
M A N N I N G

Wei-Meng Lee

Hugging Face in Action

MANN I NG

SHELTER ISLAND

Wei-Meng Lee

Hugging Face in Action

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2026 Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid- free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN 9781633436718
Printed in the United States of America

The author and publisher have made every effort to ensure that the information in this book was correct
at press time. The author and publisher do not assume and hereby disclaim any liability to any party for
any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result
from negligence, accident, or any other cause, or from any usage of the information herein.

 Development editor: Dustin Archibald
 Technical editor: Ninoslav Čerkez
 Review editor: Dunja NikitoviÊ
 Production editor: Keri Hales
 Copy editor: Keir Simpson
 Proofreader: Mike Beady
 Technical proofreader: Sidharth Somanathan
 Typesetter: Tamara ŠveliÊ SabljiÊ
 Cover designer: Marija Tudor

v

brief contents
 1 ■ Introducing Hugging Face 1
 2 ■ Getting started 12
 3 ■ Using Hugging Face transformers and pipelines for NLP tasks 31
 4 ■ Using Hugging Face for computer vision tasks 64
 5 ■ Exploring, tokenizing, and visualizing Hugging Face datasets 94
 6 ■ Fine-tuning pretrained models and working with multimodal

models 121
 7 ■ Creating LLM-based applications using LangChain and

LlamaIndex 144
 8 ■ Building LangChain applications visually using Langflow 173
 9 ■ Programming agents 198
 10 ■ Building a web-based UI using Gradio 229
 11 ■ Building locally running LLM-based applications using GPT4All 258
 12 ■ Using LLMs to query your local data 276
 13 ■ Bridging LLMs to the real world with the Model Context Protocol 304

vi

contents
preface xii

acknowledgments xiii

about this book xv

about the author xx

about the cover illustration xxi

 1 Introducing Hugging Face 1

 1.1 Hugging Face Transformers library 2

 1.2 Hugging Face models 3

 1.3 Hugging Face Gradio Python library 8

 1.4 Understanding the Hugging Face mental model 10
Step 1: User need 10 ■ Step 2: Model Hub discovery 10
Step 3: Model card 11 ■ Step 4: Two execution paths 11
Step 5: Results delivered 11

 2 Getting started 12

 2.1 Downloading Anaconda 13
Creating virtual environments 13 ■ Starting Jupyter
Notebook 16

 2.2 Installing the Transformers library 19
Support for GPU 20 ■ Using GPU in the pipeline object 22

 viiCONTENTS vii

 2.3 Installing the Hugging Face Hub package 23
Downloading files 24 ■ Using the Hugging Face CLI 27

 3 Using Hugging Face transformers and pipelines for NLP
 tasks 31

 3.1 Introduction to the transformer architecture 32
Tokenization 34 ■ Token embeddings 36 ■ Positional
encoding 39 ■ Transformer block 40 ■ Softmax 41

 3.2 Working with the Transformers library 41
What are pretrained transformers models? 41 ■ What are
transformers pipelines? 42 ■ Using a model directly 44
Using a transformers pipeline 46

 3.3 Using transformers for NLP tasks 49
Text classification 49 ■ Text generation 51 ■ Text
summarization 52 ■ Text translation 54 ■ Zero-shot
classification 56 ■ Question-answering tasks 61

 4 Using Hugging Face for computer vision tasks 64

 4.1 Hugging Face computer vision models 64

 4.2 Object detection 65
Using the model directly 68 ■ Using the transformers pipeline 74
Binding to a webcam 76

 4.3 Image classification 78

 4.4 Image segmentation 81
Using the model programmatically 82 ■ Binding to Gradio 85

 4.5 Video classification 88
Installing the prerequisites 89 ■ Downloading the videos for
testing 90 ■ Using the transformers pipeline object 91

 5 Exploring, tokenizing, and visualizing Hugging Face
 datasets 94

 5.1 What are Hugging Face datasets? 95
Getting the list of datasets available 96 ■ Validating the
availability of a dataset 99 ■ Downloading a dataset 100
Shuffling a dataset 103 ■ Streaming a dataset 104
Getting the Parquet files of a dataset 105

viii CONTENTSviii

 5.2 Tokenization in NLP 107

Types of tokenization methods 107 ■ Tokenizing datasets 109

 5.3 Visualizing datasets 112

Using the twitter-financial-news-topic dataset 112 ■ Using the

CIFAR-10 dataset 115

 6 Fine-tuning pretrained models and working with multimodal
 models 121

 6.1 Fine-tuning pretrained models 122

Loading the yelp_polarity dataset 122 ■ Filtering the

yelp_polarity dataset 123 ■ Tokenizing the reduced dataset 125

Setting up a pretrained model for sequence classification 125

Configuring and initializing a trainer for fine-tuning a pretrained

model 127 ■ Using the fine-tuned model 129 ■ Fine-tuning

models for multiclass text classification 131

 6.2 Working with multimodal models 136

Single-modal models 136 ■ Multimodal models 140

 7 Creating LLM-based applications using LangChain and
 LlamaIndex 144

 7.1 Introducing LLMs 145

 7.2 Introducing LangChain 147

Installing LangChain 147 ■ Creating a prompt template 147

Specifying an LLM 148 ■ Creating an LLM chain 150

Running the chain 151 ■ Maintaining a conversation 151

Using the RunnableWithMessageHistory class 152 ■ Using

other LLMs 157

 7.3 Connecting LLMs to your private data using
LlamaIndex 160

Installing the packages 161 ■ Preparing the documents 161

Loading the documents 161 ■ Using an embedding model 162

Indexing the document 163 ■ Loading the embeddings 163

Using an LLM for querying 164 ■ Asking questions 165

Using LlamaIndex with OpenAI 165 ■ Creating a web frontend

for the app 166 ■ Holding a conversation 168 ■ Creating

a chatbot UI 168

 ixCONTENTS ix

 8 Building LangChain applications visually using Langflow 173

 8.1 What is Langflow? 174

Installing Langflow using the pip command 174 ■ Installing

Langflow using Docker 175 ■ Running Langflow in the

cloud 176

 8.2 Creating a new Langflow project 178

Adding a Prompt component 180 ■ Adding a Models

component 182 ■ Adding a Chains component 183 ■ Adding

Chat Input and Chat Output components 184 ■ Testing the

project 185 ■ Maintaining a conversation using the Chat

Memory component 186

 8.3 Asking questions on your own data 187

Loading PDF documents using the File component 188

Splitting long text into smaller chunks using the Parse Data

component 189 ■ Getting questions using the Prompt

component 189 ■ Using the HuggingFace component 190

Connecting to the Chat Output component 191 ■ Testing the

project 191 ■ Using an LLM with the OpenAI component 192

 8.4 Using your project programmatically 192

cURL 194 ■ Python code 195

 9 Programming agents 198

 9.1 What are agents? 199

 9.2 Developing agents using smolagents 200

Using built-in tools: DuckDuckGoSearchTool 200 ■ Using

built-in tools: PythonInterpreterTool 204 ■ Writing your

own custom tools 206

 9.3 Developing agents with LangChain 207

Using the built-in Tool class 208 ■ Using custom tools 211

 9.4 Developing agents using LangGraph 212

What is LangGraph? 213 ■ LangGraph agent basics 213

Using LangGraph with tools 219 ■ Using LangGraph with a

custom tool 224 ■ Using LangGraph with memory 225

x CONTENTSx

 10 Building a web-based UI using Gradio 229

 10.1 Basics of Gradio 230
Using Gradio’s Interface class 230 ■ Configuring flagging

options 233 ■ Configuring authentication 234 ■ Customizing

the server and port 236 ■ Sharing your Gradio application 236

Deploying your Gradio application to Hugging Face Spaces 237

 10.2 Working with widgets 239
Working with Textbox 239 ■ Working with Audio 240

Working with Images 242 ■ Working with selection widgets 247

Layout using the TabbedInterface class 250

 10.3 Creating a chatbot UI 252
Creating the basic chatbot UI 253 ■ Wiring the Textbox’s submit

event 254 ■ Clearing the chatbot 256

 11 Building locally running LLM-based applications using
 GPT4All 258

 11.1 Introducing GPT4All 259

 11.2 Installing GPT4All 259
Installing the GPT4All application 259 ■ Installing the gpt4all

Python library 264 ■ Listing all supported models 264

Loading a specific model 266 ■ Asking a question 267

Binding with Gradio 270

 12 Using LLMs to query your local data 276

 12.1 Using GPT4All to query with your own data 277
Installing the required packages 277 ■ Importing the various

modules from the LangChain package 278 ■ Loading the PDF

documents 278 ■ Splitting the text into chunks 280

Embedding 281 ■ Loading the embeddings 282

Downloading the model 282 ■ Asking questions 283

Loading multiple documents 284 ■ Loading CSV files 286

Loading JSON files 289

 12.2 Using LLMs to write code to analyze your data 292
Preparing the JSON file 293 ■ Loading the JSON file 295

Asking the question using the Mistral 7B model 296

Asking questions using OpenAI 299

 xiCONTENTS xi

 13 Bridging LLMs to the real world with the Model Context
 Protocol 304

 13.1 What is MCP? 305
The problems MCP solves 305 ■ Understanding MCP 305
MCP server deployment 308 ■ Components in an MCP
server 309

 13.2 Building an MCP server 310
Installing uv 311 ■ Initializing the project 311 ■ Installing
the packages 312 ■ Creating the MCP server 312 ■ Inspecting
the MCP server 313 ■ Implementing Resources 314
Implementing Tools 315 ■ Implementing a prompt 318
Testing the components 318

 13.3 Testing the MCP server using Claude Desktop 324
Configuring Claude Desktop to use the MCP server 324
Getting the weather 325 ■ Getting the content of a text file 327
Getting the content of a PDF file 328 ■ Improving the
MCP server 330

 13.4 Trying third-party MCP servers 331
Get My Location 331 ■ mcp-datetime 334

 index 338

xii

preface
When I started exploring Hugging Face, I was struck by how accessible and powerful
its tools were. Models that once required specialized knowledge and massive compute
resources were now available to anyone with a laptop and Python. I spent countless
hours experimenting—running pretrained models, fine-tuning them on my own data-
sets, and trying to figure out how to integrate them into real applications. That journey
was exciting, but I quickly realized that learning to use models was only part of the
story. The real challenge—and the real fun—comes from building AI systems that can
act, interact, and solve real-world problems.

This book is the result of that journey. It’s designed to take you from the basics of nav-
igating Hugging Face to building end-to-end AI applications—from natural language
processing (NLP) and computer vision tasks to autonomous agents, interactive web
interfaces, and locally running models. Along the way, I explore advanced concepts
such as multimodal models, LangChain for AI workflows, retrieval-augmented gen-
eration (RAG) for querying documents, and the Model Context Protocol (MCP) for
connecting AI systems to tools and data. My goal is to give you not just code examples
but also a framework for thinking about AI applications—how to design them, extend
them, and make them useful in the real world.

Each chapter is hands-on and practical. You’ll find exercises, examples, and tips
drawn from real projects so you can learn by doing. I hope this book helps you move
beyond experimenting to building intelligent systems that can learn, reason, and inter-
act; I hope it inspires you to explore new possibilities with AI.

Whether you’re a developer, data scientist, or AI enthusiast, my hope is that this book
becomes a companion on your own journey, helping you turn curiosity into skill, and
skill into impactful applications.

xiii

acknowledgments
Writing this book was a journey made possible by the support, guidance, and inspira-
tion of many people. First, I’d like to thank the team at Manning Publications for their
encouragement, patience, and valuable feedback throughout the writing and editing
process.

In particular, I’m grateful to all the Manning staff, especially Dustin Archibald, my
development editor, for his thoughtful guidance and detailed suggestions, and Jona-
than Gennick, my acquisitions editor, for believing in this project and helping bring
it to life. Their support helped shape this book into a practical, hands-on guide that I
hope will be useful to developers and AI enthusiasts alike. Thanks also to the produc-
tion team, whose behind-the-scenes work helped make this book what you see.

I’m deeply grateful to the Hugging Face community, whose open source contribu-
tions, forums, and resources have been invaluable sources of learning and inspiration.
The work of the developers, researchers, and engineers behind Hugging Face models
and tools made the ideas in this book possible.

Special thanks to friends and students who provided feedback on early drafts, tested
examples, and shared insights from their own experiences. Your questions, challenges,
and curiosity helped refine the explanations and examples in this book.

In addition, thanks to all the reviewers: Abhijeet Rajwade, Ankur Padia, Astha Puri,
Baskar Sikkayan, Bonny Albo, David Yakobovitch, Dhirendra Kumar Choudhary,
George robert Freeman, Giovanni Alzetta, Justin Reiser, Lokeshwar Reddy Vangala,
Madiha Khalid, Manish Jain, Marco Massenzio, Marco Seguri, Michael Bright, Nino-
slav Čerkez, Parmanand Sahu, Paul Silisteanu, Rahul Raja, Ritobrata Ghosh, Robert
Rozploch, Saurabh Aggarwal, Sriram Selvam, Stefano Priola, Steven Edwards, Sub-
hash Chandra Bose Naripeddy, Sukanya Moorthy, Todd Jobson, Vignesh Govindarajan

xiv ACKNOWLEDGMENTSxiv

Ravichandran, Vikram Kulothungan, Vinod Goje, Vinod Veeramachaneni, and Yilun
Zhang. Your suggestions helped make this book better.

Finally, I want to thank my family for their patience and encouragement. Your sup-
port made the long hours of writing and experimentation not only possible but also
truly enjoyable.

To all of you, this book is a reflection of your inspiration and contributions. Thank
you.

xv

about this book
Artificial intelligence is no longer confined to research labs; it’s becoming a tool that
anyone can use to build intelligent, interactive real-world applications. This book is
your gateway to the Hugging Face ecosystem, guiding you step by step from under-
standing pretrained models to creating fully functional AI applications. You’ll learn
how to harness the power of transformers for NLP; explore computer vision models;
fine-tune models on your own datasets; and even work with multimodal models that
handle text, images, and more.

But this book goes beyond simply using models; it also shows you how to make AI
work for you. You’ll discover how to build autonomous agents that can make decisions,
interact with tools, and retrieve information; create web-based interfaces that allow oth-
ers to experience your AI; run models locally for privacy and speed; and connect AI to
the real world through protocols such as MCP.

With hands-on examples, practical projects, and clear explanations, this book equips
you to move from experimentation to building intelligent end-to-end AI systems—
applications that can learn, adapt, and interact in meaningful ways. By the end of
this book, you won’t just understand Hugging Face; you’ll also have the skills to build
AI-powered solutions that solve real problems, automate tasks, and engage users in
entirely new ways.

Who should read this book

This book is for developers, data scientists, and AI enthusiasts who want to move
beyond simply calling APIs and start building end-to-end AI applications using the
Hugging Face ecosystem and related frameworks. If you’re curious about how to use
pretrained models for NLP and computer vision tasks, fine-tune them for your own

xvi ABOUT THIS BOOKxvi

datasets, or integrate them into real-world applications with interactive UIs, this book
is for you. No deep learning expertise is required, though a working knowledge of
Python will be helpful.

This book is designed for readers with varying levels of expertise in NLP and machine
learning. It caters to both beginners and intermediate practitioners who are interested
in harnessing the capabilities of Hugging Face’s platform. The content covers a wide
range of topics, from using the Transformers library for NLP tasks to performing com-
puter vision tasks such as object detection in images and videos. It also explores build-
ing applications with large language models (LLMs) using LangChain and Langflow.
The target audience includes those who are looking to prototype visually, create LLM-
based chat applications with private data, and build user interfaces using Gradio. Over-
all, this book serves as a comprehensive guide for anyone who wants to use Hugging
Face for diverse NLP and machine learning applications.

Prerequisites

Before you begin, it’s important to ensure that you have the necessary background
knowledge and tools to follow the material covered in this book effectively. The fol-
lowing prerequisites will help you get the most out of this book. You should already
be comfortable with programming in Python and working with essential data-analysis
libraries. In addition, familiarity with Jupyter Notebooks is required because many of
the exercises and demonstrations are conducted in that environment.

¡	Python (intermediate)—

– Fluency with basic Python language constructs

– Familiarity with data structures such as lists, tuples, dictionaries, and sets

– Familiarity with intermediate concepts such as iterables and generators

– Ability to work with various data formats, such as CSV and Microsoft Excel

– Ability to create an independent Python program and run it in Terminal or
Anaconda Prompt

¡	NumPy and pandas (intermediate)—

– Experience using NumPy’s array to manipulate data

– Experience using the pandas Series and DataFrame data structures to manip-
ulate structured data

– Familiarity with the various functions and methods in NumPy and pandas

– Basic knowledge of data analytics

¡	Jupyter Notebooks—

– Creating environments in, and starting and loading Jupyter Notebooks

– Ability to save and load Jupyter Notebooks

– Familiarity with Markdown syntax for documentation

– Ability to find documentation for functions and methods within Jupyter
Notebooks

 xviiABOUT THIS BOOK xvii

How this book is organized: A road map

The book is designed as a hands-on, practical guide. Each chapter introduces key con-
cepts and then walks you through examples and code that you can adapt for your own
projects. You’ll begin with the foundations of Hugging Face and progress toward build-
ing full-fledged applications powered by LLMs.

The chapters are structured to be read sequentially, with later chapters building on
earlier ones. If you’re already familiar with the basics of Hugging Face, however, you
can jump directly into the sections that interest you, such as fine-tuning models, build-
ing LangChain agents, or creating user interfaces with Gradio. Each chapter is self-
contained, with runnable examples and explanations. By the end of the book, you’ll be
able to do the following:

¡	Use Hugging Face models for NLP and computer vision tasks.

¡	Fine-tune and customize models for your own datasets.

¡	Build applications powered by LLMs using LangChain, Langflow, and
Llama Index.

¡	Design autonomous AI agents that integrate with tools and services.

¡	Create web interfaces for your models with Gradio.

¡	Run lightweight LLMs locally with GPT4All.
¡	Extend your applications to the real world using MCP.

This book will equip you with the knowledge and practical skills to take advantage of
the latest developments in AI, from pretrained models to agentic systems and beyond.
Here is a brief overview of the chapters:

¡	Chapter 1, Introducing Hugging Face—A high-level overview of Hugging Face, its
role in democratizing AI, and the ecosystem of tools it provides

¡	Chapter 2, Getting started—Setting up your environment and learning how to use
Hugging Face resources such as the Hub and model repositories

¡	Chapter 3, Using Hugging Face transformers and pipelines for NLP tasks—Applying
pretrained models to text classification, translation, summarization, and more

¡	Chapter 4, Using Hugging Face for computer vision tasks—Exploring image classifica-
tion, object detection, and other vision tasks using Hugging Face models

¡	Chapter 5, Exploring, tokenizing, and visualizing Hugging Face datasets—Learning to
prepare, tokenize, and explore datasets for NLP and computer vision tasks

¡	Chapter 6, Fine-tuning pretrained models and working with multimodal models—Train-
ing models on your own data and experimenting with models that handle multi-
ple input types, such as text and images

¡	Chapter 7, Creating LLM-based applications using LangChain and LlamaIndex—

Building applications that augment LLMs with tools, memory, and data retrieval

xviii ABOUT THIS BOOKxviii

¡	Chapter 8, Building LangChain applications visually using Langflow—Designing
and deploying AI workflows without writing code, using a visual programming
interface

¡	Chapter 9, Programming agents—Exploring agent-based architectures in which
models make autonomous decisions and interact with external tools

¡	Chapter 10, Building a web-based UI using Gradio—Creating user-friendly interfaces
to showcase and interact with your AI models

¡	Chapter 11, Building locally running LLM-based applications using GPT4All—

Running lightweight, open-source LLMs on your own machine without relying
on the cloud

¡	Chapter 12, Using LLMs to query your local data—Applying RAG to answer questions
about your files, databases, and knowledge bases

¡	Chapter 13, Bridging LLMs to the real world with the Model Context Protocol—

Connecting LLMs with real-world tools, APIs, and services for more practical and
integrated applications

What’s required to use this book

To follow along, you’ll need

¡	A computer with Python 3.11 or later installed

¡	Access to the internet for downloading models and datasets and using Hugging
Face Hub

¡	(Optional) A GPU for training and fine-tuning tasks, though most examples can
be run on a CPU or in cloud-hosted environments such as Google Colab

About the code

This book contains many examples of source code both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes, code is also in bold to highlight
changes from previous steps in the chapter, such as when a new feature adds to an
existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the book.
In rare cases, even this was not enough, and listings include line-continuation markers
(➥). Additionally, comments in the source code were removed from the listings when
the code is described in the text. Code annotations accompany many of the listings,
highlighting important concepts.

You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/hugging-face-in-action. The complete
code for the examples in the book is available for download on the Manning website at
https://www.manning.com/books/hugging-face-in-action and on GitHub at https://
github.com/weimenglee.

https://livebook.manning.com/book/hugging-face-in-action
https://www.manning.com/books/hugging-face-in-action
https://github.com/weimenglee
https://github.com/weimenglee

 xixABOUT THIS BOOK xix

liveBook discussion forum

Purchase of Hugging Face in Action includes free access to liveBook, Manning’s online
reading platform. Using liveBook’s exclusive discussion features, you can attach com-
ments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the
author and other users. To access the forum, go to https://livebook.manning.com/
book/hugging-face-in-action/discussion. You can also learn more about Manning’s
forums and the rules of conduct at https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where meaningful dia-
logue between individual readers and between readers and authors can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions lest his interest stray! The forum and the
archives of previous discussions will be accessible on the publisher’s website as long as
the book is in print.

https://livebook.manning.com/book/hugging-face-in-action/discussion
https://livebook.manning.com/book/hugging-face-in-action/discussion
https://livebook.manning.com/discussion

xx

about the author
Wei-Meng Lee is a technologist and the founder of
Developer Learning Solutions (http://calender.learn2
 develop.net), a company specializing in helping com-
panies adopt the latest IT technologies. Wei-Meng pro-
vides consultancy services to companies on adopting
blockchain and AI solutions for their businesses.

http://calender.learn2develop.net
http://calender.learn2develop.net

xxi

about the cover illustration
The caption for the illustration on the cover of Hugging Face in Action is “Chiosgchi,
musicien, turc jouant du Chiosq,” or “Turkish drummer,” taken from an album of
Turkish costumes in the British Museum collection.

In those days, it was easy to identify where people lived and what their trade or station
in life was by their dress alone. Manning celebrates the inventiveness and initiative of
the computer business with book covers based on the rich diversity of regional culture
centuries ago, brought back to life by pictures from collections such as this one.

1

1Introducing
Hugging Face

This chapter covers

¡	What Hugging Face is known for

¡	The Hugging Face Transformers library

¡	The various models hosted by Hugging Face

¡	The Gradio library

Hugging Face is an AI community that promotes the building, training, and
deployment of open source machine learning models. It has state-of-the-art mod-
els designed for different problem domains, such as natural language processing
(NLP) tasks, computer vision tasks, and audio tasks. Besides providing tools for
machine learning, Hugging Face provides a platform for hosting pretrained models
and datasets. With AI at its peak, Hugging Face is at the epicenter of the AI revolu-
tion because

¡	It unleashes a new wave of applications that capitalizes on the large amount of
data available.

¡	Many complementary technologies are being developed, such as prototyping
tools for large learning model (LLM)–based applications.

2 CHAPTER 1 Introducing Hugging Face

¡	Instead of focusing on the fundamentals (such as building neural networks
from scratch or learning machine learning algorithms), developers can focus on
building AI-based apps to solve their problems immediately. AI is now a tool that
developers can use directly rather than having to build it from scratch.

¡	Hugging Face’s philosophy is to promote open source contributions. It is the
hub of open source models for NLP, computer vision, and other fields in which
AI plays vital roles.

This book highlights some of the key services and platforms provided by Hugging
Face. You get a glimpse of the kinds of applications we will be building throughout
the book. Hugging Face is best known for its Transformers library for developing NLP
applications, its platform for sharing machine learning models and datasets, Hugging
Face Spaces for hosting user-developed machine learning apps, and the Gradio Python
library for rapid UI creation. In the next few sections, I introduce some of the features
available through the Hugging Face Hub. Later in this book, I cover advanced topics
such as the following:

¡	Building your own LLM-based applications using the LangChain framework

¡	Visually prototyping your LLM-based application with Langflow

¡	Exploring alternatives to OpenAI’s generative pretrained transformer (GPT)
models, such as GPT4All

¡	Developing LLM-based applications without compromising the privacy of your
data

¡	Creating agents that integrate tools such as search engines and code interpreters

¡	Using the Model Context Protocol (MCP) to connect AI assistants to external
data sources

1.1 Hugging Face Transformers library

The Transformers library is a Python package that contains open source implementa-
tions of the Transformer architecture models for text, image, and audio tasks. It
provides APIs for developers to download and use for pretrained models. By using pre-
trained and state-of-the-art models, developers don’t have to spend time and resources
building models from scratch. As an example, consider the following code snippet (I
explain the code in more detail and show you how to install the libraries in chapters 2
and 3):

from transformers import pipeline

classifier = pipeline('text-classification',
 model = 'distilbert-base-uncased-finetuned-sst-2-english',
 revision = 'af0f99b')

In this code snippet, I use the pipeline() function from the transformers package to
perform a text-classification task. In particular, I want to create an application to detect

 3Hugging Face models

the sentiments in a particular paragraph of text. The code specifies that I want to use
this model, 'distilbert-base-uncased-finetuned-sst-2-english', and its version,
'af0f99b'. That’s it! I don’t need to know how text classification works; neither do I
need to know how to train a model to perform this task.

In Hugging Face’s Transformers library, a pipeline is a high-level, user-friendly API
that simplifies building and using complex NLP workflows. It makes it easy to perform
a sequence of NLP tasks (text classification, named entity recognition, translation, sum-
marization, and so on) with a few lines of code. You will learn more about transformers
and pipelines in chapter 3.

To put this code to the test, I call the pipeline object and pass it a paragraph of text.
The object returns this result:

import pandas as pd

text = '''
I thought this was a wonderful way to spend time on a too hot summer
weekend, sitting in the air conditioned theater and watching a
light-hearted comedy. The plot is simplistic, but the dialogue is
witty and the characters are likable (even the well bread suspected
serial killer). While some may be disappointed when they realize
this is not Match Point 2: Risk Addiction, I thought it was proof
that Woody Allen is still fully in control of the style many of us
have grown to love.

This was the most I'd laughed at one
of Woody's comedies in years (dare I say a decade?). While I've never
been impressed with Scarlet Johanson, in this she managed to tone
down her "sexy" image and jumped right into a average, but spirited
young woman.

This may not be the crown jewel of his career
, but it was wittier than "Devil Wears Prada" and more interesting
than "Superman" a great comedy to go see with friends.
'''

result = classifier(text)
pd.DataFrame(result)

This paragraph of text comes from the Internet Movie Data-
base (IMDb) dataset (https://huggingface.co/datasets/
stanfordnlp/imdb), a binary sentiment-analysis dataset
consisting of 50,000 reviews from the IMDb website labeled
positive or negative. The result returned by the pipeline
object is formatted nicely as a pandas DataFrame (see fig-
ure 1.1), which shows that the sentiment is positive.

As you can see from this code snippet, you can perform a relatively complex task of
sentiment analysis in a couple of statements by using the Transformers library and the
pipeline API from Hugging Face.

1.2 Hugging Face models

The Hugging Face Hub’s Models page (https://huggingface.co/models; see figure
1.2) hosts many pretrained models for a wide variety of machine learning tasks. All the

Figure 1.1 The result of

the sentiment analysis

https://huggingface.co/datasets/stanfordnlp/imdb
https://huggingface.co/datasets/stanfordnlp/imdb
https://huggingface.co/models

4 CHAPTER 1 Introducing Hugging Face

pretrained models are stored in repositories, and Hugging Face makes exploring the
details of the models easy.

Figure 1.2 Exploring the pretrained models hosted at Hugging Face Hub

Many models have a widget that allows you to test them directly by running inferences
in the web browser. To demonstrate, search for a pretrained model named facebook/
detr-resnet-50. This Detection Transformer (DETR) model was trained end-to-end
using the Common Objects in Context (COCO) 2017 object detection dataset (118 KB
annotated images for training and 5 KB images for validation). COCO is a large-scale
object detection, segmentation, and captioning dataset.

You can use the facebook/detr-resnet-50 model to detect objects in an image. You
can read more about this model on Hugging Face’s website at https://huggingface
.co/facebook/detr-resnet-50 (see figure 1.3). More important, Hugging Face provides
the Hosted Inference API, which allows you to test the model directly in your web
browser.

The Hosted Inference API enables developers to test and evaluate (for free) more
than 150,000 publicly accessible machine learning models or their own private models
via simple HTTP requests, with the fast inference hosted on Hugging Face’s shared
infrastructure.

https://huggingface.co/facebook/detr-resnet-50
https://huggingface.co/facebook/detr-resnet-50

 5Hugging Face models

Figure 1.3 You can test the model directly on Hugging Face Hub using the Hosted Inference API

As an example, I dragged an image (see figure 1.4) to the Hosted Inference API sec-
tion of the page for the facebook/detr-resnet-50 model on the Hugging Face website.
The objects detected in the image are shown automatically, with the level of confi-
dence displayed next to each object’s name.

In addition, you can use this model for your own Python code. To do so, first click
the Use This Model button (see figure 1.5); then, on the menu, click the Transformers
button. In figure 1.6, you see code samples that show how to use the model.

You will learn more about using the Transformers library with various models for
object detection in chapter 4.

6 CHAPTER 1 Introducing Hugging Face

Figure 1.4 Performing object detection using my uploaded image (image: CC BY-SA 3.0)

 7Hugging Face models

Figure 1.5 Locating the Use This Model button

Figure 1.6 Using the model with the Transformers library

8 CHAPTER 1 Introducing Hugging Face

1.3 Hugging Face Gradio Python library

As an AI developer, you spend a lot of time building and training your machine learn-
ing or deep learning models. When your model is trained to your satisfaction, the next
logical step is to let your users try it. Typically, this means building your dedicated UI
(commonly, a web app) or exposing your models using a REST API, but you have to
spend time building all these user interfaces. Wouldn’t it be nice to have a package
that automatically exposes your model so users can try it quickly? This is where Gradio
comes in.

Gradio is an open source Python library that makes it easy to create customizable
user interfaces for machine learning models and data science workflows. With a few
lines of code, you can wrap your model in a simple web-based interface where users
can upload inputs (such as text, images, or audio) and view the outputs in real time.
It’s widely used for demoing models, collecting user feedback, and building interactive
machine learning applications. Gradio also integrates seamlessly with Hugging Face
Spaces, allowing developers to share their apps with the community.

Gradio was founded by Abubakar Abid, a PhD student at Stanford University, who
was focusing on deep learning applied to medical images and videos. During his stud-
ies, he developed Gradio (https://github.com/gradio-app/gradio), an open source
Python library for creating GUIs for machine learning models. On December 21, 2021,
Hugging Face announced its acquisition of Gradio.

To understand how Gradio works, consider an example. Suppose that you have a
function named transform_image() that accepts an image and returns the same image
in grayscale format:

from skimage.color import rgb2gray

def transform_image(img):
 return rgb2gray(img)

To try this function, you must write your own UI to accept an image from the user;
then, when the image is converted to grayscale, you must display the image to the user.
Gradio greatly simplifies the process: it creates a web-based UI that allows users to drag
and drop an image and then displays the converted image. The following code snippet
shows how Gradio binds to the transform_image() function:

import gradio as gr

demo = gr.Interface(fn = transform_image,
 inputs = gr.Image(),
 outputs = "image")
demo.launch()

When you run this code, Gradio hosts your code on the local machine and creates a UI
(see figure 1.7).

https://github.com/gradio-app/gradio

 9Hugging Face Gradio Python library

Figure 1.7 Gradio provides a customizable UI for your machine learning projects.

Drop an image on the left side of the page, and click the Submit button to send the
image to the transform_image() function. The result is displayed on the right side of
the page. Figure 1.8 shows my image after conversion to grayscale.

Figure 1.8 Viewing the result of the converted image

10 CHAPTER 1 Introducing Hugging Face

I will talk more about Gradio throughout this book. In the upcoming chapters, you will
learn various ways to customize Gradio’s look and feel.

1.4 Understanding the Hugging Face mental model

As you have seen, Hugging Face isn’t just a model repository. It’s also a complete AI
pipeline that systematically moves users from problem to solution.

Think of Hugging Face as the world’s largest AI model library combined with an exe-
cution platform. Every day, millions of developers, researchers, and businesses follow
this basic pattern to go from having an AI problem to getting results.

Figure 1.9 shows a visual mental model of Hugging Face’s core process: taking users
from an AI model to a result. This process happens millions of times daily across the
platform.

User need

“I need to

classify this

text as

positive or

negative.”

Model Hub

1,000,000+ models

Filters: sentiment-

analysis

Finds: distilbert-

base-uncased

 Model Card

• Usage examples

• Performance

 metrics

• Training details

• API endpoints

• Download links

Results

{"label":"POSITIVE",
"score":0.9998}

Mission accomplished!

SelectsSearches

API

Download

Inference API

Serverless inference

POST /models/distilbert...

GPU acceleration

Download

Git LFS repository

Model weights + config

Local execution

Figure 1.9 A visual mental model showing Hugging Face’s core process

In the following sections, I explain the mental process a user follows to solve a problem
with Hugging Face.

1.4.1 Step 1: User need

Everything starts with a specific problem. A developer sits at their computer thinking,
“I need to classify this customer review as positive or negative” or “I need to translate
this text from English to French.” This problem isn’t abstract; it’s a concrete business
need with real data waiting to be processed.

1.4.2 Step 2: Model Hub discovery

The user heads to Hugging Face’s Model Hub, which contains more than 1 million
pretrained models. This hub isn’t a dumping ground; it’s a sophisticated search and

 11Summary

filtering system. Users can search by task (such as sentiment analysis, translation, or
image classification), model architecture (such as BERT, GPT, or ResNet), language,
or performance metrics. The platform guides users from “I have a problem” to “Here’s
the specific model that solves it.”

1.4.3 Step 3: Model card

This step is where Hugging Face shines. Every model comes with a detailed model
card that serves as both documentation and gateway. The card contain use examples
(such as copy-and-paste code snippets), performance benchmarks, training details,
and information about using the model. The model card is the bridge between discov-
ery and implementation.

1.4.4 Step 4: Two execution paths

At this point, users choose their adventure:

¡	Path A: Hosted Inference API—This option is the faster route. Users can send HTTP
requests directly to Hugging Face’s servers, which host the models in graphics
processing unit (GPU) clusters. No setup is required; send your text in a POST
request and get JSON results. This path handles millions of API calls daily and
autoscales based on demand.

¡	Path B: Direct download—This option is for users who want to run models locally
or integrate them into their own infrastructure. Behind the scenes, this path uses
Git Large File Storage (LFS) to handle multigigabyte model files. Users down-
load the model weights and configuration files and run them using the Trans-
formers library.

1.4.5 Step 5: Results delivered

Both paths converge where the user gets their answer. The sentiment classifier returns
{"label": "POSITIVE", "score": 0.9998}, and the user’s problem is solved. Mission
accomplished.

Summary

¡	Hugging Face is a complete AI problem-solving pipeline that systematically
moves users from problem to solution.

¡	The Transformers library is a Python package that contains open source imple-
mentation of the Transformer architecture models for text, image, and audio tasks.

¡	In Hugging Face’s Transformers library, a pipeline is a high-level, user-friendly
API that simplifies the process of building and using complex NLP workflows.

¡	The Hugging Face Hub’s Models page hosts many pretrained models for a wide
variety of machine learning tasks.

¡	Gradio is a Python library that creates a web UI you can use to bind to your machine
learning models, making it easy to test your models without building the UI.

12

2Getting started

This chapter covers

¡	Using Anaconda

¡	Creating virtual environments with conda

¡	Using GPU in the pipeline() function

¡	Using the Hugging Face Hub package

In chapter 1, you saw some of the exciting projects you will be creating through-
out this book using the Hugging Face pretrained models and services such as Auto-
Train. The main programming language you’ll be using is Python, and you’ll also
be using my favorite IDE, Jupyter Notebook. Jupyter Notebook is an open source
web application that allows you to create and share documents containing live code,
equations, visualizations, and narrative text. It’s widely used in data science, scien-
tific research, machine learning, and education due to its interactive and explor-
atory nature. In the following sections, you’ll learn how to set up Jupyter Notebook
and create a virtual environment to work with all the examples in this book.

 13Downloading Anaconda

2.1 Downloading Anaconda

The easiest way to install Jupyter Notebook is to download Anaconda, a distribution of
Python and R programming languages that comes with a set of preinstalled libraries
and tools commonly used in data science, machine learning, and scientific computing.
It includes the conda package manager, which simplifies package management and
environment creation. Jupyter Notebook is one of the core components of Anaconda.
Therefore, installing Anaconda gives you access not only to Jupyter Notebook but also
to many commonly used packages.

To obtain Anaconda (free for personal use), go to https://www.anaconda.com/
download/success. Then click the download icon for your operating system (see fig-
ure 2.1). When the installer is downloaded, double-click the installer, and follow the
onscreen instructions to install Anaconda on your computer.

Figure 2.1 Downloading Anaconda for the three major platforms: Windows, macOS, and Linux

2.1.1 Creating virtual environments

With Anaconda downloaded and installed, you are ready to start using it. But before
you launch Jupyter Notebook and start writing code, I recommend that you create a

https://www.anaconda.com/download/success
https://www.anaconda.com/download/success

14 CHAPTER 2 Getting started

virtual environment—a self-contained environment that allows you to install and man-
age Python packages separately from your systemwide Python installation. It’s a useful
tool for isolating dependencies and managing different project requirements.

To create a virtual environment, launch Terminal (macOS) or Anaconda Prompt
(Windows). Figure 2.2 shows how to launch Anaconda Prompt in Windows.

1. Type anacon.

2. Click Anaconda
 Prompt to launch it.

Figure 2.2 Launching Anaconda Prompt in Windows

Anaconda Prompt vs. command prompt

For Windows users, Anaconda Prompt looks just like the usual command prompt. In

fact, they are the same, with one notable exception: Anaconda Prompt has the Ana-

conda environment variables and paths already set up. This means that when you

open Anaconda Prompt, it’s ready to use the Python interpreter, conda package man-

ager, and other tools without additional configuration.

 15Downloading Anaconda

Next, use the conda command to create a new virtual environment, as follows:

$ conda create -n HuggingFaceBook python=3.11 anaconda

This command creates a virtual environment named HuggingFaceBook in Python 3.11.
It also includes the Anaconda distribution. You’ll be prompted to install the various
packages (see figure 2.3). Type Y, and press Enter.

Figure 2.3 Creating a new virtual environment and installing all the required packages

Anaconda distribution

The Anaconda distribution is a comprehensive package manager, environment man-

ager, and Python distribution designed to simplify package management and deploy-

ment of Python and R data science and machine learning applications. It includes

popular libraries such as NumPy, pandas, Matplotlib, scikit-learn, TensorFlow, PyTorch,

and Jupyter Notebook.

When the installation is done, activate (switch to) the virtual environment using the
conda activate command:

$ conda activate HuggingFaceBook

16 CHAPTER 2 Getting started

This command activates the HuggingFaceBook virtual environment. When you have
switched to a particular virtual environment, Terminal or Anaconda Prompt prefixes
the prompt with the environment name (see figure 2.4).

Name of virtual
environment

Figure 2.4 The virtual environment name prefixes the prompt.

2.1.2 Starting Jupyter Notebook

After you create a virtual environment, you are ready to launch Jupyter Notebook. I
prefer to launch it via Terminal or Anaconda Prompt.

In Terminal, start by creating a folder in which you want to save your projects. Let’s
call this folder HF_Projects:

(HuggingFaceBook) weimenglee@WeiMengacStudio ~ % mkdir HF_Projects

Then change the current directory to the new one:

(HuggingFaceBook) weimenglee@WeiMengacStudio ~ % cd HF_Projects

To launch Jupyter Notebook, type jupyter notebook:

(HuggingFaceBook) weimenglee@WeiMengacStudio HF_Projects % jupyter notebook

The web browser launches and displays Jupyter Notebook’s main page (see figure 2.5).

 17Downloading Anaconda

Figure 2.5 The web browser displays Jupyter Notebook’s main page.

To create a notebook, click the New button and then click Notebook on the menu (see
figure 2.6).

1. Click New.

2. Click Notebook.

Figure 2.6 Creating a notebook

A new Untitled tab appears. (If you don’t see it, your web browser may be blocking
pop-up windows; clicking the address bar should reveal the tab.) Choose the Python 3

18 CHAPTER 2 Getting started

(ipykernel) option from the pull-down menu (see figure 2.7), and click the Select but-
ton. You should see the notebook, ready for you to start coding (see figure 2.8).

Figure 2.7 Selecting a kernel for your notebook

Figure 2.8 The notebook is ready to use.

TIP If you are new to Jupyter Notebook, I suggest that you check out the offi-
cial documentation at https://mng.bz/eB4P.

https://mng.bz/eB4P

 19Installing the Transformers library

Finally, rename the notebook by clicking the default filename and entering a new
name for your notebook in the Rename File dialog box (see figure 2.9). For this exam-
ple, enter Chapter 2.ipynb. Click Rename when you’re done. The Chapter 2.ipynb file
is saved in the HF_Projects directory.

1. Click the default
 notebook name.

2. Give your notebook
 a new name.

Figure 2.9 Renaming your notebook

2.2 Installing the Transformers library

In this book, you will use the Hugging Face Transformers library extensively. The
Transformers library, an open source library developed by Hugging Face, provides an
easy-to-use interface for working with state-of-the-art pretrained models for various
natural language processing (NLP) tasks such as text classification, named entity
recognition (NER), text generation, and question answering. In chapter 3, I discuss the
Transformers library in more detail. For now, it’s a good idea to install it. You can install the
transformers Python package directly in Jupyter Notebook using the following statement:

!pip install transformers

If you prefer, you can install it in Terminal or Anaconda Prompt using the following
command:

$ pip install transformers

20 CHAPTER 2 Getting started

2.2.1 Support for GPU

In Hugging Face, you use the Transformers library to perform various machine learn-
ing tasks such as NLP and image recognition. Behind the scenes, the library is pri-
marily built on PyTorch, a popular deep learning framework developed primarily by
Facebook AI Research (FAIR). It uses PyTorch’s capabilities to build neural network
architectures, train models, and optimize performance on tasks related to NLP.

NOTE The Transformers library also supports TensorFlow, a widely used deep
learning framework developed by Google. This support allows users to use the
capabilities of the Transformers library in their TensorFlow-based workflows,
enabling tasks related to NLP and other machine learning tasks. This book
focuses on using the Transformers library with PyTorch.

PyTorch’s notable feature is its graphics processing unit (GPU) support, which enables
smooth integration with Nvidia’s Compute Unified Device Architecture (CUDA),
a parallel computing platform and programming model designed for GPUs. This
support allows PyTorch to use CUDA to enable GPU acceleration for computations.
PyTorch can offload tensor operations and computations to the GPU, significantly
speeding training and inferencing for deep learning models. Best of all, PyTorch’s API
can automatically handle the details of moving data between CPU and GPU memory as
needed. Finally, PyTorch supports model parallelism, allowing you to split large mod-
els across multiple GPUs. This support allows large models that can’t fit into a single
GPU to be distributed across GPUs.

If you have a CUDA-supported GPU, you should use it to speed your training and
inferencing tasks. To do so, you need to install PyTorch (plus a few other packages)
from a location that contains the PyTorch wheels compatible with CUDA. The follow-
ing command installs the torch (PyTorch), torchvision, and torchaudio packages from
https://download.pytorch.org/whl/cu121:

$ pip install torch torchvision torchaudio
--index-url https://download.pytorch.org/whl/cu121 -U

When the packages are installed, you can test them to see whether your GPU is sup-
ported. In Jupyter Notebook, you can use the following statements to check whether
CUDA is available on your system:

import torch
print(torch.cuda.is_available())

If you get a True response, your system supports CUDA. The following code listing
prints more information about the GPU you have in your system.

Listing 2.1 Using the torch package to find details on your GPU

import torch
use_cuda = torch.cuda.is_available()

https://download.pytorch.org/whl/cu121

 21Installing the Transformers library

if use_cuda:
 print('__CUDNN VERSION:', torch.backends.cudnn.version())
 print('__Number CUDA Devices:', torch.cuda.device_count())
 print('__CUDA Device Name:', torch.cuda.get_device_name(0))
 print('__CUDA Device Total Memory [GB]:',
 torch.cuda.get_device_properties(0).total_memory/1e9)

On my laptop, which is equipped with an Nvidia RTX 4060 GPU, the preceding code
produces this result:

__CUDNN VERSION: 8801
__Number CUDA Devices: 1
__CUDA Device Name: NVIDIA GeForce RTX 4060 Laptop GPU
__CUDA Device Total Memory [GB]: 8.585216

You can also use the GPUtil package to find details about your GPU, such as total num-
ber of GPUs, utilization load, temperature, and memory used. First, install GPUtil with
the pip command:

!pip install GPUtil

The following statements get the number of available GPUs on your system via the
getAvailable() method:

import GPUtil

GPUtil.getAvailable()

For my system, which has one GPU, this code returns the following result:

[0]

You can retrieve information about each GPU in your system by using the getGPUs()
method. Iterate through GPUs to fetch details such as name, utilization, memory use,
temperature, and total memory, as shown in the following listing.

Listing 2.2 Using the GPUtil package to get details on each GPU

import GPUtil

gpus = GPUtil.getGPUs()

for gpu in gpus:
 print("GPU ID:", gpu.id)
 print("GPU Name:", gpu.name)
 print("GPU Utilization:", gpu.load * 100, "%")
 print("GPU Memory Utilization:", gpu.memoryUtil * 100, "%")
 print("GPU Temperature:", gpu.temperature, "C")
 print("GPU Total Memory:", gpu.memoryTotal, "MB")

22 CHAPTER 2 Getting started

2.2.2 Using GPU in the pipeline object

For the pipeline object to use the GPU, you need to explicitly specify the device
parameter when calling the pipeline() function. The following code snippet shows
the pipeline() function using the first (or single) GPU in your system:

from transformers import pipeline
question_classifier = pipeline("text-classification",
 model="huaen/question_detection",
 device = 0)

Transformers pipeline

In Hugging Face’s Transformers library, a pipeline is a high-level, user-friendly API

that simplifies the process of building and using complex NLP workflows. A pipeline

makes it easy to perform a sequence of NLP tasks—such as text classification, NER,

translation, and summarization—in a few lines of code.

The preceding code sample creates a pipeline object that performs question clas-

sification. It takes in a string and returns a result indicating whether the string pre-

sented is a question.

Besides specifying a number for the device parameter to specify that you want to use
the GPU for processing, you can set it to a string. You could rewrite the preceding state-
ment this way:

question_classifier = pipeline("text-classification",
 model="huaen/question_detection",
 device = "cuda:0")

On a Mac, you can accelerate Hugging Face pipelines by using Apple’s Metal Perfor-
mance Shaders (MPS) for faster inference on Apple silicon. Set device to "mps:0":

question_classifier = pipeline("text-classification",
 model="huaen/question_detection",
 device = "mps:0")

Table 2.1 shows the values you can use for the device parameter.

Table 2.1 Values for the device parameter in the pipeline() function

Numeric value String value Description

-1 "cpu" Uses the CPU for processing. The CPU is the default

device to use for the pipeline() function.

0 "cuda"

"cuda:0"

Uses the single/first GPU in your system.

cuda:0 refers to the first
GPU in your system.

 23Installing the Hugging Face Hub package

Numeric value String value Description

1 "cuda:1" Uses the second GPU in your system.

n "cuda:n" Uses the (n+1)th GPU in your system.

0 "mps:0" Refers to the MPS backend in PyTorch, which allows
machine learning models to run on Apple’s built-in GPU
(M1, M2, and M3 chips).

If you’re not sure whether your pipeline object uses the CPU or GPU, you can print it
by using the device.type attribute:

print(question_classifier.device.type)

A reliable approach to selecting the optimal inference device is to check for CUDA or
MPS support. If neither is available, the system defaults to the CPU. The following list-
ing demonstrates how to implement this approach.

Listing 2.3 Autodetecting CUDA, MPS, or CPU for PyTorch Inference

from transformers import pipeline
import torch

if torch.cuda.is_available():
 device = "cuda"
elif torch.backends.mps.is_available():
 device = "mps"
else:
 device = "cpu"

question_classifier = pipeline("text-classification",
 model="huaen/question_detection",
 device=device)
print(f"Using device: {device}")

2.3 Installing the Hugging Face Hub package

The Hugging Face Hub (https://huggingface.co; see figure 2.10) is the go-to place for
all things related to Hugging Face: pretrained models, demos, datasets, and more.

Although you can use a web browser to visit the Hugging Face Hub, you can interact
with the Hub directly by using the huggingface_hub command-line package. With this
package, you can perform tasks such as the following:

¡	Managing project repositories

¡	Uploading and downloading files

¡	Fetching models

Table 2.1 Values for the device parameter in the pipeline() function (continued)

https://huggingface.co

24 CHAPTER 2 Getting started

Figure 2.10 The Hugging Face Hub

To install the huggingface_hub package, use the pip command:

!pip install huggingface_hub

2.3.1 Downloading files

On the Hugging Face Hub, you’ll find many pretrained models that you can freely use.
Often, when you use a model for the first time, the Transformers library automatically
downloads the files associated with the model and stores them locally on your com-
puter. At times, however, it’s more useful to download the files you need manually so
that you can run your code offline.

To download a file from the Hugging Face Hub, go to the model’s page and click the
Download button. Consider the model named google/pegasus-xsum (https://mng.bz/
gmXx), for example. On the model’s page, if you want to download the config.json
file, click its download icon (see figure 2.11).

https://mng.bz/gmXx
https://mng.bz/gmXx

 25Installing the Hugging Face Hub package

File to download Click to download file

Figure 2.11 Downloading a file directly from a model’s page

If you’re using the huggingface_hub package, you can download the file programmati-
cally using the hf_hub_download() function:

from huggingface_hub import hf_hub_download

hf_hub_download(repo_id="google/pegasus-xsum",
 filename = "config.json")

The config.json file is downloaded to the following directory:

<home_directory>/.cache/huggingface/hub/
models--google--pegasus-xsum/snapshots/
8d8ffc158a3bee9fbb03afacdfc347c823c5ec8b/

By default, the latest version of the file from the main branch is downloaded. In some
cases, however, you want to download a particular version of the file (e.g., from a spe-
cific branch, pull request (PR), tag, or commit hash). To do so, first click the file you
want to download (see figure 2.12).

26 CHAPTER 2 Getting started

Click the file you
want to download.

Figure 2.12 Selecting the file to download

Then click the file’s history link (see figure 2.13).

Click to view the
history of the file.

Figure 2.13 Viewing

the historical commits

for a project

Finally, copy the commit hash of the specific version of the file you want to download
(see figure 2.14).

When you’ve copied the commit hash of the file you want to download, you can set it
as the value for the revision parameter in the hf_hub_download() function:

hf_hub_download(
 repo_id="google/pegasus-xsum",
 filename="config.json",
 revision="a0aa5531c00f59a32a167b75130805098b046f9c"
)

 27Installing the Hugging Face Hub package

Click to copy the
commit hash.

Figure 2.14 Copying the commit hash for a file

2.3.2 Using the Hugging Face CLI

The huggingface_hub package also includes the Hugging Face CLI, a command-line-
interface tool that allows you to authenticate your applications using tokens. In Termi-
nal or Anaconda Prompt, type huggingface-cli to view the various options you can use:

$ huggingface-cli
usage: huggingface-cli <command> [<args>]

positional arguments:
 {env,login,whoami,logout,repo,upload,download,
 lfs-enable-largefiles,lfs-multipart-upload,
 scan-cache,delete-cache}
 huggingface-cli command helpers
 env Print information about the environment.
 login Log in using a token from
 huggingface.co/settings/tokens
 whoami Find out which huggingface.co account
 you are logged in as.
 logout Log out
 repo {create} Commands to interact with
 your huggingface.co repos.
 upload Upload a file or a folder to a repo on the Hub

28 CHAPTER 2 Getting started

 download Download files from the Hub

 lfs-enable-largefiles

 Configure your repository to enable

 upload of files > 5GB.

 scan-cache Scan cache directory.

 delete-cache Delete revisions from the cache directory.

options:

 -h, --help show this help message and exit

Using the CLI, you can log in to Hugging Face Hub programmatically. First, though,
you need to create an account at https://huggingface.co/join (see figure 2.15).

Figure 2.15 Signing up for a Hugging Face account

Hugging Face uses access tokens to authenticate users who need to download private
repositories, upload files, create PRs, and so on. After you sign up as a Hugging Face

https://huggingface.co/join

 29Installing the Hugging Face Hub package

user, you should create an access token for yourself at https://huggingface.co/settings/
tokens. Then you can log in to Hugging Face Hub using the following command:

$ huggingface-cli login

 _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_|
||_|_| _|_| _|_|_| _|_|_|_|

 _| _| _| _| _| _| _| _|_| _| _|
_| _| _| _| _|

 ||_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_|
||_| _|_|_|_| _| _|_|_|

 _| _| _| _| _| _| _| _| _| _| _|_| _| _|
_| _| _| _| _|

 _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_|
_| _| _| _|_|_| _|_|_|_|

A token is already saved on your machine. Run `huggingface-cli
whoami` to get more information or `huggingface-cli logout` if
you want to log out.

 Setting a new token will erase the existing one.
To login, `huggingface_hub` requires a token generated from
https://huggingface.co/settings/tokens .

Enter your token (input will not be visible): <HuggingFaceAccessToken>
Add token as git credential? (Y/n) n
Token is valid (permission: read).
Your token has been saved to /Users/weimenglee/.cache/huggingface/token
Login successful

Note that when you type your token (or, more likely, paste it from your clipboard),
you’ll see no feedback onscreen. The token you entered is saved in the file named
token, located in the <home_directory> /.cache/huggingface/ directory. To see which
account you’ve signed in to, use the whoami option:

$ huggingface-cli whoami

You see the name of the user account you used to sign in. Another way to log in to Hug-
ging Face Hub is to use the login() function in Python:

from huggingface_hub import login

login()

The login() function displays the UI, as shown in figure 2.16. Enter your token and
then click the Login button.

NOTE If you encounter an error related to ipywidgets in Jupyter Notebook,
you should be able to fix it by updating ipywidgets to the latest version:

!pip install -U ipywidgets

https://huggingface.co/settings/tokens
https://huggingface.co/settings/tokens

30 CHAPTER 2 Getting started

Figure 2.16 Logging in to Hugging Face Hub from Jupyter Notebook

Summary

¡	The Anaconda package comes with the conda package manager, which simpli-
fies package management and environment creation. It also comes with Jupyter
Notebook.

¡	Creating virtual environments allows you to install and manage Python packages
separately from your systemwide Python installation. Virtual environments are
useful for isolating dependencies and managing project requirements.

¡	The easiest way to start Jupyter Notebook is to launch it from Terminal or Ana-
conda Prompt.

¡	The Transformers library is built on PyTorch, a popular deep learning frame-
work primarily developed by FAIR.

¡	PyTorch supports GPU, enabling smooth integration with CUDA, a parallel com-
puting platform and programming model designed for GPUs.

¡	The Hugging Face Hub package allows you to download files, upload files, and
perform authentication using the CLI.

31

3Using Hugging Face
transformers and

pipelines for NLP tasks

This chapter covers

¡	Understanding the transformer architecture

¡	Using the Hugging Face Transformers library

¡	Using the pipeline() function in the

Transformers library

¡	Performing NLP tasks using the Transformers

library

You’ve had a glimpse of the Hugging Face Transformers library and seen how to use
it to perform object detection using one of the pretrained models hosted by Hug-
ging Face. Now we will go behind the scenes to learn about the transformers pack-
age: the transformer architecture and the various components that make it work.
The aim of this book is not to dive into the detailed workings of the transformer
model, but I want to discuss it briefly so that you have some basic understanding of
how things work.

Next, we will use the pipeline() function that ships with the transformers pack-
age to perform various natural language processing (NLP) tasks such as text classifi-
cations, text generation, and text summarization.

32 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

NOTE When I talk about Transformers, I’m referring to the open source library
created by Hugging Face that provides pretrained transformer models and
tools for NLP tasks. Transformer, on the other hand, refers to the neural net-
work architecture discussed in section 3.1.

3.1 Introduction to the transformer architecture

The transformer architecture, introduced in the paper “Attention is All You Need” by
Ashish Vaswani et al. (https://arxiv.org/pdf/1706.03762.pdf), has become the foun-
dation for many state-of-the-art models in NLP. It relies heavily on the self-attention
mechanism to process input data in parallel, making it more efficient and effective for
many tasks compared with previous neural network architectures, such as recurrent
neural networks (RNNs) and long short-term memory networks (LSTMs). Figure 3.1
shows the transformer architecture taken from the “Attention Is All You Need” paper.

Output

probabilities

Positional

encoding

Positional

encoding

Input

embedding

Output

embedding

Inputs Outputs
(shifted right)

Figure 3.1 The transformer

architecture (Source: “Attention

Is All You Need” paper)

DEFINITION The self-attention mechanism is a crucial component of the trans-
former architecture. It enables the model to weigh the importance of different
words in a sequence when encoding a particular word, allowing the model to

https://arxiv.org/pdf/1706.03762.pdf

 33Introduction to the transformer architecture

capture dependencies and relationships between words irrespective of their dis-
tance in the sequence. This mechanism allows transformers to handle long-range
dependencies and parallelize the processing of input sequences effectively.

At a high level, the transformer architecture consists of two main blocks: Encoder and
Decoder (see figure 3.2).

Encoder Decoder

Output

probabilities

Positional

encoding

Positional

encoding

Input

embedding

Output

embedding

Inputs Outputs
(shifted right)

Figure 3.2 A transformer model contains an Encoder and a Decoder.

The Encoder gets the inputs and builds a representation of them. The Decoder uses
the Encoder’s representation, along with other inputs, to generate a target sequence
(the outputs’ probabilities). One intriguing aspect of this model is that each compo-
nent can function independently. You can use a model solely featuring the Encoder
component, for example. This model is beneficial for tasks such as sentence classifi-
cation and named entity recognition (NER), in which comprehension of the input is
paramount. Conversely, models that employ only the Decoder are suitable for tasks
such as text generation. Furthermore, models incorporating both the Encoder and
Decoder are well suited to endeavors such as text summarization and text translation.

34 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

Following are some of the key components of the transformer architecture:

¡	Input Embedding—

– Converts input tokens to dense vectors of fixed size.

– Adds positional encodings to retain information about the order of the tokens
because the model processes input in parallel and lacks inherent sequential
information.

¡	Encoder—Comprises multiple identical layers, each containing two main
components:

– Multi-Head Attention—Computes the attention scores between each pair of
input tokens to capture dependencies regardless of their distance.

– Feed-Forward Neural Network (FFN)—Comprises two linear transformations with
a Rectified Linear Unit (ReLU) activation in between.

¡	Decoder—Also consists of multiple identical layers with additional components to
handle the target sequence:

– Masked Multi-Head Attention—Similar to the Encoder’s Multi-Head Attention
but prevents attending to future tokens in the target sequence (to ensure
autoregressive properties during training).

– Multi-Head Attention—Allows the decoder to attend to the Encoder’s output.

¡	Positional Encoding—

– Adds information about the position of each token in the sequence because
self-attention operates without considering token order.

– Typically implemented using sine and cosine functions of different frequencies.

¡	Layer Normalization and Residual Connections—

– Layer Normalization—Stabilizes and accelerates training by normalizing the
input across the features.

– Residual Connections—Adds the input of each sublayer to its output to help
with gradient flow and prevent vanishing/exploding gradients.

¡	Final Linear and Softmax Layers—In the Decoder, after processing the sequence
through multiple layers, a final linear transformation followed by a Softmax layer
is used to produce probabilities for the next token.

