
M A N N I N G

Jeremy C. Morgan

Examples in Python

Coding with AI

Common Prompt Types and Their Best Uses

Prompt types

Zero shot

Few shot

Open ended

Constraned

Structured

Simple queries

Examples + query

Creative tasks

Limited scope

Formatted output

Coding with AI

MANN I NG
Shelter Island

Jeremy C. Morgan

Coding with AI
Examples in Python

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2025 Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

	 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN 9781633437272
Printed in the United States of America

The author and publisher have made every effort to ensure that the information in this book was correct
at press time. The author and publisher do not assume and hereby disclaim any liability to any party for
any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result
from negligence, accident, or any other cause, or from any usage of the information herein.

	 Development editor: 	 Doug Rudder
	 Technical editor: 	 Richard J. Vaughan
	 Review editor: 	 Dunja NikitoviÊ
	 Production editor: 	 Kathy Rossland
	 Copy editor: 	 Lana Todorovic-Arndt
	 Proofreader: 	 Keri Hales
	 Typesetter: 	 Tamara ŠveliÊ SabljiÊ
	 Cover designer: 	 Marija Tudor

I dedicate this book to my amazing family.
Without them, this book would not have been possible.

vi

brief contents
Part 1		 Getting started with AI-assisted coding..................1

	 1	 ■ 	 Introducing generative AI  3
	 2	 ■ 	 First steps with AI-assisted coding  27

Part 2		 Building applications with AI assistance...............55

	 3	 ■ 	 Design and discovery  57
	 4	 ■ 	 Coding the first version of our application  78
	 5	 ■ 	 Using Blackbox AI to generate base code  101
	 6	 ■ 	 Generating a software backend with Tabnine  149

Part 3		 Advanced AI development techniques................... 177
	 7	 ■ 	 Building user interfaces with ChatGPT  179
	 8	 ■ 	 Building effective tests with generative AI  210
	 9	 ■ 	 Prompt engineering  244
	 10	 ■ 	 Vibe coding with Cursor  285

vii

contents
preface   xii
acknowledgments   xiv
about this book   xvi
about the author   xix
about the cover illustration   xx

Part 1	 Getting started with AI-assisted coding...1

	 1	 Introducing generative AI  3
	 1.1	 Generative AI for coders  4

Code generation and autocompletion  4 ■ Bug detection and
automated fixes  5 ■ Documentation generation  5
Code refactoring and optimization  5 ■ Test case generation
and mock data creation  6

	 1.2	 Developer tools landscape  6
Integrated developer tools  6 ■ Standalone tools  7

	 1.3	 How does generative AI work?   8

	 1.4	 What is an LLM, and why should I care?  10

	 1.5	 Why do these tools sometimes get it wrong?  12
How LLMs differ from databases  13 ■ Training phase
problems  13 ■ Misinterpreting context  14

viii contentsviii

	 1.6	 The potential of LLMs   15

	 1.7	 Generative AI vs. code completion   15
Other types of generative AI  16 ■ Why coders care about
generative AI  17

	 1.8	 Project workflow with AI assistance  17
Ideation and planning  18 ■ Code generation and assistance  20
Code review and analysis  20 ■ Testing and debugging  22
Documentation and content generation  22

	 1.9	 Choosing the right generative AI tools  22
Data quality and availability  22 ■ Integration with development
workflows  23 ■ Quality assurance  23 ■ Keeping up with
evolving tools  23 ■ Shift in focus  24

	 1.10	 Don’t fear the rise of AI  24

	 1.11	 Go forth and code!  25

	 2	 First steps with AI-assisted coding  27
	 2.1	 What is GitHub Copilot?  28

How GitHub Copilot works  28 ■ Interacting with
GitHub Copilot  31

	 2.2	 Common patterns  35

	 2.3	 Context is everything  35

	 2.4	 What is NLP?   36

	 2.5	 A simple Python project  37
Preparing your development environment   39 ■ Creating the
application  42 ■ Side quest: Testing the function speed  47

Part 2	 Building applications with AI assistance...55

	 3	 Design and discovery  57
	 3.1	 Getting to know ChatGPT  58

	 3.2	 The problem  58

	 3.3	 Creating the right prompt  59

	 3.4	 Measuring the effect on the design process  60

	 3.5	 A design document created with ChatGPT  61

	 3.6	 Software design document: HAM radio license practice test
application  63

	 ixcontents 	 ix

	 3.7	 Digging deeper  68

System overview (section 2)   68 ■ Technical stack (section 5)  70

	 3.8	 Generating user stories for our project  72

Defining roles in prompts  73 ■ The output: User stories
document  73 ■ Analyzing the output  75 ■ User stories
document in detail  75

	 4	 Coding the first version of our application  78
	 4.1	 Stubbing: Building the skeleton of your application  79

A simple code example  80

	 4.2	 Extracting requirements from the design  81

Step 1: Extract the requirements using ChatGPT  82
Step 2: Gathering requirements from Gemini  83

	 4.3	 Setting up our development environment  86

	 4.4	 Flask application structure  89

	 4.5	 Stubbing out our application  91

	 4.6	 Running our application  97

	 5	 Using Blackbox AI to generate base code  101
	 5.1	 Application development with generative AI tools  102

	 5.2	 Setting up the development environment  103

	 5.3	 Developing core features  103

Creating the database  103 ■ Connecting to our database  106
Calling our database from the frontend  113 ■ Refactoring our
Questions class  119 ■ Modifying our entry point (App.py)  126
Pulling a set of questions  128 ■ Creating a test session in the
database  133 ■ Creating code for the test session  136
Generating a question set  139 ■ Verifying our test session was
created  146 ■ Conclusion   147

	 6	 Generating a software backend with Tabnine  149
	 6.1	 Creating a session and our first bug  150

	 6.2	 Creating an index page  161

Persisting the session  166 ■ Refactoring session creation  169
Refactoring our question set method  171 ■ Creating an end
session function that ends the test  174

x contentsx

Part 3	 Advanced AI development techniques.... 177

	 7	 Building user interfaces with ChatGPT  179
	 7.1	 Getting our strategy from our AI tools  180

ChatGPT Results  182 ■ Gemini Results  185
Blackbox AI results   188

	 7.2	 Creating our templates  191

	 7.3	 Describing the flow of our application  194
Creating an overall design  198 ■ Drafting HTML based on our
wireframes  203 ■ The final UI for our application  207

	 8	 Building effective tests with generative AI  210
	 8.1	 Why use generative AI for testing?  211

	 8.2	 What are unit tests?  212

	 8.3	 The tools we’ll use for Python testing  212
Github Copilot  213 ■ Tabnine  213 ■ Blackbox AI  213

	 8.4	 Writing unit tests with generative AI  213
unittest or pytest?  213 ■ Using Copilot for test generation  214
Using Tabnine for test generation  230 ■ Applying Blackbox
AI for test generation  234 ■ Which tool should you use for
testing?  242

	 9	 Prompt engineering  244
	 9.1	 Understanding prompt engineering  245

Why prompt engineering matters  248

	 9.2	 Understanding the anatomy of a prompt  249

	 9.3	 Crafting the ultimate prompt   254
Prompt engineering principles  255

	 9.4	 Fundamental prompt types   257
Zero-shot prompting  257 ■ Few-shot prompting   258
Open-ended prompts  259 ■ Constrained prompts  260
Using iterative prompts  261 ■ Structured prompts  263

	 9.5	 Advanced prompt types  265
Chain-of-thought prompting  265 ■ Recursive prompting  269
Context manipulation  272 ■ Instruction refinement  274
Output control  277 ■ Wrap up  279

	 xicontents 	 xi

	 9.6	 Prompt techniques for programmers  279
Examples  279

	 10	 Vibe coding with Cursor  285
	 10.1	 What is vibe coding?  286

	 10.2	 What is Cursor, and why is it different?  287
The interface  287 ■ Project-wide context and customization  288

	 10.3	 First concept  288

	 10.4	 The initial prompt to build our game  289

	 10.5	 Cursor basics  290
Giving feedback  291 ■ Adding context  292 ■ Selecting a
mode  293 ■ Model selection  294 ■ MAX mode  295

	 10.6	 Results from the first prompt  295

	 10.7	 Running our game for the first time  296

	 10.8	 Making changes to our game  298

		 index  309

xii

preface
I’ve been blessed to make a living doing something I’d do as a hobby. For decades, cod-
ing has been my passion. When I started programming, learning was tough—hardcopy
books, dogpile.com, and newsgroups were our lifelines. You had to really want it.

My journey began with Perl, watching HTML come to life for the first time. Although
tedious and frustrating, the results had me hooked. PHP changed everything, letting
me build applications in days rather than months. The real high came from watching
users’ eyes light up when their clunky spreadsheet workflow transformed into a sleek
HTML form overnight.

Back then, documentation was scarce, and Google was in its infancy. Without old
head programmers helping us, we may never have finished anything. My code got the
job done but was often ugly behind the scenes, something I’d be proud of on Monday
and embarrassed about by Friday.

I gravitated toward backend development—its deterministic nature felt more intu-
itive. Like everyone else, I sought better ways to build code faster. Our team briefly
adopted a rapid-application-development generator that promised miracles. It worked
initially, cranking out features at warp speed. Then reality hit: when requirements
changed, we spent twice as long untangling the generated mess. Less than a year later,
we abandoned it.

Lesson learned: Fast development is only fun if you never plan on maintaining it.
Python was my next breakthrough—offering speed without sacrificing readability or

maintainability. Later, C# provided similar efficiency gains. But I never matched the raw
speed of that ill-fated PHP generator.

Then generative AI crashed the party. With ChatGPT and GitHub Copilot, I tackled
a C# side project. I watched AI spit out boilerplate and tests before my pizza cooled.

	 xiiipreface 	 xiii

Work I’d blocked off for two weekends wrapped up before Sunday brunch. It felt like
rediscovering that early PHP generator magic—only faster, with guardrails.

Now the hype cycle is in full swing. Vibe coding promises amazing software from a few
prompts. This is genuinely possible—but beware creating complex code nobody under-
stands. It’s fine for a weekend project but not ideal for mission-critical applications.

This book aims to use this silver bullet properly. AI can enhance productivity, but
heavy reliance brings trouble. You’ll learn to manage expectations: AI can generate
about 80% of an application, but the remaining 20% is up to you.

You don’t need to be taught how to vibe code. Instead, you’ll learn how each tool
works and when to use it effectively. Today’s tooling—cloud IDEs, auto-generated tests,
and AI pair-programmers—means shipping faster with fewer tradeoffs than ever before.

Whether you’re an old head like me who remembers the struggles or a beginner fac-
ing different challenges, these tools will accelerate your journey. The best time to build
was yesterday; the second-best time is right now.

xiv

acknowledgments
Although very fun to write, this book was a lot of work. I hope you’ll enjoy what we’ve
put together here. There are quite a few folks I’d like to thank for helping me along
the way.

First, I would like to thank my wife Amber. You’ve always believed in me and gave
up so much time with me to get this done. You also provided lots of helpful encour-
agement, even if it was, “Go work on that book! Hurry up!” I love you and I’m eternally
thankful.

Also, thanks to my mother Robbin Fariss and father Rocky Morgan, and my stepfa-
ther Russ Peckham and stepmother Tina Chambliss. They all raised me to believe in
myself and not quit when times get tough. I never heard them say, “You can’t do that,”
no matter what crazy ambition I had. They shaped me into who I am today. And thanks
to my four children Austin, Hayley, Rory, and Kendra, and grandchildren Brynlee,
Aubrie, Wittly, Aurora, Brantley, Cody, and Octavia. You are the folks who keep me
grounded and motivated to keep going strong every day. You are my why and part of the
reason I had to write this book.

At Manning, I’d like to thank my development editor Doug Rudder for all the
patience and guidance throughout this process. I’ll never match your knowledge of
writing, but I appreciate you lending it so often. And your way of delivering feedback is
fantastic. I’d like to thank my acquisitions editor Michael Stephens for your guidance,
knowledge, and tough conversations. Without your help, this book wouldn’t be nearly
as good. In addition, thanks to the entire production team who helped shepherd this
book into its final format.

Thanks to the reviewers who have taken time to read my manuscript at various stages
and help me with feedback: Tom Massey, Sean Collins, Xavier Morera, Lars Klint, Steve

	 xvacknowledgments 	 xv

Buchanan, Dave McCollough, Santosh Yadav, Danny Nunez, Steven Senkus, Renjith
Ramachandran, and Roger Rizk. I’d also like to thank Roger for all the tips and tricks
with Blackbox AI to make sure we got the most from it. I’d like to thank the team from
Tabnine for all their help with questions and guidance.

Also, thanks to Abir Qasem, Advait Patel, Anandaganesh Balakrishnan, Arik Leo-
nidov, Asterios Raptis, Bin Hu, Christopher Forbes, Clifford Thurber, David Allen
Blubaugh, David Goldfarb, Debasish Ghosh, Emre Sevinç, Estera Kot, Franklin Neves,
Giampiero Granatella, Greg Grimes, Ian Walker, Ioannis Atsonios, Jacek Sokulski,
Jason Nelson, Jesús Juárez, Jiri Pik, John Abela, Julien Pohie, Manohar Sai Jasti, Michael
Bright, Mike Metzger, Nadeem Lalani, Nakul Pandey, Ninoslav Cerkez, Oliver Korten,
Pasquale Zirpoli, Paul Soh, Piotr Jastrzebski, Ramani Natarajan, Rambabu Posa, Sam-
uel Lawrence, Sanjana Kandi, Saurabh Aggarwal, Shiroshica Kulatilake, Simeon Leyz-
erzon, Sriram Macharla, Steve Steiner, Thomas Jaensch, Tony Holdroyd, Vlad Bezden,
Vladislav Bilay, Walter Alexander Mata López, and William Whitehead. Your sugges-
tions helped make this a better book.

Special thanks to technical editor Richard Vaughan. Richard is a highly experienced
engineer, who is CTO at Purple Monkey Collective—a research focused startup deliver-
ing machine learning and cloud guidance services.

Finally, I’d like to thank my mother, Robbin Farris, for letting me use her work com-
puter back in the 1980s and get hooked on tech. But most importantly, I am grateful she
has always believed in me, telling me my entire life that anything is possible.

xvi

about this book
This book empowers you to harness AI’s full potential and improve your coding. My
goal is to help you save time by developing features faster and getting higher quality
code as a result. The book covers practical uses of tools such as GitHub Copilot, Tab-
nine, Blackbox AI, and ChatGPT. You’ll see how these technologies can help you code
faster, solve problems better, and cut down on repetitive tasks. You won’t just learn how
to use these tools but also discover when and why to use them in your development
process.

Who should read this book
This book is for Python developers who want to use generative AI tools in their work.
But the techniques can be applied to many other languages as well. If you’re an expe-
rienced developer aiming to increase your productivity or a team lead exploring AI
tools for your team, you’ll find helpful guidance and real-world examples. While some
knowledge of Python is helpful, developers of all skill levels will learn how these tools
can enhance their skills instead of replacing them.

How this book is organized: A road map
The book consists of 10 chapters:

¡	Chapter 1 covers generative AI for coding. It explains how large language mod-
els predict and create code. It also distinguishes between integrated tools, such
as GitHub Copilot, and standalone tools, such as ChatGPT. These technologies
boost developer productivity by automating routine tasks, letting developers
focus more on problem-solving and design.

	 xviiabout this book 	 xvii

¡	Chapter 2 introduces AI-assisted coding with GitHub Copilot. It explains how
Copilot works and shows different ways to use it, such as code completion, chat,
and prompts. The chapter also includes a practical Python project that analyzes
word frequency in text. This project shows developers how to integrate Copilot
into their workflow effectively.

¡	Chapter 3 describes how to use ChatGPT for project design and discovery. It
explains how to write effective prompts. These prompts help set AI roles, create
detailed software design documents, and develop user stories. The focus is on
a Python web application that offers randomized practice tests for HAM radio
license exams.

¡	Chapter 4 demonstrates how to begin coding an application with AI assistance by
extracting requirements from design documents using both ChatGPT and Gem-
ini, setting up a Python virtual environment, creating a structured Flask appli-
cation with AI-suggested file organization, and implementing code stubs that
provide the skeleton of the application before adding functionality.

¡	Chapter 5 demonstrates how to build a functional Flask application for HAM
radio practice tests using Blackbox AI, showing how to connect to an SQLite
database, implement separation of concerns through refactoring, create data-
base sessions to track test progress, generate random question sets, and build the
core functionality, while highlighting when human intervention is necessary to
improve AI-generated code.

¡	Chapter 6 focuses on building a question engine for the HAM radio practice test
application, using Tabnine to troubleshoot bugs in session management, imple-
ment persistent browser cookies to maintain user state across page refreshes,
refactor code to properly handle question sets associated with specific sessions,
and create a simple user interface that allows users to end test sessions and start
new ones.

¡	Chapter 7 demonstrates how to create a user interface for the HAM radio prac-
tice test application using AI tools such as ChatGPT, Google Gemini, and Black-
box AI to generate design strategies, wireframes, flowcharts, and functional
HTML/CSS code, transforming a basic application into one with a professional
appearance, while following proper Flask templating practices.

¡	Chapter 8 explores how to use generative AI tools to create effective test suites for
Python applications, comparing GitHub Copilot, Tabnine, and Blackbox AI for
generating both unittest and pytest code, setting up in-memory databases for
testing isolation, and demonstrating how each tool approaches the creation of
test fixtures, assertions, and database interactions with varying degrees of context
awareness.

¡	Chapter 9 explains prompt engineering techniques for working with generative
AI tools, covering basic concepts like context, clear instructions, and examples. In
addition, it explores advanced approaches such as chain of thought prompting,

xviii about this bookxviii

recursive prompting, context manipulation, instruction refinement, and output
control, before concluding with 30 specific prompt techniques tailored for soft-
ware developers.

¡	Chapter 10 explores vibe coding, a fast-evolving approach to programming
based on natural language prompts. It further demonstrates how to build a retro
arcade-based game using this technique.

I recommend reading the chapters in order, as each builds on concepts from previous
chapters. However, experienced developers may choose to focus on specific chapters
addressing their immediate needs.

About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the book.
In rare cases, even this was not enough, and listings include line-continuation markers
(➥). Additionally, comments in the source code have often been removed from the
listings when the code is described in the text.

You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/coding-with-ai. The complete code
for the examples in the book is available for download from the Manning website at
https://www.manning.com/books/coding-with-ai, and from GitHub at https://github
.com/JeremyMorgan/HAM-Radio-Practice-Web.

liveBook discussion forum
Purchase of Coding with AI includes free access to liveBook, Manning’s online read-
ing platform. Using liveBook’s exclusive discussion features, you can attach comments
to the book globally or to specific sections or paragraphs. It’s a snap to make notes
for yourself, ask and answer technical questions, and receive help from the author
and other users. To access the forum, go to https://livebook.manning.com/book/
coding-with-ai/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions lest his interest stray! The forum and the
archives of previous discussions will be accessible from the publisher’s website as long as
the book is in print.

https://livebook.manning.com/book/coding-with-ai
https://www.manning.com/books/coding-with-ai
https://github.com/JeremyMorgan/HAM-Radio-Practice-Web
https://github.com/JeremyMorgan/HAM-Radio-Practice-Web
https://livebook.manning.com/book/coding-with-ai/discussion
https://livebook.manning.com/book/coding-with-ai/discussion

xix

about the author
Jeremy C. Morgan is on a mission to help develop-
ers get better at what they do. He’s a senior training
architect for KodeKloud and an avid tech blogger and
speaker. He has two decades of experience as an engi-
neer building software for everything from Fortune
100 companies to tiny startups. He’s been immersed
in generative AI and machine learning projects for the
last couple of years and enjoys teaching through his
popular tech blog, www.jeremymorgan.com. Jeremy is
an NVIDIA-Certified Associate for Generative AI and
LLMS (NCA-GENL Certification) and holds the GitHub
Foundations and GitHub Copilot certifications. He

also contributes to open source as a .NET Foundation Member and DevOps Institute
Ambassador, and serves on the DevNetwork AI/ML Advisory Board.

www.jeremymorgan.com

xx

about the cover illustration
The figure on the cover of Coding with AI, titled “Le Créole (Petit blanc),” or “Creole
(Small white),” is taken from a book by Louis Curmer published in 1841. Each illustra-
tion is finely drawn and colored by hand.

In those days, it was easy to identify where people lived and what their trade or station
in life was just by their dress. Manning celebrates the inventiveness and initiative of the
computer business with book covers based on the rich diversity of regional culture cen-
turies ago, brought back to life by pictures from collections such as this one.

Part 1

Getting started with
AI-assisted coding

Have you ever stared at a blank code editor, unsure how to start your
next project? It’s like writer’s block for developers. Have you spent hours writing
boring boilerplate code that feels like busy work? If so, you’ve felt the friction
that generative AI tools aim to remove. Today, software developers around the
world are finding that AI coding assistants such as GitHub Copilot, ChatGPT, and
Tabnine can change their workflow. They can cut coding time by 30% or more,
while also improving code quality. They’re also taking care of much of the boring
boilerplate coding.

The revolution is here. Professional developers use AI to generate functions,
create documentation, write tests, and design entire application architectures.
But like with any powerful tool, generative AI requires the appropriate skills to be
used effectively. The key difference between developers who succeed with these
tools and those who struggle is not technical skill. It’s about knowing how to com-
municate with AI, when to trust its suggestions, and how to integrate generated
code into real projects.

The first part of the book will guide you through your initial steps with AI-
assisted development. It will lay the groundwork for how you use these tools to
build Python applications. Chapter 1 introduces the landscape of generative AI
tools and the core concepts you need to know. Chapter 2 puts these tools into
action; you’ll dive into hands-on development and build your first AI-assisted
Python project.

By the end of this part, you’ll understand not just what these tools can do, but
how to make them work for you as a productive member of your development
team.

3

1Introducing
generative AI

This chapter covers

¡	The ways generative AI transforms coding with
context-aware help

¡	The evolution of AI developer tools from IDE
integration to standalone assistance

¡	LLM fundamentals and code-generation
capabilities

¡	AI-enhanced workflows
¡	Success factors for integrating AI into your

development process

Robots are not going to replace humans, they are going to make their jobs much
more humane. Difficult, demeaning, demanding, dangerous, dull— these are the
jobs robots will be taking.

—Sabine Hauert, Co-founder of Robohub.org

4 Chapter 1  Introducing generative AI

What if you could use your existing Python expertise alongside AI that understands
your code context, anticipates patterns, and generates implementation details while
you focus on architecture and design? That’s the power of generative AI tools for expe-
rienced developers. When I first encountered these tools, I approached them with
healthy skepticism. But after integrating them into real production projects over the
past year, I’ve reduced implementation time by approximately 30%, while improving
code quality and test coverage.

It’s likely you’ve already used ChatGPT or Claude for coding. You’ve probably seen
GitHub Copilot suggestions pop up in your editor. Or maybe you’re just curious about
all the AI buzz. If you’re interested in learning how to use these tools to make yourself
super productive, you’re in the right place. This book is your practical guide to using AI
tools to supercharge your coding, and no AI expertise is required.

This book will show you exactly how to use these tools to write code faster, catch bugs
earlier, create better documentation, create design diagrams (UML, flowcharts, etc.),
and test your code more thoroughly. The best part? You don’t need a PhD in math,
data science, or a background in AI to benefit. I’ve traveled this road extensively and
discovered valuable tricks along the way. Consider this your field guide to generative AI
coding tools. I’ll help you navigate the potholes I’ve encountered.

This book approaches generative AI from a developer’s perspective, examining both
programming-specific tools and general text generators that belong in your toolkit.
We’ll look at how these revolutionary tools work and how to use them efficiently. Cod-
ing will never be the same from now on.

By sharing my insights and experiences, I aim to cut through the hype and sales
pitches to focus on what matters—making you a more productive Python developer.
These techniques extend to many languages, empowering you to use AI as a tool for
innovation and growth, and adding both fun and productivity to your daily work.

This book provides an overview of several popular tools. It includes step-by-step
instructions on installing and using these tools to your advantage. You’ll also learn tech-
niques for crafting effective prompts to get the best results.

1.1	 Generative AI for coders
Generative AI can benefit you, the coder, in various ways, from code generation and
bug detection to documentation and testing. Let’s take a look at the ways generative AI
can assist you in your everyday development work.

1.1.1	 Code generation and autocompletion

Autocompletion of code by software is nothing new. We’ve been using that for years.
Smart autocompletion and code generation, however, are much newer concepts.
Large language models (LLMs) can be trained to understand programming languages
in depth and generate code snippets in a smart way. What do I mean by smart? They
can utilize context and evaluate the code around it. They can generate code based on
user inputs or requirements. By employing AI tools, developers can quickly prototype

	 5Generative AI for coders

ideas or even generate entire applications. Many AI-powered tools predict and suggest
the next lines of code, as you type. This makes the development process much faster.
Let’s take a look at a simple example comparing traditional Python development with
an AI-assisted approach.

You need to parse a CSV file, filter rows based on certain criteria, perform calcula-
tions, and output the results. In a traditional approach, you might

¡	Search for the Python CSV module documentation

¡	Write boilerplate for file opening and error handling

¡	Implement the parsing logic line by line

¡	Debug edge cases manually

In an AI-assisted approach,

¡	You comment, “# Parse the CSV file at 'data.csv', filter rows where the
'status' column equals 'active', calculate the average of the 'value' column,
and write results to 'output.csv'.”

¡	The AI generates a complete implementation, including error handling.

¡	You review the response, adjust for specific requirements, and test it.

1.1.2	 Bug detection and automated fixes

Generative AI analyzes existing code to identify potential bugs, security vulnerabili-
ties, and performance problems. AI tools can evaluate context while generating sug-
gestions for the code you’re working on. Many of these tools learn as they go. Since
they’re based on trained models, they are refined over time to get even better. They
detect problems and suggest appropriate fixes, saving you heaps of time.

1.1.3	 Documentation generation

Writing clear, concise, and accurate documentation is crucial for a successful software
project to thrive. Without good documentation, your users or other developers will
suffer. The greatest software written can be useless without good documentation. But
documentation can be boring to write. Generative AI helps with this by automatically
generating human-like documentation for your software. It can provide well-structured
and contextually relevant explanations for your code. Not only does it generate docu-
mentation for you, but it can help you understand your own code better as well.

1.1.4	 Code refactoring and optimization

It’s always good to take a second or third look through your code to ensure there aren’t
any errors and that it is optimized. AI tools make this process much easier as they can
analyze your code and make suggestions. They can identify redundant code, ineffi-
cient algorithms, and more. By suggesting improvements, they make refactoring easier
and more effective.

6 Chapter 1  Introducing generative AI

1.1.5	 Test case generation and mock data creation

I’m one of those strange developers who loves testing and building mocking tools. Cre-
ating good tests is imperative, and I’ve found that many generative AI tools produce
great tests and uncover things I haven’t thought of. They can be used to generate test
cases and create mock data for your application that meets your needs. This improves
your testing systems significantly.

What generative AI tools am I talking about? Let’s take a look.

1.2	 Developer tools landscape
Generative AI is still new, yet AI developer tools are already making their mark on the
industry. These tools utilize LLMs to generate code, provide suggestions, and auto-
mate tasks. We’re going to take a look at two types of tools:

¡	Integrated tools—Tools that work within Visual Studio Code or other IDEs and
function within them

¡	Standalone tools—Tools with their own interface, usually a website, that don’t
interact with an integrated development environment (IDE)

1.2.1	 Integrated developer tools

Generally, standalone tools are meant for many types of general text generation and
chat. Think of ChatGPT or Gemini, which have a web interface and are meant for
general help. Integrated tools are designed for software development. They can often
generate code specific to your problem within your code, using your code as context,
which we’ll examine in this book. Standalone tools such as ChatGPT are better for
abstraction and design.

The integrated tools we’ll be using are all powered by generative AI to assist you as
you’re writing code, boosting your productivity and revealing easier, smarter coding
techniques. Your software can become more efficient, accurate, and performant with
the use of AI tools. Although each tool is different, many of them operate similarly. In
this book, we are going to examine their differences. And using the tools properly will
make you a better developer.

GitHub Copilot

GitHub is a well-known name in the developer ecosphere. Most developers today have
at least some of their code on GitHub. Microsoft released GitHub Copilot in October
2021. It’s an AI-powered code completion tool developed by Microsoft and OpenAI. It
uses the OpenAI Codex model. Copilot integrates with popular editors such as Visual
Studio Code. It suggests code improvements, completions, comments, and even func-
tions as you type. Copilot is context aware and provides relevant suggestions in a variety
of programming languages and frameworks.

Tabnine

Tabnine is another popular AI-powered code assistant. Tabnine utilizes many popu-
lar LLM models to provide context-aware code suggestions. It integrates with popular

	 7Developer tools landscape

code editors such as Visual Studio Code and IntelliJ. It has a local version for offline
use, as well as a cloud-based version for faster, more accurate suggestions. Its feature,
called “Deep Completion,” uses deep learning to provide more accurate sugges-
tions. Tabnine is also contextually aware of your code as you write and will attempt to
auto-suggest code in the style you use.

Blackbox AI

Blackbox AI is an AI-powered code assistant that works within Visual Studio Code
and Jupyter Notebook. It is available for over 20 programming languages, including
Python, JavaScript, TypeScript, Go, and Ruby. Blackbox AI is an integrated tool, but it
also has a web interface and the ability to ask questions and interact with the backend
model from your IDE.

1.2.2	 Standalone tools

In addition to integrated developer tools, there are several standalone tools and plat-
forms that employ generative AI for code generation and assistance. These tools oper-
ate outside of traditional integrated development environments (IDEs) and usually
have a web interface.

ChatGPT

Surely, you’ve heard of ChatGPT by now. It’s an awesome tool that can help software
developers with developing software outlines, code generation, testing, documen-
tation, and more. Its ability to understand and generate text specific to program-
ming languages and frameworks is striking. The GP4x models used by ChatGPT are
impressive.

ChatGPT uses a web interface for communication—you can enter a question and get
an answer. Most importantly, you can have a full discussion with ChatGPT, and it keeps
context in the threads. There is also a CLI (command line interface) and a full API for
ChatGPT, which gives you many options for interacting with it, including the ability to
build plugins.

Google Gemini

Google Gemini is similar to ChatGPT from an interface standpoint. You can ask ques-
tions and receive answers. It generates software outlines, code, and so on, just like
ChatGPT. Functionally, they are very similar; however, in my experience, Gemini isn’t
quite as sophisticated as ChatGPT yet. It will eventually get better and become a great
contender.

One advantage to Google Gemini is the potential to integrate with other Google
Services in their ecosystem, which I consider a great future advantage. Also, Google as
a company has access to a lot of source code for training. This could help the model
improve over time.

Copilot Chat

Copilot Chat has a similar interface to ChatGPT and Gemini. It uses several differ-
ent models from OpenAI and Anthropic on the backend. However, there are some

8 Chapter 1  Introducing generative AI

differences. Although Copilot has a familiar web-based question-and-answer format,
it’s also integrated into Microsoft software. Both desktop and mobile versions are
available.

Another difference is that the results focus more on simple requests than complex
conversations. When you put in requests, it does a “search,” which may perform differ-
ently than other text prediction functionality. It also has an “agent” mode so you can
give it a list of tasks, and it will go through the list and attempt to perform them step
by step.

1.3	 How does generative AI work?
Generative AI is a kind of statistical mimicry of the real world, where algorithms learn
patterns and try to create things. If we replace the child with a generative AI model,
we must “train” it to create a dog. We need to show it thousands of photos of dogs as
examples. The patterns gathered from these pictures help the model learn more about
dogs. What shape is a dog? How many legs does it have? What are the odds it has a tail?
These are all possibilities with a probability attached to them. These parameters and
many more would be used for the model. The tool can use this model to assemble what
it thinks a dog will most likely look like.

Similarly, when musicians learn to play an instrument, they aren’t just memorizing
notes. They learn the patterns, rhythms, and structures of songs. They’ll listen to a par-
ticular song enough to train themselves on what it’s supposed to sound like. They’ll
listen to so many songs that they grasp exactly what a song in general should sound like.
Eventually, they can play the songs others have written until they sound like the origi-
nal. Then, of course, they move on to improvisation and creating songs of their own
based on this training.

Let’s add another layer to this analogy: feedback. Musicians seldom work in a vac-
uum. How do they know they’re playing the song correctly? By sharing it with others and
looking for feedback. If the music teacher nods, they’re doing it right. If the audience
applauds, the musician knows the song is successful. If the audience throw tomatoes,
they know something has gone wrong and it needs to be fixed. This is the evaluation
and feedback process that contributes to their ongoing training.

Generative AI used for coding is very similar. The model evaluates hundreds of thou-
sands of lines of code or more. It parses the code and looks for patterns used to create
working software. With enough training, it develops an idea (this is what software looks
like) of what new, original code should be.

First, training data is created by taking existing source code in many languages and
feeding it into a model. This model is evaluated and has layers that look for specific
things. One layer checks the type of syntax. Another checks for keywords and how
they’re used. The final layer determines whether “this is most likely to be correct and
functional source code.”

There is a vast array of machine learning algorithms that use the model to run
through these layers and draw conclusions. Then, the AI produces output that is a

	 9How does generative AI work?

prediction of what the new software should look like. The tool says, “based on what I
know, this is the most statistically likely code you’re looking for.” Then you, the pro-
grammer, reach the evaluation point. If you give it a thumbs up, the feedback returns
to the model (in many cases, not always) as a correct prediction. If you give it a thumbs
down and reject it, that is also tracked. With this continuous feedback, the tool learns
what good code should look like.

Figure 1.1 illustrates the feedback loop between developer and AI that powers gener-
ative coding tools. Unlike traditional code completion, which operates on predefined
rules, generative AI creates a continuous improvement cycle, which includes the follow-
ing five basic steps:

1	 Developer input—You provide source code, comments, or natural language
requirements.

2	 Context analysis—The model analyzes patterns in your existing code and
requirements.

3	 Prediction—Based on training data and your specific context, the model gener-
ates probable code.

4	 Developer feedback—You accept, modify, or reject suggestions.

5	 Model adaptation—The system incorporates your feedback to improve future
suggestions.

This cycle creates a powerful symbiotic relationship—the AI learns your coding pat-
terns and preferences, while you gain implementation speed and exposure to new pat-
terns and techniques that might not have been in your toolkit.

You write prompt

AI assistant

Pattern matching

Response creation

Generated code

Training data

Source code Documentation

Learned from1. Request Learned from

6. Feedback

2. Process

3. Generate

4. Deliver

You verify output5. Review

Figure 1.1  Integrated tools use a
sophisticated system to generate
code. The process starts with your
prompt, and the assistant gathers
up documentation and source code
to see whether your answer can
come from these sources. It makes
a best guess at what you’re looking
for and generates a response. Your
acceptance of these responses
helps train the assistant in the future
(unless you’ve blocked feedback).

10 Chapter 1  Introducing generative AI

This is a very high-level explanation of generative AI. It’s the science of predicting
what is most likely to be a correct example of something new, based on the data it was
trained on. There are features in the algorithms that make things probabilistic instead
of deterministic. A deterministic system will always produce the same output if given
the same input—it follows fixed rules with no randomness or variation. For example, a
traditional calculator always gives exactly 4 when you input 2 + 2. Generative AI models
are not deterministic by design. You rarely get the same answer twice. This is intention-
ally done to create originality in the output. In other words, AI models strive to gener-
ate something new rather than regurgitate a copy of something already written.

1.4	 What is an LLM, and why should I care?
Generative AI for coding and language tools is based on the LLM concept. A large lan-
guage model is a type of neural network that processes and generates text in a human-
like way. It does this by being trained on a massive dataset of text, which allows it to
learn human language patterns, as described previously. It lets LLMs translate, write,
and answer questions with text. LLMs can contain natural language, source code, and
more.

An LLM is a deep learning architecture based on the Transformer model—a signifi-
cant architectural advancement over previous RNNs (Recurrent Neural Networks) and
LSTMs (Long Term–Short Memory Networks) for sequence processing. Transformers
employ multiple layers of self-attention mechanisms that process entire sequences in
parallel rather than sequentially, vastly improving training efficiency and enabling the
scaling to billions of parameters.

Imagine you have a smart system that reads
sentences and tries to understand and gener-
ate text; this is what a Transformer does. It’s
a powerful technology that underpins many
advanced applications today, including chat-
bots, automatic translation, and content gen-
eration. Here are the steps a transformer goes
through, from input data to results from your
prompts, as shown in figure 1.2:

¡	Starting with words—A Transformer
begins by looking at your sentence
word-by-word, turning each word into
numbers that it can understand. Think
of each word as getting its own special
ID tag.

¡	Remembering word order—The Trans-
former doesn’t just see words; it also
pays attention to their positions. For
example, in the sentence “Jane helps

Sentence: ”The dog chased the cat.”

Words turned into numbers

Remember word positions

Check word relationships

Repeat checking multiple times

Understand overall meaning

Generate output: translation, text, classification

Figure 1.2  A transformer takes a
sentence and analyzes word positions and
relationships to try and extract meaning
from the text it sees.

	 11What is an LLM, and why should I care?

Joe,” it knows “Jane” comes first and “Joe” comes last. It tracks this position infor-
mation so it can better understand the meaning of your sentence.

¡	Understanding context and meaning—Now, the Transformer examines how words
relate to each other. It checks each word against all the other words in the sen-
tence. Imagine each word asking every other word, “Hey, how relevant are you
to me?” Words that are closely related have stronger relationships, helping
the Transformer understand context. For example, in the sentence “The dog
chased the cat,” the Transformer understands “dog” and “chased” have a strong
connection.

¡	Repeating this analysis multiple times—The Transformer doesn’t just do this once. It
repeats this “checking relationships” step many times, each time learning some-
thing deeper about how words in the sentence connect. With each round, the
system gains a clearer understanding of the sentence’s overall meaning.

¡	Producing the output—After understanding the sentence, the Transformer can
now use its knowledge to do different tasks:

–	 Translation—It can convert text from English to another language.

–	 Text generation—It can predict what words might naturally come next.

–	 Code generation (what we care about)—It can predict the chunk of code that
might come next.

–	 Classification—It can recognize the overall meaning or sentiment behind a
sentence.

Transformers excel at grasping relationships between words and concepts in sentences
and documents. They greatly enhance tasks that were once challenging, such as natu-
ral language translation and understanding complex human questions.

When applied to code, these models use attention mechanisms. This feature helps
them assess the importance of various parts of the existing codebase when generating
suggestions. Attention mechanisms act like a spotlight, helping AI focus on what matters.

Picture yourself in a crowded room. You listen to one conversation while ignoring
the noise around you. In coding, when an AI assistant suggests code, it doesn’t see every
line as equal. It uses attention to identify which parts are most relevant to its task.

For instance, if you’re writing a function to calculate taxes, the AI will focus more on
your tax rate variables. It will pay less attention to unrelated code, such as your login
system. This way, it makes suggestions tailored to your project instead of generic ones.

This ability to zero in on important code is why modern AI coding assistants can offer
meaningful suggestions for your specific needs. It’s similar to how skilled developers
know which code sections affect a new implementation the most. Each transformer
layer learns about various code patterns, ranging from syntax validation to understand-
ing the relationships among functions, classes, and modules.

The LLM is trained on vast amounts of text from sources such as books, articles, and
websites. For example, GitHub Copilot learns from GitHub’s public code base, which
allows it to understand the semantic structures of both human language and code.

12 Chapter 1  Introducing generative AI

Once deployed, the LLM uses language patterns and context to create human-like
text based on a prompt. It generates text and completes sentences to simulate conver-
sation. For code tools, it aims to produce the most likely correct source code based on
your input.

By adjusting parameters such as temperature (which controls randomness) and
top k (which affects diversity), developers can tailor the model’s output for different
needs. This approach ensures the output is high quality and closely resembles human
language.

1.5	 Why do these tools sometimes get it wrong?
Generative AI tools for coding are sometimes inaccurate. They can produce results
that look good but are wrong. This is common with LLMs. They can write code or chat
like a person. And sometimes, they share information that’s just plain wrong. Not just
a bit off, but totally backwards or nonsense. And they say it so confidently! We call this
“hallucinating,” which is a funny term, but it makes sense.

So, why does this happen? Many people imagine the AI as a giant library, like the
Library of Congress in a chip. You ask a question, it zooms to the right shelf, pulls out a
book, and reads you the answer. That’s not how it works at all. If it did, it wouldn’t make
things up; it would just say, “I don’t know” if the book wasn’t there.

So, what is it doing? Think about finishing a sentence. If I say, “The cat sat on the...,”
what word comes to mind? Probably “mat,” right? Or maybe “chair” or “sofa.” You’re
not looking it up; your brain just knows those words fit. You’ve heard them, read them,
and seen them used.

LLMs do something similar, but on a huge scale. They’ve read a lot of the internet,
tons of books, and millions of lines of code. They haven’t “understood” it like we under-
stand it, but they’ve learned the patterns. They know which words usually follow others
and which bits of code often appear together.

When you give a prompt, the AI is not looking up the answer. It’s predicting it, piece
by piece. It thinks, “Okay, based on the prompt and what I’ve generated so far, what’s
the most likely next word? And the next? And the next?” It’s like a super-powered pre-
diction machine, always guessing the most statistically probable continuation based on
learned patterns.

Now you see where the trouble can start. Sometimes, the most probable sequence
of words, the one that fits best according to statistics, isn’t true. The pattern it learned
might come from faulty information online, or maybe your question was tricky. It could
latch onto a pattern that seems right but leads to a wrong answer. It’s just following
statistical likelihood, not checking facts against a truth-database (because there isn’t
one!).

That’s the key. It’s a pattern-matching predictor, not a knowledge retriever. It’s great
at what it does, but since it works by prediction, it can predict nonsense just as confi-
dently as it predicts facts. So, when you use these tools, be curious and skeptical! Don’t
just accept what it gives you. Ask, “Is this just a likely sounding pattern, or is it actually

	 13Why do these tools sometimes get it wrong?

right?” Understanding how generative AI works helps you know when to trust it and
when to double-check. Keeping this skepticism in mind is crucial when working with
these tools to produce code.

For most of us, the new concept of text prediction to generate answers is vague or even
confusing. But we’re getting the hang of it, and it’s now a part of daily life.

1.5.1	 How LLMs differ from databases

Another problem that can be confusing is that LLMs seldom put out the same thing
twice. When starting out, many folks confuse ChatGPT and other LLMs with a large,
all-knowing database. Instead, ChatGPT, and the tools we’ll work with LLMs to gener-
ate new text based on mathematical probability.

Traditional databases are straightforward—you ask for something specific, and
you get back exactly what was stored. Search engines work similarly, finding existing
information.

LLMs work differently. They analyze massive amounts of text data to understand sta-
tistical patterns in language. The model processes information through multiple layers,
each capturing different aspects—from simple word patterns to complex relationships
between ideas.

When you input a question, the LLM goes through a series of steps to create a
response:

¡	Processes your text through its mathematical model

¡	Calculates the relationships between different parts of your input

¡	Generates new text by predicting the most probable next word or character

¡	Repeats this process using both your input and what it just generated

The process of text prediction explains why:

¡	The same question can get different answers.

¡	Responses can be confidently incorrect.

¡	The model can create new combinations it hasn’t seen before.

It’s essentially a sophisticated prediction system. Instead of looking up stored answers,
an LLM calculates probabilities to determine what text should come next. While these
predictions are often accurate, they’re still predictions—which is why it’s crucial to verify
any code or factual claims the model generates.

This probabilistic nature makes LLMs powerful tools for generating text and code
but also means they can make mistakes, even when seeming very confident. Under-
standing this helps set realistic expectations about what these tools can and cannot do
reliably.

1.5.2	 Training phase problems

In machine learning, ”training” is when we teach models to understand language and
code by analyzing massive amounts of data. During training, the model learns statistical

14 Chapter 1  Introducing generative AI

patterns—how often certain words appear together, what code structures are common,
and how different parts of text relate to each other.

The quality of training data directly affects how well the model performs. If the train-
ing data contains errors, incorrect code, or misleading information, the model will
learn these flaws. Unlike humans, the model can’t independently judge whether infor-
mation is correct—it simply learns from everything it sees, treating all training data as
equally valid.

When generating responses, the model uses probability calculations based on its
training data to predict what text should come next. If it learned from flawed data
during training, it may confidently generate incorrect or nonsensical output—called
hallucinations—when the model produces convincing but incorrect information.

Think of it like teaching someone to code using both good and bad examples with-
out telling them which is which. They’ll learn patterns from both and might later write
code that looks correct but contains hidden problems. This is why it’s crucial to verify
AI-generated code and not assume it’s correct just because it looks good or because the
model seems confident.

These training data problems are different from simple mistakes—they’re systematic
problems baked into the model during its learning phase. This is one reason why even
advanced AI models need human oversight and verification.

For Python developers specifically, these training biases might manifest as

¡	A preference for common but suboptimal patterns (e.g., using lists where sets
would be more efficient)

¡	Overuse of popular libraries even when simpler solutions exist

¡	Generating code that works for common cases but fails with edge cases

¡	Replicating outdated Python patterns from pre-3.6 codebases that don’t use
newer language features

This is why your expertise remains crucial. You can recognize when the AI is suggest-
ing patterns that don’t align with Python best practices or your project’s architectural
standards.

1.5.3	 Misinterpreting context

Context is crucial for how language models understand and generate code. The model
processes your input by analyzing relationships between different parts of the code and
documentation to determine meaning and intent.

Common interpretation challenges in code generation are

¡	Variable names with multiple potential meanings

¡	Function overloading where context determines behavior

¡	API calls that could be valid but incorrect for the use case

¡	Syntactically correct code that violates semantic conventions

¡	Ambiguous requirements that could lead to different implementations

	 15Generative AI vs. code completion

The model evaluates context by calculating mathematical relationships between ele-
ments in your input. However, it may miss important domain knowledge, coding stan-
dards, or architectural patterns that experienced developers understand implicitly.

While model training is fixed, you can improve code generation by

¡	Providing detailed specifications and constraints

¡	Including relevant code context (imports, dependencies, related functions)

¡	Specifying error handling requirements

¡	Declaring expected inputs and outputs

¡	Breaking complex features into smaller, focused components

The tools themselves do a great job of pulling in other parts of application into consid-
eration, creating “context” for you. Later chapters will explore specific techniques you
can apply to improve context and get more accurate and maintainable code from AI
models.

1.6	 The potential of LLMs
LLMs and development tools have been increasingly improving, and tens of thousands
(or maybe more) of brilliant people are working every day to improve these models.
They’re making incredible progress, and the pace of improvement is staggering. The
potential is enormous.

LLMs and development tools that derive from them greatly enhance productivity
and software quality. By understanding the fundamental principles of language and
communication, LLMs can provide intelligent assistance in tasks such as code gener-
ation, code analysis, and documentation. They will become a mandatory part of your
toolbox. You can use these tools to assist you from the abstract design process down to
the code syntax. When things break, you can find the reason faster and get assistance
for fixing it.

We will write better quality software much faster. We’ll test it better and provide bet-
ter documentation. These tools can turn you into a super developer, and this book will
help you set yourself up to reap these benefits.

1.7	 Generative AI vs. code completion
It is likely that you have already encountered generative AI technologies as a software
developer. When I discuss generative AI tools with other developers, they frequently
mention IntelliSense, which was created by Microsoft for Visual Studio. They some-
times say “So, GitHub CoPilot is just another version of IntelliSense, right?” Having
spent many years in the trenches as a C# developer with IntelliSense, I agree and dis-
agree simultaneously. Let me explain.

IntelliSense is a code completion tool, very similar to tools in NetBeans, Eclipse,
XCode, PyCharm, and many others that proliferated before AI. Generative AI is far
more prescriptive. They’re similar but not identical. Table 1.1. lists some of the
differences.

16 Chapter 1  Introducing generative AI

Table 1.1  The differences between traditional code completion tools and generative AI

Function Code completion Generative AI

Input Relies on predefined rules, syntax infor-
mation, and available libraries

Utilizes machine learning models (LLMs)
to analyze vast amounts of code from the
internet and other sources

Output Context-aware suggestions based on
keywords, functions, and libraries

Suggestions based on patterns and rela-
tionships in code, and your coding style
or patterns

Learning Rule-based approach that relies on
pre-defined knowledge of the language

Deep learning techniques from neural
networks; the tool learns from the data it
processes.

Scope Limited to keywords, functions, and
libraries available to the language; limited
context of surrounding code

Code files, code blocks, functions, and
libraries, as well as previously written
code publicly available from the internet

Both types of tools are intended to help the developer be more productive in a similar
way. How they work under the covers is different. Let’s dig deeper into what makes
generative AI the next stage of developer productivity tools.

1.7.1	 Other types of generative AI

As discussed, generative AI is a type of artificial intelligence that can create new con-
tent. You’ve seen it sprouting up all over the place. AI-generated text, images, videos,
music, and more can be produced to varying degrees of success. Each field is at a
different level of maturity. For instance, text, music, and images are generally more
mature than video and voice generation. All this content is generated by learning from
existing data or training.

For example, with images, think of generative AI as a super-intelligent artist that has
studied and memorized the works of thousands of painters over time, and watched them
paint while gathering tips about their technique and composition. It keeps track of how
each of these painters did what they did. So, when you ask the tool to create a cyberpunk
image of Mona Lisa riding a skateboard in the desert, it can do it easily (figure 1.3).

Figure 1.3  Mona Lisa
riding a skateboard in the
desert. Generated with
Midjourney, a generative
AI image-building tool.

	 17Project workflow with AI assistance

Generative AI differs from traditional AI systems, which focus on analyzing and pro-
cessing data. Instead, generative AI learns patterns and relationships within the data
and uses this knowledge to create something new and unique.

1.7.2	 Why coders care about generative AI

You picked up this book to boost your productivity as a Python developer with gener-
ative AI coding tools. Let’s explore the key AI features we’ll master together and how
they’ll help you write better code faster:

¡	Code completion and suggestion—Tools such as GitHub Copilot, Tabnine, and
Blackbox AI use generative AI to analyze your code and suggest snippets. Here,
you’ll learn how to use these tools effectively. This not only saves time but also
lets you focus on complex problems while AI manages routine tasks, speeding up
your development.

¡	Automated testing—Generative AI can create a variety of test cases to cover edge
cases. You’ll learn to use AI for generating test suites quickly. This improves your
code’s reliability and catches bugs early, a crucial skill we’ll practice. Better test-
ing leads to much stronger software.

¡	Documentation generation—Generative AI analyzes your code and comments to
automate documentation. This book will show you how to simplify this often-
boring task, ensuring your projects are well-documented with less effort. This
makes your software easier to maintain and user-friendly.

¡	Natural language processing—Chatbots and virtual assistants, such as ChatGPT, uti-
lize generative AI to understand and produce human-like text. While our focus is
on coding, knowing how these tools process language is important. The skills you
gain here can help you build better prompts and have better experiences with
generative AI tools in general.

¡	Vibe coding—At the far end of the AI-assisted development spectrum lies an
emerging approach called “vibe coding,” a conversational programming style
where developers guide AI with natural language rather than detailed specifica-
tions. While this book focuses on structured, production-ready AI integration,
we’ll explore how tools such as Cursor enable rapid prototyping through simple
conversation in chapter 10. This is a new and different way of interacting with
AI tools, and it has become popular. Vibe coding is great for “just for fun” proj-
ects and rapid prototyping, where ideas can become working demos in minutes
rather than hours.

1.8	 Project workflow with AI assistance
Incorporating AI assistance into your software development workflow can significantly
improve productivity, reduce repetitive tasks, and elevate the overall quality of your
projects. So long as you verify the output, you can speed up the development process
and build better products faster.

18 Chapter 1  Introducing generative AI

Let’s outline a typical project workflow that leverages the generative AI tools
mentioned above to enhance various aspects of the software development process
(figure 1.4).

Ideation and planning

Look for latest
technologies

Identify potential languages,
libraries, and frameworks

Gather options for
technologies

Generate code
samples

Generate
documentation

Assist in FAQ
creation

Code generation and
assistance

Code review and
analysis

Testing and
debugging

Deployment and
maintenance

Document and content
generation

Figure 1.4  Generative AI tools play a big role in the planning process—from ideation and planning, to
choosing a technology, and finally to building the software and deploying it. Each of these steps can be
enhanced with AI tooling.

1.8.1	 Ideation and planning

At this stage of the process, something chat-based such as Chat GPT, Gemini, or Bing is
best to start with. Use plain English to describe what you want to do and send the tool
prompts to get started, such as

	 Act as a software architect skilled in software design and development. I would like
to create a TODO application where I can add a list of tasks to complete, and then
mark them as completed. What tech stack should I use for a web-based version of
this software?

Tools such as ChatGPT will give you a list of options for the frontend, backend, and
database. Maybe you have a tech stack in mind. You could modify the prompt to say
something like

	 19Project workflow with AI assistance

	 Act as a software architect skilled in software design and development. I would like
to create a TODO application where I can add a list of tasks to complete and then
mark them as completed. I would like to build this with MariaDB, Flask, and Vue. How
can I get started?

When sending this query to ChatGPT 4, I got this result:

	 Great! Here’s a high-level overview of the steps you can take to build your TODO ap-
plication using MariaDB, Flask, and Vue:

Database Design: First, you’ll need to design the database schema for your TODO
application. This will include creating a table to store the tasks, along with any rel-
evant columns such as task name, description, due date, and completion status.

Set up MariaDB: Install MariaDB and set up a new database instance. Then, create
the necessary tables and columns based on your database design.

Set up Flask: Install Flask, a popular Python-based web framework. Create a new
Flask app and set up routes to handle CRUD (create, read, update, delete) operations
on the task data.

Set up Vue: Install Vue.js, a popular JavaScript-based frontend framework. Create
a new Vue.js app and set up components to display the task data and handle user
interactions, such as adding a new task or marking a task as completed.

Connect Flask and Vue: Use Flask’s REST API to expose the task data to your Vue.
js app. You can use libraries such as Axios to make HTTP requests to the Flask API
and retrieve the data.

Test and Deploy: Once you have the basic functionality working, test your application
thoroughly to ensure it works as expected. Then, deploy your application to a web
server or a cloud-based hosting service.

Some additional tips:

You can use SQLAlchemy, a popular Python-based ORM, to interact with the MariaDB
database in Flask.

You may want to consider adding user authentication to your application to prevent
unauthorized access to task data.

You can use Vue.js libraries such as Vuex and Vue Router to manage state and han-
dle routing within your application.

Don’t forget to add error handling and validation to your application to ensure it is
robust and secure.

Overall, building a TODO application with MariaDB, Flask, and Vue.js should be a fun
and rewarding project! Good luck!

You can use this conversational style to generate ideas and start an outline for your
project to plan things out before getting into the code. This is also a good point to start
documentation, such as a project proposal, feature descriptions, application require-
ments, and more, which will allow you to focus on high-level objectives.

20 Chapter 1  Introducing generative AI

1.8.2	 Code generation and assistance

As you begin writing code, the integrated developer tools we mentioned earlier pro-
vide AI-powered code completions and suggestions. You can also use external tools to
start “scaffolding” this code.

Scaffolding an application is generating a basic structure or framework for an appli-
cation. This is similar to “create react app” with Node or “dotnet new” with C# appli-
cations. It involves automatically generating code, files, and directories that provide a
starting point for development. This operation gives you a basic skeleton of an applica-
tion you can complete and make whole.

I asked ChatGPT:

	 Please scaffold the routes of the backend API of this application in Python

As a result, it generated a full Python script with routes, a model, and methods
automatically.

NOTE  While this prompt generates code that may be thorough and func-
tional, do not blindly copy and paste it into your product, especially if you
don’t understand it. The code generated can be functional but not optimal
and even dangerous if you do not fully understand it.

At this point, you want to write out your code and use the integrated tools to help you
on your way.

1.8.3	 Code review and analysis

External tools can be great for code review. You can use prompts such as

	 Evaluate the following code for performance, and identify any possible bottlenecks:

(insert source code)

We will be doing this frequently later in the book.
External tools such as ChatGPT, Gemini, and Bing will evaluate your code and give

you feedback. I have recently found that Gemini is very good at identifying bottlenecks
and suggesting code improvements and rewrites. While ChatGPT is somewhat better
for outlining and design, when I’ve dumped my own code into both, I’ve received some
surprisingly good suggestions from Gemini, with little context. Figure 1.5 shows how
you can drop in a function and request evaluation. Gemini doesn’t know anything
about how the code will be used but can still make suggestions.

You can perform similar actions for security as well. This is one of my favorite things
to do with software. Use a prompt such as

	 Evaluate the following code for security issues, and identify any possible vulnerabili-
ties:

(insert source code)

	 21Project workflow with AI assistance

Figure 1.5  Even with a few lines of code, Gemini can analyze it and make suggestions to improve it.

In my experience, it has found glaring errors or provided suggestions to put you into a
more security-focused mindset.

With Gemini, I’ve received replies that look like this:

	 The code is well-written and easy to understand. It does not contain any obvious se-
curity vulnerabilities. However, there are a few things that could be improved to make
it more secure.

ChatGPT gives similar results. These tips are crucial to changing the way you write soft-
ware. It can give you tips you didn’t know about or offer different ways of doing things
you haven’t thought about. We’ll see that as we move through this book.

22 Chapter 1  Introducing generative AI

1.8.4	 Testing and debugging

During the testing phase, you can use AI assistance to generate test cases and identify
where software might fail. Integrated tools such as GitHub Copilot can generate tests
for you. Tabnine has a beta version of a test generation component (as of this writing).
Blackbox has a test generation component as well.

You can also use ChatGPT, Bing, or Gemini to generate unit tests. In my experience,
ChatGPT has been great for debugging. If you can paste in code and an error message,
it generates some good responses or places to look for problems. It will even tell you
ways to debug or display information to help solve the problem. It’s not perfect, but it’s
faster than a search engine, especially for tricky problems. We’ll explore testing and
debugging your code later.

