizes inp!

This code snippet prints the following tokens:

tokens = ['what', 'is', 'un', '##ha', '##pp', '##iness', '?']

36

3.1.2

CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

What is BERT?

BERT stands for Bidirectional Encoder Representations from Transformers, a
transformer-based machine learning model designed for NLP tasks. It is commonly
used in tasks such as question answering, text classification, NER, part-of-speech
tagging, text summarization, sentiment analysis, language translation, text genera-
tion, coreference resolution, paraphrase detection, semantic search, textual entail-
ment, and dialogue systems.

The ## prefix attached to some tokens in the output indicates that the token is a con-
tinuation of the previous one in the original word. It signifies that the tokens are part
of a larger token. When these tokens are decoded back into the original text, the ##
prefixes are typically removed, and the tokens are combined to reconstruct the origi-
nal word.

Token embeddings

After the text is tokenized, the next step is performing token embeddings, which convert
tokens to numerical vectors. These embeddings capture semantic and syntactic infor-
mation about the tokens, enabling machine learning models to understand the under-
lying meanings of and relationships between words in natural language text.

The embeddings are learned based on the co-occurrence and contextual relation-
ships between words in the training corpus. As a result, words that have similar mean-
ings or appear in similar contexts tend to have similar representations in the embedding
space. The following code listing shows how you can perform token embedding on a
paragraph of text.

Listing 3.1 Performing token embeddings on a paragraph of text

from transformers import BertTokenizer, BertModel Loads pretrained BERT
import torch tokenizer and model

tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased")

input_text = '*'!

After a long day at work, Sarah decided to relax by taking her
dog for a walk in the park. As they strolled along the
tree-lined paths, Sarah's dog, Max, eagerly sniffed around,
chasing after squirrels and birds. Sarah smiled as she watched
Max enjoy himself, feeling grateful for the companionship and
joy that her furry friend brought into her life.'''

tokens = tokenizer(input_text, return_tensors="pt")

with torch.no_grad(): Generates token

outputs = model(**tokens) embeddings)
Extracts token embeddings

last_hidden_states = outputs.last_hidden_state from the last layer

Introduction to the transformer architecture 37

print("Token embeddings:")
for token, embedding in zip(tokens["input_ids"][0],
last_hidden_states[0]): Prints the token
word = tokenizer.decode(int(token)) embedding for each word
print(f"{word}: {embedding}")

In this example, we tokenized the input text using the BERT model and then extracted
the token embeddings from the last layer of the model’s outputs. Finally, we print the
embedding for each word, as shown in the following listing.

Listing 3.2 The embeddings for each word in the paragraph

Token embeddings:

[CLS]: tensor(
[5.1886e-03, -1.3432e-01, -6.8117e-01, -5.0901e-02, -1.3148e-01,
-2.2708e-01, 4.2620e-01, 7.9117e-01, -3.0209e-01, -6.5137e-02,

-9.4111e-02, -4.7972e-01, 9.1932e-02, -3.9814e-01, 4.3560e-02,
1.8024e-01, 7.4798e-01, 2.8064e-01])
after: tensor(
[-3.1720e-01, -3.1491e-01, 1.3892e-01, 3.9379e-01, 1.3412e-01,
4.2373e-01, 4.9870e-01, 7.1422e-01, 1.0452e-01, -7.0356e-01,

It would be useful to plot the token embeddings on a graph so that you can visual-
ize how the tokens are related. Because the embeddings are in very high dimensions,
however, first we need to reduce their dimensionality to two dimensions so we can visu-
alize them effectively. One common technique for dimensionality reduction and visu-
alization is t-Distributed Stochastic Neighbor Embedding (t-SNE). We can use t-SNE to
project the high-dimensional embeddings into a 2D space. The next listing shows how.

Listing 3.3 Using t-SNE to project high-dimensional embeddings into a 2D space

Reduces dimensionality using t-SNE with lower perplexity,
a parameter controlling nearest neighbors—higher for
larger datasets but always less than the sample count

from sklearn.manifold import TSNE
import matplotlib.pyplot as plt

tsne = TSNE(n_components=2, perplexity=5, random_state=42)
embeddings_tsne = tsne.fit_transform(last_hidden_states[0])

plt.figure(figsize=(10, 8))
plt.scatter(embeddings_tsnel[:, 0],
embeddings_tsne[:, 1], marker='o"')

for i, word in enumerate(tokenizer.convert_ids_to_tokens(ﬂzaigﬁhgs
tokens["input_ids"]1[0]1)): on a 2D graph

plt.annotate(word, xy=(embeddings_tsnel[i, 0],
embeddings_tsne[i, 11),
fontsize=10)

CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

plt.xlabel('t-SNE Dimension 1')

plt.ylabel('t-SNE Dimension 2')

plt.title('t-SNE Visualization of Token Embeddings')
plt.show()

Figure 3.6 shows the graph grouping the various tokens according to their embeddings.

t-SNE visualization of token embeddings

30 - er i
St
gagarah
o oo O
5t ‘li $igeded
SERX gelax @grork
ger apdongay
o%e it
10 A dhey
iled
% eling F
B @rateful
C
o 4 N
£ o dnto .. dhe &
M @ngnd at éhe @Ionr%
z 0 6 lled
@ drought éne daths
~10 4 dfe gark
‘E‘a{:gi @vatched gree
;ompgnions &njoy
dimself
—20 eiend #3088V und
L ‘i%g énige tgting
er
° eurry g bigasirrels
(]
e @
307 oo
~40 30 20 -10 0 10 20 30

t-SNE dimension 1

Figure 3.6 The visualization of token embeddings for the various words in a paragraph in 2D space

In short, word embeddings allow you to see which words are often used together. This
technique captures semantic relationships between words based on their usage pat-
terns in large text corpora. Here are two examples:

The vectors for king and queen are closer to each other than to unrelated words
like train and buildings.

The vectors for words such as bread and butterare close to each other because they

often co-occur in text.

3.1.3

Introduction to the transformer architecture 39

Positional encoding

Positional encoding plays a crucial role in transformer-based models by imparting essen-
tial positional information about the order of tokens within a sequence. This posi-
tional context is vital for enabling the model to grasp the meaning and context of the
input accurately. When we incorporate positional encoding into token embeddings,
we give the model the ability to discern between tokens based on their positions in the
sequence. Without this encoding, the model would struggle to differentiate between
tokens based solely on their sequential positions, significantly impairing its perfor-
mance on tasks that require a nuanced understanding of sequences, such as language
modeling, machine translation, and text generation.

Positional encoding is typically added to token embeddings before they are input
into the transformer model. The following code listing shows how you can extract the
positional embeddings from a paragraph of text.

Listing 3.4 Printing the positional encoding for each token

from transformers import BertTokenizer, BertModel
import torch

tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased")

input_text = ''!'

After a long day at work, Sarah decided to relax by taking her
dog for a walk in the park. As they strolled along the
tree-lined paths, Sarah's dog, Max, eagerly sniffed around,
chasing after squirrels and birds. Sarah smiled as she watched
Max enjoy himself, feeling grateful for the companionship and
joy that her furry friend brought into her life.'''

tokens = tokenizer(input_text, return_tensors="pt") Extracts the

Accesses the
embeddings
layer directly

embeddings = model.embeddings positional
positional_embeddings = embeddings.position_embeddings.weight embeddings
position_ids = torch.arange(tokens['input_ids'].size(1),
dtype=torch.long).unsqueeze(0) <+
input_positional_embeddings = positional_embeddings[position_ids] -

print("Positional embeddings shape:", input_positional_embeddings.shape)
print("Positional embeddings for each token:")

for token_id, pos_embedding in zip(tokens['input_ids'][0],
input_positional_embeddings[0]):
token = tokenizer.decode([token_id])
print(f"{token}: {pos_embedding}") Gets the positional encodings
for the input tokens

Extracts the position IDs from
the input tokens

In the BERT model, positional encodings are already integrated into the model archi-
tecture and are added to the input embeddings automatically, so, in this example,

40

3.14

CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

we’re simply extracting the positional embeddings for each token. The following list-
ing shows the output of the code.

Listing 3.5 The output of the positional encoding

Positional embeddings shape: torch.Size([1, 77, 7681)

Positional embeddings for each token:

[CLS]: tensor([1.7505e-02, -2.5631e-02, -3.6642e-02, -2.5286e-02, 7.9709e-03,
-2.0358e-02, -3.7631e-03, -4.6880e-03, 6.2253e-03, -3.8342e-02,
1.3103e-02, -3.7083e-03, -2.1014e-02, 1.1626e-02, -3.9546e-02,

4.0483e-03, -3.4331e-02, 1.0333e-02, -1.0450e-02, -1.4161e-02,
3.3437e-05, 6.8312e-04, 1.5441e-02], grad_fn=<UnbindBackward0>)
after: tensor([7.7580e-03, 2.2613e-03, -1.9444e-02,
-1.7131e-02, -1.3234e-02, 1.4102e-02, -3.7121e-03,
-1.0888e-02, 6.2255e-03, -3.4778e-02, -7.7945e-03,
-1.4488e-02, -1.1725e-02, 1.0181e-02, -5.9442e-03,

In short, positional encodings provide information about the positions of words within
a sequence. It allows models to understand the order of words in a sentence. Following
are two examples:

The sentence “The catsat on the sofa” has a different meaning from “The sofa sat
on the cat.”

Positional embeddings allow you to differentiate between “Tom loves Susan” and
“Susan loves Tom.”

Transformer block

At the heart of the transformer architecture is the Transformer block, which is the key
component responsible for encoding and decoding information across multiple lay-
ers. The Transformer block contains the following components:

Self-Attention Mechanism—The Transformer block uses self-attention, also known
as scaled dot-product attention. This mechanism allows the model to weigh the
importance of different words (tokens) in a sequence based on their relation-
ships with each other. It computes attention scores for each pair of words in the
sequence and uses these scores to construct context-aware representations of
each word.

Feed-Forward Neural Networks—After the self-attention mechanism, the Trans-
former block applies FFNs to process each word’s representation independently
and in parallel. FFNs typically consist of two linear transformations separated by a
nonlinear activation function like ReLU.

Residual Connections and Layer Normalization—To facilitate effective gradient
flow and ease training, residual connections are employed around each sub-
layer (self-attention and FFNs) of the Transformer block. Additionally, layer

Working with the Transformers library 41

normalization is applied to stabilize training and improve the speed and conver-
gence of the model.

3.1.5 Softmax

3.2

3.21

The last component of the transformer architecture is Softmax, a mathematical function
that converts a vector of numbers to a probability distribution in which the probability
of each element is proportional to the exponentiation of that element’s value relative to
the sum of all the exponentiated values in the vector. In the context of neural networks,
Softmax is often used as the final activa-
tion function in classification tasks.

Figure 3.7 shows an example of using

Output layer Probabilities
the Softmax function. On the left are the
values for the output layer of a neural net- 4.5 : 0.1605
work To transform the Valu.es into proba- 6 ;7@ — 0.7171
bilities that the model can interpret, you 392 D€ 0.1224
use the Softmax function to generate the : Softmax formula :

robability distribution. The probabilities
p U p Figure 3.7 Using the Softmax function to

generate a set of probabilities based on the
probabilities represents the probability of values of the output layer of a neural network

a class or category.

generated sum up to 1. Each value in the

Working with the Transformers library

Now that you have a clearer idea of how the transformer architecture works, it’s time
to focus our attention on the key subject of this book: the Hugging Face Transformers
library. As its name implies, the library is an open source library and platform developed
by Hugging Face. Its aim is to provide an easy-to-access interface for working with state-
of-the-art transformer-based models. Figure 3.8 illustrates the use of the library.

The Transformers library provides
Transformers access to models based on the
transformer architecture.

facebook/ facebook/ The models are pretrained and
detr-resnet-50 o bart-large-cnn) hosted by Hugging Face.

Figure 3.8 The role of the Hugging Face Transformers library

What are pretrained transformers models?

In this section, you learn how to use the Transformers library and its various pretrained
models and how to use pipelines to simplify the process. Pretrained transformer models are

42

3.2.2

CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

transformer-based neural network models that have been pretrained on vast amounts
of text data. These models are trained using an unsupervised learning technique, such
as language modeling or masked language modeling, on large text corpora to learn
the statistical properties of natural language. The following list describes several exam-
ples of pretrained transformer models, which serve as powerful building blocks for var-
ious NLP applications and have significantly advanced the state of the art in the field:

BERT—Introduces bidirectional training for transformers, capturing context
from both directions of a word

GPT (Generative Pretrained Transformer)—Focuses on language generation
tasks by predicting the next word in a sequence

RoBERTa (Robustly Optimized BERT Approach)—Optimized version of BERT
with improved training strategies and larger datasets

DistilBERT—A smaller, faster variant of BERT, suitable for deployment in
resource-constrained environments

T5 (Text-To-Text Transfer Transformer)—Trained on a unified framework in
which all tasks are treated as text-to-text transformations

What are transformers pipelines?

To make the Transformers library easier to use, Hugging Face provides the convenient,
user-friendly pipeline() function (also known simply as a pipeline) that shields the
lower-level details from the developer. Figure 3.9 illustrates the role of the pipeline()
function.

The pipeline function provides a
wrapper on top of the Transformers
library, providing convenient access
to the models.

pipeline

The Transformers library provides
Transformers access to models based on the
transformer architecture.

facebook/ facebook/ The models are pretrained and
detr-resnet-50 o bart-large-cnn) hosted by Hugging Face.

Figure 3.9 Pipelines are high-level APIs that use the transformer models provided by the Transformers
library.

Consider the distilbert/distilbert-base-uncased-finetuned-sst-2-english model,
a pretrained DistilBERT model that has been fine-tuned on the Stanford Sentiment
Treebank (SST-2) dataset for sentiment analysis in English.

Working with the Transformers library

What is DistilBERT?

43

DistilBERT is a lighter, smaller, faster version of BERT, (a popular transformer-based
model for NLP It was introduced by Hugging Face researchers in a paper titled “Distil-
BERT, a distilled version of BERT: smaller, faster, cheaper and lighter” by Victor Sanh

et al. (https://arxiv.org/abs/1910.01108).

On the Hugging Face web page for this model (https://mng.bz/a960; see figure 3.10),
you can click the </> Use in Transformers button to see how to use this model.

Click this button to reveal how to
__— use the model using the Hugging
Face Transformers library.

’/: e O ¢ W huggingtace.co fo+
& distilbert
distilbert-base-uncased-finetuned-sst-2-english '
Text Classification & Transformers O PyTorch T Tensorflow @ Ruost
ONNX & Safetensors 5512 glue @ English doi:l0.57967/n/01B1
distilbert A EvalResuits @ Inference Endpoints 151001108
3 apoche-2.0
&, Train - <7 Deplay s Usein Transformers ‘/\
+ Model card Files community [

Figure 3.10 Learning how to use the model using the Transformers library

Figure 3.11 shows two ways to use the model:

Go through the transformers pipeline.

Use the model directly.
p N
How to use from the « Transformers © library *
Using the model
- feve Zicopy _— through the
from transformers import pipeline transformers
pipe = pipeline{"text-classification”, model="distilbert/distilbert-base-uncased-fir PiPe“ne

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained{"distilbert/distilbert-basse

model = AuteModelForSequenceClassification.from_pretrained("distilbert
Quick Links

Read model documentation

Read docs on high-level-pipeline

Read our leaming resources

.

| Using the model
directly

Figure 3.11 Two ways to use the pretrained model

https://arxiv.org/abs/1910.01108
https://mng.bz/a96o

44

3.2.3

CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

I find using the model through the pipeline easier than the other option. Table 3.1

shows various reasons for using both approaches.

Table 3.1 Reasons for using a model directly or through a pipeline

Using a model directly Using a model through a pipeline

Fine-grained control—You have more control of Simplicity—Pipelines provide a high-level, user-

input preprocessing, tokenization, model inference, friendly interface for using the model without

and postprocessing steps. requiring you to understand the underlying com-
plexities of model loading, input processing, and
inferencing.

Flexibility—You can easily experiment with different Rapid prototyping—With pipelines, you can work

model architectures, hyperparameters, and input with models with only a few lines of code.

formats.

Better understanding—Working directly with the Preconfigured settings—Pipelines come with

model allows you to better understand how the preconfigured settings and default parameters

model works. optimized for common use cases. These settings

can save you time and effort in selecting the appro-
priate model, fine-tuning hyperparameters, and
handling input/output formats.

Using a model directly

In this section, you learn how to use models directly by working with the distilbert/
distilbert-base-uncased-finetuned-sst-2-english model. You’ll use this model to

perform sentiment analysis on a piece of text.

DEFINITION Sentiment analysis is an NLP technique that determines the sen-
timent expressed in a piece of text. It involves analyzing textual data to cat-
egorize the sentiment as positive, negative, or neutral, indicating the overall
emotional tone or polarity of the text.

As the first step, load the tokenizer from the model using the AutoTokenizer.from_
pretrained() method:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(
"distilbert/distilbert-base-uncased-finetuned-sst-2-english")

This method downloads the pretrained model to the ~/.cache/huggingface/hub/
directory of your machine (for computers running macOS). On Windows machines,
the directory is C:\users\<user_name>\.cache\huggingface\hub\. The model will be
saved in a directory named after the model. For the model we’re using in this section,
the directory is named models--distilbert--distilbert-base-uncased-finetuned
-sst-2-english (see figure 3.12).

Working with the Transformers library 45

2 chroma) B3 hub)] models--distil...-sst-2-english > 2 blobs)
£ gdown) £ refs

[gpt4all) [snapshots »
£ huggingface >

£ Im-studio »

7 tooling

[torch)

2 whisper)

Figure 3.12 The directory containing the downloaded model

Next, load the model using the AutoModelForSequenceClassification.from_
pretrained() method:

from transformers import AutolModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained(
"distilbert/distilbert-base-uncased-finetuned-sst-2-english")

Before you can use the model to perform sentiment analysis on a paragraph of text,
you need to tokenize it using the tokenizer object:

import torch

text = "I loved the movie, it was fantastic!"
inputs = tokenizer(text, return_tensors = "pt") < Tokenizes the text
print(inputs)

The tokenizer object returns a dictionary containing the tokenized representation of
the input text, suitable for consumption by a PyTorch model (indicated by the pt value):

{'input_ids': tensor([[101, 1045, 3866, 1996, 3185, 1010,
2009, 2001, 18392, 999, 102]1]), ‘'attention_mask': tensor([[1,
1, 1,1,12,1,1,1,1,1, 11D}

Then the result of the tokenizer object is passed into model for inferencing:

outputs = model(**inputs) <1 Performs inference
print(outputs)

In the preceding statements, you are giving the model the token IDs (stored in
input_ids key) and optionally other tensors, such as the attention mask (stored in the
attention_mask key). Then the model performs inference on these inputs, generating
predictions or other relevant outputs depending on the specific model and task. You
see the following output:

46

3.2.4

CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

SequenceClassifierOutput(loss=None, logits=tensor([[-4.3428, 4.6955]],
grad_fn=<AddmmBackward®>), hidden_states=None, attentions=None)

In particular, take note of the values in the logits key: [[-4.3428, 4.6955]]. The value
is of shape (1,2), where the first dimension corresponds to the batch size (1, in this
case) and the second dimension corresponds
to the number of classes (2, in this case: 0 for

negative and 1 for positive). Each element in sl Slassyl
(negative) (positive)

the tensor represents the model’s confidence

score for a particular class. In this example, .4.3428 4.6955

the model outputs [-4.3428, 4.6955], which
suggests that the model assigns a higher con- Figure 3.13 The confidence score for each
fidence score to the second class than to the class
first class (see figure 3.13).

Based on the interpretation of the result, you can extract the class with the higher
confidence score and determine the class of the result:

Gets the predicted label (0
for negative, 1 for positive)

predicted_label = torch.argmax(outputs.logits) J

sentiment = "positive" if predicted_label == 1 else "negative"

print("Predicted sentiment:", sentiment)

You get the following output:

Predicted sentiment: positive

Using a transformers pipeline

Now that you’ve seen how to use a model directly, it’s time to learn to use a transform-
ers pipeline. The simplest way to use a pipeline is to specify the task you want to per-
form. But what tasks are supported in the first place? An easy way is to specify a task that
is not supported and view the error message, which also shows a list of supported tasks:

from transformers import pipeline
try:

dummy_pipeline = pipeline(task="dummy")
except Exception as e:

print(e)

This code snippet prints the following error message, which includes supported tasks:

"Unknown task dummy, available tasks are ['audio-classification',

'automatic-speech-recognition', 'conversational', 'depth-estimation',
'"document-question-answering', 'feature-extraction', 'fill-mask',
'image-classification', 'image-feature-extraction',

'image-segmentation', 'image-to-image', 'image-to-text',

Working with the Transformers library 47

'mask-generation', 'ner', 'object-detection', 'question-answering',
'sentiment-analysis', 'summarization', 'table-question-answering',
'text-classification', 'text-generation', 'text-to-audio',
'text-to-speech', 'text2text-generation', 'token-classification',
'translation', 'video-classification', 'visual-question-answering',
'vga', 'zero-shot-audio-classification', 'zero-shot-classification',
'zero-shot-image-classification', 'zero-shot-object-detection',
"translation_XX_to_YY']"

Let’s use the distilbert/distilbert-base-uncased-finetuned-sst-2-english model
that we used in section 3.2.3. This model falls under the text-classification task.
How would you know? In figure 3.11 earlier in this chapter, the code sample specified
the task:

from transformers import pipeline

pipe = pipeline("text-classification",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")

Alternatively, you can view the model’s page on the Hugging Face website and find the

task that this model is trained for (see figure 3.14).

This model falls under the
text classification t.ask

® @ M ~ < B @ huggingface.co & @ + @
@ distilbert
distilbert-base-uncased-finetuned-sst-2-english T
D like
Text Classification % Transformers (O PyTorch ¥ TensorFlow @ Rust
» ONNX = Safetensors sst2 glue @& English doi:10.57967/hf/0181
distilbert | EvalResults @ Inference Endpoints | arxiv:1910.01108
& license: apache-2.0
€, Train ~ %7 Deploy ~ <> Use in Transformers
+ Model card Files Community)

Figure 3.14 Finding the type of task a model falls under

Note that you can simply specify the tasks in the pipeline method and leave out the
model you want to use. The pipeline method will use the default model and revision
(version) for that task:

pipe = pipeline("text-classification")

48

CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

This approach is not recommended, however, because the default model to use might
change in the next release of the pipeline() method. It’s better to specify the model
parameter explicitly:

from transformers import pipeline

classifier = pipeline(task = 'text-classification',
model = 'distilbert/distilbert-base-uncased-finetuned-sst-2-english')

If you’ve already identified the model you want to use, you don’t have to specify the
task parameter. Specify only the model, like this:

classifier = pipeline(
model = 'distilbert/distilbert-base-uncased-finetuned-sst-2-english')

In addition, if you have a Compute Unified Device Architecture (CUDA)-compliant GPU
on your computer, you can specify that the pipeline be allocated to run on the GPU:

classifier = pipeline(
model = 'distilbert/distilbert-base-uncased-finetuned-sst-2-english',
device = "cuda")

By default, device is set to "cpu", which allows you to run a model using only the CPU
of your computer.

DEFINITION CUDA is a parallel computing platform and API model created by
NVIDIA. CUDA allows developers to use NVIDIA GPUs (graphics processing
units) for general-purpose processing in addition to traditional graphics ren-
dering tasks.

Let’s define two blocks of text containing reviews of two restaurants:

reviewl = '''From the warm welcome to the exquisite dishes and impeccable
service, dining at Gourmet Haven is an unforgettable experience that
leaves you eager to return.'''

review2 = '''Despite high expectations, our experience at Savor Bistro
fell short; the food was bland, service was slow, and the overall

atmosphere lacked charm, leaving us disappointed and unlikely to
revisit.'"'

We can use the pipeline object (classifier) to perform a sentiment analysis on the
first review:

print(classifier(reviewl))

You see the following output, indicating that the review contains positive sentiment:

[{'label': 'POSITIVE', 'score': 0.9998437166213989}]

3.3

331

Using transformers for NLP tasks 49

You can also pass in multiple blocks of text using a list, like this:

print(classifier([reviewl, review2]))

The preceding statement returns the following output:

[{'label': 'POSITIVE', 'score': 0.9998437166213989},
{'label': 'NEGATIVE', 'score': 0.9997773766517639}]

When contrasting using the model directly with employing the pipeline, the simplic-
ity and straightforwardness of pipelines become apparent. Simply by initializing a
pipeline object with the desired task and model, you enable data to flow seamlessly
through for inference, yielding immediate outputs. In some instances, however, direct
model use is essential for finer control. In this book, I prefer using pipelines whenever
feasible and use the model directly when precise control is required.

Using transformers for NLP tasks

The primary tasks the Transformers library was created for include NLP tasks, com-
puter vision, audio, and reinforcement learning. In this section, we discuss the various
NLP tasks you can perform using the Transformers library:

Text classification

Text generation

Text summarization
Text translation
Zero-shot classification

Question answering

Text classification

In section 3.2.4, you saw how to perform sentiment analysis using a text classification
model. Another form of text classification task is question detection. Using this task,
you can detect whether a sentence contains a question. To do that, use the huaen/
guestion_detection model:

from transformers import pipeline

question_classifier = pipeline("text-classification",
model="huaen/question_detection")

Using the pipeline created, you can pass in a string to determine whether it contains a
question:

response = question_classifier(
'''Have you ever pondered the mysteries that lie beneath
the surface of everyday life?''')

print(response)

50

CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

This statement prints the following output, indicating that this text is very likely
(99.76% confidence) a question:

[{'label': 'question', 'score': 0.9975988268852234}]

Let’s try another example:

response = question_classifier(

''"'""Life is a journey that must be traveled, no matter

how bad the roads and accommodations." - Oliver Goldsmith''')
print(response)

The response is that this text is not likely a question:

[{'label': 'non_question', 'score': 0.9996856451034546}]

Another text classification task you can perform is language detection. Using a model
suc}laspapluca/xlm-Poberta-base-language-detection,y011can,passitastrhngC)that
it can try to detect the language of a given sentence:

language_classifier = pipeline("text-classification",
model="papluca/xlm-roberta-base-language-detection")

response = language_classifier("BAMKREFELWVWTT, ")
print(response)

The preceding statements print the following result, indicating that the language is
most likely Japanese:

[{'label': 'ja', 'score': 0.9913387298583984}]

One more example of text classification is a spam classifier, which enables you to identify
incoming messages (emails, text messages, comments, and so on) as spam (unwanted
or unsolicited messages) or ham (legitimate messages). For this task, you can use the
Delphia/twitter-spam-classifier model:

spam_classifier = pipeline("text-classification",
model="Delphia/twitter-spam-classifier")

response = spam_classifier(
''"'"Congratulations! You've been selected as the winner of our
exclusive prize draw. Claim your reward now by clicking on
the 1ink below!''")

print(response)

The preceding statements print the following result, indicating that the string pro-
vided is likely spam:

[{'label': 1, 'score': 0.7446919679641724}]

3.3.2

Using transformers for NLP tasks 51

On the other hand, the following string is not likely spam:

response = spam_classifier(
'"''Hi Jimmy, I hope you're doing well. I just wanted to remind
you about our meeting tomorrow at 10 AM in conference room A.
Please let me know if you have any questions or need any
further information. Looking forward to seeing you there!''')

print(response)

The following output confirms that result:

[{'label': 0, 'score': 0.7776529788970947}]

Text generation

Another common NLP task is text generation, which involves creating new, coher-
ent, and contextually relevant text based on a given prompt or input. This task uses
machine learning models, particularly those based on deep learning and neural net-
works, to produce humanlike text. The following code snippet shows how to use the
openai-community/gpt2 model to generate a paragraph of text based on an initial start
sentence:

from transformers import pipeline

generator = pipeline("text-generation",
model="openai-community/gpt2")
generator("In this course, we will teach you how to")

This code generates the following output (but note that the output will be different
each time the code snippetis run):

[{'generated_text': 'In this course, we will teach you how to build the
best online games or use it to build your own. After this, this course
covers: 1) how to make awesome games in Google Play and 2) how to
develop a game based on'}]

You can control the output using the max_length (maximum number of tokens in
the generated text) and num_return_sequences (number of paragraphs generated)
parameters:

generator("In this course, we will teach you how to",

max_length = 50,
num_return_sequences = 3)

Here is the output generated:

[{'generated_text': 'In this course, we will teach you how to build and
customize a modern React based project. We will show you ways to

52 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

simplify your development as well as make your app run with no effort.
We will give you many practical tips and tricks. After'},
{'generated_text': 'In this course, we will teach you how to use the
Raspberry Pi in a production computer to help you connect the Raspberry
Pi to the internet. We will learn about connecting other IoT networks
and how to connect to them within the Raspberry Pi.\n\n'},
{'generated_text': "In this course, we will teach you how to use PHP's
built-in filters, and how to use PHP's PHP-based classes. We will

also explain how to perform PHP operations such as create an array of
attributes, create an array of"}]

3.3.3 Text summarization

Summarizing text is another widely recognized NLP task. The key goal of text summa-
rization is condensing large amounts of text into shorter, coherent summaries while
preserving key information and main ideas. This technique is useful in applications
such as news aggregation, document summarization, and content generation. There
are two main approaches to text summarization:

Extractive—Involves selecting and extracting important sentences or phrases
directly from the original text

Abstractive—Generates summaries by paraphrasing and rephrasing the original
text in a more concise form

To try the text summarization task, you can use the facebook/bart-large-cnn model:

from transformers import pipeline

summarizer = pipeline("summarization",
model="facebook/bart-large-cnn")

Let’s try to summarize the following block of text on quantum computers.

Listing 3.6 Summarizing a long paragraph of text

article = """

A quantum computer is a computer that exploits quantum mechanical
phenomena. At small scales, physical matter exhibits properties of
both particles and waves, and quantum computing leverages this
behavior using specialized hardware. Classical physics cannot
explain the operation of these quantum devices, and a scalable
guantum computer could perform some calculations exponentially
faster than any modern "classical" computer. In particular, a
large-scale quantum computer could break widely used encryption
schemes and aid physicists in performing physical simulations;
however, the current state of the art is still largely
experimental and impractical.

The basic unit of information in quantum computing is the qubit,
similar to the bit in traditional digital electronics. Unlike a
classical bit, a qubit can exist in a superposition of its two

Using transformers for NLP tasks 53

"basis" states, which loosely means that it is in both states
simultaneously. When measuring a qubit, the result is a
probabilistic output of a classical bit. If a quantum computer
manipulates the qubit in a particular way, wave interference
effects can amplify the desired measurement results. The design
of quantum algorithms involves creating procedures that allow a
quantum computer to perform calculations efficiently.

Physically engineering high-quality qubits has proven challenging.
If a physical qubit is not sufficiently isolated from its
environment, it suffers from quantum decoherence, introducing noise
into calculations. National governments have invested heavily in
experimental research that aims to develop scalable qubits with
longer coherence times and lower error rates. Two of the most
promising technologies are superconductors (which isolate an
electrical current by eliminating electrical resistance) and ion
traps (which confine a single atomic particle using electromagnetic
fields).

Any computational problem that can be solved by a classical computer
can also be solved by a quantum computer.[2] Conversely, any problem
that can be solved by a quantum computer can also be solved by a
classical computer, at least in principle given enough time. In other
words, quantum computers obey the Church-Turing thesis. This means
that while quantum computers provide no additional advantages over
classical computers in terms of computability, quantum algorithms
for certain problems have significantly lower time complexities than
corresponding known classical algorithms. Notably, quantum computers
are believed to be able to solve certain problems quickly that no
classical computer could solve in any feasible amount of time—a feat
known as "quantum supremacy." The study of the computational
complexity of problems with respect to quantum computers is known as
quantum complexity theory.

print(summarizer(article,
min_length = 100,
max_length = 250,
do_sample = False))

By default, the summarizer object returns a max_length of 142 tokens. In the preceding
statement, you indicate that you want the summary to have at least 100 tokens and
not exceed 250 tokens. The do_sample=False indicates that sampling should not be
used during generation. Instead, the model will deterministically select the most likely
tokens at each step of the generation process, essentially performing extractive sum-
marization. The preceding statement generates the following summary:

[{'summary_text': 'A quantum computer is a computer that exploits
guantum mechanical phenomena. Classical physics cannot explain the
operation of these quantum devices. A scalable quantum computer
could perform some calculations exponentially faster than any
modern "classical" computer. The basic unit of information in
guantum computing is the qubit, similar to the bit in traditional

54

3.3.4

CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

digital electronics. The design of quantum algorithms involves
creating procedures that allow a quantum computer to perform
calculations efficiently. The study of the computational
complexity of problems with respect to quantum computers is known
as quantum complexity theory.'}]

Let’s try again, this time with do_sample = True:

print(summarizer(article,
min_length = 100,
max_length = 250,
do_sample = True))

This statement means that during the generation of the summary, the model will use
sampling to select the next token probabilistically based on the predicted distribution
of tokens. This approach allows more diverse and creative generation because the
model can explore different possibilities at each step rather than select the most likely
token deterministically. The preceding statement generates the following output:

[{'summary_text': 'Quantum computers exploit quantum mechanical
phenomena. The basic unit of information in quantum computing is
the qubit, similar to the bit in traditional digital electronics.
A large-scale quantum computer could break widely used encryption
and aid physicists in performing physical simulations. National
governments have invested heavily in research that aims to develop
scalable qubits with longer coherence times and lower error rates.
guantum computers obey the Church-Turing thesis, which means that
any computational problem that can be solved by a classical
computer can also be solve by a quantum computer.'}]

Text translation

Text translation is one of the earliest foundational tasks in NLP. Its evolution spans
from the initial days of rule-based methods and bilingual dictionaries to the ground-
breaking transformer architecture, marking a journey of substantial advancements in
quality enhancement and fluency.

Hugging Face offers several text translation models you can use to translate text from
one language to another. Let’s start with the google-t5/t5-base model, a variant of the
T5 model developed by Google Al:

from transformers import pipeline

translator = pipeline("translation",
model = "google-t5/t5-base")

When you run the preceding code, you see a warning like this one:

UserWarning: "translation" task was used, instead of
"translation_XX_to_YY", defaulting to "translation_en_to_de"

Using transformers for NLP tasks 55

This message means that the translator object will default to translating your text
from English to German. Let’s give it a try:

translator("How are you?")

You see the following result containing the translated text:

[{"translation_text': 'Wie sind Sie?'}]

The recommended way to perform translation correctly is to specify the translation
task using the format - translation_XX_to_YY, where XX is the language to translate
from and YY is the language to translate to. Here’s an example of a request to translate
from English to French:

translator = pipeline(task = 'translation_en_to_fr',
model = "google-t5/t5-base")
translator('Wikipedia is hosted by the Wikimedia Foundation, a non-profit
organization that also hosts a range of other projects.')

Here is the result containing the translated text in French:

[{'translation_text': "Wikipedia est hébergée par la Wikimedia
Foundation, un organisme sans but lucratif qui héberge également
une série d'autres projets."}]

You can also translate from English to German:

translator = pipeline(task = 'translation_en_to_de"',

model = "google-t5/t5-base")
translator('Wikipedia is hosted by the Wikimedia Foundation,
a non-profit organization that also hosts a range of other
projects."')

The text is translated to German:

[{'translation_text': 'Wikipedia wird von der Wikimedia Foundation
gehostet, einer gemeinnitzigen Organisation, die auch eine Reihe
anderer Projekte beherbergt.'}]

What happens if you want to translate from English to Chinese? Unfortunately, the
google-t5/t5-base model does not support translation to Chinese. In general, to know
the languages supported by a model, you can check out the model’s page on Hugging
Face Hub or refer to its source code in GitHub. A more pragmatic way is to try different
tasks and see what works. You can try using translation_en_to_zh, for example, to see
whether it can translate from English to Chinese. (zh is the International Organization
for Standardization [ISO] 639-1 language code for Chinese.)

56

3.3.5

CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

To translate from English to Chinese, you can use the facebook/m2m100_418M model.
But before you can use this model, you need to install the sentencepiece package, a
widely used library for tokenization:

Ipip install sentencepiece

Now you can try to translate the following English text to Chinese:

translator = pipeline('translation_en_to_zh',
model = 'facebook/m2m100_418M"')

translator('Wikipedia is hosted by the Wikimedia Foundation,
a non-profit organization that also hosts a range of other
projects."')

The translated output looks like this:

[{'translation_text':
'HEFRE4EANESSTIN, R—RIEMNALN, EXH THESHMTB, '}]

You can also use the model to translate Chinese to English. The following code snippet
translates the preceding output in Chinese back to English:

translator = pipeline(task = 'translation_zh_to_en',

model = "facebook/m2m100_418M",

max_length = 400)
translator("#EBHZEEGHESLTI NN, B—RIFEFEL, XD THLEMITE, ")

Here is the output in English:

[{'translation_text': 'Wikipedia is hosted by the Wikipedia
Foundation, a non-profit organization and hosts many other
projects.'}]

Zero-shot classification

Section 3.2.4 presented an example of sentiment analysis in which the model was
trained on a set of labeled examples, classifying them as positive or negative. Although
this technique is useful for analyzing the sentiment in a new paragraph of text, it has
limitations. Suppose that you have a description of a new gadget and want to classify
it automatically in a category such as Home Appliances or Electronics. Using a model
that has been pretrained on a fixed set of labels is not going to be useful in this case.
This situation is where zero-shot classification comes in. There are various types of
zero-shot classification, such as the following:

Zero-shot text classification
Zero-shot image classification

Zero-shot audio classification

Using transformers for NLP tasks 57

Zero-shot video classification

Zero-shot graph classification

Zero-shot vs. one-shot classification

In discussions of zero-shot classification, another term often comes up: one-shot
classification. Whereas zero-shot classification is the task of classifying previously
unseen classes during model training, one-shot classification refers to training a
model to recognize classes with only one example (or a few examples) per class
during training. For a one-shot classification model trained to recognize cats and
dogs, for example, only one image of a cat and one image of a dog is provided during
training. The aim is to teach the model to generalize from a small number of exam-
ples. This technique is useful when collecting a large number of samples would be
difficult or prohibitively expensive.

For our next task, we will try zero-shot text and image classification. Zero-shot text classi-
fication involves classifying text in predefined categories or labels without having access
to labeled examples for training. Zero-shot text classification uses models trained on
Natural Language Inference (NLI) tasks.

To try zero-shot text classification, let’s use the joeddav/xlm-roberta-large-xnli
model (https://mng.bz/MwQo). Because this repository is private, you need to apply
for afree Hugging Face token (type READ) at https://huggingface.co/settings/tokens.
After you obtain the token, log in to Hugging Face using the huggingface-cli tool in
Terminal or Anaconda Prompt:

$ huggingface-cli login
| N | o1l S Y) P B | o1l
I I O _l-l Y) B Y O
| N N | | _l_l N
_l _l I _l
Y I I T S I Y PO IR R P | S I Y I R
_I-1Cl Y O _I-1Cl
| N N N | | | B I |
_l _l I _l
| | _l_l o1l S Y) P B | o1l
_l _l _l Y) B Y O

To login, “huggingface_hub" requires a token generated
from https://huggingface.co/settings/tokens .
Enter your token (input will not be visible): <huggingface_token>
Add token as git credential? (Y/n) n
Token is valid (permission: read).
Your token has been saved to /Users/weimenglee/.cache/huggingface/token
Login successful

Enter your Hugging Face token and type n when prompted. Your token will be saved to
a file named token located in the ~/.cache/huggingface folder.

https://mng.bz/MwQo
https://huggingface.co/settings/tokens

58

CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

Another way to log in to Hugging Face Hub is to log in programmatically in Jupyter
Notebook using the notebook_login() function:

from huggingface_hub import notebook_login
notebook_login()

Figure 3.15 shows the UI that is displayed when you run the preceding code. Enter
your token and click the Login button.

Copy a token from your Hugging Face tokens page and paste it below.
Immediately click login after copying your token or it might be stored in plain

text in this notebook file.
Token:
Add token as git credential?
Login
Pro Tip: If you don't already have one, you can create a dedicated

'notebooks' token with 'write' access, that you can then easily reuse for all

notebooks.

Figure 3.15 Finding the type of task a model falls under

In addition, you need to install two packages: sentencepiece and protobuf. You can do
so in Jupyter Notebook:

Ipip install sentencepiece
Ipip install protobuf

Let’s create a pipeline object that uses the joeddav/xlm-roberta-large-xnli model:

from transformers import pipeline

zero_shot_classifier = pipeline("zero-shot-classification",
model="'joeddav/xlm-roberta-large-xnli')

This model is fine-tuned on the XLM-RoBERTa model (pretrained on 2.5 TB of filtered
CommonCrawl data in 100 languages) on a combination of NLI data in 15 languages.

Using transformers for NLP tasks 59

You can use the model with any of the following 15 languages: English, French, Span-
ish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese,
Hindi, Swahili, and Urdu. Let’s define two paragraphs of text and then use them to let
the model predict possible labels for the text:

textl = """

"In the intricate realm of global affairs, the interplay of power,
diplomacy, and governance stands as a defining force in the
trajectory of nations. Amidst fervent debates in legislative
chambers and pivotal dialogues among world leaders, ideologies
clash and policies take shape, shaping the course of societies.
Issues such as economic disparity, environmental stewardship, and
human rights take precedence, driving conversations and shaping
public sentiment. In an age of digital interconnectedness, social
media platforms have emerged as influential channels for discourse
and activism, amplifying voices and reshaping narratives with
remarkable speed and breadth. As citizens grapple with the
complexities of contemporary governance, the pursuit of accountable
and transparent leadership remains paramount, reflecting an
enduring quest for fairness and inclusivity in societal governance."

text2 = '"!'

In the tender tapestry of human connection, romance weaves its
delicate threads, binding hearts in a dance of passion and longing.
From the flutter of a first glance to the warmth of an intimate
embrace, love blooms in the most unexpected places, transcending
barriers of time and circumstance. In the gentle caress of a hand
and the whispered promises of affection, two souls find solace in
each other's embrace, navigating the complexities of intimacy with
tender care. As the sun sets and stars illuminate the night sky,
lovers share stolen moments of intimacy, lost in the intoxicating
rhythm of each other's presence. In the symphony of love, every
glance, every touch, speaks volumes of a shared bond that defies
explanation, leaving hearts entwined in an eternal embrace.

We can use the zero_shot_classifier object to determine whether textl contains text
related to technology, politics, business, or romance:

candidate_labels = ["technology", "politics", "business", "romance"]
prediction = zero_shot_classifier(textl,

candidate_labels,
multi_label = True)

The result is converted to a pandas DataFrame for easy viewing:

import pandas as pd
display(pd.DataFrame(prediction).drop(["sequence"], axis=1))

Figure 3.16 shows the result, indicating that the text is probably related to politics.

60 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

Labels Scores
0 politics 0.990988
1 technology 0.828358

2 romance 0.465763

Figure 3.16 The result of

" s B the zero-shot classification

You can also pass in multiple paragraphs (enclosed within a list) to the zero_shot_
classifier object:

prediction = zero_shot_classifier([textl, text2],
candidate_labels,
multi_label = True)

display(pd.DataFrame(prediction).drop(["sequence"], axis=1))

Figure 3.17 shows the results for the two paragraphs (with the most probable label at
the front of the list of labels).

Labels Scores
0 [politics, technology, romance, business] [0.9909884929656982, 0.8283684713935852, 0.4665...

1 [romance, business, politics, technology] [0.9982308149337769, 0.11879944801330566, 0.01...

Figure 3.17 Results of the one-shot classification for two paragraphs

How about zero-shot image classification? For this task, you can use the openai/clip
-vit-large-patchl4-336 model:

from transformers import pipeline

classifier = pipeline("zero-shot-image-classification",
model = "openai/clip-vit-large-patchl4-336")

Let’s use the model to detect whether the image in figure 3.18 is an airplane, car, or
train:

labels_for_classification = ["airplane", "car", "train"]

scores = classifier("Emirates_Airbus_A380-861_A6-EER_MUC_2015_04.3jpg",
candidate_labels = labels_for_classification)

pd.DataFrame(scores)

Figure 3.19 shows that the image is probably an airplane.

3.3.6

Using transformers for NLP tasks 61

Score Label
0 0.997296 airplane
1 0.002082 car

2 0.000623 train

Figure 3.18 An image of an airplane (Source: Figure 3.19 Result of the
https://mng.bz/yN5y) zero-shot image classification

Question-answering tasks

Another task that the pipeline object can perform is question answering (QA). I
don’t think you need an example of that task; if you’ve ever used Google to search for
answers to questions, you already know what a QA task is.

Hugging Face hosts many QA models (https://mng.bz/X7zp) that you can experi-
ment with. QA models are valuable for several reasons:

Efficient information retriecval—QA models can quickly retrieve information of
interest from a large collection of text.

Natural language understanding—QA models can understand natural language
inputs and generate contextrelevant answers.

Let’s use the deepset/roberta-base-squad2 model to understand how a QA model
works. This is a RoBERTa-base model (pretrained on the English language using a
masked language modeling [MLM] objective), fine-tuned using the Stanford Question
Answering Dataset (SQuAD) 2.0 dataset.

DEFINITION SQuAD is a reading comprehension dataset consisting of ques-
tions posed by crowd workers on a set of Wikipedia articles. The answer to
every question is a segment of text, or span, from the corresponding reading
passage, or the question might be unanswerable.

First, create an instance of the model using the pipeline() function:
from transformers import pipeline

QA_model = pipeline(task = "question-answering",
model = "deepset/roberta-base-squad2")

The result is a paragraph of text discussing the origin of the name Singapore:

https://mng.bz/yN5y
https://mng.bz/X7zp

62

CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

text = ''!

The English name of "Singapore" is an anglicisation of the native
Malay name for the country, Singapura (pronounced [sinapural),

which was in turn derived from the Sanskrit word for 'lion city'
(Sanskrit: Hﬁﬁz; romanised: Simhapura; Brahmi: ALLl; literally

"lion city"; simha means 'lion', pura means 'city' or 'fortress').
Pulau Ujong was one of the earliest references to Singapore Island,
which corresponds to a Chinese account from the third century

referred to a place as PO Lud Zhong (Chinese: & #& &), a
transcription of the Malay name for 'island at the end of a

peninsula'. Early references to the name Temasek (or Tumasik) are
found in the Nagarakretagama, a Javanese eulogy written in 1365,

and a Vietnamese source from the same time period. The name possibly
means Sea Town, being derived from the Malay tasek, meaning 'sea' or
'lake'. The Chinese traveller Wang Dayuan visited a place around 1330
named Danmaxi (Chinese: #*E#£5; pinyin: Danmaxi; Wade-Giles: Tan Ma Hsi)
or Tam ma siak, depending on pronunciation; this may be a transcription
of Temasek, alternatively, it may be a combination of the Malay Tanah
meaning 'land' and Chinese xi meaning 'tin', which was traded on the
island

You can use the model to ask a question based on the text. Perhaps you would like to
know the meaning of the name Singapura:

question = {
'question': 'What is the meaning of Singapura?',
‘context': text

2

model_response = QA_model(question)
pd.DataFrame([model_response])

Figure 3.20 shows the answer provided by the model.

Score Start End Answer
Figure 3.20 The result shows that the
0 0.096135 186 195 lion city name Singapura means “Lion City.”

Summary

At a high level, the transformer architecture is built around two main compo-
nents: the Encoder and the Decoder.

The self-attention mechanism is a key feature of the transformer architecture . It
allows the model to assign different levels of importance to words in a sequence
when representing a specific word, helping it capture relationships and depen-
dencies between words regardless of how far apart they are.

A token is a segment of text that the model treats as a single processing unit.

Summary 63

Token embeddings map tokens into numerical vectors. These vectors represent
both semantic and syntactic information, enabling models to interpret the mean-
ing and relationships of words in natural language.

Positional encodings supply information about word positions in a sequence,
allowing the model to recognize word order within a sentence.

Softmax is a mathematical function that transforms a vector of numbers into
a probability distribution, where each value’s probability is proportional to its
exponentiated value relative to the sum of all exponentiated values in the vector.
The Transformers library, developed by Hugging Face, is an open source plat-
form designed to make it easier to work with cutting-edge transformer-based
models.

The pipeline() function is a high-level wrapper around the Transformers library
that simplifies access to a variety of pretrained models.
Zero-shot classification refers to assigning labels to classes the model has never

seen during training, whereas one-shot classification involves training a model to
identity classes from one or few examples per class.

4.1

Using Hugging Face for
computer vision tasks

This chapter covers

Different types of Hugging Face computer vision
models

Various ways to use models for object detection
Video content and image classification tasks
Image segmentation tasks

Previously, you learned about Hugging Face transformers and pipelines. You also
learned how to use some pretrained models for natural language processing (NLP)
tasks, such as sentiment analysis and text translation. Hugging Face also provides a
vast collection of pretrained models for computer vision tasks. Using all these hosted
pretrained models, you can create interesting applications that detect objects in
images, the age of a person, and more. In this chapter, you learn how to perform the
first four tasks using Hugging Face models.

Hugging Face computer vision models

The computer vision models (https://huggingface.co/models; see figure 4.1)
hosted on Hugging Face are grouped by task type:

64

https://huggingface.co/models

4.2

Object detection
Image classification
Image segmentation
Video classification
Depth estimation

Image-to-image

Object detection

Unconditional image generation

Zero-shot image classification

/ooﬂj<

Image-to-Test Text-o-Video
Visual Question Answering

Document Question Answering

Graph Machine Learning

“ Hugging Face + Models
Libraries Datasess Languages henses
Multimodal
Feature Extraction Tent-to-Image

Depth Estimation Image Classification

Object Detection Image Segmentation
Image-ta-image

Unconditional Image Generation

Video Classification

Tero-Shot image Classification

w huggingface.co (v

Datasets Spaces Docs & Solutions Pricing

Models = w Full-text search

" |||j..f..tralax.:l;f Mistral -'j"B-\rG o |

" Tistxalaimiatra l-'i."B-Instmct -vB.1

=] monstt?z.-labs,’contm]r _vip_sd15_grcode_monster
s stahil ityai/stable-diffusion-x1-base-1.8

@ TheBloke/Mistral-7B-Instruct-vB.1-GGUF

. stéhi% it ya.i,.f stablelm-3b-4elt

W% Qwen/Qwen-14B-Chat

Figure 4.1 Computer vision-related models on the Hugging Face website

Object detection

@0 + B

14 Sort: Trending

65

Object detection is a computer vision technique that involves identifying and locating
objects of interest within an image or video. The primary goals of object detection are
to classify the objects in the image or video and determine their precise positions by

drawing bounding boxes around them.

Hugging Face hosts several models that have been pretrained to detect objects in
images. You can find a list of these models at https://mng.bz/QwaQ (see figure 4.2).
We’ll look at one specific model: facebook/detr-resnet-50 (https://huggingface.co/
facebook/detr-resnet-50; see figure 4.3).

https://mng.bz/QwaQ
https://huggingface.co/facebook/detr-resnet-50
https://huggingface.co/facebook/detr-resnet-50

66

CHAPTER 4 Using Hugging Face for computer vision tasks

Muitimodsl

ese (] < W huggntece.co & M
= Hugging Face * Madels Datasets Spaces Docs & Solutions Pricing Legln
D) ubaies Dwmset langueges Llanses Models e Fulbtrst search 1 ot Trending

O ettt facabook /detr-reanet-50

B hustylyolos-tiny

Computer iz

\Bisglay 2 meny

@ ultralyticsplus/yolavis
#® ciasinbaya/ThjactDataction

& hustvl/yolos-basa

@)

Figure 4.2 Pretrained object detection models on Hugging Face

ece [] 4

2017 object detection | L8k annotated images). It wasintroduced
i the pape: End-to-End Obakes D
Carlon et al. and first released in this repesitory,

ith Teapsformmeds by

Deschairmer: The veam releasing DETR ded not write & moded card

for this madel 5o this model card has beer written iy the Hugging

Faco team

Model descriptian

Tha DETR madel is an ancodar-decatier translosmer with a
comvaltional backbons, Two heads are addod on tap of the
decader cutputs in arder to pedform object dotertion: a linear
laryer for the class lobels and a MLP {multi-fayer perceptrony for the
Bounding baxed, The model uses so-called object queries ta
datect objects in an image. Each object query books for a partlculor
abjsct i the imaga. For COCE, the number of objoct quaries s set

ko o0

The madel & tralned using 1 “bipartite matching ioss™ ong

% Hugging Face + Models Datasets Spaces Bocs @ Solutions Preing Login m
foccbook detr-resnet-50 1 .
Ohject Detoction & Tansemen) PyToich woon ger vsion @ inference Endponi 290511872
= spache 2
+ Model card Files Commusity [l | Tene o Depleys s Usiis Prasalormies
£ Editmodel cand
DETR (End-to-End Object Detection) moded with Tt
508,610

ResNet-50 backbone
Déractian Thanstormer (DETH) modal trained endto.end an £OCD “ H infen A

e p— (XL
msurts sall

e
paiin

Rl
o
e PR
persmn

L)

B anaeats J @t +

&)

Figure 4.3 The facebook/detr-re

You can test the model directly on Hugging Face using the Hosted Inference API fea-
ture (but you need to log in to Hugging Face first by creating a free account). For this
test, let’s use an image of an office with a few ladies (see figure 4.4).

snet-50 model for object detection

Object detection 67

Figure 4.4 Image by Danny Choo
(Flickr: Good Smile Company
Offices, CC BY-SA 2.0, https://
commons.wikimedia.org/w/
index.php?curid=14609862)

When you drag and drop the image to the Hosted Inference API section of the model’s
page on Hugging Face, you see the list of objects detected as well as their correspond-
ing probabilities (see figure 4.5).

+ Inference API ©

B3 Object Detection Examples v

Bounding boxes for
detected objects

peIson
8.99
v
e — 9.558
cell phone
i 0.775
clock
0.644
chair
—_— 9.656 The corresponding
chair <_ probabilities for the
- 0.666 detected objects
chair
9.943
chair
- 6.632
chair
po 0.583 Figure 4.5 The
detected objects
person HEsms in the image and
p— g J their corresponding
Bt Ele probabilities

https://commons.wikimedia.org/w/index.php?curid=14609862
https://commons.wikimedia.org/w/index.php?curid=14609862
https://commons.wikimedia.org/w/index.php?curid=14609862

68

4.2.1

CHAPTER 4 Using Hugging Face for computer vision tasks

When you use your mouse to hover over the name of a detected object, the image high-

lights the bounding box for the selected object.

Using the model directly

The model would be more useful if you could use it programmatically, of course. Hug-
ging Face provides some useful tips for using its hosted models. To see them, click the
Use this Model button on the model’s page; then click the Transformers button below

it (see figure 4.6).

ece @O w hugginglaceco

DETR (End-to-End Object Detection) model with
ResNet-50 backbone

DEtection TRansformer (DETR) model trained end-to-end on COCO
2017 object detection {118k annotated images), It was introduced
in the paper End-ta-End Object Detection with Transfarmers by

Carion et al. and first released in this repository.

Disclaimer: The team releasing DETR did not write a model card

&) + 0
*“ Hugging Face S 1odels, datasets, u # Models Datasets Spaces © Posts Docs Pricing = .
facebook detr-resnet-58 T ke o
Object Detection & Transformers O PyTorch & Safetansors coco detr wision @ Inference Endpaints % arxiv2005.12872
o Ll apache-2.0
+ Modelcard | Files Community EB 1 8 Teain ' Depley
vk Edit mode| card Librafieq
Downloads last month | = Transformers |
959,538
Local Apps =
I VLM
= Safetensors
Model size 4L6Mparams Tensortype/ F32. A
+ Inference API
=% Object Detection EBamples W

\

Click this button to learn
how to use the model
programmatically.

Figure 4.6 Hugging Face provides tips on using transformers with the models.

You have two ways to use a model programmatically (see figure 4.7):

Use a transformer pipeline.
Load the model directly.

Before you use a model, you need to install two packages:

transformers

timm

NOTE timm, a deep-learning library created by Ross Wightman, is a collec-
tion of state-of-the-art computer vision models, layers, utilities, optimizers,

Object detection 69

schedulers, data loaders, augmentations and training/validating scripts that
can reproduce ImageNet training results. See https://timm.fast.ai for details.

eoe O - B huggingface.co B @t + O

How to use from the < Transformers @ library

from transformers import pipeline

pipe = pipeline("object-detection”, model="facebook/detr-resnet-50")

from transformers import AutoImageProcessor, AutoModelForObjectDetection

processor = AutcImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = AutoModelForObjectDetection.from_pretrained("facebook/detr-resnet-50")

Quick Links

Read model documentation
Read docs on high-level-pipeline

Read our learning resources

Figure 4.7 Two ways to use the models on Hugging Face

Type the following commands in Terminal/Anaconda Prompt to install the two
packages:

$ pip install transformers
$ pip install timm

Now load the model directly:

from transformers import DetrImageProcessor, DetrForObjectDetection

image_processor = DetrImageProcessor.from_pretrained(
"facebook/detr-resnet-50")

model = DetrForObjectDetection.from_pretrained(
"facebook/detr-resnet-50")

DetrImageProcessor is a class (from the transformers package) that is used to process
images that will be input to the DETR (Detection Transformer) algorithm. The Detr-
ForObjectDetection module provides access to pretrained DETR models. The pre-
trained model we’re using in this case is facebook/detr-resnet-50.

https://timm.fast.ai

70

CHAPTER 4 Using Hugging Face for computer vision tasks

The preceding code snippet downloads
the weights of the model to the .cache/ SEgiglne
huggingface/hub folder in your home
directory. Two folders are created in the
~/.cache/huggingface/hub folder, as shown

hub

ﬁ models—facebook—detr-resnet-50

in figure 4.8.
It would be useful to know what objects models—timm--resnet5o.a1_intk
the models were trained to detect. To find
Out’ use the model’s Config .id2label Figure 4.8 You must download the Weights
. . of the models to your computer before you can
attribute:
use them.

model.config.id2label

The model can detect a total 90 objects. You’ll see a printout like the following (for
brevity, showing only the first and last five object names):

{0: 'N/A',

1: 'person',

10: 'traffic light',
11: 'fire hydrant',
12: 'street sign',

87: 'scissors',
88: 'teddy bear',
89: 'hair drier',
9: 'boat',

90: 'toothbrush'}

Before you load the image to be used for detection, displaying it for inspection would
be useful. The following listing contains a helper function called loadImage().

Listing 4.1 Displaying the image to use for object detection

from PIL import Image, ImageDraw
import requests
import torch

def loadImage(url): If the image is from the web . ..
if url.startswith('http'):
image = Image.open(requests.get(url, stream=True).raw)
else:
image = Image.open(url) <1 ...theimage s local.

return image

image = loadImage('http://bit.ly/46xv3sL"')
display(image)

TIP You may need to install the PIL (Pillow) package if you don’t have it
on your system. PIL is the Python Imaging Library, by Fredrik Lundh and

Object detection 71

contributors (https://pypi.org/project/Pillow). You can install the PIL pack-
age using pip install pillow.