3.1.1 Tokenization

In the context of NLP and machine learning, a token is a chunk of text that a model
processes as a single unit. A token can represent an individual word, punctuation mark,
or other linguistic element, depending on the specific tokenization strategy employed.
Tokenization is the process of converting a text document or sentence to smaller units.
Generally, there a few types of tokenization strategies:

¡	Word tokenization—Splits text into individual words based on whitespace or punc-
tuation characters. Figure 3.3 shows how the sentence “I love cats” is tokenized
into three tokens.

 35Introduction to the transformer architecture

¡	Subword tokenization—Breaks text into
smaller linguistic units such as prefixes,
suffixes, or root words. This strategy is
commonly used for languages with com-
plex morphology or tasks like machine
translation. Figure 3.4 shows how the
word unhappiness is tokenized into three
tokens. Subword tokenization enables
the model to encompass a broad, varied
vocabulary while circumventing the con-
straints imposed by a rigid word-level
vocabulary. This technique is especially
useful for comprehending and generat-
ing text across diverse contexts, lan-
guages, and domains, enhancing the
model’s capability to accommodate lin-
guistic variations and diminish vocabu-
lary dimensions.

¡	Character-level tokenization—Segments
text into individual characters, including
letters, digits, and punctuation marks. Fig-
ure 3.5 shows how the word Hello is toke-
nized into five tokens. Character-level
tokenization is ideal for tasks that require
meticulous analysis at the character level,
particularly when you’re handling lan-
guages with intricate word structures
(such as Chinese). Nonetheless, this
strategy entails a larger vocabulary and
may result in reduced interpretability at
advanced linguistic levels.

Here is an example of subword tokenization using the BERT model:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
input_text = "What is unhappiness?"
tokens = tokenizer.tokenize(input_text, return_tensors="pt")

print(f"{tokens = }")

This code snippet prints the following tokens:

tokens = ['what', 'is', 'un', '##ha', '##pp', '##iness', '?']

loveI cats

I love cats

Figure 3.3 Tokenizing a sentence into

three tokens using the word tokenization

technique

happi-un- -ness

unhappiness

Figure 3.4 Tokenizing a sentence

into three tokens using the subword

tokenization technique

H e l l o

Hello

Figure 3.5 Tokenizing a sentence into

five tokens using the character-level

tokenization technique

Loads a pretrained tokenizer

Tokenizes input text

36 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

What is BERT?

BERT stands for Bidirectional Encoder Representations from Transformers, a

transformer- based machine learning model designed for NLP tasks. It is commonly

used in tasks such as question answering, text classification, NER, part-of-speech

tagging, text summarization, sentiment analysis, language translation, text genera-

tion, coreference resolution, paraphrase detection, semantic search, textual entail-

ment, and dialogue systems.

The ## prefix attached to some tokens in the output indicates that the token is a con-
tinuation of the previous one in the original word. It signifies that the tokens are part
of a larger token. When these tokens are decoded back into the original text, the ##
prefixes are typically removed, and the tokens are combined to reconstruct the origi-
nal word.

3.1.2 Token embeddings

After the text is tokenized, the next step is performing token embeddings, which convert
tokens to numerical vectors. These embeddings capture semantic and syntactic infor-
mation about the tokens, enabling machine learning models to understand the under-
lying meanings of and relationships between words in natural language text.

The embeddings are learned based on the co-occurrence and contextual relation-
ships between words in the training corpus. As a result, words that have similar mean-
ings or appear in similar contexts tend to have similar representations in the embedding
space. The following code listing shows how you can perform token embedding on a
paragraph of text.

Listing 3.1 Performing token embeddings on a paragraph of text

from transformers import BertTokenizer, BertModel
import torch

tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased")

input_text = '''
After a long day at work, Sarah decided to relax by taking her
dog for a walk in the park. As they strolled along the
tree-lined paths, Sarah's dog, Max, eagerly sniffed around,
chasing after squirrels and birds. Sarah smiled as she watched
Max enjoy himself, feeling grateful for the companionship and
joy that her furry friend brought into her life.'''

tokens = tokenizer(input_text, return_tensors="pt")

with torch.no_grad():
 outputs = model(**tokens)

last_hidden_states = outputs.last_hidden_state

Loads pretrained BERT
tokenizer and model

Generates token
embeddings

Extracts token embeddings
from the last layer

 37Introduction to the transformer architecture

print("Token embeddings:")
for token, embedding in zip(tokens["input_ids"][0],
 last_hidden_states[0]):
 word = tokenizer.decode(int(token))
 print(f"{word}: {embedding}")

In this example, we tokenized the input text using the BERT model and then extracted
the token embeddings from the last layer of the model’s outputs. Finally, we print the
embedding for each word, as shown in the following listing.

Listing 3.2 The embeddings for each word in the paragraph

Token embeddings:
[C L S]: tensor(
 [5.1886e-03, -1.3432e-01, -6.8117e-01, -5.0901e-02, -1.3148e-01,
 -2.2708e-01, 4.2620e-01, 7.9117e-01, -3.0209e-01, -6.5137e-02,
 ...
 -9.4111e-02, -4.7972e-01, 9.1932e-02, -3.9814e-01, 4.3560e-02,
 1.8024e-01, 7.4798e-01, 2.8064e-01])
a f t e r: tensor(
 [-3.1720e-01, -3.1491e-01, 1.3892e-01, 3.9379e-01, 1.3412e-01,
 4.2373e-01, 4.9870e-01, 7.1422e-01, 1.0452e-01, -7.0356e-01,
 ...

It would be useful to plot the token embeddings on a graph so that you can visual-
ize how the tokens are related. Because the embeddings are in very high dimensions,
however, first we need to reduce their dimensionality to two dimensions so we can visu-
alize them effectively. One common technique for dimensionality reduction and visu-
alization is t-Distributed Stochastic Neighbor Embedding (t-SNE). We can use t-SNE to
project the high-dimensional embeddings into a 2D space. The next listing shows how.

Listing 3.3 Using t-SNE to project high-dimensional embeddings into a 2D space

from sklearn.manifold import TSNE
import matplotlib.pyplot as plt

tsne = TSNE(n_components=2, perplexity=5, random_state=42)
embeddings_tsne = tsne.fit_transform(last_hidden_states[0])

plt.figure(figsize=(10, 8))
plt.scatter(embeddings_tsne[:, 0],
 embeddings_tsne[:, 1], marker='o')
for i, word in enumerate(tokenizer.convert_ids_to_tokens(
 tokens["input_ids"][0])):
 plt.annotate(word, xy=(embeddings_tsne[i, 0],
 embeddings_tsne[i, 1]),
 fontsize=10)

Prints the token
embedding for each word

Reduces dimensionality using t-SNE with lower perplexity,
a parameter controlling nearest neighbors—higher for

larger datasets but always less than the sample count

Plots the
embeddings
on a 2D graph

38 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

plt.xlabel('t-SNE Dimension 1')

plt.ylabel('t-SNE Dimension 2')

plt.title('t-SNE Visualization of Token Embeddings')

plt.show()

Figure 3.6 shows the graph grouping the various tokens according to their embeddings.

t-SNE visualization of token embeddings

t-SNE dimension 1

t-
S

N
E

 d
im

e
n
s
io

n
 2

Figure 3.6 The visualization of token embeddings for the various words in a paragraph in 2D space

In short, word embeddings allow you to see which words are often used together. This
technique captures semantic relationships between words based on their usage pat-
terns in large text corpora. Here are two examples:

¡	The vectors for king and queen are closer to each other than to unrelated words
like train and buildings.

¡	The vectors for words such as bread and butter are close to each other because they
often co-occur in text.

 39Introduction to the transformer architecture

3.1.3 Positional encoding

Positional encoding plays a crucial role in transformer-based models by imparting essen-
tial positional information about the order of tokens within a sequence. This posi-
tional context is vital for enabling the model to grasp the meaning and context of the
input accurately. When we incorporate positional encoding into token embeddings,
we give the model the ability to discern between tokens based on their positions in the
sequence. Without this encoding, the model would struggle to differentiate between
tokens based solely on their sequential positions, significantly impairing its perfor-
mance on tasks that require a nuanced understanding of sequences, such as language
modeling, machine translation, and text generation.

Positional encoding is typically added to token embeddings before they are input
into the transformer model. The following code listing shows how you can extract the
positional embeddings from a paragraph of text.

Listing 3.4 Printing the positional encoding for each token

from transformers import BertTokenizer, BertModel
import torch

tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased")

input_text = '''
After a long day at work, Sarah decided to relax by taking her
dog for a walk in the park. As they strolled along the
tree-lined paths, Sarah's dog, Max, eagerly sniffed around,
chasing after squirrels and birds. Sarah smiled as she watched
Max enjoy himself, feeling grateful for the companionship and
joy that her furry friend brought into her life.'''

tokens = tokenizer(input_text, return_tensors="pt")
embeddings = model.embeddings
positional_embeddings = embeddings.position_embeddings.weight
position_ids = torch.arange(tokens['input_ids'].size(1),
 dtype=torch.long).unsqueeze(0)
input_positional_embeddings = positional_embeddings[position_ids]

print("Positional embeddings shape:", input_positional_embeddings.shape)
print("Positional embeddings for each token:")

for token_id, pos_embedding in zip(tokens['input_ids'][0],
 input_positional_embeddings[0]):
 token = tokenizer.decode([token_id])
 print(f"{token}: {pos_embedding}")

In the BERT model, positional encodings are already integrated into the model archi-
tecture and are added to the input embeddings automatically, so, in this example,

Accesses the
embeddings
layer directly

Extracts the
positional
embeddings

Extracts the position IDs from
the input tokens

Gets the positional encodings
for the input tokens

40 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

we’re simply extracting the positional embeddings for each token. The following list-
ing shows the output of the code.

Listing 3.5 The output of the positional encoding

Positional embeddings shape: torch.Size([1, 77, 768])
Positional embeddings for each token:
[CLS]: tensor([1.7505e-02, -2.5631e-02, -3.6642e-02, -2.5286e-02, 7.9709e-03,
 -2.0358e-02, -3.7631e-03, -4.6880e-03, 6.2253e-03, -3.8342e-02,
 1.3103e-02, -3.7083e-03, -2.1014e-02, 1.1626e-02, -3.9546e-02,
 ...
 4.0483e-03, -3.4331e-02, 1.0333e-02, -1.0450e-02, -1.4161e-02,
 3.3437e-05, 6.8312e-04, 1.5441e-02], grad_fn=<UnbindBackward0>)
after: tensor([7.7580e-03, 2.2613e-03, -1.9444e-02,
-1.7131e-02, -1.3234e-02, 1.4102e-02, -3.7121e-03,
-1.0888e-02, 6.2255e-03, -3.4778e-02, -7.7945e-03,
-1.4488e-02, -1.1725e-02, 1.0181e-02, -5.9442e-03,
 ...

In short, positional encodings provide information about the positions of words within
a sequence. It allows models to understand the order of words in a sentence. Following
are two examples:

¡	The sentence “The cat sat on the sofa” has a different meaning from “The sofa sat
on the cat.”

¡	Positional embeddings allow you to differentiate between “Tom loves Susan” and
“Susan loves Tom.”

3.1.4 Transformer block

At the heart of the transformer architecture is the Transformer block, which is the key
component responsible for encoding and decoding information across multiple lay-
ers. The Transformer block contains the following components:

¡	Self-Attention Mechanism—The Transformer block uses self-attention, also known
as scaled dot-product attention. This mechanism allows the model to weigh the
importance of different words (tokens) in a sequence based on their relation-
ships with each other. It computes attention scores for each pair of words in the
sequence and uses these scores to construct context-aware representations of
each word.

¡	Feed-Forward Neural Networks—After the self-attention mechanism, the Trans-
former block applies FFNs to process each word’s representation independently
and in parallel. FFNs typically consist of two linear transformations separated by a
nonlinear activation function like ReLU.

¡	Residual Connections and Layer Normalization—To facilitate effective gradient
flow and ease training, residual connections are employed around each sub-
layer (self-attention and FFNs) of the Transformer block. Additionally, layer

 41Working with the Transformers library

normalization is applied to stabilize training and improve the speed and conver-
gence of the model.

3.1.5 Softmax

The last component of the transformer architecture is Softmax, a mathematical function
that converts a vector of numbers to a probability distribution in which the probability
of each element is proportional to the exponentiation of that element’s value relative to
the sum of all the exponentiated values in the vector. In the context of neural networks,
Softmax is often used as the final activa-
tion function in classification tasks.

Figure 3.7 shows an example of using
the Softmax function. On the left are the
values for the output layer of a neural net-
work. To transform the values into proba-
bilities that the model can interpret, you
use the Softmax function to generate the
probability distribution. The probabilities
generated sum up to 1. Each value in the
probabilities represents the probability of
a class or category.

3.2 Working with the Transformers library

Now that you have a clearer idea of how the transformer architecture works, it’s time
to focus our attention on the key subject of this book: the Hugging Face Transformers
library. As its name implies, the library is an open source library and platform developed
by Hugging Face. Its aim is to provide an easy-to-access interface for working with state-
of-the-art transformer-based models. Figure 3.8 illustrates the use of the library.

Transformers

facebook/
detr-resnet-50

facebook/
bart-large-cnn...

The Transformers library provides
access to models based on the
transformer architecture.

The models are pretrained and
hosted by Hugging Face.

Figure 3.8 The role of the Hugging Face Transformers library

3.2.1 What are pretrained transformers models?

In this section, you learn how to use the Transformers library and its various pretrained
models and how to use pipelines to simplify the process. Pretrained transformer models are

4.5

6

3.2

0.1605

0.7171

0.1224Softmax formula

Output layer Probabilities

Figure 3.7 Using the Softmax function to

generate a set of probabilities based on the

values of the output layer of a neural network

42 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

transformer-based neural network models that have been pretrained on vast amounts
of text data. These models are trained using an unsupervised learning technique, such
as language modeling or masked language modeling, on large text corpora to learn
the statistical properties of natural language. The following list describes several exam-
ples of pretrained transformer models, which serve as powerful building blocks for var-
ious NLP applications and have significantly advanced the state of the art in the field:

¡	BERT—Introduces bidirectional training for transformers, capturing context
from both directions of a word

¡	GPT (Generative Pretrained Transformer)—Focuses on language generation
tasks by predicting the next word in a sequence

¡	RoBERTa (Robustly Optimized BERT Approach)—Optimized version of BERT
with improved training strategies and larger datasets

¡	DistilBERT—A smaller, faster variant of BERT, suitable for deployment in
resource-constrained environments

¡	T5 (Text-To-Text Transfer Transformer)—Trained on a unified framework in
which all tasks are treated as text-to-text transformations

3.2.2 What are transformers pipelines?

To make the Transformers library easier to use, Hugging Face provides the convenient,
user-friendly pipeline() function (also known simply as a pipeline) that shields the
lower-level details from the developer. Figure 3.9 illustrates the role of the pipeline()
function.

Transformers

pipeline

facebook/
detr-resnet-50

facebook/
bart-large-cnn

...

The Transformers library provides
access to models based on the
transformer architecture.

The pipeline function provides a
wrapper on top of the Transformers
library, providing convenient access
to the models.

The models are pretrained and
hosted by Hugging Face.

Figure 3.9 Pipelines are high-level APIs that use the transformer models provided by the Transformers

library.

Consider the distilbert/distilbert-base-uncased-finetuned-sst-2-english model,
a pretrained DistilBERT model that has been fine-tuned on the Stanford Sentiment
Treebank (SST-2) dataset for sentiment analysis in English.

 43Working with the Transformers library

What is DistilBERT?

DistilBERT is a lighter, smaller, faster version of BERT, (a popular transformer-based

model for NLP. It was introduced by Hugging Face researchers in a paper titled “Distil-

BERT, a distilled version of BERT: smaller, faster, cheaper and lighter” by Victor Sanh

et al. (https://arxiv.org/abs/1910.01108).

On the Hugging Face web page for this model (https://mng.bz/a96o; see figure 3.10),
you can click the </> Use in Transformers button to see how to use this model.

Click this button to reveal how to
use the model using the Hugging
Face Transformers library.

Figure 3.10 Learning how to use the model using the Transformers library

Figure 3.11 shows two ways to use the model:

¡	Go through the transformers pipeline.

¡	Use the model directly.

Using the model
through the
transformers
pipeline

Using the model
directly

Figure 3.11 Two ways to use the pretrained model

https://arxiv.org/abs/1910.01108
https://mng.bz/a96o

44 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

I find using the model through the pipeline easier than the other option. Table 3.1
shows various reasons for using both approaches.

Table 3.1 Reasons for using a model directly or through a pipeline

Using a model directly Using a model through a pipeline

Fine-grained control—You have more control of
input preprocessing, tokenization, model inference,
and postprocessing steps.

Simplicity—Pipelines provide a high-level, user-
friendly interface for using the model without
requiring you to understand the underlying com-

plexities of model loading, input processing, and
inferencing.

Flexibility—You can easily experiment with different
model architectures, hyperparameters, and input
formats.

Rapid prototyping—With pipelines, you can work
with models with only a few lines of code.

Better understanding—Working directly with the
model allows you to better understand how the
model works.

Preconfigured settings—Pipelines come with
preconfigured settings and default parameters
optimized for common use cases. These settings
can save you time and effort in selecting the appro-

priate model, fine-tuning hyperparameters, and
handling input/output formats.

3.2.3 Using a model directly

In this section, you learn how to use models directly by working with the distilbert/
distilbert-base-uncased-finetuned-sst-2-english model. You’ll use this model to
perform sentiment analysis on a piece of text.

DEFINITION Sentiment analysis is an NLP technique that determines the sen-
timent expressed in a piece of text. It involves analyzing textual data to cat-
egorize the sentiment as positive, negative, or neutral, indicating the overall
emotional tone or polarity of the text.

As the first step, load the tokenizer from the model using the AutoTokenizer.from_
pretrained() method:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(

 "distilbert/distilbert-base-uncased-finetuned-sst-2-english")

This method downloads the pretrained model to the ~/.cache/huggingface/hub/
directory of your machine (for computers running macOS). On Windows machines,
the directory is C:\users\<user_name>\.cache\huggingface\hub\. The model will be
saved in a directory named after the model. For the model we’re using in this section,
the directory is named models--distilbert--distilbert-base-uncased-finetuned

-sst-2-english (see figure 3.12).

 45Working with the Transformers library

Figure 3.12 The directory containing the downloaded model

Next, load the model using the AutoModelForSequenceClassification.from_

pretrained() method:

from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained(
 "distilbert/distilbert-base-uncased-finetuned-sst-2-english")

Before you can use the model to perform sentiment analysis on a paragraph of text,
you need to tokenize it using the tokenizer object:

import torch

text = "I loved the movie, it was fantastic!"

inputs = tokenizer(text, return_tensors = "pt")
print(inputs)

The tokenizer object returns a dictionary containing the tokenized representation of
the input text, suitable for consumption by a PyTorch model (indicated by the pt value):

{'input_ids': tensor([[101, 1045, 3866, 1996, 3185, 1010,
2009, 2001, 10392, 999, 102]]), 'attention_mask': tensor([[1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}

Then the result of the tokenizer object is passed into model for inferencing:

outputs = model(**inputs)
print(outputs)

In the preceding statements, you are giving the model the token IDs (stored in
input_ids key) and optionally other tensors, such as the attention mask (stored in the
attention_ mask key). Then the model performs inference on these inputs, generating
predictions or other relevant outputs depending on the specific model and task. You
see the following output:

Tokenizes the text

Performs inference

46 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

SequenceClassifierOutput(loss=None, logits=tensor([[-4.3428, 4.6955]],
grad_fn=<AddmmBackward0>), hidden_states=None, attentions=None)

In particular, take note of the values in the logits key: [[-4.3428, 4.6955]]. The value
is of shape (1,2), where the first dimension corresponds to the batch size (1, in this
case) and the second dimension corresponds
to the number of classes (2, in this case: 0 for
negative and 1 for positive). Each element in
the tensor represents the model’s confidence
score for a particular class. In this example,
the model outputs [-4.3428, 4.6955], which
suggests that the model assigns a higher con-
fidence score to the second class than to the
first class (see figure 3.13).

Based on the interpretation of the result, you can extract the class with the higher
confidence score and determine the class of the result:

predicted_label = torch.argmax(outputs.logits)
sentiment = "positive" if predicted_label == 1 else "negative"

print("Predicted sentiment:", sentiment)

You get the following output:

Predicted sentiment: positive

3.2.4 Using a transformers pipeline

Now that you’ve seen how to use a model directly, it’s time to learn to use a transform-
ers pipeline. The simplest way to use a pipeline is to specify the task you want to per-
form. But what tasks are supported in the first place? An easy way is to specify a task that
is not supported and view the error message, which also shows a list of supported tasks:

from transformers import pipeline
try:
 dummy_pipeline = pipeline(task="dummy")
except Exception as e:
 print(e)

This code snippet prints the following error message, which includes supported tasks:

"Unknown task dummy, available tasks are ['audio-classification',
'automatic-speech-recognition', 'conversational', 'depth-estimation',
'document-question-answering', 'feature-extraction', 'fill-mask',
'image-classification', 'image-feature-extraction',
'image-segmentation', 'image-to-image', 'image-to-text',

Class 1

(positive)

Class 0

(negative)

Figure 3.13 The confidence score for each

class

Gets the predicted label (0
for negative, 1 for positive)

 47Working with the Transformers library

'mask-generation', 'ner', 'object-detection', 'question-answering',
'sentiment-analysis', 'summarization', 'table-question-answering',
'text-classification', 'text-generation', 'text-to-audio',
'text-to-speech', 'text2text-generation', 'token-classification',
'translation', 'video-classification', 'visual-question-answering',
'vqa', 'zero-shot-audio-classification', 'zero-shot-classification',
'zero-shot-image-classification', 'zero-shot-object-detection',
'translation_XX_to_YY']"

Let’s use the distilbert/distilbert-base-uncased-finetuned-sst-2-english model
that we used in section 3.2.3. This model falls under the text-classification task.
How would you know? In figure 3.11 earlier in this chapter, the code sample specified
the task:

from transformers import pipeline

pipe = pipeline("text-classification",
 model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")

Alternatively, you can view the model’s page on the Hugging Face website and find the
task that this model is trained for (see figure 3.14).

This model falls under the
text classification t.ask

Figure 3.14 Finding the type of task a model falls under

Note that you can simply specify the tasks in the pipeline method and leave out the
model you want to use. The pipeline method will use the default model and revision
(version) for that task:

pipe = pipeline("text-classification")

48 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

This approach is not recommended, however, because the default model to use might
change in the next release of the pipeline() method. It’s better to specify the model
parameter explicitly:

from transformers import pipeline

classifier = pipeline(task = 'text-classification',
 model = 'distilbert/distilbert-base-uncased-finetuned-sst-2-english')

If you’ve already identified the model you want to use, you don’t have to specify the
task parameter. Specify only the model, like this:

classifier = pipeline(
 model = 'distilbert/distilbert-base-uncased-finetuned-sst-2-english')

In addition, if you have a Compute Unified Device Architecture (CUDA)-compliant GPU
on your computer, you can specify that the pipeline be allocated to run on the GPU:

classifier = pipeline(
 model = 'distilbert/distilbert-base-uncased-finetuned-sst-2-english',
 device = "cuda")

By default, device is set to "cpu", which allows you to run a model using only the CPU
of your computer.

DEFINITION CUDA is a parallel computing platform and API model created by
NVIDIA. CUDA allows developers to use NVIDIA GPUs (graphics processing
units) for general-purpose processing in addition to traditional graphics ren-
dering tasks.

Let’s define two blocks of text containing reviews of two restaurants:

review1 = '''From the warm welcome to the exquisite dishes and impeccable
 service, dining at Gourmet Haven is an unforgettable experience that
 leaves you eager to return.'''

review2 = '''Despite high expectations, our experience at Savor Bistro
 fell short; the food was bland, service was slow, and the overall
 atmosphere lacked charm, leaving us disappointed and unlikely to
 revisit.'''

We can use the pipeline object (classifier) to perform a sentiment analysis on the
first review:

print(classifier(review1))

You see the following output, indicating that the review contains positive sentiment:

[{'label': 'POSITIVE', 'score': 0.9998437166213989}]

 49Using transformers for NLP tasks

You can also pass in multiple blocks of text using a list, like this:

print(classifier([review1, review2]))

The preceding statement returns the following output:

[{'label': 'POSITIVE', 'score': 0.9998437166213989},
 {'label': 'NEGATIVE', 'score': 0.9997773766517639}]

When contrasting using the model directly with employing the pipeline, the simplic-
ity and straightforwardness of pipelines become apparent. Simply by initializing a
pipeline object with the desired task and model, you enable data to flow seamlessly
through for inference, yielding immediate outputs. In some instances, however, direct
model use is essential for finer control. In this book, I prefer using pipelines whenever
feasible and use the model directly when precise control is required.

3.3 Using transformers for NLP tasks

The primary tasks the Transformers library was created for include NLP tasks, com-
puter vision, audio, and reinforcement learning. In this section, we discuss the various
NLP tasks you can perform using the Transformers library:

¡	Text classification

¡	Text generation

¡	Text summarization

¡	Text translation

¡	Zero-shot classification

¡	Question answering

3.3.1 Text classification

In section 3.2.4, you saw how to perform sentiment analysis using a text classification
model. Another form of text classification task is question detection. Using this task,
you can detect whether a sentence contains a question. To do that, use the huaen/
question_detection model:

from transformers import pipeline

question_classifier = pipeline("text-classification",
 model="huaen/question_detection")

Using the pipeline created, you can pass in a string to determine whether it contains a
question:

response = question_classifier(
 '''Have you ever pondered the mysteries that lie beneath
 the surface of everyday life?''')
print(response)

50 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

This statement prints the following output, indicating that this text is very likely
(99.76% confidence) a question:

[{'label': 'question', 'score': 0.9975988268852234}]

Let’s try another example:

response = question_classifier(
 '''"Life is a journey that must be traveled, no matter
 how bad the roads and accommodations." - Oliver Goldsmith''')
print(response)

The response is that this text is not likely a question:

[{'label': 'non_question', 'score': 0.9996856451034546}]

Another text classification task you can perform is language detection. Using a model
such as papluca/xlm-roberta-base-language-detection, you can pass it a string so that
it can try to detect the language of a given sentence:

language_classifier = pipeline("text-classification",
 model="papluca/xlm-roberta-base-language-detection")

response = language_classifier("日本の桜は美しいです。")
print(response)

The preceding statements print the following result, indicating that the language is
most likely Japanese:

[{'label': 'ja', 'score': 0.9913387298583984}]

One more example of text classification is a spam classifier, which enables you to identify
incoming messages (emails, text messages, comments, and so on) as spam (unwanted
or unsolicited messages) or ham (legitimate messages). For this task, you can use the
Delphia/twitter-spam-classifier model:

spam_classifier = pipeline("text-classification",
 model="Delphia/twitter-spam-classifier")

response = spam_classifier(
 '''Congratulations! You've been selected as the winner of our
 exclusive prize draw. Claim your reward now by clicking on
 the link below!''')

print(response)

The preceding statements print the following result, indicating that the string pro-
vided is likely spam:

[{'label': 1, 'score': 0.7446919679641724}]

 51Using transformers for NLP tasks

On the other hand, the following string is not likely spam:

response = spam_classifier(
 '''Hi Jimmy, I hope you're doing well. I just wanted to remind
 you about our meeting tomorrow at 10 AM in conference room A.
 Please let me know if you have any questions or need any
 further information. Looking forward to seeing you there!''')

print(response)

The following output confirms that result:

[{'label': 0, 'score': 0.7776529788970947}]

3.3.2 Text generation

Another common NLP task is text generation, which involves creating new, coher-
ent, and contextually relevant text based on a given prompt or input. This task uses
machine learning models, particularly those based on deep learning and neural net-
works, to produce humanlike text. The following code snippet shows how to use the
openai-community/gpt2 model to generate a paragraph of text based on an initial start
sentence:

from transformers import pipeline

generator = pipeline("text-generation",
 model="openai-community/gpt2")
generator("In this course, we will teach you how to")

This code generates the following output (but note that the output will be different
each time the code snippet is run):

[{'generated_text': 'In this course, we will teach you how to build the
 best online games or use it to build your own. After this, this course
 covers: 1) how to make awesome games in Google Play and 2) how to
 develop a game based on'}]

You can control the output using the max_length (maximum number of tokens in
the generated text) and num_return_sequences (number of paragraphs generated)
parameters:

generator("In this course, we will teach you how to",
 max_length = 50,
 num_return_sequences = 3)

Here is the output generated:

[{'generated_text': 'In this course, we will teach you how to build and
 customize a modern React based project. We will show you ways to

52 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

 simplify your development as well as make your app run with no effort.
 We will give you many practical tips and tricks. After'},
 {'generated_text': 'In this course, we will teach you how to use the
 Raspberry Pi in a production computer to help you connect the Raspberry
 Pi to the internet. We will learn about connecting other IoT networks
 and how to connect to them within the Raspberry Pi.\n\n'},
 {'generated_text': "In this course, we will teach you how to use PHP's
 built-in filters, and how to use PHP's PHP-based classes. We will
 also explain how to perform PHP operations such as create an array of
 attributes, create an array of"}]

3.3.3 Text summarization

Summarizing text is another widely recognized NLP task. The key goal of text summa-
rization is condensing large amounts of text into shorter, coherent summaries while
preserving key information and main ideas. This technique is useful in applications
such as news aggregation, document summarization, and content generation. There
are two main approaches to text summarization:

¡	Extractive—Involves selecting and extracting important sentences or phrases
directly from the original text

¡	Abstractive—Generates summaries by paraphrasing and rephrasing the original
text in a more concise form

To try the text summarization task, you can use the facebook/bart-large-cnn model:

from transformers import pipeline

summarizer = pipeline("summarization",
 model="facebook/bart-large-cnn")

Let’s try to summarize the following block of text on quantum computers.

Listing 3.6 Summarizing a long paragraph of text

article = """
A quantum computer is a computer that exploits quantum mechanical
phenomena. At small scales, physical matter exhibits properties of
both particles and waves, and quantum computing leverages this
behavior using specialized hardware. Classical physics cannot
explain the operation of these quantum devices, and a scalable
quantum computer could perform some calculations exponentially
faster than any modern "classical" computer. In particular, a
large-scale quantum computer could break widely used encryption
schemes and aid physicists in performing physical simulations;
however, the current state of the art is still largely
experimental and impractical.

The basic unit of information in quantum computing is the qubit,
similar to the bit in traditional digital electronics. Unlike a
classical bit, a qubit can exist in a superposition of its two

 53Using transformers for NLP tasks

"basis" states, which loosely means that it is in both states
simultaneously. When measuring a qubit, the result is a
probabilistic output of a classical bit. If a quantum computer
manipulates the qubit in a particular way, wave interference
effects can amplify the desired measurement results. The design
of quantum algorithms involves creating procedures that allow a
quantum computer to perform calculations efficiently.

Physically engineering high-quality qubits has proven challenging.
If a physical qubit is not sufficiently isolated from its
environment, it suffers from quantum decoherence, introducing noise
into calculations. National governments have invested heavily in
experimental research that aims to develop scalable qubits with
longer coherence times and lower error rates. Two of the most
promising technologies are superconductors (which isolate an
electrical current by eliminating electrical resistance) and ion
traps (which confine a single atomic particle using electromagnetic
fields).

Any computational problem that can be solved by a classical computer
can also be solved by a quantum computer.[2] Conversely, any problem
that can be solved by a quantum computer can also be solved by a
classical computer, at least in principle given enough time. In other
words, quantum computers obey the Church–Turing thesis. This means
that while quantum computers provide no additional advantages over
classical computers in terms of computability, quantum algorithms
for certain problems have significantly lower time complexities than
corresponding known classical algorithms. Notably, quantum computers
are believed to be able to solve certain problems quickly that no
classical computer could solve in any feasible amount of time—a feat
known as "quantum supremacy." The study of the computational
complexity of problems with respect to quantum computers is known as
quantum complexity theory.
"""

print(summarizer(article,
 min_length = 100,
 max_length = 250,
 do_sample = False))

By default, the summarizer object returns a max_length of 142 tokens. In the preceding
statement, you indicate that you want the summary to have at least 100 tokens and
not exceed 250 tokens. The do_sample=False indicates that sampling should not be
used during generation. Instead, the model will deterministically select the most likely
tokens at each step of the generation process, essentially performing extractive sum-
marization. The preceding statement generates the following summary:

[{'summary_text': 'A quantum computer is a computer that exploits
 quantum mechanical phenomena. Classical physics cannot explain the
 operation of these quantum devices. A scalable quantum computer
 could perform some calculations exponentially faster than any
 modern "classical" computer. The basic unit of information in
 quantum computing is the qubit, similar to the bit in traditional

54 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

 digital electronics. The design of quantum algorithms involves
 creating procedures that allow a quantum computer to perform
 calculations efficiently. The study of the computational
 complexity of problems with respect to quantum computers is known
 as quantum complexity theory.'}]

Let’s try again, this time with do_sample = True:

print(summarizer(article,
 min_length = 100,
 max_length = 250,
 do_sample = True))

This statement means that during the generation of the summary, the model will use
sampling to select the next token probabilistically based on the predicted distribution
of tokens. This approach allows more diverse and creative generation because the
model can explore different possibilities at each step rather than select the most likely
token deterministically. The preceding statement generates the following output:

[{'summary_text': 'Quantum computers exploit quantum mechanical
 phenomena. The basic unit of information in quantum computing is
 the qubit, similar to the bit in traditional digital electronics.
 A large-scale quantum computer could break widely used encryption
 and aid physicists in performing physical simulations. National
 governments have invested heavily in research that aims to develop
 scalable qubits with longer coherence times and lower error rates.
 quantum computers obey the Church–Turing thesis, which means that
 any computational problem that can be solved by a classical
 computer can also be solve by a quantum computer.'}]

3.3.4 Text translation

Text translation is one of the earliest foundational tasks in NLP. Its evolution spans
from the initial days of rule-based methods and bilingual dictionaries to the ground-
breaking transformer architecture, marking a journey of substantial advancements in
quality enhancement and fluency.

Hugging Face offers several text translation models you can use to translate text from
one language to another. Let’s start with the google-t5/t5-base model, a variant of the
T5 model developed by Google AI:

from transformers import pipeline

translator = pipeline("translation",
 model = "google-t5/t5-base")

When you run the preceding code, you see a warning like this one:

UserWarning: "translation" task was used, instead of
 "translation_XX_to_YY", defaulting to "translation_en_to_de"

 55Using transformers for NLP tasks

This message means that the translator object will default to translating your text
from English to German. Let’s give it a try:

translator("How are you?")

You see the following result containing the translated text:

[{'translation_text': 'Wie sind Sie?'}]

The recommended way to perform translation correctly is to specify the translation
task using the format - translation_XX_to_YY, where XX is the language to translate
from and YY is the language to translate to. Here’s an example of a request to translate
from English to French:

translator = pipeline(task = 'translation_en_to_fr',

 model = "google-t5/t5-base")

translator('Wikipedia is hosted by the Wikimedia Foundation, a non-profit

organization that also hosts a range of other projects.')

Here is the result containing the translated text in French:

[{'translation_text': "Wikipedia est hébergée par la Wikimedia

 Foundation, un organisme sans but lucratif qui héberge également

 une série d'autres projets."}]

You can also translate from English to German:

translator = pipeline(task = 'translation_en_to_de',

 model = "google-t5/t5-base")

translator('Wikipedia is hosted by the Wikimedia Foundation,

a non-profit organization that also hosts a range of other

projects.')

The text is translated to German:

[{'translation_text': 'Wikipedia wird von der Wikimedia Foundation

 gehostet, einer gemeinnützigen Organisation, die auch eine Reihe

 anderer Projekte beherbergt.'}]

What happens if you want to translate from English to Chinese? Unfortunately, the
google-t5/t5-base model does not support translation to Chinese. In general, to know
the languages supported by a model, you can check out the model’s page on Hugging
Face Hub or refer to its source code in GitHub. A more pragmatic way is to try different
tasks and see what works. You can try using translation_en_to_zh, for example, to see
whether it can translate from English to Chinese. (zh is the International Organization
for Standardization [ISO] 639-1 language code for Chinese.)

56 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

To translate from English to Chinese, you can use the facebook/m2m100_418M model.
But before you can use this model, you need to install the sentencepiece package, a
widely used library for tokenization:

!pip install sentencepiece

Now you can try to translate the following English text to Chinese:

translator = pipeline('translation_en_to_zh',
 model = 'facebook/m2m100_418M')

translator('Wikipedia is hosted by the Wikimedia Foundation,
a non-profit organization that also hosts a range of other
projects.')

The translated output looks like this:

[{'translation_text':
 '维基百科是维基百科基金会主办的,是一家非营利组织,还主办了许多其他项目。'}]

You can also use the model to translate Chinese to English. The following code snippet
translates the preceding output in Chinese back to English:

translator = pipeline(task = 'translation_zh_to_en',
 model = "facebook/m2m100_418M",
 max_length = 400)
translator("维基百科是维基百科基金会主办的,是一家非营利组织,还主办了许多其他项目。")

Here is the output in English:

[{'translation_text': 'Wikipedia is hosted by the Wikipedia
 Foundation, a non-profit organization and hosts many other
 projects.'}]

3.3.5 Zero-shot classification

Section 3.2.4 presented an example of sentiment analysis in which the model was
trained on a set of labeled examples, classifying them as positive or negative. Although
this technique is useful for analyzing the sentiment in a new paragraph of text, it has
limitations. Suppose that you have a description of a new gadget and want to classify
it automatically in a category such as Home Appliances or Electronics. Using a model
that has been pretrained on a fixed set of labels is not going to be useful in this case.
This situation is where zero-shot classification comes in. There are various types of
zero-shot classification, such as the following:

¡	Zero-shot text classification

¡	Zero-shot image classification

¡	Zero-shot audio classification

 57Using transformers for NLP tasks

¡	Zero-shot video classification

¡	Zero-shot graph classification

Zero-shot vs. one-shot classification

In discussions of zero-shot classification, another term often comes up: one-shot

classification. Whereas zero-shot classification is the task of classifying previously

unseen classes during model training, one-shot classification refers to training a

model to recognize classes with only one example (or a few examples) per class

during training. For a one-shot classification model trained to recognize cats and

dogs, for example, only one image of a cat and one image of a dog is provided during

training. The aim is to teach the model to generalize from a small number of exam-

ples. This technique is useful when collecting a large number of samples would be

difficult or prohibitively expensive.

For our next task, we will try zero-shot text and image classification. Zero-shot text classi-

fication involves classifying text in predefined categories or labels without having access
to labeled examples for training. Zero-shot text classification uses models trained on
Natural Language Inference (NLI) tasks.

To try zero-shot text classification, let’s use the joeddav/xlm-roberta-large-xnli
model (https://mng.bz/MwQo). Because this repository is private, you need to apply
for a free Hugging Face token (type READ) at https://huggingface.co/settings/tokens.
After you obtain the token, log in to Hugging Face using the huggingface-cli tool in
Terminal or Anaconda Prompt:

$ huggingface-cli login
 _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_|

||_|_| _|_| _|_|_| _|_|_|_|
 _| _| _| _| _| _| _| _|_| _| _|

_| _| _| _| _|
 ||_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_|

||_| _|_|_|_| _| _|_|_|
 _| _| _| _| _| _| _| _| _| _| _|_| _| _|

_| _| _| _| _|
 _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_|

_| _| _| _|_|_| _|_|_|_|

To login, `huggingface_hub` requires a token generated
from https://huggingface.co/settings/tokens .

Enter your token (input will not be visible): <huggingface_token>
Add token as git credential? (Y/n) n
Token is valid (permission: read).
Your token has been saved to /Users/weimenglee/.cache/huggingface/token
Login successful

Enter your Hugging Face token and type n when prompted. Your token will be saved to
a file named token located in the ~/.cache/huggingface folder.

https://mng.bz/MwQo
https://huggingface.co/settings/tokens

58 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

Another way to log in to Hugging Face Hub is to log in programmatically in Jupyter
Notebook using the notebook_login() function:

from huggingface_hub import notebook_login
notebook_login()

Figure 3.15 shows the UI that is displayed when you run the preceding code. Enter
your token and click the Login button.

Figure 3.15 Finding the type of task a model falls under

In addition, you need to install two packages: sentencepiece and protobuf. You can do
so in Jupyter Notebook:

!pip install sentencepiece
!pip install protobuf

Let’s create a pipeline object that uses the joeddav/xlm-roberta-large-xnli model:

from transformers import pipeline

zero_shot_classifier = pipeline("zero-shot-classification",
 model='joeddav/xlm-roberta-large-xnli')

This model is fine-tuned on the XLM-RoBERTa model (pretrained on 2.5 TB of filtered
CommonCrawl data in 100 languages) on a combination of NLI data in 15 languages.

 59Using transformers for NLP tasks

You can use the model with any of the following 15 languages: English, French, Span-
ish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese,
Hindi, Swahili, and Urdu. Let’s define two paragraphs of text and then use them to let
the model predict possible labels for the text:

text1 = '''
"In the intricate realm of global affairs, the interplay of power,
diplomacy, and governance stands as a defining force in the
trajectory of nations. Amidst fervent debates in legislative
chambers and pivotal dialogues among world leaders, ideologies
clash and policies take shape, shaping the course of societies.
Issues such as economic disparity, environmental stewardship, and
human rights take precedence, driving conversations and shaping
public sentiment. In an age of digital interconnectedness, social
media platforms have emerged as influential channels for discourse
and activism, amplifying voices and reshaping narratives with
remarkable speed and breadth. As citizens grapple with the
complexities of contemporary governance, the pursuit of accountable
and transparent leadership remains paramount, reflecting an
enduring quest for fairness and inclusivity in societal governance."
'''

text2 = '''
In the tender tapestry of human connection, romance weaves its
delicate threads, binding hearts in a dance of passion and longing.
From the flutter of a first glance to the warmth of an intimate
embrace, love blooms in the most unexpected places, transcending
barriers of time and circumstance. In the gentle caress of a hand
and the whispered promises of affection, two souls find solace in
each other's embrace, navigating the complexities of intimacy with
tender care. As the sun sets and stars illuminate the night sky,
lovers share stolen moments of intimacy, lost in the intoxicating
rhythm of each other's presence. In the symphony of love, every
glance, every touch, speaks volumes of a shared bond that defies
explanation, leaving hearts entwined in an eternal embrace.

We can use the zero_shot_classifier object to determine whether text1 contains text
related to technology, politics, business, or romance:

candidate_labels = ["technology", "politics", "business", "romance"]
prediction = zero_shot_classifier(text1,
 candidate_labels,
 multi_label = True)

The result is converted to a pandas DataFrame for easy viewing:

import pandas as pd
display(pd.DataFrame(prediction).drop(["sequence"], axis=1))

Figure 3.16 shows the result, indicating that the text is probably related to politics.

60 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

Labels Scores

Figure 3.16 The result of

the zero-shot classification

You can also pass in multiple paragraphs (enclosed within a list) to the zero_shot_
classifier object:

prediction = zero_shot_classifier([text1, text2],
 candidate_labels,
 multi_label = True)
display(pd.DataFrame(prediction).drop(["sequence"], axis=1))

Figure 3.17 shows the results for the two paragraphs (with the most probable label at
the front of the list of labels).

Labels Scores

Figure 3.17 Results of the one-shot classification for two paragraphs

How about zero-shot image classification? For this task, you can use the openai/clip
-vit-large-patch14-336 model:

from transformers import pipeline

classifier = pipeline("zero-shot-image-classification",
 model = "openai/clip-vit-large-patch14-336")

Let’s use the model to detect whether the image in figure 3.18 is an airplane, car, or
train:

labels_for_classification = ["airplane", "car", "train"]
scores = classifier("Emirates_Airbus_A380-861_A6-EER_MUC_2015_04.jpg",
 candidate_labels = labels_for_classification)
pd.DataFrame(scores)

Figure 3.19 shows that the image is probably an airplane.

 61Using transformers for NLP tasks

Figure 3.18 An image of an airplane (Source:

https://mng.bz/yN5y)

3.3.6 Question-answering tasks

Another task that the pipeline object can perform is question answering (QA). I
don’t think you need an example of that task; if you’ve ever used Google to search for
answers to questions, you already know what a QA task is.

Hugging Face hosts many QA models (https://mng.bz/X7zp) that you can experi-
ment with. QA models are valuable for several reasons:

¡	Efficient information retrieval—QA models can quickly retrieve information of
interest from a large collection of text.

¡	Natural language understanding—QA models can understand natural language
inputs and generate context-relevant answers.

Let’s use the deepset/roberta-base-squad2 model to understand how a QA model
works. This is a RoBERTa-base model (pretrained on the English language using a
masked language modeling [MLM] objective), fine-tuned using the Stanford Question
Answering Dataset (SQuAD) 2.0 dataset.

DEFINITION SQuAD is a reading comprehension dataset consisting of ques-
tions posed by crowd workers on a set of Wikipedia articles. The answer to
every question is a segment of text, or span, from the corresponding reading
passage, or the question might be unanswerable.

First, create an instance of the model using the pipeline() function:

from transformers import pipeline

QA_model = pipeline(task = "question-answering",
 model = "deepset/roberta-base-squad2")

The result is a paragraph of text discussing the origin of the name Singapore:

LabelScore

Figure 3.19 Result of the

zero-shot image classification

https://mng.bz/yN5y
https://mng.bz/X7zp

62 CHAPTER 3 Using Hugging Face transformers and pipelines for NLP tasks

text = '''
The English name of "Singapore" is an anglicisation of the native
Malay name for the country, Singapura (pronounced [siŋapura]),
which was in turn derived from the Sanskrit word for 'lion city'
(Sanskrit: सिंहपुर; romanised: Siṃhapura; Brahmi: 𑀲𑀺𑀁𑀳𑀧𑀼𑀭; literally
"lion city"; siṃha means 'lion', pura means 'city' or 'fortress').
Pulau Ujong was one of the earliest references to Singapore Island,
which corresponds to a Chinese account from the third century
referred to a place as Pú Luó Zhōng (Chinese: 蒲 羅 中), a
transcription of the Malay name for 'island at the end of a
peninsula'. Early references to the name Temasek (or Tumasik) are
found in the Nagarakretagama, a Javanese eulogy written in 1365,
and a Vietnamese source from the same time period. The name possibly
means Sea Town, being derived from the Malay tasek, meaning 'sea' or
'lake'. The Chinese traveller Wang Dayuan visited a place around 1330
named Danmaxi (Chinese: 淡馬錫; pinyin: Dànmǎxí; Wade–Giles: Tan Ma Hsi)
or Tam ma siak, depending on pronunciation; this may be a transcription
of Temasek, alternatively, it may be a combination of the Malay Tanah
meaning 'land' and Chinese xi meaning 'tin', which was traded on the
island
'''

You can use the model to ask a question based on the text. Perhaps you would like to
know the meaning of the name Singapura:

question = {
 'question': 'What is the meaning of Singapura?',
 'context': text
 }

model_response = QA_model(question)
pd.DataFrame([model_response])

Figure 3.20 shows the answer provided by the model.

StartScore End Answer

Figure 3.20 The result shows that the

name Singapura means “Lion City.”

Summary

¡	At a high level, the transformer architecture is built around two main compo-
nents: the Encoder and the Decoder.

¡	The self-attention mechanism is a key feature of the transformer architecture . It
allows the model to assign different levels of importance to words in a sequence
when representing a specific word, helping it capture relationships and depen-
dencies between words regardless of how far apart they are.

¡	A token is a segment of text that the model treats as a single processing unit.

 63Summary

¡	Token embeddings map tokens into numerical vectors. These vectors represent
both semantic and syntactic information, enabling models to interpret the mean-
ing and relationships of words in natural language.

¡	Positional encodings supply information about word positions in a sequence,
allowing the model to recognize word order within a sentence.

¡	Softmax is a mathematical function that transforms a vector of numbers into
a probability distribution, where each value’s probability is proportional to its
exponentiated value relative to the sum of all exponentiated values in the vector.

¡	The Transformers library, developed by Hugging Face, is an open source plat-
form designed to make it easier to work with cutting-edge transformer-based
models.

¡	The pipeline() function is a high-level wrapper around the Transformers library
that simplifies access to a variety of pretrained models.

¡	Zero-shot classification refers to assigning labels to classes the model has never
seen during training, whereas one-shot classification involves training a model to
identify classes from one or few examples per class.

64

4Using Hugging Face for
computer vision tasks

This chapter covers

¡	Different types of Hugging Face computer vision

models

¡	Various ways to use models for object detection

¡	Video content and image classification tasks

¡	Image segmentation tasks

Previously, you learned about Hugging Face transformers and pipelines. You also
learned how to use some pretrained models for natural language processing (NLP)
tasks, such as sentiment analysis and text translation. Hugging Face also provides a
vast collection of pretrained models for computer vision tasks. Using all these hosted
pretrained models, you can create interesting applications that detect objects in
images, the age of a person, and more. In this chapter, you learn how to perform the
first four tasks using Hugging Face models.

4.1 Hugging Face computer vision models

The computer vision models (https://huggingface.co/models; see figure 4.1)
hosted on Hugging Face are grouped by task type:

https://huggingface.co/models

 65Object detection

¡	Object detection

¡	Image classification

¡	Image segmentation

¡	Video classification

¡	Depth estimation

¡	Image-to-image

¡	Unconditional image generation

¡	Zero-shot image classification

Figure 4.1 Computer vision–related models on the Hugging Face website

4.2 Object detection

Object detection is a computer vision technique that involves identifying and locating
objects of interest within an image or video. The primary goals of object detection are
to classify the objects in the image or video and determine their precise positions by
drawing bounding boxes around them.

Hugging Face hosts several models that have been pretrained to detect objects in
images. You can find a list of these models at https://mng.bz/QwaQ (see figure 4.2).
We’ll look at one specific model: facebook/detr-resnet-50 (https://huggingface.co/
facebook/detr-resnet-50; see figure 4.3).

https://mng.bz/QwaQ
https://huggingface.co/facebook/detr-resnet-50
https://huggingface.co/facebook/detr-resnet-50

66 CHAPTER 4 Using Hugging Face for computer vision tasks

Figure 4.2 Pretrained object detection models on Hugging Face

Figure 4.3 The facebook/detr-resnet-50 model for object detection

You can test the model directly on Hugging Face using the Hosted Inference API fea-
ture (but you need to log in to Hugging Face first by creating a free account). For this
test, let’s use an image of an office with a few ladies (see figure 4.4).

 67Object detection

Figure 4.4 Image by Danny Choo

(Flickr: Good Smile Company

Offices, CC BY-SA 2.0, https://

commons.wikimedia.org/w/

index.php?curid=14609862)

When you drag and drop the image to the Hosted Inference API section of the model’s
page on Hugging Face, you see the list of objects detected as well as their correspond-
ing probabilities (see figure 4.5).

Bounding boxes for
detected objects

The corresponding
probabilities for the
detected objects

Figure 4.5 The

detected objects

in the image and

their corresponding

probabilities

https://commons.wikimedia.org/w/index.php?curid=14609862
https://commons.wikimedia.org/w/index.php?curid=14609862
https://commons.wikimedia.org/w/index.php?curid=14609862

68 CHAPTER 4 Using Hugging Face for computer vision tasks

When you use your mouse to hover over the name of a detected object, the image high-
lights the bounding box for the selected object.

4.2.1 Using the model directly

The model would be more useful if you could use it programmatically, of course. Hug-
ging Face provides some useful tips for using its hosted models. To see them, click the
Use this Model button on the model’s page; then click the Transformers button below
it (see figure 4.6).

Click this button to learn
how to use the model
programmatically.

Figure 4.6 Hugging Face provides tips on using transformers with the models.

You have two ways to use a model programmatically (see figure 4.7):

¡	 Use a transformer pipeline.

¡	 Load the model directly.

Before you use a model, you need to install two packages:

¡	transformers

¡	timm

NOTE timm, a deep-learning library created by Ross Wightman, is a collec-
tion of state-of-the-art computer vision models, layers, utilities, optimizers,

 69Object detection

schedulers, data loaders, augmentations and training/validating scripts that
can reproduce ImageNet training results. See https://timm.fast.ai for details.

Figure 4.7 Two ways to use the models on Hugging Face

Type the following commands in Terminal/Anaconda Prompt to install the two
packages:

$ pip install transformers
$ pip install timm

Now load the model directly:

from transformers import DetrImageProcessor, DetrForObjectDetection

image_processor = DetrImageProcessor.from_pretrained(
 "facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained(
 "facebook/detr-resnet-50")

DetrImageProcessor is a class (from the transformers package) that is used to process
images that will be input to the DETR (Detection Transformer) algorithm. The Detr-
ForObjectDetection module provides access to pretrained DETR models. The pre-
trained model we’re using in this case is facebook/detr-resnet-50.

https://timm.fast.ai

70 CHAPTER 4 Using Hugging Face for computer vision tasks

The preceding code snippet downloads
the weights of the model to the .cache/
huggingface/hub folder in your home
direc tory. Two folders are created in the
~/.cache/huggingface/hub folder, as shown
in figure 4.8.

It would be useful to know what objects
the models were trained to detect. To find
out, use the model’s config.id2label
attri bute:

model.config.id2label

The model can detect a total 90 objects. You’ll see a printout like the following (for
brevity, showing only the first and last five object names):

{0: 'N/A',
 1: 'person',
 10: 'traffic light',
 11: 'fire hydrant',
 12: 'street sign',
 ...
 87: 'scissors',
 88: 'teddy bear',
 89: 'hair drier',
 9: 'boat',
 90: 'toothbrush'}

Before you load the image to be used for detection, displaying it for inspection would
be useful. The following listing contains a helper function called loadImage().

Listing 4.1 Displaying the image to use for object detection

from PIL import Image, ImageDraw
import requests
import torch

def loadImage(url):
 if url.startswith('http'):
 image = Image.open(requests.get(url, stream=True).raw)
 else:
 image = Image.open(url)
 return image

image = loadImage('http://bit.ly/46xv3sL')
display(image)

TIP You may need to install the PIL (Pillow) package if you don’t have it
on your system. PIL is the Python Imaging Library, by Fredrik Lundh and

Figure 4.8 You must download the weights

of the models to your computer before you can

use them.

If the image is from the web . . .

. . . the image is local.

 71Object detection

contributors (https://pypi.org/project/Pillow). You can install the PIL pack-
age using pip install pillow.

To perform object detection, first prepare the input image:

inputs = image_processor(images = image,
 return_tensors = "pt")

You use the image_processor object to preprocess the input image before feeding it
into the neural network. This function returns a PyTorch tensor that looks like this:

{'pixel_values':
 tensor(
 [[[[-1.1075, -1.0904, -1.0733, ..., -0.4397, -0.4226, -0.4226],
 [-1.1418, -1.1247, -1.1075, ..., -0.4397, -0.4226, -0.4226],
 [-1.1932, -1.1932, -1.1760, ..., -0.4397, -0.4226, -0.4054],
 ...,
 [-0.3712, -0.4054, -0.4739, ..., -0.5253, -0.4911, -0.4739],
 [-0.2856, -0.3198, -0.3883, ..., -0.5082, -0.5082, -0.5082],
 [-0.2342, -0.2684, -0.3369, ..., -0.5082, -0.5253, -0.5253]],

 [[-1.0903, -1.0728, -1.0553, ..., -0.4076, -0.3901, -0.3901],
 [-1.1253, -1.1078, -1.0903, ..., -0.4076, -0.3901, -0.3901],
 [-1.1779, -1.1779, -1.1604, ..., -0.4076, -0.3901, -0.3725],
 ...,
 [-0.5476, -0.5651, -0.6001, ..., -0.5476, -0.5126, -0.4951],
 [-0.4776, -0.4951, -0.5476, ..., -0.5301, -0.5301, -0.5301],
 [-0.4251, -0.4601, -0.5126, ..., -0.5301, -0.5476, -0.5476]],

 [[-1.2467, -1.2293, -1.2119, ..., -0.5670, -0.5495, -0.5495],
 [-1.2816, -1.2641, -1.2467, ..., -0.5495, -0.5321, -0.5321],
 [-1.3339, -1.3339, -1.3164, ..., -0.5321, -0.5147, -0.4973],
 ...,
 [-1.0898, -1.1247, -1.1596, ..., -0.5147, -0.4798, -0.4624],
 [-1.0376, -1.0724, -1.1247, ..., -0.4973, -0.4973, -0.4973],
 [-1.0027, -1.0376, -1.0898, ..., -0.4973, -0.5147, -0.5147]]]]),
'pixel_mask': tensor([[[1, 1, 1, ..., 1, 1, 1],
 [1, 1, 1, ..., 1, 1, 1],
 [1, 1, 1, ..., 1, 1, 1],
 ...,
 [1, 1, 1, ..., 1, 1, 1],
 [1, 1, 1, ..., 1, 1, 1],
 [1, 1, 1, ..., 1, 1, 1]]])}

Then the PyTorch tensor is unpacked as a keyworded argument to be used as the input
for the model object:

outputs = model(**inputs)

The model object represents the pretrained network. When you pass the preprocessed
PyTorch tensor to this object, it performs a forward pass through the network and
returns the output of the model, which is used for object detection:

https://pypi.org/project/Pillow

72 CHAPTER 4 Using Hugging Face for computer vision tasks

target_sizes = torch.tensor([image.size[::-1]])

results = image_processor.post_process_object_detection(

 outputs,

 target_sizes = target_sizes,

 threshold = 0.9)[0]

results

The post_process_object_detection() function takes the following arguments:

¡	Output of the model that was created earlier

¡	Target size of the image

¡	Threshold value for filtering out predictions (in this case, return only those with
confidence greater than 90%)

The post_process_object_detection() function returns a dictionary containing the
objects detected in the image:

{'scores': tensor([0.9180, 0.9961, 0.9426, 0.9753, 0.9622,

 0.9882, 0.9872, 0.9372, 0.9976, 0.9987,

 0.9174, 0.9896, 0.9997, 0.9822, 0.9970],

 grad_fn=<IndexBackward0>),

 'labels': tensor([1, 72, 62, 1, 1, 1, 76, 72,

 1, 1, 1, 64, 1, 72, 1]),

 'boxes': tensor([[549.6678, 145.2847, 564.6752, 165.3628],

 [317.9362, 212.8838, 416.3602, 299.5169],

 [508.3657, 306.7018, 661.2424, 429.7788],

 [673.2169, 135.5043, 705.7635, 174.4243],

 [703.4085, 115.4306, 722.6825, 140.0320],

 [454.9466, 142.5465, 497.3364, 202.9241],

 [344.1364, 276.7948, 445.4079, 346.2501],

 [309.7489, 194.9189, 374.5581, 237.4787],

 [395.9247, 152.1988, 446.4625, 216.5487],

 [237.3090, 174.7686, 308.3646, 264.4060],

 [720.7039, 112.1340, 737.7415, 131.0087],

 [124.8140, 211.3712, 230.1096, 330.4417],

 [369.2618, 226.4449, 535.6130, 427.6963],

 [491.1188, 181.2496, 530.7089, 223.4560],

 [516.3748, 177.5891, 628.3662, 318.1332]],

 grad_fn=<IndexBackward0>)

}

This dictionary contains three key-value pairs:

¡	scores—Confidence of each detected object

¡	labels—Index of the detected object in model.config.id2label

¡	boxes—Bounding boxes of each detected object

The best way to visualize the detected objects is to draw bounding boxes around the
objects, as shown in the next listing.