1.8.5	 Documentation and content generation

If you don’t like writing documentation, AI tools are your friend. You can use the inte-
grated IDE tools to some extent to generate documentation. Tabnine works very well
at autocompleting code and API documentation. However, if you’re creating a new
document from scratch, I’ve found ChatGPT to be very good at this. You can dump in
methods or even entire classes and spit out API documentation, code documentation,
or human-readable instructions.

Be warned, however, it can be very dry. You want to use the output as guidance and put
a human touch on it. There can be accuracy problems as well, so review it thoroughly.

By incorporating AI assistance throughout your software development workflow, you
can employ generative AI tools to improve your process and help you develop faster.
Using AI tools will save you time and effort and allow you to focus on more fun stuff.

1.9	 Choosing the right generative AI tools
There are some considerations if you plan to use the generative AI tools discussed in
this book. Whether you’re an individual contributor, leader, or CEO, if you decide to
utilize these tools, many of these factors apply to you.

1.9.1	 Data quality and availability

As the old saying goes, “Garbage in, garbage out.” Generative AI tools are only as good
as the data they’re trained on. They need high-quality, diverse, and extensive datasets
to create great code as output. Unfortunately, you have no control over this input. You
must trust the creators behind the product are using the best code possible for the
corpus, or data used for training. Researching the tools lets you learn how each tool
gathers data and decide based on that.

You must decide how much you value open source software for training versus pro-
prietary software. Most tools use a combination of the two. Software trained on mostly
open source software is a safe bet. A corpus derived from proprietary code can be more
creative or meet a specific need. You must decide which one you value more.

	 23Choosing the right generative AI tools

The source code used to train these models provides unique challenges when it
comes to licensing. If the tool is trained on licensed software and it generates some-
thing close enough to the original, there are some legal and copyright matters to think
about. I’m no lawyer, so I can’t help you much, and it’s still a hotly debated topic in the
field right now.

1.9.2	 Integration with development workflows

Whether you’re working solo or in an enterprise team with rigorous processes, as an
experienced Python developer, you have likely established workflows. Integrating AI
tools requires thoughtful consideration. If you are a solo developer,

¡	Evaluate how these tools interact with your existing IDE extensions and
configurations

¡	Consider how to maintain consistency between AI-generated code and your per-
sonal coding style

¡	Develop strategies for validating AI suggestions against your domain-specific
knowledge

For team environments,

¡	Establish team conventions for documenting which parts of the codebase used
AI assistance (for future maintenance).

¡	Consider how AI tools interact with code review processes and standards.

¡	Address potential security concerns when AI tools process proprietary code.

¡	Ensure consistent access to these tools across your development team.

The learning curve varies across tools. While simple code completion might become
intuitive within days, mastering more advanced capabilities such as architectural pat-
tern generation could take weeks. Throughout this book, I highlight integration strate-
gies that minimize disruption, while maximizing productivity gains.

1.9.3	 Quality assurance

AI-generated code must function correctly and adhere to your organization’s quality
standards. Ideally you won’t be using large amounts of AI generated code you don’t
understand, but it’s still a consideration. These tools can speed up development and
complicate code review and QA testing. You should always be transparent about your use
of the tools and ensure they adhere to the standards expected of human-written code.

1.9.4	 Keeping up with evolving tools

I don’t have to tell you how fast these tools are evolving—you already know. You
must stay abreast of the latest advancements in the tools and need to be familiar with
advancements and new techniques. You must discern which of these tools and features
are useful and not just a trend. And once again, it’s a balancing act. You must deter-
mine if the long-term benefits are worth the churn of learning and re-learning the tool.

24 Chapter 1  Introducing generative AI

1.9.5	 Shift in focus

In my career as a software engineer, I had to change my thinking from the day-to-
day mechanics of writing code to more abstract skills. The shift from writing code to
designing systems and architecture is a natural path for software developers. The AI
tools accelerate that. and as you use the tools, you’ll transition to thinking more like a
designer than a coder much faster. Can you adapt to this rapid change? Can your team
members?

1.10	 Don’t fear the rise of AI
A big concern among developers is the fear that AI will replace their jobs and render
their skills obsolete. I agree that things will change, and some jobs will disappear. It’s
hard to deny that reality. Accenture (2023) estimates that language AI will support
40% of work hours as generative AI adoption grows (see https://mng.bz/pZo5). That
same report says AI will spark creativity and innovation and “usher in an era of enter-
prise intelligence.” Changes are coming.

While the concern is valid, it’s sometimes overhyped. Software developer jobs won’t
disappear overnight. Things will change fast, and we’re already seeing that. I don’t have
the psychic abilities to tell you what the future looks like, but nobody can deny that our
industry will permanently change with generative AI. As a forward-looking developer
learning about it, you’re positioning yourself to stay ahead of the game.

Generative AI is a powerful ally rather than a threat. It’s not a tool to replace you but
a tool to make you more effective. By understanding and embracing generative AI now,
you can harness its capabilities to augment your own skills. You can use it to streamline
your workflow and create more innovative solutions. Consider generative AI as a smart
assistant that can help you do what you do faster and more efficiently.

Generative AI is not a replacement for software developers. Here’s why:

¡	It handles the boring stuff. Do you love writing boilerplate code? While it’s not the
worst part of the job, it’s not fun. Writing repetitive code to do unexciting things
is part of the job. It’s more fun to create features, solve problems, and improve
performance. Generative AI tools can generate repetitive code quickly, so you
can focus on more interesting work. This interesting work is exactly what humans
are good at, and AI (currently) isn’t.

¡	Humans still play the main role in problem solving. AI driven tools will automate mun-
dane tasks, write boring plumbing code, and even generate comments and docu-
mentation. AI can also generate tests very well. However, producing meaningful
results still requires knowledge, intuition, and creativity. AI tools can generate
code and make helpful suggestions. They don’t fully understand all the context
or your business. Critical decisions should still be made by the people involved.

¡	Adaptability is required. Nobody needs to tell you how fast this industry moves. It
constantly evolves at an ever-increasing rate. Your challenges might be brand
new, while your AI tool’s knowledge may have stopped a year and a half ago.

https://mng.bz/pZo5

	 25Go forth and code!

Trends and best practices can easily change between the tool’s deployment and
when you’re using it. Your ability to think critically, learn, and innovate is still bet-
ter than that of AI. Having a good, experienced developer to gut-check the result
from these tools is extremely valuable.

¡	Ethical and moral considerations hold significance. Generative AI is designed to be
neutral. It has no opinions and no human sense of right or wrong. It’s your job to
ensure technology is used responsibly and ethically.

¡	The human touch is still important. Generative AI can produce impressive results.
Folks in tech are using ChatGPT to build entire applications. However, remem-
ber your favorite AI tool isn’t a person but clever automated assistant. It doesn’t
possess emotional intelligence or empathy. It doesn’t understand context or
experiences the same way you do. Your ability to connect with users and see
things from their perspective is important. Your creativity and gut feelings are
still needed in this space.

Some say the tools can encourage laziness and usher unchecked code into products.
Or they can help people write software they don’t understand. There is an element of
truth to these possible side effects of code generation and the abstraction of code in
general. However, like any tool, it depends on how you use it and how experienced
developers influence the new folks. This is a larger problem we’ll address later.

1.11	 Go forth and code!
While we’ve covered the fundamentals, the true power of these tools emerges when
you master advanced techniques explored in upcoming chapters:

¡	Context management—You’ll learn how to structure your codebase and prompts
to provide optimal context for AI tools, resulting in more accurate and relevant
suggestions.

¡	Prompt engineering—We’ll develop sophisticated prompting techniques that guide
AI tools to generate precisely the code patterns your project requires.

¡	Testing integration—You’ll discover how to generate comprehensive test suites
that cover edge cases you might not have considered.

¡	Architectural guidance—Beyond just code completion, you’ll learn how to use AI
for higher-level design decisions and architecture validation.

Each of these techniques builds on the fundamentals covered in this chapter, trans-
forming generative AI from a useful assistant into an indispensable development
partner.

This book takes a hands-on approach to mastering generative AI tools. Each chapter
builds on a core project—creating a full-featured web application—while introducing
new AI tools and techniques. You’ll start with basic code generation and progress to
testing, documentation, and advanced features.

Rather than just reading about concepts, you’ll learn by doing: writing prompts, eval-
uating AI responses, and integrating generated code into real applications.

26 Chapter 1  Introducing generative AI

By the end of this book, you’ll be able to

¡	Use AI to speed up your coding workflow by 30%–50%.

¡	Generate and validate high-quality code and documentation.

¡	Choose the right generative AI tool for different coding tasks.

¡	Build complete applications using AI assistance.

¡	Debug and optimize AI-generated code.

You’ll see practical examples, clear diagrams, and step-by-step instructions suitable
for both beginners and experienced developers. Each chapter includes exercises to
reinforce your learning and real-world scenarios you’re likely to encounter in your
development work. Later in the book we’ll explore “vibe coding” where we use plain
language to create software.

Join me in the next chapter as we roll our sleeves and build software with generative
AI tools.

Summary

¡	Generative AI tools are changing software development. They boost productivity
by generating code, finding bugs, and automating documentation.

¡	Modern AI tools come in two types: integrated tools such as GitHub Copilot and
Tabnine, which work in your IDE, and standalone solutions such as ChatGPT and
Gemini for bigger tasks.

¡	Large language models (LLMs) drive these tools. They learn patterns from mas-
sive code datasets, which help them create relevant code based on probabilities.

¡	It’s important to know that AI tools make predictions and not certain outcomes.
This understanding sets realistic expectations and shows why checking results
is key.

¡	The AI-assisted development workflow includes ideation, planning, coding, test-
ing, and documentation. Each phase gains unique benefits from AI support.

¡	To adopt AI tools effectively, consider training data quality, how they fit into work-
flows, quality assurance processes, and the need to adapt to new tools quickly.

¡	AI tools do not replace developers. Instead, they take care of routine tasks, letting
humans focus on problem-solving, design, and creativity.

¡	As you read this book, you’ll discover ways to use these tools, seeing them as valu-
able partners in your Python development process.

27

2First steps with
AI-assisted coding

This chapter covers

¡	The fundamentals of GitHub Copilot
¡	Creating a Python environment for a Python

project
¡	Building a project using generated code
¡	Using code completion to generate snippets
¡	Using the Copilot Chat interface

Getting started with generative AI tools can be daunting. Many people frequently
ask me, “How do I get started? Which model do I choose?” Fortunately, the easiest
way to start is to pick a tool and experiment. Once you do, you’ll find the learning
curve surprisingly small.

We begin by using GitHub Copilot. To learn the basics, we’ll jump in headfirst
to solve a programming problem. Next, we’ll build a useful application in Python
with assistance from Copilot. By the end of this chapter, you’ll be comfortable using
Copilot when writing code.

28 Chapter 2  First steps with AI-assisted coding

2.1	 What is GitHub Copilot?
Do you remember the “rubber duck” debugging method? You visualize a rubber duck
on your desk and explain the problem to it. You can use a real rubber duck or, like me,
a toy wizard. I’ve confided in that wizard many times, working through problems. The
key is to verbalize the matter to an imaginary helper. Once you articulate the problem
clearly, by shifting focus, you might find solutions you didn’t see before.

Imagine having an intelligent assistant that helps you with coding, like the rubber
duck method, but one that can respond and suggest solutions. The tool will suggest
word completions as you type, help you find and fix mistakes, and even make whole
functions when asked. This is GitHub Copilot.

Launched in October 2021, GitHub Copilot is an AI coding tool powered by
OpenAI’s Codex algorithm. It employs extensive GitHub training data to offer context
aware code suggestions in multiple programming languages. It’s an incredible tool
that will surprise you with its usefulness. Copilot aims to boost your productivity and
cut down on repetitive coding tasks. It’s like having your own pair programmer or
intelligent rubber duck providing suggestions as you work.

At the time of this writing, GitHub Copilot is available for Visual Studio, Visual Studio
Code, Vim, NeoVim, JetBrains IDEs, and Azure Data Studio.

NOTE  GitHub Copilot is not a free tool. There is a monthly fee for this tool.
You can find more information on the GitHub Copilot information page
(https://github.com/features/copilot). It is free for verified students, teach-
ers, and maintainers of popular open source projects.

GitHub Copilot is trained on public source code using the OpenAI Codex model.
Training involves providing a model with a large dataset of text and code to enable it to
learn patterns and generate similar content. The model then uses machine learning to
teach itself how to generate text and code that is like what it was trained on. GitHub’s
model was trained on billions of lines of code from GitHub repositories and other pub-
licly available code. The Copilot service connects to and utilizes this model.

When you write code in the editor, it is sent to the Copilot service. The context is
the code in your project that Copilot can view. The Copilot uses this context to gather
information for queries. The code is sent to the model, and suggestions are returned to
your editor. Then, when you accept the changes, this feedback is sent to the Copilot ser-
vice. The model then uses this feedback to determine whether you liked what was sent,
which forms a loop that gradually improves the suggestions over time. Figure 2.1 shows
an overview of this process.

2.1.1	 How GitHub Copilot works

Figure 2.1 is a good high-level example, but let’s dig deeper into the process of how
Copilot creates results. We can step through the entire process and understand how
queries turn into code suggestions.

https://github.com/features/copilot

	 29What is GitHub Copilot?

GitHub public
source code

Editor context

Feedback

Suggestions

Visual Studio code
OpenAI Codex

model

GitHub
Copilot
plugin

Figure 2.1  GitHub Copilot takes the code from your editor and analyzes it. It then sends suggestions back from
the Codex model. Your decision to accept those suggestions or reject them is fed back into the model to refine the
future suggestions.

Inbound flow

Here’s the process your prompt goes through as it’s sent to GitHub Copilot. Under-
standing this process helps you generate better results by taking better control of the
tool.

The process begins in your code editor, either as a comment or chat message. The
prompt itself is sent with important context, such as

¡	Code before and after the cursor

¡	Code and information in open tabs

¡	Filename and file type

¡	Project structure and paths

¡	Programming language and frameworks used

Fill-in-the-middle (FIM) refers to a technique where Copilot analyzes both the code
preceding the segment selected or asked about and the segment that follows it. FIM
allows Copilot to understand a greater amount of code.

This code is then sent to a proxy server, which acts as a filter. This filter prevents
attempts to hack the LLM or manipulate the system in a harmful way. The next step is
a toxicity filter, which looks for hate speech and inappropriate content. Anything that
could be harmful or offensive is blocked at this point. It also filters out personal infor-
mation such as names, addresses, or identifiable information.

Finally, the prompt is prepared and shipped to the LLM model to generate code
suggestions. These suggestions are based on the prompt, but also on the surrounding

30 Chapter 2  First steps with AI-assisted coding

context. The model then uses all this information to create the best possible answer.
This process happens in seconds and is illustrated in figure 2.2.

Code editor Proxy server Toxicity filter LLM

Figure 2.2  The inbound flow to GitHub Copilot

Outbound flow

The outbound flow is in the reverse direction. First, the result is passed through a tox-
icity filter to ensure no hate speech, inappropriate, or private material is sent from the
LLM. Then, the proxy server runs a final check for

¡	Code quality—Checks for common bugs and bad patterns.

¡	Security—Checks for known vulnerabilities and insecure patterns.

¡	Matching public code (optional)—Checks whether the content is original and how
closely it matches public code. This code can then be removed or truncated if the
Copilot administrator wants to do so.

This process is illustrated in figure 2.3, as the suggestions travel back to the IDE.

Code editorProxy serverToxicity filterLLM

Figure 2.3  Outbound flow from the LLM back to the code editor

This process is ongoing as you use the GitHub Copilot application in your IDE. This
continuous loop ensures your code suggestions are appropriate and useful for your
project. This is one of the key distinctions between GitHub Copilot and ChatGPT
when handling code suggestions. The context and filtering can make a big difference
in the quality of work.

	 31What is GitHub Copilot?

2.1.2	 Interacting with GitHub Copilot

There are several ways to interact with Copilot. You can work from the editor with assis-
tance or open a separate Copilot chat window. Here are the ways Copilot can work for
you as a developer.

Code completion

Copilot can suggest code completions as you type in the editor. It analyzes the current
context of your code and provides real-time suggestions to complete statements or
functions. This can speed up coding and reduce syntax errors (figure 2.4).

Figure 2.4  Copilot can suggest code completions as you type by analyzing comments or surrounding
code for context.

In the previous example, we were building an API. GitHub Copilot knows a lot about
APIs and how to create them. You can describe API endpoints and structure, and
Copilot will generate appropriate data classes and request handling code automatically,
saving you time.

Code generation

Copilot can generate full segments of code based on statements, comments, or par-
tial code snippets. You can enter a comment describing a function, and Copilot will
attempt to complete the code. This feature is great for repetitive tasks and when look-
ing for different ways to solve a problem (figure 2.5).

Figure 2.5  Copilot can generate entire functions or segments of code based on comments or partial
code snippets.

32 Chapter 2  First steps with AI-assisted coding

Translation

You can translate code from one language to another by highlighting the code and
invoking Copilot. This feature allows you to convert legacy codebases into newer or
modern languages. It can also help you understand what a function is doing by trans-
lating it into a language you’re more familiar with (figure 2.6).

Figure 2.6  You can use Copilot to translate code from one language to another. Here, I have highlighted
a section of Python code and asked Copilot to translate it into Go.

Debugging

You can highlight a problematic piece of code and ask Copilot to debug it. It can pro-
vide suggestions to fix syntax errors, logical errors, or performance problems, which lets
you quickly identify and resolve bugs and speed up your debugging process (figure 2.7).

Figure 2.7  You can highlight a problematic section of code and get suggestions on how to fix it. You can
either accept the answer and have the code inserted or discard it and attempt a fix of your own.

	 33What is GitHub Copilot?

Documentation generation

You can ask Copilot to generate documentation for you. This is handled either in the
editor window or through the chat window. You can use the chat window to have con-
versations with Copilot and ask questions or get ideas (figure 2.8).

Figure 2.8  You can automatically generate comments and other code documentation using Copilot.
This is one of my favorite features of the tool, as it saves a tremendous amount of time.

Right-click tool windows

It is possible to interact with Copilot in many ways inside your IDE window. There are
some shortcuts for the features mentioned before. For example, you can click in the
IDE near the code and ask it to document it, explain it, fix it, or generate tests, as
shown in figure 2.9.

Figure 2.9  GitHub Copilot can perform many actions from a right-click menu within your IDE.

Chat window

You can interact with GitHub Copilot in a chat window as well, and it has a familiar dia-
log interface like ChatGPT and other models. The difference is that this chat window

34 Chapter 2  First steps with AI-assisted coding

is fully aware of the code in your project. In fact, some commands in the IDE will send
you to a chat window so you can ask more questions or attempt to regenerate the
results (figure 2.10).

Figure 2.10  Copilot has a traditional chat window interface within Visual Studio, making it easy to ask for help or
suggestions.

We’re going to explore this tool through practical, hands-on activities. You’ll learn how
Copilot can assist in auto-generating Python code as we build an application to ana-
lyze text. We’ll explore how Copilot understands context from comments and function
names. With Copilot’s help, we can put together a working script quickly.

TIP  You can use “hints” to guide Copilot to generate exactly what you’re look-
ing for. For instance, if you want an asynchronous function, you can type in
“async def,” and that will tell Copilot you want a coroutine instead of a normal
function.

By the end of this chapter, you’ll be ready to bring this AI coding sidekick into your
own projects. Copilot may not yet write flawless code, but it can make you a more pro-
ductive programmer. Let’s dive in and see what this tool can do. We’ll build an app that

	 35Context is everything

does some primitive natural language processing (NLP), which is appropriate since we
use tools that utilize it.

2.2	 Common patterns
As you continue working with generative AI coding tools, you’ll develop patterns when
working with chat windows. These patterns will become second nature to you after a
while, and you can use this approach for many different tools. Here are some common
phrases you can ask in chat to get better results:

¡	Find the error in the selected code. You highlight a code snipped and ask it to diagnose
bugs or problems with syntax. This phrase works especially well with tools that
keep your application in context and consider that context for the result.

¡	Refactor this code to make it better. While this can be highly subjective, there are times
when Copilot and other tools can suggest a better pattern or algorithm for what
you’re trying to do. You can ask it to optimize for security, speed, or resource
usage.

¡	Generate code for {specific task}. This is a common way to generate boilerplate
code for things you’ve done countless times but don’t want to write out by hand.
Things such as connecting to databases, reading from files, and sending HTTP
commands are great examples of code that can be generated this way.

¡	Explain how this code works. This pattern is invaluable when working with legacy
code or anything you didn’t build. It can quickly get you up to speed on what the
code is designed to do, and all the tools we’ll talk about do a great job at it.

¡	Add tests for this code. This pattern can sometimes feel like cheating. The tools we
discuss are great at generating tests. This feature gives you a clear time advantage,
as it generates tests for you rather than writing them out by hand. It provides a
quality advantage as well, because it can find cases you haven’t considered or for-
got to add. This is a valuable pattern you’ll use repeatedly.

¡	Suggest improvements for readability and maintainability. This is another helpful pat-
tern for refactoring or working with legacy code. Admit it, all of us have put some-
thing together just to make it pass tests and fix a problem. It wasn’t the clearest
or simplest way to do it, and this is a way to root out code like that and improve it.

¡	Compare tradeoffs for {option a} and {option b}. Sometimes, our first idea isn’t the
best approach. Sometimes we’re tired, burned out, or just can’t think of the best
way to do something. This is where our AI powered assistants can really shine
by generating different ways to approach a problem and weighing out the best
choice.

2.3	 Context is everything
Coding assistants seem to just know what you’re trying to do, and it’s not magic. Tools
such as GitHub Copilot, Tabnine, and BlackboxAI use context to generate smarter,
more relevant suggestions. They don’t just analyze a single line of code, but they pull in

36 Chapter 2  First steps with AI-assisted coding

information from the entire workspace, the files you’ve got open, and even the struc-
ture of your project. This means that when you’re writing a function, Copilot isn’t just
guessing—it’s making an educated suggestion based on your existing code. Generative
tools in IDE integration draw insights by analyzing

¡	Code from the current file being edited

¡	Content from neighboring tabs in the IDE

¡	The entire workspace or solution structure

¡	Code before and after the cursor position (Github Copilot)

As for project understanding, the insights come from

¡	Repository-level context

¡	Pull requests and open problems

¡	Project documentation and configuration files

The level of product you’re using makes a difference here. Often, the enterprise or
professional level products give a deeper dive than individual licenses. However, all
three IDE-based tools we’ll use look at the file being edited and files in your project.

One of the biggest tricks up Copilot’s sleeve is something called “fill-in-the-middle”
(FIM). Instead of only looking at what you’ve typed so far, it scans the surrounding code
before and after your cursor to generate more accurate completions.

This is a game-changer because it allows AI to suggest code that fits seamlessly within
your existing logic. The result? Better suggestions for your project instead of generic
solutions.

Now let’s jump right into using GitHub Copilot for a project. We will build an appli-
cation that uses NLP to analyze and count words in a document. But first, let’s look at
what NLP is. It’s important for the project and for our understanding of generative AI
tools.

2.4	 What is NLP?
Have you ever wondered how virtual assistants such as Siri or Alexa understand what
you’re saying? It can seem like magic, but it’s natural language processing, or NLP.
NLP combines linguistics, computer science, and artificial intelligence to allow com-
puters understand, interpret, and generate human language.

NLP systems aim to take text input, process it, interpret the words, and produce
meaningful output. These applications perform sentiment analysis, machine transla-
tion, and text summarization. NLP isn’t just for virtual assistants. It’s also used in fields
from customer service to healthcare by allowing computers to communicate with
humans effectively.

A core concept of NLP is tokenization, which breaks down text into smaller units
called tokens. These are usually words, punctuation, or phrases. Tokenization helps
computers understand the structure and attempt to evaluate the meaning of text by
breaking it into smaller chunks (figure 2.11).

	 37A simple Python project

The words and punctuation are broken
into chunks, as shown in figure 2.11,
and given an identifier. NLP systems
look for patterns in words, such as

¡	Word frequency—What words are
used the most? Which are used
the least? Is this an indicator of
what the subject is about?

¡	Word types—NLP distinguishes
between the types of words used:
nouns, verbs, adjectives, and similar. This helps with assembling sentences and
extracting meanings.

¡	Word co-occurrence—NLP analyzes which words are frequently found together in
text. This can reveal semantic relationships between these words.

¡	Text classification—Words are analyzed and fit into predefined categories. They’re
then analyzed for tasks such as spam detection, document categorization, and
sentiment analysis.

Word-based tokenization is core to NLP, but it’s just one of the many ways NLP analyzes
text. This is a high-level overview of NLP and not the focus of this book. However, this
is what our next project is about, and NLP is used extensively with our tools, so if it
interests you, it’s a great subject to learn more about.

2.5	 A simple Python project
As our first Copilot-assisted program, we will perform some crude NLP. We’ll take a
text file from Project Gutenberg and count the word frequency. Then, we will rank the
words and see which ones were used the most. Finally, we’ll build and view a bar chart
of the results. All of this will be done with a simple Python script that we build, and
we’ll use GitHub Copilot as our smart assistant.

For this example, we’ll use GitHub Copilot in Visual Studio Code. We’ll use Copilot
to create the code for our program based on small descriptions and a conversation with
Copilot Chat. Copilot Chat is an extension for Visual Studio code with a chat-like inter-
face. You can ask the tool questions, and it will produce answers.

 In addition, we’ll use a combination of Visual Studio Code, Python, and the GitHub
Copilot extensions. If you’re following along, you’ll need all three of these installed on
your machine.

For this project, we need a big text file with a lot of words. I selected a file from Project
Gutenberg and analyzed it. The text is one of my favorite books on that site, Free Air by
Sinclair Lewis. The full-text version of this novel is available at https://www.gutenberg
.org/cache/epub/26732/pg26732.txt.

I want to know which words are used the most frequently in this novel. I will count all
the words in this text file and rank them by frequency to learn this.

Hi, how are you today?

Hi , how are you today ?

Figure 2.11  Word-based tokenization breaks
whole words and punctuation into chunks that can
be processed and analyzed.

https://www.gutenberg.org/cache/epub/26732/pg26732.txt
https://www.gutenberg.org/cache/epub/26732/pg26732.txt

38 Chapter 2  First steps with AI-assisted coding

Next, I need to load up the text and parse it. I need to identify a “word” by anything
enclosed with spaces. If there is a space before or after a set of characters, we assume it’s
a word. We must also prepare the text to ensure our word count is accurate. Here’s an
example.

The words “truck,” “Truck,” and “truck!” are considered three distinct words. The
resulting data will be scattered everywhere if we look at how many times a truck is men-
tioned in different ways. We can solve this problem by making all the letters lowercase
and removing punctuation. This way, data will show the word “truck” being mentioned
three times, which is what we’re looking for.

We need to tokenize the text. This is what we just learned about in the previous sec-
tion, so let’s put it into action. Consider the sentence “My name is Jeremy, and I like
apples.” After tokenization, it becomes

My
Name
is
Jeremy
,
and
I
like
apples
.

Each word and punctuation mark are treated as a separate token. The tokens become
the building blocks the computer uses for text analysis and processing. By breaking the
text into tokens, the computer can attempt to understand the content and meaning
behind the words. The word itself and placement are important here. The process of
splitting up text like this is called tokenization.

We will parse every token, count the unique tokens (words), and count the identical
ones. We don’t need to count punctuation as we’re only concerned about word count
here. Punctuation will provide irrelevant data. This will give us accurate data to find
which words are used the most.

Let’s review our primary objectives for this application:

¡	Open a text file and read it.

¡	Remove any punctuation and convert all text to lowercase.

¡	Tokenize the text into individual words.

¡	Count the frequency of each unique word as quickly as possible.

¡	Display the top N most frequent words in a bar chart.

Figure 2.12 shows what the flow looks like.
This first application is simple enough we can build it here. Let’s do it!

	 39A simple Python project

Run Python file.

Read a text file.

Remove any punctuation and convert all text to lowercase.

Tokenize the text into individual words.

Count the frequency of each unique word.

Display the top N most frequent words in a bar chart.

Display the bar chart with Tkinter. Figure 2.12  The workflow of
our sample application

2.5.1	 Preparing your development environment

Let’s familiarize ourselves with our environment. First, you’ll want to create a folder for
the application to live in. Next, open that folder with Visual Code going to File and then
Open Folder. You’ll see a blank VS Code project with the welcome page (figure 2.13).

Figure 2.13  Visual Studio Code opened to a new folder

40 Chapter 2  First steps with AI-assisted coding

Next, we want to enable the terminal. You have several different options here, depend-
ing on your operating system. In Windows, among the rest, you can enable

¡	A PowerShell console

¡	Windows Terminal

¡	WSL (Windows Subsystem for Linux) Terminal

On a Mac or in Linux, you can enable the console, which will use a default OSX or
Linux console.

Go to Terminal and then to New Terminal from the main menu to create a new ter-
minal. You’ll find it in the lower right corner. I generally keep this window open while
developing. Figure 2.14 shows the “terminal” I’ll be referencing when I suggest “enter-
ing something into the terminal.”

Figure 2.14  Location of the Terminal window

I prefer to use WSL in Windows and open that in the terminal window in Visual Studio
since I spend most of my time in Linux. But if it must be in Windows, WSL makes every-
thing consistent at the command line. If you’re comfortable in Windows, you can use a
PowerShell or Command Prompt.

Learning to navigate and use the terminal effectively is essential, regardless of the
operating system you select. If you’re already a Python developer, you’re likely already
familiar with the terminal. It makes creating and moving files around easy, while

	 41A simple Python project

working with Python scripts. Figure 2.15 shows the layout of our Visual Studio Code
Desktop.

Side bar Editor window

Copilot
chat

Terminal window Copilot
symbol

Figure 2.15  The Visual Studio Layout, showing Copilot is accessible in the activity bar, and the lower taskbar

I’ll use the following terminology moving forward. These are the basic components of
Visual Studio code:

¡	The side bar lists files so you can easily navigate between them.

¡	Copilot Chat is located to the left of the sidebar in the activity bar.

¡	The terminal window is where we’ll enter terminal commands.

¡	The editor window is where we’ll enter code.

We will utilize Copilot to generate and analyze code for us. As discussed earlier, you can
interact with Copilot in the following ways:

¡	Adding a comment to your code—You can add a comment describing something you
want to happen, and Copilot will attempt to generate a solution.

¡	Code completion—You start writing code, and Copilot will attempt to complete the
statement or method you’re trying to build.

¡	Copilot Chat—You can interact with Copilot Chat like a person. Ask questions,
debug snippets, and more.

42 Chapter 2  First steps with AI-assisted coding

2.5.2	 Creating the application

We will use a Python virtual environment for this application. Regardless of the project
size, I create virtual environments for it. This is essential for maintaining clean and
organized environments for Python development. It creates an isolated environment
for the project, so you can ensure each project has its own versions of packages, librar-
ies, and Python. This prevents conflicts between packages and avoids large messes that
can arise from conflicting package versions. Virtual environments take seconds to cre-
ate but can save you hours of work in the long run.

First, let’s create a folder for our application. In that folder, we will create the Python
virtual environment. Open the terminal window, and at the prompt, type

python -m venv countwords

Then, activate the environment:

source countwords/bin/activate

You should see an indicator before your prompt with the name of the environment in
the terminal (figure 2.16):

Figure 2.16  A terminal window showing an active Python environment

I recommend using a Python virtual environment for all your projects. It helps
decouple your Python installations. This approach makes your projects more portable
and less reliant on globally available packages, which you may want to change. If you
have multiple projects with multiple libraries, it’s the best way to work. It’s quick to set
up, so it’s worth getting into the habit of always creating them.

For instructions on how to create virtual environments, including in Windows, check
out the guide at https://code.visualstudio.com/docs/python/environments.

Now that I have the environment created, I want the text file of Free Air to live on
my hard drive. You can copy this text and save it to your drive, download it from the
browser, or use a utility such as wget to download it:

wget https://www.gutenberg.org/cache/epub/26732/pg26732.txt

This utility is available on all three platforms (Windows, Linux, and Mac), so I highly
recommend installing it. It will download pg26732.txt to your hard drive. So now that
we have our text file, let’s build our app.

https://code.visualstudio.com/docs/python/environments

	 43A simple Python project

Step 1: Reading a text file

Our first objective is to open our text file so we can read it. Let’s create a main.py file
and create our first function. We’ll use the code completion method to interact with
Copilot here. This happens when you type in some code, and the Copilot attempts to
autocomplete it for you.

As we type in the line

def read_text_file(file_path):

Copilot has a suggestion for us immediately (figure 2.17).

Figure 2.17  A typical Copilot suggestion

Copilot assesses what I’m trying to do based on what I’ve named the function. It gives
the following two options:

	 Option 1:

def read_text_file(file_path):
 with open(file_path, 'r') as f:
 return f.read()

Option 2:

def read_text_file(file_path):
 """Reads the text file and returns the text as a string"""
 with open(file_path, 'r') as file:
 text = file.read()
 return text

The two options are functionally identical. Both read a text file and return the text as
a string. However, option 2 is more readable. It contains a docstring and uses file for
the variable name instead of f. It also returns text as a variable instead of simply return-
ing the output of the read() function.

But let’s take a step back and do a little test. Let’s write the function inefficiently and
see how Copilot handles that. To do this, we’ll use the Copilot Chat extension. Note
that at the time of this writing, Chat is in beta, so it will likely look a little different (see
figure 2.18).

44 Chapter 2  First steps with AI-assisted coding

Figure 2.18  The GitHub Copilot Chat welcome screen

I have written some code that’s not so great. It adds a list to the operation that
isn’t needed and doesn’t automatically close the file. It’s not horrible, but it can be
improved:

def read_text_file(file_path):
 file = open(file_path, 'r')
 lines = []
 for line in file:
 lines.append(line)
 file.close()
 text = "".join(lines)
 return text

Let’s ask GitHub Copilot Chat how it would improve this code. I open Copilot Chat
and type in a question. I use a simple, plain-English prompt. With that prompt in the
chat window, I paste the code to let Copilot know which code I’m referring to.

	 How can I improve this code?

It’s worth noting that my prompt was very simple. This is all you need for most cases;
however, you can implement prompt engineering for more complex problems. Gen-
erally, you won’t need to assign a role as you do with other tools, as Copilot is already
set up for this. I press Enter to send my prompt (figure 2.19). As shown in figure 2.20,
Copilot outputs a response with a cleaner, more efficient method.

These are two ways we can use Copilot to create this function. We can either name
the function cleverly and get code automatically suggested, or write code ourselves and
ask GitHub to refactor it.

	 45A simple Python project

Figure 2.19  Prompt entered in Copilot Chat

Figure 2.20  A response from Copilot Chat

Copilot’s code generation capabilities are neat, but we don’t want to rely on them too
heavily. Don’t assume this is optimized or that it’s been tested or validated. Always eval-
uate the generated code and make sure you understand it.

In our case, let’s take this code snippet from the Copilot Chat window and paste it
into our editor window (which is the source code for our application):

def read_text_file(file_path):
 """Reads the text file and returns the text as a string"""
 with open(file_path, 'r') as file:
 text = file.read()
 return text

Note that in this generated code, there is no encoding specified. This is an example
of Copilot generating code that works but may not be optimal. The code runs fine on
my Linux computer, but if you open it in Windows, you may have a problem. You can
change the open function to include encoding if you want to make it safer to use. Try
something like

with open(file_path, 'r', encoding='utf8') as file:

46 Chapter 2  First steps with AI-assisted coding

Occasionally, manual intervention like this is needed with generated code. Make sure
to always review the code that is output.

Step 2: Remove any punctuation and convert all text to lowercase

For this step, we’ll do something a little different. Let’s try generating this function
from a comment in the code. I created the following comment:

	 # create a function to convert the text to lowercase and remove punctuation.

We’re given three different options, as indicated in the toolbar that pops up (figure
2.21).

Figure 2.21  The options are shown in the Copilot toolbar.

You can switch between these options to see examples of code generated by Copilot.
Note that even if you type in this exact prompt with this exact setup, you likely won’t

get three suggestions. You may see anywhere from one to five. They most likely won’t be
the same as this example. Many factors affect what Copilot generates, and it’s dynamic.
This is the nature of generative AI.

Why is the output different every time?
Most large language models (LLMs), including GitHub Copilot, are deterministic in
operation, but the post-processing actions produce varied results. This means they
can generate different outputs each time. Even under similar conditions, your output
may differ with the same input. This variability is both a natural feature and a benefit
of these models, allowing for more creative and diverse responses.

Let’s examine the options given.

Option 1

def clean_text(text):
 """Converts the text to lowercase and removes punctuation"""
 text = text.lower()
 punctuation = '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'
 for character in punctuation:
 text = text.replace(character, '')
 return text

This is a decent option, and I like it. It’s clean and easy to understand what’s hap-
pening. We have some big text replacement operations happening here that can take

	 47A simple Python project

some time. We’re parsing the entire document 30+ times, so that will add some time.
However, this is something we’d reasonably expect. Let’s look at option 2:

Option 2

def clean_text(text):
 """Converts the text to lowercase and removes punctuation"""
 text = text.lower()
 punctuation = '.,;:"!@#$%^&*()-_+=~`[]{}|\/<>?'
 for mark in punctuation:
 text = text.replace(mark, '')
 return text

This option isn’t significantly different. Variable names are changed, and there are
fewer punctuation marks. Finally, option 3 is

Option 3

def clean_text(text):
 """Converts the text to lowercase and removes punctuation"""
 # convert to lowercase
 text = text.lower()
 # remove punctuation
 punctuation = ['.', ',', ';', ':', "'", '"', '!', '?', '-', '(', ')']
 for punc in punctuation:
 text = text.replace(punch, '')
 return text

This version is interesting because it treats each punctuation mark as individual items
in a list instead of a string, which I suspect will be faster. Let’s find out if that’s true.

2.5.3	 Side quest: Testing the function speed

Since this is a significant part of our application, we want to find out which of these
functions are faster, if any. This is a great way to check the code that Copilot is produc-
ing. We’re doing this for two reasons:

¡	We want to know which function is more performant.

¡	We want to review and check the code Copilot is giving us.

Remember that Copilot isn’t producing perfect code that’s ready to use. You need
to check the code it outputs every time. Testing, profiling, and debugging are still
needed. Having knowledge about the languages enough to smell when something isn’t
right is crucial—trust but verify. Let’s verify which method is the most optimal from a
performance standpoint as an example.

We’ll break it into two options based on how the punctuation data is stored. We’ll test
options 1 and 3.

In our file, we create the following two functions:

def clean_text1(text):
 """Converts the text to lowercase and removes punctuation"""
 text = text.lower()

48 Chapter 2  First steps with AI-assisted coding

 punctuation = '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'
 for character in punctuation:
 text = text.replace(character, '')
 return text
def clean_text2(text):
 """Converts the text to lowercase and removes punctuation"""
 # convert to lowercase
 text = text.lower()
 # remove punctuation
 punctuation = ['.', ',', ';', ':', "'", '"', '!', '?', '-', '(', ')']
 for punc in punctuation:
 text = text.replace(punc, '')
 return text

And we’ll create the following code the functions to time them. I asked Copilot Chat:

	 How can I write code to call cleantext1 and cleantext2 on the text from read_text_file
and time them to see which is faster?

It generated the following code, which looks like something I would have created.

	 text = read_text_file('pg26732.txt')

start_time = time.time()
clean_text1(text)
end_time = time.time()
print(f"clean_text1 took {end_time - start_time} seconds")

start_time = time.time()
clean_text2(text)
end_time = time.time()
print(f"clean_text2 took {end_time - start_time} seconds")

Awesome. So, I run it a few times (figure 2.22):

Figure 2.22  Output from our program

	 49A simple Python project

Neither one is slow, but it appears clean_text2 is the faster function here. We’ll use
that. I’ve added additional punctuation marks by asking Copilot Chat to generate a list
of additional punctuation marks.

	 # Please create a thorough list of punctuation marks to avoid, including brackets,
braces, and slashes

The final function is

def clean_text(text):
 """Converts the text to lowercase and removes punctuation"""
 # convert to lowercase
 text = text.lower()
 # remove punctuation
 punctuation = ['.', ',', ';', ':', "'", '"', '!', '?', '-', '(', ')', '[',

']', '{', '}', '/', '\\', '|', '<', '>', '@', '#', '$', '%', '^', '&',
'*', '_', '+', '=', '`', '~']

 # clean the text
 for punc in punctuation:
 text = text.replace(punc, '')
 return text

Now, we can move on with our application.

Step 3: Tokenize the text into individual words

Next, we need to count individual words. This is simple to do in Python, and we can
add this to our clean text function. Creating an entire function that only splits text is
unnecessary. I’ll add a line above return text and type the following comment:

	 # tokenize the text into words

It generates the following line of code, and now we’ll return words[] instead of text.

	 # tokenize the text into words
words = text.split()
return words

Step 4: Count the frequency of each unique word

Now, we want to count the frequency of each unique word. Let’s try a comment prompt
for that.

	 # count the frequency of each unique word in words

This prompt gives us a single option that looks fine. It could be improved by using
Defaultdict() from the collections module. Again, Copilot usually generates code
that works, but it may not be as good as code generated by an experienced developer.
Your suggestion may also show something completely different from this example.

50 Chapter 2  First steps with AI-assisted coding

	 def count_words(words):
 """Counts the frequency of each unique word in words"""
 word_count = {}
 for word in words:
 if word in word_count:
 word_count[word] += 1
 else:
 word_count[word] = 1
 return word_count

Awesome. This program is coming along nicely. Now, we need to display our results in
a human-readable format.

Step 5: Display the top N most frequent words in a bar chart

Now for the fun stuff. Let’s generate a function that builds a graph in Matplotlib. This
tool produces clean and useful graphs with a few simple parameters and helps you dis-
play data in an interesting way. Here’s the prompt we’ll use:

	 # create a function to plot out the top n words on a graph with matplotlib

This gave me a few options, but here’s the one I chose. It’s clear and easy to understand
and includes comments.

	 def plot_word_count(word_count, n):
 """Plots the top n words in a word_count dictionary"""
 import matplotlib.pyplot as plt
 # sort the word_count dictionary by value
 word_count = sorted(word_count.items(), key=lambda x:
➥x[1], reverse=True)
 # get the top n words
 top_words = word_count[:n]
 # create the plot
 plt.bar(range(n), [x[1] for x in top_words], align='center')
 plt.xticks(range(n), [x[0] for x in top_words])
 plt.xticks(rotation=70)
 plt.xlabel('Word')
 plt.ylabel('Frequency')
 plt.title('Top {} Words in the Text'.format(n))
 plt.show()

Now, we just need to tie these functions together. Can Copilot do this for us?

Step 6: Putting it all together

Now it’s time to put it all together into a main function. I want a single function that
calls the functions we just built in the right order. I want this function to run first every
time someone executes the Python file. Here’s the comment prompt I used:

	 # create a main function that runs when the Python file is run and execute the
functions

I wasn’t sure this would work out, but it did. Here’s the generated function:

	 51A simple Python project

	 def main():
 """Main method that runs when the python file is run"""
 # read the text file
 text = read_text_file('data/hamlet.txt')
 # clean the text
 words = clean_text(text)
 # count the words
 word_count = count_words(words)
 # plot the top n words
 plot_word_count(word_count, 20)

I need to rename the file it calls to the name of my text file. I’ll change 'data/hamlet
.txt' to the filename I downloaded:

text = read_text_file('pg26732.txt')

Now, assuming we don’t know Python, if you run this file, nothing will happen. I’ll cre-
ate a comment in the code above the method to prompt Copilot. I want it to generate
code to make this our “main method” executed when the file is run by itself.

I will give the following comment prompt:

	 # execute the main method if this file is run

It generates

	 if __name__ == '__main__':
 main()

We’re just about ready to go. We just need to install Matplotlib and Tkinter. Tkinter is
a library that will show our Matplotlib graph in a GUI window, whether we’re running
Windows, Mac, or Linux. This way, we can reliably show the graph regardless of our
environment:

pip install matplotlib tk

We also need to change the imports a bit. We need to tell Matplotlib to use Tkinter
to display it, which can be done by specifying the library we’ll use to display a window
showing our Matplotlib plot. In addition, we can also ask Copilot for these imports:

	 # show me the libraries I need to import to make this script functional

You should get an output like this. If you don’t know the libraries needed, you can use
trial and error until you get something like

	 import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('TkAgg')

52 Chapter 2  First steps with AI-assisted coding

This way, we can specify Tkinter as our GUI library. Now it’s time to run it!!

python main.py

And we did it! Here are the most used words in the novel Free Air presented in an
easy-to-understand graph (figure 2.23).

Top 20 words in the text

Figure 2.23  Our Matplotlib graph shows the top 20 words in the text file.

This isn’t a complex application, but it shows how quickly you can use GitHub Copi-
lot for your projects. From simple one-off scripts to large enterprise applications, I’m
impressed with how well Copilot grasps context and contributes useful suggestions.

Getting started is easy with these tools. Building them into your workflow may take
more time. Of course, there are many ways you can dig deeper with this tool, and we
certainly will.

	 53Summary

Summary

¡	Be as clear and as descriptive as possible. Copilot evaluates comments and func-
tion names for suggestions. For example, connect_to_database is better than
get_data.

¡	Use complete sentences and clear directions. For example, “Convert the text to
lowercase” is better than “make lowercase.”

¡	Provide sufficient context when selecting code. You improve the results by select-
ing more than just the line of code with a problem. Surrounding text gives the
request more context to work with.

¡	Don’t create large prompts. The saying “Do one thing and do it well” applies to
prompts. If they are too long and complex, they should be broken down to pre-
vent errors.

¡	You can always try different prompts. If the prompt you use in the chat isn’t giving
you what you want, you can get creative and try different things. Make a note of
the prompts that serve you well.

¡	Chat naturally with Copilot as if it were a human. If you get stuck, try explaining
the problem like you would to another person in a real conversation. This is what
the model was designed for, and it works well.

¡	Always review and test generated code. As demonstrated with the text clean-
ing functions, Copilot’s first suggestion may not be the most efficient or secure
solution.

¡	Use Copilot’s different interaction methods appropriately. Code completion
works well for simple tasks, while chat is better for refactoring or understanding
complex code.

¡	Remember that context matters. Copilot analyzes your entire workspace, so
keeping related files open and organized can improve its suggestions.

¡	Don’t be afraid to iterate. As shown in the text-cleaning example, you can gener-
ate multiple solutions and test them to find the best one.

¡	Consider performance implications. While Copilot generates working code, you
may need to profile and optimize it for your specific needs, as demonstrated in
the punctuation-removal comparison.

¡	Include proper error-handling and edge cases. Our example showed how adding
UTF-8 encoding support could make the file reading more robust across differ-
ent operating systems.

Part 2

Building applications
with AI assistance

Great planning and initial setup are crucial for a successful project. Having
an idea and immediately cracking open an IDE is rarely a good approach. Many
developers find the planning process boring and tiresome. Generative AI tools
make these tasks more efficient, accurate, and enjoyable. If you don’t like plan-
ning and setup, they can make the process smoother and faster. If you enjoy plan-
ning, you may find these tools make it even more fun. Modern AI assistants such
as ChatGPT, GitHub Copilot, and Tabnine can change how you handle every-
thing from project architecture to complex functions.

These tools have evolved to understand software projects well. They can
streamline your planning process, helping you with checklists and reminding you
of tasks you may otherwise have forgotten about. They assist by suggesting good
design patterns and maintaining best practices. When used the right way, these
tools can help you build scalable robust systems faster. They can generate project
scaffolding, suggest optimal file structures, create stub methods that follow design
principles, and help debug tricky problems. However, knowing how to prompt
these tools effectively matters. You need to know when to trust their suggestions
and when to rely on your own judgment. The next few chapters will help you
understand how to create that balance.

This part of the book will guide you through building a real Flask web applica-
tion with AI tools as your development partners. You’ll learn to use AI for rapid
prototyping, while keeping control over architectural choices. Chapter 3 covers
planning and requirement gathering with AI help. Chapter 4 shows how to set

56 Building applications with AI assistance

up project structure and create your first working application. Chapter 5 dives into
advanced development techniques using tools such as Tabnine and BlackboxAI.
Finally, chapter 6 focuses on building strong user interfaces and managing sessions
with AI-generated code.

57

3Design and discovery

This chapter covers

¡	Using ChatGPT in the design phase
¡	Breaking down a problem with ChatGPT
¡	Crafting prompts
¡	Using ChatGPT to generate a design document
¡	Generating user stories

Design is key in software development, yet programmers often rush it. I’ve done
this, too. Taking time to plan an app’s architecture leads to happy users and lower
maintenance costs. How can generative AI speed up the design process?

Our goal here is to design a web application that solves a common problem: study-
ing for a certification exam. The app will provide randomized practice tests for exam
preparation. First, we’ll analyze the problem and create a design document with
ChatGPT’s help. Then, we’ll use ChatGPT to improve the document and develop
user stories to guide development.

By collaborating with ChatGPT in the design phase, we can quickly outline archi-
tecture for our app. We’ll also ask ChatGPT-targeted questions to uncover ideas and

58 Chapter 3  Design and discovery

details we may not have considered on our own. The result is a solid foundation to build
and iterate upon as we progress through the project.

Let’s learn how AI can boost creativity and productivity, even early in the software
life cycle. We’ll set ourselves up for easier development by using these generative tools.

3.1	 Getting to know ChatGPT
ChatGPT is an advanced large language model (LLM) from OpenAI. It aims to be
useful, safe, and truthful. It has been trained on a wide range of texts, such as internet
content and books. This training gives ChatGPT a broad knowledge base. However,
there are some limitations to this AI system:

¡	ChatGPT cannot independently authenticate or validate information. Its
responses are generated stochastically. It’s a “best guess” by the model and can
contain inaccuracies. You should always verify the output.

¡	While ChatGPT’s responses can seem convincing, they may lack depth. The
model doesn’t have a genuine comprehension of the topics it discusses.

¡	ChatGPT has no personal identity, opinions, or memory. This limits its ability to
engage in prolonged conversations or exhibit a consistent personality.

¡	ChatGPT doesn’t understand real-world context. For this reason, always review
its output carefully, especially for sensitive or critical tasks.

¡	ChatGPT’s skill set is more restricted than the broad intelligence of humans. It is
particularly adept at tasks such as text generation, but it doesn’t match the overall
versatility of human cognition. Don’t be fooled! It’s not a super-intelligent human.

Even with these limitations, ChatGPT is an invaluable asset for developers. It enables
you to generate high-quality text and code. It also fosters creativity and aids in idea
development.

The key to using ChatGPT effectively is crafting thoughtful prompts and evaluating
responses. We’ll explore some techniques to maximize the benefits of using ChatGPT
for software development, focusing on design and documentation.

3.2	 The problem
As software developers, we love building cool stuff. We overhear someone say, “I’d love
to have an app for that,” and our ears perk up. Instantly, we want to crack open the IDE
and get to work. When starting a new project, one of my favorite questions is glaringly
simple but often overlooked: What problem are we trying to solve?

It’s a question you should ask first and continue to ask throughout the process. There
should be only one answer at the beginning. Let’s look at a problem and then build a
web application to solve it.

Imagine you want to get a HAM radio license. With this license, you can communi-
cate with other radio operators around the world. To get the license, you must pass a
test that assesses your knowledge of radio theory, electronics, and rules and regulations
related to radio communication. The test consists of 35 multiple-choice questions. So,

	 59Creating the right prompt

rather than finding out how well you know the material by taking the test for the first
time, you want to try some practice tests to see how well you do.

The application should use a pool of questions, similar to those on the test, and ran-
domly select 35 to display on the screen. This way, you can practice and see how well you
are doing and what areas you need to study.

This application needs to be implemented as a web-based interface for seamless use
on any computer. You don’t want to download and install software on each of your
devices. We will write it in Python because we’re Python developers and have built many
applications with it. It’s familiar. This approach will allow us to focus on the problem
rather than learning a new language or platform.

We now have enough information to open the IDE and get started. But let’s be smart
about this. What if you want to expand the application to all three levels of HAM radio
testing? What if you want to make it public? There are things to shake out in the design
process before we start.

Our problem so far is simple. We want to

¡	Study for the test by taking practice tests

¡	Have questions similar to those on the test

¡	Have those questions randomly delivered in 35-question sessions

We need to

¡	Build a web application

¡	Have a set of test questions with answers

¡	Store them somewhere

¡	Have an interface to view them

¡	Select 35 of them for a test randomly

This is an excellent start. Let’s see if we can use ChatGPT to break down this problem.
It will help us reveal any blind spots or alternative solutions worth pursuing. We can’t
run blindly into ChatGPT and hope for the best results. We need to craft our prompt
to get exactly what we need. Here are some prompts to help you understand the prob-
lem domain:

¡	“What are common edge cases when building {type of application}?”

¡	“What regulatory considerations exist for {domain}?”

¡	“What nonfunctional requirements are typically important for {application type}?”

3.3	 Creating the right prompt
Let’s talk about prompt engineering. It’s a complex topic, but it becomes intuitive after
a while. There are some important things to think about when creating prompts. We’ll
start with a role prompt. A role prompt instructs the model to act as someone performing
a role. The resulting text is (hopefully) what someone in that role might say. A prompt
includes the following components:

60 Chapter 3  Design and discovery

¡	Introduction—Give ChatGPT a role to fill: “Act as a software design expert.”

¡	Task—Give it something to do: “Help me break down a problem.”

¡	Contextual information—“I want it to be a web app written in Python.”

¡	Instructions—“Include details about structure and outline some potential pitfalls.”

¡	Closing—“Craft the output in the form of a software design document.”

Your prompt isn’t required to have all these components, but if you aren’t getting the
desired results, including these things is helpful.

Using this example, our prompt will look as follows:

	 Act as a software design expert. Help me break down a problem. I want to create
practice tests to study for a HAM radio license. I will take a pool of questions from
the test. I want to draw 35 questions randomly from that pool. I want to show the
possible answers and select an answer. At the end of the test, I would like to grade
it with a percentage. Include details about the structure and outline some potential
pitfalls. Craft the output in the form of a software design document

This type of prompt—often referred to as a persona prompt or a role prompt—helps shape
the response style, and it should be effective in getting us started.

In addition to the role prompt, other basic prompt types include

¡	Chain of thought prompting—Ask the AI to “think step by step” when breaking
down complex design problems.

¡	Few-shot prompting—Show examples of what good output looks like before asking
for your own.

¡	Persona prompting—Beyond just “Act as a software design expert,” try “Act as a
software architect with 15 years of experience in scalable systems” for more spe-
cific expertise.

Now, let’s learn more about these techniques and how to refine them for our workflow.

3.4	 Measuring the effect on the design process
To understand the real benefits of using ChatGPT in the design process, let’s look at
how much time you can save. Your results may vary, but overall, it’s almost always a net
gain. As table 3.1 shows, we save significant amounts of time generating documents,
while they still retain our original intent.

Table 3.1  Time saved by using ChatGPT

Documentation task Traditional method ChatGPT-assisted Time savings

System overview 90–120 minutes 15 minutes ~83%

Technical stack 60 minutes 10 minutes 83%

User stories 120 minutes 25 minutes 79%

Complete design document 6–8 hours 1–2 hours ~75%

	 61A design document created with ChatGPT

The biggest gains come from not starting with a blank page. While traditional methods
require drafting all content from scratch, ChatGPT generates a comprehensive first
draft in seconds. This draft then needs refinement. The shift from creation to curation
dramatically accelerates the documentation process.

In my experience, a team of developers can spend up to 70% less time in design
meetings, with no reduction in documentation quality. We’ve never just generated a
document and run with it. The documents always require editing and revisions; how-
ever, that overhead is still present in any documentation project, and the brainstorming
and initial assembly costs are now gone.

ChatGPT and other LLMs are great for “removing the boring stuff” so you can work
on more creative endeavors. This principle is a recurring theme throughout this book.
The biggest reason to adopt this approach is to save valuable time for more interesting
work.

3.5	 A design document created with ChatGPT
The software development life cycle (SDLC) is a framework that defines the stages soft-
ware goes through, from initial planning to deployment and maintenance. The SDLC
brings structure to an otherwise chaotic process. You are likely already familiar with
this framework, so we only cover it briefly here.

Understanding the SDLC can help us align our workflow to industry best practices. It
can also show the types of documents we need to create for each step of the way. I don’t
want to get buried in documentation here, but a simple guide will help us stay on track
and know what to expect.

We will use ChatGPT to create that guide with a simple design document. The term
“design document” is intentionally abstract. This won’t be a complex set of documents
you would create for a large enterprise project. I aim to draft a simple outline docu-
ment to structure my ideas for this application. We’ll create it with the SDLC in mind.
Remember, this model varies depending on the organization or person creating it. This
is my best understanding of the model.

The SDLC process usually follows these steps:

1	 Planning

2	 Analysis

3	 Design

4	 Implementation

5	 Testing

6	 Deployment

7	 Maintenance

Each stage builds on the last, with some overlap and iteration as needed. Knowing what
is expected to happen at each phase sets expectations and helps surface any gaps early
on (figure 3.1).

62 Chapter 3  Design and discovery

Planning

Analysis

Design

ImplementationTesting

Deployment

Maintenance

Figure 3.1  An example of the software development life cycle

As we work with ChatGPT to design our app, we’ll try to address the key elements pre-
sented here and plan for them. Our goal is to produce documentation that captures
requirements and gives us guidance.

We start this process with a prompt and then work within a single context to refine and
build on the document. As we’ve discussed, the ChatGPT context is like a real-life conversa-
tion. The thread of conversation you have with ChatGPT lives in the side panel. Figure 3.2
shows the section where your conversations are stored, as indicated by the arrow.

Figure 3.2  The arrow shows where to find conversations in ChatGPT.