To perform object detection, first prepare the input image:

inputs = image_processor(images = image,
return_tensors = "pt")

You use the image_processor object to preprocess the input image before feeding it
into the neural network. This function returns a PyTorch tensor that looks like this:

{'pixel_values':

tensor(

[[[[-1.1075, -1.0904, -1.0733, ..., -0.4397, -0.4226, -0.4226],
[-1.1418, -1.1247, -1.1075, ..., -0.4397, -0.4226, -0.4226],
[-1.1932, -1.1932, -1.1760, ..., -0.4397, -0.4226, -0.4054],
[-0.3712, -0.4054, -0.4739, ..., -0.5253, -0.4911, -0.4739],
[-0.2856, -0.3198, -0.3883, ..., -0.5082, -0.5082, -0.5082],
[-0.2342, -0.2684, -0.3369, ..., -0.5082, -0.5253, -0.5253]1,

[[-1.0903, -1.0728, -1.0553, ..., -0.4076, -0.3901, -0.3901],
[-1.1253, -1.1078, -1.0903, ..., -0.4076, -0.3901, -0.3901],
[-1.1779, -1.1779, -1.1604, ..., -0.4076, -0.3901, -0.3725],
[-0.5476, -0.5651, -0.6001, ..., -0.5476, -0.5126, -0.4951],
[-0.4776, -0.4951, -0.5476, ..., -0.5301, -0.5301, -0.5301],
[-0.4251, -0.4601, -0.5126, ..., -0.5301, -0.5476, -0.5476]1,

[[-1.2467, -1.2293, -1.2119, ..., -0.5670, -0.5495, -0.5495],
[-1.2816, -1.2641, -1.2467, ..., -0.5495, -0.5321, -0.5321],
[-1.3339, -1.3339, -1.3164, ..., -0.5321, -0.5147, -0.4973],
[-1.0898, -1.1247, -1.1596, ..., -0.5147, -0.4798, -0.4624],
[-1.0376, -1.0724, -1.1247, ..., -0.4973, -0.4973, -0.4973],
[-1.0027, -1.0376, -1.0898, , -0.4973, -0.5147, -0.51471111),

'pixel_mask': tensor([[[1, 1, 1, ..., 1, 1, 11,

[2, 2,1, ..., 1,1, 11,

(1, 1, 1, ..., 1,1, 1],

[2, 2,1, ..., 1,1, 11,

(1, 1, 1, ..., 1,1, 1],

(1, 1, 1, ..., 1,1, 111D}

Then the PyTorch tensor is unpacked as a keyworded argument to be used as the input
for the model object:

outputs = model(**inputs)

The model object represents the pretrained network. When you pass the preprocessed
PyTorch tensor to this object, it performs a forward pass through the network and
returns the output of the model, which is used for object detection:

https://pypi.org/project/Pillow

72

CHAPTER 4 Using Hugging Face for computer vision tasks

target_sizes = torch.tensor([image.size[::-1]1)

results = image_processor.post_process_object_detection(
outputs,
target_sizes = target_sizes,
threshold = 0.9)[0]

results

The post_process_object_detection() function takes the following arguments:

Output of the model that was created earlier
Target size of the image

Threshold value for filtering out predictions (in this case, return only those with
confidence greater than 90%)

The post_process_object_detection() function returns a dictionary containing the
objects detected in the image:

{'scores': tensor([0.9180, 0.9961, 0.9426, 0.9753, 0.9622,

0.9882, 0.9872, 0.9372, 0.9976, 0.9987,

0.9174, 0.9896, 0.9997, 0.9822, 0.9970],
grad_fn=<IndexBackward0>),

'labels': tensor([1, 72, 62, 1, 1, 1, 76, 72,

1, 1, 1, 64, 1, 72, 11),

"boxes': tensor([[549.6678, 145.2847, 564.6752, 165.3628],
[317.9362, 212.8838, 416.3602, 299.5169],
[508.3657, 306.7018, 661.2424, 429.7788],
[673.2169, 135.5043, 705.7635, 174.4243],
[703.4085, 115.4306, 722.6825, 140.0320],
[454.9466, 142.5465, 497.3364, 202.9241],
[344.1364, 276.7948, 445.4079, 346.2501],
[309.7489, 194.9189, 374.5581, 237.4787],
[395.9247, 152.1988, 446.4625, 216.5487],
[237.3090, 174.7686, 308.3646, 264.4060],
[720.7039, 112.1340, 737.7415, 131.0087],
[124.8140, 211.3712, 230.1096, 330.4417],
[369.2618, 226.4449, 535.6130, 427.6963],
[491.1188, 181.2496, 530.7089, 223.4560],
[516.3748, 177.5891, 628.3662, 318.13321],
grad_fn=<IndexBackward0>)

This dictionary contains three key-value pairs:
scores—Confidence of each detected object
labels—Index of the detected object in model.config.id2label
boxes—Bounding boxes of each detected object

The best way to visualize the detected objects is to draw bounding boxes around the
objects, as shown in the next listing.

Object detection 73

Listing 4.2 Drawing bounding boxes around the detected objects

import random
draw = ImageDraw.Draw(image)

for score, label, box in zip(results["scores"], results["labels"],
results["boxes"]):
box = [round(i, 2) for i in box.tolist()]
print(
f"Detected {model.config.id2label[label.item()]} with confidence "
f"{(score.item() * 100):.2f}% at {box}"

)
r = random.randint(0, 255)
g = random.randint(0, 255)

b = random.randint(0, 255)
color = (r, g, b)

draw.rectangle(box,
outline=color,
width=2)

Draws bounding
box around object

draw.text((box[0], box[1]-10),
model.config.id2label[label.item()],
fill="'white"')

Displays the object label

display(image)

You see the following output (each detected object and its associated confidence):

Detected person with confidence 91.80% at [549.67, 145.28, 564.68, 165.36]
Detected tv with confidence 99.61% at [317.94, 212.88, 416.36, 299.52]
Detected chair with confidence 94.26% at [508.37, 306.7, 661.24, 429.78]
Detected person with confidence 97.53% at [673.22, 135.5, 705.76, 174.42]
Detected person with confidence 96.22% at [703.41, 115.43, 722.68, 140.03]
Detected person with confidence 98.82% at [454.95, 142.55, 497.34, 202.92]
Detected keyboard with confidence 98.72% at [344.14, 276.79, 445.41,
346.25]
Detected tv with confidence 93.72% at [309.75, 194.92, 374.56, 237.48]
Detected person with confidence 99.76% at [395.92, 152.2, 446.46, 216.55]
Detected person with confidence 99.87% at [237.31, 174.77, 308.36, 264.41]
Detected person with confidence 91.74% at [720.7, 112.13, 737.74, 131.01]
Detected potted plant with confidence 98.96% at [124.81, 211.37,
230.11, 330.44]
Detected person with confidence 99.97% at [369.26, 226.44, 535.61, 427.7]
Detected tv with confidence 98.22% at [491.12, 181.25, 530.71, 223.46]
Detected person with confidence 99.70% at [516.37, 177.59, 628.37, 318.13]

At the same time, the bounding box for each object is drawn on the original image
(see figure 4.9).

74

422

CHAPTER 4 Using Hugging Face for computer vision tasks

Figure 4.9 The
bounding box for
each detected object
is drawn on the
original image.

Using the transformers pipeline

The second approach to using the model is to use the Hugging Face transformers
pipeline (discussed in chapter 3). Here is how you load the facebook/detr-resnet-50
model:

from transformers import pipeline

detection = pipeline("object-detection", model="facebook/detr-resnet-50")

After you create a pipeline object (detection, in this case), you can pass the image
directly (in PIL format) to the pipeline and obtain the result:

results = detection(image)
results

Note that the pipeline object (detection) can also take an image URL, not just a PIL
image object. That is, you can also call the pipeline object like this:

results = detection('http://bit.1ly/46xv3sL')

The printed result looks like this:

[{'score': 0.9179903864860535,

'label': 'person',

"box': {'xmin': 549, 'ymin': 145, 'xmax': 564, 'ymax': 165}},
{'score': 0.9960624575614929,

'label': 'tv',

"box': {'xmin': 317, 'ymin': 212, 'xmax': 416, 'ymax': 299}},
{'score': 0.9425505995750427,

'label': 'chair',

"box': {'xmin': 508, 'ymin': 306, 'xmax': 661, 'ymax': 429}},
{'score': 0.9753392338752747,

Object detection 75

'label': 'person',

"box': {'xmin': 673, 'ymin': 135, ‘'xmax': 705, 'ymax': 174}},
{'score': 0.962176501750946,

'label': 'person',

"box': {'xmin': 703, 'ymin': 115, ‘'xmax': 722, ‘'ymax': 140}},
{'score': 0.9881888628005981,

'label': 'person',

"box': {'xmin': 454, 'ymin': 142, ‘xmax': 497, 'ymax': 202}},
{'score': 0.9871691465377808,

'label': 'keyboard',

"box': {'xmin': 344, 'ymin': 276, ‘'xmax': 445, 'ymax': 346}},
{'score': 0.9371852874755859,

'label': 'tv',

"box': {'xmin': 309, 'ymin': 194, ‘'xmax': 374, 'ymax': 237}},
{'score': 0.9975801706314087,

'label': 'person',

"box': {'xmin': 395, 'ymin': 152, ‘'xmax': 446, 'ymax': 216}},
{'score': 0.9986708164215088,

'label': 'person',

"box': {'xmin': 237, 'ymin': 174, ‘'xmax': 308, 'ymax': 264}},
{'score': 0.9173707365989685,

'label': 'person',

"box': {'xmin': 720, 'ymin': 112, ‘'xmax': 737, 'ymax': 131}},
{'score': 0.9895991086959839,

'label': 'potted plant',

"box': {'xmin': 124, ‘'ymin': 211, ‘'xmax': 230, 'ymax': 330}},
{'score': 0.9996592998504639,

'label': 'person',

"box': {'xmin': 369, 'ymin': 226, ‘'xmax': 535, 'ymax': 427}},
{'score': 0.9821581840515137,

'label': 'tv',

"box': {'xmin': 491, 'ymin': 181, ‘'xmax': 530, 'ymax': 223}},
{'score': 0.9970135688781738,

'label': 'person',

'box': {'xmin': 516, 'ymin': 177, ‘'xmax': 628, 'ymax': 318}}]

This result is a list of dictionaries for each detected object. To draw the label and
bounding box for each object, use the following code listing.

Listing 4.3 Visualizing detected objects with bounding boxes

import random
draw = ImageDraw.Draw(image)

for object in results:
box = [i for i in object['box'].values()]
print(
f"Detected {object['label']} with confidence "
f"{(object['score'] * 100):.2f}% at {box}"

random.randint(0, 255)
random.randint (0, 255)

76

4.2.3

CHAPTER 4 Using Hugging Face for computer vision tasks

b = random.randint(0, 255)
color = (r, g, b)

draw.rectangle(box,
outline=color,
width=2)

Draws bounding
box around object

draw.text((box[0], box[1]1-108),
object['label'],
fill='white')

Displays the object label

display(image)

The image is identical to the one shown in figure 4.9 earlier in this chapter. Using
the pipeline object, you can also get a list of labels directly using the model.config
.id21label attribute:

detection.model.config.id2label

Binding to a webcam

Instead of detecting objects in still images, you can go one step further and use your
webcam to capture videos and detect the objects in them. Using Python to display your
webcam content is easy with OpenCV. To install OpenCV, use the pip command:

$ pip install opencv-python

With OpenCV installed, first write the code to connect the webcam with OpenCV and
then display the videos onscreen. Create a text file named object_detection.py, and
populate it with the statements in the following listing.

Listing 4.4 Displaying webcam images in Python

import cv2
stream = cv2.VideoCapture(0) < Default webcam
while(True): Captures frame by frame
(grabbed, frame) = stream.read() 4—‘ P Y
cv2.imshow("Image", frame) < Shows the frame
key = cv2.waitKey(1) & OxFF
if kEZe;; ord("q"): ‘ Press q to break out of the loop.

stream.release()
cv2.waitKey (1)
cv2.destroyAllWindows ()
cv2.waitKey (1)

Cleanup

If your computer/laptop has multiple webcams, change the number in the Video-
Capture class accordingly:

Object detection 77

cv2.VideoCapture(1)
cv2.VideoCapture(2)

stream
stream

In Terminal /Anaconda Prompt, type the following command to run the program:

$ python object_detection.py

You should see a window displaying the video captured by your webcam (see figure 4.10).

Figure 4.10 The
webcam capturing the
image of the author

To detect the objects in the webcam, add the following statements to the object_
detection.py file.

Listing 4.5 Detecting objects in the webcam

Default webcam Font, color, and line thickness
for drawing rectangles and text
from transformers import pipeline
fr'om PIL import Image Loads the object
import cv2 detection model
font = cv2.FONT_HERSHEY_SIMPLEX
color = (0, 255, 255)
stroke = 2
detection = pipeline("object-detection", Converts the
model="facebook/detr-resnet-50") video image
L » stream = cv2.VideoCapture(0) from NumPy
while(True): array to a PIL
(grabbed, frame) = stream.read() 4—‘ Captures frame by frame imagye
image = Image.fromarray(frame) -
r‘esu'Lts_ = dc_atectlon(lmage) <] Detects objects in the image
for object in results:
box = [i for i in object['box'].values()] Gets the coordinates

for the object detected

78

4.3

CHAPTER 4 Using Hugging Face for computer vision tasks

cv2.rectangle(frame,
(box[0],box[1]), Draws bounding box
(box[2]1,box[31), around object detected
color, stroke)
cv2.putText(frame, f'({object["label"]1})",
(box[0],box[1]-8), Draws the label
font, 1, color, for the object
stroke, cv2.LINE_AA)

cv2.imshow("Image", frame)
key = cv2.waitKey(1) & OxFF Shows the frame
if key == ord("qg"): 4—‘

break Press q to break out of the loop.

stream.release()
cv2.waitKey (1)
cv2.destroyAllWWindows ()
cv2.waitKey (1)

Cleanup

You need to convert the image captured by the webcam from a NumPy array to a PIL
image before you can send it to the model for object detection. Figure 4.11 shows the
webcam successfully detecting some of the objects in the image.

Figure 4.11
Detecting objects in
the webcam image

Image classification

Image classification is a computer vision task that involves calegorizing—labeling an image
in one or more predefined classes or categories. The goal of image classification is to
recognize and assign the most appropriate label to a given image based on its content.
Hugging Face hosts a series of models for image classification at https://mng.bz/4nQv
(see figure 4.12).

https://mng.bz/4nQv

Image classification
- .
eanse [- < # huggingface.co & @ ﬂ] + EI
/= Hugging Face » Models ¢ Datesets T Spaces Does o Selutions Pricing = Login
ETD ties Datassls Leopuages Licenses Models =, [— cewt Fulltertzach 1L Sos Tronding
Other
e L 3 Hosot Tacks £ microsoft/resnet-58
fication Undates Mar 1L i, 1058 155
Hulnmodad
P B ity & ENOT-AutoDl / inagenel -benchmark
T nege ClassMcation « Uadates § days sms - 78
ImiaedeTe it
% googlefvit-base-patchle-224
42 imege Classlication « 430K
o |
7 Image Classilication
= google/vit-large-patchls-224
ImageSrEmEnkatie
: 1ee Slassfication - Uadared Jur 23, 2022 k- T 55
® linkanjarad/mobilenet _v?_1.0_2724-plant-disease- ident (ficati_
= nege Classication - Uada £33-T3F
\. # Rajaraml996/Facial EmoRecog
Figure 4.12 Image classification models hosted on Hugging Face

Here are two sample models for image classification and age classification:

https://huggingface.co/ibombonato/vit-age-classifier (see figure 4.13)

https://huggingface.co/nateraw/vit-age-classifier

Both models can predict the age of a person in an image.

eoe [- < & B o

& huggingface.co

* Hugging Face o Maodels Datasets 0 Spaces O Doos & Solutions Pricing = Log In
O bombonato vit-age-classifier = o e
2 ImageClassification @ Transformers (b PyTorch TensorBoard it hugginppics ol Fual Resulrs @ snference Frdpeints

& Tain - Deploy- o Usein Tianstormers

_A_f“'vv/\/‘

+ Hosted inference AP1

« Modelcard - Files Matrics 3 Community (8 1

@ £t madel card
Vibage-classifier g;’aﬂlm:: st mrith
Autogenerated by HuggingPicsi 5

Craate your own imape clzssifier for anything by running the
1 imape ClassiFeation
demo on Google Colab.

Repart any issuss with the deme at the github repa. 3tag cmage fils here ar cick to browse from your devise

I Masimine

\\Plsulay 3 meank

&l

Figure 4.13 The ibombonato/vit-age-classifier model for age classification

79

https://huggingface.co/ibombonato/vit-age-classifier
https://huggingface.co/nateraw/vit-age-classifier

80

CHAPTER 4 Using Hugging Face for computer vision tasks

To test this model, let’s use an official portrait of Barack Obama taken in 2009 (see
figure 4.14). Because he was born in 1961, that would make him 48 years old (2009-
1961) at the time the picture was taken.

» Hosted inference API ©

%3 Image Classification

Computation time on Intel Xeon 3rd Gen Scalable cpu: caches

49-50 0953

R 0.027
Figure 4.14 Official 2009 portrait 50-60 8-e08
of Barack Obama (Source: https:// . 0.003
mng.bz/0Znv) 20-30 .

70-80 o008
You can test the model using the P 0N gt B
Hosted Inference API on the Figure 4.15 Testing Barack Obama’s photo on the model

Hugging Face model’s page (see

figure 4.15). The result shows a

very high probability that the person in the image is 40 to 50 years old, which is correct.
The easiest way to use the model programmatically is to use the Hugging Face trans-

formers pipeline:

from transformers import pipeline

classifier = pipeline("image-classification",
model="ibombonato/vit-age-classifier")

classifier('https://bit.1y/3PET3TP')
classifier

You get this printed result:

[{'score': 0.9248570799827576, 'label': '40-50'},
{'score': 0.058465585112571716, 'label': '30-40'},

https://mng.bz/oZnv
https://mng.bz/oZnv

44

Image segmentation

{'score': 0.003433708567172289,
{'score': 0.0028221411630511284,
{'score': 0.0023411917500197887,

Image segmentation

'label':
'label’
'label!’

81

'50-60'},
'20-30'},
'0-10'}]

Another common computer vision technique is image segmentation, a technique that
separates an image into multiple segments or regions. Each segment corresponds to a
particular object of interest. Using image segmentation, you can analyze an image and

extract valuable information from it. Some of its uses are

Medical imaging—Identifying and segmenting tumors in MRI and CT scans

Object detection and recognition—Detecting objects (discussed earlier in this chap-

ter), as well as identifying and locating objects in an image
Document processing—Segmenting text regions in scanned documents

Biometrics—Identifying and localizing faces in images or video frames

Hugging Face contains several image segmentation models for you to use. One of them
is SegFormer model fine-tuned on ADE20k (https://mng.bz/6406). Figure 4.16 shows the

SegFormer model fine-tuned on ADE26k model on the Hugging Face website.

-
eoe]~ < > B

§ huggingface.co & |'_T‘| +
% Hugging Face + Models Datasets = Spaces Docs & Solutions Pricing = Legin

@ nvidiz segformer-b@-finetuned-ade-512-512 &

T lila | 76

2 tation = Transf {x pyforch T Tensorflow scene_parse_150 sepformer vision @ Inference Endpoints
0 srw:Z10515203 @ Lleerse: sther
Model card Files w Community B i @, Train - %7 Deplay - <43 Use In Teansfarmers

< Edit mode| card

SegFormer (b0-sized) model fine-tuned on ADE20k

SegFormer madel fine-tuned on ADE20k at resolution 512x512, It
was introduced in the paper Seghormer: Simple and Efficient

Design for

with fi

by die et al.

and first released in this repository.

Disclaimer: The team releasing SegFarmer did not write a model
card for this medel so this medel card has been written by the

Hugging Face team.

Model description

SegFormer conslsts of a hierarchical Transformer encoder and a
lightweight all-MLP decode head to achisve great results on

semantic segmentation benchmarks such as ADEZ0K and

\Eisplay amenu 1e hierarchical Transformer is first pre-trained on

Downioads Last manth
46,083

v-'_,J\/-A_/_«

| Hosted inference API

&l Imape Segmentation

Examples v

Figure 4.16 The SegFormer model fine-tuned on ADE20k model page on Hugging Face

https://mng.bz/6406

82 CHAPTER 4 Using Hugging Face for computer vision tasks

To test the segmentation model, drag an image of the Taj Mahal (see figure 4.17) to
the Hosted Inference API section of the page.
Figure 4.18 shows the result of the inferencing.

+ Hosted inference API

B4 Image Segmentation Examples b4

Figure 4.17 Picture of the Taj Mahal (Source: Samputatian time an inial Héan 3ic Gen Scalable cpac cached

https://mng.bz/5vzD) T T— 1.008
sky—_ 1.080
e 1.088
tree
As you can see, the model detects the various 1 ose
objects (building, sky, tree, and so on) in the ey _—
image and highlights the various segments of sidamll
. . o 1.08@
the image. When you mouse over the various pazssn
segments, the image highlights the selected et e
labels. car L
path . 1.080
4.4.1 Using the model programmatically — 1.008
As always, we want to use the model pro- P 1.000
grammatically. First, let’s load the model and rorersys - 1.060
then check how many objects the model can — —

detect. The easiest way to use the model is to

. . Figure 4.18 The segmentation of an
use a transformers pipeline:

image of the Taj Mahal
from transformers import pipeline

segmentation = pipeline("image-segmentation",
model="nvidia/segformer-b0-finetuned-ade-512-512")

segmentation.model.config.id2label

The model can detect 150 objects. Here are the first and last five objects it detects:

{0: 'wall’',
1: 'building',

https://mng.bz/5vzD

Image segmentation 83

2: 'sky',

3: 'floor',

4: 'tree',

145: 'shower',
146: 'radiator',
147: 'glass',
148: 'clock',
149: 'flag'}

For this example, let’s use an image from
Unsplash.com (see figure 4.19) to discover

the various segments in the image.

To detect the various segments in the
image, pass the URL of the image to the
pipeline object:

from PIL import Image
import requests

url = 'https://bit.ly/46iDeJQ’
results = segmentation(url)
results

Figure 4.19 A picture of a man and an
aircraft flying overhead (Source: https://

The output of the results variable is a list unsplash.com,/photos,/EC_GhFRGTAY)

of dictionaries containing details on each
segment detected in the picture:

[{'score': None,

'label': 'wall',

'mask': <PIL.Image.Image image mode=L size=1587x2381>},
{'score': None,

'label': 'building',

'mask': <PIL.Image.Image image mode=L size=1587x2381>},
{'score': None,

'label': 'sky',

'mask': <PIL.Image.Image image mode=L size=1587x2381>},
{'score': None,

'label': 'person',

'mask': <PIL.Image.Image image mode=L size=1587x2381>},
{'score': None,

'label': 'airplane’,

'mask': <PIL.Image.Image image mode=L size=1587x2381>}]

In particular, the mask element contains the mask of the detected segment. To view
each detected mask, loop through the results variable:

for result in results:
print(result['label'])
display(result['mask'])

https://unsplash.com/photos/EC_GhFRGTAY
https://unsplash.com/photos/EC_GhFRGTAY

84

CHAPTER 4 Using Hugging Face for computer vision tasks

Figure 4.20 shows the masks for person and airplane.

Figure 4.20 The masks for the
person and airplane segments

The white portion of the mask represents the part of the picture containing the seg-
ment of interest. You can apply the mask to the original image using the following code
snippet:

image = Image.open(requests.get(url, stream=True).raw)

for result in results:
base_image = image.copy() Applies the mask over
mask_image = result['mask'] the original image

base_image.paste(mask_image, mask=mask_image) Prints the label of
print(result['label']) the segment
display(base_image)

Figure 4.21 shows the person and airplane masks applied over the original image.

Figure 4.21 The original image
with the person and airplane
masks applied

44.2

Image segmentation 85

When you apply the mask over the image, notice that the segment of interest is in
white. It would be more natural to invert this display—that is, show everything except
the segment of interest in white. To do this, you can invert the mask using the invert()
function from the Image0Ops class of the PIL package. The following changes invert the
mask and apply it over the original image:

from PIL import ImageOps

for result in results:
base_image = image.copy()

mask_image = result['mask'] Inverts the mask
mask_image = ImageOps.invert(mask_image) J Applie.sfhelpaskover
base_image.paste(mask_image, mask=mask_image) the original image

print(result['label']) 4—‘
display(base_image) Prints the label of the segment

Figure 4.22 shows the inverted masks for the person and airplane in the original image.

Figure 4.22 The inverted masks applied to the original image

Binding to Gradio

Instead of manually specifying the URL of the image that we want to use on the model,
it’s more convenient to create a UI that enables the user to try the segmentation model.
In this section, we’ll use Gradio to create a Ul and then bind it to the function that per-
forms the segmentation. To install the gradio package, use the following command:

$ pip install gradio

86

CHAPTER 4 Using Hugging Face for computer vision tasks

What is Gradio?

Gradio is an open source Python library that simplifies creating user interfaces for
machine learning models and other applications. It is designed to make it easy for
developers to build interactive web interfaces for their machine learning models with-
out extensive knowledge of web development.

First, let’s create a function called segmentation that uses the SegFormer model fine
-tuned on ADE20k model for segmentation, as shown in the following listing.

Listing 4.6 Creating a function that uses a model for segmentation

Creates a

from transformers import SegformerForSemanticSegmentation segmentation model

model = pipeline("image-segmentation",
model="nvidia/segformer-b0-finetuned-ade-512-512")

def segmentation(image, label): Converts image from NumPy
image = Image.fromarray(image) array to PIL format
results = model(image) <F44W
for result in results: Uses the model for inferencing

if result['label'] == label:

base_image = image.copy()
mask_image = result['mask'] Inverts the mask
mask_image = ImageOps.invert(mask_image)

base_image.paste(mask_image, mask=mask_image)
return(base_image)
Applies the mask over
the original image

One important point to note here is that when the user passes in an image through the
Gradio UI, the image is sent to the segmentation() function as a NumPy array. Hence,
it is essential to convert it to a Pillow (PIL) image using the Image.fromarray() func-
tion. When the model returns the result, you iterate through the result and look for
the label specified by the user (in the label parameter). Then the function inverts the
corresponding mask, applies it to the image, and returns it to the caller. To bind the
segmentation() function to Gradio, use the Interface() class, like this:

import gradio as gr

image_input = gr.Image(label = "Image to segmentize")

label = gr.Textbox(label = "Label to look for", placeholder = "Label")
image_output = gr.Image(label = "Image with the mask applied")
gr.Interface(segmentation,

[image_input, labell,
image_output) .launch()

Image segmentation 87

Figure 4.23 shows what Gradio will look like.

5 Image to sepmentize M Image with the mask applied

Drop Image Here
e 2
Click to Upload

Label to lock far Flag

Clear Submit

Figure 4.23 Gradio expects an image and text for input.

Drag and drop an image containing a person to Gradio. Figure 4.24 shows an image
of the author. Also type the label you want to search for. For this example, you want to
search for person in the image, so type person as the label. The click the Submit button.

C) Image o spEmenze & Image with the mask applied

Label to loak for Flag

| person
Clear Submit

Usevia APl @ & Bullbwith Gradio &

Figure 4.24 The Gradio Ul with the image populated and the label entered

88 CHAPTER 4 Using Hugging Face for computer vision tasks

The function shows the result on the right side of the Gradio display (see figure 4.25).

mage to seprmentize

Label to look for
person
Figure 4.25 Gradio
returns the image
Clear Submit s with the inverted
mask applied to the
| & - Builtwith Grodio @ original image.

4.5 Video classification
So far, all our examples have revolved around detecting objects in still images and
webcam inputs. It would also be fun to classify objects in video streams. Let’s investi-
gate how to do that. Hugging Face Hub’s Models page (https://mng.bz/mZ6M) has a
Video Classification category, shown in figure 4.26.

7 & hugginglace.co ' ® ad + 0
5 lbraries Ostosets Lanpuages Liconses Models ter by new Full-text search 14 Sort: Trending
har
O Raset Tasks B MCG-NIU/videomae-base

Muftimodal

B3 MCG-NIU/videomae-base-finetuned-kinetics
& MCG-NJU/videomas-base-finetuned-ssv2
% Sense-X/uniformer_video

Computer Vision Feba,

@ keras-io/video-classification-cnn-Inn

B MCG-NJU/videomae-base-short

=i Video Classification

N MCG T h shart. ¥4 kinatire

Figure 4.26 The video classification Models page on Hugging Face

https://mng.bz/mZ6M

Video classification 89

For this example, we’ll use the VideoMae model (MCG-NJU/videomae-base-short
-finetuned-kinetics). VideoMAE (which stands for Video Masked Autoencoders) performs
masked video modeling for video pretraining. You can find details on this model at
https://mng.bz/7QKg (see figure 4.27).

f N
eee M-~ < B & huagingface.co ¢ @ Mt +
=~ Hugging Face # Models Datasets Spaces Docs . Solutions Pricing ~= Login @EAY:]
@ MCG-NJU videomae-base-short-finetuned-kinetics © @ik =
Video Classification = Transformers O PyTorch videomae vision @ Inference Endpoints) 2203.12602 3 arxiv:2111.06377
& License: ce-by-nc-4.0
Model card I~ Files Community i & Train - </ Deploy - <> Use in Transformers

Z Editmodel card
VideoMAE (base-sized model, fine-tuned on Kinetics- E:W"'Mds e gonth A
400)

VideoMAE model pre-trained for 800 epochs in a self-supervised
way and fine-tuned in a supervised way on Kinetics-400. It was
introduced in the paper VideoMAE: Masked Autoencoders are B Spaces using MCG-NJU/videomae-base-short-f.. 2

Data-Efficient Learners for Self-Supervised Video Pre-Training by o 1Gkjonvideo-arenEatan

Tong et al. and first released in this repository.

.

Figure 4.27 The page for the MCG-NJU/videomae-base-short-finetuned-kinetics model

4.5.1 |Installing the prerequisites

To use the MCG-NJU/videomae-base-short-finetuned-kinetics model, you need to
install the decord Python package.

What is decord?

decord is a Python package that provides efficient video decoding capabilities. It is
designed to handle video data and extract frames from videos with a focus on per-
formance and speed. This package is particularly useful for applications that require
video analysis, computer vision, machine learning, and deep learning, where fast
video-frame extraction is crucial.

Windows and Intel Mac users can use this command to install decord:

$ pip install decord

https://mng.bz/7QKg

90

4.5.2

CHAPTER 4 Using Hugging Face for computer vision tasks

When this book was published, an ARM version of the decord package didn’t exist, so
Apple silicon Mac users won’t be able to install the decord library directly by using the
preceding pip command. Fortunately, the folks at EVA (https://github.com/georgia
-tech-db/evadb) created a fork of the decord library at https://pypi.org/project/eva
-decord that enables Apple silicon Mac users to install the library using the following
command:

$ pip install eva-decord

Downloading the videos for testing

For testing, you need some videos. If you already have videos that you can use for test-
ing and that are directly accessible via a URL, you can skip to section 4.5.3. If not, you
need to download some videos so that you can access them using an URL.

To download the videos locally, first create a folder named webserver in your home
directory (or any directory you prefer):

$cd~
$ mkdir webserver

Next, you need some sample videos to test the model. You can use Pexels (https://
www.pexels.com/search/videos/sample; see figure 4.28), a repository of royalty-free
stock photos and videos.

4 A
o8 [- £ W pasals com . &M -+ 0
E Pexels [videos ~ yoda Q Explore -~ License Upload
meditation wyogaclass fitness relay nature exercize peace yogamat aym »
Free Yoga Videos

Photos Users. = Filters

e

Figure 4.28 Pexels is a platform that offers free stock photos and videos for personal and commercial use.

https://github.com/georgia-tech-db/evadb
https://github.com/georgia-tech-db/evadb
https://pypi.org/project/eva-decord
https://pypi.org/project/eva-decord
https://www.pexels.com/search/videos/sample
https://www.pexels.com/search/videos/sample

4.5.3

Video classification 91

For testing, download a video of person spray-painting a wall (https://mng.bz/qR4E;
see figure 4.29). When the download is done, move it to the webserver folder that
you created. The name of the video in this example is pexels-pat-whelen-5621707
(1080p).

bask. PatWhel
$ "al e_en [Collect 0 Like Free download >
i Follow - Donate

¥ Mereinfo (7 Share

Figure 4.29 A video of a person spray-painting a wall

When the video is in the webserver folder, use the python -m http.server command to
start a simple HTTP server from the local filesystem:

$ cd ~/webserver
$ python -m http.server

If the HTTP web server starts correctly, you see the following printout, indicating that
the web server is listening at port 8000:

Serving HTTP on :: port 8000 (http://[::1:8000/)

Using the transformers pipeline object

With the decord library installed and the video ready, you can write the code to use the
model with the transformers pipeline:

https://mng.bz/qR4E

92

CHAPTER 4 Using Hugging Face for computer vision tasks

from transformers import pipeline

video_classifier = pipeline("video-classification",
model="MCG-NJU/videomae-base-short-finetuned-kinetics")

As usual, the first thing you want to know is the type of object the model is capable of
recognizing:

video_classifier.model.config.id2label

You see a list of 400 objects. Following are the first and last five of them:

0: 'abseiling',

1: 'air drumming',

2: 'answering questions',
3

4

{0:

'applauding',
"applying cream',

395: 'wrestling',
396: 'writing',
397: 'yawning',
398: 'yoga',

399: 'zumba'}

To detect the kind of objects that are present in the video, call the pipeline object with
the URL of the video:

video_classifier(
"http://localhost:8000/pexels-pat-whelen-5621707 (1080p).mp4')

The result looks like this:

[{'score': 0.6775813102722168, 'label': 'spray painting'},
{'score': 0.05606633797287941, 'label': 'throwing axe'},
{'score': 0.032091718167066574, 'label': 'blasting sand'},
{'score': 0.01113071758300066, 'label': 'spraying'},
{'score': 0.007230783812701702, 'label': 'plastering'}]

As you can see, the model accurately detected that the main activity in the video is
spray painting.

Summary
Object detection is a computer vision technique that involves identifying and
locating objects of interest within an image or video.
You have two ways to use a model from Hugging Face programmatically:
— Through a transformer pipeline.

— Load the model directly.

Summary 93

DetrImageProcessor is a class (from the transformers package) that is used for
processing images to be used as input to the DETR algorithm.

The DetrForObjectDetection module provides access to pretrained DETR
models.

Image classification is a computer vision task that involves categorizing an image
in one or more predefined classes or categories

Image segmentation involves separating an image into multiple segments.

Exploring, tokenizing,
and visualizing
Hugging Face datasets

This chapter covers

What Hugging Face datasets are

How to download datasets programmatically
How to apply tokenization to datasets

How to perform data visualization on datasets

Hugging Face is an Al platform that develops, trains, and deploys cutting-edge
open-source machine learning models. Alongside providing a hub for these trained
models, Hugging Face also hosts a wide array of datasets (available at https://
huggingface.co/datasets), which you can use for your own projects.

This chapter guides you through accessing datasets from Hugging Face and shows
you how to download them programmatically to your local machine. You will gain a
deeper understanding of tokenization, including how to tokenize datasets and pre-
pare your data for fine-tuning (covered in chapter 6). Finally, you will explore how to
visualize various datasets with Hugging Face.

94

https://huggingface.co/datasets
https://huggingface.co/datasets

5.1

What are Hugging Face datasets? 95

What are Hugging Face datasets?

Datasets are essential for training and evaluating machine learning models, enabling
data analysis, and extracting valuable insights. They provide the examples models
need to recognize patterns, make predictions, and assess performance. Beyond model
development, datasets play a crucial role in testing hypotheses, identifying trends,
and solving real-world problems in fields such as recommendation systems, predictive
maintenance, and fraud detection. Finding the right dataset, however, can be a chal-
lenge. Fortunately, Hugging Face is a powerful platform that streamlines access to a
wide range of datasets, helping developers and researchers quickly build, refine, and
deploy data-driven solutions across diverse domains.

Hugging Face Datasets is an open source library designed for accessing and pro-
cessing large datasets commonly used in machine learning and data science, particu-
larly for natural language processing (NLP), computer vision, and other Al tasks. The
library provides a simple and efficient way to load, process, and manage datasets (such
as dataset splitting and uploading), offering ready-to-use datasets along with tools to
manipulate, transform, and share your own data. It supports high-performance data
handling, works with frameworks like PyTorch and TensorFlow, and integrates seam-
lessly with other Hugging Face tools.

To access Hugging Face Datasets, open a web browser and go to https://huggingface
.co/datasets. Figure 5.1 shows the Hugging Face Datasets web page.

e

Cthor

Modalites

@ Tabular

O video

Size rows)

214

4

* Hugging Face -4 Search models, datasets, users 4 Models Datasets Spaces @ Posts Docs Pricing -= '

D s Ubrries Languages Licenses Datasets 243019 Filtes by v Full fext szarch 1 Sort: Tranding

@30 @ audic 0 Gepspatisl B Irnage

o napscec “ =

tka/awesome-chatgpt-prompts 8933/ 0penLongfoT-Pretrain

Spawning/PD12K wyul/Lecpard-Tnstruct

B Teax B Time-seres o 5 ey ap &Y

OpenCoder-LLK/opc-sft-stagel OpenCoder-LLM/npc-sft-stage2

1 hovirs ago M ¢ L 5sg = Viewe

Format

44 fsan

-cs & pargquet
@ imapefolder 6 soundlielde

G webdamset = ekt W oarmow neuxalwerk/arxiver

tomytjandra/h-and-m-fashion-caption argilla/Synth-AFlGen-va.1

BAAT/Tnfinity-HH GATR ol -Journey

gretelai/gretel -pii-masking-en-vl
5EE0 LER b4 TR 4342 T Viewe pdeted 1 day ago 37 1

= allenai/dolma

Figure 5.1 The Hugging Face Datasets website contains datasets of different modalities (types).

https://huggingface.co/datasets
https://huggingface.co/datasets

96 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

A quick way to find the dataset you want to use is to type its name in the filter box (see
figure 5.2). Filtered results appear as you type.

Search for the dataset Filtered datasets
you want to use.

\ \

ece < # heghgtice co L3

= Hugging Face Search models, datasets, u + Models Datasets Spaces & Posts Docs Pricing

Tasks Libraries Languages Licenses Datasets 263 IMDE [-] Full-text search T4 Sertf Trending

Other

stanfordnlp/imdb
Modalities T Viewe dated Jan4 -
0 20 @ fudic O Geospatial B Image
teticio/imdb-posters-and-description-256
@ Tabular Text B Time-series 0 Video s Visiie s Undated Nou ¢ AF A

Size (rows) adrienheymans/imdb-movie-genres
. o Updated Dec 3,2022 + = 108 7

L]

jahjinx/IMDb_movie_reviews
Format m iewn Undated Jan & 2073 [

41 json = csv % parquet B imagefolder
drossi/EDA_on_IMDB_Movies_Dataset
B soundiolder fa webdataset = toxt W Jated Dot B 2033 h - 168

Barraw

mattrichmo/NetFlix-Imdb-Engagements-Films

BrightData/IMDb-Media

Figure 5.2 Searching for a desired dataset

Click the dataset you want to use, and you will be directed to a page that displays details
on the dataset, including its full name (see figure 5.3). The easiest way to copy the full
name of the dataset is to click the Copy icon.

5.1.1 Getting the list of datasets available

Now that you know where to look for the datasets you want to use on the Hugging
Face Datasets page, let’s investigate how to work with the datasets programmatically in
Python. To do so, first install the following two libraries using the pip command:

I'pip install huggingface_hub
Ipip install datasets

What are Hugging Face datasets? 97

Click icon to copy the
Full name of dataset dataset name to the clipboard.

\ \

~
eee M~ < & huggingfece.co
“ Hugging Face # Models Datasets Space
Datasets: =stanfordnlp/imdb|TG| < like : Follow == Stanford NLP
Text Classification M t Text % parquet sentiment-
100K - IM * Datasets # pandas ¢ Croissant L z other
¢ Dataset card T Viewer Files Community @
BB Dataset Viewer 1 <> API Embed B8 Full Screen Viewer
Split (3)
train - 25k rows v
SQL Console
text label
string class label
“_;:, O

Figure 5.3 Locating the full name of the dataset

Next, use the list_datasets() function to return a generator that points to a list of
available datasets:

from huggingface_hub import list_datasets

datasets = list_datasets() <) Gets the generator of datasets

You can’t use an index to access the datasets directly. Also, you shouldn’t use the 1ist()
function to convert the list of datasets; doing so would likely cause memory overflow
because the list of datasets is large. Instead, use the next() function to iterate through
the list of datasets:

dataset = next(datasets) < Gets the next dataset
print(dataset)

The dataset is encapsulated in the DatasetInfo object, with various fields containing
the details of the dataset, as shown in the following listing.

CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

Listing 5.1 The content of the DatasetInfo object

DatasetInfo(
id='fka/awesome-chatgpt-prompts',
author="'fka',
sha="'459a66186F8f83020117b8acc5ff5af69fco5h45",
created_at=datetime.datetime (2022, 12, 13, 23, 47, 45,
tzinfo=datetime.timezone.utc),
last_modified=datetime.datetime(2024, 9, 3, 21, 28, 41,
tzinfo=datetime.timezone.utc),
private=False,
gated=False,
disabled=False,
downloads=9522,
downloads_all_time=None,
likes=6218,
paperswithcode_id=None,
tags=['task_categories:question-answering',
'license:cc0-1.0",
'size_categories:n<i1K',
'format:csv',
'modality:text',
'library:datasets"',
'library:pandas’,
'"library:mlcroissant’,
'library:polars',
'region:us’,
'ChatGPT'],
trending_score=90,
card_data=None,
siblings=None

)

To print the first five datasets, use the following code snippet, which prints the ID of
each dataset:

for i in range(5):
dataset = next(datasets)
print(dataset.id) < Prints the ID of the dataset

You should see something like this:

fka/awesome-chatgpt-prompts
qq8933/0penLongCoT-Pretrain
Spawning/PD12M
wyul/Leopard-Instruct
OpenCoder-LLM/opc-sft-stagel

The ID of each dataset is what you saw in figure 5.3 earlier in this chapter: the full
name of the dataset.

512

curl -X GET "https://datasets-server.huggingface.co/is-valid?dataset

What are Hugging Face datasets? 99

Validating the availability of a dataset

Before you download a dataset from Hugging Face, it is useful to verify that the
dataset is available for download. You can use the following code snippet to verify
availability.

Listing 5.2 Verifying a dataset’s availability

import requests
Replace with your own

token = 'Hugging_Face_Token' Hugging Face token.
dataset_id = 'fka/awesome-chatgpt-prompts’

j Replace with the name of the
headers = {"Authorization": f"Bearer {token}"} dataset you want to verify.
API_URL =

f"https://datasets-server.huggingface.co/is-valid?dataset={dataset_id}"

def query():
response = requests.get(API_URL, headers=headers)
return response.json()

data = query()
data

For this example, you need to apply for a Hugging Face access token (https://
huggingface.co/settings/tokens). The access token will allow you to authenticate
and access models, datasets, and other resources on the Hugging Face platform. The
preceding code snippet returns the following result for the fka/awesome-chatgpt
-prompts dataset:

{'preview': True,
'viewer': True,
'search': True,
'filter': True,
'statistics': True}

Alternatively, you can use the curl command in Terminal (or Anaconda Prompt) to
validate whether a dataset is available:

$ curl -X GET "https://datasets-server.huggingface.co/is-
valid?dataset=fka/awesome-chatgpt-prompts"

Figure 5.4 shows the syntax for using curl to check the validity of a dataset.

Figure 5.4 Syntax for checking the validity of a dataset

https://huggingface.co/settings/tokens
https://huggingface.co/settings/tokens

100

5.1.3

CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

You can replace the fka/awesome-chatgpt-prompts dataset name with the full name
of the dataset you want to use. If the dataset is available, you see the following output
(formatted for clarity):

{
"preview":true,
"viewer":true,
"search":true,
"filter":true,
"statistics":true

}

Downloading a dataset

After you verify that a dataset is available for download, you can use the load_dataset ()
function to download it. The following code snippet downloads the stanfordnlp/imdb
dataset:

from datasets import load_dataset

dataset_id = 'stanfordnlp/imdb'

. Loads the IMDb dataset
dataset = load_dataset(dataset_id) 4#———J °

print(dataset) ¢ View the dataset structure.

NOTE The IMDb datasetis a popular dataset used for NLP tasks, specifically for
sentiment analysis. It consists of positive and negative movie reviews from the
Internet Movie Database (IMDD).

You should see the following output:

DatasetDict({
train: Dataset({
features: ['text', 'label'l],
num_rows: 25000
B
test: Dataset({
features: ['text', 'label'],
num_rows: 25000
)
unsupervised: Dataset({
features: ['text', 'label'l],
num_rows: 50000
D)
)

The result is represented as a DatasetDict object separated into the following subsets
(known as splits):

train—The training dataset, used to train models

What are Hugging Face datasets? 101

test—The testing dataset, used to evaluate the model’s performance

unsupervised—Subset that often contains unlabeled data, which can be used for
unsupervised or semisupervised learning tasks

The num_rows attribute represents the number of rows in each split of the data. You can
also view the different splits of the datasets using the curl command:

$ curl -X GET "https://datasets-server.huggingface.co/
splits?dataset=stanfordnlp/imdb"

Figure 5.5 shows the syntax for using curl to check the splits of a dataset.

curl -X¥ GET "https://datasets-server.huggingface.co/splits?dataset

Figure 5.5 Syntax for checking the splits of a dataset

You should see the output shown in the following listing.

Listing 5.3 Output containing the splits of the dataset

{
"splits":[
{
"dataset":"stanfordnlp/imdb",
"config":"plain_text",
"split":"train"
}l
{
"dataset":"stanfordnlp/imdb",
"config":"plain_text",
"split":"test"
}-l
{
"dataset":"stanfordnlp/imdb",
"config":"plain_text",
"split":"unsupervised"
b
1,
"pending":[1],
"failed":[]
b

Continuing with the Python code snippet, let’s view the first row of the train subset:

dataset['train'][0]

You should see the following output (formatted for clarity).

102 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

Listing 5.4 The content of the first row of the IMDb dataset

{

"text': 'I rented I AM CURIOUS-YELLOW from my video store
because of all the controversy that surrounded it when it
was first released in 1967. I also heard that at first it
was seized by U.S. customs if it ever tried to enter this
country, therefore being a fan of films considered
"controversial" I really had to see this for myself.

The plot is centered around a young Swedish drama
student named Lena who wants to learn everything she can
about life. In particular she wants to focus her
attentions to making some sort of documentary on what the
average Swede thought about certain political issues such
as the Vietnam War and race issues in the United States.
In between asking politicians and ordinary denizens of
Stockholm about their opinions on politics, she has sex
with her drama teacher, classmates, and married men.

What kills me about I AM CURIOUS-YELLOW is
that 40 years ago, this was considered pornographic.
Really, the sex and nudity scenes are few and far between,
even then it\'s not shot like some cheaply made porno.
While my countrymen mind find it shocking, in reality sex
and nudity are a major staple in Swedish cinema. Even
Ingmar Bergman, arguably their answer to good old boy
John Ford, had sex scenes in his films.

I do
commend the filmmakers for the fact that any sex shown in
the film is shown for artistic purposes rather than just
to shock people and make money to be shown in pornographic
theaters in America. I AM CURIOUS-YELLOW is a good film
for anyone wanting to study the meat and potatoes (no pun
intended) of Swedish cinema. But really, this film
doesn\'t have much of a plot.',

'label': O

¥

Where is the dataset stored locally?

When you download a dataset from Hugging Face, it is stored in the ~/.cache/
huggingface/datasets folder on a Mac or in C:\users\<username>\.cache\
huggingface\datasets on a Windows machine. Each dataset is stored in its own
folder. The stanfordnlp/imdb dataset, for example, is stored in its own set of folders
and subfolders, as shown in the following figure.

Because each dataset has its own folder structure, the best way to understand the
structure of a particular dataset is to explore the files and folders created within
its specific cache directory. Each dataset may have a different organizational layout
depending on the nature of the data, the splits provided (train, validation, and/or
test), and how Hugging Face preprocessed the database.

5.14

What are Hugging Face datasets? 103

stanfordnlp imdb

(66281 661ce1C48d982bC483cf8a173c1 bbeb5d31j

'

imdb-test.arrow
imdb-train.arrow
imdb-unsupervised.arrow

The folder structure of the
stanfordnlp/imdb dataset

If you want to download only a particular split of the dataset, you can specify the split
name in the split parameter, like this:

dataset = load_dataset(dataset_id,
split="train')
print(dataset)

This statement downloads only the train split of the dataset. This approach is use-
ful if you plan to work with a specific split; it saves both time and disk space because
you don’t have to download the entire dataset. The downloaded dataset looks like
this:
Dataset({

features: ['text', 'label'l],

num_rows: 25000

B

To access the first row, use this code:

dataset[0]

You don’t need to specify the train key, as you did earlier:

dataset['train'][0]

Shuffling a dataset

If you want to shuffle the dataset you've downloaded, you can use the shuffle()
method to randomize the order of the data:

104

5.1.5

CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

dataset_id = 'stanfordnlp/imdb'
dataset = load_dataset(dataset_id)

shuffled_dataset = dataset.shuffle(seed = 42)

The seed parameter in the shuffle() method ensures reproducibility of the shuffling
process. By setting a specific seed value, you guarantee that the dataset will be shuffled
the same way each time you run the code. This method is useful for debugging, exper-
imentation, and ensuring consistent results across runs.

Streaming a dataset

Sometimes, the dataset you're trying to download may be too large to fit into mem-
ory at the same time. This can cause problems if your system lacks the memory to
hold the entire dataset; it can also increase processing time if you don’t need to
have the entire dataset in memory at the same time. To prevent downloading the
entire dataset in one shot, you can set the streaming parameter to True in the load_
dataset() function:

from datasets import load_dataset

dataset_id = 'stanfordnlp/imdb'
dataset = load_dataset(dataset_id,
streaming = True) < Streams the IMDb dataset

print(dataset)

Now the load_dataset() function returns an IterableDatasetDict object instead of
downloading the entire dataset, as shown in the following listing.

Listing 5.5 The content of the IterableDatasetDict object

IterableDatasetDict ({
train: IterableDataset({
features: ['text', 'label'],
num_shards: 1
)
test: IterableDataset({
features: ['text', 'label'l],
num_shards: 1
B
unsupervised: IterableDataset({
features: ['text', 'label'l],
num_shards: 1
)
B

To fetch the dataset, you need to enumerate through it and retrieve rows one at a time.
The following code snippet shows how to obtain and print the first five rows in the
training dataset:

5.1.6

What are Hugging Face datasets? 105

for i, example in enumerate(dataset["train"]): Streams through the data and

if i < 5: :) 47 prints the first few examples
print(example

else: Shows the first five examples
break

By fetching data one row at a time, you can efficiently process large datasets without
loading them entirely into memory.

Getting the Parquet files of a dataset

Although you can use the load_dataset() function to download the dataset to your
computer, at times you may prefer to download it directly in Parquet format. Parquet
is a columnar storage file format designed for efficient data storage and processing,
particularly in big data environments. It is optimized for querying and analyzing large
datasets, offering significant compression and performance improvements over row-
based formats such as CSV.

Parquet is schema-based, meaning that it stores both the data and its schema,
enabling better data organization and faster access. Its columnar structure allows for
efficientread and write operations, especially when only a subset of columns is required,
and it supports complex nested data structures. Parquet is widely used in data process-
ing frameworks such as the Apache frameworks Spark, Hive, and Hadoop due to its
compatibility with various big data tools and systems.

The Hugging Face Datasets service automatically converts all public datasets to Par-
quet format, which offers significant performance improvements, especially for large
datasets. As an example, use the following curl command to get the Parquet files associ-
ated with the stanfordnlp/imdb dataset:

$ curl -X GET "https://datasets-server.huggingface.co/
parquet?dataset=stanfordnlp/imdb"

This command returns the following result (formatted for clarity).

Listing 5.6 URLs of the various Parquet files

{
"parquet_files":[
{

"dataset":"stanfordnlp/imdb",

"config":"plain_text",

"split":"test",

"url":"https://huggingface.co/datasets/stanfordnlp/
imdb/resolve/refs%2Fconvert%2Fparquet/
plain_text/test/0000.parquet",

"filename":"0000.parquet",

"size":20470363

106 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

"dataset":"stanfordnlp/imdb",

"config":"plain_text",

"split":"train",

"url":"https://huggingface.co/datasets/stanfordnlp/
imdb/resolve/refs%2Fconvert%2Fparquet/
plain_text/train/0000.parquet",

"filename":"0000.parquet",

"size":20979968

F
{
"dataset":"stanfordnlp/imdb",
"config":"plain_text",
"split":"unsupervised",
"url":"https://huggingface.co/datasets/stanfordnlp/
imdb/resolve/refs%2Fconvert%2Fparquet/
plain_text/unsupervised/0000.parquet",
"filename":"0000.parquet",
"size":41996509
}
] 1
"pending":[1],
"failed":[],

"partial":false

As you can see, the result contains the URLs of the Parquet files for each split. Using
these URLS, you can use Python to access the Parquet file of the split(s) directly, as in
the following example:

Ipip install pyarrow
import pandas as pd

url = "https://huggingface.co/datasets/stanfordnlp/" + \
"imdb/resolve/refs%2Fconvert%2Fparquet/" + \
"plain_text/unsupervised/0000.parquet"

df = pd.read_parquet(url, engine='pyarrow')

display(df.head())

Figure 5.6 shows the first five rows of the unsupervised split of the dataset.

Text Label
0 This is just a precious little diamond. The pl... -1
1 When | say this is my favourite film of all i... =1
2 | saw this movie because | am a huge fan of th... -1
3 Being that the only foreign films | usually Ii... -1
Figure 5.6 The first five rows
4 After seeing Point of No Return (a great movie... -1 of the unsupervised split

5.2

521

Tokenization in NLP 107

Tokenization in NLP

Tokenization is a foundational NLP process that breaks text into manageable units or

tokens, allowing models to interpret and process language more effectively. Tokeniza-

tion has the following key uses:

Text preprocessing—Tokenization helps preprocess text data, simplifying tasks
such as filtering out punctuation, converting to lowercase, and handling special
characters.

Representation for machine learning models—Most NLP models, including trans-
formers and large language models (LLMs), require text to be in a numerical
format. Tokenization transforms text into numerical IDs that the models can
work with.

Efficiency and memory optimization—Smaller tokens, such as subwords, allow mod-
els to handle larger vocabularies with fewer parameters, making it easier for mod-
els to capture nuances such as suffixes, prefixes, and infixes, which are especially
useful for inflective languages.

Foundation for further NLP tasks—Tokenization provides a foundation for
advanced NLP tasks such as named entity recognition (NER), part-of-speech tag-
ging, machine translation, and text summarization.

The following sections discuss the methods of tokenization, how they work, and how

we can tokenize a dataset from Hugging Face to prepare it for fine-tuning.

Types of tokenization methods

There are several types of tokenization methods, each suited to different tasks and lan-

guages. Here are some of the main types:

Word-level—Splits text into individual words
Subword-level—Splits words into smaller meaningful units or subwords

Character-level—Breaks text into individual characters; commonly used for lan-
guages such as Chinese and Japanese, in which word boundaries are less obvious

Figure 5.7 shows an example of word-level tokenization in which the string "I love

dogs" has been tokenized into three

words: "I", "love", and "dogs".
Word-level although

straightforward, struggles with out-of-

tokenization,

vocabulary words, so it requires a large
vocabulary for diverse languages. Also, it
doesn’t capture the internal structure of
words, which limits a model’s generaliza-
tion abilities. Some models that use this
method are Word2Vec and GloVe.

Tokens

Figure 5.7 Example of word-level tokenization.
The sentence is tokenized into three tokens.

108

CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

Most newer models, especially N . ;
transformer-based models such as h.] g~y t. ale
BERT and GPT, prefer subword or byte- ex l a-r a 1 n
pair encoding (BPE) tokenization to
overcome these problems, providing
better flexibility and generalization
across languages and word forms. Figure
5.8 shows an example of subword-level

tokenization. In this example, the word
"exhilarating" is tokenized into four

Tokens

Figure 5.8 Example of subword-level
tokenization. The single word "exhilarating"
is tokenized into four tokens.
tokens: "ex", "h", "ilar", and "ating".

Subword-level tokenization offers
several advantages in NLP, especially for models that work with diverse language data.
One primary benefit is that it handles out-of-vocabulary (OOV) words effectively by
breaking them into smaller, recognizable subunits. This ability eliminates the need to
discard or ignore unfamiliar words. Also, subword-level tokenization preserves more
information than word-level tokenization, especially with languages that have complex
morphology or compound words, making it ideal for handling misspellings, rare words,
and different grammatical forms.

Character-level tokenization is usually used for languages such as Chinese and Japa-
nese. Figure 5.9 shows an example of the sentence "I love programming" in both Sim-
plified Chinese and Japanese tokenized into character-level tokens.

Tokens

AR Py NPT T i

\ Figure 5.9 Examples of character-
level tokenization using Simplified

Tokens Chinese and Japanese

For the Simplified Chinese example, each character represents a meaningful unit in
the sentence, making character tokenization particularly useful for languages such as
Chinese, Japanese, and Korean, in which words are often composed of multiple char-
acters and spaces are typically not used to delimit them. For Japanese, each individual

5.22

Tokenization in NLP 109

character—including Kanji, Hiragana, Katakana, and punctuation—is treated as a
token. This type of tokenization works well for handling Japanese text when you’re
interested in the most granular form of the data.

Tokenizing datasets

Hugging Face datasets are compatible with built-in tokenizers and data loaders, making
it easy to preprocess and tokenize large datasets efficiently before feeding them into
models. Using the IMDb dataset that we loaded earlier, let’s use the bert-base-uncased
model as the tokenizer and use it to tokenize the dataset:

from transformers import AutoTokenizer

dataset = load_dataset(dataset_id)
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased"')
tokenized_dataset = dataset.map(
lambda examples:
tokenizer(examples['text'],
truncation = True,
padding = 'max_length'),
batched = True)

Here, we used the AutoTokenizer class from Hugging Face that automatically loads
the appropriate tokenizer class for the specified pretrained model—in this case,
bert-base-uncase, a version of the BERT (Bidirectional Encoder Representations
from Transformers) model from Hugging Face’s Transformers library that is trained
on uncased text data. The map() method of the dataset is used to apply a function
to each element or batch of elements in the dataset. You can print the tokenized
dataset:

print(tokenized_dataset)

The following listing shows the output.

Listing 5.7 The content of the tokenized dataset

DatasetDict({
train: Dataset({
features: ['text', 'label', 'input_ids', 'token_type_ids',
'attention_mask'],
num_rows: 25000
b
test: Dataset({
features: ['text', 'label', 'input_ids', 'token_type_ids',
'attention_mask'],
num_rows: 25000
b
unsupervised: Dataset({
features: ['text', 'label', 'input_ids', 'token_type_ids',
'attention_mask'],

110

CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

num_rows: 50000
B
B

Observe that each split of the dataset contains three new attributes: input_ids, token_
type_ids, and attention_mask. Let’s examine them one by one, starting with input_ids:

print(tokenized_dataset['train'][0]['input_ids'])

You see the following result:

[101, 1045, 12524, 1045, 2572, 8025, 1011, 3756, 2013, 2026,
2678, 3573, 2138, 1997, 2035, 1996, 6704, 2008, 5129, 2009,
2043, 2009, 2001, 2034, 2207, 1999, 3476, 1012, 1045, 2036,

coe
coe
coe
coe
coe
coe
coe
coe
coe
coe
coe
coe
coe
coe
coe
coe
D_DD
D_DD
D_DD
o oo

Each number represents the token ID of a corresponding token. The trailing 0s at the
end of the list act as padding tokens, ensuring that all sequences in the batch have the
same length for consistent processing by the model.

DEFINITION A foken ID is a unique numerical identifier assigned to a token
(a word, subword, punctuation mark, or even whitespace, depending on the
tokenizer used) in the context of NLP. Token IDs are generated during the
tokenization process when text data is processed into input that a language
model (such as BERT, GPT, or other transformer models) can understand and
use.

To convert the token IDs back to the tokens, use the convert_ids_to_tokens() method
of the tokenizer:

tokens = tokenizer.convert_ids_to_tokens(

tokenized_dataset['train'][0]['input_ids'])
print(tokens)

You should see the following:

[+feeslt, 'i', ‘'rented', 'i', ‘am', ‘'curious', '-',
'yvellow', 'from', 'my', 'video', 'store', 'because',
'of', 'all', 'the', 'controversy',6 'that', 'surrounded',
"##men', 'mind', 'find', 'it', 'shocking'

'[PAD]", '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PADI",
‘[pAD]", '[PADI', '[PADI', '[PAD]', '[PAD]', '[PAD]',
‘[pAD]", '[PADI', '[PAD]', '[PAD]', '[PAD]', '[PAD]']

Tokenization in NLP 111

The first token is [CLS], which signifies the start of the string. The ## symbol in front of
some tokens indicates that the token is a subword unit that is a continuation or suffix
of a larger word. In simpler terms, it signifies that the token is not a standalone word
but a fragment that combines with the preceding tokens to form a complete word.
The [PAD] token indicates padding in tokenized sequences. It is used to ensure that
all input sequences to a model have the same length by filling shorter sequences with
padding tokens. This padding process is necessary because many transformer-based
models, such as BERT, expect input tensors of uniform size to allow for efficient batch
processing during training or inference.

The second attribute, token_type_ids, is used to differentiate among multiple seg-
ments of a single input. This attribute is particularly useful for models such as BERT,
which can process inputs consisting of two separate segments (e.g., a sentence pair in
tasks like nextsentence prediction or question answering). token_type_ids helps the
model determine which tokens belong to which segment. Typically, tokens from the
first segment are assigned 0, and tokens from the second segment are assigned 1. In the
case of a single text input, such as an IMDb movie review, there is only one segment, so
all tokens have the same token_type_id, which is 8. Therefore, when you print token_
type_ids or a similar input, you see an array of zeros:

[6, 8, B,..., 0, 0, 0]

This array indicates that the entire sequence is treated as a single segment; no distinc-
tion is made between multiple segments.

The third attribute, attention_mask, is used to inform the model which tokens
should be attended to (processed) and which should not. Itis especially important when
padding tokens are present in the input because the model should ignore the padding
during its computations. The attention_mask typically consists of binary values, which
can be interpreted as follows:

Value of 1—Indicates that the token should be attended to (i.e., it’s a real token,
not padding)

Value of e—Indicates that the token is a padding token and should not contribute
to the model’s attention mechanism

You can print the attention mask for the first row of training data like this:

print(tokenized_dataset['train'][0]['attention_mask'])

You see the following output:

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
oMo No]

112

5.3

53.1

CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

Figure 5.10 shows the relationships among token IDs, tokens, and attention masks for
the first row of the train splitin the dataset.