 73Object detection

Listing 4.2 Drawing bounding boxes around the detected objects

import random

draw = ImageDraw.Draw(image)

for score, label, box in zip(results["scores"], results["labels"],

results["boxes"]):

 box = [round(i, 2) for i in box.tolist()]

 print(

 f"Detected {model.config.id2label[label.item()]} with confidence "

 f"{(score.item() * 100):.2f}% at {box}"

)

 r = random.randint(0, 255)

 g = random.randint(0, 255)

 b = random.randint(0, 255)

 color = (r, g, b)

 draw.rectangle(box,

 outline=color,

 width=2)

 draw.text((box[0], box[1]-10),

 model.config.id2label[label.item()],

 fill='white')

display(image)

You see the following output (each detected object and its associated confidence):

Detected person with confidence 91.80% at [549.67, 145.28, 564.68, 165.36]

Detected tv with confidence 99.61% at [317.94, 212.88, 416.36, 299.52]

Detected chair with confidence 94.26% at [508.37, 306.7, 661.24, 429.78]

Detected person with confidence 97.53% at [673.22, 135.5, 705.76, 174.42]

Detected person with confidence 96.22% at [703.41, 115.43, 722.68, 140.03]

Detected person with confidence 98.82% at [454.95, 142.55, 497.34, 202.92]

Detected keyboard with confidence 98.72% at [344.14, 276.79, 445.41,

 346.25]

Detected tv with confidence 93.72% at [309.75, 194.92, 374.56, 237.48]

Detected person with confidence 99.76% at [395.92, 152.2, 446.46, 216.55]

Detected person with confidence 99.87% at [237.31, 174.77, 308.36, 264.41]

Detected person with confidence 91.74% at [720.7, 112.13, 737.74, 131.01]

Detected potted plant with confidence 98.96% at [124.81, 211.37,

 230.11, 330.44]

Detected person with confidence 99.97% at [369.26, 226.44, 535.61, 427.7]

Detected tv with confidence 98.22% at [491.12, 181.25, 530.71, 223.46]

Detected person with confidence 99.70% at [516.37, 177.59, 628.37, 318.13]

At the same time, the bounding box for each object is drawn on the original image
(see figure 4.9).

Draws bounding
box around object

Displays the object label

74 CHAPTER 4 Using Hugging Face for computer vision tasks

Figure 4.9 The

bounding box for

each detected object

is drawn on the

original image.

4.2.2 Using the transformers pipeline

The second approach to using the model is to use the Hugging Face transformers
pipeline (discussed in chapter 3). Here is how you load the facebook/detr-resnet-50
model:

from transformers import pipeline

detection = pipeline("object-detection", model="facebook/detr-resnet-50")

After you create a pipeline object (detection, in this case), you can pass the image
directly (in PIL format) to the pipeline and obtain the result:

results = detection(image)
results

Note that the pipeline object (detection) can also take an image URL, not just a PIL
image object. That is, you can also call the pipeline object like this:

results = detection('http://bit.ly/46xv3sL')

The printed result looks like this:

[{'score': 0.9179903864860535,
 'label': 'person',
 'box': {'xmin': 549, 'ymin': 145, 'xmax': 564, 'ymax': 165}},
 {'score': 0.9960624575614929,
 'label': 'tv',
 'box': {'xmin': 317, 'ymin': 212, 'xmax': 416, 'ymax': 299}},
 {'score': 0.9425505995750427,
 'label': 'chair',
 'box': {'xmin': 508, 'ymin': 306, 'xmax': 661, 'ymax': 429}},
 {'score': 0.9753392338752747,

 75Object detection

 'label': 'person',
 'box': {'xmin': 673, 'ymin': 135, 'xmax': 705, 'ymax': 174}},
 {'score': 0.962176501750946,
 'label': 'person',
 'box': {'xmin': 703, 'ymin': 115, 'xmax': 722, 'ymax': 140}},
 {'score': 0.9881888628005981,
 'label': 'person',
 'box': {'xmin': 454, 'ymin': 142, 'xmax': 497, 'ymax': 202}},
 {'score': 0.9871691465377808,
 'label': 'keyboard',
 'box': {'xmin': 344, 'ymin': 276, 'xmax': 445, 'ymax': 346}},
 {'score': 0.9371852874755859,
 'label': 'tv',
 'box': {'xmin': 309, 'ymin': 194, 'xmax': 374, 'ymax': 237}},
 {'score': 0.9975801706314087,
 'label': 'person',
 'box': {'xmin': 395, 'ymin': 152, 'xmax': 446, 'ymax': 216}},
 {'score': 0.9986708164215088,
 'label': 'person',
 'box': {'xmin': 237, 'ymin': 174, 'xmax': 308, 'ymax': 264}},
 {'score': 0.9173707365989685,
 'label': 'person',
 'box': {'xmin': 720, 'ymin': 112, 'xmax': 737, 'ymax': 131}},
 {'score': 0.9895991086959839,
 'label': 'potted plant',
 'box': {'xmin': 124, 'ymin': 211, 'xmax': 230, 'ymax': 330}},
 {'score': 0.9996592998504639,
 'label': 'person',
 'box': {'xmin': 369, 'ymin': 226, 'xmax': 535, 'ymax': 427}},
 {'score': 0.9821581840515137,
 'label': 'tv',
 'box': {'xmin': 491, 'ymin': 181, 'xmax': 530, 'ymax': 223}},
 {'score': 0.9970135688781738,
 'label': 'person',
 'box': {'xmin': 516, 'ymin': 177, 'xmax': 628, 'ymax': 318}}]

This result is a list of dictionaries for each detected object. To draw the label and
bounding box for each object, use the following code listing.

Listing 4.3 Visualizing detected objects with bounding boxes

import random

draw = ImageDraw.Draw(image)

for object in results:
 box = [i for i in object['box'].values()]
 print(
 f"Detected {object['label']} with confidence "
 f"{(object['score'] * 100):.2f}% at {box}"
)

 r = random.randint(0, 255)
 g = random.randint(0, 255)

76 CHAPTER 4 Using Hugging Face for computer vision tasks

 b = random.randint(0, 255)
 color = (r, g, b)

 draw.rectangle(box,
 outline=color,
 width=2)

 draw.text((box[0], box[1]-10),
 object['label'],
 fill='white')

display(image)

The image is identical to the one shown in figure 4.9 earlier in this chapter. Using
the pipeline object, you can also get a list of labels directly using the model.config
.id2label attribute:

detection.model.config.id2label

4.2.3 Binding to a webcam

Instead of detecting objects in still images, you can go one step further and use your
webcam to capture videos and detect the objects in them. Using Python to display your
webcam content is easy with OpenCV. To install OpenCV, use the pip command:

$ pip install opencv-python

With OpenCV installed, first write the code to connect the webcam with OpenCV and
then display the videos onscreen. Create a text file named object_detection.py, and
populate it with the statements in the following listing.

Listing 4.4 Displaying webcam images in Python

import cv2
stream = cv2.VideoCapture(0)
while(True):
 (grabbed, frame) = stream.read()
 cv2.imshow("Image", frame)
 key = cv2.waitKey(1) & 0xFF
 if key == ord("q"):
 break

stream.release()
cv2.waitKey(1)
cv2.destroyAllWindows()
cv2.waitKey(1)

If your computer/laptop has multiple webcams, change the number in the Video-
Capture class accordingly:

Draws bounding
box around object

Displays the object label

Default webcam

Captures frame by frame

Shows the frame

Press q to break out of the loop.

Cleanup

 77Object detection

stream = cv2.VideoCapture(1)
stream = cv2.VideoCapture(2)

In Terminal/Anaconda Prompt, type the following command to run the program:

$ python object_detection.py

You should see a window displaying the video captured by your webcam (see figure 4.10).

Figure 4.10 The

webcam capturing the

image of the author

To detect the objects in the webcam, add the following statements to the object_
detection.py file.

Listing 4.5 Detecting objects in the webcam

from transformers import pipeline
from PIL import Image
import cv2
font = cv2.FONT_HERSHEY_SIMPLEX
color = (0, 255, 255)
stroke = 2
detection = pipeline("object-detection",
 model="facebook/detr-resnet-50")
stream = cv2.VideoCapture(0)
while(True):
 (grabbed, frame) = stream.read()
 image = Image.fromarray(frame)
 results = detection(image)
 for object in results:
 box = [i for i in object['box'].values()]

Font, color, and line thickness
for drawing rectangles and text

Loads the object
detection model

Default webcam

Captures frame by frame

Converts the
video image
from NumPy
array to a PIL
image

Detects objects in the image

Gets the coordinates
for the object detected

78 CHAPTER 4 Using Hugging Face for computer vision tasks

 cv2.rectangle(frame,
 (box[0],box[1]),
 (box[2],box[3]),
 color, stroke)
 cv2.putText(frame, f'({object["label"]})',
 (box[0],box[1]-8),
 font, 1, color,
 stroke, cv2.LINE_AA)
 cv2.imshow("Image", frame)
 key = cv2.waitKey(1) & 0xFF
 if key == ord("q"):
 break

stream.release()
cv2.waitKey(1)
cv2.destroyAllWindows()
cv2.waitKey(1)

You need to convert the image captured by the webcam from a NumPy array to a PIL
image before you can send it to the model for object detection. Figure 4.11 shows the
webcam successfully detecting some of the objects in the image.

Figure 4.11

Detecting objects in

the webcam image

4.3 Image classification

Image classification is a computer vision task that involves categorizing—labeling an image
in one or more predefined classes or categories. The goal of image classification is to
recognize and assign the most appropriate label to a given image based on its content.
Hugging Face hosts a series of models for image classification at https://mng.bz/4nQv
(see figure 4.12).

Draws bounding box
around object detected

Draws the label
for the object

Shows the frame

Press q to break out of the loop.

Cleanup

https://mng.bz/4nQv

 79Image classification

Figure 4.12 Image classification models hosted on Hugging Face

Here are two sample models for image classification and age classification:

¡	https://huggingface.co/ibombonato/vit-age-classifier (see figure 4.13)

¡	https://huggingface.co/nateraw/vit-age-classifier

Both models can predict the age of a person in an image.

Figure 4.13 The ibombonato/vit-age-classifier model for age classification

https://huggingface.co/ibombonato/vit-age-classifier
https://huggingface.co/nateraw/vit-age-classifier

80 CHAPTER 4 Using Hugging Face for computer vision tasks

To test this model, let’s use an official portrait of Barack Obama taken in 2009 (see
figure 4.14). Because he was born in 1961, that would make him 48 years old (2009–
1961) at the time the picture was taken.

Figure 4.14 Official 2009 portrait

of Barack Obama (Source: https://

mng.bz/oZnv)

You can test the model using the
Hosted Inference API on the
Hugging Face model’s page (see
figure 4.15). The result shows a
very high probability that the person in the image is 40 to 50 years old, which is correct.

The easiest way to use the model programmatically is to use the Hugging Face trans-
formers pipeline:

from transformers import pipeline

classifier = pipeline("image-classification",
 model="ibombonato/vit-age-classifier")

classifier('https://bit.ly/3PET3TP')
classifier

You get this printed result:

[{'score': 0.9248570799827576, 'label': '40-50'},
 {'score': 0.058465585112571716, 'label': '30-40'},

Figure 4.15 Testing Barack Obama’s photo on the model

https://mng.bz/oZnv
https://mng.bz/oZnv

 81Image segmentation

 {'score': 0.003433708567172289, 'label': '50-60'},
 {'score': 0.0028221411630511284, 'label': '20-30'},
 {'score': 0.0023411917500197887, 'label': '0-10'}]

4.4 Image segmentation

Another common computer vision technique is image segmentation, a technique that
separates an image into multiple segments or regions. Each segment corresponds to a
particular object of interest. Using image segmentation, you can analyze an image and
extract valuable information from it. Some of its uses are

¡	Medical imaging—Identifying and segmenting tumors in MRI and CT scans

¡	Object detection and recognition—Detecting objects (discussed earlier in this chap-
ter), as well as identifying and locating objects in an image

¡	Document processing—Segmenting text regions in scanned documents

¡	Biometrics—Identifying and localizing faces in images or video frames

Hugging Face contains several image segmentation models for you to use. One of them
is SegFormer model fine-tuned on ADE20k (https://mng.bz/6406). Figure 4.16 shows the
SegFormer model fine-tuned on ADE20k model on the Hugging Face website.

Figure 4.16 The SegFormer model fine-tuned on ADE20k model page on Hugging Face

https://mng.bz/6406

82 CHAPTER 4 Using Hugging Face for computer vision tasks

To test the segmentation model, drag an image of the Taj Mahal (see figure 4.17) to
the Hosted Inference API section of the page.

Figure 4.18 shows the result of the inferencing.

Figure 4.17 Picture of the Taj Mahal (Source:

https://mng.bz/5vzD)

As you can see, the model detects the various
objects (building, sky, tree, and so on) in the
image and highlights the various segments of
the image. When you mouse over the various
segments, the image highlights the selected
labels.

4.4.1 Using the model programmatically

As always, we want to use the model pro-
grammatically. First, let’s load the model and
then check how many objects the model can
detect. The easiest way to use the model is to
use a transformers pipeline:

from transformers import pipeline

segmentation = pipeline("image-segmentation",
 model="nvidia/segformer-b0-finetuned-ade-512-512")

segmentation.model.config.id2label

The model can detect 150 objects. Here are the first and last five objects it detects:

{0: 'wall',
 1: 'building',

Figure 4.18 The segmentation of an

image of the Taj Mahal

https://mng.bz/5vzD

 83Image segmentation

 2: 'sky',
 3: 'floor',
 4: 'tree',
 ...
 145: 'shower',
 146: 'radiator',
 147: 'glass',
 148: 'clock',
 149: 'flag'}

For this example, let’s use an image from
Unsplash.com (see figure 4.19) to discover
the various segments in the image.

To detect the various segments in the
image, pass the URL of the image to the
pipeline object:

from PIL import Image
import requests

url = 'https://bit.ly/46iDeJQ'
results = segmentation(url)
results

The output of the results variable is a list
of dictionaries containing details on each
segment detected in the picture:

[{'score': None,
 'label': 'wall',
 'mask': <PIL.Image.Image image mode=L size=1587x2381>},
 {'score': None,
 'label': 'building',
 'mask': <PIL.Image.Image image mode=L size=1587x2381>},
 {'score': None,
 'label': 'sky',
 'mask': <PIL.Image.Image image mode=L size=1587x2381>},
 {'score': None,
 'label': 'person',
 'mask': <PIL.Image.Image image mode=L size=1587x2381>},
 {'score': None,
 'label': 'airplane',
 'mask': <PIL.Image.Image image mode=L size=1587x2381>}]

In particular, the mask element contains the mask of the detected segment. To view
each detected mask, loop through the results variable:

for result in results:
 print(result['label'])
 display(result['mask'])

Figure 4.19 A picture of a man and an

aircraft flying overhead (Source: https://

unsplash.com/photos/EC_GhFRGTAY)

https://unsplash.com/photos/EC_GhFRGTAY
https://unsplash.com/photos/EC_GhFRGTAY

84 CHAPTER 4 Using Hugging Face for computer vision tasks

Figure 4.20 shows the masks for person and airplane.

Figure 4.20 The masks for the

person and airplane segments

The white portion of the mask represents the part of the picture containing the seg-
ment of interest. You can apply the mask to the original image using the following code
snippet:

image = Image.open(requests.get(url, stream=True).raw)

for result in results:
 base_image = image.copy()
 mask_image = result['mask']

 base_image.paste(mask_image, mask=mask_image)
 print(result['label'])
 display(base_image)

Figure 4.21 shows the person and airplane masks applied over the original image.

Figure 4.21 The original image

with the person and airplane

masks applied

Applies the mask over
the original image

Prints the label of
the segment

 85Image segmentation

When you apply the mask over the image, notice that the segment of interest is in
white. It would be more natural to invert this display—that is, show everything except
the segment of interest in white. To do this, you can invert the mask using the invert()
function from the ImageOps class of the PIL package. The following changes invert the
mask and apply it over the original image:

from PIL import ImageOps

for result in results:
 base_image = image.copy()
 mask_image = result['mask']

 mask_image = ImageOps.invert(mask_image)
 base_image.paste(mask_image, mask=mask_image)
 print(result['label'])
 display(base_image)

Figure 4.22 shows the inverted masks for the person and airplane in the original image.

Figure 4.22 The inverted masks applied to the original image

4.4.2 Binding to Gradio

Instead of manually specifying the URL of the image that we want to use on the model,
it’s more convenient to create a UI that enables the user to try the segmentation model.
In this section, we’ll use Gradio to create a UI and then bind it to the function that per-
forms the segmentation. To install the gradio package, use the following command:

$ pip install gradio

Inverts the mask

Applies the mask over
the original image

Prints the label of the segment

86 CHAPTER 4 Using Hugging Face for computer vision tasks

What is Gradio?

Gradio is an open source Python library that simplifies creating user interfaces for

machine learning models and other applications. It is designed to make it easy for

developers to build interactive web interfaces for their machine learning models with-

out extensive knowledge of web development.

First, let’s create a function called segmentation that uses the SegFormer model fine
-tuned on ADE20k model for segmentation, as shown in the following listing.

Listing 4.6 Creating a function that uses a model for segmentation

from transformers import SegformerForSemanticSegmentation

model = pipeline("image-segmentation",
 model="nvidia/segformer-b0-finetuned-ade-512-512")

def segmentation(image, label):
 image = Image.fromarray(image)
 results = model(image)
 for result in results:
 if result['label'] == label:
 base_image = image.copy()
 mask_image = result['mask']
 mask_image = ImageOps.invert(mask_image)
 base_image.paste(mask_image, mask=mask_image)
 return(base_image)

One important point to note here is that when the user passes in an image through the
Gradio UI, the image is sent to the segmentation() function as a NumPy array. Hence,
it is essential to convert it to a Pillow (PIL) image using the Image.fromarray() func-
tion. When the model returns the result, you iterate through the result and look for
the label specified by the user (in the label parameter). Then the function inverts the
corresponding mask, applies it to the image, and returns it to the caller. To bind the
segmentation() function to Gradio, use the Interface() class, like this:

import gradio as gr

image_input = gr.Image(label = "Image to segmentize")

label = gr.Textbox(label = "Label to look for", placeholder = "Label")

image_output = gr.Image(label = "Image with the mask applied")

gr.Interface(segmentation,
 [image_input, label],
 image_output).launch()

Creates a
segmentation model

Converts image from NumPy
array to PIL format

Uses the model for inferencing

Inverts the mask

Applies the mask over
the original image

 87Image segmentation

Figure 4.23 shows what Gradio will look like.

Figure 4.23 Gradio expects an image and text for input.

Drag and drop an image containing a person to Gradio. Figure 4.24 shows an image
of the author. Also type the label you want to search for. For this example, you want to
search for person in the image, so type person as the label. The click the Submit button.

Figure 4.24 The Gradio UI with the image populated and the label entered

88 CHAPTER 4 Using Hugging Face for computer vision tasks

The function shows the result on the right side of the Gradio display (see figure 4.25).

Figure 4.25 Gradio

returns the image

with the inverted

mask applied to the

original image.

4.5 Video classification

So far, all our examples have revolved around detecting objects in still images and
webcam inputs. It would also be fun to classify objects in video streams. Let’s investi-
gate how to do that. Hugging Face Hub’s Models page (https://mng.bz/mZ6M) has a
Video Classification category, shown in figure 4.26.

Figure 4.26 The video classification Models page on Hugging Face

https://mng.bz/mZ6M

 89Video classification

For this example, we’ll use the VideoMae model (MCG-NJU/videomae-base-short
-finetuned-kinetics). VideoMAE (which stands for Video Masked Autoencoders) performs
masked video modeling for video pretraining. You can find details on this model at
https://mng.bz/7QKg (see figure 4.27).

Figure 4.27 The page for the MCG-NJU/videomae-base-short-finetuned-kinetics model

4.5.1 Installing the prerequisites

To use the MCG-NJU/videomae-base-short-finetuned-kinetics model, you need to
install the decord Python package.

What is decord?

decord is a Python package that provides efficient video decoding capabilities. It is

designed to handle video data and extract frames from videos with a focus on per-

formance and speed. This package is particularly useful for applications that require

video analysis, computer vision, machine learning, and deep learning, where fast

video- frame extraction is crucial.

Windows and Intel Mac users can use this command to install decord:

$ pip install decord

https://mng.bz/7QKg

90 CHAPTER 4 Using Hugging Face for computer vision tasks

When this book was published, an ARM version of the decord package didn’t exist, so
Apple silicon Mac users won’t be able to install the decord library directly by using the
preceding pip command. Fortunately, the folks at EVA (https://github.com/georgia
-tech-db/evadb) created a fork of the decord library at https://pypi.org/project/eva
-decord that enables Apple silicon Mac users to install the library using the following
command:

$ pip install eva-decord

4.5.2 Downloading the videos for testing

For testing, you need some videos. If you already have videos that you can use for test-
ing and that are directly accessible via a URL, you can skip to section 4.5.3. If not, you
need to download some videos so that you can access them using an URL.

To download the videos locally, first create a folder named webserver in your home
directory (or any directory you prefer):

$ cd ~
$ mkdir webserver

Next, you need some sample videos to test the model. You can use Pexels (https://
www.pexels.com/search/videos/sample; see figure 4.28), a repository of royalty-free
stock photos and videos.

Figure 4.28 Pexels is a platform that offers free stock photos and videos for personal and commercial use.

https://github.com/georgia-tech-db/evadb
https://github.com/georgia-tech-db/evadb
https://pypi.org/project/eva-decord
https://pypi.org/project/eva-decord
https://www.pexels.com/search/videos/sample
https://www.pexels.com/search/videos/sample

 91Video classification

For testing, download a video of person spray-painting a wall (https://mng.bz/qR4E;
see figure 4.29). When the download is done, move it to the webserver folder that
you created. The name of the video in this example is pexels-pat-whelen-5621707
(1080p).

Figure 4.29 A video of a person spray-painting a wall

When the video is in the webserver folder, use the python -m http.server command to
start a simple HTTP server from the local filesystem:

$ cd ~/webserver

$ python -m http.server

If the HTTP web server starts correctly, you see the following printout, indicating that
the web server is listening at port 8000:

Serving HTTP on :: port 8000 (http://[::]:8000/) ...

4.5.3 Using the transformers pipeline object

With the decord library installed and the video ready, you can write the code to use the
model with the transformers pipeline:

https://mng.bz/qR4E

92 CHAPTER 4 Using Hugging Face for computer vision tasks

from transformers import pipeline

video_classifier = pipeline("video-classification",
 model="MCG-NJU/videomae-base-short-finetuned-kinetics")

As usual, the first thing you want to know is the type of object the model is capable of
recognizing:

video_classifier.model.config.id2label

You see a list of 400 objects. Following are the first and last five of them:

{0: 'abseiling',
 1: 'air drumming',
 2: 'answering questions',
 3: 'applauding',
 4: 'applying cream',
 ...
 395: 'wrestling',
 396: 'writing',
 397: 'yawning',
 398: 'yoga',
 399: 'zumba'}

To detect the kind of objects that are present in the video, call the pipeline object with
the URL of the video:

video_classifier(
 'http://localhost:8000/pexels-pat-whelen-5621707 (1080p).mp4')

The result looks like this:

[{'score': 0.6775813102722168, 'label': 'spray painting'},
 {'score': 0.05606633797287941, 'label': 'throwing axe'},
 {'score': 0.032091718167066574, 'label': 'blasting sand'},
 {'score': 0.01113071758300066, 'label': 'spraying'},
 {'score': 0.007230783812701702, 'label': 'plastering'}]

As you can see, the model accurately detected that the main activity in the video is
spray painting.

Summary

¡	Object detection is a computer vision technique that involves identifying and
locating objects of interest within an image or video.

¡	You have two ways to use a model from Hugging Face programmatically:

– Through a transformer pipeline.

– Load the model directly.

 93Summary

¡	DetrImageProcessor is a class (from the transformers package) that is used for
processing images to be used as input to the DETR algorithm.

¡	The DetrForObjectDetection module provides access to pretrained DETR
models.

¡	Image classification is a computer vision task that involves categorizing an image
in one or more predefined classes or categories

¡	Image segmentation involves separating an image into multiple segments.

94

5Exploring, tokenizing,
and visualizing

Hugging Face datasets

This chapter covers

¡	What Hugging Face datasets are

¡	How to download datasets programmatically

¡	How to apply tokenization to datasets

¡	How to perform data visualization on datasets

Hugging Face is an AI platform that develops, trains, and deploys cutting-edge
open-source machine learning models. Alongside providing a hub for these trained
models, Hugging Face also hosts a wide array of datasets (available at https://
huggingface.co/datasets), which you can use for your own projects.

This chapter guides you through accessing datasets from Hugging Face and shows
you how to download them programmatically to your local machine. You will gain a
deeper understanding of tokenization, including how to tokenize datasets and pre-
pare your data for fine-tuning (covered in chapter 6). Finally, you will explore how to
visualize various datasets with Hugging Face.

https://huggingface.co/datasets
https://huggingface.co/datasets

 95What are Hugging Face datasets?

5.1 What are Hugging Face datasets?

Datasets are essential for training and evaluating machine learning models, enabling
data analysis, and extracting valuable insights. They provide the examples models
need to recognize patterns, make predictions, and assess performance. Beyond model
development, datasets play a crucial role in testing hypotheses, identifying trends,
and solving real-world problems in fields such as recommendation systems, predictive
maintenance, and fraud detection. Finding the right dataset, however, can be a chal-
lenge. Fortunately, Hugging Face is a powerful platform that streamlines access to a
wide range of datasets, helping developers and researchers quickly build, refine, and
deploy data-driven solutions across diverse domains.

Hugging Face Datasets is an open source library designed for accessing and pro-
cessing large datasets commonly used in machine learning and data science, particu-
larly for natural language processing (NLP), computer vision, and other AI tasks. The
library provides a simple and efficient way to load, process, and manage datasets (such
as dataset splitting and uploading), offering ready-to-use datasets along with tools to
manipulate, transform, and share your own data. It supports high-performance data
handling, works with frameworks like PyTorch and TensorFlow, and integrates seam-
lessly with other Hugging Face tools.

To access Hugging Face Datasets, open a web browser and go to https://huggingface
.co/datasets. Figure 5.1 shows the Hugging Face Datasets web page.

Figure 5.1 The Hugging Face Datasets website contains datasets of different modalities (types).

https://huggingface.co/datasets
https://huggingface.co/datasets

96 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

A quick way to find the dataset you want to use is to type its name in the filter box (see
figure 5.2). Filtered results appear as you type.

Search for the dataset
you want to use.

Filtered datasets

Figure 5.2 Searching for a desired dataset

Click the dataset you want to use, and you will be directed to a page that displays details
on the dataset, including its full name (see figure 5.3). The easiest way to copy the full
name of the dataset is to click the Copy icon.

5.1.1 Getting the list of datasets available

Now that you know where to look for the datasets you want to use on the Hugging
Face Datasets page, let’s investigate how to work with the datasets programmatically in
Python. To do so, first install the following two libraries using the pip command:

!pip install huggingface_hub
!pip install datasets

 97What are Hugging Face datasets?

Full name of dataset Click icon to copy the
dataset name to the clipboard.

Figure 5.3 Locating the full name of the dataset

Next, use the list_datasets() function to return a generator that points to a list of
available datasets:

from huggingface_hub import list_datasets

datasets = list_datasets()

You can’t use an index to access the datasets directly. Also, you shouldn’t use the list()
function to convert the list of datasets; doing so would likely cause memory overflow
because the list of datasets is large. Instead, use the next() function to iterate through
the list of datasets:

dataset = next(datasets)
print(dataset)

The dataset is encapsulated in the DatasetInfo object, with various fields containing
the details of the dataset, as shown in the following listing.

Gets the generator of datasets

Gets the next dataset

98 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

Listing 5.1 The content of the DatasetInfo object

DatasetInfo(

 id='fka/awesome-chatgpt-prompts',

 author='fka',

 sha='459a66186f8f83020117b8acc5ff5af69fc95b45',

 created_at=datetime.datetime(2022, 12, 13, 23, 47, 45,

 tzinfo=datetime.timezone.utc),

 last_modified=datetime.datetime(2024, 9, 3, 21, 28, 41,

 tzinfo=datetime.timezone.utc),

 private=False,

 gated=False,

 disabled=False,

 downloads=9522,

 downloads_all_time=None,

 likes=6218,

 paperswithcode_id=None,

 tags=['task_categories:question-answering',

 'license:cc0-1.0',

 'size_categories:n<1K',

 'format:csv',

 'modality:text',

 'library:datasets',

 'library:pandas',

 'library:mlcroissant',

 'library:polars',

 'region:us',

 'ChatGPT'],

 trending_score=90,

 card_data=None,

 siblings=None

)

To print the first five datasets, use the following code snippet, which prints the ID of
each dataset:

for i in range(5):

 dataset = next(datasets)

 print(dataset.id)

You should see something like this:

fka/awesome-chatgpt-prompts

qq8933/OpenLongCoT-Pretrain

Spawning/PD12M

wyu1/Leopard-Instruct

OpenCoder-LLM/opc-sft-stage1

The ID of each dataset is what you saw in figure 5.3 earlier in this chapter: the full
name of the dataset.

Prints the ID of the dataset

 99What are Hugging Face datasets?

5.1.2 Validating the availability of a dataset

Before you download a dataset from Hugging Face, it is useful to verify that the
dataset is available for download. You can use the following code snippet to verify
availability.

Listing 5.2 Verifying a dataset’s availability

import requests

token = 'Hugging_Face_Token'
dataset_id = 'fka/awesome-chatgpt-prompts'

headers = {"Authorization": f"Bearer {token}"}
API_URL =
 f"https://datasets-server.huggingface.co/is-valid?dataset={dataset_id}"

def query():
 response = requests.get(API_URL, headers=headers)
 return response.json()

data = query()
data

For this example, you need to apply for a Hugging Face access token (https://
huggingface.co/settings/tokens). The access token will allow you to authenticate
and access models, datasets, and other resources on the Hugging Face platform. The
preceding code snippet returns the following result for the fka/awesome-chatgpt
-prompts dataset:

{'preview': True,
 'viewer': True,
 'search': True,
 'filter': True,
 'statistics': True}

Alternatively, you can use the curl command in Terminal (or Anaconda Prompt) to
validate whether a dataset is available:

$ curl -X GET "https://datasets-server.huggingface.co/is-
valid?dataset=fka/awesome-chatgpt-prompts"

Figure 5.4 shows the syntax for using curl to check the validity of a dataset.

Figure 5.4 Syntax for checking the validity of a dataset

Replace with your own
Hugging Face token.

Replace with the name of the
dataset you want to verify.

https://huggingface.co/settings/tokens
https://huggingface.co/settings/tokens

100 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

You can replace the fka/awesome-chatgpt-prompts dataset name with the full name
of the dataset you want to use. If the dataset is available, you see the following output
(formatted for clarity):

{
 "preview":true,
 "viewer":true,
 "search":true,
 "filter":true,
 "statistics":true
}

5.1.3 Downloading a dataset

After you verify that a dataset is available for download, you can use the load_dataset()
function to download it. The following code snippet downloads the stanfordnlp/imdb
dataset:

from datasets import load_dataset

dataset_id = 'stanfordnlp/imdb'

dataset = load_dataset(dataset_id)
print(dataset)

NOTE The IMDb dataset is a popular dataset used for NLP tasks, specifically for
sentiment analysis. It consists of positive and negative movie reviews from the
Internet Movie Database (IMDb).

You should see the following output:

DatasetDict({
 train: Dataset({
 features: ['text', 'label'],
 num_rows: 25000
 })
 test: Dataset({
 features: ['text', 'label'],
 num_rows: 25000
 })
 unsupervised: Dataset({
 features: ['text', 'label'],
 num_rows: 50000
 })
})

The result is represented as a DatasetDict object separated into the following subsets
(known as splits):

¡	train—The training dataset, used to train models

Loads the IMDb dataset

View the dataset structure.

 101What are Hugging Face datasets?

¡	test—The testing dataset, used to evaluate the model’s performance

¡	unsupervised—Subset that often contains unlabeled data, which can be used for
unsupervised or semisupervised learning tasks

The num_rows attribute represents the number of rows in each split of the data. You can
also view the different splits of the datasets using the curl command:

$ curl -X GET "https://datasets-server.huggingface.co/
splits?dataset=stanfordnlp/imdb"

Figure 5.5 shows the syntax for using curl to check the splits of a dataset.

Figure 5.5 Syntax for checking the splits of a dataset

You should see the output shown in the following listing.

Listing 5.3 Output containing the splits of the dataset

{
 "splits":[
 {
 "dataset":"stanfordnlp/imdb",
 "config":"plain_text",
 "split":"train"
 },
 {
 "dataset":"stanfordnlp/imdb",
 "config":"plain_text",
 "split":"test"
 },
 {
 "dataset":"stanfordnlp/imdb",
 "config":"plain_text",
 "split":"unsupervised"
 }
],
 "pending":[],
 "failed":[]
}

Continuing with the Python code snippet, let’s view the first row of the train subset:

dataset['train'][0]

You should see the following output (formatted for clarity).

102 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

Listing 5.4 The content of the first row of the IMDb dataset

{

'text': 'I rented I AM CURIOUS-YELLOW from my video store

because of all the controversy that surrounded it when it

was first released in 1967. I also heard that at first it

was seized by U.S. customs if it ever tried to enter this

country, therefore being a fan of films considered

"controversial" I really had to see this for myself.

The plot is centered around a young Swedish drama

student named Lena who wants to learn everything she can

about life. In particular she wants to focus her

attentions to making some sort of documentary on what the

average Swede thought about certain political issues such

as the Vietnam War and race issues in the United States.

In between asking politicians and ordinary denizens of

Stockholm about their opinions on politics, she has sex

with her drama teacher, classmates, and married men.

What kills me about I AM CURIOUS-YELLOW is

that 40 years ago, this was considered pornographic.

Really, the sex and nudity scenes are few and far between,

even then it\'s not shot like some cheaply made porno.

While my countrymen mind find it shocking, in reality sex

and nudity are a major staple in Swedish cinema. Even

Ingmar Bergman, arguably their answer to good old boy

John Ford, had sex scenes in his films.

I do

commend the filmmakers for the fact that any sex shown in

the film is shown for artistic purposes rather than just

to shock people and make money to be shown in pornographic

theaters in America. I AM CURIOUS-YELLOW is a good film

for anyone wanting to study the meat and potatoes (no pun

intended) of Swedish cinema. But really, this film

doesn\'t have much of a plot.',

'label': 0

}

Where is the dataset stored locally?

When you download a dataset from Hugging Face, it is stored in the ~/.cache/

huggingface/datasets folder on a Mac or in C:\users\<username>\.cache\

huggingface\datasets on a Windows machine. Each dataset is stored in its own

folder. The stanfordnlp/imdb dataset, for example, is stored in its own set of folders

and subfolders, as shown in the following figure.

Because each dataset has its own folder structure, the best way to understand the

structure of a particular dataset is to explore the files and folders created within

its specific cache directory. Each dataset may have a different organizational layout

depending on the nature of the data, the splits provided (train, validation, and/or

test), and how Hugging Face preprocessed the database.

 103What are Hugging Face datasets?

stanfordnlp_____imdb

plain_text

0.0.0

e6281661ce1C48d982bC483cf8a173c1bbeb5d31

imdb-test.arrow

imdb-train.arrow

imdb-unsupervised.arrow

...

...
The folder structure of the

stanfordnlp/imdb dataset

If you want to download only a particular split of the dataset, you can specify the split
name in the split parameter, like this:

dataset = load_dataset(dataset_id,
 split='train')
print(dataset)

This statement downloads only the train split of the dataset. This approach is use-
ful if you plan to work with a specific split; it saves both time and disk space because
you don’t have to download the entire dataset. The downloaded dataset looks like
this:

Dataset({
 features: ['text', 'label'],
 num_rows: 25000
})

To access the first row, use this code:

dataset[0]

You don’t need to specify the train key, as you did earlier:

dataset['train'][0]

5.1.4 Shuffling a dataset

If you want to shuffle the dataset you’ve downloaded, you can use the shuffle()
method to randomize the order of the data:

104 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

dataset_id = 'stanfordnlp/imdb'
dataset = load_dataset(dataset_id)

shuffled_dataset = dataset.shuffle(seed = 42)

The seed parameter in the shuffle() method ensures reproducibility of the shuffling
process. By setting a specific seed value, you guarantee that the dataset will be shuffled
the same way each time you run the code. This method is useful for debugging, exper-
imentation, and ensuring consistent results across runs.

5.1.5 Streaming a dataset

Sometimes, the dataset you’re trying to download may be too large to fit into mem-
ory at the same time. This can cause problems if your system lacks the memory to
hold the entire dataset; it can also increase processing time if you don’t need to
have the entire dataset in memory at the same time. To prevent downloading the
entire dataset in one shot, you can set the streaming parameter to True in the load_
dataset() function:

from datasets import load_dataset

dataset_id = 'stanfordnlp/imdb'
dataset = load_dataset(dataset_id,
 streaming = True)
print(dataset)

Now the load_dataset() function returns an IterableDatasetDict object instead of
downloading the entire dataset, as shown in the following listing.

Listing 5.5 The content of the IterableDatasetDict object

IterableDatasetDict({
 train: IterableDataset({
 features: ['text', 'label'],
 num_shards: 1
 })
 test: IterableDataset({
 features: ['text', 'label'],
 num_shards: 1
 })
 unsupervised: IterableDataset({
 features: ['text', 'label'],
 num_shards: 1
 })
})

To fetch the dataset, you need to enumerate through it and retrieve rows one at a time.
The following code snippet shows how to obtain and print the first five rows in the
training dataset:

Streams the IMDb dataset

 105What are Hugging Face datasets?

for i, example in enumerate(dataset["train"]):
 if i < 5:
 print(example)
 else:
 break

By fetching data one row at a time, you can efficiently process large datasets without
loading them entirely into memory.

5.1.6 Getting the Parquet files of a dataset

Although you can use the load_dataset() function to download the dataset to your
computer, at times you may prefer to download it directly in Parquet format. Parquet
is a columnar storage file format designed for efficient data storage and processing,
particularly in big data environments. It is optimized for querying and analyzing large
datasets, offering significant compression and performance improvements over row-
based formats such as CSV.

Parquet is schema-based, meaning that it stores both the data and its schema,
enabling better data organization and faster access. Its columnar structure allows for
efficient read and write operations, especially when only a subset of columns is required,
and it supports complex nested data structures. Parquet is widely used in data process-
ing frameworks such as the Apache frameworks Spark, Hive, and Hadoop due to its
compatibility with various big data tools and systems.

The Hugging Face Datasets service automatically converts all public datasets to Par-
quet format, which offers significant performance improvements, especially for large
datasets. As an example, use the following curl command to get the Parquet files associ-
ated with the stanfordnlp/imdb dataset:

$ curl -X GET "https://datasets-server.huggingface.co/
parquet?dataset=stanfordnlp/imdb"

This command returns the following result (formatted for clarity).

Listing 5.6 URLs of the various Parquet files

{
 "parquet_files":[
 {
 "dataset":"stanfordnlp/imdb",
 "config":"plain_text",
 "split":"test",
 "url":"https://huggingface.co/datasets/stanfordnlp/

 imdb/resolve/refs%2Fconvert%2Fparquet/

 plain_text/test/0000.parquet",

 "filename":"0000.parquet",
 "size":20470363
 },
 {

Streams through the data and
prints the first few examples

Shows the first five examples

106 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

 "dataset":"stanfordnlp/imdb",
 "config":"plain_text",
 "split":"train",
 "url":"https://huggingface.co/datasets/stanfordnlp/
 imdb/resolve/refs%2Fconvert%2Fparquet/
 plain_text/train/0000.parquet",
 "filename":"0000.parquet",
 "size":20979968
 },
 {
 "dataset":"stanfordnlp/imdb",
 "config":"plain_text",
 "split":"unsupervised",
 "url":"https://huggingface.co/datasets/stanfordnlp/
 imdb/resolve/refs%2Fconvert%2Fparquet/
 plain_text/unsupervised/0000.parquet",
 "filename":"0000.parquet",
 "size":41996509
 }
],
 "pending":[],
 "failed":[],
 "partial":false
}

As you can see, the result contains the URLs of the Parquet files for each split. Using
these URLs, you can use Python to access the Parquet file of the split(s) directly, as in
the following example:

!pip install pyarrow
import pandas as pd

url = "https://huggingface.co/datasets/stanfordnlp/" + \
 "imdb/resolve/refs%2Fconvert%2Fparquet/" + \
 "plain_text/unsupervised/0000.parquet"
df = pd.read_parquet(url, engine='pyarrow')

display(df.head())

Figure 5.6 shows the first five rows of the unsupervised split of the dataset.

Text Label

Figure 5.6 The first five rows

of the unsupervised split

 107Tokenization in NLP

5.2 Tokenization in NLP

Tokenization is a foundational NLP process that breaks text into manageable units or
tokens, allowing models to interpret and process language more effectively. Tokeniza-
tion has the following key uses:

¡	Text preprocessing—Tokenization helps preprocess text data, simplifying tasks
such as filtering out punctuation, converting to lowercase, and handling special
characters.

¡	Representation for machine learning models—Most NLP models, including trans-
formers and large language models (LLMs), require text to be in a numerical
format. Tokenization transforms text into numerical IDs that the models can
work with.

¡	Efficiency and memory optimization—Smaller tokens, such as subwords, allow mod-
els to handle larger vocabularies with fewer parameters, making it easier for mod-
els to capture nuances such as suffixes, prefixes, and infixes, which are especially
useful for inflective languages.

¡	Foundation for further NLP tasks—Tokenization provides a foundation for
advanced NLP tasks such as named entity recognition (NER), part-of-speech tag-
ging, machine translation, and text summarization.

The following sections discuss the methods of tokenization, how they work, and how
we can tokenize a dataset from Hugging Face to prepare it for fine-tuning.

5.2.1 Types of tokenization methods

There are several types of tokenization methods, each suited to different tasks and lan-
guages. Here are some of the main types:

¡	Word-level—Splits text into individual words

¡	Subword-level—Splits words into smaller meaningful units or subwords

¡	Character-level—Breaks text into individual characters; commonly used for lan-
guages such as Chinese and Japanese, in which word boundaries are less obvious

Figure 5.7 shows an example of word-level tokenization in which the string "I love
dogs" has been tokenized into three
words: "I", "love", and "dogs".

Word-level tokenization, although
straight forward, struggles with out-of-
vocabulary words, so it requires a large
vocabulary for diverse languages. Also, it
doesn’t capture the internal structure of
words, which limits a model’s generaliza-
tion abilities. Some models that use this
method are Word2Vec and GloVe.

Tokens

Figure 5.7 Example of word-level tokenization.

The sentence is tokenized into three tokens.

108 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

Most newer models, especially
transformer- based models such as
BERT and GPT, prefer subword or byte-
pair encoding (BPE) tokenization to
overcome these problems, providing
better flexibility and generalization
across languages and word forms. Figure
5.8 shows an example of subword-level
tokenization. In this example, the word
"exhilarating" is tokenized into four
tokens: "ex", "h", "ilar", and "ating".

Subword-level tokenization offers
several advantages in NLP, especially for models that work with diverse language data.
One primary benefit is that it handles out-of-vocabulary (OOV) words effectively by
breaking them into smaller, recognizable subunits. This ability eliminates the need to
discard or ignore unfamiliar words. Also, subword-level tokenization preserves more
information than word-level tokenization, especially with languages that have complex
morphology or compound words, making it ideal for handling misspellings, rare words,
and different grammatical forms.

Character-level tokenization is usually used for languages such as Chinese and Japa-
nese. Figure 5.9 shows an example of the sentence "I love programming" in both Sim-
plified Chinese and Japanese tokenized into character-level tokens.

Tokens

Tokens

Figure 5.9 Examples of character-

level tokenization using Simplified

Chinese and Japanese

For the Simplified Chinese example, each character represents a meaningful unit in
the sentence, making character tokenization particularly useful for languages such as
Chinese, Japanese, and Korean, in which words are often composed of multiple char-
acters and spaces are typically not used to delimit them. For Japanese, each individual

Tokens

Figure 5.8 Example of subword-level

tokenization. The single word "exhilarating"

is tokenized into four tokens.

 109Tokenization in NLP

character—including Kanji, Hiragana, Katakana, and punctuation—is treated as a
token. This type of tokenization works well for handling Japanese text when you’re
interested in the most granular form of the data.

5.2.2 Tokenizing datasets

Hugging Face datasets are compatible with built-in tokenizers and data loaders, making
it easy to preprocess and tokenize large datasets efficiently before feeding them into
models. Using the IMDb dataset that we loaded earlier, let’s use the bert-base-uncased
model as the tokenizer and use it to tokenize the dataset:

from transformers import AutoTokenizer

dataset = load_dataset(dataset_id)
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
tokenized_dataset = dataset.map(
 lambda examples:
 tokenizer(examples['text'],
 truncation = True,
 padding = 'max_length'),
 batched = True)

Here, we used the AutoTokenizer class from Hugging Face that automatically loads
the appropriate tokenizer class for the specified pretrained model—in this case,
bert-base-uncase, a version of the BERT (Bidirectional Encoder Representations
from Transformers) model from Hugging Face’s Transformers library that is trained
on uncased text data. The map() method of the dataset is used to apply a function
to each element or batch of elements in the dataset. You can print the tokenized
dataset:

print(tokenized_dataset)

The following listing shows the output.

Listing 5.7 The content of the tokenized dataset

DatasetDict({
 train: Dataset({
 features: ['text', 'label', 'input_ids', 'token_type_ids',
 'attention_mask'],
 num_rows: 25000
 })
 test: Dataset({
 features: ['text', 'label', 'input_ids', 'token_type_ids',
 'attention_mask'],
 num_rows: 25000
 })
 unsupervised: Dataset({
 features: ['text', 'label', 'input_ids', 'token_type_ids',
 'attention_mask'],

110 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

 num_rows: 50000
 })
})

Observe that each split of the dataset contains three new attributes: input_ids, token_
type_ids, and attention_mask. Let’s examine them one by one, starting with input_ids:

print(tokenized_dataset['train'][0]['input_ids'])

You see the following result:

[101, 1045, 12524, 1045, 2572, 8025, 1011, 3756, 2013, 2026,
2678, 3573, 2138, 1997, 2035, 1996, 6704, 2008, 5129, 2009,
2043, 2009, 2001, 2034, 2207, 1999, 3476, 1012, 1045, 2036,
...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Each number represents the token ID of a corresponding token. The trailing 0s at the
end of the list act as padding tokens, ensuring that all sequences in the batch have the
same length for consistent processing by the model.

DEFINITION A token ID is a unique numerical identifier assigned to a token
(a word, subword, punctuation mark, or even whitespace, depending on the
tokenizer used) in the context of NLP. Token IDs are generated during the
tokenization process when text data is processed into input that a language
model (such as BERT, GPT, or other transformer models) can understand and
use.

To convert the token IDs back to the tokens, use the convert_ids_to_tokens() method
of the tokenizer:

tokens = tokenizer.convert_ids_to_tokens(
 tokenized_dataset['train'][0]['input_ids'])
print(tokens)

You should see the following:

 ['[CLS]', 'i', 'rented', 'i', 'am', 'curious', '-',
 'yellow', 'from', 'my', 'video', 'store', 'because',
 'of', 'all', 'the', 'controversy', 'that', 'surrounded',
 ...
 ...
 '##men', 'mind', 'find', 'it', 'shocking'
 ...
 '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]',
 '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]',
 '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']

 111Tokenization in NLP

The first token is [CLS], which signifies the start of the string. The ## symbol in front of
some tokens indicates that the token is a subword unit that is a continuation or suffix
of a larger word. In simpler terms, it signifies that the token is not a standalone word
but a fragment that combines with the preceding tokens to form a complete word.
The [PAD] token indicates padding in tokenized sequences. It is used to ensure that
all input sequences to a model have the same length by filling shorter sequences with
padding tokens. This padding process is necessary because many transformer-based
models, such as BERT, expect input tensors of uniform size to allow for efficient batch
processing during training or inference.

The second attribute, token_type_ids, is used to differentiate among multiple seg-
ments of a single input. This attribute is particularly useful for models such as BERT,
which can process inputs consisting of two separate segments (e.g., a sentence pair in
tasks like next-sentence prediction or question answering). token_type_ids helps the
model determine which tokens belong to which segment. Typically, tokens from the
first segment are assigned 0, and tokens from the second segment are assigned 1. In the
case of a single text input, such as an IMDb movie review, there is only one segment, so
all tokens have the same token_type_id, which is 0. Therefore, when you print token_
type_ids or a similar input, you see an array of zeros:

[0, 0, 0,..., 0, 0, 0]

This array indicates that the entire sequence is treated as a single segment; no distinc-
tion is made between multiple segments.

The third attribute, attention_mask, is used to inform the model which tokens
should be attended to (processed) and which should not. It is especially important when
padding tokens are present in the input because the model should ignore the padding
during its computations. The attention_mask typically consists of binary values, which
can be interpreted as follows:

¡	Value of 1—Indicates that the token should be attended to (i.e., it’s a real token,
not padding)

¡	Value of 0—Indicates that the token is a padding token and should not contribute
to the model’s attention mechanism

You can print the attention mask for the first row of training data like this:

print(tokenized_dataset['train'][0]['attention_mask'])

You see the following output:

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 ...
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

112 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

Figure 5.10 shows the relationships among token IDs, tokens, and attention masks for
the first row of the train split in the dataset.

Figure 5.10 The token IDs, tokens, and attention masks in the first row of the training data

Tokenizing datasets is a crucial step because it converts raw text to a format that
machine learning models can process effectively. This process is especially important
in preparing data for fine-tuning models because it ensures that the model can under-
stand and work with the input text. Tokenization breaks the text into smaller units,
such as words or subwords, which the model can use to learn patterns and make pre-
dictions during training.

5.3 Visualizing datasets

The Hugging Face datasets provide a great opportunity to practice data visualiza-
tion techniques, allowing you to glean additional insights from your data and gener-
ate actionable conclusions that can inform decision-making or model optimization.
In this section, you will use two particular datasets from Hugging Face for data
visualization.

5.3.1 Using the twitter-financial-news-topic dataset

Let’s start with the twitter-financial-news-topic dataset. This dataset is an English-
language dataset containing an annotated corpus of finance-related tweets; it’s used to
classify finance-related tweets for a topic. The dataset holds 21,107 documents anno-
tated with 20 labels. You can find out more about this dataset by searching for the
name of this dataset on Hugging Face’s website or by going directly to https://mng.bz/
xZEg (see figure 5.11).

Let’s load the dataset and extract the train split:

from datasets import load_dataset

dataset = load_dataset('zeroshot/twitter-financial-news-topic')

train_data = dataset['train']

Loads the dataset

Extracts the topic labels
from the training set

https://mng.bz/xZEg
https://mng.bz/xZEg

 113Visualizing datasets

Figure 5.11 The twitter-financial-news-topic dataset hosted by Hugging Face

Next, print the first row of the data:

print(train_data[0])

You should see the text as well as the label of the first row:

{'text': "Here are Thursday's biggest analyst calls: Apple, Amazon,
 Tesla, Palantir, DocuSign, Exxon & more https://t.co/QPN8Gwl7Uh",
 'label': 0}

Likewise, print the last row in the train split:

print(train_data[-1])

114 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

You should see the following:

{'text': "Brazil's Petrobras says it signed a $1.25 billion
 sustainability loan https://t.co/X9iTvkLKtj https://t.co/hCKnxYi8AA",
 'label': 3}

The label is a number referencing the various topics. You can get this list from the
dataset’s page on the Hugging Face website. You can define the list of topics using a
dictionary as shown in the following listing.

Listing 5.8 Defining the list of topics for the twitter-financial-news-topic dataset

topics = {
 "LABEL_0": "Analyst Update",
 "LABEL_1": "Fed | Central Banks",
 "LABEL_2": "Company | Product News",
 "LABEL_3": "Treasuries | Corporate Debt",
 "LABEL_4": "Dividend",
 "LABEL_5": "Earnings",
 "LABEL_6": "Energy | Oil",
 "LABEL_7": "Financials",
 "LABEL_8": "Currencies",
 "LABEL_9": "General News | Opinion",
 "LABEL_10": "Gold | Metals | Materials",
 "LABEL_11": "IPO",
 "LABEL_12": "Legal | Regulation",
 "LABEL_13": "M&A | Investments",
 "LABEL_14": "Macro",
 "LABEL_15": "Markets",
 "LABEL_16": "Politics",
 "LABEL_17": "Personnel Change",
 "LABEL_18": "Stock Commentary",
 "LABEL_19": "Stock Movement",
}

Using this dictionary, you can create a mapping for all the labels in the train subset:

mapped_labels = [topics[f"LABEL_{label}"]
 for label in train_data['label']]

In this dataset, you want to see the distribution of all the topics and examine which
topic has the most data and which has the least. You can plot a bar chart showing the
distribution as follows.

Listing 5.9 Plotting the dataset using a bar chart

import matplotlib.pyplot as plt
import numpy as np

plt.figure(figsize=(10, 6))

bins = np.arange(len(topics) + 1) - 0.5

Creates bin edges
to center the labels

 115Visualizing datasets

plt.hist(mapped_labels,
 bins = bins,
 edgecolor = 'black',
 color = 'skyblue',
 alpha = 0.7)

plt.xticks(np.arange(len(topics)),
 list(topics.values()),
 rotation = 90,
 ha = 'center')

plt.title("Topic Distribution - Twitter Financial News")
plt.xlabel("Topics")
plt.ylabel("Number of Tweets")
plt.tight_layout()
plt.show()

Figure 5.12 shows the bar chart displaying the distribution of the topics.

3500

3000

2500

2000

1500

1000

500

0

N
u
m

b
e
r

o
f

tw
e
e
ts

Topic distribution - Twitter Financial News

A
n
a
ly

s
t
u
p
d
a
te

s

F
e
d
 |
 c

e
n
tr

a
l
b
a
n
k
s

C
o
m

p
a
n
y
 |
 p

ro
d
u
c
t
n
e
w

s

T
re

a
s
u
ri
e
s
 |
 c

o
rp

o
ra

te
 d

e
b
t

D
iv

id
e
n
d
s

E
a
rn

in
g

s

E
n
e
rg

y
 |
 o

il

F
in

a
n
c
ia

ls

C
u
rr

e
n
c
ie

s

G
e
n
e
ra

l
n
e
w

s
 |
 o

p
in

io
n

G
o
ld

 |
 M

e
ta

ls
 |
 M

a
te

ri
a
ls

IP
O

s

L
e
g
a
l
|
re

g
u
la

ti
o
n

s

M
&

A
 |
 i
n
v
e
s
tm

e
n
ts

M
a
c
ro

M
a
rk

e
ts

P
o
lit

ic
s

P
e
rs

o
n
n
e
l
c
h
a
n
g
e

s

S
to

c
k
 c

o
m

m
e
n
ta

ry

S
to

c
k
 m

o
v
e
m

e
n
t

Topics

Figure 5.12 You can visualize the various topics and the number of news items related to each topic.

5.3.2 Using the CIFAR-10 dataset

CIFAR-10 is widely used in machine learning and computer vision, containing 60,000
labeled 32x32 color images divided into 10 classes, such as airplanes, automobiles, and

Sets the ticks at the
center of each bin

116 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

animals, with 50,000 for training and 10,000 for testing. Its simplicity and size make it
a popular benchmark for image classification models, especially convolutional neural
networks (CNNs), and an excellent resource for educational projects.

You can use the Hugging Face Datasets library to experiment with CIFAR-10, and
visualizations using matplotlib can help you understand the data better. In this sec-
tion, you’ll use the uoft-cs/cifar10 dataset (https://huggingface.co/datasets/uoft-cs/
cifar10; see also figure 5.13).

Figure 5.13 The dataset page for CIFAR-10 on Hugging Face

As usual, start by downloading the dataset:

from datasets import load_dataset
import matplotlib.pyplot as plt
import numpy as np

 dataset = load_dataset('uoft-cs/cifar10')
print(dataset)

Printing the downloaded dataset shows the following:

Loads the dataset

https://huggingface.co/datasets/uoft-cs/cifar10
https://huggingface.co/datasets/uoft-cs/cifar10

 117Visualizing datasets

DatasetDict({
 train: Dataset({
 features: ['img', 'label'],
 num_rows: 50000
 })
 test: Dataset({
 features: ['img', 'label'],
 num_rows: 10000
 })
})

All 60,000 images are stored in the dataset. You can access the first image in the train
split, for example, as follows:

dataset['train'][0]

You see the following output (formatted for clarity):

{
 'img': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=32x32>,
 'label': 0
}

Unfortunately, the page for the uoft-cs/cifar10 dataset does not contain the labels
for the dataset. You have to click the Files tab and then the README.md file (see figure
5.14) to view its content. You can also view this page directly at https://mng.bz/AGKg.

Click the
Files tab.

Click the
README.md
file.

Figure 5.14 The README.md file for the CIFAR-10 dataset on Hugging Face

https://mng.bz/AGKg

118 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

The next listing shows the content of the README.md file, with the key labeled names and
their corresponding values, which map numbers to labels.

Listing 5.10 Content of the README.md file

annotations_creators:

 - crowdsourced

language_creators:

 - found

language:

 - en

license:

 - unknown

multilinguality:

 - monolingual

size_categories:

 - 10K<n<100K

source_datasets:

 - extended|other-80-Million-Tiny-Images

task_categories:

 - image-classification

task_ids: []

paperswithcode_id: cifar-10

pretty_name: Cifar10

dataset_info:

 config_name: plain_text

 features:

 - name: img

 dtype: image

 - name: label

 dtype:

 class_label:

 names:

 '0': airplane

 '1': automobile

 '2': bird

 '3': cat

 '4': deer

 '5': dog

 '6': frog

 '7': horse

 '8': ship

 '9': truck

 splits:

 - name: train

 num_bytes: 113648310

 num_examples: 50000

 - name: test

 num_bytes: 22731580

 num_examples: 10000

 download_size: 143646105

 dataset_size: 136379890

 119Visualizing datasets

configs:

 - config_name: plain_text

 data_files:

 - split: train

 path: plain_text/train-*

 - split: test

 path: plain_text/test-*

 default: true

With these labels, you can define a dictionary and create a function called show_
images() to display a 5x5 grid of images, each accompanied by a label, as shown in the
following listing.

Listing 5.11 Displaying a 5x5 grid of images

labels = {

 0: "airplane",

 1: "automobile",

 2: "bird",

 3: "cat",

 4: "deer",

 5: "dog",

 6: "frog",

 7: "horse",

 8: "ship",

 9: "truck"

}

def show_images(images, labels, labels_dict):

 plt.figure(figsize=(5, 5))

 for i in range(25):

 plt.subplot(5, 5, i + 1)

 plt.imshow(images[i])

 plt.title(labels_dict[labels[i]])

 plt.axis('off')

 plt.tight_layout()

 plt.show()

train_samples = dataset['train'].shuffle(seed=42).select(range(25))

images = [sample['img'] for sample in train_samples]

class_labels = [sample['label'] for sample in train_samples]

show_images(images, class_labels, labels)

Figure 5.15 shows the grid of 5x5 random images from the dataset.

Defines labels for
the CIFAR-10 classes

Visualizes a few images
from the training set

Uses the labels dictionary
to get class names

Gets some samples from
the training dataset

Randomly selects
25 samples

Extracts images
and labels

Displays the images
with class names

120 CHAPTER 5 Exploring, tokenizing, and visualizing Hugging Face datasets

Figure 5.15 Twenty-five random images from the CIFAR-10 dataset

Summary

¡	Hugging Face Datasets is an open source library designed for accessing and pro-
cessing large datasets commonly used in machine learning and data science.

¡	Use the list_datasets() function to show a list of available datasets.

¡	Use the load_dataset() function to download a dataset.

¡	Datasets are usually split into subsets, such as train, test, and unsupervised.

¡	For large datasets, you can stream the data and download one row at a time. You
can also get the Parquet version of the dataset from Hugging Face.

¡	Tokenization is a foundational process in NLP that breaks text into manageable
units or tokens.

¡	Subword-level tokenization is the most common tokenization method used by
newer models such as BERT and GPT.

¡	Tokenizing a dataset allows you to use it for applications such as fine-tuning a
model.

¡	Visualizing a dataset allows you to gain a better understanding of its structure,
distribution, and underlying patterns.

121

6Fine-tuning pretrained
models and working

with multimodal models

This chapter covers

¡	Using the yelp_polarity dataset to fine-tune a

pretrained model

¡	Using a fine-tuned model to perform classification

tasks

¡	Fine-tuning a pretrained model to perform

multiclass classification tasks

¡	Working with multimodal models

Up until this chapter, you’ve seen how to work with pretrained models from Hug-
ging Face to tackle a variety of tasks, using their general capabilities for tasks such as
text classification, object detection, and language generation. Now you’ll delve into
the process of fine-tuning these models to adapt them for more specialized tasks,
enhancing their performance by training them on domain-specific data.