	 63Software design document: HAM radio license practice test application

This is important to remember because information you’ve provided is the context,
and ChatGPT uses it for future generations. It includes the current conversation his-
tory, specific instructions given, and some assumptions based on the dialogue.

To start out our conversation, we’ll use the prompt we’ve just created:

	 Act as a software design expert. Help me break down a problem. I want to create
practice tests to study for the HAM radio license. I will take a pool of questions from
the test. I want to draw 35 questions randomly from that pool. I want to show the
possible answers and select an answer. At the end of the test, I would like to grade
it with a percentage. Include details about structure and outline some potential pit-
falls. Craft the output in the form of a software design document.

Note that I asked for a software design document to keep the output abstract. Had I
wanted to be more specific, I would have asked for process documentation, budget, or
planning documents. But I just want a single, simple document to start out. I want to
keep the goal in mind when crafting a prompt.

Red flags in AI-generated design documents
There are things to watch out for with AI-generated design documents, such as

¡	Overly generic architectural patterns without justification
¡	Technology recommendations without considering your specific constraints
¡	Missing error handling or security considerations
¡	Ignoring cross-platform compatibility when it’s critical for your app

I sent the prompt we crafted to ChatGPT 4.0, and the next section contains the out-
put. It’s the direct result of my query in ChatGPT. Note that at the time of this writing,
ChatGPT 4.0 is only available with a premium account. The free account only allows
ChatGPT 3.5; however, if you’re following along, ChatGPT 3.5 will work for this, too.
Just remember that the output will be different from what you see here, regardless of
the version you use. Next, we’ll see what ChatGPT produced.

3.6	 Software design document: HAM radio license practice
test application
Let’s jump in and see what ChatGPT produced. We will examine each section of the
document in turn, beginning with the introduction.

	 1. Introduction

The purpose of this document is to provide a detailed and structured plan for the
creation of a HAM radio license practice test application. The primary function of this
application will be to generate randomized 35-question tests from a predetermined
question pool, present possible answers for each question, and finally provide a
score percentage at the end of each test.

64 Chapter 3  Design and discovery

The introduction dives right into the purpose of the document. It’s mostly rewording
the input we gave it and writing it in a formal way. It immediately describes the prob-
lem and the application’s function. It could use a little more detail about what the pro-
gram should do, but we’ll address that.

	 2. System Overview

The system can be broken down into several main components:

Question Pool Database: This is where all potential questions and corresponding
answers will be stored.

Question Selector: This component will handle the random selection of questions
from the question pool.

User Interface: This is where the user will interact with the system to take the prac-
tice tests and view their results.

Grading Component: This will grade the test upon completion and provide a score.

The system overview gives us a general idea of the parts of the application. ChatGPT
breaks it down into four main components. These abstract components help us think
about the problem a layer deeper. While this may seem obvious to even beginner
developers, these suggestions help create a model in your mind about how this system
should work.

The next section digs into the details. This is the next layer to think about. One thing
to notice is the inclusion of pitfalls, which we asked for in our prompt.

	 3. Detailed System Design

3.1 Question Pool Database

The question pool database will store all the possible questions, along with their
multiple-choice options and correct answers. This could be implemented using a
SQL database or a NoSQL database like MongoDB, depending upon the structure
and volume of data.

Structure

A basic structure would have a table/collection with the following fields:

question_id: A unique identifier for each question.

question_text: The question text.

options: The possible answers for each question. This could be an array of strings.

correct_option: The correct answer for the question.

Pitfalls

¡	If the questions, options or answers change over time, there needs to be a system
for updating the question pool database to ensure accuracy.

¡	Considerations for data validation and cleansing are also needed to ensure that
incorrect or poorly formed data do not enter the system.

3.2 Question Selector

The question selector module will use a randomizing algorithm to select 35 ques-
tions from the question pool database for each test.

	 65Software design document: HAM radio license practice test application

Pitfalls

¡	Care should be taken to ensure true randomness in question selection.

¡	The same question should not appear more than once in a single test.

Even a quick glimpse of our description tells you the database for this application is
simple. The document outlines a data structure and gives us some suggestions for a
database server. We have a single table that contains some basic fields. In the pitfalls,
we have a couple of considerations for scaling and maintaining the system.

	 3.3 User Interface

The User Interface (UI) will present the questions and answer choices to the user,
accept their answers, and present their score at the end of the test. The UI could be
implemented as a web application, a desktop application, or a mobile app, depend-
ing on requirements.

Pitfalls

¡	The UI needs to be intuitive and user-friendly. A poor UI could frustrate users and
hinder the effectiveness of their study sessions.

¡	The design should also consider accessibility needs to cater to a wider audience.

This section is sparse. We need a UI, and it suggests a simple workflow. It also tells us we
can implement it as a web, desktop, or mobile application, which is fairly obvious but
good to note.

	 3.4 Grading Component

The grading component will compare the user’s answers with the correct answers
from the question pool database to calculate a final score, which will be expressed
as a percentage.

Pitfalls

¡	This component must handle cases where the user doesn’t answer some ques-
tions. Those should be marked as incorrect for scoring purposes.

¡	Potential inconsistencies or inaccuracies in grading due to any discrepancies in
the database need to be handled.

This section is also sparse, and there isn’t much to discuss. We need something that will
compare the user’s answers to the correct ones and calculate a score. The pitfalls are
helpful. ChatGPT mentions things to think about, such as the user not answering ques-
tions. What should we do about that? Furthermore, it also includes a reminder about
potential database discrepancies.

	 4. Future Considerations

The initial system design as outlined above is minimal and function specific. How
ever, there are several additional features that could be added over time to increase
its utility:

¡	Tracking user performance over time and providing performance analytics

66 Chapter 3  Design and discovery

¡	Allowing users to focus on specific areas or question types

¡	Integrating with a larger learning platform

By breaking down the application into these components and understanding poten-
tial challenges, we can ensure a robust and efficient design that provides a user-
friendly tool to help users prepare for their HAM radio license test.

ChatGPT suggests a few features that might be useful. I’m always leery of these types of
things in software documentation. Thinking too far ahead leads to stubbing out things
we’ll never build or falling into the YAGNI (you aren’t gonna need it) trap. However,
there’s no harm in looking at the suggestions.

Tracking user performance over time is a great idea. This helps us as well as the
students. It mentions allowing users to focus on specific areas or question types, which
is also handy. These are good things to think about, so I’ll leave this section in the
document.

	 5. Technical stack

Based on the functionality and design considerations, the following technical stack
could be utilized:

Backend: A Node.js server running Express.js for handling API requests and server-
side operations.

It recommends a Node.js backend for our project. We’ve already decided we’re using
Python for this because that’s where our expertise lies. We will change this by altering
our context with additional prompts soon. Here’s what it recommends. Though we
won’t use it, I’m happy with the fact that ChatGPT suggested a tech solution with great
potential like Node.

The technical stack is where most developers get excited. We don’t want to exclude
this section, although we will make some changes to it.

	 Database: MongoDB or a SQL database like PostgreSQL for storing and managing
the question pool.

Again, we have some great choices. MongoDB and PostgreSQL are solid products. In
my opinion, we don’t need a database that complex. This is a very small dataset that
doesn’t require complex operations or data safety, so I’ll use SQLite instead. However,
MongoDB and PostgreSQL are excellent alternatives.

	 Frontend: A React.js application for the user interface would allow for a dynamic,
user-friendly experience.

ChatGPT suggests React.js for the frontend—a solid choice and one likely influenced
by the number of people using it. However, we’re going to use Flask. Using Flask on
the frontend allows for easy integration with the Python backend. We don’t have the
overhead of introducing and setting up a React system for a small, simple UI. Instead,
we can stick with Python.

	 67Software design document: HAM radio license practice test application

	 Hosting/Deployment: The application could be hosted on AWS or any other cloud
platform, providing flexibility and scalability.

I’m relieved to see ChatGPT isn’t suggesting building out some server. It suggests
AWS or another cloud platform, which is the best choice for an application like this. It
doesn’t provide great detail, but we can work with it.

	 6. Development Plan

6.1 Requirements Gathering

Conduct a detailed study to gather all possible features, requirements, and con-
straints for the application. Define user roles and permissions if needed.

6.2 Database Design and Setup

Set up the database as per the design mentioned in section 3.1. Import the initial
set of questions into the database.

6.3 Backend Development

Implement the server-side functionality, such as the random question selector and
grading system. Set up appropriate API endpoints for fetching questions, submitting
answers, and receiving grades.

6.4 Frontend Development

Develop the user interface following the best practices for UX/UI. Ensure it is easy to
navigate, aesthetically pleasing, and functional across different device types.

6.5 Testing

Carry out rigorous testing to identify and fix any bugs or issues. Both unit testing and
end-to-end testing should be included.

6.6 Deployment

After testing, deploy the application to the chosen cloud platform.

In this section, ChatGPT lays out what you need to do once you’ve started the process.
It goes through a familiar SDLC process.

	 7. Possible Challenges

7.1 Data Security

Ensure that appropriate security measures are in place to protect user data and to
prevent unauthorized access to the question pool.

7.2 Scalability

The system should be designed to handle an increasing number of users and ques-
tions. This could involve planning for database sharding and considering horizontal
scaling of the server setup.

7.3 Accessibility

Ensure that the software complies with accessibility standards and best practices,
so that it can be used by as wide an audience as possible.

68 Chapter 3  Design and discovery

8. Conclusion

By following the above detailed design and development plan, it would be feasible
to develop an efficient and user-friendly HAM radio license practice test application.
This application would help users prepare for their exams and potentially enhance
their chance of success.

However, the design and development of software applications require careful atten-
tion to detail, thorough testing, and continuous refinement based on user feedback.
These factors, along with a solid foundational design as provided in this document,
will guide the successful development and deployment of the application.

Overall, I’m satisfied with the document that ChatGPT produced so far. It’s thorough
and provides some real-world suggestions that pass the sniff test. Let’s see if we can get
some additional details from ChatGPT.

To conclude the document, we have some possible challenges, which include data
security, scalability, and accessibility. There’s nothing new or groundbreaking here. But
it’s good to see it’s included for us.

3.7	 Digging deeper
The document we produced is a good start to our project’s journey. We could work
from this document and improvise or modify the plan as we go. This is how most of my
software projects have gone in the past. We work on a plan, agree on it, and then spend
the rest of the time building and modifying it. We can prevent this excessive churn in
this process by deciding on some key details upfront. Let’s examine some sections of
our document in more depth and try to bring more clarity.

3.7.1	 System overview (section 2)

Let’s look at our system overview section. For now, we have the following:

	 2. System Overview

The system can be broken down into several main components:

Question Pool Database: This is where all potential questions and corresponding
answers will be stored.

Question Selector: This component will handle the random selection of questions
from the question pool.

User Interface: This is where the user will interact with the system to take the prac-
tice tests and view their results.

Grading Component: This will grade the test upon completion and provide a score.

This is a reasonable overview of the system. It’s not too long or detailed. It outlines the
main system components. But we’d like just a bit more detail here. If we present this
document to executives, it will work. If we send it to engineers, they’ll want far more
detail. Let’s see if ChatGPT can help with this. I’ll add the following prompt to the
same chat instance as before.

	 69Digging deeper

	 Give more details in “2. System Overview.” Elaborate on the key subjects.

With this prompt, I’m keeping it simple. I asked for more details in the specified sec-
tion. Then, I mentioned elaborating on key subjects. This is to direct the prompt to the
exact detail I want. I run this script, and this is what ChatGPT came up with.

	 2. System Overview (Detailed)

The system for the HAM radio license practice test application can be divided into
several key components, each playing a crucial role in achieving the desired function-
ality. These components interact with each other to form a cohesive system. Here
are the elaborations on each one:

Question Pool Database: This database serves as the primary store of information
from which the system operates. It houses all potential questions that can be asked
on the HAM radio license test, their corresponding answers, and the multiple-choice
options that will be presented to users. The database will be set up to facilitate
efficient retrieval of question sets, and secure updating of question-answer pairs as
required. The system’s efficiency and effectiveness will heavily rely on the organiza-
tion and structuring of this database.

Question Selector: Once the question pool is established, the question selector
component becomes the key element in generating each practice test. This module
will use algorithms to select 35 questions at random from the question pool for each
test a user takes. The randomness is an essential factor in mimicking the unpre-
dictability of the actual test, thus better preparing the user. The complexity of these
algorithms can range from simple random sampling to more complex methods to
avoid question repetition and to ensure an even coverage of topics.

User Interface: This is the point of interaction between the users and the system.
The user interface needs to be well-designed, not just aesthetically, but also func-
tionally, to facilitate ease of use. It will present the randomly selected questions and
corresponding answer choices to the user, collect their responses, and finally pres-
ent their score upon test completion. It also needs to handle and display system or
user-generated errors appropriately.

Grading Component: The grading component is integral to providing feedback to
users. After a user completes a test, this module will take the user’s responses,
compare them against the correct answers from the question pool database, and
calculate the user’s score. This score will then be converted into a percentage for
easy understanding and standardization. This immediate feedback mechanism is
crucial for effective learning and preparation.

These components work together to provide the full functionality of the system. The
database acts as the primary information source, the question selector uses this in-
formation to generate unique tests, the user interface presents these tests to users
and collects their responses, and the grading component uses these responses to
provide immediate feedback to the user. The careful design and interaction of these
components will determine the overall success and utility of the HAM radio license
practice test application.

70 Chapter 3  Design and discovery

This section is now far more detailed, with important information added. Rather than
a single sentence describing each component, we now have a paragraph. There’s more
detail and more to consider when thinking about our application. The value here isn’t
in the ready-to-go text it generates. Sure, we have a nice full document, but it could be
loaded with inaccuracies. We must review and double-check all the information. Don’t
rely on implied accuracy!

The primary advantage of using ChatGPT in this case is outlining concepts and
exploring ideas you may not have thought about. It helps you start the documentation
process and assists you in writing documentation.

3.7.2	 Technical stack (section 5)

Let’s dive into another section and extract more details. Again, we’re doing this to get
a general outline and suggestions. Because LLMs are trained on vast sets of similar
texts, the structure they come up with will likely resemble formats you’ve encountered
or created yourself. It can also bring up topics and ideas you haven’t thought of yet.

I want to get additional details from the technical stack section. I also want to influ-
ence the model a bit. I don’t want to use React, Node.js, or Mongo. We’re Python devel-
opers! One of the most popular web frameworks for Python is Flask, and it will allow us
to use Python to build a web application.

We can steer the model for different results by adding to the existing context. We can
do that with a single prompt.

	 This web-based application will be a typical Flask application.

Now, the context of our chat will involve Flask and the technologies around it. This
helps the model know our intentions clearly.

To get the additional details, I decided to use a very simple and concise prompt.
Here’s the prompt I used:

	 Give more details for section “5. Technical stack.”

Notice that this time, I gave a very terse prompt. No need to add “Elaborate on the key
subjects” because we’re still in the same chat context. ChatGPT will know I’m looking
for the same thing as before, but with a different section. Let’s see what the model cre-
ated for us.

	 5. Technical Stack (Detailed)

This section describes the selection of tools and technologies (referred to as the
“tech stack”) for our HAM Radio License Practice Test Application.

Backend: A server-side web framework is necessary to handle HTTP requests and
serve web pages. In our case, we’ll be using Flask. Flask is a lightweight Python
web framework that is easy to use and provides a lot of flexibility for developers. It
doesn’t include many of the tools that heavier frameworks like Django come with, but
this means that developers have more freedom to choose the tools they want to use.

	 71Digging deeper

Database: Given the structure of our data (questions, multiple-choice options, and
correct answers), both SQL and NoSQL databases could be used. PostgreSQL or
MySQL could be appropriate choices if we choose SQL. Both are robust, reliable,
and widely used, offering strong performance, powerful features, and good support
for various data types and index strategies. If we go with NoSQL, MongoDB could
be a good choice due to its flexibility, scalability, and performance. MongoDB is a
document-oriented database that stores data in flexible, JSON-like documents.

Frontend: For the user interface, we will use React.js, a JavaScript library for building
user interfaces. React allows for the creation of reusable UI components, which can
greatly speed up development and result in code that’s easier to maintain. React is
maintained by Facebook and is widely used, so it has a large community and a lot of
resources for developers.

Hosting/Deployment: Deployment and hosting could be done on Amazon Web Ser-
vices (AWS). AWS offers a robust, secure, and scalable environment for deploying
web applications. With AWS, you can leverage various services like EC2 for running
your application, RDS for database management, and S3 for storage. AWS also of-
fers excellent scalability, which is beneficial for the future growth of the application.

Version Control: We will use Git for version control, which allows us to track changes
in our code over time and collaborate effectively. GitHub can be used to host our Git
repositories.

Testing: Python’s unittest module can be used for back-end testing, while Jest and
React Testing Library can test React components on the front end.

Containerization: We could use Docker for creating a container for our application. This
helps to eliminate issues related to differences in local development environments.

Continuous Integration/Continuous Deployment (CI/CD): We could use tools like
Jenkins or GitHub Actions for setting up a CI/CD pipeline. This would enable us to
automatically build, test, and deploy our application whenever we push changes to
our codebase.

This proposed tech stack is designed to provide a balance between performance,
development speed, and ease of use. However, the exact tools and technologies
used may vary depending on specific project requirements, developer familiarity, and
other factors.

This result generates some additional details that seem accurate. The document lays
out our application very nicely. I will modify many of these details for the final doc-
ument and trim some things. ChatGPT has saved me a considerable amount of time
here. While I won’t just copy and print this text, I have an outline and guidance to help
me. ChatGPT provides tremendous value for outlining sample ideas.

Why is ChatGPT suggesting React.js?
ChatGPT suggests React.js instead of Flask for the frontend, even though we’ve speci-
fied using Flask for the frontend. There’s a good reason for this, and it’s not a mistake.
Developers frequently use React.js as a frontend in addition to Flask and the Flask
API. It’s likely that the model has seen this combination so many times it assumes we

72 Chapter 3  Design and discovery

(continued)

will do the same. There’s nothing wrong with this pairing. I would certainly consider it
if we were to build a larger, more complex application. However, the simplicity of this
application will allow us to use Flask for the frontend as well. This will save us time
since we won’t have to configure React.js and set it up. We’ll just use HTML templates.

So far, ChatGPT has acted as a software design expert and created a basic document
outlining the architecture for our Python web application. The document includes
important sections such as

¡	System overview

¡	Technical considerations

¡	Development roadmap

This is a good rough draft for our initial design. However, this documentation doesn’t
cover something very important—the user’s point of view.

We can expand the design by having ChatGPT take on another role—that of the
product owner. The product owner is the person who represents the user of the applica-
tion and ensures their needs are met. By asking ChatGPT to act as one, we can generate
user stories to capture requirements for the application from the user’s point of view.
Let’s see what ChatGPT comes up with.

Using AI to help your tech stack
Here are some additional techniques to help you evaluate tech choices:

¡	Pros/cons analysis of different frameworks for your specific use case
¡	Specifying questions to determine if the proposed technology is appropriate
¡	Prompts for getting migration paths if technologies need to be changed later

3.8	 Generating user stories for our project
Organizing tasks in an optimal way is an art. This isn’t a book about project manage-
ment, so we won’t explore all the possibilities here. We will, however, see what ChatGPT
can do to help us organize our project. We’ll start by having it generate some user
stories for our project.

I want to go down a level deeper into the project. The projects I’ve been working on
for many years have had a product owner involved. Product owners manage the project
and control the backlog of tasks. They try to assign tasks in an orderly manner to fit the
flow of the project. It’s a tough job, and ChatGPT can help with it.

ChatGPT will change from a software design expert to an experienced product owner. We’ll
still be in the same context (chat) we used to generate the previous documentation.
ChatGPT is aware of the project, so we won’t have to add additional background infor-
mation to our prompt.

	 73Generating user stories for our project

The next prompt I send is

	 Act as an experienced product owner. Create user stories for this software project.

This is the prompt I used with GPT-4, and we’ll look at the output. I intentionally kept
it short and sweet, so the request was clear.

3.8.1	 Defining roles in prompts

ChatGPT generates content based on what it thinks someone in that role will say. By
providing a role such as “software designer” or “product owner,” we set the context for
the information we want to generate.

Roles give ChatGPT a persona, guiding the output’s style and substance. As a soft-
ware designer, it will provide technical details. As a product owner, it will focus on user
needs. Roles such as marketer or CEO would yield different perspectives.

Clearly defining a role provides a lens through which ChatGPT views the problem.
This role-playing mirrors real life. The CEO of the company will see software problems
differently from a developer. They will also have entirely different conversations, and
using roles helps ChatGPT emulate that. You’re creating a persona to discuss the prob-
lem with. You wouldn’t ask a person in finance which database provider to consider. We
can interact with ChatGPT just like a real person in that role.

Specifying roles in prompts is a great way to steer the output of ChatGPT. It saves
guesswork and optimizes your time. Otherwise, the model may present less informa-
tion that you don’t care about. Also, this approach allows you to problem-solve from
different angles and can uncover things you haven’t thought about. Let’s see what this
prompt from a new role gives us.

3.8.2	 The output: User stories document

The following is the output from ChatGPT, unedited, that builds user stories based on
our previous prompt and the context of the overall conversation. ChatGPT knows as
much about our project as we do, based on our conversation so far. Here’s what it gen-
erated for my user stories:

	 User Stories for HAM Radio License Practice Test Application

1. User Registration and Authentication

1.1 As a new user, I want to be able to register an account so that I can have a per-
sonalized test-taking experience.

1.2 As a registered user, I want to log in to access my personal test dashboard and
track my progress.

1.3 As a registered user, I want to reset my password in case I forget it.

2. Accessing the Test

2.1 As a user, I want to start a new practice test so that I can test my knowledge on
HAM radio topics.

74 Chapter 3  Design and discovery

2.2 As a user, I want to see a clear indication of how many questions are in each test
so that I can manage my time effectively.

3. Taking the Test

3.1 As a user, I want to be presented with one question at a time to focus on answer-
ing each question without distraction.

3.2 As a user, I want to see multiple-choice options for each question so that I can
select the best answer.

3.3 As a user, I want the ability to skip questions and return to them later before
submitting the test.

3.4 As a user, I want a timer that shows me how much time I have left for the test
to manage my pace.

4. Submitting and Grading

4.1 As a user, once I’ve answered all questions or the time is up, I want to submit
my test for grading.

4.2 As a user, after submission, I want to see my test score as a percentage to un-
derstand how well I performed.

4.3 As a user, I’d like to see which questions I got wrong, and what the correct an-
swers are so that I can learn from my mistakes.

5. Tracking Progress

5.1 As a registered user, I want to see a history of my past test scores so that I can
track my progress over time.

5.2 As a registered user, I want insights on areas/topics where I need improvement
based on my test results.

6. User Interface and Experience

6.1 As a user, I want an intuitive and friendly interface so that I can navigate the
application easily.

6.2 As a user, I want to see helpful feedback messages or alerts if I forget to answer
a question or if there’s an error in the system.

7. Accessibility and Usability

7.1 As a user, I want the application to be accessible, catering to users with disabil-
ities, ensuring everyone can use it without hindrance.

7.2 As a user with a slow internet connection, I want the application to load efficiently
without much waiting time.

8. Additional Resources

8.1 As a user, I’d like to have access to additional study materials or resources
related to HAM radio to aid my preparation.

8.2 As a user, I’d like a frequently asked questions (FAQ) section in case I have com-
mon queries about the test or the platform.

9. Feedback and Support

9.1 As a user, I want the ability to provide feedback about the questions, user inter-
face, or any bugs so that the system can be improved.

	 75Generating user stories for our project

9.2 As a user, I want a support or help section where I can get assistance if I face
any challenges.

These user stories outline the primary interactions and expectations users might
have with the system. As development progresses, new stories might emerge, and
existing ones may need to be refined based on user feedback and changing project
requirements.

3.8.3	 Analyzing the output

Now that we have ChatGPT’s initial draft of our user stories, we will scrutinize the con-
tent. As I’ve said before, you must perform due diligence and review all the output
from ChatGPT. Don’t blindly copy and paste code, and make sure you understand the
output. Generative AI provides great value in rapidly producing frameworks and out-
lines. However, they must be reviewed.

Before diving into the details, we’ll take a high-level view. Do the user stories follow
a logical progression that mirrors the user’s journey? Does it seem accurate? Does the
language resonate, or does it need to be tweaked a bit? This critical step allows us to
shape the output into documentation that fits our needs. With good reviews, we use
ChatGPT’s speed without compromising accuracy.

The next section reviews the stories individually to extract the useful parts and
determine what needs adjustment. The goal is to retain ChatGPT’s framework, while
fine-tuning the content to our specifications. With thoughtful examination and edit-
ing, we can craft documentation that clearly captures user and technical requirements.

Additional prompts that help with document generation include

¡	“Create a technical specification template for a REST API.”

¡	“Generate a database schema design document outline.”

¡	“Create an architecture decision record template.”

3.8.4	 User stories document in detail

This output looks great at a quick glance. I can see areas where I’ll likely make changes
to our application, but it’s a great start. Let’s look at each section and see whether it
meets our needs.

	 User Registration and Authentication

This section walks us through the first steps in the process. We can generate tasks
from these high-level items: registering an account, a personal dashboard, and reset-
ting the password. It also includes why we’d like to do this. So, the user can have a
personalized test-taking experience, track their progress, and reset their password.

Accessing the Test

This section sheds little light on content and should be rolled into another section. It
outlines a story for starting a new test and another step to see how many questions
are in each test. These are simple requirements but still need to be added to our
backlog.

76 Chapter 3  Design and discovery

Taking the Test

Section three digs deeper into the process. It shows a workflow of the user being
presented one question at a time, with multiple options for each. It also outlines a
feature for skipping questions and returning to them later and a timer. These are
things I hadn’t yet considered for my application. I appreciate the idea generation
ChatGPT has provided us.

Submitting and Grading

This section is crucial to letting the student know what their score was. It outlines
the process of submitting the test for a grade, converting it to a percentage, and
showing what answers were wrong. All great features we can think about adding to
our application.

Tracking Progress

This section digs deeper into the process and suggests adding more features.

Namely a history of past scores and areas for improvement. These are a bit complex
for an MVP, but we may implement them later.

User Interface and Experience

In section six, we have interface concerns addressed, however they’re abstract. It
outlines creating an intuitive interface with helpful feedback. These are implied func-
tions regardless, so we should give more detail to this section for our project.

Accessibility and Usability

This section is very important. If we want everyone possible to use this application,
we need to accommodate as many people as possible. As a personal note on re-
wording: I don’t like the phrase “cater to users with disabilities.” It has a negative
connotation so that I wouldn’t add this phrase to a user document. I will find another
way to say I want my software to be inclusive of others. This is an example of using
the tools to outline your ideas while adding your own voice. You should absolutely
reword text when needed.

Additional Resources

This section outlines the addition of additional resources. It also outlines a new fea-
ture, the FAQ section. Again, this is an idea I hadn’t thought much about, but thanks
to GPT-4, it’s here. This is certainly something I will consider in the plan.

Feedback and Support

Section nine is the final section and adds some features to our application. We’re
adding the ability for users to provide feedback about the questions or the applica-
tion itself. And it suggests creating a help section for the application.

This follows our software’s “user journey” from start to finish. It’s a decent start to our
collection of user stories. Remember, generative AI should assist you in your task rather
than do the task for you. This applies to documentation just as much as code. The doc-
umentation we’ve generated so far is decent. We will use this as a guide to building
our application. In some ways, we’ll follow it closely. Most software design documents
aren’t set in stone, and this document is no exception. We’ll follow it closely in some
areas and stray from it in others, depending on the problem. In the next chapter, we’ll
dig into coding the first version of our application.

	 77Summary

Summary

¡	Precise prompts boost AI effectiveness. Well-crafted prompts state the task, con-
text, and specific instructions clearly. Vague prompts lead to guesswork and poor
results. Detailed prompts yield more accurate and useful code.

¡	AI collaboration improves through refinement. Treat AI interaction as a conver-
sation. This means refining prompts based on your initial results. This dialogue
helps you guide the AI toward better outputs.

¡	Evaluate multiple responses for quality. Creating and comparing various AI
responses helps find the best solution. This method ensures we don’t accept
poor initial results. It also boosts code quality.

¡	Technical verification is key for AI content. While AI tools offer valuable help,
all generated code and suggestions need human validation. You must use your
expertise to fill knowledge gaps and ensure accuracy.

¡	Strategic AI integration balances help with independence. Using AI tools well
means using them for brainstorming, drafting, and everyday tasks. However,
it’s important to retain critical thinking and technical judgment. The goal is to
enhance human abilities, not replace crucial developer decisions.

78

4Coding the first version
of our application

This chapter covers

¡	Extracting software requirements from a design
document

¡	Setting up a Python virtual environment
¡	Creating code stubs to lay out the application

structure
¡	Organizing a Flask web application
¡	Running a simple Flask app for the first time

In this chapter, we’re diving headfirst into the wild world of developing software with
AI. By now, you’ve gotten a taste of what AI can do, and we’re just getting started. We
will use AI extensively in this chapter, and by the end, you’ll be even more comfort-
able with integrating these tools into your workflow.

We begin our journey by building a useful application for HAM radio test prepara-
tion. We’ll explore ChatGPT and Gemini and show how each can assist us as we build
our project. In the following chapters, we’ll use these and other new tools. As you
progress, you’ll develop a clearer sense of how and when to use the tools.

	 79Stubbing: Building the skeleton of your application

Creating software is like building a house. The foundation is the first step; you can’t
start without it. Building the rest of the house will be a struggle if the foundation doesn’t
meet the requirements (figure 4.1). If you don’t have the time to be thoughtful and do
it right, you won’t have the time to fix it later.

Figure 4.1  The foundation is the most crucial part of your project. Generated with Midjourney,
a generative AI image-building tool.

We will use generative AI to build a solid foundation for our application. We’ll turn
abstract design concepts into code. We’re also going to focus on stubbing parts of our
application. Stubbing is when you create a simplified piece of code, known as a “stub,”
that acts as a stand-in for functional code. Once you’ve built several stubs, you can con-
nect them and run the application. Then, you fill in functionality to make each piece
functional.

You’ve probably done this countless times in your career, but now there is the power
of generative AI to help speed things along. Once you’re comfortable using these tools
for assistance, it will become a part of your application creation routine. Let’s load up
our tools and get started.

4.1	 Stubbing: Building the skeleton of your application
Stubbing is a fundamental technique in software development where simplified place-
holder versions of code components are created before implementing the full func-
tionality. It is like building the frame of a house before adding the walls, plumbing, and
electrical systems. The stubs provide a way to test the overall structure and flow of an
application early on, without getting bogged down in the details of individual compo-
nents. Some of the benefits of stubbing are

80 Chapter 4  Coding the first version of our application

¡	Early integration—Stubbing allows you to integrate different parts of your appli-
cation sooner, identifying potential compatibility problems early in the develop-
ment process.

¡	Parallel development—Team members can work on different components simulta-
neously, using stubs to simulate dependencies.

¡	Testability—Stubs provide a controlled environment for testing, where specific
components can be isolated and evaluated for functionality.

¡	Faster iteration—By focusing on the overall structure first, it is possible to iterate
faster and make significant changes without rewriting large portions of code.

4.1.1	 A simple code example

Let’s say we’re building an application that needs to connect to a database. Instead of
immediately writing the complex database connection code, we can create a stub:

class DatabaseManager:
 def __init__(self):
 pass

 def connect_to_database(self):
 # TODO: Implement this method to connect to the database.
 print("Connecting to the database...") # Placeholder
 return True # Simulate successful connection

 def fetch_data(self, query):
 # TODO: Implement this method to fetch data from the database.
 print("Fetching data...") # Placeholder
 return [] # Simulate empty result set

In this example, connect_to_database() and fetch_data() are stubs. They don’t
actually connect to a database or fetch data. Instead, they print placeholder messages
and return dummy values. This feature allows us to test the parts of our application that
use the DatabaseManager, even without an active, fully functional database connection.

As we develop the application, we can gradually replace these stubs with real imple-
mentations. Such an iterative approach makes a development process more manage-
able and less prone to errors.

By starting with stubs, you create a working skeleton of your application, which
enables you to test, refine, and build on a solid foundation. This is where generative
AI tools can be incredibly helpful, quickly generating these initial stubs based on your
specifications. Let’s gather our requirements and build stubs from them.

Stubbing strategically
Effective stubbing creates a solid foundation:

¡	Create stubs for a feature before implementing it.
¡	Use generative AI to suggest method signatures and class structures.

	 81Extracting requirements from the design

¡	Start with empty functions to establish interfaces between components.
¡	Consider implementing one feature at a time rather than creating all stubs

upfront.
¡	Use TODOs to document intent for each stub.
¡	Ensure that your stubbed application runs before adding functionality.
¡	Remember YAGNI (you aren’t gonna need it): don’t create stubs for features

you might not implement.

4.2	 Extracting requirements from the design
When building new software, the clarity and precision of project requirements are piv-
otal. Getting the requirements right is critical as they often determine whether a soft-
ware project meets its deadlines or faces significant delays. Requirements always change.
Also, they’re frequently misinterpreted because we tend to grab the requirements and
get to work. There is a lot of room for error here, so if we rush, we can get in trouble.
Because generative AI tools make the requirements gathering process easier and faster,
we can spend more time working on those requirements and getting them right.

The process of extracting requirements is not merely listing what the software
should do, but it is about understanding and interpreting all stakeholders’ goals, needs,
and constraints. With generative AI, this is even more critical. Although adaptive, these
models require a nuanced understanding of the desired outcomes to function opti-
mally. Without precise, well-defined requirements, the tools will help you build a bad
project faster.

Let’s use generative AI to turn this design document into a set of requirements. The
approach is straightforward, and it is helpful to go through it step by step. To extract the
requirements using tools, I decided to use ChatGPT and Gemini.

Prompt engineering for requirements extraction
When using AI to extract requirements

¡	Start with clear, specific prompts that define the scope.
¡	Ask for structured output (e.g., numbered requirements, categorized lists).
¡	Request identification of potential pitfalls for each requirement.
¡	Use follow-up prompts to drill deeper into specific areas.
¡	Always validate the output with stakeholders or domain experts.
¡	Remember that AI can hallucinate requirements that seem plausible but aren’t

really needed.

Here is a three-step process that works well:

1	 Ask for key requirements.
2	 Convert to user stories.
3	 Create stubs based on those stories.

82 Chapter 4  Coding the first version of our application

4.2.1	 Step 1: Extract the requirements using ChatGPT

Our design document is brief, so we could easily review it and extract the main require-
ments visually. It would only take a few minutes to complete. But what if the project
and documents were larger and more complex? We’re using ChatGPT to do this to
save time. Moreover, ChatGPT helps with accuracy as it can catch errors or surface
something you’ve missed.

Let’s see how ChatGPT handles reviewing our document and narrowing the require-
ments. Not only is ChatGPT good at generating text, but it also can interpret and analyze
it. It’s likely seen tens of thousands of software design documents. It’s also seen as many
requirement lists. So, it should be able to come up with something reasonably good.

I copied everything from our design document as text. Then, I used the following
prompt:

	 What are the key requirements we can obtain from this software design document?

{Contents of document}

Granted, it’s a basic prompt that’s straight to the point. Will it produce something
decent or steer us wrong? Here’s the output:

	 From the provided software design document, the following key requirements can be
inferred:

1	 Question Pool Database

a	 Requirement 1.1: Develop a database, SQL or NoSQL, to store questions,
options, and correct answers.

b	 Requirement 1.2: The database should contain fields for question_id,
question_text, options, and correct_option.

c	 Requirement 1.3: Implement a system to update the database to ensure accu-
racy over time.

d	 Requirement 1.4: Ensure data validation and cleansing to prevent incorrect or
poorly formed data from entering the system.

2	 Question Selector

a	 Requirement 2.1: Develop a module to select 35 questions randomly from the
database for each test.

b	 Requirement 2.2: Implement an algorithm to ensure true randomness in ques-
tion selection.

c	 Requirement 2.3: Ensure that the same question does not appear more than
once in a single test.

3	 User Interface

a	 Requirement 3.1: Develop a user interface, which could be a web, desktop, or
mobile application.

b	 Requirement 3.2: The UI should be intuitive, user-friendly, and accessible to
cater to a wider audience.

	 83Extracting requirements from the design

c	 Requirement 3.3: The UI should present questions and answer choices, accept
users’ answers, and present the score at the end of the test.

4	 Grading Component

a	 Requirement 4.1: Develop a component to compare user’s answers with the
correct answers from the database and calculate the final score in percentage.

b	 Requirement 4.2: Handle cases where the user doesn’t answer some ques-
tions, considering them as incorrect for scoring purposes.

c	 Requirement 4.3: Handle any inconsistencies or inaccuracies in grading due to
discrepancies in the database.

5	 Future Considerations

a	 Requirement 5.1: Consider adding functionality for tracking user performance
over time and providing performance analytics.

b	 Requirement 5.2: Consider adding features allowing users to focus on specific
areas or question types.

c	 Requirement 5.3: Explore the possibility of integrating the application with a
larger learning platform.

6	 General Requirements

a	 Requirement 6.1: The application should be robust and efficient in design, pro-
viding a user-friendly tool to help users prepare for their HAM radio license test.

b	 Requirement 6.2: Consider accessibility needs in all components to ensure the
widest possible audience can use the application.

c	 Requirement 6.3: Ensure the effectiveness of study sessions by avoiding frus-
trations related to poor UI or inaccuracies in question/answer data.

This list might not be exhaustive, and additional requirements may arise as the de-
sign and development process progresses. However, these are the identifiable key
requirements based on the provided document.

This looks great, and I’m pleased with the result. It provides enough detail to assign tasks
to some of these requirements. These are high-level requirements, and they represent
our intention well. At this point, it’s good practice to bring these back to your stakehold-
ers and validate the data. A quick meeting to make sure you’re on the right track will save
you time in the long run. There is a chance a generative AI tool hallucinates and pro-
duces a result that looks good to you but is complete nonsense. Human reviews are key.

In this case, I’m the stakeholder. Although I am happy with this output, I’d like to get
a second opinion. This is a big project, so exploring more options is worth the time. I
turn to Google’s Gemini for comparison.

4.2.2	 Step 2: Gathering requirements from Gemini

I sent the same prompt to Gemini to see how it would interpret our design document.

	 What are the key requirements we can obtain from this software design document?

{Contents of document}

84 Chapter 4  Coding the first version of our application

The results were unexpected. While ChatGPT and Gemini often produce the same
output output, there are times when it’s drastically different. This is the nature of gen-
erative AI. Each model will interpret input or prompts differently. How they generate
output also varies wildly.

You will often encounter similar output across tasks. It even happens with code
generation. Why? This is likely because many folks have published code with similar
patterns. The model determines the right answer based on how often it has seen it.
Whether we admit it or not, we get echoes of the same output because so many develop-
ers solve these problems in nearly identical ways. There are only so many ways you can
connect to a database!

Don’t be thrown off by highly similar outputs from separate tools. It’s common. Also,
be prepared for things to be far different between tools, which is good. This is what
Gemini put out as a response:

	 From the software design document, the following key requirements can be obtained:

¡	The application should generate randomized 35-question tests from a predeter-
mined question pool.

¡	The application should present possible answers to each question.

¡	The application should provide a score percentage at the end of each test.

¡	The question pool database should be able to store all the possible questions,
along with their multiple-choice options and correct answers.

¡	The question selector module should be able to use a randomizing algorithm to
select 35 questions from the question pool database for each test.

¡	The User Interface (UI) should be intuitive and user-friendly and should present the
questions and answer choices to the user, accept their answers, and present their
score at the end of the test.

¡	The grading component should be able to compare the user’s answers with the
correct answers from the question pool database to calculate a final score, which
will be expressed as a percentage.

Additionally, the software design document also mentions some potential future con-
siderations, such as

1	 Tracking user performance over time and providing performance analytics.

2	 Allowing users to focus on specific areas or question types.

3	 Integrating with a larger learning platform.

These future considerations are not essential requirements for the initial version of
the application but could be added over time to increase its utility.

This response looks drastically different from what ChatGPT produced, which is to be
expected. Each flavor of GPT has its own personality. Generative tools often produce
divergent outputs because the methodology used to generate results differs. Gemini’s
results are shorter in length, omitting details. It’s a level of abstraction higher than the
ChatGPT results.

	 85Extracting requirements from the design

So, I used another source to evaluate our design documents and get a second opin-
ion. If you have multiple tools at your disposal, it helps to cross-check them, even if the
output from the first tool is good. A second tool can reveal things you haven’t thought
of. It can also help validate the core parts of a design. If both models create the same
topic or idea, it’s more likely that it should be included. That extra bit of research adds
value, and it justified the time spent to investigate.

Verifying AI-generated requirements
Critical steps when reviewing AI-generated requirements are

¡	Cross-reference with original project documentation.
¡	Validate with stakeholders, especially for technical requirements.
¡	Look for hallucinated features (things that seem plausible but weren’t in your

original plan).
¡	Check for consistency across different sections.
¡	Ensure all requirements are testable and specific.
¡	Be wary of overly generic requirements that don’t add value.
¡	Consider how each requirement affects your development timeline.

Always get a second opinion

For crucial generative AI tasks, I duplicate my efforts across tools. We tested model
divergence by inserting a similar input into two separate models and obtained differ-
ent results. This process is a checking mechanism. It seems more likely to be true if you
see the same result twice. If the results contradict each other, you can investigate why.
Some models will bring up things the other model “didn’t think of.” These are some
reasons why running another tool is worth the time spent.

Which one should we choose?

If we wanted to, we could dig deep into the details and gather two large lists. We could
merge the results from ChatGPT and Gemini just like we do with source code. It’s best
at this point to go back to the stakeholder(s) and do a quick review. Have them help
refine and distill a single set of requirements. This is a small, basic project, and I’m the
only stakeholder. We’re all set to move forward from here.

After careful consideration, I think the ChatGPT-generated list will be easier to work
with. It’s far more detailed and includes concrete requirements. The document out-
lines our overall goal well. With enough work, we could have squeezed more detail from
Gemini to little benefit.

We’ll use this document as a checklist for things our application must do, so the extra
information from the ChatGPT output will be helpful. Now that we have requirements
in our hands, we’re ready to build some stuff.

86 Chapter 4  Coding the first version of our application

The power of multiple AI tools
When working with generative AI, using multiple tools can provide significant
advantages:

¡	Different models interpret prompts differently, offering unique perspectives.
¡	Seeing the same concept repeated across tools increases confidence in its

importance.
¡	Contrasting outputs helps identify gaps or inconsistencies.
¡	Some tools excel at specific tasks (code generation, analysis, etc.).
¡	The extra time spent is often worth the additional insights.

Remember that each model has its own personality and strengths. What seems like
an inconsistency between tools is in fact an opportunity to get a more well-rounded
view of your problem.

4.3	 Setting up our development environment
If you want to follow along with this book and create the application (you should),
here is how we’ll set it up. One great thing about developing in the Python world is
the cross-platform functionality. You can run this on Windows, Mac, or Linux, and the
setup won’t be drastically different. For our demo, I’m using

¡	Windows 11

¡	Python 3.11.5

¡	Visual Studio Code

¡	GitHub Copilot

You’ll need a dedicated directory on your hard drive to serve as the home for our
project. I’m naming mine HAM-Radio-Practice-Web, but you can name yours whatever
you like.

In Visual Studio Code, open the folder as a new project. You can do this by navigating
to File > Open Folder or by clicking the Open Folder button in your Explorer panel
(figure 4.2).

It’s just an empty folder for now, but we’ll need to open a command prompt or termi-
nal for this folder. You can open a new command prompt in Windows or use a terminal
in Linux or Mac. Visual Studio Code can also include a nice terminal window in the edi-
tor, which I prefer. To open a terminal window, in the top menu, select Terminal, then
New Window. You can also use Ctrl + Shift + ‘ to open it. When developing in Windows, I
prefer using WSL (Windows Subsystem for Linux), with Ubuntu in a VS Code terminal
(figure 4.3). This approach allows me to run the powerful Linux commands I prefer
and work efficiently using Windows as my desktop.

If you’re more comfortable with Windows, you can also use a PowerShell or Com-
mand line terminal in VS Code. The commands and usage are very similar. Use what-
ever works best for you.

	 87Setting up our development environment

Figure 4.2  Opening a new folder in Visual Studio Code

WSL terminal

Figure 4.3  A WSL terminal running in Visual Studio Code

88 Chapter 4  Coding the first version of our application

Creating a Python virtual environment

Again, we will set up a Python virtual environment. I’ll do this for every application we
build, as the benefits are worth the time spent on it.

For Linux and Mac systems, the command is

python3 -m venv hrpractice

I chose hrpractice as the name, but you can choose something different. Then, we
activate the environment by using

source hrpractice/bin/activate

You can verify you’re in the environment by looking for the name in parentheses in
your prompt, shown in figure 4.4.

Figure 4.4  Prompt showing the environment is active in Linux/Mac

This prompt shows your environment is active.
In Windows, it’s a little different. You still use the same command to create the

environment:

python -m venv hrpractice

Note that on some systems, you may need to specify the exact path to Python in Win-
dows, such as

C:\Python311\python.exe -m venv hrpractice

 To activate, call the activate script in the Includes folder:

.\hrpractice\Scripts\activate

Of course, hrpractice is the name I chose for the environment, so your folder may
be different. Now you should see the same environment name in parentheses at your
prompt (figure 4.5).

Now, we have our environment set up and ready to go. I will use Visual Studio Code
and GitHub Copilot in this chapter. The instructions for installing Copilot can be found
at https://mng.bz/OwXK. Now, let’s start organizing our Flask application.

https://mng.bz/OwXK

	 89Flask application structure

Figure 4.5  Prompt showing the environment is active in Windows

4.4	 Flask application structure
I have chosen Flask as the framework for our application. We could easily install Flask,
create a single Python file, and be up and running. As we add functionality, we just put
more code in the file, save, and restart it. This is fine for small applications built in a
hurry. However, if you ever want to expand the application later, it quickly becomes a
mess.

How can we structure this application in a nice, organized way? Let’s ask ChatGPT.
I’ll ask my question in the same context (thread) that I used to generate the software
documentation. It’s important to keep these threads open in ChatGPT if you want it to
remember the details of your conversation.

Here is the prompt I entered:

	 This will be a Flask application. Show the best folder structure and file name sugges-
tions for this application.

In this case, the model already has the context of our application, so it should be able
to layout a decent structure. Let’s see what it generates.

Output from ChatGPT
Assuming you are building a relatively standard Flask application, the folder structure
presented in figure 4.6 could be used:

Here’s a brief overview of what each part does:

¡	app/_init_.py—This file initializes your Flask application.

¡	app/routes.py—This file defines the routes (URLs) for your application and
the logic associated with them.

¡	app/templates/—This folder contains HTML templates that your application
will render, which in this case is an index (landing) page, a test page for taking
tests, and a results page for showing the scores.

¡	app/static/—This folder contains static files such as CSS for styling, JavaScript
for interactivity, and any images your application might use.

¡	app/models/questions.py—This file defines the structure of your question
model and interacts with your database.

90 Chapter 4  Coding the first version of our application

Figure 4.6  File structure as suggested by ChatGPT

¡	app/utils/question_selector.py—This file contains the logic for selecting
the random questions for each test.

¡	tests/—This folder contains all test files, such as tests for your routes, question
selection logic, grading logic, and similar.

¡	config.py—This file contains configuration variables for your Flask application
(e.g., database URIs, secret keys).

¡	run.py—This file is used to run the application.

¡	requirements.txt—This file lists all Python dependencies that your Flask appli-
cation needs to run.

This setup offers a good starting point and can be further expanded or refined based
on your specific needs. It’s a solid approach, and there’s every reason to explore it fur-
ther. Let’s follow the outline by creating the folders and then use text files in place of
working scripts. Figure 4.7 shows our project.

Figure 4.7  Our application in Visual
Studio Code

	 91Stubbing out our application

Our project is laid out and ready for code implementation. Now that we have estab-
lished a file structure, we need to create a code structure to match it. Generative AI can
help us with this as well. You can ask ChatGPT to generate a Python script to create this
folder structure:

	 Create a Python script to create this structure. Create the folders and blank files in
each folder where they are stored.

It saves you the hassle of making it all yourself.

Using generative AI for application structure
Remember, when using AI for application architecture

¡	AI tools excel at suggesting standard project structures.
¡	Request different options to compare approaches.
¡	Always question AI’s suggestions against your specific needs.
¡	Use AI suggestions as a starting point, not a final decision.
¡	Ask for reasoning behind structural decisions.

For Flask applications specifically, AI can help organize

¡	Routes and controllers
¡	Templates and static assets
¡	Database models and migrations
¡	Testing structure

4.5	 Stubbing out our application
We’re ready to stub out our application. We talked about stubbing earlier in the chap-
ter. Now let’s put it into action.

For example, our DatabaseManager class could look like this:

class DatabaseManager:
 def __init__(self):
 pass
 def connect_to_database(self):
 # TODO: Implement this method to connect to the database.
 pass
 def update_database(self, data):
 # TODO: Update the database with the given data.
 pass
 def validate_and_cleanse_data(self, data):
 # TODO: Validate and cleanse the given data.
 pass
 def fetch_questions(self):
 # TODO: Fetch questions from the database.
 pass

92 Chapter 4  Coding the first version of our application

These stubs can be organized in your files, and
those files are placed in appropriate folders.
This way, you can preemptively organize your
code. Here is how I’ve chosen to generate stubs
for this application, outlined in figure 4.8. I do
this in three steps:

1	 Requirements extraction—Ask AI to iden-
tify key requirements from your design
document.

2	 User story creation—Have AI convert those
requirements into user stories with roles
and objectives.

3	 Stub generation—Request that the AI create class and method stubs organized by
feature.

This methodical approach helps

¡	Ensure alignment between design and implementation

¡	Create a logical organization for your code

¡	Identify missing components early

¡	Establish clear interfaces between system components

¡	Produce documentation that maps to your actual code

Although the process involves several steps, it’s a technique that’s worked well for me.
I won’t show the output of the first two steps here for brevity and as we’ve already
reviewed the requirements. So, I’ll show you the three prompts I used, and we can look
at our final output.

	 What are the key requirements we can obtain from our software design document?

	 Rewrite this as a set of user stories in SCRUM. Each headline will serve as a story,
and the requirements will become tasks for the appropriate story.

	 Rewrite this as a set of features organized in groups. Create a list of stubs and the
classes they would go in to design the application.

I discovered these steps through experimentation and found that if you can distill the
requirements and put them in stories, it makes it easier for ChatGPT to create useful
stubs. After running these prompts in the same order, we’ll come up with a decent start
for stubbing. Here is the output from ChatGPT:

	 Features:

Database Management Feature

¡	Manage Question Pool Database.

Ask for key requirements.

Create a set of user stories.

Create stubs from those user stories.

Figure 4.8  The three-step prompt
process

	 93Stubbing out our application

¡	Update, validate, and cleanse data.

Question Selection Feature

¡	Randomly select 35 questions for each test.

¡	Ensure true randomness and no repetition within a single test.

User Interface Feature

¡	Present questions and answer choices to users.

¡	Display final score at the end of the test.

¡	Be user-friendly and accessible.

Grading Feature

¡	Compare selected answers with correct answers.

¡	Calculate and display the final score as a percentage.

¡	Handle unanswered questions.

Enhancement Feature

¡	Performance analytics.

¡	Focused study on specific areas or question types.

¡	Integration with a larger learning platform.

Robustness and Efficiency Feature

¡	Ensure robustness and efficiency in all components.

¡	Address accessibility needs.

¡	Collect and address user feedback.

Stubs and Classes:

1	 Class: DatabaseManager

a	 Stub: connect_to_database()

b	 Stub: update_database()

c	 Stub: validate_and_cleanse_data()

d	 Stub: fetch_questions()

2	 Class: QuestionSelector

a	 Stub: randomize_questions()

b	 Stub: fetch_single_test()

3	 Class: UserInterface

a	 Stub: display_questions()

b	 Stub: display_final_score()

c	 Stub: receive_user_input()

d	 Stub: validate_user_input()

4	 Class: Grader

a	 Stub: compare_answers()

94 Chapter 4  Coding the first version of our application

b	 Stub: calculate_final_score()

c	 Stub: handle_unanswered_questions()

5	 Class: EnhancementManager

a	 Stub: track_user_performance()

b	 Stub: focus_study_area()

c	 Stub: integrate_learning_platform()

6	 Class: ApplicationManager

a	 Stub: ensure_robustness()

b	 Stub: ensure_efficiency()

c	 Stub: address_user_feedback()

d	 Stub: ensure_accessibility()

This setup organizes the features and associated stubs within appropriate classes, lay-
ing the foundation for a structured and modular development approach. The classes
and stubs can be further refined and detailed during the actual implementation phase.

When looking at the output, we can see things are organized well. But how can we
fit these stubs into our application with the structure we asked for earlier? Here’s the
prompt I used:

	 Consider the file structure you provided for this application. Arrange these stubs into
the appropriate files and merge them in with the existing structure. Provide the output.

This prompt takes advantage of our conversational history, which is important
because it’s treated like a human conversation. This allows ChatGPT to act as if it
remembers the file structure it suggested. And it works well. Figure 4.9 shows the new
file structure.

This structure is more useful than the previous one. It shows files and folders; some
of our stub methods can be included in different files. What we need to do now is
build this structure out. It should be noted that this will be a suggestion for our appli-
cation. We are not forced to use this suggestion by any means. Remember, this isn’t a
source of truth but a representation of what the model thinks a software file structure looks like.
I don’t want to build an application manager or enhancement manager, so I’ll take
some liberties with this design and remove them. Figure 4.10 shows the final folder
structure.

Now that we have our file structure established, I’ll fill in the methods in the classes
as placeholders. Here’s an example of questions.py:

class Questions:
 def connect_to_database(self):
 pass

 def update_database(self):
 pass

	 95Stubbing out our application

 def validate_and_cleanse_data(self):
 pass

 def fetch_questions(self):
 pass

Figure 4.9  The suggested file and stubbing structure from ChatGPT

96 Chapter 4  Coding the first version of our application

Figure 4.10  Our application file structure

Once the methods are stubbed out, I can define classes and flesh out each method’s
implementation as I go. This helps with iterative development styles by creating a struc-
ture and adding small pieces as we go.

We’ll add the empty functions to our other files, too. In Figure 4.9, ChatGPT sug-
gested stub functions for each file, so we’ll implement its recommendation. Remember,
this isn’t set in stone, and we’ll change things as we go. After all, we’re using generative
AI to assist us with writing an application, not having it write an application for us.

models/questions.py

¡	connect_to_database()

¡	update_database()

¡	validate_and_cleanse_data()

¡	fetch_questions()

	 97Running our application

utils/question_selector.py

¡	randomize_questions()

¡	fetch_single_test()

utils/grader.py

¡	compare_answers()

¡	calculate_final_score()

¡	handle_unanswered_questions()

We have an initial version of our application created. We have generated a folder struc-
ture, inserted some empty files named accordingly, and added stubs for our classes.
This will be the foundation or “the bones” of our application. Now, we’re ready to ini-
tiate the setup process.

Understanding AI limitations in software design
Be aware of these AI limitations when using it for software design:

¡	AI may suggest popular but inappropriate technologies (like the React example
in the chapter).

¡	Models tend to recommend what they’ve seen most often, not necessarily
what’s best.

¡	Technical suggestions require your critical evaluation.
¡	AI doesn’t understand your specific team’s skills or constraints.
¡	Models can be overconfident in their recommendations.
¡	Always validate AI suggestions against your actual requirements.
¡	Remember that you are the designer—AI is merely a tool.

4.6	 Running our application
We have a file structure and know everything is organized for a Flask application. It’s
also far from a real application since we can’t run it yet. Where can we start? For this
problem, I turned to GitHub Copilot chat. I have the project open, and I can ask how
to get started.

Here is the prompt I used:

	 This project will be a Flask application. How can I build an invokable Flask applica-
tion? What must I include in run.py so that a basic flask application will run?

I am pretending to know nothing about Flask to see whether it will provide code to get
the application running. The results are presented in figure 4.11.

The result looks great. It gives you sample code to put in the application. Then, the
code is explained line by line. This is useful if this is a topic or technique you aren’t
familiar with. As we’ve discussed many times, it’s not advisable to paste in generated

98 Chapter 4  Coding the first version of our application

Figure 4.11  A response to our prompt with GitHub Copilot chat

source code you don’t understand. It’s crucial to understand the code you’re working
with. I’ll paste this into my run.py and follow the instructions.

Here’s the exact code I added to run.py:

from flask import Flask

app = Flask(__name__)

@app.route('/')
def home():
 return "Hello, World!"

if __name__ == "__main__":
 app.run(debug=True)

NOTE  The instructions do not include installing Flask. You can do this by typ-
ing pip install flask at your terminal.

I then type python run.py, as instructed in the Copilot chat. Figure 4.12 shows the
outcome.

	 99Running our application

Figure 4.12  A terminal window showing Flask running with no errors

We have a Flask application up and running. Let’s go to the URL displayed and check
it. We should see a working web page that displays our message, shown in figure 4.13.

Figure 4.13  A successful “Hello, World!” display from our Flask application

This is exactly what we expect to see from our Flask application. This is our basic
“Hello, World!” application. While we’re still far from an actual application, this is a
great start. We’ve made a lot of progress in a short amount of time.

AI as an idea generator, not a decision maker
Remember these principles when using AI for software design:

¡	AI tools are brainstorming partners, not architects.
¡	The best use is to augment your creativity, not replace it.
¡	Always apply your domain knowledge and experience.
¡	Use AI to speed up routine parts of design, freeing time for complex problems.
¡	Choose what to keep from AI suggestions based on your project’s specific

needs.
¡	Combine ideas from multiple AI sessions for optimal results.
¡	Remember that you make the final decisions—AI is just one input.