Token IDs
[101, 1045, 12524, 1845, 2572, 8025, 1011,..., @, o, 0, o]

Tokens
['[CLs]', 'i', 'rented', 'i', 'am', 'curious', '-', ..., '[PAD]', '[PAD]', '[PAD]', '[PAD]']

Attention mask
s il 1, i 1, 1, 1, .uu, e, e, e, e]

Figure 5.10 The token IDs, tokens, and attention masks in the first row of the training data

Tokenizing datasets is a crucial step because it converts raw text to a format that
machine learning models can process effectively. This process is especially important
in preparing data for fine-tuning models because it ensures that the model can under-
stand and work with the input text. Tokenization breaks the text into smaller units,
such as words or subwords, which the model can use to learn patterns and make pre-
dictions during training.

Visualizing datasets

The Hugging Face datasets provide a great opportunity to practice data visualiza-
tion techniques, allowing you to glean additional insights from your data and gener-
ate actionable conclusions that can inform decision-making or model optimization.
In this section, you will use two particular datasets from Hugging Face for data
visualization.

Using the twitter-financial-news-topic dataset

Let’s start with the twitter-financial-news-topic dataset. This dataset is an English-
language dataset containing an annotated corpus of finance-related tweets; it’s used to
classify finance-related tweets for a topic. The dataset holds 21,107 documents anno-
tated with 20 labels. You can find out more about this dataset by searching for the
name of this dataset on Hugging Face’s website or by going directly to https://mng.bz/
xZEg (see figure 5.11).

Let’sload the dataset and extract the train split:

from datasets import load_dataset Loads the dataset
dataset = load_dataset('zeroshot/twitter-financial-news-topic')

train_data = dataset['train'] Extracts the topic labels

from the training set

https://mng.bz/xZEg
https://mng.bz/xZEg

.

Visualizing datasets

I < & hugghgfasacz ¢ @t + O
~ Hugging Face =

D ot twitter-financial-news-topic T ©@like 32

Text Classification VModalities: @ Text ormats: | 2= csv
t multi-class-classification ~ Langl @& English Size: 10K- 100K
twitter finance markets stocks wallstreet quant ¢
Librarles: = Datasets # pandas ® Croissant = mit
¢ Dataset card EH Viewer Files i Community
9 Dataset Viewer toParquet | & AP| Erbad Downloads last month 866
= Full Screen Viewer

Split (2) Use this dataset
train + 17k rows v £ Edit dataset card

search thi SQL Console
text label
string int64

Jataset
_ alaan mal 2.97MB

Here are Thursday's biggest anmalyst calls: o lTBMB IIIIII
Apple, Amazon, Tesla, Palantir, DocuSign,.]
Buy Las Vegas Sands as travel to Singapore o 21 10?
builds, Wells Fargo says. i /

Figure 5.11 The twitter-financial-news-topic dataset hosted by Hugging Face

Next, print the first row of the data:

print(train_data[0])

You should see the text as well as the label of the first row:

{'text': "Here are Thursday's biggest analyst calls: Apple, Amazon,

Tesla, Palantir, DocuSign, Exxon & more

'label': 0}

Likewise, print the last row in the train split:

print(train_data[-11)

https://t.co/QPN8GwWL7Uh",

113

114

CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

You should see the following:

{'text': "Brazil's Petrobras says it signed a $1.25 billion
sustainability loan https://t.co/X9iTvkLKtj https://t.co/hCKnxYi8AA",
'label': 3}

The label is a number referencing the various topics. You can get this list from the
dataset’s page on the Hugging Face website. You can define the list of topics using a
dictionary as shown in the following listing.

Listing 5.8 Defining the list of topics for the twitter-financial-news-topic dataset

topics = {
"LABEL_Q@": "Analyst Update",
"LABEL_1": "Fed | Central Banks",
"LABEL_2": "Company | Product News",
"LABEL_3": "Treasuries | Corporate Debt",
"LABEL_4": "Dividend",
"LABEL_5": "Earnings",
"LABEL_6": "Energy | 0il",
"LABEL_7": "Financials",
"LABEL_8": "Currencies",
"LABEL_9": "General News | Opinion",
"LABEL_10": "Gold | Metals | Materials",
"LABEL_11": "IPO",
"LABEL_12": "Legal | Regulation",
"LABEL_13": "M&A | Investments",
"LABEL_14": "Macro",
"LABEL_15": "Markets",
"LABEL_16": "Politics",
"LABEL_17": "Personnel Change",
"LABEL_18": "Stock Commentary",
"LABEL_19": "Stock Movement",

Using this dictionary, you can create a mapping for all the labels in the train subset:

mapped_labels = [topics[f"LABEL_{label}"]
for label in train_datal['label']]

In this dataset, you want to see the distribution of all the topics and examine which
topic has the most data and which has the least. You can plot a bar chart showing the
distribution as follows.

Listing 5.9 Plotting the dataset using a bar chart

import matplotlib.pyplot as plt
import numpy as np

plt.figure(figsize=(10, 6))
Creates bin edges

bins = np.arange(len(topics) + 1) - 0.5 to center the labels

Visualizing datasets 115

plt.hist(mapped_labels,
bins = bins,
edgecolor = 'black',
color = 'skyblue',

alpha = 0.7)
plt.xticks(np.arange(len(topics)), Sets the ticks at the
list(topics.values()), center of each bin
rotation = 90,
ha = 'center')

plt.title("Topic Distribution - Twitter Financial News")
plt.xlabel("Topics")

plt.ylabel("Number of Tweets")

plt.tight_layout()

plt.show()

Figure 5.12 shows the bar chart displaying the distribution of the topics.

Topic distribution - Twitter Financial News

3500
3000 A
£ 2500 A
[}
:
= 2000 -
©
e
£ 1500
€
2
1000 A —
500 1
0 [T
%] 2] [a (2] 2] = [2] 1] c (2] 1% [2] [2] j2] 0 1] > =
g £ ¢ 5 8 &35 3 & 5§ 8 & 2 £ 8§ § & & & %
© S @ - £ £ — 5 © © = a4 & ¢ & x = o9 =2
o © c [} c > 2 c =) = = = el = c €
8 <« o T s > o a 2 © £ = © © © %)
S s © ® 3 c £ & £ O © s 5 s o0& c £ >
o ©] S 7 w (OIS 5 — = [S 2N © IS Qe
® £ T 9o g o e = [ko] £
> g £ e = » - £ c 8 x
© (3} aQ Q 2 © = - [~ 5}
T 3T = - 5 8 2 3 2 3 3
5 c » s = o X 5 2 o
L & 9 | — -4 = r O
Q. = C o
E 3 8 =
Q @©
o [} o
=
Topics

Figure 5.12 You can visualize the various topics and the number of news items related to each topic.

5.3.2 Using the CIFAR-10 dataset

CIFAR-10 is widely used in machine learning and computer vision, containing 60,000
labeled 32x32 color images divided into 10 classes, such as airplanes, automobiles, and

116

CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

animals, with 50,000 for training and 10,000 for testing. Its simplicity and size make it
a popular benchmark for image classification models, especially convolutional neural
networks (CNNs), and an excellent resource for educational projects.

You can use the Hugging Face Datasets library to experiment with CIFAR-10, and
visualizations using matplotlib can help you understand the data better. In this sec-
tion, you’ll use the voft-cs/cifarl0 dataset (https://huggingface.co/datasets/uoft-cs/

cifar10; see also figure 5.13).

(2N] € = b - @ d o+ o
/% Hugging Face Search models, dat =
Datasets: @uoft-cs ¢ifarl® & ke &0 Follow B University of Toronto C... 14
H Image Classification Modalitie: B Image = parquet & English
10K, - LDOK, © Datasels 4 pandas ¢ Croissant 2 unknown
+ Dataset card B Viewer Files @ Community EJ
= wiloads las .
= [Dataset Viewer Autg-convered to Parquet | 4> ARE e Downloads fast month 39,292
B Full Seren awer
Split {2} «f» Usathis dataset
train - S0k rows ~ & Edit dataset card
his not avallable for this dataset SQL Consale il Papers with Code
ing label
image - width (px) class label
< S R s torentoedu
! 8 airplans Learning Multiple Layers of Featur...
n Leaderboard:
&
Paoint of Cantact:
. H 8

Figure 5.13 The dataset page for CIFAR-10 on Hugging Face

As usual, start by downloading the dataset:

from datasets import load_dataset
import matplotlib.pyplot as plt
import numpy as np

dataset = load_dataset('uoft-cs/cifarl0')
print(dataset)

Printing the downloaded dataset shows the following:

< | Loads the dataset

https://huggingface.co/datasets/uoft-cs/cifar10
https://huggingface.co/datasets/uoft-cs/cifar10

Visualizing datasets 117

DatasetDict({
train: Dataset({
features: ['img', 'label'],
num_rows: 50000
b
test: Dataset({
features: ['img', 'label'l],
num_rows: 10000
B
b

All 60,000 images are stored in the dataset. You can access the first image in the train
split, for example, as follows:

dataset['train'][0]

You see the following output (formatted for clarity):

{
'img': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=32x32>,
'label': O

¥

Unfortunately, the page for the voft-cs/cifarl0 dataset does not contain the labels
for the dataset. You have to click the Files tab and then the README.md file (see figure
5.14) to view its content. You can also view this page directly at https://mng.bz/AGKg.

soe it = i
' Hugging Face h modals, datasets, user 5
Datasets: @uoft-cs eifaxrd® T ©lke 60 Follow B University of Toronto €... 1
= Image Classification B Image t <= parquet ANIHAE E English
L0K- 100K braries: = Datasets # pandas * Croissant + = unknown
Click the
Datasetcard [0 Viewer Files Files tab.
P main~ cifarlo
5P B scontributors @ History; 15 commits + Contribute ~
§ albertvillanova wrstarr Convert dataset to Parguet (#%) 0b27149
= plain_text
gitattributes -~ = L Update files frem t nast 3 year Click the
. README.md
README.md =0 4—— TS e - %
file.

.

Figure 5.14 The README . md file for the CIFAR-10 dataset on Hugging Face

https://mng.bz/AGKg

118

CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

The next listing shows the content of the README . md file, with the key labeled names and
their corresponding values, which map numbers to labels.

Listing 5.10 Content of the READVME . md file

annotations_creators:

- crowdsourced
language_creators:

- found
language:

- en
license:

- unknown
multilinguality:

- monolingual
size_categories:

- 10K<n<100K
source_datasets:

- extended|other-80-Million-Tiny-Images
task_categories:

- image-classification
task_ids: []
paperswithcode_id: cifar-10
pretty_name: Cifarl0
dataset_info:

config_name: plain_text

features:
- name: img
dtype: image
- name: label

dtype:
class_label:
names:
'0': airplane
'1': automobile
'2': bird
'3': cat
'4': deer
'5': dog
'6': frog
'7': horse
'8': ship
'9': truck
splits:

- name: train
num_bytes: 113648310
num_examples: 50000

- name: test
num_bytes: 22731580
num_examples: 10000

download_size: 143646105
dataset_size: 136379890

Visualizing datasets 119

configs:
- config_name: plain_text
data_files:
- split: train
path: plain_text/train-=*
- split: test
path: plain_text/test-*
default: true

With these labels, you can define a dictionary and create a function called show_
images() to display a 5x5 grid of images, each accompanied by a label, as shown in the
following listing.

Listing 5.11 Displaying a 5x5 grid of images

labels = {
0: "airplane", Defines labels for
: "automobile", the CIFAR-10 classes

"bird",

"cat",

"deer",

"dog",

"frog",

"horse",

"ship",

"truck"

O 00O U1 NN

Visualizes a few images
def show_images(images, labels, labels_dict): from the training set
plt.figure(figsize=(5, 5))
for i in range(25):
plt.subplot(5, 5, i + 1)
plt.imshow(images[i]) Uses the labels dictionary
plt.title(labels_dict[labels[i]]) to get class names
plt.axis('off")
plt.tight_layout()
plt.show() i Gets some samples from Randomly selects

the training dataset 25 samples
train_samples = dataset['train'].shuffle(seed=42).select(range(25))
images = [sample['img'] for sample in train_samples] Extracts images
class_labels = [sample['label'] for sample in train_samples] and labels

Displays the images
show_images(images, class_labels, labels) with class names

Figure 5.15 shows the grid of 5x5 random images from the dataset.

120 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

automobile bird horse truck

deer horse

bird airplane deer

bird

ﬁ
automobile deer

. T
. {f

Figure 5.15 Twenty-five random images from the CIFAR-10 dataset

Summary
Hugging Face Datasets is an open source library designed for accessing and pro-
cessing large datasets commonly used in machine learning and data science.
Use the list_datasets () function to show a list of available datasets.
Use the load_dataset() function to download a dataset.
Datasets are usually splitinto subsets, such as train, test, and unsupervised.
For large datasets, you can stream the data and download one row at a time. You
can also get the Parquet version of the dataset from Hugging Face.
Tokenization is a foundational process in NLP that breaks text into manageable
units or tokens.
Subword-level tokenization is the most common tokenization method used by
newer models such as BERT and GPT.
Tokenizing a dataset allows you to use it for applications such as fine-tuning a
model.
Visualizing a dataset allows you to gain a better understanding of its structure,
distribution, and underlying patterns.

Fine-tuning pretrained
models and working
with multimodalmodels

This chapter covers

Using the yelp_polarity dataset to fine-tune a
pretrained model

Using a fine-tuned model to perform classification
tasks

Fine-tuning a pretrained model to perform
multiclass classification tasks

Working with multimodal models

Up until this chapter, you’ve seen how to work with pretrained models from Hug-
ging Face to tackle a variety of tasks, using their general capabilities for tasks such as
text classification, object detection, and language generation. Now you’ll delve into
the process of fine-tuning these models to adapt them for more specialized tasks,
enhancing their performance by training them on domain-specific data.

You’ll also explore multimodal models. These models combine multiple types of
data, such as images and text, to address more complex tasks (such as identifying
the type of animals in an image based on visual features and descriptive text) that
require the integration of different information sources. By the end of this chapter,

121

122

6.1

6.1.1

CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

you’ll have a solid understanding of how to fine-tune models for better task-specific
accuracy and work with models that handle multimodal inputs for richer, more com-
prehensive solutions.

Fine-tuning pretrained models

Fine-tuning is a machine learning technique in which a pretrained model, which has
already learned general patterns from a large dataset, is further trained on a smaller,
domain-specific dataset to adapt it for a particular task. This process uses the knowledge
the model gained from the initial training, enabling it to perform well with less data (fewer
examples or a smaller dataset specific to the new task) and computational resources.

Fine-tuning typically involves adjusting only the later layers of the model or applying
a lower learning rate to avoid losing the valuable features learned during the pretrain-
ing phase. It is commonly used in natural language processing (NLP) and computer
vision tasks, allowing models such as transformers and convolutional neural networks
(CNNs) to be customized for specific applications (such as sentiment analysis or object
detection) without having to be trained from scratch.

Loading the yelp_polarity dataset

In this section, you learn how to fine-tune a pretrained model from Hugging Face
to perform sentiment analysis of restaurant reviews. To illustrate the process of fine-
tuning a model, you’ll use the yelp_polarity dataset, available from the Hugging Face
Datasets library (https://mng.bz/26v9). This labeled dataset, derived from the larger
Yelp Dataset Challenge, is tailored to text classification tasks such as sentiment analy-
sis. It consists of Yelp reviews that express detailed opinions about businesses such as
restaurants, hotels, and services. The dataset includes two labels, 8 for negative senti-
ment and 1 for positive sentiment, making it well suited to binary classification tasks.
First, load the dataset and examine its content:

from datasets import load_dataset
Loads the Yelp dataset (full review

dataset = load_dataset("yelp_polarity") dataset with train and test splits)
print(dataset)
Inspects the dataset to

understand the structure
The content of the dataset is

DatasetDict({
train: Dataset({
features: ['text', 'label'],
num_rows: 560000
B
test: Dataset({
features: ['text', 'label'l],
num_rows: 38000
)
)

https://mng.bz/26v9

6.1.2

Fine-tuning pretrained models 123

Observe that the train split dataset has 560,000 rows and the test split has 38,000
rows. It would be useful to look at the first row of the train split:

train_dataset = dataset['train'] <) Accesses the train split

print(train_dataset[0]) 4—‘
Prints the first example

The following listing shows the text of the first row together with the label 8, which
indicates that this review is negative.

Listing 6.1 The first row of the train split of the yelp_polarity dataset

"text': "Unfortunately, the frustration of being Dr.
Goldbherg's patient is a repeat of the experience
I've had with so many other doctors in NYC -
good doctor, terrible staff. It seems that his
staff simply never answers the phone. It usually
takes 2 hours of repeated calling to get an answer.
Who has time for that or wants to deal with it? I
have run into this problem with many other doctors
and I just don't get it. You have office workers,
you have patients with medical needs, why isn't
anyone answering the phone? 1It's incomprehensible
and not work the aggravation. 1It's with regret
that I feel that I have to give Dr. Goldberg 2
stars.",

'label': O

Filtering the yelp_polarity dataset

Before using the yelp_polarity dataset to fine-tune your model, consider the follow-
ing points:
Topic variety—The dataset includes reviews on a wide range of topics, not only
restaurants. If your goal is to fine-tune a model specifically for restaurant reviews,
I recommend that you filter the dataset to include only reviews related to

restaurants.

Dataset size—The dataset can be quite large, which may pose challenges during
fine-tuning. Although having more data is generally beneficial, it’s often prac-
tical to limit the dataset size. Using a subset of around 5,000 reviews, for exam-
ple, can make training more manageable without compromising performance
significantly.

The next listing demonstrates how to filter the dataset to include only rows containing
the word restaurant and then extract a subset of 5,000 rows.

124

CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

Listing 6.2 Filtering the yelp_polarity dataset

train_dataset = dataset["train"] . .
- Selects the t d test split
test_dataset = dataset["test"] elects the train and test splits
restaurant_train_reviews = train_dataset.filter(-
lambda x: "restaurant" in x["text"].lower() Filters for restaurant-

) related reviews in the
train and test datasets

restaurant_test_reviews = test_dataset.filter(<«
lambda x: "restaurant" in x["text"].lower()

)

number_of_reviews = 5000
subset_train_reviews = restaurant_train_reviews.shuffle(<——

seed = 42).select(range(number_of_reviews)) ?gggii::fgets
subset_test_reviews = restaurant_test_reviews.shuffle(-7

seed = 42).select(range(number_of_reviews))
SUbSEt—dE,‘tf&:’et =1 . . Creates a DatasetDict to return

train®: subset_train_reviews, both train and test datasets

"test": subset_test_reviews
}

Displays the structure

from datasets import DatasetDict to match the
yelp_restaurant_dataset = DatasetDict(subset_dataset) requested format

pr\int (yelp_r\estaur\ant_dataset) <—1 Prints the dataset structure

The reduced dataset contains 5,000 rows each for the train and test splits:

DatasetDict({
train: Dataset({
features: ['label', 'text'],
num_rows: 5000
B
test: Dataset({
features: ['label', 'text'],
num_rows: 5000
D)
)

Verify the first row of the reduced dataset by viewing its content:

yelp_restaurant_dataset['train'][0]

You see a review related to a restaurant that expresses a negative sentiment:

{
"text': 'My girlfriend and I have been wanting to come
here for awhile, we finally came & we had the
worst experience ever. We asked our server for

6.1.3

6.1.4

Fine-tuning pretrained models 125

a few minutes to look over the menu & he never
came back. 15 minutes later, someone finally
came and took our order. We waited awhile and
when they brought our food, they got the whole
order wrong. My girlfriend ordered soup and it
never came out. Worst service ever. Would not
recommend this restaurant to anyone.',
'label': 0O
}

Tokenizing the reduced dataset

You can perform tokenization on the reduced dataset using the distilbert-base
-uncased model. This model is shown in the following listing.

Listing 6.3 Performing tokenization on the reduced dataset

. . Loads a pretrained model
from transformers import AutoTokenizer and tokenizer (DistilBERT)

) o for sentiment classification
model_checkpoint = "distilbert-bhase-uncased"

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

def tokenize_fungtion(examples): Function to tokenize
return tokenlzer(examples["text"], the dataset
padding = "max_length",
truncation = True,
max_length = 512)

tokenized_datasets = yelp_restaurant_dataset.map(
tokenize_function,
batched=True)

Applies the tokenization
function to the dataset

tokenized_datasets

After the tokenization, you should see the following result:

DatasetDict({

train: Dataset({
features: ['text', 'label', 'input_ids', 'attention_mask'],
num_rows: 5000

b

test: Dataset({
features: ['text', 'label', 'input_ids', 'attention_mask'],
num_rows: 5000

b

B

Setting up a pretrained model for sequence classification

Next, load the pretrained model (distilbert-base-uncased) shown in the following
listing so you can fine-tune it to perform sentiment analysis on restaurant reviews.

126

CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

Listing 6.4 Loading a pretrained model for sequence classification

Loads a
from transformers import AutoModelForSequenceClassification pretrained
import torch model for

sequence
model = AutoModelForSequenceClassification.from_pretrained(classification

model_checkpoint, num_labels = 2)

if torch.backends.mps.is_available(): < Determines the device
device = torch.device("mps")
else:
device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu")

model.to(device) Moves the model to

the selected device

The AutoModelForSequenceClassification class in Hugging Face’s Transformers
library is a versatile model loader specifically tailored to sequence classification tasks. It
enables you to load any pretrained model architecture that’s compatible with sequence
classification by using a provided model checkpoint. This class automatically appends
the necessary classification layers to the pretrained model, making it ready for tasks
such as sentiment analysis, spam detection, and topic classification.

DEFINITION Sequence classification tasks involve assigning a single label or cate-
gory to an entire sequence of data, such as a sentence, a paragraph, or a longer
sequence of tokens.

In listing 6.4, you also implement logic to detect the runtime environment, which
includes checking whether the code is running on a macOS system with Metal Per-
formance Shaders (MPS) enabled or on a Windows machine with Compute Unified
Device Architecture (CUDA) support. If a graphics processing unit (GPU) is detected,
the model is transferred to the GPU to use accelerated computation.

MPS and CUDA

MPS is Apple’s framework for GPU-accelerated computations on macOS devices with
Apple silicon (M1, M2, M3, and M4 chips). It is optimized for machine learning tasks
and uses the Metal API to provide efficient, high-performance computing for deep
learning models. MPS enables native support for PyTorch and TensorFlow, allowing
developers to train and infer models on Apple hardware.

CUDA is Nvidia’s parallel computing platform and APl for using Nvidia GPUs for
general-purpose processing. Widely adopted in the machine learning community,
CUDA enables frameworks such as PyTorch and TensorFlow to run deep learning mod-
els with unparalleled speed and efficiency. It supports an extensive ecosystem of
tools for training, optimization, and deployment.

Fine-tuning pretrained models 127

Both MPS and CUDA are essential for accelerating deep learning workflows tailored
to their hardware ecosystems.

When you run the code snippet, you see the architecture of the DistilBertFor-
SequenceClassification model, as shown in the next listing.

Listing 6.5 Architecture of the DistilBertForSequenceClassification model

DistilBertForSequenceClassification(
(distilbert): DistilBertModel(
(embeddings): Embeddings(
(word_embeddings): Embedding(30522, 768, padding_idx=0)
(position_embeddings): Embedding(512, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(transformer): Transformer(
(layer): Modulelist(
(B-5): 6 x TransformerBlock(
(attention): DistilBertSdpaAttention(
(dropout): Dropout(p=0.1, inplace=False)
(g_1in): Linear(in_features=768, out_features=768, bias=True)
(k_1in): Linear(in_features=768, out_features=768, bias=True)
(v_1in): Linear(in_features=768, out_features=768, bias=True)
(out_1in): Linear(in_features=768, out_features=768, bias=True)
)
(sa_layer_norm): LayerNorm((768,), eps=1le-12,
elementwise_affine=True)
(ffn): FFN(
(dropout): Dropout(p=0.1, inplace=False)
(1in1): Linear(in_features=768, out_features=3072, bias=True)
(1in2): Linear(in_features=3072, out_features=768, bias=True)
(activation): GELUActivation()
)
(output_layer_norm): LayerNorm((768,), eps=1le-12,
elementwise_affine=True)
)

)
)
)
(pre_classifier): Linear(in_features=768, out_features=768, bias=True)
(classifier): Linear(in_features=768, out_features=2, bias=True)
(dropout): Dropout(p=0.2, inplace= False)

6.1.5 Configuring and initializing a trainer for fine-tuning a pretrained model

To fine-tune a pretrained model on a dataset, you can use the Trainer and Training-
Arguments classes from Hugging Face. The following code snippet demonstrates how

128

CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

to set up the Trainer and TrainingArguments classes to train the model using the train
split of the tokenized dataset and evaluate the model using the test split of the toke-

nized dataset.

Listing 6.6 Setting up the TrainingArguments and Trainer classes for fine-tuning

Directory in which
to save results

Sets up training arguments Evaluates model

from transformers import Trainer, TrainingArguments

training_args = TrainingArguments(
output_dir = "./results",

after each epoch

Saves the model
after each epoch

eval_strategy = "epoch", Learning rate
save_strategy = "epoch",
learning_rate = 2e-5, < Batch size
per_device_train_batch_size = 16, < for training
per*_dev%ce_eval_batch_size = 16, < Batch size for
num_traln_epochs =3, - evaluation
weight_decay = 0.01,
logging_dir = "./logs", Number of
logging_steps = 10, training epochs
save_steps = 500, -
load_best_model_at_end = True, - Weight decay for
) regularization
trainer = Trainer(<—— gqs up the Trainer Directory for logs
model = moc.ie'.L ! Logs every 10 steps
args = training_args,
train_dataset = tokenized_datasets["train"], Saves the model every 500 steps
eval_dataset = tokenized_datasets["test"],
) Loads the best model at
the end of training
trainer.train() < Fine-tunes the model

The duration of the training process will vary based on your machine’s configuration
and resources. Training can take anywhere from 10 minutes to 1 hour, so patience is
key. (You’ll know roughly how much time is needed during the training.) If training is
taking too long, consider reducing the dataset from 5,000 rows to, say, 1,000 to speed

the process.

When training is complete, you’'ll see the
training loss and validation loss for each
epoch (iteration) of the process (see figure
6.1). (Note that your results may vary from
those in the figure.) These values provide
insights into how well the model is learn-
ing and generalizing to unseen data, with
the training loss indicating the model’s

Epoch Training loss Validation loss

1 0.167500 0.171618
2 0.039400 0.219457
3 0.048500 0.218590

Figure 6.1 The result printed at the end of
training

6.1.6

Fine-tuning pretrained models 129

performance on the training data and the validation loss showing its performance on
the validation set.

When the model is trained, save it to disk so you can use it later without going
through the training process again:

model.save_pretrained("./results/final_model") Saves the fine-tuned
tokenizer.save_pretrained("./results/final_tokenizer") model and tokenizer

Also, you can evaluate the model and print its result:

eval_results = trainer.evaluate() <“—— Evaluates the model
print(f"Evaluation results: {eval_results}")

Following is the evaluation report for the training:

Evaluation results: {'eval_loss': 0.1825547218322754,
‘eval_runtime': 63.1454,
'eval_samples_per_second': 79.182,
'eval_steps_per_second': 4.957,
'epoch': 3.0}

Here’s what to make of the result:

Evaluation loss (0.18255)—The model’s loss during evaluation, with lower values
indicating better performance. This value is a relatively low loss value, which gen-
erally indicates good performance, especially if you’re working on a classification
task such as sentiment analysis.

FEvaluation runtime (63.1454 [seconds])—The total time taken to run the
evaluation.

Evaluation samples per second (79 .182)—The number of samples processed per sec-
ond during evaluation. This value reflects the model’s processing speed during
evaluation, which seems decent, but it informs you mainly about efficiency rather
than quality.

Evaluation steps per second (4.957)—The number of evaluation steps completed
per second. Like evaluation samples per second, this value informs you about
efficiency rather than quality.

Epoch (3.0)—The results from the third epoch of training. You can try varying
this value to monitor how the loss evolves with more training.

The evaluation results suggest that the model is performing reasonably well.

Using the fine-tuned model

With the fine-tuned model trained and saved, you can use it to perform a sentiment
analysis on a new restaurant review. The following listing shows how to load the fine-
tuned model, move it and the inputs to the GPU (if available), and derive the result.

130

CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

Listing 6.7 Using the fine-tuned model

from transformers import AutoTokenizer, \

.o . Reloads the

_ AutoModelForSequenceClassification model and

import torch tokenizer

new_model = AutoModelForSequenceClassification.from_pretrained(-
"./results/final_model")

new_tokenizer = AutoTokenizer.from_pretrained(B

"./results/final_tokenizer")

new_model. to(device) <"1 Moves the inference to GPU

sentence = '''

I had an amazing experience dining at this restaurant last night.
From the moment we walked in, the staff made us feel welcomed and
were incredibly attentive. Our server was friendly, knowledgeable,
and made great recommendations from the menu.

The food was absolutely delicious. I had the grilled salmon, and
it was cooked to perfection—tender, flavorful, and served with a
lovely citrus glaze that complemented it beautifully. The roasted
vegetables on the side were fresh and perfectly seasoned. My
partner had the pasta, which was creamy and rich in flavor, with
just the right amount of spice.

The ambiance was warm and inviting, with cozy lighting and tasteful
decor. It was the perfect place to relax and enjoy a nice meal. The
dessert, a decadent chocolate lava cake, was the perfect way to end
the meal.

Overall, this restaurant exceeded my expectations in every way.
Excellent food, exceptional service, and a wonderful atmosphere.
I'll definitely be back and highly recommend it to anyone looking
for a great dining experience.

inputs = new_tokenizer(sentence, <7 Tokenizes the input sentence
return_tensors = "pt",

padding = True,
truncation = True,
max_length = 512)

inputs = {key: value.to(device) for key, value in inputs.items()}

Moves inputs

new_model.eval() ¢ Puts the model in evaluation mode to GPU/MPS

with torch.no_grad(): .
outputs = new_model(**inputs) -« Runsthe model to get predictions
logits = outputs.logits Gets the

probabilities = torch.nn.functional.softmax(logits, dim=-1) logits (raw

scores) from
Converts logits to the model
probabilities using Softmax output

6.1.7

Fine-tuning pretrained models 131

predicted_class = torch.argmax(probabilities, dim=-1).item() Gets the
. . predicted class
if predicted_class == 1: Outputs the (index of the
print(f"Sentiment: Positive (Confidence: \ predicted maximum
{probabilities[0][1].item():.2f})") sentiment probability)

else:
print(f"Sentiment: Negative (Confidence: \
{probabilities[0][0].item():.2f})")

The sample review in the code listing yields a positive sentiment with a confidence of
0.99:

Sentiment: Positive (Confidence: 0.99)

Next, modify the content of the sentence variable with a negative review, and examine
the result:

sentence = '''

I visited this place last night with high expectations after
hearing some good things, but it was honestly one of the worst
dining experiences I've had in a while. The service was
incredibly slow, even though the restaurant wasn't crowded.
OQur waiter seemed disinterested and forgot half of our order.

When the food finally came, it was cold and tasted bland. The
pasta was overcooked, and my steak was underseasoned and chewy.
The side of vegetables looked like they had been reheated from
a previous meal.

To make things worse, the ambiance was far too noisy, and we
had to wait an extra 20 minutes for the check. I tried to
address my concerns with the manager, but they seemed
uninterested in hearing feedback. Overall, I felt like I had
wasted both my time and money.

I will definitely not be coming back, and I would not recommend
this place to anyone.

This time, the model returns a negative sentiment:

Sentiment: Negative (Confidence: 0.99)

Fine-tuning models for multiclass text classification

Unlike the yelp_polarity dataset, which uses binary labels (6 and 1) for sentiment clas-
sification, the yelp_review_full dataset contains labels corresponding to a star rating
system ranging from 1 to 5 stars. Each review is assigned a star rating that reflects the
user’s sentiment about the business:

132

CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

Very negative sentiment
Negative sentiment
Neutral sentiment
Positive sentiment

Very positive sentiment

These ratings provide a more granular view of sentiment compared with the binary
labels in the yelp_polarity dataset. This fact makes the yelp_review_full dataset
suitable for tasks such as multiclass sentiment classification or regression, the goal of
which is to predict one of five sentiment categories based on the review text. Let’s load
the yelp_review_full dataset to examine its content:

from datasets import load_dataset Loads Yelp Reviews dataset
with ratings from 1to 5
dataset = load_dataset("yelp_review_full") <=——
print(dataset) D
Displays the structure
of the dataset

You will see the following output:

DatasetDict({
train: Dataset({
features: ['label', 'text'],
num_rows: 650000
B
test: Dataset({
features: ['label', 'text'],
num_rows: 50000
D)
B

There are 650,000 rows in the train split and 50,000 rows in the test split. As usual,
filter the dataset to contain only reviews that are related to restaurants, as shown in the
next listing.

Listing 6.8 Filtering yelp_review_full to contain only rows related to restaurants

from datasets import DatasetDict

train_dataset = dataset["train"]

Selects the train and test splits
test_dataset = dataset["test"]

Filters for restaurant-
related reviews in the

lambda x: "restaurant" in x["text"].lower()
) train and test datasets

restaurant_train_reviews = train_dataset.filter(T

restaurant_test_reviews = test_dataset.filter(
lambda x: "restaurant" in x["text"].lower()

Fine-tuning pretrained models 133

)
nUmbef‘_O'F_f‘eVieWS = 5000 Uses on|y5 000
subset_train_reviews = restaurant_train_reviews.shuffle(reﬁewsfor}rdnh@

seed=42) .select(range(number_of_reviews))
subset_test_reviews = restaurant_test_reviews.shuffle(
seed=42) .select(range(number_of_reviews))
Creates a DatasetDict to return
subset_dataset = { < both train and test datasets
"train": subset_train_reviews,
"test": subset_test_reviews

i Displays the structure
to match the
yelp_restaurant_dataset = DatasetDict(subset_dataset) requested format

print(yelp_restaurant_dataset) < Prints the dataset structure

The reduced dataset looks like this:

DatasetDict({
train: Dataset({
features: ['label', 'text'l],
num_rows: 5000
b
test: Dataset({
features: ['label', 'text'l],
num_rows: 5000
B
b

Take a look at the first row of the train split:

yelp_restaurant_dataset['train'][0]

The output looks like this:

{'label': 2,

"text': "This place is good, but I think I just ordered
the wrong thing. The Hibiscus Enchiladas were
just way too sweet for me. I think they should
be on the dessert menu and not dinner menu. I'd
like to give it another chance and order
something else next time, but other than that
a good vibe. Seemed like the typical American
Mexican restaurant."}

As explained earlier, the label is a number from 1 to 5 representing the sentiment
level. As you did in listing 6.3 earlier in this chapter, now you can tokenize the reduced
dataset.

134

CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

With the dataset tokenized, the next step is using a pretrained model and fine-tune
it to perform sentiment analysis, as in listing 6.4 earlier in the chapter. But because now
there are five labels (1 to 5) instead of 8 and 1, you need to set the num_labels parameter
to 5 instead of 2:

model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels = 5) Loads pretrained model
for sequence classification

Now you can proceed with fine-tuning the model. The code is the same as listing 6.6
earlier in this chapter.

When the modelis fine-tuned, save it in a new folder named final_model_multiclass
and the tokenizer in a folder named final_tokenizer_multiclass:

Saves the fine-tuned
model and tokenizer

model.save_pretrained("./results/final_model_multiclass")
tokenizer.save_pretrained("./results/final_tokenizer_multiclass")

eval_results = trainer.evaluate()
print(eval_results) Evaluates the model
on the test set
Prints the evaluation results
TIP Refer to the code repository that Epoch Training loss Validation loss
accompanies this book for the complete
1 1.066800 0.962330
source code.
o 2 0.799900 0.917825
When training is complete, you see the
training loss and validation loss for each 3 0.773900 0.927565
€p och (iteration) of the process, as shown Figure 6.2 The result printed at the end of
in figure 6.2. the fine-tuning

The result of the evaluation is as follows:

{
'eval_loss': 0.9178248047828674,
'eval_runtime': 63.0299,
'eval_samples_per_second': 79.327,
'eval_steps_per_second': 4.966,
'epoch': 3.0

}

Now you can load the fine-tuned model and use it to perform multiclass sentiment
analysis, as shown in the next listing.

Listing 6.9 Using the fine-tuned model to perform multiclass sentiment analysis

from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer

Fine-tuning pretrained models 135

import torch

new_reviews = [
"The food was amazing and the service was excellent!",
"The restaurant was dirty and the food was cold.",
"Decent experience, but nothing special."

]

if torch.backends.mps.is_available(): < Determines the device
device = torch.device("mps")
else:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

new_tokenizer = AutoTokenizer.from_pretrained(<“— |oad .
. . . the tok
"./results/final_tokenizer_multiclass") 0ads the tokenizer

inputs = new_tokenizer(new_reviews, < Tokenizes the reviews
padding = "max_length",

truncation = True,

return_tensors = "pt") Moves inputs to GPU/MPS
inputs = {key: value.to(device) for key, value in inputs.items()} -
new_model = AutoModelForSequenceClassification.from_pretrained(-
", /results/final_model_multiclass")
new_model.to(device) Loads the fine-tuned mode!
new_model.eval()
with torch.no_grad(): < Performs inference

outputs = new_model(**inputs)

logits = outputs.logits

predictions = torch.argmax(logits, dim=-1)

Assuming that classes

star_ratings = predictions + 1 are 0—4, maps to 1-5
for review, rating in zip(new_reviews, star_ratings):

print(f"Review: {review}\nPredicted Star Rating: \

{rating.item()}\n")

In listing 6.9, you had three sample restaurant reviews:

new_reviews = [
"The food was amazing and the service was excellent!",
"The restaurant was dirty and the food was cold.",
"Decent experience, but nothing special."

When you use the fine-tuned model, these are the predicted ratings:

Review: The food was amazing and the service was excellent!
Predicted Star Rating: 5

Review: The restaurant was dirty and the food was cold.
Predicted Star Rating: 1

136

6.2

6.2.1

CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

Review: Decent experience, but nothing special.
Predicted Star Rating: 3

Looks like they are pretty accurate!

Working with multimodal models

So far, all the models you’ve worked with have been single-modal models. A single-modal
model is 2 machine learning model designed to work with data from a single modality,
such as text, images, audio, or numerical data. Following are a few examples:

An NLP model such as GPT or BERT is trained to work exclusively with textual
data.

A CNN such as a residual neural network (ResNet) is trained to process and ana-
lyze visual data such as images.

A multimodal model, on the other hand, is a machine learning model designed to pro-
cess and integrate data from multiple modalities—different types of information, such
as text, images, audio, video, and structured data. By combining these modalities, mul-
timodal models aim to learn richer, more comprehensive representations, allowing
them to perform tasks involving multiple types of inputs. Here are some example uses
of multimodal models:

Multimodal models can be used in image captioning. They combine visual data
(images) with NLP (text) to generate descriptive captions.

Another example is visual question answering (VQA), in which the model takes
an image and a question as inputs and provides an answer by reasoning across
both modalities.

Similarly, in speech-to-text systems, audio data (speech) is processed and con-
verted to textual information.

Other real-world applications include multimodal sentiment analysis, combin-
ing text, audio tone, and visual cues (such as facial expressions) to assess senti-
ment; and autonomous driving systems, in which data from cameras (images),
lidar (structured data), and GPS are integrated to understand the environment
and make driving decisions.

Multimodal models have several advantages over single-modal models. They com-
bine different types of data (such as text, images, and audio) for better understanding
and can handle noise or missing information in one type by relying on others. This
improves accuracy, generalization, and performance across tasks such as image cap-
tioning and VQA. By using multiple data sources together, they reduce bias, mimic
human decision-making, and handle complex tasks more effectively.

Single-modal models

A good example of a single-model model is the facebook/detr-resnet-56 model. This
model is a Detection Transformer (DETR) model developed by Facebook Al and used

Working with multimodal models 137

for object detection and image segmentation, combining the strengths of CNNs and
transformers. In the following example, we’ll use it to detect objects in an image. First,
let’s load an image from the web:

from PIL import Image, ImageDraw
import requests

url = 'https://images.unsplash.com/' + \ URL of the image
'photo-1563460716037-460a3ad24ba9"’

if url.startswith('http'): If the image is
image = Image.open(requests.get(url, stream=True).raw) from the web . . .
else:

image = Image.open(url) ‘ ... the image is local.
image

Figure 6.3 shows the picture, which contains a dog and a cat.

Figure 6.3 Animage
containing a dog and a cat
(Source: https://mng.bz/Z9K5)

We’ll use the facebook/detr-resnet-50 model to try to detect the dog and cat in the
picture. The following listing shows how.

https://mng.bz/Z9K5

138 CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

Listing 6.10 Using the facebook/detr-resnet-50 model to detect objects in images

from transformers import DetrImageProcessor, DetrForObjectDetection
import torch

image_processor = DetrImageProcessor.from_pretrained(
"facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")

inputs = image_processor(images = image,

Processes the image so that the
return_tensors = "pt")

model can use the preprocessed
data (e.g., resized, normalized, and
model.eval() converted to tensors) as inputs

with torch.no_grad():

outputs = model(**inputs) The outputs

target_sizes = torch.tensor([image.size[::-1]1) <—— | yariable contains
the raw predictions
results = image_processor.post_process_object_detection(from the model,
outputs, which include
target_sizes = target_sizes, detected object
threshold = 0.9)[0] information.
print(results)
Converts the raw model Creates the target
outputs to human-readable size in the format
object detection results (height,width)

The model returned the following result (formatted for clarity):

{

'scores': tensor([0.9924, 0.9989]1, grad_fn=<IndexBackward0>),

'labels': tensor([17, 18]1),

'"boxes': tensor([[4.5560e+00, 2.8760e+03, 2.4111e+03, 4.9051e+03],
[2.2206e+02, 1.4505e+03, 3.6523e+03, 4.6681e+03]],
grad_fn=<IndexBackward0>)

}

Using the result, you can plot bounding boxes around the detected objects using the
following code.

Listing 6.11 Plotting bounding boxes around a detected object in an image

draw = ImageDraw.Draw(image)

for score, label, box in zip(results["scores"],
results["labels"], Prints the object detected
results["boxes"]): and the confidence
print(
f"Detected {model.config.id2label[label.item()]} with confidence "

f"{(score.item() * 100):.2f}% at {box}"
) Draws bounding

box = [round(i, 2) for i in box.tolist()] box around object
draw.rectangle(box,

Working with multimodal models 139

outline = 'green',
width = 10) Displays the object label
draw.text((box[0], box[1]-10),
model.config.id2label[label.item()],
fill = 'green')
display(image)

This code prints the following result:

Detected cat with confidence 99.47% at tensor(
[1.4345e+00, 1.2385e+03,
1.0472e+03, 2.1296e+03],
grad_fn=<UnbindBackward0>)

Detected dog with confidence 99.92% at tensor(
[96.8109, 630.3585,
1587.2705, 2028.87261,
grad_fn=<UnbindBackward0>)

Figure 6.4 displays the bounding boxes around the dog and cat, with the label for each
detected object shown in the top-left corner of the box.

Figure 6.4 The detected
objects in the image with the
bounding boxes drawn

140

6.2.2

CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

This example demonstrates the use of a single-modal model, DETR, for object detec-
tion. The model processes only visual data (an input image) to identify objects and
their bounding boxes. In section 6.2.2, you’ll see how a multimodal model can enhance
this by integrating additional data types, such as text, to improve contextual under-
standing and provide more comprehensive insights for tasks such as image captioning,
VQA, and other complex applications that require the fusion of multiple modalities.

Multimodal models

Now that you’ve seen how a single-modal model identifies objects in an image, let’s
explore how a multimodal model differs. We’ll use the Contrastive Language-Image
Pretraining (CLIP) model to demonstrate how a multimodal model can process
images and text together. Unlike a single-modal model, CLIP understands the rela-
tionship between images and textual descriptions, allowing it to perform tasks such as
image classification based on natural language labels. By using both visual and textual
data, CLIP makes more accurate predictions, handles more complex queries, and gen-
eralizes across various tasks without needing task-specific training. Let’s walk through
how CLIP works and see how it can classify images based on a set of textual descriptions.

What is CLIP?

CLIP is a multimodal model developed by OpenAl that connects text and image under-
standing. It can process and relate textual descriptions to visual content without
requiring explicit fine-tuning for specific tasks. It can understand both text and images
and establish meaningful relationships between them.

During training, CLIP aligns text descriptions with corresponding images while distin-
guishing them from unrelated pairs. The caption “a dog playing in the park,” for exam-
ple, is linked to an image of a dog but separated from images of cats or cars.

CLIP can perform tasks it wasn’t specifically trained for by using its broad understand-
ing of text and images. It can classify images based on user-provided text labels, for
example, without requiring task-specific data.

CLIP uses two separate neural networks:

A text encoder (transformer-based) to process text
An image encoder (based on models like ResNet and Vision Transformer [ViT])
to process images

First, let’s load an image that we want to use. For this example, we’ll load an image of
adog:

import torch

import requests

from PIL import Image

url = 'https://images.unsplash.com/' + \

Working with multimodal models 141

'photo-1491684612772-6853927639ef' <+ YRL of the image

image = Image.open(requests.get(url, stream=True).raw)
display(image)

Figure 6.5 shows the image of a dog loaded from the web.

Figure 6.5 Animage of a dog
(Source: https://mng.bz/0zEE)

For this example, we’ll use a multimodal model to simultaneously process both visual
and textual data, as shown in the following listing. The CLIP model is designed to learn
the relationship between images and their corresponding textual descriptions. By
using both an image and a list of labels (text), the model can determine which label
best matches the content of the image. This approach allows the model not only to
analyze visual features but also to use contextual information from the text, providing
a more powerful and versatile solution than single-modal models, which process only
one type of data.

Listing 6.12 Using a multimodal model to simultaneously process visual and textual data

from transformers import CLIPProcessor, CLIPModel Downloads the CLIP model

model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

https://mng.bz/0zEE

142

CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

labels = ["cat", "dog", "tiger", "train"] The inputs variable contains the data that

inputs = processor(text = labels, is passed to the CLIP model for processing.
images = image, It is the proc'essed representation of both
return_tensors = "pt", the text and image data, formatted in a

padding=True) way that the model can understand.

model.eval() The outputs variable contains the result of processing the
inputs through the CLIP model. The model processes
with torch.no_grad(): the text and image data, and the outputs object
outputs = model(**inputs) contains the computed features and similarity scores.

logits_per_image = outputs.logits_per_image - The image-text similarity score

probs = logits_per_image.softmax(dim=1) We can take the
most_likely_index = torch.argmax(probs, dim=1).item() softmax to get the
most_likely_object = labels[most_likely_index] label probabilities.

print(f"The most likely object is: {most_likely_object}") Gets and prints the
most likely object

This example is a multimodal model in action. It involves processing and combining
data from two modalities: text and images. Specifically, the code uses the CLIP model
from OpenAl, which is designed to understand and compute the similarity between
textual descriptions and images. Here’s how the code works:

You download the openai/clip-vit-base-patch32 model and its corresponding
processor, using the CLIPModel and CLIPProcessor classes.

The input image (loaded using libraries like PIL) and a list of possible labels
(["cat", "dog", "tiger", "train"]) are processed by the CLIPProcessor, which
converts them to a format suitable for the model (token embeddings for text and
normalized tensors for the image).

The model processes the image and the text inputs:
It extracts visual features from the image.
It extracts textual features from the labels.

The model computes similarity scores between the image features and each
label’s text features, producing a set of logits (raw, unnormalized output values of
a model; logits_per_image).

The logits are converted to probabilities using the softmax() function, and the
label with the highest probability is selected as the most likely match for the

image.

This example returns the following output:

The most likely object is: dog

Summary 143

Summary

Fine-tuning is a machine learning method in which a pretrained model is further
trained on a smaller, domain-specific dataset to adapt it to a targeted task.

The yelp_polarity dataset is a subset of the larger Yelp Dataset Challenge, cre-
ated specifically for text classification applications like sentiment analysis.
Sequence classification refers to tasks in which an entire sequence of data—such
as a sentence, paragraph, or longer token string—is assigned a single label or
category.

MPS is Apple’s framework that enables GPU-accelerated computation on macOS
systems powered by Apple silicon (M1, M2, M3, and M4 chips).

CUDA is Nvidia’s platform and programming interface that allows developers to
perform general-purpose computing on Nvidia GPUs.

To fine-tune a pretrained model with Hugging Face, you typically use the Trainer
class together with TrainingArguments.

Assingle-modal model is designed to handle data from only one modality, such as
text, images, audio, or numerical values.

A multimodal model is capable of processing and combining data from multiple
modalities, such as text, images, audio, video, or structured inputs.

CLIP, developed by OpenAl, is a multimodal model that links visual understand-
ing with natural language comprehension.

Creating LLM-baséd

applications using
LangChain and Llamalndex

This chapter covers

Introducing large language models (LLMs)
Creating LLM applications using LangChain
Connecting LLMs to your private data

In chapter 3, you learned how to employ a transformers pipeline to access diverse
pretrained models for various natural language processing (NLP) tasks, including
sentiment classification, named entity extraction, and text summarization. In prac-
tical scenarios, however, the goal is to seamlessly integrate various models, encom-
passing those from Hugging Face and OpenAl, into custom applications. Enter
LangChain, a solution that facilitates the customization of NLP applications by link-
ing different components based on specific requirements.

Although pretrained models are beneficial, it’s important to note that they
were trained on external data, not your own. Often, you need to use a model that
answers questions pertinent to your unique dataset. Imagine possessing a dataset
with numerous receipts and invoices. You would want a pretrained model to summa-
rize your purchases or identify vendors associated with specific items. Llamalndex is

144

7.1

Introducing LLMs 145

indispensable for this task. With Llamalndex, you gain the ability to connect an LLM to
your proprietary data, empowering it to address queries tailored to your dataset.

In this chapter, you’ll delve into using LangChain to construct NLP applications with
LLMs. Further, you’ll explore using Llamalndex to develop NLP applications specifi-
cally trained to respond to inquiries related to your private data.

Introducing LLMs

An LLM is a type of Al model designed to understand and generate humanlike text
based on the patterns and structures it learned from a massive amount of training data.
Specifically, LLM refers to a class of advanced NLP models. LLMs have the following
features:

Size and scale—LLMs are trained on a massive amount of data, including books,
articles, websites, videos, and pictures (see figure 7.1).

Pretraining—ILMs go through a pretraining phase in which they use a large
amount of training data to learn the statistical relationships between words and
sentences. This phase allows them to acquire a general understanding of gram-
mar, syntax, and semantics.

Fine-tuning—After the pretraining, LLMs are fine-tuned on specific tasks or data-
sets. This process makes them perform specific tasks, such as text classification,
sentiment analysis, and language translation.

Large language model (LLM)

Figure 7.1 LLMs are trained using large amounts of data from sources including books, articles,
webpages, videos, and images.

To gain a perspective on how large LLMs are, consider the numbers shown in table 7.1.
Specifically, OpenAl’s GPT-3 Davinci model has 175 billion trainable parameters and
uses 499 billion tokens in its training data.

146 CHAPTER 7 Creating LLM-based applications using LangChain and Llamalndex

Table 7.1 Some LLMs and the size of their training data

Number of trainable Number of tokens in
LLM model -
parameters the training data
Nvidia: Megatron-Turing Natural 530 billion 270 billion
Language Generation (MT-NLG)
OpenAl: Generative Pretrained

175 billion 499 billion
Transformer-3 (GPT-3) Davinci

Source: A Beginner’s Guide to Large Language Models, Part 1. Nvidia. https://mng.bz/VOYW

Trainable parameters

Trainable parameters are the variables within a machine learning or deep learning
model that are adjusted during the training process to enable the model to make
accurate predictions or perform a specific task. These parameters are learned from
the training data and fine-tuned to optimize the model’s performance on a given task.
In neural networks, trainable parameters typically include the following:

Weights—These values are associated with the connections between neurons
in different layers of the network. During training, the weights are repeatedly
adjusted to help the network learn the relationships between input data and
desired output.

Biases—These values are associated with each neuron in a neural network
layer. They help shift the activation function’s output and allow the network to
learn complex patterns.

In short, the more trainable parameters you have in a neural network, the longer it
takes to train the system. Training a model with many trainable parameters requires
immense computing power and memory, so it is very expensive to train an LLM.

What are tokens?

In the context of NLP and machine learning, Subword-level

a token is a chunk of text that a model pro- tokenization
cesses as a single unit. Consider an exam-

ple using the word unhappiness. Instead of unhappiness
processing the word as a single unit, a GPT

such as OpenAl’s GPT-3.5 uses a technique / \
known as subword-level tokenization, called

byte-pair encoding (BPE). This technique
allows the model to have a large, diverse
vocabulary without the limitations of a fixed
word-level vocabulary. This is particularly
useful for understanding and generating How the word unhappiness is tokenized
text in various contexts, languages, and into three tokens using the subword-level
domains. The following figure shows the tokenization technique

word broken into three tokens.

un- happi- -ness

Subword-level tokenization

https://mng.bz/V9YW

7.2

7.2.1

722

Introducing LangChain 147

Note that in addition to subword-level tokenization, you can use techniques such as
word-level tokenization and character-level tokenization (covered in chapter 3).

Introducing LangChain

LangChain is a framework built around LLMs, designed to simplify the creation of
applications with LLMs. You can think of it as a chain that connects the various compo-
nents required to create advanced use cases for LLMs. A chain may contain the follow-
ing components:

Prompt templates—Templates for different types of conversations with LLMs

LILMs—GPT-3, GPT-4, and so on

Agents—Use LLM to decide what actions to be taken

Memory—Short- or long-term memory

Installing LangChain

To use LangChain, you first need to install the langchain package using the pip
command:

Ipip install langchain

All the code in the following sections is tested against LangChain version 0.3.4.

Creating a prompt template

Let’s learn how to use LangChain to connect an LLM with a prompt template to cre-
ate a simple LLM application. The first component you’ll create is a PromptTemplate.

DEFINITION A prompt template structures the instruction or query given to the
model to obtain the desired outputs. It provides a flexible way to guide the
model’s behavior by incorporating special tokens and instructions.

A PromptTemplate is a string template that accepts a list of parameters from users that
can be used to generate a prompt for an LLM. The following code snippet creates a
PromptTemplate containing a single parameter (question:).

Listing 7.1 Creating a simple PromptTemplate component

from langchain import PromptTemplate

template = '''
Question: {question}
Answer:

prompt = PromptTemplate(

148

7.2.3

CHAPTER 7 Creating LLM-based applications using LangChain and Llamalndex

template = template,
input_variables = ['question']
)
prompt

The template parameter in the PromptTemplate class accepts a string template. The
input_variables parameter accepts a list of parameters from the user that will be used
to generate the prompt. Figure 7.2 shows the relationship between the value of the
input_variables parameter and the variable in the string template:

template = ''"'
Question: {question} “—“\\\\\\\‘-’//'ﬂmsehwo
Answer: ''! must match.

prompt = PromptTemplate(
template = template,
input_variables = ['question']

Figure 7.2 The input variable is linked to the variable in the string template.

Here is the output of the PromptTemplate when printed:

PromptTemplate(input_variables=["'question'],
template='\nQuestion: {question}\nAnswer: ')

In the prompt template, you want to ask the LLM a question and get an answer.

Specifying an LLM

Now that you’ve created the prompt template, the next step is selecting and using an
LLM. Let’s start with an LLM hosted by Hugging Face. First, though, you need to sign
up for a free account at Hugging Face (https://huggingface.co/join), if you haven’t
done that already, and create a token at https://huggingface.co/settings/tokens. Cre-
ate a read token, and give it a name (see figure 7.3).

Then copy the access token and save it in the environment variable:

import os
os.environ['HUGGINGFACEHUB_API_TOKEN'] = 'Your_HuggingFace_Token'

To use an LLM from Hugging Face, install the langchain-huggingface package:

Ipip install langchain-huggingface

https://huggingface.co/join
https://huggingface.co/settings/tokens

Introducing LangChain 149

o ® M~ <« > @ huggingface.co (7] ® m &

o= Create a new access token

Name

MyToken

Role

read

Generate a token

Figure 7.3 Creating a Hugging Face token

Now you can use the HuggingFaceEndPoint class to access an LLM from Hugging
Face:

from langchain_huggingface import HuggingFaceEndpoint

hub_11m = HuggingFaceEndpoint(
endpoint_url="https://api-inference.huggingface.co/models/
HuggingFaceH4/zephyr-7b-alpha",
temperature = 1

)

The preceding code snippet uses the HuggingFaceH4/zephyr-7b-alpha model.

NOTE When you use the HuggingFaceEndPoint class to specify an LLM,
the inferencing is performed at Hugging Face’s end, not locally on your
computer.

The language models in the Zephyr series are trained to act as helpful assistants. Zephyr
-7B-da, the first model in the series, is a fine-tuned version of mistralai/Mistral
-7B-v0.1, which was trained on a mix of publicly available synthetic datasets using
Direct Preference Optimization (DPO). You can find more information about this
model at https://mng.bz/nZO4. As shown in figure 7.4, HuggingFaceH4/zephyr-7b
-alphais a text-generation model.

https://mng.bz/nZO4

150

724

CHAPTER 7 Creating LLM-based applications using LangChain and Llamalndex

HuggingFaceH4/zephyr-Tb-alpha
is a text-generation model.

=
i
a

pe® M+~ < > B & huggingface.co ¢ ®

'~ Hugging Face Q. Search models, datasets, users...

HuggingFaceH4 zephyx-7h-alpha @ @ like 607

=1-

® Transformers (O PyTorch & Safetensors stingning/ultrachat

openbmb/UltraFeedback @ English mistral generated_from_trainer @ Inference Endpoints

@ text-generation-inference 7 arxiv:2305.18290 & License: mit
&, Train - </ Deploy - <> Use in Transformers
s Modelcard ‘= Files 7 Community

Z. Edit model card

Downloads last
month

42,354
Finetuned from “ * mistralai/Mistral-76-v0.1
. £ Safetensors
Madal siza 7 24R /

Figure 7.4 Viewing the HuggingFaceH4/zephyr-7h-alpha model on the Hugging Face web page

Creating an LLM chain

The next step is creating an LLM chain. You combine your prompt template and
model (LLM) to create a chain so that you can run queries against the LLM:

from langchain_core.output_parsers import StrOutputParser

1lm_chain = prompt | hub_1lm | StrOutputParser()

Essentially, you’re chaining all the various components: PromptTemplate, hub_1lm, and
StrOutputParser. The StrOutputParser object handles the output and parses it into
a string. The | operator in 1lm_chain = prompt | hub_1lm | StrOutputParser() rep-
resents pipeline-style chaining in LangChain. This syntax makes it easy to link different
components—prompts, language models, output parsers, and so on—in a sequence
to process data from start to finish. Each component takes the output of the previous

step, processes it, and passes it along to the next.

7.2.5

7.2.6

Introducing LangChain 151

Running the chain
You are ready to use the chain to answer questions. To test the application, call the

run() method of the LLM chain:

gn = "Who is Elon Musk?"
print(llm_chain.invoke(qn))

Here is the response from the LLM:

1. Elon Musk is the CEO0 of SpaceX, Tesla, and Neuralink

Remember that all the inferencing is done on Hugging Face’s server. Observe what
happens if you ask a follow-up question:

gn = "Is he married?"
print(1lm_chain.invoke(qn))

You get a response like the following because the LLM doesn’t maintain a context
between questions:

I do not have personal information about individuals. however, based on the
information available to me

How do you solve this problem? Let’s take a look.

Maintaining a conversation

To maintain context between questions, the LLM needs to know what the response
questions and answers were. One way to do this is to alter the prompt template and
provide a history of the conversation:

template = '"'

Current conversation: {history}
Human: {question}

AI:

The preceding code snippet shows that there are two variables in the template string:
history

question

Correspondingly, the input_variables parameter must also specify the two variables in
the list:

prompt = PromptTemplate(
template = template,
input_variables = ['question', 'history']

152

7.2.7

CHAPTER 7 Creating LLM-based applications using LangChain and Llamalndex

Next, create a new chain using the updated PromptTemplate object:

1lm_chain = prompt | hub_T1lm | StrOutputParser()

Now you can ask a question by passing the question and history to the invoke () method:

gn = "Who is Elon Musk?"
response = 1lm_chain.invoke({'question’':qn, 'history':''})
print(response)

The preceding code generates the following response:

Elon Musk is a South African-born American entrepreneur, business magnate,
and engineer.