You’ll also explore multimodal models. These models combine multiple types of
data, such as images and text, to address more complex tasks (such as identifying
the type of animals in an image based on visual features and descriptive text) that
require the integration of different information sources. By the end of this chapter,

122 CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

you’ll have a solid understanding of how to fine-tune models for better task-specific
accuracy and work with models that handle multimodal inputs for richer, more com-
prehensive solutions.

6.1 Fine-tuning pretrained models

Fine-tuning is a machine learning technique in which a pretrained model, which has
already learned general patterns from a large dataset, is further trained on a smaller,
domain-specific dataset to adapt it for a particular task. This process uses the knowledge
the model gained from the initial training, enabling it to perform well with less data (fewer
examples or a smaller dataset specific to the new task) and computational resources.

Fine-tuning typically involves adjusting only the later layers of the model or applying
a lower learning rate to avoid losing the valuable features learned during the pretrain-
ing phase. It is commonly used in natural language processing (NLP) and computer
vision tasks, allowing models such as transformers and convolutional neural networks
(CNNs) to be customized for specific applications (such as sentiment analysis or object
detection) without having to be trained from scratch.

6.1.1 Loading the yelp_polarity dataset

In this section, you learn how to fine-tune a pretrained model from Hugging Face
to perform sentiment analysis of restaurant reviews. To illustrate the process of fine-
tuning a model, you’ll use the yelp_polarity dataset, available from the Hugging Face
Datasets library (https://mng.bz/26v9). This labeled dataset, derived from the larger
Yelp Dataset Challenge, is tailored to text classification tasks such as sentiment analy-
sis. It consists of Yelp reviews that express detailed opinions about businesses such as
restaurants, hotels, and services. The dataset includes two labels, 0 for negative senti-
ment and 1 for positive sentiment, making it well suited to binary classification tasks.
First, load the dataset and examine its content:

from datasets import load_dataset

dataset = load_dataset("yelp_polarity")
print(dataset)

The content of the dataset is

DatasetDict({
 train: Dataset({
 features: ['text', 'label'],
 num_rows: 560000
 })
 test: Dataset({
 features: ['text', 'label'],
 num_rows: 38000
 })
})

Loads the Yelp dataset (full review
dataset with train and test splits)

Inspects the dataset to
understand the structure

https://mng.bz/26v9

 123Fine-tuning pretrained models

Observe that the train split dataset has 560,000 rows and the test split has 38,000
rows. It would be useful to look at the first row of the train split:

train_dataset = dataset['train']

print(train_dataset[0])

The following listing shows the text of the first row together with the label 0, which
indicates that this review is negative.

Listing 6.1 The first row of the train split of the yelp_polarity dataset

{

 'text': "Unfortunately, the frustration of being Dr.

 Goldberg's patient is a repeat of the experience

 I've had with so many other doctors in NYC –

 good doctor, terrible staff. It seems that his

 staff simply never answers the phone. It usually

 takes 2 hours of repeated calling to get an answer.

 Who has time for that or wants to deal with it? I

 have run into this problem with many other doctors

 and I just don't get it. You have office workers,

 you have patients with medical needs, why isn't

 anyone answering the phone? It's incomprehensible

 and not work the aggravation. It's with regret

 that I feel that I have to give Dr. Goldberg 2

 stars.",

 'label': 0

}

6.1.2 Filtering the yelp_polarity dataset

Before using the yelp_polarity dataset to fine-tune your model, consider the follow-
ing points:

¡	Topic variety—The dataset includes reviews on a wide range of topics, not only
restaurants. If your goal is to fine-tune a model specifically for restaurant reviews,
I recommend that you filter the dataset to include only reviews related to
restaurants.

¡	Dataset size—The dataset can be quite large, which may pose challenges during
fine-tuning. Although having more data is generally beneficial, it’s often prac-
tical to limit the dataset size. Using a subset of around 5,000 reviews, for exam-
ple, can make training more manageable without compromising performance
significantly.

The next listing demonstrates how to filter the dataset to include only rows containing
the word restaurant and then extract a subset of 5,000 rows.

Accesses the train split

Prints the first example

124 CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

Listing 6.2 Filtering the yelp_polarity dataset

train_dataset = dataset["train"]
test_dataset = dataset["test"]

restaurant_train_reviews = train_dataset.filter(
 lambda x: "restaurant" in x["text"].lower()
)

restaurant_test_reviews = test_dataset.filter(
 lambda x: "restaurant" in x["text"].lower()
)

number_of_reviews = 5000
subset_train_reviews = restaurant_train_reviews.shuffle(
 seed = 42).select(range(number_of_reviews))
subset_test_reviews = restaurant_test_reviews.shuffle(
 seed = 42).select(range(number_of_reviews))

subset_dataset = {
 "train": subset_train_reviews,
 "test": subset_test_reviews
}

from datasets import DatasetDict
yelp_restaurant_dataset = DatasetDict(subset_dataset)

print(yelp_restaurant_dataset)

The reduced dataset contains 5,000 rows each for the train and test splits:

DatasetDict({
 train: Dataset({
 features: ['label', 'text'],
 num_rows: 5000
 })
 test: Dataset({
 features: ['label', 'text'],
 num_rows: 5000
 })
})

Verify the first row of the reduced dataset by viewing its content:

yelp_restaurant_dataset['train'][0]

You see a review related to a restaurant that expresses a negative sentiment:

{
 'text': 'My girlfriend and I have been wanting to come
 here for awhile, we finally came & we had the
 worst experience ever. We asked our server for

Selects the train and test splits

Filters for restaurant-
related reviews in the
train and test datasets

Filters for restaurant-related
reviews in the train and test
datasets

Shuffles and gets
5,000 rows

Shuffles and gets
5,000 rows

Creates a DatasetDict to return
both train and test datasets

Displays the structure
to match the
requested format

Prints the dataset structure

 125Fine-tuning pretrained models

 a few minutes to look over the menu & he never
 came back. 15 minutes later, someone finally
 came and took our order. We waited awhile and
 when they brought our food, they got the whole
 order wrong. My girlfriend ordered soup and it
 never came out. Worst service ever. Would not
 recommend this restaurant to anyone.',
 'label': 0
}

6.1.3 Tokenizing the reduced dataset

You can perform tokenization on the reduced dataset using the distilbert-base
-uncased model. This model is shown in the following listing.

Listing 6.3 Performing tokenization on the reduced dataset

from transformers import AutoTokenizer

model_checkpoint = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

def tokenize_function(examples):
 return tokenizer(examples["text"],
 padding = "max_length",
 truncation = True,
 max_length = 512)

tokenized_datasets = yelp_restaurant_dataset.map(
 tokenize_function,
 batched=True)
tokenized_datasets

After the tokenization, you should see the following result:

DatasetDict({
 train: Dataset({
 features: ['text', 'label', 'input_ids', 'attention_mask'],
 num_rows: 5000
 })
 test: Dataset({
 features: ['text', 'label', 'input_ids', 'attention_mask'],
 num_rows: 5000
 })
})

6.1.4 Setting up a pretrained model for sequence classification

Next, load the pretrained model (distilbert-base-uncased) shown in the following
listing so you can fine-tune it to perform sentiment analysis on restaurant reviews.

Loads a pretrained model
and tokenizer (DistilBERT)

for sentiment classification

Function to tokenize
the dataset

Applies the tokenization
function to the dataset

126 CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

Listing 6.4 Loading a pretrained model for sequence classification

from transformers import AutoModelForSequenceClassification
import torch

model = AutoModelForSequenceClassification.from_pretrained(
 model_checkpoint, num_labels = 2)

if torch.backends.mps.is_available():
 device = torch.device("mps")
else:
 device = torch.device(
 "cuda" if torch.cuda.is_available() else "cpu")

model.to(device)

The AutoModelForSequenceClassification class in Hugging Face’s Transformers
library is a versatile model loader specifically tailored to sequence classification tasks. It
enables you to load any pretrained model architecture that’s compatible with sequence
classification by using a provided model checkpoint. This class automatically appends
the necessary classification layers to the pretrained model, making it ready for tasks
such as sentiment analysis, spam detection, and topic classification.

DEFINITION Sequence classification tasks involve assigning a single label or cate-
gory to an entire sequence of data, such as a sentence, a paragraph, or a longer
sequence of tokens.

In listing 6.4, you also implement logic to detect the runtime environment, which
includes checking whether the code is running on a macOS system with Metal Per-
formance Shaders (MPS) enabled or on a Windows machine with Compute Unified
Device Architecture (CUDA) support. If a graphics processing unit (GPU) is detected,
the model is transferred to the GPU to use accelerated computation.

MPS and CUDA

MPS is Apple’s framework for GPU-accelerated computations on macOS devices with

Apple silicon (M1, M2, M3, and M4 chips). It is optimized for machine learning tasks

and uses the Metal API to provide efficient, high-performance computing for deep

learning models. MPS enables native support for PyTorch and TensorFlow, allowing

developers to train and infer models on Apple hardware.

CUDA is Nvidia’s parallel computing platform and API for using Nvidia GPUs for

general- purpose processing. Widely adopted in the machine learning community,

CUDA enables frameworks such as PyTorch and TensorFlow to run deep learning mod-

els with unparalleled speed and efficiency. It supports an extensive ecosystem of

tools for training, optimization, and deployment.

Loads a
pretrained
model for
sequence
classification

Determines the device

Moves the model to
the selected device

 127Fine-tuning pretrained models

Both MPS and CUDA are essential for accelerating deep learning workflows tailored

to their hardware ecosystems.

When you run the code snippet, you see the architecture of the DistilBertFor-
SequenceClassification model, as shown in the next listing.

Listing 6.5 Architecture of the DistilBertForSequenceClassification model

DistilBertForSequenceClassification(
 (distilbert): DistilBertModel(
 (embeddings): Embeddings(
 (word_embeddings): Embedding(30522, 768, padding_idx=0)
 (position_embeddings): Embedding(512, 768)
 (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
 (dropout): Dropout(p=0.1, inplace=False)
)
 (transformer): Transformer(
 (layer): ModuleList(
 (0-5): 6 x TransformerBlock(
 (attention): DistilBertSdpaAttention(
 (dropout): Dropout(p=0.1, inplace=False)
 (q_lin): Linear(in_features=768, out_features=768, bias=True)
 (k_lin): Linear(in_features=768, out_features=768, bias=True)
 (v_lin): Linear(in_features=768, out_features=768, bias=True)
 (out_lin): Linear(in_features=768, out_features=768, bias=True)
)
 (sa_layer_norm): LayerNorm((768,), eps=1e-12,
 elementwise_affine=True)
 (ffn): FFN(
 (dropout): Dropout(p=0.1, inplace=False)
 (lin1): Linear(in_features=768, out_features=3072, bias=True)
 (lin2): Linear(in_features=3072, out_features=768, bias=True)
 (activation): GELUActivation()
)
 (output_layer_norm): LayerNorm((768,), eps=1e-12,
 elementwise_affine=True)
)
)
)
)
 (pre_classifier): Linear(in_features=768, out_features=768, bias=True)
 (classifier): Linear(in_features=768, out_features=2, bias=True)
 (dropout): Dropout(p=0.2, inplace= False)
)

6.1.5 Configuring and initializing a trainer for fine-tuning a pretrained model

To fine-tune a pretrained model on a dataset, you can use the Trainer and Training-
Arguments classes from Hugging Face. The following code snippet demonstrates how

128 CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

to set up the Trainer and TrainingArguments classes to train the model using the train
split of the tokenized dataset and evaluate the model using the test split of the toke-
nized dataset.

Listing 6.6 Setting up the TrainingArguments and Trainer classes for fine-tuning

from transformers import Trainer, TrainingArguments

training_args = TrainingArguments(
 output_dir = "./results",
 eval_strategy = "epoch",
 save_strategy = "epoch",
 learning_rate = 2e-5,
 per_device_train_batch_size = 16,
 per_device_eval_batch_size = 16,
 num_train_epochs = 3,
 weight_decay = 0.01,
 logging_dir = "./logs",
 logging_steps = 10,
 save_steps = 500,
 load_best_model_at_end = True,
)

trainer = Trainer(
 model = model,
 args = training_args,
 train_dataset = tokenized_datasets["train"],
 eval_dataset = tokenized_datasets["test"],
)

trainer.train()

The duration of the training process will vary based on your machine’s configuration
and resources. Training can take anywhere from 10 minutes to 1 hour, so patience is
key. (You’ll know roughly how much time is needed during the training.) If training is
taking too long, consider reducing the dataset from 5,000 rows to, say, 1,000 to speed
the process.

When training is complete, you’ll see the
training loss and validation loss for each
epoch (iteration) of the process (see figure
6.1). (Note that your results may vary from
those in the figure.) These values provide
insights into how well the model is learn-
ing and generalizing to unseen data, with
the training loss indicating the model’s

Sets up training arguments

Directory in which
to save results

Evaluates model
after each epoch

Saves the model
after each epoch

Learning rate

Batch size
for training

Batch size for
evaluation

Number of
training epochs

Weight decay for
regularization

Directory for logs

Logs every 10 steps

Saves the model every 500 steps

Loads the best model at
the end of training

Sets up the Trainer

Fine-tunes the model

Epoch Training loss Validation loss

Figure 6.1 The result printed at the end of

training

 129Fine-tuning pretrained models

performance on the training data and the validation loss showing its performance on
the validation set.

When the model is trained, save it to disk so you can use it later without going
through the training process again:

model.save_pretrained("./results/final_model")
tokenizer.save_pretrained("./results/final_tokenizer")

Also, you can evaluate the model and print its result:

eval_results = trainer.evaluate()
print(f"Evaluation results: {eval_results}")

Following is the evaluation report for the training:

Evaluation results: {'eval_loss': 0.1825547218322754,
 'eval_runtime': 63.1454,
 'eval_samples_per_second': 79.182,
 'eval_steps_per_second': 4.957,
 'epoch': 3.0}

Here’s what to make of the result:

¡	Evaluation loss (0.18255)—The model’s loss during evaluation, with lower values
indicating better performance. This value is a relatively low loss value, which gen-
erally indicates good performance, especially if you’re working on a classification
task such as sentiment analysis.

¡	Evaluation runtime (63.1454 [seconds])—The total time taken to run the
evaluation.

¡	Evaluation samples per second (79.182)—The number of samples processed per sec-
ond during evaluation. This value reflects the model’s processing speed during
evaluation, which seems decent, but it informs you mainly about efficiency rather
than quality.

¡	Evaluation steps per second (4.957)—The number of evaluation steps completed
per second. Like evaluation samples per second, this value informs you about
efficiency rather than quality.

¡	Epoch (3.0)—The results from the third epoch of training. You can try varying
this value to monitor how the loss evolves with more training.

The evaluation results suggest that the model is performing reasonably well.

6.1.6 Using the fine-tuned model

With the fine-tuned model trained and saved, you can use it to perform a sentiment
analysis on a new restaurant review. The following listing shows how to load the fine-
tuned model, move it and the inputs to the GPU (if available), and derive the result.

Saves the fine-tuned
model and tokenizer

Evaluates the model

130 CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

Listing 6.7 Using the fine-tuned model

from transformers import AutoTokenizer, \
 AutoModelForSequenceClassification
import torch

new_model = AutoModelForSequenceClassification.from_pretrained(
 "./results/final_model")
new_tokenizer = AutoTokenizer.from_pretrained(
 "./results/final_tokenizer")

new_model.to(device)

sentence = '''
I had an amazing experience dining at this restaurant last night.
From the moment we walked in, the staff made us feel welcomed and
were incredibly attentive. Our server was friendly, knowledgeable,
and made great recommendations from the menu.

The food was absolutely delicious. I had the grilled salmon, and
it was cooked to perfection—tender, flavorful, and served with a
lovely citrus glaze that complemented it beautifully. The roasted
vegetables on the side were fresh and perfectly seasoned. My
partner had the pasta, which was creamy and rich in flavor, with
just the right amount of spice.

The ambiance was warm and inviting, with cozy lighting and tasteful
decor. It was the perfect place to relax and enjoy a nice meal. The
dessert, a decadent chocolate lava cake, was the perfect way to end
the meal.

Overall, this restaurant exceeded my expectations in every way.
Excellent food, exceptional service, and a wonderful atmosphere.
I'll definitely be back and highly recommend it to anyone looking
for a great dining experience.
'''

inputs = new_tokenizer(sentence,
 return_tensors = "pt",
 padding = True,
 truncation = True,
 max_length = 512)

inputs = {key: value.to(device) for key, value in inputs.items()}

new_model.eval()

with torch.no_grad():
 outputs = new_model(**inputs)
logits = outputs.logits
probabilities = torch.nn.functional.softmax(logits, dim=-1)

Reloads the
model and
tokenizer

Reloads the model
and tokenizer

Moves the inference to GPU

Tokenizes the input sentence

Moves inputs
to GPU/MPSPuts the model in evaluation mode

Runs the model to get predictions

Gets the
logits (raw
scores) from
the model
output

Converts logits to
probabilities using Softmax

 131Fine-tuning pretrained models

predicted_class = torch.argmax(probabilities, dim=-1).item()

if predicted_class == 1:
 print(f"Sentiment: Positive (Confidence: \
 {probabilities[0][1].item():.2f})")
else:
 print(f"Sentiment: Negative (Confidence: \
 {probabilities[0][0].item():.2f})")

The sample review in the code listing yields a positive sentiment with a confidence of
0.99:

Sentiment: Positive (Confidence: 0.99)

Next, modify the content of the sentence variable with a negative review, and examine
the result:

sentence = '''
I visited this place last night with high expectations after
hearing some good things, but it was honestly one of the worst
dining experiences I've had in a while. The service was
incredibly slow, even though the restaurant wasn't crowded.
Our waiter seemed disinterested and forgot half of our order.

When the food finally came, it was cold and tasted bland. The
pasta was overcooked, and my steak was underseasoned and chewy.
The side of vegetables looked like they had been reheated from
a previous meal.

To make things worse, the ambiance was far too noisy, and we
had to wait an extra 20 minutes for the check. I tried to
address my concerns with the manager, but they seemed
uninterested in hearing feedback. Overall, I felt like I had
wasted both my time and money.

I will definitely not be coming back, and I would not recommend
this place to anyone.
'''

This time, the model returns a negative sentiment:

Sentiment: Negative (Confidence: 0.99)

6.1.7 Fine-tuning models for multiclass text classification

Unlike the yelp_polarity dataset, which uses binary labels (0 and 1) for sentiment clas-
sification, the yelp_review_full dataset contains labels corresponding to a star rating
system ranging from 1 to 5 stars. Each review is assigned a star rating that reflects the
user’s sentiment about the business:

Gets the
predicted class
(index of the
maximum
probability)

Outputs the
predicted
sentiment

132 CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

1 Very negative sentiment

2 Negative sentiment

3 Neutral sentiment

4 Positive sentiment

5 Very positive sentiment

These ratings provide a more granular view of sentiment compared with the binary
labels in the yelp_polarity dataset. This fact makes the yelp_review_full dataset
suitable for tasks such as multiclass sentiment classification or regression, the goal of
which is to predict one of five sentiment categories based on the review text. Let’s load
the yelp_review_full dataset to examine its content:

from datasets import load_dataset

dataset = load_dataset("yelp_review_full")
print(dataset)

You will see the following output:

DatasetDict({
 train: Dataset({
 features: ['label', 'text'],
 num_rows: 650000
 })
 test: Dataset({
 features: ['label', 'text'],
 num_rows: 50000
 })
})

There are 650,000 rows in the train split and 50,000 rows in the test split. As usual,
filter the dataset to contain only reviews that are related to restaurants, as shown in the
next listing.

Listing 6.8 Filtering yelp_review_full to contain only rows related to restaurants

from datasets import DatasetDict

train_dataset = dataset["train"]
test_dataset = dataset["test"]

restaurant_train_reviews = train_dataset.filter(
 lambda x: "restaurant" in x["text"].lower()
)

restaurant_test_reviews = test_dataset.filter(
 lambda x: "restaurant" in x["text"].lower()

Loads Yelp Reviews dataset
with ratings from 1 to 5

Displays the structure
of the dataset

Selects the train and test splits

Filters for restaurant-
related reviews in the
train and test datasets

 133Fine-tuning pretrained models

)

number_of_reviews = 5000

subset_train_reviews = restaurant_train_reviews.shuffle(

 seed=42).select(range(number_of_reviews))

subset_test_reviews = restaurant_test_reviews.shuffle(

 seed=42).select(range(number_of_reviews))

subset_dataset = {

 "train": subset_train_reviews,

 "test": subset_test_reviews

}

yelp_restaurant_dataset = DatasetDict(subset_dataset)

print(yelp_restaurant_dataset)

The reduced dataset looks like this:

DatasetDict({
 train: Dataset({
 features: ['label', 'text'],
 num_rows: 5000
 })
 test: Dataset({
 features: ['label', 'text'],
 num_rows: 5000
 })
})

Take a look at the first row of the train split:

yelp_restaurant_dataset['train'][0]

The output looks like this:

{'label': 2,

 'text': "This place is good, but I think I just ordered

 the wrong thing. The Hibiscus Enchiladas were

 just way too sweet for me. I think they should

 be on the dessert menu and not dinner menu. I'd

 like to give it another chance and order

 something else next time, but other than that

 a good vibe. Seemed like the typical American

 Mexican restaurant."}

As explained earlier, the label is a number from 1 to 5 representing the sentiment
level. As you did in listing 6.3 earlier in this chapter, now you can tokenize the reduced
dataset.

Uses only 5,000
reviews for training

Creates a DatasetDict to return
both train and test datasets

Displays the structure
to match the
requested format

Prints the dataset structure

134 CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

With the dataset tokenized, the next step is using a pretrained model and fine-tune
it to perform sentiment analysis, as in listing 6.4 earlier in the chapter. But because now
there are five labels (1 to 5) instead of 0 and 1, you need to set the num_labels parameter
to 5 instead of 2:

model = AutoModelForSequenceClassification.from_pretrained(
 model_checkpoint,
 num_labels = 5)

Now you can proceed with fine-tuning the model. The code is the same as listing 6.6
earlier in this chapter.

When the model is fine-tuned, save it in a new folder named final_model_multiclass
and the tokenizer in a folder named final_tokenizer_multiclass:

model.save_pretrained("./results/final_model_multiclass")
tokenizer.save_pretrained("./results/final_tokenizer_multiclass")
eval_results = trainer.evaluate()
print(eval_results)

TIP Refer to the code repository that
accompanies this book for the complete
source code.

When training is complete, you see the
training loss and validation loss for each
epoch (iteration) of the process, as shown
in figure 6.2.

The result of the evaluation is as follows:

{
 'eval_loss': 0.9178248047828674,
 'eval_runtime': 63.0299,
 'eval_samples_per_second': 79.327,
 'eval_steps_per_second': 4.966,
 'epoch': 3.0
}

Now you can load the fine-tuned model and use it to perform multiclass sentiment
analysis, as shown in the next listing.

Listing 6.9 Using the fine-tuned model to perform multiclass sentiment analysis

from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer

Loads pretrained model
for sequence classification

Saves the fine-tuned
model and tokenizer

Evaluates the model
on the test set

Prints the evaluation results

Epoch Training loss Validation loss

Figure 6.2 The result printed at the end of

the fine-tuning

 135Fine-tuning pretrained models

import torch

new_reviews = [
 "The food was amazing and the service was excellent!",
 "The restaurant was dirty and the food was cold.",
 "Decent experience, but nothing special."
]

if torch.backends.mps.is_available():
 device = torch.device("mps")
else:
 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

new_tokenizer = AutoTokenizer.from_pretrained(
 "./results/final_tokenizer_multiclass")

inputs = new_tokenizer(new_reviews,
 padding = "max_length",
 truncation = True,
 return_tensors = "pt")

inputs = {key: value.to(device) for key, value in inputs.items()}

new_model = AutoModelForSequenceClassification.from_pretrained(
 "./results/final_model_multiclass")
new_model.to(device)

new_model.eval()

with torch.no_grad():
 outputs = new_model(**inputs)
 logits = outputs.logits
 predictions = torch.argmax(logits, dim=-1)

star_ratings = predictions + 1
for review, rating in zip(new_reviews, star_ratings):
 print(f"Review: {review}\nPredicted Star Rating: \
 {rating.item()}\n")

In listing 6.9, you had three sample restaurant reviews:

new_reviews = [
 "The food was amazing and the service was excellent!",
 "The restaurant was dirty and the food was cold.",
 "Decent experience, but nothing special."
]

When you use the fine-tuned model, these are the predicted ratings:

Review: The food was amazing and the service was excellent!
Predicted Star Rating: 5

Review: The restaurant was dirty and the food was cold.
Predicted Star Rating: 1

Determines the device

Loads the tokenizer

Tokenizes the reviews

Moves inputs to GPU/MPS

Loads the fine-tuned model

Performs inference

Assuming that classes
are 0–4, maps to 1–5

136 CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

Review: Decent experience, but nothing special.
Predicted Star Rating: 3

Looks like they are pretty accurate!

6.2 Working with multimodal models

So far, all the models you’ve worked with have been single-modal models. A single-modal

model is a machine learning model designed to work with data from a single modality,
such as text, images, audio, or numerical data. Following are a few examples:

¡	An NLP model such as GPT or BERT is trained to work exclusively with textual
data.

¡	A CNN such as a residual neural network (ResNet) is trained to process and ana-
lyze visual data such as images.

A multimodal model, on the other hand, is a machine learning model designed to pro-
cess and integrate data from multiple modalities—different types of information, such
as text, images, audio, video, and structured data. By combining these modalities, mul-
timodal models aim to learn richer, more comprehensive representations, allowing
them to perform tasks involving multiple types of inputs. Here are some example uses
of multimodal models:

¡	Multimodal models can be used in image captioning. They combine visual data
(images) with NLP (text) to generate descriptive captions.

¡	Another example is visual question answering (VQA), in which the model takes
an image and a question as inputs and provides an answer by reasoning across
both modalities.

¡	Similarly, in speech-to-text systems, audio data (speech) is processed and con-
verted to textual information.

¡	Other real-world applications include multimodal sentiment analysis, combin-
ing text, audio tone, and visual cues (such as facial expressions) to assess senti-
ment; and autonomous driving systems, in which data from cameras (images),
lidar (structured data), and GPS are integrated to understand the environment
and make driving decisions.

Multimodal models have several advantages over single-modal models. They com-
bine different types of data (such as text, images, and audio) for better understanding
and can handle noise or missing information in one type by relying on others. This
improves accuracy, generalization, and performance across tasks such as image cap-
tioning and VQA. By using multiple data sources together, they reduce bias, mimic
human decision-making, and handle complex tasks more effectively.

6.2.1 Single-modal models

A good example of a single-model model is the facebook/detr-resnet-50 model. This
model is a Detection Transformer (DETR) model developed by Facebook AI and used

 137Working with multimodal models

for object detection and image segmentation, combining the strengths of CNNs and
transformers. In the following example, we’ll use it to detect objects in an image. First,
let’s load an image from the web:

from PIL import Image, ImageDraw
import requests

url = 'https://images.unsplash.com/' + \
 'photo-1563460716037-460a3ad24ba9'
if url.startswith('http'):
 image = Image.open(requests.get(url, stream=True).raw)
else:
 image = Image.open(url)
image

Figure 6.3 shows the picture, which contains a dog and a cat.

Figure 6.3 An image

containing a dog and a cat

(Source: https://mng.bz/Z9K5)

We’ll use the facebook/detr-resnet-50 model to try to detect the dog and cat in the
picture. The following listing shows how.

URL of the image

If the image is
from the web . . .

. . . the image is local.

https://mng.bz/Z9K5

138 CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

Listing 6.10 Using the facebook/detr-resnet-50 model to detect objects in images

from transformers import DetrImageProcessor, DetrForObjectDetection
import torch

image_processor = DetrImageProcessor.from_pretrained(
 "facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")

inputs = image_processor(images = image,
 return_tensors = "pt")

model.eval()

with torch.no_grad():
 outputs = model(**inputs)
target_sizes = torch.tensor([image.size[::-1]])

results = image_processor.post_process_object_detection(
 outputs,
 target_sizes = target_sizes,
 threshold = 0.9)[0]
print(results)

The model returned the following result (formatted for clarity):

{
 'scores': tensor([0.9924, 0.9989], grad_fn=<IndexBackward0>),
 'labels': tensor([17, 18]),
 'boxes': tensor([[4.5560e+00, 2.8760e+03, 2.4111e+03, 4.9051e+03],
 [2.2206e+02, 1.4505e+03, 3.6523e+03, 4.6681e+03]],
 grad_fn=<IndexBackward0>)
}

Using the result, you can plot bounding boxes around the detected objects using the
following code.

Listing 6.11 Plotting bounding boxes around a detected object in an image

draw = ImageDraw.Draw(image)

for score, label, box in zip(results["scores"],
 results["labels"],
 results["boxes"]):
 print(
 f"Detected {model.config.id2label[label.item()]} with confidence "
 f"{(score.item() * 100):.2f}% at {box}"
)
 box = [round(i, 2) for i in box.tolist()]
 draw.rectangle(box,

Processes the image so that the
model can use the preprocessed
data (e.g., resized, normalized, and
converted to tensors) as inputs

The outputs
variable contains
the raw predictions
from the model,
which include
detected object
information.

Creates the target
size in the format
(height,width)

Converts the raw model
outputs to human-readable

object detection results

Prints the object detected
and the confidence

Draws bounding
box around object

 139Working with multimodal models

 outline = 'green',
 width = 10)
 draw.text((box[0], box[1]-10),
 model.config.id2label[label.item()],
 fill = 'green')
display(image)

This code prints the following result:

Detected cat with confidence 99.47% at tensor(
 [1.4345e+00, 1.2385e+03,
 1.0472e+03, 2.1296e+03],
 grad_fn=<UnbindBackward0>)
Detected dog with confidence 99.92% at tensor(
 [96.8109, 630.3585,
 1587.2705, 2028.8726],
 grad_fn=<UnbindBackward0>)

Figure 6.4 displays the bounding boxes around the dog and cat, with the label for each
detected object shown in the top-left corner of the box.

Figure 6.4 The detected

objects in the image with the

bounding boxes drawn

Displays the object label

140 CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

This example demonstrates the use of a single-modal model, DETR, for object detec-
tion. The model processes only visual data (an input image) to identify objects and
their bounding boxes. In section 6.2.2, you’ll see how a multimodal model can enhance
this by integrating additional data types, such as text, to improve contextual under-
standing and provide more comprehensive insights for tasks such as image captioning,
VQA, and other complex applications that require the fusion of multiple modalities.

6.2.2 Multimodal models

Now that you’ve seen how a single-modal model identifies objects in an image, let’s
explore how a multimodal model differs. We’ll use the Contrastive Language–Image
Pretraining (CLIP) model to demonstrate how a multimodal model can process
images and text together. Unlike a single-modal model, CLIP understands the rela-
tionship between images and textual descriptions, allowing it to perform tasks such as
image classification based on natural language labels. By using both visual and textual
data, CLIP makes more accurate predictions, handles more complex queries, and gen-
eralizes across various tasks without needing task-specific training. Let’s walk through
how CLIP works and see how it can classify images based on a set of textual descriptions.

What is CLIP?

CLIP is a multimodal model developed by OpenAI that connects text and image under-

standing. It can process and relate textual descriptions to visual content without

requiring explicit fine-tuning for specific tasks. It can understand both text and images

and establish meaningful relationships between them.

During training, CLIP aligns text descriptions with corresponding images while distin-

guishing them from unrelated pairs. The caption “a dog playing in the park,” for exam-

ple, is linked to an image of a dog but separated from images of cats or cars.

CLIP can perform tasks it wasn’t specifically trained for by using its broad understand-

ing of text and images. It can classify images based on user-provided text labels, for

example, without requiring task-specific data.

CLIP uses two separate neural networks:

¡	A text encoder (transformer-based) to process text

¡	An image encoder (based on models like ResNet and Vision Transformer [ViT])

to process images

First, let’s load an image that we want to use. For this example, we’ll load an image of
a dog:

import torch
import requests
from PIL import Image

url = 'https://images.unsplash.com/' + \

 141Working with multimodal models

 'photo-1491604612772-6853927639ef'

image = Image.open(requests.get(url, stream=True).raw)
display(image)

Figure 6.5 shows the image of a dog loaded from the web.

Figure 6.5 An image of a dog

(Source: https://mng.bz/0zEE)

For this example, we’ll use a multimodal model to simultaneously process both visual
and textual data, as shown in the following listing. The CLIP model is designed to learn
the relationship between images and their corresponding textual descriptions. By
using both an image and a list of labels (text), the model can determine which label
best matches the content of the image. This approach allows the model not only to
analyze visual features but also to use contextual information from the text, providing
a more powerful and versatile solution than single-modal models, which process only
one type of data.

Listing 6.12 Using a multimodal model to simultaneously process visual and textual data

from transformers import CLIPProcessor, CLIPModel

model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

URL of the image

Downloads the CLIP model

https://mng.bz/0zEE

142 CHAPTER 6 Fine-tuning pretrained models and working with multimodal models

labels = ["cat", "dog", "tiger", "train"]
inputs = processor(text = labels,
 images = image,
 return_tensors = "pt",
 padding=True)

model.eval()

with torch.no_grad():
 outputs = model(**inputs)

logits_per_image = outputs.logits_per_image

probs = logits_per_image.softmax(dim=1)
most_likely_index = torch.argmax(probs, dim=1).item()
most_likely_object = labels[most_likely_index]

print(f"The most likely object is: {most_likely_object}")

This example is a multimodal model in action. It involves processing and combining
data from two modalities: text and images. Specifically, the code uses the CLIP model
from OpenAI, which is designed to understand and compute the similarity between
textual descriptions and images. Here’s how the code works:

1 You download the openai/clip-vit-base-patch32 model and its corresponding
processor, using the CLIPModel and CLIPProcessor classes.

2 The input image (loaded using libraries like PIL) and a list of possible labels
(["cat", "dog", "tiger", "train"]) are processed by the CLIPProcessor, which
converts them to a format suitable for the model (token embeddings for text and
normalized tensors for the image).

3 The model processes the image and the text inputs:

a It extracts visual features from the image.

b It extracts textual features from the labels.

4 The model computes similarity scores between the image features and each
label’s text features, producing a set of logits (raw, unnormalized output values of
a model; logits_per_image).

5 The logits are converted to probabilities using the softmax() function, and the
label with the highest probability is selected as the most likely match for the
image.

This example returns the following output:

The most likely object is: dog

The inputs variable contains the data that
is passed to the CLIP model for processing.
It is the processed representation of both
the text and image data, formatted in a
way that the model can understand.

The outputs variable contains the result of processing the
inputs through the CLIP model. The model processes
the text and image data, and the outputs object
contains the computed features and similarity scores.

The image-text similarity score

We can take the
softmax to get the
label probabilities.

Gets and prints the
most likely object

 143Summary

Summary

¡	Fine-tuning is a machine learning method in which a pretrained model is further
trained on a smaller, domain-specific dataset to adapt it to a targeted task.

¡	The yelp_polarity dataset is a subset of the larger Yelp Dataset Challenge, cre-
ated specifically for text classification applications like sentiment analysis.

¡	Sequence classification refers to tasks in which an entire sequence of data—such
as a sentence, paragraph, or longer token string—is assigned a single label or
category.

¡	MPS is Apple’s framework that enables GPU-accelerated computation on macOS
systems powered by Apple silicon (M1, M2, M3, and M4 chips).

¡	CUDA is Nvidia’s platform and programming interface that allows developers to
perform general-purpose computing on Nvidia GPUs.

¡	To fine-tune a pretrained model with Hugging Face, you typically use the Trainer
class together with TrainingArguments.

¡	A single-modal model is designed to handle data from only one modality, such as
text, images, audio, or numerical values.

¡	A multimodal model is capable of processing and combining data from multiple
modalities, such as text, images, audio, video, or structured inputs.

¡	CLIP, developed by OpenAI, is a multimodal model that links visual understand-
ing with natural language comprehension.

144

7Creating LLM-based
applications using

LangChain and LlamaIndex

This chapter covers

¡	Introducing large language models (LLMs)

¡	Creating LLM applications using LangChain

¡	Connecting LLMs to your private data

In chapter 3, you learned how to employ a transformers pipeline to access diverse
pretrained models for various natural language processing (NLP) tasks, including
sentiment classification, named entity extraction, and text summarization. In prac-
tical scenarios, however, the goal is to seamlessly integrate various models, encom-
passing those from Hugging Face and OpenAI, into custom applications. Enter
LangChain, a solution that facilitates the customization of NLP applications by link-
ing different components based on specific requirements.

Although pretrained models are beneficial, it’s important to note that they
were trained on external data, not your own. Often, you need to use a model that
answers questions pertinent to your unique dataset. Imagine possessing a dataset
with numerous receipts and invoices. You would want a pretrained model to summa-
rize your purchases or identify vendors associated with specific items. LlamaIndex is

 145Introducing LLMs

indispensable for this task. With LlamaIndex, you gain the ability to connect an LLM to
your proprietary data, empowering it to address queries tailored to your dataset.

In this chapter, you’ll delve into using LangChain to construct NLP applications with
LLMs. Further, you’ll explore using LlamaIndex to develop NLP applications specifi-
cally trained to respond to inquiries related to your private data.

7.1 Introducing LLMs

An LLM is a type of AI model designed to understand and generate humanlike text
based on the patterns and structures it learned from a massive amount of training data.
Specifically, LLM refers to a class of advanced NLP models. LLMs have the following
features:

¡	Size and scale—LLMs are trained on a massive amount of data, including books,
articles, websites, videos, and pictures (see figure 7.1).

¡	Pretraining—LLMs go through a pretraining phase in which they use a large
amount of training data to learn the statistical relationships between words and
sentences. This phase allows them to acquire a general understanding of gram-
mar, syntax, and semantics.

¡	Fine-tuning—After the pretraining, LLMs are fine-tuned on specific tasks or data-
sets. This process makes them perform specific tasks, such as text classification,
sentiment analysis, and language translation.

Large language model (LLM)

Figure 7.1 LLMs are trained using large amounts of data from sources including books, articles,

webpages, videos, and images.

To gain a perspective on how large LLMs are, consider the numbers shown in table 7.1.
Specifically, OpenAI’s GPT-3 Davinci model has 175 billion trainable parameters and
uses 499 billion tokens in its training data.

146 CHAPTER 7 Creating LLM-based applications using LangChain and LlamaIndex

Table 7.1 Some LLMs and the size of their training data

LLM model
Number of trainable

parameters

Number of tokens in

the training data

Nvidia: Megatron-Turing Natural

Language Generation (MT-NLG)
530 billion 270 billion

OpenAI: Generative Pretrained
Transformer-3 (GPT-3) Davinci

175 billion 499 billion

Source: A Beginner’s Guide to Large Language Models, Part 1. Nvidia. https://mng.bz/V9YW

Trainable parameters

Trainable parameters are the variables within a machine learning or deep learning

model that are adjusted during the training process to enable the model to make

accurate predictions or perform a specific task. These parameters are learned from

the training data and fine-tuned to optimize the model’s performance on a given task.

In neural networks, trainable parameters typically include the following:

¡	Weights—These values are associated with the connections between neurons

in different layers of the network. During training, the weights are repeatedly

adjusted to help the network learn the relationships between input data and

desired output.

¡	Biases—These values are associated with each neuron in a neural network

layer. They help shift the activation function’s output and allow the network to

learn complex patterns.

In short, the more trainable parameters you have in a neural network, the longer it

takes to train the system. Training a model with many trainable parameters requires

immense computing power and memory, so it is very expensive to train an LLM.

What are tokens?

In the context of NLP and machine learning,

a token is a chunk of text that a model pro-

cesses as a single unit. Consider an exam-

ple using the word unhappiness. Instead of

processing the word as a single unit, a GPT

such as OpenAI’s GPT-3.5 uses a technique

known as subword-level tokenization, called

byte-pair encoding (BPE). This technique

allows the model to have a large, diverse

vocabulary without the limitations of a fixed

word-level vocabulary. This is particularly

useful for understanding and generating

text in various contexts, languages, and

domains. The following figure shows the

word broken into three tokens.

happi-un- -ness

unhappiness

Subword-level tokenization

Subword-level

tokenization

How the word unhappiness is tokenized

into three tokens using the subword-level

tokenization technique

https://mng.bz/V9YW

 147Introducing LangChain

Note that in addition to subword-level tokenization, you can use techniques such as

word-level tokenization and character-level tokenization (covered in chapter 3).

7.2 Introducing LangChain

LangChain is a framework built around LLMs, designed to simplify the creation of
applications with LLMs. You can think of it as a chain that connects the various compo-
nents required to create advanced use cases for LLMs. A chain may contain the follow-
ing components:

¡	Prompt templates—Templates for different types of conversations with LLMs

¡	LLMs—GPT-3, GPT-4, and so on

¡	Agents—Use LLM to decide what actions to be taken

¡	Memory—Short- or long-term memory

7.2.1 Installing LangChain

To use LangChain, you first need to install the langchain package using the pip
command:

!pip install langchain

All the code in the following sections is tested against LangChain version 0.3.4.

7.2.2 Creating a prompt template

Let’s learn how to use LangChain to connect an LLM with a prompt template to cre-
ate a simple LLM application. The first component you’ll create is a PromptTemplate.

DEFINITION A prompt template structures the instruction or query given to the
model to obtain the desired outputs. It provides a flexible way to guide the
model’s behavior by incorporating special tokens and instructions.

A PromptTemplate is a string template that accepts a list of parameters from users that
can be used to generate a prompt for an LLM. The following code snippet creates a
PromptTemplate containing a single parameter (question:).

Listing 7.1 Creating a simple PromptTemplate component

from langchain import PromptTemplate

template = '''
Question: {question}
Answer:
'''

prompt = PromptTemplate(

148 CHAPTER 7 Creating LLM-based applications using LangChain and LlamaIndex

 template = template,
 input_variables = ['question']
)
prompt

The template parameter in the PromptTemplate class accepts a string template. The
input_variables parameter accepts a list of parameters from the user that will be used
to generate the prompt. Figure 7.2 shows the relationship between the value of the
input_variables parameter and the variable in the string template:

These two
must match.

Figure 7.2 The input variable is linked to the variable in the string template.

Here is the output of the PromptTemplate when printed:

PromptTemplate(input_variables=['question'],
 template='\nQuestion: {question}\nAnswer: ')

In the prompt template, you want to ask the LLM a question and get an answer.

7.2.3 Specifying an LLM

Now that you’ve created the prompt template, the next step is selecting and using an
LLM. Let’s start with an LLM hosted by Hugging Face. First, though, you need to sign
up for a free account at Hugging Face (https://huggingface.co/join), if you haven’t
done that already, and create a token at https://huggingface.co/settings/tokens. Cre-
ate a read token, and give it a name (see figure 7.3).

Then copy the access token and save it in the environment variable:

import os
os.environ['HUGGINGFACEHUB_API_TOKEN'] = 'Your_HuggingFace_Token'

To use an LLM from Hugging Face, install the langchain-huggingface package:

!pip install langchain-huggingface

https://huggingface.co/join
https://huggingface.co/settings/tokens

 149Introducing LangChain

Figure 7.3 Creating a Hugging Face token

Now you can use the HuggingFaceEndPoint class to access an LLM from Hugging
Face:

from langchain_huggingface import HuggingFaceEndpoint

hub_llm = HuggingFaceEndpoint(

 endpoint_url="https://api-inference.huggingface.co/models/

HuggingFaceH4/zephyr-7b-alpha",

 temperature = 1

)

The preceding code snippet uses the HuggingFaceH4/zephyr-7b-alpha model.

NOTE When you use the HuggingFaceEndPoint class to specify an LLM,
the inferencing is performed at Hugging Face’s end, not locally on your
computer.

The language models in the Zephyr series are trained to act as helpful assistants. Zephyr
-7B-α, the first model in the series, is a fine-tuned version of mistralai/ Mistral
-7B-v0.1, which was trained on a mix of publicly available synthetic datasets using
Direct Preference Optimization (DPO). You can find more information about this
model at https://mng.bz/nZO4. As shown in figure 7.4, HuggingFaceH4/zephyr-7b
- alpha is a text-generation model.

https://mng.bz/nZO4

150 CHAPTER 7 Creating LLM-based applications using LangChain and LlamaIndex

HuggingFaceH4/zephyr-7b-alpha
is a text-generation model.

Figure 7.4 Viewing the HuggingFaceH4/zephyr-7b-alpha model on the Hugging Face web page

7.2.4 Creating an LLM chain

The next step is creating an LLM chain. You combine your prompt template and
model (LLM) to create a chain so that you can run queries against the LLM:

from langchain_core.output_parsers import StrOutputParser

llm_chain = prompt | hub_llm | StrOutputParser()

Essentially, you’re chaining all the various components: PromptTemplate, hub_llm, and
StrOutputParser. The StrOutputParser object handles the output and parses it into
a string. The | operator in llm_chain = prompt | hub_llm | StrOutputParser() rep-
resents pipeline-style chaining in LangChain. This syntax makes it easy to link different
components—prompts, language models, output parsers, and so on—in a sequence
to process data from start to finish. Each component takes the output of the previous
step, processes it, and passes it along to the next.

 151Introducing LangChain

7.2.5 Running the chain

You are ready to use the chain to answer questions. To test the application, call the
run() method of the LLM chain:

qn = "Who is Elon Musk?"
print(llm_chain.invoke(qn))

Here is the response from the LLM:

1. Elon Musk is the CEO of SpaceX, Tesla, and Neuralink

Remember that all the inferencing is done on Hugging Face’s server. Observe what
happens if you ask a follow-up question:

qn = "Is he married?"
print(llm_chain.invoke(qn))

You get a response like the following because the LLM doesn’t maintain a context
between questions:

I do not have personal information about individuals. however, based on the
information available to me

How do you solve this problem? Let’s take a look.

7.2.6 Maintaining a conversation

To maintain context between questions, the LLM needs to know what the response
questions and answers were. One way to do this is to alter the prompt template and
provide a history of the conversation:

template = '''
Current conversation: {history}
Human: {question}
AI:
'''

The preceding code snippet shows that there are two variables in the template string:

¡	history

¡	question

Correspondingly, the input_variables parameter must also specify the two variables in
the list:

prompt = PromptTemplate(
 template = template,
 input_variables = ['question','history']
)

152 CHAPTER 7 Creating LLM-based applications using LangChain and LlamaIndex

Next, create a new chain using the updated PromptTemplate object:

llm_chain = prompt | hub_llm | StrOutputParser()

Now you can ask a question by passing the question and history to the invoke() method:

qn = "Who is Elon Musk?"
response = llm_chain.invoke({'question':qn,'history':''})
print(response)

The preceding code generates the following response:

Elon Musk is a South African-born American entrepreneur, business magnate,
and engineer.

If you ask a follow-up question like this one (note that you need to pass the previous
response from the LLM to the invoke() method),

qn = "Is he married?"
response = llm_chain.invoke({'question':qn,'history':response})
print(response)

you get a response that understands the context of the question:

Elon Musk is currently not married. He was previously married to Canadian
author and journalist, Tal

Now rewrite the preceding code snippet using a while loop so you can prompt the user
to ask a question and get the LLM to answer it:

history = ''
while True:
 qn = input('Question: ')
 if qn == 'quit':
 break
 response = llm_chain.invoke({'question':qn, 'history':history})
 history = response
 print(history)

Figure 7.5 shows the flow of the question-and-answer session.

7.2.7 Using the RunnableWithMessageHistory class

Section 7.2.6 showed how to modify the prompt to maintain a conversation with
the LLM. An alternative approach to maintaining a chat conversation is to use the
Runnable WithMessageHistory class, a LangChain class that allows you to manage the
history of interactions (messages) during a conversation between the user and an
AI model. The class is part of LangChain’s conversational framework, used to build

 153Introducing LangChain

First question
and response

Second question
and response

Figure 7.5 A user can ask questions and get a response from the LLM.

systems that keep track of conversation history across multiple exchanges. The follow-
ing listing shows how to use the RunnableWithMessageHistory class.

Listing 7.2 Using the RunnableWithMessageHistory class to maintain conversation

import os
from langchain import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.runnables.history import RunnableWithMessageHistory

os.environ['HUGGINGFACEHUB_API_TOKEN'] = 'your_hugging_face_token'

template = '''
Question: {question}
Answer:
'''

prompt = PromptTemplate(
 template = template,
 input_variables = ['question']
)

hub_llm = HuggingFaceEndpoint(
 endpoint_url="https://api-inference.huggingface.co/models/HuggingFaceH4/
zephyr-7b-alpha",
 temperature = 1
)

154 CHAPTER 7 Creating LLM-based applications using LangChain and LlamaIndex

class SessionHistory:
 def __init__(self):
 self.messages = []

 def add_messages(self, messages):
 self.messages.extend(messages)

 def get_messages(self):
 return self.messages

session_history = SessionHistory()

def get_session_history():
 return session_history

llm_chain = RunnableWithMessageHistory(
 prompt | hub_llm | StrOutputParser(),
 get_session_history = get_session_history
)

while True:

 user_question = input("Ask a question (type 'exit' to stop): ")

 if user_question.lower() == "quit":
 print("Ending conversation.")
 break

 input_data = {"question": user_question}

 response = llm_chain.invoke(input_data)

 session_history.add_messages([
 {"role": "user", "content": user_question},
 {"role": "assistant", "content": response}
])

 #L display the response
 print(f"AI: {response}")

You can ask follow-up questions after the initial question. The main addition to this
code snippet is the SessionHistory class, which allows you to save the history of the
exchanges between the user and the model. Then an instance of the SessionHistory
class is passed to the RunnableWithMessageHistory class through the get_session_
history parameter:

llm_chain = RunnableWithMessageHistory(
 prompt | hub_llm | StrOutputParser(),
 get_session_history = get_session_history
)

A class to store session history that
includes the messages attribute

Adds a list of messages
to the history

Initializes the session history

A function to retrieve the
current session history

Creates the chain
with message history

Starts a loop for multiple questions

Gets the user input

Exit condition

Prepares the input data

Gets the model’s response

Adds the user question
and assistant response
to the session history

 155Introducing LangChain

Now the LLM can retain the context of the conversation and answer the follow-up
question correctly. How do you retrieve the chat history? You can do so via the get_
messages() method from the session_history object:

print(session_history.get_messages())

The following listing shows an example conversation history (formatted for clarity).

Listing 7.3 Example chat history

[
HumanMessage(
 content='Who is Bill Gates?',
 additional_kwargs={},
 response_metadata={}
),

AIMessage(
 content="Bill Gates is an American business magnate, software
developer, entrepreneur, and philanthropist. He is best known as
the co-founder of Microsoft Corporation, the world's largest
personal computer software company. Gates is also the co-chair
of the Bill & Melinda Gates Foundation, a private charitable
organization that is dedicated to improving health and reducing
poverty worldwide. As of 2021, he is one of the wealthiest
individuals in the world.",
 additional_kwargs={}, response_metadata={}
),

{'role': 'user', 'content': 'Who is Bill Gates?'},

{'role': 'assistant', 'content': "Bill Gates is an American
business magnate, software developer, entrepreneur, and
philanthropist. He is best known as the co-founder of
Microsoft Corporation, the world's largest personal computer
software company. Gates is also the co-chair of the Bill &
Melinda Gates Foundation, a private charitable organization
that is dedicated to improving health and reducing poverty
worldwide. As of 2021, he is one of the wealthiest
individuals in the world."},

HumanMessage(
content='Is he rich?',
additional_kwargs={},
response_metadata={}
),

AIMessage(
content='<|>\nYes, Bill Gates is one of the wealthiest
individuals in the world according to the information
provided in the AIMessage.',
additional_kwargs={},
response_metadata={}

156 CHAPTER 7 Creating LLM-based applications using LangChain and LlamaIndex

),

{'role': 'user', 'content': 'Is he rich?'},

{'role': 'assistant', 'content': '<|>\nYes, Bill Gates is

one of the wealthiest individuals in the world according to

the information provided in the AIMessage.'}

]

Text Completion

Besides asking questions, HuggingFaceH4/zephyr-7b-alpha (being a text-generation
model) can perform text completion. The trick of making it perform text completion
is modifying the prompt template. The following code shows the entire program, with
the prompt string changed to text completion.

Listing 7.4 Performing text completion

import os

from langchain import PromptTemplate

from langchain_core.output_parsers import StrOutputParser

from langchain_huggingface import HuggingFaceEndpoint

os.environ['HUGGINGFACEHUB_API_TOKEN'] = 'Your_HuggingFace_Token'

template = '''

Complete this: {question}

'''

prompt = PromptTemplate(

 template = template,

 input_variables = ['question']

)

prompt

hub_llm = HuggingFaceEndpoint(

 endpoint_url="https://api-inference.huggingface.co/

models/HuggingFaceH4/zephyr-7b-alpha",

 temperature = 1

)

llm_chain = prompt | hub_llm | StrOutputParser()

while True:

 qn = input('Question: ')

 if qn == 'quit':

 break

 response = llm_chain.invoke(qn)

 print(response)

Run the program, and ask a question. Figure 7.6 shows the model’s response.

 157Introducing LangChain

1. Type a sentence.

2. Response from
 the model

Figure 7.6 You can get the model to complete your sentence.

7.2.8 Using other LLMs

Apart from using the LLMs from Hugging Face, you can use LLMs from other provid-
ers. Moving forward, you’ll have the chance to try two other LLMs, one from OpenAI
and one from Hugging Face.

USING OPENAI

Let’s use an LLM from OpenAI. Before you can use the LLM from OpenAI, you need
to install the langchain_openai package with the pip command:

!pip install langchain_openai

You also need to apply for an API key, which is a pay-per-use key. You can apply at
https://platform.openai.com/account/api-keys (see figure 7.7).

After you obtain your OpenAI API key, add the following statements to add an envi-
ronment variable named OPENAI_API_KEY, and set it to your OpenAI API key:

import os
os.environ['OPENAI_API_KEY'] = "OPENAI_API_KEY"

https://platform.openai.com/account/api-keys

158 CHAPTER 7 Creating LLM-based applications using LangChain and LlamaIndex

Click button to create a
new OpenAI API key.

Figure 7.7 Applying for an OpenAI API key

To view the list of OpenAI models you can use, check out https://platform.openai
.com/docs/models/overview. Here are some models that you can use:

¡	gpt-3.5-turbo—Most capable GPT-3.5 model, optimized for chat at 1/10th the
cost of an older model (text-davinci-003)

¡	gpt-4o-mini—More capable than any GPT-3.5 model, able to perform more
complex tasks, and optimized for chat

To use an OpenAI model such as gpt-4o-mini, pass the name of the model to the
ChatOpenAI class:

from langchain.chat_models import ChatOpenAI

openai_model = ChatOpenAI(model_name = 'gpt-4o-mini')

Then, as before, create a PromptTemplate and an LLM, and chain them together.

https://platform.openai.com/docs/models/overview
https://platform.openai.com/docs/models/overview

 159Introducing LangChain

Listing 7.5 Creating a chain using OpenAI LLM

from langchain import PromptTemplate
from langchain_core.output_parsers import StrOutputParser

template = '''
Question: {question}
Answer: '''

prompt = PromptTemplate(
 template = template,
 input_variables = ['question']
)

llm_chain = prompt | openai_model | StrOutputParser()

Now pose a question to the OpenAI model:

question = "Who is Steve Jobs"
print(llm_chain.invoke(question))

You get a reply like this:

Steve Jobs was an American entrepreneur, businessman, inventor,
and co-founder of Apple Inc. He is widely recognized as a pioneer
of the personal computer revolution of the 1970s and 1980s, along
with his business partner and Apple co-founder Steve Wozniak.
Jobs also served as the CEO of Pixar Animation Studios and was a
member of the board of directors of The Walt Disney Company. He
passed away in 2011 from complications related to pancreatic
cancer.

USING THE TIIUAE/FALCON-7B-INSTRUCT MODEL

Hugging Face also has several models you can use. One is tiiuae/falcon-7b-instruct
(https://huggingface.co/tiiuae/falcon-7b-instruct), an LLM developed by the Tech-
nology Innovation Institute in Abu Dhabi, United Arab Emirates. This model is an
instruction-tuned version of Falcon 7B, a transformer-based model designed to under-
stand and follow specific instructions provided by users. As usual, create a Prompt-
Template and HuggingFaceEndPoint and then chain them together, as follows.

Listing 7.6 Using the tiiuae/falcon-7b-instruct model

import os
from langchain_core.output_parsers import StrOutputParser
from langchain_huggingface import HuggingFaceEndpoint
from langchain import PromptTemplate

os.environ['HUGGINGFACEHUB_API_TOKEN'] = 'Your_HuggingFace_Token'

https://huggingface.co/tiiuae/falcon-7b-instruct

160 CHAPTER 7 Creating LLM-based applications using LangChain and LlamaIndex

template = '''
Question: {question}
Answer: '''

prompt = PromptTemplate(
 template = template,
 input_variables = ['question']
)

hub_llm = HuggingFaceEndpoint(endpoint_url=
 "https://api-inference.huggingface.co/models/
tiiuae/falcon-7b-instruct",
 temperature = 1
)

llm_chain = prompt | hub_llm | StrOutputParser()

Ask a question using the llm_chain object:

question = "Translate this to Spanish: Which is the way to
the train station?"
print(llm_chain.invoke(question))

You should see the following response:

¿A dónde está la estación de tren?

Here’s another question:

question = "What is the capital of France?"
print(llm_chain.invoke(question))

The response looks like this:

The capital of France is Paris.

7.3 Connecting LLMs to your private data using LlamaIndex

So far, you’ve seen how interesting it is to use LangChain to connect to LLMs provided
by OpenAI and Hugging Face to build your own chat-based applications where you
can ask questions using natural language. But although LLMs are trained on a huge
amount of data, they are not trained on your data. It would be more helpful to use an
LLM to answer specific questions that pertain to your data rather than the data the
model was trained on.

LlamaIndex solves this problem by connecting your data and adding it to an existing
LLM by using a technique known as retrieval-augmented generation (RAG). RAG enhances
the performance of LLMs by integrating them with an external retrieval system. The
main idea is to supplement the language model’s response generation with relevant

 161Connecting LLMs to your private data using LlamaIndex

information from a knowledge base or document store, enabling it to generate more
accurate, context-aware responses without needing to know everything ahead of time.

NOTE LlamaIndex is a data framework that enables LLM-based applications
to ingest, structure, and access private or domain-specific data. It’s available in
Python and TypeScript.

7.3.1 Installing the packages

First, use the pip command to install the following packages:

!pip install llama_index
!pip install llama-index-embeddings-huggingface
!pip install llama-index-llms-huggingface

Let’s learn how to use LlamaIndex with a Hugging Face model to index your private
data so that an LLM can answer questions pertaining to your data.

7.3.2 Preparing the documents

For this example, we’ll use LlamaIndex to answer questions based on receipts saved in
PDF format. In addition to PDF, LlamaIndex supports several common file formats,
including the following:

¡	Text files—.txt

¡	Microsoft Word documents—.doc
and .docx

¡	Markdown files—.md

¡	HTML files—.html and .htm

¡	CSV files—.csv

¡	JSON files—.json

Create a folder named Training

Documents in the same directory as your
Jupyter Notebook. Populate the folder
with the receipts. In this example, the
folder contains four PDF documents
(receipts of some purchases; see figure
7.8).

7.3.3 Loading the documents

To load the PDFs into memory for
indexing, use SimpleDirectoryReader-
class, a LlamaIndex component that
facilitates reading and indexing docu-
ments from a specific directory:

PDF documents

Content of the Training Documents folder

Figure 7.8 Contents of the Training Documents

folder

162 CHAPTER 7 Creating LLM-based applications using LangChain and LlamaIndex

from llama_index.core import SimpleDirectoryReader

loader = SimpleDirectoryReader(
 input_dir="./Training Documents",
 recursive=True,
 required_exts=[".pdf"],
)

documents = loader.load_data()

In the preceding code snippet, you specify the following:

¡	Directory input—This input allows you to specify a directory from which to load
documents.