In this chapter, we’ve taken our first practical steps into developing with AI assistance,
transforming abstract design concepts into a functional application skeleton. We
explored how generative AI tools can accelerate the software development life cycle,

100 Chapter 4  Coding the first version of our application

while still preserving developer control and creativity. The journey from requirements
to running code demonstrated several key principles:

¡	AI as a collaborative partner—Using multiple AI tools such as ChatGPT and Gem-
ini helped us gather and refine requirements. This approach provided differ-
ent perspectives, improving our grasp of the problem space. Each tool offered
unique insights. AI collaboration shines when seen as a conversation, not just a
one-time query.

¡	Structure before function—The AI-suggested file structure and code stubs gave us a
strong start. They helped us organize our thoughts before writing any functional
code. This stubbing method creates clear interfaces between components. It also
prevents the chaos that can happen in quickly developed apps.

¡	Human judgment remains essential—We carefully choose which AI suggestions
to use and which to change or ignore. The technical stack recommendations
showed that AI often suggests popular technologies such as React.js and Node.js.
However, simpler solutions such Flask alone might better suit our needs.

¡	From blank page to working application—One major benefit was overcoming the
“blank page syndrome.” In a short time, we moved from an idea to a working
Flask application. We also established a clear path for adding more features. This
can be one of the most valuable ways to use these tools.

As we progress, we’ll explore how AI tools can improve various parts of the develop-
ment process. The skills you’ve learned in this chapter—creating effective prompts,
critically assessing AI outputs, and blending suggestions—set the stage for better
AI–human collaboration.

Keep in mind that AI tools are great helpers at many stages of application develop-
ment. However, you decide how to use their suggestions. Your judgment, creativity, and
expertise are key to successful software development. In the next chapter, we’ll dig in
and start building our application, with our new AI assistants helping us along the way.

Summary

¡	We can extract requirements from our design by sending the right prompts to
ChatGPT.

¡	ChatGPT can suggest a file structure for our application.

¡	It is possible to generate stubs and classes with generative AI to structure our
application.

¡	GitHub Copilot will create a starting point for our Flask application.

¡	You can use multiple AI tools at once for the same process.

¡	AI tools provide suggestions, but programmers still make key decisions on how to
use the output.

101

5Using Blackbox AI to
generate base code

This chapter covers

¡	Establishing and managing persistent user
sessions in Flask-based applications

¡	Implementing database functionality to track
question sets

¡	Crafting effective prompts for troubleshooting
technical errors

¡	Applying separation of concerns to improve
application architecture

¡	Building a session-based user interface for
practice tests

Let’s continue our exploration of generative AI tools by building a real web applica-
tion. Learning to use these tools effectively is an art, and finding the right balance
between AI-generated code and human judgment and logic is key to purposeful
development.

We will walk through developing our HAM radio practice exam web app. I’ll focus
on using Blackbox AI to generate code and accelerate development. However, I will

102 Chapter 5  Using Blackbox AI to generate base code

also intervene at key points to refine the architecture, ensure separation of concerns,
inject our own code, and override AI suggestions when needed.

The goal is to demonstrate effective cooperation between human expertise and AI.
We use the tools to accelerate development through suggestions, while providing con-
text, direction, and corrections. This approach will produce code that surpasses what
AI could achieve alone, while also accelerating development compared to human-only
workflow. Let’s continue our journey!

AI tools as programming partners
When using generative AI for coding

¡	Bear in mind that each tool has its strengths—Blackbox AI, GitHub Copilot, and
Tabnine offer unique features.

¡	Let AI create scaffolding and boilerplate code to save time.
¡	Think of AI as your junior pair programmer, not a replacement.
¡	Be ready to refactor AI-generated code to fit your project’s needs.
¡	Keep a critical eye—these tools are strong, but they miss context that you

understand.
¡	This is a collaborative process: you set the vision, and AI speeds up the work.
¡	Try different prompting styles to see what fits your workflow best.

Remember: Your skill in recognizing good code architecture is still essential as AI
tools change.

5.1	 Application development with generative AI tools
We will work on a beta version of our application. In the beginning, we will use Black-
box AI aggressively. Instead of the smart assistant role, the tool will be the lead pro-
grammer. Typically, I wouldn’t suggest this approach. However, I want to demonstrate
the techniques you can use and the full capability of the tools. We’ll generate most of
the initial code directly from the tool.

If you’re an experienced Python developer, you might say, “I would never do it this
way.” This is perfectly reasonable. In real life, you’ll use some suggestions and reject oth-
ers. You are the final reviewer in your IDE, and that’s how it should be. Let’s see how far
generative AI can take us. After we get things set up, we will do some heavy refactoring
to make this work. Overall, it should be a faster pace of development than it would be
without the tools.

If you’re following along with and coding this project step by step, these tools cost
money. I can understand why you wouldn’t want to purchase all three. The good
news is you don’t have to. In my experience, any of the main tools we’ve talked about
(GitHub Copilot, Tabnine, and Blackbox AI) can do this project individually, from
start to finish, using the same techniques. You can still follow along if you prefer using
a different tool.

	 103Developing core features

5.2	 Setting up the development environment
Here is the development environment I’ll use to build this application:

¡	Visual Studio Code, available at https://code.visualstudio.com/download (free)

¡	DB Browser for SQLite, available at https://sqlitebrowser.org/dl/ (free)

¡	Python 3.10.12 (The latest version should work fine.)

¡	Windows 11

¡	The GitHub Copilot Extension, available at https://github.com/features/
copilot (Pro Version, $10 per month)

¡	The Blackbox.AI Extension, available at https://mng.bz/DwBn ($1.99 per week)

¡	The Tabnine Pro Extension, available at https://www.tabnine.com/install/
vscode ($12 per month)

¡	WSL running Ubuntu 22.04 LTS

One of the things I love about Python development is its cross-platform capabilities.
I’m using Windows 11. If you’re following along, you can use Linux or Mac instead,
and the instructions are the same. I chose the SQLite browser to work with our data-
base because it works equally well on all three platforms.

The GitHub repository for this code is available at https://mng.bz/lZ86 if you want
to download the code and check it out. Now that we’re all set up, let’s jump right into
developing this application.

5.3	 Developing core features
Here, we develop the core of the application. We’ll get a rough version of our HAM
radio practice test app working by the end of this chapter. I start with the database. A
dataset is available for download from the following GitHub repository: https://mng
.bz/Bz80.

A note about the HAM radio test: Unlike tech certifications, the questions and
answers to the test are publicly available. So, we will take this database of questions for
the technician exam and use it for our application.

5.3.1	 Creating the database

In this step, there isn’t much for generative AI to do. We will download a CSV from the
GitHub repo and place it in a /data folder. Here is the direct link to the file: https://
mng.bz/dWYN .

You can download the file with your browser or use a tool such as CURL or wget to
download it directly. The file is separated by commas, and its format is shown in table 5.1.

Table 5.1  Format of our questions data. It maps directly to a database table with this information.

id correct question a b c d

T1A01 2 Question? possible
answer

possible
answer

possible
answer

possible
answer

https://code.visualstudio.com/download
https://sqlitebrowser.org/dl/
https://github.com/features/copilot
https://github.com/features/copilot
https://mng.bz/DwBn
https://www.tabnine.com/install/vscode
https://www.tabnine.com/install/vscode
https://mng.bz/lZ86
https://mng.bz/Bz80
https://mng.bz/Bz80
https://mng.bz/dWYN
https://mng.bz/dWYN

104 Chapter 5  Using Blackbox AI to generate base code

We create a new database and a table in that database for these questions. We can start
by opening the DB Browser for SQLite. Click on New Database (figure 5.1).

Figure 5.1  The DB Browser main screen. We’ll create a new SQLite database here.

In the next screen (figure 5.2), we can specify our file name and click Save.

Figure 5.2  Saving a new database as the questions.db file

	 105Developing core features

You will see a screen pop up that says, “Edit table definition.” We will skip that, so click
Cancel in that window.

Next, go to File -> Import -> Table from the CSV file (figure 5.3).

Figure 5.3  Importing a CSV file into the database. We’ll create a table from a CSV file.

We select the file we downloaded from the repository, and you will get an Import CSV
file window on the screen. Make sure the following options are selected (figure 5.4).

¡	Change “Table name” to questions.

¡	Check “Column names” in the first line.

¡	Enter , as “Field separator.”

¡	Enter “ as “Quote character.”

¡	Select UTF-8 for “Encoding.”

¡	Check “Trim fields.”

This dialog will import the CSV file into our SQLite database. Click the “Write changes”
button to ensure the database is created with this data. Next, we want to modify the
table. Right click on the questions table and select “Modify table.” Then, in the “Edit

106 Chapter 5  Using Blackbox AI to generate base code

Figure 5.4  This dialog allows you to visually verify the CSV is read properly and the data is formatted the way you
expect it.

table” definition screen, make sure PK and U are selected for ID. This selection will
ensure that our ID key is treated as a unique and primary key, which will help with
indexing and tying this to other tables later (figure 5.5).

Now your database should be up and running, and you can browse the database and
see our question data (figure 5.6).

With our database set up, we now need to build the functionality to connect to it.
We’re going to do this with one of the generative AI tools in our toolbox.

5.3.2	 Connecting to our database

Now that we have a working database preloaded with data, we need to connect to it.
We can build something that will open the database and connect to it, then send a

	 107Developing core features

Figure 5.5  In this screen, ensure that the PK and U fields are selected for ID.

Figure 5.6  In DB Browser, you can visually inspect your tables by clicking Browse Data.

108 Chapter 5  Using Blackbox AI to generate base code

query to it, and finally return data. We’re going to use the Blackbox AI tool to guide us
through most of this process.

Let’s start with the file models/questions we created in the last chapter. If you
remember, it looks like this:

class Questions:
 def __init__(self):
 pass

 def connect_to_database(self):
 # TODO: Implement database connection logic
 pass

 def update_database(self):
 # TODO: Implement database update logic
 pass

 def validate_and_cleanse_data(self):
 # TODO: Implement data validation and cleansing logic
 pass

 def fetch_questions(self):
 # TODO: Implement logic to fetch questions from the database
 Pass

This file is stubbed out and ready for us to write some code. It will look different after
we refine the code, but it’s a good start. Let’s begin with the connect_to_database
method. We will make this method functional:

def connect_to_database(self):
TODO: Implement database connection logic
 Pass

Let’s pretend we’ve never done this before and ask Blackbox to complete the function.
Will it work? There are a few approaches we can try. The first approach is one we’ve
implemented before. We’ll add a comment and then have Blackbox auto-generate
some code based on the comment.

I’ll enter the function and type in the comment:

Connect to a database

And this is what Blackbox generates (figure 5.7).

Figure 5.7  Blackbox
showing a vague result
from our prompt

	 109Developing core features

The response isn’t very helpful. And if you’re this far into the book, you likely already
know why. In previous chapters, we learned about context and input. Let’s take a look
at our code and check what Blackbox sees. By the way, this is pure speculation and an
assumption of what the tool looks for. But I do know we’re sending the following for
context:

¡	This is written in Python and is part of a class.

¡	It has four empty functions in the file.

¡	It seems to have something to do with databases.

¡	The user wants me to connect it to a database.

We aren’t sending Blackbox nearly enough information about what we want. Treat the
comment as a prompt. Provide it with clear directions, concise and simple. We can’t
expect any tool to read our minds (yet). Instead, let’s improve our prompt:

	 # connect to a SQLite database. The file name is data/questions.db.

This prompt will tell Blackbox what we want it to do and give specificity. It now knows
we have a SQLite database file and want to connect to it. Figure 5.8 shows the outcome.

Figure 5.8  Code
suggestion with
more information
in the prompt

This result is much better. Blackbox attempts to write code for connecting to an SQLite
database. The code looks like it could be correct, so we accept it. Additional code is
needed, and we have a couple of options:

¡	Go through and fix errors and generate code step by step.
We can walk through the code and generate lines. I can see errors pop up that
give me a clue what to do, as shown in figure 5.9.

Figure 5.9  Error suggesting we need to install the SQlite3 library

110 Chapter 5  Using Blackbox AI to generate base code

This method works fine but takes a bit more time. It can be slower than coding by
hand. But we have another option that will work better—the Blackbox AI chat.

¡	Start a chat in the Blackbox AI chat window.
Since we are generating more than a few lines of code, it may be easier to have
a dialog with the tool in the chat window. This way, we can add lots of context to
our prompts and get exactly what we want.

You can open the chat window by clicking the Blackbox icon. It will bring up the
window and take up around 50% of your IDE space (figure 5.10).

Chat

Blackbox
icon

Figure 5.10  The Blackbox AI chat window

This is the approach I like to take when generating larger chunks of code. Later
in the chapter, we’ll use the comment approach again. For now, let’s try to come
up with the best prompt to get code to connect to the database. Here is the first
one I started with:

	 I want to connect to a SQLite database in my Flask application. I have a SQLite
database located at data/questions.db. What is the best way to write this out for
my connect_to_database(self) function?

This prompt resulted in a detailed, full explanation of what I needed to do. However, it
suggests using SQLAlchemy to connect (figure 5.11).

	 111Developing core features

Figure 5.11  Blackbox AI’s first suggestion from our prompt

There’s nothing inherently wrong with this suggestion. In fact, it’s quite good. And I
don’t want to use SQLAlchemy in this project. Since this is a dialog with the tool, I can
make a simple adjustment and send the following prompt:

	 How can I do this without using SQLAlchemy and connect directly instead?

This will let Blackbox know my intentions. Expressing intent clearly is a good tech-
nique for getting better results quickly. Here is how Blackbox responded:

	 Sure, you can achieve the same result without using SQLAlchemy by connecting to the
SQLite database directly using Python’s sqlite3 module. Here’s how you can do it:

Python code:

import sqlite3

Establish a connection to the SQLite database
conn = sqlite3.connect('data/questions.db')

Create a cursor object
cur = conn.cursor()

Define your query
query = "SELECT * FROM users WHERE id=1"

112 Chapter 5  Using Blackbox AI to generate base code

Execute the query
cur.execute(query)

Fetch the results
results = cur.fetchall()

Close the connection
conn.close()

Print the results
for row in results:
 print(row)

This code connects to the SQLite database file 'data/questions.db', executes
the query to retrieve all rows from the 'users' table where the 'id' is 1, and then
fetches and prints the results. Finally, it closes the connection to the database.

You can customize the 'query' variable to fetch data based on your requirements.
For example, you can change the condition in the where clause, or use different SQL
functions.

This output is great. It’s exactly what we need to connect to our database. It even has a
fetch function there (that we won’t use). Let’s do one more refinement in this chat and
see if we can make it fit into our existing class. Here is the prompt I used:

	 Take this code and make it integrate into our questions class. This method will be
connect_to_database and its only purpose is to create a connection with the data-
base.

With this prompt, we get specific about what we want to do with this code. Blackbox
then produced the following response:

	 To integrate this code into our questions class, you can add a method called
connect_to_database to the class. Here’s how you can do it:

Python Code:

import sqlite3

class Questions:
 def __init__(self):
 # Connect to the database
 self.connect_to_database()

 def connect_to_database(self):
 # TODO: Implement database connection logic
 # connect to a SQLite database. The file name is data/questions.db
 conn = sqlite3.connect('data/questions.db')

 # Create a cursor object
 cur = conn.cursor()

 # Define your query
 query = "SELECT * FROM users WHERE id=1"

	 113Developing core features

 # Execute the query
 cur.execute(query)

 # Fetch the results
 results = cur.fetchall()

 # Close the connection
 conn.close()

 # Print the results
 for row in results:
 print(row)

 # Other methods for the class

This looks like another great solution that will integrate into our class quite nicely. So,
let’s add this to our file, and we can focus on testing it next.

5.3.3	 Calling our database from the frontend

We can assume our database function works, but we’ll need to test it out. We can ask
Blackbox how to do this. There is one way to ask: by clicking on the plus sign near a
line of code, you can open a chat about it, or you can use a chat window (figure 5.12).

Figure 5.12  You can ask questions directly from the editor window by clicking a plus sign next to a line of code.

I then type in the following prompt:

	 How can I extract the data from this function and display it on the html index page in
Flask?

What follows is the answer I received. It gives us clear steps to run this query and dis-
play the results on our front page. Here is the full Blackbox AI output:

114 Chapter 5  Using Blackbox AI to generate base code

	 To extract the data from the function and display it on the HTML index page in Flask,
you can follow these steps:

Create a route in your Flask application for the HTML index page.

In the view function for the HTML index page, import the function that contains the
data you want to extract.

Call the function and store the returned data in a variable.

In the HTML template for the index page, use Jinja2 templating to access the data in
the variable and display it on the page.

Here is an example of how you could implement these steps:

Import the function that contains the data you want to extract
from my_module import get_data

Create a route for the HTML index page
@app.route('/')
def index():
 # Call the function and store the returned data in a variable
 data = get_data()

 # Return the HTML template for the index page
 return render_template('index.html', data=data)
<!-- HTML template for the index page -->
<!DOCTYPE html>
<html>
<head>
 <title>Index Page</title>
</head>
<body>
 <h1>Data</h1>

 {% for item in data %}
 {{ item }}
 {% endfor %}

</body>
</html>

We will accept this result and modify our application. One thing to note. In our
models/questions.py, we have a query that won’t work:

Define your query
query = "SELECT * FROM users WHERE id=1"

This query is set to look at the users table, which doesn’t exist. Our table is named
questions. Let’s change this query to our table name. We know that SELECT * is bad.
It causes performance problems (e.g., selecting too many fields) and can expose sensi-
tive information. But for now, we’ll use SELECT * to query our table and refine it later:

Define your query
query = "SELECT * FROM questions"

	 115Developing core features

We also need to change the return type of this function:

Print the results
for row in results:
print(row)

As it sits, we are printing the query results to our console. This won’t mean much to
Flask. Delete the previous lines above and replace them with

return results

This way, it will pull all the question records from our table when executed and send
them to Flask. We can refine the query later.

Modifying the index page

In our query, we got a recommendation for importing our data, but it’s a little vague:

from my_module import get_data

It shows example code rather than the specific names we’re working with. It happens
sometimes with this tool. I have seen it scan the context of the application and gener-
ate specific code, and I have seen it generate code that looks like boilerplate or exam-
ple code. In this case, we can clarify the code with the name of our class and file. We
add this to the top of run.py:

from app.models.questions import Questions

This change will bring in the data class we’ve just created.
Now, we will add the following code to app.py as suggested by Blackbox:

@app.route('/')
def index():
 # Call the function and store the returned data in a variable
 data = get_data()

 # Return the HTML template for the index page
 return render_template('index.html', data=data)

This code will call a function into the data variable and then display it within a tem-
plate. We know the data = get_data() line of code will not work. Because it doesn’t
match anything we have in that class, I will change it to what it should be. I’ll create an
instance of our Questions class and call the connect_to_database method:

my_questions = Questions()
data = my_questions.connect_to_database()

Next, I need to create our template. We were given the following HTML code, and I’m
going to place it in templates/index.html:

116 Chapter 5  Using Blackbox AI to generate base code

<!-- HTML template for the index page -->
<!DOCTYPE html>
<html>
<head>
 <title>Index Page</title>
</head>
<body>
 <h1>Data</h1>

 {% for item in data %}
 {{ item }}
 {% endfor %}

</body>
</html>

I know this project isn’t ready to run yet. Figure 5.13 shows an error for the Flask tem-
plate generation.

Figure 5.13  We’re getting an error with the render_template function not being found.

Let’s ask Blackbox AI chat what to do:

	 How can I use the render_template function in this file so it resolves?

This response I received suggested adding the following to our import statement:

	 from flask import Flask, render_template

I will add this to our file and see if the application runs. There aren’t any errors in our
IDE, so let’s try it out. I now execute run.py and see the error shown in figure 5.14.

What’s happening here? This error goes back to the last chapter when we laid out
our file structure. According to the Flask documentation, it looks for templates in
the /templates folder. Yet our templates are in app/templates because that’s what
ChatGPT suggested previously (figure 5.15).

	 117Developing core features

Figure 5.14  Jinja is Flask’s templating system. It’s showing an error with finding our template.

Figure 5.15  The file structure ChatGPT suggested for us earlier. It is incorrect according to the
common Flask file structure.

118 Chapter 5  Using Blackbox AI to generate base code

ChatGPT is likely displaying best practices or common application layouts. However,
Flask applications are structured differently. We could reconfigure Flask to look for
templates in the /app/templates folder; however, there’s no clear benefit to breaking
the Flask convention. I will move the templates and the static folder to our application
root instead of storing them in the app folder (figure 5.16).

HamRadioPracticeTest
app

templates

HamRadioPracticeTest
app
templates

ChatGPT Suggestion

Flask Convention

Figure 5.16  We’re moving the
templates folder to the application root
because Flask expects the templates
folder at the root by default.

Figure 5.17 shows the new file structure.

Figure 5.17  Our new file structure based on Flask documentation recommendations

With our new file structure in place, I’ll re-run the application. Figure 5.18 shows what
I see at this stage.

This is the output I’m expecting. The page shows us a few things:

¡	We can connect to the database.

¡	We can run a query.

¡	We can display that data on a page.

	 119Developing core features

Figure 5.18  The index page showing the results from connect_to_database() function, rendered on the
screen

This is awesome and a big step forward. We built this to ensure we can connect to a
database and display data. But now we need to turn it into something useful for the
final product. We will refactor the connect_to_database() function to do only one
thing—connect to the database.

There’s a principle in software development that comes from the original developers
of the Unix operating system: “Do one thing and do it well.” When a method or software
module tries to do too many different things, its complexity increases as it becomes
difficult to understand, test, and most importantly maintain. By making your compo-
nents as simple and lean as possible, you avoid future problems. Code should be easy to
understand and work with—especially for future readers, including yourself. Moreover,
it should be easy to test.

We’ll take that approach with this method. It will connect to the database and pass
the cursor back. Nothing more, nothing less. That way, we can quickly connect to the
database, perform some actions, and close it.

5.3.4	 Refactoring our Questions class

Now, we’re going to step back into the hands-on experiences that shaped our under-
standing. You should never blindly have these tools write an entire application for you.
Experience and knowledge still matter. They matter even more in the world of gener-
ative AI. You must know what you’re building. Here’s an example of how we’ll tweak
things beyond what’s generated.

Right now, our Questions class has four methods:

¡	connect_to_database()

¡	update_database()

¡	validate_and_cleanse_data()

¡	fetch_questions()

120 Chapter 5  Using Blackbox AI to generate base code

This is what ChatGPT determined would be best for our class, but it doesn’t fit my
vision for how it should be built. For one, we aren’t updating this database at this time.
And validating and cleansing data are important, but we aren’t doing that in this phase
of the application. We’re going for an minimum viable product (MVP) model, mean-
ing we’re looking for basic functionality.

Balancing MVP development with best practices
When accelerating development with AI tools

¡	Start with core functionality—Focus on must-have features first.
¡	Don’t skip database design—Even for MVPs, proper schema design pays

dividends.
¡	Defer optimization—Aim for working code first and performance improvements

later.
¡	Simplify where possible—Resist feature creep and overengineering.
¡	Maintain separation of concerns—Even fast development benefits from clean

architecture.
¡	Keep security in mind—Some best practices shouldn’t be compromised even

for speed.
¡	Document as you go—Leave breadcrumbs for your future self in comments.
¡	Test critical paths—Ensure core functionality works as expected.

The sweet spot is creating maintainable code quickly without introducing technical
debt that will slow future development.

In the spirit of building a good MVP, here are the methods I’m thinking of:

¡	connect_to_database()

¡	close_database()

¡	fetch_questions()

With these methods fleshed out, we can get the functionality we need to deliver ques-
tions to the student.

Here is the connect_to_database() function I’ll build:

 def connect_to_database(self):
 # connect to a SQLite database. The file name is data/questions.db
 conn = sqlite3.connect('data/questions.db')
 # Create a cursor object
 cur = conn.cursor()
 # return the cursor
 return cur

This is a bare minimum connection to our database. We know that we need some cor-
rection and error handling here. It’s likely you can code this up in your sleep, but let’s
ask Blackbox for help. For this step, I use Blackbox differently and select the code I’m

	 121Developing core features

asking about. This gives the tool context to work with and avoids generic answers. The
selected code becomes part of the prompt.

I’ll select the code and ask in Blackbox chat:

	 What error correction should be placed in this function?

I will make sure to check Include Code in Active File, as shown in figure 5.19

Figure 5.19  Asking a question in Blackbox chat and making sure it’s looking at our code

Here is the response from Blackbox. First, it included a suggested code snippet of the
entire file:

	 import sqlite3

class DatabaseConnection:

 def __init__(self):
 self.conn = None
 self.cur = None

 def connect_to_database(self):
 # connect to a SQLite database. The file name is data/questions.db
 try:
 self.conn = sqlite3.connect('data/questions.db')
 # Create a cursor object
 self.cur = self.conn.cursor()
 except sqlite3.Error as e:
 print(f"An error '{e.args[0]}' occurred while connecting
to the database.")
 finally:
 if self.conn:
 return self.cur
 else:
 return None

 def close_connection(self):
 if self.conn:
 self.conn.close()
 self.conn = None
 self.cur = None

122 Chapter 5  Using Blackbox AI to generate base code

This is exactly what I had in mind when I asked the question. Then, Blackbox follows
up with an explanation of the code generated:

	 The above code implements the DatabaseConnection class with the connect_to_
database and close_connection methods. It includes error handling, and the
cursor is stored as an instance variable for later use.

When using the connect_to_database method, if there is an error while connecting
to the database, it will be printed out. Additionally, if the connection was successful,
the cursor will be returned.

When using the close_connection method, it will close the connection to the da-
tabase if it exists.

This is great, and it’s what I asked for. You may have noticed something in the gener-
ated code, though. In Questions.py, the class is named Questions:, and in the gener-
ated code, we now have class DatabaseConnection:. Why?

Looking at this change prompts a great question. Should we be connecting to the
database in the Questions class at all?

Crafting effective AI prompts for code generation
To get better code from AI tools:

¡	Be specific about language, frameworks, and versions.
¡	Include context about your existing code structure and patterns.
¡	Specify exactly what the function should do and return.
¡	Mention error handling expectations.
¡	Include file paths and database details when relevant.
¡	Break complex requests into smaller, focused prompts.
¡	Use code comments as inline prompts when working in your IDE.
¡	For more complex tasks, use the chat interface to maintain conversation context.

Let’s compare the flowing prompts:

Weak—”Connect to a database.”

Better—“Connect to a SQLite database. The file name is data/questions.db.”

Best—“Create a method that connects to a SQLite database at data/questions.db,
handles connection errors, and returns a cursor object.”

Human intervention is required

It’s once again time to override the suggestions given by generative AI. ChatGPT and
Blackbox did as we asked, but the suggestions still lack the context and ability to read
my mind thoroughly. I need to make some design decisions of my own here.

We can reuse this code because there’s no reason to put the database open and close
functions in every class we create. In fact, our Questions class should have no database
connections in it all.

	 123Developing core features

This follows the basic computer science principle called “separation of concerns.”
According to this principle, functions or units of software should be focused on their
given task and not overlap or attempt to do too many things. It’s very similar to “Do one
thing and do it well.” The Questions class should focus on delivering questions, and we
should have a separate class to handle database connections.

When to override AI suggestions
Trust your judgment over AI when

¡	The generated code doesn’t follow separation of concerns principles.
¡	AI suggests a complex solution when a simpler one would suffice.
¡	The suggested architecture doesn’t align with your project’s patterns.
¡	Performance considerations aren’t being addressed (e.g., SELECT *).
¡	The best security practices are being ignored.
¡	The AI is making assumptions about your project that aren’t accurate.
¡	The code works but isn’t maintainable long-term.
¡	You see library or dependency choices that don’t match your stack.

Remember: AI tools can create correct code, but they don’t understand your project’s
needs, limits, and future goals. Your ability to detect design flaws early on, before they
lead to implementation problems, is your greatest asset.

I’ll create a new file with the code that Blackbox generated for us. Now we’re using
a separate class to connect to the database. When we mix the database connection
functionality into each of our classes, we risk repeating code. More importantly, we’ll
create more code that we must update if we decide to use another database engine,
for instance. It’s best to abstract this into its own class for simplicity and avoid these
problems.

The database connection pattern
A robust database connection pattern should

¡	Isolate connection logic—Keep database-specific code in one place.
¡	Manage resources properly—Ensure connections are always closed.
¡	Support transactions—Allow for atomic operations.
¡	Handle errors gracefully—Provide meaningful error messages.
¡	Be configurable—Make database paths and credentials configurable.
¡	Be thread-safe—Consider connection pooling for web applications.
¡	Follow the single responsibility principle—Database connection code should do

one thing well.

We’ll use this for every database connection we make. Let’s create a new file named
DatabaseConnection.py in our Models directory, and we’ll use it to handle our data-
base connections:

124 Chapter 5  Using Blackbox AI to generate base code

import sqlite3

class DatabaseConnection:
 def __init__(self, db_path):
 self.db_path = db_path

 def __enter__(self):
 self.connection = sqlite3.connect(self.db_path)
 return self.connection.cursor()

 def __exit__(self):
 self.connection.commit()
 self.connection.close()

This will be our way of connecting to the database, and we can reuse this code in other
parts of our application. Let’s break it down to understand it completely.

This code defines a context manager for managing database connections using the
SQLite3 module in Python:

import sqlite3

SQLite3 is a database engine that is part of the standard Python library. The following
line imports the SQLite3 module:

class DatabaseConnection:

This line defines a new class named DatabaseConnection:

def __init__(self, db_path):
	 self.db_path = db_path

The following method is the class constructor. It takes a single argument db_path,
which is the path to the SQLite database file:

def __enter__(self):
 self.connection = sqlite3.connect(self.db_path)
 return self.connection.cursor()

The next method is a special method in Python, called when the with statement is
used. The with statement in Python is employed to wrap the execution of a block of
code that uses methods requiring setup and cleanup steps. The with statement allows
you to perform a task and have setup and cleanup performed automatically. That way,
you don’t have to manually allocate and deallocate resources. We’ll design this class to
use the methodology. When this class is used as a context manager, __enter__ will be
called first if we use the with statement.

In this method, a connection to the SQLite database is established using the sqlite3
.connect() function. The connection object is stored in the self.connection
attribute. Then, a cursor object is created by calling the cursor() method on the

	 125Developing core features

connection object. This cursor object is returned by this method, allowing it to be used
inside the with block:

def __exit__(self):
 self.connection.commit()
 self.connection.close()

This is another special Python method triggered by the with statement. When the class
is used as a context manager, this method is called last.

The changes made to the database during the with block are committed by calling
the commit() method on the connection object. Then, the connection to the database
is closed by calling the close() method on the connection object.

To use this class as a context manager, you can do the following:

with DatabaseConnection('path/to/database.db') as cursor:
 cursor.execute('SELECT * FROM some_table')
 results = cursor.fetchall()

The DatabaseConnection class is used as a context manager in a with statement. When
the with block is exited, the __exit__() method of the DatabaseConnection class will
be called automatically, ensuring that the database changes are committed and the
connection is closed properly.

Here is how I refactor the questions.py file to use the database_connection.py file:

class Questions:
 def __init__(self, cursor):
 self.cursor = cursor

 def fetch_data(self):
 self.cursor.execute("SELECT * FROM questions") # Adjust SQL query as needed
 return self.cursor.fetchall()

We’ll return to fetch_questions soon, but now our Questions class can utilize a sep-
arate database connection and focus on doing its primary job, which is delivering
questions.

The art of refactoring AI-generated code
Common refactoring needs for AI-generated code are

¡	Separating concerns (database access, business logic, presentation)
¡	Removing hardcoded values and adding configuration
¡	Improving error handling and edge cases
¡	Making code more testable through dependency injection
¡	Ensuring code follows project-specific patterns and standards
¡	Removing unused or redundant code sections
¡	Improving variable and function naming for clarity

126 Chapter 5  Using Blackbox AI to generate base code

(continued)

Remember that AI tools often generate happy-path code, which works in ideal condi-
tions but may need hardening for production. The most valuable refactoring typically
focuses on

¡	Exception handling
¡	Resource management (connections, file handles)
¡	Configurability
¡	Testability

5.3.5	 Modifying our entry point (App.py)

Now that we’ve changed how our questions are generated and separated, the
Questions class from the database connection, our entry point needs to change as
well. We need to add some imports. We will import Flask, as well as the files we’ve
created so far. They’re named explicitly so app.py knows where to find them:

from flask import Flask, render_template
from app.models.database_connection import DatabaseConnection
from app.models.questions import Questions

Then, we need to change our index() function to point to our database and then call
the database connection class into our cursor:

def index():
 db_path = 'data/questions.db'
 # Call the function and store the returned data in a variable
 with DatabaseConnection(db_path) as cursor:

Next, we pass the cursor into our questions class and use questions.fetch_data to
populate the data variable we use for displaying our data. This is the same data variable
that our page rendering will use:

questions = Questions(cursor)
data = questions.fetch_data()

Here is what our modified App.py looks like in its final form:

from flask import Flask, render_template
from app.models.database_connection import DatabaseConnection
from app.models.questions import Questions

app = Flask(__name__)

@app.route('/')
def index():
 db_path = 'data/questions.db'

	 127Developing core features

 # Call the function and store the returned data in a variable
 with DatabaseConnection(db_path) as cursor:
 questions = Questions(cursor)
 data = questions.fetch_data()
 # Return the HTML template for the index page
 return render_template('index.html', data=data)

if __name__ == "__main__":
 app.run(debug=True)

Let’s break this down and explain what’s happening. This file sets up a single route
to serve the root path ('/') of the application. First, we need to import the necessary
modules and initialize the Flask application:

from flask import Flask, render_template
from app.models.database_connection import DatabaseConnection
from app.models.questions import Questions

app = Flask(__name__)

Then we need to set up a route and a handler for the root path. The @app.route() is
the route the app takes when the root path is requested. Then the index() function is
called as a route handler for the path:

@app.route('/')
def index():

Next, we set the path to the SQLite database file (db_path) and create a connection to
the database using the DatabaseConnection class we just created. The connection is
managed by a context manager (with statement), which ensures that the connection is
properly closed after the data has been fetched:

 db_path = 'data/questions.db'
 # Call the function and store the returned data in a variable
 with DatabaseConnection(db_path) as cursor:

Then, we create an instance of the questions class and call its fetch_data method to
retrieve data from the database. This data is stored in the data variable:

 questions = Questions(cursor)
 data = questions.fetch_data()

Finally, we render the 'index.html' template using the render_template function
and pass the fetched data to the template:

 # Return the HTML template for the index page
 return render_template('index.html', data=data)

128 Chapter 5  Using Blackbox AI to generate base code

In this block, we run the Flask application if the script is being executed directly (not
imported as a module). The debug=True argument tells Flask to enable debugging fea-
tures, such as displaying detailed error messages in the browser:

if __name__ == "__main__":
 app.run(debug=True)

This is our new entry point, and when we run this application, this is what we’ll see in
the browser (figure 5.20).

Figure 5.20  The web page displayed at the root of our application. It shows a raw printout of the data
returned from our database.

This is a working page, a dump of our questions straight from the database. To the
user, this is exactly what we had before, but under the hood, we have more reusable
and extensible code that’s easier to test. These changes will help us move forward.

Now we’ll need to do some refinement to get it closer to our objectives for the appli-
cation. We’ll need to show one question at a time randomly for the student to see and
provide an answer for. Let’s build out some of that functionality.

5.3.6	 Pulling a set of questions

Currently, our application is only showing a dump of questions. We need to extract
questions one by one to simulate the test-taking experience. The HAM radio technician

	 129Developing core features

test has 35 questions, so we need to extract 35 questions at random for this test. Then,
we’ll have our students go through these questions to simulate a test. Let’s focus on the
function of selecting the questions. We’ll start by making it simple.

Our requirements are as follows:

¡	Pick 35 questions from the database.

¡	Questions must be unique.

¡	Attempt to randomize the selection.

We’ll attempt to use Blackbox to help us out with this task. The first thing we’ll do is
open questions.py and create a new function:

def get_question_set(self):

Next, we will highlight this line of code and click BlackboxAI Code Chat, as shown in
figure 5.21.

Figure 5.21  The
Blackbox AI code
chat button

We also make sure the Include Code in Active View button is selected and enter our
prompt (figure 5.22).

Figure 5.22  The prompt we’ll send to Blackbox AI. It is enclosed in the chat window.

130 Chapter 5  Using Blackbox AI to generate base code

Our next prompt is

	 Can you create a function that selects 35 questions at random? The data returned
should be only the ids of the 35 questions. They should be unique and as random as
possible.

And here is what Blackbox returns:

	 Sure! Here’s an alternative approach to solving this problem using a different data
structure called a set. The set data structure allows us to efficiently perform set
operations such as unions, intersections, and differences. It also guarantees unique-
ness, which is a desirable property for our problem.

Here’s a function that achieves the desired result:

import random

def get_question_set(self):
 all_questions = self.get_all_questions()
 if len(all_questions) < 35:
 return "There are not enough questions to generate a set."
 question_set = set()
 while len(question_set) < 35:
 question_id = random.choice(list(all_questions))
 question_set.add(question_id)
 return list(question_set)

This function works by iteratively adding random question ids to the question_set
until it contains 35 unique ids. It first checks if there are enough questions available
to generate a set of 35 unique ids. If there are not enough questions, it returns an er-
ror message. Otherwise, it iterates until the question_set contains 35 unique ids.

The time complexity of this function is O(n), where n is the number of questions.
The space complexity is also O(n), where n is the number of unique ids in the set.

Note: The function assumes that the get_all_questions method returns a set
of unique question ids. If the get_all_questions method returns a list or any
other data structure, you will need to convert it to a set before using it in the get_
question_set function.

I’ll add in the suggested code to our get_question_set function. This requires adding
in a new function called get_all_questions(). However, our fetch_data function
already provides this service:

 def get_all_questions(self):
 self.cursor.execute("SELECT * FROM questions")
 return self.cursor.fetchall()

This should provide us with what we need. Let's modify our run.py file to use our new
method. Ideally we can modify this and it should provide us with a set of ids for the
"random" questions. Change:

data = questions.fetch_data()

	 131Developing core features

So, we’ll rename it to

data = questions.get_question_set()

This adjustment should update our application to get the IDs of the 35 questions we
need. Let’s load it in our browser (figure 5.23).

Figure 5.23  Our results from creating a function to randomly grab 35 questions

After loading this up, we can see that it is pulling 35 questions at random. However,
we are seeing the full record here, and we only need the ID of each question. The idea
here is we can store a set of IDs in a new table and then retrieve the question data from
that ID as the student is taking the test. Let’s look closer at our questions class. I can
see that our function get_all_questions() is what is pulling the full record:

def get_all_questions(self):
 self.cursor.execute("SELECT * FROM questions")
 return self.cursor.fetchall()

So, we can change that to only pull IDs. Then we can get a list of IDs and use them as a
reference set. We will change this line to

self.cursor.execute("SELECT id FROM questions")

132 Chapter 5  Using Blackbox AI to generate base code

I like this better because it serves our purpose, but also we never want to SELECT * from
a table anyway. It can lead to a host of problems and security vulnerabilities.

Effective SQL practices with generative AI
When generating SQL code with AI tools

¡	Always review queries. AI-generated SQL may work but be suboptimal.
¡	Avoid SELECT *. Specify exact columns needed to improve performance.
¡	Check where clauses. Ensure proper filtering to avoid table scans.
¡	Look for missing indexes. AI might not know your data volumes or access

patterns.
¡	Be wary of string concatenation. Ensure generated code uses parameterized

queries.
¡	Consider transactions. Check if operations need to be atomic.
¡	Verify error handling. How does the code handle database exceptions?

SQL is a particular area where AI tools show their limitations. They often suggest
functional but inefficient queries that don’t account for your specific data patterns
and volumes.

This function now selects all IDs from the database, and our get_question_set()
function will only pull 35 random IDs. Figure 5.24 shows the application’s response
following a page refresh.

Figure 5.24  Our index page now only shows IDs as output from our query.

	 133Developing core features

This is a step in the right direction. And it completes the functionality I was looking
for:

¡	Pick 35 questions from the database.

¡	Questions must be unique.

¡	Attempt to randomize the selection.

Now I just need to create a table that will store these IDs and some session data for our
students.

5.3.7	 Creating a test session in the database

Now that we can pull 35 random questions from the database, we need to establish a
test session. Here is what I have in mind. I’d like a table that can store a state for the test
session as it’s running. This session will run as the students take the test. Here are the
high-level requirements:

¡	Create a session.

¡	Keep track of the 35 questions.

¡	Keep track of the correct answer for each.

¡	Track the answer the student has entered.

¡	Track the number of correct answers.

We need to create three tables:

¡	Sessions—This table will be instances of tests that a user creates. As they cre-
ate a test session, it will keep track of the answers answered correctly and
incorrectly.

¡	Question sets—For the purposes of a practice test, we need a table of questions
grouped together from the main question pool. This will be 35 randomly selected
questions.

¡	Questions—This is the table we’ve already created, the one that contains all the
questions from the HAM radio test.

Figure 5.25 shows the database design I’m considering using.
I need to create a sessions table that looks like this:

"session" (
		 "session_id"	 INTEGER,
		 "questions_correct"	 INTEGER,
		 "questions_incorrect"	 INTEGER,
)

We’ll open DB Browser for SQLite and click Create Table (figure 5.26).

134 Chapter 5  Using Blackbox AI to generate base code

sessions

PK session_id

questions_correct

questions_incorrect

question_sets

question_set_id

idPK

questions

session_id

question_id

correct

question

a

b

c

d
PK

Figure 5.25  Our proposed database design that contains our sessions, question sets, and questions
from the test

Figure 5.26  DB Browser for SQLite main screen

Then, we’ll configure our session table using the dialog box in figure 5.26. We want to
create each field, and in this case, they’re all integer types. The session_id field is a
primary key that’s auto incremented, so we’ll check the PK and AI boxes for that field
(figure 5.27).

Next, we create a question set table that looks like the table in figure 5.27. This is
also a set of integer fields, with question_set_id being a primary key that’s auto incre-
mented. The session_id field will link to our session ID, and the question_id will link
to a question in the main question pool (figure 5.28).

	 135Developing core features

Figure 5.27  Creating
table dialog box for
session table

Figure 5.28  Our
question set table in
SQLite. We’ll enter the
fields you see in the top
window and save them
as the question_
sets table.

136 Chapter 5  Using Blackbox AI to generate base code

This step completes our database structure. The design is minimal, but it will efficiently
propel us to that point of MVP quickly. Make sure to click Write Changes in the top bar
of DB Browser (figure 5.29).

Figure 5.29  The Write Changes button in DB Browser

Your database should now look like the one in figure 5.30.

Figure 5.30  The final database structure, showing all the fields in our three tables

Now, let’s move on to the next task—creating code for our test session.

5.3.8	 Creating code for the test session

Now we have our database set up. Let’s revisit our requirements for our application:

¡	Create a session.

¡	Keep track of the 35 questions.

¡	Keep track of the correct answer for each.

¡	Track the answer the student has entered.

¡	Track the number of correct answers.

With our database structure in place, the next step is to add the code that will allow our
application to interact with it. Let’s see if BlackboxAI chat can help us out. Here is what
I’ll type in for a prompt:

	 137Developing core features

	 I need to create a class that creates a new session. Here is the SQL used to create
the table:

CREATE TABLE "sessions" (
	 "session_id"	 INTEGER,
	 "questions_correct"	 INTEGER,
	 "questions_incorrect"	INTEGER,
	 PRIMARY KEY("session_id" AUTOINCREMENT)
)

Please create a class that will create a new session record, and session_id is the
primary key, so it must be unique and increment from the last id. Insert zero for the
questions_correct and questions_incorrect fields upon creation.

And here is what it returns—a class named session.py that looks like this:

import sqlite3

class Session:
 def __init__(self):
 self.session_id = self.create_session()
 self.questions_correct = 0
 self.questions_incorrect = 0

 def create_session(self):
 connection = sqlite3.connect('database.db')
 cursor = connection.cursor()
 cursor.execute("SELECT MAX(session_id) FROM sessions")
 result = cursor.fetchone()
 if result[0] is None:
 session_id = 1
 else:
 session_id = result[0] + 1
 cursor.execute("INSERT INTO sessions
VALUES (?, ?, ?)", (session_id, 0, 0))
 connection.commit()
 connection.close()
 return session_id

This code looks pretty good, except that it has database connection functionality in it.
We have a DatabaseConnection class to handle that for us. I will create a session.py
in the /models folder and save it. Then I will use this file as context and ask it to use our
database class. Let’s go back to Blackbox AI chat again. I open session.py and ask the
following:

	 How can I make this class utilize my DatabaseConnection class located at /models/
database_connection.py?

Here is the Blackbox AI response:

138 Chapter 5  Using Blackbox AI to generate base code

	 You can import the DatabaseConnection class in your Session class and use it to
execute your SQL commands. Here’s how you can do it:

Import the DatabaseConnection class at the beginning of your Session class file:

from models.database_connection import DatabaseConnection

Modify your create_session method to use the DatabaseConnection class in-
stead of directly creating a SQLite connection:

def create_session(self):
 connection = DatabaseConnection()
 cursor = connection.cursor()
 cursor.execute("SELECT MAX(session_id) FROM sessions")
 result = cursor.fetchone()
 if result[0] is None:
 session_id = 1
 else:
 session_id = result[0] + 1
 cursor.execute("INSERT INTO sessions
VALUES (?, ?, ?)"(session_id, 0, 0))
 connection.commit()
 connection.close()
 return session_id

Here’s the complete code for your Session class:

import sqlite3
from models.database_connection import DatabaseConnection

class Session:
 def __init__(self):
 self.session_id = self.create_session()
 self.questions_correct = 0
 self.questions_incorrect = 0

 def create_session(self):
 connection = DatabaseConnection()
 cursor = connection.cursor()
 cursor.execute("SELECT MAX(session_id) FROM sessions")
 result = cursor.fetchone()
 if result[0] is None:
 session_id = 1
 else:
 session_id = result[0] + 1
 cursor.execute("INSERT INTO sessions
VALUES (?, ?, ?)", (session_id, 0, 0))
 connection.commit()
 connection.close()
 return session_id

Make sure that your database_connection.py file is located in the /models direc-
tory and contains the necessary code to establish a SQLite database connection.

	 139Developing core features

With this advice, I should be able to utilize my existing database connection, so I’ll give
it a shot. I updated the code in session.py, and now I need to invoke it to test it. I ask
Blackbox AI how to do that:

	 How can I invoke this from APP.py to create a new session?

Sometimes it’s good to keep the prompts short and sweet. I only add additional infor-
mation when it’s needed to clarify something. The results it generated are helpful.

	 To invoke this from your APP.py file, you can simply import the Session class and
create a new instance of it. Here’s how you can do it.

Import the Session class at the beginning of your APP.py file:

from models.session import Session

Create a new instance of the Session class:

session = Session()

Use the session object to interact with the session. For example, you can print the
session ID like this:

print("Session ID:", session.session_id)

Here’s the complete code for your APP.py file:

from models.session import Session

session = Session()
print("Session ID:", session.session_id)

By following these steps, you can invoke the Session class from your APP.py file and
create a new session.

This looks good, and I can give it a shot. How-
ever, we do have one problem here. There is
more functionality required to create our ses-
sion. If we remember from our original data-
base design, we have to build a question set
and tie it to our session. The question set is
unique and tied to each session. The relation-
ship is shown in figure 5.31.

We will add this implementation code; how-
ever, we still have work to do to create a session.

5.3.9	 Generating a question set

According to our requirements, we need to
pull a set of 35 random questions and insert

sessions

PK session_ id

questions_correct

questions_incorrect

question_sets

question_set_id

session_id

question_id

PK

Figure 5.31  The relationship between
sessions and questions sets in our
database

140 Chapter 5  Using Blackbox AI to generate base code

them into our question_sets table. It needs to be tied to our session, so we know those
35 random questions are associated with the test the student is taking. I have an idea of
how this should work, but let’s run it with Blackbox AI to see how it thinks we should
accomplish this. The next prompt is longer and more detailed:

	 In our create_session() method, I need to pull 35 random questions from our
database. I can do that with the get_question_set() method from questions.py.
I need to take these questions and insert them into the question_sets table. Here
is the SQL used to create that table:

CREATE TABLE "question_sets" (
"question_set_id"	INTEGER,
"session_id"	 INTEGER,
"question_id"	 INTEGER,
PRIMARY KEY("question_set_id" AUTOINCREMENT)
)

In the create_session() method, I need to

¡	Create a new session and store the ID generated

¡	Create a new question_set_id

¡	Pull 35 questions from get_question_set()

¡	Insert the ID of each question into the question_sets table with the session_id
stored in the same record.

How can I refactor the create_session method to accomplish this?

At times, you’ll find a longer more detailed prompt can get you closer the right answer
faster.

	 Here is a refactored version of the create_session method that accomplishes the
task:

class Session:
 def __init__(self):
 self.session_id = self.create_session()
 self.questions_correct = 0
 self.questions_incorrect = 0

 def create_session(self):
 connection = DatabaseConnection()
 cursor = connection.cursor()
 cursor.execute("SELECT MAX(session_id) FROM sessions")
 result = cursor.fetchone()
 if result[0] is None:
 session_id = 1
 else:
 session_id = result[0] + 1
 cursor.execute("INSERT INTO sessions
VALUES (?, ?, ?)", (session_id, 0, 0))
 connection.commit()

 question_set_id =

	 141Developing core features

 self.create_question_set(session_id, connection, cursor)
 connection.close()
 return session_id

 def create_question_set(self, session_id, connection, cursor):
 question_set_id = 1
 question_set = get_question_set(35)
 for question in question_set:
 cursor.execute("INSERT INTO question_sets
VALUES (?, ?, ?)", (question_set_id, session_id, question.id))
 question_set_id += 1
 connection.commit()
 return question_set_id

In this refactored version, I have added a new method called create_question_set
that handles the creation of the question set and insertion of the questions into the
question_sets table.

This method takes the session_id, connection, and cursor as parameters. It creates
a new question_set_id, pulls 35 random questions from the get_question_set()
method, and inserts the ID of each question into the question_sets table with the
session_id stored in the same record.

The create_question_set method is then called within the create_session
method, after the new session has been created and stored in the sessions table. This is
a lot of code to digest at once. I copied and pasted this code, and right away, I noticed I
must fix some import statements. In app.py, change

from app.models.questions import Questions

to explicitly call our method:

from app.models.questions import get_question_set

Now, it should be ready to run. I’ll start up my application. At this point, the page load
will create a new session (we’ll fix that soon). I type python run.py at the prompt, and
it quickly returns this error:

Traceback (most recent call last):
 File "/mnt/c/Users/jerem/Projects/HAM-Radio-Practice-Web/run.py", line 4,
in <module>
 from app.models.session import Session
 File "/mnt/c/Users/jerem/Projects/HAM-Radio-Practice-Web/app/models/
session.py", line 2, in <module>
 from .questions import get_question_set
ImportError: cannot import name 'get_question_set' from 'app.models.
questions' (/mnt/c/Users/jerem/Projects/HAM-Radio-Practice-Web/app/models/
questions.py)

The problem stems from the code not creating a new instance of questions. If we look
at the create_question_set method, it’s not creating a new instance:

142 Chapter 5  Using Blackbox AI to generate base code

def create_question_set(self, session_id, connection, cursor):
question_set_id = 1
question_set = get_question_set(35)
for question in question_set:
cursor.execute("INSERT INTO question_sets
VALUES (?, ?, ?)", (question_set_id, session_id, question.id))
 question_set_id += 1
connection.commit()
return question_set_id

I need to add the following import:

from .questions import Questions

The new method should look like this:

def create_question_set(self, session_id, connection, cursor):
questions = Questions()
question_set_id = 1
question_set = questions.get_question_set(35)
for question in question_set:
cursor.execute("INSERT INTO question_sets
VALUES (?, ?, ?)", (question_set_id, session_id, question.id))
 question_set_id += 1
connection.commit()
return question_set_id

Now I will try to run python run.py again, and it loads successfully (figure 5.32).

Figure 5.32  A successful load of our Flask application

However, once we load up a page in the browser (figure 5.33), I get a TypeError.
I know why this has gone wrong, and if you’re paying close attention, you do as well.

Our generated code in create_session looks like this:

connection = DatabaseConnection()

The class requires a db path to be injected into it. We could easily write

connection = DatabaseConnection('data/questions.db')

	 143Developing core features

Figure 5.33  TypeError from our application.

This code would likely work. However, it is bad practice. If we set the pathname loca-
tion of our database in multiple places, when the name changes, we must update it
multiple times in several files. Let’s inject this pathname into the Session class instead.
That way, we only specify the pathname in one place. Let’s open session.py and make
some small changes.

Change this line of code

class Session:
def __init__(self):

to

class Session:
def __init__(self, cursor):

Next, add the following under the definition:

self.cursor = cursor

This line will pass in the cursor when you initialize the session. In this manner, we can
use the existing database connection throughout each step of the process. Right now,
the create_session method looks like this:

144 Chapter 5  Using Blackbox AI to generate base code

def create_session(self):
connection = DatabaseConnection()
cursor = connection.cursor()
cursor.execute("SELECT MAX(session_id) FROM sessions")
result = cursor.fetchone()
if result[0] is None:
	 session_id = 1
else:
	 session_id = result[0] + 1
 cursor.execute("INSERT INTO sessions
VALUES (?, ?, ?)", (session_id, 0, 0))
 connection.commit()
	 question_set_id = self.create_question_set(session_id, connection,
cursor)
 connection.close()
 return session_id

We need to refactor code now so that it uses the cursor we passed in. We make the fol-
lowing changes:

def create_session(self):
 self.cursor.execute("SELECT MAX(session_id) FROM sessions")
 result = self.cursor.fetchone()
 if result[0] is None:
 session_id = 1
 else:
 session_id = result[0] + 1
 self.cursor.execute("INSERT INTO sessions
VALUES (?, ?, ?)", (session_id, 0, 0))

 question_set_id = self.create_question_set(session_id)
 return session_id

This refactored code will use self.cursor instead of creating a new Database
Connection and cursor. We need to refactor create_question_set in the same way.
Here is what it looks like now:

def create_question_set(self, session_id, connection, cursor):
 questions = Questions()
 question_set_id = 1
 question_set = questions.get_question_set()
 for question in question_set:
 cursor.execute("INSERT INTO question_sets
VALUES (?, ?, ?)", (question_set_id, session_id, question.id))
 question_set_id += 1
 connection.commit()
 return question_set_id

Here is the new method, using our cursor:

def create_question_set(self, session_id):
questions = Questions(self.cursor)
question_set_id = 1

	 145Developing core features

question_set = questions.get_question_set(35)
for question in question_set:
 self.cursor.execute("INSERT INTO question_sets
VALUES (?, ?, ?)", (question_set_id, session_id, question[0]))
 question_set_id += 1
return question_set_id

Now we’re ready to load up the page. Once again, we’ll start up our application:

python run.py

I can see immediately there are no errors in my console, which is a good first sign (fig-
ure 5.34). We’ve done a lot of refactoring here!

Figure 5.34  There are no errors present in the console, which means our application started properly.

And now I load up the web page at http://localhost:5000 and see a list of question IDs
(figure 5.35). This is exactly what we want.

Figure 5.35  Our web browser screen showing IDs

http://localhost:5000

146 Chapter 5  Using Blackbox AI to generate base code

Why are we excited about seeing question IDs? Because this verifies that we’ve pulled a
set of random questions using the following line of code:

data = questions.get_question_set()

We can assume it worked because we didn’t see an error. In fact, we also print out the
data variable to our console and can see the same set there, as well as our session ID
(figure 5.36).

Figure 5.36  Our console output

This is a promising sign that the implementation succeeded—but further verification
is still required.

5.3.10	 Verifying our test session was created

As a recap, here are our primary objectives for our MVP. We’ve been working on the
first objective so far:

¡	Create a session.

¡	Keep track of the 35 questions.

¡	Keep track of the correct answer for each.

¡	Track the answer the student has entered.

¡	Track the number of correct answers.

In our session creation, we aimed to

¡	Create a session with an ID

¡	Pull 35 random questions

¡	Attach them to our session

We can verify that by looking at our database. First, let’s check out the session table. It
should have a session_id of 1, since it’s our first session, and we should have neither
correct nor incorrect answers yet because the student hasn’t answered any questions.
We look at our sessions table (figure 5.37) and see that it’s true.

Next, we need to see whether we indeed inserted 35 questions at random into our
question_sets table. It appears we did. As shown in figure 5.38, I have 35 questions
associated with session_id 1.

Our initial setup is complete and is working as expected. We can create a new session
with a set of questions. We’re on the right track, but there’s still more to build before the

	 147Developing core features

Figure 5.37  A view of our sessions table showing our first ID and no questions answered

Figure 5.38  A view of our question_sets table showing random questions associated with our
session_id

application is fully functional. In the next chapter, we’re going to run into a bug in
the application we’ve just built. We will use Tabnine as our tool this time to tackle the
bug and add more functionality to our application.

5.3.11	 Conclusion

We collaborated with Blackbox AI to successfully develop a functioning web applica-
tion. We used the tool to quickly generate the initial code and advance development.
Next, we intervened to refine the architecture for maintainability, ensured proper sep-
aration of concerns, added our own code, and overrode AI suggestions when benefi-
cial. This is common practice.

The resulting application meets our core requirements, with a suitable database
schema and Python code to manage test sessions. Our application is generating ran-
dom question sets, creating test sessions, and tracking test state. However, it still needs
additional work to be usable.

148 Chapter 5  Using Blackbox AI to generate base code

By combining AI generation with human judgment, we rapidly developed an appli-
cation foundation. We used AI accelerated suggestions to flesh it out, and then I pro-
vided a bit of course correction based on my experience. The process demonstrated
the immense value these tools provide, while highlighting the importance of human
expertise. The future is a partnership between humans and AI—each playing a vital
role. We’ll continue this partnership as we build a usable application.