If you ask a follow-up question like this one (note that you need to pass the previous
response from the LLM to the invoke() method),

gn = "Is he married?"
response = llm_chain.invoke({'question':qn, 'history':response})
print(response)

you get a response that understands the context of the question:

Elon Musk is currently not married. He was previously married to Canadian
author and journalist, Tal

Now rewrite the preceding code snippet using a while loop so you can prompt the user
to ask a question and get the LLM to answer it:

history = "'
while True:
gn = input('Question: ')
if gn == 'quit':
break
response = llm_chain.invoke({'question':qn, 'history':history})
history = response
print(history)

Figure 7.5 shows the flow of the question-and-answer session.

Using the RunnableWithMessageHistory class

Section 7.2.6 showed how to modify the prompt to maintain a conversation with
the LLM. An alternative approach to maintaining a chat conversation is to use the
RunnableWithMessageHistory class, a LangChain class that allows you to manage the
history of interactions (messages) during a conversation between the user and an
Al model. The class is part of LangChain’s conversational framework, used to build

Introducing LangChain 153

First question
and response

history = "'
while True:
gn = input('Question: ')
if gn == 'quit':
break

response = Llm_chain.run({'question’':gn, 'history’:history})
history = response
print (history)

Question: Who is Elon Musk?

Elon Musk is a South African-born American entrepreneur, business magnate, and engineer.
Question: Where does he live?

Elon Musk is an American citizen and currently resides in Austin, Texas, where he moved

Question: [| @v I

Second question
and response

Figure 7.5 A user can ask questions and get a response from the LLM.

systems that keep track of conversation history across multiple exchanges. The follow-
ing listing shows how to use the RunnableWithMessageHistory class.

Listing 7.2 Using the RunnableWithMessageHistory class to maintain conversation

import os

from langchain import PromptTemplate

from langchain_core.output_parsers import StrOutputParser

from langchain_huggingface import HuggingFaceEndpoint

from langchain_core.runnables.history import RunnableWithMessageHistory

os.environ['HUGGINGFACEHUB_API_TOKEN'] = 'your_hugging_face_token'

template = '''
Question: {question}
Answer:

prompt = PromptTemplate(
template = template,
input_variables = ['question']

)

hub_1lm = HuggingFaceEndpoint(
endpoint_url="https://api-inference.huggingface.co/models/HuggingFaceH4/
zephyr-7b-alpha",
temperature = 1

)

154 CHAPTER 7 Creating LLM-based applications using LangChain and Llamalndex

class SessionHistory:
def __init__(self):

self.messages = []

A class to store session history that
includes the messages attribute

def add_messages(self, messages): AddsalFtofnwssages
self.messages.extend(messages) to the history

def get_messages(self):
return self.messages

Initializes the session history
session_history = SessionHistory()

A function to retrieve the
def get_session_history(): current session history

return session_history
Creates the chain
1lm_chain = RunnableWithMessageHistory(with message history
prompt | hub_1lm | StrOutputParser(),
get_session_history = get_session_history

) Starts a loop for multiple questions
while True:

Gets the user input
user_question = input("Ask a question (type 'exit' to stop): ")

if user_question.lower() == "quit": < Exit condition
print("Ending conversation.")
break

input_data = {"question": user_question} <« Prepares theinputdata
response = 1lm_chain.invoke(input_data) <+ Gets the model’s response

session_history.add_messages([Adds the user question
{"role": "user", "content": user_question}, and assistant response

{"role": "assistant", "content": response} to the session history

D

#L display the response
print(f"AI: {response}")

You can ask follow-up questions after the initial question. The main addition to this
code snippet is the SessionHistory class, which allows you to save the history of the
exchanges between the user and the model. Then an instance of the SessionHistory
class is passed to the RunnableWithMessageHistory class through the get_session_
history parameter:

1lm_chain = RunnableWithMessageHistory(
prompt | hub_1lm | StrOutputParser(),
get_session_history = get_session_history

Introducing LangChain 155

Now the LLM can retain the context of the conversation and answer the follow-up
question correctly. How do you retrieve the chat history? You can do so via the get_
messages () method from the session_history object:

print(session_history.get_messages())

The following listing shows an example conversation history (formatted for clarity).

Listing 7.3 Example chat history

[

HumanMessage (
content="'Who is Bill Gates?',
additional_kwargs={},
response_metadata={}

)I

AIMessage(

content="Bill Gates is an American business magnate, software
developer, entrepreneur, and philanthropist. He is best known as
the co-founder of Microsoft Corporation, the world's largest
personal computer software company. Gates is also the co-chair
of the Bill & Melinda Gates Foundation, a private charitable
organization that is dedicated to improving health and reducing
poverty worldwide. As of 2021, he is one of the wealthiest
individuals in the world.",

additional_kwargs={}, response_metadata={}

),
{'role': 'user', ‘'content': 'Who is Bill Gates?'},
{'role': 'assistant', 'content': "Bill Gates is an American

business magnate, software developer, entrepreneur, and
philanthropist. He is hest known as the co-founder of
Microsoft Corporation, the world's largest personal computer
software company. Gates is also the co-chair of the Bill &
Melinda Gates Foundation, a private charitable organization
that is dedicated to improving health and reducing poverty
worldwide. As of 2021, he is one of the wealthiest
individuals in the world."},

HumanMessage (
content='Is he rich?',
additional_kwargs={},
response_metadata={}

),

AIMessage(

content="'<|>\nYes, Bill Gates is one of the wealthiest
individuals in the world according to the information
provided in the AIMessage.',

additional_kwargs={},

response_metadata={}

156

CHAPTER 7 Creating LLM-based applications using LangChain and Llamalndex

),
{'role': 'user', 'content': 'Is he rich?'},
{'role': 'assistant', 'content': '<|>\nYes, Bill Gates is

one of the wealthiest individuals in the world according to
the information provided in the AIMessage.'}

]

Text Completion

Besides asking questions, HuggingFaceH4/zephyr-7b-alpha (being a text-generation
model) can perform text completion. The trick of making it perform text completion
is modifying the prompt template. The following code shows the entire program, with
the prompt string changed to text completion.

Listing 7.4 Performing text completion

import os

from langchain import PromptTemplate

from langchain_core.output_parsers import StrOutputParser
from langchain_huggingface import HuggingFaceEndpoint

os.environ['HUGGINGFACEHUB_API_TOKEN'] = 'Your_HuggingFace_Token'

template = ''!
Complete this: {question}

prompt = PromptTemplate(
template = template,
input_variables = ['question']
)
prompt

hub_1lm = HuggingFaceEndpoint(
endpoint_url="https://api-inference.huggingface.co/
models/HuggingFaceH4/zephyr-7b-alpha",
temperature = 1

)

1lm_chain = prompt | hub_1lm | StrOutputParser()

while True:
gn = input('Question: ')
if gn == 'quit':
break
response = llm_chain.invoke(qgn)
print(response)

Run the program, and ask a question. Figure 7.6 shows the model’s response.

7.2.8

Introducing LangChain 157

iS while True:

26 gn = input('Question: ')

27 if gn == 'quit*:

28 break

29 response = 1lm_chain.invoke(qgn)
30 print({response)

. —— ——————— __ 1Typeasentence.

Question:| You and I
It's an unspoken lie
We're running in circles
But we just can't admit it

2. Response from

Chorus:
&\~ the model

Oh, you and I

We've got a story to tell

It's been buried deep inside

We've been playing hell

With ourselves, it’'s true

But now it's time to face the truth

Outro:

So, let's take a leap of faith

And start this journey to release

The pain that’s been holding us

In the past, it's time for change

We can overcome this together

And find a way to heal and mend

This fragmented connection between
Two hearts still beating as one again.

Question: ||

Figure 7.6 You can get the model to complete your sentence.

Using other LLMs

Apart from using the LLMs from Hugging Face, you can use LLMs from other provid-
ers. Moving forward, you’ll have the chance to try two other LLMs, one from OpenAl
and one from Hugging Face.

UsiNg OPENAI
Let’s use an LLM from OpenAl. Before you can use the LLM from OpenAl, you need
to install the langchain_openai package with the pip command:

Ipip install langchain_openai

You also need to apply for an API key, which is a pay-per-use key. You can apply at
https://platform.openai.com/account/api-keys (see figure 7.7).

After you obtain your OpenAl API key, add the following statements to add an envi-
ronment variable named OPENAI_API_KEY, and set it to your OpenAl API key:

import os
os.environ['OPENAI_API_KEY'] = "OPENAI_API_KEY"

https://platform.openai.com/account/api-keys

158

CHAPTER 7 Creating LLM-based applications using LangChain and Llamalndex

@ e M~ < % 8] @ platform.openai.com ¢ @ [Tj e Ia
@ Overview Documentation APlreference Examples Playground Fine-tuning QJ Forum O Help f’ Personal
ORGANIZATION API keys

@ Personal ©®

Your secret APl keys are listed below. Please note that we do not display your secret APl keys

Settings N

again after you generate them.
Usage
— Do not share your APl key with others, or expose it in the browser or other client-side code. In

ate limits

order to protect the security of your account, OpenAl may also automatically disable any API
Members key that we've found has leaked publicly.
Billing

NAME KEY CREATED LAST USED @
USER s 8
Settings S @
e

Default organization

If you belong to multiple organizations, this setting controls which organization is used by
default when making requests with the APl keys above.

Personal

Note: You can aiso specity which erganization to use for each AP request. See Authentication to learn more.

\@play amenu

Click button to create a
new OpenAl API key.

Figure 7.7 Applying for an OpenAl API key

To view the list of OpenAl models you can use, check out https://platform.openai
.com/docs/models/overview. Here are some models that you can use:

gpt-3.5-turbo—Most capable GPT-3.5 model, optimized for chat at 1,/10th the
cost of an older model (text-davinci-003)

gpt-40-mini—More capable than any GPT-3.5 model, able to perform more
complex tasks, and optimized for chat

To use an OpenAl model such as gpt-4o0-mini, pass the name of the model to the
ChatOpenAI class:

from langchain.chat_models import ChatOpenAl

openai_model = ChatOpenAI(model_name = 'gpt-40-mini')

Then, as before, create a PromptTemplate and an LLM, and chain them together.

https://platform.openai.com/docs/models/overview
https://platform.openai.com/docs/models/overview

Introducing LangChain 159

Listing 7.5 Creating a chain using OpenAl LLM

from langchain import PromptTemplate
from langchain_core.output_parsers import StrOutputParser

template = '''
Question: {question}
Answer: '''

prompt = PromptTemplate(
template = template,
input_variables = ['question']

)

1lm_chain = prompt | openai_model | StrOutputParser()

Now pose a question to the OpenAl model:

question = "Who is Steve Jobhs"
print(llm_chain.invoke(question))

You get a reply like this:

Steve Jobs was an American entrepreneur, businessman, inventor,
and co-founder of Apple Inc. He is widely recognized as a pioneer
of the personal computer revolution of the 1970s and 1980s, along
with his business partner and Apple co-founder Steve Wozniak.
Jobs also served as the CEO of Pixar Animation Studios and was a
member of the board of directors of The Walt Disney Company. He
passed away in 2011 from complications related to pancreatic
cancer.

USING THE TIIUAE/FALCON-7B-INSTRUCT MODEL

Hugging Face also has several models you can use. One is tiivae/falcon-7b-instruct
(https://huggingface.co/tiiuae/falcon-7b-instruct), an LLM developed by the Tech-
nology Innovation Institute in Abu Dhabi, United Arab Emirates. This model is an
instruction-tuned version of Falcon 7B, a transformer-based model designed to under-
stand and follow specific instructions provided by users. As usual, create a Prompt-
Template and HuggingFaceEndPoint and then chain them together, as follows.

Listing 7.6 Using the tiivae/falcon-7b-instruct model

import os

from langchain_core.output_parsers import StrOutputParser
from langchain_huggingface import HuggingFaceEndpoint
from langchain import PromptTemplate

os.environ['HUGGINGFACEHUB_API_TOKEN'] = 'Your_HuggingFace_Token'

https://huggingface.co/tiiuae/falcon-7b-instruct

160

7.3

CHAPTER 7 Creating LLM-based applications using LangChain and Llamalndex

template = ''!
Question: {question}
Answepr: ''!'

prompt = PromptTemplate(
template = template,
input_variables = ['question']

)

hub_1lm = HuggingFaceEndpoint(endpoint_url=
"https://api-inference.huggingface.co/models/
tiivae/falcon-7b-instruct",
temperature = 1

)

1lm_chain = prompt | hub_1lm | StrOutputParser()

Ask a question using the 1lm_chain object:

guestion = "Translate this to Spanish: Which is the way to
the train station?"
print(1lm_chain.invoke(question))

You should see the following response:

¢A donde estd la estacion de tren?

Here’s another question:

question = "What is the capital of France?"
print(1lm_chain.invoke(question))

The response looks like this:

The capital of France is Paris.

Connecting LLMs to your private data using Llamalndex

So far, you've seen how interesting it is to use LangChain to connect to LLMs provided
by OpenAl and Hugging Face to build your own chat-based applications where you
can ask questions using natural language. But although LLMs are trained on a huge
amount of data, they are not trained on your data. It would be more helpful to use an
LLM to answer specific questions that pertain to your data rather than the data the
model was trained on.

Llamalndex solves this problem by connecting your data and adding it to an existing
LLM by using a technique known as retrieval-augmented generation (RAG). RAG enhances
the performance of LLMs by integrating them with an external retrieval system. The
main idea is to supplement the language model’s response generation with relevant

7.3.1

7.3.2

7.3.3

Connecting LLMs to your private data using Llamalndex 161

information from a knowledge base or document store, enabling it to generate more
accurate, context-aware responses without needing to know everything ahead of time.

NOTE Llamalndex is a data framework that enables LLM-based applications
to ingest, structure, and access private or domain-specific data. It’s available in
Python and TypeScript.

Installing the packages

First, use the pip command to install the following packages:

I'pip install 1lama_index
Ipip install 1llama-index-embeddings-huggingface
Ipip install 1lama-index-1lms-huggingface

Let’s learn how to use Llamalndex with a Hugging Face model to index your private
data so that an LLM can answer questions pertaining to your data.

Preparing the documents

For this example, we’ll use Llamalndex to answer questions based on receipts saved in
PDF format. In addition to PDF, Llamalndex supports several common file formats,
including the following:

Text ﬁles—. txt Content of the Training Documents folder

Microsoft Word documents— . doc
and .docx

Markdown files— .md

HTML files—.html and .htm
CSV files—.csv

JSON files—.json

sae . S

i
[
&
"
o
o

P Lazoda

Create a folder named Training

Documents in the same directory as your
Jupyter Notebook. Populate the folder
with the receipts. In this example, the
folder contains four PDF documents
(receipts of some purchases; see figure

7.8).

BIELIRIL

s

A

Loading the documents

To load the PDFs into memory for
indexing, use SimpleDirectoryReader-
class, a Llamalndex component that

facilitates readlng and 1ndex1ng docu- Figure 7.8 Contents of the Training Documents
ments from a specific directory: folder

PDF documents

162

7.3.4

CHAPTER 7 Creating LLM-based applications using LangChain and Llamalndex

from 1lama_index.core import SimpleDirectoryReader

loader = SimpleDirectoryReader(
input_dir="./Training Documents",
recursive=True,
required_exts=[".pdf"],

documents = loader.load_data() < Loads the documents

In the preceding code snippet, you specify the following:

Directory input—This input allows you to specify a directory from which to load
documents.

Recursive loading—When the recursive parameter is set to True, the model can
search subdirectories and load documents from them.

File-type filtering—The required_exts parameter enables you to filter which file
types to load (PDFs, text files, Word documents, and so on).

Using an embedding model

When the documents are loaded, the next step is performing vector embedding to
convert the text data to vector representations. This process allows more efficient que-
rying, similarity search, and further processing of the documents.

DEFINITION A vector embedding is a numerical representation of objects (such
as words, sentences, images, or any data point) in a continuous vector space.
Each object is mapped to a vector of numbers in such a way that the spatial
relationships between these vectors reflect similarities or semantic relation-
ships among the objects themselves.

You can use models such as HuggingFaceEmbedding to generate these embeddings for
each document, enabling you to use machine learning models in your application. For
this example, use the BAAI/bge-small-en-v1.5 model:

from 1lama_index.embeddings.huggingface import HuggingFaceEmbedding

embedding_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")

BAAI/bge-small-en-v1.5 is a specific pretrained model available on the Hugging Face
Model Hub (https://huggingface.co/BAAI/bge-small-en-v1.5). This model is part of
the Bag of Graph Embeddings (BGE) series, which is designed to generate embed-
dings for English text. Models in this series often focus on producing embeddings that
capture semantic information effectively, making them useful for various NLP tasks.

NOTE When you use a model like BAAI/bge-small-en-v1.5, the embedding
process takes place locally on your computer, ensuring the privacy of your data.

https://huggingface.co/BAAI/bge-small-en-v1.5

7.3.5

7.3.6

Connecting LLMs to your private data using Llamalndex 163

Indexing the document

Now you can start to index the document using the embedding model via the Vector-

StoreIndex class, which creates an index and then saves the vector embeddings on

disk:

from 1lama_index.core import VectorStoreIndex

index = VectorStoreIndex.from_documents(
documents,
embed_model = embedding_model,
)
Saves the index in the
index.storage_context.persist(persist_dir=".") current directory

The vector embeddings are stored in the same directory as your Jupyter Notebook.
Five files are created:

image__vector_store.json—Contains the vector embeddings associated with
documents that are categorized as images. If your index includes image docu-
ments or embeddings generated from image data, this file stores that specific
information.

default__vector_store.json—Stores the main vector embeddings for the
default category of documents in your index. It contains the embeddings of text
documents that are not specifically categorized as images or other types.
graph_store.json—Contains information related to any graph structures or
relationships that exist between the indexed documents. These structures or
relationships could include links or any other metadata that captures the con-
nectivity or hierarchy of the documents.

index_store.json—Holds metadata and configurations related to the index
itself. It may include information about how the index was constructed, parame-
ters used during creation, and other relevant settings.

docstore.json—Contains the actual document data or references to the doc-
uments that were indexed. It serves as storage for the documents themselves,
allowing the index to retrieve and reference them when necessary.

Saving the vector embeddings to disk is beneficial because it allows you to perform the

embedding process only once—unless the content of your documents changes. When

the embeddings are saved, you can simply load them from disk in the future, avoiding

the need to embed the documents again. In section 7.3.6, you learn how to load these
vector embeddings directly from disk.

Loading the embeddings

When the index is persisted to disk, you can load it into memory using the Storage-
Context class and the load_index_from_storage() function:

164

7.3.7

CHAPTER 7 Creating LLM-based applications using LangChain and Llamalndex

from 1lama_index.core import StorageContext, load_index_from_storage
from 1lama_index.embeddings.huggingface import HuggingFaceEmbedding

embedding_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")

storage_context = StorageContext.from_defaults(persist_dir=".")
index = load_index_from_storage(storage_context,
embed_model = embedding_model)

Note that you need to use the same embedding model that you used earlier for
indexing.

Using an LLM for querying

Now that the documents are indexed, you can use a Hugging Face model to ask ques-
tions based on your local documents, as shown in the following listing.

Listing 7.7 Querying the local documents using an LLM

from transformers import AutoModelForCausallLM, AutoTokenizer
from 1lama_index.1llms.huggingface import HuggingFacellLM
import torch

if torch.backends.mps.is_available(): < Determines the device
device = torch.device("mps")

else:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained(

Loads a model and tokenizer
"meta-1lama/Llama-3.2-3B-Instruct")

. from Hugging Face
model = AutoModelForCausallLM.from_pretrained(
"meta-1lama/Llama-3.2-3B-Instruct").to(device)
huggingface_1lm = HuggingFaceLLM(1 Initializes HuggingFaceLLM

model=model,
tokenizer=tokenizer,

Sets the LLM to use
query_engine = index.as_query_engine(1lm=huggingface_11lm)

In this example, you’ll use the AutoModelForCausallLM class to load the meta-1lama/
Llama-3.2-3B-Instruct model, which will be set as the query engine for the index.

NOTE Again, using a model like meta-1lama/Llama-3.2-3B-Instruct ensures
that the inferencing of the model is done locally on your computer, ensuring
data privacy.

7.3.8

7.3.9

Connecting LLMs to your private data using Llamalndex 165

Shifting the workload to the GPU

The to() method in PyTorch moves a model or tensor to a specified device—typically,
a CPU or graphics processing unit (GPU). If you have an Apple silicon Mac (with an
M1, M2, M3, or later processor), processing is moved to the GPU (mps, for Metal
Performance Shaders). If you have an Nvidia GPU on your Windows PC, processing is
moved to the GPU (cuda, for Compute Unified Device Architecture). If you have none of
these devices, the processing is done on the CPU.

Asking questions

You can ask questions related to the receipts using the meta-1lama/Llama-3.2-3B
-Instruct model:

while True:
question = input("Question: ")
if question.lower() == "quit": break

print(query_engine.query(question).response)

The following dialogue shows the question asked and the response by the model:

Question: How much did I pay for the keyboard?
162.90 SGD.

Using Llamalndex with OpenAl

You may have noticed that running an LLM locally is slow. This is because local models
often require significant computational resources, including high memory and pro-
cessing power, to handle the large number of parameters and complex calculations
involved in generating responses. Performance can be affected further by the hard-
ware limitations of the machine being used, such as CPU speed and GPU availability.
These limitations can lead to longer inference times compared with accessing models
hosted on cloud platforms, where powerful infrastructure is optimized for fast process-
ing. More significantly, the quality of the answer may not be as good as you expected.

An alternative to running a local LLM is using an OpenAl model such as gpt-4o
-mini. To do that, you need to install the following packages:

Ipip install langchain_community
Ipip install langchain_openai

The following code snippet loads the gpt-40-mini model and sets it as the query engine
for the index:

from langchain_openai import ChatOpenAl
import os

0s.environ["OPENAI_API_KEY"] = "OpenAI_API_Key"

166

7.3.10

CHAPTER 7 Creating LLM-based applications using LangChain and Llamalndex

openai_1lm = ChatOpenAI(temperature = 0.7,
model_name = "gpt-40-mini")

query_engine = index.as_query_engine(llm = openai_11lm)
NOTE You must supply an OpenAl API key (see section 7.2.8 for details on

how to get one) to use the service. Keep in mind that all API calls to OpenAl
are billed according to their usage rates.

Now you can ask questions as you did earlier:

while True:
question = input("Question: ")
if question.lower() == "quit": break

print(query_engine.query(question).response)

Here is a sample dialogue:

Question: How much did I pay for the keyboard?
You paid a total of 169.90 for the Razer Blackwidow V3 Gaming Keyboard.

Notice that the responses are much faster and the quality of the responses is better
than that of the local model. This is because OpenAl’s cloud-based models use power-
ful, optimized infrastructure capable of processing large volumes of data and perform-
ing complex computations more efficiently. Also, these models benefit from continual
updates and improvements made by OpenAl, allowing them to deliver more accurate
and contextually relevant responses compared with locally run models that may be
constrained by hardware limitations and lack access to the latest training data.

What about the privacy of your data? When you call index.as_query_engine(1lm=
openai_11lm), the query engine is set up to handle queries using the OpenAl model. So
when you submit a query to the index, the query is processed by the OpenAl model, so
any data you send through this query engine (including the questions and potentially
the document contents) is transmitted to OpenAl’s servers for processing. This means
that both the queries you make and any relevant context from your indexed documents
will be sent to OpenAl.

NOTE If you are concerned about the privacy of your data, you should use a
local model, such as meta-1lama/Llama-3.2-3B-Instruct, as illustrated earlier
in this chapter.

Creating a web frontend for the app

To make the query engine easy to use, bind it to the Gradio library. Gradio is an open
source Python library that is used to build machine learning demos, data science
demos, and web applications. To use Gradio in your Python application, install it using
the pip command:

Ipip install gradio

Connecting LLMs to your private data using Llamalndex 167

Next, create a function named my_chat_bot that calls the query () method of the query
engine:

def my_chat_bot(input_text):
response = query_engine.query(input_text)
return response.response

Finally, bind the my_chat_bot () function with Gradio:

import gradio as gr

gr.Interface(fn = my_chat_bot, < Bindsit to gradio
title = "Enquiry",
inputs = "text",

outputs = "text").launch()

When you run the preceding code snippet, you see the UI shown in figure 7.9. Ask a
question pertaining to the receipts in PDF files and then click the Submit button. Fig-
ure 7.10 shows the response returned by the query engine.

Running on local URL: http://127.0.0.1:7862

To create a public link, set ‘share=True' in “launch()".

Enquiry

input_text output

Clear Submit Flag

Figure 7.9 The Gradio interface is bound to the query engine.

Enquiry
input_text output
How many cables did | buy? You bought a total of 3 cables.
Clear Submit Flag

Figure 7.10 Asking a question regarding the purchases stored in the PDF receipts

168

7.3.11

7.3.12

CHAPTER 7 Creating LLM-based applications using LangChain and Llamalndex

Holding a conversation

Although you can ask the query engine questions, it can’t carry on a conversation with
you. Suppose that you asked the following questions in succession:

How many cables did I buy?

How much did I pay for them?
The query engine wouldn’t be able to answer the follow-up question because it holds

no memory of the previous conversation. If you want to hold a conversation with the
LLM, use the as_chat_engine() method instead of as_query_engine():

query_engine = index.as_chat_engine(1llm=openai_11lm) Use this to hold
a conversation.

Then use the chat() method to chat with the user.

Listing 7.8 Binding Gradio to the my_chat_bot() function

def my_chat_bot(input_text):

response = query_engine.chat(input_text) <1 Uses the chat() function
return response.response

import gradio as gr

gr.Interface(fn = my_chat_bot, < Binds it to gradio
title = "Enquiry",
inputs = "text",
outputs = "text").launch()

Now you can ask a question followed by other related questions. Figure 7.11 shows an
example chat session.

Creating a chatbot Ul

The preceding example showed how to ask follow-up questions with the query engine
and maintain a conversation. But that UI isn’t very user-friendly for engaging a chat
with the LLM. Every time you want to ask the next question, you must clear the input
text box, type your new question, and then click the Submit button. It would be better
to redesign the Ul for chat. Fortunately, Gradio allows you to customize its look and
feel to make it easy for you to chat with the LLM. You can use the template shown in
the next listing.

Listing 7.9 Creating a chatbot Ul template

import gradio as gr

with gr.Blocks() as mychatbot: Displays a chatbot
chatbot = gr.Chatbot() .
question = gr.Textbox() < Allows the user to ask a question

Connecting LLMs to your private data using Llamalndex 169

def chat(message, chat_history):

conten? = "Responses from chatbot..." Replaces content with the actual
chat_history.append((message, content)) responses from a chatbot
return "", chat_history
questlon.submlt(fn = chat, X Wires up the event handler
inputs = [question, chatbot], for the Submit button (when
outputs = [question, chatbot]) the user presses Enter)

mychatbot.launch()

Enquiry
input_text output
. (\
1. First . “" ¥ How many cables did | buy?| | You bought a total of 3 cables.
question L = _ i
Clear Submit Flag
Enquiry
input_text output
2. FOIIOV""UP/\J, | Who did | buy them from? You bought the cables from Essager.
question .
Clear Submit Flag
Enquiry
input_text output
3. Another — .
f0"0V\{'UP TNlw ‘ How much were they?| The cables cost SGD 3.81 each.
question ‘ J
Clear Submit Flag

Figure 7.11 Ask a series of follow-up questions, and the chatbot maintains the conversation.

The Blocks class is a low-level API that allows you to create custom web applications.
The Chatbot class displays a chatbot U, and the Textbox class creates a text box in which
the user can enter a question. The text box has a submit() function that is triggered

170

CHAPTER 7 Creating LLM-based applications using LangChain and Llamalndex

when the user presses the Enter key after typing the question. In the preceding code
snippet, you should replace the statements in bold with the code that interfaces with
your chat engine. Whatever responses your chat engine returns are then appended to
the chat_history parameter. Figure 7.12 shows how the UI looks now.

& Chatbot

Textbox

Textbox

UseviaAPl & - Built with Gradic &

Figure 7.12 The Gradio chat Ul

To interface with the chat engine you created earlier, replace the bold statement in
listing 7.9 with the following call to the my_chat_bot() function.

Listing 7.10 Replacing the placeholder with the my_chat_bot() function

import gradio as gr

with gr.Blocks() as mychatbot: Displays a chatbot
chatbot = gr.Chatbot()
gquestion = gr.Textbox() ‘ Allows the user to ask a question

def chat(message, chat_history):
content = my_chat_bot(message)

Summary 171

chat_history.append((message, content))
return "", chat_history
Wires up the event handler for the Submit
button (when the user presses Enter)
question.submit(fn = chat,
inputs = [question, chatbot],
outputs = [question, chatbot])

mychatbot.launch()

Now you can chat with the query engine. Figure 7.13 shows what a typical conversation
looks like.

‘ & Chatbot \

| How many cables did | buy?
You bought a total of 3 cables.

| How much did they cost?

The cables cost SGD 3.81 each. ‘

Textbox

Usevia APl &¥ - Built with Gradic &

Figure 7.13 Using the chat user interface to chat with the chat engine

Summary

An LLM s a type of Al model that’s designed to understand and generate human-
like text based on the patterns and structures it learned from massive amount of
training data.

A token is a chunk of text that a model processes as a single unit.

LangChain is a framework designed to simplify the creation of applications with
LLMs.

172 CHAPTER 7 Creating LLM-based applications using LangChain and Llamalndex

A LangChain application consists of components chained together.

You can run an LLM locally or use one that is cloud-based, such as LLMs from
OpenAl.

Llamalndex is a data framework that enables LLM-based applications to ingest,
structure, and access private or domain-specific data.

RAG is a technique that enhances the performance of LLMs by integrating them
with an external retrieval system.

Running a model locally for vector embedding ensures that your data stays within
your computer.

You can use Gradio to create a web frontend for your LLM applications.

Bwilding LangChain
applications visually
using Langflow

This chapter covers

Introducing Langflow

Creating a LangChain project using Langflow
Using and configuring the various components of
Langflow

Using Langflow to query your own data

Previously, you learned how to build applications based on large language models
(LLMs) by chaining various components, such as prompt template and memory.
You also learned how to use Llamalndex to connect an LLM to answer questions
pertaining to your own data. To use LangChain, you must download the langchain
package and then use the various APIs in the framework.

In this chapter, you’ll learn an easy approach to building LLM-based applica-
tions using LangChain. Instead of writing code, you’ll build LangChain apps using
a drag-and-drop tool known as Langflow. This tool enables you to get started with
LangChain without being bogged down in the details of coding and to preview your
applications instantly without complicated setup.

173

174

8.1

811

CHAPTER 8 Building LangChain applications visually using Langflow

What is Langflow?

Langflow is an open source library that allows you to build LLM-based applications
using LangChain through a drag-and-drop visual interface. Langflow is built on top of
LangChain, so you can develop Al applications faster and easier through a no-code/

low-code experience.

You can download the source code for Langflow at https://github.com/logspace-ai/
langflow. You can install Langflow in several ways, but this section focuses on installing

it so that you can be productive immediately. You’ll learn how to do the following:

Install Langflow locally on your computer using the pip command

Run Langflow using a Docker container

Run Langflow in the cloud

Installing Langflow using the pip command

The first approach to installing Langflow is using the pip command to install locally on

your computer:

$ pip install langflow

TIP The version of Langflow used in this chapter is 1.0.18. Langflow is
updated on a regular basis, so if you have trouble installing Langflow on your
computer, you can install a specific version (say, 1.0.18) by specifying its version
number: $ pip install langflow==1.0.18. As you try Langflow, bear in mind
that many packages in the Al space are still in their early stages. Be sure to
experiment if you have difficulty trying the examples in this chapter.

This approach is the most straightforward; all the packages required to run Langflow are
downloaded to your computer. When the installation is complete, run Langflow using

the following command in Terminal (macOS) or Anaconda Prompt (Windows):

$ python -m langflow run

Langflow runs as a web application. By default, it listens at port 7860 (see figure 8.1),

so you must ensure that port 7860 is available on your computer.

([] [] weimenglee — python < python -m langflow run — 80x16

Welcome to M Langflow

A new version of langflow is available: 1.8.18
Run 'pip install langflow -U' to update.
Collaborate, and contribute at our GitHub Repo

We collect anonymous usage data to improve Langflow.
You can opt—out by setting DO_NOT_TRACK=true in your environment.

Access http://127.8.8.1:7848

Figure 8.1
Langflow runs as a
web app and listens
at port 7860.

https://github.com/logspace-ai/langflow
https://github.com/logspace-ai/langflow

812

What is Langflow? 175

To launch Langflow, type http://127.0.8.1:7860 in your web browser. You should see
your default web browser displaying the Langflow Ul, as shown in figure 8.2.

| ese @ 127.0.0.1 ¢ @M+ b

23 & 8 Oz X o & 0)
My Collection . . . Ry——
Manage your personal projects. Downlead and upload entire collections
Search Flows and Components Q Al Flows Companents
| t Al @ &
Thiz folder is empty. Mew? Here
U Y.

Figure 8.2 If Langflow is installed correctly, you should see this page in your web browser.

Installing Langflow using Docker

Although the preceding approach to installing Langflow is the most straightforward,
it does have problems. In experimentation, I’'ve found that not all machines install
Langflow properly. You may run into conflicts with packages that prevent you from
installing Langflow correctly.

A much more foolproof way to use Langflow is to use Docker. I assume that you
already have Docker installed on your computer and are familiar with the basics of
Docker. If not, you can learn more about it at https://docs.docker.com/get-started/
introduction.

First, launch Terminal/Anaconda Prompt. Then create a folder on your computer
and name it Langflow:

$ mkdir Langflow

After you create the folder, change the directory to it:

$ cd Langflow

Next, create a file named Dockerfile and paste the following statement into that file
(or get it from https://mng.bz/vZGr):

FROM langflowai/langflow:latest

Use the Dockerfile to build a Docker image with the following command:

$ docker build -t langflow .

https://docs.docker.com/get-started/introduction
https://docs.docker.com/get-started/introduction
https://mng.bz/vZGr

176

CHAPTER 8 Building LangChain applications visually using Langflow

Finally, run the new Docker image as a Docker container using the following command:

$ docker run -p 7860:7860 langflow

This command creates a Docker container from the langflow image and makes it lis-
ten at port 7860. (The first 7860 in the command is the external port where the Docker
container listens; the second 7860 is the internal port where the Langflow application
listens in the container).

To launch Langflow, type http://127.0.8.1:7860 in your web browser. You should
see the page shown in figure 8.2 earlier in this chapter.

Note that when the Docker container is running, you can use the Docker Desktop
application to stop or start the container. Locate the Docker container that is running
the Langtlow application, and click the Stop/Start button to stop or start the container

(see figure 8.3).

@ © DockerDoskicp Undnte ta lstest Q, Seatch for image:
® containers Containers g feeconce =
5 Images
Cantainer CPU usage (T} Cortainer memary usage (T} Show charts
& Volumes . ;
0.22% / 500% (5 cares sliscated) 1.79GB / 7 49GB
88 Dov Environmants seT
@ Docker Seout Eany access Q. search m @ Only show runining containers
Learning cent
1 Learning center) Name 4 Image Status Part(s) Last started Actions
. stupefia
Extensions [C) pazsangy 20008 Running TREOTRAD ¢4 2 minutes ago E‘ i §

-— RAM 6.02GE CPUOADS [isk 431368 avail of 5267 GB § Connected 1o Hub Dzt)

® ssteunsins H\ Click this button
| to stop/start the

container.

Shawing 1 item

Figure 8.3 You can use the Docker Desktop application to stop or start your Docker containing running Langflow.

813

Running Langflow in the cloud

The third option for running Langflow is using a version on the Hugging Face Spaces
web page (https://huggingtace.co/spaces/Logspace/Langflow; see figure 8.4). The
advantage of using this approach is that you can find many shared examples created by
the community. Figure 8.5 shows some of these examples, which are good ways to learn
how other people are using Langflow to build LangChain-based applications.

https://huggingface.co/spaces/Logspace/Langflow

What is Langflow?

View shared examples created by the community.

\

177

A Community Examples

Discover and learn from shared examples by the Langflow community. We welcome new
example contributions that can help our community explore new and powerful features.

Basic Chat with
Prompt and History

A simple chat with a custom
prompt template and...

% Fork Example

. Calculator

Simple getting started guide
for constructing a calculator.

% Fork Example

K@p\ay amenu

. Basic Chat

Simplest possible chat model

% Fork Example

Getting Started:
Simple python...

Use this Tool on every query

% Fork Example

(Buffer Memory

A Chain that uses a
ConversationBufferMemory

% Fork Example

. Github Issue Parser

Gets Issues from Langfiow
repo and output them as..

% Fork Example

&} Add Your Example

. CSVLoader

A flow that gets loads a C5V
file into a Vector Store and..

% Fork Example

() JSON Agent

Query an AP spec to get
information about the...

% Fork Example

eoe M~ < > & huggingface.co ¢ ®©@ 0 +
= Spaces @ Logspace Langflow ™ ©like 824 «Running & =
§8 @ My Collection 23 community Examples C)star 13742 W @ G Q
m My Collection &, Download Collection &, Upload Collection New Project
Manage your personal projects. Download or upload your collection.
\leplav a menu
Figure 8.4 You can run Langflow on Hugging Face Spaces.

. : : ~
ece M - < @ huggingface.co (¢} ® h + D
= Spaces @ lLogspace Langflow™ < like 824 e Running =
;‘Jg (@ My Collection A3 Community Examples) star 13742 W @ & A

Figure 8.5 Viewing the community examples of Langflow on Hugging Face Spaces

178

8.2

CHAPTER 8 Building LangChain applications visually using Langflow

Creating a new Langflow project

Now that Langflow is up and running (locally or in the cloud), you can create a project
by clicking the New Project button (see figure 8.6).

27.0.01 (o @ t +
O 27308 X @ (CIrAY O

ad entire collections.

+ New Project

Click to create

T a new project.

\

Figure 8.6 Creating a new Langflow project

You see a set of templates to get you started quickly. Select the Blank Flow template
because you will be building a project from scratch (see figure 8.7). You should see an
empty canvas with the various component categories displayed on the left side of the

window (see figure 8.8).

ese [nram

Get Started
P o
Blank Flow Basic Prompting (Hello, World)
]
('\ o)
h bt
Document A Blog Writer

Figure 8.7 A list of templates is available to get you started.

Creating a new Langflow project 179

Uttlod dosu_. 5 & Wy Coliecion 1) Store Os= zo0a X ® & 0 €

Name of Eeiaila
project

HREODEDL K
g o

Categories of
components

Vactor St
1 Embeddeg:

Exparimantsl HETA

£3 Playground o aps © shaee

Figure 8.8 The canvas for your Langflow project, where you can add and chain components

Components (commonly known as flows) are the building blocks of a Langflow proj-
ect. An example component is Prompt, which allows you to create prompts and define
variables that give you control over instructing the model. Components are organized
in categories based on their functions.

When you create a project, a default project name is assigned automatically. You can
change the project name by clicking the name, choosing Settings from the pull-down
menu, and then changing the project name in the Settings dialog box (see figure 8.9).

Click the project name.

ese I
31 ¢ unbmedooos..

_ Optians

+ e

el o]

B Logs
& ine 5
B impor
pur i -
@ Esport
B #rs e . i st LangFiow Praject
S A Description joptenal]
we The Foser of Language i Yoo Fingerfins.
valpas s
2 Vet Slores

% Erbeedings : Endpoint Hame

Eaparimental | EETA &

Figure 8.9
Changing the name
of a Langflow project

180 CHAPTER 8 Building LangChain applications visually using Langflow

In LangChain, a project may contain the following components:
Prompt templates—Templates for different types of conversations with LLMs
LLMs—LLMs such as GPT3 and GPT-4
Agents—Use LLM to decide what actions to be taken
Memory—Short- or long-term memory
For this project, let’s start off with the simplest Langflow project, containing three
Langflow components:
Prompt
HuggingFace

ConversationChain

8.2.1 Adding a Prompt component

The first component you'll add to the project is Prompt. To do so, expand the Prompts
category and drag the Prompt component to the canvas, as shown in figure 8.10.

ese [M - < 127.0.01 2 © + \
w &
38 < Myfis.. v @ Ssaved & € O 28808 X ® ¢ O
Search Q O_Lg-"__“*__
- ~
Components
B Prompt >
by Inputs >
& outputs Z Create a prompt template with dynamic
B Prompts ~ variables.
l LangChain Hub Prompt Co.. Template
| Prompt Type your prompt here.., E;JI
@ Data > @ Prompt Message @, (
& Models » | 2]
% Helpers > r1
a {2 Playground </> API © Share
>

[

1. Drag the Prompt 2....and drop it
component . . . on the canvas.

Figure 8.10 Adding the Prompt component to the canvas

Creating a new Langflow project 181

Click the text box in the Template section and enter the following prompt (see
figure 8.11):

Human: {question}
AI:

ese [< 127001 (v @ M+ 0O

Edit Prompt [

pt. Frompts can halp guide the behavior of a Language Model. Use curly

Inti

Hurnan: {guestion}
Al

Figure 8.11
Editing the
prompt in
the Prompt
component

{} Prompt Variables: gquestion

Prompt variables can be created with any chosen nama inside ¢

Click the Check & Save button, and Langflow checks the validity of your prompt. Note
that all prompt variables are enclosed in curly brackets. In this example, the Prompt
variable is question. You should see that the Prompt component has an input connector
named question (based on the name of your variable; see figure 8.12).

!El Prompt v P

Create a prompt template with dynamic

variables.

Tomplate
User: {question} Al |_—_7_}|

A new input connector

named question N RSt

Type something... = r_‘T

@ Prompt Message & © Figure 8.12 A new input
connector is created in the
J Prompt component.

182 CHAPTER 8 Building LangChain applications visually using Langflow

8.2.2 Adding a Models component
The next component to add is Models. For this project, you’ll use a model hosted by
Hugging Face, so you need to expand the Models category and then drag the Hugging-
Face component to the canvas (see figure 8.13).

/. e M~ ¢ 127004 ¢ ©@ 6 + \
8% < myfis. v | © Saved @ e) 2808 X @ (A O
Search 2
Prompt | 3
@ Data > B
{k Models p & Create a prompt template with dynamic
variables.
l AIML =
e P S S S : Tempiata
l Amazon Bedrock Human; (question) Al |'_,7|
l Anthropic B i
S o
e Type semething & &
l Azure OpenAl
52 . > @ Benmnt Mossage © O
l Cohere == O %S
l Google Generative Al —
% HuggingFace 1 4
l Grog =
——————————— e B ot Generate text using Hugging Face Inference
l HuggingFace APIs.
1. Drag the _[Maritalk = Input
HuggingFace bbb Type something ®
component . . . l Migiratal =
AT Model ID
NVIDIA
l/’/—\‘ openai-communityigpt2 @

l Qllama = Task
TSI = SRR text-generation &
OpenAl

2....and dropit l";;fr',,;;;{{yw T = e
on the canvas. : TP et @@
l Qlanfan = @ Tt ©
l -\-J'.er(ex. Al = + [o] Language Model @
% Helpers > :
: {3 Playground <[> API © Share

Somrpn

Figure 8.13 Adding the HuggingFace component to the project

You have to supply two pieces of information for this component:

Your Hugging Face Hub API token
The repo ID (name of the model on Hugging Face)

8.23

Creating a new Langflow project

You can obtain your Hugging Face Hub API token
at https://huggingface.co/settings/tokens. For this
project, use the tiivae/falcon-7b-instruct model
(https://huggingface.co/tiiuae/falcon-7b-instruct).
Figure 8.14 shows the HuggingFace component with the
information provided.

Adding a Chains component

Now that you have Prompt and HuggingFace compo-
nents, you need a Chains component to chain them.
From the Chains category (listed in the Experimental
section), drag the ConversationChain component to
the canvas (see figure 8.15). Then connect the Prompt
and HuggingFace components to the Conversation-
Chain component, as shown in figure 8.16.

183

¥ HuggingFace | 3

Generate text using Hugging Face Infarance

APls,

Input

Modtal ID

tiiuae/falcan-Fh-instruct L

Task

texi2ext-generation

AP\ Tokon

o] .
® Tewt 12
@ Language Model

Figure 8.14 Configuring the
HuggingFace component with
the API token and the model you

want to use
(ese o < wRaa & + O
P8 ¢ Myfes, v [Saed e @ €) 2wz X oM@ & 2 4
v Q
b4 >
¥ Helpers B .
= 4
52 Vector Stores >
‘Create a prompt template with dynamc
9% Embeddings > varsties.
Experimental BETA = el
pe e <>I:; & e
o 1 L
3 Agants >
aumtiion
&5 Astra Assistants > = @ ¢ € Sormoionciut L2
@ Chains - 5 EreetMasesgn B O Chain o hawe a conversation and load contest
fram mamary

It +

1. Drag the

ConversationChain

LLMEReckerChain

LLAMMathChain

U HuggngFace » ST @

s Langugn Wadai |
Generate bext usig Humaing Foce Inference

component . . . I ap. e
I Matural Language to SQL
oot @ et B 0
| Ratrieval QA
@ Loaders > =
TS
¥A uiliies > =
B} Memeries 5 st gt
L Frattypes -3 b
&) Retrievers > ~ 2....and drop it
_ e on the canvas.
8 tewrsplitters * ~ Lnpusge et 1 D
) Tookits >
P Tods >
{2 Playground > AP @ share

Figure 8.15 Adding the ConversationChain component to the project

https://huggingface.co/settings/tokens
https://huggingface.co/tiiuae/falcon-7b-instruct

CHAPTER 8 Building LangChain applications visually using Langflow

184
E Prompt v P
Connect the PromptMessage
connector on Prompt to the
Create a prompt template with dynamic Input connector on the
variables. ConversationChain.
Template
&

User: {guestion) Al:

question
&

Type something

(s]

o

8.24

v P

Prompt Ko
sl O\\ C:) ConversationChain

Chain to have a conversation and load context

\
\ from memory.

% HuggingFace N _
\
\ Input * @
o
Generate text using Hugging Face Inference J’
APIls.
/0 Language Maodel *
Input /
~ f © Memory
Type something. v/l |
I
| ® Text & 0
Model ID il
tiiuag/falcon-7b-instruct &) |
|
Task
text2iexi-generation 4 !
|
API Token }
o] = |
..................................... & © l/ Connect the Language
Model connector on
T @ o | . HuggingFace to the
Language Model connector

on the ConversationChain.

Language Model :@: (o 74
Figure 8.16 Using the ConversationChain component to chain the Prompt and HuggingFace

components

Adding Chat Input and Chat Output components
To enable users to interact with the LLM and to show the output to the user, you must

add two more components to the project: Chat Input (listed in the Inputs section) and
Chat Output (listed in the Outputs section). Connect them as shown in figure 8.17.

That’s it! You're ready to test the application.

Creating a new Langflow project

Chat input Chat output

[Promet 2

Create a prompt template with dynamic

185

variables.
Template
Cany
98 Group

auestion
. o
27 chatinput » R

prompt Message & o y
J ConvarsationChain >
Got chat inputs fram the Playground. Ry cnatouput >
T @ | Chain to have a conversation and load context
[y B HipgingFace > from memary. Display a chat massage in the Playground.
Message & A input + @ Tot ¢
©
Generate text using Hugging Face Inference
Apis,
o Language Model / @ Message &)
gt
° : | o Memory
Tet & /
Model ID "

tiigae/faicon-Tb-instruct
Task |
teit2text-generation

API Token

@ Tet & 0 |

Langusge Medel & &

Figure 8.17 Connecting the Chat Input and Chat Output components to the rest of the components

8.2.5 Testing the project

To test the application, click the Playground
button in the bottom-right corner of the page 3 Playground ¢/>API @ Share
(see figure 8.18). Then you can ask a question,

and the LLM should be able to respond appro-

Fi 8.18 ThePI d butt
priately (see figure 8.19). 'gure ¢ Playground button

soe [O- < L & L i R R |

Terigg
st Wi Is Steve Jons?

Detault Session.

Stewe Jobs weas anAmencan technslogy snleprenean
and e co-fourder of Acgle Inz. He is widely
carsdered one of the mostinfluential Tiguresin the
higtory of the gersonal computar industry. His other
rodes ncluded The desian of the first Macitash and
she intraduction of tha Pog, Fhone, IPad, and
Mactook. Ha alse co-tounded Plxar Arimation

Stdies, which has praducad seme of the most

suseassiul animatad films of all ime.
@ sordamessan.
Figure 8.19 Chatting
with the model

186

8.2.6

CHAPTER 8 Building LangChain applications visually using Langflow

Maintaining a conversation using the Chat Memory component

To enable the LLM so that it can maintain a conver-
sation with the user, you need to supply the Prompt
component with memories so it can store the previ-
ous conversations. To do so, add a Chat Memory com-
ponent (in the Memories category) to the canvas, as

shown in figure 8.20.

You also need to make some changes in the
Prompt component. Update the template to include

the history variable:

{history}
User: {question}
AI:

[chat Memory >

Retrieves stored chat messages from Langflow

tables or an external memory.

Extamal Memary ©

@ Messages |Data) &
@ Messages [Text) & o
® WMemary]

Figure 8.20 Adding the Chat
Memory component to the canvas

When the template is updated, connect the Messages (Text) connector on the Chat
Memory component to the history connector on the Prompt component (see figure 8.21).

I:[Chat Memory ~ P

Retrieves stored chat messages from Langflow

tables or an external memaory.

External Memory ©

@ Messages (Data) &

@ Memary &,

L—-“_J Chat Input v p

Get chat inputs from the Playground.

Text @
‘What companies has he founded? I.—_I;'
(5] Message :GS o

& Messages (Text) & T

Connect the Messages (Text)
connector on Chat Memory
to the history connector on
the Prompt.

te a prompt template with dynamic
variables.

Template
{history} User: {question} Al D}'
history
I
question
® @

Prompt Message :Q: O,

@

Generate text using Hugging Face Inference
APIs.

Figure 8.21 Adding a ConversationBufferMemory component to the project

Asking questions on your own data 187
When this is done, click the Playground button to start the chatbot again. This time,

the LLM will be able to maintain a context for your conversation, and you can ask
follow-up questions (see figure 8.22).

Steve Jobs was an American entrepreneur who co-

Default Session B founded Apple Inc. He is known far his week in desian,

markating and the creation of several iconic products, He
was instrurmental in bringing personal computers into the

mainstream and revolutionizing the industry,

What companies has he founded?

Steve Jobs co-founded Apple Inc. He was also invalved in
the creation of Piar Animation Studios, which has
preduced some of the most successful animated films in
history.

User What products has he created?

Figure 8.22 Now you can ask follow-up questions.

8.3 Asking questions on your own data

Although it’s interesting to have a conversation with an LLM, the real business use case
of generative Al is to use LLM to answer questions pertaining to your own data. For this
task, you’ll use Langflow to build an application so that it can answer questions pertain-
ing to your own data. You’ll use the following components:

File component (Data category)

Parse Data component (Helpers category)

HuggingFace component (Models category)

OpenAI component (Models category)

Prompt component (Prompts category)

Chat Input component (Inputs category)

Chat Output component (Outputs category)

188

83.1

CHAPTER 8 Building LangChain applications visually using Langflow

Loading PDF documents using the File component

For this application, you’ll ask the LLM questions based on a PDF document. To load a
PDF document in Langflow, use the File component. After you drag the File compo-
nent to the canvas, click the button shown in figure 8.23 to select the PDF document
you want to use for this project. For this example, you’ll select a PDF document of an
invoice for items purchased online (see figure 8.24).

[F rie .

A generic file loader.

Click this button
Path @ to select the PDF
@J document you
want to use. Figure 8.23 Using the
File component to load a
| —— = PDF document in Langflow

L= Data & ©

ece M- fglzg?zsiozqnﬂwsu... ® a afn £ - o » Q

@ Lozada i reeint
Singapore 189554

Co.Reg. No: 201403859E

R T

TAX INVOICE

Invoice No.:
SGLVGTI2023100000801372
Invoice Date: 19-10-2023

Billing Address:
Lee Wei Meng

|

Order Number.: 1086301394134
Order Date: 19-10-2013

ltem SKU
[Essager H0W/60w USB Type C To
U cale USh.C P _
o] B s [chging o Wi corer (S | o [sonsa
[Macbook Samsung Xisomi vivo Type- 3
s e
s oowiaom USH 37 70
U8 Cole USB.C P
2 | A | raierss (g Chaper Wi ot [Colmbaek 0w || sy | scns
[Machook Samsung Xiaomi vivo Type- e
S cone
[Essager 100W/60w USB Type € To
Cnc cale USh.C P _—
3 | ESSASER | naierss (i oo Wi conaror [Colmbnckiiow. || i | ooz
[Macbook Samsung Xisomi vivo Type- th:3
evsac coe
Toms | soo i

Total Unit Price (excluding GST) SGD 1143
‘Total Shipping (excluding GST) SGD 093
Less: Discount SGD 618
Total (excluding GST) SGD 6,18
8% GST SGD 051
Total (including GST) SGD 6.69
Less: Credits SGD 000
Total Payment Amount SGD 6,69

Lazada Singapore Pte Ltd is raising this invoice in accordance to the applicable tax laws in Sing

This shipment includes any taxes (when applicable) for the merchandiss to be deliversd to the add
specified by the customer. LAZADA pays these taxes on behalf of the customer.

To understand our return policy and find out how to return, pleass click hare.
NEED HELP? Contact us at httpe://wew.lazada.sg/contact/
boak Lazad

LIKE US on FACEBOOK: https://wuw.
FOLLOW US on TWITTER: https://www.twitter.com/LazadaSG/

Have a great dayl Thank you for shopping on www.LAZADA.sg

Figure 8.24 The PDF
S o e o e e document containing some
items purchased online

8.3.2

8.3.3

Asking questions on your own data 189

Splitting long text into smaller chunks using the Parse Data component

The next component you’ll add to the project is Parse Data. After you add this compo-
nent to the canvas, connect it to the File component, as shown in figure 8.25.

{ } Parse Data N

£ Fie v »

Convert Data into plain text following a

specified template.
A generic file loader,

Template ©
Path © 9
{text) E;;
Invaicel.pdf @
_—-@ Data @
@ pata & o—"

@ Text & ©

Figure 8.25 Connecting the File component to the Parse Data component

The Parse Data component is typically used to extract and structure relevant informa-
tion from raw text or documents before processing them further in the pipeline. This
component is useful when you need to transform or parse input data into a specific for-
mat, making it easier to work with downstream tasks such as splitting text, generating
an embedding, or storing data in a vector database such as ChromaDB.

Getting questions using the Prompt component

The next two components to add are Prompt and Chat Input. For the Prompt compo-

nent, configure the template with the following code:

Answer user's questions based on the document below:

{Document}

Question:
{Question}

Answer:

Then you can connect the Prompt component to receive the data from the Parse Data
and Chat Input components (see figure 8.26).

Building LangChain applications visually using Langflow

190 CHAPTER 8
{1 parsebata g .
ER > | % | &
Caonvert Data into plain text following a
Acgeneric file lnader specifisd temglate El B >
Fath O Tamglate &
involcal pd @ e {text) o Create a prompt temglata with dynamic
variables.
@ Dats B 0@ Dats @
Tempiate
e WL °‘~\I Aivpiier Lisara quésiion iiscad on Theid e
Cocument
[chat input >
Question
Fas
Gat chat inputs from the Playground, _' |
- | 3 Prampt Message B o
Toxt © I. |
when vias it o ! J
Message & o-'.l
Figure 8.26 Adding the Prompt component to the canvas and connecting it to the Parse Data and
Chat Input components
8.3.4 Using the HuggingFace component

Next, add the HuggingFace component to the canvas; configure it with your Hugging
Face token; and connect it to the Prompt component, as shown in figure 8.27. You’ll use
the tiivae/falcon-7b-instruct model to answer questions about your PDF document.

<y

@ HuggingFace | 3
|E| Frompt 4 Generate text using Hugging Face Infarence
APls.
Create a prompt tempdate with dynamic
wariables . Dz
Template III T
Model ID
Answer user's questians based on thedoc. [|I £
| fiiuaefalcon-7o-Instruct &
. Documant { i
o = | Task
: II fext-generation
Ouestion ! |) B
o . [| a6 Token Figure 8.27 Using the
S —— & ® tiivae/falcon-7b
Prompt Message B 0/ o -instruct model from
et @, O .
Hugging Face to answer

questions about your
PDF document

Language Modal B o

Asking questions on your own data 191

8.3.5 Connecting to the Chat Output component
The last component to add to the canvas is Chat Output. After you add it, connect it to

the HuggingFace component, as shown in figure 8.28.

¥ HuggingFaoe

Generate text using Hugging Face Inference | ﬂ s (,'i' |

APls.
o 27 chat output :
pe) =1 I v b
i
|
| hadel I Display a chat message in the Playground.

|
|I tiusefalcon-Th-instruct i D
|
| 2
| Task I.' 0]
|]
| text-geneation : ey
|' ll' @ Message @& O
! AP Take .
N S| ' Figure 8.28
o I| connecting the
o’ | .
@ o B ol HuggingFace
component to
@ Language Model &, O the Chat UUtpUt
component

8.3.6 Testing the project
Finally, you can test your project. Click the Playground button to display the chat win-

dow. Figure 8.29 shows how to can ask questions pertaining to the PDF document.

ene [< 27001 £: 380 1 A Sl
#
Prayground 2
rasract with vour 4 Manibar inpatz, cutpats and memanes
5 - " L]
Mamersee Whatitems did | buy?

Defaut Sessicn

< ‘e baught: {4 fems ¥ 2 units = 8 items)
L 2
u
9. Esager 100WE0w USE Type C To USE C PD Fasl
Charging Cable Cord For Macbook Samaung
Hlaomi vive Type-C USS Casie Length: 30

7. Fsager 100WS0w USR Tyre C To LISR C PD Fast
-]

Charging Cable Cord Far Machook 5
i vive Tyoe-C LSS Casbe Length: 30

E | Figure 8.29
Testing the chatbot

192 CHAPTER 8 Building LangChain applications visually using Langflow

8.3.7 Using an LLM with the OpenAl component

Instead of using a model from Hugging Face, you can use one from OpenAl. All you
have to do is swap out the HuggingFace component and replace it with the OpenAI com-
ponent (see figure 8.30). Be sure to insert the OpenAl API key into the OpenAI compo-
nent. Then try chatting again, and compare the performance of OpenAlI’s model with
Hugging Face’s.

o |

4
2

OpenAl | 3

E Prompt a

Generates text using OpenAl LLMs

Create a prompt template with dynamic Input

© 21 chat output v »

variables.

Template Model Name Display a chat message in the Playground.

&

Answer user's questions based on the de | gpt-do-mini
Text @
Document (OpenAl AP Key ©

e

|
[@ Message & ©
Question Temperature

01
Prompt Message @ ©/ = Tt & &/

® Language Model & Q

—

Swap out the HuggingFace
component and replace it
with the OpenAl component.

Figure 8.30 Replacing the HuggingFace component with the OpenAI component

8.4 Using your project programmatically

With the project built successfully, Click this button to see how to

you may want to build your own Ul use your project programmatically.

to connect with the project. Lang-

flow provides several ways to do

that. Figure 8.31 shows that when v

you click the button labeled </> {3 Playground </> API © share

API, you see a couple of ways to use

your model programmatically (see
figure 8.32). Figure 8.31 The </> API button

Using your project programmatically 193

connectto. in et Embedding the Turn this on to
the project through the chatbot in a display the details
in T‘I:rmjinal Langflow app. web application of each component.

Use your project
in Python without
running the
Langflow project.

Tweaking the
parameters of
each component

Use your project
in Python through
the Langflow app.

eve M - < 127.0.0.1 @©/fh + O

Genernate the code to iftegrate your flow into an extefnal application

Run cURL Python API JS API Python Code Chat Widget HTML Tweaks o Tweaks [

Figure 8.32 The various tabs show how you can use your Langflow project programmatically.

Let’s examine the tabs shown in figure 8.32:

Run ¢cURL—The Run cURL tab contains the command-line instructions for using
the cURL utility to connect to the model. It allows you to send the questions to
the LLM and receive the response via the command line.

Python AP[—This tab contains code that allows you to call the Langflow project
using Python. For this option to work (as well as the Run cURL and Chat Widget
HTML options), you must have Langflow running.

194 CHAPTER 8 Building LangChain applications visually using Langflow

JS API—This tab contains code that allows you to call the Langflow project using
JavaScript (JS). For this option to work (as well as the Run cURL option and Chat
Widget HTML options), you must have Langflow running.

Python Code—This tab allows you to treat the downloaded Langflow project as a
LangChain object and use it programmatically.

Chat Widget HTMIL—This tab contains code that allows you to embed your Lang-
flow application in a web application.

Tweaks—This tab displays a page that allows you to adjust the various parameters
for your project. Figure 8.33, for example, shows that you can type your OpenAl
API key in this page, and the key will appear in the code when you click the Run
cURL tab (see section 8.4.1).

eoe M - < 127.0.01 ¢ ©@d + O

APl </

Generate the code to integrate your flow into an external application.