¡	Recursive loading—When the recursive parameter is set to True, the model can
search subdirectories and load documents from them.

¡	File-type filtering—The required_exts parameter enables you to filter which file
types to load (PDFs, text files, Word documents, and so on).

7.3.4 Using an embedding model

When the documents are loaded, the next step is performing vector embedding to
convert the text data to vector representations. This process allows more efficient que-
rying, similarity search, and further processing of the documents.

DEFINITION A vector embedding is a numerical representation of objects (such
as words, sentences, images, or any data point) in a continuous vector space.
Each object is mapped to a vector of numbers in such a way that the spatial
relationships between these vectors reflect similarities or semantic relation-
ships among the objects themselves.

You can use models such as HuggingFaceEmbedding to generate these embeddings for
each document, enabling you to use machine learning models in your application. For
this example, use the BAAI/bge-small-en-v1.5 model:

from llama_index.embeddings.huggingface import HuggingFaceEmbedding

embedding_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")

BAAI/bge-small-en-v1.5 is a specific pretrained model available on the Hugging Face
Model Hub (https://huggingface.co/BAAI/bge-small-en-v1.5). This model is part of
the Bag of Graph Embeddings (BGE) series, which is designed to generate embed-
dings for English text. Models in this series often focus on producing embeddings that
capture semantic information effectively, making them useful for various NLP tasks.

NOTE When you use a model like BAAI/bge-small-en-v1.5, the embedding
process takes place locally on your computer, ensuring the privacy of your data.

Loads the documents

https://huggingface.co/BAAI/bge-small-en-v1.5

 163Connecting LLMs to your private data using LlamaIndex

7.3.5 Indexing the document

Now you can start to index the document using the embedding model via the Vector-
StoreIndex class, which creates an index and then saves the vector embeddings on
disk:

from llama_index.core import VectorStoreIndex

index = VectorStoreIndex.from_documents(
 documents,
 embed_model = embedding_model,
)

index.storage_context.persist(persist_dir=".")

The vector embeddings are stored in the same directory as your Jupyter Notebook.
Five files are created:

¡	image__vector_store.json—Contains the vector embeddings associated with
documents that are categorized as images. If your index includes image docu-
ments or embeddings generated from image data, this file stores that specific
information.

¡	default__vector_store.json—Stores the main vector embeddings for the
default category of documents in your index. It contains the embeddings of text
documents that are not specifically categorized as images or other types.

¡	graph_store.json—Contains information related to any graph structures or
relationships that exist between the indexed documents. These structures or
relationships could include links or any other metadata that captures the con-
nectivity or hierarchy of the documents.

¡	index_store.json—Holds metadata and configurations related to the index
itself. It may include information about how the index was constructed, parame-
ters used during creation, and other relevant settings.

¡	docstore.json—Contains the actual document data or references to the doc-
uments that were indexed. It serves as storage for the documents themselves,
allowing the index to retrieve and reference them when necessary.

Saving the vector embeddings to disk is beneficial because it allows you to perform the
embedding process only once—unless the content of your documents changes. When
the embeddings are saved, you can simply load them from disk in the future, avoiding
the need to embed the documents again. In section 7.3.6, you learn how to load these
vector embeddings directly from disk.

7.3.6 Loading the embeddings

When the index is persisted to disk, you can load it into memory using the Storage-
Context class and the load_index_from_storage() function:

Saves the index in the
current directory

164 CHAPTER 7 Creating LLM-based applications using LangChain and LlamaIndex

from llama_index.core import StorageContext, load_index_from_storage

from llama_index.embeddings.huggingface import HuggingFaceEmbedding

embedding_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")

storage_context = StorageContext.from_defaults(persist_dir=".")

index = load_index_from_storage(storage_context,

 embed_model = embedding_model)

Note that you need to use the same embedding model that you used earlier for
indexing.

7.3.7 Using an LLM for querying

Now that the documents are indexed, you can use a Hugging Face model to ask ques-
tions based on your local documents, as shown in the following listing.

Listing 7.7 Querying the local documents using an LLM

from transformers import AutoModelForCausalLM, AutoTokenizer

from llama_index.llms.huggingface import HuggingFaceLLM

import torch

if torch.backends.mps.is_available():

 device = torch.device("mps")

else:

 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained(

 "meta-llama/Llama-3.2-3B-Instruct")

 model = AutoModelForCausalLM.from_pretrained(

 "meta-llama/Llama-3.2-3B-Instruct").to(device)

 huggingface_llm = HuggingFaceLLM(

 model=model,

 tokenizer=tokenizer,

)

 query_engine = index.as_query_engine(llm=huggingface_llm)

In this example, you’ll use the AutoModelForCausalLM class to load the meta-llama/
Llama-3.2–3B-Instruct model, which will be set as the query engine for the index.

NOTE Again, using a model like meta-llama/Llama-3.2–3B-Instruct ensures
that the inferencing of the model is done locally on your computer, ensuring
data privacy.

Determines the device

Loads a model and tokenizer
from Hugging Face

Initializes HuggingFaceLLM

Sets the LLM to use

 165Connecting LLMs to your private data using LlamaIndex

Shifting the workload to the GPU

The to() method in PyTorch moves a model or tensor to a specified device—typically,

a CPU or graphics processing unit (GPU). If you have an Apple silicon Mac (with an

M1, M2, M3, or later processor), processing is moved to the GPU (mps, for Metal

Performance Shaders). If you have an Nvidia GPU on your Windows PC, processing is

moved to the GPU (cuda, for Compute Unified Device Architecture). If you have none of

these devices, the processing is done on the CPU.

7.3.8 Asking questions

You can ask questions related to the receipts using the meta-llama/Llama-3.2–3B
-Instruct model:

while True:
 question = input("Question: ")
 if question.lower() == "quit": break
 print(query_engine.query(question).response)

The following dialogue shows the question asked and the response by the model:

Question: How much did I pay for the keyboard?
162.90 SGD.

7.3.9 Using LlamaIndex with OpenAI

You may have noticed that running an LLM locally is slow. This is because local models
often require significant computational resources, including high memory and pro-
cessing power, to handle the large number of parameters and complex calculations
involved in generating responses. Performance can be affected further by the hard-
ware limitations of the machine being used, such as CPU speed and GPU availability.
These limitations can lead to longer inference times compared with accessing models
hosted on cloud platforms, where powerful infrastructure is optimized for fast process-
ing. More significantly, the quality of the answer may not be as good as you expected.

An alternative to running a local LLM is using an OpenAI model such as gpt–4o
-mini. To do that, you need to install the following packages:

!pip install langchain_community
!pip install langchain_openai

The following code snippet loads the gpt–4o-mini model and sets it as the query engine
for the index:

from langchain_openai import ChatOpenAI
import os

os.environ["OPENAI_API_KEY"] = "OpenAI_API_Key"

166 CHAPTER 7 Creating LLM-based applications using LangChain and LlamaIndex

openai_llm = ChatOpenAI(temperature = 0.7,
 model_name = "gpt-4o-mini")

query_engine = index.as_query_engine(llm = openai_llm)

NOTE You must supply an OpenAI API key (see section 7.2.8 for details on
how to get one) to use the service. Keep in mind that all API calls to OpenAI
are billed according to their usage rates.

Now you can ask questions as you did earlier:

while True:
 question = input("Question: ")
 if question.lower() == "quit": break
 print(query_engine.query(question).response)

Here is a sample dialogue:

Question: How much did I pay for the keyboard?
You paid a total of 169.90 for the Razer Blackwidow V3 Gaming Keyboard.

Notice that the responses are much faster and the quality of the responses is better
than that of the local model. This is because OpenAI’s cloud-based models use power-
ful, optimized infrastructure capable of processing large volumes of data and perform-
ing complex computations more efficiently. Also, these models benefit from continual
updates and improvements made by OpenAI, allowing them to deliver more accurate
and contextually relevant responses compared with locally run models that may be
constrained by hardware limitations and lack access to the latest training data.

What about the privacy of your data? When you call index.as_query_engine(llm=
openai_llm), the query engine is set up to handle queries using the OpenAI model. So
when you submit a query to the index, the query is processed by the OpenAI model, so
any data you send through this query engine (including the questions and potentially
the document contents) is transmitted to OpenAI’s servers for processing. This means
that both the queries you make and any relevant context from your indexed documents
will be sent to OpenAI.

NOTE If you are concerned about the privacy of your data, you should use a
local model, such as meta-llama/Llama-3.2–3B-Instruct, as illustrated earlier
in this chapter.

7.3.10 Creating a web frontend for the app

To make the query engine easy to use, bind it to the Gradio library. Gradio is an open
source Python library that is used to build machine learning demos, data science
demos, and web applications. To use Gradio in your Python application, install it using
the pip command:

!pip install gradio

 167Connecting LLMs to your private data using LlamaIndex

Next, create a function named my_chat_bot that calls the query() method of the query
engine:

def my_chat_bot(input_text):
 response = query_engine.query(input_text)
 return response.response

Finally, bind the my_chat_bot() function with Gradio:

import gradio as gr

gr.Interface(fn = my_chat_bot,
 title = "Enquiry",
 inputs = "text",
 outputs = "text").launch()

When you run the preceding code snippet, you see the UI shown in figure 7.9. Ask a
question pertaining to the receipts in PDF files and then click the Submit button. Fig-
ure 7.10 shows the response returned by the query engine.

Figure 7.9 The Gradio interface is bound to the query engine.

Figure 7.10 Asking a question regarding the purchases stored in the PDF receipts

Binds it to gradio

168 CHAPTER 7 Creating LLM-based applications using LangChain and LlamaIndex

7.3.11 Holding a conversation

Although you can ask the query engine questions, it can’t carry on a conversation with
you. Suppose that you asked the following questions in succession:

¡	How many cables did I buy?

¡	How much did I pay for them?

The query engine wouldn’t be able to answer the follow-up question because it holds
no memory of the previous conversation. If you want to hold a conversation with the
LLM, use the as_chat_engine() method instead of as_query_engine():

query_engine = index.as_chat_engine(llm=openai_llm)

Then use the chat() method to chat with the user.

Listing 7.8 Binding Gradio to the my_chat_bot() function

def my_chat_bot(input_text):
 response = query_engine.chat(input_text)
 return response.response

import gradio as gr

gr.Interface(fn = my_chat_bot,
 title = "Enquiry",
 inputs = "text",
 outputs = "text").launch()

Now you can ask a question followed by other related questions. Figure 7.11 shows an
example chat session.

7.3.12 Creating a chatbot UI

The preceding example showed how to ask follow-up questions with the query engine
and maintain a conversation. But that UI isn’t very user-friendly for engaging a chat
with the LLM. Every time you want to ask the next question, you must clear the input
text box, type your new question, and then click the Submit button. It would be better
to redesign the UI for chat. Fortunately, Gradio allows you to customize its look and
feel to make it easy for you to chat with the LLM. You can use the template shown in
the next listing.

Listing 7.9 Creating a chatbot UI template

import gradio as gr

with gr.Blocks() as mychatbot:
 chatbot = gr.Chatbot()
 question = gr.Textbox()

Use this to hold
a conversation.

Uses the chat() function

Binds it to gradio

Displays a chatbot

Allows the user to ask a question

 169Connecting LLMs to your private data using LlamaIndex

 def chat(message, chat_history):
 content = "Responses from chatbot..."

 chat_history.append((message, content))
 return "", chat_history

 question.submit(fn = chat,
 inputs = [question, chatbot],
 outputs = [question, chatbot])

mychatbot.launch()

1. First
 question

2. Follow-up
 question

3. Another
 follow-up
 question

Figure 7.11 Ask a series of follow-up questions, and the chatbot maintains the conversation.

The Blocks class is a low-level API that allows you to create custom web applications.
The Chatbot class displays a chatbot UI, and the Textbox class creates a text box in which
the user can enter a question. The text box has a submit() function that is triggered

Replaces content with the actual
responses from a chatbot

Wires up the event handler
for the Submit button (when
the user presses Enter)

170 CHAPTER 7 Creating LLM-based applications using LangChain and LlamaIndex

when the user presses the Enter key after typing the question. In the preceding code
snippet, you should replace the statements in bold with the code that interfaces with
your chat engine. Whatever responses your chat engine returns are then appended to
the chat_history parameter. Figure 7.12 shows how the UI looks now.

Figure 7.12 The Gradio chat UI

To interface with the chat engine you created earlier, replace the bold statement in
listing 7.9 with the following call to the my_chat_bot() function.

Listing 7.10 Replacing the placeholder with the my_chat_bot() function

import gradio as gr

with gr.Blocks() as mychatbot:
 chatbot = gr.Chatbot()
 question = gr.Textbox()

 def chat(message, chat_history):
 content = my_chat_bot(message)

Displays a chatbot

Allows the user to ask a question

 171Summary

 chat_history.append((message, content))
 return "", chat_history

 question.submit(fn = chat,
 inputs = [question, chatbot],
 outputs = [question, chatbot])

mychatbot.launch()

Now you can chat with the query engine. Figure 7.13 shows what a typical conversation
looks like.

Figure 7.13 Using the chat user interface to chat with the chat engine

Summary

¡	An LLM is a type of AI model that’s designed to understand and generate human-
like text based on the patterns and structures it learned from massive amount of
training data.

¡	A token is a chunk of text that a model processes as a single unit.

¡	LangChain is a framework designed to simplify the creation of applications with
LLMs.

Wires up the event handler for the Submit
button (when the user presses Enter)

172 CHAPTER 7 Creating LLM-based applications using LangChain and LlamaIndex

¡	A LangChain application consists of components chained together.

¡	You can run an LLM locally or use one that is cloud-based, such as LLMs from
OpenAI.

¡	LlamaIndex is a data framework that enables LLM-based applications to ingest,
structure, and access private or domain-specific data.

¡	RAG is a technique that enhances the performance of LLMs by integrating them
with an external retrieval system.

¡	Running a model locally for vector embedding ensures that your data stays within
your computer.

¡	You can use Gradio to create a web frontend for your LLM applications.

173

8Building LangChain
applications visually

using Langflow

This chapter covers

¡	Introducing Langflow

¡	Creating a LangChain project using Langflow

¡	Using and configuring the various components of

Langflow

¡	Using Langflow to query your own data

Previously, you learned how to build applications based on large language models
(LLMs) by chaining various components, such as prompt template and memory.
You also learned how to use LlamaIndex to connect an LLM to answer questions
pertaining to your own data. To use LangChain, you must download the langchain
package and then use the various APIs in the framework.

In this chapter, you’ll learn an easy approach to building LLM-based applica-
tions using LangChain. Instead of writing code, you’ll build LangChain apps using
a drag-and-drop tool known as Langflow. This tool enables you to get started with
LangChain without being bogged down in the details of coding and to preview your
applications instantly without complicated setup.

174 CHAPTER 8 Building LangChain applications visually using Langflow

8.1 What is Langflow?

Langflow is an open source library that allows you to build LLM-based applications
using LangChain through a drag-and-drop visual interface. Langflow is built on top of
LangChain, so you can develop AI applications faster and easier through a no-code/
low-code experience.

You can download the source code for Langflow at https://github.com/logspace-ai/
langflow. You can install Langflow in several ways, but this section focuses on installing
it so that you can be productive immediately. You’ll learn how to do the following:

¡	Install Langflow locally on your computer using the pip command

¡	Run Langflow using a Docker container

¡	Run Langflow in the cloud

8.1.1 Installing Langflow using the pip command

The first approach to installing Langflow is using the pip command to install locally on
your computer:

$ pip install langflow

TIP The version of Langflow used in this chapter is 1.0.18. Langflow is
updated on a regular basis, so if you have trouble installing Langflow on your
computer, you can install a specific version (say, 1.0.18) by specifying its version
number: $ pip install langflow==1.0.18. As you try Langflow, bear in mind
that many packages in the AI space are still in their early stages. Be sure to
experiment if you have difficulty trying the examples in this chapter.

This approach is the most straightforward; all the packages required to run Langflow are
downloaded to your computer. When the installation is complete, run Langflow using
the following command in Terminal (macOS) or Anaconda Prompt (Windows):

$ python -m langflow run

Langflow runs as a web application. By default, it listens at port 7860 (see figure 8.1),
so you must ensure that port 7860 is available on your computer.

Figure 8.1

Langflow runs as a

web app and listens

at port 7860.

https://github.com/logspace-ai/langflow
https://github.com/logspace-ai/langflow

 175What is Langflow?

To launch Langflow, type http://127.0.0.1:7860 in your web browser. You should see
your default web browser displaying the Langflow UI, as shown in figure 8.2.

Figure 8.2 If Langflow is installed correctly, you should see this page in your web browser.

8.1.2 Installing Langflow using Docker

Although the preceding approach to installing Langflow is the most straightforward,
it does have problems. In experimentation, I’ve found that not all machines install
Langflow properly. You may run into conflicts with packages that prevent you from
installing Langflow correctly.

A much more foolproof way to use Langflow is to use Docker. I assume that you
already have Docker installed on your computer and are familiar with the basics of
Docker. If not, you can learn more about it at https://docs.docker.com/get-started/
introduction.

First, launch Terminal/Anaconda Prompt. Then create a folder on your computer
and name it Langflow:

$ mkdir Langflow

After you create the folder, change the directory to it:

$ cd Langflow

Next, create a file named Dockerfile and paste the following statement into that file
(or get it from https://mng.bz/vZGr):

FROM langflowai/langflow:latest

Use the Dockerfile to build a Docker image with the following command:

$ docker build -t langflow .

https://docs.docker.com/get-started/introduction
https://docs.docker.com/get-started/introduction
https://mng.bz/vZGr

176 CHAPTER 8 Building LangChain applications visually using Langflow

Finally, run the new Docker image as a Docker container using the following command:

$ docker run -p 7860:7860 langflow

This command creates a Docker container from the langflow image and makes it lis-
ten at port 7860. (The first 7860 in the command is the external port where the Docker
container listens; the second 7860 is the internal port where the Langflow application
listens in the container).

To launch Langflow, type http://127.0.0.1:7860 in your web browser. You should
see the page shown in figure 8.2 earlier in this chapter.

Note that when the Docker container is running, you can use the Docker Desktop
application to stop or start the container. Locate the Docker container that is running
the Langflow application, and click the Stop/Start button to stop or start the container
(see figure 8.3).

Click this button
to stop/start the
container.

Figure 8.3 You can use the Docker Desktop application to stop or start your Docker containing running Langflow.

8.1.3 Running Langflow in the cloud

The third option for running Langflow is using a version on the Hugging Face Spaces
web page (https://huggingface.co/spaces/Logspace/Langflow; see figure 8.4). The
advantage of using this approach is that you can find many shared examples created by
the community. Figure 8.5 shows some of these examples, which are good ways to learn
how other people are using Langflow to build LangChain-based applications.

https://huggingface.co/spaces/Logspace/Langflow

 177What is Langflow?

View shared examples created by the community.

Figure 8.4 You can run Langflow on Hugging Face Spaces.

Figure 8.5 Viewing the community examples of Langflow on Hugging Face Spaces

178 CHAPTER 8 Building LangChain applications visually using Langflow

8.2 Creating a new Langflow project

Now that Langflow is up and running (locally or in the cloud), you can create a project
by clicking the New Project button (see figure 8.6).

Click to create
a new project.

Figure 8.6 Creating a new Langflow project

You see a set of templates to get you started quickly. Select the Blank Flow template
because you will be building a project from scratch (see figure 8.7). You should see an
empty canvas with the various component categories displayed on the left side of the
window (see figure 8.8).

Figure 8.7 A list of templates is available to get you started.

 179Creating a new Langflow project

Name of
project

Categories of
components

Figure 8.8 The canvas for your Langflow project, where you can add and chain components

Components (commonly known as flows) are the building blocks of a Langflow proj-
ect. An example component is Prompt, which allows you to create prompts and define
variables that give you control over instructing the model. Components are organized
in categories based on their functions.

When you create a project, a default project name is assigned automatically. You can
change the project name by clicking the name, choosing Settings from the pull-down
menu, and then changing the project name in the Settings dialog box (see figure 8.9).

Click the project name.

Figure 8.9

Changing the name

of a Langflow project

180 CHAPTER 8 Building LangChain applications visually using Langflow

In LangChain, a project may contain the following components:

¡	Prompt templates—Templates for different types of conversations with LLMs

¡	LLMs—LLMs such as GPT3 and GPT-4

¡	Agents—Use LLM to decide what actions to be taken

¡	Memory—Short- or long-term memory

For this project, let’s start off with the simplest Langflow project, containing three
Langflow components:

¡	Prompt

¡	HuggingFace

¡	ConversationChain

8.2.1 Adding a Prompt component

The first component you’ll add to the project is Prompt. To do so, expand the Prompts
category and drag the Prompt component to the canvas, as shown in figure 8.10.

1. Drag the Prompt
 component . . .

2. . . . and drop it
 on the canvas.

Figure 8.10 Adding the Prompt component to the canvas

 181Creating a new Langflow project

Click the text box in the Template section and enter the following prompt (see
figure 8.11):

Human: {question}
AI:

Figure 8.11

Editing the

prompt in

the Prompt

component

Click the Check & Save button, and Langflow checks the validity of your prompt. Note
that all prompt variables are enclosed in curly brackets. In this example, the Prompt
variable is question. You should see that the Prompt component has an input connector
named question (based on the name of your variable; see figure 8.12).

A new input connector
named question

Figure 8.12 A new input

connector is created in the

Prompt component.

182 CHAPTER 8 Building LangChain applications visually using Langflow

8.2.2 Adding a Models component

The next component to add is Models. For this project, you’ll use a model hosted by
Hugging Face, so you need to expand the Models category and then drag the Hugging-
Face component to the canvas (see figure 8.13).

1. Drag the
 HuggingFace
 component . . .

2. . . . and drop it
 on the canvas.

Figure 8.13 Adding the HuggingFace component to the project

You have to supply two pieces of information for this component:

¡	Your Hugging Face Hub API token

¡	The repo ID (name of the model on Hugging Face)

 183Creating a new Langflow project

You can obtain your Hugging Face Hub API token
at https://huggingface.co/settings/tokens. For this
project, use the tiiuae/falcon-7b-instruct model
(https://huggingface.co/tiiuae/falcon-7b-instruct).
Figure 8.14 shows the HuggingFace component with the
information provided.

8.2.3 Adding a Chains component

Now that you have Prompt and HuggingFace compo-
nents, you need a Chains component to chain them.
From the Chains category (listed in the Experimental
section), drag the ConversationChain component to
the canvas (see figure 8.15). Then connect the Prompt
and HuggingFace components to the Conversation-
Chain component, as shown in figure 8.16.

1. Drag the
 ConversationChain
 component . . .

2. . . . and drop it
 on the canvas.

Figure 8.15 Adding the ConversationChain component to the project

Figure 8.14 Configuring the

HuggingFace component with

the API token and the model you

want to use

https://huggingface.co/settings/tokens
https://huggingface.co/tiiuae/falcon-7b-instruct

184 CHAPTER 8 Building LangChain applications visually using Langflow

Connect the PromptMessage
connector on Prompt to the
Input connector on the
ConversationChain.

Connect the Language
Model connector on
HuggingFace to the
Language Model connector
on the ConversationChain.

Figure 8.16 Using the ConversationChain component to chain the Prompt and HuggingFace

components

8.2.4 Adding Chat Input and Chat Output components

To enable users to interact with the LLM and to show the output to the user, you must
add two more components to the project: Chat Input (listed in the Inputs section) and
Chat Output (listed in the Outputs section). Connect them as shown in figure 8.17.
That’s it! You’re ready to test the application.

 185Creating a new Langflow project

Chat input Chat output

Figure 8.17 Connecting the Chat Input and Chat Output components to the rest of the components

8.2.5 Testing the project

To test the application, click the Playground
button in the bottom-right corner of the page
(see figure 8.18). Then you can ask a question,
and the LLM should be able to respond appro-
priately (see figure 8.19).

Figure 8.19 Chatting

with the model

Figure 8.18 The Playground button

186 CHAPTER 8 Building LangChain applications visually using Langflow

8.2.6 Maintaining a conversation using the Chat Memory component

To enable the LLM so that it can maintain a conver-
sation with the user, you need to supply the Prompt
component with memories so it can store the previ-
ous conversations. To do so, add a Chat Memory com-
ponent (in the Memories category) to the canvas, as
shown in figure 8.20.

You also need to make some changes in the
Prompt component. Update the template to include
the history variable:

{history}
User: {question}
AI:

When the template is updated, connect the Messages (Text) connector on the Chat
Memory component to the history connector on the Prompt component (see figure 8.21).

Connect the Messages (Text)
connector on Chat Memory
to the history connector on
the Prompt.

Figure 8.21 Adding a ConversationBufferMemory component to the project

Figure 8.20 Adding the Chat

Memory component to the canvas

 187Asking questions on your own data

When this is done, click the Playground button to start the chatbot again. This time,
the LLM will be able to maintain a context for your conversation, and you can ask
follow-up questions (see figure 8.22).

Figure 8.22 Now you can ask follow-up questions.

8.3 Asking questions on your own data

Although it’s interesting to have a conversation with an LLM, the real business use case
of generative AI is to use LLM to answer questions pertaining to your own data. For this
task, you’ll use Langflow to build an application so that it can answer questions pertain-
ing to your own data. You’ll use the following components:

¡	File component (Data category)

¡	Parse Data component (Helpers category)

¡	HuggingFace component (Models category)

¡	OpenAI component (Models category)

¡	Prompt component (Prompts category)

¡	Chat Input component (Inputs category)

¡	Chat Output component (Outputs category)

188 CHAPTER 8 Building LangChain applications visually using Langflow

8.3.1 Loading PDF documents using the File component

For this application, you’ll ask the LLM questions based on a PDF document. To load a
PDF document in Langflow, use the File component. After you drag the File compo-
nent to the canvas, click the button shown in figure 8.23 to select the PDF document
you want to use for this project. For this example, you’ll select a PDF document of an
invoice for items purchased online (see figure 8.24).

Click this button
to select the PDF
document you
want to use. Figure 8.23 Using the

File component to load a

PDF document in Langflow

Figure 8.24 The PDF

document containing some

items purchased online

 189Asking questions on your own data

8.3.2 Splitting long text into smaller chunks using the Parse Data component

The next component you’ll add to the project is Parse Data. After you add this compo-
nent to the canvas, connect it to the File component, as shown in figure 8.25.

Figure 8.25 Connecting the File component to the Parse Data component

The Parse Data component is typically used to extract and structure relevant informa-
tion from raw text or documents before processing them further in the pipeline. This
component is useful when you need to transform or parse input data into a specific for-
mat, making it easier to work with downstream tasks such as splitting text, generating
an embedding, or storing data in a vector database such as ChromaDB.

8.3.3 Getting questions using the Prompt component

The next two components to add are Prompt and Chat Input. For the Prompt compo-
nent, configure the template with the following code:

Answer user's questions based on the document below:

{Document}

Question:
{Question}

Answer:

Then you can connect the Prompt component to receive the data from the Parse Data
and Chat Input components (see figure 8.26).

190 CHAPTER 8 Building LangChain applications visually using Langflow

Figure 8.26 Adding the Prompt component to the canvas and connecting it to the Parse Data and

Chat Input components

8.3.4 Using the HuggingFace component

Next, add the HuggingFace component to the canvas; configure it with your Hugging
Face token; and connect it to the Prompt component, as shown in figure 8.27. You’ll use
the tiiuae/falcon-7b-instruct model to answer questions about your PDF document.

Figure 8.27 Using the

tiiuae/falcon-7b

-instruct model from

Hugging Face to answer

questions about your

PDF document

 191Asking questions on your own data

8.3.5 Connecting to the Chat Output component

The last component to add to the canvas is Chat Output. After you add it, connect it to
the HuggingFace component, as shown in figure 8.28.

Figure 8.28

Connecting the

HuggingFace

component to

the Chat Output

component

8.3.6 Testing the project

Finally, you can test your project. Click the Playground button to display the chat win-
dow. Figure 8.29 shows how to can ask questions pertaining to the PDF document.

Figure 8.29

Testing the chatbot

192 CHAPTER 8 Building LangChain applications visually using Langflow

8.3.7 Using an LLM with the OpenAI component

Instead of using a model from Hugging Face, you can use one from OpenAI. All you
have to do is swap out the HuggingFace component and replace it with the OpenAI com-
ponent (see figure 8.30). Be sure to insert the OpenAI API key into the OpenAI compo-
nent. Then try chatting again, and compare the performance of OpenAI’s model with
Hugging Face’s.

Swap out the HuggingFace
component and replace it
with the OpenAI component.

Figure 8.30 Replacing the HuggingFace component with the OpenAI component

8.4 Using your project programmatically

With the project built successfully,
you may want to build your own UI
to connect with the project. Lang-
flow provides several ways to do
that. Figure 8.31 shows that when
you click the button labeled </>
API, you see a couple of ways to use
your model programmatically (see
figure 8.32).

Click this button to see how to
use your project programmatically.

Figure 8.31 The </> API button

 193Using your project programmatically

Use your project
in Python through
the Langflow app.

Use your project
in JavaScript
through the
Langflow app.

Use your project
in Python without
running the
Langflow project.

Embedding the
chatbot in a
web application

Tweaking the
parameters of
each component

Use cURL to
connect to
the project
in Terminal.

Turn this on to
display the details
of each component.

Figure 8.32 The various tabs show how you can use your Langflow project programmatically.

Let’s examine the tabs shown in figure 8.32:

¡	Run cURL—The Run cURL tab contains the command-line instructions for using
the cURL utility to connect to the model. It allows you to send the questions to
the LLM and receive the response via the command line.

¡	Python API—This tab contains code that allows you to call the Langflow project
using Python. For this option to work (as well as the Run cURL and Chat Widget
HTML options), you must have Langflow running.

194 CHAPTER 8 Building LangChain applications visually using Langflow

¡	JS API—This tab contains code that allows you to call the Langflow project using
JavaScript (JS). For this option to work (as well as the Run cURL option and Chat
Widget HTML options), you must have Langflow running.

¡	Python Code—This tab allows you to treat the downloaded Langflow project as a
LangChain object and use it programmatically.

¡	Chat Widget HTML—This tab contains code that allows you to embed your Lang-
flow application in a web application.

¡	Tweaks—This tab displays a page that allows you to adjust the various parameters
for your project. Figure 8.33, for example, shows that you can type your OpenAI
API key in this page, and the key will appear in the code when you click the Run
cURL tab (see section 8.4.1).

Figure 8.33 You can use the Tweaks tab to modify the various parameters to use with your Langflow

project.

8.4.1 cURL

cURL is a command-line tool and library for transferring data with URLs. It is a pow-
erful, versatile tool that supports a wide range of protocols, including HTTP, HTTPS,

 195Using your project programmatically

FTP, FTPS, SCP, SFTP, and LDAP. cURL is commonly used to make HTTP requests
to interact with web services and APIs, download files, and perform various network-
related tasks.

When you click the Run cURL tab, you see a command that allows you to use the
cURL utility to connect with your Langflow project. Copy the code on the Run cURL
tab, and add the following statements in bold:

curl -X POST \

 "http://127.0.0.1:7861/api/v1/run/a195037a-1cac-

4f9d-9737-4613107b0374?stream=false" \

 -H 'Content-Type: application/json'\

 -d '{"input_value": "What did I buy",

 "output_type": "chat",

 "input_type": "chat",

 "tweaks": {

 "File-US1KX": {},

 "ParseData-ljEsG": {},

 "ChatInput-rAmmk": {},

 "Prompt-teE98": {},

 "HuggingFaceModel-gSuPr": {},

 "ChatOutput-mO1kr": {},

 "OpenAIModel-xs0J4": { "openai_api_key": "OpenAI API Key" }

}}'

This code sends the question “What did I buy?” to the Langflow project. The response
from the project looks like this (main reply highlighted in bold):

{"session_id":"a195037a-1cac-4f9d-9737-4613107b0374",

"outputs":[{"inputs":{"input_value":"What did I buy?"},

"outputs":[{"results":{"message":{"text_key":"text",

"data":{"text":"You bought three units of the \"Essager 100W/60W

USB Type C To USB C Cable,\" which is a USB-C PD fast charging

charger wire cord suitable for devices like Macbook, Samsung,

Xiaomi, and vivo. The color is black, and the cable length is 3

meters.","sender":"Machine","sender_name":"AI","session_id":

"a195037a-1cac-4f9d-9737-4613107b0374","files":[],

...

"component_id":"ChatOutput-mO1kr","files":[],

"type":"message"}],"component_display_name":"Chat Output",

"component_id":"ChatOutput-mO1kr","used_frozen_result":false}]}]}

8.4.2 Python code

To use the project you created in Langflow programmatically in Python, first download
the project as a JSON file. Figure 8.34 shows how to download the Langflow project.

Using the JSON file, you can use the load_flow_from_json() function to run it pro-
grammatically without having the Langflow project running. This function treats the
Langflow project as a LangChain object. To run it, use the following code snippet,

196 CHAPTER 8 Building LangChain applications visually using Langflow

1. Click the project name.

2. Click Export to download the
 project as a JSON file.

Figure 8.34

Downloading the Langflow

project as a JSON file

replacing the value of the openai_api_key key with your own and setting your question
in the input_value key:

from langflow.load import run_flow_from_json
TWEAKS = {
 "File-US1KX": {},
 "ParseData-ljEsG": {},
 "ChatInput-rAmmk": {},
 "Prompt-teE98": {},
 "HuggingFaceModel-gSuPr": {},
 "ChatOutput-mO1kr": {},
 "OpenAIModel-xs0J4": { "openai_api_key": "OPENAI API Key" }
}

result = run_flow_from_json(flow="Querying a local document.json",
 input_value="What did I buy?",
 fallback_to_env_vars=True,
 tweaks=TWEAKS)

print(result)

Remember to replace the project name (Querying a local document.json) with your
own project name. The result looks something like the following:

[RunOutputs(inputs={'input_value': 'What did I buy?'},
outputs=[ResultData(results={'message': Message(text_key='text',
data={'text': 'You bought three units of the "Essager 100W/60W
USB Type C To USB C Cable," which is a USB-C PD fast charging
charger wire cord suitable for devices like Macbook, Samsung,

 197Summary

Xiaomi, and vivo. The color is black, and the cable length is 3
meters.', 'sender': 'Machine',
...
component_display_name='Chat Output', component_id='ChatOutput-mO1kr', used_
frozen_result=False)])]

Summary

¡	Langflow is an open source library that allows you to build LLM-based applica-
tions using LangChain through a drag-and-drop visual interface.

¡	You can install Langflow with the pip command or use it through Docker. Alter-
natively, you can use Langflow in the cloud.

¡	Components (flows) are the building blocks of a Langflow project.

¡	You can use Langflow projects programmatically and embed your chatbot in a
web application.

198

9Programming agents

This chapter covers

¡	Introducing agents

¡	Creating simple agents using smolagents

¡	Creating enterprise-grade agents using LangChain

¡	Creating enterprise-grade agents using LangGraph

Up to this point, you’ve worked with Hugging Face transformers to tackle a variety of
tasks, ranging from natural language processing (NLP) to image analysis and com-
puter vision. Each of these tasks typically involves a specific, specialized model— a
translation model for converting text between languages, for example, or an image
captioning model to generate textual descriptions of images.

Although using specialized models works well for clearly defined tasks, it becomes
increasingly difficult to manage workflows when the tasks are ambiguous or multi-
step or when they require dynamic decision-making. This is where agents come into
play. Agents use large language models (LLMs) not only to perform tasks but also to
reason, plan, and delegate, breaking complex problems into smaller subtasks and
calling appropriate tools or models to complete them.

 199What are agents?

In this chapter, you’ll explore the concept of agents and learn how to build an agent
yourself. In particular, the chapter focuses on constructing agents using two practical
and widely applicable frameworks:

¡	smolagents—A lightweight, minimalistic agent framework for quick
exper i men tation

¡	LangGraph—A powerful framework for building stateful, multistep workflows
involving language models and tools, ideal for handling conversations and deci-
sion trees

By the end of this chapter, you’ll understand the fundamentals of agent design. You’ll
know how to equip an agent with tools and manage state and memory in multistep
reasoning pipelines.

9.1 What are agents?

Agentic AI has captured a lot of attention in recent months and is often hailed as a
major step toward the future of AI. What are agents, and how do they work? In the
world of AI, an agent is a specialized system designed to perform tasks autonomously by
combining language understanding, reasoning, and tool use. Specifically, an AI agent
does the following things:
¡	Understands natural language—Uses a large language model (LLM) to interpret

user queries or instructions

¡	Reasons and plans—Analyzes the task, breaks it into steps, and decides how to
proceed

¡	Acts using known tools—Selects and executes actions from a set of tools (e.g., APIs,
search engines, or custom scripts) to gather data or per-
form operations

¡	Delivers results—Processes tool outputs and returns a
coherent response to the user

Figure 9.1. summarizes the key roles of an agent.
To understand how an AI agent works, let’s explore a prac-

tical example: a weather agent that retrieves current weather
information for a specific city. Here’s how you interact with such
an agent:

¡	Natural language—Submit a query like “What’s the cur-
rent temperature in Singapore?”

¡	Task breakdown and planning—The agent analyzes the
query, breaking it into steps (e.g., identify the city and
fetch weather data).

¡	Tool selection and execution—The agent selects an appro-
priate tool, such as one that queries the OpenWeather-
Map API, to retrieve weather details.

Understands natural

language

Reasons and plans

Acts using known

tools

Delivers results

Roles of an agent

Figure 9.1 Roles of

an agent

200 CHAPTER 9 Programming agents

¡	Result delivery—The agent processes the tool’s output and returns a clear
response, such as “The current temperature in Singapore is 28.5°C with scat-
tered clouds.”

This process demonstrates the agent’s ability to understand, reason, act, and respond,
making it a powerful tool for real-world tasks.

9.2 Developing agents using smolagents

Let’s dive into building intelligent AI agents using smolagents—a lightweight, flexible
framework designed to make agent development simple and approachable. Whether
you’re building agents that search the web, query databases, or execute Python code,
smolagents provides the essential tools and structure to get you started. This section
introduces the key concepts, walks you through creating your own agents, and offers
real-world examples that help you bring your ideas to life.

DEFINITION Officially, smolagents isn’t an acronym—simply a playful name in
which smol is internet slang for small. Therefore, smolagents essentially means
small agents.

In smolagents, an agent is a system that combines a language model with tools to per-
form tasks by generating and executing Python code. To create agents using smola-
gents, use pip as follows:

$ pip install smolagents

9.2.1 Using built-in tools: DuckDuckGoSearchTool

The first agent you’ll build is a search agent, designed to take a user query, retrieve
relevant information, and return a useful response. To perform the search, you’ll use
the DuckDuckGoSearchTool—a lightweight, privacy-focused search tool that allows your
agent to find information on the web quickly and efficiently. Here is the code snippet
for the agent:

from smolagents import CodeAgent, DuckDuckGoSearchTool,
 HfApiModel
model = HfApiModel()
agent = CodeAgent(tools = [DuckDuckGoSearchTool()], model = model)
response = agent.run("How long does it take to travel from " +
 "New York to Los Angeles by train?")
print(response)

Let’s break down the code to understand how it works:

1 Create a model using HfApiModel(). This means you’re using a model hosted on
a Hugging Face server, so you don’t have to host a model yourself. By default,

Initializes the language model
(using Hugging Face’s inference API)

Initializes the
agent with a
search tool

Runs the agent
with a task

Prints the response

 201Developing agents using smolagents

HfApiModel() uses the Qwen/Qwen2.5-Coder-32B-Instruct model. You can over-
ride this setting by specifying the model you want to use in the model parameter,
such as HfApiModel(model="mistralai/Mistral-7B-Instruct-v0.2").

2 Use the CodeAgent class to build an agent that can reason through problems by
generating and executing Python code as part of the decision-making process.
The tools parameter allows you to specify the list of tools your agent can use to
answer the query, and the model parameter specifies the LLM to use to interpret
the user’s query. You don’t even have to specify the DuckDuckGoSearchTool if
you set the add_base_tools parameter to True (see figure 9.2). In this case, the
agent automatically uses the DuckDuckGoSearchTool, PythonInterpreterTool, and
Transcriber tools by default.

This adds DuckDuckGoSearchTool,

PythonInterpreterTool, and Transcriber.

agent = CodeAgent(tools=[],

 model=model,

 add_base_tools=True)

Add any custom tools here.

Figure 9.2 The agent

automatically uses the

default tools if you set

the add_base_tools

parameter to True.

3 Use the agent’s run() method to execute the agent’s main logic. It takes an input
(such as a user query), processes it using the agent’s reasoning and tools, and
returns the final output or answer.

When you run the preceding code, you should see output showing step by step how the
agent works to answer your query. Chances are, however, that you’ll see the following
error message:

Error in generating model output:
402 Client Error: Payment Required for url:
https://router.huggingface.co/hf-inference/models/Qwen/
 Qwen2.5-Coder-32B-Instruct/v1/chat/completions (Request ID:
 Root=1-680f3378-1bfa504911aaa2c9696e106d;b14d1ad8-372e-440e
 -98c9-1d6abfc62f14)

You have exceeded your monthly included credits for Inference
Providers. Subscribe to PRO to get 20x more monthly
included credits.

202 CHAPTER 9 Programming agents

This message appears because you’ve exceeded your free credits for the model hosted
on Hugging Face. Without a Hugging Face Pro subscription, you’re out of options. But
if you can run an LLM locally on your computer, you’re in luck! The simplest way to
do this is to use Ollama. For this example, install Ollama and download the qwen2:7b
model:

$ ollama pull qwen2:7b

NOTE Ollama is an open source platform that enables you to run LLMs
directly on your local machine, eliminating the need for cloud-based services.
This approach offers enhanced data privacy, reduced latency, and offline
accessibility. You can download Ollama at https://ollama.com.

To use a locally running LLM through Ollama, use the LiteLLMModel class, which con-
nects to the Ollama server and allows your agent to send prompts and receive responses
directly from models running on your machine:

from smolagents import CodeAgent, DuckDuckGoSearchTool, LiteLLMModel

model = LiteLLMModel(

 model_id = "ollama/qwen2:7b",

 api_base = "http://127.0.0.1:11434",

 num_ctx = 8192,

)

agent = CodeAgent(tools = [DuckDuckGoSearchTool()], model = model)

response = agent.run("How long does it take to travel from " +

 " New York to Los Angeles by train?")

print(response)

Note that, in this example, Ollama is the LLM provider, so the model_id is set to
ollama/qwen2:7b, where ollama is the provider name and qwen2:7b is the model name.
For the list of providers you can use with LiteLLMModel, check out https://docs.litellm.
ai/docs/providers.

You can also use OpenAI’s models. The following example shows how to use the
gpt-4o-mini model from OpenAI:

import os

os.environ["OPENAI_API_KEY"] = "<OPENAI_API_Key>"

model = LiteLLMModel(

 model_id="gpt-4o-mini",

 api_base="https://api.openai.com/v1",

)

When you run the agent, you should see something like figure 9.3. Next, you see the
execution log, shown in figure 9.4. Finally, you get the answer (see figure 9.5).

Replace with your own key.

OpenAI’s official API base

https://ollama.com
https://docs.litellm.ai/docs/providers
https://docs.litellm.ai/docs/providers

 203Developing agents using smolagents

Figure 9.3 The agent working on the first step in answering the question

Figure 9.4 The agent displaying its execution log

204 CHAPTER 9 Programming agents

Figure 9.5 The final answer returned by the agent

In this example, the LLM (such as OpenAI’s gpt-4o-mini) is responsible for interpret-
ing and understanding the user’s query. It formulates a search request and sends it to
DuckDuckGo. The search results are retrieved and passed back to the LLM, which uses
them to generate a final response for the user.

9.2.2 Using built-in tools: PythonInterpreterTool

The next tool that we want to explore, besides DuckDuckGoSearchTool, is Python-
InterpreterTool, which allows the agent to execute Python code dynamically, enabling
it to solve computational problems, perform calculations, or interact with APIs and
libraries directly within the agent’s workflow. Here’s an example of the tool in action:

from smolagents import CodeAgent, PythonInterpreterTool, LiteLLMModel

model = LiteLLMModel(

 model_id="gpt-4o-mini",

 api_base="https://api.openai.com/v1",

)

agent = CodeAgent(tools=[PythonInterpreterTool()], model=model)

response = agent.run("Calculate the 10th Fibonacci number.")

print(response)

When you run the agent, you see the output shown in figure 9.6.
The query is straightforward. Let’s try another one:

response = agent.run("Generate the Fibonacci sequence up to 100.")

You see the output shown in figure 9.7.

TIP The choice of LLM plays an important role in the result returned by the
agent. In general, try models from different providers to get the best output
for the agent you’re creating.

 205Developing agents using smolagents

Figure 9.6 Using

the agent to write the

code to find the 10th

Fibonacci number

Figure 9.7 Getting

the agent to generate

the Fibonacci

numbers up to 100

206 CHAPTER 9 Programming agents

9.2.3 Writing your own custom tools

Sometimes, the built-in tools won’t meet your needs. When that happens, you have to
create a custom tool, and fortunately, writing one is easy. Simply add the @tool decora-
tor above your function, and you can use it as a custom tool.

Suppose that you want to create an agent to fetch weather information for you. In
this case, you can write a function that fetches weather information from OpenWeather-
Map and then converts it to a tool, as shown in the following example.

Listing 9.1 Writing a custom tool to fetch weather information from OpenWeatherMap

from smolagents import CodeAgent, LiteLLMModel, tool
import requests

@tool
def get_weather_info(city: str) -> str:
 """Retrieve the current weather information for a given city.
 Args:
 city: The name of the city to get the weather information for.
 Returns:
 str: A description of the current weather and temperature
 in the city.
 """
 api_key = "<API_KEY>"

url = f"http://api.openweathermap.org/data/2.5/weather?
 q={city}&appid={api_key}&units=metric"

 response = requests.get(url)
 if response.status_code == 200:
 data = response.json()
 weather = data["weather"][0]["description"]
 temperature = data["main"]["temp"]
 return f"The weather in {city} is {weather} with a
 temperature of {temperature}°C."
 else:
 return f"Could not retrieve weather information for {city}."

model = LiteLLMModel(
 model_id="ollama/qwen2:7b",
 api_base="http://127.0.0.1:11434",
 num_ctx=8192,
)

agent = CodeAgent(tools=[get_weather_info], model=model)
response = agent.run("What is the current weather for Singapore?")
print(response)

It’s important to ensure that your tool function includes a docstring describing its
parameters. Without it, the agent won’t be able to understand or use the tool prop-
erly. Figure 9.8 shows the output from asking the agent for the current weather in
Singapore.

Replace with your
OpenWeatherMap API key.

 207Developing agents with LangChain

Figure 9.8 The agent returns this output when you ask for the weather in Singapore.

9.3 Developing agents with LangChain

Instead of using the smolagents framework, you can develop agents with LangChain,
a widely adopted framework for building applications powered by LLMs. LangChain
provides a flexible modular architecture that allows developers to create complex
agents by composing components such as prompts, memory, tools, and chains. It sup-
ports various execution paradigms, including synchronous and asynchronous task
handling, and integrates well with a wide range of APIs and data sources. Compared
with smolagents, which emphasizes simplicity and minimalism, LangChain offers more
features out of the box and is well suited to applications that require richer context
management, more dynamic tool use, or more advanced reasoning capabilities.

This section explores how to construct agents using LangChain, with a focus on
using both built-in tools and custom tools tailored to specific tasks. To use LangChain to
create an agent, install the following packages using pip:

!pip install langchain langchain-openai
 langchain-community google-search-results

208 CHAPTER 9 Programming agents

9.3.1 Using the built-in Tool class

In LangChain, agents interact with external functionality through a standardized tool
interface. Tools are defined using the BaseTool class or its simpler counterpart, the
Tool class, both of which provide a consistent interface that agents can invoke to per-
form specific actions.

LangChain also provides utility wrappers such as SerpAPIWrapper, WikipediaAPI-
Wrapper, WolframAlphaAPIWrapper, and TavilySearchResults that handle the complex-
ities of integrating with external APIs. These wrappers encapsulate all the logic needed
to query services such as Google Search, Wikipedia, and computational engines, and
they format their responses into structured data that agents can work with.

An important distinction applies, however: agents can’t directly use utility wrappers.
To be accessible to an agent, a wrapper must be embedded in a Tool instance. This
wrapping process transforms the utility into a proper tool that can be added to the
agent’s toolset.

This modular architecture offers significant advantages for developers. Rather than
writing complex integration code from scratch, they can simply wrap existing services
in a Tool and plug them directly into their agent workflows. Then the agent can seam-
lessly access these external capabilities as part of its decision-making process, extending
its functionality with minimal effort.

NOTE SerpAPI is a real-time search API that allows developers to programmati-
cally access and extract search results from search engines such as Google, Bing,
Yahoo, YouTube, and Amazon. It is commonly used to retrieve structured search
results—organic results, ads, featured snippets, knowledge graphs, and other
rich data—from Google search without having to scrape HTML pages manually.

As an example, let’s walk through using the SerpAPIWrapper to build an agent capable
of performing real-time searches. First, sign up for a free account at https://serpapi
.com, and obtain your private API key. Then load your SerpAPI key into your environ-
ment like this:

import os
os.environ["SERPAPI_API_KEY"] = "<SERPAPI_KEY>"

Now you can create an instance of the SerpAPIWrapper class and use it to create a tool:

from langchain.tools import Tool
from langchain_community.utilities.serpapi import SerpAPIWrapper

search = SerpAPIWrapper()
tools = [
 Tool(
 name = "Search",
 func = search.run,
 description = "Useful for when you need to answer questions
 about current events or search for specific information on

Initializes SerpAPI wrapper

Creates a proper tool that wraps
the SerpAPI functionality

https://serpapi.com
https://serpapi.com

 209Developing agents with LangChain

 the web. Input should be a search query."
)
]

Next, create a LangChain agent using the initialize_agent() function as shown in
the following listing.

Listing 9.2 Creating a LangChain agent using the initialize_agent() function

from langchain_openai import ChatOpenAI
from langchain.agents import AgentType, initialize_agent

os.environ["OPENAI_API_KEY"] = "<OPENAI_API_KEY>"

llm = ChatOpenAI(model = "gpt-4o-mini",
 temperature = 0)
agent = initialize_agent(
 tools = tools,
 llm = llm,

agent_type =
 AgentType.ZERO_SHOT_REACT_DESCRIPTION,
 verbose = True
)

response = agent.invoke("Who is Wei-Meng Lee?")
print(response)

In this code snippet, you first created an agent using a search tool (SerpAPIWrapper).
For this agent, you used the gpt-4o-mini model from OpenAI. You specified the agent
type as AgentType.ZERO_SHOT_REACT_DESCRIPTION, which means that the agent uses a
zero-shot ReAct (reasoning+acting) framework, enabling it to reason through a query
step by step and select appropriate tools to generate a response without requiring
training or examples. The verbose argument specifies that you want to see the reason-
ing step by step. When you run the code, you see the agent’s reasoning:

> Entering new AgentExecutor chain...
I need to gather information about Wei-Meng Lee to provide a
comprehensive answer.
Action: Search
Action Input: "Wei-Meng Lee biography"
Observation: He is a prolific author, having written numerous
books covering iOS and Android development, blockchain, machine
learning, and smart contracts. In addition to his publications,
Wei-Meng is a regular speaker at international conferences and
contributes columns to Towards Data Science and CODE Magazine.
Thought:I now have a good understanding of who Wei-Meng Lee is,
including his contributions to technology and education through
his writing and speaking engagements.

Final Answer: Wei-Meng Lee is a prolific author and speaker known
for his work in iOS and Android development, blockchain, machine

Initializes the LLM

Initializes the agent
with updated structure

Prints reasoning steps

Runs the agent with a query

210 CHAPTER 9 Programming agents

learning, and smart contracts. He has written numerous books on
these topics and regularly speaks at international conferences.
Additionally, he contributes columns to platforms like Towards
Data Science and CODE Magazine.

> Finished chain.
{'input': 'Who is Wei-Meng Lee?', 'output': 'Wei-Meng Lee is a
prolific author and speaker known for his work in iOS and
Android development, blockchain, machine learning, and smart
contracts. He has written numerous books on these topics and
regularly speaks at international conferences. Additionally, he
contributes columns to platforms like Towards Data Science and
CODE Magazine.'}

Let’s try another question:

response = agent.invoke("What is the weather in New York today?")
print(response)

You see the following output:

> Entering new AgentExecutor chain...
I need to find the current weather information for New York City.
Action: Search
Action Input: "current weather in New York City today"
Observation: {'type': 'weather_result', 'temperature': '68',
'unit': 'Fahrenheit', 'precipitation': '10%', 'humidity': '84%',
'wind': '6 mph', 'location': 'New York, NY', 'date': 'Thursday',
'weather': 'Cloudy'}
Thought:I now know the final answer.
Final Answer: The weather in New York City today is cloudy, with
a temperature of 68°F, 10% chance of precipitation, 84% humidity,
and wind at 6 mph.

> Finished chain.
{'input': 'What is the weather in New York today?', 'output':
'The weather in New York City today is cloudy, with a temperature
of 68°F, 10% chance of precipitation, 84% humidity, and wind at 6
mph.'}

The following statements show how to import some of the other built-in tools provided
by LangChain:

from langchain_community.utilities.bing_search
 import BingSearchAPIWrapper
from langchain_community.utilities.duckduckgo_search
 import DuckDuckGoSearchAPIWrapper
from langchain_community.utilities.google_search
 import GoogleSearchAPIWrapper
from langchain_community.utilities.wikipedia
 import WikipediaAPIWrapper

Searches using Microsoft Bing

Uses DuckDuckGo for
privacy-friendly search

Uses Google’s programmable
search engine

Queries Wikipedia using its API

 211Developing agents with LangChain

9.3.2 Using custom tools

As you created an agent with smolagents earlier, you can create custom tools to use
with your LangChain agent. In the following example, besides using the search tool,
you’ll create a custom tool named get_weather_info(), which fetches weather details
from OpenWeatherMap.

Listing 9.3 Writing a custom function to fetch weather information

import os
import requests
from langchain_openai import ChatOpenAI
from langchain_community.utilities.serpapi import SerpAPIWrapper
from langchain.tools import Tool, tool
from langchain.agents import AgentType, initialize_agent

os.environ["OPENAI_API_KEY"] = "<OPENAI_API_KEY>"
os.environ["SERPAPI_API_KEY"] = "<SERPAPI_KEY>"

llm = ChatOpenAI(temperature=0)

search = SerpAPIWrapper()
search_tool = Tool(
 name = "Search",
 func = search.run,

description = "Useful for when you need to answer questions
about current events or search for specific information on

 the web. Input should be a search query."
)

@tool
def get_weather_info(city: str) -> str:
 """Retrieve the current weather information for a given city.
 Args:
 city: The name of the city to get the weather information for.
 Returns:
 str: A description of the current weather and temperature in
 the city.
 """

 api_key = "<OPENWEATHERMAP_API_KEY>"
url = f"http://api.openweathermap.org/data/2.5/
 weather?q={city}&appid={api_key}&units=metric"

 response = requests.get(url)

 if response.status_code == 200:
 data = response.json()
 weather = data["weather"][0]["description"]
 temperature = data["main"]["temp"]
 humidity = data["main"]["humidity"]
 wind_speed = data["wind"]["speed"]
 summary = (
 f"Weather in {city}:\n"
 f"Condition: {weather}\n"

Creates a custom tool using
the @tool decorator

Replace with your
OpenWeatherMap API key.

212 CHAPTER 9 Programming agents

 f"Temperature: {temperature}°C\n"
 f"Humidity: {humidity}%\n"
 f"Wind Speed: {wind_speed} m/s"
)
 return summary
 else:
 return f"Could not retrieve weather information for {city}."
tools = [search_tool, get_weather_info]
agent = initialize_agent(
 tools = tools,
 llm = llm,
 agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION,
 verbose = True
)

Now you can ask the agent about the weather in Singapore:

response = agent.invoke(
 "What is the current weather in Singapore?")
print(response)

You see the following response:

> Entering new AgentExecutor chain...
I should use the get_weather_info function to retrieve the current
weather information for Singapore.
Action: get_weather_info
Action Input: "Singapore"
Observation: Weather in Singapore:
Condition: broken clouds
Temperature: 30.08°C
Humidity: 71%
Wind Speed: 4.12 m/s
Thought:I have the current weather information for Singapore.
Final Answer: The current weather in Singapore is broken clouds with a
temperature of 30.08°C, humidity at 71%, and a wind speed of 4.12 m/s.

> Finished chain.
{'input': 'What is the current weather in Singapore?', 'output': 'The
 current weather in Singapore is broken clouds with a temperature of
30.08°C, humidity at 71%, and a wind speed of 4.12 m/s.'}

9.4 Developing agents using LangGraph

Previously, you learned how to build agents using LangChain. Although this approach
will continue to be supported, the recommendation is to build agents using Lang-
Graph, a more flexible and feature-rich framework designed specifically for building
complex stateful agents. LangGraph builds on the strengths of LangChain and offers
greater control of agent workflows. You can build agents using LangGraph by

¡	Creating an agent capable of answering user questions using reasoning and avail-
able tools

A clean string that can be
easily used in prompts and
understood by agents

Uses search_tool and
get_weather_info tools

Initializes the agent
with these tools

Tests the custom tool

 213Developing agents using LangGraph

¡	Integrating an external tool (such as a web search or weather API) to enable the
agent to answer questions that go beyond its built-in knowledge

¡	Integrating memory into your LangGraph agent so that it can engage in a con-
versation with the user

9.4.1 What is LangGraph?

LangGraph is a Python framework developed by the LangChain team that allows you
to build stateful multistep workflows involving language models, tools, and external
APIs. It enables you to structure logic as a directed graph, in which each node rep-
resents a computational step (e.g., calling an LLM or using a tool) and edges define
how the workflow proceeds based on the output or state. This graph-based approach is
ideal for use cases such as these:

¡	Multiturn chatbots with memory

¡	Decision trees or branching logic based on LLM outputs

¡	Complex tool-using agents

¡	Data enrichment or extract, transform, load (ETL) pipelines

¡	Modular conversational flows

LangGraph builds on LangChain and integrates seamlessly with LangChain tools,
agents, and memory constructs. To install LangGraph, run this command:

!pip install langgraph

LangGraph is especially valuable when your application requires memory or a per-
sistent state across multiple steps. It also supports branching logic, tool use, and
dynamic flow control—capabilities that are challenging to implement using tradi-
tional linear chains in LangChain. Given the scope of this chapter, I will focus only on
the core components of LangGraph that relate to agent-based workflows.

9.4.2 LangGraph agent basics

Let’s start by creating an agent using LangGraph. For this initial example, we won’t
integrate any external tools, meaning that the agent will rely solely on its internal rea-
soning capabilities and the knowledge on which it was trained.

TIP External tools such as web search APIs or database connectors can be
integrated to extend the agent’s functionality. These tools allow the agent to
access up-to-date information, perform computations, or retrieve specific data
that lies beyond its built-in knowledge base.

First, import the following libraries:

import os
from langgraph.graph.message import add_messages
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI

214 CHAPTER 9 Programming agents

For the LLM, use the gpt-4o-mini model from OpenAI. To use this model, you need
an OpenAI API key:

os.environ["OPENAI_API_KEY"] = "<OPENAI_API_KEY>"
llm = ChatOpenAI(model_name="gpt-4o-mini", temperature=0)
tools = []

Next, create a ReAct agent using LangGraph’s create_react_agent() function, a func-
tion in LangChain that creates a ReAct-style agent:

agent_executor = create_react_agent(llm, tools)

The create_react_agent() function (imported from langgraph.prebuilt) is a wrapper
that builds on LangChain’s core create_react_agent() functionality. It combines the
following:

¡	LLM reasoning (thoughts)

¡	Tool use (actions), if tools are provided

¡	Observations (from tool outputs)

¡	Final answer generation

NOTE ReAct is a method in which the agent thinks step by step,
calls tools if necessary, observes results, and continues reasoning.

When you print this agent (agent_executor), you see the graph
shown in figure 9.9.