Summary

¡	Generative AI tools such as BlackboxAI can speed up development. They gener-
ate initial code, letting developers focus on refining architecture and improving
quality.

¡	Clear and specific context in prompts is key when using AI coding tools. Vague
requests lead to generic or incorrect code, while detailed prompts with clear
requirements yield better results.

¡	Separation of concerns is key in AI-assisted development. We demonstrated it by
keeping database connections in dedicated classes instead of mixing them in the
application.

¡	Human intervention is required to adjust AI-generated code. It is essential when
the code doesn’t follow best practices or meet the application’s needs.

¡	Good database design should come before code generation. Even with AI help,
proper schema planning helps avoid technical debt and future problems.

¡	Context management patterns, such as Python’s with statement, ensure
proper resource handling. These fundamentals are still vital in AI-accelerated
development.

¡	Rather than replacing us, AI should serve as an intelligent partner in our work. It
speeds up implementation but requires human judgment for design and archi-
tecture choices.

¡	Testing and checking the database are key with AI-generated code. This aspect
helps find problems that might be missed in code reviews alone.

149

6Generating a software
backend with Tabnine

This chapter covers

¡	Creating and maintaining persistent sessions
for test-takers

¡	Implementing backend functionality in Flask with
database integration

¡	Using Tabnine to generate code solutions and
fix errors

¡	Crafting effective prompts to troubleshoot
technical challenges

¡	Building an interactive interface that maintains
user state

In chapter 5, we set up our practice test application using Blackbox AI for the data-
base and question selection. In this chapter, we’ll create a user-friendly experience—
the session management and user interface components—which will make our
question database interactive.

150 Chapter 6  Generating a software backend with Tabnine

We’ll use Tabnine as our AI coding assistant. It will help us fix bugs, add new features,
and simplify the development process. But before we move on, let’s review our progress
with the user stories:

¡	User Story 1—As a developer, I want to create a question pool database:

–	 Task 1.1—Choose an appropriate database technology (SQL or NoSQL)
based on the structure and volume of data

–	 Task 1.2—Design a table/collection with fields question_id, question_text,
options, and correct_option

¡	User Story 2—As a developer, I want to implement a question selector:

–	 Task 2.1—Develop a module to randomly select 35 questions from the ques-
tion pool database for each test

–	 Task 2.2—Implement an algorithm to ensure true randomness in question
selection and prevent the same question from appearing more than once in a
single test

–	 Task 2.3—Test the module for randomness and verify it doesn’t repeat ques-
tions within a single test

With these basics covered, we can focus on key user experience needs: managing ses-
sions well, ensuring questions persist, and making a user-friendly interface for test-
takers. By the end of this chapter, we’ll have an application that maintains state across
browser sessions and gives users smooth testing experience.

Before creating a cohesive UI, we need to complete some work on the backend. We
have the following objectives to think about:

¡	We must verify whether a session is created on the first visit to the web page.

¡	We must ensure that a set of questions is added to the pool, that the session per-
sists, and that we can step through the test with the same set of questions.

¡	Our application should keep the session in the browser in case the user closes it.

¡	The user should be able to destroy the session at any time and restart the test.

We’ll tackle these problems by using Tabnine as our guide to improve our application
and get it closer to our requirements. We’ll create a session that persists in the appli-
cation and assign our question set to it. By doing so, we can ensure that the questions
persist as the student goes through them. The session will also remain active if the user
closes the browser window by accident.

6.1	 Creating a session and our first bug
In the last chapter, we launched our application and loaded it into a web browser. This
initiated a test session, creating a unique ID and pulling a set of 35 random questions.
We wrapped up the chapter upon verifying that the process was successful. However, if
we open the application a second time, here’s what we’ll see (figure 6.1).

	 151Creating a session and our first bug

Figure 6.1  A SQLite error that comes up when we load the application a second time

We know the application worked the first time we loaded it. Now we see an error, and
it’s clear that it has something to do with creating a new session. Because we closed the
browser and restarted, the application should start a new session. Let’s see if Tabnine
can help us with this problem. We’ll load up Tabnine chat in Visual Studio Code by
clicking on the Tabnine icon in the activity bar, as shown in figure 6.2.

Figure 6.2  Opening Tabnine chat in our activity bar. The chat window opens to the left of the main IDE
window.

152 Chapter 6  Generating a software backend with Tabnine

A chat window opens, enabling us to communicate with the system just as we’ve done
using other tools (figure 6.3).

Figure 6.3  The Tabnine Chat window supporting simple conversational interaction

Let’s copy the error from our browser and ask Tabnine chat if it can assist us. Here’s
the first prompt we’ll send to the chat window:

	 I’m getting the following error:

IntegrityError

sqlite3.IntegrityError: UNIQUE constraint failed: question_sets.
question_set_id

Can you help with this?

This is a simple prompt, and we aren’t giving it much context, so let’s see what Tabnine
comes up with. Here is the chat response:

	 The error message suggests that there is a problem with the uniqueness of the
question_sets.question_set_id column. This could be due to a duplicate entry
in the database or a missing entry.

To resolve this issue, you can try the following steps:

1	 Check the database for any duplicate entries in the question_sets table. You can
use a SQL query to do this.

	 153Creating a session and our first bug

2	 If there are no duplicate entries, you can add the missing entry to the table.

3	 If the problem persists, you may need to investigate further and try other solutions.

Let me know if these steps help resolve the issue.

Thie response gives us a good start for troubleshooting. One thing to note: if I refresh
the page, a new session is created every time. Things are working as expected for that
part of the process (figure 6.4).

Figure 6.4  The sessions
table shows a valid
session created every
time we refresh the page.
The session_id is
incremented properly so
we know this is correct.

We know the session is being created, but Tabnine is suggesting that there is a problem
with the uniqueness of the question_sets.question_set_id column. We can confirm
this with a query. If it’s working properly, we’ll see sets of questions with session_ids
of 1, 2, 3, and 4 (figure 6.5).

Figure 6.5  We only
have one set of 35
questions for session_
id 1. New question sets
are not being created in
this table.

Tabnine is right in suggesting the problem lies in the question_sets table, and it’s
caused by a unique constraint on the question_sets.question_set_id. When we cre-
ate a new session, it’s trying to insert a new set, starting with a question_set_id of

154 Chapter 6  Generating a software backend with Tabnine

1 instead of starting where the last question_set_id left off. We can verify that with
another query (figure 6.6).

Figure 6.6  Our
numbering ends at 35
in the question sets
table, indicating we
had one successful set
of questions inserted,
and no new sets can
be created.

Now we have a theory about our root cause. The question_set_id column is sup-
posed to be unique, and we’re trying to insert numbers into it, rather than let it auto-
increment on its own. Let’s see if Tabnine can help us. Here’s the next question I’ll ask
Tabnine Chat:

	 I have a unique constraint on the question_sets.question_set_id column. It
is also an auto-incrementing column. How can I modify the code in the create_
question_set function so that it does not insert a new id and instead relies on the
auto incrementing feature of the database?

This should give Tabnine enough context to assume what I’m looking for, which is a
way to keep auto-incrementing the ID. Tabnine returns with a bunch of new code to
attempt to solve our problem. The results are shown in figure 6.7. But I’m hesitant to
copy and paste a giant chunk of code into my file. If it breaks something, trying to find
out which change caused the breakage could be a cat and mouse game. So instead,
I’ll use a cool Tabnine feature—the “Show diff” feature—to display which portions of
code have changed. In figure 6.7, you can also see the button at the bottom of the code
window returned in the chat.

The term “diff” refers to a tool used to compare two sets of data. It’s usually two text
files. If you have two documents and want to compare them, you can quickly see what
changed. A diff highlights both additions and subtractions of text and displays those
changes on the screen. This is useful for things such as tracking modifications to code
and merging conflicts.

By only showing the differences (diff) of the changes, we can get a better idea of what
needs to change. This is a personal preference. If you’ve ever copied and pasted a large
amount of code you don’t fully understand, you’ve likely run into problems later when
something breaks. I would rather understand the changes exactly and implement them
myself, and this feature makes it much easier to do so (figure 6.8).

	 155Creating a session and our first bug

Figure 6.7  This is the code Tabnine has generated to fix our problem. Rather than copy and paste
everything in the window, I’ll use “Show diff” to see which code is changed.

Figure 6.8  The diff view of the proposed changes showing exactly which lines of code need to be
modified to implement Tabnine’s suggestions

156 Chapter 6  Generating a software backend with Tabnine

And here’s another great feature of Tabnine. If you click Insert, the changes will be
inserted into your code, and you can go step by step through each change. You can

¡	Accept current change

¡	Accept incoming change

¡	Accept both changes

¡	Compare changes

The Insert feature is shown in figure 6.9.

Figure 6.9  You can insert the code as part of the diff process and accept changes within the IDE.

Debugging with AI tools
While AI coding assistants can offer solutions to bugs, remember that they’re not
infallible. The most effective approach combines AI suggestions with your own critical
thinking:

¡	Show errors directly to AI tools for targeted help.
¡	Use diff views to understand exactly what changes are being proposed.
¡	Implement changes incrementally and test after each change.
¡	Be prepared to refine prompts when initial suggestions don’t fully solve the

problem.
¡	Remember that sometimes the AI will fix symptoms rather than root causes.

Now I have inserted the code suggested by Tabnine. Here is what the final session.py
code looks like now:

from .database_connection import DatabaseConnection
from .questions import Questions

class Session:
 def __init__(self, cursor):
 self.cursor = cursor
 self.session_id = self.create_session()
 self.questions_correct = 0
 self.questions_incorrect = 0

 def create_session(self):

	 157Creating a session and our first bug

 self.cursor.execute("SELECT MAX(session_id) FROM sessions")
 result = self.cursor.fetchone()
 if result[0] is None:
 session_id = 1
 else:
 session_id = result[0] + 1
 self.cursor.execute("INSERT INTO sessions VALUES
(?, ?, ?)", (session_id, 0, 0))

 question_set_id = self.get_next_question_set_id()
 self.create_question_set(session_id, question_set_id)
 return session_id

 def get_next_question_set_id(self):
 self.cursor.execute("SELECT question_set_id
FROM question_sets ORDER BY question_set_id DESC LIMIT 1")
 result = self.cursor.fetchone()
 if result is None:
 return 1
 else:
 return result[0] + 1

 def create_question_set(self, session_id, question_set_id):
 questions = Questions(self.cursor)
 question_set = questions.get_question_set()
 for question in question_set:
 self.cursor.execute("INSERT INTO question_sets
VALUES (?, ?, ?)", (question_set_id, session_id, question[0]))

We’re now creating a new session_set_id based on the last ID value. I will refresh the
page. If this fix is valid, we should see a new session created and no errors. However,
after refreshing the window, I see the same error again (figure 6.10).

Figure 6.10  The same error as before—a unique constraint violation in the same field

158 Chapter 6  Generating a software backend with Tabnine

We’re getting the same error, but why? I can take a guess at it. You may have caught
this error as well if you looked closely at the code above. Let’s examine our code in the
create_session function:

question_set_id = self.get_next_question_set_id()
self.create_question_set(session_id, question_set_id)

This code was modified to get the next ID in the series and then create a question set
with that. However, remember that the question set is 35 questions, which means that
in our create_question_set method, we attempt to insert that new ID 35 times!

def create_question_set(self, session_id, question_set_id):
 questions = Questions(self.cursor)
 question_set = questions.get_question_set()
 for question in question_set:
 self.cursor.execute("INSERT INTO question_sets
VALUES (?, ?, ?)", (question_set_id, session_id, question[0]))

This is certainly not going to work, meaning we can only use that new ID value one
single time—then it’s going to break again. To verify this, let’s do a quick check of the
database. Sure enough, there’s only one record inserted with a question_set_id of 36,
and a session_id of 6. On the next insert, we violated the constraint by trying to insert
36 as the next question_set_id value (figure 6.11).

Figure 6.11  Our
method inserted record
36 correctly. However,
as we iterate through
the question set to add
new questions, we’re
still inserting 36 for the
question_set_id value.

Tabnine took our request literally but didn’t fully understand the problem. The output
looks correct, but it’s not functional. It’s generating a new incremented ID one time.
However, we need to do that each time we add a new question. This is an example of
why we shouldn’t rely on output of the tools too much. Not only are they fallible, but
we may not frame the prompt to express exactly what we need. Code that “looks right”
can be wrong, and we already know this as developers. It’s best to understand the code
being generated.

We need to modify this piece of code to accomplish our goal:

for question in question_set:
 self.cursor.execute("INSERT INTO question_sets
VALUES (?, ?, ?)", (question_set_id, session_id, question[0]))

	 159Creating a session and our first bug

We can easily make that happen, but let’s ask Tabnine for help. This time, we’ll craft
our idea into a query for the chat to interpret. Here’s my next prompt for Tabnine:

	 In our create_question_set function, we have an error. It is attempting to add new
records into question_sets; however, question_set_id is an auto-incremented
field. How do we modify the code within the create_question_set method so that
we utilize the auto-increment functionality?

This should provide additional detail and context to solve our problem. Here is the
answer I received:

	 To modify the code within the create_question_set method so that it utilizes the
auto increment functionality, you can modify the code as follows:

def create_question_set(self, session_id):
 questions = Questions(self.cursor)
 question_set = questions.get_question_set()
 for question in question_set:
 self.cursor.execute("INSERT INTO question_sets
VALUES (DEFAULT, ?, ?)", (question_set_id, session_id, question[0]))

In this modified code, we are using the DEFAULT keyword in the SQL statement to let
the database automatically assign a value to the question_set_id column.

I’ll save you some time—this method did not work. That’s because, as far as I know, the
DEFAULT keyword doesn’t work in SQLite. It’s once again time for human interven-
tion. I know how the auto-increment flag is supposed to work, and I am familiar enough
with SQLite databases to know that if you insert a null value into an auto-incremented
field, it will generate a new value. I’ll give Tabnine an informal, conversational prompt:

	 Default doesn’t work here, can I just insert a null value into the database?

It immediately returns an answer that will work for me (figure 6.12).

Figure 6.12  I asked Tabnine an informal question and suggested a solution. It responded
with a solution that will work.

160 Chapter 6  Generating a software backend with Tabnine

Crafting effective code prompts
The quality of AI code assistance depends heavily on your prompting approach:

¡	Start with clear, specific descriptions of what you want to accomplish.
¡	Include relevant context about your codebase and frameworks.
¡	For complex problems, try conversational, informal prompts.
¡	When you have a potential solution in mind, don’t be afraid to steer the AI by

suggesting an approach.
¡	Follow up with clarifying questions when suggestions aren’t working.

Now let’s change our insert line from this:

self.cursor.execute("INSERT INTO question_sets VALUES
(DEFAULT, ?, ?)", (question_set_id, session_id, question[0]))

to the following line of code, which simply uses “None” as the datatype to insert. By
inserting a null value, SQLite will automatically create the question_set_id and incre-
ment it properly:

self.cursor.execute("INSERT INTO question_sets VALUES
(null,?,?)", (session_id, question[0]))

I’m sure Tabnine would have generated a similar solution first, with enough attempts.
Sometimes, if you know the answer or feel strongly about an idea, it’s good to steer the AI
into a certain direction. We refresh the page and see the window displayed in figure 6.13.

Figure 6.13  This is our makeshift success screen. It shows the IDs of the 35 questions inserted into our
database.

	 161Creating an index page

With this screen, we know we’re inserting records in our table again without an error.
I’ll refresh it a few times and create multiple sessions. We can then validate it by look-
ing at our database again. We can count the number of questions and group them
by session_id. There should be 35 questions in each set, except for the session that
failed (figure 6.14).

Figure 6.14  We can see a
list of sessions here with 35
questions each. Session 6
failed on insert, so there is
only one question available.

Now that we have that bug squashed, we need to move on to a better way to create our
sessions. Right now, just loading the website up creates a new session. Let’s put a user
interface on it so the user can create the session. Then, we’ll add functionality to han-
dle the questions.

6.2	 Creating an index page
So far, our application can start a session, from a technical standpoint, but it’s a little
rough. We must reload the page to start a session, and we can’t do anything after that
except view a few QuestionIDs in a list. Let’s change that.

In our run.py, we have a line of code that produces our index page:

 return render_template('index.html', data=data)

This loads up a file located in /templates, and it looks like this:

 <!-- HTML template for the index page -->
 <!DOCTYPE html>
 <html>
 <head>
 <title>Index Page</title>
 </head>
 <body>
 <h1>Data</h1>

 {% for item in data %}

162 Chapter 6  Generating a software backend with Tabnine

 {{ item }}
 {% endfor %}

 </body>
 </html>

This file doesn’t do much more than list every item in our data array. As it’s not incred-
ibly useful, let’s create a function to start a new session with the click of a button. This
gives the user control over when to start a session. Then we can store that session, and
the user can go on to answer questions. Let’s ask Tabnine to help us out with that. Here
is the prompt I sent:

	 How can I add a button to this page that will start our session for us? In run.py,
our question session is started with "data = questions.get_question_set()".
I would like to add a form with a button to call that function. How would I code
this?

In this prompt, I’m attempting to be as specific as possible about what I want to do,
without revealing too much about how it’s done. I don’t want to give the solution away
but ask for one. Here is the output:

	 To add a button to the index.html page that starts the question session, you can
add the following code to the index.html file:

<form action="/" method="POST">
 <input type="submit" value="Start Question Session">
</form>

This code adds a form with a submit button to the index.html page. When the user
clicks the submit button, the form will submit to the root URL (/), which is where the
index.py file is located.

In the index.py file, you can add the following code to handle the form submission:

@app.route('/', methods=['POST','GET'])
def index():
 # Check if the form has been submitted
 if request.method == 'POST':
 # Start the question session
 # ...

 # Return the HTML template for the index page
 return render_template('index.html', data=data)

This code checks if the request is a POST request. If it is, it starts the question ses-
sion. Otherwise, it returns the index.html template with the data variable.

You can replace the code in the index.py file that retrieves the question data with
the following code:

def index():
 # Start the question session

	 163Creating an index page

 with DatabaseConnection(db_path) as cursor:
 questions = Questions(cursor)
 data = questions.get_question_set()
 session = Session(cursor)
 print("Session ID:", session.session_id)

 # Return the HTML template for the index page
 return render_template('index.html', data=data)

This code starts the question session before retrieving the data, which ensures that
the session ID is generated before the data is retrieved.

Let’s put this suggestion to test. I’ll follow the instructions precisely, and we’ll see how
the result turns out.

In index.html, below this line

<h1>Data</h1>

add

<form action="/" method="POST">
 <input type="submit" value="Start Question Session">
</form>

In the run.py file, change

@app.route('/')

to the suggested line

@app.route('/', methods=['POST','GET'])

Under this line of code, within the function

def index():

add the following:

Check if the form has been submitted
 if request.method == 'POST':
 # Start the question session
 # ...

Then we can indent the rest of the code, as shown in figure 6.15.
Now we know that a session will only be created if we ask for it. This is a great sugges-

tion; however, I have a feeling it’s not quite complete. If you are following along, you’ll
notice Tabnine catches a small problem here, as shown in figure 6.16.

164 Chapter 6  Generating a software backend with Tabnine

Figure 6.15  The
remainder of the
question creation
code should be
indented so it is only
executed if this is a
POST command.

Figure 6.16  Tabnine catches an error and proposes several changes.

I’ll select the “Fix with Tabnine,” and it suggests changing this line of code

from flask import Flask, render_template

to

from flask import Flask, render_template, request

That way, we can import the request method from Flask. Since you’re a Python devel-
oper, you’ve probably already spotted our next problem, where data isn’t yet defined,
in this line of code:

return render_template('index.html', data=data)

	 165Creating an index page

The code will return a “referenced before assignment” error with Python. So, let’s add
the following line of code above it:

else:
 data = None

This way, if a POST is sent, it will create a new session and populate data; if it’s a GET
(simply loading the web page), nothing will be sent. Let’s open index.html and mod-
ify it to handle an empty variable.

Say we don’t know anything about Flask. How do we check for empty strings? Let’s
find out.

In index.html, highlight the following code:

 {% for item in data %}
 {{ item }}
 {% endfor %}

And then, we’ll ask Tabnine for some help. Here’s the prompt I sent:

	 In the selected code, I want to check to see if data is empty. If it is, render nothing.
If it’s not empty, render the selected code.

Tabnine understood my request and produced the following solution:

	 {% if data %}

 {% for item in data %}
 {{ item }}
 {% endfor %}

{% endif %}

Tabnine suggests some template code that will render if data is populated and do noth-
ing if it isn’t. Perfect. Let’s run the application again. As you can see in figure 6.17, we
have what we’re expecting, which is a title and a button to create a new session.

Figure 6.17  Our screen successfully loaded with our new button.

166 Chapter 6  Generating a software backend with Tabnine

Now that the screen is loaded up, let’s click the button! It should load up our question
set (figure 6.18).

Figure 6.18  Our page loaded correctly with a new question set.

Awesome. We can now start a session. However, this session is only active if the browser
window is open. We need to find a way to create a session for each user so that the
application maintains state for them.

6.2.1	 Persisting the session

We want to persist this session for a user so that if they close the browser by accident,
the session will still be available. The first thing we’ll do is display the session ID in the
browser so we can make sure that we’re working with the same session.

In templates/index.html, let’s change the following code. We have an h1 tag dis-
playing “Data,” and we’re going to add a title and then add a display of our session ID.
Let’s change

<h1>Data</h1>

to look like this:

<h1>Ham Radio Practice Test</h1>
{% if session_id %}
 <h3>Session: {{session_id}}</h3>
{% endif %}

We are saying if a session_id exists, we’ll display it on the page. If it doesn’t exist yet,
nothing will happen. Then we need to modify our run.py file to populate this variable
in our template. Find this piece of code:

return render_template('index.html', data=data)

	 167Creating an index page

Let’s change that to pass in our session ID:

return render_template('index.html', data=data, session_id=session.session_id)

By adding this additional para
meter, it will pass that data to
our template, and we should
see it displayed as shown in fig-
ure 6.19.

Let’s use Tabnine to learn
how to do that. I’ll ask a brief, yet
direct question as my prompt.
I’m deliberately using a con-
versational approach here as it
works well with Tabnine.

Here’s my first prompt:

	 I want to store a session id in a cookie. I want flask to create this cookie based on
the session id from the database. How can I build that?

Although it’s basic, this prompt clearly states what I would like Tabnine to do. Tabnine
gives a detailed response to the question with a full code example (figure 6.20).

Figure 6.20  The detailed response for our prompt. Tabnine explains exactly how to create and store a
cookie based on our request.

Let’s follow Tabnine’s advice here. It suggests that we use the Session object and call
the session.sid object, then store it as a cookie. We can use the “Show diff” feature to
see what needs to change (figure 6.21).

Figure 6.19  Our index page after creating a new session.
Here, session 42 is shown so we can see which session
we’re working with.

168 Chapter 6  Generating a software backend with Tabnine

Figure 6.21  The “Show diff” feature does a diff on the file, highlighting which lines of code we
need to add to our project.

Find this section of code in run.py:

session = Session(cursor)
print("Session ID:", session.session_id)
 print(data)

Let’s remove the print statements. We no longer need to print out the session ID in the
console. After, we create the session variable. Let’s add

session.create_session()
 # Set the session ID as a cookie
 session.sid = session.session_id

Then, in our else block, we can add the code to get the session ID. If it doesn’t exist,
we’ll create a new session automatically. Now that we’ve added the changes, let’s refresh
our page. We see an error as shown in figure 6.22.

Figure 6.22  Our session
variable cannot be accessed
if it doesn’t yet exist.

	 169Creating an index page

This error is another reminder that we can’t blindly copy and paste code from these
tools, and some bit of intervention is usually needed. We can’t access session if it hasn’t
been created. We need to refactor this application anyway. Right now, it takes a POST to
create a new session. It’s an extra step that relies on the user clicking a button to start.
We know the user wants to take a practice test, so there’s no need for the extra step in
creating it. Let’s change the application to start a new test session when the user visits
the page for the first time. Then we’ll persist the session.

6.2.2	 Refactoring session creation

At this time, we can only start a new question session by pressing a button and sending
a POST to the application to create it. We can’t access the session globally because the
database connection is only made after that POST, as shown in our code:

Check if the form has been submitted
 if request.method == 'POST':
 # Start the question session
 # ...
 db_path = 'data/questions.db'
 # Call the function and store the returned data in a variable
 with DatabaseConnection(db_path) as cursor:

Let’s change this so the database connection is loaded every time our index page is
called. And we’ll create the session when we load it up. How can we do that? We’ll
remove the logic for handling a POST and put all the creation into our index method.
This is what our index method looks like now:

@app.route('/', methods=['POST', 'GET'])
def index():
 db_path = 'data/questions.db'
 # Call the function and store the returned data in a variable
 with DatabaseConnection(db_path) as cursor:
 session = Session(cursor)
 questions = Questions(cursor)
 data = questions.get_question_set()
 session.sid = request.cookies.get('session_id')
 return render_template('index.html', data=data, session_id=session.
session_id)

if __name__ == "__main__":
 app.run(debug=True)

Now we open the database every time and create a session. However, we need to add
logic around checking the cookie for an existing session. Right now, we have the fol-
lowing line of code that gets our session ID; still, it needs to be modified to create a
session if none is found:

session.sid = request.cookies.get('session_id')

170 Chapter 6  Generating a software backend with Tabnine

Let’s instead look for this value and create a session if it doesn’t exist. Here is our
updated code:

with DatabaseConnection(db_path) as cursor:
 session = Session(cursor)
 our_session = request.cookies.get('session_id')
 if our_session is None:
 questions = Questions(cursor)
 data = questions.get_question_set()
session.session_id = session.create_session()

In the previous conversation with Tabnine, we didn’t create a cookie. Let’s do that and
add it into a part of our session creation process. Let’s ask Tabnine how to create a
cookie value with Flask. Here is the prompt I used:

	 How can I create a cookie with Flask and store our session id in a cookie. I want to do
that after calling session.session_id = session.create_session() and store
that generated id in a cookie with the value session_id.

Tabnine comes back with suggestion that changes how we respond to the request, so
we need to remove this code:

	 return render_template('index.html',
data=data, session_id=session.session_id)

It has to be replaced with code that will create a response based on our rendered tem-
plate. We also need to set a cookie with the response.set_cookie method. Here is the
new code:

Set the session ID as a cookie
response = make_response(render_template
('index.html', data=data, session_id=session.session_id))
response.set_cookie('session_id', str(session.session_id))
return response

This change will set the cookie every time the page is loaded. Now we’ll create an else
block for what to do when the cookie value exists, and we just want to render the page
from the existing session:

else:
we have a cookie value and existing id
session.session_id = our_session
 questions = Questions(cursor)
 data = questions.get_question_set()
 response = make_response(render_template('index.html', data=data,

session_id=session.session_id))
 return response

Now when we run the application, every time we refresh the page, it keeps the exist-
ing value of our session. However, with each refresh, we’re getting a different set of

	 171Creating an index page

questions in our questions set. But the ID we’re displaying is the same. We know that
the cookie is being set properly; however, our method is still generating more ques-
tions (figure 6.23).

Figure 6.23  Our questions get refreshed, but the session_id stays the same.

We’ll need to refactor that method so it works with an ID, and instead of generating a
new question set every time, it will use an existing one that we’ve tied with an ID.

Verify, then trust
Always thoroughly test AI-generated code before considering it complete:

¡	Test edge cases, not just the happy path.
¡	Verify functionality after implementing each suggestion.
¡	Look for unintended side effects in related functionality.
¡	Database operations require extra scrutiny—check that database state is what

you expect.
¡	Remember: Code that looks right can still be functionally wrong.

6.2.3	 Refactoring our question set method

What exactly is happening in our application right now? The first time you load up the
web page, it checks whether a session ID is stored in a cookie. This is how the applica-
tion determines if it’s the user’s first time visiting the page. If no session ID is present,
the application creates a new session and a new question set from randomly selected
questions. If there is an ID present, then it continues with that existing session. Per our
design specification, we should then load the question set that is associated with that
session ID. This flow is shown in figure 6.24.

In our case, we’re still getting a random question set every time. This is because our
method looks like this right now:

data = questions.get_question_set()

172 Chapter 6  Generating a software backend with Tabnine

A random question set gets drawn every time the user visits the web page, essentially
making the “first visit” check pass through and create a new session every time (figure
6.25).

Yes No

Create new
session.

Get session ID
from browser.

Create random
question set.

Get question set
from session ID.

User visits web page

First
visit?

Figure 6.24  The initial flow of our website. The
application looks for a cookie value and handles
the session accordingly.

The method has no way of knowing whether we’ll have an ID, but this is a simple fix.
We can inject the session ID into the method, and if it exists, we’ll use the existing ques-
tion set instead of generating a new one.

Let’s open questions.py and modify our method parameters. Change

def get_question_set(self):

to

def get_question_set(self, session_id=None):

We’ll also change the logic of our method so that if a session ID is present, we’ll query
that instead. Our logic currently looks like this:

all_questions = self.get_all_questions()
if len(all_questions) < 35:
 return "There are not enough questions to generate a set."

Yes

Create new
session.

Get session ID
from browser.

First
visit?

Figure 6.25  Because the method is being called
without specifying our session ID, the first visit
will always create a new session.

	 173Creating an index page

 question_set = set()
 while len(question_set) < 35:
 question_id = random.choice(list(all_questions))
 question_set.add(question_id)
 return list(question_set)

We’ll add in our logic to check. Since we aren’t changing the return type, this in-place
refactoring should be easy to test. We’ll change the method to include logic to test for
the ID, and if the session exists, we’ll pull that set of questions for it.

Our method now looks like

def get_question_set(self, session_id=None):

 if (session_id is None):
 all_questions = self.get_all_questions()
 if len(all_questions) < 35:
 return "There are not enough questions to generate a set."
 question_set = set()
 while len(question_set) < 35:
 question_id = random.choice(list(all_questions))
 question_set.add(question_id)
 return list(question_set)
 else:
 # Get a list of questionIDs
 self.cursor.execute("""WITH question_set_info AS (
 SELECT DISTINCT question_id
 FROM question_sets
 WHERE session_id = ?
)
 SELECT
 questions.id,
 questions.correct,
 questions.question,
 questions.a,
 questions.b,
 questions.c,
 questions.d
 FROM questions
 JOIN question_set_info
 ON questions.id = question_set_info.question_id;"""
 ,(session_id,))
 result = self.cursor.fetchall()
 if result is None:
 return None
 else:
 return list(result)

We can now reload the browser and test the functionality. No matter how many times
we refresh it, the values stay the same. I deleted the sessions table and restarted it. It
now shows a single session and will not change the questions no matter how many
times I refresh it (figure 6.26).

174 Chapter 6  Generating a software backend with Tabnine

Figure 6.26  Upon the first visit, a session is created, and no matter how many times we refresh it, the session
persists, and questions stay the same.

We refactored our method, and we’re getting the functionality we were looking for in
the design. Next, we need to remove the Start Question Session button because it’s no
longer needed. We’ll also create a method to end the session.

6.2.4	 Creating an end session function that ends the test

Let’s create a button that will quickly get rid of our cookie, in case we want to end the
test and start over. I want the solution to be as simple as possible. I’m thinking a simple
JavaScript method can do it. We’ll use a casual, conversational prompt to check this:

	 I would like to add a button and delete the cookie and refresh the page. What’s the
best way to do that with JavaScript?

Here’s the answer Tabnine came up with:

	 To add a button in HTML, you can use the following code:

<button onclick="deleteCookieAndRefresh()">Delete Cookie and Refresh</
button>

To delete the cookie and refresh the page using JavaScript, you can use the following
code:

function deleteCookieAndRefresh() {
 // Client-side JavaScript to delete the cookie and refresh
 document.cookie = "session_id=; expires=Thu, 01 Jan 1970 00:00:00 UTC;
path=/;";
 window.location.reload();
}

Make sure to add the JavaScript code inside the <script> tags.

	 175Creating an index page

This suggestion is perfect, so in index.html, I’ll add it to the code (figure 6.27). I did
change the wording of the button, however, to reflect its function. When I click the
button, it refreshes with a new session and new questions.

Figure 6.27  Clicking the End This Session button refreshes the page with a new session.

This is exactly what we intend for this application. Now comes the challenging part—
taking this blob of questions and making a usable quiz from them.

AI as an accelerator, not an autopilot
The most productive use of AI coding tools balances automation with your own expertise:

¡	Use AI to accelerate routine coding tasks and generate initial solutions.
¡	Apply your domain knowledge to evaluate whether suggestions match your

architectural goals.
¡	Be ready to take manual control when the AI doesn’t fully understand context.
¡	Treat AI tools as collaborative assistants rather than autonomous developers.
¡	Recognize that AI can help find solutions, but you’re still responsible for under-

standing them. You can’t hold AI accountable.

We built a strong backend for our app. It effectively manages random question selec-
tion and keeps user sessions active. During our development with Tabnine, we faced
real coding challenges. We resolved these problems with Tabnine, showing how useful
AI can be in development.

By combining AI suggestions with our development skills, we made a more reliable
app that maintains state across user sessions. This is crucial for any web-based testing

176 Chapter 6  Generating a software backend with Tabnine

platform. We learned that generative AI tools can speed up development, while still
requiring critical thinking and expertise. The key point is to find the right balance. Use
AI to enhance your workflow, but don’t rely on it completely. As we keep building our
app in the next chapters, we’ll refine this approach to using AI tools in various develop-
ment situations.

Summary

¡	Critical evaluation of AI-generated code is key. Always use diff views to see pro-
posed changes. Also, think about how the generated code fits your current archi-
tecture before implementing it.

¡	Refining your prompts iteratively boosts AI assistance quality. Start with clear
descriptions. Add context when needed. Use casual language to guide the AI
toward your solution.

¡	Implementing database session management needs careful thought. Consider
constraints, auto-increment features, and cookie persistence. These keep state
across user interactions.

¡	Testing after every implementation stage stops cascading errors. Verify function-
ality after each code change. Focus on database operations to ensure correct
state management.

¡	Separation of concerns in web applications leads to cleaner architecture. For
example, session creation, question retrieval, and user interface components can
be separate, testable units.

¡	User experience considerations should guide development choices. For instance,
automatically creating sessions is better than asking for user action when it fits
the expected workflow.

¡	Error handling for edge cases makes applications more robust. Anticipate possi-
ble problems such as duplicate entries and set up fallback mechanisms.

¡	Using AI as a collaborative assistant boosts productivity. Pairing the AI’s code
generation with your domain knowledge gives the best results.

Part 3

Advanced AI
development techniques

As your applications become more complex, so do the challenges. Main-
taining clean architecture, adding advanced features, and ensuring code quality
all require attention. In rapid development environments, we can do the wrong
things faster than ever. We now need to start thinking about how to use our own
software development experience to guide AI assistance in the right direction.
It includes managing templates, mastering prompt engineering, manipulating
context, and using a new style of development.

Professional software developers must know how to use AI tools strategically.
This involves mastering advanced prompting techniques and working with AI
across various files and modules. We must also learn how to manage context
wisely. This is a new concept for most, and it is vitally important with code genera-
tion. AI-generated code requires the same scrutiny and quality checks as any code
written by humans.

The chapters in this section will take your AI-assisted development skill to an
advanced level. Chapter 7 covers advanced templating and user interface devel-
opment, helping you create polished, production-ready web applications. Chap-
ter 8 dives into prompt engineering principles and techniques to enhance your
AI interactions. Chapter 9 focuses on prompt manipulation strategies, including
context control, output formatting, and iterative refinement. Chapter 10 intro-
duces Cursor and other next-gen AI development environments that can build
entire applications through conversational interfaces, showcasing the forefront
of AI-assisted software development.

178 Advanced AI development techniques

Let’s dive into the world of advanced usage of these tools—how they can be strate-
gically applied in real life enterprise development, as well as how to work on just-for-
fun or prototype projects.

179

7Building user interfaces
with ChatGPT

This chapter covers

¡	Using generative AI tools to design effective
user interfaces

¡	Creating structured prompts to get targeted UI
guidance and code

¡	Visualizing application flow using AI-generated
diagrams and flowcharts

¡	Transforming wireframes into functional Flask
templates and components

¡	Implementing responsive design elements with
AI-assisted HTML and CSS

Now that our backend is up and running, we are facing another challenge: we need
to create an easy-to-use interface, which will turn our database engine into a full test
preparation application. Even seasoned developers can find UI design tough, and
generative AI tools help tremendously.

AI tools provide a big boost for developers who aren’t great at UI. They draw from
large collections of best practices, templates, and design patterns used by expert

180 Chapter 7  Building user interfaces with ChatGPT

Flask developers. This chapter shows how AI can connect functional backend code to
polished user experiences—even if you don’t see yourself as a design expert. By mixing
AI suggestions with smart customization, you’ll learn to build professional interfaces
that boost user engagement, all without needing deep frontend knowledge.

To find a good strategy, we don’t need as much existing code for context, so I’d like
to start by using chat-based interfaces to ask for a general approach. We can give a bit of
information about our application and get general guidance on how to build this fron-
tend. I’m going to utilize several tools we’re already familiar with for this task:

¡	ChatGPT

¡	Google Gemini (formerly Bard)

¡	Blackbox AI

Each of these has a web-based chat interface that can be used to work through this
problem. It’s not installed on our machine, so it has limited access to our code. How-
ever, they’re also powered by large models that are very robust. Let’s see which one
comes up with a strategy we like. First, we need to build a great prompt for this.

7.1	 Getting our strategy from our AI tools
Before we approach these tools, we should think carefully about our prompt. If we say
“generate a frontend for my application” without enough information, the guidance
will be too vague. There is a time and a place for brief prompts. In my experience, brief
prompts are great for focused and specific advice, for problems such as “How do I query
this table?” or “How do I debug this error message?” Detailed prompts are great for more
abstract results, such as “How do I design this frontend?” or “What’s a good approach
for marshalling data?”

This will be the largest prompt we’ve used so far. I’ve given it a lot of thought and trial
and error to come up with it. Here is how I want to structure it:

¡	Role—Role-based prompting is something we’ve done before here, and we want
to establish that we want the model to act as a professional Python developer who
specializes in Flask. Lately, I’ve found that establishing a role isn’t as important
as it used to be. ChatGPT for instance can infer what you want without it, and it’s
nearly the same. But just to make sure, we’ll drop it in there.

¡	Objective—We want to clearly establish our objective. The clearer and more con-
crete we are, the better the results. We must describe exactly what we want here.

¡	Details—Here we can add some details that will be helpful. These are small but
significant toward getting the right result.

¡	Data—I want to describe the data we’re working with and what it means. This
helps with code generation. If we get code specific to the data, we might not use
it, but it will be helpful to give this direction.

¡	Functionality requirements—What do we want this to do? This is a good way to add
detail to our objective.

	 181Getting our strategy from our AI tools

¡	Code production—Here we are specific about what we want to generate. In my
experience, this only helps marginally, but it’s worth the effort to clarify it.

Here is the initial prompt that I’ve created and will send to our chat interfaces:

	 Act as a professional Python Developer specializing in Flask. Create a solution based
on this information.

Objective: Develop a front end for a database-driven Flask application for a quiz sys-
tem. The application will display questions and possible answers to the user, capture
their selected answer, store the answer in a database, and then show the next ques-
tion. Flask has been installed, and the backend is already functional.

Details:
Framework: Flask, with Flask templates for the frontend. The application is already
created.

Database: A SQLite Database that provides 35 questions with possible user re-
sponses. This database exists.

Frontend: A simple and intuitive interface for users to interact with the quiz. This
needs to be created.

Data:
This is an example of a question:

(‘T1A03’, 3, ‘What are the FCC rules regarding the use of a phonetic alphabet for
station identification in the Amateur Radio Service?’, ‘It is required when transmit-
ting emergency messages’, ‘It is prohibited’, ‘It is required when in contact with
foreign stations’, ‘It is encouraged’)

Field 0 is the Question ID.
Field 1 is the id of the correct answer.

Field 2 is the question to be displayed.

Field 3 is a possible answer.

Field 4 is a possible answer.

Field 5 is a possible answer.

Field 6 is a possible answer.

Functionality Requirements:
Iterate through the questions stored in the database.

For each question, display it along with possible answers using Flask templates.

Capture the user’s selected answer and store it in the database.

After storing the answer, proceed to the next question until the quiz is complete.

Development Strategy:
Question Management: Implement functionality to add, retrieve, and iterate
through questions and their possible answers.

Quiz Interface: Use Flask templates to create the quiz interface. The interface
should display one question at a time with options for the user to select an answer.

182 Chapter 7  Building user interfaces with ChatGPT

Answer Handling: Develop a mechanism to capture the user’s selected answer,
validate it, store it in the database, and then retrieve the next question.

Navigation: Ensure seamless navigation between questions and provide feedback
to the user upon completion of the quiz.

Code Production:

Develop routing and template creation for displaying questions and capturing
answers.

Implement logic for iterating through questions and storing responses.

Ensure to include error handling and validation for robustness.

Expected Outcome: A fully functional Flask-based quiz application that efficiently
manages and displays quiz questions, captures user responses, and navigates
through the quiz seamlessly.

I will send this prompt to ChatGPT, Gemini, and Blackbox AI. Let’s evaluate the results.
We’ll start with ChatGPT.

Crafting effective UI prompts
When requesting UI guidance from AI tools,

¡	Clearly state the purpose of your application and its intended users.
¡	Identify any technological constraints, such as frameworks or libraries, that

may affect the design.
¡	Describe the data structures that will be used to populate the interface.
¡	Specify the exact functionality you need to achieve.
¡	Share your visual preferences, including colors and layout styles.
¡	Request the specific deliverables you need, such as wireframes, HTML/CSS,

or flowcharts.
¡	For design work, it’s best to provide longer and clearer prompts to get better

results.
¡	Treat your prompt like a design brief—more context means a more tailored

response.

7.1.1	 ChatGPT Results

We’ve crafted a detailed prompt that’s specific to our needs. Here is the output from
ChatGPT. Let’s review it and see whether it’s useful.

	 Given your objective and details, let’s outline a solution for developing the frontend
of your Flask application for a quiz system. The solution will cover the backend and
frontend components necessary to meet your requirements.

Backend Setup

1	 Database Model: Assuming you have a model for the questions, it should look
something like this in Flask with SQLAlchemy:

	 183Getting our strategy from our AI tools

from flask_sqlalchemy import SQLAlchemy

db = SQLAlchemy()

class Question(db.Model):
 id = db.Column(db.String, primary_key=True) # Question ID
 correct_answer_id = db.Column(db.Integer) # Correct answer ID
 question_text = db.Column(db.String) # Question text
 option1 = db.Column(db.String) # Option 1
 option2 = db.Column(db.String) # Option 2
 option3 = db.Column(db.String) # Option 3
 option4 = db.Column(db.String) # Option 4

2	 Fetching Questions: Implement a function to fetch questions one at a time from
the database.

def get_next_question(current_question_id=None):
 if current_question_id is None:
 return Question.query.first()
 else:
 current_question = Question.query.filter_by
(id=current_question_id).first()
 return Question.query.filter(Question.id >
current_question.id).first()

3	 Storing Answers: You’ll need a model to store user answers and a function to han-
dle the storage:

class UserAnswer(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 question_id = db.Column(db.String, db.ForeignKey('question.id'))
 selected_answer_id = db.Column(db.Integer)
 # Add user reference if needed

def store_user_answer(question_id, selected_answer_id):
 answer = UserAnswer(question_id=question_id,
selected_answer_id=selected_answer_id)
 db.session.add(answer)
 db.session.commit()

Frontend Setup

1	 Quiz Interface: Use Flask’s Jinja templates to create the quiz interface. Here’s a
simple template for displaying questions:

<!-- templates/question.html -->
<html>
<head>
 <title>Quiz Question</title>
</head>
<body>
 <form action="/answer" method="post">
 <h2>{{ question.question_text }}</h2>
 {% for option in question.options %}

184 Chapter 7  Building user interfaces with ChatGPT

 <input type="radio" name="answer"
value="{{ loop.index }}">{{ option }}

 {% endfor %}
 <input type="submit" value="Submit">
 </form>
</body>
</html>

2	 Routing and Logic: Implement Flask routes to handle displaying questions and
capturing answers.

from flask import Flask, request, render_template, redirect, url_for

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///yourdatabase.db'
db.init_app(app)

@app.route("/")
def index():
 question = get_next_question()
 return render_template("question.html", question=question)

@app.route("/answer", methods=["POST"])
def answer():
 selected_answer_id = request.form['answer']
 question_id = request.form['question_id']
 store_user_answer(question_id, selected_answer_id)
 next_question = get_next_question(question_id)
 if next_question is None:
 return "Quiz Complete! Thank you for participating."
 else:
 return redirect(url_for('index', question_id=next_question.id))

Final Steps

¡	Make sure to initialize your database with flask db init, flask db migrate, and
flask db upgrade commands if you are using Flask-Migrate.

¡	Test your application thoroughly to ensure that questions are fetched correctly,
answers are stored, and the user can navigate through the quiz without issues.

¡	Implement error handling and validation to manage cases where the user might
submit an answer without selecting an option or if there’s an issue fetching ques-
tions from the database.

This setup should give you a robust starting point for your Flask-based quiz appli-
cation. Adjustments may be needed based on your specific requirements or if you
decide to add more features like user authentication, score tracking, or feedback
mechanisms.

This is useful information, and it’s laid out in a useful way. Here are a few things I like
about the results from ChatGPT. It walks us through a sequence of events, as outlined
in figure 7.1.

	 185Getting our strategy from our AI tools

Backend

Setup database model

Fetching questions

Storing answers

Frontend

Routing and logic Quiz interface

Figure 7.1  How ChatGPT suggested building the frontend. Each piece represents a function that must
be created.

ChatGPT prescribes methods to develop this application, many of which we’ve already
talked about. It suggests ways to set up the backend and use SQLAlchemy, which I
intentionally avoided in this project. For example, in section 1 of backend design,
there is

	 Database Model: Assuming you have a model for the questions, it should look some-
thing like this in Flask with SQLAlchemy:

It’s good advice, but we won’t use it. It’s not that SQLAlchemy is bad, but it’s overkill
for what we’re trying to do. I skipped through the sections describing how to assemble
the backend.

The frontend setup, however, is useful. It prescribes the following steps:

¡	Create a Jinja template in HTML.

¡	Implement routing.

¡	Implement redirects.

I’ll ignore most of what ChatGPT has suggested except for the frontend setup. Even
though I specified in the prompt that the backend was complete, much of the result
was focused on backend and architecture, which I don’t need at this point. Let’s see
what the other tools have to say about it.

7.1.2	 Gemini Results

Here is the output from Gemini, exactly as it was returned:

	 Flask Quiz Application Frontend

This solution utilizes Flask templates to render the quiz interface and interact with
the existing backend for storing user responses.

186 Chapter 7  Building user interfaces with ChatGPT

1	 Dependencies:

Install Flask-WTF for form handling:

pip install Flask-WTF

2	 Templates:

Create a folder named templates in your project directory. Within this folder, cre-
ate a file named quiz.html.

quiz.html:

<!DOCTYPE html>
<html>
<head>
 <title>Quiz App</title>
</head>
<body>
 <h1>{{ question.question }}</h1>
 <form action="/answer" method="POST">
 {% for answer in question.answers %}
 <input type="radio" name="answer" value="{{ answer.id }}"> {{
answer.answer }}

 {% endfor %}

 <button type="submit">Submit Answer</button>
 </form>
 {% if message %}
 <p>{{ message }}</p>
 {% endif %}
</body>
</html>

3	 Routes and Logic:

¡	Import necessary libraries.

¡	Define routes for displaying the quiz and handling answers.

¡	In the quiz route, retrieve the next question from the database (implement logic
based on your backend).

¡	Pass the question and answers to the quiz.html template.

¡	In the answer route, validate the user’s selected answer from the submitted
form.

¡	Store the answer in the database (use your existing backend functions).

¡	Retrieve the next question or display a completion message.

app.py:

from flask import Flask, render_template, request, redirect
from flask_wtf import FlaskForm
from wtforms import RadioField, SubmitField
from wtforms.validators import DataRequired

app = Flask(__name__)

	 187Getting our strategy from our AI tools

app.config['SECRET_KEY'] = 'your_secret_key'

class AnswerForm(FlaskForm):
 answer = RadioField('Answer', validators=[DataRequired()])
 submit = SubmitField('Submit')

@app.route('/')
def quiz():
 # Retrieve the next question from the database
 question = # your database logic...
 if not question:
 return render_template('quiz.html', message="Quiz completed!")
 form = AnswerForm()
 return render_template('quiz.html', question=question, form=form)

@app.route('/answer', methods=['POST'])
def answer():
 form = AnswerForm()
 if form.validate_on_submit():
 selected_answer = form.answer.data
 # Store answer in the database
 # your database logic...
 return redirect('/')
 return render_template('quiz.html', question=question, form=form)

if __name__ == '__main__':
 app.run(debug=True)

4	 Explanation:

¡	The AnswerForm class defines a radio button field for selecting an answer and
a submit button.

¡	The quiz route retrieves the next question and renders the quiz.html template,
passing the question details and the form object.

¡	The answer route validates the submitted form and stores the chosen answer
using your existing backend logic.

¡	Error handling is implemented using DataRequired validator for the radio but-
ton field.

5	 Running the application:

Save the files and run the application:

python app.py

This code provides a basic example. You might need to modify it based on your
specific backend implementation and desired features like displaying user’s score or
providing feedback. Remember to replace # your database logic. . . with your actual
functions for retrieving questions and storing answers.

The Gemini results start off with suggesting we install Flask-WTF to handle the quiz
and store responses. It doesn’t give any guidance on building the backend, which is
good because we’ve already built it.

188 Chapter 7  Building user interfaces with ChatGPT

What is Flask-WTF? It’s an extension that integrates the WTForms library and handles
forms in a simple way for a Flask application. It’s certainly something worth considering
for our project. Here are the steps Gemini gives us to solve our problem:

¡	Install dependencies (Flask-WTF).

¡	Create a template.

¡	Create routes and logic.

It does also give a good explanation of the code, and what’s happening, which is useful.
We should consider this solution as we implement the interface for the application.
Let’s see what our third option, Blackbox AI, suggests for this problem.

7.1.3	 Blackbox AI results

Here is the output from Blackbox AI, exactly as it was returned:

	 Here is a possible implementation of the quiz application:
First, let’s create the necessary routes and templates.
app.py:

from flask import Flask, render_template, request, redirect, url_for
from quiz_db import get_questions, store_answer

app = Flask(__name__)

@app.route('/')
def index():
 return redirect(url_for('quiz'))

@app.route('/quiz', methods=['GET', 'POST'])
def quiz():
 question_id = request.args.get('question_id', 1)
 question = get_questions(question_id)
 if request.method == 'POST':
 selected_answer = request.form['answer']
 store_answer(question_id, selected_answer)
 if question_id < 35:
 return redirect(url_for('quiz', question_id=question_id + 1))
 else:
 return redirect(url_for('results'))
 return render_template('quiz.html', question=question)

@app.route('/results')
def results():
 return render_template('results.html')

if __name__ == '__main__':
 app.run(debug=True)

quiz_db.py:

import sqlite3

def get_questions(question_id):

	 189Getting our strategy from our AI tools

 conn = sqlite3.connect('quiz.db')
 cursor = conn.cursor()
 cursor.execute('SELECT * FROM questions WHERE id=?', (question_id,))
 question = cursor.fetchone()
 conn.close()
 return question

def store_answer(question_id, selected_answer):
 conn = sqlite3.connect('quiz.db')
 cursor = conn.cursor()
 cursor.execute('INSERT INTO answers
(question_id, selected_answer)
VALUES (?, ?)', (question_id, selected_answer))
 conn.commit()
 conn.close()

templates/quiz.html:

{% extends 'base.html' %}

{% block content %}
 <h1>{{ question[2] }}</h1>
 <form method="post">
 <input type="radio" name="answer"
value="{{ question[3] }}">{{ question[3] }}</input>

 <input type="radio" name="answer"
value="{{ question[4] }}">{{ question[4] }}</input>

 <input type="radio" name="answer"
value="{{ question[5] }}">{{ question[5] }}</input>

 <input type="radio" name="answer"
value="{{ question[6] }}">{{ question[6] }}</input>

 <input type="submit" value="Submit">
 </form>
{% endblock %}

templates/results.html:

{% extends 'base.html' %}

{% block content %}
 <h1>Quiz Results</h1>
 <p>Congratulations! You have completed the quiz.</p>
{% endblock %}

templates/base.html:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">
 <title>Quiz Application</title>
</head>
<body>

190 Chapter 7  Building user interfaces with ChatGPT

 {% block content %}{% endblock %}
</body>
</html>

This implementation uses Flask’s routing system to handle different parts of the
quiz. The quiz route displays the current question and possible answers using a Flask
template. The results route displays the quiz results. The store_answer function
stores the user’s selected answer in the database. The get_questions function
retrieves the current question from the database. The quiz iterates through the ques-
tions using the question_id parameter in the URL. The user’s selected answer is
captured using a form and stored in the database using the store_answer function.
After storing the answer, the quiz proceeds to the next question. The quiz ends when
all questions have been answered, and the user is redirected to the results page.

Out of all the results, the Blackbox one is my favorite. It doesn’t bother with any of the
database or setup and jumps directly to generating code for the frontend pieces of the
application. There are some modifications we can make to the prompt if we aren’t see-
ing the results geared toward the frontend design. But Blackbox created exactly what
we’re looking for. It suggested the following steps:

¡	Create routes.

¡	Create a database connection and query it.

¡	Create templates.

I’ll use a combination of all the advice from each tool but start with the Blackbox
results. I’ll likely end up pulling some suggestions from each.

Refinement

There are some steps we could take with each of these tools if we want to drill down and
get more detail about UI information. For example, in the objective section, we used

	 Objective: Develop a front end for a database-driven Flask application for a quiz sys-
tem. The application will display questions and possible answers to the user, capture
their selected answer, store the answer in a database, and then show the next ques-
tion. Flask has been installed and the backend is already functional.

We could add further refinement and be more specific:

	 Objective: Develop a visually appealing and user-friendly front-end interface for a
database-driven Flask application for a quiz system. The interface should display
questions and possible answers to the user in a clear and intuitive manner, cap-
ture their selected answer, store the answer in a database, and then show the next
question. The design should prioritize simplicity, a light color scheme, and mobile
compatibility to ensure a seamless user experience. Flask has been installed, and
the backend is already functional.

This small change can drastically alter the output. It’s acceptable to start out with
abstract requirements, but if you aren’t getting what you want, refine your prompt.

	 191Creating our templates

Tips for prompt refinement
¡	Use specific examples. Instead of vague ideas, be precise.
¡	Quantify whenever possible. Use numbers, measurements, or statistics.
¡	Choose active verbs. Weak and passive verbs obscure your intent.
¡	Remove unnecessary modifiers. Don’t send words (or “tokens” in LLM speak)

that don’t add value to the request.
¡	Be direct. Avoid hedging or qualifiers

We won’t spend more time refining our prompt for each tool. There are some great
results we can work with, so let’s put those into action.

7.2	 Creating our templates
The first thing we’ll do is create our templates. Templates allow you to build dynamic
HTML with Flask. They’re HTML files with placeholders for dynamic content. This
allows you to create a layout with HTML and then add placeholders where Python
will come in and fill dynamic content. There will be a base html file that creates an
entire page, and then each of these templates will make up a portion of that page.
Together, we get HTML generated with dynamic content. The templates are compiled
by the Jinja2 template engine. This is a very powerful framework, though we’ll only
be using some basic parts of it. Let’s create some template files based on Blackbox AI
recommendations.

First, we’ll create a file named quiz.html in the /app/templates folder. Here’s what
we need this template to do. The template should

¡	Create an HTML form.

¡	Provide the question being asked.

¡	Provide a list of possible answers.

¡	Have a way to choose the answer.

¡	Have a submit button.

The suggestion from Blackbox looks like it’s providing this information. We can see
a content block and the form elements we need. It also includes placeholders for
dynamic content that’s coming from a question object:

templates/quiz.html

{% extends 'base.html' %}

{% block content %}
 <h1>{{ question[2] }}</h1>
 <form method="post">
 <input type="radio" name="answer"
value="{{ question[3] }}">{{ question[3] }}</input>

 <input type="radio" name="answer"
value="{{ question[4] }}">{{ question[4] }}</input>

 <input type="radio" name="answer"

192 Chapter 7  Building user interfaces with ChatGPT

value="{{ question[5] }}">{{ question[5] }}</input>

 <input type="radio" name="answer"
value="{{ question[6] }}">{{ question[6] }}</input>

 <input type="submit" value="Submit">
 </form>
{% endblock %}

Next, we need to create a results template, located at templates/results.html. We’ll
use the Blackbox suggestion for this one as well. However, you can quickly see that it
doesn’t provide any useful results. It simply states that the quiz is complete. We’ll fix
that later, though.

templates/results.html

{% extends 'base.html' %}

{% block content %}
 <h1>Quiz Results</h1>
 <p>Congratulations! You have completed the quiz.</p>
{% endblock %}

Finally, we have our base html, which is the wrapper for the main web page. This is
what provides the full-page experience including header and footer, and similar. Black-
box suggests naming this templates/base.html; however, we already have an index
.html that serves this purpose. Let’s look at what base.html looks like:

templates/base.html

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Quiz Application</title>
</head>
<body>
 {% block content %}{% endblock %}
</body>
</html>

Instead of adding another file with a similar purpose, we’ll use our existing index
.html. However, we need to change the extends statements in each of our template
files to reflect that. Then we’ll need to insert our content into index.html.