Run cURL Python API JS API Python Code Chat Widget HTML Tweaks @]

AU vIvuE -

passing a schema.

The schema for the Output of the model.
You must pass the word JSON in the

Schema Type key.. Type a value... +
prompt. If left blank, JSON mode will be il L
disabled.
Model Name gpt-4o-mini ¢
The base URL of the OpenAl API. Defaults
to https://api.openai.com/v1. You can .
enAl APl Base Type something...
Op change this to use other APIs like L ng ®
JinaChat, LocalAl and Prem.
The OpenAl API Key to use for the OpenAl
Openal AP Key P ’ b (RS
model.
Tamnaratiira na &

Figure 8.33 You can use the Tweaks tab to modify the various parameters to use with your Langflow
project.

84.1 cURL

cURL is a command-line tool and library for transferring data with URLs. It is a pow-
erful, versatile tool that supports a wide range of protocols, including HTTP, HTTPS,

84.2

Using your project programmatically 195

FTP, FTPS, SCP, SFTP, and LDAP. cURL is commonly used to make HTTP requests
to interact with web services and APIs, download files, and perform various network-
related tasks.

When you click the Run cURL tab, you see a command that allows you to use the
cURL utility to connect with your Langflow project. Copy the code on the Run cURL
tab, and add the following statements in bold:

curl -X POST \
"http://127.0.0.1:7861/api/v1/run/al95037a-1cac-
4F9d-9737-4613107b0374?stream=Ffalse" \
-H 'Content-Type: application/json'\
-d '{"input_value": "What did I buy",
"output_type": "chat",
"input_type": "chat",
"tweaks": {
"File-USIKX": {},
"ParseData-1jEsG": {},
"ChatInput-rAmmk": {},
"Prompt-teE98": {},
"HuggingFaceModel-gSuPr": {},
"ChatOutput-moikr": {},
"OpenAIModel-xs0J4": { "openai_api_key": "OpenAI API Key" }
e

This code sends the question “What did I buy?” to the Langflow project. The response
from the projectlooks like this (main reply highlighted in bold):

{"session_id":"al95037a-1cac-4f9d-9737-4613107b0374",
"outputs":[{"inputs":{"input_value":"What did I buy?"},
"outputs":[{"results":{"message":{"text_key":"text",
"data":{"text":"You bought three units of the \"Essager 100W/60W
USB Type C To USB C Cable,\" which is a USB-C PD fast charging
charger wire cord suitable for devices like Machook, Samsung,
Xiaomi, and vivo. The color is black, and the cable length is 3
meters.","sender":"Machine", "sender_name":"AI",6 "session_id":
"al95037a-1cac-4f9d-9737-4613107b0374" ,"files":[1,

"component_id":"ChatOutput-m0lkr","files":[],
"type":"message"}], "component_display_name":"Chat Output",
"component_id":"ChatOutput-m0lkr","used_frozen_result":false}]}]1}

Python code

To use the project you created in Langflow programmatically in Python, first download
the projectas a JSON file. Figure 8.34 shows how to download the Langflow project.
Using the JSON file, you can use the load_flow_from_json() function to run it pro-
grammatically without having the Langflow project running. This function treats the
Langflow project as a LangChain object. To run it, use the following code snippet,

196

CHAPTER 8 Building LangChain applications visually using Langflow

eoe [~ <
83 < Querwnf/if//ig;;; 1. Click the project name.
Options
Seal o
4+ New
Comr % Settings
B Logs
&
2 Import
= [Export «———— | "\ 2. Click Export to download the
=) project as a JSON file.
“\ Undo ez
@ 4 Redo ®Y q
Gi & Refresh All Figure 8.34
Downloading the Langflow
.n project as a JSON file

replacing the value of the openai_api_key key with your own and setting your question
in the input_value key:

from langflow.load import run_flow_from_json
TWEAKS = {

"File-USIKX": {},

"ParseData-1jEsG": {},

"ChatInput-rAmmk": {},

"Prompt-teE98": {},

"HuggingFaceModel-gSuPr": {},

"ChatOutput-m0lkr": {},

"OpenAIModel-xs0J4": { "openai_api_key": "OPENAI API Key" }
1

result = run_flow_from_json(flow="Querying a local document.json",
input_value="What did I buy?",
fallback_to_env_vars=True,
tweaks=TWEAKS)

print(result)

Remember to replace the project name (Querying a local document.json) with your
own project name. The result looks something like the following:

[RunOutputs(inputs={'input_value': 'What did I buy?'},
outputs=[ResultData(results={'message': Message(text_key='text',
data={'text': 'You bought three units of the "Essager 100W/60W
USB Type C To USB C Cable," which is a USB-C PD fast charging
charger wire cord suitable for devices like Machook, Samsung,

Summary 197

Xiaomi, and vivo. The color is black, and the cable 1length is 3
meters.', 'sender': 'Machine',

component_display_name='Chat Output', component_id='ChatOutput-m0lkr', used_
frozen_result=False)])]

Summary
Langflow is an open source library that allows you to build LLM-based applica-
tions using LangChain through a drag-and-drop visual interface.

You can install Langflow with the pip command or use it through Docker. Alter-
natively, you can use Langflow in the cloud.

Components (flows) are the building blocks of a Langflow project.

You can use Langflow projects programmatically and embed your chatbot in a
web application.

Programming agents

This chapter covers

Introducing agents

Creating simple agents using smolagents
Creating enterprise-grade agents using LangChain
Creating enterprise-grade agents using LangGraph

Up to this point, you’ve worked with Hugging Face transformers to tackle a variety of
tasks, ranging from natural language processing (NLP) to image analysis and com-
puter vision. Each of these tasks typically involves a specific, specialized model—a
translation model for converting text between languages, for example, or an image
captioning model to generate textual descriptions of images.

Although using specialized models works well for clearly defined tasks, it becomes
increasingly difficult to manage workflows when the tasks are ambiguous or multi-
step or when they require dynamic decision-making. This is where agents come into
play. Agents use large language models (LLMs) not only to perform tasks but also to
reason, plan, and delegate, breaking complex problems into smaller subtasks and
calling appropriate tools or models to complete them.

198

9.1

What are agents? 199

In this chapter, you’ll explore the concept of agents and learn how to build an agent
yourself. In particular, the chapter focuses on constructing agents using two practical
and widely applicable frameworks:

smolagents—A lightweight, minimalistic agent framework for quick
experimentation

LangGraph—A powerful framework for building stateful, multistep workflows
involving language models and tools, ideal for handling conversations and deci-
sion trees

By the end of this chapter, you’ll understand the fundamentals of agent design. You’ll
know how to equip an agent with tools and manage state and memory in multistep
reasoning pipelines.

What are agents?

Agentic Al has captured a lot of attention in recent months and is often hailed as a
major step toward the future of Al. What are agents, and how do they work? In the
world of Al, an agentis a specialized system designed to perform tasks autonomously by
combining language understanding, reasoning, and tool use. Specifically, an Al agent
does the following things:
Understands natural language—Uses a large language model (LLM) to interpret
user queries or instructions

Reasons and plans—Analyzes the task, breaks it into steps, and decides how to
proceed

Acts using known tools—Selects and executes actions from a set of tools (e.g., APIs,
search engines, or custom scripts) to gather data or per-

form operations
p Roles of an agent

Delivers results—Processes tool outputs and returns a

coherent response to the user Understands natural
language

Figure 9.1. summarizes the key roles of an agent.
To understand how an Al agent works, let’s explore a prac-
tical example: a weather agent that retrieves current weather

. . . . s . . Reasons and plans
information for a specific city. Here’s how you interact with such P

an agerlt

Natural language—Submit a query like “What’s the cur-

Acts using known

rent temperature in Singapore?” tools
Task breakdown and planning—The agent analyzes the l
query, breaking it into steps (e.g., identify the city and

fetch weather data). Delivers results

Tool selection and execution—The agent selects an appro-
priate tool, such as one that queries the OpenWeather- Figure 9.1 Roles of
Map API, to retrieve weather details. an agent

200

9.2

9.21

CHAPTER 9 Programming agents

Result delivery—The agent processes the tool’s output and returns a clear
response, such as “The current temperature in Singapore is 28.5°C with scat-
tered clouds.”

This process demonstrates the agent’s ability to understand, reason, act, and respond,
making it a powerful tool for real-world tasks.

Developing agents using smolagents

Let’s dive into building intelligent Al agents using smolagents—a lightweight, flexible
framework designed to make agent development simple and approachable. Whether
you’re building agents that search the web, query databases, or execute Python code,
smolagents provides the essential tools and structure to get you started. This section
introduces the key concepts, walks you through creating your own agents, and offers
real-world examples that help you bring your ideas to life.

DEFINITION Officially, smolagents isn’t an acronym—simply a playful name in
which smol is internet slang for small. Therefore, smolagents essentially means
small agents.

In smolagents, an agent is a system that combines a language model with tools to per-
form tasks by generating and executing Python code. To create agents using smola-
gents, use pip as follows:

$ pip install smolagents

Using built-in tools: DuckDuckGoSearchTool

The first agent you’ll build is a search agent, designed to take a user query, retrieve
relevant information, and return a useful response. To perform the search, you’ll use
the DuckDuckGoSearchTool—a lightweight, privacy-focused search tool that allows your
agent to find information on the web quickly and efficiently. Here is the code snippet
for the agent:

Initializes the language model

(using Hugging Face’s inference API) Initializes the

agent with a

from smolagents import CodeAgent, DuckDuckGoSearchTool,
search tool

HfApiModel
model = HfApiModel()
agent = CodeAgent(tools = [DuckDuckGoSearchTool()], model = model)
response = agent.run("How long does it take to travel from " +
"New York to Los Angeles by train?") Runs the agent
print(response) <F44W with a task

Prints the response

Let’s break down the code to understand how it works:

Create a model using HfApiModel(). This means you’re using a model hosted on
a Hugging Face server, so you don’t have to host a model yourself. By default,

Developing agents using smolagents 201

HfApiModel() uses the Qwen/Qwen2.5-Coder-32B-Instruct model. You can over-
ride this setting by specifying the model you want to use in the model parameter,
such as HfApiModel(model="mistralai/Mistral-7B-Instruct-v0.2").

Use the CodeAgent class to build an agent that can reason through problems by
generating and executing Python code as part of the decision-making process.
The tools parameter allows you to specify the list of tools your agent can use to
answer the query, and the model parameter specifies the LLM to use to interpret
the user’s query. You don’t even have to specify the DuckDuckGoSearchTool if
you set the add_base_tools parameter to True (see figure 9.2). In this case, the
agent automatically uses the DuckDuckGoSearchTool, PythonInterpreterTool, and
Transcriber tools by default.

Add any custom tools here.

agent = CodeAgent (tools=[], =——
model=model,
add base tools=True)

T Figure 9.2 The agent

automatically uses the

This adds DuckDuckGoSearchTool, default tools if you set
PythonlinterpreterTool, and Transcriber. the add_base_tools

parameter to True.

Use the agent’s run() method to execute the agent’s main logic. It takes an input
(such as a user query), processes it using the agent’s reasoning and tools, and
returns the final output or answer.

When you run the preceding code, you should see output showing step by step how the
agent works to answer your query. Chances are, however, that you’ll see the following
error message:

Error in generating model output:

402 Client Error: Payment Required for url:

https://router.huggingface.co/hf-inference/models/Qwen/
Qwen2.5-Coder-32B-Instruct/vl/chat/completions (Request ID:
Root=1-680f3378-1bfa504911aaa2c9696el106d;bl4dlad8-372e-440e
-98c9-1dbabfc62f14)

You have exceeded your monthly included credits for Inference
Providers. Subscribe to PRO to get 20x more monthly
included credits.

202

CHAPTER 9 Programming agents

This message appears because you’ve exceeded your free credits for the model hosted
on Hugging Face. Without a Hugging Face Pro subscription, you’re out of options. But
if you can run an LLM locally on your computer, you're in luck! The simplest way to
do this is to use Ollama. For this example, install Ollama and download the qwen2:7b
model:

$ ollama pull qwen2:7b

NOTE Ollama is an open source platform that enables you to run LLMs
directly on your local machine, eliminating the need for cloud-based services.
This approach offers enhanced data privacy, reduced latency, and offline
accessibility. You can download Ollama at https://ollama.com.

To use a locally running LLM through Ollama, use the LiteLLMModel class, which con-
nects to the Ollama server and allows your agent to send prompts and receive responses

directly from models running on your machine:
from smolagents import CodeAgent, DuckDuckGoSearchTool, LiteLLMModel

model = LiteLLMModel(

model_id = "ollama/qwen2:7b",

api_base = "http://127.0.0.1:11434",

num_ctx = 8192,
)
agent = CodeAgent(tools = [DuckDuckGoSearchTool()], model = model)
response = agent.run("How long does it take to travel from " +

" New York to Los Angeles by train?")

print(response)

Note that, in this example, Ollama is the LLM provider, so the model_id is set to
ollama/qwen2:7b, where ollama is the provider name and qwen2:7b is the model name.
For the list of providers you can use with LiteLLMModel, check out https://docs.litellm.
ai/docs/providers.

You can also use OpenAl’s models. The following example shows how to use the
gpt-40-mini model from OpenAl:

import os
os.environ["OPENAI_API_KEY"] = "<OPENAI_API_Key>" <« Replace with your own key.

model = LiteLLMModel(
model_id="gpt-40-mini",

api_base="https://api.openai.com/v1", < OpenAl’s official APl base

When you run the agent, you should see something like figure 9.3. Next, you see the
execution log, shown in figure 9.4. Finally, you get the answer (see figure 9.5).

https://ollama.com
https://docs.litellm.ai/docs/providers
https://docs.litellm.ai/docs/providers

Developing agents using smolagents 203

r — New run -
| How long does it take to travel from New York to Los Angeles by train?

LiteLLMMode pt-do-mini

- Step 1 -

= web_search(query="New York to Los Angeles trai
int{travel time)

Figure 9.3 The agent working on the first step in answering the question

Execution logs:
Search Results

[Train Tickets, Schedules & Routes | Amtrakl(https://wew.amtrak.coa/home.htal)
Book your Amtrak train and bus tickets today by choosing from ower 38 U.5. train routes and 588 destinations in
MNorth America.

[Train New York to Los Angeles from §266 - Rome2rio] (https://www.rome2rio,com/Train/New-York/Los-Angeles)

The train between Mew York and Los Angeles takes 2 days 19h. The train runs, on average, 6 times per week from New
York to Los Angeles. The journey time may be lenger on weekends and holidays; use the search form on this page to
search for a specific travel date.

|How long would a bullet train from New York to LA

take?] (https://wew.ncesc. com/geographic-faq/how-long-would-a-bullet-train-from-new-york-to-la-take/)

A train trip between New York and Los Angeles is around 3 days and 4 hours, although the fastest train will take
about 2 days and 18 hours. This is the time it takes to travel the 2,443 miles that separates the two cities.

[New York to Los Angeles Train - Amtrak Tickets $257 =

wWanderu] (https://wew.wanderu, com/en-us/train/us-ny/new-york/us-ca/l ngeles/)

In the last month, the average price of a train ticket from New York to Los Angeles was $39@.41. Considering the
distance between New York and Los Angeles, tickets on this route are relatively expensive. Good news! You can find
the cheapest tickets if you book your trip at least 24 days prior to the travel date.

[Transcontinental Travel: New York Te Califernia By

Rail] (https://quartzmountain.org/article/what-train-can-travel-from-new-york-to-california)

The train journey from Mew York to Los Angeles, Califernia, takes arcund 2 days and 16 hours, and tickets can be
purchased from Amtrak, Omio, or Busbud. The average ticket price is %383, but prices vary depending on the date of
travel and how far in advance tickets are booked.

[How long does it take to travel across the U.5. by

train?] (https://amtrakguide. com/2019/12/31/how-1ong-does-it-take-to-travel-across-the-u-s-by-train/)

East Coast: Mew York City, Washington D.C. and Boston; West Coast: Los Angeles, Emeryville (near S5an Francisco),
Portland and Seattle; Mew York City to Los Angeles. Travel Time 62 hours. Layover Time 4.5 hours (Chicage] Routes
Lake Shore Limited and Southwest Chief. Description

[New York to Los Angeles — 12 ways to travel via train, plane ... —

Rome2rio] (https://www.rome2rio. com/s/New-York/Los-Angeles)

The cheapest way to get from New York to Los Angeles costs only $267, and the quickest way takes just 8% hours. ...
There are 12 ways to get from New York to Los Angeles by plane, train (Amtrak), bus (Greyhound), car, train, or
bus. Select an option below to see step-by-step directions and to compare ticket prices and travel times in
Rome2Aio ...

INew York, NY to Leos Angeles, CA Train - Viraill(https://www.virail.com/train-new_york_ny-los_angeles_ca)
Best time to book cheap train tickets from Mew York, WY to Los Angeles, CA. The cheapest New York, NY - Los
Angeles, CA train tickets can be found for as low as $89.92 if you're lucky, or $162.26 on average. The mest
expensive ticket can cost as much as $232.31.

[How long is the Amtrak ride from Mew York to

LA?] (https://en.phongnhaexplorer. com/qna/travel/how-long-is-the-amt rak-ride-from-new-york-te-la. html)

The Amtrak train ride from the bustling streets of Mew York to the sun-drenched shores of Les Angeles clecks in at
an average of B7 hours and 28 minutes. That's almost three full days spent aboard a train, a prospect that might
seem daunting to some, but a tempting escape to others. Think of it less as a comaute and moere as a rolling hotel
room.

[Trains te Los Angeles - Schedules, Discounts & Station Info |

Amtrak]l (https://wew.amtrak. com/trains-to-los-angeles)

Amtrak ticket deals can range from saving on business and coach class seats for booking early, discounted rates for
late night travel, limited time partner cross promotions and other unique deals that come and go throughout the
year. Even w.:ithuut deals and promotions, an Amtrak train to Los Angeles can cost as little as $5 (e.g. from
Glendale, CA).

Out: None

Figure 9.4 The agent displaying its execution log

204

9.2.2

CHAPTER 9 Programming agents

—_— Step 2 —

— Executing parsed code:

final answer('The train journey from New York to Los Angeles takes approximately 2 days and 19 hours.")

[Step 1: Duration 2.23 seconds| Input tokens: 5,226 | Output tokens: 174)
The train journey from New York to Los Angeles takes approximately 2 days and 19 hours.

Figure 9.5 The final answer returned by the agent

In this example, the LLM (such as OpenAl’s gpt-40-mini) is responsible for interpret-
ing and understanding the user’s query. It formulates a search request and sends it to
DuckDuckGo. The search results are retrieved and passed back to the LLM, which uses
them to generate a final response for the user.

Using built-in tools: PythoninterpreterTool

The next tool that we want to explore, besides DuckDuckGoSearchTool, is Python-
InterpreterTool, which allows the agent to execute Python code dynamically, enabling
it to solve computational problems, perform calculations, or interact with APIs and
libraries directly within the agent’s workflow. Here’s an example of the tool in action:

from smolagents import CodeAgent, PythonInterpreterTool, LitelLLMModel

model = LiteLLMModel(
model_id="gpt-40-mini",
api_base="https://api.openai.com/v1",

agent = CodeAgent(tools=[PythonInterpreterTool()], model=model)
response = agent.run("Calculate the 10th Fibonacci number.")
print(response)

When you run the agent, you see the output shown in figure 9.6.
The query is straightforward. Let’s try another one:

response = agent.run("Generate the Fibonacci sequence up to 100.")

You see the output shown in figure 9.7.

TIP The choice of LLM plays an important role in the result returned by the
agent. In general, try models from different providers to get the best output
for the agent you’re creating.

Developing agents using smolagents

Caleulate the 18th Fibonacci number.

Step 1

~ fibonacci.a { accili - 1) « fibonaccili

tenth_fibonacci - fibonacciinl
i enth_fibonacci)

Execution logs:
55

Qut: None
[Step @: Duration 3.@8 seconds| Input tokens: 2,046 | Output tokens: 1621

Step 2

- Exu:utin! Eursad code:

Figure 9.6 Using
the agent to write the
code to find the 10th
55 Fibonacci number

[Step 1: Duration .42 seconds| Input tokens: 4,383 | Qutput tekens: 211]

Generate the Fibonacci sequence up to 188.

Step 1

a, '
hile a

fibonacc ._.;equen ce.appendla)
’ ;@b
printifibonacci sequence}

Execution logs:
e, 1, 1, 2, 3, 5, B, 13, 21, 34, 55, 89]

Dut: None

IStep 8: Duration 2.67 s

=| Input tokens: 2,847 | Qutput tokens: 188]

Step 2

Figure 9.7 Getting
the agent to generate
the Fibonacci

@ 1, 1,2 3,5, 8, 13, 21, 34, 55, 83) numbers up to 100

{Step 1: Duration 1.57 seconds| Input tokens: 4,346 | Output tokens: 1B6)

205

206

9.23

CHAPTER 9 Programming agents

Writing your own custom tools

Sometimes, the built-in tools won’t meet your needs. When that happens, you have to
create a custom tool, and fortunately, writing one is easy. Simply add the @tool decora-
tor above your function, and you can use it as a custom tool.

Suppose that you want to create an agent to fetch weather information for you. In
this case, you can write a function that fetches weather information from OpenWeather-
Map and then converts it to a tool, as shown in the following example.

Listing 9.1 Writing a custom tool to fetch weather information from OpenWeatherMap

from smolagents import CodeAgent, LitelLLMModel, tool
import requests

@tool
def get_weather_info(city: str) -> str:
"""Retrieve the current weather information for a given city.

Args:

city: The name of the city to get the weather information for.
Returns:

str: A description of the current weather and temperature

in the city.

api_key = "<API_KEY>"
url = f"http://api.openweathermap.org/data/2.5/weather?
g={city}&appid={api_key}&units=metric"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
weather = data["weather"][0]["description"]
temperature = data["main"]["temp"]
return f"The weather in {city} is {weather} with a
temperature of {temperature}°C."

Replace with your
OpenWeatherMap API key.

else:
return f"Could not retrieve weather information for {city}."

model = LiteLLMModel(
model_id="ollama/qwen2:7b",
api_base="http://127.0.0.1:11434",
num_ctx=8192,

)

agent = CodeAgent(tools=[get_weather_info], model=model)
response = agent.run("What is the current weather for Singapore?")
print(response)

It’s important to ensure that your tool function includes a docstring describing its
parameters. Without it, the agent won’t be able to understand or use the tool prop-
erly. Figure 9.8 shows the output from asking the agent for the current weather in
Singapore.

Developing agents with LangChain 207

What is the current weather for Singapore?

— _ ~ Step 1 -

weather_info - get_weather_info(city-'Singapore’)
print("Current weather:", weather infe)

Execution logs:
Current weather: The weather in Singapore is broken clouds with a temperature of 38.77°C.

Out: None

[Step ©: Duration 1.71 seconds| Input tokens: 2,883 | Output tokens; 56

- Step 2

— Executing parsed code:
final answer{weather info)

s broken clouds with a temperature

[Step i: Duration 2.53 seconds| Input tokens: 4,322 | Output tokens: 139
The weather in Singapore is broken clouds with a temperature of 3@.77°C.

Figure 9.8 The agent returns this output when you ask for the weather in Singapore.

9.3 Developing agents with LangChain

Instead of using the smolagents framework, you can develop agents with LangChain,
a widely adopted framework for building applications powered by LLMs. LangChain
provides a flexible modular architecture that allows developers to create complex
agents by composing components such as prompts, memory, tools, and chains. It sup-
ports various execution paradigms, including synchronous and asynchronous task
handling, and integrates well with a wide range of APIs and data sources. Compared
with smolagents, which emphasizes simplicity and minimalism, LangChain offers more
features out of the box and is well suited to applications that require richer context
management, more dynamic tool use, or more advanced reasoning capabilities.

This section explores how to construct agents using LangChain, with a focus on
using both built-in tools and custom tools tailored to specific tasks. To use LangChain to
create an agent, install the following packages using pip:

Ipip install langchain langchain-openai
langchain-community google-search-results

208

9.3.1

CHAPTER 9 Programming agents

Using the built-in Tool class

In LangChain, agents interact with external functionality through a standardized tool
interface. Tools are defined using the BaseTool class or its simpler counterpart, the
Tool class, both of which provide a consistent interface that agents can invoke to per-
form specific actions.

LangChain also provides utility wrappers such as SerpAPIWrapper, WikipediaAPI-
Wrapper, WolframAlphaAPIWrapper, and TavilySearchResults that handle the complex-
ities of integrating with external APIs. These wrappers encapsulate all the logic needed
to query services such as Google Search, Wikipedia, and computational engines, and
they format their responses into structured data that agents can work with.

An important distinction applies, however: agents can’t directly use utility wrappers.
To be accessible to an agent, a wrapper must be embedded in a Tool instance. This
wrapping process transforms the utility into a proper tool that can be added to the
agent’s toolset.

This modular architecture offers significant advantages for developers. Rather than
writing complex integration code from scratch, they can simply wrap existing services
in a Tool and plug them directly into their agent workflows. Then the agent can seam-
lessly access these external capabilities as part of its decision-making process, extending
its functionality with minimal effort.

NOTE SerpAPI is a real-time search API that allows developers to programmati-
cally access and extract search results from search engines such as Google, Bing,
Yahoo, YouTube, and Amazon. It is commonly used to retrieve structured search
results—organic results, ads, featured snippets, knowledge graphs, and other
rich data—from Google search without having to scrape HTML pages manually.

As an example, let’s walk through using the SerpAPIWrapper to build an agent capable
of performing real-time searches. First, sign up for a free account at https://serpapi
.com, and obtain your private API key. Then load your SerpAPI key into your environ-
ment like this:

import os
os.environ["SERPAPI_API_KEY"] = "<SERPAPI_KEY>"

Now you can create an instance of the SerpAPIWrapper class and use it to create a tool:

from langchain.tools import Tool
from langchain_community.utilities.serpapi import SerpAPIWrapper

search = SerpAPIWrapper() < Initializes SerpAPI wrapper
tools = [
Tool(Creates a proper tool that wraps
name = "Search", the SerpAPI functionality
func = search.run,
description = "Useful for when you need to answer questions

about current events or search for specific information on

https://serpapi.com
https://serpapi.com

Developing agents with LangChain 209

the web. Input should be a search query."

Next, create a LangChain agent using the initialize_agent() function as shown in
the following listing.

Listing 9.2 Creating a LangChain agent using the initialize_agent() function

from langchain_openai import ChatOpenAl
from langchain.agents import AgentType, initialize_agent

os.environ["OPENAI_API_KEY"] = "<OPENAI_API_KEY>"

1lm = ChatOpenAI(model = "gpt-4o-mini", < Initializes the LLM
temperature = 0)

agent = initialize_agent(Initializes the agent

tools = tools, with updated structure

1lm = 1lm,

agent_type =

Vepbﬁg2nET¥ﬁEéZERU_SHUT_REACT_DESCRIPTIUN, | Prints reasoning steps

)

response = agent.invoke("Who is Wei-Meng Lee?") <—— Runs the agent with a query
print(response)

In this code snippet, you first created an agent using a search tool (SerpAPIWrapper).
For this agent, you used the gpt-40-mini model from OpenAl. You specified the agent
type as AgentType.ZERO_SHOT_REACT_DESCRIPTION, which means that the agent uses a
zero-shot ReAct (reasoning+acting) framework, enabling it to reason through a query
step by step and select appropriate tools to generate a response without requiring
training or examples. The verbose argument specifies that you want to see the reason-
ing step by step. When you run the code, you see the agent’s reasoning

> Entering new AgentExecutor chain...

I need to gather information about Wei-Meng Lee to provide a
comprehensive answer.

Action: Search

Action Input: "Wei-Meng Lee biography"

Observation: He is a prolific author, having written numerous
books covering i0S and Android development, blockchain, machine
learning, and smart contracts. In addition to his publications,
Wei-Meng is a regular speaker at international conferences and
contributes columns to Towards Data Science and CODE Magazine.
Thought:I now have a good understanding of who Wei-Meng Lee is,
including his contributions to technology and education through
his writing and speaking engagements.

Final Answer: Wei-Meng Lee is a prolific author and speaker known
for his work in i0S and Android development, blockchain, machine

210 CHAPTER 9 Programming agents

learning, and smart contracts. He has written numerous books on
these topics and regularly speaks at international conferences.
Additionally, he contributes columns to platforms 1like Towards
Data Science and CODE Magazine.

> Finished chain.

{'input': 'Who is Wei-Meng Lee?', 'output': 'Wei-Meng Lee is a
prolific author and speaker known for his work in i0S and
Android development, blockchain, machine learning, and smart
contracts. He has written numerous books on these topics and
regularly speaks at international conferences. Additionally, he
contributes columns to platforms like Towards Data Science and
CODE Magazine.'}

Let’s try another question:

response = agent.invoke("What is the weather in New York today?")
print(response)

You see the following output:

> Entering new AgentExecutor chain...

I need to find the current weather information for New York City.
Action: Search

Action Input: "current weather in New York City today"
Observation: {'type': 'weather_result', 'temperature': '68',
'unit': 'Fahrenheit', 'precipitation': '10%', 'humidity': '84%',
'wind': '6 mph', 'location': 'New York, NY', 'date': 'Thursday',
'weather': 'Cloudy'}

Thought:I now know the final answer.

Final Answer: The weather in New York City today is cloudy, with
a temperature of 68°F, 10% chance of precipitation, 84% humidity,
and wind at 6 mph.

> Finished chain.

{'input': 'What is the weather in New York today?', 'output':
'The weather in New York City today is cloudy, with a temperature
of 68°F, 10% chance of precipitation, 84% humidity, and wind at 6
mph.'}

The following statements show how to import some of the other built-in tools provided
by LangChain:

from langchain_community.utilities.bing_search Searches using Microsoft Bing

import BingSearchAPIWrapper
from langchain_community.utilities.duckduckgo_search Uses DuckDuckGo for
import DuckDuckGoSearchAPIWrapper privacy-friendly search
from langchain_community.utilities.google_search
import GoogleSearchAPIWrapper
from langchain_community.utilities.wikipedia
import WikipediaAPIWrapper

Uses Google’s programmable
search engine

Queries Wikipedia using its APl

9.3.2

Developing agents with LangChain 211

Using custom tools

As you created an agent with smolagents earlier, you can create custom tools to use
with your LangChain agent. In the following example, besides using the search tool,
you’ll create a custom tool named get_weather_info(), which fetches weather details
from OpenWeatherMap.

Listing 9.3 Writing a custom function to fetch weather information

import os

import requests

from langchain_openai import ChatOpenAl

from langchain_community.utilities.serpapi import SerpAPIWrapper
from langchain.tools import Tool, tool

from langchain.agents import AgentType, initialize_agent

os.environ["OPENAI_API_KEY"] = "<OPENAI_API_KEY>"
os.environ["SERPAPI_API_KEY"] = "<SERPAPI_KEY>"

1lm = ChatOpenAI(temperature=0)

search = SerpAPIWrapper()
search_tool = Tool(

name = "Search",
func = search.run,
description = "Useful for when you need to answer questions

about current events or search for specific information on
the web. Input should be a search query."

)
Creates a custom tool using
@tool the @tool decorator

def get_weather_info(city: str) -> str:
"""Retrieve the current weather information for a given city.
Args:
city: The name of the city to get the weather information for.
Returns:
str: A description of the current weather and temperature in
the city.

e Replace with your
OpenWeatherMap API key.
api_key = "<OPENWEATHERMAP_API_KEY>"
url = f"http://api.openweathermap.org/data/2.5/
weather?q={city}&appid={api_key}&units=metric"
response = requests.get(url)

if response.status_code == 200:
data = response.json()
weather = data["weather"][0]["description"]
temperature = data["main"]["temp"]
humidity = datal["main"]["humidity"]
wind_speed = data["wind"]["speed"]
summary = (
f"Weather in {city}:\n"
f"Condition: {weather}\n"

212

9.4

CHAPTER 9 Programming agents

f"Temperature: {temperature}°C\n"
f'"Humidity: {humidity}%\n"

f"Wind Speed: {wind_speed} m/s" A clean string that can be
) easily used in prompts and

return summary understood by agents

else:
return f"Could not retrieve weather information for {city}."

tools = [search_tool, get_weather_infol]

agent = initialize_agent(Uses search_tool and
tools = tools, get_weather_info tools
1lm = 1lm,
agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION, Initializes the agent
verbose = True with these tools

Now you can ask the agent about the weather in Singapore:

response = agent.invoke(< Tests the custom tool
"What is the current weather in Singapore?")

print(response)

You see the following response:

> Entering new AgentExecutor chain...

I should use the get_weather_info function to retrieve the current
weather information for Singapore.

Action: get_weather_info

Action Input: "Singapore"

Observation: Weather in Singapore:

Condition: broken clouds

Temperature: 30.08°C

Humidity: 71%

Wind Speed: 4.12 m/s

Thought:I have the current weather information for Singapore.

Final Answer: The current weather in Singapore is broken clouds with a
temperature of 30.08°C, humidity at 71%, and a wind speed of 4.12 m/s.

> Finished chain.

{'input': 'What is the current weather in Singapore?', 'output': 'The
current weather in Singapore is broken clouds with a temperature of
30.08°C, humidity at 71%, and a wind speed of 4.12 m/s.'}

Developing agents using LangGraph

Previously, you learned how to build agents using LangChain. Although this approach
will continue to be supported, the recommendation is to build agents using Lang-
Graph, a more flexible and feature-rich framework designed specifically for building
complex stateful agents. LangGraph builds on the strengths of LangChain and offers
greater control of agent workflows. You can build agents using LangGraph by

Creating an agent capable of answering user questions using reasoning and avail-
able tools

9.4.1

9.4.2

Developing agents using LangGraph 213

Integrating an external tool (such as a web search or weather API) to enable the
agent to answer questions that go beyond its built-in knowledge

Integrating memory into your LangGraph agent so that it can engage in a con-
versation with the user

What is LangGraph?

LangGraph is a Python framework developed by the LangChain team that allows you
to build stateful multistep workflows involving language models, tools, and external
APIs. It enables you to structure logic as a directed graph, in which each node rep-
resents a computational step (e.g., calling an LLM or using a tool) and edges define
how the workflow proceeds based on the output or state. This graph-based approach is
ideal for use cases such as these:

Multiturn chatbots with memory

Decision trees or branching logic based on LLM outputs
Complex tool-using agents

Data enrichment or extract, transform, load (ETL) pipelines
Modular conversational flows

LangGraph builds on LangChain and integrates seamlessly with LangChain tools,
agents, and memory constructs. To install LangGraph, run this command:

Ipip install langgraph

LangGraph is especially valuable when your application requires memory or a per-
sistent state across multiple steps. It also supports branching logic, tool use, and
dynamic flow control—capabilities that are challenging to implement using tradi-
tional linear chains in LangChain. Given the scope of this chapter, I will focus only on
the core components of LangGraph that relate to agent-based workflows.

LangGraph agent basics

Let’s start by creating an agent using LangGraph. For this initial example, we won’t
integrate any external tools, meaning that the agent will rely solely on its internal rea-
soning capabilities and the knowledge on which it was trained.

TIP External tools such as web search APIs or database connectors can be
integrated to extend the agent’s functionality. These tools allow the agent to
access up-to-date information, perform computations, or retrieve specific data
that lies beyond its built-in knowledge base.

First, import the following libraries:

import os

from langgraph.graph.message import add_messages
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAl

214

CHAPTER 9 Programming agents

For the LLM, use the gpt-40-mini model from OpenAl. To use this model, you need
an OpenAl API key:

Sets environment
variables (replace
os.environ["OPENAI_API_KEY"] = "<OPENAI_API_KEY>" with your API key)

1lm = ChatOpenAI(model_name="gpt-40-mini", temperature=0)

tools = [] Initializes the
LLM (OpenAl
The tools to use (no (Openhl)

tools at this moment)

Next, create a ReAct agent using LangGraph’s create_react_agent() function, a func-
tion in LangChain that creates a ReAct-style agent:

agent_executor = create_react_agent(1lm, tools)

The create_react_agent() function (imported from langgraph.prebuilt) is a wrapper
that builds on LangChain’s core create_react_agent() functionality. It combines the

following:
LLM reasoning (thoughts) (ot j
__start__
Tool use (actions), if tools are provided

Observations (from tool outputs)

Final answer generation

agent

NOTE ReAct is a method in which the agent thinks step by step,
calls tools if necessary, observes results, and continues reasoning.

When you print this agent (agent_executor), you see the graph
shown in figure 9.9. end

This simple graph illustrates a linear flow with three key stages:

__start__ node—Entry point of the workflow Figure 9.9

. The graph
agent node—Core node where the agent processes the input for tfe : gent
__end__ node—Termination point of the graph, where the you're building

result is returned

This minimal graph demonstrates a basic agent execution path with no branching or
loops, making it easy to follow and suitable for single-turn or sequential tasks. Next, you’ll
define a function that invokes the agent and prints each step of its reasoning process:

Function to run the
agent with a user query
def run_agent(query: str):
state = agent_executor.invoke({"messages": [("user", query)l})
print(state)
print("\n™= Agent trace:") Prints out the

for i, msg in enumerate(state["messages"]): agent's traces

Developing agents using LangGraph 215

print(f"{i+1}. [{msg.type.upper()}]
{msg.content.strip() if
hasattr(msg, 'content') else msg}")
p[‘in‘t(l====="!)
return state["messages"][-1].content

The run_agent() function is a simple, effective way to interact with the LangGraph
agent and inspect its behavior step by step. The function takes a user query as input,
wraps it in a message format (("user", query)), and invokes the agent using agent_
executor.invoke(). The response is stored in a state dictionary, which contains the
entire message history. After the response is generated, the function prints out a trace
of the agent’s message history. Each message is printed with its type (e.g., USER, AI,
T0OL) and content. This trace is helpful for debugging and understanding how the
agent processes and responds to inputs.
You are ready to use the agent. Ask a simple question and then print out the result:

query = "Who is Bill Gates?"
answer = run_agent(query)
print(f"Query: {query}")
print(f"Answer: {answer}")

The output consists of three parts:
The value of the state variable, which is the result returned by the agent
The extracted agent traces
The question that was asked and the final answer from the agent

Let’s discuss each component in the output. The following listing shows the content of
the state variable.

Listing 9.4 The content of the state variable

{

'messages': [

{
'type': 'HumanMessage',
‘content': 'Who is Bill Gates?',
'additional_kwargs': {},
'response_metadata': {},
'id': 'b4f87d83-2e87-444c-8eca-ee92a483h584"
}
{

'type': 'AIMessage’,

‘content': "Bill Gates is an American business magnate,
software developer, philanthropist, and author, best known as
the co-founder of Microsoft Corporation, the world's largest
personal-computer software company. Born on October 28, 1955,
in Seattle, Washington, Gates showed an early interest in
computers and programming. He attended Harvard University but
dropped out in 1975 to start Microsoft with his childhood
friend Paul Allen.\n\nUnder Gates' leadership, Microsoft

216 CHAPTER 9 Programming agents

developed the Windows operating system, which became a
dominant platform for personal computers. Gates served as the
CE0 of Microsoft until 2000 and continued to play a
significant role in the company until he stepped down from
day-to-day operations in 2008.\n\nIn addition to his work in
technology, Gates is known for his philanthropic efforts. In
2000, he and his then-wife Melinda founded the Bill &
Melinda Gates Foundation, which focuses on global health,
education, and poverty alleviation. The foundation has made
significant contributions to various causes, including
vaccine development and distribution, education reform, and
efforts to combat infectious diseases.\n\nGates has been
recognized with numerous awards and honors for his
contributions to technology and philanthropy, and he is
often listed among the world's wealthiest individuals. His
influence extends beyond business, as he is also a prominent
advocate for various social and health issues.",
'additional_kwargs': {
'refusal': None
}l
'response_metadata': {
"token_usage': {
'completion_tokens': 267,
'prompt_tokens': 12,
'total_tokens': 279,
'completion_tokens_details': {
'accepted_prediction_tokens': 0,
'audio_tokens': 0,
'reasoning_tokens': 0,
'rejected_prediction_tokens': 0
}l
"prompt_tokens_details': {
'audio_tokens': 0O,
'cached_tokens': 0
¥
F
'model_name': 'gpt-40-mini-2024-07-18',
'system_fingerprint': 'fp_dbacab0df0o’,
'id': 'chatcmpl-BTJwkQfkOrrqvyIa5SLVGFfLJhbvPKi',
'finish_reason': 'stop',
'Logprobs': None
}l
'id': 'run-3d803ad4-1270-4334-a938-8950c5108ac8-0",
'usage_metadata': {
"input_tokens': 12,
'output_tokens': 267,
'total_tokens': 279,
"input_token_details': {
'audio': 0O,
'cache_read': 0
}l
'output_token_details': {
'audio': 0O,
'reasoning': 0

Developing agents using LangGraph 217

The state variable holds the response returned by the agent, including both the input
provided and a detailed trace of the agent’s reasoning and tool use during execution.
You can see that the preceding code contains two messages: HumanMessage (the ques-
tion you asked) and AIMessage (the answer returned by the LLM). The next compo-
nent is the agent trace extracted from the state variable:

™ Agent trace:
1. [HUMAN] Who is Bill Gates?

2. [AI] Bill Gates is an American business magnate, software
developer, philanthropist, and author, bhest known as the
co-founder of Microsoft Corporation, the world's largest
personal-computer software company. Born on October 28, 1955,
in Seattle, Washington, Gates showed an early interest in
computers and programming. He attended Harvard University but
dropped out in 1975 to start Microsoft with his childhood
friend Paul Allen.

Under Gates' leadership, Microsoft developed the Windows
operating system, which became a dominant platform for
personal computers. Gates served as the CEQ0 of Microsoft until
2000 and continued to play a significant role in the company
until he stepped down from day-to-day operations in 2008.

In addition to his work in technology, Gates is known for his
philanthropic efforts. In 2000, he and his then-wife Melinda
founded the Bill & Melinda Gates Foundation, which focuses on
global health, education, and poverty alleviation. The
foundation has made significant contributions to various
causes, including vaccine development and distribution,
education reform, and efforts to combat infectious diseases.

Gates has been recognized with numerous awards and honors for
his contributions to technology and philanthropy, and he is
often listed among the world's wealthiest individuals. His
influence extends beyond business, as he is also a prominent
advocate for various social and health issues.

Figure 9.10 illustrates the steps taken by the agent.

Human User asks a question.

Agent takes the question pio10 910 The steps taken

nd answers it.
and answers I by the LangGraph agent

218

CHAPTER 9 Programming agents

The last component shows the question asked and the result:

Query: Who is Bill Gates?

Answer: Bill Gates is an American business magnate, software
developer, philanthropist, and author, best known as the
co-founder of Microsoft Corporation, the world's largest
personal-computer software company. Born on October 28, 1955,
in Seattle, Washington, Gates showed an early interest in
computers and programming. He attended Harvard University

but dropped out in 1975 to start Microsoft with his childhood
friend Paul Allen.

Under Gates' leadership, Microsoft developed the Windows
operating system, which became a dominant platform for
personal computers. Gates served as the CEQO of Microsoft
until 2000 and continued to play a significant role in the
company until he stepped down from day-to-day operations in
2008.

In addition to his work in technology, Gates is known for
his philanthropic efforts. In 2000, he and his then-wife
Melinda founded the Bill & Melinda Gates Foundation, which
focuses on global health, education, and poverty alleviation.
The foundation has made significant contributions to various
causes, including vaccine development and distribution,
education reform, and efforts to combat infectious diseases.

Gates has heen recognized with numerous awards and honors
for his contributions to technology and philanthropy, and

he is often listed among the world's wealthiest individuals.
His influence extends beyond business, as he is also a
prominent advocate for various social and health issues.

In this example, the agent can answer the question “Who is Bill Gates?” based on the
model’s (gpt-40-mini) training data. Let’s ask another question:

query = "What is 2+3?"
answer = run_agent(query)

Here’s the output:

Query: What is 2+3?
Answer: 2 + 3 equals 5.

Try asking the agent a question that is beyond the scope of its training data, however,
and the agent is unable to answer your question. If you ask this question, for example,

query = "Who won the US Presidential Election in 2024?"
answer = run_agent(query)

you get an error:

9.4.3

Developing agents using LangGraph 219

Query: Who won the US Presidential Election in 2024?

Answer: I'm sorry, but I don't have information on events that

occurred after October 2023, including the results of the 2024

US Presidential Election. You may want to check the latest news
sources for the most current information.

Why? The model was trained on data up to October 2023, so it has no knowledge of
events that occurred after that date. This is precisely why you need to use a tool in an
agent.

Using LangGraph with tools

To answer questions beyond the model’s training data, you must connect the agent to
an external tool that’s capable of providing up-to-date information, such as perform-
ing web searches to get the answer. To allow your agent to perform real-time searches,
you can use the SerpAPIWrapper, a tool described and used in section 9.3.1. First, create
an instance of the SerpAPIWrapper class:

Replace with your
from langchain_core.tools import Tool own key.
from langchain_community.utilities import SerpAPIWrapper
Initializes the
os.environ["SERPAPI_API_KEY"] = "<SERPAPI_KEY>" SerpAPI wrapper
serpapi = SerpAPIWrapper() and creates a tool
search_tool = Tool(

name = "SerpAPI", < Name of the tool
func = serpapi.run,
description = "A search engine tool to query real-time information
from the web."
) serpapi.run is a method provided

by the SerpAPIWrapper class.

Note the description of the tool. The description of a tool in LangChain (and, by
extension, LangGraph) is important because it guides the LLM in deciding when and
how to use the tool. The description acts as a prompt that informs the LLM about the
tool’s purpose, functionality, and expected input, enabling the agent to make intelli-
gent decisions about whether to call the tool based on the user’s query.

Next, add the search_tool as an argument to the create_react_agent() function:

tools = [search_tool] < Adds the search tool

agent_executor = create_react_agent(1llm, tools)
Creates the ReAct agent
using LangGraph’s
high-level interface

Now when you print out the agent_executor, you see the graph shown in figure 9.11.
Here’s the flow of the entire graph:

__start_

node—This node is the entry point of the graph. Execution begins
here.

220

CHAPTER 9 Programming agents

agent node—The agent pro- (:::E%E:::)
cesses the user input. Based on -

the query and internal logic, it
decides whether it can respond

directly or needs help from a tool.
——————— agent ——————-

tools node—If the agent deter-
mines that a tool is needed (e.g.,
a calculator, search engine, or

database lookup), it sends a
request to the tools node. The .
tool is executed and the result is
returned to the agent, allowing

it to formulate a final response.
The dotted lines indicate condi-

Figure 9.11 The graph of the agent with the
external tool
tional or dynamic transitions.

__end__ node—When the agent has all the necessary information (either directly
orvia a tool), it outputs the final message. The flow ends here.

Now you can ask the question “Who won the US Presidential Election in 2024?”:
query = "Who won the US Presidential Election in 2024?"
answer = run_agent(query)

print(f"Query: {query}")
print(f"Answer: {answer}")

Observe the output. First, observe the content of the state variable, shown in the fol-
lowing listing.

Listing 9.5 The content of the state variable

'messages': [

{
'type': 'HumanMessage',
‘content': 'Who won the US Presidential Election in 2024?',
'additional_kwargs': {},
'response_metadata': {},
'id': '6166c39b-015e-417b-9016-55bd75¢c35Fd5"
}
{

'type': 'AIMessage’,
'content': '',
'additional_kwargs': {
'tool_calls': [
{
'id': 'call_OTLSmwU9fmTn450mZJejsZkp’,
"function': {
‘arguments': '{"__argl":
"US Presidential Election 2024 winner"}',

Developing agents using LangGraph

'name': 'SerpAPI'
}I
'type': 'function'

}

1,
'refusal': None

}l

'response_metadata': {

'token_usage': {
'completion_tokens': 24,
'prompt_tokens': 69,
'total_tokens': 93,
'completion_tokens_details': {

'accepted_prediction_tokens': 0,

'audio_tokens': 0O,
'reasoning_tokens': 0,

'rejected_prediction_tokens': 0

}-l
"prompt_tokens_details': {
'audio_tokens': 0O,
'cached_tokens': 0

}
}l

'model_name': 'gpt-40-mini-2024-07-18"',
'system_fingerprint': 'fp_0392822090"',
'id': 'chatcmpl-BTMUM9twVvbFPpvV0zJkrl9cDIR07',

'finish_reason': 'tool_calls',
'logprobs': None

F

"tool_calls': [

{
'name': 'SerpAPI',
‘args': o
'__argl': 'US Presidential Election 2024
}l
'id': 'call_OTLSmwU9fmTn450mZJejsZkp’,
'type': 'tool_call'
¥

]l
'usage_metadata': {
'input_tokens': 69,
'output_tokens': 24,
'total_tokens': 93,
'input_token_details': {
‘audio': O,
‘cache_read': ©
}l
'output_token_details': {
‘audio': O,
'reasoning': 0

P

'type': 'ToolMessage',

'id': 'run-77effaef-0972-4c07-8156-6c8b25618a4c-0",

winner'

221

222 CHAPTER 9 Programming agents

‘content': '[' entity_type: video_universal.', 'The
APP excludes "over" and "under" votes in the total votes cast,
which also impacts the vote percentage for candidates.
Harris-Walz 2024. Trump-Vance 2024.', 'View maps and real-time
results for the 2024 US presidential election matchup between
former President Donald Trump and Vice President Kamala Harris.
"A presidential election was held in the United States on
November 5, 2024. The Republican Party\'s ticket—Donald Trump,

who was the 45th president of the ...", 'Live 2024 election
results for the president, U.S. Senate, U.S. House, and
governors.', 'Donald Trump passed the critical threshold of 270
electoral college votes with a projected win in the state of
Wisconsin making him the next US president.', 'Get live
presidential results and maps from every state and county in
the 2024 election.', '2024 election guide: Presidential
candidates, polls, primaries and caucuses, voter information
and results for November 5, 2024.', 'Check back for the

Certificates of Vote from the 2024 election. They will be
posted as they become available. President Donald J. Trump
[R] Main Opponent ...', 'View live election results from the
2024 presidential race as Kamala Harris and Donald Trump face
off. See the map of votes by state as results are tallied.']',
'name': 'SerpAPI',
'id': 'f681c58a-043e-4016-b081-5f2f44d83fal’,
"tool_call_id': 'call_OTLSmwU9fmTn4a50mZJejsZkp'’

-

'type': 'AIMessage',

'content': 'Donald Trump won the US Presidential
Election in 2024, passing the critical threshold of 270
electoral college votes with a projected win in the state
of Wisconsin.',

'additional_kwargs': {

'refusal': None
}l

'response_metadata': {
"token_usage': {
'completion_tokens': 34,
"prompt_tokens': 392,
'total_tokens': 426,
'completion_tokens_details': {
'accepted_prediction_tokens': 0,
'audio_tokens': 0O,
'reasoning_tokens': 0,
'rejected_prediction_tokens': 0
}l
'prompt_tokens_details': {
'audio_tokens': 0O,
'cached_tokens': 0
}
}l
'model_name': 'gpt-40-mini-2024-07-18',
'system_fingerprint': 'fp_0392822090',
'id': 'chatcmpl-BTMUN6F1DvzZae98NwKMLzcBKUWSC',
'finish_reason': 'stop',
'logprobs': None

Developing agents using LangGraph 223

}
'id': 'run-el@a9f2f-336a-4544-ac46-588594006dd2-0",
'usage_metadata': {
'input_tokens': 392,
'output_tokens': 34,
'total_tokens': 426,
'input_token_details': {
'audio': O,
'cache_read': ©
}l
'output_token_details': {
'audio': O,
'reasoning': 0

As you see, the agent is using the tool to search for an answer. Here are the traces of
the agent:

™ Agent trace:
1. [HUMAN] Who won the US Presidential Election in 2024?

3. [TOOL] [' entity_type: video_universal.', 'The APP excludes
"over" and "under" votes in the total votes cast, which also
impacts the vote percentage for candidates. Harris-Walz 2024.
Trump-Vance 2024.', 'View maps and real-time results for the
2024 US presidential election matchup between former President
Donald Trump and Vice President Kamala Harris.', "A presidential
election was held in the United States on November 5, 2024.

The Republican Party's ticket—Donald Trump, who was the 45th
president of the ...", 'Live 2024 election results for the
president, U.S. Senate, U.S. House, and governors.',6 'Donald
Trump passed the critical threshold of 270 electoral college
votes with a projected win in the state of Wisconsin making him
the next US president.', 'Get live presidential results and
maps from every state and county in the 2024 election.', '2024
election guide: Presidential candidates, polls, primaries and
caucuses, voter information and results for November 5, 2024.',
'Check back for the Certificates of Vote from the 2024 election.
They will be posted as they become available. President Donald
J. Trump [R] Main Opponent ...', 'View live election results
from the 2024 presidential race as Kamala Harris and Donald
Trump face off. See the map of votes by state as results

are tallied.']

4. [AI] Donald Trump won the US Presidential Election in
2024, passing the critical threshold of 270 electoral college
votes with a projected win in the state of Wisconsin.

224

9.4.4

CHAPTER 9 Programming agents

Finally, the agent returns the answer:

Query: Who won the US Presidential Election in 2024?

Answer: Donald Trump won the US Presidential Election in 2024, passing the
critical threshold of 270 electoral college votes with a projected win in
the state of Wisconsin.

Figure 9.12 summarizes the process.

(N
Human User asks a question.
- J
Al Agent takes the question
and calls the tool.
- J
(R
Tool Tool returns the result.
- J
(R
Agent takes the result
Al i i
and generates a response. Figure 9.12 The agent works with

the tool to return the answer.

Using LangGraph with a custom tool

You can create custom tools to use with your LangGraph agent. In this section, you’ll
create a function named get_weather_info() and use it to retrieve weather informa-
tion from OpenWeatherMap. The following code shows the definition of the function.

Listing 9.6 The get_weather_info() function

import requests

def get_weather_info(city: str) -> str:
"""Retrieve the current weather information for a given city."""
api_key = "7453d5cfeaead20958539f22da95d849"
url = f"http://api.openweathermap.org/data/2.5/
weather?q={city}&appid={api_key}&units=metric"
response = requests.get(url) .
if response.status_code == 200: Replace with your
data = response.json() OpenWeatherMap API key.
weather = data["weather"][0]["description"]
temperature = data["main"]["temp"]
humidity = data["main"]["humidity"]
wind_speed = data["wind"]["speed"]

Developing agents using LangGraph 225

summary = (
f"Weather in {city}:\n"
f"Condition: {weather}\n"
f"Temperature: {temperature}°C\n"
f"'Humidity: {humidity}%\n"

f"Wind Speed: {wind_speed} m/s" A clean string that can be
) easily used in prompts and
return summary understood by agents

else:
return f"Could not retrieve weather information for {city}."

Next, create a LangChain Tool object using this function:

Creates a LangChain Tool
from the custom function

weather_tool = Tool(Name of the tool

name = "GetWeather", <F44444J

func = get_weather_info,

description = "A tool to fetch the weather information for a city"
)

Name of the custom function

Finally, use the weather_tool in your agent:

tools = [search_tool, weather_tool]
agent_executor = create_react_agent(1llm, tools)

Now you can ask a question about the weather of a country:

query = "What is the current weather for Singapore"
answer = run_agent(query)

print(f"Query: {query}")

print(f"Answer: {answer}")

The final output of the agent looks something like the following:

Query: What is the current weather for Singapore
Answer: The current weather in Singapore is as follows:
- *xCondition:** Broken clouds

- xxTemperature:**x 29°C

- *xHumidity:*x 79%

- %*xWind Speed:*x 3.09 m/s

9.4.5 Using LangGraph with memory

The agent that you’ve created has no memory at this point. That is, it treats every
incoming query as an isolated request, without any awareness of what was said or asked
previously. This means the agent cannot carry on a conversation, track context across
multiple turns, or refer to earlier information. If you ask

226

CHAPTER 9 Programming agents

Query: What is the current weather in Singapore?
Answer: The current weather in Singapore is as follows:

and follow up with

Query: Where is it located?

the agent will not be able to understand who it is unless you repeat the full context:

Query: Where is Singapore located?

To support back-and-forth interactions or context-aware reasoning, you must intro-
duce memory into the system. This is where tools such as LangGraph, message history,
and stateful chains come into play, enabling the agent to persist and reason over previ-
ous exchanges.

Let’s add memory to our agent using LangGraph’s support for message-passing state.
First, import the following libraries:

from typing import Annotated, List
from typing_extensions import TypedDict
from langgraph.graph.message import add_messages

Then create a class named State:

class State(TypedDict):
messages: Annotated[List, add_messages]

The State class creates a dictionarylike object meant to hold conversational state within
LangGraph. The key messages stores a list of messages that the user is communicating
with the agent. The Annotated class tells LangGraph how to handle the list of messages:

It automatically merges, appends, or trims as needed.

It’s LangGraph’s way of doing memory with a low-level but composable approach.
List means that messages is expected to be a List (i.e., Python’s built-in list),, but
itdoesn’tspecify the type of items inside, so it’s just a generic list (e.g., List[Any]).
add_messages is a LangGraph utility that helps you manage appending and merg-

ing message sequences.

With the State class defined, modify the run_agent() function so that the agent can
use a State object to maintain conversation:

Function to run the agent with a user
query, maintaining conversation history

def run_agent(query: str, state: State = None) -> tuple[str, Statel]:
response = agent_executor.invoke({"messages": [("user", query)l})
pprint(response)

Developing agents using LangGraph 227

state = {"messages": []} to the existing messages
state["messages"].append(("user", query))
response = agent_executor.invoke(state) Invokes the agent with
state = {"messages": response["messages"]} the updated state
return response["messages"][-1].content, state

if state is None: Appends the new user query

Updates the state with
Returns the last message the response, replacing
as well as the state the whole messages list

In this code, the run_agent() function accepts a user query and an optional State

object, which stores the conversation history. If no state is provided, the function ini-

tializes an empty one. The user’s query is appended to the message listin the state; then

this updated state is passed to the agent via invoke (). The agent generates a response
based on the full conversation history and returns an updated list of messages. The

function returns the most recent message from the agent along with the updated state

to continue the conversation seamlessly. Now you can now call the run_agent() func-

tion via a loop so that the user has a chance to ask contextually related questions:

conversation_state = {"messages": []}
while True:

Initializes an empty state to

. . store conversation history
query = input("Question: ")

if query.lower()=="quit": break

answer, conversation_state = run_agent(query, conversation_state)
print(f"Query: {query}")

print(f"Answer: {answer}")

Let’s try this with the first question:

Query: What is the weather in Singapore?

Answer: The weather in Singapore is as follows:
- %%Condition:** Broken clouds

- xxTemperature:** 31.35°C

- *xHumidity:*x 70%

- %x%xWind Speed:*x 3.09 m/s

Now that you have the first answer, ask a related question using her to refer to

Singapore:

Query: What is her population?

Answer: As of my last knowledge update in October 2021,
Singapore's population was approximately 5.7 million people.
For the most current population figures, I recommend checking
the latest statistics from a reliable source such as the
Singapore Department of Statistics or other official
demographic resources.

You can see that the agent remembers the previous conversation and answers the ques-

tion correctly.

228

CHAPTER 9 Programming agents

Summary

An agentis a specialized system designed to perform tasks autonomously by com-
bining language understanding, reasoning, and tool use.

smolagents is a lightweight, flexible framework designed to make agent develop-
ment simple and approachable.

DuckDuckGoSearchTool is a lightweight, privacy-focused search tool that allows
your agent to find information from the web quickly and efficiently.

Using the HfApiModel() object, you can use a model hosted on a Hugging Face
server.

The CodeAgent class creates a smolagents agent.

To use alocally running LLM through Ollama, use the LiteLLMModel class, which
connects to the Ollama server and allows your agent to send prompts and receive
responses directly from models running on your machine.

The PythonInterpreterTool class allows the agent to execute Python code
dynamically.
Use the @tool decorator above your function to design it as a custom tool.

SerpAPI is a real-time search API that allows developers to programmatically
access and extract search results from search engines.

You can create a LangChain agent using the initialize_agent() function.

LangGraph is a flexible, feature-rich framework designed for building complex,
stateful agents.

You can use the create_react_agent() function to create a ReAct-style agent.

ReAct is a method in which the agent thinks step by step, calls tools, observes
results, and continues reasoning.

In LangGraph agents, you create a Tool object and use it as a custom tool.

You can maintain memory in your LangGraph agent by creating a State object
and passing it to your agent.

Buwilding a web-based
Ul using Gradio

This chapter covers

Building basic Ul with Gradio

Configuring and customizing your Gradio
application

Sharing and deploying your Gradio application on
Hugging Face Spaces

Creating a chatbot Ul for chatbot applications

Imagine that you’ve spent weeks coding your machine learning project, and it’s
finally done. Now you’re eager to show it off to your friends, and you hope it will
impress your boss. But you have one more thing to do: create a nice shiny frontend
to impress your users.