This simple graph illustrates a linear flow with three key stages:

¡	__start__ node—Entry point of the workflow

¡	agent node—Core node where the agent processes the input

¡	__end__ node—Termination point of the graph, where the
result is returned

This minimal graph demonstrates a basic agent execution path with no branching or
loops, making it easy to follow and suitable for single-turn or sequential tasks. Next, you’ll
define a function that invokes the agent and prints each step of its reasoning process:

def run_agent(query: str):
 state = agent_executor.invoke({"messages": [("user", query)]})
 print(state)
 print("\n Agent trace:")
 for i, msg in enumerate(state["messages"]):

Sets environment
variables (replace
with your API key)

Initializes the
LLM (OpenAI)

The tools to use (no
tools at this moment)

__start__

agent

__end__

Figure 9.9

The graph

for the agent

you’re building

Function to run the
agent with a user query

Prints out the
agent’s traces

 215Developing agents using LangGraph

 print(f"{i+1}. [{msg.type.upper()}]
 {msg.content.strip() if
 hasattr(msg, 'content') else msg}")
 print('=====')
 return state["messages"][-1].content

The run_agent() function is a simple, effective way to interact with the LangGraph
agent and inspect its behavior step by step. The function takes a user query as input,
wraps it in a message format (("user", query)), and invokes the agent using agent_
executor.invoke(). The response is stored in a state dictionary, which contains the
entire message history. After the response is generated, the function prints out a trace
of the agent’s message history. Each message is printed with its type (e.g., USER, AI,
TOOL) and content. This trace is helpful for debugging and understanding how the
agent processes and responds to inputs.

You are ready to use the agent. Ask a simple question and then print out the result:

query = "Who is Bill Gates?"
answer = run_agent(query)
print(f"Query: {query}")
print(f"Answer: {answer}")

The output consists of three parts:

¡	The value of the state variable, which is the result returned by the agent

¡	The extracted agent traces

¡	The question that was asked and the final answer from the agent

Let’s discuss each component in the output. The following listing shows the content of
the state variable.

Listing 9.4 The content of the state variable

{
 'messages': [
 {
 'type': 'HumanMessage',
 'content': 'Who is Bill Gates?',
 'additional_kwargs': {},
 'response_metadata': {},
 'id': 'b4f87d83-2e87-444c-8eca-ee92a483b584'
 },
 {
 'type': 'AIMessage',
 'content': "Bill Gates is an American business magnate,
software developer, philanthropist, and author, best known as
the co-founder of Microsoft Corporation, the world's largest
personal-computer software company. Born on October 28, 1955,
in Seattle, Washington, Gates showed an early interest in
computers and programming. He attended Harvard University but
dropped out in 1975 to start Microsoft with his childhood
friend Paul Allen.\n\nUnder Gates' leadership, Microsoft

216 CHAPTER 9 Programming agents

developed the Windows operating system, which became a
dominant platform for personal computers. Gates served as the
CEO of Microsoft until 2000 and continued to play a
significant role in the company until he stepped down from
day-to-day operations in 2008.\n\nIn addition to his work in
technology, Gates is known for his philanthropic efforts. In
2000, he and his then-wife Melinda founded the Bill &
Melinda Gates Foundation, which focuses on global health,
education, and poverty alleviation. The foundation has made
significant contributions to various causes, including
vaccine development and distribution, education reform, and
efforts to combat infectious diseases.\n\nGates has been
recognized with numerous awards and honors for his
contributions to technology and philanthropy, and he is
often listed among the world's wealthiest individuals. His
influence extends beyond business, as he is also a prominent
advocate for various social and health issues.",
 'additional_kwargs': {
 'refusal': None
 },
 'response_metadata': {
 'token_usage': {
 'completion_tokens': 267,
 'prompt_tokens': 12,
 'total_tokens': 279,
 'completion_tokens_details': {
 'accepted_prediction_tokens': 0,
 'audio_tokens': 0,
 'reasoning_tokens': 0,
 'rejected_prediction_tokens': 0
 },
 'prompt_tokens_details': {
 'audio_tokens': 0,
 'cached_tokens': 0
 }
 },
 'model_name': 'gpt-4o-mini-2024-07-18',
 'system_fingerprint': 'fp_dbaca60df0',
 'id': 'chatcmpl-BTJwkQfk0rrqvyIa5LVGfLJhbvPki',
 'finish_reason': 'stop',
 'logprobs': None
 },
 'id': 'run-3d803ad4-1270-4334-a938-8950c5108ac8-0',
 'usage_metadata': {
 'input_tokens': 12,
 'output_tokens': 267,
 'total_tokens': 279,
 'input_token_details': {
 'audio': 0,
 'cache_read': 0
 },
 'output_token_details': {
 'audio': 0,
 'reasoning': 0
 }

 217Developing agents using LangGraph

 }
 }
]
}

The state variable holds the response returned by the agent, including both the input
provided and a detailed trace of the agent’s reasoning and tool use during execution.
You can see that the preceding code contains two messages: HumanMessage (the ques-
tion you asked) and AIMessage (the answer returned by the LLM). The next compo-
nent is the agent trace extracted from the state variable:

 Agent trace:
1. [HUMAN] Who is Bill Gates?
=====
2. [AI] Bill Gates is an American business magnate, software
developer, philanthropist, and author, best known as the
co-founder of Microsoft Corporation, the world's largest
personal-computer software company. Born on October 28, 1955,
in Seattle, Washington, Gates showed an early interest in
computers and programming. He attended Harvard University but
dropped out in 1975 to start Microsoft with his childhood
friend Paul Allen.

Under Gates' leadership, Microsoft developed the Windows
operating system, which became a dominant platform for
personal computers. Gates served as the CEO of Microsoft until
2000 and continued to play a significant role in the company
until he stepped down from day-to-day operations in 2008.

In addition to his work in technology, Gates is known for his
philanthropic efforts. In 2000, he and his then-wife Melinda
founded the Bill & Melinda Gates Foundation, which focuses on
global health, education, and poverty alleviation. The
foundation has made significant contributions to various
causes, including vaccine development and distribution,
education reform, and efforts to combat infectious diseases.

Gates has been recognized with numerous awards and honors for
his contributions to technology and philanthropy, and he is
often listed among the world's wealthiest individuals. His
influence extends beyond business, as he is also a prominent
advocate for various social and health issues.
=====

Figure 9.10 illustrates the steps taken by the agent.

Human

AI

User asks a question.

Agent takes the question
and answers it.

Figure 9.10 The steps taken

by the LangGraph agent

218 CHAPTER 9 Programming agents

The last component shows the question asked and the result:

Query: Who is Bill Gates?
Answer: Bill Gates is an American business magnate, software
developer, philanthropist, and author, best known as the
co-founder of Microsoft Corporation, the world's largest
personal-computer software company. Born on October 28, 1955,
in Seattle, Washington, Gates showed an early interest in
computers and programming. He attended Harvard University
but dropped out in 1975 to start Microsoft with his childhood
friend Paul Allen.

Under Gates' leadership, Microsoft developed the Windows
operating system, which became a dominant platform for
personal computers. Gates served as the CEO of Microsoft
until 2000 and continued to play a significant role in the
company until he stepped down from day-to-day operations in
2008.

In addition to his work in technology, Gates is known for
his philanthropic efforts. In 2000, he and his then-wife
Melinda founded the Bill & Melinda Gates Foundation, which
focuses on global health, education, and poverty alleviation.
The foundation has made significant contributions to various
causes, including vaccine development and distribution,
education reform, and efforts to combat infectious diseases.

Gates has been recognized with numerous awards and honors
for his contributions to technology and philanthropy, and
he is often listed among the world's wealthiest individuals.
His influence extends beyond business, as he is also a
prominent advocate for various social and health issues.

In this example, the agent can answer the question “Who is Bill Gates?” based on the
model’s (gpt-4o-mini) training data. Let’s ask another question:

query = "What is 2+3?"
answer = run_agent(query)

Here’s the output:

Query: What is 2+3?
Answer: 2 + 3 equals 5.

Try asking the agent a question that is beyond the scope of its training data, however,
and the agent is unable to answer your question. If you ask this question, for example,

query = "Who won the US Presidential Election in 2024?"
answer = run_agent(query)

you get an error:

 219Developing agents using LangGraph

Query: Who won the US Presidential Election in 2024?
Answer: I'm sorry, but I don't have information on events that
occurred after October 2023, including the results of the 2024
US Presidential Election. You may want to check the latest news
sources for the most current information.

Why? The model was trained on data up to October 2023, so it has no knowledge of
events that occurred after that date. This is precisely why you need to use a tool in an
agent.

9.4.3 Using LangGraph with tools

To answer questions beyond the model’s training data, you must connect the agent to
an external tool that’s capable of providing up-to-date information, such as perform-
ing web searches to get the answer. To allow your agent to perform real-time searches,
you can use the SerpAPIWrapper, a tool described and used in section 9.3.1. First, create
an instance of the SerpAPIWrapper class:

from langchain_core.tools import Tool
from langchain_community.utilities import SerpAPIWrapper

os.environ["SERPAPI_API_KEY"] = "<SERPAPI_KEY>"
serpapi = SerpAPIWrapper()
search_tool = Tool(
 name = "SerpAPI",
 func = serpapi.run,

description = "A search engine tool to query real-time information
 from the web."
)

Note the description of the tool. The description of a tool in LangChain (and, by
extension, LangGraph) is important because it guides the LLM in deciding when and
how to use the tool. The description acts as a prompt that informs the LLM about the
tool’s purpose, functionality, and expected input, enabling the agent to make intelli-
gent decisions about whether to call the tool based on the user’s query.

Next, add the search_tool as an argument to the create_react_agent() function:

tools = [search_tool]
agent_executor = create_react_agent(llm, tools)

Now when you print out the agent_executor, you see the graph shown in figure 9.11.
Here’s the flow of the entire graph:

¡	__start__ node—This node is the entry point of the graph. Execution begins
here.

Replace with your
own key.

Initializes the
SerpAPI wrapper
and creates a tool

Name of the tool

serpapi.run is a method provided
by the SerpAPIWrapper class.

Adds the search tool

Creates the ReAct agent
using LangGraph’s
high-level interface

220 CHAPTER 9 Programming agents

¡	agent node—The agent pro-
cesses the user input. Based on
the query and internal logic, it
decides whether it can respond
directly or needs help from a tool.

¡	tools node—If the agent deter-
mines that a tool is needed (e.g.,
a calculator, search engine, or
database lookup), it sends a
request to the tools node. The
tool is executed and the result is
returned to the agent, allowing
it to formulate a final response.
The dotted lines indicate condi-
tional or dynamic transitions.

¡	__end__ node—When the agent has all the necessary information (either directly
or via a tool), it outputs the final message. The flow ends here.

Now you can ask the question “Who won the US Presidential Election in 2024?”:

query = "Who won the US Presidential Election in 2024?"
answer = run_agent(query)
print(f"Query: {query}")
print(f"Answer: {answer}")

Observe the output. First, observe the content of the state variable, shown in the fol-
lowing listing.

Listing 9.5 The content of the state variable

{
 'messages': [
 {
 'type': 'HumanMessage',
 'content': 'Who won the US Presidential Election in 2024?',
 'additional_kwargs': {},
 'response_metadata': {},
 'id': '6166c39b-015e-417b-9016-55bd75c35fd5'
 },
 {
 'type': 'AIMessage',
 'content': '',
 'additional_kwargs': {
 'tool_calls': [
 {
 'id': 'call_0TL5mwU9fmTn45OmZJejsZkp',
 'function': {
 'arguments': '{"__arg1":
 "US Presidential Election 2024 winner"}',

__start__

agent

__end__tools

Figure 9.11 The graph of the agent with the

external tool

 221Developing agents using LangGraph

 'name': 'SerpAPI'
 },
 'type': 'function'
 }
],
 'refusal': None
 },
 'response_metadata': {
 'token_usage': {
 'completion_tokens': 24,
 'prompt_tokens': 69,
 'total_tokens': 93,
 'completion_tokens_details': {
 'accepted_prediction_tokens': 0,
 'audio_tokens': 0,
 'reasoning_tokens': 0,
 'rejected_prediction_tokens': 0
 },
 'prompt_tokens_details': {
 'audio_tokens': 0,
 'cached_tokens': 0
 }
 },
 'model_name': 'gpt-4o-mini-2024-07-18',
 'system_fingerprint': 'fp_0392822090',
 'id': 'chatcmpl-BTMUM9twVvbFPpvVOzJkr19cDIRo7',
 'finish_reason': 'tool_calls',
 'logprobs': None
 },
 'id': 'run-77effaef-0972-4c07-8156-6c8b25618a4c-0',
 'tool_calls': [
 {
 'name': 'SerpAPI',
 'args': {
 '__arg1': 'US Presidential Election 2024 winner'
 },
 'id': 'call_0TL5mwU9fmTn45OmZJejsZkp',
 'type': 'tool_call'
 }
],
 'usage_metadata': {
 'input_tokens': 69,
 'output_tokens': 24,
 'total_tokens': 93,
 'input_token_details': {
 'audio': 0,
 'cache_read': 0
 },
 'output_token_details': {
 'audio': 0,
 'reasoning': 0
 }
 }
 },
 {
 'type': 'ToolMessage',

222 CHAPTER 9 Programming agents

 'content': '[' entity_type: video_universal.', 'The
APP excludes "over" and "under" votes in the total votes cast,
which also impacts the vote percentage for candidates.
Harris-Walz 2024. Trump-Vance 2024.', 'View maps and real-time
results for the 2024 US presidential election matchup between
former President Donald Trump and Vice President Kamala Harris.',
"A presidential election was held in the United States on
November 5, 2024. The Republican Party\'s ticket—Donald Trump,
who was the 45th president of the ...", 'Live 2024 election
results for the president, U.S. Senate, U.S. House, and
governors.', 'Donald Trump passed the critical threshold of 270
electoral college votes with a projected win in the state of
Wisconsin making him the next US president.', 'Get live
presidential results and maps from every state and county in
the 2024 election.', '2024 election guide: Presidential
candidates, polls, primaries and caucuses, voter information
and results for November 5, 2024.', 'Check back for the
Certificates of Vote from the 2024 election. They will be
posted as they become available. President Donald J. Trump
[R] Main Opponent ...', 'View live election results from the
2024 presidential race as Kamala Harris and Donald Trump face
off. See the map of votes by state as results are tallied.']',
 'name': 'SerpAPI',
 'id': 'f681c58a-043e-4016-b081-5f2f44d83fa1',
 'tool_call_id': 'call_0TL5mwU9fmTn45OmZJejsZkp'
 },
 {
 'type': 'AIMessage',
 'content': 'Donald Trump won the US Presidential
Election in 2024, passing the critical threshold of 270
electoral college votes with a projected win in the state
of Wisconsin.',
 'additional_kwargs': {
 'refusal': None
 },
 'response_metadata': {
 'token_usage': {
 'completion_tokens': 34,
 'prompt_tokens': 392,
 'total_tokens': 426,
 'completion_tokens_details': {
 'accepted_prediction_tokens': 0,
 'audio_tokens': 0,
 'reasoning_tokens': 0,
 'rejected_prediction_tokens': 0
 },
 'prompt_tokens_details': {
 'audio_tokens': 0,
 'cached_tokens': 0
 }
 },
 'model_name': 'gpt-4o-mini-2024-07-18',
 'system_fingerprint': 'fp_0392822090',
 'id': 'chatcmpl-BTMUN6F1DvzZae98NwKMLzcBKUW9C',
 'finish_reason': 'stop',
 'logprobs': None

 223Developing agents using LangGraph

 },
 'id': 'run-e10a9f2f-336a-4544-ac46-588594006dd2-0',
 'usage_metadata': {
 'input_tokens': 392,
 'output_tokens': 34,
 'total_tokens': 426,
 'input_token_details': {
 'audio': 0,
 'cache_read': 0
 },
 'output_token_details': {
 'audio': 0,
 'reasoning': 0
 }
 }
 }
]
}

As you see, the agent is using the tool to search for an answer. Here are the traces of
the agent:

 Agent trace:
1. [HUMAN] Who won the US Presidential Election in 2024?
=====
2. [AI]
=====
3. [TOOL] [' entity_type: video_universal.', 'The APP excludes
"over" and "under" votes in the total votes cast, which also
impacts the vote percentage for candidates. Harris-Walz 2024.
Trump-Vance 2024.', 'View maps and real-time results for the
2024 US presidential election matchup between former President
Donald Trump and Vice President Kamala Harris.', "A presidential
election was held in the United States on November 5, 2024.
The Republican Party's ticket—Donald Trump, who was the 45th
president of the ...", 'Live 2024 election results for the
president, U.S. Senate, U.S. House, and governors.', 'Donald
Trump passed the critical threshold of 270 electoral college
votes with a projected win in the state of Wisconsin making him
the next US president.', 'Get live presidential results and
maps from every state and county in the 2024 election.', '2024
election guide: Presidential candidates, polls, primaries and
caucuses, voter information and results for November 5, 2024.',
'Check back for the Certificates of Vote from the 2024 election.
They will be posted as they become available. President Donald
J. Trump [R] Main Opponent ...', 'View live election results
from the 2024 presidential race as Kamala Harris and Donald
Trump face off. See the map of votes by state as results
are tallied.']
=====
4. [AI] Donald Trump won the US Presidential Election in
2024, passing the critical threshold of 270 electoral college
votes with a projected win in the state of Wisconsin.
=====

224 CHAPTER 9 Programming agents

Finally, the agent returns the answer:

Query: Who won the US Presidential Election in 2024?
Answer: Donald Trump won the US Presidential Election in 2024, passing the
critical threshold of 270 electoral college votes with a projected win in
the state of Wisconsin.

Figure 9.12 summarizes the process.

Human

AI

User asks a question.

Agent takes the question
and calls the tool.

Tool Tool returns the result.

AI
Agent takes the result
and generates a response. Figure 9.12 The agent works with

the tool to return the answer.

9.4.4 Using LangGraph with a custom tool

You can create custom tools to use with your LangGraph agent. In this section, you’ll
create a function named get_weather_info() and use it to retrieve weather informa-
tion from OpenWeatherMap. The following code shows the definition of the function.

Listing 9.6 The get_weather_info() function

import requests

def get_weather_info(city: str) -> str:
 """Retrieve the current weather information for a given city."""
 api_key = "7453d5cfeaea020958539f22da95d849"

url = f"http://api.openweathermap.org/data/2.5/
 weather?q={city}&appid={api_key}&units=metric"

 response = requests.get(url)
 if response.status_code == 200:
 data = response.json()
 weather = data["weather"][0]["description"]
 temperature = data["main"]["temp"]
 humidity = data["main"]["humidity"]
 wind_speed = data["wind"]["speed"]

Replace with your
OpenWeatherMap API key.

 225Developing agents using LangGraph

 summary = (
 f"Weather in {city}:\n"
 f"Condition: {weather}\n"
 f"Temperature: {temperature}°C\n"
 f"Humidity: {humidity}%\n"
 f"Wind Speed: {wind_speed} m/s"
)
 return summary
 else:
 return f"Could not retrieve weather information for {city}."

Next, create a LangChain Tool object using this function:

weather_tool = Tool(
 name = "GetWeather",
 func = get_weather_info,
 description = "A tool to fetch the weather information for a city"
)

Finally, use the weather_tool in your agent:

tools = [search_tool, weather_tool]
agent_executor = create_react_agent(llm, tools)

Now you can ask a question about the weather of a country:

query = "What is the current weather for Singapore"
answer = run_agent(query)
print(f"Query: {query}")
print(f"Answer: {answer}")

The final output of the agent looks something like the following:

Query: What is the current weather for Singapore
Answer: The current weather in Singapore is as follows:
- **Condition:** Broken clouds
- **Temperature:** 29°C
- **Humidity:** 79%
- **Wind Speed:** 3.09 m/s

9.4.5 Using LangGraph with memory

The agent that you’ve created has no memory at this point. That is, it treats every
incoming query as an isolated request, without any awareness of what was said or asked
previously. This means the agent cannot carry on a conversation, track context across
multiple turns, or refer to earlier information. If you ask

A clean string that can be
easily used in prompts and
understood by agents

Creates a LangChain Tool
from the custom function

Name of the tool

Name of the custom function

226 CHAPTER 9 Programming agents

Query: What is the current weather in Singapore?
Answer: The current weather in Singapore is as follows:
...

and follow up with

Query: Where is it located?

the agent will not be able to understand who it is unless you repeat the full context:

Query: Where is Singapore located?

To support back-and-forth interactions or context-aware reasoning, you must intro-
duce memory into the system. This is where tools such as LangGraph, message history,
and stateful chains come into play, enabling the agent to persist and reason over previ-
ous exchanges.

Let’s add memory to our agent using LangGraph’s support for message-passing state.
First, import the following libraries:

from typing import Annotated, List
from typing_extensions import TypedDict
from langgraph.graph.message import add_messages

Then create a class named State:

class State(TypedDict):
 messages: Annotated[List, add_messages]

The State class creates a dictionarylike object meant to hold conversational state within
LangGraph. The key messages stores a list of messages that the user is communicating
with the agent. The Annotated class tells LangGraph how to handle the list of messages:

¡	It automatically merges, appends, or trims as needed.

¡	It’s LangGraph’s way of doing memory with a low-level but composable approach.

¡	List means that messages is expected to be a List (i.e., Python’s built-in list), but
it doesn’t specify the type of items inside, so it’s just a generic list (e.g., List[Any]).

¡	add_messages is a LangGraph utility that helps you manage appending and merg-
ing message sequences.

With the State class defined, modify the run_agent() function so that the agent can
use a State object to maintain conversation:

def run_agent(query: str, state: State = None) -> tuple[str, State]:
 response = agent_executor.invoke({"messages": [("user", query)]})
 pprint(response)

Function to run the agent with a user
query, maintaining conversation history

 227Developing agents using LangGraph

 if state is None:

 state = {"messages": []}

 state["messages"].append(("user", query))
 response = agent_executor.invoke(state)
 state = {"messages": response["messages"]}
 return response["messages"][-1].content, state

In this code, the run_agent() function accepts a user query and an optional State
object, which stores the conversation history. If no state is provided, the function ini-
tializes an empty one. The user’s query is appended to the message list in the state; then
this updated state is passed to the agent via invoke(). The agent generates a response
based on the full conversation history and returns an updated list of messages. The
function returns the most recent message from the agent along with the updated state
to continue the conversation seamlessly. Now you can now call the run_agent() func-
tion via a loop so that the user has a chance to ask contextually related questions:

conversation_state = {"messages": []}
while True:
 query = input("Question: ")
 if query.lower()=="quit": break
 answer, conversation_state = run_agent(query, conversation_state)
 print(f"Query: {query}")
 print(f"Answer: {answer}")

Let’s try this with the first question:

Query: What is the weather in Singapore?
Answer: The weather in Singapore is as follows:
- **Condition:** Broken clouds
- **Temperature:** 31.35°C
- **Humidity:** 70%
- **Wind Speed:** 3.09 m/s

Now that you have the first answer, ask a related question using her to refer to
Singapore:

Query: What is her population?
Answer: As of my last knowledge update in October 2021,
Singapore's population was approximately 5.7 million people.
For the most current population figures, I recommend checking
the latest statistics from a reliable source such as the
Singapore Department of Statistics or other official
demographic resources.

You can see that the agent remembers the previous conversation and answers the ques-
tion correctly.

Appends the new user query
to the existing messages

Invokes the agent with
the updated state

Updates the state with
the response, replacing
the whole messages list

Returns the last message
as well as the state

Initializes an empty state to
store conversation history

228 CHAPTER 9 Programming agents

Summary

¡	An agent is a specialized system designed to perform tasks autonomously by com-
bining language understanding, reasoning, and tool use.

¡	smolagents is a lightweight, flexible framework designed to make agent develop-
ment simple and approachable.

¡	DuckDuckGoSearchTool is a lightweight, privacy-focused search tool that allows
your agent to find information from the web quickly and efficiently.

¡	Using the HfApiModel() object, you can use a model hosted on a Hugging Face
server.

¡	The CodeAgent class creates a smolagents agent.

¡	To use a locally running LLM through Ollama, use the LiteLLMModel class, which
connects to the Ollama server and allows your agent to send prompts and receive
responses directly from models running on your machine.

¡	The PythonInterpreterTool class allows the agent to execute Python code
dynamically.

¡	Use the @tool decorator above your function to design it as a custom tool.

¡	SerpAPI is a real-time search API that allows developers to programmatically
access and extract search results from search engines.

¡	You can create a LangChain agent using the initialize_agent() function.

¡	LangGraph is a flexible, feature-rich framework designed for building complex,
stateful agents.

¡	You can use the create_react_agent() function to create a ReAct-style agent.

¡	ReAct is a method in which the agent thinks step by step, calls tools, observes
results, and continues reasoning.

¡	In LangGraph agents, you create a Tool object and use it as a custom tool.

¡	You can maintain memory in your LangGraph agent by creating a State object
and passing it to your agent.

229

10Building a web-based
UI using Gradio

This chapter covers

¡	Building basic UI with Gradio

¡	Configuring and customizing your Gradio

application

¡	Sharing and deploying your Gradio application on

Hugging Face Spaces

¡	Creating a chatbot UI for chatbot applications

Imagine that you’ve spent weeks coding your machine learning project, and it’s
finally done. Now you’re eager to show it off to your friends, and you hope it will
impress your boss. But you have one more thing to do: create a nice shiny frontend
to impress your users.

Developers excel in technical aspects and problem-solving, but their strengths
may not always align with creative design. How do you come up with a nice web fron-
tend that can interface with your machine learning models?

Gradio, an open source Python package, makes it quick and easy to build a demo
web application that showcases your machine learning applications. What’s more,

230 CHAPTER 10 Building a web-based UI using Gradio

with a single click, you can share a link to your demo application using Gradio’s built-in
sharing feature.

10.1 Basics of Gradio

To install the Gradio package, use the pip command in Jupyter Notebook:

!pip install gradio

NOTE At this writing, the latest version of the Gradio Python package is 5.18.0.

Let’s start by exploring how Gradio works. You’ll create a simple Gradio application
and then dive into how it works and how to deploy it in a production environment.
Specifically, you’ll learn how to do the following:
¡	Use the Interface class to build a simple Gradio application

¡	Use the Flag options to let users flag your application output

¡	Configure authentication for your Gradio application so that only authorized
users can use it

¡	Configure the Gradio application to be accessible on the local network

¡	Deploy your Gradio application on Hugging Face Spaces

10.1.1 Using Gradio’s Interface class

To build a simple Gradio application, you can use the Interface class. Interface is Gra-
dio’s main high-level class, which allows you to build a web UI with a few lines of code.
The Interface class accepts several arguments, including these:

¡	fn—Function to wrap the Gradio UI around

¡	title—Title of the Gradio UI

¡	inputs—Types of inputs to display in the Gradio UI

¡	outputs—Types of outputs to display in the Gradio UI

The following listing shows a simple example.

Listing 10.1 A simple Gradio example

import gradio as gr

def my_chatbot(message):
 return "Hello, " + message

interface = gr.Interface(fn = my_chatbot,
 title = "Hello, Gradio!",
 inputs = "text",
 outputs = "text")

interface.launch()

Binds it to the
my_chatbot() function

Title of the UI

The input component(s)

The output component(s)

 231Basics of Gradio

In this code snippet, the Gradio application is bound to the my_chatbot() function. To
launch the Gradio application, call the launch() method. Figure 10.1 shows what the
Gradio application looks like when the code is run.

Figure 10.1 The Gradio application with a single input and a single output

Figure 10.2 shows how the various arguments passed into the Interface class control
the UI of your Gradio application.

inputs = "text" outputs = "text"

title = "Hello, Gradio!"

Figure 10.2 The various components of your Gradio application

The Clear, Submit, and Flag buttons are displayed by default. In this example, both the
input and output of the UI are text boxes (indicated with the text string). When the
user clicks the Submit button, the text in the input text box is passed into the message
parameter in the my_chatbot() function. The value returned by the function appears
in the output text box. Figure 10.3 illustrates this process.

232 CHAPTER 10 Building a web-based UI using Gradio

def my_chatbot(message):

 return "Hello, " + message

Figure 10.3 How values are passed in from the inputs to the bound function and returned to the outputs

Notice the link at the top of the output (refer to figure 10.2), indicating that Gradio
is running on a local URL: http://127.0.0.1:7860. If you click that link, a new web
page appears (see figure 10.4). The port number increments by 1 every time you run
the cell in Jupyter Notebook. If you run the cell again, the port number will change to
7861, followed by 7862, and so on.

Figure 10.4 Displaying the Gradio app in a new browser window

 233Basics of Gradio

Also notice the button labeled Flag. What is this button for? Well, it gives you a way to
log the inputs and outputs if you find that the output returned by the function war-
rants further attention. Clicking the Flag button creates a new folder called .gradio/
flagged in the same directory as your Jupyter Notebook. Inside this folder, you’ll find
a file named dataset1.csv. This file records your inputs, outputs, and other details. If
you enter the string "Gradio is fun!", click Submit, and then click Flag, Gradio logs the
following in the dataset1.csv file (see figure 10.5).

Figure 10.5 Viewing the content of dataset1.csv

10.1.2 Configuring flagging options

The default behavior of the Flag button is to log the inputs, outputs, and timestamp of
your Gradio application in the log.csv file. If you want a more customized approach
to logging, you can specify it by using the flagging_options parameter, as shown in the
following listing.

Listing 10.2 Specifying flagging_options

import gradio as gr

def my_chatbot(message):

 return "Hello, " + message

interface = gr.Interface(fn = my_chatbot,

 title = "Hello, Gradio!",

 inputs = "text",

 outputs = "text",

 flagging_options =

 ["correct","wrong","ambiguous"])

interface.launch()

Figure 10.6 shows that now you have three Flag buttons, labeled based on what you
specified in the flagging_options parameter.

Now if you type the string "Gradio is fun!", click Submit, and then click the Flag As
Correct button, a new file named dataset2.csv is created, and Gradio logs correct for
the flag field (see figure 10.7).

234 CHAPTER 10 Building a web-based UI using Gradio

Three Flag
buttons

Figure 10.6 The three flagging options

Figure 10.7 Now the dataset2.csv file contains the "correct" string.

A new CSV file is created if the structure of the original file changes. The dataset1.csv
file, for example, didn’t include a field named flag, whereas dataset2.csv does.

10.1.3 Configuring authentication

By default, your Gradio application is public; anyone who has the URL of your app will
be able to access it. But you may want to restrict access to the application, especially if
it involves sensitive data. You can password-protect your application by using the auth
parameter in the launch() method as follows.

Listing 10.3 Specifying authentication credentials

import gradio as gr

def my_chatbot(message):
 return "Hello, " + message

interface = gr.Interface(fn = my_chatbot,
 title = "Hello, Gradio!",
 inputs = "text",
 outputs = "text",

Binds it to Gradio

 235Basics of Gradio

 flagging_options =
 ["correct","wrong","ambiguous"])

interface.launch(auth = ("admin", "secret"))

 When you run this code snippet, you see the login page shown in figure 10.8.

Figure 10.8 Prompting

the user to log in before

using the application

NOTE To ensure that authentication in Gradio works properly, you must
enable third-party cookies in your browser. By default, Apple Safari and Goo-
gle Chrome won’t work in incognito mode.

If the entered username ("admin") and password ("secret") don’t match, you see an
Incorrect Credentials message. Otherwise, the Gradio application loads as usual.

Now if you type the string "Gradio is fun!", click Submit, and then click the Flag As
Correct button, Gradio creates another CSV file and logs "admin" under the username
field (see figure 10.9).

Figure 10.9 The dataset3.csv file contains "admin" under the username field.

Hardcoding the username and password in the auth parameter is not the recom-
mended practice; however, you may want to write a function to perform your own
authentication handling and then specify the function name in the auth parameter,
like this:

236 CHAPTER 10 Building a web-based UI using Gradio

def authentication(username, password):

 return (username=='admin' and password=='secret')

interface.launch(auth = authentication)

In this code snippet, you can replace the authentication logic with your own, such as
authenticating against the credentials stored in databases or other third-party authen-
tication services.

10.1.4 Customizing the server and port

By default, Gradio listens at port 7860. But this port may not be available on your com-
puter if another application is listening at the same port. In this case, Gradio automat-
ically searches for the next available port, starting from 7860. Alternatively, you can
specify the port you want to use for Gradio. This approach is especially useful if you’re
running Gradio in a Docker container and the container exposes only specific ports.

Also, when Gradio starts, it binds to the 127.0.0.1 IP address by default, making the
Gradio application accessible only on the local computer. If you want to make the appli-
cation accessible on the local network, you need to bind it to the 0.0.0.0 IP address.
The following code snippet makes the process clear:

interface.launch(server_name = "127.0.0.1", server_port = 5000)

interface.launch(server_name = "0.0.0.0", server_port = 5000)

For a computer on the network to access the Gradio application, simply use the fol-
lowing URL: http://<IP_ADDRESS_OF_SERVER>:5000. If the Gradio application is run-
ning on a computer with IP address 192.168.1.24, for example, you can use the URL
http://192.168.1.24:5000 to access the Gradio application from another computer.

NOTE When you use Jupyter Notebook, take note when you rerun the cell
containing the Gradio application; Jupyter Notebook will complain that the
port you specified is not available. To fix this problem, restart the kernel.

10.1.5 Sharing your Gradio application

If you want to share your Gradio application with your friends over the internet, you
can set the share argument to True in the launch() method:

interface.launch(share = True)

You can replace the authentication
logic with your own.

Returns True to
authenticate user or
False otherwise

Listens at port 5000; accessible only
on the computer running Gradio

Listens at port 5000; accessible
only on the local network

 237Basics of Gradio

This setting causes Gradio to create a temporary link that allows your friends to access
your Gradio application. Figure 10.10 shows the output when you call the launch()
method with the share argument set to True:

Figure 10.10 A public link is created for your Gradio application.

Now you can now share the public URL with your friends. Note the following:

¡	If you run the Gradio code in Jupyter Notebook, the kernel must be running. If
the kernel is shut down, the Gradio app no longer works.

¡	If you run the Gradio code as a standalone Python application, the application
must be running. If not, the Gradio app no longer works.

NOTE Be aware that the shared link is served by Gradio share servers, which
act only as proxies for your local server; they don’t store any data sent through
your app.

TIP Shared links expire after 72 hours. A much better way to make your Gra-
dio application public is to host it on Hugging Face Spaces.

10.1.6 Deploying your Gradio application to Hugging Face Spaces

To make your Gradio application permanently available, host it in the cloud. Fortu-
nately, Hugging Face Spaces provides free hosting for your Gradio application. (You
can upgrade to a paid version if you require more computing power.) Here’s how you
can host your Gradio application on Hugging Face Spaces:

1 Create a directory on your computer, and for this example, name it MyGradioApp.

2 Create a file named mygradio.py with the content of listing 10.1, and save it in the
MyGradioApp directory.

3 To host on Hugging Face Spaces, you need a WRITE Hugging Face token, so cre-
ate it at https://huggingface.co/settings/tokens.

4 Launch Terminal (macOS) or Anaconda Prompt (Windows), and type the fol-
lowing commands:

$ cd MyGradioApp
$ gradio deploy

You see the following:

https://huggingface.co/settings/tokens

238 CHAPTER 10 Building a web-based UI using Gradio

 _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_|
||_|_| _|_| _|_|_| _|_|_|_|
 _| _| _| _| _| _| _| _|_| _| _|
_| _| _| _| _|
 ||_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_|
||_| _|_|_|_| _| _|_|_|
 _| _| _| _| _| _| _| _| _| _| _|_| _| _|
_| _| _| _| _|
 _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_|
_| _| _| _|_|_| _|_|_|_|

Enter your token (input will not be visible): <Your WRITE token>
Add token as git credential? (Y/n) n
Creating new Spaces Repo in '/Volumes/SSD/Book Projects/5.
Hugging Face book/chap10/MyGradioApp'.
Collecting metadata, press Enter to accept default value.
Enter Spaces app title [MyGradioApp]: <press Enter>
Enter Gradio app file [mygradio.py]: <press Enter>
Enter Spaces hardware (cpu-basic, cpu-upgrade, t4-small,
t4-medium, l4x1, l4x4, zero-a10g, a10g-small, a10g-large,
a10g-largex2, a10g-largex4, a100-large, v5e-1x1, v5e-2x2,
v5e-2x4) [cpu-basic]: <press Enter>
Any Spaces secrets (y/n) [n]: <press Enter>
Create requirements.txt file? (y/n) [n]: <press Enter>
Create Github Action to automatically update Space on 'git push'?
[n]: <press Enter>
Space available at https://huggingface.co/spaces/Wei-Meng/MyGradioApp

5 Enter your WRITE token, and reply to the questions as follows:

Need 'write' access token to create a Spaces repo.

Your Gradio application is hosted on Hugging Face Spaces. You can access it via the
URL https://huggingface.co/spaces/Wei-Meng/MyGradioApp. (Your URL will vary
due to the username.) Figure 10.11 shows the application.

Figure 10.11

The Gradio

application hosted

on Hugging Face

Spaces

https://huggingface.co/spaces/Wei-Meng/MyGradioApp

 239Working with widgets

10.2 Working with widgets

You’ve learned how to create a basic Gradio application, configure it for flagging, share
it with friends on the local network, and deploy it on Hugging Face Spaces. In this sec-
tion, you dive deeper into the various types of Gradio applications you can build with
other components. You’ll learn how to do the following:

¡	Work with Textbox

¡	Work with Audio

¡	Work with Images

¡	Work with selection components

¡	Lay out components using the TabbedInterface class

10.2.1 Working with Textbox

In the first example in this chapter, you saw that when you specify text as the value in
the inputs parameter in the Interface class, a text box with the default label message is
displayed. You can customize the text box by creating an instance of the Textbox class.
The following listing shows an example.

Listing 10.4 Creating an instance of the Textbox class

import gradio as gr

def my_chatbot(message):
 return "Hello, " + message

textbox = gr.Textbox(label = "Message",
 placeholder = "Your message here",
 lines = 3)

gr.Interface(fn = my_chatbot,
 inputs = textbox,
 outputs = "text").launch()

Figure 10.12 shows what the Gradio application looks like at this point and how the
various arguments in the Textbox class are used.

Three lines by default

label = "Message"

placeholder = "Your message here"

Figure 10.12

Configuring

the Textbox

component

240 CHAPTER 10 Building a web-based UI using Gradio

The text box is taller, showing the height for three lines. Note, however, that the lines
parameter doesn’t limit the number of lines the user can type; it is there to display the
initial number of lines to display. Figure 10.13 shows the output when the user enters
some text and clicks the Submit button.

Figure 10.13 Submitting the text and obtaining the output

10.2.2 Working with Audio

Gradio can work with audio as well as text. Using the Audio component, you can
upload an audio stream to Gradio and perform operations on it. The following listing
shows an example of using the Audio component.

Listing 10.5 Creating an instance of the Audio class

import numpy as np
import gradio as gr

def reverse_audio(audio):
 sr, data = audio
 reversed_audio = (sr, np.flipud(data))
 return reversed_audio

mic = gr.Audio(sources = ["upload","microphone"],
 type = "numpy",
 label = "Audio")

interface = gr.Interface(fn = reverse_audio,
 inputs = mic,
 outputs = "audio")
interface.launch()

Figure 10.14 shows what the Gradio application looks like when you run the code
snippet.

audio is a NumPy array.

Reverses the audio

 241Working with widgets

Drag and drop
audio file or
click to upload.

Activate
microphone.

Figure 10.14 You can drag and drop an audio file or record an audio stream with your microphone.

If you activate the microphone on your computer to record an audio stream, by default,
that stream is sent to the reverse_audio() function as a tuple, with sample rate in Hz
and audio data as a NumPy array. In this example, the audio data was reversed by the
np.flipud() function and then returned to the output, where it can be played back.

Figure 10.15 shows how to select the microphone to use (if you have more than one).
Click the Record button to record the audio. When the audio is recorded, click the
Submit button.

Click Record to
start recording.

Choose your microphone
(if you have multiple
microphones).

Figure 10.15 Choosing your microphone and recording the audio

242 CHAPTER 10 Building a web-based UI using Gradio

You can play back the original audio you recorded and the audio that has been reversed
(see figure 10.16).

1. Play back the audio
 you recorded.

2. Submit the audio to the
 reverse_audio() function.

3. Play back the audio
 in reverse.

Figure 10.16 You can play back the original recording and the reversed audio.

10.2.3 Working with Images

You can work with images in Gradio by using the Image component. The following
code is an example of how to work with images.

NOTE For this example, you need to install the skimage package using the pip
command !pip install scikit-image.

Listing 10.6 Working with images in Gradio

from skimage.color import rgb2gray
import numpy as np
import gradio as gr

def convert_image(img):
 return rgb2gray(img)

image = gr.Image(type="numpy")

Returns image as grayscale

Works with the image as
a NumPy array (default)

 243Working with widgets

interface = gr.Interface(fn = convert_image,

 inputs = image,

 outputs = "image")

interface.launch()

Figure 10.17 shows three ways to upload images to Gradio:

¡	Drag and drop the image directly on the Image component.

¡	Capture images through the webcam.

¡	Paste an image from your computer’s clipboard.

Drag and drop
image or click
to upload image.

Paste image
from clipboard.

Activate
webcam.

Figure 10.17 Using the Image component in Gradio

By default, all images passed into the Image component are in NumPy array format.
Therefore, in this example, the image you send to the Image component is sent as a
NumPy array to the img parameter of the convert_image() function. For this imple-
mentation, you return the grayscale equivalent of the image using the rgb2gray()
function in the skimage package. Figure 10.18 shows how an image is transformed to
grayscale after you click the Submit button.

244 CHAPTER 10 Building a web-based UI using Gradio

Figure 10.18 Converting an image to grayscale

If you want to work with PIL (Python Imaging Library) images in Gradio, set the type
parameter to pil in the Image() class as follows.

Listing 10.7 Working with PIL images

from skimage.color import rgb2gray

import numpy as np

import gradio as gr

def convert_image(img):

 return img.rotate(-90)

image = gr.Image(type="pil")

interface = gr.Interface(fn = convert_image,

 inputs = image,

 outputs = "image")

interface.launch()

In the preceding code listing, the input image is rotated 90 degrees clockwise (see
figure 10.19).

Rotates image
clockwise 90 degrees

Works with the image
as a PIL image

 245Working with widgets

Figure 10.19 Rotating the image 90 degrees clockwise

If you want to let the user choose among a predetermined set of images, use the
examples parameter in the Interface class. Set that parameter to a list of image names,
as shown in the next listing.

Listing 10.8 Specifying a list of example images to use

interface = gr.Interface(fn = convert_image,
 inputs = image,
 outputs = "image",
 examples = [

 "images/durian.jpg",

 "images/mango.jpg",

 "images/rambutan.jpg"]

)
interface.launch()

To use this code, you need a folder named images in the current Jupyter Notebook’s
folder. Within the images folder you must have three images named as follows:

¡	durian.jpg

¡	mango.jpg

¡	rambutan.jpg

Figure 10.20 shows what the Gradio application looks like now, with the three example
images shown at the bottom.

246 CHAPTER 10 Building a web-based UI using Gradio

Figure 10.20 Instead of using your own images, you can select an example image.

When you select an example image, it is used as the input image. Figure 10.21 shows
the image rotated 90 degrees clockwise.

Figure 10.21 Selecting an example image and rotating it 90 degrees clockwise

 247Working with widgets

10.2.4 Working with selection widgets

So far, you have seen several Gradio components: Textbox, Image, and Audio. In this
section, you use two widgets that allow you to make selections:

¡	Dropdown—The Dropdown component creates a drop-down menu from which
users can choose a single entry or multiple entries (as input components) or dis-
played (as output components).

¡	Slider—The Slider component creates a slider that ranges from minimum to
maximum with a step size of step.

The following listing shows how to use both components.

Listing 10.9 Using the Dropdown and Slider components

import numpy as np
import gradio as gr

languages = ['English','Japanese','Chinese']

def translate(language_index, value, sentence):
 return languages[language_index], value, sentence

dropdown = gr.Dropdown(['English','Japanese','French','Chinese'],
 type = "index",
 label = "Language",
 value = "English")

slider = gr.Slider(minimum = 1,
 maximum = 5,
 step = 1,
 value = 2,
 label = "Select a value")

textbox1 = gr.Textbox(type = "text",
 value = "",
 label = "Sentence to translate",
 placeholder = "sentence")

textbox2 = gr.Textbox(type = "text",
 label = "Translated sentence")

interface = gr.Interface(
 translate,
 [dropdown, slider,textbox1],
 textbox2,
)

interface.launch()

This listing uses the Dropdown, Slider, and Textbox components for the input and the
Textbox component for the output (see figure 10.22).

248 CHAPTER 10 Building a web-based UI using Gradio

Figure 10.22 Using the

Dropdown, Slider, and

Textbox components for

the inputs and outputs

Suppose that you chose Japanese from the Language drop-down menu, selected a
value of 5, and entered the string “こんにちは”. After you click Submit, you see the
output shown in figure 10.23. The figure also shows how the returning value of the
translate() function is linked to the output.

def translate(language_index, value, sentence):
 return languages [language_index], value, sentence, language_index

index of dropdown items

value of slider

value of Textbox

Figure 10.23 Submitting the selected values and obtaining the output

 249Working with widgets

If you have multiple outputs, such as two Textboxes, you need to wrap the return values
explicitly using a tuple, as shown in the following code listing.

Listing 10.10 Modifying the return values for two outputs

def translate(language_index, value, sentence):
 return (languages[language_index], value, sentence), language_index
...
...

interface = gr.Interface(
 translate,
 [dropdown, slider,textbox1],
 [textbox2,"text"],
)

Figure 10.24 shows the output of the modified Gradio application.

Figure 10.24 Now the output

has two components.

Note that you need to wrap the first three return values in a tuple, which allows the
correct values to be sent to the output (see figure 10.25).

def translate(language_index, value, sentence):
 return languages [language_index], value, sentence, language_index

Figure 10.25 Wrapping the values

in a tuple to send to one output

250 CHAPTER 10 Building a web-based UI using Gradio

If you didn’t wrap the first three return values in a tuple, the first two results would be
sent to the output and the rest would be discarded, as shown in figure 10.26.

def translate(language_index, value, sentence):
 return languages [language_index], value, sentence, language_index

Figure 10.26 Returning values are dropped if they’re not formed properly.

10.2.5 Layout using the TabbedInterface class

Sometimes, you want users to experiment with a couple of machine learning models.
Instead of writing a Gradio application for each model, you can group the models in
a single application using the TabbedInterface class. The following listing shows an
example.

Listing 10.11 Using the TabbedInterface class

import gradio as gr

def convert_image(img):

 return rgb2gray(img)

def reverse_audio(audio):
 sr, data = audio
 print(sr)
 reversed_audio = (sr, np.flipud(data))
 return reversed_audio

image = gr.Image(type="numpy")

mic = gr.Audio(sources = ["upload","microphone"],
 type = "numpy",
 label = "Audio")

interface1 = gr.Interface(title = 'Reverse Audio',

Returns image to grayscale

 251Working with widgets

 fn = reverse_audio,
 inputs = mic,
 outputs = "audio")

interface2 = gr.Interface(title = 'Convert Image',
 fn = convert_image,
 inputs = image,
 outputs = "image")

tabbed = gr.TabbedInterface(
 [interface1, interface2],
 ['Tab 1','Tab 2']
)

tabbed.launch()

This code snippet contains two main functions:

¡	convert_image(): A function to convert an image to grayscale

¡	reverse_audio(): A function to reverse an audio stream

You created two instances of the Interface class and grouped them together using the
TabbedInterface class. Figure 10.27 shows the updated Gradio application.

First tab Second tab

Figure 10.27 The first tab of the Gradio application

Groups the two interfaces

Names the tabs

252 CHAPTER 10 Building a web-based UI using Gradio

Clicking Tab 2 reveals the UI for the image-conversion function (see figure 10.28).

Figure 10.28 The second tab of the Gradio application

10.3 Creating a chatbot UI

So far, all the Gradio applications you’ve built require the user to click the Submit
button before processing the output. Although this requirement is quite natural in
most applications (such as object detection, image segmentation, and language trans-
lation), it’s awkward in use cases such as chatbots. In a chatbot, users typically type a
message and press Enter to send it to the chatbot, which responds with an appropriate
message. Using the UI you’ve used so far for a chatbot would be cumbersome; users
would have to click Submit and then clear the text box manually before typing the
next message.

To build a chatbot-like UI, you can use Gradio’s Blocks class with components such
as Textbox and Button. Blocks is a low-level API you can use to create more-customized
web applications than the Interface class allows. To use Blocks in Gradio, follow these
steps:

1 Create a Blocks object, and use it as a context (using Python’s with statement).

2 Define layouts, components, or events within the Blocks context.

3 Call the launch() method to launch the UI.

 253Creating a chatbot UI

10.3.1 Creating the basic chatbot UI

Let’s see how to use a Blocks object to create a chatbot-like UI. Before you write the
code, outline what you want the chatbot to look like and the components you’re going
to use. Figure 10.29 shows those components.

Chatbot

Textbox

Button

Figure 10.29 The components used for the chatbot UI

In the figure, the Textbox is where the user types the message. The Button clears the
conversation in the chatbot, which is represented by Gradio’s Chatbot component.
Using a Blocks object, create this UI.

Listing 10.12 Building the basic chatbot UI

import gradio as gr

with gr.Blocks() as mychatbot:
 chatbot = gr.Chatbot(type = "messages")
 textbox = gr.Textbox()
 clear = gr.Button("Clear Conversation")

mychatbot.launch()

When you run this code, the UI is displayed, but it isn’t functional. In the next two sec-
tions, you wire the event handlers for the Textbox and Button components.

Blocks is a low-level API
that allows you to create
custom web applications.

Displays a chatbot . . .

. . . for the user to ask a question.

Clear button

254 CHAPTER 10 Building a web-based UI using Gradio

10.3.2 Wiring the Textbox’s submit event

First, create an event handler for the submit event in the Textbox component, as shown
in the following listing.

Listing 10.13 Creating the event handler for the Textbox’s submit event

import gradio as gr

with gr.Blocks() as mychatbot:
 chatbot = gr.Chatbot(type="messages")
 textbox = gr.Textbox()
 clear = gr.Button("Clear Conversation")

 def chat(message, chat_history):
 response = "Responses from chatbot..."
 chat_history.append({"role": "user", "content": message})
 chat_history.append({"role": "assistant", "content": response})
 print(chat_history)
 return "", chat_history

 textbox.submit(fn = chat,

 inputs = [textbox, chatbot],

 outputs = [textbox, chatbot])

mychatbot.launch()

In this code snippet, the submit event of the Textbox is wired to the chat() function,
which takes two arguments: message and chat_history. The inputs and outputs param-
eters of the Textbox are set to textbox and chatbot, respectively.

Within the chat() function, you can pass the content of message to your chatbot
(or large language model [LLM]). Both the question and the response returned are
appended to the chat_history argument. Here, we also printed the content of chat_
history so that we can see what is being stored. Finally, the chat() function returns a
tuple—the string to return to the Textbox after the user presses the Enter key—as well
as the chat_history argument.

Figure 10.30 shows what happens after the user types Hello, there! in the Textbox
and presses Enter. The content of the message variable and the response from the
chatbot (replace with your own logic) are appended to the chat_history argument.
The Chatbot component displays the message and response. Finally, the chat()
function returns a tuple, "" (to clear the content of the Textbox), and the chat_history
argument.

You can examine the content of the chat_history argument that you printed:

[
 {'role': 'user', 'content': 'Hello, there!'},
 {'role': 'assistant', 'content': 'Responses from chatbot...'}
]

Replace with the
actual responses
from a chatbot.

Appends the message and
response to the history

The “” is to clear the Textbox.

Wires up the event handler for
the Submit button (when the
user presses Enter)

 255Creating a chatbot UI

Figure 10.30 Typing a message in the Textbox and sending it to the Chatbot component

If you follow up with another message (Have you heard of how cool Gradio is?), you get
the following output (formatted for clarity):

[
 {'role': 'user', 'metadata': None, 'content': 'Hello, there!',
 'options': None},
 {'role': 'assistant', 'metadata': None,
 'content': 'Responses from chatbot...',
 'options': None},
 {'role': 'user', 'content': 'Have you heard of how cool Gradio is?'},
 {'role': 'assistant', 'content': 'Responses from chatbot...'}
]

If you follow up with yet another message (How does it compare to Streamlit?), you
get this output (formatted for clarity):

[
 {'role': 'user', 'metadata': None, 'content': 'Hello, there!',
 'options': None},
 {'role': 'assistant', 'metadata': None, 'content':
 'Responses from chatbot...', 'options': None},
 {'role': 'user', 'metadata': None, 'content':
 'Have you heard of how cool Gradio is?', 'options': None},
 {'role': 'assistant', 'metadata': None, 'content':
 'Responses from chatbot...', 'options': None},
 {'role': 'user', 'content': "How does it compare to Streamlit?"},
 {'role': 'assistant', 'content': 'Responses from chatbot...'}
]

256 CHAPTER 10 Building a web-based UI using Gradio

10.3.3 Clearing the chatbot

The final step in implementing the chatbot UI is creating the event handler for the
Button’s click event. The following code listing shows how.

Listing 10.14 Creating the event handler for the Button’s click event

import gradio as gr

with gr.Blocks() as mychatbot:
 chatbot = gr.Chatbot(type="messages")
 textbox = gr.Textbox()
 clear = gr.Button("Clear Conversation")

 def chat(message, chat_history):
 response = "Responses from chatbot..."
 chat_history.append({"role": "user", "content": message})
 chat_history.append({"role": "assistant", "content": response})
 print(chat_history)
 return "", chat_history

 textbox.submit(fn = chat,
 inputs = [textbox, chatbot],
 outputs = [textbox, chatbot])

 def clear_messages():
 print("Clearing message...")

 clear.click(fn = clear_messages,
 inputs = None,
 outputs = chatbot,
 queue = False)

mychatbot.launch()

When the user clicks the Clear Conversation button, the clear_messages() function is
called. You can replace its content with your own code to clear the chatbot (or LLM).
The outputs parameter specifies that you return the chatbot object, which is empty.

That’s it. You have a functional chatbot! All you need to do is replace the chat() func-
tion with the code to communicate with your own LLM.

Summary

¡	To build a simple Gradio application, you can use the Interface class, Gradio’s
main high-level class, which allows you to build a web UI with just a few lines of
code.

¡	The Textbox component allows users to send text content to the Gradio
application.

¡	The Audio component allows users to send audio streams to the Gradio
application.

Clears Textbox and returns updated history

 257Summary

¡	The Image component allows users to send images (as NumPy arrays or PIL
images) to the Gradio application.

¡	You can implement authentication for your Gradio application using the auth
parameter in the launch() method.

¡	The Flag option logs messages in the log.csv file.

¡	You can share the Gradio application with users on the local network or create a
shared link to share with other internet users.

¡	You can deploy your Gradio application on Hugging Face Spaces.

¡	You can group multiple interfaces using the TabbedInterface class.

¡	To create a chatbot UI, use the Blocks class together with other Gradio
components.

258

11Building locally running
LLM-based applications

using GPT4All

This chapter covers

¡	Introducing GPT4All

¡	Loading a model from GPT4All

¡	Holding a conversation with a model from GPT4All

¡	Creating a web UI for GPT4All using Gradio

You’ve learned about constructing large language model (LLM)–based applications
using models from OpenAI and Hugging Face. Although these models have trans-
formed natural language processing (NLP), there are notable drawbacks. Primarily,
privacy emerges as a critical concern for businesses. Relying on third-party-hosted
models introduces a security risk because your conversations would be transmitted
to these external companies, raising apprehension for businesses that deal with sen-
sitive data. Also, the challenge of integrating these models with your private data
exists, and even if that challenge is met, the initial privacy concern resurfaces.

A more effective approach is to execute the models locally on your computer.
This gives you control of the destination of your private data and enables you to fine-
tune the models to suit your specific data requirements. But running an LLM often
requires graphics processing units (GPUs), constituting a significant investment.

 259Installing GPT4All

Fortunately, there’s a remedy: GPT4All. GPT4All provides quantized models,
reduced to a few gigabytes, that can operate on standard consumer-grade CPUs with-
out requiring an internet connection. In this chapter, you’ll discover how to initiate
GPT4All, and in chapter 12, you’ll explore using GPT4All to process your private data.

11.1 Introducing GPT4All

GPT4All (https://www.nomic.ai/gpt4all) is an open source project containing sev-
eral pretrained LLMs that you can use to run locally using consumer-grade CPUs.
This accessibility is invaluable, especially for people who don’t have access to high-end
GPUs. Enabling the local deployment of LLMs contributes to democratizing AI, ensur-
ing that everyone, regardless of hardware constraints, can actively participate in the
creation of AI applications.

GPT4All contains several models ranging from 3 GB to 8 GB. Even more exciting—
it’s free! Although the performance of GPT4All may not be on par with that of the cur-
rent ChatGPT, with contributions from the open source community it has significant
potential for further development and enhancements.

11.2 Installing GPT4All

There are two types of installations for GPT4All:

¡	An end-user application that allows users to try out the various models supported
by GPT4All. This installation doesn’t require programming knowledge. Users
will be able to initiate a chat conversation with the downloaded LLM.

¡	A Python library that enables developers to use the various models to build their
LLM-based applications.

The following sections go through these two types of installation methods. Our focus
will be on the second method, showing you how to build locally running LLM-based
applications using Python.

11.2.1 Installing the GPT4All application

To install the GPT4All desktop chat client, go to https://www.nomic.ai/gpt4all and
download the installer for the OS you’re using (see figure 11.1).

Figure 11.1 Download

the installer for your OS.

https://www.nomic.ai/gpt4all
https://www.nomic.ai/gpt4all

260 CHAPTER 11 Building locally running LLM-based applications using GPT4All

When the installer is downloaded, double-click the installer. You’ll be asked to provide
a directory in which to store GPT4All (see figure 11.2). Accept the default suggested
path and click Next.

Figure 11.2 Specifying a directory

for storing the GPT4All files

When installation is complete, the first thing you need to do is give your permission to
opt in to the sharing of usage analytics and chats (see figure 11.3). Depending on your
preference, select Yes or No.

You need to give your permission to opt
in to sharing of usage analytics and chats.

Figure 11.3 Indicate whether you want to share usage statistics and chat details with GPT4All.

 261Installing GPT4All

Next, you have the choice to download the various models available for use with
GPT4All (see figure 11.4). Scroll to the bottom of the page to view more models. To
download a model, click the Download button.

Click Download to
download the model(s)
to your local computer.

Figure 11.4 Download the model(s) you want to try.

NOTE The amount of RAM that most models requires is 4–16 GB. If you have
a machine with only 8 GB, you’re unlikely to be able to run many of these mod-
els. To run LLMs locally, I suggest using a machine with at least 16 GB of RAM.

When you’ve downloaded a model, you can start chatting straight away. Figure 11.5
shows a question and the model’s reply.

Question asked

Reply from the model

Figure 11.5

Testing the model

by chatting and

getting a reply

from it

262 CHAPTER 11 Building locally running LLM-based applications using GPT4All

The top-right corner of the application con-
tains several buttons. Figure 11.6 shows the
names of these buttons.

To use the model to answer questions
pertaining to your own documents, click
the Local Documents button; then click
the LocalDocs item in the resulting screen.
To answer questions on your own data, the
model must perform the word vector embed-
ding process. Hence, you need to click the
Download button; then, in the next screen,
download the SBert embedding model (see
figure 11.7).

1. Click
 LocalDocs.

2. Download the SBert
 embedding model.

Figure 11.7 Download the SBert embedding model to let the model answer questions pertaining to your local

documents.

When the SBert embedding model is downloaded, specify the folder containing your
data. For this example, you’ve prepared some PDF documents and stored them inside
the folder. Figure 11.8 outlines the steps involved. You can add multiple document
folders.

Clear
Chat

Copy
Chat

Settings

Local
Documents

Contribute
Data

Figure 11.6 The names of the buttons in

the top-right corner of the application

 263Installing GPT4All

1. Give your data
 a name.

2. Click the Browse button,
 and select the folder that
 contains your local data.

3. Click the
 Add button.

Figure 11.8 Adding a local documents folder to the app

Finally, click the Local Documents button (refer to figure 11.6) and check the name of
your local data (LocalData in this example; see figure 11.9).