In the template files quiz.html and results.html, we’ll change

{% extends 'base.html' %}

to

{% extends 'index.html' %}

	 193Creating our templates

And we will add our new Index.html in a content block, though it won’t do anything
for us just yet. We will be coming back to this file and making some modifications.
Here’s what the index.html file looks like:

<!-- HTML template for the index page -->
<!DOCTYPE html>
<html>
<head>
 <title>Index Page</title>
</head>
<body>

 <h1>Ham Radio Practice Test</h1>
 <!-- main content-->
 {% block content %}{% endblock %}

 {% if session_id %}
 <h3>Session: {{session_id}}</h3>
 <button onclick="deleteCookieAndRefresh()">End This Session</button>
 <script>
 function deleteCookieAndRefresh() {
 // Client-side JavaScript to delete the cookie and refresh
 document.cookie = "session_id=;
expires=Thu, 01 Jan 1970 00:00:00 UTC; path=/;";
 window.location.reload();
 }
 </script>
 {% endif %}
 {% if data %}

 {% for item in data %}
 {{ item }}
 {% endfor %}

 {% endif %}
</body>
</html>

With our templates created, we will wire up the application. This guidance was import-
ant for where to go next. Generative AI tools can be great for guidance in areas you
aren’t familiar with or helping get you unstuck from a problem.

We won’t go through every step involved as the point of this book isn’t a step-by-step
tutorial for building an application, but rather techniques we can use to improve the
application. Let’s look at how we can use AI to get ideas for our user interface.

Using AI tools throughout the design process
Different AI tools excel at various stages of UI development:

¡	Early conceptualization—Use chat-based LLMs to explore layout possibilities
and design patterns.

194 Chapter 7  Building user interfaces with ChatGPT

(continued)

¡	Flow visualization—Request Mermaid or other diagram formats to map user
journeys.

¡	Wireframing—Ask for text-based wireframes before committing to specific
designs.

¡	HTML/CSS generation—Once the design is settled, request implementation
code.

¡	Troubleshooting—If your implementation has problems, share screenshots or
code snippets for suggestions.

¡	Documentation—Generate clear descriptions of your UI components for team
members or users.

¡	Consider tool strengths—Some platforms excel at code generation, while oth-
ers provide better conceptual guidance.

7.3	 Describing the flow of our application
Right now, our application is running, but the user interface is as minimal as possible.
That’s fine with me. It doesn’t need to be complex. However, I am open to suggestions
to make it look nicer, and possibly easier to use. Figure 7.2 shows what it looks like
right now.

Figure 7.2  The entrance page to our HAM radio practice test

When you start a test, it doesn’t get much better. It looks like a web page from the
1990s. I’m not much of a designer, but I’m confident we can use generative AI to make
it look better and possibly easier to use (figure 7.3).

The first thing we should do is think about the flow and describe it somehow. It’s a
simple flow, but I want to avoid the tunnel vision that developers sometimes suffer from.
We think it’s perfect and easy to use, until someone else tries to use it and hates it. Fig-
ure 7.4 shows what our flow looks like right now.

	 195Describing the flow of our application

Figure 7.3  The question interface for our practice test

Entry page

Click Start Test

Question 1

Question 2

Question 3

Question 35

...

Results page

Return Home

End test

End test

End test

End test

Submit answer

Submit answer

Submit answer

Submit answer

Submit answer

Figure 7.4  Our application’s workflow

Figure 7.4 is a graphical representation of the flow. We start at the entry page, and
our only choice is to take a test. Once we start the test, our choice is either to answer
the question or end the test. Either way we’re routed to a results page. The document

196 Chapter 7  Building user interfaces with ChatGPT

shows we can end the test at any time. This is a nice little flowchart that I created in
around 30 seconds. I’ll show you how I did that.

Ask ChatGPT for a Mermaid flowchart based on a description

I could put the chart together by hand, but I want to save time. Here’s a way I gener-
ate charts quickly when needed. I deliberately kept the description for the prompt as
crude as possible to show how well ChatGPT handles the task. Remember, natural lan-
guage processing, or NLP, is a core duty of ChatGPT, and it does well.

Here is the prompt I sent:

	 Please create a Mermaid diagram for this process:

Entry Page (start the practice test)
click start test

A page presents question 1
Choice: submit answer or end test

if user chooses to submit answer this continues from question 1–35

user can exit the test any time, and is sent to results page

after question 35 (finished test)

user is sent to results page

results page
Results page is shown with the results

And a link to return home

If you’re unfamiliar with Mermaid, it’s a neat markup language like Markdown for
building flowcharts. There are several tools for converting this text to diagrams.
ChatGPT can generate Mermaid charts easily, and here’s what it produced based on
the previous prompt :

	 graph TD

 A[Entry Page (start the practice test)] --> B[Click Start Test]

 B --> C[Question 1]

 C --> |Submit Answer| D[Question 2]

 D --> |Submit Answer| E[Question 3]

 E --> |Submit Answer| F[...]

 F --> |Submit Answer| G[Question 35]

 C --> |End Test| H[Results Page]

 D --> |End Test| H

 E --> |End Test| H

 F --> |End Test| H

 G --> |Submit Answer| H

 H --> I[Results Page]

 I --> J[Return Home]

	 197Describing the flow of our application

Even if you’ve never seen Mermaid before, you can make sense of the answer by look-
ing at it. It can get pretty complex though, and one good resource is this Mermaid
cheat sheet (https://mng.bz/rZMB) that shows many different options.

After reviewing this Mermaid chart, I imported it into Excalidraw (https://
excalidraw.com/), and it created this diagram instantly, the exact one you see in fig-
ure 7.4. There are several tools that support Mermaid inputs, including Draw.io, and I
highly recommend learning about Mermaid and the tools that use it.

Creating a document based on this chart

I mentioned that I used a very crude description for my prompt. It happened to work;
all of us have experienced that feeling that these tools read our mind and provide
exactly what we ask for. We’ve also seen it go wrong. I was lucky this time, but it often
requires tweaking or more contextual information. I decided to create an accompany-
ing document with more detail I can refer to later. Also, it is something I can give to a
UI designer, with more detail and in the format they expect.

So, here’s what I sent as a prompt to ChatGPT, in the same conversation as the chart
was drawn, for context:

	 Write out a document describing this flow that would make sense to a UI expert.

The prompt is short and sweet in this case, and here’s what ChatGPT came up with:

	 Entry Page:

Step 1: Start Practice Test:

¡	Users land on the Entry Page where they can begin the practice test by clicking
the “Start Test” button.

Question Pages:

Step 2.

Question 1:

After clicking “Start Test,” users are taken to Question 1. Users are presented
with a choice:

¡	Submit Answer: Upon submitting their answer, users proceed to the next
question.

¡	End Test: Users can choose to end the test at any time, which will take them to
the Results Page.

Question 2 to Question 34:

This process repeats from Question 2 through to Question 34:

¡	Submit Answer:

–	 Users proceed to the subsequent question.

¡	End Test:

–	 Users can end the test at any point, directing them to the Results Page.

https://mng.bz/rZMB
https://excalidraw.com/
https://excalidraw.com/

198 Chapter 7  Building user interfaces with ChatGPT

Question 35 (end of test):

On reaching Question 35, users have the same options:

¡	Submit Answer:

–	 Submitting the answer for Question 35 will direct users to the Results Page.

¡	End Test:

–	 Users can still choose to end the test at this point, which will also direct them
to the Results Page.

Results Page:

View Results: Users are presented with their test results after either completing
all questions or choosing to end the test early. - From the Results Page, users
have the option to return to the Home Page.

Return Home:

Return to Entry Page: After viewing their results, users can click a “Return Home”
button to go back to the Entry Page, where they can start a new test if desired.

This document lays out the steps in a linear fashion. You can gather the flow of the
application from this response, and this document is a great start. It will need some
refinement with the UI expert to make sure it communicates intentions well.

You should never expect that these tools will generate the final product every time.
In fact, you don’t want to rely on finished products from LLMs and should always add a
personal touch to whatever you generate. Just like with coding, these tools should aug-
ment your work, rather than replace you (even if they could).

Now let’s make this application look nicer. The 1990s look isn’t working well for this.
I’m no designer myself, but I can use ChatGPT or other LLMs to generate some CSS
and HTML for me that should make this site look great.

7.3.1	 Creating an overall design

Our current look is raw HTML without any backgrounds, special fonts, or CSS involved.
Even if this were an internal product, we want it to look better than this. I’m certain
we’ll stick with a basic one-column layout, but I want to try some new ideas first. I’ll take
the previous results describing the UI layout and add them to implement my prompt.
I will keep this in the same conversation on ChatGPT. This maintains context, and
recently, ChatGPT has introduced memory as a feature, so it keeps track of all your
conversations and results. By working within this context and keeping the conversation
in a thread, you can improve results. It also helps you, the person using it, remember
what has transpired throughout the thread. I’ll add this to my initial prompt thread.
Here is the next prompt I will use:

	 Generate layout concepts for a HAM radio Practice Test website targeting beginners
who are not tech-savvy. The website should feature a clean, uncluttered, and profes-
sional design, optimized for desktop use.

Key Requirements:

	 199Describing the flow of our application

Multiple-Choice Quiz Format: Present questions in a clear, easy-to-navigate multiple-
choice format.

Results Display: Provide a clear and neat display of the results upon completion of
the test.

User-Friendly Interface: Ensure the layout is intuitive and straightforward to use, ac-
commodating users with minimal technical experience.

Design Aesthetic:

Uncluttered and professional appearance

Simple, clean lines and ample white space

Consistent use of a professional color scheme

Description of UI: [UI Description from above]

A quick note before we go on. You may have noticed that I mentioned targeting begin-
ner users who are not tech savvy. You may be thinking, “What? HAM radio operators
who aren’t tech savvy? That doesn’t make sense.” It’s nothing personal toward the audi-
ence. By adding this instruction into the prompt, I’m making sure that the interface
will be easy to use for folks who are beginners. You can never assume the skillset of
those using your site, so it’s best not to exclude those who don’t use the internet much.
Let’s see the result:

	 Entry Page:

Header:
Logo: Top-left corner.

Navigation: Home, About, Contact (simple, minimal links).

Professional color scheme (e.g., shades of blue and grey).

Main Content:
Title: “HAM Radio Practice Test”

Large, bold, and centered.

¡	Introduction: Brief description of the test.

¡	Start Test Button: Prominent, centered button labeled “Start Test”.

Footer:
Simple footer with links to privacy policy and terms of service.

Question Pages:

Each question page should follow a consistent format:

Header:

Logo and minimal navigation.

¡	Question Section:

Question Number: “Question 1 of 35”

Large, bold, and centered.

¡	Question Text: Clearly displayed, large font.

200 Chapter 7  Building user interfaces with ChatGPT

Multiple-Choice Options:

Radio buttons for selection.

Clear, spaced out, and easy to read.

¡	Actions:

–	 Submit Answer Button: Prominent and centered.

–	 End Test Button: Subtle but accessible, perhaps in a lighter shade.

Results Page:

Header:

Logo and minimal navigation.

Main Content:

Title: “Your Results”

Large, bold, and centered.

¡	Score Display: Clear and prominent display of the user’s score.

Detailed Breakdown:

Number of correct and incorrect answers.

Option to review the answers.

¡	Actions:

–	 Return Home Button: Prominent button to take users back to the Entry Page.

–	 Start New Test Button: Optional, for quick retakes.

¡	Design Aesthetic:

–	 Color Scheme: Professional colors like blue, grey, and white.

–	 Typography: Clean, sans-serif fonts for readability.

–	 White Space: Ample spacing around elements to avoid clutter.

–	 Consistent Elements: Uniform button styles, headings, and text alignment.

This is great information. It’s the beginning of a style guide you may have seen in enter-
prise development. It’s a great set of rules and basic guidance for designing our appli-
cation. But there’s a bonus that ChatGPT has given us: wireframes. Wireframes are the
barebone visualization of an interface. They convey what each page or section of an
application will look like. They usually don’t contain things like colors or graphics. The
intention is simply to show where elements live in the layout. It shows things such as
text inputs, buttons, and dividers and where they live on the page.

Wireframes are helpful for UI/UX folks (user interface/user experience). They
often move these elements to make the interface easier to use. They’re also helpful for
programmers, as most of us can put together HTML well enough to create these pages
and add each element in its proper place.

I didn’t ask for wireframes in my initial prompt, I didn’t know that was a possibility.
But now that we know ChatGPT can generate wireframes, that can be something we can

	 201Describing the flow of our application

add to our toolbox with future prompts. Here are the wireframes ChatGPT generated
for us.

Entry Page

The first wireframe will be our entry page. This is the very first page a user sees when
they enter our application. We can see a dialog drawn out showing how we should lay
this out. There is a header with our logo, home, about, and contact links, as well as a
footer with Privacy Policy and Terms. In the center is our welcome text and a single
link to start the test (Figure 7.5).

Entry page

Figure 7.5  This is a text wireframe diagram of the entry page. It is rough but gives us a good idea of what the page
should look like.

Question page

Our question page is the primary page for answering quiz questions. Notice the
LOGO, Home, About, and Contact are still here. These are what common elements
we can carry on throughout the application, and I’ll show how to do that. This page is
repeated for each question, the only change being the inner content itself. This page
will be repeated 35 times, for each question. There is an “end test” button so the user
can stop the test any time, as we’ve asked for in our requirements (figure 7.6).

202 Chapter 7  Building user interfaces with ChatGPT

Question page

Figure 7.6  The wireframe for the question portion of the quiz. This is repeated for each question.

Results page

This is the final page containing the test results. Users will get here after completing
the test, or if they choose to exit the test early. The results are tallied and displayed on
the screen. They also have the option to return home or start a new test (figure 7.7).

Results page

Figure 7.7  This is our results page. We’ll likely add in the percentage as that’s a key part of our quiz.

	 203Describing the flow of our application

The initial wireframes provided aren’t much different than what we have now but
some added details that are important. I will use the context of this conversation to use
ChatGPT to generate some code for us, based on these wireframes.

7.3.2	 Drafting HTML based on our wireframes

Our application uses Flask templating, and ChatGPT is unaware of that because I hav-
en’t mentioned it in this chat thread. I have extensive HTML experience, so I’m just
going to ask for HTML suggestions, and then wire up the Flask components. It’s a per-
sonal choice. It will be faster for me, and I won’t have to give ChatGPT as much context
about the templates themselves. If you’re following along and want to have ChatGPT
generate Flask templates, I’m sure that will work fine as well.

The first thing I noticed is a common header. It has a Logo and Home, About, and
Contact links. I noticed it’s common throughout the screens, so it’s not something we
want to repeat every time. We should make a header out of it. I’ll ask ChatGPT for guid-
ance here. Here is my prompt:

	 Create an HTML “Header” for these wireframes, that contains the logo and the top
links that will be common for each page.

The results it returns are exactly what I’m looking for. It includes all the HTML that
will be used in each page, so I can add it to my Flask header, and then, if I need to mod-
ify it, it will only be modified in one place. This saves me time from tracking down this
HTML in several spots. It also generates some CSS, which I intend to use in the applica-
tion anyway. Here is what ChatGPT returned:

	 <!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">
 <title>HAM Radio Practice Test</title>
 <style>
 body {
 font-family: Arial, sans-serif;
 margin: 0;
 padding: 0;
 }
 .header {
 display: flex;
 justify-content: space-between;
 align-items: center;
 padding: 10px 20px;
 background-color: #f8f9fa;
 border-bottom: 1px solid #dee2e6;
 }
 .logo {
 font-size: 24px;
 font-weight: bold;
 color: #007bff;

204 Chapter 7  Building user interfaces with ChatGPT

 text-decoration: none;
 }
 .nav-links {
 display: flex;
 gap: 20px;
 }
 .nav-links a {
 text-decoration: none;
 color: #007bff;
 font-size: 16px;
 }
 </style>
</head>
<body>
 <div class="header">
 HAM Radio Test
 <div class="nav-links">
 Home
 About
 Contact
 </div>
 </div>
</body>
</html>

While this may look like a lot of code, it’s standard for an HTML header. This is a good
example of how ChatGPT and other LLMs often produce an average or something
that is very commonly found on the internet. Due to the statistical nature of LLMs, it’s
producing something that looks like a common HTML header, based on training data.
It looks good to me, so I’ll implement it into my Index.html page, as this is a wrapper
around my application. I’ll explain that for clarity.

In a Flask application, headers and footers often wrap some kind of inner content.
Again, the reason for this is because the header and footer do not change as the pages
in the application change. So instead of creating several pages and copying in a header
and footer, Flask loads an Index.html file with this information and then changes the
content in the middle. This design pattern has existed in HTML for decades, and Flask
implements it in an easy way.

Our Index.html only contains content that’s common among pages and swaps out
content, depending on the URL (or route) we’re using. Here’s the code:

<!DOCTYPE html>
<html>
<head>
 <title>Index Page</title>
</head>
<body>
 <h1>Ham Radio Practice Test</h1>
 <!-- main content-->
 {% block content %}{% endblock %}
</body>
</html>

	 205Describing the flow of our application

In this code, it’s clear our title stays the same, as well as head and body tags. The H1
heading also stays the same. But everything within the content block can change from
page to page. Figure 7.8 illustrates this concept.

index.html

Header code

Footer code

Start page code

start.html

index.html

Header code

Footer code

Quiz code

quiz.html

index.html

Header code

Footer code

Results page code

results.html

Figure 7.8  The index.html is common code within all the pages, but each section of the
app has inner code from another html file to complete the page.

With this pattern in mind, I will insert the code into my index.html file. Then, within
this same conversation (this is important), I will ask ChatGPT to generate the footer
code as well. Here is the prompt:

	 Create footer html code with a copyright, year, and name.

ChatGPT then returns a snippet of code that is again fairly standard:

	 <div class="footer">
 © Jeremy Morgan. All rights
reserved.
 </div>
 <script>
 document.getElementById("year").textContent = new Date().
getFullYear();
 </script>

I’ll insert it into my application as well, also with the updated CSS for the footer. Our
application is already looking cleaner and more professional (figure 7.9).

Now we need to craft some of the HTML for the other pages. I want to have a com-
mon box for them, so I’ll include that box in my index.html. Everything that’s inside
that box will be dynamic and changed from page to page. Here’s the prompt I will use
for that:

	 Create html and CSS for an inner box (content wrapper) that will wrap the content
for each page. I want it to take up approximately 75% of the screen and be placed
between the header and footer.

206 Chapter 7  Building user interfaces with ChatGPT

Figure 7.9  The new look of our application with a header and footer and CSS styling

This prompt returns the code that I need, including CSS, to wrap the content and fin-
ish out our changes in index.html. It returns this HTML:

	 <div class="content-wrapper">
 <!-- Page-specific content goes here -->
</div>

It also returns the following CSS:

	 .content-wrapper {
 width: 75%;
 background-color: #ffffff;
 padding: 20px;
 box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
 margin: 20px 0;
 flex: 1;
}

I’ll drop this in, make a few CSS tweaks to it, and we’ll examine our page, which now
looks even more professional (figure 7.10).

Figure 7.10  The application with additional HTML and CSS used for a cleaner look

	 207Describing the flow of our application

To finish this out, I won’t’ go through each page one by one as it’s too repetitive, but I
used similar prompts for each page, such as

	 Create the inner HTML for the Question Page according to the wireframe

Create the inner HTML for the Results Page according to the wireframe

I took the generated HTML and inserted it into my Flask templates accordingly. I made
a few minor CSS changes, and I’m happy with the result.

7.3.3	 The final UI for our application

We generated a workflow diagram and then asked for some wireframes for our appli-
cation. Next, I asked for HTML to match those wireframes. Though I didn’t ask for
CSS, ChatGPT generated that as well. Here’s what our final application UI looks like.
Figures 7.11, 7.12, and 7.13 show the entry, question, and results page, respectively.

Figure 7.11  The entry page of our application

Figure 7.12  The question page of our application

208 Chapter 7  Building user interfaces with ChatGPT

Figure 7.13  The result page of our application

Our finished application now has a clean, professional UI that improves the testing
experience without adding complexity. This change shows how AI tools can enhance
the design process.

We used chat-based AI interfaces—such as ChatGPT, Google Gemini, and Blackbox
AI—to guide our UI development from idea to execution. We learned the quality of
AI support relies heavily on how we phrase our prompts. We moved from broad design
ideas to specific implementation details. The visualization tools were especially useful,
as AI-created Mermaid flowcharts and wireframes helped us clarify user flows before
writing code.

By having AI models create the basic HTML and CSS, we refined and integrated it
into our Flask templates. This method produced results that usually need many design
skills. It shows how generative AI can act as a design partner, speeding up development,
while still allowing for the customization that makes an interface effective. As we add
features to our application, we will keep building on this foundation. This will illustrate
how AI tools can work well with developer insight to create applications that are both
functional and visually attractive.

Summary

¡	Using detailed, specific prompts when requesting UI guidance produces more
targeted, useful responses from AI tools.

¡	AI-generated flowcharts and wireframes can be employed to visualize user jour-
neys before writing code

	 209Summary

¡	You can progress from conceptual designs to implementation by having AI gen-
erate customizable template code.

¡	It is useful to adjust AI prompts incrementally, allowing outputs to remain respon-
sive to the shifting nuances of UI design.

¡	AI-generated code should be balanced with personal design judgment, making
strategic modifications to ensure the interface meets both functional and aes-
thetic requirements

210

8Building effective tests
with generative AI

This chapter covers

¡	Three popular generative AI tools for Python test
generation

¡	Using AI to create both unittest and pytest
test suites

¡	Setting up in-memory databases for isolated
testing environments

¡	Crafting effective prompts to generate high-
quality test code

¡	Evaluating the strengths and weaknesses of
each AI testing approach

Software testing is vital for reliability and security, but it’s often rushed due to devel-
opment pressures. Generative AI tools are changing this boring, repetitive process.
They can automatically create detailed test suites, spot edge cases, and generate
boilerplate code. This chapter shows how GitHub Copilot, Tabnine, and Blackbox
AI can enhance your testing workflow. They can help you build strong, maintain-
able test suites quickly, while upholding quality.

	 211Why use generative AI for testing?

High-quality tests are vital for reliable software. They catch bugs early and ensure new
features don’t break existing code. They also document how the code should behave.
As a new developer, I struggled to grasp the value of testing. I thought creating tests for
code I knew was good was a waste of time. It took one disaster to change my mind.

Testing is like an investment. You spend time building tests now to strengthen your
product. This approach saves time and frustration by catching problems early. As your
software evolves, each passing test reaffirms that your product still works properly. How-
ever, in today’s fast-paced development world, testing often falls behind. This is where
generative AI can aid developers as a valuable resource.

During the last decade, the fast-growing DevOps movement has pushed us to ship
features at lightning speed. The pressure to produce faster often leads to less testing.
Remember that if you don’t have time to write tests, you won’t have time to fix bugs.

When creating tests, you often write similar code with small changes. There’s a lot
of setup and boilerplate involved. Generative AI tools can greatly simplify this process.
They analyze your code, infer method signatures, and predict the tests you need. These
tools can write much of the repetitive code for you, saving hours of work. Smart people
tend to get bored with repetitive tasks, which can lead to mistakes.

Generative AI not only speeds up the process; it also improves test quality. These
tools suggest test cases you might overlook, ensuring broader coverage. I frequently
use AI to create tests, which significantly cuts down development time. It’s quicker than
writing tests from scratch, and AI offers great suggestions. This makes thorough testing
easier, reducing the risk of missing important tests.

Let’s explore how to use generative AI tools to create tests for our application. We’ll
learn to use these tools to build more tests in less time. This strategy software remains
dependable and well-structured as development speeds up. After all, the adoption of
these tools is changing how management views timelines.

8.1	 Why use generative AI for testing?
Generative AI tools dramatically reduce the time needed to create tests, and AI-
generated scaffolding serves as a reliable foundation for efficient test development.
The generative AI tools we’re using may prove most valuable in test generation.
Although we’ve spent this entire book generating new code, you may be the type of
programmer who prefers their own code. You might feel these tools get in the way.
Using them for testing, however, may change your mind entirely.

Many people criticize AI-generated code, and in many cases, their criticism is valid.
Here are a few common complaints. AI-generated code

¡	Lacks context and understanding

¡	May contain bugs, vulnerabilities, and inefficiencies

¡	Creates overreliance problems with developers

¡	Can perpetuate biases

¡	Can create IP and copyright problems

212 Chapter 8  Building effective tests with generative AI

These points are worth considering in any organization. They can be addressed with a
combination of

¡	Careful prompt design

¡	Thorough two-person (minimum) code review

¡	A balanced approach to the use of AI

Generative AI tools have much less influence when it comes to testing. For instance, a
unit test usually only requires the context of the single function or method it’s testing.
Tests themselves are far less complex than the code they’re operating on. Biases and
IP/copyright problems also have less impact as well.

You’re still taking a risk, and you aren’t getting something for nothing. However, the
benefits of using generative AI for testing far outweigh the risks. It is possible to

¡	Build more tests in less time

¡	Improve test quality

¡	Reduce human error

¡	Have a faster feedback loop

Even if you don’t find value with these tools in everyday development, you’ll see that
using them for tests is a great way to increase productivity. So, let’s get to it. We’ll look
at three tools we’ve been working with throughout this book and learn how to use
them to save time and improve the accuracy of our software.

8.2	 What are unit tests?
Before diving into AI-generated tests, let’s talk about the types of tests we will create.
Unit tests are one of the most important parts of an application. While unit tests don’t
cover everything that can go wrong, they do a good job of ensuring your application is
reasonably stable. They are short, focused tests that check one piece of a code at a time
to make sure it works right.

In Python, unit tests they often investigate program methods (functions) and classes.
The overall goal is to take one piece of functionality and make sure it works as intended.
You try to give the method different inputs and establish (assert) what you expect the
output to be. For example, if you have a method that adds two integers, you will send it
2 and 2 and expect 4 as the answer. You might send it 5 and 1 or different variations to
verify it’s performing addition as expected.

Unit tests are useful for Python developers because they can help you find bugs
quickly. Often, your application will appear to work fine, and you may publish it to the
world. Then, one of your users enters some information, and the application breaks
unexpectedly. With unit tests, you’ll catch that problem before publishing.

8.3	 The tools we’ll use for Python testing
We will use three familiar tools for test generation: ChatGPT, Tabnine, and Blackbox
AI. They all work well, and we’ll compare the differences in approach for each and
learn how to generate tests quickly.

	 213Writing unit tests with generative AI

8.3.1	 Github Copilot

Copilot uses the traditional chat-style interface for building tests, as well as some short-
cuts in the IDE. You can also interact with the API to automate test generation. We’ll
look closely at how to use GitHub Copilot to generate tests, within the IDE. Some
advantages of using Copilot are

¡	World class model that contains many languages

¡	API for full customization

¡	The agent mode for automated tasks

8.3.2	 Tabnine

Test generation has become a central focus in Tabnine’s recent development efforts.
You can use a traditional chat-style interface or integrate it into the UI of an IDE. There
are multiple approaches that you can mix and match. Some advantages of Tabnine are
the following:

¡	Integration into IDEs (JetBrains and VSCode)

¡	Chat interface that’s aware of your application and context

¡	Different models available to generate code

¡	Provides security for your code so you can avoid IP/copyright problems

¡	Ability to run your own local models

8.3.3	 Blackbox AI

Blackbox is similar to Tabnine as it runs in the IDE. You can also use a traditional chat
interface or integrated IDE tools. I’ve been impressed by the results I’ve seen with
Blackbox. Some advantages of Blackbox AI are

¡	Integration into VS Code

¡	Chat interface that’s aware of your application and context

¡	Customized agents that help with tests

8.4	 Writing unit tests with generative AI
There are various ways to generate tests with each tool, and it’s important to know the
differences. We will examine each tool to see its capabilities. All of them tend to default
to unittest instead of pytest, so we’ll see what they generate naturally and then push
them into pytest to see how they work with each.

8.4.1	 unittest or pytest?

Both pytest and Python’s built-in unittest library are popular testing tools for
Python. Each has its pros and cons. unittest has been a part of the Python standard
library for a long time and has worked great for many years. pytest has recently grown
in popularity because it is easy to use and has tons of great features.

214 Chapter 8  Building effective tests with generative AI

We don’t necessarily have to decide to go with one or the other here, but I want to
explore pytest in more detail because it will be the way most Python developers build
tests in the future. What makes pytest so appealing is its ease of use. The plain asserts
mean we need less boilerplate code and ceremony when writing tests. It also has much
stronger test discovery and a rich fixture system.

Personally, I prefer pytest for most projects. The standard unit tests have been
around so long I’d be surprised if our tools didn’t know about them. However,
I want to see how well these tools work for what I think is the future of Python unit
testing—pytest.

8.4.2	 Using Copilot for test generation

Let’s start our journey into testing with GitHub Copilot. We’re going to use the Copi-
lot plugin within the Visual Studio Code IDE. Note that Copilot works in many other
IDEs as well. The first thing we need to do is set up our testing environment. We
should already be in a Python virtual environment as it was set up at the beginning
of the book. But here’s a refresher just in case. In the folder containing your code,
type in

Python3 -m venv hamradio

Based on your operating system, use the appropriate command. In Windows, enter

\hamradio\Scripts\activate.bat

With Windows PowerShell, use

\hamradio\Scripts\Activate.ps1

On Linux and Mac OSX Systems, enter

source /hamradio/bin/activate

Now that we’re in our virtual environment, let’s install pytest:

pip install pytest

Next, let’s create a folder named pytests and a new file within that folder. The file
should be named test_models_questions.py. If you’re new to pytest , you might be
wondering about the significance of this name. We want to start all tests with test_ so
pytest knows that it’s a test to be run. We want to test functions in our Questions class,
which is in /models. I renamed the remaining files so that they’re easier for people to
understand (figure 8.1).

The “test+” prefix is required to distinguish tests from code. The rest of the conven-
tion is optional, and you may have a better way, but this is what I prefer. Let’s open the

	 215Writing unit tests with generative AI

For Pytest Class or file to test

Folder

pytests/ test_ models_ questions .py

Figure 8.1  File naming convention to let pytest know it’s a test and let the developer know what the
test is intended to do

file in our Visual Studio Code with the GitHub Copilot extension installed. You will
notice right away in this file that Copilot is inviting you to interact (figure 8.2).

Figure 8.2  Copilot offers a hint for how to open a chat with Copilot, or you can start typing.

This gives us two options for invoking Copilot into our workflow. You can either press
Ctrl + I or start typing. I’ll try the Ctrl + I method first. It opens a window where you can
either type in a prompt, like any other LLM in figure 8.3, or you can use shortcuts as
shown in figure 8.4. The shortcuts help guide the tool with tests, fixes, documentation,
or explanation.

Figure 8.3  You can type in a prompt if you want to communicate with Copilot directly from the IDE. This
is a good way to send specific requests.

Another option is to press the forward slash (/), which gives you several options. You
can either document, fix, or explain the code (which we don’t have yet) and finally
generate tests for the code with /tests.

216 Chapter 8  Building effective tests with generative AI

Figure 8.4  There is a set of commands with Copilot, which are shortcuts for common features. Rather
than type a prompt for code generation, you can type one of these commands.

I will try just running /tests and see if Copilot will generate what I’m looking for. This
type of shortcut is nice, because it’s wasteful to spend time working on a prompt for
something Copilot is preprogrammed to do. However, if you’ve come along this far in
the book, you might worry about the assumptions Copilot will make when producing the
output. As shown in figure 8.5, it creates a set of unittest tests for us instead of pytest.

Figure 8.5  When running /test in the prompt window, Copilot assumed I wanted unittest tests
instead of pytest.

	 217Writing unit tests with generative AI

Copilot assumed I wanted unittest tests, and I want pytest tests, so I will try specify-
ing in a prompt what I would like Copilot to do instead:

	 Help me write pytest tests for /models/questions.py.

My hunch here is if I add more information into the prompt, it will give me better
results. And it does produce pytest tests for this class (figure 8.6).

Figure 8.6  Copilot has generated some pytest tests as a result. By using a prompt, we can narrow
down exactly what we’re looking for and hopefully get better results.

I decided to accept the suggestion and insert it into my code. At first glance, I see that
this set of tests will not run as they are, but we’ll get to that. I would like to see how
Copilot has examined the class and attempted to understand it enough to build tests.
This may seem easy, but it’s challenging for LLMs. Some of the biggest challenges to
the folks working on LLMs is reasoning and understanding—they still aren’t good at
either yet. But let’s look at the code generated:

	 import pytest
from models.questions import Question
def test_question_init():
 # Test case 1: Valid question
 question = Question("What is the capital of France?", "Paris")
 assert question.text == "What is the capital of France?"
 assert question.answer == "Paris"
 # Test case 2: Empty question

218 Chapter 8  Building effective tests with generative AI

 with pytest.raises(ValueError):
 Question("", "Paris")
 # Test case 3: Empty answer
 with pytest.raises(ValueError):
 Question("What is the capital of France?", "")
def test_question_check_answer():
 # Test case 1: Correct answer
 question = Question("What is the capital of France?", "Paris")
 assert question.check_answer("Paris") == True
 # Test case 2: Incorrect answer
 assert question.check_answer("London") == False
 # Test case 3: Case-insensitive comparison
 assert question.check_answer("paris") == True
 # Test case 4: Empty answer
 with pytest.raises(ValueError):
 question.check_answer("")
 # Test case 5: None answer
 with pytest.raises(ValueError):
 question.check_answer(None)

Copilot wrote out a set of tests to run, and from the very first test, test_question_
init(): we can see a problem in understanding the context of this application. Copi-
lot has assumed that the Question class is something you invoke, send it a question,
and expect an answer. That’s clear from the first test case:

Test case 1: Valid question
 question = Question("What is the capital of France?", "Paris")
 assert question.text == "What is the capital of France?"
 assert question.answer == "Paris"

This could happen for several reasons. Copilot could be relying on the name of the
class to assume what it means. I can’t rule out myself as a factor: maybe my prompt
wasn’t good enough. Or worse yet, maybe this is a bad design with terrible naming,
and the LLM wasn’t trained on code like this. Whatever the reasoning, these tests don’t
make much sense.

In the test_question_check_answer(): tests, things aren’t any better. Copilot
assumes the method check_answer takes in a string question and string answer:

Test case 1: Correct answer
 question = Question("What is the capital of France?", "Paris")
 assert question.check_answer("Paris") == True

The problem is, there is no such method. This test is invalid as well. But what are we to
do? We tried running /tests, then tried giving a better prompt. We’re still stuck with
tests that won’t work. Once again, we must rely on our own knowledge of Python devel-
opment to get this done. However, we can still get help from Copilot to generate tests
and save us time. Here’s how we’ll do it.

	 219Writing unit tests with generative AI

Creating a dialog with Github Copilot

If you’ve written unit tests in Python before, you know there are things you must do
to set up your test environment. It rarely entails writing a few functions and calling it
good. Let’s see if GitHub Copilot can help us.

The first thing I’ll do is select a method from our Questions class. Inside the IDE, I
highlighted “self” and asked this question:

	 How can I generate a mock “self” in pytest for testing?

The prompt will be sent off to Copilot while using the existing context of this file.
Then I can send the answer to a Github Chat window (figure 8.7).

Figure 8.7  Asking a question in the IDE so that Copilot understands the context better to produce a
better result

After sending the prompt, I can open the Copilot chat, and I see a suggestion for how
to do this. It’s suggesting I put the test in the same file I’m working with, but other than
that, the advice looks solid (figure 8.8).

One thing I would like to do is create a mock, in memory database for this appli-
cation. This way, I can run tests against the software without worrying about affecting
real data. Now, of course, this idea only works with a smaller application like ours. You
can’t load up an entire production database into a memory with an enormous enter-
prise application. But since I have faith our database will fit into memory, let’s give it
a shot.

I send the following query to GitHub Copilot in the chat:

	 How can I create an in-memory database for SQLite for testing that matches the
database I have in /data/questions.db?

220 Chapter 8  Building effective tests with generative AI

Figure 8.8  The results from GitHub Copilot when asked a direct question and with highlighted code I want it to
look at. Copilot suggests creating a test_questions.py in the same directory as my questions.py class,
but other than that, it looks closer to a real test.

While this sentence would be strange to say out loud, it’s clearly conveying information
we want Copilot to know:

¡	We want an in-memory database.

¡	We want to mimic SQLite.

¡	It will be used for testing.

¡	The existing database is /data/questions.db.

	 221Writing unit tests with generative AI

This prompt should convey the needed information to generate what we want. Copilot
returns a helpful response:

	 To create an in-memory SQLite database for testing that matches your existing data-
base schema, you can follow these steps:

1	 **Connect to the in-memory database.**

2	 **Read the schema from the existing database.**

3	 **Apply the schema to the in-memory database.**

4	 **Copy the data from the existing database to the in-memory database (if
needed).**

Here’s a step-by-step plan in pseudocode:

1	 Connect to the existing database ‘/data/questions.db’

2	 Extract the schema using the ‘sqlite_master’ table.

3	 Connect to the in-memory database.

4	 Apply the extracted schema to the in-memory database.

5	 Optionally, copy the data from the existing database to the in-memory database.

Now, let’s implement this in Python:

```python
import sqlite3

def create_in_memory_db_from_existing(existing_db_path):
    # Connect to the existing database
    existing_conn = sqlite3.connect(existing_db_path)
    existing_cursor = existing_conn.cursor()

    # Extract the schema from the existing database
    existing_cursor.execute("SELECT sql 
FROM sqlite_master WHERE type='table'")
    schema_statements = existing_cursor.fetchall()

    # Connect to the in-memory database
    memory_conn = sqlite3.connect(':memory:')
    memory_cursor = memory_conn.cursor()

    # Apply the schema to the in-memory database
    for statement in schema_statements:
        if statement[0]:  # Ensure the statement is not None
            memory_cursor.execute(statement[0])

    # Optionally, copy data from the existing database to the in-memory 
database
    for table_info in existing_cursor.execute
("SELECT name FROM sqlite_master WHERE type='table'"):
        table_name = table_info[0]
        if table_name != 'sqlite_sequence':  
            data = existing_cursor.execute
(f"SELECT * FROM {table_name}").fetchall()



222 Chapter 8  Building effective tests with generative AI

            columns = [description[0] 
for description in existing_cursor.description]
            placeholders = ', '.join('?' * len(columns))
            memory_cursor.executemany(
                f"INSERT INTO {table_name} 
({', '.join(columns)}) VALUES ({placeholders})", data
            )

    # Commit changes to the in-memory database
    memory_conn.commit()

    # Close the existing database connection
    existing_conn.close()

    return memory_conn

# Usage example
in_memory_db = create_in_memory_db_from_existing
('/data/questions.db')

This code will create an in-memory SQLite database that matches the schema of 
your existing database and optionally copies the data. You can use the 'in_memory_
db' connection for your testing purposes.

This response looks helpful, so I will include the  create_in_memory_db_from_
existing function into our existing test file (tests_models_questions.py). At first 
glance, the code appears logical and readable, and it seems like it should function 
correctly. I’ll build a quick test to connect to the database and attempt to run a query:

def test_connection():
   in_memory_db = create_in_memory_db_from_existing('../data/questions.db')
   in_memory_db.execute("SELECT * FROM questions")

This should extract our important data from the production SQLite database into 
memory and attempt to run a query. After running pytest, the test fails with the fol-
lowing error message:

FAILED test_models_questions.py::test_connection - sqlite3.OperationalError: 
object name reserved for internal use: sqlite_sequence

This is a minor error. If we look at the queries in this function, we can see where it 
queries SQLite for all the table names:

existing_cursor.execute("SELECT sql FROM sqlite_master WHERE type='table'")

And then, it tries to load the data from these tables into memory:

for table_info in existing_cursor.execute
("SELECT name FROM sqlite_master WHERE type='table'"):



	 223Writing unit tests with generative AI

If the query attempts to access sqlite_sequence, it will be denied. Copilot attempts 
to rectify this problem with this line of code:

if table_name != 'sqlite_sequence':  # Skip the sqlite_sequence table

However, it is still being queried, so we can rectify it with a small modification to our 
SQL code. I will add a clause to exclude the sqlite_sequence table from our initial 
query. So, I will change

existing_cursor.execute("SELECT sql FROM sqlite_master 
WHERE type='table' ")

to

existing_cursor.execute("SELECT sql FROM sqlite_master 
WHERE type='table' AND name IS NOT 'sqlite_sequence'")

and rerun the test. It is now successful (figure 8.9).

Figure 8.9  Once we made a small modification to the code generated by Copilot, our tests pass successfully.

What can we learn from this small hiccup? Once again, your personal experience will 
help you tremendously when using generative AI tools. You can’t rely on AI alone to 
build all the software. However, we also see just how close Copilot got to generating 
accurate code. We only needed a small tweak to the query, and it worked.

In-memory testing benefits
Using in-memory databases for testing provides several advantages:

¡	Speed—In-memory operations are significantly faster than disk-based tests.
¡	Isolation—Tests are run in a contained environment without affecting produc-

tion data.
¡	Consistency—Each test starts with a clean, predictable database state.
¡	No cleanup—The database disappears when tests complete.



224 Chapter 8  Building effective tests with generative AI

(continued)

¡	No configuration—There is no need for separate test database credentials or 
connections.

¡	Simplicity—Test code reads more like production code, improving maintain- 
ability.

For larger projects, consider creating database snapshots that can be quickly loaded 
into memory rather than rebuilding schema and test data for every test run.

Building functional unit tests

So far, we don’t have any real tests here. We have one test that creates a mock and 
looks at the mock. The second test creates an in-memory version of our database and 
then runs a query against it. Let’s create a real test for our software. We can modify our 
test_get_question() function to use our in-memory database. We’ll query Copilot 
along the wall to help us out.

First, we’ll clear the existing code in test_get_question and make it empty so it 
looks like this:

def test_get_question():

Now, let’s take a step back for a minute. In our first test, test_connection, we have 
a line of code that connects to and builds our in-memory database. It looks like  
this:

in_memory_db = create_in_memory_db_from_existing('../data/questions.db')

There’s nothing inherently wrong with this line; however, as we create multiple tests, 
there is a problem. If we insert this line of code into every tests, it will work just fine. 
However, we’re repeating ourselves with every test. So, if we decide to change the loca-
tion of the main database, for instance, we’ll have to update each of these statements. 
There is a better way. It would be nice to create this connection one time and reuse it 
throughout each test, and that’s exactly what we’ll do.

Creating a Fixture

A fixture in pytest is a powerful tool. It helps prepare your environment for tests. It’s 
setting up the stage before the play begins. In our case, it’s going to call our function 
that sets up the in-memory database from our production database. This only needs 
to be done once, and if we require changes, we only need to implement them once. 
Creating fixtures makes for cleaner tests, saves resources, and most importantly your 
time. Let’s see if Github Copilot can help us build this fixture. I’ll start with a general 
prompt, and we’ll get more specific if needed. Here’s the prompt I used:

	 In this test suite, how can I create a pytest fixture for our database connection?



	 225Writing unit tests with generative AI

This prompt is very simple, with good reason. I want Copilot to use the entire file that’s 
open, so I start with “In this test suite.” The chances are good that Copilot will look at 
the code anyway, but this phrase ensures it. Then I mentioned “our database connec-
tion” because there is only one in the file right now. Then I ask how to create a fixture 
for that database connection, so Copilot will know exactly what I want it to do. Here is 
the result it came up with:

	 To create a fixture for your database connection in a test suite using ‘pytest', you 
can use the ‘@pytest.fixture' decorator. This fixture will set up the database con-
nection before each test and tear it down after each test.

Here’s how you can modify your test suite to include a fixture for the database 
connection:

1	 Import the necessary modules.

2	 Define a fixture function that sets up the database connection.

3	 Use the fixture in your test functions.

Here’s the updated code:

```python
import pytest
import sqlite3
@pytest.fixture
def db_connection():
 # Setup: create the in-memory database connection
 memory_conn = create_in_memory_db_from_existing('../data/questions.db')

 yield memory_conn # This is where the testing happens
 # Teardown: close the database connection
 memory_conn.close()
def test_connection(db_connection):
 db_connection.execute("SELECT * FROM questions")
def test_get_question(db_connection):
 # Example test using the db_connection fixture
 result = db_connection.execute("SELECT * FROM questions WHERE id = 1")
 question = result.fetchone()
 assert question is not None
```

In this code:

¡	The 'db_connection' fixture sets up the in-memory database connection and 
yields it to the test functions.

¡	After the test functions are done, the fixture ensures that the database connection 
is properly closed.

I’ll update our tests accordingly. I’ll create a new fixture and refactor the test functions 
to take the fixture as input. We’re simply adding

def db_connection():
    # Setup: create the in-memory database connection



226 Chapter 8  Building effective tests with generative AI

    memory_conn = create_in_memory_db_from_existing('../data/questions.db')
    
    yield memory_conn  # This is where the testing happens

    # Teardown: close the database connection
    memory_conn.close()

Then, for each of the methods, we change them accordingly:

def test_connection(db_connection):
def test_get_question(db_connection):

And after running the tests again, they pass. So, let’s now build these to test our 
Questions class.

Refactoring the test connection

Our test connection function doesn’t really test anything. It just runs a query, and if 
that query were to fail, the test would fail:

def test_connection(db_connection):
    db_connection.execute("SELECT * FROM questions")

This isn’t incredibly useful. Instead let’s check how many questions are in the ques-
tions table. This way, it still checks the connection to our in-memory database and 
makes sure our in-memory database contains all the questions it needs. This makes our 
test more useful and efficient. So, I decided to ask Copilot to help us out. Here’s the 
prompt I sent:

	 How can we make this method count the amount of records in the questions table 
and verify them in a test?

The results are exactly what I was looking for: a nice test to count the number of ques-
tions, then verify it against the known number of questions we expect. Here’s the 
output:

	 To modify the 'test_connection' method to count the number of records in the 
'questions' table and verify them in a test, you can follow these steps:

1	 Execute a SQL query to count the number of records in the 'questions' table.

2	 Fetch the result of the query.

3	 Assert that the count matches the expected number of records.

Here’s the updated code:

```python
def test_connection(db_connection):
 # Execute a SQL query to count the number of records in the questions table
 cursor = db_connection.execute("SELECT COUNT(*) FROM questions")

 # Fetch the result of the query

	 227Writing unit tests with generative AI

 count = cursor.fetchone()[0]