Developers excel in technical aspects and problem-solving, but their strengths
may not always align with creative design. How do you come up with a nice web fron-
tend that can interface with your machine learning models?

Gradio, an open source Python package, makes it quick and easy to build a demo
web application that showcases your machine learning applications. What’s more,

229

230

10.1

10.1.1

CHAPTER 10 Building a web-based UI using Gradio

with a single click, you can share a link to your demo application using Gradio’s built-in
sharing feature.

Basics of Gradio

To install the Gradio package, use the pip command in Jupyter Notebook:

Ipip install gradio

NOTE At this writing, the latest version of the Gradio Python package is 5.18.0.

Let’s start by exploring how Gradio works. You'll create a simple Gradio application
and then dive into how it works and how to deploy it in a production environment.
Specifically, you’ll learn how to do the following:

Use the Interface class to build a simple Gradio application

Use the Flag options to let users flag your application output

Configure authentication for your Gradio application so that only authorized
users can use it

Configure the Gradio application to be accessible on the local network

Deploy your Gradio application on Hugging Face Spaces

Using Gradio’s Interface class

To build a simple Gradio application, you can use the Interface class. Interface is Gra-
dio’s main high-level class, which allows you to build a web UI with a few lines of code.
The Interface class accepts several arguments, including these:

fn—Function to wrap the Gradio Ul around

title—Title of the Gradio UI

inputs—Types of inputs to display in the Gradio Ul

outputs—Types of outputs to display in the Gradio Ul

The following listing shows a simple example.

Listing 10.1 A simple Gradio example

import gradio as gr

def my_chatbot(message):

return "Hello, " + message Binds it to the .
my_chatbot() function
interface = gr.Interface(fn = my_chatbot, .
title = "Hello, Gradio!", < TitleoftheUl

inputs = "text", 4—‘
outputs = "text") 47 The input component(s)

interface.launch() The output component(s)

Basics of Gradio 231

In this code snippet, the Gradio application is bound to the my_chatbot () function. To
launch the Gradio application, call the launch() method. Figure 10.1 shows what the
Gradio application looks like when the code is run.

Running on local URL: http://127.8.08.1:7868

To create a public link, set “share=True’ in “launch(}".

Hello, Gradio!

messapge output

Clear Flag

Submit

Figure 10.1 The Gradio application with a single input and a single output

Figure 10.2 shows how the various arguments passed into the Interface class control
the UI of your Gradio application.

Running on local URL: http://127.8.0.1:7868

To create a public link, set “share=True® in “launch(}’.

HE“O, Gradip! =— title = "Hello, Gradio!"

message output

inputs = "text" —» <—— outputs = "text"

Clear Flag

Submit

Figure 10.2 The various components of your Gradio application

The Clear, Submit, and Flag buttons are displayed by default. In this example, both the
input and output of the Ul are text boxes (indicated with the text string). When the
user clicks the Submit button, the text in the input text box is passed into the message
parameter in the my_chatbot() function. The value returned by the function appears
in the output text box. Figure 10.3 illustrates this process.

232 CHAPTER 10 Building a web-based UI using Gradio

Hello, Gradio!
message output
Gradioisfun! - === —-——-—-——=—-—-—-—-—-—-—-————— 1 Hello, Gradio is fun!

I A

| 1

| 1

I I

Clear | : Flag

| i

| |

Submit | i

i i

| |

| I

| |

| |

| |

! i

def my chatbot (message) : !

return ["Hello, " + message|

Figure 10.3 How values are passed in from the inputs to the bound function and returned to the outputs

Notice the link at the top of the output (refer to figure 10.2), indicating that Gradio
is running on a local URL: http://127.0.0.1:7860. If you click that link, a new web
page appears (see figure 10.4). The port number increments by 1 every time you run
the cell in Jupyter Notebook. If you run the cell again, the port number will change to
7861, followed by 7862, and so on.

€ @ M ~ ¢ Sy 127.0.0.1

2 i I S
Hello, Gradio!
message autput
Clear Flag
Submit
Usovia APl o Built with Gradio =

Figure 10.4 Displaying the Gradio app in a new browser window

10.1.2

Basics of Gradio 233

Also notice the button labeled Flag. What is this button for? Well, it gives you a way to
log the inputs and outputs if you find that the output returned by the function war-
rants further attention. Clicking the Flag button creates a new folder called .gradio/
flagged in the same directory as your Jupyter Notebook. Inside this folder, you’ll find
a file named datasetl.csv. This file records your inputs, outputs, and other details. If
you enter the string "Gradio is fun!", click Submit, and then click Flag, Gradio logs the
following in the datasetl.csv file (see figure 10.5).

[BN - datasetl.csv — Edited

message,output, timestamp
Gradio is fun!,"Hello, Gradio is fun!",2025-02-25 15:35:09.729718

Figure 10.5 Viewing the content of datasetl.csv

Configuring flagging options

The default behavior of the Flag button is to log the inputs, outputs, and timestamp of
your Gradio application in the log.csv file. If you want a more customized approach
to logging, you can specify it by using the flagging_options parameter, as shown in the
following listing.

Listing 10.2 Specifying flagging_options

import gradio as gr

def my_chatbot(message):
return "Hello, " + message

interface = gr.Interface(fn = my_chatbot,
title = "Hello, Gradio!",
inputs = "text",
outputs = "text",
flagging_options =
["correct","wrong", "ambiguous"])

interface.launch()

Figure 10.6 shows that now you have three Flag buttons, labeled based on what you
specified in the flagging_options parameter.

Now if you type the string "6radio is fun!", click Submit, and then click the Flag As
Correct button, a new file named dataset2.csv is created, and Gradio logs correct for
the flag field (see figure 10.7).

234 CHAPTER 10 Building a web-based UI using Gradio

message output

Clear Flag as correct

Submit Flag as wrong . Three Flag
buttons

Flag as ambiguous

Figure 10.6 The three flagging options

o0 e ‘ dataset2.esv — Edieg
message,output, flag, timestamp

Gradio is fun!,"Hello, Gradio is fun!",correct,2025-02-25
15:36:39,301922

Figure 10.7 Now the dataset2.csv file contains the "correct" string.

A new CSV file is created if the structure of the original file changes. The datasetl.csv
file, for example, didn’t include a field named flag, whereas dataset2.csv does.

10.1.3 Configuring authentication

By default, your Gradio application is public; anyone who has the URL of your app will
be able to access it. But you may want to restrict access to the application, especially if
it involves sensitive data. You can password-protect your application by using the auth
parameter in the launch() method as follows.

Listing 10.3 Specifying authentication credentials

import gradio as gr

def my_chatbot(message):
return "Hello, " + message

interface = gr.Interface(fn = my_chatbot, < Bindsiit to Gradio
title = "Hello, Gradio!",
inputs = "text",
outputs = "text",

Basics of Gradio 235

flagging_options =
["correct","wrong","ambiguous"])

interface.launch(auth = ("admin", "secret"))

When you run this code snippet, you see the login page shown in figure 10.8.

Login

username

Type here...

password
Type here...

Figure 10.8 Prompting
the user to log in before

-
28 using the application

NOTE To ensure that authentication in Gradio works properly, you must
enable third-party cookies in your browser. By default, Apple Safari and Goo-
gle Chrome won’t work in incognito mode.

If the entered username ("admin") and password ("secret") don’t match, you see an
Incorrect Credentials message. Otherwise, the Gradio application loads as usual.

Now if you type the string "Gradio is fun!", click Submit, and then click the Flag As
Correct button, Gradio creates another CSV file and logs "admin" under the username
field (see figure 10.9).

[] [] dataset3.csv

message,output, flag,username, timestamp

Gradio is fun!,"Hello, Gradio is

fun!", correct,admin,2025-02-25 16:02:56.989623

Figure 10.9 The dataset3.csv file contains "admin" under the username field.

Hardcoding the username and password in the auth parameter is not the recom-
mended practice; however, you may want to write a function to perform your own
authentication handling and then specify the function name in the auth parameter,
like this:

236

10.1.4

10.1.5

CHAPTER 10 Building a web-based UI using Gradio

def authentication(username, password): You can replace the authentication

logic with your own.

return (username=='admin' and password=='secret') Returns True to
authenticate user or

interface.launch(auth = authentication) False otherwise

In this code snippet, you can replace the authentication logic with your own, such as
authenticating against the credentials stored in databases or other third-party authen-
tication services.

Customizing the server and port

By default, Gradio listens at port 7860. But this port may not be available on your com-
puter if another application is listening at the same port. In this case, Gradio automat-
ically searches for the next available port, starting from 7860. Alternatively, you can
specify the port you want to use for Gradio. This approach is especially useful if you’re
running Gradio in a Docker container and the container exposes only specific ports.

Also, when Gradio starts, it binds to the 127.0.0.1 IP address by default, making the
Gradio application accessible only on the local computer. If you want to make the appli-
cation accessible on the local network, you need to bind it to the 8.0.0.0 IP address.
The following code snippet makes the process clear:

Listens at port 5000; accessible only
on the computer running Gradio

interface.launch(server_name = "127.0.0.1", server_port = 5000) D B

interface.launch(server_name = "0.0.0.0", server_port = 5000) e

Listens at port 5000; accessible
only on the local network

For a computer on the network to access the Gradio application, simply use the fol-
lowing URL: http://<IP_ADDRESS_OF_SERVER>:5000. If the Gradio application is run-
ning on a computer with IP address 192.168.1.24, for example, you can use the URL
http://192.168.1.24:5000 to access the Gradio application from another computer.

NOTE When you use Jupyter Notebook, take note when you rerun the cell
containing the Gradio application; Jupyter Notebook will complain that the
port you specified is not available. To fix this problem, restart the kernel.

Sharing your Gradio application

If you want to share your Gradio application with your friends over the internet, you
can set the share argument to True in the launch() method:

interface.launch(share = True)

10.1.6

Basics of Gradio 237

This setting causes Gradio to create a temporary link that allows your friends to access
your Gradio application. Figure 10.10 shows the output when you call the launch()
method with the share argument set to True:

Running on local URL: http://127.0.0.1:7861
Running on public URL: https://88cf9d2ca®98085c5d5.gradio. live

This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run “grad

io deploy™ from Terminal to deploy to Spaces {(https://huggingface.co/spaces)

Figure 10.10 A public link is created for your Gradio application.

Now you can now share the public URL with your friends. Note the following:
If you run the Gradio code in Jupyter Notebook, the kernel must be running. If
the kernel is shut down, the Gradio app no longer works.

If you run the Gradio code as a standalone Python application, the application
must be running. If not, the Gradio app no longer works.

NOTE Be aware that the shared link is served by Gradio share servers, which
act only as proxies for your local server; they don’t store any data sent through

your app.

TIP Shared links expire after 72 hours. A much better way to make your Gra-
dio application public is to host it on Hugging Face Spaces.

Deploying your Gradio application to Hugging Face Spaces

To make your Gradio application permanently available, host it in the cloud. Fortu-
nately, Hugging Face Spaces provides free hosting for your Gradio application. (You
can upgrade to a paid version if you require more computing power.) Here’s how you
can host your Gradio application on Hugging Face Spaces:
Create a directory on your computer, and for this example, name it MyGradioApp.
Create a file named mygradio. py with the content of listing 10.1, and save itin the
MyGradioApp directory.
To host on Hugging Face Spaces, you need a WRITE Hugging Face token, so cre-
ate it at https://huggingface.co/settings/tokens.

Launch Terminal (macOS) or Anaconda Prompt (Windows), and type the fol-
lowing commands:

$ cd MyGradioApp
$ gradio deploy

You see the following:

https://huggingface.co/settings/tokens

238 CHAPTER 10 Building a web-based UI using Gradio

Enter your token (input will not be visible): <Your WRITE token>
Add token as git credential? (Y/n) n

Creating new Spaces Repo in '/Volumes/SSD/Book Projects/5.
Hugging Face book/chap10/MyGradioApp'.

Collecting metadata, press Enter to accept default value.

Enter Spaces app title [MyGradioAppl: <press Enter>

Enter Gradio app file [mygradio.py]: <press Enter>

Enter Spaces hardware (cpu-basic, cpu-upgrade, t4-small,
t4-medium, 14x1, 14x4, zero-alOg, alOg-small, alOg-large,
all0g-largex2, alGg-largex4, al@0-large, vSe-1x1, vSe-2x2,
v5e-2x4) [cpu-basic]: <press Enter>

Any Spaces secrets (y/n) [n]: <press Enter>

Create requirements.txt file? (y/n) [n]: <press Enter>

Create Github Action to automatically update Space on 'git push'?
[n]: <press Enter>

Space available at https://huggingface.co/spaces/Wei-Meng/MyGradioApp

Enter your WRITE token, and reply to the questions as follows:
Need 'write' access token to create a Spaces repo.

Your Gradio application is hosted on Hugging Face Spaces. You can access it via the
URL https://huggingface.co/spaces/Wei-Meng/MyGradioApp. (Your URL will vary
due to the username.) Figure 10.11 shows the application.

(eoe M~ < @ huggingface.ca & © []: + O
“ Spaces @ \Voi-Meny MyGradioApp © T ke RUNNING = & =
Hello, Gradio!
ST aulpul

Clear Figure 10.11
The Gradio

Submit application hosted
on Hugging Face

. J Spaces

https://huggingface.co/spaces/Wei-Meng/MyGradioApp

10.2

10.2.1

Working with widgets 239

Working with widgets
You’ve learned how to create a basic Gradio application, configure it for flagging, share
it with friends on the local network, and deploy it on Hugging Face Spaces. In this sec-
tion, you dive deeper into the various types of Gradio applications you can build with
other components. You’ll learn how to do the following:

Work with Textbox

Work with Audio

Work with Images

Work with selection components

Lay out components using the TabbedInterface class

Working with Textbox

In the first example in this chapter, you saw that when you specify text as the value in
the inputs parameter in the Interface class, a text box with the default label message is
displayed. You can customize the text box by creating an instance of the Textbox class.
The following listing shows an example.

Listing 10.4 Creating an instance of the Textbox class

import gradio as gr

def my_chatbot(message):
return "Hello, " + message

textbox = gr.Textbox(label = "Message",
placeholder = "Your message here",
lines = 3)

gr.Interface(fn = my_chatbot,
inputs = textbox,
outputs = "text").launch()

Figure 10.12 shows what the Gradio application looks like at this point and how the
various arguments in the Textbox class are used.

label = "Message" _ » Masaze autput

oL

Three lines by default —*
Flag

Clear
Figure 10.12
S it Configuring

the Textbox
placeholder = "Your message here" component

240

10.2.2

CHAPTER 10 Building a web-based UI using Gradio

The text box is taller, showing the height for three lines. Note, however, that the lines
parameter doesn’t limit the number of lines the user can type; it is there to display the
initial number of lines to display. Figure 10.13 shows the output when the user enters
some text and clicks the Submit button.

Message output
This demo shows the Textbox() function. Hello, This demo shows the Textbox{) function.
It shows 3 lines by default. It shows 3 lines by default.
Flag
Clear
Submit

Figure 10.13 Submitting the text and obtaining the output

Working with Audio

Gradio can work with audio as well as text. Using the Audio component, you can
upload an audio stream to Gradio and perform operations on it. The following listing
shows an example of using the Audio component.

Listing 10.5 Creating an instance of the Audio class

import numpy as np
import gradio as gr

def reverse_audio(audio): audio is a NumPy array.
sr, data = audio
reversed_audio = (sr, np.flipud(data)) < Reverses the audio
return reversed_audio

mic = gr.Audio(sources = ["upload","microphone"],
type = "numpy",
label = "Audio")

interface = gr.Interface(fn = reverse_audio,
inputs = mic,
outputs = "audio")
interface.launch()

Figure 10.14 shows what the Gradio application looks like when you run the code
snippet.

Working with widgets 241

fudio i output

i

wJ
Drop Audio Here

-0r- Flag
Click to Upload

Clear
Submit

Drag and drop
audio file or
click to upload.

Activate
microphone.

Figure 10.14 You can drag and drop an audio file or record an audio stream with your microphone.

If you activate the microphone on your computer to record an audio stream, by default,
that stream is sent to the reverse_audio() function as a tuple, with sample rate in Hz
and audio data as a NumPy array. In this example, the audio data was reversed by the
np.flipud() function and then returned to the output, where it can be played back.

Figure 10.15 shows how to select the microphone to use (if you have more than one).
Click the Record button to record the audio. When the audio is recorded, click the
Submit button.

Choose your microphone
(if you have multiple
microphones).

Click Record to
start recording.

| Audio | output

® FRecord | Unknown USB Audio | =

HE

F
Clear lag

Submit

Figure 10.15 Choosing your microphone and recording the audio

242 CHAPTER 10 Building a web-based UI using Gradio

You can play back the original audio you recorded and the audio that has been reversed
(see figure 10.16).

3 Audia 5 [output e
-|||[|||!|||||||||||||L-’||'||||].] ol |.]|.|.|. -|n1-||||-| ---Hl\|||||'HI||[|1||1]||!|||[||||‘||||-- ‘
000 0:07 0:00 07
D (] < Pp »» O X D[] <« p

& @

Flag
Clear
Submit
1. Play back the audio 3. Play back the audio
you recorded. in reverse.

2. Submit the audio to the
reverse_audio() function.

Figure 10.16 You can play back the original recording and the reversed audio.

10.2.3 Working with Images

You can work with images in Gradio by using the Image component. The following
code is an example of how to work with images.

NOTE For this example, you need to install the skimage package using the pip
command !pip install scikit-image.

Listing 10.6 Working with images in Gradio

from skimage.color import rgb2gray
import numpy as np
import gradio as gr

def convert_image(img): .
return rgb2gray(img) < Returns image as grayscale

image = gr.Image(type="numpy") Works with the image as

a NumPy array (default)

Working with widgets 243

interface = gr.Interface(fn = convert_image,
inputs = image,
outputs = "image")

interface.launch()

Figure 10.17 shows three ways to upload images to Gradio:

Drag and drop the image directly on the Image component.
Capture images through the webcam.

Paste an image from your computer’s clipboard.

Eoimg B output

T

J

&

Drop Image Here
-0r-
Click to Upload

Flag

Clear

Submit

Drag and drop
image or click
to upload image.

Paste image
from clipboard.

Activate
webcam.

Figure 10.17 Using the Image component in Gradio

By default, all images passed into the Image component are in NumPy array format.
Therefore, in this example, the image you send to the Image component is sent as a
NumPy array to the img parameter of the convert_image() function. For this imple-
mentation, you return the grayscale equivalent of the image using the rgb2gray()
function in the skimage package. Figure 10.18 shows how an image is transformed to

grayscale after you click the Submit button.

244

CHAPTER 10 Building a web-based UI using Gradio

Flag

Submit

Figure 10.18 Converting an image to grayscale

If you want to work with PIL (Python Imaging Library) images in Gradio, set the type
parameter to pilin the Image() class as follows.

Listing 10.7 Working with PIL images

from skimage.color import rgb2gray
import numpy as np
import gradio as gr

def convert_image(img): Rotate§ image
return img.rotate(-90) clockwise 90 degrees
image = gr.Image(type="pil") ‘—‘ Works with the image
as a PIL image

interface = gr.Interface(fn = convert_image,
inputs = image,
outputs = "image")

interface.launch()

In the preceding code listing, the input image is rotated 90 degrees clockwise (see
figure 10.19).

Working with widgets 245

4 output

=
(@)
20

Clear

Submit

Figure 10.19 Rotating the image 90 degrees clockwise

If you want to let the user choose among a predetermined set of images, use the
examples parameter in the Interface class. Set that parameter to a list of image names,
as shown in the next listing.

Listing 10.8 Specifying a list of example images to use

interface = gr.Interface(fn = convert_image,
inputs = image,
outputs = "image",
examples = [
"images/durian.jpg",
"images/mango.jpg",
"images/rambutan.jpg"]

interface.launch()

To use this code, you need a folder named images in the current Jupyter Notebook’s
folder. Within the images folder you must have three images named as follows:
durian.jpg
mango.jpg
rambutan.jpg

Figure 10.20 shows what the Gradio application looks like now, with the three example
images shown at the bottom.

246 CHAPTER 10 Building a web-based UI using Gradio

H output

T

—

Drop Image Here A

Click to Upload

Flag

Examples

Figure 10.20 Instead of using your own images, you can select an example image.

When you select an example image, it is used as the input image. Figure 10.21 shows
the image rotated 90 degrees clockwise.

Flag

Clear

Submit

Figure 10.21 Selecting an example image and rotating it 90 degrees clockwise

Working with widgets 247

10.2.4 Working with selection widgets

So far, you have seen several Gradio components: Textbox, Image, and Audio. In this
section, you use two widgets that allow you to make selections:

Dropdown—The Dropdown component creates a drop-down menu from which
users can choose a single entry or multiple entries (as input components) or dis-
played (as output components).

Slider—The Slider component creates a slider that ranges from minimum to
maximum with a step size of step.

The following listing shows how to use both components.

Listing 10.9 Using the Dropdown and Slider components

import numpy as np
import gradio as gr

languages = ['English', 'Japanese', 'Chinese’]

def translate(language_index, value, sentence):
return languages[language_index], value, sentence

dropdown = gr.Dropdown(['English', 'Japanese', 'French', 'Chinese'],
type = "index",
label = "Language",
value = "English")

slider = gr.Slider(minimum = 1,
maximum = 5,
step = 1,
value 2,
label "Select a value")

textbox1l = gr.Textbox(type = "text",

value = "",
label = "Sentence to translate",
placeholder = "sentence")

textbox2 = gr.Textbox(type = "text",
label = "Translated sentence")

interface = gr.Interface(
translate,
[dropdown, slider,textbox1],
texthox2,

)

interface.launch()

This listing uses the Dropdown, Slider, and Textbox components for the input and the
Textbox component for the output (see figure 10.22).

248 CHAPTER 10 Building a web-based UI using Gradio

L anguzze Transinted sentence

Englizh -

Select a value 2

<>

Flag
Sentence to ranslate
sentencs
Figure 10.22 Using the
Clear Dropdown, Slider, and

Textbox components for

Submit the inputs and outputs

Suppose that you chose Japanese from the Language drop-down menu, selected a
value of 5, and entered the string “TAITHBIE”. After you click Submit, you see the

output shown in figure 10.23. The figure also shows how the returning value of the
translate() function is linked to the output.

value of Textbox

value of slider

index of dropdown items

|

def translate(language index, value, sentence):

return languages [language index], value, sentence, language_ index

Language Translated sentence

Japanese

4

('Japanese!, 5,'C Allc B (Y 1)

Select a value

Flag

Sentence to translate

ZhICBE

Clear
Submit

Figure 10.23 Submitting the selected values and obtaining the output

Working with widgets 249

If you have multiple outputs, such as two Textboxes, you need to wrap the return values
explicitly using a tuple, as shown in the following code listing.

Listing 10.10 Modifying the return values for two outputs

def translate(language_index, value, sentence):
return (languages[language_index], value, sentence), language_index

interface = gr.Interface(
translate,
[dropdown, slider,textbox1],
[textbox2, "text"],

Figure 10.24 shows the output of the modified Gradio application.

Languags Transiated senterce
Japanese - [Japanesel 5, 7 A D51
Select @ value 5 C autputl
1
Sentunce to transkate
=" Flag

Clear

Figure 10.24 Now the output

Subimit has two components.

Note that you need to wrap the first three return values in a tuple, which allows the
correct values to be sent to the output (see figure 10.25).

def translate(language index, value, sentence):
return languages [language index], value, sentence, language index

Translated sentence

(\Japanese', 5, 'C A IC B (E)

output 1

1

Figure 10.25 Wrapping the values

Flag)
in a tuple to send to one output

250 CHAPTER 10 Building a web-based UI using Gradio

If you didn’t wrap the first three return values in a tuple, the first two results would be
sent to the output and the rest would be discarded, as shown in figure 10.26.

def translate(language_ index, value, sentence):
return languages [language_ index], value, sentence, language_ index

Translated sentence

Japanese

output 1

5

Flag

- ———— e ——
- ———— e ——

Figure 10.26 Returning values are dropped if they’re not formed properly.

10.2.5 Layout using the Tabbedinterface class

Sometimes, you want users to experiment with a couple of machine learning models.
Instead of writing a Gradio application for each model, you can group the models in
a single application using the TabbedInterface class. The following listing shows an
example.

Listing 10.11 Using the TabbedInterface class

import gradio as gr
def convert_image(img):
return rgb2gray(img) <) Returns image to grayscale
def reverse_audio(audio):
sr, data = audio
print(sr)
reversed_audio = (sr, np.flipud(data))
return reversed_audio
image = gr.Image(type="numpy")
mic = gr.Audio(sources = ["upload","microphone"],
type = "numpy",
label = "Audio")

interfacel = gr.Interface(title = 'Reverse Audio',

Working with widgets 251

fn = reverse_audio,
inputs = mic,
outputs = "audio")

interface2 = gr.Interface(title = 'Convert Image',
fn = convert_image,
inputs = image,

outputs = "image")
tabbed = gr.TabbedInterface(< Groups the two interfaces
[interfacel, interface2?],
['Tab 1','Tab 2'] < | Names the tabs

)

tabbed.launch()

This code snippet contains two main functions:

convert_image(): A function to convert an image to grayscale

reverse_audio(): A function to reverse an audio stream

You created two instances of the Interface class and grouped them together using the
TabbedInterface class. Figure 10.27 shows the updated Gradio application.

First tab Second tab

N

Tab1

Reverse Audio

Audio fi output

1

—
Drop Audio Here

Flag
Click to Upload

Clear

Submit

Figure 10.27 The first tab of the Gradio application

252

10.3

CHAPTER 10 Building a web-based UI using Gradio

Clicking Tab 2 reveals the Ul for the image-conversion function (see figure 10.28).

Tab2

Convert Image

A img [E output

T

—J

Drop Image Here

Click to Upload

Flag

Clear

Submit

Figure 10.28 The second tab of the Gradio application

Creating a chatbot Ul

So far, all the Gradio applications you’ve built require the user to click the Submit
button before processing the output. Although this requirement is quite natural in
most applications (such as object detection, image segmentation, and language trans-
lation), it’s awkward in use cases such as chatbots. In a chatbot, users typically type a
message and press Enter to send it to the chatbot, which responds with an appropriate
message. Using the Ul you've used so far for a chatbot would be cumbersome; users
would have to click Submit and then clear the text box manually before typing the
next message.

To build a chatbot-like UI, you can use Gradio’s Blocks class with components such
as Textbox and Button. Blocks is a low-level API you can use to create more-customized
web applications than the Interface class allows. To use Blocks in Gradio, follow these
steps:

Create a Blocks object, and use it as a context (using Python’s with statement).
Define layouts, components, or events within the Blocks context.
Call the launch() method to launch the UL

Creating a chatbot UL 253

10.3.1 Creating the basic chatbot Ul

Let’s see how to use a Blocks object to create a chatbot-like UI. Before you write the
code, outline what you want the chatbot to look like and the components you’re going
to use. Figure 10.29 shows those components.

s Chatbet

&« Chatbot

Textbox

&« ~_ Textbox
Clear Conversation 4~ Button

Figure 10.29 The components used for the chatbot Ul

In the figure, the Textbox is where the user types the message. The Button clears the
conversation in the chatbot, which is represented by Gradio’s Chatbot component.
Using a Blocks object, create this Ul

Listing 10.12 Building the basic chatbot Ul

Blocks is a low-level API
import gradio as gr that allows you to create
custom web applications.
with gr.Blocks() as mychatbot: -
chatbot = gr.Chatbot(type = "messages") <+——— Displays a chatbot . . .
textbox = gr.Textbox()
clear = gr.Button("Clear Conversation") <—— | ... forthe user toaska question.

mychatbot.launch() Clear button

When you run this code, the Ul is displayed, but it isn’t functional. In the next two sec-
tions, you wire the event handlers for the Textbox and Button components.

254 CHAPTER 10 Building a web-based UI using Gradio

10.3.2 Wiring the Textbox’s submit event

First, create an event handler for the submit eventin the Textbox component, as shown
in the following listing.

Listing 10.13 Creating the event handler for the Textbox’s submit event

import gradio as gr

with gr.Blocks() as mychatbot: Appends the message and
chatbot = gr.Chatbot(type="messages") response to the history
textbox = gr.Textbox()
clear = gr.Button("Clear Conversation") Replace with the
actual responses
def chat(message, chat_history): from a chatbot.
response = "Responses from chatbot..."
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": response}) }7
print(chat_history)
return "", chat_history <"1 The “” iis to clear the Textbox.
textbox.submit(fn = chat, Wires up the event handler for
inputs = [textbox, chatbot], the Submit button (when the

outputs = [textbox, chatbot]) user presses Enter)

mychatbot.launch()

In this code snippet, the submit event of the Textbox is wired to the chat() function,
which takes two arguments: message and chat_history. The inputs and outputs param-
eters of the Texthox are set to textbox and chatbot, respectively.

Within the chat() function, you can pass the content of message to your chatbot
(or large language model [LLM]). Both the question and the response returned are
appended to the chat_history argument. Here, we also printed the content of chat_
history so that we can see what is being stored. Finally, the chat() function returns a
tuple—the string to return to the Textbox after the user presses the Enter key—as well
as the chat_history argument

Figure 10.30 shows what happens after the user types Hello, there! in the Textbox
and presses Enter. The content of the message variable and the response from the
chatbot (replace with your own logic) are appended to the chat_history argument.
The Chatbot component displays the message and response. Finally, the chat()
function returns a tuple, "" (to clear the content of the Textbox), and the chat_history
argument.

You can examine the content of the chat_history argument that you printed:

[
{'role': 'user', 'content': 'Hello, there!'},
{'role': 'assistant', 'content': 'Responses from chatbot...'}

1

Creating a chatbot UI 255

Hello, there!

Responses from chatbot...

Texthox

Clear Conversation

Figure 10.30 Typing a message in the Textbox and sending it to the Chatbot component

If you follow up with another message (Have you heard of how cool Gradio is?), you get
the following output (formatted for clarity):

[

{'role': 'user', 'metadata': None, 'content': 'Hello, there!’,
'options': None},
{'role': 'assistant', 'metadata': None,
'‘content': 'Responses from chatbot...',
'options': None},
{'role': 'user', ‘'content': 'Have you heard of how cool Gradio is?'},
{'role': 'assistant', 'content': 'Responses from chatbot...'}

]

If you follow up with yet another message (How does it compare to Streamlit?), you
get this output (formatted for clarity):

[

{'role': 'user', 'metadata': None, 'content': 'Hello, there!’,
'options': None},
{'role': 'assistant', 'metadata': None, 'content':
'Responses from chatbot...', 'options': None},
{'role': 'user', 'metadata': None, 'content':
'Have you heard of how cool Gradio is?', 'options': None},
{'role': 'assistant', 'metadata': None, 'content':
'Responses from chatbot...', 'options': None},
{'role': 'user', 'content': "How does it compare to Streamlit?"},

{'role': 'assistant', 'content': 'Responses from chatbot...'}

]

256

CHAPTER 10 Building a web-based UI using Gradio

10.3.3 Clearing the chatbot

The final step in implementing the chatbot Ul is creating the event handler for the
Button’s click event. The following code listing shows how.

Listing 10.14 Creating the event handler for the Button’s click event

import gradio as gr

with gr.Blocks() as mychatbot:
chatbot = gr.Chatbot(type="messages")
textbox = gr.Textbox()
clear = gr.Button("Clear Conversation")

def chat(message, chat_history):

response = "Responses from chatbot..."
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": response})
print(chat_history)

return "%, chat_history ‘ Clears Textbox and returns updated history

textbox.submit(fn = chat,
inputs = [textbox, chatbotl],
outputs = [textbox, chatbot])

def clear_messages():
print("Clearing message...")

clear.click(fn = clear_messages,
inputs = None,
outputs = chatbhot,
queue = False)

mychatbot.launch()

When the user clicks the Clear Conversation button, the clear_messages() function is
called. You can replace its content with your own code to clear the chatbot (or LLM).
The outputs parameter specifies that you return the chatbot object, which is empty.

That’s it. You have a functional chatbot! All you need to do is replace the chat () func-
tion with the code to communicate with your own LLM.

Summary

To build a simple Gradio application, you can use the Interface class, Gradio’s
main high-level class, which allows you to build a web UI with just a few lines of
code.

The Textbox component allows users to send text content to the Gradio
application.
The Audio component allows users to send audio streams to the Gradio
application.

Summary 257

The Image component allows users to send images (as NumPy arrays or PIL
images) to the Gradio application.

You can implement authentication for your Gradio application using the auth
parameter in the Taunch() method.

The Flag option logs messages in the log.csv file.

You can share the Gradio application with users on the local network or create a
shared link to share with other internet users.

You can deploy your Gradio application on Hugging Face Spaces.

You can group multiple interfaces using the TabbedInterface class.

To create a chatbot UI, use the Blocks class together with other Gradio

Components.

Bwilding locally running
LILM-based applications
using GPT4All

This chapter covers

Introducing GPT4All

Loading a model from GPT4All

Holding a conversation with a model from GPT4AI
Creating a web Ul for GPT4AIl using Gradio

You’ve learned about constructing large language model (LLM)-based applications
using models from OpenAl and Hugging Face. Although these models have trans-
formed natural language processing (NLP), there are notable drawbacks. Primarily,
privacy emerges as a critical concern for businesses. Relying on third-party-hosted
models introduces a security risk because your conversations would be transmitted
to these external companies, raising apprehension for businesses that deal with sen-
sitive data. Also, the challenge of integrating these models with your private data
exists, and even if that challenge is met, the initial privacy concern resurfaces.

A more effective approach is to execute the models locally on your computer.
This gives you control of the destination of your private data and enables you to fine-
tune the models to suit your specific data requirements. But running an LLM often
requires graphics processing units (GPUs), constituting a significant investment.

258

11.1

11.2

11.2.1

Installing GPT4AIl 259

Fortunately, there’s a remedy: GPT4All. GPT4All provides quantized models,
reduced to a few gigabytes, that can operate on standard consumer-grade CPUs with-
out requiring an internet connection. In this chapter, you’ll discover how to initiate
GPT4All, and in chapter 12, you’ll explore using GPT4All to process your private data.

Introducing GPT4All

GPT4All (https://www.nomic.ai/gpt4all) is an open source project containing sev-
eral pretrained LLMs that you can use to run locally using consumer-grade CPUs.
This accessibility is invaluable, especially for people who don’t have access to high-end
GPUs. Enabling the local deployment of LLMs contributes to democratizing Al, ensur-
ing that everyone, regardless of hardware constraints, can actively participate in the
creation of Al applications.

GPT4All contains several models ranging from 3 GB to 8 GB. Even more exciting—
it’s free! Although the performance of GPT4All may not be on par with that of the cur-
rent ChatGPT, with contributions from the open source community it has significant
potential for further development and enhancements.

Installing GPT4AIll

There are two types of installations for GPT4AIL:
An end-user application that allows users to try out the various models supported
by GPT4All. This installation doesn’t require programming knowledge. Users
will be able to initiate a chat conversation with the downloaded LLM.
A Python library that enables developers to use the various models to build their
LLM-based applications.
The following sections go through these two types of installation methods. Our focus
will be on the second method, showing you how to build locally running LLM-based
applications using Python.

Installing the GPT4AIl application

To install the GPT4All desktop chat client, go to https://www.nomic.ai/gpt4all and
download the installer for the OS you’re using (see figure 11.1).

ene M@ 4 & gpidallin v ® M 4+ B

M © e

GPT4All's Capabilities

Explore what GPT4All can do, On your own hardware,

Figure 11.1 Download

. — the installer for your 0S.

https://www.nomic.ai/gpt4all
https://www.nomic.ai/gpt4all

260

CHAPTER 11 Building locally running LLM-based applications using GPT4All

When the installer is downloaded, double-click the installer. You’ll be asked to provide
a directory in which to store GPT4All (see figure 11.2). Accept the default suggested
path and click Next.

“. [] GPTAANl Installer Setup
Installation Folder
Please specily the directory where GPTAAN will be installed.
.f;ﬂppmﬂms{g:ldadll Browse..
oo | EITED Figure 11.2 Specifying a directory

for storing the GPT4AII files

When installation is complete, the first thing you need to do is give your permission to
optin to the sharing of usage analytics and chats (see figure 11.3). Depending on your
preference, select Yes or No.

LK GPTAAN vZ2 5.4

Welcoma!

Release notes
= Magar bugh relense with new madals!
+ Modet: Recantly relsased Orca 2 maded which does axceptionally well oa reasaning tasks
= Fhe: Tyotem prompt waa not alweys being honorod
= Fle: Dowrhaad natwiork retry onf cloudflare srrors
Contributors
= Bam Traat Momic Al
« Jarad Van Bortad (Marmic A1)
» Commainity beta tassers, bug repariars, bindings avthors)

Opt-ins for o I

By enalding Wase faslures, you will be sble Lo pertcipals in the demeeratic precess of baining & lege langusge moedal by contibuting data lor fulune modal
Enprovaments,

‘When 8 GPTAAN medel responds 1o you and you have epled-in, your denversasian will be sent 12 the GPTAAN Dpen Sodrce Datalaks, Addilionally, you can
Ekajdiallke its rasponne. I vou dislike A response, yisl can Agpest an alternathe rasponse. This dais will be collected ind sgaregated in the GPT4AN
Datalake: 2

ROTE: B Hrpsviver v thine Tvnsianse s will P sentins wert ittt fen fhan = . Minne sl T

Cpt-in to ananymous usage analytics used to imarove GRTAAI O Yas O Ha

Dpi-in to anonymoas sharing of chats 1o the GPTAAI Datalake O a5 O Ha

You need to give your permission to opt
in to sharing of usage analytics and chats.

Figure 11.3 Indicate whether you want to share usage statistics and chat details with GPT4AII.

Installing GPT4AIl 261

Next, you have the choice to download the various models available for use with
GPT4All (see figure 11.4). Scroll to the bottom of the page to view more models. To
download a model, click the Download button.

sow GRT4AIIVLEA
Bvsilabin Wodes

Mistral OpenOrea o
Py Click Download to

download the model(s)

Bant cverall taat chat modsl

- Famt osponess

" Gt e ol to your local computer.

- Temnedt by Masrnl Al

- Finamtured on OperCren datasst cussed vis Hosic Atime
« Liconmed tnr commarcal usm
e

Mistral Instruct

Best svarall tast Instruotion foliewing modsl

- Fast redponass
« Temined by Messral Al

« Uneensord

- Licensed for commarsal use

Figure 11.4 Download the model(s) you want to try.

NOTE The amount of RAM that most models requires is 4-16 GB. If you have
a machine with only 8 GB, you're unlikely to be able to run many of these mod-
els. To run LLMs locally, I suggest using a machine with at least 16 GB of RAM.

When you’ve downloaded a model, you can start chatting straight away. Figure 11.5
shows a question and the model’s reply.

r’-. [] GRTAAI G254
= Mt Tparinn 'S o g =

B e s e« Question asked

BB ressnsin et i s «—~ Reply from the model
Figure 11.5

s s | Testing the model
by chatting and
« getting a reply

from it

262 CHAPTER 11 Building locally running LLM-based applications using GPT4All

The top-right corner of the application con-
tains several buttons. Figure 11.6 shows the

-
names of these buttons. 8 C - F
To use the model to answer questions / /
pertaining to your own documents, click Clear Settings Contribute
the Local Documents button; then click Chat Data
the LocalDocs item in the resulting screen.
T . Copy Local
0 answer questions on your own data, the Chat Documents

model must perform the word vector embed-
Figure 11.6 The names of the buttons in

ding pr . Hen n lick th
Ng process ence, you eed to click the the top-right corner of the application

Download button; then, in the next screen,
download the SBert embedding model (see
figure 11.7).

eoe GPTA4All v2.5.4

b 4

Models Local Document Collections

Application This feature requires the download of a text embedding model in order to index documents for later search. Please download the
SBert text ing model from the dialog to proceed.

LocalDocs

Deownload

1. Click

LocalDocs. 2. Download the SBert

embedding model.

Figure 11.7 Download the SBert embedding model to let the model answer questions pertaining to your local
documents.

When the SBert embedding model is downloaded, specify the folder containing your
data. For this example, you’ve prepared some PDF documents and stored them inside
the folder. Figure 11.8 outlines the steps involved. You can add multiple document
folders.

Installing GPT4AIl 263

. 2. Click the Browse button, .
1. Give your data and select the folder that 3. Click the

a name. . Add button.
contains your local data.

ace GPT4All v2.5.4

Meaduls Loeal Decument Collectlons

Apsicton i) (o) (o2
Show relerences: :I

Rastare Defaults | | Agvancad Settings

LocalDocs

Figure 11.8 Adding a local documents folder to the app

Finally, click the Local Documents button (refer to figure 11.6) and check the name of
your local data (LocalData in this example; see figure 11.9).

Moe GETAANV2E.&

Figure 11.9 Selecting the local documents folder to use for querying

264 CHAPTER 11 Building locally running LLM-based applications using GPT4All

Now you can ask the model questions pertaining to your local data (see figure 11.10).

gfoe GPTAAIVZE.A ~

-—
= - cBOo@=
— Mistsal OpunGe: =
jsteil OpanOrca A |||_-| -

Hommuch did | pay for e bockanal? ¢~ Questions posed to the model

n You pald $162.10 tor the hookshet, inchuding shipping and handing costs. @~ T~ RESPOI‘ISE from the model

“"% Regenerste response

Figure 11.10 Asking questions specific to your local data

11.2.2 |Installing the gpt4all Python library

Now that you’ve had the chance to try out the chatting capabilities of the various LLMs
in GPT4All, it’s time to use GPT4AIl programmatically in Python. To do that, you need
to install it using the pip command:

Ipip install gpt4all

NOTE At this writing, the latest version of gpt4all is 2.0.2, and the latest ver-
sion of langchain is 0.0.351.

11.2.3 Listing all supported models

GPT4All supports several pretrained models (LLMs). To see a list of all available mod-
els, use the 1ist_models() function:

from gpt4all import GPT4A1ll
GPT4A1Ll.list_models()

Installing GPT4AIl 265

You see the following output, which is shortened for brevity. The model names and
corresponding filenames are highlighted in bold.

Listing 11.1 Supported GPT4AIl models

[{'order': 'a',
'mdSsum’ : '48de9538c774188eb25a7e9ee024bbd3 ",
'name': 'Mistral OpenOrca',
'filename': 'mistral-7b-openorca.Q4_0.gguf',
'filesize': '4108927744"',
'requires': '2.5.0"',
'ramrequired': '8',
'parameters': '7 billion',

‘quant': 'qg4_0"',

"type': 'Mistral',

'systemPrompt': ' ',

'description': 'Best overall fast chat model

Fast responses</1li><1li>Chat based model</1li><1i>
Trained by Mistral AIFinetuned on OpenOrca dataset curated
via Nomic Atlas<1i>
Licensed for commercial use',

'url': 'https://gpt4all.io/models/gguf/mistral-7b-openorca.Q4_0.gguf'},

{'order': 'b"',

'md5sum': '97463be739b50525dF56d33b26h00852",

'name': 'Mistral Instruct',

'filename': 'mistral-7b-instruct-v0.1.Q4_0.gguf',

'filesize': '4108916384",

'requires': '2.5.0"',
'ramrequired': '8',
'parameters': '7 billion',

'quant': 'q4_0"',

"type': 'Mistral',

'systemPrompt': ' ',

'description': 'Best overall fast instruction
following model
Fast responses<1i>
Trained by Mistral AIUncensoredLicensed for
commercial use',

'url': 'https://gpt4all.io/models/gguf/mistral-7b-instruct-
v0.1.Q4_0.gquf"',

"promptTemplate': '[INST] %1 [/INSTI'},

{'order': 'p',
'mdSsum’ : '919de4dd6f25351bch0223790db1932d ",
'name': 'EM German Mistral',
'filename': 'em_german_mistral_v01.Q4_0.gguf',
'filesize': '4108916352',
'requires': '2.5.0"',
'ramrequired': '8"',
'parameters': '7 billion',

'quant': 'g4_0"',
"type': 'Mistral',
'description': 'Mistral-based model for German-

266

11.2.4

CHAPTER 11 Building locally running LLM-based applications using GPT4All

language applications
<1i>Fast responses</1i>
Chat based model</1li><1i>Trained by ellamindFinetuned
on German instruction and chat dataLicensed for
commercial use',

'url': 'https://huggingface.co/TheBloke/
em_german_mistral_v01-GGUF/resolve/main/
em_german_mistral_v01.Q4_0.gguf',

'promptTemplate': 'USER: %1 ASSISTANT: ',

'systemPrompt': 'Du bist ein hilfreicher Assistent. '}]

Because the list is quite long, it would be useful to extract only the model names and
the corresponding filenames, like this:

models = GPT4ALlLl.list_models()
[{model['name']:model['filename']} for model in models]
This code generates the following simplified list:

[{'Mistral OpenOrca': 'mistral-7b-openorca.Q4_0.ggquf'},
{'Mistral Instruct': 'mistral-7b-instruct-v0.1.Q4_0.gguf'},
{'GPT4A11l Falcon': 'gpt4all-falcon-q4_0.gguf'},

{'0Orca 2 (Medium)': 'orca-2-7b.Q4_0.gquf'},

{'Orca 2 (Full)': 'orca-2-13b.Q4_0.gguf'},

{'Wizard v1.2': 'wizardlm-13b-v1.2.Q4_0.gquf'},
{'Hermes': 'nous-hermes-1lama2-13b.Q4_0.gquf'},
{'Snoozy': 'gpt4all-13b-snoozy-q4_0.gguf'},

{'MPT Chat': 'mpt-7b-chat-merges-q4_0.gguf'},

{'Mini Orca (Small)': 'orca-mini-3b-ggquf2-q4_0.gguf'},
{'Replit': 'replit-code-v1_5-3b-q4_0.gquf'},
{'Starcoder': 'starcoder-q4_0.gquf'},

{'Rift coder': 'rift-coder-v0-7b-q4_0.ggquf'},

{'SBert': 'all-MinilLM-L6-v2-f16.gguf'},

{'EM German Mistral': 'em_german_mistral_v01.Q4_0.gguf'}]

Loading a specific model

Based on the models listed in section 11.2.3, you can load the model you want to use.
For this example, use the Mistral OpenOrca model (filename mistral-7b-openorca.Q4_0
.gguf):

gpt = GPT4A1L("mistral-7b-openorca.Q4_0.gguf")

NOTE Mistral Al is a startup in the Al sector. Its mission is to revolutionize
generative Al with its first LLM, Mistral 7B. The company hopes that its new
7-billion-parameter model will become an open source alternative to current
Al solutions.

When you load the model for the first time, GPT4All downloads mistral-7b-openorca
.Q4_0.gguf, which is a 4.11 GB file. The file is stored in the following directory:

~/.cache/gpt4all/

11.2.5

Installing GPT4AIl 267

You can print more information about this model using the config attribute:

print(gpt.config)

Here are the details of the Mistral OpenOrca model:

{

'systemPrompt': '',

"promptTemplate': '### Human: \n{0}\n### Assistant:\n',

‘order': 'a',

'mdSsum': '48de9538c774188eb25a7e9ee024bbd3 ",

'name': 'Mistral OpenOrca',

'filename': 'mistral-7b-openorca.Q4_0.gguf',

'filesize': '4108927744"',

'requires': '2.5.0"',

'ramrequired': '8',

'parameters': '7 billion',

‘quant': 'q4_0",

"type': 'Mistral’,

'description': 'Best overall fast chat model

Fast responses</1li>Chat based model</1li><1i>
Trained by Mistral AIFinetuned on OpenOrca dataset curated
via Nomic AtlasLicensed
for commercial use',

'path': '/Users/weimenglee/.cache/gpt4all/mistral-7b-
openorca.Q4_0.gguf'
}

Asking a question

With the model downloaded, you can put it to the test. To have a chat conversation
using GPT4All, use the chat_session() method to create a contextual manager in
which you can hold an inference-optimized chat session with a model. Then you can
use the generate() method to ask the question. The following code snippet shows how
to do this using the with keyword in Python:

with gpt.chat_session():
output = gpt.generate("What is the population of Japan?",
max_tokens=2048)
print(output)
print(gpt.current_chat_session)

The model’s response to the preceding question ("What is the population of Japan?") is

As of 2021, the estimated population of Japan is approximately
126 million people. However, this number may change over time
due to factors such as births, deaths, and migration.

Here’s a printout (formatted for clarity) of the details of the current session using the
current_chat_session attribute:

268

CHAPTER 11 Building locally running LLM-based applications using GPT4All

[

{
'role': 'system',
‘content': "'

}l

{
'role': 'user',
'content': 'What is the population of Japan?'

}l

{
'role': 'assistant',

'content': ' As of 2021, the estimated population of Japan is
approximately 126 million people. However, this number may
change over time due to factors such as births, deaths, and
migration.

¥
1

If you want to ask a follow-up question, you must do it within the scope of the with key-

word, like this:

with gpt.chat_session():
responsel = gpt.generate(
prompt='What is the population of Singapore?',
temp = 0)
print(responsel)
print(gpt.current_chat_session)
print('===")

response2 = gpt.generate(
prompt='Where is it located?',
temp = 0)

print(response?)

print(gpt.current_chat_session)

Here’s the response to the first question:

As of 2021, the estimated population of Singapore is around 5.6
million people. However, this number may change over time due to
births, deaths, and migration.

The current chat session value is

[

{
'role': 'system',
'content': "'

}l

{
'role': 'user',
'content': 'What is the population of Singapore?'

P

Installing GPT4AIl

'role': 'assistant',

'content': ' As of 2021, the estimated population of
Singapore is around 5.6 million people.
However, this number may change over time
due to births, deaths, and migration.'

Here’s the response to the follow-up question:

Singapore is a city-state and island country in Southeast Asia.
It lies off the southern tip of the Malay Peninsula, about

85 miles (137 kilometers) north of the equator. It shares

its only land border with Malaysia to the north. The country

consists of one main island, called Singapore Island, and
more than 60 smaller islands.

Following is the updated chat session:

[

{

-

'role': 'system',

'content': "'

'role': 'user',

'content': 'What is the population of Singapore?'
'role': 'assistant’,

‘content': ' As of 2021, the estimated population of

Singapore is around 5.6 million people.
However, this number may change over time
due to births, deaths, and migration.'

'role': 'user',

'content': 'Where is it located?'

'role': 'assistant',

'content': ' Singapore is a city-state and island country

in Southeast Asia. It lies off the southern
tip of the Malay Peninsula, about 85 miles

(137 kilometers) north of the equator. It

shares its only land border with Malaysia to
the north. The country consists of one main
island, called Singapore Island, and more than

60 smaller islands.\n\n'

269

270

11.2.6

CHAPTER 11 Building locally running LLM-based applications using GPT4All

As you can see, the chat session contains the details of the earlier conversation, allow-
ing the model to maintain the context. The following session won’t work because the
second question is not in the same context as the first question:

with gpt.chat_session():
responsel = gpt.generate(
prompt='What is the population of Singapore?',
temp = 0)
print(responsel)

with gpt.chat_session():
response?2 = gpt.generate(
prompt='Where is it located?',
temp = 0)
print(response2)

If you need to ask a follow-up question at another time, you can always save the context
using the gpt.current_chat_session attribute and set it back later. The following code
snippet shows how:

session = []

with gpt.chat_session():
responsel = gpt.generate(prompt='What is the population of Singapore?',

temp = 0)
print(responsel)
session = gpt.current_chat_session < Savesthe current chat session
with gpt.chat_session(): Sets the current chat session
to the previously saved one
gpt.current_chat_session = session

response2 = gpt.generate(prompt='Where is it located?', temp = 0)
print(response?)

Binding with Gradio

A great way to work with a GPT4All model is to bind it to Gradio. In the following code
snippet, first you define a function named chat() that calls the model’s generate()
method:

from gpt4all import GPT4A1ll
gpt = GPT4A11("mistral-7b-openorca.Q4_0.gguf")

def chat(message):
with gpt.chat_session():
return gpt.generate(prompt

= message,
temp = 0)

Installing GPT4AIl 271

Then you can use Gradio and bind it to the chat() function:
import gradio as gr

gr.Interface(fn = chat, < Bindsit to Gradio
inputs = "text",
outputs = "text").launch()

Figure 11.11 shows what the Gradio interface looks like at this point.

Running on local URL: http://127.0.0.1:7861

To create a public link, set “share=True' in ‘launch()’.

message output

Clear Submit Flag

Figure 11.11 Binding the model to Gradio

You can ask a question, click the Submit button, and obtain the response from the
model (see figure 11.12).

message output

| Name me the countries in Africa There are 54 countries in Africa. Some of them
- include Algeria, Egypt, Ethiopia, Ghana, Kenya,
Morocco, Nigeria, South Africa, Sudan, and Tunisia.

Clear Submit

Flag

Figure 11.12 Asking a question through the Gradio interface

Remember that you can’t ask a follow-up question: every time you click the Submit but-
ton, the chat() function starts a new chat session. To fix this problem, you need to save
the current chat session’s details in a global variable and set it back every time you ask
a follow-up question, like this:

272 CHAPTER 11 Building locally running LLM-based applications using GPT4All

import gradio as gr
from gpt4all import GPT4A1L

gpt = GPT4ATL("mistral-7b-openorca.Q4_0.gguf")
current_chat_session = []

def chat(message):
with gpt.chat_session():
global current_chat_session
gpt.current_chat_session = current_chat_session
response = gpt.generate(prompt = message,
temp = 0)

current_chat_session = gpt.current_chat_session
return response

bind it to gradio
gr.Interface(fn = chat,
inputs = "text",
outputs = "text").launch()

Figure 11.13 shows a user asking two consecutive questions through the Gradio
interface:

Initial question

message output

Which country has the most powerful passports? The Henley Passport Index, which ranks countries
based on the travel freedom their citizens enjoy,
currently shows that Japan holds the strongest

as5ports.
Clear Submit s

Flag

Follow-up question

message output

Why is that so? The strength of a passport depends on the
number of countries its halders can visit without
needing a visa in advance or obtaining one upon
arrival. Factors affecting this include diplomatic
relations between countries, geopolitical
considerations, and economic influence. Japan's
strong passports are likely due to their positive
international relationships, advanced economy,
and overall global standing.

Clear Submit

Flag

Figure 11.13 You can ask follow-up questions through the Gradio interface.

Installing GPT4AIl 273

If you use the application long enough, you’ll realize that having to clear the message
every time you want to ask a follow-up question is troublesome. A much more intuitive
UI would behave more like a chat application. In fact, you can use Gradio to build a
chatbot-like UI. The following code listing shows how to wrap the GTP4All call with a
chatbot-like UI using Gradio.

Listing 11.2 Displaying a chatbot Ul using Gradio

import gradio as gr

fFrom gpt4all import GPT4ATL Blocks is a low-level API . ..

. ... that allows you to create
t = GPT4ALL("mistral-7b-openorca.Q4_0.gguf") s
gﬂrrent chat_session = [] P Q 99 custom web applications.

with gr.Blocks() as mychatbot: Displays a chatbot . ..

... for the user to
chatbot = gr.Chatbot() ask a question.
question = gr.Textbox()

clear = gr.Button("Clear Conversation") <— (lear button

def clear_messages():
global current_chat_session

current_chat_session = [] "] Resets the messages list

‘ Function to clear the conversation

def chat(message, chat_history):
with gpt.chat_session():
global current_chat_session
gpt.current_chat_session = current_chat_session

‘ Function to ask the LLM a question

response = gpt.generate(prompt = message,
temp = 0)
current_chat_session = gpt.current_chat_session

Appends the response to
the current message and

chat_history.append((message, response)) <FJrenwnsktoGraﬁo

return "", chat_history ‘ The “” is to clear the input text box.
question.submit(fn = chat, X Wires up the event handler
inputs = [guestion, chatbot], for the Submit button (when
outputs = [question, chatbot]) the user presses Enter)

clear.click(fn = clear_messages,
inputs = None,
outputs = chatbhot,
queue = False)

Wires up the event handler for
the Clear Conversation button

mychatbot.launch()

274 CHAPTER 11 Building locally running LLM-based applications using GPT4All

Note that this time around, the chat() function accepts two arguments (the question
to ask and the chat history):

def chat(message, chat_history):

After the model has responded with the answer, you append the response to the chat_
history parameter and return it with a string (set to “” in this example). The string is
used to display the text in the input text box:

chat_history.append((message, response))

return "", chat_history The “” is to clear the

input text box.

When you run this code snippet, you see the Ul shown in figure 11.14. Now you can
chat with the model to your heart’s content (see figure 11.15)!

Chatbot

+—___ Chat history
here

Textbox

Type your
question here.

»—__ Clear the chat

Clear Conversation .
conversation.

| Juilt with Gradio &

Figure 11.14 The chatbot Ul displayed by Gradio

Summary

Chatbot

Who is the CEO of Apple?

The CEO of Apple is Tim Cook. Please remember that these positions can also

change over time due to company restructuring or personnel changes.

When was the previous CEO?

The previous CEO of Apple, before Tim Cook took office, was Steve Jobs who

passed away in October 2011.

Textbox

Clear Conversation
3| ¥ Built with Gradio &8

Figure 11.15 Chatting with the model is much easier and more natural.

Summary

275

~— —~___ Previous
question

»—~___ Response to
the question

Type your
question here.

«—__ Clear the chat
conversation.

GPT4All is an open source project containing several pretrained LLMs that you

can run locally using consumer-grade CPUs.

GPT4All comes with an end-user application that enables you to try out the vari-

ous models supported by GPT4All.

You can use the GPT4All Python library to work with the models programmati-

cally in Python.

A great way to build a web Ul for your chatbot is to use the Gradio library.

Using LLMs to query
your localdata

This chapter covers

Using GPT4AIl to query your private data
Using PDF documents for querying by a large
language model (LLM)

Loading CSV and JSON files for querying
Using LLMs to analyze your data files

Up to this point, you’ve explored the capabilities of LLMs and their use through
platforms such as OpenAl and Hugging Face. Although these services ease the bur-
den of hosting models, they come at a cost. But running powerful models locally
also requires significant setup effort and cost.

Developers often face the common challenge of using LLMs to answer questions
about their data, whereas businesses emphasize the need to maintain data privacy.
Chapter 8 discussed sending data to OpenAl for embedding and querying with
LangChain and Llamalndex. This chapter delves deeper into the topic, focusing on
querying local private documents without compromising data privacy. The chapter
discusses two approaches:

276

12.1

12.1.1

Using GPT4All to query with your own data 277

Local LLM querying for text-based data—We’ll use a model from GPT4All to per-
form local embedding of your text-based data and querying. This approach is
particularly useful for querying content such as PDF documents.

LLM querying for structured tabular data—Whether LLMs are running locally or
hosted by third parties such as OpenAl and Hugging Face, you can employ them
to return answers on querying tabular data (such as CSV or JSON). Instead of
feeding LLMs tabular data directly, we’ll instruct them to provide queries pro-
grammatically for analysis.

These two approaches cater to different data types and privacy concerns, ensuring flex-
ibility and effectiveness in using LLLMs for varied scenarios.

Using GPT4AII to query with your own data
The first approach uses a GPT4All model to query our own data. To ensure the privacy

of your data, the embeddings for the data will be performed locally without leaving the
computer. You’ll learn how to query the following types of documents:

PDF
csvV
JSON

The following sections walk you through the entire process for each of these document
types.

Installing the required packages
In this section, you’ll use the following Python packages:

langchain—You’ll use LangChain to chain the model with various components
such as a prompt template and embeddings.

gpt4all—You’ll use a model from GPT4All.

faiss-cpu—Facebook Al Similarity Search (FAISS) is a library developed by
Facebook Al Research; it’s used to make efficient similarity searches and cluster
dense vectors. Use faiss-cpu if you don’t have a graphics processing unit (GPU)
on your computer; if you do, use faiss-gpu.

huggingface-hub—The huggingface-hub package is a Python library developed
by Hugging Face that provides a convenient interface for interacting with Hug-
ging Face Hub, a platform for sharing machine learning models, datasets, and
other Al-related assets.

Sentence-transformers—You’ll use a sentence-transformers model from Hug-
ging Face Hub. A sentence-transformers model maps sentences and paragraphs
to a multidimensional dense vector space and is used for tasks such as clustering
and semantic search.

To install all these packages, type the following commands in Terminal (macOS) or
Anaconda Prompt (Windows):

278

12.1.2

12.1.3

CHAPTER 12 Using LLMs to query your local data

pip install langchain

pip install gpt4all

pip install faiss-cpu

pip install huggingface-hub

pip install sentence-transformers

6 H HH

Importing the various modules from the LangChain package

When the required packages are installed, import the various modules from the
langchain package to Jupyter Notebook:

from langchain.document_loaders import PyPDFLoader

from langchain import PromptTemplate

from langchain.embeddings import HuggingFaceEmbeddings

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores.faiss import FAISS

from langchain_core.output_parsers import StrOutputParser

from langchain.llms import GPT4A1l

The next few sections discuss the uses of these modules.