Figure 11.9 Selecting the local documents folder to use for querying

264 CHAPTER 11 Building locally running LLM-based applications using GPT4All

Now you can ask the model questions pertaining to your local data (see figure 11.10).

Questions posed to the model

Response from the model

Figure 11.10 Asking questions specific to your local data

11.2.2 Installing the gpt4all Python library

Now that you’ve had the chance to try out the chatting capabilities of the various LLMs
in GPT4All, it’s time to use GPT4All programmatically in Python. To do that, you need
to install it using the pip command:

!pip install gpt4all

NOTE At this writing, the latest version of gpt4all is 2.0.2, and the latest ver-
sion of langchain is 0.0.351.

11.2.3 Listing all supported models

GPT4All supports several pretrained models (LLMs). To see a list of all available mod-
els, use the list_models() function:

from gpt4all import GPT4All

GPT4All.list_models()

 265Installing GPT4All

You see the following output, which is shortened for brevity. The model names and
corresponding filenames are highlighted in bold.

Listing 11.1 Supported GPT4All models

[{'order': 'a',
 'md5sum': '48de9538c774188eb25a7e9ee024bbd3',
 'name': 'Mistral OpenOrca',
 'filename': 'mistral-7b-openorca.Q4_0.gguf',
 'filesize': '4108927744',
 'requires': '2.5.0',
 'ramrequired': '8',
 'parameters': '7 billion',
 'quant': 'q4_0',
 'type': 'Mistral',
 'systemPrompt': ' ',
 'description': 'Best overall fast chat model

Fast responsesChat based model
Trained by Mistral AIFinetuned on OpenOrca dataset curated
via Nomic Atlas
Licensed for commercial use',
 'url': 'https://gpt4all.io/models/gguf/mistral-7b-openorca.Q4_0.gguf'},
 {'order': 'b',
 'md5sum': '97463be739b50525df56d33b26b00852',
 'name': 'Mistral Instruct',
 'filename': 'mistral-7b-instruct-v0.1.Q4_0.gguf',
 'filesize': '4108916384',
 'requires': '2.5.0',
 'ramrequired': '8',
 'parameters': '7 billion',
 'quant': 'q4_0',
 'type': 'Mistral',
 'systemPrompt': ' ',
 'description': 'Best overall fast instruction
following model
Fast responses
Trained by Mistral AIUncensoredLicensed for
commercial use',
 'url': 'https://gpt4all.io/models/gguf/mistral-7b-instruct-
v0.1.Q4_0.gguf',
 'promptTemplate': '[INST] %1 [/INST]'},

 ...

 {'order': 'p',
 'md5sum': '919de4dd6f25351bcb0223790db1932d',
 'name': 'EM German Mistral',
 'filename': 'em_german_mistral_v01.Q4_0.gguf',
 'filesize': '4108916352',
 'requires': '2.5.0',
 'ramrequired': '8',
 'parameters': '7 billion',
 'quant': 'q4_0',
 'type': 'Mistral',
 'description': 'Mistral-based model for German-

266 CHAPTER 11 Building locally running LLM-based applications using GPT4All

language applications
Fast responses
Chat based modelTrained by ellamindFinetuned
on German instruction and chat dataLicensed for
commercial use',
 'url': 'https://huggingface.co/TheBloke/
em_german_mistral_v01-GGUF/resolve/main/
em_german_mistral_v01.Q4_0.gguf',
 'promptTemplate': 'USER: %1 ASSISTANT: ',
 'systemPrompt': 'Du bist ein hilfreicher Assistent. '}]

Because the list is quite long, it would be useful to extract only the model names and
the corresponding filenames, like this:

models = GPT4All.list_models()
[{model['name']:model['filename']} for model in models]

This code generates the following simplified list:
[{'Mistral OpenOrca': 'mistral-7b-openorca.Q4_0.gguf'},
 {'Mistral Instruct': 'mistral-7b-instruct-v0.1.Q4_0.gguf'},
 {'GPT4All Falcon': 'gpt4all-falcon-q4_0.gguf'},
 {'Orca 2 (Medium)': 'orca-2-7b.Q4_0.gguf'},
 {'Orca 2 (Full)': 'orca-2-13b.Q4_0.gguf'},
 {'Wizard v1.2': 'wizardlm-13b-v1.2.Q4_0.gguf'},
 {'Hermes': 'nous-hermes-llama2-13b.Q4_0.gguf'},
 {'Snoozy': 'gpt4all-13b-snoozy-q4_0.gguf'},
 {'MPT Chat': 'mpt-7b-chat-merges-q4_0.gguf'},
 {'Mini Orca (Small)': 'orca-mini-3b-gguf2-q4_0.gguf'},
 {'Replit': 'replit-code-v1_5-3b-q4_0.gguf'},
 {'Starcoder': 'starcoder-q4_0.gguf'},
 {'Rift coder': 'rift-coder-v0-7b-q4_0.gguf'},
 {'SBert': 'all-MiniLM-L6-v2-f16.gguf'},
 {'EM German Mistral': 'em_german_mistral_v01.Q4_0.gguf'}]

11.2.4 Loading a specific model

Based on the models listed in section 11.2.3, you can load the model you want to use.
For this example, use the Mistral OpenOrca model (filename mistral-7b-openorca.Q4_0
.gguf):

gpt = GPT4All("mistral-7b-openorca.Q4_0.gguf")

NOTE Mistral AI is a startup in the AI sector. Its mission is to revolutionize
generative AI with its first LLM, Mistral 7B. The company hopes that its new
7-billion-parameter model will become an open source alternative to current
AI solutions.

When you load the model for the first time, GPT4All downloads mistral-7b-openorca
.Q4_0.gguf, which is a 4.11 GB file. The file is stored in the following directory:

~/.cache/gpt4all/

 267Installing GPT4All

You can print more information about this model using the config attribute:

print(gpt.config)

Here are the details of the Mistral OpenOrca model:

{
 'systemPrompt': '',
 'promptTemplate': '### Human: \n{0}\n### Assistant:\n',
 'order': 'a',
 'md5sum': '48de9538c774188eb25a7e9ee024bbd3',
 'name': 'Mistral OpenOrca',
 'filename': 'mistral-7b-openorca.Q4_0.gguf',
 'filesize': '4108927744',
 'requires': '2.5.0',
 'ramrequired': '8',
 'parameters': '7 billion',
 'quant': 'q4_0',
 'type': 'Mistral',
 'description': 'Best overall fast chat model

Fast responsesChat based model
Trained by Mistral AIFinetuned on OpenOrca dataset curated
via Nomic AtlasLicensed
for commercial use',

'path': '/Users/weimenglee/.cache/gpt4all/mistral-7b-
openorca.Q4_0.gguf'
}

11.2.5 Asking a question

With the model downloaded, you can put it to the test. To have a chat conversation
using GPT4All, use the chat_session() method to create a contextual manager in
which you can hold an inference-optimized chat session with a model. Then you can
use the generate() method to ask the question. The following code snippet shows how
to do this using the with keyword in Python:

with gpt.chat_session():
 output = gpt.generate("What is the population of Japan?",
 max_tokens=2048)
 print(output)
 print(gpt.current_chat_session)

The model’s response to the preceding question ("What is the population of Japan?") is

As of 2021, the estimated population of Japan is approximately
126 million people. However, this number may change over time
due to factors such as births, deaths, and migration.

Here’s a printout (formatted for clarity) of the details of the current session using the
current_chat_session attribute:

268 CHAPTER 11 Building locally running LLM-based applications using GPT4All

[
 {
 'role': 'system',
 'content': ''
 },
 {
 'role': 'user',
 'content': 'What is the population of Japan?'
 },
 {
 'role': 'assistant',

'content': ' As of 2021, the estimated population of Japan is
 approximately 126 million people. However, this number may
 change over time due to factors such as births, deaths, and
 migration.'
 }
]

If you want to ask a follow-up question, you must do it within the scope of the with key-
word, like this:

with gpt.chat_session():
 response1 = gpt.generate(
 prompt='What is the population of Singapore?',
 temp = 0)
 print(response1)
 print(gpt.current_chat_session)
 print('===')

 response2 = gpt.generate(
 prompt='Where is it located?',
 temp = 0)
 print(response2)
 print(gpt.current_chat_session)

Here’s the response to the first question:

As of 2021, the estimated population of Singapore is around 5.6
million people. However, this number may change over time due to
births, deaths, and migration.

The current chat session value is

[
 {
 'role': 'system',
 'content': ''
 },
 {
 'role': 'user',
 'content': 'What is the population of Singapore?'
 },
 {

 269Installing GPT4All

 'role': 'assistant',

 'content': ' As of 2021, the estimated population of

 Singapore is around 5.6 million people.

 However, this number may change over time

 due to births, deaths, and migration.'

 }

]

Here’s the response to the follow-up question:

 Singapore is a city-state and island country in Southeast Asia.

It lies off the southern tip of the Malay Peninsula, about

85 miles (137 kilometers) north of the equator. It shares

its only land border with Malaysia to the north. The country

consists of one main island, called Singapore Island, and

more than 60 smaller islands.

Following is the updated chat session:

[

 {

 'role': 'system',

 'content': ''

 },

 {

 'role': 'user',

 'content': 'What is the population of Singapore?'

 },

 {

 'role': 'assistant',

 'content': ' As of 2021, the estimated population of

 Singapore is around 5.6 million people.

 However, this number may change over time

 due to births, deaths, and migration.'

 },

 {

 'role': 'user',

 'content': 'Where is it located?'

 },

 {

 'role': 'assistant',

 'content': ' Singapore is a city-state and island country

 in Southeast Asia. It lies off the southern

 tip of the Malay Peninsula, about 85 miles

 (137 kilometers) north of the equator. It

 shares its only land border with Malaysia to

 the north. The country consists of one main

 island, called Singapore Island, and more than

 60 smaller islands.\n\n'

 }

]

270 CHAPTER 11 Building locally running LLM-based applications using GPT4All

As you can see, the chat session contains the details of the earlier conversation, allow-
ing the model to maintain the context. The following session won’t work because the
second question is not in the same context as the first question:

with gpt.chat_session():

 response1 = gpt.generate(

 prompt='What is the population of Singapore?',

 temp = 0)

 print(response1)

with gpt.chat_session():

 response2 = gpt.generate(

 prompt='Where is it located?',

 temp = 0)

 print(response2)

If you need to ask a follow-up question at another time, you can always save the context
using the gpt.current_chat_session attribute and set it back later. The following code
snippet shows how:

session = []

with gpt.chat_session():

 response1 = gpt.generate(prompt='What is the population of Singapore?',

 temp = 0)

 print(response1)

 session = gpt.current_chat_session

with gpt.chat_session():

 gpt.current_chat_session = session

 response2 = gpt.generate(prompt='Where is it located?', temp = 0)

 print(response2)

11.2.6 Binding with Gradio

A great way to work with a GPT4All model is to bind it to Gradio. In the following code
snippet, first you define a function named chat() that calls the model’s generate()
method:

from gpt4all import GPT4All

gpt = GPT4All("mistral-7b-openorca.Q4_0.gguf")

def chat(message):

 with gpt.chat_session():

 return gpt.generate(prompt = message,

 temp = 0)

Saves the current chat session

Sets the current chat session
to the previously saved one

 271Installing GPT4All

Then you can use Gradio and bind it to the chat() function:

import gradio as gr

gr.Interface(fn = chat,

 inputs = "text",

 outputs = "text").launch()

Figure 11.11 shows what the Gradio interface looks like at this point.

Figure 11.11 Binding the model to Gradio

You can ask a question, click the Submit button, and obtain the response from the
model (see figure 11.12).

Figure 11.12 Asking a question through the Gradio interface

Remember that you can’t ask a follow-up question: every time you click the Submit but-
ton, the chat() function starts a new chat session. To fix this problem, you need to save
the current chat session’s details in a global variable and set it back every time you ask
a follow-up question, like this:

Binds it to Gradio

272 CHAPTER 11 Building locally running LLM-based applications using GPT4All

import gradio as gr
from gpt4all import GPT4All

gpt = GPT4All("mistral-7b-openorca.Q4_0.gguf")
current_chat_session = []

def chat(message):
 with gpt.chat_session():
 global current_chat_session
 gpt.current_chat_session = current_chat_session
 response = gpt.generate(prompt = message,
 temp = 0)

 current_chat_session = gpt.current_chat_session
 return response

bind it to gradio
gr.Interface(fn = chat,
 inputs = "text",
 outputs = "text").launch()

Figure 11.13 shows a user asking two consecutive questions through the Gradio
interface:

Initial question

Follow-up question

Figure 11.13 You can ask follow-up questions through the Gradio interface.

 273Installing GPT4All

If you use the application long enough, you’ll realize that having to clear the message
every time you want to ask a follow-up question is troublesome. A much more intuitive
UI would behave more like a chat application. In fact, you can use Gradio to build a
chatbot-like UI. The following code listing shows how to wrap the GTP4All call with a
chatbot-like UI using Gradio.

Listing 11.2 Displaying a chatbot UI using Gradio

import gradio as gr
from gpt4all import GPT4All

gpt = GPT4All("mistral-7b-openorca.Q4_0.gguf")
current_chat_session = []

with gr.Blocks() as mychatbot:

 chatbot = gr.Chatbot()
 question = gr.Textbox()
 clear = gr.Button("Clear Conversation")

 def clear_messages():
 global current_chat_session
 current_chat_session = []

 def chat(message, chat_history):
 with gpt.chat_session():
 global current_chat_session
 gpt.current_chat_session = current_chat_session

 response = gpt.generate(prompt = message,
 temp = 0)
 current_chat_session = gpt.current_chat_session

 chat_history.append((message, response))

 return "", chat_history

 question.submit(fn = chat,
 inputs = [question, chatbot],
 outputs = [question, chatbot])

 clear.click(fn = clear_messages,
 inputs = None,
 outputs = chatbot,
 queue = False)

mychatbot.launch()

Blocks is a low-level API . . .

. . . that allows you to create
custom web applications.

Displays a chatbot . . .

. . . for the user to
ask a question.

Clear button

Function to clear the conversation

Resets the messages list

Function to ask the LLM a question

Appends the response to
the current message and
returns it to Gradio

The “” is to clear the input text box.

Wires up the event handler
for the Submit button (when
the user presses Enter)

Wires up the event handler for
the Clear Conversation button

274 CHAPTER 11 Building locally running LLM-based applications using GPT4All

Note that this time around, the chat() function accepts two arguments (the question
to ask and the chat history):

 def chat(message, chat_history):

After the model has responded with the answer, you append the response to the chat_
history parameter and return it with a string (set to “” in this example). The string is
used to display the text in the input text box:

 chat_history.append((message, response))

 return "", chat_history

When you run this code snippet, you see the UI shown in figure 11.14. Now you can
chat with the model to your heart’s content (see figure 11.15)!

Type your
question here.

Clear the chat
conversation.

Chat history
here

Figure 11.14 The chatbot UI displayed by Gradio

The “” is to clear the
input text box.

 275Summary

Type your
question here.

Previous
question

Response to
the question

Clear the chat
conversation.

Figure 11.15 Chatting with the model is much easier and more natural.

Summary

¡	GPT4All is an open source project containing several pretrained LLMs that you
can run locally using consumer-grade CPUs.

¡	GPT4All comes with an end-user application that enables you to try out the vari-
ous models supported by GPT4All.

¡	You can use the GPT4All Python library to work with the models programmati-
cally in Python.

¡	A great way to build a web UI for your chatbot is to use the Gradio library.

276

12Using LLMs to query
your local data

This chapter covers

¡	Using GPT4All to query your private data

¡	Using PDF documents for querying by a large

language model (LLM)

¡	Loading CSV and JSON files for querying

¡	Using LLMs to analyze your data files

Up to this point, you’ve explored the capabilities of LLMs and their use through
platforms such as OpenAI and Hugging Face. Although these services ease the bur-
den of hosting models, they come at a cost. But running powerful models locally
also requires significant setup effort and cost.

Developers often face the common challenge of using LLMs to answer questions
about their data, whereas businesses emphasize the need to maintain data privacy.
Chapter 8 discussed sending data to OpenAI for embedding and querying with
LangChain and LlamaIndex. This chapter delves deeper into the topic, focusing on
querying local private documents without compromising data privacy. The chapter
discusses two approaches:

 277Using GPT4All to query with your own data

¡	Local LLM querying for text-based data—We’ll use a model from GPT4All to per-
form local embedding of your text-based data and querying. This approach is
particularly useful for querying content such as PDF documents.

¡	LLM querying for structured tabular data—Whether LLMs are running locally or
hosted by third parties such as OpenAI and Hugging Face, you can employ them
to return answers on querying tabular data (such as CSV or JSON). Instead of
feeding LLMs tabular data directly, we’ll instruct them to provide queries pro-
grammatically for analysis.

These two approaches cater to different data types and privacy concerns, ensuring flex-
ibility and effectiveness in using LLMs for varied scenarios.

12.1 Using GPT4All to query with your own data

The first approach uses a GPT4All model to query our own data. To ensure the privacy
of your data, the embeddings for the data will be performed locally without leaving the
computer. You’ll learn how to query the following types of documents:

¡	PDF

¡	CSV

¡	JSON

The following sections walk you through the entire process for each of these document
types.

12.1.1 Installing the required packages

In this section, you’ll use the following Python packages:

¡	langchain—You’ll use LangChain to chain the model with various components
such as a prompt template and embeddings.

¡	gpt4all—You’ll use a model from GPT4All.

¡	faiss-cpu—Facebook AI Similarity Search (FAISS) is a library developed by
Facebook AI Research; it’s used to make efficient similarity searches and cluster
dense vectors. Use faiss-cpu if you don’t have a graphics processing unit (GPU)
on your computer; if you do, use faiss-gpu.

¡	huggingface-hub—The huggingface-hub package is a Python library developed
by Hugging Face that provides a convenient interface for interacting with Hug-
ging Face Hub, a platform for sharing machine learning models, datasets, and
other AI-related assets.

¡	Sentence-transformers—You’ll use a sentence-transformers model from Hug-
ging Face Hub. A sentence-transformers model maps sentences and paragraphs
to a multidimensional dense vector space and is used for tasks such as clustering
and semantic search.

To install all these packages, type the following commands in Terminal (macOS) or
Anaconda Prompt (Windows):

278 CHAPTER 12 Using LLMs to query your local data

$ pip install langchain
$ pip install gpt4all
$ pip install faiss-cpu
$ pip install huggingface-hub
$ pip install sentence-transformers

12.1.2 Importing the various modules from the LangChain package

When the required packages are installed, import the various modules from the
langchain package to Jupyter Notebook:

from langchain.document_loaders import PyPDFLoader
from langchain import PromptTemplate
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores.faiss import FAISS
from langchain_core.output_parsers import StrOutputParser
from langchain.llms import GPT4All

The next few sections discuss the uses of these modules.

12.1.3 Loading the PDF documents

To build a chatbot to answer queries based on your local data, you need to load the
data. Let’s start with a PDF document. To load PDF documents, you can use the PyPDF-
Loader class from the document_loaders module in langchain:

documents =
 PyPDFLoader('./LocalDataForTraining/Invoice1.pdf').load_and_split()

This statement loads the Invoice1.pdf document from the LocalDataForTraining
directory, which is stored in the same directory as your Jupyter notebook. After the
document is loaded as a PyPDFLoader object, you call the load_and_split() method to
split the loaded document into chunks. Chunks are returned as Document objects.

Figure 12.1 shows the PDF document, which is an invoice of items purchased online.
In this project, you want to get the LLM to answer questions pertaining to the content
of the document.

If you print the content of the documents variable, you see the following list of
Document objects:

[Document(metadata={'source': './LocalDataForTraining/Invoice1.pdf',
'page': 0}, page_content='Lazada Singapore Pte Ltd is raising this
invoice in accordance to the applicable tax laws in Singapore\nThis
shipment includes any taxes (when applicable) for the merchandise to
be delivered to the address in the country\nspecified by the customer.
LAZADA pays these taxes on behalf of the customer.\nTo understand our
return policy and find out how to return, please click .here\nNEED HELP?
Contact us at https://www.lazada.sg/contact/\nLIKE US on FACEBOOK:
https://www.facebook.com/LazadaSingapore\nFOLLOW US on TWITTER:

 279Using GPT4All to query with your own data

https://www.twitter.com/LazadaSG/\nHave a great day! Thank you for
shopping on www.LAZADA.sg\n \nLAZADA SINGAPORE PTE. LTD.\nLazada
One\n51 Bras Basah Rd\nSingapore 189554\nCo. Reg. No.: 201403859E\nGST
Reg. No.: M90369204E\nTAX INVOICE\nBilling Address:\nLee Wei Meng\n, ,
\n , Invoice No.: \nSGLVGTI2023100000801372\nInvoice Date: 19-10-
2023\nOrder Number.: 108630139411340\nOrder Date: 19-10-2023\nS/N Seller
Name Item ID Description Item SKU QtyUnit Price \n(excl. GST)Total Price
\n(excl. GST)\n1ESSAGER.\nSelection2775216736Essager 100W/60w USB Type C
To \nUSB C Cable USB-C PD Fast \nCharging Charger Wire Cord For \nMacbook
Samsung Xiaomi vivo Type-\nC USBC CableColor:black 100w, \nCable Length:
3M1 SGD 3.81 SGD 3.81\n2ESSAGER.\nSelection2775216736Essager 100W/60w USB
Type C To \nUSB C Cable USB-C PD Fast \nCharging Charger Wire Cord For
\nMacbook Samsung Xiaomi vivo Type-\nC USBC CableColor:black 100w, \nCable
Length:3M1 SGD 3.81 SGD 3.81\n3ESSAGER.\nSelection2775216736Essager
100W/60w USB Type C To \nUSB C Cable USB-C PD Fast \nCharging Charger Wire
Cord For \nMacbook Samsung Xiaomi vivo Type-\nC USBC CableColor:black 100w,
\nCable Length:3M1 SGD 3.81 SGD 3.81\nTOTAL: SGD 11.43\nTotal Unit Price
(excluding GST) SGD 11.43\nTotal Shipping (excluding GST) SGD 0.93\nLess:
Discount SGD -6.18\nTotal (excluding GST) SGD 6.18\n8% GST SGD 0.51\nTotal
(including GST) SGD 6.69\nLess: Credits SGD -0.00\nTotal Payment Amount SGD
6.69\n**This is a computer generated copy. No signature is required**')]

Figure 12.1

The content

of the PDF

document is an

invoice listing

purchased

items.

280 CHAPTER 12 Using LLMs to query your local data

12.1.4 Splitting the text into chunks

The next step is using a RecursiveCharacterTextSplitter object to split the document
into chunks of a specific size. This process is known as chunking.

DEFINITION In natural language processing (NLP), chunking is the process
of breaking text into smaller, meaningful units (chunks). For LLMs, a model
typically works within a specific context length, such as 4,096 tokens (approx-
imately equivalent to 3,500 words). When you give this model a document
larger than its context window, it won’t be able to work with the document, so
you need to break the document into smaller chunks that can fit in the mod-
el’s context window.

The following code snippet creates a RecursiveCharacterTextSplitter object to split
the document into chunks:

text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1024,
 chunk_overlap = 64)
texts = text_splitter.split_documents(documents)

If you print out the content of the texts variable, you see the following (formatted for
clarity):

[
 Document(metadata={'source': './LocalDataForTraining/Invoice1.pdf',
'page': 0}, page_content='Lazada Singapore Pte Ltd is raising this invoice
in accordance to the applicable tax laws in Singapore\nThis shipment
includes any taxes (when applicable) for the merchandise to be delivered
to the address in the country\nspecified by the customer. LAZADA pays
these taxes on behalf of the customer.\nTo understand our return policy
and find out how to return, please click .here\nNEED HELP? Contact us at
https://www.lazada.sg/contact/\nLIKE US on FACEBOOK:
https://www.facebook.com/LazadaSingapore\nFOLLOW US on TWITTER:
https://www.twitter.com/LazadaSG/\nHave a great day! Thank you for
shopping on www.LAZADA.sg\n \nLAZADA SINGAPORE PTE. LTD.\nLazada
One\n51 Bras Basah Rd\nSingapore 189554\nCo. Reg. No.: 201403859E\n
GST Reg. No.: M90369204E\nTAX INVOICE\nBilling Address:\nLee Wei
Meng\n, , \n , Invoice No.: \nSGLVGTI2023100000801372\nInvoice
Date: 19-10-2023\nOrder Number.: 108630139411340\nOrder Date:
19-10-2023\nS/N Seller Name Item ID Description Item SKU QtyUnit
Price \n(excl. GST)Total Price \n(excl. GST)\n1ESSAGER.'),

Document(metadata={'source': './LocalDataForTraining/Invoice1.pdf',
'page': 0}, page_content='(excl. GST)Total Price \n(excl.GST)
\n1ESSAGER.\nSelection2775216736Essager 100W/60w USB Type C To \nUSB C
Cable USB-C PD Fast \nCharging Charger Wire Cord For \nMacbook Samsung
Xiaomi vivo Type-\nC USBC CableColor:black 100w, \nCable Length:3M1 SGD
3.81 SGD 3.81\n2ESSAGER.\nSelection2775216736Essager 100W/60w USB Type
C To \nUSB C Cable USB-C PD Fast \nCharging Charger Wire Cord For
\nMacbook Samsung Xiaomi vivo Type-\nC USBC CableColor:black 100w,
\nCable Length:3M1 SGD 3.81 SGD 3.81\n3ESSAGER.\nSelection2775216736
Essager 100W/60w USB Type C To \nUSB C Cable USB-C PD Fast \nCharging

 281Using GPT4All to query with your own data

Charger Wire Cord For \nMacbook Samsung Xiaomi vivo Type-\nC USBC
CableColor:black 100w, \nCable Length:3M1 SGD 3.81 SGD 3.81\nTOTAL:
SGD 11.43\nTotal Unit Price (excluding GST) SGD 11.43\nTotal Shipping
(excluding GST) SGD 0.93\nLess: Discount SGD -6.18\nTotal (excluding
GST) SGD 6.18\n8% GST SGD 0.51\nTotal (including GST) SGD 6.69\nLess:
Credits SGD -0.00\nTotal Payment Amount SGD 6.69\n**This is a computer
generated copy. No signature is required**')
]

12.1.5 Embedding

The next step is performing sentence embeddings on the document text.

DEFINITION In NLP, embedding refers to the representation of words, phrases,
or sentences as vectors in a high-dimensional space. This numerical represen-
tation allows machines to process and understand language. Word embeddings
capture the meaning and relationships of individual words, so words with sim-
ilar meanings have similar vector representations. Sentence embeddings extend
this idea to entire sentences or phrases, encoding their overall meaning and
context into a single vector. The main purpose of embeddings—whether for
words or sentences—is to capture both semantic and syntactic relationships,
enabling more effective language understanding and processing by machines.

For sentence embedding, you’ll use the sentence-transformers/all-MiniLM-L6-v2
model hosted on Hugging Face Hub:

embeddings = HuggingFaceEmbeddings(
 model_name = 'sentence-transformers/all-MiniLM-L6-v2')
faiss_index = FAISS.from_documents(texts, embeddings)

The sentence-transformers/all-MiniLM-L6-v2 model maps sentences and paragraphs
to a 384-dimensional dense vector space. You’ll use the FAISS library to perform the
embedding.

NOTE When you run the preceding code snippet for the first time, Jupyter
Notebook will download the model from Hugging Face Hub.

When the embedding is complete, save the embeddings in a local directory (index in
this example):

faiss_index.save_local("./index")

When the embeddings are saved, the index folder will contain two files:

¡	index.faiss

¡	index.pkl

The embedding must be performed only once unless your document content changes.
The embeddings are saved to a local directory, so when you need to run the model to
query the document, you can simply load it without performing the embeddings again.

282 CHAPTER 12 Using LLMs to query your local data

12.1.6 Loading the embeddings

To load the embeddings from disk, use the load_local() function from the FAISS
library:

embeddings = HuggingFaceEmbeddings(
 model_name = 'sentence-transformers/all-MiniLM-L6-v2')
faiss_index = FAISS.load_local("./index", embeddings)

NOTE When loading a FAISS index from local storage, you must re-create
the embedding model used to build the index. In the preceding example,
the HuggingFaceEmbeddings object is initialized again with the same model
(sentence-transformers/all-MiniLM-L6-v2) to ensure consistency.

12.1.7 Downloading the model

Now that the embedding part is settled, it’s time to download the model you want to
use to query your document. The easiest way to download a model is to use the GPT4All
class in the gpt4all package:

from gpt4all import GPT4All
llm = GPT4All("mistral-7b-openorca.Q4_0.gguf")

Here, you’re using the mistral-7b-openorca.Q4_0.gguf model, but you can always use
other models from GPT4All. At this writing, you can use all of the following models:

¡	mistral-7b-openorca.Q4_0.gguf

¡	mistral-7b-instruct-v0.1.Q4_0.gguf

¡	gpt4all-falcon-q4_0.gguf

¡	orca-2-7b.Q4_0.gguf

¡	orca-2-13b.Q4_0.gguf

¡	wizardlm-13b-v1.2.Q4_0.gguf

¡	nous-hermes-llama2-13b.Q4_0.gguf

¡	gpt4all-13b-snoozy-q4_0.gguf

¡	mpt-7b-chat-merges-q4_0.gguf

¡	orca-mini-3b-gguf2-q4_0.gguf

¡	replit-code-v1_5-3b-q4_0.gguf

¡	starcoder-q4_0.gguf

¡	rift-coder-v0-7b-q4_0.gguf

¡	all-MiniLM-L6-v2-f16.gguf

¡	em_german_mistral_v01.Q4_0.gguf

As discussed in chapter 11, you can also programmatically find the latest models you
can use with this code:

 283Using GPT4All to query with your own data

from gpt4all import GPT4All
GPT4All.list_models()

When the model (mistral-7b-openorca.Q4_0.gguf) is downloaded, it is saved in the
~/.cache/gpt4all folder.

12.1.8 Asking questions

You’re ready to get the model to answer questions pertaining to the documents. The
first step is loading the model:

from langchain.llms import GPT4All
llm = GPT4All(model='mistral-7b-openorca.Q4_0.gguf')

This example uses the GPT4All class from the langchain.llms module. When you
downloaded the model, you used the GPT4All class from the gpt4all package. The rea-
son for downloading the model earlier is that if the model file (mistral-7b-openorca
.Q4_0.gguf) can’t be found in the ~/.cache/gpt4all/ path, the preceding statement
will return a validation error. Therefore, make sure that the model is downloaded first.

NOTE The model the GPT4All class returns from the langchain.llms module
is of type langchain_community.llms.gpt4all.GPT4All, whereas the model
the GPT4All class returns from the gpt4all package is of type gpt4all.gpt4all

.GPT4All.

Next, create a prompt template:

template = """
Please use the following context to answer the question concisely
and without including the context in your answer.
Context: {context}
Question: {question}
Answer:
"""

The prompt template has two variables: context and question. You’ll create the two
variables in a function named ask_question():

def ask_question(question):

 matched_docs = faiss_index.similarity_search(question, 4)

 context = ""

 for doc in matched_docs:
 context += doc.page_content + " \n\n"

 prompt = PromptTemplate(template = template,
 input_variables=["context", "question"]).partial(

Retrieves the four most similar
documents based on the question

Appends all the
matched documents

Creates the prompt
template and passes
in the context variable

284 CHAPTER 12 Using LLMs to query your local data

 context = context)

 chain = prompt | llm | StrOutputParser()
 return chain.invoke({"question": question})

The function takes a single parameter: question, which is the question that you want
to pose to the model. Using this question, you call the similarity_search() function
of the vector embeddings to return the documents most similar to the question asked.
Then you use the matched documents to create a prompt template. Next, you use the
PromptTemplate instance, the llm object, and the StrOutputParser object to create a
chain. Finally, to ask the model a question, you call the invoke() function. To allow the
user to ask questions continuously, wrap the ask_question() function in a while loop:

while True:
 print(ask_question(input('Question: ')))

Figure 12.2 shows the first question asked and the responses returned by the model.

Question from user

Response by model

Figure 12.2 Posing a question and getting a response

Here’s another question you can ask:

How much did I pay in total?

The model responds as follows:

You paid a total of SGD 6.69, including GST.

12.1.9 Loading multiple documents

In real life, you probably have more than one document that you want the model to
answer questions about. In the previous section, we used a PyPDFLoaded object to load
and split a document and then used it to derive its embeddings:

Creates the chain

 285Using GPT4All to query with your own data

documents =
 PyPDFLoader('./LocalDataForTraining/Invoice1.pdf').load_and_split()
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1024,
 chunk_overlap = 64)
texts = text_splitter.split_documents(documents)

embeddings = HuggingFaceEmbeddings(
 model_name = 'sentence-transformers/all-MiniLM-L6-v2')
faiss_index = FAISS.from_documents(texts, embeddings)

What if you have multiple documents? Let’s assume that the LocalDataForTraining
folder contains three documents: Invoice1.pdf, Invoice2.pdf, and Invoice3.pdf. To
prepare the three documents for embedding, find all the files within the folder and
load them one by one:

import os

pdf_folder_path = "./LocalDataForTraining/"
pdf_dir = os.listdir(pdf_folder_path)

pdf_dir.remove('.DS_Store')
loaders = [PyPDFLoader(os.path.join(pdf_folder_path, fn))
 for fn in pdf_dir]

For each file loaded, perform the splitting, and add the split text to a list:

all_documents = []

for loader in loaders:
 documents = loader.load_and_split()
 text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1024,
 chunk_overlap = 64)
 documents = text_splitter.split_documents(documents)
 all_documents.extend(documents)

Then you can perform the embedding using the list of split text:

embeddings = HuggingFaceEmbeddings(
 model_name = 'sentence-transformers/all-MiniLM-L6-v2')

faiss_index = FAISS.from_documents(all_documents, embeddings)
faiss_index.save_local("./index")

The rest of the code is like what you saw in section 12.1.8:

template = """
Please use the following context to answer the question concisely
and without including the context in your answer.
Context: {context}
Question: {question}
Answer:
"""

For macOS only

Loads multiple files

286 CHAPTER 12 Using LLMs to query your local data

def ask_question(question):
 matched_docs = faiss_index.similarity_search(question, 4)
 context = ""
 for doc in matched_docs:
 context += doc.page_content + " \n\n"
 prompt = PromptTemplate(template = template,
 input_variables=["context", "question"]).partial(
 context = context)
 chain = prompt | llm | StrOutputParser()
 return chain.invoke({"question": question})

while True:
 print(ask_question(input('Question: ')))

12.1.10 Loading CSV files

In addition to loading PDF documents, you can load CSV documents for querying. As
you’ll see, LLMs aren’t good at analyzing tabular data. They’re good at processing text-
based queries, but when it comes to summarizing data, you can employ better tech-
niques than using LLMs.

The CSV example in this section is the titanic_train dataset (https://mng.bz/
4nov), a well-known dataset containing details of passengers on the RMS Titanic that is
often used for machine learning. Figure 12.3 shows the fields of the CSV file and some
of the data in it.

Figure 12.3 The Titanic dataset (Titanic_train.csv)

To load the CSV file, use the CSVLoader class from the document_loaders module in the
langchain package. The following code snippet loads the Titanic_train.csv file:

from langchain.document_loaders import CSVLoader
documents = CSVLoader('./Titanic_train.csv').load_and_split()

Retrieves the four
most similar

documents based
on the question

Appends all the
matched documents

Creates the prompt
template and passes
in the context variable

Creates
the chain

12.1.10

https://mng.bz/4nov
https://mng.bz/4nov

 287Using GPT4All to query with your own data

When the CSV file is loaded, you can perform the splitting and vector embeddings as
you did earlier, as shown in the following listing.

Listing 12.1 Performing splitting and vector embeddings

text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1024,
 chunk_overlap = 64)
texts = text_splitter.split_documents(documents)

embeddings = HuggingFaceEmbeddings(
 model_name = 'sentence-transformers/all-MiniLM-L6-v2')
faiss_index = FAISS.from_documents(texts, embeddings)

def ask_question(question):
 matched_docs = faiss_index.similarity_search(question, 4)

 context = ""
 for doc in matched_docs:
 context += doc.page_content + " \n\n"

 prompt = PromptTemplate(template = template,
 input_variables=["context", "question"]).partial(
 context = context)

 chain = prompt | llm | StrOutputParser()
 return chain.invoke({"question": question})

Using the ask_question() function defined in section 12.1.9, try asking some questions:

How many male passengers were there?

The response is 4, which is obviously wrong because we did a similarity search on the
CSV data before we posed the question to the LLM:

def ask_question(question):
 matched_docs = faiss_index.similarity_search(question, 4)
 context = ""

 for doc in matched_docs:
 context += doc.page_content + " \n\n"
 ...

The similarity search ended with four male passengers because we set 4 in the second
parameter of the similarity_search() function, as shown in the next listing.

Listing 12.2 Result of the similarity search

PassengerId: 489
Survived: 0
Pclass: 3

Retrieves the
four most
similar
documents
based on the
question

Appends all the
matched documents

Creates the prompt
template and passes
in the context variable

Creates the chain

Retrieves the four most similar
documents based on the question

Appends all the
matched documents

288 CHAPTER 12 Using LLMs to query your local data

Name: Somerton, Mr. Francis William
Sex: male
Age: 30
SibSp: 0
Parch: 0
Ticket: A.5. 18509
Fare: 8.05
Cabin:
Embarked: S

PassengerId: 297
Survived: 0
Pclass: 3
Name: Hanna, Mr. Mansour
Sex: male
Age: 23.5
SibSp: 0
Parch: 0
Ticket: 2693
Fare: 7.2292
Cabin:
Embarked: C

PassengerId: 46
Survived: 0
Pclass: 3
Name: Rogers, Mr. William John
Sex: male
Age:
SibSp: 0
Parch: 0
Ticket: S.C./A.4. 23567
Fare: 8.05
Cabin:
Embarked: S

PassengerId: 407
Survived: 0
Pclass: 3
Name: Widegren, Mr. Carl/Charles Peter
Sex: male
Age: 51
SibSp: 0
Parch: 0
Ticket: 347064
Fare: 7.75
Cabin:
Embarked: S

Based on this result, when you asked the LLM the question, the LLM examined only
this result and concluded that there were only four male passengers. Likewise, if you
asked how many female passengers there were, the LLM would also return 4.

 289Using GPT4All to query with your own data

Let’s try another question. This time, ask for the titles (salutations) in the names of
the passengers:

Show me the titles in the names of the passengers

This time, the LLM returned

Mr., Mr.

Not too bad! The model missed additional titles, however, such as Miss, Rev., and
Master. The reason why it returned only two (Mr. and Mr.) is due to the result of the
similarity search. In this case, the search returned four passengers, all of whom had the
same title: Mr.

This example illustrates why LLMs are good for text-related questions, such as
extracting the titles of names, but bad for ingesting large amounts of data and then ana-
lyzing that data. In section 12.2, I show you how to solve this problem by getting an LLM
to write the code so you can execute it to analyze your own data.

12.1.11 Loading JSON files

In addition to PDF and CSV files, JSON files are common data sources. As they do with
CSV files, LLMs have difficulty summarizing data stored in JSON files, but they’re good
at handling text-related questions. Nevertheless, I’ll show you how to load JSON files so
that LLMs can query them. This example uses partial content from a JSON file named
nobel_laureates.json.

Listing 12.3 Content of the nobel_laureates.json JSON file

{
 "laureates": [
 {
 "id": "1",
 "firstname": "Wilhelm Conrad",
 "surname": "R\\u00f6ntgen",
 "born": "1845-03-27",
 "died": "1923-02-10",
 "bornCountry": "Prussia (now Germany)",
 "bornCountryCode": "DE",
 "bornCity": "Lennep (now Remscheid)",
 "diedCountry": "Germany",
 "diedCountryCode": "DE",
 "diedCity": "Munich",
 "gender": "male",
 "prizes": [
 {
 "year": "1901",
 "category": "physics",
 "share": "1",
 "motivation": "\"in recognition of the

12.1.11

290 CHAPTER 12 Using LLMs to query your local data

 extraordinary services he has rendered
 by the discovery of the remarkable rays
 subsequently named after him\"",
 "affiliations": [
 {
 "name": "Munich University",
 "city": "Munich",
 "country": "Germany"
 }
]
 }
]
 },
 {
 "id": "2",
 "firstname": "Hendrik Antoon",
 "surname": "Lorentz",
 "born": "1853-07-18",
 "died": "1928-02-04",
 "bornCountry": "the Netherlands",
 "bornCountryCode": "NL",
 "bornCity": "Arnhem",
 "diedCountry": "the Netherlands",
 "diedCountryCode": "NL",
 "gender": "male",
 "prizes": [
 {
 "year": "1902",
 "category": "physics",
 "share": "2",
 "motivation": "\"in recognition of the
 extraordinary service they rendered by
 their researches into the influence of
 magnetism upon radiation phenomena\"",
 "affiliations": [
 {
 "name": "Leiden University",
 "city": "Leiden",
 "country": "the Netherlands"
 }
]
 }
]
 },
 ...
]

To load the JSON file, use the JSONLoader class from the document_loaders module in
the langchain package. The JSONLoader class uses a specified jq schema to parse the
JSON files, so you have to install the jq Python package first:

$ pip install jq

NOTE jq is a lightweight, flexible command-line JSON processor.

 291Using GPT4All to query with your own data

The following code snippet loads the JSON file and applies the .laureates[] schema
to load its content:

from langchain.document_loaders import JSONLoader

documents = JSONLoader('./nobel_laureates.json',
 jq_schema='.laureates[]',
 text_content=False).load_and_split()
documents

Figure 12.4 shows how to specify the schema to load the elements in the JSON
document.

jq_schema='.laureates[]',

Root of the
document

Name of
the key

Array of
elements

Figure 12.4 Specifying

the schema to load the

JSON document

The rest of the code is identical to what you used for the PDF content:

text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1024,
 chunk_overlap = 64)
texts = text_splitter.split_documents(documents)

embeddings = HuggingFaceEmbeddings(
 model_name = 'sentence-transformers/all-MiniLM-L6-v2')

Uses the model to convert input
text to dense numerical vectors

292 CHAPTER 12 Using LLMs to query your local data

faiss_index = FAISS.from_documents(texts, embeddings)

template = """
Please use the following context to answer the question concisely
 and without including the context in your answer.
Context: {context}
Question: {question}
Answer:
"""

def ask_question(question):
 matched_docs = faiss_index.similarity_search(question, 4)

 context = ""
 for doc in matched_docs:
 context += doc.page_content + " \n\n"

 prompt = PromptTemplate(template = template,
 input_variables=["context", "question"]).partial(
 context = context)

 chain = prompt | llm | StrOutputParser()
 return chain.invoke({"question": question})

while True:
 print(ask_question(input('Question: ')))

Let’s ask some questions and see the responses:

Question: Name me the scientist born in the United States
Response: Percy Williams Bridgman

Question: Who were affiliated with Harvard University?
Response: James Dewey Watson and Dudley R. Herschbach were both affiliated
 with Harvard University.

The model’s performance here is similar to its performance on the CSV document.
That is, the LLM excels in handling text-related questions but is not very capable of
summarizing the data.

12.2 Using LLMs to write code to analyze your data

LLMs are designed to understand and generate humanlike text and have limited abil-
ity to analyze and summarize data. As you saw in earlier sections of this chapter, when
you analyze data that is stored in a tabular format such as CSV or JSON, an LLM has
limited capability to perform tasks that require data analytics.

The primary obstacle to employing most local LLMs for this purpose lies in the lim-
itation of context. Currently, LLMs lack the necessary context size to process an entire
document unless it is exceptionally short. The models commonly used have a context
and generation limit of around 2,000 tokens, roughly equivalent to a 1,500-word limit,
allowing for some variation. To feed the LLM the required context without breaking

Builds an index to retrieve
similar documents quickly

Retrieves the four most similar
documents based on the question

Appends all the
matched documents

Creates the prompt
template and passes
in the context variable

Creates the chain

 293Using LLMs to write code to analyze your data

the context-window limit, you can break the document into appropriate-size chunks by
using a chunking strategy. This is why you need to call the similarity_search() func-
tion of the vector embeddings to return the documents most similar to the question
asked. Then the LLM can provide information on each chunk within a limited token-
size response. It’s important to note that this method is suitable only for a general over-
view and may not be effective for more detailed analyses.

How can you use an LLM to analyze a large private dataset? Here’s the strategy:

1 Load your data programmatically using a library such as pandas.

2 Prompt the LLM with the schema of your data.

3 Instead of asking the LLM to calculate the result for you, ask it to find the query
to solve the problem.

4 Using the response returned by the LLM, execute the response to get the answers
you need.

You have a couple of ways to do this:

¡	Use a local model such as one supported by GPT4All.

¡	Use a cloud-based model such as OpenAI’s LLMs or one hosted on Hugging Face
Hub.

In the following examples, you’ll use a JSON file and ask the LLM to return the query
to perform analytics on the data, using the following models:

¡	Mistral 7B model supported by GPT4All—This model uses your local computer to
run the model locally.

¡	gpt-4o-mini model from OpenAI—The inferencing will be done by OpenAI, so you
need an OpenAI API key. (In other words, you’ll be billed for the time you use
running the model in OpenAI.)

12.2.1 Preparing the JSON file

The following listing shows a JSON file containing a list of fictitious people and their
details.

Listing 12.4 Content of the famous_people.json file

{
 "famous_people": [
 {
 "name": "John Smith",
 "occupation": "Actor",
 "birth_date": "1980-05-15",
 "birth_place": "Los Angeles, USA",
 "achievements": ["Oscar-winning performance", "Golden Globe
 nominee"]
 },
 {
 "name": "Emily Johnson",

294 CHAPTER 12 Using LLMs to query your local data

 "occupation": "Tech Entrepreneur",
 "birth_date": "1985-02-20",
 "birth_place": "San Francisco, USA",
 "achievements": ["Founder of Tech Innovations Inc.",
 "Forbes 30 Under 30"]
 },
 {
 "name": "Carlos Rodriguez",
 "occupation": "Chef",
 "birth_date": "1972-09-08",
 "birth_place": "Barcelona, Spain",
 "achievements": ["Michelin Star Chef",
 "Best-selling cookbook author"]
 },
 {
 "name": "Aisha Patel",
 "occupation": "Humanitarian",
 "birth_date": "1988-11-30",
 "birth_place": "Mumbai, India",
 "achievements": ["Founder of AidGlobal Foundation",
 "UNICEF Ambassador"]
 },
 {
 "name": "Yuki Tanaka",
 "occupation": "Fashion Designer",
 "birth_date": "1983-03-10",
 "birth_place": "Tokyo, Japan",
 "achievements": ["International Fashion Award",
 "Creative Director of Vogue Japan"]
 },
 {
 "name": "Isabella Martinez",
 "occupation": "Explorer",
 "birth_date": "1982-08-12",
 "birth_place": "Madrid, Spain",
 "achievements": ["Discovered ancient ruins in South America",
 "National Geographic Explorer of the Year"]
 },
 {
 "name": "Liam Johnson",
 "occupation": "Astronaut",
 "birth_date": "1987-04-25",
 "birth_place": "Houston, USA",
 "achievements": ["Mission Commander on Mars Expedition",
 "NASA Medal of Honor"]
 },
 {
 "name": "Sophia Nguyen",
 "occupation": "Environmental Scientist",
 "birth_date": "1985-11-03",
 "birth_place": "Hanoi, Vietnam",
 "achievements": ["Published groundbreaking research on
 sustainable agriculture",
 "Recipient of Green Earth Award"]
 },

 295Using LLMs to write code to analyze your data

 {
 "name": "Noah Thompson",
 "occupation": "Inventor",
 "birth_date": "1990-02-18",
 "birth_place": "Sydney, Australia",
 "achievements": ["Patented revolutionary renewable energy device",
 "Tech Innovator of the Year"]
 },
 {
 "name": "Olivia Patel",
 "occupation": "Classical Pianist",
 "birth_date": "1989-07-09",
 "birth_place": "Mumbai, India",
 "achievements": ["Performed at prestigious concert halls
 worldwide",
 "Grammy Award for Best Classical Performance"]
 }
]
}

12.2.2 Loading the JSON file

Let’s read the preceding JSON file into a
pandas DataFrame. You may be tempted
to load the JSON file directly using the
pd.read_json() function, like this:

df = pd.read_json('famous_people.json')

But if you take this approach, you’ll get a
single-column DataFrame with all the fields
squeezed into it (see figure 12.5).

A DataFrame with a single column con-
taining all the details of a person is not
ideal because querying that data is ineffi-
cient. Instead, you should use the json_
normalize() function to load the JSON file
and split each person’s details into individ-
ual columns:

import json
import pandas as pd
from pandas import json_normalize

with open('famous_people.json', 'r') as json_file:
 json_data = json.load(json_file)

df = json_normalize(json_data, 'famous_people')
df

Figure 12.5 Loading the JSON file directly

results in a single-column DataFrame.

Loads JSON data into
a pandas DataFrame

296 CHAPTER 12 Using LLMs to query your local data

Figure 12.6 shows a DataFrame containing the details of each person.

Figure 12.6 Now the DataFrame has multiple columns representing the keys in the JSON file.

12.2.3 Asking the question using the Mistral 7B model

With the JSON loaded as a DataFrame, you can ask an LLM to propose a solution to
query your data. In this section, you’ll try using a local LLM—specifically, the Mistral
7B model (mistral-7b-openorca.Q4_0.gguf) that you used earlier in this chapter. First,
load the model:

from langchain.llms import GPT4All

model = 'mistral-7b-openorca.Q4_0.gguf'
llm = GPT4All(model = model)

Next, create the prompt template:

template = """
 Here is schema of a Pandas DataFrame (df):
 name,occupation,birth_date,birth_place,achievements
 I will start prompting you and you must return the response
 as a single Python statement so that I can execute it the
 result using the eval() function.

 For your info I have loaded the JSON file as a df using the
 following code:
 with open('famous_people.json', 'r') as json_file:
 json_data = json.load(json_file)
 df = json_normalize(json_data, 'famous_people')
 Question: {question}
"""

Observe that in the prompt template, you pass in the schema of the pandas DataFrame
containing the JSON data. You also informed the LLM that you loaded the JSON file as

Loads JSON data into
a pandas DataFrame

 297Using LLMs to write code to analyze your data

a pandas DataFrame. Specifically, you want the LLM to return the response as a Python
statement so that you can execute the response against the DataFrame using the eval()
function in Python. Next, use LangChain to chain the prompt template to the LLM:

from langchain import PromptTemplate
from langchain_core.output_parsers import StrOutputParser

def ask_question(question):
 prompt = PromptTemplate(template = template,
 input_variables=["question"])
 chain = prompt | llm | StrOutputParser()
 return chain.invoke({"question": question})

To let the user ask questions, put the ask_question() function in a while loop:

while True:
 print(ask_question(input('Question: ')))

Now try to ask a simple question. Figure 12.7 shows a simple question and the LLM’s
response.

Question

Answer

Figure 12.7 The LLM returns a fair number of responses.

Although the prompt template asked the LLM to return the answer as a single Python
statement, it returned more than you needed. Nevertheless, try running the first line
in the response as a Python statement:

df['name'].tolist()

298 CHAPTER 12 Using LLMs to query your local data

Sure enough, the LLM returns a list of names in the DataFrame:

['John Smith',
 'Emily Johnson',
 'Carlos Rodriguez',
 'Aisha Patel',
 'Yuki Tanaka',
 'Isabella Martinez',
 'Liam Johnson',
 'Sophia Nguyen',
 'Noah Thompson',
 'Olivia Patel']

Next, try a slightly more complex question:

Question: Who were born in Australia?

Here is the response from the LLM:

Question: Who were born in Australia?
 Answer: df[df['birth_place'] == 'Australia'].to_string(index=False)

 Question: How many people have won a Nobel Prize?
 Answer: len(df[(df['achievements'].str.contains('Nobel'))])

Question: Who are the youngest and oldest person in terms
 of birth date?
Answer: df[df['birth_date'] ==
 min(df['birth_date'])].to_string(index=False),
 df[df['birth_date'] ==
 max(df['birth_date'])].to_string(index=False)

 Question: Who are the top 3 achievers?
Answer: df.sort_values('achievements',
 ascending=False)[0:3].to_string(index=False)

 Question: What is the average age of all people in the dataframe?
Answer: round((df['birth_date'].max() –
 df['birth_date'].min()).total_seconds() /
 (60 * 60 * 24), 1)

Again, the model returned more than you anticipated. Also, the first line in the
response won’t because there’s no exact match for Australia in the DataFrame:

df[df['birth_place'] == 'Australia'].to_string(index=False)

But the model would get the answer if it used the contains() function:

df[df['birth_place'].str.contains('Australia')]

Overall, your testing with the Mistral 7B model didn’t return the response exactly the
way you expected, although some of the responses were close enough.

 299Using LLMs to write code to analyze your data

12.2.4 Asking questions using OpenAI

Now that you’ve tried asking a local model how to query a DataFrame given its schema
(and failed to get a decent answer), try using OpenAI to see whether it can do a better
job. For OpenAI, first prepare the prompt template in the following format.

Listing 12.5 Preparing the prompt template for OpenAI

messages = []
messages.append(
{
 'role':'user',
 'content':'''
 Here is an example of a JSON file loaded into a Pandas DataFrame:
 {
 "famous_people": [
 {
 "name": "John Smith",
 "occupation": "Actor",
 "birth_date": "1980-05-15",
 "birth_place": "Los Angeles, USA",
 "achievements": ["Oscar-winning performance",
 "Golden Globe nominee"],
 "quote": "Acting is not about being someone different.
 It's finding the similarity in what is
 apparently different, then finding myself in
 there."
 },
]
 }
 I will start prompting you and you must return the response
 as a single Python statement so that I can execute it the
 result using the eval() function.

 For your info I have loaded the JSON file as a df using
 the following code:

 with open('famous_people.json', 'r') as json_file:
 json_data = json.load(json_file)

 df = json_normalize(json_data, 'famous_people')
 '''
})

Observe that the prompt template includes a sample row in the DataFrame. This is use-
ful for familiarizing the LLM with the type of data in your DataFrame so it can come up
with the correct query to answer your question.

After the prompt template is created, use OpenAI’s gpt-4o model to answer your
query. To use an OpenAI model (inferencing performed by OpenAI, not locally on
your computer), you must install the openai package using the pip command:

$ pip install openai

Loads JSON data into
a pandas DataFrame

300 CHAPTER 12 Using LLMs to query your local data

You also need to apply for an OpenAI API key at https://platform.openai.com/
account/api-keys. Note that you’ll be charged for this service.

With the openai package installed, you can use the create() method to ask the
OpenAI LLM (gpt-4o-mini) a question pertaining to your data:

Listing 12.6 Asking OpenAI to answer questions pertaining to your data

from openai import OpenAI
import re
import os

os.environ['OPENAI_API_KEY'] = "OPENAPI_API_KEY"

client = OpenAI(
 api_key = os.environ.get("OPENAI_API_KEY"),
)

while True:
 prompt = input('\nAsk a question: ')
 if prompt == "quit":
 break

 messages.append(
 {
 'role':'user',
 'content':prompt
 })

 completion = client.chat.completions.create(
 model = "gpt-4o-mini",
 messages = messages,
 max_tokens = 1024,
 temperature = 0)

 response = completion.choices[0].message.content

 pattern = re.compile(r'```python\s*([\s\S]*)\n```')
 match = pattern.search(response)

 if match:
 extracted_content = match.group(1)
 print(extracted_content)
 if extracted_content.count('\n') > 1:
 exec(extracted_content)
 else:
 display(eval(extracted_content))
 else:
 print("No content found within ```python...```.")

 messages.append(
 {
 'role':'assistant',
 'content':response
 })

Use this for multiline
responses, such as plotting.

Use this for
single-line responses.

https://platform.openai.com/account/api-keys
https://platform.openai.com/account/api-keys

 301Using LLMs to write code to analyze your data

In the preceding code, the completion variable contains the response from OpenAI. A
typical response looks like this (the keys containing the information you’re interested
in are in bold):

ChatCompletion(id='chatcmpl-A68BQXMNqekut2MDuzXoiQYyzVADt',
choices=[Choice(finish_reason='stop', index=0, logprobs=None,
message=ChatCompletionMessage(content="```python\ndf[
df['birth_place'].str.contains('USA')]['name'].values\n```",
role='assistant', function_call=None, tool_calls=None, refusal=None))],
created=1726024788, model='gpt-4o-mini', object='chat.completion',
system_fingerprint='fp_25624ae3a5', usage=CompletionUsage(
completion_tokens=20, prompt_tokens=286, total_tokens=306))

When the desired information is extracted, use the eval() function in Python to run
the Python code. Figure 12.8 shows the question asked and the model’s response. You
use the eval() function to execute the response, and the result is a DataFrame.

Result of executing the
response from the model

Question

Response from the model

Figure 12.8 The result returned by OpenAI is executed with the eval() function.

The result is reasonably good. The model is smart enough to use the contains() func-
tion to search for rows with the birth_place column containing the word USA. You’d
get the same result if you’d asked this question:

Who were those born in the United States?

This example illustrates the power of LLM: the model understands that the United
States is also known as “USA.” Let’s try one more example. Instead of saying “Austra-
lia,” another way to refer to Australia is “Down Under,” so ask the following question:

Who were born in Down Under?

302 CHAPTER 12 Using LLMs to query your local data

Sure enough, the LLM knows that Down Under means Australia:

df[df['birth_place'].str.contains('Australia')]

Figure 12.9 shows the result of executing the query:

Figure 12.9 LLM returns the result correctly.

What about asking about dates? Let’s find all the people in the dataset who were born
after 1980:

Find me the names of people born after or in the year 1980

The result is the following:

df[df['birth_date'] >= '1980-01-01']['name']

Figure 12.10 shows the result after the model executes the response.
You can also ask questions pertaining to a specific month:

Who were born in the month of August?

The response (see figure 12.11) is

df[df['birth_date'].str.contains('-08-')]['name']

Figure 12.10 The result shows

all the people in the dataset who

were born after 1980.

Figure 12.11 The result shows the

names of the people in the dataset who

were born in August.

 303Summary

Summary

¡	To load PDF documents, you can use the PyPDFLoader class from the document_
loaders module in langchain.

¡	You use a RecursiveCharacterTextSplitter object to split the document into
chunks of a specific size.

¡	For word embedding, you can use the sentence-transformers/all-MiniLM-L6-v2
model hosted on Hugging Face Hub and then use the FAISS library to perform
the embedding.

¡	To load CSV files, you use CSVLoader class from the document_loaders module in
the langchain package.

¡	To load JSON files, use the JSONLoader class from the document_loaders module
in the langchain package. The JSONLoader class uses a specified jq schema to
parse the JSON files.

¡	Because LLMs are designed to understand and generate humanlike text, they
have limited ability to analyze and summarize data.

¡	The primary obstacle to using a local LLM to analyze a large dataset lies in the
limitation of context. Most LLMs don’t have the necessary context size to process
a document unless it’s exceptionally short.

¡	If your data originates from a text-based source such as a PDF, you can use word
vector embedding on the data and then use an LLM to interrogate it directly.

¡	If your data is stored in a tabular format (CSV, JSON, Microsoft Excel, and so on),
I recommend employing the LLM to generate Python-based queries to conduct
analyses on your data rather than querying the data directly with an LLM.

304

13Bridging LLMs to
the real world with the

Model Context Protocol

This chapter covers

¡	Introducing Model Context Protocol (MCP)

¡	Developing your own MCP server

¡	Using an MCP server with Claude Desktop

¡	Using third-party MCP servers

As large language models (LLMs) become more advanced, developers face a key
challenge: making it easier for these models to work with external data that wasn’t
part of their original training. Right now, connecting LLMs to different types of data
(such as files, websites, or live social media feeds) often requires a custom solution
for each source, adding work and complexity.