 # Assert that the count matches the expected number of records
 expected_count = 10 # Replace with the expected number of records
 assert count == expected_count, f"Expected {expected_count} records,
but found {count}"
```

In this code:

¡	The 'db_connection.execute("SELECT COUNT(*) FROM questions")' query 
counts the number of records in the 'questions' table.

¡	'cursor.fetchone()[0]' fetches the count from the query result.

¡	The 'assert' statement checks if the count matches the expected number of 
records. Adjust 'expected_count' to the actual expected number of records in 
your database.

I’ll modify the function in the following way: I’ll copy the code generated by Copilot 
and rename the function to make it more accurate. Next, I’ll add our expected number 
of questions (411) because that’s how many are in our production SQLite database:

def test_count_questions(db_connection):
    # Execute a SQL query to count the number of records in the questions table
    cursor = db_connection.execute("SELECT COUNT(*) FROM questions")
    
    # Fetch the result of the query
    count = cursor.fetchone()[0]
    
    # Assert that the count matches the expected number of records
    expected_count = 411  # Replace with the expected number of records
    assert count == expected_count, 
f"Expected {expected_count} records, but found {count}"

This test is now more useful. It ensures that we can connect to our in-memory database 
and also verifies that the in-memory database has the proper number of questions. 
Now we know that we can test a method in our application to make sure it does what 
we expect.

Testing our get_question_set function

Now that we know our in-memory database is at least mostly functional, let’s test a func-
tion in our questions class. I want to test the get_question_set function. Here’s the 
prompt I sent to Copilot:

	 How can I create a test for our questions.get_question_set function?

Again we’re using a very basic and concise prompt that makes a lot of assumptions 
about what Copilot knows. We’re expecting that Copilot

¡	Knows where questions.get_question_set is located

¡	Knows what it does



228 Chapter 8  Building effective tests with generative AI

¡	Will use pytest

¡	Will utilize our fixture

These are a lot of assumptions, so let’s see the results.

	 To create a test for the get_question_set function in your questions module, you 
need to follow these steps:

¡	Import the questions module.

¡	Use the db_connection fixture to set up the database connection.

¡	Call the get_question_set method with appropriate parameters.

¡	Verify the results returned by the method.

Here’s an example of how you can write the test:

import questions  # Import the questions module
def test_get_question_set(db_connection):
    # Assuming get_question_set takes a database connection and some 
parameters
    # Adjust the parameters as needed for your specific method
    question_set = questions.get_question_set(db_connection, some_parameter)
    # Verify the results
    assert question_set is not None
    assert len(question_set) > 0  # Assuming it returns a list of questions
    # Further assertions can be added based on the expected structure 
and content of question_set
    # For example:
    expected_question = {
        'id': 1,
        'question_text': 'What is the capital of France?',
        'answer': 'Paris'
    }
    assert question_set[0] == expected_question

In this code:

¡	The test_get_question_set function uses the db_connection fixture to set up 
the database connection.

¡	It calls the get_question_set method from the questions module with the neces-
sary parameters.

¡	It verifies that the returned question_set is not None and contains at least one 
question.

Additional assertions can be added to check the structure and content of the 
question_set based on your specific requirements.

Make sure to replace some_parameter with the actual parameters required by your 
get_question_set method and adjust the expected results accordingly.

At a glance, this code makes sense, but after I inserted it and ran it, I found some prob-
lems. So, I refactored it, and here’s how I set it up. Instead of importing questions with



	 229Writing unit tests with generative AI

import questions  # Import the questions module

I am already importing previous questions, so I can simply create another instance of 
questions and pass in my cursor to the method. This is cleaner and simpler and will 
work. Here’s the refactored method:

def test_get_question_set(db_connection):    
    questions = Questions(db_connection.cursor())

    # Call the get_question_set method with a session_id of 1
    question_set = questions.get_question_set('1')
    
    # Verify the results
    assert question_set is not None
    assert len(question_set) > 0  # Assuming it returns a list of questions

This change ensures that our get_question_set method returns a set of questions. We 
aren’t validating those questions, because they are generated at random. But it does 
verify that we are creating a list of questions for the test. I run the command and get 
two passing tests (figure 8.10).

 

Figure 8.10  Two passing tests that verify both the in-memory database and the get_question_set 
method. These tests ensure that the application is functioning as designed.

This is a look at the workflow for testing with GitHub Copilot. If you don’t know a lot 
about testing, generative AI tools can be very helpful. If you’re experienced with writ-
ing tests, it can help you write them faster. Here are some things I’ve noticed about 
using Copilot for tests:

¡	They’re mostly accurate, and a few changes are usually needed.

¡	The /tests shortcut from the IDE has problems. It’s better to go directly to the 
chat window to ask questions.

¡	It’s good at grasping context and functionality. 

¡	It will save time and is worth using. 

Let’s jump into another popular tool, Tabnine, and generate some tests with it.



230 Chapter 8  Building effective tests with generative AI

Crafting effective test prompts
When asking AI tools to generate tests, include these elements for better results:

¡	Specify the testing framework (pytest vs. unittest).
¡	Reference file paths to help the AI locate your code.
¡	Mention database requirements (in-memory vs. mocking).
¡	Describe edge cases you want tested.
¡	Request specific assertion styles.
¡	Include context about dependencies.
¡	Mention fixtures, whether they should be reused or created.
¡	Start general, then refine with follow-up prompts if needed.

For example, instead of “create tests for my function,” try

“Create Pytest tests for the get_question_set method in app/models/questions.
py using the in-memory database fixture. Include tests for both empty results and 
normal operation.”

8.4.3	 Using Tabnine for test generation

One thing you’ll find when using these tools is that the interface is nearly the same. 
And most of the time, it’s easier to jump into the chat window and send prompts. 
These tools are migrating toward focusing on the chat interface anyway, so it’s good to 
get into the habit of it. Let’s see how Tabnine handles tests.

Like Copilot, Tabnine has some shortcuts inserted into the IDE. You also have a chat 
window option. These shortcuts can be found near your functions (figure 8.11).

Figure 8.11  You can see shortcuts above your functions with Tabnine. The options are test, explain, 
document, and ask. I’ve found they work very well.

Let’s pick a function in our Questions class and see how the process works in Tabnine. 
I’ll click the “test” shortcut above the get_all_questions method. Since we already 
have tests and a fixture set up, it will be interesting to see whether Tabnine infers con-
text from that. As it turns out, as soon as I click test, a chat window opens and asks me 
that very question (figure 8.12): Do I have a test plan?



	 231Writing unit tests with generative AI

Figure 8.12  When clicking the test shortcut for the first time, Tabnine will ask you for a test file to 
create a test plan. Since we already have tests built, we’ll choose that.

After selecting the existing test file, you’ll see something far different from Copilot. 
There you can see a test plan built, with suggested tests, and your existing tests. Tab-
nine analyzes your code and then generates ideas for tests (figure 8.13).

Figure 8.13  Tabnine generates a full test plan for your application. It suggests several tests you might 
consider for your application.



232 Chapter 8  Building effective tests with generative AI

This is a great feature from Tabnine, but how well do the tests work? Let’s find out. I 
selected the top one, “Should return an empty list when there are no connections in 
the database?” Here is what it returned (figure 8.14).

Figure 8.14  Tabnine returns a prebuilt test. Immediately, I can see that it’s a unittest test, and not pytest. 
Also, it’s using Mock, and I (bravely) would like to use the in-memory database instead.

One thing I noticed right away is this is a unittest test, and not pytest. It’s also using 
Mock. However, there is an option here to “Describe how you’d like to modify the test.” 
I will simply prompt that to make a pytest test and use our fixture to connect to the 
in-memory database instead of Mock. Here is the prompt I used:

	 Create a pytest test instead and use the in-memory database provided in the exist-
ing fixture. 

Instantly, I got the result I was looking for. It’s a simple pytest test that uses our 
in-memory database. Here is the final test it produced:

	 def test_get_all_questions_empty_list(db_connection):
    # Arrange
    # Clear the questions table
    db_connection.execute("DELETE FROM questions")



	 233Writing unit tests with generative AI

    db_connection.commit()
    # Act
    result = Questions(db_connection.cursor()).get_all_questions()
    # Assert
    assert result == []

This test will open our in-memory database just like the other tests did and delete all 
the questions from the questions table. Let’s run it (figure 8.15).

Figure 8.15  We now have an additional passing test in our test suite. Tabnine created a functional test 
on the second shot.

The test ran perfectly. I realize that test ordering is important here, and I should run 
this test toward the end, but it was the first one on the list, so I decided to go for it. 
Bottom line: Tabnine created a functional test for our software in less than 5 minutes. 
Additionally, it provided us with many ideas for additional tests. Not all of them make 
sense to use for our application, but it’s a great feature that Copilot doesn’t automati-
cally apply.

As a sidenote, I used the Tabnine + Mistral model. Tabnine allows you to choose from 
several models depending on your needs. You can balance performance, privacy, and 
accuracy by selecting multiple models. It’s located at the top of the chat window, and 
figure 8.16 shows the models available at the time of this publication.

This is how simple it is to create tests with Tabnine. It has a bit of an advantage as we 
already had tests and a fixture available, and it fit right in and generated a working test 
within 5 minutes. It’s a huge productivity booster.

Here’s what I’ve noticed about using Tabnine for testing:

¡	The accuracy of the results is high. Many times, they’re better than Copilot.

¡	I like the suggestions given for additional tests.

¡	Having a wide choice of models is great if you don’t like the results you get from 
one.

Overall, I personally use Tabnine the most for testing. But let’s check out Blackbox AI, 
another popular product.



234 Chapter 8  Building effective tests with generative AI

Figure 8.16  Tabnine allows you to choose between many different models for test generation. If you need higher 
privacy, or simply want to browse different results, there are many options available.

8.4.4	 Applying Blackbox AI for test generation

Let’s use our same pytest application and learn how test generation works with Black-
box AI. Its interface resembles the other two tools we discussed, and most of the work 
I do with it is in a chat window. You can conveniently put this chat window into a tab 
in Visual Studio Code, which I prefer to the sidebar interface. To start our tests, I will 
open this chat and ask Blackbox to create some tests. Notice there is a button “Chat 
with Your Code Files.” This feature enables using your application as context automati-
cally when interacting with BlackBox AI (figure 8.17).

I’ll start out fresh with our tests for now. I sent the following prompt: 

	 Create unit tests for the questions class.



	 235Writing unit tests with generative AI

Figure 8.17  With Blackbox AI, you can add the chat screen as a tab in Visual Studio. There’s also a 
button to “Chat with Your Files” so you can include your code as context for the prompt.

Based on this simple prompt, I don’t expect it will use pytest, but I’m curious to see 
what kind of tests it recommends. Here’s what I got:

	 import unittest
import sqlite3
from questions import Questions  # Import the Questions class
class TestQuestions(unittest.TestCase):
    def setUp(self):
        # Create a test database
        self.conn = sqlite3.connect(':memory:')
        self.cursor = self.conn.cursor()
        # Create the necessary tables
        self.cursor.execute('''
            CREATE TABLE questions (
                id INTEGER PRIMARY KEY,
                correct INTEGER,
                question TEXT,
                a TEXT,
                b TEXT,
                c TEXT,
                d TEXT
            )
        ''')



236 Chapter 8  Building effective tests with generative AI

        self.cursor.execute('''
            CREATE TABLE sessions (
                session_id INTEGER PRIMARY KEY,
                questions_correct INTEGER,
                questions_incorrect INTEGER
            )
        ''')
        self.cursor.execute('''
            CREATE TABLE question_sets (
                session_id INTEGER,
                question_id INTEGER
            )
        ''')
        # Insert some test data
        self.cursor.execute('''
            INSERT INTO questions (id, correct, question, a, b, c, d)
            VALUES (1, 1, 'What is the capital of France?', 
'Paris', 'London', 'Berlin', 'Rome')
        ''')
        self.cursor.execute('''
            INSERT INTO sessions (session_id, 
questions_correct, questions_incorrect)
            VALUES (1, 0, 0)
        ''')
        self.cursor.execute('''
            INSERT INTO question_sets (session_id, question_id)
            VALUES (1, 1)
        ''')
        self.conn.commit()
    def tearDown(self):
        # Close the database connection
        self.conn.close()
    def test_get_all_questions(self):
        questions = Questions(self.cursor)
        result = questions.get_all_questions()
        self.assertEqual(len(result), 1)
    def test_get_question(self):
        questions = Questions(self.cursor)
        result = questions.get_question(1)
        self.assertEqual(result['id'], 1)
        self.assertEqual(result['correct'], 1)
        self.assertEqual(result['question'], 
'What is the capital of France?')
        self.assertEqual(result['a'], 'Paris')
        self.assertEqual(result['b'], 'London')
        self.assertEqual(result['c'], 'Berlin')
        self.assertEqual(result['d'], 'Rome')
    def test_get_question_set(self):
        questions = Questions(self.cursor)
        result = questions.get_question_set(1)
        self.assertEqual(len(result), 1)
    def test_get_answered_questions(self):
        questions = Questions(self.cursor)
        result = questions.get_answered_questions(1)
        self.assertEqual(result, 0)



	 237Writing unit tests with generative AI

    def test_get_next_question(self):
        questions = Questions(self.cursor)
        result = questions.get_next_question(1)
        self.assertEqual(result, '1')
    def test_store_answer(self):
        questions = Questions(self.cursor)
        result = questions.store_answer(1, 1, 1)
        self.assertEqual(result, 'test')
    def test_mark_answer_wrong(self):
        questions = Questions(self.cursor)
        questions.mark_answer_wrong(1)
        self.cursor.execute('SELECT questions_incorrect 
FROM sessions WHERE session_id = ?', (1,))
        result = self.cursor.fetchone()
        self.assertEqual(result[0], 1)
    def test_tally_results(self):
        questions = Questions(self.cursor)
        result = questions.tally_results(1)
        self.assertEqual(result['questions_correct'], 0)
        self.assertEqual(result['questions_incorrect'], 0)
if __name__ == '__main__':
    unittest.main()

These tests cover all the methods of the Questions class. They create a test data
base and insert some test data before running the tests. Each test checks the ex-
pected output of a method and asserts that it is correct. If any of the assertions fail, 
the test will fail and an error message will be displayed.

Looking at the results, I must say I’m impressed. It created a set of unittest tests, as 
I expected, but Blackbox looked over my application and gathered context in a great 
way. I’ll explain. In this part of the result:

These tests cover all the methods of the Questions class. They create a test database 
and insert some test data before running the tests.

Blackbox AI assumed this is how I want to run my tests. It doesn’t insert mocks or 
anything irrelevant. Rather than telling it to create an in-memory database, Blackbox 
inferred that from looking at my existing application and how it was set up. Neither 
Copilot nor Tabnine did that. The code also looks great. I only needed a few modifica-
tions to make it run. I added these two lines as I did in the previous pytest:

# Add the path to the 'app' directory to the sys.path
sys.path.insert(0, os.path.abspath(os.path.join
(os.path.dirname(__file__), '../app')))

# Import the questions module
from models.questions import Questions

And then I ran the unittest test for this file: 

python -m unittest test_questions.py 



238 Chapter 8  Building effective tests with generative AI

Figure 8.18 shows the results.

Figure 8.18  With a small modification, Blackbox AI generated an in-memory database that looks like 
our production database and created tests for our functions. It was successful on the first run.

We’ve proven that Blackbox AI can gather context and generate unit tests quickly 
and efficiently. So far, they look the best out of the tools we’ve examined. But what 
about using pytest? Let’s see if Blackbox AI can wow us with code for this framework. 
I repeated the same test, but used a different prompt:

	 Create pytest tests for the Questions class.

It immediately returns yet another pleasing result:

	 Here is an example of how you can write pytest tests for the Questions class:

# tests/test_questions.py
import pytest
import sqlite3
from models.questions import Questions

@pytest.fixture
def db():
    conn = sqlite3.connect(':memory:')
    cursor = conn.cursor()
    # Create the necessary tables
    cursor.execute('''
        CREATE TABLE questions (
            id INTEGER PRIMARY KEY,
            correct INTEGER,
            question TEXT,
            a TEXT,
            b TEXT,
            c TEXT,
            d TEXT
        )
    ''')
    cursor.execute('''
        CREATE TABLE sessions (



	 239Writing unit tests with generative AI

            session_id INTEGER PRIMARY KEY,
            questions_correct INTEGER,
            questions_incorrect INTEGER
        )
    ''')
    cursor.execute('''
        CREATE TABLE question_sets (
            session_id INTEGER,
            question_id INTEGER
        )
    ''')
    # Insert some test data
    cursor.execute('''
        INSERT INTO questions (id, correct, question, a, b, c, d)
        VALUES (1, 1, 'What is the capital of France?', 
'Paris', 'London', 'Berlin', 'Rome')
    ''')
    cursor.execute('''
        INSERT INTO sessions (session_id, questions_correct, questions_
incorrect)
        VALUES (1, 0, 0)
    ''')
    cursor.execute('''
        INSERT INTO question_sets (session_id, question_id)
        VALUES (1, 1)
    ''')
    conn.commit()
    yield cursor
    conn.close()

def test_get_all_questions(db):
    questions = Questions(db)
    result = questions.get_all_questions()
    assert len(result) == 1

def test_get_question(db):
    questions = Questions(db)
    result = questions.get_question(1)
    assert result['id'] == 1
    assert result['correct'] == 1
    assert result['question'] == 'What is the capital of France?'
    assert result['a'] == 'Paris'
    assert result['b'] == 'London'
    assert result['c'] == 'Berlin'
    assert result['d'] == 'Rome'

def test_get_question_set(db):
    questions = Questions(db)
    result = questions.get_question_set(1)
    assert len(result) == 1

def test_get_answered_questions(db):
    questions = Questions(db)
    result = questions.get_answered_questions(1)
    assert result == 0



240 Chapter 8  Building effective tests with generative AI

def test_get_next_question(db):
    questions = Questions(db)
    result = questions.get_next_question(1)
    assert result == '1'

def test_store_answer(db):
    questions = Questions(db)
    result = questions.store_answer(1, 1, 1)
    assert result == 'test'

def test_mark_answer_wrong(db):
    questions = Questions(db)
    questions.mark_answer_wrong(1)
    db.execute('SELECT questions_incorrect FROM sessions 
WHERE session_id = ?', (1,))
    result = db.fetchone()
    assert result[0] == 1

def test_tally_results(db):
    questions = Questions(db)
    result = questions.tally_results(1)
    assert result['questions_correct'] == 0
    assert result['questions_incorrect'] == 0

Note that I’ve used the pytest.fixture decorator to define a fixture that creates a 
test database and returns a cursor object. This fixture is used in each test function 
to create a new database connection.

I’ve also used the assert statement to make assertions about the expected behav-
ior of the Questions class. If any of these assertions fail, the test will fail and an 
error message will be displayed.

You can run these tests using the pytest command. For example:

pytest tests/test_questions.py

This will run all the tests in the test_questions.py file and display the results.

These results look great at first glance, so I make the same folder modification to the test 
and run it as is. And all eight tests pass 100% with no errors or problems (figure 8.19).

Figure 8.19  Here are the results of the tests as they were generated by Blackbox AI. It’s nearly plug and play, 
though in real situations, we’d want to make modifications and double check everything.



	 241Writing unit tests with generative AI

So far, out of the three tools, Blackbox took the least amount of effort to generate tests 
for our application. Here is what I didn’t do but would have done if the results weren’t 
good.

Making my prompt more specific

For my prompt, I sent: 

	 Create pytest tests for the Questions class.

This is a very general prompt, however if I didn’t get the results I wanted, I could say 
something like

	 Create pytest unit tests for the questions class located at /app/models/
questions.py. The application uses a SQLite database, and I would like to create 
an in-memory database that matches the production database for testing purposes. 

Using a Blackbox AI agent

Blackbox AI has agents, which are specific to the language you’re using. These agents 
are more focused on the language and environment, and not only do they have a 
Python agent, but a Flask agent as well.

You should use these agents when you want your request to be specific. For example, 
if you type in “build a unit test,” Blackbox will see your Python code and infer that you 
mean a unit test for Python, but it’s no guarantee. There are lots of languages that use 
unit tests. By specifying an agent, you are asking for more specific results (figure 8.20).

Figure 8.20  Blackbox AI has agents, specialized prompt-processing tools that focus on the language 
you’re developing in. You can bring up an agent from the front slash (/) button in the prompt window in chat.

Thankfully, it produced exactly what I was looking for, but you never know when you 
might need to make some changes, and that’s where an agent comes in handy. If you 



242 Chapter 8  Building effective tests with generative AI

need to get more specific, start with the prompt, or with Blackbox, and choose an 
agent.

8.4.5	 Which tool should you use for testing?

Now that you’ve seen these tools in action, you can evaluate which one you might pre-
fer for testing. Here are some things to keep in mind.

GitHub Copilot

Copilot is arguably the most popular generative AI coding tool today.

Pros

¡	Extensive language support: Excels in Python, JavaScript, TypeScript, Ruby, Go, 
C#, and C++

¡	Powered by OpenAI’s GPT-4 Model, which is very advanced

¡	Integrates well with GitHub repositories

Cons

¡	Cloud-based solution, which may raise privacy concerns

Tabnine

Tabnine is a code completion tool that focuses on privacy and enterprise level security. 

Pros

¡	Offers both cloud-based and on-premises solutions for enhanced security

¡	Trained on carefully vetted, high quality code repositories

¡	Several different models to choose from

¡	SOC-2 Compliant, ensuring security and privacy 

Cons

¡	May have less language coverage than GitHub Copilot

¡	May have less advanced NLP capabilities

Blackbox AI
Blackbox is a newer entrant in the AI-powered coding assistant market, focusing on 
code generation and problem solving.

Pros

¡	Offers a free plan, with basic features and code chat

¡	Provides advanced features such as code creation and priority assistance with test 
plans

¡	Works with multiple IDEs

¡	Has incredible accuracy with code generation.

Cons

¡	Less established compared to Copilot and Tabnine



	 243Summary

¡	Single model available currently

¡	Limited information available about its training data and model specifics

Check out all these tools and give them a shot. You’ll likely find one you like that fits all 
your needs. There’s no wrong choice here as they are all great. 

AI test generation workflow
Follow this process to get the most effective AI generated tests:

¡	Generate scaffold first. Create basic test structure with fixtures and imports.
¡	Review assumptions. Check if the AI correctly understands your code’s purpose.
¡	Add test cases incrementally. Generate one type of test at a time.
¡	Verify edge cases. Explicitly ask for tests covering boundary conditions.
¡	Refine assertions. Ensure tests verify the right behaviors.
¡	Consolidate fixtures. Look for opportunities to reuse test setup.
¡	Run and debug iteratively. Fix problems one at a time, using AI to help with 

errors.
¡	Document test purpose. Ask the AI to add comments explaining test coverage

Remember that AI can generate the structure and common cases, but you’ll need to 
guide it toward complete test coverage.

We learned how generative AI tools can make testing easier and more helpful. Tools 
such as GitHub Copilot, Tabnine, and BlackboxAI each have their own strengths, but 
they all aim to help you write better tests faster. These tools don’t just save time, but 
they also give you new ideas for tests you might not have thought of.

As you start building software faster, using AI in your testing can keep the quality 
high. The best approach is to combine what AI is good at (e.g., spotting patterns), with 
your own knowledge of how your code should work. Collaborating with AI empowers 
developers to create more robust test suites and deliver software that performs reliably 
across real-world scenarios.

Summary

¡	The use of generative AI tools allows Python developers to save valuable time, 
while maintaining high-quality standards for their applications.

¡	By applying refined prompt strategies, developers often see improvements in 
AI-generated tests that better reflect the nuances of their software environments.

¡	In-memory database fixtures enable comprehensive testing without affecting 
production environments

¡	Copilot, Tabnine, and Blackbox AI have different strengths, and you can choose 
the right testing companion based on your specific needs and constraints

¡	AI-generated tests can be incorporated into existing workflow, while maintaining 
appropriate review processes to ensure comprehensive test coverage



244

9Prompt engineering

This chapter covers:

¡	Basic and advanced prompt types for different 
programming scenarios

¡	Crafting effective prompts using context, clear 
instructions, and examples

¡	Iterative approaches such as chain of thought 
and recursive prompting

¡	Context manipulation and instruction refinement 
for code generation

¡	Specialized techniques to control output format 
for technical documentation

Prompt engineering has become a key skill for developers using generative AI tools 
of any type. It facilitates communication with these powerful assistants. Instead of 
getting generic responses, strong prompts can greatly enhance the quality, accuracy, 
and usefulness of AI-generated code and documents. This chapter examines some 
practical techniques that will help you change vague requests into clear instructions 



	 245Understanding prompt engineering

and obtain useful responses. This way, you can maximize AI’s capabilities, while keep-
ing control over the output. You’ll turn these tools into dependable partners in your 
development process.

Some parts of prompt engineering may seem natural—like how we learned to 
improve our search engine questions over time. However, learning the particulars of 
this skill can make a big difference in the results you get from chat models and large 
language model (LLM)-based programming tools. 

Let’s explore how to create better prompts to get the best results, save time, and 
increase productivity.

9.1	 Understanding prompt engineering
Imagine you’re trying to debug a Python function that’s throwing an unexpected error. 
You could use a simple prompt and ask AI to

	 Fix this code.

You’d probably get back a vague or unhelpful response. Or, you could craft a more 
effective prompt, such as

	 I’m debugging a Python function that calculates user discounts. When processing 
negative values, it throws this error: ValueError: Discount cannot be negative.

Here’s the code:

def apply_discount(price, discount):
     final_price = price * (1 - discount)
     return final_price

Please:

1	 Identify the bug.

2	 Explain why it occurs.

3	 Provide a fixed version with input validation.

4	 Add example test cases.

Here’s what ChatGPT returned when I sent this prompt:

1	 Identifying the Bug:

The code does not check if the discount value is negative. When a negative 
discount is provided, the function proceeds to calculate the final_price without 
validation, which may lead to unexpected behavior or logical errors.

2	 Why It Occurs:

A negative discount effectively increases the price, which is illogical in most dis-
count-related contexts. The error message (ValueError: Discount cannot be 
negative) mentioned in your question suggests that this case should be handled 
explicitly, but the function lacks such validation.



246 Chapter 9  Prompt engineering

3	 Fixed Version with Input Validation:

Here’s an improved version of the function with proper input validation:

```python
def apply_discount(price, discount):
 """
 Applies a discount to the price.

 Args:
 price (float): The original price of the item.
 discount (float): The discount as a fraction (e.g., 0.2 for 20%).

 Returns:
 float: The final price after applying the discount.

 Raises:
 ValueError: If the price or discount is invalid
(negative, greater than 1 for discounts).
 """
 if price < 0:
 raise ValueError("Price cannot be negative.")
 if discount < 0 or discount > 1:
 raise ValueError("Discount must be between 0 and 1.")

 final_price = price * (1 - discount)
 return final_price
```

4	 Example Test Cases:

Here are some test cases to ensure the function behaves correctly:

```python
def test_apply_discount():
 try:
 # Test case 1: Valid inputs
 assert apply_discount(100, 0.2) == 80.0
 print("Test case 1 passed")

 # Test case 2: Zero discount
 assert apply_discount(100, 0.0) == 100.0
 print("Test case 2 passed")

 # Test case 3: Full discount (free item)
 assert apply_discount(100, 1.0) == 0.0
 print("Test case 3 passed")

 # Test case 4: Negative price
 try:
 apply_discount(-100, 0.2)
 except ValueError as e:
 assert str(e) == "Price cannot be negative."
 print("Test case 4 passed")

 # Test case 5: Negative discount
 try:

	 247Understanding prompt engineering

 apply_discount(100, -0.1)
 except ValueError as e:
 assert str(e) == "Discount must be between 0 and 1."
 print("Test case 5 passed")

 # Test case 6: Discount greater than 1
 try:
 apply_discount(100, 1.2)
 except ValueError as e:
 assert str(e) == "Discount must be between 0 and 1."
 print("Test case 6 passed")

 except AssertionError:
 print("A test case failed.")

Run tests
test_apply_discount()
```

This implementation and test cases ensure that invalid inputs are handled properly 
and the function produces accurate results for valid inputs.

This second prompt gives a much more useful response. Why? Because it uses the key 
elements of effective prompt engineering, as shown in figure 9.1.

Clear context Specific instructions Expected output format

Effective prompt

Quality AI response

Figure 9.1  A quality prompt starts with clear context, specific instructions, and an expected format. 
The better the input quality, the better the result.

Prompt engineering is the skill of crafting clear, effective instructions that help AI mod-
els understand and respond to your needs accurately. Think of it as of being a good 
teacher—the better you explain what you want, the better results you’ll get (figure 9.2).

Refined
outputRaw query Context Clear

instructions Examples

Figure 9.2  A good prompt starts as a query, and context is added. If you supply clear instructions and 
some examples, you can change the output drastically.



248 Chapter 9  Prompt engineering

The following list shows some key components of an effective prompt:

¡	Context—Background information, relevant constraints, and technical 
requirements

¡	Clear instructions—Step-by-step requests, specific requirements, and expected 
format

¡	Examples (when helpful)—Sample inputs/outputs, preferred formatting, and edge 
cases to consider

Let’s see these in action with another development scenario. Here is an example of an 
ineffective prompt:

	 Write a function to validate email addresses.

And here is a well-engineered prompt:

	 Create a Python function that validates email addresses with these requirements:

1	 Accepts a single string parameter

2	 Checks for:

¡	Proper @ symbol placement

¡	Valid domain format

¡	Allowed characters

3	 Returns boolean (True if valid)

4	 Includes error handling

Please provide:

¡	Function implementation

¡	Docstring with examples

¡	At least 3 test cases

¡	Common edge cases handled

The difference is clear—the second prompt provides context, specific requirements, 
and expected deliverables. This structured approach consistently produces better 
results when working with AI coding assistants.

9.1.1	 Why prompt engineering matters

Good prompt engineering

¡	Reduces back-and-forth with AI tools

¡	Generates more accurate code

¡	Saves debugging time

¡	Produces better documented solutions

¡	Handles edge cases more effectively



	 249Understanding the anatomy of a prompt

Think of prompt engineering as writing good requirements—the more specific and 
clear you are, the better the output. As you progress through the discussion, you’ll 
learn increasingly sophisticated techniques to make AI tools more effective partners in 
your development workflow.

9.2	 Understanding the anatomy of a prompt
Good prompt engineering includes good communication. Key aspects of prompt 
engineering incorporate providing context, clear instructions, and good examples 
(figure 9.3).

Prompt anatomy

Context Examples

Relevance Clarity Specificity Sample I/O Format examples Edge cases

Instructions

Simple language Direct actions Step breakdown

Figure 9.3  A good prompt starts with great context (usually provided by the tool). This includes your 
existing project. Next, you add good examples and clear instructions. The process is very similar to 
communicating verbally with a human.

There are many rules and principles of good human communication that apply to 
LLMs as well. Treat the LLM like an assistant, where you can explain the problem in 
plain language and get a result. You can keep the conversation going if you’re misun-
derstood. The more concrete and clear you are with questions, the better the results.

Let’s take a look at some basics. Some of these can be treated as “knobs” that you can 
adjust if you aren’t getting the results you want. However, most of the time, you’ll want 
to stick to these principles.

The importance of context

Context is the backbone of any good prompt. There are very few cases where less con-
text is better. Context provides the necessary background information that AI models 
use to interpret your prompt correctly. Without context, models may produce irrelevant 
or even nonsensical outputs. Thankfully, our IDE tools take our existing code as con-
text; otherwise, they wouldn’t be as useful. Good prompts are always characterized by



250 Chapter 9  Prompt engineering

¡	Relevance—Ensure your prompt is aligned with your task

¡	Clarity—Clear and simple information

¡	Specificity—Tailoring the prompt to the needs of your task

Clear instructions

Instructions are the power behind great prompts. One of the differences between an 
LLM and a search engine is the idea of instructions rather than queries. Rather than find-
ing the best way to ask a question, you’re providing instructions to create an answer. 
It’s a small but important distinction. Here are some tips for crafting clear instructions:

¡	Use simple language. Avoid jargon and complex language. This generally yields 
better results.

¡	Be direct. Clearly state your desired action or response. Use active writing when 
possible.

¡	Break down complex tasks. Divide tasks into manageable steps.

By providing clear and concise instructions, you can enhance the model’s performance 
and reduce errors. In most cases, the better the input, the better the output.

Provide examples

This is an often-overlooked important part of prompt engineering. You can illustrate 
exactly what you’re looking for and guide the output. A good example is

	 Please output the results in a CSV format that looks like this: 

Name, Address, City, State, ZIP Code

Provide a concrete illustration of what you’re looking for:

¡	Demonstrate desired outcomes. Show the model exactly what a successful result looks 
like.

¡	Clarify ambiguities. Resolve potential misunderstandings before they happen.

¡	Reinforce learning. Strengthen the model’s understanding of the task.

Incorporating examples into your prompts will improve the model’s ability to under-
stand your intent and generate better responses.

A well-crafted prompt

Here’s an example of a prompt that incorporates all this advice. I want to connect to a 
MySQL database with Python. Let’s see if our LLM can help. I will send this prompt to 
ChatGPT:

	 I need help connecting to a MySQL database using Python. Please provide a clear, 
step-by-step guide with code examples. Here’s some context:

¡	I’m using Python 3.9 on Windows 10

¡	The MySQL database is hosted on a remote server

¡	I need to perform basic CRUD operations



	 251Understanding the anatomy of a prompt

Your response should include:

1	 Required libraries and installation instructions

2	 A code snippet for establishing a connection

3	 Examples of basic CRUD operations (Create, Read, Update, Delete)

4	 Best practices for security and error handling

Please format the code examples like this:

```python
Import required libraries
import mysql.connector
Establish connection
connection = mysql.connector.connect(
 host="example.com",
 user="username",
 password="password",
 database="mydatabase"
)

This prompt is clear, easy to understand, and very specific. Let’s see how ChatGPT
interprets it and returns it:

	 Here’s a step-by-step guide for connecting to a MySQL database using Python, includ-
ing code examples for CRUD operations:

1. Required Libraries and Installation

You’ll need the mysql-connector-python package to interact with a MySQL data-
base from Python. You can install it using pip.

Open your command prompt and run:

```bash
pip install mysql-connector-python
```

2. Code Snippet for Establishing a Connection

Once the library is installed, you can use the following code to establish a connection
to your MySQL database:

 ```python
# Import required libraries
import mysql.connector
from mysql.connector import Error
 
# Establish connection
try:
    connection = mysql.connector.connect(
        host="your_remote_server.com",  # Replace with your remote server
        user="your_username",           # Replace with your MySQL username
        password="your_password",       # Replace with your MySQL password
        database="your_database_name"   # Replace with your database name
    )
 



252 Chapter 9  Prompt engineering

    if connection.is_connected():
        print("Connection to MySQL database was successful!")
 
except Error as e:
    print(f"Error: '{e}'")
 
finally:
    if connection.is_connected():
        connection.close()
        print("MySQL connection is closed")
```

 ### 3. Examples of Basic CRUD Operations

 #### Create (Insert)
```python
# Insert a new record into the table
def insert_record(connection, name, age):
    try:
        cursor = connection.cursor()
        sql_query = """INSERT INTO users (name, age) VALUES (%s, %s)"""
        cursor.execute(sql_query, (name, age))
        connection.commit()
        print(f"Record inserted successfully into users table")
 
    except mysql.connector.Error as error:
        print(f"Failed to insert record: {error}")
 
# Usage
insert_record(connection, "John Doe", 30)
```

Read (Select)
```python
# Fetch all records from the table
def fetch_records(connection):
    try:
        cursor = connection.cursor()
        cursor.execute("SELECT * FROM users")
        records = cursor.fetchall()
 
        for row in records:
            print(f"Id: {row[0]}, Name: {row[1]}, Age: {row[2]}")
 
    except mysql.connector.Error as error:
        print(f"Failed to fetch records: {error}")
 
# Usage
fetch_records(connection)
```

Update
```python
# Update a record in the table
def update_record(connection, user_id, new_age):
    try:



	 253Understanding the anatomy of a prompt

        cursor = connection.cursor()
        sql_query = """UPDATE users SET age = %s WHERE id = %s"""
        cursor.execute(sql_query, (new_age, user_id))
        connection.commit()
        print(f"Record with id {user_id} updated successfully")
 
    except mysql.connector.Error as error:
        print(f"Failed to update record: {error}")
 
# Usage
update_record(connection, 1, 35)
```

Delete
```python
# Delete a record from the table
def delete_record(connection, user_id):
    try:
        cursor = connection.cursor()
        sql_query = """DELETE FROM users WHERE id = %s"""
        cursor.execute(sql_query, (user_id,))
        connection.commit()
        print(f"Record with id {user_id} deleted successfully")
 
    except mysql.connector.Error as error:
        print(f"Failed to delete record: {error}")
 
# Usage
delete_record(connection, 1)
```

 ### 4. Best Practices for Security and Error Handling

¡	**Use Environment Variables**: Avoid hardcoding your credentials directly in the
script. Instead, store sensitive information (like username, password, and data-
base name) in environment variables or use a configuration file that is excluded
from version control.

 Example:

  ```python
  import os
 
  user = os.getenv('DB_USER')
  password = os.getenv('DB_PASSWORD')
  ```

¡	**Error Handling**: Always use try-except blocks to catch and handle errors
gracefully. This ensures that even if something goes wrong, your program can react
appropriately and possibly recover or log the issue.

¡	**Close Connections**: Always close the database connection when your oper-
ations are complete to free up resources and avoid potential memory leaks. Use
try-finally blocks to ensure that connections are properly closed, even if an
error occurs.

254 Chapter 9  Prompt engineering

¡	**Parameterized Queries**: Always use parameterized queries (%s placeholders)
to prevent SQL injection attacks, as demonstrated in the CRUD operations above.

By following this guide, you’ll be able to connect to your MySQL database using
Python and perform basic CRUD operations securely and efficiently.

This response is exactly what I am looking for. If I had never crafted this type of code, I
could use this guidance to write it out the first time and understand what’s happening.
There are even some best practices included. I’ll admit that LLMs and their tools have
taught me a lot over the last couple of years from queries like this.

These are great principles to start with, but not all prompts are created equal. Let’s
learn about different types of prompts you can use and when to use them.

9.3	 Crafting the ultimate prompt
Prompt engineering can get complex quickly. There are countless tutorials, courses,
videos, and more about great prompt engineering out there. We’re at the stage of the
game where LLM models themselves know about prompt engineering. And you can
use them to help. Here’s one of my favorite go-to prompt tricks I do anytime I have a
prompt idea:

	 Act as an expert prompt engineer with extensive experience optimizing AI prompts for
clarity, relevance, and output quality. Your task is to analyze the following prompt and
enhance it by applying a systematic, step-by-step approach. Follow these guidelines
to ensure optimal results:

Sequential Reasoning: Break down the prompt’s task into logical steps. For each
step, identify key actions or decisions to be made. Use sequential reasoning to guide
the AI’s response process.

Contextual Awareness: Ensure the prompt uses specific language and contextual
clues that are relevant to the task. Highlight any gaps in information that may hinder
the model’s performance. Ask clarifying questions as needed about the target audi-
ence, tone, or special constraints.

Iterative Refinement: Continuously evaluate the prompt’s clarity and adjust the word-
ing for precision and conciseness. Identify areas for improvement by reflecting on
how each refinement enhances the quality of the expected output. Be prepared to
refine multiple times based on evolving needs.

Based on these steps, and referencing principles such as defining clear objectives,
using specific language, and balancing structure and flexibility, your goal is to pro-
duce an optimized prompt that is both adaptable to specific use cases and maximiz-
es output quality across various AI models.

Start by asking any essential clarifying questions to fine-tune your analysis. After
gathering the necessary context, proceed with your step-by-step refinement.

Here is the prompt: [the prompt to analyze]

I’ve given this tip to friends in conversation, and many of them are surprised. They
haven’t considered that you can craft a prompt and then have an LLM analyze it to

	 255Crafting the ultimate prompt

generate a better one. I’ll admit that I didn’t realize this possibility right away either,
but now that I know about it, I use it all the time.

Just that script above will give you a better prompt more than 90% of the time. You
can, of course, take that a step further. Feel free to modify it and check the results, espe-
cially with the newer thinking models. Let’s revisit the best practices we’ve learned so
far and gather some principles we can feed an LLM to get better results.

9.3.1	 Prompt engineering principles

These are some core principles we’ve learned so far. We’ll use this list to evaluate our
prompt and produce a better one:

¡	Define clear objectives. Specify the outcome you’re seeking.

¡	Use specific language. Choose words directly related to your task.

¡	Balance structure and flexibility. Provide enough structure to guide the response
while allowing room for creative insights.

¡	Use contextual clues. Incorporate relevant information and use keywords that align
with the task’s content.

¡	Design clear and concise instructions. Avoid ambiguity and prioritize clarity.

¡	Utilize examples effectively. Provide concrete examples to illustrate desired output
and guide the model’s response.

¡	Employ role-playing techniques. Assign specific roles or personas to AI.

¡	Break complex tasks into steps. Divide intricate problems into smaller, manageable
subtasks.

¡	Use appropriate prompt length. Balance providing enough information, while avoid-
ing overload that can confuse the model.

¡	Use format specifications. Clearly design the output format (bullet points, snippets,
data structure, etc.).

Note that the IDE tools we use in this book (GitHub Copilot, Tabnine, and Blackbox
AI) all have various of prompt preparation such as “explain this code” or “improve this
code.” These built-in commands often use proprietary prompt manipulation in the
background. It doesn’t hurt, however, to know how this works.

We can then take this set of principles and use them in our prompts. You can also use
these à la carte. Some principles may not apply to your task. What does our new super
prompt look like? Let’s see:

	 Act as a highly experienced prompt engineer with expertise in optimizing prompts for
maximum clarity, relevance, and output quality. Analyze the prompt below to enhance
its specificity, precision, and ability to generate the desired output. Before proceed-
ing, ask me targeted clarifying questions to gather essential context, such as the
intended audience, desired tone, and any specific constraints. Based on this infor-
mation, provide an optimized prompt that can be fine-tuned for specific use cases or
AI models.

256 Chapter 9  Prompt engineering

Review the attached list of principles for good prompt engineering and analyze the
prompt step by step to make sure it adheres to them.

Here is my prompt: [your prompt]

In the world of LLMs, there are no guarantees, but it’s very likely the previous prompt
will improve your prompt or give you ideas to think about. Let’s put it into action. I’ll
create a simple off-the-cuff prompt like this:

	 Optimize this prompt: “Act as an expert Python Programmer. Give me instructions on
how to send an HTTP request to an API and display the response.”

There’s nothing inherently wrong with this prompt. However, I’ll send it to ChatGPT
using the prompt above to see what it suggests. Immediately after sending this prompt,
ChatGPT sent the following questions:

	 Before optimizing the prompt, I have a few clarifying questions to tailor it effectively:

Audience: Who is the target audience for this prompt? Are they beginners, interme-
diate, or advanced Python programmers?

Desired Tone: Should the response be formal and technical, or would you prefer a
more casual and explanatory tone?

Output Format: Do you prefer the response to include code snippets, bullet points,
or a step-by-step guide?

Tools or Libraries: Are there specific libraries (e.g., requests, http.client, urllib)
you want to use in the example?

Constraints: Do you want the instructions to focus on specific environments (like
Windows, Linux, or macOS) or Python versions?

Additional Information: Do you want the AI to include error handling, edge cases, or
just the basic steps?

Once I have this context, I’ll optimize the prompt for maximum clarity and relevance.

As you can see, ChatGPT did as I asked and is now asking some questions for clarifica-
tion. I’ll answer these questions as follows:

1	 The audience is intermediate to advanced Python programmers.

2	 The tone should be very technical and brief.

3	 I would like a step-by-step guide with code snippets and explanations.

4	 I would like to use requests for this.

5	 Focus on running in a Linux environment.

6	 Include error handling in the code.

Now ChatGPT had time to think about my task and provided this response:

	 Based on your clarifications, I’ll optimize the prompt to better match your desired
outcomes, adhering to the principles in the document you provided.

	 257Fundamental prompt types

Optimized Prompt:

“Act as an expert Python programmer. Provide a highly technical, step-by-step guide on
how to send an HTTP GET request to an API using the requests library in Python. Focus
on running the code in a Linux environment and include robust error handling. Each
step should include a brief explanation followed by the relevant code snippet. The tone
should be concise and technical, with no unnecessary elaboration.”

This revised prompt is structured to ensure that the AI provides concise, relevant,
and well-organized content while including the technical depth your audience needs.

Would you like to fine-tune this further?

This is a concise and useful prompt. It doesn’t contain any more information than nec-
essary and gives clear instructions on how it should be handled. Copy this prompt and
try it yourself to see what the output looks like.

Feel free to use the LLM to your advantage in this way. Have it refine your prompts,
and experiment and make changes until you get exactly what you’re looking for. This
type of prompt tuning can be very beneficial to you as a programmer.

9.4	 Fundamental prompt types
Prompts can be simple questions, statements, or complex instructions. The type of
prompt you use depends on the task at hand. There are many styles and types to choose
from. Let’s look at some fundamental prompt types—how they work and how we can
use them (figure 9.4).

Prompt types

Zero shot

Few shot

Open ended

Constraned

Structured

Simple queries

Examples + query

Creative tasks

Limited scope

Formatted output

Figure 9.4  Most of your prompts
will fall into one of these categories.
The simplest being a zero-shot
prompt, with few shot and structured
prompts adding complexity. You
can control the creativity with open
ended or constrained prompts.

9.4.1	 Zero-shot prompting

Zero-shot prompting allows LLMs to perform new tasks they weren’t specifically
trained for by using the knowledge they’ve already learned. They achieve this by rely-
ing on extensive training data already acquired. These are the types of prompts you’ve
likely already used many times.

258 Chapter 9  Prompt engineering

Imagine a student who has read a thousand books on a subject. Even if they have a
problem they’ve never been taught to solve, they can use what they’ve learned from
those books to figure it out. This is how models attempt to perform new tasks. A zero-
shot prompt is one that gives very little context or background data to assist it. Here are
some examples.

Here is a prompt for function creation:

	 Write a Python function that calculates the factorial of a given number.

The following prompt is for data manipulation:

	 Create a Python script to read a CSV file and print the first five rows.

And here is a prompt for algorithm improvements:

	 Implement a Python function to perform a binary search on a sorted list.

As you can see, zero-shot prompts are very basic and concise. This is because the expec-
tation is that the LLM will know what you don’t know about how to solve the problem
and produce a result.

The key benefits of zero-shot prompting include:

¡	Simplicity and efficiency—Zero-shot prompting requires minimal prompt engi-
neering. These are quick, straightforward interactions. They don’t require
detailed examples or careful crafting of your prompt.

¡	Versatility—Zero-shot prompts employ preexisting model knowledge and handle
tasks without the user knowing exactly what to send in the prompt. It makes the
model function like an experienced generalist.

¡	Resource optimization—These prompts save time because you don’t need to prep
them or provide a lot of examples. This helps with rapid prototyping of solutions,
and simple straightforward tasks.

As models get progressively better, zero-shot prompting will become more effective.
Sometimes, these are useful when you don’t have a lot of information about a problem,
or you want quick, easy answers.

9.4.2	 Few-shot prompting

Few-shot prompting is a technique from natural language processing (NLP). It enables
LLMs to perform tasks after being provided with a few examples. Few-shot prompt-
ing lets models generate from just a few examples and taps into the pre-trained data.
Here’s an example:

	 You are a Python developer. Here are a few examples of functions:

1	 Function to calculate the square of a number:

def square(x):
 return x * x

	 259Fundamental prompt types

2	 Function to reverse a string:

def reverse_string(s):
 return s[::-1]

Now write a function that calculates the factorial of a number:

def factorial(n):

In this prompt, we’re dictating what we’re looking for. While it seems simple, this
prompt is doing a lot. We’re telling the model:

1	 We want Python code.

2	 Here is what a Python function looks like.

3	 Here is the coding style we prefer.

4	 The function calculates the factorial of a number.

This example shows two complete functions before requesting the third. However, it
not only shows examples of what a function should look like, but sets the tone in that
it shows which coding styles you prefer and how concise you’d like them to be. This
approach maintains consistent formatting and shows clear patterns of what you think a
function should look like, which can be valuable for steering the model in a direction
you’d like.

Benefits of few-shot prompting include

¡	Pattern recognition—Models can understand the expected output format through
concrete examples.

¡	Style control—Examples set clear expectations for coding style, formatting, and
structure.

¡	Context setting—The prompt establishes the domain (e.g., “You are a Python
developer”) for more targeted responses.

¡	Efficiency—It reduces back-and-forth by showing exactly what you want.

¡	Quality control—It helps ensure consistent output by demonstrating preferred
patterns.

¡	Flexibility—This type of prompt can be applied across various domains (not just
coding).

9.4.3	 Open-ended prompts

If you want a wide range of responses, the open-ended prompt is a great approach. It
can generate creative and diverse results. These prompts are useful when searching for
new ideas, generating creative content, or asking for advice.

Here are some examples of an open-ended prompt:

	 Describe how you would design a system to [specific task or problem] using Python.
Consider scalability, performance, and potential edge cases.

260 Chapter 9  Prompt engineering

	 Given this Python code snippet [insert code], how would you refactor it to improve
readability, efficiency, and maintainability? Explain your reasoning for each change.

	 Compare and contrast Python frameworks like Django, Flask, and FastAPI for web
development. In what scenarios would you choose one over the others?

We’ve used several examples of open-ended prompts and received good results. Some-
times, these are best for subjective questions and problems. However, this type of
prompt has both positive and negative results. Benefits of open-ended prompts include

¡	Encouraging creativity and innovation

¡	Allowing for diverse perspectives and ideas

¡	Useful for brainstorming and planning

Here are some downsides:

¡	They can provide off topic or irrelevant results.

¡	It can be difficult to control the output.

¡	They provide opinions, and LLMs don’t have opinions

Open-ended prompts are best for creative endeavors. If you’re looking for more pre-
scriptive results, constrained prompts may be a better choice.

9.4.4	 Constrained prompts

These types of prompts limit the scope of the model’s response. They provide specific
guidelines based on the criteria you set. While there is no guarantee of accuracy in the
results, they provide focused responses. Here are some examples of constrained prompts:

	 List exactly three built-in Python data structures and provide one unique advantage
for each.

	 Write a Python function that calculates the Fibonacci sequence up to the 10th num-
ber. Use a maximum of 5 lines of code.

	 Write a list comprehension in Python that generates the squares of even numbers
from 1 to 20. The solution should be a single line of code.

These prompts are rather different from open-ended ones. The idea is to guide the
results as much as possible, and it usually works well. Keep in mind that the models are
still stochastic, and there’s no guarantee they will follow the instructions. Benefits of
constrained prompts include

¡	Focused, relevant responses

¡	Reducing the likelihood of off topic or irrelevant outputs

¡	Can be used for tasks requiring specific criteria

	 261Fundamental prompt types

And here are some downsides:

¡	May limit creativity

¡	Don’t provide new ideas

¡	Require careful design

When you know exactly what you need and aren’t looking for new ideas, these prompts
work great. They can be particularly useful in debugging or mock data generation. You
can take the idea of constrained prompts a step further with structured prompts.

9.4.5	 Using iterative prompts

Prompt engineering is the bridge between human intent and the tool output. It allows
harnessing the full capability of models and obtaining the results you want. Let’s check
out a quick example. Here, I am prompting an LLM model (Llama 3) on my own
machine and attempting to get an answer to a math problem. As we discussed earlier,
LLMs aren’t great at arithmetic. However, there are some things you can do to improve
accuracy.

Here, we use an iterative process. This is a fancy way of saying “discussing the prob-
lem with an LLM like in a conversation.” We’ll send a prompt, get the results, and make
changes until we get what we’re looking for.

Let’s take a simple problem. We want to multiply 234 by 432. We know the answer
should be 101,088. But let’s ask our LLM to calculate this. I start with a simple prompt:

	 234 x 432

If I send this prompt as is to my Llama 3 model, I get this confidently wrong answer:

	 The value 234x432 is equal to:

234 x 432 = 98,136

Why is that? Because LLMs still aren’t set up to perform mathematical functions very
well. You must give them clues.

Let’s add some additional information to our prompt. We’ll tell Llama 3 to explicitly
multiply the values:

	 What is 234 multiplied by 432?

And now we get a different answer (that’s still wrong):

	 Multiplying 234 by 432 gives us:

234 × 432 = 96,072

We aren’t getting the results we want, so let’s make some changes. We’ll add in a cue
and suggest the model try three different methods. Then we’ll choose the one that’s
most likely to be accurate. We’ll also ask the model to show its work.

262 Chapter 9  Prompt engineering

Here’s the prompt:

	 Let’s calculate the product of 234 x 432 using three different methods. Choose the
one that’s the most accurate. Use the common steps for long multiplication. Show
your work.

The result of this prompt is quite complex, because we’ve asked the model to show its
work. This is one method that often makes the LLM produce better results, as you are
guiding the model to think things through better. Here are the results:

	 Let’s calculate the product of 234 x 432 using three different methods.

Method 1: Multiplication by hand

We can multiply the numbers as follows:

432

+234

? ?

To calculate, we multiply each digit in the ones place (4) with 234 and then add
up all the partial products.

+0 + 0 = 0 4 * 200 = 800 + 0 = 800 4 * 30 = 120 + 800 = 920 4 * 3 = 12 +
920 = 932 +234 = 1166

101,088

Method 2: Using a calculator

Using a basic calculator, we can simply type in the numbers and multiply them.

234 x 432 = 100,832

Method 3: Using long multiplication with an algorithm

To calculate using long multiplication with an algorithm, we first multiply the ones
place by 432:

4 * 432 = 1728

Then, we multiply the tens place (30) by 432:

30 * 432 = 12,960

Next, we multiply the hundreds place (200) by 432:

200 * 432 = 86,400

Now, we add up all the partial products, taking care to align the digits correctly.

1728 + 12960 = 14688 14688 + 86400 = 101088 101088 + 0 (ones place)
= 101088

101,088

Based on these three methods, we can see that the product of 234 x 432 is con-
sistently 101,088. Therefore, the final answer is:

101,088

	 263Fundamental prompt types

This result is consistent across all three methods, so it’s safe to conclude that this is
the correct result. This gave us an accurate answer. However, if you run the exact same
prompt multiple times, you will get a few bad answers. This is again due to the stochas-
tic nature of LLMs. They aren’t made for computation, and thankfully, we have other
tools for that. However, we did use a few techniques to try and narrow it down and
make a more accurate answer than what we started from.

We used a set of steps to refine the answer with these techniques:

¡	Explicit instructions—Each prompt got more specific.

¡	Multiple methods—We tried several ways to approach the problem.

¡	Asking to show the work—This is a trick used to make models think through a
process.

¡	Context cues—Cues are used to guide the model toward the appropriate
technique.

This sort of reiterative process is sometimes necessary to get the right prompt and the
information you need, and we’ll be doing more of it as we progress. Let’s dig deeper
into prompt engineering for a better understanding of ways we can fine tune the infor-
mation we get from prompts.

9.4.6	 Structured prompts

When you need to guide the model through a predefined format, structured prompts
can come in handy. I have found the following most useful for documentation and
presentations around software. These prompts are more specific than constrained
prompts. What follows is a structured prompt example:

1	 Create a comprehensive guide for optimizing Python code performance. Include
the following sections:

–	 Profiling techniques

–	 Common bottlenecks

–	 Optimization strategies

–	 Algorithm improvements

–	 Data structure choices

–	 Use of built-in functions and libraries

–	 Multiprocessing and multithreading

–	 Best practices and tips

2	 Provide a structured overview of our custom Python library:

a	 Introduction

b	 Core concepts

c	 Coroutines

d	 Event loops

e	 Futures and Tasks

264 Chapter 9  Prompt engineering

f		 Basic usage

g	 Advanced features

h	 Real-world use cases

These types of prompts allow you to dictate exactly how the information should be
generated. Again, there is no guarantee the results will follow the format you spec-
ify, but most of the time, they do. This approach works great for documentation and
Wiki’s for your software. The benefits of structured prompts include

¡	Providing comprehensive and organized results

¡	Useful for tasks requiring detailed analysis or structured information

¡	Generating complex outputs

Here are some of the downsides:

¡	They require more effort and time to design.

¡	It’s challenging to balance structure with flexibility.

Which type of prompt you will use depends heavily on what you’re looking to produce.
Let’s dig deeper into some of the use cases for each.

Use cases: Open-ended prompts

¡	Software design—Brainstorm and explore different ideas when planning a new
software project.

¡	Code review—Analyze your existing code and generate ideas for improvements.

¡	Problem solving—Generate creative solutions for tricky problems or design
challenges

Use cases: Constrained prompts

¡	Quick reference—Get explanations or examples of specific programming concepts
such as data structures, language features or best practices.

¡	Testing—Create specific test cases or edge cases for functions and modules.

¡	Code optimization—Generate efficient solutions for specific coding tasks with
established constraints.

Use cases: Structured prompts

¡	Project setup guide—Build a comprehensive guide for setting up or installing your
software, with specific guidelines for how it should look.

¡	Library documentation—Document your custom libraries with a consistent struc-
ture and common format.

¡	Code review checklist—Create a structured checklist for code review policies to be
followed with each review.

These are the basic core principles you should follow with prompt design. The next
section explores some more advanced topics.

	 265Advanced prompt types

9.5	 Advanced prompt types
Let’s look at some advanced prompting techniques. We’ll learn five ways to get bet-
ter results: chain of thought, recursive prompting, context manipulation, instruction
refinement, and output control (figure 9.5).

Instruction refinementRecursive prompting

Clear directions Output control

Format control

Iterative improvementChain of thought

Step-by-step reasoning

Advanced techniques

Context manipulation

Environment setup

Figure 9.5  For advanced prompts, you’ll need to provide a lot more information. You need to manipulate context
and examples, refine your instruction, and dictate the output. You can also use recursive and chain-of-thought
prompting to get the model to think about the answers.

Each method helps make AI responses more accurate and useful, especially when
writing code or technical documents. By learning these methods, developers can get
clearer and more reliable answers from AI systems. You can use them alone or com-
bine them for the best results.

9.5.1	 Chain-of-thought prompting

Chain-of-thought prompting mimics the sequential nature of human thought pro-
cesses to guide AI models. Rather than a basic input to output, it mimics the way
we think and breaks down complex problems into smaller, more manageable steps.
It enables models to reason through tasks and create a (hopefully) more accurate
answer. We’ve already done this a few times, and we’re going to dig deeper. Let’s see
what makes a chain-of-thought prompt tick (figure 9.6).

Key components

The key components of the chain-of-thought prompting are

¡	Sequential reasoning—The prompt breaks down the problem into a series of logi-
cal steps, allowing the model to process information more efficiently.

266 Chapter 9  Prompt engineering

Sequential steps

DecompositionProblem Evaluation Refinement Solution

If needed

Figure 9.6  A chain-of-thought prompt gets the model to reason out a problem like a human would. You break down
the problem and experiment with answers until you get the results you desire.

¡	Contextual awareness—To generate good responses, the model must maintain
contextual awareness, as we already know. This helps the model understand the
nuances of the task at hand and react accordingly.

¡	Iterative refinement—Chain-of-thought prompting encourages iterative refine-
ment, where models continuously evaluate and adjust their reasoning based on
new information. This is what we did earlier, and it helps ensure the accuracy of
the results.

Chain-of-thought prompting example

Let’s say you are having problems with running a Python script in a Docker container.
You’re not an expert on Docker and using a search engine doesn’t seem to help you.
Here’s how you can use prompts to walk through the problem and find the error:

	 I have a Python application running inside a Docker container, but the application is
failing to start or crashes unexpectedly. Can you help me diagnose and resolve the
issue step by step?

First, I can check if the container is running or has exited using docker ps -a. What
does this output really tell me?

If the container is stopped, how can I view the container logs using docker logs to
check for any Python application errors?

If the container is running, how can I access it and examine the Python application’s
internal logs for potential errors?

How can I verify that the correct Python version and dependencies are installed in the
container? What commands can I run to check this?

Can you help me check the Dockerfile for misconfigurations, such as the base image
or commands that might affect how the application starts?

What commands can I use to inspect the container’s network settings and port con-
figurations to ensure they are set up correctly?

After each step, how can I rebuild and restart the container to test for changes and
narrow down the issue?

This example requires some human effort to break down the problem and ask ques-
tions for each part. This can be one single prompt or a series of prompts, sequen-
tially. For instance, if you check what the output of ps -a means, you’ll find that your

	 267Advanced prompt types

container is stopped. Then you move to the next question about the container being
stopped and work your way through the problem.

What if you don’t know what to ask? The previous example assumes you know a bit
about containers, but they could be a mystery to you. The good news is, you can ask the
model what prompts to use, each step of the way. Let’s break down how that works.

Step 1: Problem decomposition

The first step is to break down the problem into a series of smaller, more manageable
steps. If you don’t know what to ask, you can send a prompt like this:

	 Decompose the following task into a series of smaller, manageable steps. The goal
is to send an HTTP GET request to an API using Python’s requests library, display
the response, and handle potential errors. Provide a clear and logical sequence of
subtasks needed to achieve this.

This will help you break down the problem and see what steps to take.

Step 2: Prompt design

Once the problem has been decomposed, you want to design the prompts that will
guide the model though the reasoning process. These prompts should encourage the
model to think critically about the problem:

For initializing the request, explain how to initialize an HTTP GET request using
Python’s requests library. Focus on best practices and include error handling.

For displaying the response, ask

	 How can you display the response body from an API request in Python? Provide a
concise code snippet along with any important considerations.

For error handling, you can say

	 Explain the best practices for handling potential errors in an API request using
Python’s requests library, including network errors and non-200 responses.

Notice how each prompt encourages critical thinking, while focusing on a specific part
of the problem.

Step 3: Iterative evaluation

Throughout this process, you should continuously evaluate the responses. Treat this
like a human conversation, where you don’t have to be polite. If you aren’t getting the
results you want, frame the prompt in a different way and refine it. Doing this frequently
will help you learn new techniques to get the answers you’re looking for. You can also
use the LLM for this second step of refinement to do a sanity check on your work.

For evaluating the initialization step, you can use

	 Review the code provided for initializing an HTTP GET request using Python’s requests
library. Is the code efficient, does it follow best practices, and is error handling
sufficiently robust? If not, suggest improvements.

268 Chapter 9  Prompt engineering

For evaluating response display, use

	 Evaluate the response display method provided. Is the approach clear, concise, and
capable of handling different types of API responses (e.g., JSON, text)? If there are
shortcomings, offer better alternatives.

For evaluating error handling, use

	 Assess the error handling logic in the generated API request code. Does it cover com-
mon error scenarios like connection issues or timeouts? Is the handling of non-200
HTTP status codes adequate? Provide suggestions for improvement if necessary.

Iterative evaluation helps you stay on the right path by validating each step and ensur-
ing accuracy in the responses. Just for fun, you can use different LLMs to check each
other. I’ve often switched between ChatGPT, Claude, and Blackbox AI LLM chat win-
dows to check my results as I go.

Step 4: Feedback integration

You can take the output from the previous steps and refine them further. This encour-
ages the model to refine and optimize its responses based on its own advice. In this final
step, you’ll likely see a very accurate and well thought out response that you wouldn’t
be able to achieve from a single one-shot prompt.

For refining initialization based on feedback, you can say

	 Incorporate the following feedback into the code for initializing an HTTP GET request:
Use connection pooling for better performance and include timeouts to handle net-
work delays. Revise the code accordingly.

For improving response handling based on feedback, use

	 Given the feedback that the current response handling is too simplistic, revise the
code to handle both JSON and text responses more effectively. Ensure that the up-
dated version addresses these concerns.

For enhancing error handling based on feedback, use

	 Feedback indicated that the error handling logic doesn’t account for HTTP 5xx errors.
Refine the error handling in the API request code to include specific handling for
server-side errors, ensuring a clear and actionable error message is logged.

For general performance improvements, ask

	 Use the following feedback to optimize the entire process: improve readability by add-
ing comments, refactor the error handling logic for better maintainability, and ensure
all edge cases are covered. Revise the code accordingly.

Chain-of-thought prompting is beneficial in two ways—it helps the model think
through the problem, and more importantly, it forces you to think through the problem
and alter how you communicate with the LLM. In our discussion, I have humanized the

	 269Advanced prompt types

LLM a bit to explain the concepts. It seems silly because the AI model has no thoughts,
opinions, or personality. However, treating it like a person and improving your com-
munication skills will produce better results.

Here are some key benefits of chain-of-thought prompting:

¡	Better problem-solving—It breaks down hard problems into smaller, manageable
steps. It also attempts to mimic how humans think and reasons step by step.

¡	Improved accuracy and quality control—It lets you check each step as you go and
makes it easier to find mistakes by looking at each step. It allows for careful think-
ing about unusual cases.

¡	Continuous improvement—Chain-of-thought prompting supports ongoing check-
ing and enhancing as it goes. It allows feedback to be added at each stage. This
feature improves results based on earlier steps and encourages critical thinking
about responses.

¡	Understanding context—The model maintains awareness throughout solving the
problem, which helps the model understand and address small details, enabling
more exact and relevant answers.

¡	Flexible framework—Chain-of-thought prompting works for many types of prob-
lem and topics. It’s good for both technical and other types of problems. It lets
you adjust your approach as needed and can be scaled based on complexity.

Chain-of-thought prompting is very useful for code generation, bug detection (and
fixing), algorithm optimization, and more. It’s an incredible technique to have in your
tool belt for writing good code. Next,
let’s look at recursive prompting.

9.5.2	 Recursive prompting

Recursive prompting is a technique
that relies on iteratively refining and
improving the response generated
by a model. Instead of producing an
answer in one step, recursive prompt-
ing breaks it into stages. This approach
is particularly useful for complex
tasks, where the initial response might
be incomplete or require further clar-
ification (figure 9.7).

By continuously feeding the output
of one stage into the next, recursive
prompting helps improve the quality
and accuracy of the result. This can be
very handy for code generation. Here
is how recursive prompting works:

Satisfactory?

Initial prompt

Initial response

Refinement prompt Final output

Refined response

No Yes

Figure 9.7  Recursive prompting works by breaking
the answer down into stages.

270 Chapter 9  Prompt engineering

1	 Initial prompt—The user provides an initial prompt to the model, asking for a
solution or response.

2	 Refinement—The model generates an initial response, which is then analyzed or
critiqued.

3	 Recursive input—The user (or the model itself) refines the prompt based on the
initial response, asking for improvements or corrections.

4	 Iterative process—This cycle repeats until the desired level of quality or accuracy is
achieved.

What follows is a good recursive prompting example showing the steps.

Step 1: Initial prompt

Let’s start with a basic prompt asking to solve a problem:

	 Write a Python function to calculate the factorial of a number.

Step 2: Model’s initial response

The model generates a response:

	 def factorial(n):
 if n < 0:
 raise ValueError("Factorial is not defined for negative numbers.")
 elif n == 0 or n == 1:
 return 1
 else:
 return n * factorial(n - 1)

Example usage
print(factorial(5)) # Output: 120

Step 3: Recursive prompt for refinement

While this code is correct, we now want to refine it further. Let’s make it handle some
edge cases such as non-integers and negative numbers:

	 Refine the factorial function to handle negative numbers and non-integer inputs.

Step 4: The model’s refined response

The model then generates a refined version of the code, based on the requested
improvements.

	 def factorial(n):
 if not isinstance(n, int) or isinstance(n, bool):
 raise TypeError("Factorial is only defined for integers.")
 if n < 0:
 raise ValueError("Factorial is not defined for negative numbers.")
 elif n == 0 or n == 1:
 return 1
 else:
 return n * factorial(n - 1)

	 271Advanced prompt types

Example usage
print(factorial(5)) # Output: 120

This is now a better result than the original because we can continue to iterate on it
and narrow down the exact result we want.

Step 5: Further refinement

This step is optional, but we can further refine it from here.

	 Optimize the factorial function using an iterative approach instead of recursion.

This prompt produces the following result:

	 def factorial(n):
 if not isinstance(n, int) or isinstance(n, bool):
 raise TypeError("Factorial is only defined for integers.")
 if n < 0:
 raise ValueError("Factorial is not defined for negative numbers.")

 result = 1
 for i in range(2, n + 1):
 result *= i

 return result

Example usage
print(factorial(5)) # Output: 120

Recursive prompting is a systematic approach to achieving higher-quality outputs
through iterative refinement. Rather than accepting the first response, it uses a
step-by-step process of evaluation and improvement, making it particularly valuable
for complex tasks such as code development, writing, and problem-solving. Our
example demonstrated how a basic factorial function evolved from a simple imple-
mentation to a robust, optimized solution through multiple iterations of targeted
refinements.

The key benefits of recursive prompting include:

¡	Incremental improvement—Rather than trying to get perfect results in one shot,
recursive prompting breaks down improvement into manageable steps.

¡	Quality control—Each iteration provides an opportunity to evaluate and enhance
specific aspects of the solution, leading to more reliable and robust results.

¡	Specificity in refinement—Each recursive prompt should focus on specific improve-
ments (such as handling edge cases or optimization), making the refinement
process more effective.

¡	Flexibility—The technique can be adapted to different types of tasks and can con-
tinue until the desired quality level is reached.

¡	Educational value—The iterative nature helps in understanding how solutions
can be progressively improved, making it a valuable learning tool.