Loading the PDF documents

To build a chatbot to answer queries based on your local data, you need to load the
data. Let’s start with a PDF document. To load PDF documents, you can use the PyPDF-
Loader class from the document_loaders module in langchain:

documents =
PyPDFLoader('./LocalDataForTraining/Invoicel.pdf').load_and_split()

This statement loads the Invoicel.pdf document from the LocalDataForTraining
directory, which is stored in the same directory as your Jupyter notebook. After the
document is loaded as a PyPDFLoader object, you call the load_and_split() method to
split the loaded document into chunks. Chunks are returned as Document objects.

Figure 12.1 shows the PDF document, which is an invoice of items purchased online.
In this project, you want to get the LLM to answer questions pertaining to the content
of the document.

If you print the content of the documents variable, you see the following list of
Document objects:

[Document(metadata={'source': './LocalDataForTraining/Invoicel.pdf',
'page': 0}, page_content='Lazada Singapore Pte Ltd is raising this
invoice in accordance to the applicable tax laws in Singapore\nThis
shipment includes any taxes (when applicable) for the merchandise to

be delivered to the address in the country\nspecified by the customer.
LAZADA pays these taxes on behalf of the customer.\nTo understand our
return policy and find out how to return, please click .here\nNEED HELP?
Contact us at https://www.lazada.sg/contact/\nLIKE US on FACEBOOK:
https://www.facebook.com/LazadaSingapore\nFOLLOW US on TWITTER:

Using GPT4All to query with your own data 279

https://www.twitter.com/LazadaSG/\nHave a great day! Thank you for
shopping on www.LAZADA.sg\n \nLAZADA SINGAPORE PTE. LTD.\nLazada
One\n51 Bras Basah Rd\nSingapore 189554\nCo. Reg. No.: 201403859E\nGST
Reg. No.: M90369204E\nTAX INVOICE\nBilling Address:\nLee Wei Meng\n, ,

\n , Invoice No.: \nSGLVGTI2023100000801372\nInvoice Date: 19-10-
2023\n0rder Number.: 108630139411340\n0rder Date: 19-10-2023\nS/N Seller
Name Item ID Description Item SKU QtyUnit Price \n(excl. GST)Total Price
\n(excl. GST)\n1ESSAGER.\nSelection2775216736Essager 100W/60w USB Type C
To \nUSB C Cable USB-C PD Fast \nCharging Charger Wire Cord For \nMachook
Samsung Xiaomi vivo Type-\nC USBC CableColor:black 160w, \nCable Length:
3M1 SGD 3.81 SGD 3.81\n2ESSAGER.\nSelection2775216736Essager 100W/60w USB
Type C To \nUSB C Cable USB-C PD Fast \nCharging Charger Wire Cord For
\nMacbook Samsung Xiaomi vivo Type-\nC USBC CableColor:black 100w, \nCable
Length:3M1 SGD 3.81 SGD 3.81\n3ESSAGER.\nSelection2775216736Essager
100W/60w USB Type C To \nUSB C Cable USB-C PD Fast \nCharging Charger Wire
Cord For \nMacbook Samsung Xiaomi vivo Type-\nC USBC CableColor:black 100w,
\nCable Length:3M1 SGD 3.81 SGD 3.81\nTOTAL: SGD 11.43\nTotal Unit Price
(excluding GST) SGD 11.43\nTotal Shipping (excluding GST) SGD 0.93\nlLess:
Discount SGD -6.18\nTotal (excluding GST) SGD 6.18\n8% GST SGD 0.51\nTotal
(including GST) SGD 6.69\nLess: Credits SGD -0.00\nTotal Payment Amount SGD
6.69\n**This is a computer generated copy. No signature is requiredxx')]

S8 @ [Moseind & aah £ - 0 @0 = q

LAZADA SINGAPORE PTE. LTD.

Luzada One

. Lazada e
Singapore 189354

Co. Reg. No.: 201403239E

05T Reg. No- MW36YHME

TAX INVOICE
i . Tnvaokes Moo
mu‘;g x.\::lﬂ'-!*- SGLVGTI202 31 NH0&H1ITY
el Meng Invoice Date; 19-10-2023
Ordor Numabser,: 1OSE01 35411340
e

Order Date: 19-10-2023

Total Price
{excl. GET}

Seller Name Teem ID Ttem SKU

Fasager |00W;6(hw USH Type © To
USH C Cahle USH-C D Fast 2
“alar bl v,
1 Fﬁfﬁ"m 1775216736 |Charging Charges Wise Card Foc ::”."I"i Bk ;':: 1 SGD 381 50D 381
=i ik Machomk Samsung Xinomi viva Type. |0 T80
C USBC Cable
Essager | 00W,biw USE Type C To
e USH C Cable USB-C PD Fast .

3 | ESSAGER. | 9o0ey16736 | Charging Charger Wire Card For CoPMat o0, | 9 RGOS | SGDIM

Selection it (Catle Lengihiind

Mashank Samsung Xiunen viva Type-

C USBC Crble
Fasager | W6l USSR Type C T
USB € Cable USB-C PD Fast

ESSAGER. 3 ; Calurzhlack. 100w
i i 21756730 [Chargizg Charger Wire Cond For i e | AGDAAD SGD 3R
Setetrion Wachoak Samamg Xinoen viva Type- [Co s Leogd3he
C USBC Cible
TOTAL: | SGI 1142
Figure 12.1
“Total Unit Price (excluding GST) SGD 1143
Toial Shipping excluding GST) SGD083 The content
T.ess: Discount SGI 4.8
Tatul {excluding GST) SGD 618 of the PDF
A% GST SGI05] :
Tatal (including GST) SODGAY document is an
Less: Credits SGO 000 : : ioti
Tatul Payment Amount SGDEAY invoice listing
purchased

items.

280 CHAPTER 12 Using LLMs to query your local data

12.1.4 Splitting the text into chunks

The next step is using a RecursiveCharacterTextSplitter object to split the document
into chunks of a specific size. This process is known as chunking.

DEFINITION In natural language processing (NLP), chunking is the process
of breaking text into smaller, meaningful units (chunks). For LLMs, a model
typically works within a specific context length, such as 4,096 tokens (approx-
imately equivalent to 3,500 words). When you give this model a document
larger than its context window, it won’t be able to work with the document, so
you need to break the document into smaller chunks that can fit in the mod-
el’s context window.

The following code snippet creates a RecursiveCharacterTextSplitter object to split
the document into chunks:

text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1024,
chunk_overlap = 64)
texts = text_splitter.split_documents(documents)

If you print out the content of the texts variable, you see the following (formatted for
clarity):

[

Document(metadata={'source': './LocalDataForTraining/Invoicel.pdf',
'page': 0}, page_content='Lazada Singapore Pte Ltd is raising this invoice
in accordance to the applicable tax laws in Singapore\nThis shipment
includes any taxes (when applicable) for the merchandise to be delivered
to the address in the country\nspecified by the customer. LAZADA pays
these taxes on behalf of the customer.\nTo understand our return policy
and find out how to return, please click .here\nNEED HELP? Contact us at
https://www.lazada.sg/contact/\nLIKE US on FACEBOOK:
https://www.facebook.com/LazadaSingapore\nFOLLOW US on TWITTER:
https://www.twitter.com/LazadaSG/\nHave a great day! Thank you for
shopping on www.LAZADA.sg\n \nLAZADA SINGAPORE PTE. LTD.\nLazada
One\n51 Bras Basah Rd\nSingapore 189554\nCo. Reg. No.: 201403859E\n
GST Reg. No.: M90369204E\nTAX INVOICE\nBilling Address:\nLee Wei
Meng\n, , \n , Invoice No.: \nSGLVGTI2023100000801372\nInvoice
Date: 19-10-2023\n0Order Number.: 108630139411340\n0rder Date:
19-10-2023\nS/N Seller Name Item ID Description Item SKU QtyUnit
Price \n(excl. GST)Total Price \n(excl. GST)\n1ESSAGER.'),

Document(metadata={'source': './LocalDataForTraining/Invoicel.pdf',
'page': 0}, page_content='(excl. GST)Total Price \n(excl.GST)
\N1ESSAGER.\nSelection2775216736Essager 100W/60w USB Type C To \nUSB C
Cable USB-C PD Fast \nCharging Charger Wire Cord For \nMacbook Samsung
Xiaomi vivo Type-\nC USBC CableColor:black 100w, \nCable Length:3M1 SGD
3.81 SGD 3.81\n2ESSAGER.\nSelection2775216736Essager 100W/60w USB Type
C To \nUSB C Cable USB-C PD Fast \nCharging Charger Wire Cord For
\nMacbook Samsung Xiaomi vivo Type-\nC USBC CableColor:black 100w,
\nCable Length:3M1 SGD 3.81 SGD 3.81\n3ESSAGER.\nSelection2775216736
Essager 100W/60w USB Type C To \nUSB C Cable USB-C PD Fast \nCharging

12.1.5

Using GPT4All to query with your own data 281

Charger Wire Cord For \nMacbook Samsung Xiaomi vivo Type-\nC USBC
CableColor:black 100w, \nCable Length:3M1 SGD 3.81 SGD 3.81\nTOTAL:
SGD 11.43\nTotal Unit Price (excluding GST) SGD 11.43\nTotal Shipping
(excluding GST) SGD 0.93\nLess: Discount SGD -6.18\nTotal (excluding
GST) SGD 6.18\n8% GST SGD 0.51\nTotal (including GST) SGD 6.69\nLess:
Credits SGD -0.00\nTotal Payment Amount SGD 6.69\n**This is a computer
generated copy. No signature is required**')

]

Embedding

The next step is performing sentence embeddings on the document text.

DEFINITION In NLP, embedding refers to the representation of words, phrases,
or sentences as vectors in a high-dimensional space. This numerical represen-
tation allows machines to process and understand language. Word embeddings
capture the meaning and relationships of individual words, so words with sim-
ilar meanings have similar vector representations. Sentence embeddings extend
this idea to entire sentences or phrases, encoding their overall meaning and
context into a single vector. The main purpose of embeddings—whether for
words or sentences—is to capture both semantic and syntactic relationships,
enabling more effective language understanding and processing by machines.

For sentence embedding, you’ll use the sentence-transformers/all-MinilM-L6-v2
model hosted on Hugging Face Hub:

embeddings = HuggingFaceEmbeddings(
model_name = 'sentence-transformers/all-MinilM-L6-v2"')
faiss_index = FAISS.from_documents(texts, embeddings)

The sentence-transformers/all-MinilM-L6-v2 model maps sentences and paragraphs
to a 384-dimensional dense vector space. You’ll use the FAISS library to perform the
embedding.

NOTE When you run the preceding code snippet for the first time, Jupyter
Notebook will download the model from Hugging Face Hub.

When the embedding is complete, save the embeddings in a local directory (index in
this example):

faiss_index.save_local("./index")

When the embeddings are saved, the index folder will contain two files:
index.faiss
index.pkl
The embedding must be performed only once unless your document content changes.

The embeddings are saved to a local directory, so when you need to run the model to
query the document, you can simply load it without performing the embeddings again.

282

12.1.6

12.1.7

CHAPTER 12 Using LLMs to query your local data

Loading the embeddings

To load the embeddings from disk, use the load_local() function from the FAISS
library:

embeddings = HuggingFaceEmbeddings(
model_name = 'sentence-transformers/all-MinilM-L6-v2')
faiss_index = FAISS.load_local("./index", embeddings)

NOTE When loading a FAISS index from local storage, you must re-create
the embedding model used to build the index. In the preceding example,
the HuggingFaceEmbeddings object is initialized again with the same model
(sentence-transformers/all-MinilM-L6-v2) to ensure consistency.

Downloading the model

Now that the embedding part is settled, it’s time to download the model you want to
use to query your document. The easiest way to download a model is to use the GPT4ATL
class in the gpt4all package:

from gpt4all import GPT4A1ll
1lm = GPT4AL1("mistral-7b-openorca.Q4_0.gguf")

Here, you’re using the mistral-7b-openorca.Q4_0.gguf model, but you can always use
other models from GPT4All. At this writing, you can use all of the following models:

mistral-7b-openorca.Q4_0.gguf

mistral-7b-instruct-v0.1.Q4_0.gguf

gpt4all-falcon-q4_0.gguf

orca-2-7b.Q4_0.gguf

orca-2-13b.Q4_0.gguf

wizardlm-13b-v1.2.Q4_0.gguf

nous-hermes-1lama2-13b.Q4_0.gguf

gptdall-13b-snoozy-q4_0.ggquf

mpt-7b-chat-merges-q4_0.gguf

orca-mini-3b-gguf2-q4_0.gguf

replit-code-v1_5-3b-q4_0.ggquf

starcoder-q4_0.gguf

rift-coder-v0-7b-q4_0.ggquf

all-MinilLM-L6-v2-f16.gguf

em_german_mistral_v01.Q4_0.gguf

As discussed in chapter 11, you can also programmatically find the latest models you
can use with this code:

12.1.8

Using GPT4All to query with your own data 283

from gpt4all import GPT4A1L
GPT4A1Ll.list_models()

When the model (mistral-7b-openorca.Q4_0.gguf) is downloaded, it is saved in the
~/.cache/gpt4all folder.

Asking questions

You’re ready to get the model to answer questions pertaining to the documents. The
first step is loading the model:

from langchain.llms import GPT4All
1lm = GPT4Al1l1(model="'mistral-7b-openorca.Q4_0.gguf')

This example uses the GPT4ALL class from the langchain.llms module. When you
downloaded the model, you used the 6PT4A11 class from the gpt4all package. The rea-
son for downloading the model earlier is that if the model file (mistral-7b-openorca
.Q4_08.9guf) can’t be found in the ~/.cache/gpt4all/ path, the preceding statement
will return a validation error. Therefore, make sure that the model is downloaded first.

NOTE The model the GPT4A1L class returns from the langchain.1llms module
is of type langchain_community.llms.gpt4all.GPT4A1l, whereas the model
the GPT4ALL class returns from the gpt4all package is of type gpt4all.gpt4all
.GPT4A1L.

Next, create a prompt template:

template = """

Please use the following context to answer the question concisely
and without including the context in your answer.

Context: {context}

Question: {question}

Answer:

The prompt template has two variables: context and question. You'll create the two
variables in a function named ask_question():

. . Retrieves the four most similar
def ask_question(question): documents based on the question

matched_docs = faiss_index.similarity_search(question, 4)

context = "" Appends all the
matched documents
for doc in matched_docs:
context += doc.page_content + " \n\n" Creates the prompt
template and passes
prompt = PromptTemplate(template = template, in the context variable

input_variables=["context", "question"]).partial(

284

12.1.9

CHAPTER 12 Using LLMs to query your local data

context = context)

chain = prompt | 1lm | StrOutputParser() <« Creates the chain
return chain.invoke({"question": question})

The function takes a single parameter: question, which is the question that you want
to pose to the model. Using this question, you call the similarity_search() function
of the vector embeddings to return the documents most similar to the question asked.
Then you use the matched documents to create a prompt template. Next, you use the
PromptTemplate instance, the 1lm object, and the StrOutputParser object to create a
chain. Finally, to ask the model a question, you call the invoke () function. To allow the
user to ask questions continuously, wrap the ask_question() function in a while loop:

while True:
print(ask_question(input('Question: ')))

Figure 12.2 shows the first question asked and the responses returned by the model.

Question from user

In [*]: 1 while True:
2 print(ask_question(input('Question: '}))

Question: What items did I buy?

You bought three Essager USB Type C cables, all with a cable length of
3M and color black. Each cable has a capacity of 10@W/60w for fast char
ging. The prices are SGD 3.81 each (excluding GST).

Question: ||

Response by model

Figure 12.2 Posing a question and getting a response

Here’s another question you can ask:

How much did I pay in total?

The model responds as follows:

You paid a total of SGD 6.69, including GST.

Loading multiple documents

In real life, you probably have more than one document that you want the model to
answer questions about. In the previous section, we used a PyPDFLoaded object to load
and split a document and then used it to derive its embeddings:

Using GPT4All to query with your own data 285

documents =
PyPDFLoader('./LocalDataForTraining/Invoicel.pdf').load_and_split()
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1024,
chunk_overlap = 64)
texts = text_splitter.split_documents(documents)

embeddings = HuggingFaceEmbeddings(
model_name = 'sentence-transformers/all-MinilM-L6-v2"')
faiss_index = FAISS.from_documents(texts, embeddings)

What if you have multiple documents? Let’s assume that the LocalDataForTraining
folder contains three documents: Invoicel.pdf, Invoice2.pdf, and Invoice3.pdf. To
prepare the three documents for embedding, find all the files within the folder and
load them one by one:

import os
pdf_folder_path = "./LocalDataForTraining/"
pdf_dir = os.listdir(pdf_folder_path)
For macOS only
pdf_dir.remove('.DS_Store')

loaders = [PyPDFLoader(os.path.join(pdf_folder_path, fn)) Loads multiple files
for fn in pdf_dir] 4444J

For each file loaded, perform the splitting, and add the split text to a list:

all_documents = []

for loader in loaders:
documents = loader.load_and_split()
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1024,
chunk_overlap = 64)
documents = text_splitter.split_documents(documents)
all_documents.extend(documents)

Then you can perform the embedding using the list of split text:

embeddings = HuggingFaceEmbeddings(
model_name = 'sentence-transformers/all-MinilM-L6-v2"')

faiss_index = FAISS.from_documents(all_documents, embeddings)
faiss_index.save_local("./index")

The rest of the code is like what you saw in section 12.1.8:

template = """

Please use the following context to answer the question concisely
and without including the context in your answer.

Context: {context}

Question: {question}

Answer:

286 CHAPTER 12 Using LLMs to query your local data

def ask_question(question):
matched_docs = faiss_index.similarity_search(question, 4)
context = ""

. Retrieves the four
for doc in matched_docs: most similar

context += doc.page_content + " \n\n" documents based
prompt = PromptTemplate(template = template, h on the question
input_variables=["context", "question"]).partial(
context = context)
chain = prompt | 1lm | StrOutputParser()
return chain.invoke({"question": question})

Appends all the
matched documents

while True: Creates Creates the prompt

; : : ' S the chain template and passes
print(ask_question(input('Question: '))) in the context variable

12.1.10 Loading CSYV files

In addition to loading PDF documents, you can load CSV documents for querying. As
you’ll see, LLMs aren’t good at analyzing tabular data. They’re good at processing text-
based queries, but when it comes to summarizing data, you can employ better tech-
niques than using LLMs.

The CSV example in this section is the titanic_train dataset (https://mng.bz/
4nov), a well-known dataset containing details of passengers on the RMS Titanic that is
often used for machine learning. Figure 12.3 shows the fields of the CSV file and some
of the data in it.

Titanic_train
Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
|] 3 | Braund, Mr. Owen Harris male 22 1 0 A5 21171 7.25 -]
2 1 1 . Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38 1 0 PC 17599 71.2833 | C85 C
3 1 3 | Heikkinen, Miss. Laina female | 26 0 0 STON/O2. 3101282 7.925 k]
4 1 1| Futrelle, Mrs. Jacques Heath (Lily May Peel) female | 35 1 0 113803 53.1 | C123 8
5 0 . 3 | Allen, Mr. William Henry male 35 0 0 373450 8.05 s
6 0 3 | Moran, Mr. James male 0 0 330877 8.4583 Q
7 0 1| McCarthy, Mr. Timothy J male 54 0 0 17463 51.8625 E46 8
8 0 3 . Palsson, Master. Gosta Leonard male 2 3 1 349909 | 21.075 s
] 1 3 | Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female | 27 0 2 347742 111333 k]
10 1 . 2 | Nasser, Mrs. Nicholas (Adele Achem) female | 14 1 0 237736 30.0708 c
11 1 3 | Sandstrom, Miss. Marguerite Rut female 4 1 1 PP 9549 16.7 G6 s
12 1 . 1 . Bonnell, Miss. Elizabeth female | 58 0 0 113783 26.55 C103)

Figure 12.3 The Titanic dataset (Titanic_train.csv)

To load the CSV file, use the CSVLoader class from the document_loaders module in the
langchain package. The following code snippet loads the Titanic_train.csv file:

from langchain.document_loaders import CSVLoader
documents = CSVLoader('./Titanic_train.csv').load_and_split()

https://mng.bz/4nov
https://mng.bz/4nov

Using GPT4All to query with your own data 287

When the CSV file is loaded, you can perform the splitting and vector embeddings as
you did earlier, as shown in the following listing.

Listing 12.1 Performing splitting and vector embeddings

text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1024,
chunk_overlap = 64)
texts = text_splitter.split_documents(documents)

embeddings = HuggingFaceEmbeddings(
model_name = 'sentence-transformers/all-MinilM-L6-v2')

faiss_index = FAISS.from_documents(texts, embeddings) .
Retrieves the

def ask_question(question): @uqmoﬁ
matched_docs = faiss_index.similarity_search(question, 4) 2$L:;n“
context = " based on the
for d N +ched d . question
or doc in matched_docs: Appends all the
context += doc.page_content + " \n\n" matched documents
prompt = PromptTemplate(template = template, Creates the prompt
input_variables=["context", "question"]).partial(template and passes
context = context) in the context variable

chain = prompt | 1lm | StrOutputParser() < (reates the chain
return chain.invoke({"question": question})

Using the ask_question() function defined in section 12.1.9, try asking some questions:

How many male passengers were there?

The response is 4, which is obviously wrong because we did a similarity search on the
CSV data before we posed the question to the LLM:

Retrieves the four most similar

. . documents based on the question
def ask_question(question):

matched_docs = faiss_index.similarity_search(question, 4)
context = ""

for doc in matched_docs: Appends all the
context += doc.page_content + " \n\n" matched documents

The similarity search ended with four male passengers because we set 4 in the second
parameter of the similarity_search() function, as shown in the next listing.

Listing 12.2 Result of the similarity search

PassengerId: 489
Survived: 0
Pclass: 3

288 CHAPTER 12 Using LLMs to query your local data

Name: Somerton, Mr. Francis William
Sex: male

Age: 30

SibSp: O

Parch: 0

Ticket: A.5. 18509

Fare: 8.05

Cabin:

Embarked: S

PassengerId: 297
Survived: 0
Pclass: 3

Name: Hanna, Mr. Mansour
Sex: male

Age: 23.5

SibSp: O

Parch: 0

Ticket: 2693
Fare: 7.2292
Cabin:

Embarked: C

PassengerId: 46
Survived: 0

Pclass: 3

Name: Rogers, Mr. William John
Sex: male

Age:

SibSp: O

Parch: 0

Ticket: S.C./A.4. 23567

Fare: 8.05

Cabin:

Embarked: S

PassengerId: 407
Survived: O
Pclass: 3

Name: Widegren, Mr. Carl/Charles Peter
Sex: male

Age: 51

SibSp: O

Parch: 0

Ticket: 347064
Fare: 7.75
Cabin:

Embarked: S

Based on this result, when you asked the LLM the question, the LLM examined only
this result and concluded that there were only four male passengers. Likewise, if you
asked how many female passengers there were, the LLM would also return 4.

Using GPT4All to query with your own data 289

Let’s try another question. This time, ask for the titles (salutations) in the names of
the passengers:

Show me the titles in the names of the passengers

This time, the LLM returned

Mr., Mr.

Not too bad! The model missed additional titles, however, such as Miss, Rev., and
Master. The reason why it returned only two (Mr. and Mr.) is due to the result of the
similarity search. In this case, the search returned four passengers, all of whom had the
same title: Mr.

This example illustrates why LLMs are good for textrelated questions, such as
extracting the titles of names, but bad for ingesting large amounts of data and then ana-
lyzing that data. In section 12.2, I show you how to solve this problem by getting an LLM
to write the code so you can execute it to analyze your own data.

12.1.11 Loading JSON files

In addition to PDF and CSV files, JSON files are common data sources. As they do with
CSV files, LLMs have difficulty summarizing data stored in JSON files, but they’'re good
at handling textrelated questions. Nevertheless, I'll show you how to load JSON files so
that LLMs can query them. This example uses partial content from a JSON file named
nobel_laureates.json

Listing 12.3 Content of the nobel_laureates.json JSON file

{
"laureates": [
{
"id": "1",
"firstname": "Wilhelm Conrad",

"surname": "R\\uBOféntgen",
"born": "1845-03-27",
"died": "1923-02-10",

"pornCountry": "Prussia (now Germany)",
"bornCountryCode": "DE",

"pornCity": "Lennep (now Remscheid)",
"diedCountry": "Germany",

"diedCountryCode": "DE",
"diedCity": "Munich",

"gender": "male",
"prizes": [
{
"year": "1901",
"category": "physics",
"share": "1",

"motivation": "\"in recognition of the

290 CHAPTER 12 Using LLMs to query your local data

extraordinary services he has rendered
by the discovery of the remarkable rays
subsequently named after him\"",
"affiliations": [
{
"name": "Munich University",
"city": "Munich",
"country": "Germany"

P

"id": "2",
"firstname": "Hendrik Antoon",
"surname": "Lorentz",
"born": "1853-07-18",
"died": "1928-02-04",
"bornCountry": "the Netherlands",
"bornCountryCode": "NL",
"bornCity": "Arnhem",
"diedCountry": "the Netherlands",
"diedCountryCode": "NL",
"gender": "male",
"prizes": [
{
"year": "1902",
"category": "physics",
"share": "2",
"motivation": "\"in recognition of the
extraordinary service they rendered by
their researches into the influence of
magnetism upon radiation phenomena\"",
"affiliations": [
{
"name": "Leiden University",
"city": "Leiden",
"country": "the Netherlands"

To load the JSON file, use the JSONLoader class from the document_loaders module in
the langchain package. The JSONLoader class uses a specified jg schema to parse the
JSON files, so you have to install the jq Python package first:

$ pip install jq

NOTE jqis alightweight, flexible command-line JSON processor.

Using GPT4All to query with your own data 291

The following code snippet loads the JSON file and applies the .laureates[] schema
to load its content:

from langchain.document_loaders import JSONLoader

documents = JSONLoader('./nobel_laureates.json',
jg_schema="'.laureates[]",
text_content=False).load_and_split()
documents

Figure 12.4 shows how to specify the schema to load the elements in the JSON

document.

Root of the Name of Array of
document the key elements

7~

jg schema='.laureates|[]"',

.

Pt 1
{

Ilidll: Illll,
"firstname": "Wilhelm Conrad",
"surname": "R\\ueefentgen",

"born": "1845-03-27",

"died": "1923-02-10",

"bornCountxry": "Prussia (now Germany)",

"bornCountryCode": "DE",

"bornCity": "Lennep (now Remscheid)",

"diedCountxy": "Germany",

"diedCountryCode": "DE", Figure 12.4 Specifying

"diedCity": "Munich", the schema to load the
"gender": "male", JSON document

The rest of the code is identical to what you used for the PDF content:

Uses the model to convert input
text to dense numerical vectors

text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1024,
chunk_overlap = 64)
texts = text_splitter.split_documents(documents)

embeddings = HuggingFaceEmbeddings(
model_name = 'sentence-transformers/all-MinilM-L6-v2"') -

292

12.2

CHAPTER 12 Using LLMs to query your local data

faiss_index = FAISS.from_documents(texts, embeddings)

template = """
Please use the following context to answer the question concisely
and without including the context in your answer.

Context: {context} Builds an index to retrieve
Question: {question} similar documents quickly
Answer:

Retrieves the four most similar
documents based on the question

def ask_question(question):
matched_docs = faiss_index.similarity_search(question, 4)

context = "" Appends all the
for doc in matched_docs: matched documents
context += doc.page_content + " \n\n"

prompt = PromptTemplate(template = template, Creates the prompt
input_variables=["context", "question"]).partial(template and passes
context = context) in the context variable

chain = prompt | 1lm | StrOutputParser() < (Creates the chain
return chain.invoke({"question": question})

while True:
print(ask_question(input('Question: ')))

Let’s ask some questions and see the responses:

Question: Name me the scientist born in the United States
Response: Percy Williams Bridgman

Question: Who were affiliated with Harvard University?
Response: James Dewey Watson and Dudley R. Herschbach were both affiliated
with Harvard University.

The model’s performance here is similar to its performance on the CSV document.
That is, the LLM excels in handling textrelated questions but is not very capable of
summarizing the data.

Using LLMs to write code to analyze your data

LLMs are designed to understand and generate humanlike text and have limited abil-
ity to analyze and summarize data. As you saw in earlier sections of this chapter, when
you analyze data that is stored in a tabular format such as CSV or JSON, an LLM has
limited capability to perform tasks that require data analytics.

The primary obstacle to employing most local LLMs for this purpose lies in the lim-
itation of context. Currently, LLMs lack the necessary context size to process an entire
document unless it is exceptionally short. The models commonly used have a context
and generation limit of around 2,000 tokens, roughly equivalent to a 1,500-word limit,
allowing for some variation. To feed the LLM the required context without breaking

12.2.1

Using LLMs to write code to analyze your data 293

the context-window limit, you can break the document into appropriate-size chunks by
using a chunking strategy. This is why you need to call the similarity_search() func-
tion of the vector embeddings to return the documents most similar to the question
asked. Then the LLM can provide information on each chunk within a limited token-
size response. It’s important to note that this method is suitable only for a general over-
view and may not be effective for more detailed analyses.

How can you use an LLM to analyze a large private dataset? Here’s the strategy:

Load your data programmatically using a library such as pandas.
Prompt the LLM with the schema of your data.

Instead of asking the LLM to calculate the result for you, ask it to find the query
to solve the problem.

Using the response returned by the LLM, execute the response to get the answers
you need.

You have a couple of ways to do this:

Use alocal model such as one supported by GPT4All
Use a cloud-based model such as OpenAlI’s LLMs or one hosted on Hugging Face
Hub.

In the following examples, you’ll use a JSON file and ask the LLM to return the query
to perform analytics on the data, using the following models:

Mistral 7B model supported by GPT4All—This model uses your local computer to
run the model locally.

gpt-4o-mini model from OpenAI—The inferencing will be done by OpenAl, so you
need an OpenAl API key. (In other words, you’ll be billed for the time you use
running the model in OpenAl.)

Preparing the JSON file

The following listing shows a JSON file containing a list of fictitious people and their
details.

Listing 12.4 Content of the famous_people.json file

{
"famous_people": [

{
"name": "John Smith",
"occupation": "Actor",
"birth_date": "1980-05-15",
"birth_place": "Los Angeles, USA",
"achievements": ["Oscar-winning performance", "Golden Globe

nominee"]
}-l
{

"name": "Emily Johnson",

294

e

CHAPTER 12 Using LLMs to query your local data

"occupation": "Tech Entrepreneur",
"birth_date": "1985-02-20",
"birth_place": "San Francisco, USA",

"achievements": ["Founder of Tech Innovations Inc.",
"Forbes 30 Under 30"]

"name": "Carlos Rodriguez",
"occupation": "Chef",
"birth_date": "1972-09-08",
"birth_place": "Barcelona, Spain",

"achievements": ["Michelin Star Chef",
"Best-selling cookbook author"]

"name": "Aisha Patel",
"occupation": "Humanitarian",
"birth_date": "1988-11-30",
"birth_place": "Mumbai, India",

"achievements": ["Founder of AidGlobal Foundation",
"UNICEF Ambassador"]

"name": "Yuki Tanaka",

"occupation": "Fashion Designer",

"birth_date": "1983-03-10",

"birth_place": "Tokyo, Japan",

"achievements": ["International Fashion Award",
"Creative Director of Vogue Japan"]

"name": "Isabella Martinez",

"occupation": "Explorer",

"birth_date": "1982-08-12",

"birth_place": "Madrid, Spain",

"achievements": ["Discovered ancient ruins in South America",
"National Geographic Explorer of the Year"]

"name": "Liam Johnson",

"occupation": "Astronaut",

"birth_date": "1987-04-25",

"birth_place": "Houston, USA",

"achievements": ["Mission Commander on Mars Expedition",
"NASA Medal of Honor"]

"name": "Sophia Nguyen",

"occupation": "Environmental Scientist",
"birth_date": "1985-11-03",
"birth_place": "Hanoi, Vietnam",

"achievements": ["Published groundbreaking research on
sustainable agriculture",
"Recipient of Green Earth Award"]

Using LLMs to write code to analyze your data 295

"achievements": ["Patented revolutionary renewable energy device",

"Grammy Award for Best Classical Performance"]

{
"name": "Noah Thompson",
"occupation": "Inventor",
"birth_date": "1990-02-18",
"birth_place": "Sydney, Australia",
"Tech Innovator of the Year"]
}l
{
"name": "Olivia Patel",
"occupation": "Classical Pianist",
"birth_date": "1989-07-09",
"birth_place": "Mumbai, India",
"achievements": ["Performed at prestigious concert halls
worldwide",
}

12.2.2 Loading the JSON file

Let’s read the preceding JSON file into a
pandas DataFrame. You may be tempted
to load the JSON file directly using the
pd.read_json() function, like this:

df = pd.read_json('famous_people.json"')

But if you take this approach, you’ll get a
single-column DataFrame with all the fields
squeezed into it (see figure 12.5).

A DataFrame with a single column con-
taining all the details of a person is not
ideal because querying that data is ineffi-
cient. Instead, you should use the json_
normalize() function to load the JSON file
and split each person’s details into individ-
ual columns

import json
import pandas as pd
from pandas import json_normalize

with open('famous_people.json',
json_data = json.load(json_file)

df = json_normalize(json_data,
df

'famous_people')

famous_people

a {'name’: ‘John Smith', 'occupation': ‘Actor, ...

-

{'name': 'Emily Johnson', 'eccupation’: 'Tech ...
{'name’: 'Carlos Rodriguez’, 'occupation': 'Ch...
{'name': 'Alsha Patel', 'occupation': 'Humanit...

{'name': "Yuki Tanaka', 'occupation': 'Fashion...

2
3
4
5 {'name': ‘Isabella Martinez’, 'occupation': 'E...
6 {'name': 'Liam Johnson', 'occupation': 'Astron...
7 {'name': 'Sophia Nguyen', 'occupation': 'Envir...
8 ({'name': 'Noah Thompson', 'occupation': 'Inven...
9

{'name': 'Olivia Patel', "occupation': 'Classi...

Figure 12.5 Loading the JSON file directly
results in a single-column DataFrame.

'r') as json_file:

Loads JSON data into
a pandas DataFrame

296

CHAPTER 12 Using LLMs to query your local data

Figure 12.6 shows a DataFrame containing the details of each person.

name occupation birth_date birth_place achievements
0 John Smith Actor 1980-05-15 Los Angeles, USA [Oscar-winning performance, Golden Globe nomines]
1 Emily Johnson Tech Entrepreneur 1985-02-20 San Francisco, USA [Founder of Tech Innovations Inc., Forbes 30 U...
2 Carlos Rodriguez Chef 1972-08-08 Barcelona, Spain [Michelin Star Chef, Best-selling cookbook aut...
3 Aisha Patel Humanitarian 1988-11-30 Mumbai, India [Founder of AidGlobal Foundation, UNICEF Ambas...
4 Yuki Tanaka Fashion Designer 1983-03-10 Tokyo, Japan [International Fashion Award, Creative Directo...
5 Isabella Martinez Explorer 1982-08-12 Madrid, Spain [Discovered ancient ruins in South America, Na...
6 Liam Johnson Astronaut 1987-04-25 Houston, USA [Mission Commander on Mars Expedition, NASA Me...
7 Sophia Nguyen Environmental Sclentist 1985-11-03 Hanoi, Vietnam [Published groundbreaking research on sustaina...
8 Noah Thompson Inventor 1990-02-18 Sydney, Australia [Patented revolutionary renewable energy devic...
9 Olivia Patel Classical Pianist 1989-07-09 Mumbeai, India [Performed at prestigious concert halls worldw...

Figure 12.6 Now the DataFrame has multiple columns representing the keys in the JSON file.

12.2.3 Asking the question using the Mistral 7B model

With the JSON loaded as a DataFrame, you can ask an LLM to propose a solution to

query your data. In this section, you’ll try using a local LLM—specifically, the Mistral

7B
loa:

model (mistral-7b-openorca.Q4_0.gguf) that you used earlier in this chapter. First,
d the model:

from langchain.llms import GPT4A1l

model = 'mistral-7b-openorca.Q4_0.gguf'
1lm = GPT4A1l(model = model)

Next, create the prompt template:

template = """

Here is schema of a Pandas DataFrame (df):
name,occupation,birth_date,birth_place,achievements

I will start prompting you and you must return the response
as a single Python statement so that I can execute it the
result using the eval() function.

For your info I have loaded the JSON file as a df using the
following code:

with open('famous_people.json', 'r') as json_file: .
json_data = json.load(json_file) Loads JSON data into
df = json_normalize(json_data, 'famous_people') a pandas DataFrame

Question: {question}

Observe that in the prompt template, you pass in the schema of the pandas DataFrame
containing the J[SON data. You also informed the LLM that you loaded the JSON file as

Using LLMs to write code to analyze your data 297

a pandas DataFrame. Specifically, you want the LLM to return the response as a Python
statement so that you can execute the response against the DataFrame using the eval()
function in Python. Next, use LangChain to chain the prompt template to the LLM:

from langchain import PromptTemplate
from langchain_core.output_parsers import StrOutputParser

def ask_question(question):
prompt = PromptTemplate(template = template,
input_variables=["question"])
chain = prompt | 1lm | StrOutputParser()
return chain.invoke({"question": question})

To let the user ask questions, put the ask_guestion() function in a while loop:

while True:
print(ask_question(input('Question: ')))

Now try to ask a simple question. Figure 12.7 shows a simple question and the LLM’s
response.

¢/// Question
Question:|Show me all the names |

Answer: df['name'].tolist()

Question: How many rows are there in this DataFrame?
Answer: len(df)

Question: What is the occupation of the person with the name 'lJohn'?

Answer: df.loc[df['name'] == 'John', 'occupation'].values[@]
Question: Who was born on 12/31/19857
Answer: df.loc[(df['birth_date'] == '12/31/1985') & (df['name'].notnull())].iloc[@] ['name"]
Question: What are the achievements of a person born in New York City?
Answer: df.loc[df['birth_place'] == 'New York City', 'achievements'].tolist()
Question: How many people were born on 12/31/19857
Answer: len(df.loc[(df['birth_date'] == '12/31/1985') & (df['name'].notnull())])
Answer

Figure 12.7 The LLM returns a fair number of responses.

Although the prompt template asked the LLM to return the answer as a single Python
statement, it returned more than you needed. Nevertheless, try running the first line
in the response as a Python statement:

df['name'].tolist()

298 CHAPTER 12 Using LLMs to query your local data

Sure enough, the LLM returns a list of names in the DataFrame:

['John Smith',

'"Emily Johnson',
'Carlos Rodriguez',
'Aisha Patel’,

'"Yuki Tanaka',
'Isabella Martinez',
'Liam Johnson',
'Sophia Nguyen',
'Noah Thompson',
'0livia Patel']

Next, try a slightly more complex question:

Question: Who were born in Australia?

Here is the response from the LLM:

Question: Who were born in Australia?
Answer: df[df['birth_place'] == 'Australia'].to_string(index=False)

Question: How many people have won a Nobel Prize?
Answer: len(df[(df['achievements'].str.contains('Nobel'))])

Question: Who are the youngest and oldest person in terms
of birth date?
Answer: df[df['birth_date'] ==
min(df['birth_date'])].to_string(index=False),
df[df['birth_date'] ==
max (df['birth_date'])].to_string(index=False)

Question: Who are the top 3 achievers?
Answer: df.sort_values('achievements',
ascending=False)[0:3].to_string(index=False)
Question: What is the average age of all people in the dataframe?
Answer: round((df['birth_date'].max() -

df['birth_date'].min()).total_seconds() /
(60 * 60 * 24), 1)

Again, the model returned more than you anticipated. Also, the first line in the
response won’t because there’s no exact match for Australia in the DataFrame:

df[df['birth_place'] == 'Australia'].to_string(index=False)
But the model would get the answer if it used the contains() function:

df[df['birth_place'].str.contains('Australia')]

Overall, your testing with the Mistral 7B model didn’t return the response exactly the
way you expected, although some of the responses were close enough.

Using LLMs to write code to analyze your data 299

12.2.4 Asking questions using OpenAl

Now that you’ve tried asking a local model how to query a DataFrame given its schema
(and failed to get a decent answer), try using OpenAl to see whether it can do a better
job. For OpenAl, first prepare the prompt template in the following format.

Listing 12.5 Preparing the prompt template for OpenAl

messages = []
messages.append(

'role':'user’',

‘content':""!
Here is an example of a JSON file loaded into a Pandas DataFrame:
{
"famous_people": [
{
"name": "John Smith",
"occupation": "Actor",
"birth_date": "1980-05-15",
"birth_place": "Los Angeles, USA",
"achievements": ["Oscar-winning performance",
"Golden Globe nominee"],
"quote": "Acting is not about being someone different.
It's finding the similarity in what is
apparently different, then finding myself in
there."
}-l

]
¥
I will start prompting you and you must return the response
as a single Python statement so that I can execute it the
result using the eval() function.

For your info I have loaded the JSON file as a df using
the following code:

with open('famous_people.json', 'r') as json_file:

json_data = json.load(json_file)
Loads JSON data into

df = json_normalize(json_data, 'famous_people') apandas DataFrame

B

Observe that the prompt template includes a sample row in the DataFrame. This is use-
ful for familiarizing the LLM with the type of data in your DataFrame so it can come up
with the correct query to answer your question.

After the prompt template is created, use OpenAl’s gpt-40 model to answer your
query. To use an OpenAl model (inferencing performed by OpenAl, not locally on
your computer), you must install the openai package using the pip command:

$ pip install openai

300

CHAPTER 12 Using LLMs to query your local data

You also need to apply for an OpenAl API key at https://platform.openai.com/
account/api-keys. Note that you’ll be charged for this service.

With the openai package installed, you can use the create() method to ask the
OpenAl LLM (gpt-40-mini) a question pertaining to your data:

Listing 12.6 Asking OpenAl to answer questions pertaining to your data

from openai import OpenAIl
import re
import os

os.environ['OPENAI_API_KEY'] = "OPENAPI_API_KEY"

client = OpenAI(
api_key = os.environ.get("OPENAI_API_KEY"),

)
while True:
prompt = input('\nAsk a question: ')
if prompt == "quit":
break

messages.append (

'role':'user',
'content':prompt

)

completion = client.chat.completions.create(
model = "gpt-4o-mini",
messages = messages,
max_tokens = 1024,
temperature = 0)

response = completion.choices[0].message.content

pattern = re.compile(r' " “python\s*([\s\SI*)\n " "')
match = pattern.search(response)

if match:
extracted_content = match.group(1)
print(extracted_content)

if extracted_content.count('\n') > 1: Use this for multiline
exec(extracted_content) responses, such as plotting.
else:
e display(eval(extracted_content)) Use this for
. single-line responses.
print("No content found within " “python... " .") g P

messages.append (

'role':'assistant',
'content':response

)

https://platform.openai.com/account/api-keys
https://platform.openai.com/account/api-keys

Using LLMs to write code to analyze your data 301

In the preceding code, the completion variable contains the response from OpenAl. A
typical response looks like this (the keys containing the information you’re interested
in are in bold):

ChatCompletion(id="'chatcmpl-A68BQXMNgekut2MDuzXoiQYyzVADt",
choices=[Choice(finish_reason='stop', index=0, logprobs=None,
message=ChatCompletionMessage(content=""""python\ndf[
df['birth_place'].str.contains('USA')]1['name'].values\n """,
role='assistant', function_call=None, tool_calls=None, refusal=None))],
created=1726024788, model='gpt-40-mini', object='chat.completion',
system_fingerprint="fp_25624ae3a5', usage=CompletionUsage(
completion_tokens=20, prompt_tokens=286, total_tokens=306))

When the desired information is extracted, use the eval() function in Python to run
the Python code. Figure 12.8 shows the question asked and the model’s response. You
use the eval() function to execute the response, and the result is a DataFrame.

/ Question
Ask a question:| Who were born _in the USA?

[df[df['birth_place'].str.contains('USA')] |« — Response from the model

name occupation birth_date birth_place achievements
0 John Smith Actor 1980-05-15 Los Angeles, USA [Oscar-winning performance, Golden Globe nominee]
1 Emily Johnson Tech Entrepreneur 1985-02-20 San Francisco, USA [Founder of Tech Innevations Inc., Forbes 30 U...
6 Liam Johnson Astronaut 1987-04-25 Houston, USA [Mission Commander on Mars Expedition, NASA Me...

Result of executing the
response from the model

Figure 12.8 The result returned by OpenAl is executed with the eval() function.

The result is reasonably good. The model is smart enough to use the contains() func-
tion to search for rows with the birth_place column containing the word USA. You’d
get the same result if you’d asked this question:

Who were those born in the United States?

This example illustrates the power of LLM: the model understands that the United
States is also known as “USA.” Let’s try one more example. Instead of saying “Austra-
lia,” another way to refer to Australia is “Down Under,” so ask the following question:

Who were born in Down Under?

302

CHAPTER 12 Using LLMs to query your local data

Sure enough, the LLM knows that Down Under means Australia:

df[df['birth_place'].str.contains('Australia')]

Figure 12.9 shows the result of executing the query:

name occupation birth _date birth_place achievements

8 Noah Thompson Inventor 1990-02-18 Sydney, Australia [Patented revolutionary renewable energy devic...

Figure 12.9 LLM returns the result correctly.

What about asking about dates? Let’s find all the people in the dataset who were born
after 1980:

Find me the names of people born after or in the year 1980

The result is the following:

df[df['birth_date'] >= '1980-01-01']['name"']

Figure 12.10 shows the result after the model executes the response.
You can also ask questions pertaining to a specific month:

Who were born in the month of August?

The response (see figure 12.11) is

df[df['birth_date'].str.contains('-08-')]['name']

7} John Smith
1 Emily Johnson
3 Aisha Patel
4 Yuki Tanaka
5 Isabella Martinez
6 Liam Johnson
7 Sophia Nguyen
8 Noah Thompson
9
N

Olivia Patel 5 Isabella Martinez
ame: name, dtype: object Name: name, dtype: object
Figure 12.10 The result shows Figure 12.11 The result shows the
all the people in the dataset who names of the people in the dataset who

were born after 1980. were born in August.

Summary 303

Summary

To load PDF documents, you can use the PyPDFLoader class from the document_
loaders module in langchain.

You use a RecursiveCharacterTextSplitter object to split the document into
chunks of a specific size.

For word embedding, you can use the sentence-transformers/all-MinilM-L6-v2
model hosted on Hugging Face Hub and then use the FAISS library to perform
the embedding.

To load CSV files, you use CSVLoader class from the document_loaders module in
the langchain package.

To load JSON files, use the JSONLoader class from the document_loaders module
in the langchain package. The JSONLoader class uses a specified jq schema to
parse the JSON files.

Because LLMs are designed to understand and generate humanlike text, they
have limited ability to analyze and summarize data.

The primary obstacle to using a local LLM to analyze a large dataset lies in the
limitation of context. Most LLMs don’t have the necessary context size to process
a document unless it’s exceptionally short.

If your data originates from a text-based source such as a PDF, you can use word
vector embedding on the data and then use an LLM to interrogate it directly.

If your data is stored in a tabular format (CSV, JSON, Microsoft Excel, and so on),
I recommend employing the LLM to generate Python-based queries to conduct
analyses on your data rather than querying the data directly with an LLM.

Bridging LEMSs to
the real world with the
Model Context Protocol

This chapter covers

Introducing Model Context Protocol (MCP)
Developing your own MCP server

Using an MCP server with Claude Desktop
Using third-party MCP servers

As large language models (LLMs) become more advanced, developers face a key
challenge: making it easier for these models to work with external data that wasn’t
part of their original training. Right now, connecting LLLMs to different types of data
(such as files, websites, or live social media feeds) often requires a custom solution
for each source, adding work and complexity.

To solve this problem, a new framework called the Model Context Protocol (MCP)
was introduced. MCP provides a standard way for LLMs to access and use outside
data no matter where it comes from. It hides the differences between data sources
behind a common interface. With MCP, models from providers such as Grok,
OpenAl, and Claude can easily use inputs such as search results, uploaded files
(PDFs, images, and so on), or real-time social media posts without requiring a
special setup for each one.

304

13.1

13.1.1

13.1.2

What is MCP? 305

Using MCP helps developers avoid the hassle of managing many data connections.
It also lets LLMs bring real-time information, such as today’s date or current weather,
directly into their responses. Further, MCP supports advanced use cases such as ana-
lyzing live datasets and is built to handle new types of data in the future. This chapter
introduces MCP, discussing the problems it solves, how it works, and how to use it in
your own projects.

What is MCP?

MCP is an open standard created by Anthropic. It’s based on JSON-RPC 2.0 and is
designed to let LLMs connect to external services such as filesystems, databases, and
APIs consistently, securely, and efficiently. It’s especially useful for dynamic, program-
driven interactions in which the LLM acts like a client, asking specialized servers to
provide data or perform actions.

NOTE Anthropic is a US-based Al company founded in 2021 by former OpenAl
researchers, including siblings Dario and Daniela Amodei. The company focuses
on developing Al systems that are safe, interpretable, and aligned with human
values. Anthropic is best known for its Claude family of LLLMs, which compete
with Al models such as OpenAl’s ChatGPT and Google’s Gemini.

The problems MCP solves

Before MCP, developers faced several ongoing challenges when trying to connect
LLMs to real-world systems:

Inconsistent tool access—Different models supported different ways of accessing
tools and data, with no standard method for calling them.

Unvreliable data retrieval—Without a formal protocol, pulling in outside data often
relied on messy, one-off solutions that were hard to maintain and sometimes
insecure.

Complex prompt engineering—Each setup required custom prompts, adding work
and making it harder to reuse code.

Fragmented integrations—Teams kept reinventing the wheel with similar integra-
tions but without a shared standard.

MCP solves these problems by offering a clear, consistent protocol that specifies how
models interact with external systems. It defines standard components such as Tools,
Resources, and Prompts and provides clear rules for control and communication. This
standardization makes development faster and easier while boosting reliability, secu-
rity, and compatibility across models and platforms—all of which are increasingly cru-
cial as LLMs are used in more critical systems and workflows.

Understanding MICP

Suppose that you're writing an app (the client) to communicate with several provid-
ers in Japanese, Chinese, and French. To communicate with each provider, your app

306

Client

CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

needs to talk to it in its own lan-
guage. This task places a great
burden on you: you must man-
age multiple custom integrations,
adapt to varying API structures,
and handle inconsistent response
formats. All these requirements
complicate development
maintenance. Figure 13.1 shows

and

the relationships between the cli-
ent and the providers.

A far more efficient solution is
to introduce an intermediary—

Translates from English to
Japanese and vice versa

CIient_]
-

Translates from English to
Chinese and vice versa

Japanese

Chinese

Translates from English to
French and vice versa

French

Figure 13.1 Visualizing the relationships between a client
and providers

let’s call it the translator in this analogy—that sits between your app and the providers.

This translator handles communication by converting each provider’s unique language

to a common one, such as English, and then back again, so your app needs to interact
only with the translator, simplifying the process and eliminating the need to juggle mul-
tiple provider-specific languages directly. Figure 13.2 shows the improved workflow.

Client needs to communicate

with the translator only in English.
Translator

Translates from English to
Japanese and vice versa

)

Translates from English to
Chinese and vice versa

Japanese

O

0

Chinese

Translates from English to
French and vice versa

———

0

Figure 13.2 The translator acts as an intermediary between the client and the providers.

French

~_ @

Drawing from this analogy, you can adapt this diagram to align with MCP (see figure 13.3).
The MCP workflow has three main components:

MCP client—Usually an LLM or an Al-powered app like Claude Desktop. It sends
requests to access external tools or data and acts as the consumer in the system.

MCP server—A server that handles requests, processing them and sending back
responses. Think of it as the central hub that connects clients to services.

Service—The actual features or data the client wants to use, such as tools (such
as add or fetch_weather) or resources (such as get_greeting or get_config), all
provided through the MCP server.

MCP protocol

MCP client

What is MCP? 307
Service communicates [N
with the MCP server. .
Service
———
Service communicates [N
with the MCP server. .
MCP server Service
_J |
Service communicates /)
with the MCP server.
Service
-

Figure 13.3 How an MCP client communicates with an MCP server

Communication between an MCP client and server uses JSON-RPC 2.0, a standard pro-

tocol that ensures that requests and responses are exchanged in a consistent, struc-

tured way no matter what kind of service is being accessed. This makes it easier to build

reliable, scalable systems around LLMs. Examples of these services include

Database services—Allows reading of rows in database tables

Files services—Allows extracting of text from files

Images services—Allows extracting of images or text from image files

Each service could be delivered by a distinct service provider, as shown in figure

13.4. Each service provider maintains its own MCP server (see figure 13.5). Or a

single service provider might maintain a single MCP server with many services (see

figure 1

3.6).

Different service providers

)

MCP server

LL

MCP protocol
M

Returns text data extracted
from a MySQL database

S
MySQL

~——

MCP server

~)

Returns text data extracted
from PDF files

database server
-

PDF files server

~——

)

MCP server

Returns text data extracted
from images

~——

)

~ @@

Figure 13.4 Services provided by MCP servers

Images server

~ @@

308 CHAPTER 13 Bridging LLM:s to the real world with the Model Context Protocol

Maintained by service providers

MCP |
LLM CP protocol

Figure 13.5 Each MCP server can provide its own service.

Single service provider

MCP protocol

Figure 13.6 AN MCP server can provide multiple services.

13.1.3 MCP server deployment

Despite its name, which suggests a server-based application, an MCP server is simply a
standard application that can run in different configurations. After you’ve developed
an MCP server, you can deploy it in either of two ways:

= Locally—Run the MCP server on the same machine as the MCP client, enabling
directlocal communication.

= Remotely—Run the MCP server on a separate remote machine, with the MCP cli-
entaccessing it over the network.

What is MCP? 309

This flexibility in deployment Both client and server running on same machine

options makes MCP servers
adaptable to various architectural stdin
needs, from simple local setups to MCP client MCP server

distributed systems. For the first stdout

option, when the MCP server and
P Figure 13.7 An MCP client communicating with a locally

client are running on the same running MCP server using stdio

machine, they communicate with
each other using standard input

and output streams (see figure Server running remotely
18.7). In this approach, the MCP
Server runs as a separate process HTTP POST
on the same machine as the client. ABFelont B s
. SSE streaming
For the second option, the response

server and client are running on
Figure 13.8 An MCP client communicating with a

different machines across the net- remote MCP server using HTTP POST and SSE

work. In this case, the client will

use HTTP POST to communicate

with the server, and the server will respond to the client using server-sent events (SSE).
This transport method is useful when the server needs to support multiple clients at the
same time. Figure 13.8 shows how the client interacts with the server.

Server-sent events

Server-sent events (SSE) is a web standard that enables a server to push real-time
data to a client over a single HTTP connection. Unlike traditional HTTP request—
response patterns, SSEs establish a persistent connection; the server can send
data to the client continuously without the client having to poll or make new requests
repeatedly.

SSEs are like WebSockets except that SSEs are unidirectional. Only the server
can send data to the client; the client can’t send messages back through the SSE
connection.

13.1.4 Components in an MICP server

Now that you have a better idea of the workflow in an MCP system, let’s examine the
components of an MCP server. An MCP server consists of three main components:

Tools—Tools are the actionable capabilities that MCP servers provide LLMs.
They act like a set of specialized functions—such as reading files with a filesys-
tem tool, querying the web via a search tool, or generating images through an
image generation tool—that the LLM can invoke to extend its reach beyond its
inherent knowledge, using a standardized J[SON-RPC 2.0 request format (e.g.,

310

13.2

CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

{"method": "search", "params": {"query": "AI"}}) to perform tasks efficiently
and consistently across diverse services.

Resources—Resources represent the external data or entities that Tools interact
with or retrieve. They serve as the raw material—think local files from a Filesys-
tem MCP server, web pages from a Brave Search MCP server, or database records
from a PostgreSQL MCP server—that the LLM processes or analyzes, delivered
through MCP responses (e.g., {"result": "file contents"}) to fuel its reason-
ing and responses with fresh, context-specific information.

Prompts—Prompts in an MCP system function as predefined templates for stan-
dardized LLM interactions.

Figure 13.9 summarizes the three main components of an MCP server. The uses of the
various components of an MCP server will become much clearer when you create one
in section 13.2.

MCP server components and their uses

that can be called by LLMs

for LLM context

Components Tools Resources Prompts
. . Predefined templates for
Uses Server-exposed functions Data exposed to clients standardized LLM

interactions

Control Type

Model-controlled
The LLM itself decides
when and how to use these
tools during its reasoning
process.

Application-controlled
Client determines what

resources to retrieve and use.

User-controlled
Clients determine the
templates they want

to use.

Examples

Fetching weather
information, performing
calculations, and so on

Fetching files, reading
database records, returning
images, and so on

Documenting Q&A,
summarizing a block
of text, and so on

Figure 13.9 The components of an MCP server and their uses

Building an MCP server

Now that you have a solid understanding of what an MCP server is and how its compo-
nents work, it’s time to put that knowledge into action. In this section, you’ll build an
MCP server using Python. This server will allow users to ask questions such as these:
Whatis the current weather?
Summarize the content of a particular file.

Ask a question based on the content of a particular file.

Building an MCP server 311

13.2.1 Installing uv

For this project, you’ll use uv, an extremely fast Python package and project manager
written in Rust, to install Python packages. First, use the following curl command to
download and install uv:

$ curl -LsSf https://astral.sh/uv/install.sh | sh

When uv is installed, you’ll use it to create a Python project.

13.2.2 |Initializing the project

Use uv to initialize a project named MCP_Demo and then change the directory to the new
folder:

$ uv init MCP_Demo
Initialized project ‘mcp-demo” at " /Volumes/SSD/MCP_Demo’

$ cd MCP_Demo

oia [Swaned S e e Put two files in the MCP_Demo folder:

Singapore.pdf—A PDF document
WikiseniA generated from Wikipedia (see figure

ARt 13.10). For simplicity, this document
Singapore

e has only one page.
Snaspure gl (el dtey e el S | Republi of Singapors textfile.txt—A text file that con-
Asa Repubky Singeowa (Wsiay) . . .

LS s Chi tains some information on quantum

computing (see figure 13.11).

Fhn]l arres

Mot : (multh Sngapuws (Maiy
reard Fogaoare”

Arthare Majulah Snaaows (Maky)
“Crieard Sirqazre”

an il cnstinues o shaps natkael polces o lucation, b oGoor0To -
heassing, an! polkcs.

P L] L] textdile. tet

B quantin coaputer s a coeputer that exploits quontim sechanicol phennsens. Bn srall szsbes,
$ic8L aattor eshibits properties of both particies and vaves, Wnd quantur computicg leveriges

singazere’s hlsiory dnes back o least a mifieznlum, havlg been &

manllm enwnun Fnzrn s J'emsei’ aud mumr =B manr

exaanentially faster(a) than any odem "classical® coaputer. Thearetlcally a large-soale

quantual coaputer could break sare widely used encryation scheses and aid physicists dn

serforming physical sizulations; hawewer, the current state of the art 15 largely experimestal
e Avis wam e panisad o . | and impractical, with several shstacles to userul applications.

under the dinect ccnunl of Boinin 25 par of the Szais mem. {

Criry; orld Wi 1L, Singapere wes ooruped by Jagas in 308k,

anl rewumed s Brinsh conmi as 2 sesaate Crown coinny fallwing

Tee paric unit of inforsation in quantun computing, the qubit lor guontur bit"l, serves the
s funckion b8 the bit in classical computing. Hiwiver, unlike i clossicol bit, ehich can be

in s of vap stotes | binaryl, @ aubil sen '-m In & wuperpisition of iis 1w

o 5is" slates,
Japanis surrender = 145, Singpure gaied sdfgevemance & = a state Chat is in an absiract sense Lo - W pwasioing 3 gubit, the
1564 and |n 1914 beczme pan of ©ie new daderaon of Malavsia, Fesult s 3 probabilistic output ef a classical nic. If a qui us coNputer Fanipulates the sunit
dungrice Mhabyg, Mo Borws, wed Sopewsk. Wowbgive % in a particular way, wave Lnterfercnce effects can aaplity the deslred Eeasurement results. Tne
diflerences, mosr souble Ge percelved ncmachmen ol the des1gn of guantur algorithss invalves cresting Grocedures that allos 3 quantun comguter to
caaltianzs Malaysian Malaysar” politcal beslogy led oy Lee o | Omtkinlfanguages Srgleh - oy - o fera catrulatinns etticidntly:and quickly.
Vew 2 e cther constiupnl enies of Malzysia 2t the parceived Flmncatis + tril | Ly mnr i apal -
2o B b e e ok Menattn M= . Quantum computers are not yet practical for resl-world applications. Physically engiresricg
. I Nagiansi langungu Mnky nigh-quality nuhns u praven to l:e rallenging, 1f o physical qubit is not sufmmm

cvennally led t2 Singacres expulsin fum the foceraizn nec el atfers F h

: ¥ ; - isalated o i1 aulfers fren quantin decoherence, inlroduc g
reurs ller: Singepure become an indpendent smverriin iy v | Ble groupn 74,35 Chitwsn catculatiane, Ha A Pl Ml hwavily in wxperizenial rajmr
1955, (20204 3.5 Walty develaping scalal th lenger coberence Cines and lower prrar fates ople

203 Indan include (unien isalate an electrical current xw elininatiry

229 Qiers.

Alier ully years ot ubulence sad despae iacng nararal resauees
il 5

=lectrical resiszancel and on traps (which candine 3 single atomlc particle using
=lectromagnesic tieldsl,

Religion (zua0) e 1% st
ginn (2020) En b 1n orinciple, a classical corputer ca sokve the sswe cowutational problers as 3 quznt
0,00 bl i g conputer, given enough tise, Duantum sdvantsge comes in the fors of tire corplesity mr-er tnan

{conmtanility, and quantue corplesity thesry shows that sowe quantus olgorithes are

v vl weith the
s mining-ioan e ar
ool e, sl e Lz

Figure 13.10 The content of the PDF file Figure 13.11 The content of the text file

312

13.2.3

13.2.4

CHAPTER 13 Bridging LLM:s to the real world with the Model Context Protocol

Installing the packages

To implement the MCP server, you’ll use the official Python SDK for MCP servers and
clients, located at https://mng.bz/Qw4Q. You can find the documentation at https://
modelcontextprotocol.io/introduction.