To solve this problem, a new framework called the Model Context Protocol (MCP)
was introduced. MCP provides a standard way for LLMs to access and use outside
data no matter where it comes from. It hides the differences between data sources
behind a common interface. With MCP, models from providers such as Grok,
OpenAI, and Claude can easily use inputs such as search results, uploaded files
(PDFs, images, and so on), or real-time social media posts without requiring a
special setup for each one.

 305What is MCP?

Using MCP helps developers avoid the hassle of managing many data connections.
It also lets LLMs bring real-time information, such as today’s date or current weather,
directly into their responses. Further, MCP supports advanced use cases such as ana-
lyzing live datasets and is built to handle new types of data in the future. This chapter
introduces MCP, discussing the problems it solves, how it works, and how to use it in
your own projects.

13.1 What is MCP?

MCP is an open standard created by Anthropic. It’s based on JSON-RPC 2.0 and is
designed to let LLMs connect to external services such as filesystems, databases, and
APIs consistently, securely, and efficiently. It’s especially useful for dynamic, program-
driven interactions in which the LLM acts like a client, asking specialized servers to
provide data or perform actions.

NOTE Anthropic is a US-based AI company founded in 2021 by former OpenAI
researchers, including siblings Dario and Daniela Amodei. The company focuses
on developing AI systems that are safe, interpretable, and aligned with human
values. Anthropic is best known for its Claude family of LLMs, which compete
with AI models such as OpenAI’s ChatGPT and Google’s Gemini.

13.1.1 The problems MCP solves

Before MCP, developers faced several ongoing challenges when trying to connect
LLMs to real-world systems:

¡	Inconsistent tool access—Different models supported different ways of accessing
tools and data, with no standard method for calling them.

¡	Unreliable data retrieval—Without a formal protocol, pulling in outside data often
relied on messy, one-off solutions that were hard to maintain and sometimes
insecure.

¡	Complex prompt engineering—Each setup required custom prompts, adding work
and making it harder to reuse code.

¡	Fragmented integrations—Teams kept reinventing the wheel with similar integra-
tions but without a shared standard.

MCP solves these problems by offering a clear, consistent protocol that specifies how
models interact with external systems. It defines standard components such as Tools,
Resources, and Prompts and provides clear rules for control and communication. This
standardization makes development faster and easier while boosting reliability, secu-
rity, and compatibility across models and platforms—all of which are increasingly cru-
cial as LLMs are used in more critical systems and workflows.

13.1.2 Understanding MCP

Suppose that you’re writing an app (the client) to communicate with several provid-
ers in Japanese, Chinese, and French. To communicate with each provider, your app

306 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

needs to talk to it in its own lan-
guage. This task places a great
burden on you: you must man-
age multiple custom integrations,
adapt to varying API structures,
and handle inconsistent response
formats. All these requirements
complicate development and
main tenance. Figure 13.1 shows
the relationships between the cli-
ent and the providers.

A far more efficient solution is
to introduce an intermediary—
let’s call it the translator in this analogy—that sits between your app and the providers.
This translator handles communication by converting each provider’s unique language
to a common one, such as English, and then back again, so your app needs to interact
only with the translator, simplifying the process and eliminating the need to juggle mul-
tiple provider-specific languages directly. Figure 13.2 shows the improved workflow.

Japanese

Chinese

French

Translates from English to

Chinese and vice versa

Translates from English to

Japanese and vice versa

Translates from English to

French and vice versa

Client Translator

Client needs to communicate

with the translator only in English.

Figure 13.2 The translator acts as an intermediary between the client and the providers.

Drawing from this analogy, you can adapt this diagram to align with MCP (see figure 13.3).
The MCP workflow has three main components:

¡	MCP client—Usually an LLM or an AI-powered app like Claude Desktop. It sends
requests to access external tools or data and acts as the consumer in the system.

¡	MCP server—A server that handles requests, processing them and sending back
responses. Think of it as the central hub that connects clients to services.

¡	Service—The actual features or data the client wants to use, such as tools (such
as add or fetch_weather) or resources (such as get_greeting or get_config), all
provided through the MCP server.

Figure 13.1 Visualizing the relationships between a client

and providers

Japanese

Chinese

French

Translates from English to

Chinese and vice versa

Translates from English to

Japanese and vice versa

Translates from English to

French and vice versa

Client

 307What is MCP?

Service

Service

Service

Service communicates

with the MCP server.

Service communicates

with the MCP server.

Service communicates

with the MCP server.

MCP client MCP server
MCP protocol

Figure 13.3 How an MCP client communicates with an MCP server

Communication between an MCP client and server uses JSON-RPC 2.0, a standard pro-
tocol that ensures that requests and responses are exchanged in a consistent, struc-
tured way no matter what kind of service is being accessed. This makes it easier to build
reliable, scalable systems around LLMs. Examples of these services include

¡	Database services—Allows reading of rows in database tables

¡	Files services—Allows extracting of text from files

¡	Images services—Allows extracting of images or text from image files

Each service could be delivered by a distinct service provider, as shown in figure
13.4. Each service provider maintains its own MCP server (see figure 13.5). Or a
single service provider might maintain a single MCP server with many services (see
figure 13.6).

Different service providers

MySQL

database server

PDF files server

Images server

MCP server

Returns text data extracted

from PDF filesMCP protocol
MCP server

MCP server

Returns text data extracted

from a MySQL database

Returns text data extracted

from images

LLM

Figure 13.4 Services provided by MCP servers

308 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

Maintained by service providers

MCP protocol

MySQL

database server

PDF files server

Images server

MCP server

Returns text data extracted

from PDF files
MCP server

MCP server

Returns text data extracted

from a MySQL database

Returns text data extracted

from images

LLM

Figure 13.5 Each MCP server can provide its own service.

Single service provider

MCP protocol
LLM

MySQL

database server

PDF files server

Images server

Returns text data extracted

from PDF files
MCP server

Returns text data extracted

from a MySQL database

Returns text data extracted

from images

Figure 13.6 AN MCP server can provide multiple services.

13.1.3 MCP server deployment

Despite its name, which suggests a server-based application, an MCP server is simply a
standard application that can run in different configurations. After you’ve developed
an MCP server, you can deploy it in either of two ways:

¡	Locally—Run the MCP server on the same machine as the MCP client, enabling
direct local communication.

¡	Remotely—Run the MCP server on a separate remote machine, with the MCP cli-
ent accessing it over the network.

 309What is MCP?

This flexibility in deployment
options makes MCP servers
adaptable to various architectural
needs, from simple local setups to
distributed systems. For the first
option, when the MCP server and
client are running on the same
machine, they communicate with
each other using standard input
and output streams (see figure
13.7). In this approach, the MCP
server runs as a separate process
on the same machine as the client.

For the second option, the
server and client are running on
different machines across the net-
work. In this case, the client will
use HTTP POST to communicate
with the server, and the server will respond to the client using server-sent events (SSE).
This transport method is useful when the server needs to support multiple clients at the
same time. Figure 13.8 shows how the client interacts with the server.

Server-sent events

Server-sent events (SSE) is a web standard that enables a server to push real-time

data to a client over a single HTTP connection. Unlike traditional HTTP request–

response patterns, SSEs establish a persistent connection; the server can send

data to the client continuously without the client having to poll or make new requests

repeatedly.

SSEs are like WebSockets except that SSEs are unidirectional. Only the server

can send data to the client; the client can’t send messages back through the SSE

connection.

13.1.4 Components in an MCP server

Now that you have a better idea of the workflow in an MCP system, let’s examine the
components of an MCP server. An MCP server consists of three main components:

¡	Tools—Tools are the actionable capabilities that MCP servers provide LLMs.
They act like a set of specialized functions—such as reading files with a filesys-
tem tool, querying the web via a search tool, or generating images through an
image generation tool—that the LLM can invoke to extend its reach beyond its
inherent knowledge, using a standardized JSON-RPC 2.0 request format (e.g.,

Both client and server running on same machine

stdin

stdout

MCP client MCP server

Figure 13.7 An MCP client communicating with a locally

running MCP server using stdio

Server running remotely

HTTP POST

SSE streaming

response

MCP client MCP server

Figure 13.8 An MCP client communicating with a

remote MCP server using HTTP POST and SSE

310 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

{"method": "search", "params": {"query": "AI"}}) to perform tasks efficiently
and consistently across diverse services.

¡	Resources—Resources represent the external data or entities that Tools interact
with or retrieve. They serve as the raw material—think local files from a Filesys-
tem MCP server, web pages from a Brave Search MCP server, or database records
from a PostgreSQL MCP server—that the LLM processes or analyzes, delivered
through MCP responses (e.g., {"result": "file contents"}) to fuel its reason-
ing and responses with fresh, context-specific information.

¡	Prompts—Prompts in an MCP system function as predefined templates for stan-
dardized LLM interactions.

Figure 13.9 summarizes the three main components of an MCP server. The uses of the
various components of an MCP server will become much clearer when you create one
in section 13.2.

Components Tools Resources Prompts

Uses
Server-exposed functions

that can be called by LLMs

Data exposed to clients

for LLM context

Predefined templates for

standardized LLM

interactions

Control Type

Model-controlled

The LLM itself decides

when and how to use these

tools during its reasoning

process.

Application-controlled

Client determines what

resources to retrieve and use.

User-controlled

Clients determine the

templates they want

to use.

Examples

Fetching weather

information, performing

calculations, and so on

Fetching files, reading

database records, returning

images, and so on

Documenting Q&A,

summarizing a block

of text, and so on

MCP server components and their uses

Figure 13.9 The components of an MCP server and their uses

13.2 Building an MCP server

Now that you have a solid understanding of what an MCP server is and how its compo-
nents work, it’s time to put that knowledge into action. In this section, you’ll build an
MCP server using Python. This server will allow users to ask questions such as these:
¡	What is the current weather?

¡	Summarize the content of a particular file.

¡	Ask a question based on the content of a particular file.

 311Building an MCP server

13.2.1 Installing uv

For this project, you’ll use uv, an extremely fast Python package and project manager
written in Rust, to install Python packages. First, use the following curl command to
download and install uv:

$ curl -LsSf https://astral.sh/uv/install.sh | sh

When uv is installed, you’ll use it to create a Python project.

13.2.2 Initializing the project

Use uv to initialize a project named MCP_Demo and then change the directory to the new
folder:

$ uv init MCP_Demo
Initialized project `mcp-demo` at `/Volumes/SSD/MCP_Demo`

$ cd MCP_Demo

Put two files in the MCP_Demo folder:

¡	Singapore.pdf—A PDF document
generated from Wikipedia (see figure
13.10). For simplicity, this document
has only one page.

¡	textfile.txt—A text file that con-
tains some information on quantum
computing (see figure 13.11).

Figure 13.10 The content of the PDF file Figure 13.11 The content of the text file

312 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

13.2.3 Installing the packages

To implement the MCP server, you’ll use the official Python SDK for MCP servers and
clients, located at https://mng.bz/Qw4Q. You can find the documentation at https://
modelcontextprotocol.io/introduction.

In Terminal (macOS) or Anaconda Prompt (Windows), type the following com-
mand to install the mcp, httpx, and PyMuPDF packages:

$ uv add "mcp[cli]" httpx PyMuPDF

13.2.4 Creating the MCP server

When the packages are installed, create the server.py file to store the implementation
of the MCP server:

$ nano server.py

Populate the server.py file with the statements in the following listing.

Listing 13.1 A simple MCP server using the FastMCP class

from mcp.server.fastmcp import FastMCP
import httpx
import fitz
import os

mcp = FastMCP("MCP Demo")

==
resources, tools, and prompts to be added here
#
<to be added in next few sections>
#
==

if __name__ == "__main__":
 # Initialize and run the server
 mcp.run(transport='stdio')

This code sets up a simple MCP server using the FastMCP class from the mcp.server
.fastmcp module:

¡	First, create an instance of the FastMCP class, passing "MCP Demo" as the name of
the service. The FastMCP object (mcp) represents the server itself, which will be
configured and run later.

¡	Next, start the FastMCP server with the transport parameter set to 'stdio' (stan-
dard input/output).

When this is done, run the server and see whether an error occurs:

For PyMuPDF

Creates an MCP server

https://mng.bz/Qw4Q
https://modelcontextprotocol.io/introduction
https://modelcontextprotocol.io/introduction

 313Building an MCP server

$ uv run server.py

If there is no error, nothing is shown onscreen.

13.2.5 Inspecting the MCP server

To inspect the MCP server, you can use the MCP Inspector by running the following
command:

$ uv run mcp dev server.py

The MCP Inspector is an interactive developer tool designed for testing and debug-
ging servers that implement MCP. You see something like this:

Starting MCP inspector...
Proxy server listening on port 3000

 MCP Inspector is up and running at http://localhost:5173
New SSE connection
Query parameters: {
...
...
Connected MCP client to backing server transport
Created web app transport
Created web app transport
Set up MCP proxy
 MCP Inspector is up and running at http://localhost:5173

The MCP Inspector is a web-based application that listens at the following URL:
http://localhost:5173. To view it, load it using a web browser. You should see the
screen shown in figure 13.12.

Figure 13.12

The MCP Inspector

314 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

Click the Connect button to connect to the MCP server. You see the tabs shown in fig-
ure 13.13: Resources, Prompts, Tools, Ping, # Sampling, and Roots.

Figure 13.13 The MCP Inspector connecting to the MCP server

13.2.6 Implementing Resources

Now that the MCP server is running and you can get the MCP Inspector to connect
to it, let’s add some resources, tools, and prompts to the MCP server implementation.
The first component you’ll add to your MCP server is Resources. Recall from section
13.1.4 that Resources represents the external data or entities that Tools interacts with
or retrieves. The following listing adds three resources to server.py.

Listing 13.2 Adding Resources to the MCP server

server.py

==
resources, tools, and prompts to be added here

#==========
Resources
#==========
@mcp.resource("text://{file_path}")
def get_file(file_path: str) -> str:

 315Building an MCP server

 actual_path = os.path.abspath(file_path)
 if not os.path.exists(actual_path):
 raise FileNotFoundError(f"Error: File '{actual_path}' not found!")
 with open(actual_path, "r", encoding="utf-8") as file:
 return file.read()

@mcp.resource("config://app")
def get_config() -> str:
 """Static configuration data"""
 return "Version 1.1"

@mcp.resource("pdf://{file_path}")
def get_pdf_data(file_path: str) -> str:
 text = ""
 actual_path = os.path.abspath(file_path)
 if not os.path.exists(actual_path):
 raise FileNotFoundError(f"Error: File '{actual_path}' not found!")
 with fitz.open(actual_path) as doc:
 for page in doc:
 text += page.get_text() + "\n"
 return text

This code snippet adds the following Resources:

¡	get_file()—Retrieves the contents of a text file given its file path. This func-
tion reads and returns the contents of a text file specified by file_path. It uses
os.path.abspath() to ensure a valid path and raises an error if the file doesn’t
exist.

¡	get_config()—Returns static application configuration data. This simple func-
tion returns a hardcoded string ("Version 1.1") as configuration data. It’s static
for now but could be expanded to fetch dynamic config data.

¡	get_pdf_data()—Extracts and returns the text content from a PDF file given its
file path. This function uses fitz (PyMuPDF) to open a PDF file, extracts text
from each page, and returns that text as a single string. Like get_file(), it vali-
dates the file path and raises an error if the file isn’t found.

Note that @mcp.resourcedecorator registers each function as an MCP resource with a
specific Uniform Resource Identifier (URI)–like identifier (e.g., text://{file_path},
config://app, pdf://{file_path}). These identifiers define how the resources are
accessed by an MCP client or tool like the MCP Inspector.

In MCP, Resources are typically represented as endpoints that handle specific
requests, such as querying data, retrieving documents, or interacting with external
services.

13.2.7 Implementing Tools

The next component to implement is Tools. Tools consists of the actionable capa-
bilities that MCP servers provide to LLMs. The following listing adds four tools to
server.py.

Converts to absolute path

316 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

Listing 13.3 Adding Tools to the MCP server

#======
Tools
#======

@mcp.tool()
async def fetch_weather(city: str, units: str = "metric") -> dict:
 API_KEY = "xxxxxxxxxxxxxxxxxx"
 async with httpx.AsyncClient() as client:
 response = await client.get(
 f"https://api.openweathermap.org/data/2.5/weather",
 params={
 "q": city,
 "units": units,
 "appid": API_KEY
 }
)
 if response.status_code == 200:
 data = response.json()
 weather_data = {
 "location": {
 "name": data["name"],
 "country": data["sys"]["country"],
 "coordinates": {
 "lat": data["coord"]["lat"],
 "lon": data["coord"]["lon"]
 }
 },
 "current": {
 "temp": data["main"]["temp"],
 "feels_like": data["main"]["feels_like"],
 "humidity": data["main"]["humidity"],
 "pressure": data["main"]["pressure"],
 "description": data["weather"][0]["description"],
 "icon_code": data["weather"][0]["icon"]
 },
 "wind": {
 "speed": data["wind"]["speed"],
 "direction": data["wind"]["deg"]
 },
 "sun": {
 "sunrise": data["sys"]["sunrise"],
 "sunset": data["sys"]["sunset"]
 },
 "units": units,
 "timestamp": data["dt"]
 }
 return weather_data
 else:
 return {
 "error": f"Weather data not available.
 Status code: {response.status_code}",
 "message": response.text
 }

Replace with your actual API
key from OpenWeatherMap.

 317Building an MCP server

@mcp.tool()
def convert_temperature(temp: float,
 from_unit: str,
 to_unit: str) -> float:
 if from_unit.lower() == "celsius":
 kelvin = temp + 273.15
 elif from_unit.lower() == "fahrenheit":
 kelvin = (temp + 459.67) * 5/9
 elif from_unit.lower() == "kelvin":
 kelvin = temp
 else:
 raise ValueError(f"Unsupported unit: {from_unit}")

 if to_unit.lower() == "celsius":
 return kelvin - 273.15
 elif to_unit.lower() == "fahrenheit":
 return kelvin * 9/5 - 459.67
 elif to_unit.lower() == "kelvin":
 return kelvin
 else:
 raise ValueError(f"Unsupported unit: {to_unit}")

@mcp.tool()
def get_pdf(file_path: str) -> str:
 return get_pdf_data(file_path)

@mcp.tool()
def get_text(file_path: str) -> str:
 return get_file(file_path)

This code snippet adds the following Tools:

¡	fetch_weather()—Fetches current weather data for a specified city using the
OpenWeatherMap API. (You can apply for your own API key at https://home
.openweathermap.org/api_keys.) This asynchronous tool uses httpx to query
the OpenWeatherMap API, returning a detailed dictionary of weather data (loca-
tion, temperature, wind, and so on) for the specified city or an error message if
the request fails.

¡	convert_temperature()—Converts a temperature value among Celsius, Fahren-
heit, and Kelvin. This tool converts a temperature from one unit to another (e.g.,
Celsius to Fahrenheit) using Kelvin as an intermediate step, raising an error for
unsupported units.

¡	get_pdf()—Retrieves the text content of a PDF file using the get_pdf_data

resource. This tool acts as a wrapper around the get_pdf_data resource, provid-
ing a convenient way to access PDF text extraction as a tool.

¡	get_text()—Retrieves the contents of a text file using the get_file resource.
This tool wraps the get_file resource, allowing retrieval of text-file content
through the tool interface.

Adds a helper tool for
temperature conversion

First converts to Kelvin
as an intermediate step

Converts from Kelvin
to target unit

https://home.openweathermap.org/api_keys
https://home.openweathermap.org/api_keys

318 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

The @mcp.tool() decorator registers each function as an MCP tool, making it callable
by an MCP client or the MCP Inspector. Unlike Resources, Tools are typically actions
or utilities rather than data endpoints.

13.2.8 Implementing a prompt

Finally, add a prompt to the MCP server.

Listing 13.4 Adding a prompt to the MCP server

#=======
Prompt
#=======
Add a weather_report prompt template
@mcp.prompt()
def weather_report(city: str) -> str:
 return f"""
 Please provide a weather report for {city}.

 You can use the fetch_weather tool to get current weather data.
 If needed, you can convert temperature units using the
 convert_temperature tool.

 Please include:
 - Current temperature
 - Weather conditions
 - Humidity
 - Wind speed
 - Any relevant weather advice for the conditions
 """

This code snippet adds a prompt to the MCP server. weather_report() generates a
prompt template for requesting a detailed weather report for a specified city. This
description reflects the function’s purpose: it creates a formatted string that serves as a
template for an MCP client (e.g., an LLM) to generate a weather report using available
tools such as fetch_weather and convert_temperature.

The @mcp.prompt decorator registers the weather_report function as an MCP prompt.
Prompts in MCP are typically templates or instructions that guide how a client (such as
an LLM) should process a request, often using the server’s tools and resources.

13.2.9 Testing the components

With our MCP server updated with Resources, Tools, and a prompt, let’s test them
to ensure that they work as intended. First, rerun the MCP server using the MCP
Inspector:

$ uv run mcp dev server.py

In the MCP Inspector, click the Connect button to connect to the MCP server. You’re
ready to test the Resources, Prompts, and Tools. Click the List Resources button, and

 319Building an MCP server

you see the config://app. Clicking it returns the details of the version of the app (see
figure 13.14).

1. Click List Resources. 2. Click get_config. 3. Result of get_config

Figure 13.14 Checking out the Resources using the MCP Inspector

Interestingly, clicking the List Resources button
shows only the get_config() (with the URI
config://app) function because this static
function doesn’t have any input parameters,
unlike the other two functions, get_file() and
get_pdf_data(). To see these two functions, click
the List Templates button (see figure 13.15).

You should see the two functions. Click the
get_file function, enter the name of a text file,
and then click Read Resource. You see the con-
tent of the file (remember that there is a text file
named textfile.txt in the MCP_Demo folder; see
figure 13.16).

Figure 13.15 Listing all the resource

templates in the MCP server

320 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

2. Click Read
 Resource.

3. View the content
 of the text file.

1. Enter the name
 of the text file.

Figure 13.16 Loading the content of a text file through a resource

Likewise, click the get_pdf_data function, enter a name, and click the Read Resource
button. You see something like figure 13.17 (remember that there is a text file named
Singapore.pdf in the MCP_Demo folder).

Next, click the Prompts tab and then click List Prompts. You should see the weather_
report prompt. Click it, and enter Singapore as the city (see figure 13.18).

Click the Get Prompt button, and you see the following:

{
 "messages": [
 {
 "role": "user",
 "content": {
 "type": "text",
 "text": "\n Please provide a weather report for Singapore.\n
 \n You can use the fetch_weather tool to get current
 weather data.\n If needed, you can convert temperature
 units using the convert_temperature tool.\n \n
 Please include:\n - Current temperature\n - Weather

 321Building an MCP server

 conditions\n - Humidity\n - Wind speed\n - Any
 relevant weather advice for the conditions\n "
 }
 }
]
}

1. Enter the name
 of the PDF file.

3. View the content
 of the PDF file.

2. Click Read
 Resource.

Figure 13.17 Loading the content of a PDF file through a resource

1. Click Prompts.

2. Click List
Prompts.

3. Click
weather_report.

4. Enter a city name.

Figure 13.18

Loading the prompt

322 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

Click the Tools tab and then click the List Tools button. You see the four tools defined
earlier (see figure 13.19).

1. Click Tools.

2. Click List
 Tools.

3. View the
 list of tools.

Figure 13.19 Checking out the tools of the MCP server

Click the fetch_weather tool, type Singapore, and then click Run Tool (see figure 13.20).

Figure 13.20 Fetching

the weather for a city

through a tool

This code fetches the current weather for Singapore (the result is obtained through
the OpenWeatherMap API):

 323Building an MCP server

{
 "location": {
 "name": "Singapore",
 "country": "SG",
 "coordinates": {
 "lat": 1.2897,
 "lon": 103.8501
 }
 },
 "current": {
 "temp": 32.14,
 "feels_like": 38.04,
 "humidity": 62,
 "pressure": 1009,
 "description": "broken clouds",
 "icon_code": "04d"
 },
 "wind": {
 "speed": 2.57,
 "direction": 40
 },
 "sun": {
 "sunrise": 1748300180,
 "sunset": 1748344049
 },
 "units": "metric",
 "timestamp": 1748322002
}

Now try the get_pdf tool. Click it, type Singapore.pdf, and then click Run Tool. You
get the content of the PDF file (remember that there is a file named Singapore.pdf
in the MCP_Demo folder; see figure 13.21). You can also try the other tools: convert_
temperature, and get_text.

Figure 13.21 Getting

the content of a PDF

file through a tool

324 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

13.3 Testing the MCP server using Claude Desktop

Although your MCP server has been validated through the MCP Inspector, this testing
tool doesn’t fully showcase the practical value of MCP. How is it useful, and what are
some real-world use cases? The best way to explore its utility is to pair it with Claude
Desktop (see figure 13.22), an application you can download at https://claude.ai/
download, which integrates MCP to enhance AI-driven tasks and workflows. Claude
Desktop supports MCP, enabling connections to external tools such as filesystem access
or web search via prebuilt or custom MCP servers.

Figure 13.22 Downloading Claude Desktop

NOTE Claude Desktop is a desktop application developed by Anthropic
that brings the capabilities of the Claude AI model directly to your com-
puter (macOS and Windows). It’s designed to provide seamless, fast access to
Claude’s conversational AI features without relying on a web browser, making
it ideal for users who want a focused, integrated experience for tasks such as
coding, content creation, data analysis, or deep work.

13.3.1 Configuring Claude Desktop to use the MCP server

To configure Claude Desktop to use the MCP server you developed, you need to modify
the claude_desktop_config.json file located in the ~/Library/Application Support/
Claude folder (macOS):

$ nano ~/Library/Application\ Support/Claude/claude_desktop_config.json

In Windows, the path to this file is %APPDATA%\Claude\claude_desktop_config.json.
Populate the claude_desktop_config.json file with the following statements (bold

for emphasis):

https://claude.ai/download
https://claude.ai/download

 325Testing the MCP server using Claude Desktop

{
 "mcpServers": {
 "weather": {
 "command": "/Users/weimenglee/.local/bin/uv",
 "args": [
 "--directory",
 "/Volumes/SSD/MCP_Demo",
 "run",
 "server.py"
]
 }
 }
}

Observe the values in bold:

¡	"weather"—Name of the MCP server. You can give it any name you want.

¡	/Users/weimenglee/.local/bin/uv—Location of the uv tool. It will be used to
run your MCP server.

¡	/Volumes/SSD/Medium/MCP_Demo—Full path of the folder containing the MCP
server (server.py).

¡	server.py—Name of the file containing the MCP server implementation.

When the claude_desktop_config.json file is saved, restart Claude Desktop. The first
time you launch Claude Desktop, you’ll be asked to sign in.

13.3.2 Getting the weather

In Claude Desktop, ask the following question: “Get me the weather for Singapore”
(see figure 13.23). Claude takes a moment to process the question and then presents
the prompt shown in figure 13.24.

Figure 13.23 Asking

a question in Claude

Desktop

326 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

Figure 13.24 Claude

Desktop has found the tool

to answer your question.

The application is saying that to answer your question, it found a tool called fetch_
weather from the "weather" MCP server you configured. Click Allow Once (or Allow
Always) to allow Claude to access the fetch_weather tool and fetch the weather for
Singapore.

After a short wait, the result is returned to you. Notice that Claude uses the tool’s out-
put to generate a coherent response (see figure 13.25). Without the MCP tools, Claude
wouldn’t be able to fetch the weather information for you.

Figure 13.25

The result returned

by the tool

 327Testing the MCP server using Claude Desktop

13.3.3 Getting the content of a text file

Try another question: “Can you help me get the content of textfile.txt.” As before,
Claude Desktop detects that a tool named get_text is able to able to answer your ques-
tion (see figure 13.26).

Figure 13.26 Claude

Desktop found a tool to

fetch the content of a file.

If you grant it access to the tool, Claude will extract the content from the text file
and summarize it in bullet points (see figure 13.27). You can follow up with another
question: “Summarize the content of the file.” This time, Claude Desktop generates a
summary (see figure 13.28).

Figure 13.27

The content of the file

returned by Claude

Desktop

328 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

Figure 13.28

Asking Claude

Desktop to

summarize the

content of the file

13.3.4 Getting the content of a PDF file

Ask one more question: “Load the content of Singapore.pdf.” As expected, Claude
Desktop knows that the get_pdf tool can answer your question (see figure 13.29).
When you grant it permission to use the tool, Claude Desktop loads the content of the
PDF file and returns the key points in the document (see figure 13.30).

Figure 13.29 Claude

Desktop found a tool

to fetch the content of

a PDF file.

 329Testing the MCP server using Claude Desktop

Figure 13.30

The content

of the PDF file

returned by

the tool

Now you can ask a question specific to the document: “What are the official languages
in Singapore?” Claude Desktop generates the result for you (see figure 13.31).

Figure 13.31

Asking questions

pertaining to the

PDF document

330 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

13.3.5 Improving the MCP server

In your MCP server implementation, you hardcoded the OpenWeatherMap API key
in the code. Ideally, you should allow the user to pass the key in to your code using an
environment variable. Let’s change that now. First, add the following statements in
bold to the server.py file:

from mcp.server.fastmcp import FastMCP
import httpx
import fitz # for PyMuPDF
import os

import sys

API_KEY = os.getenv('OPENWEATHER_API_KEY')
if not API_KEY:
 print("Error: OPENWEATHER_API_KEY environment variable must be set",
 file=sys.stderr)
 sys.exit(1)

Create an MCP server
mcp = FastMCP("MCP Demo")
...
...

Then comment out the assignment of the API_KEY variable in the fetch_weather()
function:

#======
Tools
#======
@mcp.tool()
async def fetch_weather(city: str, units: str = "metric") -> dict:
 async with httpx.AsyncClient() as client:
 # API_KEY = "xxxxxxxxxxxx"
 # Using OpenWeatherMap API
 response = await client.get(
...
...

Finally, pass in the OPENWEATHER_API_KEY value (replace it with your own API key)
through the environment variable in the claude_desktop_config.json file:

{
 "mcpServers": {
 "weather": {
 "command": "/Users/weimenglee/.local/bin/uv",
 "args": [
 "--directory",
 "/Volumes/SSD/MCP_Demo",
 "run",
 "server.py"

Gets the API key from the
environment variable

 331Trying third-party MCP servers

],
 "env": {
 "OPENWEATHER_API_KEY": "xxxxxxxxxxxx"
 }
 }
 }
}

Restart Claude Desktop. The MCP server works as intended.

13.4 Trying third-party MCP servers

At this stage, you’ve built your own MCP server and tested it using Claude Desktop.
In this section, you’ll explore further, trying out some MCP servers created by others.
You’ll install the following third-party MCP servers:

¡	Location Service—An MCP server that allows you to discover your geographical
location.

¡	Time Service—An MCP server that allows you to obtain the current time. It also
supports generation of datetime strings in various formats.

13.4.1 Get My Location

Get My Location is an MCP server that allows you to discover your geographical location.
To learn more about this service, visit https://mcp.so/server/get-my-location/typescript.
To use this service in Claude Desktop, edit the claude_desktop_config.json file:

$ nano ~/Library/Application\ Support/Claude/claude_desktop_config.json

Add the following statements in bold (note the comma before the "get-location" key):

{
 "mcpServers": {
 "weather": {
 "command": "/Users/weimenglee/.local/bin/uv",
 "args": [
 "--directory",
 "/Volumes/SSD/MCP_Demo",
 "run",
 "server.py"
],
 "env": {
 "OPENWEATHER_API_KEY": "xxxxxxxxxxxx"
 }
 },
 "get-location": {
 "command": "npx",
 "args": [
 "-y",
 "@mcpcn/mcp-get-location"
],

https://mcp.so/server/get-my-location/typescript

332 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

 "env": {}
 }
 }
}

Unlike the MCP server that you developed using Python, the Location Service server is
written in Node.js. The various keys do the following things:

¡	"npx"—Uses npx (a command-line tool that comes with Node.js) to run a Node
.js package without installing it globally

¡	-y—Automatically answers "yes" to prompts

¡	@mcpcn/mcp-get-location—Refers to a package located at https://mng.bz/X7ep.

¡	"env"—Indicates that no special environment variables are configured

The npx tool downloads the package from the NPM registry to a temporary location
and then runs it immediately without installing it permanently. The package executes
locally on your machine as an MCP server and provides location services to an MCP
client (such as Claude Desktop).

Restart Claude Desktop, and ask the following question: “What is my current loca-
tion?” Claude Desktop should be able to find the get-location tool to answer that ques-
tion (see figure 13.32). Click Allow Once.

Figure 13.32

Claude Desktop

using the third-

party tool to

get your current

location

A web page appears, asking for permission to get your current location (see figure
13.33). Click Get My Location.

https://mng.bz/X7ep

 333Trying third-party MCP servers

Figure 13.33 Retrieving

your location

Back in Claude Desktop, you see the location details retrieved by the MCP server (see
figure 13.34).

Figure 13.34

Location

information

returned by

the tool

334 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

If you asked something like “What is the temperature for my current location?”, Claude
Desktop would invoke the get_location tool first, followed by the fetch_weather tool
(see figure 13.35). Cool, isn’t it?

Figure 13.35 Claude Desktop can invoke multiple tools to answer a question.

13.4.2 mcp-datetime

The second MCP server you’ll try is the mcp-datetime MCP server, which allows you
to obtain the current time in various geographical locations. For more details on this
service, visit https://mng.bz/yNKy.

As usual, to use this service in Claude Desktop, edit the claude_desktop_config.json
file:

$ nano ~/Library/Application\ Support/Claude/claude_desktop_config.json

Add the statements in bold in the following listing.

Listing 13.5 Adding the mcp-datetime service

{
 "mcpServers": {
 "weather": {

https://mng.bz/yNKy

 335Trying third-party MCP servers

 "command": "/Users/weimenglee/.local/bin/uv",
 "args": [
 "--directory",
 "/Volumes/SSD/Dropbox/MCP_Demo",
 "run",
 "server.py"
],
 "env": {
 "OPENWEATHER_API_KEY": "xxxxxxxxxxxx"
 }
 },
 "get-location": {
 "command": "npx",
 "args": [
 "-y",
 "@mcpcn/mcp-get-location"
],
 "env": {}
 },
 "mcp-datetime": {
 "command": "/Users/weimenglee/.local/bin/uvx",
 "args": ["mcp-datetime"]
 }
 }
}

Unlike the Location Service, the Time Service is written in Python. Here’s what the
various keys do:

¡	The uvx command downloads the mcp-datetime Python package (https://pypi
.org/project/mcp-datetime).

¡	The MCP server runs locally without permanent installation (like npx but for
Python).

uv and uvx

uv is a comprehensive Python package and project manager that handles depen-

dencies and virtual environments and can execute Python code within those envi-

ronments. uvx is a command runner that executes Python applications in isolated,

temporary environments without requiring manual setup.

In an earlier MCP configuration, you used uv run to execute the local Python script

(server.py) within the project’s managed environment. Now you use uvx to run the

mcp-datetime package directly; it automatically downloads, installs, and executes

the package in an isolated environment without any manual installation steps.

Restart Claude Desktop, and ask the following question: “What time is it now in Shang-
hai?” Claude Desktop should be able to find the get_datetime tool to answer that ques-
tion (see figure 13.36). Click Allow Once. You see the answer from this tool (see figure
13.37).

https://pypi.org/project/mcp-datetime
https://pypi.org/project/mcp-datetime

336 CHAPTER 13 Bridging LLMs to the real world with the Model Context Protocol

Figure 13.36 Claude Desktop using a tool to get the time at a particular location

Figure 13.37 The time returned by the tool

 337Summary

Summary

¡	MCP is an open standard created by Anthropic to connect AI assistants like
Claude to external data sources and tools.

¡	An MCP server is a standard application that can run in different configurations.

¡	After you developed an MCP server, you can deploy it locally or remotely.

¡	When the MCP server and client are running on the same machine, they commu-
nicate using standard input and output streams.

¡	When the server and client are running on different machines across the net-
work, the client communicates with the server using HTTP POST, and the server
responds to the client using SSE.

¡	An MCP server has three main components that define its functionality:

– Tools—Executable functions that the LLM can invoke to perform actions or
computations

– Resources—Data sources that the AI can access to retrieve information

– Prompts—Predefined prompt templates that can be used to guide AI
interactions

¡	You can develop an MCP server using the official Python SDK for MCP servers
and clients.

¡	You can use the MCP Inspector to test and validate your MCP server.

¡	You can use your MCP server via the Claude Desktop application.

¡	MCP servers are written in a variety of programming languages, including
Python, Node.js, TypeScript, Go, and Rust.

338

index
Numbers

0.0.0.0 IP address 236
127.0.0.1 IP address 236
7860 port 174

Symbols

@mcp.prompt decorator 318
@mcp.resourcedecorator 315
@mcp.tool() decorator 318
@tool decorator 206

A

agents 198
developing using LangGraph 212
developing using smolagents 200–206
developing with LangChain 207–212
LangGraph 213, 219, 224
overview of 199

AIMessage 217
Anaconda

distribution 15
downloading 13

authentication 234

B

BAAI/bge-small-en-v1.5 model 162
BERT (Bidirectional Encoder Representations from

Transformers) 36, 42, 108
biases, defined 146
BPE (byte-pair encoding) 108, 146
Button component 252–253

C

Chains component, adding 183
character-level tokenization 35, 147
chatbots 252–256

clearing 256
creating basic chatbot UIs 253
wiring Textbox submit events 254

Chat Input component, adding 184
Chat Memory component, maintaining

conversations using 186
Chat Output component

adding 184
connecting to 191

chunking, defined 280
CIFAR-10 dataset 116–119
Claude Desktop 324–331

configuring to use MCP server 324
getting content of PDF file 328

 339INDEX

getting content of text file 327
getting weather 325
improving MCP server 330

click event 256
CLIP (Contrastive Language–Image Pretraining)

model 140–142
CNNs (convolutional neural networks) 116, 122
COCO (Common Objects in Context) 4
conda package manager 13, 14, 30
configuring, trainer for fine-tuning pretrained

models 128
CUDA (Compute Unified Device

Architecture) 20, 48, 126
cURL (command-line tool) 195
CV (computer vision)

binding to webcams 76
image classification 78
image segmentation 81–88
models 64
object detection 65
transformers pipeline 74
using models directly 68
video content classification 88–92

D

data, analyzing with LLMs 292–302
asking questions using Mistral 7B model 296–

298
asking questions using OpenAI 299–302
loading JSON files 295
preparing JSON files 293

Database services 307
datasets

reduced, tokenizing 125
visualizing 112–119
yelp_polarity 122

decord library 89–91
deepset/roberta-base-squad2 model 61
Delphia/twitter-spam-classifier model 50
DETR (Detection Transformer) 4, 69, 137
DistilBERT 42, 43
distilbert-base-uncased model 125
DistilBertForSequenceClassification model 127
Docker, installing Langflow using 175
document_loaders module 278, 286, 290, 303
DPO (Direct Preference Optimization) 149

Dropdown component 247
DuckDuckGoSearchTool 200–204

E

embedding, defined 281
events, wiring Textbox submit events 254

F

facebook/detr-resnet-50 model 4–5, 65–66, 74, 137
facebook/m2m100_418M model 56
FAIR (Facebook AI Research) 20
FAISS (Facebook AI Similarity Search) 277
File component, loading PDF documents 188
Files services 307
fine-tuning

pretrained models 122–123, 128
tokenizing reduced datasets 125
using fine-tuned model 129

fitz (PyMuPDF) 315
fka/awesome-chatgpt-prompts dataset 99, 100
flagging options, configuring 233–234

G

Get My Location 331
get_pdf_data() function 315, 317, 319, 320
get_pdf() function 317, 323
get_session_history parameter 154
get_text() function 317
get_weather_info() function 211, 224
GloVe model 107
google-t5/t5-base model 55
GPT4All

asking questions 267
binding with Gradio 270
installing application 259
installing gpt4all Python library 264
list of supported models 264
loading specific model 266
overview 259
querying local data 277

gpt4all package 277, 282–283
gpt-4o-mini models 158, 165, 202, 204, 209
gpt-4o models 299
GPT (Generative Pre-trained Transformer) 2, 42,

108
GPUs (graphics processing units) 11, 126, 165, 258

340 INDEX

using in pipeline object 22
GPUtil package 21
Gradio

authentication 234
binding to image segmentation 85
binding with 270
building web-based UIs 229, 252–256
customizing server and port 236
flagging options 233
overview of 230–238
sharing application 236
widgets 239–252

gradio package 85
Gradio Python library 8

H

Hosted Inference API 80
httpx, package 312
huaen/question_detection model 49
Hugging Face 12

computer vision models 64
creating virtual environments 14
downloading Anaconda 13
Gradio Python library 8
mental model 10–11
models 4. See also specific models
starting Jupyter Notebook 16
transformer architecture 32–41
transformers and pipelines for NLP tasks, QA

tasks 61
Transformers library 2

huggingface-cli tool 57
HuggingFace component, using 190
Hugging Face datasets 94–106

downloading 100–103
listing available 96
Parquet files 105
shuffling 103
streaming 104
validating availability of 99

HuggingFaceEmbedding model 162
HuggingFaceH4/zephyr-7b-alpha model 149
Hugging Face Hub, installing package 23–29

downloading files 24
using Hugging Face CLI 27–29

hugging-face-hub package 277

huggingface_hub package 23–25, 27
Hugging Face Spaces, deploying Gradio application

to 237
HumanMessage 217

I

image classification 78
image segmentation 81–88

binding to Gradio 85
using model programmatically 82–85

Images services 307
IMDb (Internet Movie Database) 3, 100
Incorrect Credentials message 235
initializing, trainer for fine-tuning pretrained

models 128
installing, Transformers library 19–23

J

joeddav/xlm-roberta-large-xnli model 57, 58
jq Python package 290
jq schema 303
JSON (JavaScript Object Notation)

loading files 289, 295
preparing files 293

Jupyter Notebook, starting 16

L

LangChain 147, 303
building applications visually using

Langflow 173, 187–192
creating LLM chain 150
developing agents with 207–212
installing 147

langchain-huggingface package 148
langchain.llms module 283
langchain_openai package 157
langchain package 147, 277, 286, 290
Langflow

asking questions on own data 187–192
building LangChain applications visually

using 173
creating new projects 178–187
installing 174–175
overview 174–176
running in cloud 176
using project programmatically 192–196

 341INDEX

langflow image 176
LangGraph 212–213, 219, 224–225
LFS (Git Large File Storage) 11
LlamaIndex, connecting LLMs to private data

using 160–171
LLM (large language model)-based

applications 144, 258
asking questions 267
creating LLM chain 150
creating prompt templates 147
installing GPT4All application 259
installing gpt4all Python library 264
LangChain 147
listing all supported models 264
loading specific model 266
using other LLMs 157, 159

LLMs (large language models) 1, 107, 145–147,
198–199, 304

asking questions 283
connecting to private data using

LlamaIndex 160–171
embedding 281
loading CSV files 286
loading embeddings 282
loading JSON files 289
loading multiple documents 284
maintaining conversation 151
querying local data 276–278, 280, 282
specifying 148
writing code to analyze data 292–302

local data
LLMs to query, loading CSV files 286
querying, downloading model 282
querying with LLMs 277–278, 280, 298

LocalData 263, 285
logits 142
logits key 46
LSTMs (long short-term memory networks) 32

M

main branch 25
mask element 83
MCG-NJU/videomae-base-short-finetuned-kinetics

model 89
MCP (Model Context Protocol) 2, 304

building MCP server 310–323
client/server 306

overview of 305–310
problems solved by 305
server components 309
server deployment 308
testing server using Claude Desktop 324–331
third-party servers 331–335

Get My Location 331
mcp-datetime 334

mcp.server.fastmcp module 312
memory, LangGraph with 225
Messages (Text) connector 186
meta-llama/Llama-3.2–3B-Instruct model 164–166
Mistral 7B model 296–298
Mistral OpenOrca model 266, 267
MLM (masked language modeling) 61
model_id 202
model object 71
Models component, adding 182
MPS (Metal Performance Shaders) 126
multiclass text classification 131
multimodal models 136–142

CLIP model 140–142
single-modal models 137–140

MyGradioApp directory 237

N

NER (named entity recognition) 19, 33, 107
NLI (Natural Language Inference) 57
NLP (natural language processing) 1, 19, 95, 122,

198, 258, 280
text classification 49
text generation 51
text summarization 52
text translation 54
tokenization in 107–112
transformer architecture 32–41
transformers and pipelines for QA tasks 61
transformers for 49
Transformers library 41–49
zero-shot classification 56

NLP (natural language processing) tasks 31

O

object detection 65
ollama 202
one-shot classification 57

342 INDEX

OOV (out-of-vocabulary) 108
OpenAI

asking questions using 299–302
using 157
using LlamaIndex with 165

openai/clip-vit-base-patch32 model 142
openai/clip-vit-large-patch14-336 model 60
openai-community/gpt2 model 51
OpenAI component, using LLM with 192
openai package 299–300

P

packages, installing 161. See also specific packages
papluca/xlm-roberta-base-language-detection

model 50
Parse Data component, splitting long text into

smaller chunks 189
PDF documents, loading 188, 278
PIL package 71, 78, 85
pip command 24, 76, 90, 147, 157, 161, 166, 230,

299
installing Langflow using 174

pipelines 3, 22
for NLP tasks, QA tasks 61

pipeline-style chaining 150
port, customizing 236
positional encoding 39–40
pretrained models

configuring and initializing trainer for fine-
tuning 128

fine-tuning 122
setting up for sequence classification 125
transformer models 42

private data, connecting LLMs to using
LlamaIndex 160–171

asking questions 165
creating chatbot UI 168
creating web frontend for app 166
holding conversation 168
indexing document 163
installing packages 161
loading documents 161
loading embeddings 163
preparing documents 161
shifting workload to GPU 165
using embedding model 162
using LlamaIndex with OpenAI 165

using LLM for querying 164
Prompt component 179

adding 180
getting questions using 189

prompt templates 147
protobuf package 58
PyPDFLoaded object 284
Python

installing gpt4all library 264
using project programmatically 195

PythonInterpreterTool 201, 204

Q

QA (question-answering) tasks 61
querying local data, installing required

packages 277
Qwen/Qwen2.5-Coder-32B-Instruct model 201

R

RAG (retrieval-augmented generation) 161
read token 148
RecursiveCharacterTextSplitter object 280, 303
reduced datasets, tokenizing 125
ResNet (residual neural network) 136
Resources, defined 315
RNNs (recurrent neural networks) 32
RoBERTa (Robustly Optimized BERT

Approach) 42

S

scaled dot-product attention 40
SegFormer model fine-tuned on ADE20k

model 86
self-attention mechanism 33, 40
sentence embeddings 281
sentencepiece package 56, 58
sentence-transformers/all-MiniLM-L6-v2

model 281, 303
sentence-transformers model 277
sentiment analysis 44
sequence classification, setting up pretrained model

for 125
SerpAPIWrapper 208–209, 219
server, customizing 236
Service, defined 306
SimpleDirectoryReaderclass 161

 343INDEX

single-modal models 136–140
skimage package 243
Slider component 247
smolagents 200–206

DuckDuckGoSearchTool 200–204
PythonInterpreterTool 204
writing custom tools 206

Softmax 41, 142
spam classifier 50
SQuAD (Stanford Question Answering Dataset) 61
SSE (server-sent events) 309
SST-2 (Stanford Sentiment Treebank) dataset 42
stanfordnlp/imdb dataset 100, 102–103, 105
state dictionary 215
StrOutputParser object 284
submit event 254
subword tokenization 35, 146
summarizer object 53

T

T5 (Text-To-Text Transfer Transformer) 42
TavilySearchResults 208
test split dataset 123–124
Textbox component 247, 252–254
text

classification 49
generation 51
string 231
summarization 52
translation 54

tiiuae/falcon-7b-instruct model 159
token embeddings 36–38
token ID 110
tokenization 34, 107–112

tokenizing datasets 109–112, 125
types of methods 107

tokenizer object 45
tokens, defined 146
Tool object 225
Tools, implementing 315–318
trainer, configuring and initializing for fine-tuning

pretrained models 128
Training Documents folder 161
train key 103
train split 103, 124
train split dataset 123

Transcriber tool 201
transformer architecture 32–41

positional encoding 39–40
Softmax 41
token embeddings 36
tokenization 34
transformer block 40

transformer block 40
transformers, for NLP tasks 49, 61
Transformers library 2, 41–38

installing 19–23
pipelines 42–49
pretrained transformers models 42
using models directly 44–46

transformers package 3, 31
transformers pipeline 74, 80
t-SNE (t-Distributed Stochastic Neighbor

Embedding) 37
twitter-financial-news-topic dataset 112–115

U

UIs (user interfaces), chatbots 252–256
clearing 256
creating basic 253
wiring Textbox submit events 254

URI (Uniform Resource Identifier) 315
username field 235
uv, installing 311

V

vector embedding 162
video content classification 88–92

downloading videos for testing 90
installing prerequisites 89
using transformers pipeline object 91

VideoMAE (Video Masked Autoencoders)
model 89

virtual environments 14
visualizing datasets 112–119

CIFAR-10 dataset 116–119
twitter-financial-news-topic dataset 112–115

VQA (visual question answering) 136

W

weather_tool 225
webcams 76

344 INDEX

web frontends, creating for apps 166
webserver folder 90, 91
weights, defined 146
widgets 239–252

Audio 240
Images 242–246
layout using TabbedInterface class 250
selection widgets 247
Textbox 239

WikipediaAPIWrapper 208
WolframAlphaAPIWrapper 208

Word2Vec model 107

word embeddings 281

word tokenization 34, 147

WRITE Hugging Face token 237–238

Y

yelp_polarity dataset 121–123

Z

zero-shot classification 56–60

Wei-Meng Lee

ISBN-13: 978-1-63343-671-8

H
ugging Face is an incredible open-source ecosystem for
AI engineers and data scientists, providing hundreds of
pre-trained models, datasets, tools, and libraries. It’s also

a central hub for collaborating on leading edge AI research.
Hugging Face is a massive platform, and this book will help
you take full advantage of all it has to off er.

Hugging Face in Action teaches you how to build end-to-end AI
systems using resources from the Hugging Face community. In
it, you’ll create multiple projects, including an object detection
model, a RAG Q&A application, an LLM-powered chatbot,
and more. You’ll appreciate the clear, accessible explanations,
along with thoughtful introductions to key technologies like
LangChain, LlamaIndex, and Gradio.

What’s Inside
● How to navigate the huge Hugging Face library of models
 and tools
● How to run LLMs locally using GPT4ALL

● How to create web-based user interfaces using Gradio
● How to improve models using Hugging Face datasets

For Python programmers familiar with NumPy and Pandas.
No AI experience required.

Wei-Meng Lee is a technologist and founder of Developer
Learning Solutions.

For print book owners, all digital formats are free:
https://www.manning.com/freebook

Hugging Face IN ACTION

SOFTWARE DEVELOPMENT/PYTHON

M A N N I N G

“A must-read for all
 AI developers!”—Abhinav Kimothi

Author of A Simple Guide
to Retrieval Augmented Generation

“Packed with valuable
 information!”—Maja Ferle, Author of

Snowfl ake Data Engineering

“A great introduction
to the foundational

 Hugging Face toolset.”—Micheal Lanham
Brilliant Harvest

“Gets you started with
HuggingFace datasets

 and models.”—Giuliano Bertoti, FATEC

“A hands-on guide to one
of the most important

 ecosystems in modern AI.”—Vikram Kulothungan
Capitol Technology University

	Hugging Face in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	Prerequisites
	How this book is organized: A road map
	What’s required to use this book
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	1 Introducing Hugging Face
	1.1	Hugging Face Transformers library
	1.2	Hugging Face models
	1.3	Hugging Face Gradio Python library
	1.4	Understanding the Hugging Face mental model
	1.4.1	Step 1: User need
	1.4.2	Step 2: Model Hub discovery
	1.4.3	Step 3: Model card
	1.4.4	Step 4: Two execution paths
	1.4.5	Step 5: Results delivered

	2 Getting started
	2.1	Downloading Anaconda
	2.1.1	Creating virtual environments
	2.1.2	Starting Jupyter Notebook

	2.2	Installing the Transformers library
	2.2.1	Support for GPU
	2.2.2	Using GPU in the pipeline object

	2.3	Installing the Hugging Face Hub package
	2.3.1	Downloading files
	2.3.2	Using the Hugging Face CLI

	3 Using Hugging Face transformers and pipelines for NLP tasks
	3.1	Introduction to the transformer architecture
	3.1.1	Tokenization
	3.1.2	Token embeddings
	3.1.3	Positional encoding
	3.1.4	Transformer block
	3.1.5	Softmax

	3.2	Working with the Transformers library
	3.2.1	What are pretrained transformers models?
	3.2.2	What are transformers pipelines?
	3.2.3	Using a model directly
	3.2.4	Using a transformers pipeline

	3.3	Using transformers for NLP tasks
	3.3.1	Text classification
	3.3.2	Text generation
	3.3.3	Text summarization
	3.3.4	Text translation
	3.3.5	Zero-shot classification
	3.3.6	Question-answering tasks

	4 Using Hugging Face for computer vision tasks
	4.1	Hugging Face computer vision models
	4.2	Object detection
	4.2.1	Using the model directly
	4.2.2	Using the transformers pipeline
	4.2.3	Binding to a webcam

	4.3	Image classification
	4.4	Image segmentation
	4.4.1	Using the model programmatically
	4.4.2	Binding to Gradio

	4.5	Video classification
	4.5.1	Installing the prerequisites
	4.5.2	Downloading the videos for testing
	4.5.3	Using the transformers pipeline object

	5 Exploring, tokenizing, and visualizing Hugging Face datasets
	5.1	What are Hugging Face datasets?
	5.1.1	Getting the list of datasets available
	5.1.2	Validating the availability of a dataset
	5.1.3	Downloading a dataset
	5.1.4	Shuffling a dataset
	5.1.5	Streaming a dataset
	5.1.6	Getting the Parquet files of a dataset

	5.2	Tokenization in NLP
	5.2.1	Types of tokenization methods
	5.2.2	Tokenizing datasets

	5.3	Visualizing datasets
	5.3.1	Using the twitter-financial-news-topic dataset
	5.3.2	Using the CIFAR-10 dataset

	6 Fine-tuning pretrained models and working with multimodal models
	6.1	Fine-tuning pretrained models
	6.1.1	Loading the yelp_polarity dataset
	6.1.2	Filtering the yelp_polarity dataset
	6.1.3	Tokenizing the reduced dataset
	6.1.4	Setting up a pretrained model for sequence classification
	6.1.5	Configuring and initializing a trainer for fine-tuning a pretrained model
	6.1.6	Using the fine-tuned model
	6.1.7	Fine-tuning models for multiclass text classification

	6.2	Working with multimodal models
	6.2.1	Single-modal models
	6.2.2	Multimodal models

	7 Creating LLM-based
	7.1	Introducing LLMs
	7.2	Introducing LangChain
	7.2.1	Installing LangChain
	7.2.2	Creating a prompt template
	7.2.3	Specifying an LLM
	7.2.4	Creating an LLM chain
	7.2.5	Running the chain
	7.2.6	Maintaining a conversation
	7.2.7	Using the RunnableWithMessageHistory class
	7.2.8	Using other LLMs

	7.3	Connecting LLMs to your private data using LlamaIndex
	7.3.1	Installing the packages
	7.3.2	Preparing the documents
	7.3.3	Loading the documents
	7.3.4	Using an embedding model
	7.3.5	Indexing the document
	7.3.6	Loading the embeddings
	7.3.7	Using an LLM for querying
	7.3.8	Asking questions
	7.3.9	Using LlamaIndex with OpenAI
	7.3.10	Creating a web frontend for the app
	7.3.11	Holding a conversation
	7.3.12	Creating a chatbot UI

	8 Building LangChain applications visually using Langflow
	8.1	What is Langflow?
	8.1.1	Installing Langflow using the pip command
	8.1.2	Installing Langflow using Docker
	8.1.3	Running Langflow in the cloud

	8.2	Creating a new Langflow project
	8.2.1	Adding a Prompt component
	8.2.2	Adding a Models component
	8.2.3	Adding a Chains component
	8.2.4	Adding Chat Input and Chat Output components
	8.2.5	Testing the project
	8.2.6	Maintaining a conversation using the Chat Memory component

	8.3	Asking questions on your own data
	8.3.1	Loading PDF documents using the File component
	8.3.2	Splitting long text into smaller chunks using the Parse Data component
	8.3.3	Getting questions using the Prompt component
	8.3.4	Using the HuggingFace component
	8.3.5	Connecting to the Chat Output component
	8.3.6	Testing the project
	8.3.7	Using an LLM with the OpenAI component

	8.4	Using your project programmatically
	8.4.1	cURL
	8.4.2	Python code

	9 Programming agents
	9.1	What are agents?
	9.2	Developing agents using smolagents
	9.2.1	Using built-in tools: DuckDuckGoSearchTool
	9.2.2	Using built-in tools: PythonInterpreterTool
	9.2.3	Writing your own custom tools

	9.3	Developing agents with LangChain
	9.3.1	Using the built-in Tool class
	9.3.2	Using custom tools

	9.4	Developing agents using LangGraph
	9.4.1	What is LangGraph?
	9.4.2	LangGraph agent basics
	9.4.3	Using LangGraph with tools
	9.4.4	Using LangGraph with a custom tool
	9.4.5	Using LangGraph with memory

	10 Building a web-based UI using Gradio
	10.1	Basics of Gradio
	10.1.1	Using Gradio’s Interface class
	10.1.2	Configuring flagging options
	10.1.3	Configuring authentication
	10.1.4	Customizing the server and port
	10.1.5	Sharing your Gradio application
	10.1.6	Deploying your Gradio application to Hugging Face Spaces

	10.2	Working with widgets
	10.2.1	Working with Textbox
	10.2.2	Working with Audio
	10.2.3	Working with Images
	10.2.4	Working with selection widgets
	10.2.5	Layout using the TabbedInterface class

	10.3	Creating a chatbot UI
	10.3.1	Creating the basic chatbot UI
	10.3.2	Wiring the Textbox’s submit event
	10.3.3	Clearing the chatbot

	11 Building locally running LLM-based applications using GPT4All
	11.1	Introduction to GPT4All
	11.2	Installing GPT4All
	11.2.1	Installing the GPT4All application
	11.2.2	Installing the gpt4all Python library
	11.2.3	Listing all supported models
	11.2.4	Loading a specific model
	11.2.5	Asking a question
	11.2.6	Binding with Gradio

	12 Using LLMs to query your local data
	12.1	Using GPT4All to query with your own data
	12.1.1	Installing the required packages
	12.1.2	Importing the various modules from the LangChain package
	12.1.3	Loading the PDF documents
	12.1.4	Splitting the text into chunks
	12.1.5	Embedding
	12.1.6	Loading the embeddings
	12.1.7	Downloading the model
	12.1.8	Asking questions
	12.1.9	Loading multiple documents
	12.1.10	Loading CSV files
	12.1.11	Loading JSON files

	12.2	Using LLMs to write code to analyze your data
	12.2.1	Preparing the JSON file
	12.2.2	Loading the JSON file
	12.2.3	Asking the question using the Mistral 7B model
	12.2.4	Asking questions using OpenAI

	13 Bridging LLMs to the real world with the Model Context Protocol
	13.1	What is MCP?
	13.1.1	The problems MCP solves
	13.1.2	Understanding MCP
	13.1.3	MCP server deployment
	13.1.4	Components in an MCP server

	13.2	Building an MCP server
	13.2.1	Installing uv
	13.2.2	Initializing the project
	13.2.3	Installing the packages
	13.2.4	Creating the MCP server
	13.2.5	Inspecting the MCP server
	13.2.6	Implementing Resources
	13.2.7	Implementing Tools
	13.2.8	Implementing a prompt
	13.2.9	Testing the components

	13.3	Testing the MCP server using Claude Desktop
	13.3.1	Configuring Claude Desktop to use the MCP server
	13.3.2	Getting the weather
	13.3.3	Getting the content of a text file
	13.3.4	Getting the content of a PDF file
	13.3.5	Improving the MCP server

	13.4	Trying third-party MCP servers
	13.4.1	Get My Location
	13.4.2	mcp-datetime

	index