In Terminal (macOS) or Anaconda Prompt (Windows), type the following com-
mand to install the mcp, httpx, and PyMuPDF packages:

$ uv add "mcp[clil" httpx PyMuPDF

Creating the MCP server

When the packages are installed, create the server.py file to store the implementation
of the MCP server:

$ nano server.py

Populate the server.py file with the statements in the following listing.

Listing 13.1 A simple MCP server using the FastMCP class

from mcp.server.fastmcp import FastMCP
import httpx

import fitz <"1 For PyMuPDF
import os

mep = FaStMCP("MCP Demou) <—1 Creates an MCP server

resources, tools, and prompts to be added here
#

<to be added in next few sections>

#

if __name__ == "__main__":
Initialize and run the server
mcp.run(transport="'stdio')

This code sets up a simple MCP server using the FastMCP class from the mcp.server
.fastmcp module:

First, create an instance of the FastMCP class, passing "MCP Demo" as the name of
the service. The FastMCP object (mcp) represents the server itself, which will be
configured and run later.

Next, start the FastMCP server with the transport parameter set to 'stdio’ (stan-
dard input/output).

When this is done, run the server and see whether an error occurs:

https://mng.bz/Qw4Q
https://modelcontextprotocol.io/introduction
https://modelcontextprotocol.io/introduction

$ uv run server.py

Building an MCP server

If there is no error, nothing is shown onscreen.

13.2.5 Inspecting the MCP server

313

To inspect the MCP server, you can use the MCP Inspector by running the following

command:

$ uv run mcp dev server.py

The MCP Inspector is an interactive developer tool designed for testing and debug-

ging servers that implement MCP. You see something like this:

Starting MCP inspector...

Proxy server listening on port 3000

& MCP Inspector is up and running at http://localhost:5173 #
New SSE connection
Query parameters: {

Connected MCP client to backing server transport
Created web app transport
Created web app transport

Set up MCP proxy

& MCP Inspector is up and running at http://localhost:5173 #

The MCP Inspector is a web-based application that listens at the following URL:
http://localhost:5173. To view it, load it using a web browser. You should see the

screen shown in figure 13.12.

ase I

MCP Insgector v0.5.0

Transprt Ty

s

conrnd

Histary

Sy i -]
S e

Coamect oz

1MCP server o sl inspecing

Server Motifications

NG et

Figure 13.12
The MCP Inspector

314 CHAPTER 13 Bridging LLM:s to the real world with the Model Context Protocol

Click the Connect button to connect to the MCP server. You see the tabs shown in fig-
ure 13.13: Resources, Prompts, Tools, Ping, # Sampling, and Roots.

~
soe M- ¢ =] Inealhast 0 ®@ b + O
MCP Inspector v0.6.0 D Resources [Prompts M Tools 0 Ping # Sampling (B Roots
Transport Type
STDIO Tools Select a tool
Command
List Tools Select a tool from the list to view its details
i and run it
ear

Arguments

Tun —with mcp mcp run server.

» Environment Variables History Server Notifications

“ R R

® Conrected

System i &

Figure 13.13 The MCP Inspector connecting to the MCP server

13.2.6 Implementing Resources

Now that the MCP server is running and you can get the MCP Inspector to connect
to it, let’s add some resources, tools, and prompts to the MCP server implementation.
The first component you’ll add to your MCP server is Resources. Recall from section
13.1.4 that Resources represents the external data or entities that Tools interacts with
or retrieves. The following listing adds three resources to server.py.

Listing 13.2 Adding Resources to the MCP server

server.py

@mcp.resource("text://{file_path}")
def get_file(file_path: str) -> str:

13.2.7

Building an MCP server 315

actual_path = os.path.abspath(file_path) <« Converts to absolute path
if not os.path.exists(actual_path):

raise FileNotFoundError(f"Error: File '{actual_path}' not found!")
with open(actual_path, "r", encoding="utf-8") as file:

return file.read()

@mcp.resource("config://app")

def get_config() -> str:
"""Static configuration data"""
return "Version 1.1"

@mcp.resource("pdf://{file_path}")
def get_pdf_data(file_path: str) -> str:
text = ""
actual_path = os.path.abspath(file_path)
if not os.path.exists(actual_path):
raise FileNotFoundError(f"Error: File '{actual_path}' not found!")
with fitz.open(actual_path) as doc:
for page in doc:
text += page.get_text() + "\n"
return text

This code snippet adds the following Resources:

get_file()—Retrieves the contents of a text file given its file path. This func-
tion reads and returns the contents of a text file specified by file_path. It uses
os.path.abspath() to ensure a valid path and raises an error if the file doesn’t
exist.

get_config()—Returns static application configuration data. This simple func-
tion returns a hardcoded string ("Version 1.1") as configuration data. It’s static
for now but could be expanded to fetch dynamic config data.
get_pdf_data()—Extracts and returns the text content from a PDF file given its
file path. This function uses fitz (PyMuPDF) to open a PDF file, extracts text
from each page, and returns that text as a single string. Like get_file(), it vali-
dates the file path and raises an error if the file isn’t found.

Note that @mcp.resourcedecorator registers each function as an MCP resource with a
specific Uniform Resource Identifier (URI)-like identifier (e.g., text://{file_path},
config://app, pdf://{file_path}). These identifiers define how the resources are
accessed by an MCP client or tool like the MCP Inspector.

In MCP, Resources are typically represented as endpoints that handle specific
requests, such as querying data, retrieving documents, or interacting with external
services.

Implementing Tools

The next component to implement is Tools. Tools consists of the actionable capa-
bilities that MCP servers provide to LLMs. The following listing adds four tools to
server.py

316 CHAPTER 13 Bridging LLM:s to the real world with the Model Context Protocol

Listing 13.3 Adding Tools to the MCP server

H======

Tools

H======

@mcp.tool()

async def fetch_weather(city: str, units: str = "metric") -> dict:
API_KEY = "XXXXXXXXXXXXXXXXXX"

async with httpx.AsyncClient() as client:
response = await client.get(
f"https://api.openweathermap.org/data/2.5/weather",

params=9
"g": city, Replace with your actual API
"units": units, key from OpenWeatherMap.
"appid": API_KEY
}
)
if response.status_code == 200:
data = response.json()
weather_data = {
"location": {
"name": data["name"],
"country": datal["sys"]["country"],
"coordinates": {
"lat": data["coord"]["lat"],
"lon": data["coord"]["lon"]
}
} I
"current": {
"temp": data["main"]["temp"],
"feels_like": data["main"]["feels_like"],
"humidity": data["main"]["humidity"],
"pressure": data["main"]["pressure"],
"description": data["weather"][0]["description"],
"icon_code": data["weather"][0]["icon"]
F
"wind": {
"speed": data["wind"]["speed"],
"direction": data["wind"]["deg"]
} I
"sun": {
"sunrise": data["sys"]["sunrise"],
"sunset": data["sys"]["sunset"]
} I
"units": units,
"timestamp": data["dt"]
}
return weather_data
else:
return {

"error": f"Weather data not available.
Status code: {response.status_code}",
"message": response.text

Building an MCP server 317

@mcp.tool()
def convert_temperature(temp: float,

from_unit: str, Adds a helper tool for
to_unit: str) -> float: temperature conversion
if from_unit.lower() == "celsius":
kelvin = temp + 273.15 First converts to Kelvin
elif from_unit.lower() == "fahrenheit": as an intermediate step
kelvin = (temp + 459.67) % 5/9
elif from_unit.lower() == "kelvin":
kelvin = temp

else:
raise ValueError(f"Unsupported unit: {from_unit}")

if to_unit.lower() == "celsius": Converts from Kelvin
return kelvin - 273.15 to target unit

elif to_unit.lower() == "fahrenheit":
return kelvin * 9/5 - 459.67

elif to_unit.lower() == "kelvin":
return kelvin

else:

raise ValueError(f"Unsupported unit: {to_unit}")

@mcp.tool()
def get_pdf(file_path: str) -> str:
return get_pdf_data(file_path)

@mcp.tool()
def get_text(file_path: str) -> str:
return get_file(file_path)

This code snippet adds the following Tools:

fetch_weather()—Fetches current weather data for a specified city using the
OpenWeatherMap API. (You can apply for your own API key at https://home
.openweathermap.org/api_keys.) This asynchronous tool uses httpx to query
the OpenWeatherMap API, returning a detailed dictionary of weather data (loca-
tion, temperature, wind, and so on) for the specified city or an error message if
the request fails.

convert_temperature()—Converts a temperature value among Celsius, Fahren-
heit, and Kelvin. This tool converts a temperature from one unit to another (e.g.,
Celsius to Fahrenheit) using Kelvin as an intermediate step, raising an error for
unsupported units.

get_pdf()—Retrieves the text content of a PDF file using the get_pdf_data
resource. This tool acts as a wrapper around the get_pdf_data resource, provid-
ing a convenient way to access PDF text extraction as a tool.
get_text()—Retrieves the contents of a text file using the get_file resource.
This tool wraps the get_file resource, allowing retrieval of text-file content
through the tool interface.

https://home.openweathermap.org/api_keys
https://home.openweathermap.org/api_keys

318

13.2.8

13.2.9

CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

The @mcp.tool() decorator registers each function as an MCP tool, making it callable
by an MCP client or the MCP Inspector. Unlike Resources, Tools are typically actions
or utilities rather than data endpoints.

Implementing a prompt

Finally, add a prompt to the MCP server.

Listing 13.4 Adding a prompt to the MCP server

Add a weather_report prompt template
@mcp.prompt()
def weather_report(city: str) -> str:

return f"""

Please provide a weather report for {city}.

You can use the fetch_weather tool to get current weather data.
If needed, you can convert temperature units using the
convert_temperature tool.

Please include:

- Current temperature

- Weather conditions

- Humidity

- Wind speed

- Any relevant weather advice for the conditions

This code snippet adds a prompt to the MCP server. weather_report() generates a
prompt template for requesting a detailed weather report for a specified city. This
description reflects the function’s purpose: it creates a formatted string that serves as a
template for an MCP client (e.g., an LLM) to generate a weather report using available
tools such as fetch_weather and convert_temperature

The @mcp.prompt decorator registers the weather_report function as an MCP prompt.
Prompts in MCP are typically templates or instructions that guide how a client (such as
an LLM) should process a request, often using the server’s tools and resources.

Testing the components

With our MCP server updated with Resources, Tools, and a prompt, let’s test them
to ensure that they work as intended. First, rerun the MCP server using the MCP
Inspector:

$ uv run mcp dev server.py

In the MCP Inspector, click the Connect button to connect to the MCP server. You’re
ready to test the Resources, Prompts, and Tools. Click the List Resources button, and

Building an MCP server

319

you see the config://app. Clicking it returns the details of the version of the app (see

figure 13.14).

1. Click List Resources. 2. Click get_config.

3. Result of get_config

ese M- ¢ scalhost g (! M + I.T':\
MCP Inspector v0.6.0 D Resources [0 Prompts (& Tools £ Ping # Sampling £ Raots
Transport Type
Resource Templates get_config 3 Refresh
STDIO
Command Lis: List Tempiates 0
"contents®: [
uy Clear & Chear [
*uri®s
Arguments i : “config:/fapp"”,
. = get_config "minaType":
Tun ——with mcp mcp Tun servel “text/plain®
“text": "version 1.1"
»> Enwlronmment Variables :
1
hy
® Connected
History Server Notifications
Error cutput from MCP server
7. TesouTces/Tead > e
1. resources/list >
System & Ei 3] /

Figure 13.14 Checking out the Resources using the MCP Inspector

Interestingly, clicking the List Resources button
shows only the get_config() (with the URI
config://app) function because this static
function doesn’t have any input parameters,
unlike the other two functions, get_file() and
get_pdf_data(). To see these two functions, click
the List Templates button (see figure 13.15).

You should see the two functions. Click the
get_file function, enter the name of a text file,
and then click Read Resource. You see the con-
tent of the file (remember that there is a text file
named textfile.txt in the MCP_Demo folder; see
figure 13.16).

Resource Templates

5 get_file

[& get_pdf_data

Figure 13.15 Listing all the resource
templates in the MCP server

320 CHAPTER 13 Bridging LLM:s to the real world with the Model Context Protocol

Resource Templates get_file

List Templates file_path
) «._~ 1. Enter the name
T textfile.txt 4 of the text file.
Read Resource
B get_file Y\ 2.Click Read
Resource.

B get_pdf_data

Resource Templates text:/ftextfile.txt ¥ Retresh

List Templates
{

"contents": [

Clear {
"uri™: “"text://textfile.txt",
. "mimeType": "text/plain",
B get file "text": "A guantum computer is
a computer that exploits quantum
B get_pdf_data mechanical phenomena. On small v 3. View the content

scales, physical matter exhibits of the text file.
properties of both particles and
waves, and guantum computing
leverages this behavior using
specialized hardware. Classical
physics cannot explain the operation
of these quantum devices, and a
scalable quantum computer could
perform some calculations
exponentially faster[a] than any

Figure 13.16 Loading the content of a text file through a resource

Likewise, click the get_pdf_data function, enter a name, and click the Read Resource
button. You see something like figure 13.17 (remember that there is a text file named
Singapore.pdf in the MCP_Demo folder).

Next, click the Prompts tab and then click List Prompts. You should see the weather_
report prompt. Click it, and enter Singapore as the city (see figure 13.18).

Click the Get Prompt button, and you see the following

{
"messages": [
{
"role": "user",
"content": {
"type": "text",
"text": "\n Please provide a weather report for Singapore.\n
\n You can use the fetch_weather tool to get current
weather data.\n If needed, you can convert temperature
units using the convert_temperature tool.\n \n
Please include:\n - Current temperature\n - Weather

conditions\n
relevant weather advice for the conditions\n

Resource Templates

List Templates

Clear

2 get_file

2 get_pdf_data

Resource Templates

List Templates

Clear

E get_file

2 get_pdf_data

Building an MCP server 321

- Humidity\n - Wind speed\n - Any

get_pdf_data

1. Enter the name
of the PDF file.

file_path

<>

w_

Singapore.pdf

el — 0000) (lickRead

Resource.

Read Res

pdf:[/Singapore.pdf £ Refresh

"contents": [
{

"uri": "pdf://Singapore.pdf",

"mimeType": "text/plain”,

"text": "Republic of
Singapore\nRepublik
Singapura (Malay)\n#nfolgE30
@ (Mandarin Chinese)\ndflmaliyy
@iwrs (Tamil)\nFlag\nCoat of
arms\nMotto: Majulah
Singapura (Malay)\n\"Onward
Singapore\"\nAnthem: Majulah
Singapura (Malay)\n\"Onward
Singapore\"\nOfficial
languages\nEnglish : Malay
~\nMandarin - Tamil\nNational
language‘\nMalay\nEthnic groups\n(2@2

¥—"> 3. View the content
of the PDF file.

Figure 13.17 Loading the content of a PDF file through a resource

1. Click Prompts.

4. Enter a city name.

I Resources [Prompts 2 Tools O Ping # Sampling t2 Roots

Prompts weather_report
2. Click List
Prompts. /\,| List Prompts | city
Singapore ¢
Clear

weather_report.

Get Prompt

Figure 13.18
Loading the prompt

322 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

Click the Tools tab and then click the List Tools button. You see the four tools defined
earlier (see figure 13.19).

1. Click Tools.

1B Resources [J Prompts 2 Tools 0 Ping # Sampling tg Roots

Tools Select a tool

2. Click List
Tools. —— " List Tools

Select a tool from the list to view its details
and run it

Clear

fetch_weather

convert_temperature

3. View the /7
list of tools. get_pdf

get_text

Figure 13.19 Checking out the tools of the MCP server

Click the fetch_weather tool, type Singapore, and then click Run Tool (see figure 13.20).

urces. [Prompts B Tools Ll Ping # sampling LS Roots

Tools fetch_weather
ST
city
— [Singapord
fetch_weather | units

convert_temperature

get_pdf . .
Figure 13.20 Fetching
the weather for a city

through a tool

get_text

This code fetches the current weather for Singapore (the result is obtained through
the OpenWeatherMap API):

Building an MCP server 323

"location": {
"name": "Singapore",
"country": "SG",
"coordinates": {
"lat": 1.2897,
"lon": 103.8501
}
}-l
"current": {
"temp": 32.14,
"feels_like": 38.04,
"humidity": 62,
"pressure": 1009,
"description": "broken clouds",
"icon_code": "04d"
}l
"wind": {
"speed": 2.57,
"direction": 40
}-l
"sun": {
"sunrise": 1748300180,
"sunset": 1748344049
}
"units": "metric",
"timestamp": 1748322002

Now try the get_pdf tool. Click it, type Singapore.pdf, and then click Run Tool. You
get the content of the PDF file (remember that there is a file named Singapore.pdf
in the MCP_Demo folder; see figure 13.21). You can also try the other tools: convert_
temperature, and get_text.

D Resources [Prompts & Tools L Ping # Sampling 5 Roots
Tools get_pdf
iy fita_path

i f
Cloar Singapore. pd

feteh_weather m

convert_temperature

Tool Result: Success

et_pdf |
ity Hepublic of Singapore

Republik Singapura (Malay)

get_text FAEHME (Mandarin Chinesa)

ARSULT Hewgs [Tamil)

Flag

Coat of arms

Motte: Majulah Singapura (Malay) . .

"Orward Singapore” Flgure 13.21 Gettl"g
Lx : i 3

e et i the content of a PDF

ofticial langusges file through a tool

324 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

13.3 Testing the MCP server using Claude Desktop

Although your MCP server has been validated through the MCP Inspector, this testing
tool doesn’t fully showcase the practical value of MCP. How is it useful, and what are
some real-world use cases? The best way to explore its utility is to pair it with Claude
Desktop (see figure 13.22), an application you can download at https://claude.ai/
download, which integrates MCP to enhance Al-driven tasks and workflows. Claude
Desktop supports MCP, enabling connections to external tools such as filesystem access
or web search via prebuilt or custom MCP servers.

Claude

Meet Claude on
your desktop

Always there when you need it—Claude sits
quigtly in your workflow. Na tab-happing
required.

= Windows = Windows {armé«]

Figure 13.22 Downloading Claude Desktop

NOTE Claude Desktop is a desktop application developed by Anthropic
that brings the capabilities of the Claude Al model directly to your com-
puter (macOS and Windows). It’s designed to provide seamless, fast access to
Claude’s conversational Al features without relying on a web browser, making
it ideal for users who want a focused, integrated experience for tasks such as
coding, content creation, data analysis, or deep work.

13.3.1 Configuring Claude Desktop to use the MCP server

To configure Claude Desktop to use the MCP server you developed, you need to modify
the claude_desktop_config.json file located in the ~/Library/Application Support/
Claude folder (macOS):

$ nano ~/Library/Application\ Support/Claude/claude_desktop_config.json

In Windows, the path to this file is %APPDATA%\Claude\claude_desktop_config.json.
Populate the claude_desktop_config.json file with the following statements (bold
for emphasis):

https://claude.ai/download
https://claude.ai/download

Testing the MCP server using Claude Desktop 325

{
"mcpServers": {
"weather": {
"command": "/Users/weimenglee/.local/bin/uv",
"args": [
"--directory",
"/Volumes/SSD/MCP_Demo",
"run",
"server.py"

Observe the values in bold:

"weather"—Name of the MCP server. You can give it any name you want.

/Users/weimenglee/.local/bin/uv—Location of the uv tool. It will be used to
run your MCP server.

/Volumes/SSD/Medium/MCP_Demo—Full path of the folder containing the MCP
server (server.py).

server.py—Name of the file containing the MCP server implementation.

When the claude_desktop_config.json file is saved, restart Claude Desktop. The first
time you launch Claude Desktop, you'll be asked to sign in.

13.3.2 Getting the weather

In Claude Desktop, ask the following question: “Get me the weather for Singapore”
(see figure 13.23). Claude takes a moment to process the question and then presents
the prompt shown in figure 13.24.

% Hi Lee, how are you?

Get me the weather for Singapa I'El

+ = Claude Sonmet 4

£ Write = Learn <> Cods P Life stuff ' Clavde's chaice
Figure 13.23 Asking

a question in Claude
Desktop

326

CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

Claude would like to use an external integration

fetch_weather
w wenthar
Review each action carefully before approving

Clavde cannot guarantee the security or privacy
practices of third-party integrations.

Figure 13.24 Claude
Desktop has found the tool
to answer your question.

The application is saying that to answer your question, it found a tool called fetch_
weather from the "weather" MCP server you configured. Click Allow Once (or Allow
Always) to allow Claude to access the fetch_weather tool and fetch the weather for
Singapore.

After a short wait, the resultis returned to you. Notice that Claude uses the tool’s out-
put to generate a coherent response (see figure 13.25). Without the MCP tools, Claude
wouldn’t be able to fetch the weather information for you.

@0 ® [Singepore Weather Repart :-!:1

° Get me the weather for Singapore

¥ fatch_weather

Here's the current weather for Singapore:

Conditions: Scattered clouds

Humidity: 68%

Wind: 3.6 m/s [rom the southeast

Pressure: 1008 hPa |

Temperature: 31C (feels like 37°C) ‘

It's guite warm and humid, as typical for Singapore's tropical climate, The seattered clouds

might provide some relief from the direct sun.
X [0 d5 T Retry ~ Y
3 Claide can make mistaces, Plecse dovkle-cheok rspanzes.
Reply to Clavde... Figure 13.25
+ | % Claude Senner4 - The result returned

by the tool

Testing the MCP server using Claude Desktop 327

13.3.3 Getting the content of a text file

Try another question: “Can you help me get the content of textfile.txt.” As before,
Claude Desktop detects that a tool named get_text is able to able to answer your ques-
tion (see figure 13.26).

Claude would like to use an external integration

|| 2L Laxl

weather

Review each action carefully befare approving

Claude cannot guaranTes the security ar privacy
practices of third-rarty integratians.

Decline:

Figure 13.26 Claude
Desktop found a tool to
fetch the content of a file.

If you grant it access to the tool, Claude will extract the content from the text file
and summarize it in bullet points (see figure 13.27). You can follow up with another
question: “Summarize the content of the file.” This time, Claude Desktop generates a
summary (see figure 13.28).

ese [T Singapere Westher Repart « fu]

° Can you help me get the cantent of textfile.txt

& get_text =

Here's the content of textiile.xt:
The file containg an informative text about gquantum computing that covers:
+ Baslec concept: Quantum computers exploit quantum mechanical phenomena where
matter exhibits both particle and wave properties
+ Keyadvantage: Could potentially perform certain calculations exponentially faster than |
classical compurers
« Qubits: The basic unit of quantum information that can exist in superposition, unlike
classical bits
« Current limitations: Still largely experimental and impractical due to challenges like
quantum decoherence

+ Research focus: Governments investing in developing better qubits with longer coherence
times

Figure 13.27
hep i bieueay The content of the file
+ = Claude Sonriet 4 returned by Claude

Desktop

328

CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

ese M Singapore Weather Report ~ il

° Summarize the content of the file

Here's a summary of the quanlum computing text:

‘What it is: Quantum computers use quantum mechanical properties of matter to perform
calculations, leveraging the fact that particles can behave as both waves and particles at small
scales,

Key advantages: Could potentially solve certain problems exponentially faster than classical
computers, with applications in breaking encryption and physics simulations.

How it works: Uses "qubits” instead of classical bits. Unlike regular bits that are either 0 or 1,
qubits can exist in "superposition” - essentially being in multiple states simultaneously until
measured.

Current reality: 5till largely experimental and impractical. Major challenges include
"guantum decoherence” where qubits lose their quantum properties due to environmental
interference, introducing errors.

h efforts: Gover ts are heavily investing in developing better qubits that last Figure 13.28
Asking Claude
Reply to Claude...
Desktop to
+ = Clande Sennetd -~ @ summarize the

content of the file

13.3.4 Getting the content of a PDF file

Ask one more question: “Load the content of Singapore.pdf.” As expected, Claude

Desktop knows that the get_pdf tool can answer your question (see figure 13.29).

When you grant it permission to use the tool, Claude Desktop loads the content of the

PDF file and returns the key points in the document (see figure 13.30).

Claude would like to use an external integration

get_pdt
weather

Review each action carefully before approving

Claude cannot guarantee the security or privacy
practices of third-party integrations.

Figure 13.29 Claude
Desktop found a tool
to fetch the content of
a PDF file.

Testing the MCP server using Claude Desktop 329

[] 9 [Current Temperature in Singapaore {4]

o Load the content of Singapore.pdf

& get_pdf

The PDF has been loaded! It contains detailed information about Singapore from Wikipedia.

The document covers:

Basic Information:

« Official name: Republic of Singapore

« Languages: English, Malay, Mandarin Chinese, and Tamil (with Englizh as the lingua
franca)

« Location: Island country and city-state in maritime Southeast Asia, about 137 km north of
the equator

Demographics (2020):

« Fthnic groups: 74.3% Chinese, 13.5% Malay, 9.0% Indian, 3.2% Others

« Religion: 31.1% Buddhism, 20.0% No religion, 18.9% Christianity Figure 13.30
Reply to Claude... The content
of the PDF file
+ || = Claude Sonuet 4 - returned by
the tool

Now you can ask a question specific to the document: “What are the official languages
in Singapore?” Claude Desktop generates the result for you (see figure 13.31).

eoe [Current Temperature in Singapore ~ 4
° ‘What are the official languages in Singapore?
According to the Singapore.pdf document I just loaded, Singapore has four official
languages:
1. English
2. Malay
3. Mandarin Chinese
4. Tamil
The document also notes that English serves as the lingua franca and is used exclusively in
numerous public services. Additionally, Malay is designated as the national language.
This multilingual policy reflects Singapore's multicultural population and is part of the
country's recognition of the cultural identities of its major ethnic groups, with multi-racialism
being enshrined in the constitution.
% Fl 43 T Retry ~
: Figure 13.31
Reply to Clavde... . .
Asking questions
k= Claude Sonnet 4 « pertaining to the

PDF document

330

CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

13.3.5 Improving the MCP server

In your MCP server implementation, you hardcoded the OpenWeatherMap API key
in the code. Ideally, you should allow the user to pass the key in to your code using an
environment variable. Let’s change that now. First, add the following statements in
bold to the server.py file:

from mcp.server.fastmcp import FastMCP
import httpx

import fitz # for PyMuPDF

import os

import sys
Gets the APl key from the
API_KEY = os.getenv('OPENWEATHER_API_KEY') environment variable
if not API_KEY:
print("Error: OPENWEATHER_API_KEY environment variable must be set",
file=sys.stderr)
sys.exit(1)

Create an MCP server
mcp = FastMCP("MCP Demo")

Then comment out the assignment of the API_KEY variable in the fetch_weather()
function:

H======
Tools
H======
@mcp.tool()
async def fetch_weather(city: str, units: str = "metric") -> dict:
async with httpx.AsyncClient() as client:
API_KEY = "XXXXXXXXXXXX"

Using OpenWeatherMap API
response = await client.get(

Finally, pass in the OPENWEATHER_API_KEY value (replace it with your own API key)
through the environment variable in the claude_desktop_config.json file:

{
"mcpServers": {
"weather": {
"command": "/Users/weimenglee/.local/bin/uv",
"args": [
"--directory",
"/Volumes/SSD/MCP_Demo",
"run",
"server.py"

Trying third-party MCP servers 331

1,
"env": {
"OPENWEATHER_API_KEY": "XXXXXXXXXXXX"
}
}
}
}

Restart Claude Desktop. The MCP server works as intended.

13.4 Trying third-party MCP servers

At this stage, you’ve built your own MCP server and tested it using Claude Desktop.
In this section, you’ll explore further, trying out some MCP servers created by others.
You’ll install the following third-party MCP servers:

Location Service—An MCP server that allows you to discover your geographical
location.

Time Service—An MCP server that allows you to obtain the current time. It also
supports generation of datetime strings in various formats.

13.4.1 Get My Location

Get My Location is an MCP server that allows you to discover your geographical location.
To learn more about this service, visit https://mcp.so/server/get-my-location/ typescript.
To use this service in Claude Desktop, edit the claude_desktop_config. json file:

$ nano ~/Library/Application\ Support/Claude/claude_desktop_config.json

Add the following statements in bold (note the comma before the "get-location" key):

{
"mcpServers": {
"weather": {
"command": "/Users/weimenglee/.local/bin/uv",
"args": [
"--directory",
"/Volumes/SSD/MCP_Demo",
"run",
"server.py"
]l
"enV": _{
"OPENWEATHER_API_KEY": "XXXXXXXXXXXX"
}
}l
"get-location": {
"command": "npx",
"args": [
-y,
"@mcpen/mep-get-location”
]I

https://mcp.so/server/get-my-location/typescript

332

CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

"env": {}
}
}
}

Unlike the MCP server that you developed using Python, the Location Service server is
written in Node.js. The various keys do the following things:

"npx"—Uses npx (a command-line tool that comes with Node.js) to run a Node
.js package without installing it globally

-y—Automatically answers "yes" to prompts

@mcpen/mep-get-location—Refers to a package located at https://mng.bz/X7ep.

"env"—Indicates that no special environment variables are configured

The npx tool downloads the package from the NPM registry to a temporary location
and then runs it immediately without installing it permanently. The package executes
locally on your machine as an MCP server and provides location services to an MCP
client (such as Claude Desktop).

Restart Claude Desktop, and ask the following question: “What is my current loca-
tion?” Claude Desktop should be able to find the get-Tlocation tool to answer that ques-
tion (see figure 13.32). Click Allow Once.

Claude would like to use an external integration

G get location

get-location

Review each action carefully before approving

Clavde cannot guarantee the security or privacy
practices of third-party integrations.

Figure 13.32

Claude Desktop
using the third-
party tool to
get your current
location

A web page appears, asking for permission to get your current location (see figure
13.33). Click Get My Location.

https://mng.bz/X7ep

Trying third-party MCP servers 333

ese O = location mepenal O O M+ O

Al Location Service

To better serve you, Al needs your permission 1o
access your current location

System Check

§. macOS Location Services: Please check
system setfings manually

B Biowser Compatibllity; Safarl supports
Gealocation APL

Protocol Security: Supported (HTTPS)

Get My Location

Figure 13.33 Retrieving
your location

Back in Claude Desktop, you see the location details retrieved by the MCP server (see
figure 13.34).

G

ede D Determining Your Location v

° What is my current location?

I can help you find your current location. Let me get that information for vou.
@ get_location -
Based on your location coordinates, you are currently in Singapore. Your exact coordinates

are:

« Latitude: | NN

. Lungimde:_

These coordinates place you in the central area of Singapore, likely in or near the
downtown/city center region.

% 0 i3 5} Retry -
1 .

kes. Plesse double-check responses.

You're almast out of usage - your limits will reset at 7:00 PM % Figure 13.34

Location

Reply to Claude... information
+ || = Claude Sonnet 4 i returned by

the tool

334

134.2

CHAPTER 13 Bridging LLM:s to the real world with the Model Context Protocol

If you asked something like “What is the temperature for my current location?”, Claude
Desktop would invoke the get_location tool first, followed by the fetch_weather tool
(see figure 13.35). Cool, isn’t it?

>

[K X] M| Current Temperature for Your Location v

o What is the temperature for my current location?
I'll get your current location and then fetch the temperature for you.

G get_location ~
Now let me get the weather information for your location in Singapore:

F fetch_weather v

The current temperature at your location in Singapore is 30°C (86°F). It feels like 37°C (99°F)
due to the humidity, which is at 77%. The weather conditions show broken clouds with light
winds from the east at about 4.6 m/s.

* B &9 T Retry~
Claude can make mistakes. Please double-check responses.

Reply to Claude...

+ || = Claude Sonnet 4 ~

Figure 13.35 Claude Desktop can invoke multiple tools to answer a question.

mcp-datetime

The second MCP server you’ll try is the mcp-datetime MCP server, which allows you
to obtain the current time in various geographical locations. For more details on this
service, visit https://mng.bz/yNKy.

As usual, to use this service in Claude Desktop, edit the claude_desktop_config.json
file:

$ nano ~/Library/Application\ Support/Claude/claude_desktop_config.json

Add the statements in bold in the following listing.

Listing 13.5 Adding the mcp-datetime service

{
"mcpServers": {
"weather": {

https://mng.bz/yNKy

Trying third-party MCP servers 335

"command": "/Users/weimenglee/.local/bin/uv",
"args": [
"--directory",
"/Volumes/SSD/Dropbox/MCP_Demo",
"run",
"server.py"
1,
"env": {
"OPENWEATHER_API_KEY": "XXXXXXXXXXXX"
}
}l
"get-location": {
"command": "npx",
"args": [
ey,
"@mcpcn/mep-get-location™
]l
"env": {}
.
"mcp-datetime": {
"command": "/Users/weimenglee/.vlocal/bin/uvx",
"args": ["mcp-datetime"]
i
}
}

Unlike the Location Service, the Time Service is written in Python. Here’s what the

various keys do:

The uvx command downloads the mcp-datetime Python package (https://pypi

.org/project/mcp-datetime).

The MCP server runs locally without permanent installation (like npx but for

Python).

uv and uvx

uv is a comprehensive Python package and project manager that handles depen-
dencies and virtual environments and can execute Python code within those envi-
ronments. uvx is a command runner that executes Python applications in isolated,
temporary environments without requiring manual setup.

In an earlier MCP configuration, you used uv run to execute the local Python script
(server.py) within the project’s managed environment. Now you use uvx to run the
mcp-datetime package directly; it automatically downloads, installs, and executes
the package in an isolated environment without any manual installation steps.

Restart Claude Desktop, and ask the following question: “What time is it now in Shang-
hai?” Claude Desktop should be able to find the get_datetime tool to answer that ques-
tion (see figure 13.36). Click Allow Once. You see the answer from this tool (see figure

13.37).

https://pypi.org/project/mcp-datetime
https://pypi.org/project/mcp-datetime

336 CHAPTER 13 Bridging LLM:s to the real world with the Model Context Protocol

Claude would like to use an external integration

get_datetime

M

mcp-datetime

Review each action carefully before approving

Claude cannot guarantee the security or privacy
practices of third-party integrations.

Decline Allow always

Figure 13.36 Claude Desktop using a tool to get the time at a particular location

eoe [Time in Shanghai v

S
&

o What time is it now in Shanghai?

G get_datetime

Based on my current time, it's 9:29 AM on Wednesday, May 28, 2025 in Singapore. Since
Shanghai is in the same time zone as Singapore (UTC+8), it would also be 9:29 AM in Shanghai
right now.

ils] Retry ~
* Hi. I'm Claude. How can I help you today? - £ Y

Clavde can make mistakes. Please double-check responses.

Reply to Claude...

+ = Claude Sonnet 4 +

Figure 13.37 The time returned by the tool

Summary 337

Summary
MCP is an open standard created by Anthropic to connect Al assistants like
Claude to external data sources and tools.
An MCP server is a standard application that can run in different configurations.
After you developed an MCP server, you can deploy it locally or remotely.
When the MCP server and client are running on the same machine, they commu-
nicate using standard input and output streams.

When the server and client are running on different machines across the net-
work, the client communicates with the server using HT'TP P0ST, and the server
responds to the client using SSE.

An MCP server has three main components that define its functionality:

— Tools—Executable functions that the LLM can invoke to perform actions or
computations

— Resources—Data sources that the Al can access to retrieve information

— Prompts—Predefined prompt templates that can be used to guide Al
interactions

You can develop an MCP server using the official Python SDK for MCP servers
and clients.

You can use the MCP Inspector to test and validate your MCP server.
You can use your MCP server via the Claude Desktop application.

MCP servers are written in a variety of programming languages, including
Python, Node.js, TypeScript, Go, and Rust.

mdex

Numbers

0.0.0.0 IP address 236
127.0.0.1 IP address 236
7860 port 174

Symbols

@mcp.prompt decorator 318
@mcp.resourcedecorator 315
@mcp.tool () decorator 318
@tool decorator 206

A

agents 198
developing using LangGraph 212
developing using smolagents 200-206
developing with LangChain 207-212
LangGraph 213,219,224
overviewof 199

AlMessage 217

Anaconda
distribution 15
downloading 13

authentication 234

338

BAAI/bge-small-en-vl.5 model 162

BERT (Bidirectional Encoder Representations from
Transformers) 36,42, 108

biases, defined 146
BPE (byte-pair encoding) 108, 146
Button component 252-253

C
Chains component, adding 183

character-level tokenization 35, 147
chatbots 252-256

clearing 256

creating basic chatbot Uls 253

wiring Textbox submit events 254
Chat Input component, adding 184

Chat Memory component, maintaining
conversations using 186

Chat Output component
adding 184
connectingto 191

chunking, defined 280

CIFAR-10 dataset 116119

Claude Desktop 324-331
configuring to use MCP server 324
getting content of PDF file 328

getting content of text file 327
getting weather 325
improving MCP server 330
clickevent 256
CLIP (Contrastive Language—Image Pretraining)
model 140-142
CNNs (convolutional neural networks) 116, 122
COCO (Common Objectsin Context) 4
conda package manager 13,14, 30

configuring, trainer for fine-tuning pretrained
models 128

CUDA (Compute Unified Device
Architecture) 20, 48, 126

cURL (command-line tool) 195
CV (computer vision)
binding to webcams 76
image classification 78
image segmentation 81-88
models 64
objectdetection 65
transformers pipeline 74
using models directly 68
video content classification 88-92

D

data, analyzing with LLMs 292-302

asking questions using Mistral 7B model 296
298

asking questions using OpenAl 299-302

loading JSON files 295

preparing JSON files 293
Database services 307
datasets

reduced, tokenizing 125

visualizing 112-119

yelp_polarity 122
decord library 89-91
deepset/roberta-base-squad2 model 61
Delphia/ twitter-spam-classifier model 50
DETR (Detection Transformer) 4, 69, 137
DistIBERT 42,43
distilbert-base-uncased model 125
DistilBertForSequenceClassification model 127
Docker, installing Langflow using 175
document_loaders module 278, 286, 290, 303
DPO (Direct Preference Optimization) 149

INDEX 339

Dropdown component 247
DuckDuckGoSearchTool 200-204

E

embedding, defined 281
events, wiring Textbox submit events 254

F

facebook/detr-resnet-50 model 4-5, 65-66, 74, 137
facebook/m2m100_418M model 56

FAIR (Facebook Al Research) 20

FAISS (Facebook Al Similarity Search) 277

File component, loading PDF documents 188

Files services 307
fine-tuning

pretrained models 122-123,128

tokenizing reduced datasets 125

using fine-tuned model 129
fitz (PyMuPDF) 315
fka/awesome-chatgpt-prompts dataset 99, 100
flagging options, configuring 233-234

G

GetMy Location 331
get_pdf_data() function 315,317, 319, 320
get_pdf() function 317,323
get_session_history parameter 154
get_text() function 317
get_weather_info() function 211,224
GloVe model 107
google-t5/t5-base model 55
GPT4All
asking questions 267
binding with Gradio 270
installing application 259
installing gpt4all Python library 264
list of supported models 264

loading specific model 266

overview 259

querying local data 277
gptdall package 277,282-283
gpt4o-mini models 158, 165, 202, 204, 209
gpt4o models 299

GPT (Generative Pre-trained Transformer) 2,42,
108

GPUs (graphics processing units) 11, 126, 165, 258

340

using in pipeline object 22
GPUtil package 21
Gradio
authentication 234
binding to image segmentation 85
binding with 270
building web-based Uls = 229, 252-256
customizing server and port 236
flagging options 233
overview of 230-238
sharing application 236
widgets 239-252
gradio package 85
Gradio Python library 8

H

Hosted Inference AP 80
httpx, package 312
huaen/question_detection model 49
Hugging Face 12
computer vision models 64
creating virtual environments 14
downloading Anaconda 13
Gradio Python library 8
mental model 10-11
models 4. See alsospecific models
starting Jupyter Notebook 16
transformer architecture 3241

transformers and pipelines for NLP tasks, QA
tasks 61

Transformers library 2
huggingface-clitool 57
HuggingFace component, using 190
Hugging Face datasets 94-106

downloading 100-103

listing available 96

Parquetfiles 105

shuffling 103

streaming 104

validating availability of 99
HuggingFaceEmbedding model 162
HuggingFaceH4/zephyr-7b-alpha model 149
Hugging Face Hub, installing package 23-29

downloading files 24

using Hugging Face CLI 27-29
hugging-face-hub package 277

INDEX

huggingface_hub package 23-25,27

Hugging Face Spaces, deploying Gradio application

to 237
HumanMessage 217

image classification 78
image segmentation 81-88

binding to Gradio 85

using model programmatically 82-85
Images services 307
IMDDb (Internet Movie Database) 3, 100
Incorrect Credentials message 235

initializing, trainer for fine-tuning pretrained
models 128

installing, Transformers library 19-23

J

joeddav/xlm-roberta-large-xnli model 57,58
jq Python package 290
jgschema 303
JSON (JavaScript Object Notation)
loading files 289, 295
preparing files 293
Jupyter Notebook, starting 16

L

LangChain 147,303

building applications visually using

Langflow 173,187-192

creating LLM chain 150

developing agentswith 207-212

installing 147
langchain-huggingface package 148
langchain llms module 283
langchain_openai package 157
langchain package 147,277, 286, 290
Langflow

asking questions on own data 187-192

building LangChain applications visually
using 173

creating new projects 178-187

installing 174-175

overview 174-176

running in cloud 176

using project programmatically 192-196

langflowimage 176
LangGraph 212-213, 219, 224-225
LFS (Git Large File Storage) 11

Llamalndex, connecting LLMs to private data
using 160-171

LLM (large language model)-based
applications 144, 258

asking questions 267

creating LLM chain 150

creating prompt templates 147
installing GPT4All application 259
installing gpt4all Python library 264
LangChain 147

listing all supported models 264
loading specific model 266

using other LLMs 157, 159

LLMs (large language models) 1,107, 145-147,
198-199, 304

asking questions 283

connecting to private data using
Llamalndex 160-171

embedding 281
loading CSV files 286
loading embeddings 282
loading JSON files 289
loading multiple documents 284
maintaining conversation 151
querying local data 276-278, 280, 282
specifying 148
writing code to analyze data 292-302
local data
LLMs to query, loading CSV files 286
querying, downloading model 282
querying with LLMs 277-278, 280, 298
LocalData 263, 285
logits 142
logitskey 46
LSTMs (long short-term memory networks) 32

M

main branch 25
mask element 83

MCG-NJU /videomae-base-short-finetuned-kinetics
model 89

MCP (Model Context Protocol) 2,304
building MCP server 310-323
client/server 306

INDEX 341

overview of 305-310

problems solved by 305

server components 309

server deployment 308

testing server using Claude Desktop 324-331

third-party servers 331-335

GetMy Location 331
mcp-datetime 334

mcp.server.fastmep module 312
memory, LangGraph with 225
Messages (Text) connector 186
meta-llama/Llama-3.2-3B-Instruct model 164—-166
Mistral 7B model 296-298
Mistral OpenOrca model 266, 267
MLM (masked language modeling) 61
model_id 202
model object 71
Models component, adding 182
MPS (Metal Performance Shaders) 126
multiclass text classification 131
multimodal models 136-142

CLIP model 140-142

single-modal models 137-140
MyGradioApp directory 237

N

NER (named entity recognition) 19, 33,107
NLI (Natural Language Inference) 57

NLP (natural language processing) 1, 19,95, 122,
198, 258, 280
text classification 49
textgeneration 51
text summarization 52
text translation 54
tokenizationin 107-112
transformer architecture 32—41
transformers and pipelines for QA tasks 61
transformers for 49
Transformers library 4149
zero-shot classification 56
NLP (natural language processing) tasks 31

objectdetection 65
ollama 202
one-shot classification 57

342

OOV (out-ofvocabulary) 108
OpenAl

asking questions using 299-302

using 157

using Llamalndex with 165
openai/ clipvit-base-patch32 model 142
openai/ clipvitlarge-patch14-336 model 60
openai-community/gpt2 model 51
OpenAl component, using LLM with 192
openai package 299-300

P

INDEX

using LLM for querying 164
Prompt component 179

adding 180

getting questions using 189
prompt templates 147
protobuf package 58
PyPDFLoaded object 284
Python

installing gpt4all library 264

using project programmatically 195
PythonInterpreterTool 201, 204

packages, installing 161. See alsospecific packages

papluca/xlm-roberta-base-language-detection
model 50

Parse Data component, splitting long text into
smaller chunks 189

PDF documents, loading 188, 278
PIL package 71,78,85

pip command 24, 76,90, 147, 157, 161, 166, 230,
299

installing Langflow using 174
pipelines 3,22

for NLP tasks, QA tasks 61
pipeline-style chaining 150
port, customizing 236
positional encoding 39-40
pretrained models

configuring and initializing trainer for fine-
tuning 128

fine-tuning 122
setting up for sequence classification 125
transformer models 42

private data, connecting LLMs to using
Llamalndex 160-171

asking questions 165

creating chatbot Ul 168

creating web frontend forapp 166
holding conversation 168
indexing document 163

installing packages 161

loading documents 161

loading embeddings 163
preparing documents 161

shifting workload to GPU 165
using embedding model 162
using Llamalndex with OpenAl 165

Q

QA (question-answering) tasks 61
querying local data, installing required

packages 277
Qwen/Qwen2.5-Coder-32B-Instruct model 201

R

RAG (retrieval-augmented generation) 161
read token 148
RecursiveCharacterTextSplitter object 280, 303
reduced datasets, tokenizing 125

ResNet (residual neural network) 136
Resources, defined 315

RNNs (recurrent neural networks) 32

RoBERTa (Robustly Optimized BERT
Approach) 42

S

scaled dot-productattention 40

SegFormer model fine-tuned on ADE20k
model 86

self-attention mechanism 33, 40
sentence embeddings 281
sentencepiece package 56, 58

sentence-transformers/all-MiniLM-L6-v2
model 281,303

sentence-transformers model 277
sentiment analysis 44

sequence classification, setting up pretrained model
for 125

SerpAPIWrapper 208-209, 219
server, customizing 236
Service, defined 306
SimpleDirectoryReaderclass 161

INDEX 343

single-modal models 136-140
skimage package 243
Slider component 247
smolagents 200-206
DuckDuckGoSearchTool = 200-204
PythonInterpreterTool 204
writing custom tools 206
Softmax 41, 142
spam classifier 50
SQuAD (Stanford Question Answering Dataset) 61
SSE (serversent events) 309
SST=2 (Stanford Sentiment Treebank) dataset 42
stanfordnlp/imdb dataset 100, 102-103, 105
state dictionary 215
StrOutputParser object 284
submit event 254
subword tokenization 35, 146
summarizer object 53

T

T5 (Text-To-Text Transfer Transformer) 42
TavilySearchResults 208
testsplitdataset 123-124
Textbox component 247, 252-254
text
classification 49
generation 51
string 231
summarization 52
translation 54
tituae /falcon-7b-instruct model 159
token embeddings 36-38
tokenID 110
tokenization 34,107-112
tokenizing datasets 109-112, 125
types of methods 107
tokenizer object 45
tokens, defined 146
Tool object 225
Tools, implementing 315-318
trainer, configuring and initializing for fine-tuning
pretrained models 128
Training Documents folder 161
train key 103
train split 103, 124
train splitdataset 123

Transcriber tool 201

32-41
positional encoding 39-40
Softmax 41

token embeddings 36
tokenization 34

transformer architecture

transformer block 40
transformer block 40
transformers, for NLP tasks 49, 61
Transformers library 2, 41-38
installing 19-23
pipelines 4249
pretrained transformers models 42
using models directly 44-46
transformers package 3, 31
transformers pipeline 74, 80

tSNE (t-Distributed Stochastic Neighbor
Embedding) 37

twitter-financialnews-topic dataset 112-115

u

Uls (user interfaces), chatbots 252-256
clearing 256

creating basic 253

wiring Textbox submit events 254
URI (Uniform Resource Identifier) 315
username field 235
uy, installing 311

\')
vector embedding 162

video content classification 88-92
downloading videos for testing 90
installing prerequisites 89
using transformers pipeline object 91

VideoMAE (Video Masked Autoencoders)
model 89

virtual environments 14
visualizing datasets 112-119
CIFAR-10 dataset 116-119
twitter-financial-news-topic dataset 112-115
VQA (visual question answering) 136

w

weather_tool 225
webcams 76

344

web frontends, creating forapps 166
webserver folder 90,91
weights, defined 146
widgets 239-252
Audio 240
Images 242-246
layout using TabbedInterface class 250
selection widgets 247
Textbox 239
WikipediaAPIWrapper 208
WolframAlphaAPIWrapper 208

INDEX

Word2Vec model 107

word embeddings 281

word tokenization 34, 147

WRITE Hugging Face token = 237-238

Y

yelp_polarity dataset 121-123

Y4

zero-shot classification 56-60

SOFTWARE DEVELOPMENT/PYTHON

Huqqing Face
Wei-Meng Lee

ugging Face is an incredible open-source ecosystem for
H Al engineers and data scientists, providing hundreds of

pre-trained models, datasets, tools, and libraries. It’s also
a central hub for collaborating on leading edge Al research.
Hugging Face is a massive platform, and this book will help
you take full advantage of all it has to offer.

Hugging Face in Action teaches you how to build end-to-end Al
systems using resources from the Hugging Face community. In
it, you'll create multiple projects, including an object detection
model, a RAG Q&A application, an LLM-powered chatbort,
and more. You'll appreciate the clear, accessible explanations,
along with thoughtful introductions to key technologies like

LangChain, Llamalndex, and Gradio.

What's Inside
* How to navigate the huge Hugging Face library of models
and tools
e How to run LLMs locally using GPT4ALL
* How to create web-based user interfaces using Gradio

* How to improve models using Hugging Face datasets

For Python programmers familiar with NumPy and Pandas.
No Al experience required.

Wei-Meng Lee is a technologist and founder of Developer
Learning Solutions.

For print book owners, all digital formats are free:
https: //www.manning.com/freebook

¢CA must-read for all
Al developers!”

—Abhinav Kimothi
Author of A Simple Guide
to Retrieval Augmented Generation

¢CPacked with valuable
information!??

—Maja Ferle, Author of
Snowflake Data Engineering

¢CA great introduction
to the foundational
Hugging Face toolset. »

—Micheal Lanham
Brilliant Harvest

¢ Gets you started with
HuggingFace datasets
and models.??

—Giuliano Bertoti, FATEC

¢¢A hands-on guide to one
of the most important
ecosystems in modern AI.??

—Vikram Kulothungan
Capitol Technology University

FREE
= eBook

see first page

ISBN 13 978 1 63343 671-8

	Hugging Face in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	Prerequisites
	How this book is organized: A road map
	What’s required to use this book
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	1 Introducing Hugging Face
	1.1	Hugging Face Transformers library
	1.2	Hugging Face models
	1.3	Hugging Face Gradio Python library
	1.4	Understanding the Hugging Face mental model
	1.4.1	Step 1: User need
	1.4.2	Step 2: Model Hub discovery
	1.4.3	Step 3: Model card
	1.4.4	Step 4: Two execution paths
	1.4.5	Step 5: Results delivered

	2 Getting started
	2.1	Downloading Anaconda
	2.1.1	Creating virtual environments
	2.1.2	Starting Jupyter Notebook

	2.2	Installing the Transformers library
	2.2.1	Support for GPU
	2.2.2	Using GPU in the pipeline object

	2.3	Installing the Hugging Face Hub package
	2.3.1	Downloading files
	2.3.2	Using the Hugging Face CLI

	3 Using Hugging Face transformers and pipelines for NLP tasks
	3.1	Introduction to the transformer architecture
	3.1.1	Tokenization
	3.1.2	Token embeddings
	3.1.3	Positional encoding
	3.1.4	Transformer block
	3.1.5	Softmax

	3.2	Working with the Transformers library
	3.2.1	What are pretrained transformers models?
	3.2.2	What are transformers pipelines?
	3.2.3	Using a model directly
	3.2.4	Using a transformers pipeline

	3.3	Using transformers for NLP tasks
	3.3.1	Text classification
	3.3.2	Text generation
	3.3.3	Text summarization
	3.3.4	Text translation
	3.3.5	Zero-shot classification
	3.3.6	Question-answering tasks

	4 Using Hugging Face for computer vision tasks
	4.1	Hugging Face computer vision models
	4.2	Object detection
	4.2.1	Using the model directly
	4.2.2	Using the transformers pipeline
	4.2.3	Binding to a webcam

	4.3	Image classification
	4.4	Image segmentation
	4.4.1	Using the model programmatically
	4.4.2	Binding to Gradio

	4.5	Video classification
	4.5.1	Installing the prerequisites
	4.5.2	Downloading the videos for testing
	4.5.3	Using the transformers pipeline object

	5 Exploring, tokenizing, and visualizing Hugging Face datasets
	5.1	What are Hugging Face datasets?
	5.1.1	Getting the list of datasets available
	5.1.2	Validating the availability of a dataset
	5.1.3	Downloading a dataset
	5.1.4	Shuffling a dataset
	5.1.5	Streaming a dataset
	5.1.6	Getting the Parquet files of a dataset

	5.2	Tokenization in NLP
	5.2.1	Types of tokenization methods
	5.2.2	Tokenizing datasets

	5.3	Visualizing datasets
	5.3.1	Using the twitter-financial-news-topic dataset
	5.3.2	Using the CIFAR-10 dataset

	6 Fine-tuning pretrained models and working with multimodal models
	6.1	Fine-tuning pretrained models
	6.1.1	Loading the yelp_polarity dataset
	6.1.2	Filtering the yelp_polarity dataset
	6.1.3	Tokenizing the reduced dataset
	6.1.4	Setting up a pretrained model for sequence classification
	6.1.5	Configuring and initializing a trainer for fine-tuning a pretrained model
	6.1.6	Using the fine-tuned model
	6.1.7	Fine-tuning models for multiclass text classification

	6.2	Working with multimodal models
	6.2.1	Single-modal models
	6.2.2	Multimodal models

	7 Creating LLM-based
	7.1	Introducing LLMs
	7.2	Introducing LangChain
	7.2.1	Installing LangChain
	7.2.2	Creating a prompt template
	7.2.3	Specifying an LLM
	7.2.4	Creating an LLM chain
	7.2.5	Running the chain
	7.2.6	Maintaining a conversation
	7.2.7	Using the RunnableWithMessageHistory class
	7.2.8	Using other LLMs

	7.3	Connecting LLMs to your private data using LlamaIndex
	7.3.1	Installing the packages
	7.3.2	Preparing the documents
	7.3.3	Loading the documents
	7.3.4	Using an embedding model
	7.3.5	Indexing the document
	7.3.6	Loading the embeddings
	7.3.7	Using an LLM for querying
	7.3.8	Asking questions
	7.3.9	Using LlamaIndex with OpenAI
	7.3.10	Creating a web frontend for the app
	7.3.11	Holding a conversation
	7.3.12	Creating a chatbot UI

	8 Building LangChain applications visually using Langflow
	8.1	What is Langflow?
	8.1.1	Installing Langflow using the pip command
	8.1.2	Installing Langflow using Docker
	8.1.3	Running Langflow in the cloud

	8.2	Creating a new Langflow project
	8.2.1	Adding a Prompt component
	8.2.2	Adding a Models component
	8.2.3	Adding a Chains component
	8.2.4	Adding Chat Input and Chat Output components
	8.2.5	Testing the project
	8.2.6	Maintaining a conversation using the Chat Memory component

	8.3	Asking questions on your own data
	8.3.1	Loading PDF documents using the File component
	8.3.2	Splitting long text into smaller chunks using the Parse Data component
	8.3.3	Getting questions using the Prompt component
	8.3.4	Using the HuggingFace component
	8.3.5	Connecting to the Chat Output component
	8.3.6	Testing the project
	8.3.7	Using an LLM with the OpenAI component

	8.4	Using your project programmatically
	8.4.1	cURL
	8.4.2	Python code

	9 Programming agents
	9.1	What are agents?
	9.2	Developing agents using smolagents
	9.2.1	Using built-in tools: DuckDuckGoSearchTool
	9.2.2	Using built-in tools: PythonInterpreterTool
	9.2.3	Writing your own custom tools

	9.3	Developing agents with LangChain
	9.3.1	Using the built-in Tool class
	9.3.2	Using custom tools

	9.4	Developing agents using LangGraph
	9.4.1	What is LangGraph?
	9.4.2	LangGraph agent basics
	9.4.3	Using LangGraph with tools
	9.4.4	Using LangGraph with a custom tool
	9.4.5	Using LangGraph with memory

	10 Building a web-based UI using Gradio
	10.1	Basics of Gradio
	10.1.1	Using Gradio’s Interface class
	10.1.2	Configuring flagging options
	10.1.3	Configuring authentication
	10.1.4	Customizing the server and port
	10.1.5	Sharing your Gradio application
	10.1.6	Deploying your Gradio application to Hugging Face Spaces

	10.2	Working with widgets
	10.2.1	Working with Textbox
	10.2.2	Working with Audio
	10.2.3	Working with Images
	10.2.4	Working with selection widgets
	10.2.5	Layout using the TabbedInterface class

	10.3	Creating a chatbot UI
	10.3.1	Creating the basic chatbot UI
	10.3.2	Wiring the Textbox’s submit event
	10.3.3	Clearing the chatbot

	11 Building locally running LLM-based applications using GPT4All
	11.1	Introduction to GPT4All
	11.2	Installing GPT4All
	11.2.1	Installing the GPT4All application
	11.2.2	Installing the gpt4all Python library
	11.2.3	Listing all supported models
	11.2.4	Loading a specific model
	11.2.5	Asking a question
	11.2.6	Binding with Gradio

	12 Using LLMs to query your local data
	12.1	Using GPT4All to query with your own data
	12.1.1	Installing the required packages
	12.1.2	Importing the various modules from the LangChain package
	12.1.3	Loading the PDF documents
	12.1.4	Splitting the text into chunks
	12.1.5	Embedding
	12.1.6	Loading the embeddings
	12.1.7	Downloading the model
	12.1.8	Asking questions
	12.1.9	Loading multiple documents
	12.1.10	Loading CSV files
	12.1.11	Loading JSON files

	12.2	Using LLMs to write code to analyze your data
	12.2.1	Preparing the JSON file
	12.2.2	Loading the JSON file
	12.2.3	Asking the question using the Mistral 7B model
	12.2.4	Asking questions using OpenAI

	13 Bridging LLMs to the real world with the Model Context Protocol
	13.1	What is MCP?
	13.1.1	The problems MCP solves
	13.1.2	Understanding MCP
	13.1.3	MCP server deployment
	13.1.4	Components in an MCP server

	13.2	Building an MCP server
	13.2.1	Installing uv
	13.2.2	Initializing the project
	13.2.3	Installing the packages
	13.2.4	Creating the MCP server
	13.2.5	Inspecting the MCP server
	13.2.6	Implementing Resources
	13.2.7	Implementing Tools
	13.2.8	Implementing a prompt
	13.2.9	Testing the components

	13.3	Testing the MCP server using Claude Desktop
	13.3.1	Configuring Claude Desktop to use the MCP server
	13.3.2	Getting the weather
	13.3.3	Getting the content of a text file
	13.3.4	Getting the content of a PDF file
	13.3.5	Improving the MCP server

	13.4	Trying third-party MCP servers
	13.4.1	Get My Location
	13.4.2	mcp-datetime

	index