272 Chapter 9  Prompt engineering

9.5.3	 Context manipulation

Context manipulation involves setting up an optimal environment within the prompt
to help a model generate accurate and relevant responses. By controlling the context
in which the model operates, users can influence the output’s quality, consistency,
and specificity, especially in tasks requiring clarity and precision. Context manipu-
lation involves priming the model with relevant information, presenting examples
within the prompt, and utilizing system messages to maintain the desired behavior
(figure 9.8).

Rules/constraintsRole definition

Context setup

Examples

Task execution

Feedback

Figure 9.8  With context manipulation, you can supply as much or as little context as you want, which
will change your results. Creating proper context ensures the model has plenty of information to base its
answer on.

Context manipulation can be handy for generating code, troubleshooting problems,
or formatting documentation to adhere to a specific style. By establishing a clear con-
text, the model can more effectively interpret requests, understand nuances in syntax,
and anticipate particular coding needs.

When to use context manipulation

As a Python programmer, you might want to use context manipulation to

¡	Guide the model to generate code that adheres to specific styles or patterns

¡	Ensure consistency across functions or modules by maintaining a specific con-
text or tone in outputs

¡	Simplify complex requests by providing initial parameters or examples, helping
the model stay focused on relevant details

¡	Generate explanations or documentation that match a preexisting structure,
enabling smooth integration with existing codebases

Whether coding, debugging, or documenting, context manipulation can signifi-
cantly improve the quality and efficiency of your interactions with the model. I use it
frequently.

Here is an example of context manipulation. Let’s say you want to create a Python
script for processing data files but require that the code consistently uses the pandas
library and adheres to a specific function structure.

	 273Advanced prompt types

Step 1: Initial setup

Start with a prompt that establishes the role, rules, and intent:

	 You are a Python assistant. Always use the pandas library for data manipulation
tasks, and structure your code with a function called process_data. Avoid using any
other libraries unless specified.

Then prompt with contextual example:

	 Write a function named process_data that reads a CSV file, filters rows where the
age column exceeds 30, and returns the result sorted by age.

Here is the model’s response:

	 import pandas as pd

def process_data(file_path):
 df = pd.read_csv(file_path)
 filtered_df = df[df['age'] > 30]
 sorted_df = filtered_df.sort_values(by='age')
 return sorted_df

This technique allows the model to interpret and respond consistently based on your
preferred context. By guiding the prompt with context manipulation, the model
adheres to the expected library and function structure, making the generated code
easy to incorporate into a larger project. It’s not perfect by any means, but most of the
time, it works well.

Advantages of context manipulation

Using context manipulation effectively helps build better code and documentation
faster. Here are some key advantages:

¡	Better consistency—Setting the context means setting expectations. When we do
this, the model’s answers match specific coding styles, structures, or libraries.
This is important when working with multiple files or parts of a project.

¡	Improved efficiency—Giving the model clear context up front reduces the need to
explain or fix things, saving time and making the coding process smoother.

¡	Better code readability—Context manipulation helps the model stick to a consistent
approach, making the code easier to understand and maintain across different
areas of the application.

¡	Increased control—By giving examples and starting instructions, you can guide the
model toward certain coding practices, keeping standards in line with your proj-
ect or company requirements.

Adding context manipulation to your prompt engineering tools can improve the qual-
ity and reliability of model-generated results. It is a helpful way to manage code style,
keep things consistent, and follow best practices in your programming tasks.

274 Chapter 9  Prompt engineering

9.5.4	 Instruction refinement

Instruction refinement is a helpful prompt engineering technique that creates clear
and specific directions to get better responses from AI models. By carefully writing
and improving these instructions, developers can make sure the AI gives more accu-
rate and useful code or documentation. This technique is especially useful in Python
programming, where clear instructions help produce code that is easier to understand
and use (figure 9.9).

Clear
Oobjective

Break down
requirements

Specify
constraints

Add
context

Define
output Implementation

Figure 9.9  Instruction refinement is a process where you get as specific as you can, break down your
requirements, and tell the model exactly what you expect for output.

It’s all about crafting well-structured instructions that eliminate ambiguity. Think of it
like writing out your directions for a recipe: the clearer and more detailed, the better
the result. This is a combination of many techniques we’ve been discussing throughout
the book.

How does instruction refinement work?
Instruction refinement is another way to take complex requests and break them down
step by step. It gives the model an opportunity to think. When refining the instruc-
tions, here’s what we want to do:

1	 Start with a clear objective. Define what you want the code to accomplish.

2	 Break down complex requirements. Separate them into bite-sized, actionable steps.

3	 Specify constraints and preferences. Be clear about any limits or specific methods
you’d like used.

4	 Include relevant context. Add any background info that might help the AI better
understand the task.

5	 Define expected output. If you know the format of the result, spell it out!

The key here is to add as much detail as possible. While this technique is comprised of
prompting best practices, there’s a heavy focus on narrowing down the results as much
as possible with details. The results are not very creative, so this type of refinement isn’t
suited for creative endeavors.

When to use instruction refinement

Instruction refinement comes in handy when

¡	Tackling complex algorithms or data structures

¡	Creating boilerplate code that must adhere to certain standards

¡	Writing documentation to fit team conventions

	 275Advanced prompt types

¡	Debugging or refactoring code with specific requirements

¡	Implementing features with interdependent components

Let’s examine how instruction refinement can improve the quality of generated Python
code. For example, we want a function to process JSON data and save it to a database.

Here is the unrefined prompt:

	 Write a function to process JSON data and save it to a database.

Not very specific, right? With this level of detail, the results are unpredictable. Let’s
refine it with additional important details:

	 Create a Python function that:

1	 Accepts a JSON file path and database connection string as parameters

2	 Validates the JSON structure contains required fields: user_id, timestamp, data

3	 Transforms the data by:

–	 Converting timestamps to datetime objects

–	 Normalizing user IDs to lowercase

4	 Handles errors with appropriate try-except blocks

5	 Uses SQLAlchemy for database operations

6	 Returns a tuple of (success_boolean, processed_count)

Follow these constraints:

¡	Use type hints for all parameters and return values

¡	Log errors using the logging module

¡	Implement connection pooling for database operations

The refined instruction typically results in more precise and useful code:

	 ```python
from datetime import datetime
import json
import logging
from typing import Tuple
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
 
def process_json_data(
    json_path: str,
    db_connection_string: str
) -> Tuple[bool, int]:
    """
    Process JSON data and save to database with validation and error handling.
 
    Args:
        json_path: Path to JSON file
        db_connection_string: Database connection string
 
    Returns:



276 Chapter 9  Prompt engineering

        Tuple of (success status, number of records processed)
    """
    logging.basicConfig(level=logging.INFO)
    processed_count = 0
 
    try:
        # Set up database connection
        engine = create_engine(db_connection_string, pool_size=5)
        Session = sessionmaker(bind=engine)
 
        # Read and validate JSON
        with open(json_path, 'r') as file:
            data = json.load(file)
 
        # Process records
        with Session() as session:
            for record in data:
                if all(key in record for key in 
['user_id', 'timestamp', 'data']):
                    record['user_id'] = record['user_id'].lower()
                    record['timestamp'] = datetime.
fromisoformat(record['timestamp'])
                    processed_count += 1
                else:
                    logging.error(f"
Missing required fields in record: {record}")
 
        return True, processed_count
 
    except Exception as e:
        logging.error(f"Error processing data: {str(e)}")
        return False, processed_count
```

By breaking things down and adding clarity, we can get the model to produce some-
thing more predictable. After all (at the time of this writing), an LLM cannot read your
mind.

Advantages of instruction refinement

By incorporating instruction refinement into your prompt engineering practice, you
can significantly improve the quality and reliability of your Python development work-
flow. This technique not only enhances the immediate output but also contributes
to better long-term maintainability and scalability of your codebase. The advantages
include

¡	Improved code quality—Precise requirements reduce ambiguity and encourage
consistent implementation.

¡	Enhanced maintainability—Clear instructions make for clean, documented code
that’s easier to update.

¡	Better efficiency—Less time wasted on reworking or debugging because your initial
instructions were solid.

	 277Advanced prompt types

¡	Using instruction—Refinement doesn’t just help you now. It creates a codebase
that’s reliable and easier to scale in the future. If you can produce the details,
you’ll get a better, more consistent prompt. Now let’s take a more detailed look
at outputs.

9.5.5	 Output control

Output control is another method for fine-tuning AI-generated responses. Whether
you’re crafting Python code, generating documentation, or processing data, having
some control over the AI’s output is important. By setting clear guidelines, you can
make sure that the output not only looks good but follows specific rules and formats
(figure 9.10).

Style
rules

Filtered
output

Format
specification

Structure
definition

Output
requirements

Figure 9.10  Output control is used when you need the response to fit into a particular format such as
JSON, SQL, or many other standard formats.

Imagine you need code that sticks to Python’s PEP 8 guidelines or insists on snake_case
for variable names. If you spell this out in your prompt, you’ll get responses that follow
your standards. This is yet another way to make more predictable results from a model.

How does output control work?

Output control is very similar to instruction refinement, and they’re usually used
together. It’s setting the rules of engagement for your AI output. It can mean defining
the length of a response, specifying a layout (like a bullet list or a set of numbered
steps), or even enforcing a certain tone. Let’s break down some ways to use it:

¡	Define output structure. Want bullet points, numbered lists, or JSON format? Just
specify it.

¡	Limit irrelevant info. Use filters to keep the AI focused on what you need.

¡	Enforce style rules. If you need code that’s PEP 8-compliant or uses snake_case,
set those guidelines right in your prompt. This goes for multiple styles in differ-
ent languages of course.

When to use output control

When does output control really shine? Here are the best uses:

¡	Formatting matters—If you need a specific structure, like JSON for an API, output
control helps you stick to it.

¡	Consistency across outputs—For long projects. such as multipart documentation or
lots of code snippets, output control helps keep things uniform.

278 Chapter 9  Prompt engineering

¡	Filtering unwanted details—When only certain information is relevant, filters keep
the output clean and relevant.

¡	Ensuring coherence in complex outputs—When you need the model to handle
detailed instructions, output control keeps the flow logical and readable.

Example: Output control in Python development

Let’s say you’re working with Python and need to generate code to process JSON data,
but you want to keep it consistent with PEP 8, use snake_case, and avoid any unneces-
sary imports.

First, set up the output structure and constraints:

	 You are a Python code assistant. Generate a function called process_json_data
that reads JSON data, filters out entries where the status field is inactive, and
returns the result in dictionary format. Follow PEP 8, use snake_case for variable
names, and avoid extra imports.

Use a prompt for function generation:

	 Write a function process_json_data that filters out entries with inactive status
from provided JSON data and returns a dictionary of the results:

Here is the model’s response:

	 import json
def process_json_data(json_data):
 		 active_entries = {key: value for key, value in json_data.items()
if value.get('status') == 'active'}
return active_entries

This approach ensures the output is concise, clean, and adheres to PEP 8. With output
control, we get exactly what we asked for: specific formatting, focused content, and
even limited imports.

Why use output control?
Here are some of the reasons why you might need output control in your prompts:

¡	Enhanced readability—Clear, structured responses are easier to follow, which is
perfect for documentation or step-by-step guides.

¡	Consistency across outputs—Especially useful for long projects, output control
helps you maintain a standard look and feel.

¡	Improved focus—Filtering out extraneous info keeps responses focused and
relevant.

¡	Better workflow integration—Structured outputs are easier to plug into workflows
or formatted documents.

Output control empowers Python developers to create model-generated outputs that
meet specific standards, thus reducing manual adjustment and boosting productivity.
Give it a try next time you need precise, polished output.

	 279Prompt techniques for programmers

9.5.6	 Wrap up

In this chapter, we examined five ways to get better results from AI models. Chain of
thought breaks big problems into smaller steps, just the way people think through
problems. Recursive prompting uses a step-by-step process to make answers better over
time. Context manipulation helps set up the right background info to get more accu-
rate answers. Instruction refinement focuses on writing clear directions. Output con-
trol helps shape how the AI presents its answers.

These methods work together to help developers get the best results from AI. We
used real examples and code to show how these ideas work in practice. Feel free to
implement one or more of these techniques the next time you open a chat window.

Let’s wrap up this chapter by reviewing prompt methods that support everyday soft-
ware development tasks.

9.6	 Prompt techniques for programmers
The prompt engineering advice in previous sections is helpful in software develop-
ment and can be used for a variety of tasks with chat models. Now, let’s look a little
deeper at software-development-focused prompt techniques. We’ll go through some of
these fast and show them in action.

9.6.1	 Examples

¡	Specifying architectural patterns and design principles you want to follow up front:

	 Generate a REST API using the repository pattern and SOLID principles. The API
should handle user authentication with the following requirements: [...]

¡	Using XML tags to force structured output when you need specific segments
parsed by your application:

	 Generate a JavaScript function that validates email addresses.

Provide the response in these sections:

<requirements>...</requirements>
<implementation>...</implementation>
<tests>...</tests>

¡	Use a role-reversal prompt to have the LLM diagnose and explain coding errors
as though guiding a colleague:

	 You’re a senior developer explaining this error to a junior. What’s causing it and how
would you fix it?

Error: TypeError: Cannot read property 'map' of undefine

¡	Breaking complex coding tasks down using numbered steps and asking the LLM
to implement one step at a time:

280 Chapter 9  Prompt engineering

	 Let’s build a caching system step by step:

1	 First, show me the cache interface definition

2	 Then implement an in-memory cache

3	 Finally, add cache eviction policies

¡	Using the chain-of-thought prompting by asking the LLM to explain its reason-
ing regarding architectural decisions before writing code:

	 Before implementing the user authentication system, explain your thought pro
cess about choosing between JWT vs session-based auth for our microservices
architecture.

¡	Specifying edge cases and boundary conditions explicitly in your prompt when
generating test cases:

	 Write unit tests for a function that processes age restrictions.

Include tests for: negative values, zero, fractional ages, maximum integer value, and
null/undefined inputs.

¡	For code reviews, creating a specific checklist of what you want the LLM to look for:

	 Review this code for:

1	 Security vulnerabilities

2	 Performance bottlenecks

3	 Error handling

4	 Code duplication

5	 SOLID principles violations

¡	Using few-shot prompting with explicit examples when you want code in a spe-
cific style or pattern:

	 Generate error handling middleware following this pattern: [example 1] [example 2].

Now create similar middleware for logging and authentication.

¡	Specifying performance constraints and requirements upfront when optimizing
code:

	 Optimize this database query to handle 1000 concurrent users with response time
under 100ms. Current code: [...]

¡	For API design, using scenario-based prompting to consider different use cases:

	 Design a REST API for a shopping cart that handles these scenarios:

Guest user adds items

	 281Prompt techniques for programmers

User logs in, merges cart

Checkout process with failed payment

¡	Specifying the target audience and technical level explicitly when generating
documentation:

	 Write API documentation for this endpoint targeting junior developers who are famil-
iar with REST but new to our authentication system, and authentication in general.

¡	Using comparative prompting to understand tradeoffs between different techni-
cal approaches:

	 Compare MongoDB vs PostgreSQL for our user management system, considering:
scalability, query complexity, data consistency requirements, and maintenance
overhead,

¡	Providing both the current code and specific code smells you want to address for
refactoring tasks:

	 Refactor this code to eliminate the following issues: long method, duplicate logic,
and tight coupling. Current code: [...]

¡	Requesting design alternatives and evaluating tradeoffs before applying a spe-
cific pattern:

	 What design patterns could handle dynamic pricing calculations? Explain tradeoffs
between Strategy, Template, and Chain of Responsibility before implementing the
best choice.

¡	Using “anti-pattern” prompting to understand what not to do in implementations:

	 What are the common anti-patterns when implementing caching in a microservices
architecture, and how should we avoid them in this code: [...]

¡	For security-related code, explicitly requesting OWASP compliance and security
best practices:

	 Generate a user input validation middleware that follows OWASP security guidelines
and prevents XSS, SQL injection, and CSRF attacks.

¡	Asking for time and space complexity analysis alongside the implementation
when generating complex algorithms:

	 Implement a solution for finding duplicate files in a directory tree. Include Big O
analysis for time and space complexity, and explain any tradeoffs made.

282 Chapter 9  Prompt engineering

¡	Using component-first prompting for frontend development to ensure main-
tainable architecture:

	 Before building the dashboard, show me the component hierarchy and data flow dia-
gram. Then implement each component starting from leaf nodes.

¡	For database schema design, providing business rules and constraints in a struc-
tured format:

	 Design a database schema for an e-learning platform where:

1	 Users can enroll in multiple courses

2	 Each course has multiple modules

3	 Progress is tracked per module

¡	Specifying the exact error scenarios and recovery strategies when implementing
error handling:

	 Implement retry logic for this API client with:

1	 Maximum 3 retries

2	 Exponential backoff

3	 Circuit breaker pattern for persistent failures

¡	Using state-transition prompting for implementing complex workflows:

	 Create a state machine for order processing that handles:

pending → paid → processing → shipped → delivered,

with error states for each transition.

¡	In case of performance optimization, providing specific metrics and profiling
data:

	 This API endpoint is taking 2s to respond. Here’ s the flame graph and DB query
execution plan. Suggest and implement optimizations to get response time under
200ms.

¡	Identifying environment-specific requirements clearly when generating config-
uration files:

	 Generate Docker compose files for development, staging, and production environ-
ments. Dev should have hot-reload, staging should have monitoring, and production
should have high availability.

¡	For logging implementations, specifying the exact data points needed for
observability:

	 283Prompt techniques for programmers

	 Implement structured logging that captures: timestamp, service name, trace ID, user
ID, operation name, duration, and error details in JSON format.

¡	Using scenario-based testing prompts to generate comprehensive test suites:

	 Generate integration tests for the payment processing module covering: successful pay-
ments, declined cards, network timeouts, partial refunds, and chargeback scenarios.

¡	Specifying backward compatibility requirements clearly for API versioning:

	 Show how to implement API versioning that:

1	 Maintains support for v1

2	 Introduces breaking changes in v2

3	 Provides migration documentation for clients

¡	Using attack-scenario prompting when implementing authentication:

	 Implement JWT authentication that prevents: token replay attacks, timing attacks,
brute force attempts, and token theft via XSS.

¡	In caching strategies implementation, explicitly specifying cache invalidation
rules:

	 Implement cache management for product data with these rules:

1	 Invalidate after price changes

2	 TTL of 1 hour

3	 Bulk invalidation during sales events

¡	Specifying type hints and docstring format preferences to get more maintainable
code when generating Python classes:

	 Create a User class with type hints using Python 3.10+ features. Include Google-style
docstrings and handle these attributes: username (str), login_attempts (int),
last_login (datetime).

¡	Using maintenance-focused prompting for generating sustainable code:

	 Implement this feature assuming it will be maintained by a different team in 6
months. Include: clear naming, comprehensive comments, logging, monitoring, and
documentation.

In this chapter, you’ve learned about powerful tools that can improve your interactions
with AI coding assistants. By mastering prompt engineering basics and using strategies
such as chain-of-thought reasoning, recursive refinement, and output control, you can
enhance the quality of AI-generated code.

284 Chapter 9  Prompt engineering

Effective prompting is a skill that grows with practice. Start using these techniques
in your workflow, watch the results, and develop your own style with AI tools. Spending
time on better prompts will lead to more accurate code, fewer revisions, and a more
productive development experience.

Summary

¡	Proficiency in engineering fundamentals plays a pivotal role in engaging produc-
tively with LLMs and LLM-based programming tools.

¡	A solid grasp of different prompt types, such as zero-shot, few-shot, structured,
and constrained prompts, is key to using each effectively for optimal results.

¡	Advanced techniques such as chain-of-thought and recursive prompting can be
used to break down complex problems and refine solutions iteratively.

¡	By manipulating context and honing instructional input, users can enhance the
accuracy and relevance of LLM outputs.

¡	Output format and structure can be effectively managed through deliberate
prompt engineering strategies.

¡	Specialized programming prompts that focus on code architecture, testing, secu-
rity, and documentation can be used to improve development workflows.

¡	Iterative approaches to prompt engineering see it as a refinement process rather
than a one-shot solution.

¡	Multiple prompting techniques can be combined as necessary to handle com-
plex technical tasks and requirements.

¡	Clear objectives and structural guidelines need to be maintained in prompts to
ensure AI-generated content meets your specific needs.

¡	Prompt engineering is an evolving skill that strengthens over time through itera-
tive testing and experimentation.

285

10Vibe coding with Cursor

This chapter covers

¡	Using vibe coding to program through
conversation

¡	Cursor’s AI development environment
¡	Building a retro arcade-style game using natural

language prompts
¡	Mastering context management and prompt

engineering
¡	Using AI agents for quick prototyping

You already know modern AI tools are revolutionizing the way software is developed.
The tasks they help with range from simple code completion to conversational pro-
gramming. At one end of the spectrum lies vibe coding. This approach uses natural
language, letting developers guide AI agents with easy prompts instead of complex
specs. Tools such as Cursor and Windsurf lead this trend. They offer immersive envi-
ronments where AI can explore codebases, make changes across files, and run full
workflows. You don’t need to be a programmer but only possess basic tech skills.

286 Chapter 10  Vibe coding with Cursor

For software developers, these tools open doors for quick prototyping. They allow
learning new technologies and creating projects where speed matters more than
detailed documentation. While vibe coding shouldn’t replace structured practices for
important applications, it adds value to traditional workflows. It helps you quickly vali-
date ideas, explore new frameworks, and turn concepts into working prototypes faster
than ever.

Now let’s build an application using vibe-coding methods and Cursor, a popular vibe
coding tool. You’ll come to understand how this approach differs from other forms of
AI-driven assistance we have explored before. You’ll also learn best practices for getting
the most out of Cursor and vibe coding.

10.1	 What is vibe coding?
This term is new enough that folks are still arguing about what it means. I’ll give it my
best shot at a definition. Vibe coding is a programming style where users create soft-
ware by means of simple language prompts. They interact with an LLM for coding, like
we’ve been doing throughout this whole book. The AI generates the code, shifting the
human role from manual coder to guide and tester. Users often accept and use this
code without fully grasping its details. They trust the AI’s suggestions and go with the
flow.

Andrej Karpathy introduced the term in February 2025 (https://x.com/karpathy/
status/1886192184808149383). He explained that it’s “not really coding—I just see
things, say things, run things, and copy-paste things, and it mostly works.” This method
is very conversational and can even use voice commands. Vibe coding aims to simplify
software creation for those without traditional programming skills. In this book, we’ve
done the opposite, planning and understanding every line of generated code and fit-
ting it in with the code we write ourselves. Does that mean vibe coding is bad and should
be avoided?

As defined previously, vibe coding has its place in the programming world. It helps
people who aren’t programmers turn their ideas into a product. Fun things such as
games and 3D demos are created and released on the internet by people who don’t
understand any of the code. And they turned an idea into a product that may have
otherwise never seen the light of day. That’s a positive thing. It also removes some of
the barriers to becoming a developer, and if people get a taste of making stuff and build
some confidence, I’m all for it.

How can a programmer utilize vibe coding? It’s counterintuitive for us to let a
machine do all the work. Most programmers I know love the problem solving, algo-
rithms, and control of coding things by hand. But there are some ways we can use it as
well:

¡	Rapid prototyping—If you want to build something fast for a proof of concept, vibe
coding is your friend. You know what you want and what it should look like. You
can easily spend a weekend letting the LLM generate everything for you and build
something that might otherwise take you weeks. As a developer, you have a distinct

https://x.com/karpathy/status/1886192184808149383
https://x.com/karpathy/status/1886192184808149383

	 287What is Cursor, and why is it different?

advantage. You know what to ask for. You can build something fast and get in front
of stakeholders, then go back and build “the real thing” your way later.

¡	Unfamiliar technologies—If you’re not familiar with a new language or library, you
can vibe code something together and see how it works. If you like what you see,
you can dive in and learn more. I recently tried this with Three.js. I don’t know
much about the library or how to use it. I let Cursor take control and build a pro-
totype of a 3D game. Once I saw what it was capable of, I went back and learned
more about how it works.

¡	Building stuff that doesn’t matter—You would never want to board a plane where
the developers vibe coded the flight control software. Let’s be honest, we aren’t
writing aircraft software every day. That simple internal tool to solve a quick prob-
lem? A fun video game for you and your friends to play? These don’t need exten-
sive tests and documentation. They don’t need to be audited and built with the
most reliable and performant code ever written. You can just let the LLM build it.
You can focus on creativity and experimentation over technical details.

There is an important caveat here. Many programmers and computer scientists are
sounding the alarm about security concerns with vibe-coded software. And the con-
cerns are valid. If you’re working on production software in an enterprise, or software
that deals with sensitive data of any type, do not vibe code this and release it to the
world. Remember an LLM cannot be held accountable, but you can. Use caution.

10.2	 What is Cursor, and why is it different?
We will work with Cursor, an extremely popular tool, often used for vibe coding. This
is because of the immersive and agentic experience this tool provides. There are many
products in this field, including Windsurf, Lovable, Bolt, and others. While they’re
very popular with vibe coders, they aren’t vibe-coding tools. They’re professional-level
tools used for structured and supervised code generation as well. So, what’s the differ-
ence between these and the tools we’ve been working with?

10.2.1	 The interface

One of the primary differences between Cursor and the other tools is the interface.
We’ve used tools that are plugins for Visual Studio Code and other popular IDEs. Cur-
sor (and the other tools I mentioned) have their own interface. They’re forked from
VS code in many cases. This approach helps the user feel more immersed in the prod-
uct. The entire IDE is built around the LLM and its usage.

The interface is only a small piece. Cursor, along with tools such as Windsurf and
Lovable, stands out from traditional AI coding assistants such as GitHub Copilot. It
offers deep integration of AI agents and autonomous workflows.

Cursor’s main feature is agent mode. In this mode, the AI can explore your codebase
on its own. It reads documentation, edits multiple files, and even runs terminal com-
mands. This allows it to handle complex tasks from start to finish. You stay informed for
supervision and approval. For example, if you ask Cursor to “add user authentication,”

288 Chapter 10  Vibe coding with Cursor

it will search your project, plan the changes, implement them, run tests, and summarize
its actions. You gain more than code suggestions. You get an AI codeveloper that can
reason and execute multistep tasks.

10.2.2	 Project-wide context and customization

Unlike traditional IDE plugins that focus on a single file or need manual context, Cur-
sor’s AI analyzes your entire project. It understands structure, dependencies, and cod-
ing patterns. This enables features such as

¡	Multifile code generation and refactoring

¡	Automated error detection and linting across the whole codebase

¡	Context-aware chat, where the AI can answer questions about any part of your
project or documentation

Additionally, Cursor supports project-level customization through files such as .cursor-
rules (https://docs.cursor.com/context/rules), allowing teams to embed their coding
standards and best practices directly into the AI’s behavior. This feature ensures that
generated code consistently follows your team’s conventions, reducing review time and
improving quality.

Cursor provides a type of experience where you (theoretically) can build applica-
tions simply by entering a series of prompts until the application is complete. In my
experience, that’s true, with smaller projects. Once the application gets large enough, it
gets you about 80% of the way there, and you still need to edit things manually to make
them work. Let’s dive into using Cursor and do a little vibe coding.

10.3	 First concept
In many demos, you’ll see someone open an IDE and start coding without any plan.
While I understand that planning isn’t the point, we should do a few things that will
save us some time later down the road. Since we’re developers and know what to ask
for, we can be more specific with requests. We know part of essential prompt engineer-
ing is being specific. So, I’ll outline what I’m looking for. I’m thinking of building a fun
“Frogger” clone in Python.

I want to build

1	 A simple game where you attempt to get from the bottom of the screen to the
top.

2	 You need to cross a river that blocks your path.

3	 The river has logs that travel horizontally, and it is possible to cross the river by
jumping on and off the floating logs.

4	 I want it written in Python, using Pygame.

5	 The environment is a set of lanes where the goal is to get from the bottom of the
screen to the top. The logs should be spaced appropriately so that it is possible to
jump log to log and cross the river.

6	 If you jump in the river (no log), you have to start over.

https://docs.cursor.com/context/rules

	 289The initial prompt to build our game

This is a clear enough outline to get started. Now I can begin giving it some thought to
craft a detailed prompt for Cursor. You can even use Cursor or another LLM to refine
your prompt. We want this initial prompt to be as thorough as possible.

 I have created a simple project named “Pyfrog.” The first step will be to send a
detailed, concrete prompt to get things started. We begin by reviewing the initial
prompt and identifying the key elements we’d like to incorporate for a strong opening.

10.4	 The initial prompt to build our game
In my experience with vibe coding, the more effort you put into your initial prompt,
the better. You will iterate again and make many changes if you don’t get clear from
the start. You need to think deeply and try to cover all the details of what you’re look-
ing for up front. Otherwise, Cursor (or other tools) will take off and build a NodeJS
application or something that you didn’t intend. Here is the prompt I will use to start
our game:

	 You are an expert Python game-dev assistant. Generate full, runnable code for a min-
imalist Frogger-style game in one file that a user can copy-paste and run immediately.

Goal: Cross the river. move a player sprite from the bottom safe bank to the top safe
bank without falling in.

Constraints & Specs

Tech stack: Python 3.10+, Pygame 2.x. No external assets (draw shapes with
pygame.draw).

Window: 800 × 600 px, caption “River Run.” Use a fixed FPS = 60.

Lanes:

Total rows = 6

Row 0 (top) – safe goal bank (grass green)

Rows 1-4 – river lanes containing logs

Row 5 (bottom) – starting bank (grass green)

Logs

Each river lane spawns rectangular logs of random length (80-160 px) and speed
(60-140 px/s).

Direction alternates per lane.

When a log fully exits the screen, respawn it just off-screen on the opposite side
(wrap).

Player

40 × 40 px blue square.

Controls: WASD → move one full row/column at a time (grid hop), snapping to lane
centers.

If player’s rect overlaps any log rect in the current river lane, treat as “standing on
log” and move horizontally with that log’s velocity each frame.

If player is in a river lane and not on a log → fall = reset to start bank (score un-
changed).

290 Chapter 10  Vibe coding with Cursor

Scoring & Win Condition

score += 1 each time the player successfully reaches the top safe bank.

Upon success, display a centered semi-transparent overlay: “Congratulations! Score:
(Press R to play again)” and pause the game until R is pressed.

Code Quality

Follow PEP 8 (snake_case names, ≤79 character lines).

Use dataclass where convenient (e.g., Log).

Include type hints and brief docstrings for all functions/classes.

Organize logic into small functions: handle_input, update_game_state, render, etc.

This prompt should give Cursor an excellent starting point for our application. By
being specific, you can cut down the number of times you need to run prompts. One
thing that’s also different about Cursor and similar tools is that, if you use premium
models, extra prompts will cost you money. You may want to cut down on the number
of prompts. Before we use this prompt, let’s familiarize ourselves with the Cursor basics.

10.5	 Cursor basics
Cursor is a fork of Visual Studio Code, so the interface is largely similar. There are
some key differences, though, that we’ll cover here. You may notice that when you load
up Cursor and turn on the light theme, it looks nearly identical (figure 10.1).

Figure 10.1  Cursor looks nearly identical to Visual Studio Code, especially when you don’t use Cursor’s
special theme.

	 291Cursor basics

You may notice a chat window along the side, which is similar to other interfaces we’ve
used. However, Cursor is more immersive, as you’ll learn soon. I have dropped the
prompt from above directly into a new chat, and it’s given me a response. Figure 10.2
shows what the window looks like now.

Figure 10.2  When you add a prompt into the chat window, it will come up with a plan, some actions, and then do a
diff view on your code, like many tools we’ve worked with.

10.5.1	 Giving feedback

One thing you’ll notice is a feedback mechanism. There are a few changes at the bot-
tom of the result:

¡	Review changes

¡	Thumbs up

¡	Thumbs down

¡	Copy

These are self-explanatory. You can review the proposed changes and give feedback on
the suggestion. Whether you want to give feedback is a personal choice. I give feedback
as much as possible to help them improve the product. The last button copies the
result, usually in Markdown format.

292 Chapter 10  Vibe coding with Cursor

Next, you’ll see the files that were changed. In my case, it was river_run.py. It was
the only file created, so it was the only one modified (figure 10.3).

Figure 10.3  Chat window immediately after a result. You can give feedback, review changes, and see
what file was changed.

10.5.2	 Adding context

This is your key to one of the most powerful things about Cursor—adding context.
You can tell Cursor what context to focus on. The menu is shown in figure 10.4. It
includes

¡	Files and folders—Your application code or imported libraries.

¡	Code—Selected code within your application.

¡	Docs—You can use Cursor to search through documentation.

¡	Git—Use a git repository as context.

¡	Past chats—You can use your past chats with Cursor as context.

¡	Cursor rules—These are a set of rules you can set for Cursor, and they can be used
as context as well.

¡	Terminals—Use your terminal history and outputs as context to answer your
questions.

¡	Linter errors—If you have a linter setup, it can use those errors as context when
problem solving.

¡	Web—You have Cursor search the web for your answer.

This set of options and fine-tuning context is one of the things that makes Cursor great.
When you’re vibe coding an application, you’ll have many conversations with the LLM.
Being able to tune this is crucial.

	 293Cursor basics

Figure 10.4  Different ways to add context in Cursor, offering a range of choices to help you refine your
search or decide what to include in your questions

Why not just include the entire app as context?
You may be wondering why we must add individual files to our context. Why not include
the whole application? Doing so can be a disadvantage. Loading your entire applica-
tion can introduce a lot of noise and irrelevant information. It can dilute the AI’s focus,
leading to slower performance and less accurate suggestions. Large contexts can
also hit token limits on popular models fast, costing you money.

By selectively choosing individual files, you provide a more focused, intentional con-
text that helps the LLM work more efficiently and accurately.

10.5.3	 Selecting a mode

There are three main modes for Cursor: Agent, Ask, and Manual. As shown in figure
10.5, you can switch between them with ease from the chat window. Here are how these
modes work:

¡	Agent—Here you can plan, search, build, and give instructions. Crucial to vibe
coding, you can say something like, “create a database interface for this applica-
tion.” The agent will attempt to complete exactly what it is asked.

¡	Ask—This mode is great for asking questions. You can ask something like, “How
does this API work?” Or, you can use more detailed questions such as, “Is there a
better way to do file handling here?” It’s great for general questions.

¡	Manual—This mode is for asking questions directly to the LLM, without using the
tool. This is great for general-purpose prompts, but I have found little use for them.

294 Chapter 10  Vibe coding with Cursor

Figure 10.5  Switching modes in Cursor is handy and easy, depending on what you need from the tool. I
use the Agent mode the most when vibe coding.

10.5.4	 Model selection

Selecting the right model can be crucial to your success while coding. What’s the best
model? That’s entirely too subjective, and even if I have an answer, by the time you read
this, it will be something different. The big AI companies are competing for the best
models and making great strides. Focusing on code generation seems to be a priority
for all of them. The big takeaway here is you can choose which model to work with for
each prompt (figure 10.6). Keep in mind some of these models may cost you addi-
tional money on top of your current Cursor account. You can also add custom models
if you like.

Figure 10.6  You can select different models to work with. This changes frequently, but Cursor will let
you know when you’ll be charged for using certain models. Generally, the newest models, or thinking
models, come at a premium.

	 295Results from the first prompt

10.5.5	 MAX mode

Here is a special note about this switch. If you run in this mode, it maxes out your con-
text windows, meaning you can have very large conversations and include a bunch of
files in your context. However, this can greatly affect your billing. I’ve talked to folks
who have spent hundreds of dollars this way but had big problems to solve. To be on
the safe side, it’s best not to enable it if you’re cost-conscious. As shown in figure 10.7,
you can enable or disable it at any time and view pricing models.

Figure 10.7  In the chat window, you can enable or disable MAX mode at any time, and view pricing for it.

Now that you have a good idea for how Cursor works, let’s return to our game that we
are vibe coding into existence.

10.6	 Results from the first prompt
Earlier, we created a detailed prompt to start out with for this application. We want
to be clear as possible and try to get an accurate start. Most importantly, we wanted to
dictate the language and framework used for the application. This way, I don’t have to
delete it and start over. There may be cases where you don’t even want to specify that
much and let the tool choose. Let’s look at the output our prompt created:

	 I’ll create a complete Frogger-style game that meets all your specifications. Let me
generate the full, runnable code in one file.

Perfect! I’ve created a complete, runnable Frogger-style game called “River Run” that
meets all your specifications. Here’s what the game includes:

🎮 Game Features

Core Gameplay:

6-row layout: Top/bottom safe banks (green) + 4 river lanes (blue)

Grid-based movement: WASD or arrow keys for precise lane hopping

Log mechanics: Random-sized logs (80-160px) moving at different speeds (60-140
px/s)

296 Chapter 10  Vibe coding with Cursor

Alternating directions: Each river lane moves logs in opposite directions

Collision system: Stand on logs to ride them, fall in water if you miss

Player Mechanics:

40×40px blue square player

Snaps to lane centers when moving

Moves with log velocity when standing on one

Resets to start bank if falling in water

Scoring & Win Condition:

Score increases each time you reach the top bank

Beautiful win overlay with congratulations message

Press ‘R’ to play again and continue scoring

Technical Implementation:

PEP 8 compliant with proper snake_case naming

Type hints throughout for better code quality

Dataclass for Log objects

Modular design with separate functions for input, updates, and rendering

60 FPS smooth gameplay

No external assets - everything drawn with pygame primitives

🚀 How to Run

Simply copy the code from river_run.py and run it:

python river_run.py

Requirements:

Python 3.10+

Pygame 2.x (pip install pygame)

🎯 Controls

WASD or Arrow Keys: Move one grid space at a time

R: Restart after winning

ESC: Quit game

The game is fully self-contained and ready to run immediately. The logs wrap around
the screen continuously, creating an endless challenge as you try to build up your score
by successfully crossing the river multiple times!

One of the things that surprised me is that the tool attempted to build a runnable
game from one prompt. This is what vibe coders look for, something quick to run.
There will be iterations of course, but let’s see how this application runs.

10.7	 Running our game for the first time
Amazingly, this game ran on the first try. We created an actual game with a single
prompt. This is a big complement to the tool, and it underscores the importance of

	 297Running our game for the first time

adding details to your prompts when vibe coding. Figure 10.8 shows the screen that
pops up when you run the application.

Figure 10.8  The
loading screen of our
application. This is
the first screen you
see when it loads up.
It includes directions
for play.

The game looks just like I’d imagined. It’s playable as well, as I soon figured out how to
cross the river to the other side, as shown in figure 10.9, the second screen of our game.

10.9  The second
and final screen of
the game that shows
when you cross the
river successfully

298 Chapter 10  Vibe coding with Cursor

Our game is working great and was created from a single prompt. However, I’d like to
make some changes. Let’s see how that works.

10.8	 Making changes to our game
Something you may have noticed in figure 10.8, the logs seem to overlap. This happens
frequently, and it makes gameplay a little confusing, as the logs merge into each other.
I would like to fix this by examining the code. However, in the spirit of vibe coding, I
will let the tool fix it. I will also use plain English prompts for this, as that is a part of
the methodology here. We can pretend we aren’t programmers; we’re just someone
building a game.

Here is the prompt I will use:

	 The logs move at a good speed and it’s possible to cross the river. Some of the logs
run into each other and overlap. Please fix it so they are spaced apart, move at the
same speed, and don’t overlap.

Let’s see how Cursor responds to this request.

	 I’ll fix the log spacing and movement issues to ensure they don’t overlap and move
at consistent speeds within each lane.

Perfect! I’ve fixed the log spacing and movement issues. Here are the key improve-
ments:

🔧 Fixed Issues:

1	 Consistent Speed per Lane: All logs in the same lane now move at the same
speed, preventing faster logs from catching up to slower ones.

2	 Proper Spacing: Added a LOG_SPACING constant (200px) that ensures logs main-
tain a minimum distance between them.

3	 Smart Respawning: When a log goes off-screen, the new log spawns with proper
spacing relative to existing logs in that lane, maintaining the gap.

4	 Fixed Number of Logs: Each lane now consistently has 3 logs instead of a random
2-3, making the spacing more predictable.

🎯 How It Works:

¡	Initial Spawn: Logs are positioned with calculated intervals across the screen
width plus extra spacing for smooth wrapping

¡	Speed Consistency: One speed is chosen per lane and applied to all logs in that
lane

¡	Respawn Logic: New logs spawn at the correct distance from existing logs to main-
tain the spacing pattern

¡	Direction Handling: Left-moving and right-moving lanes have different spawn logic
to maintain proper spacing

The game should now feel much more polished with logs that move in organized,
evenly-spaced patterns without any overlapping or collision issues between logs in
the same lane!

	 299Making changes to our game

This is great, and exactly what I asked for. One thing to note is that Cursor does in a
diff inside the IDE, much like other tools we have used. You can highlight each change
or click Accept File to accept all changes. Let’s see if we can add some functionality to
this game (figure 10.10).

Figure 10.10  There is a diff interface that comes up in Cursor. You can accept individual changes or
accept the entire file if you like.

Now that I’ve accepted the changes, it’s time to run the application again. As figure
10.11 illustrates, the logs are now evenly spaced.

Figure 10.11  Now we
can see the logs are evenly
spaced and not overlapping.

300 Chapter 10  Vibe coding with Cursor

This is great and exactly what I was looking for. Let’s add some high scores. If you’ve
ever played retro games, you know how important the high-score table used to be.
Whether it was an arcade game that cost 25 cents, or an old console game, adding in
your initials or something inappropriate was a lot of fun. Let’s add that into our game.
I know what I want from my high-score screen. Here are the objectives:

¡	I want a persistent scoreboard that lives on my hard drive, so the scores remain
after I turn off the game.

¡	I don’t want a database to store them.

¡	I want it to contain three characters and the score.

¡	I want it to be shown when the game starts up.

Let’s use a high-quality prompt that will steer Cursor into generating exactly what we’re
looking for here. First, I want to talk about the structure I’m using for the prompt. I’ve
found the following to be very effective in Cursor, Windsurf, and similar tools:

¡	Goal—What we want to achieve from the prompt

¡	Gameplay—Semantics about the gameplay to help understanding

¡	Requirements—Specific instructions for how we want things done

¡	Flow—A plain English explanation of the game flow

This helps the LLM in question understand what we’re looking for and helps steer it
toward the type of output we’re looking for. This is what we’ve been doing extensively
throughout the book, and it applies to vibe coding as well. Getting specific limits the
creativity of the model when you don’t want it to be creative. Here’s the prompt that I
created based on this structure:

	 Goal: Add a persistent high-score system to this game without introducing new files
except the JSON store.

Gameplay:

Each time the player crosses the river, they earn 1 point.

Higher numbers are always better.

When the highest score is reached, provide an input screen so the player can
input their initials.

Initials will be three characters.

Requirements:

Storage – Persist scores in high_scores.json (same folder).

Keep the top 5 scores globally, allowing duplicate initials.

Create the file on first write. On IO error, print a warning and continue gameplay.

Main-menu integration – When the player is on the title screen, draw the high-
score table beneath the “Press SPACE to start” prompt.

Flow:

When the player reaches the top bank

Load existing scores.

	 301Making changes to our game

If current_score qualifies for the top 5:

Pause the game.

Display overlay “NEW HIGH SCORE! Enter initials:” plus a blinking cursor.

Capture exactly three alphanumeric keystrokes, auto-uppercase, allow BACK-
SPACE, commit on ENTER.

Update + save JSON.

Whether or not a record was set, show the refreshed table under the “Congratula-
tions” banner for 3 seconds, then return to the main menu.

As figure 10.12 shows, we’re adding in the main file (river_run.py) as context. Cur-
sor would likely assume this; however, it’s always good to include it. I’m also using the
Agent mode and Claude 4 Sonnet. With this setup, we should be able to instruct Cur-
sor to build exactly what we’re asking for.

Figure 10.12  The exact configuration as we’ve sent using the main file as context, setting the Agent
mode, and selecting Claude 4 Sonnet as our model

This prompt produced some interesting results. Rather than just coming back with
a diff view of the changed code, the answer is more procedural. Cursor is showing
me how it’s tackling this problem, step by step. As figure 10.13 illustrates, it makes a
remark about the file being quite large. This is because, right now, the entire appli-
cation is in a single file. Then, it reads the file and assumes the high-score system has
already been implemented.

Here’s something new: it’s asking me to open the terminal and run the Python com-
mand to run the file. I’m going to skip it for now. The reason for that is, I’ve found that

302 Chapter 10  Vibe coding with Cursor

using Cursor in Windows with WSL in the terminal is often problematic. Either Cursor
will run Windows commands that don’t work in WSL, or it won’t properly read the out-
put of the file and hang. It will say, “Tool call ended before result was received.” This is
true as of this writing and may be fixed in future versions. If you’re running Cursor in
Linux or MacOS, you won’t have this problem.

Figure 10.13  Cursor is reasoning its way to an answer and showing the steps taken. It looks like the large file is
starting to cause some problems.

We’ll skip the terminal (Shift + Enter), then run the command in the terminal our-
selves, and see whether the changes were implemented for us. The first thing I noticed,
in figure 10.14, we have a new startup screen. It asks us to press space to start, and it
shows no high scores yet. This is because we have not yet played the game and built a
high-scores table.

File sizes affect performance
We can see in our project, and as shown in figure 10.13, the search-and-replace tool
can malfunction or slow down with large files. Suggestions also suffer sometimes
when the files are too large. This likely has something to do with memory manage-
ment, but there’s an easy fix. You can refactor the code and break it into smaller files.
This is good practice when developing software. If you’re unsure how to break up the
files, you can ask Cursor to do it for you—for example, use “Please refactor this code
and break it into individual files for clarity and organization.”

	 303Making changes to our game

Figure 10.14 
The gameplay
of the game
is changed
based on our
specification.
We now see a
menu screen
that will display
high scores
once achieved.

I open the game and start playing. The gameplay itself has not changed at all. And as
soon as I cross the river for the first time and get a point, I’ve achieved a high score. As
figure 10.15 shows, I can now enter my initials and get added to the scoreboard.

Figure 10.15 
Cursor created
the exact
functionality we
asked for. We
now have a high
score and input
box to enter our
initials.

304 Chapter 10  Vibe coding with Cursor

Now I have entered my initials in and continue playing the game. I can now see the
JSON file that was created by the application, where the scoreboard is held. Figure
10.16 shows the JSON structure. This JSON structure ensures we don’t need to use a
database, and we can do interesting things with JSON if we decide to in the future.

Figure 10.16  The JSON
structure the game has
generated. It is a good
lightweight storage method
and a data structure we can
use later if we want.

One thing I noticed is, after entering a score, it’s immediately saved, and the interface
returns to the main screen (figure 10.17). The only difference is I can see my high score
now. This is exactly what I asked for, but I wasn’t clear enough on the gameplay details.

Figure 10.17  We are
returned to the original
menu screen. However,
now we see our high-
scores table with
populated data

The problem we now have is that the game ends once the player reaches a high score.
This means, of course, that every single person will get a high score of 1 every time they
play. There is no way of getting a higher score than that. But there is an easy fix.

	 305Making changes to our game

Here’s the prompt I’ll use:

	 This works as expected. However, when the player enters the high score, I would like
to continue the game, allowing the player to try to cross river again, incrementing
their score each time they successfully cross the river.

This is another “plain English” type prompt that explains what I’m trying to accom-
plish without having to get too technical. In the spirit of vibe coding in this case, we’re
just asking Cursor to fix the problem, without worrying too much about implementa-
tion. Here is the output summary:

	 I’ll modify the game flow so that after entering a high score, the player continues play-
ing instead of returning to the title screen. This will allow for continuous gameplay
where players can keep accumulating points. Now I need to update the game state
management since we’re no longer using the SHOW_SCORES state in the same way.
Let me also add a way for players to return to the title screen when they want to quit
their current session: Now let me update the UI to show the new quit instruction:
Perfect! Now let me test the updated game to make sure the continuous gameplay
works correctly:

cd /c%3A/Users/jerem/Projects/games/Pyfrog && python river_run.py

Great! I’ve successfully updated your River Run game to implement continuous
gameplay. Here’s what I changed:

Key Changes Made:

1	 Continuous Gameplay: After entering initials for a high score, the game now con-
tinues playing instead of showing the score table and returning to the title screen.

2	 Seamless Score Accumulation: When players cross the river and it’s not a high
score, the game continues without any interruption - no score display overlay.

3	 Added Quit Option: Players can now press Q during gameplay to return to the title
screen when they want to end their current session.

4	 Updated Instructions: Added the new quit instruction to the on-screen help.

New Game Flow:

Player crosses river → Score increments → Player resets to starting position

If it’s a high score → Initials input screen → Continue playing after entering initials

If it’s not a high score → Just continue playing seamlessly

Press Q anytime → Return to title screen to see high scores or start fresh

This creates a much more engaging experience where players can build up impres-
sive scores in a single session, with high score entry happening only when they beat
their previous bests, but gameplay continuing uninterrupted afterward.

The high score system still works exactly as specified - it saves to high_scores
.json, keeps the top 5 scores, handles IO errors gracefully, and shows the high
score table on the title screen.

306 Chapter 10  Vibe coding with Cursor

Judging by the output, it seems like Cursor understands what I meant. It not only
makes changes to the code but explains the process it went through. Now I run the
game, and it works exactly as expected. As shown in figure 10.18, the high-score screen
comes up and allows me to enter my initials, then continue the game. This is exactly
what I asked for.

Figure 10.18  The game now allows you to enter your initials and continue game play and accumulate
higher scores, which was not possible before.

When I start the game again, the scores persist from the JSON file, and I am shown top
scores in the game. It isn’t perfect yet, but we’ve seen how we can vibe code a working
game quickly and easily. If you are specific and implement good prompt engineering,
you can build a lot of impressive things with the vibe-coding approach.

Vibe coding with tools such as Cursor shows how AI can be a creative partner and a
technical executor in software development. These tools mix natural language commu-
nication with strong agent capabilities, allowing for quick changes from ideas to work-
ing apps, as seen in our complete game made through chat prompts.

While these tools are favorites of the vibe-coding community, they’re not limited to
vibe-coding alone. As a professional developer, you can effectively use them in the same
ways we’ve used other tools to this point. You can also vibe code with GitHub Copilot,
Tabnine, and Blackbox AI as well.

Your success will hinge on when to embrace vibe coding’s fluid, experimental nature
and when to use more structured development practices. AI-powered development

	 307Summary

tools are evolving. As we already know, they don’t replace traditional programming
skills but enhance them. This enables you to focus on creativity, problem-solving, and
user experience while AI manages the mechanical parts of code generation.

The future of development isn’t about choosing between human skills and AI help—
it’s about mastering the synergy between them.

Summary

¡	Vibe coding allows fast prototyping and experimentation through natural lan-
guage with AI agents. It’s great for proof-of-concepts, learning new tech, and cre-
ative projects where speed is key.

¡	Cursor’s Agent mode offers autonomous development features. It can explore
full codebases, make multifile changes, run tests, and handle complex workflow,
all while keeping you informed on the process.

¡	Managing context effectively is key to success with AI tools. Including only rele-
vant files and documentation helps avoid information overload. It also ensures
the AI understands your project’s needs and structure.

¡	High-quality initial prompts cut down iteration cycles. Clear specifications, tech-
nical limits, and desired outcomes help AI agents produce accurate and usable
code right away.

¡	Professional developers can use vibe coding wisely in certain cases. They can stick
with traditional structured methods for production systems, security-sensitive
apps, and enterprise software, where accountability and thorough testing matter.

309

index
Symbols
@app.route()  127
/app/templates folder  191
__exit__() method  125
@pytest.fixture decorator  225

A
AI (artificial intelligence), NLP (natural language

processing)  36
AI-assisted coding  27

common patterns  35
context  36
creating applications  42–43, 46
function speed, testing  47, 49–50
preparing development environment  39
Python project  37

AI test generation workflow  243
AnswerForm class  187
answer handling  182
application development

Flask application structure  89
running application  97–100

applications, setting up development
environment  86

creating Python virtual environment  88

B
backend  70
backend software generation, end session

function  174
base code. See Blackbox AI
Blackbox AI  7, 101, 188, 213, 234, 242

application development with  102
connecting to database  108
generating base code  103, 113, 129, 136, 140
making prompt more specific  241
refactoring Questions class  113, 119, 122–123, 125
refinement  190
using Blackbox AI agent  241

BlackboxAI Code Chat  129
bug detection and automated fixes  5

C
chain-of-thought prompting  60, 265

example  266
feedback integration  268
iterative evaluation  267
key components  265
problem decomposition  267
prompt design  267

ChatGPT  7, 58
building user interfaces with  179–180, 182, 185,

188, 190–208

310 index

design documents created with  61–63
extracting requirements using  82–83
output from  89

CI/CD (Continuous Integration/Continuous
Deployment)  71

clear instructions  250
close_connection method  122
close() method  125
cloud-based solutions  242
code completion  31

generative AI vs.  15
code generation  31, 242. See also Blackbox AI

and autocompletion  5
entry points  126
with Blackbox AI, calling database from

frontend  113
code optimization  5
code production  182
Codex algorithm  28
coding  78

stubbing  79
application  91–94, 97
code example  80

commit() method  125
connection parameter  141
connections, establishing  251
connect_to_database() method  80, 108, 115, 122
connect_to_database(self) function  110
constrained prompts  260
containerization  71
context  28

Cursor  292–295
importance of  249
manipulation  272–273

Copilot Chat  8, 41
Copilot, pros and cons  242
Copilot testing

building functional unit tests  224
crafting effective test prompts  230
creating dialog with Copilot  219
creating fixtures  224
refactoring test connection  226
testing get_question_set function  227
using Copilot for test generation  214

corpus, defined  22
correct_option field  64
create_in_memory_db_from_existing function  222
create (insert) operation  252

create_question_set method  141, 144, 158, 159
create_session method  138, 140, 141, 143
CRUD (Create, Read, Update, Delete) operations,

examples of basic
create (insert)  252
delete  253
read (select)  252
update  252

Cursor  287, 290–295
adding context  292–295
feedback  291
game creation, running game for first time  297
initial prompt to build game  289
interface  287
MAX mode  295
model selection  294
project-wide context and customization  288
selecting mode  293
Vibe coding, concepts  288

cursor() method  125
cursor parameter  141

D
DatabaseConnection class  122, 125, 127, 137, 138,

144
database connection pattern  123
DatabaseManager class  91
databases  71, 181

calling from frontend  113
creating  103
test sessions, creating in  133

DataRequired validator  187
data variable  126, 127
'db_connection' fixture  225
db path  142
debug=True argument  128
DEFAULT keyword  159
delete operation  253
design

creating prompts  59
extracting requirements from  81–86
software design document  63–68

design and discovery, problem domain,
identifying  58

design and discovery phase, user stories  72–76
analyzing output  75
defining roles in prompts  73
document  73–75

	 311index

document in detail  75
design documents, created with ChatGPT  61–63
design phase  57

digging deeper  68–72
design process, measuring effect on  60
development environment, setting up  39, 86, 103

creating Python virtual environment  88
diff tool  154
documentation generation  5

E
editor window  41
educational value  271
end session function  174
entry page  201
entry points  126
error handling, best practices for  253
examples, providing  250
expected outcome  182

F
feedback, Cursor  291
fetch_data() method  80, 127
few-shot prompting  60, 258
FIM (fill-in-the-middle)  29, 36
fixtures, defined  224
Flask application  127

output from ChatGPT  89
structure  89

Flask-WTF, defined  188
flexibility, defined  271
Free Air (Lewis)  37
free plan  242
frontend  71, 181
functionality requirements  181
functional unit tests  224
function speed, testing  47

counting frequency of each unique word  49
displaying top N most frequent words in bar

chart  50
putting it all together  50
tokenizing text into individual words  49

G
game development, making changes to game  298–307
Gemini

code review and analysing  20–21

gathering requirements from  83–85
ideation and planning  18
integrated and standalone developer tools  6–7
results  185–188

generative AI  3
AI as ally rather than threat  24–25
benefits of  4–6
building effective tests with, unittest or pytest  213
choosing tools  22–24
code completion vs.  15
developer tools landscape  6–8
how it works  8–10
importance of  17
inaccuracies of  12–15
LLMs (large language models)  10–12
testing

Blackbox AI  234
building functional unit tests  224
crafting effective test prompts  230
creating dialog with Copilot  219
creating fixtures  224
making prompt more specific  241
refactoring test connection  226
testing get_question_set function  227
tools for Python testing  212
using Blackbox AI agent  241
using Copilot for test generation  214
using Tabnine for test generation  230

testing with  210–211
tools, application development with  102
types of  16
using  25
writing unit tests with  213

get_all_questions method  130, 230
get_question_set() method  140, 141, 229
get_questions function  190
GitHub Copilot  6, 11, 28–35, 213, 242

how it works  28–30
interacting with  31–35

Google Gemini  7
GPT-4 Model  242

H
hosting/deployment  71
HTML (Hypertext Markup Language), drafting based

on wireframes  203–207
HTTP GET request  267, 268

312 index

I
IDE (integrated development environment)  6
incremental improvement  271
index() function  126, 127
index.html file  192, 193
index page

creating  161
modifying  115

initial prompt  270
in-memory testing benefits  223
instruction refinement  274

advantages of  276
how it works  274
when to use  274

instructions, clear  250
integrated developer tools  6

Blackbox AI  7
GitHub Copilot  6
Tabnine  7

iterative process  270
iterative prompts  261–263

L
language support  242
Lewis, Sinclair  37
libraries, required  251
LLMs (large language models)  5, 10–12, 46, 245

databases vs.  13
potential of  15

LOG_SPACING constant  298
lowercase text  46
LSTMs (Long Term–Short Memory Networks)  10

M
MAX mode, Cursor  295
Mermaid flowchart, asking ChatGPT for  196
misinterpreting context  14
Mock  232
mock data creation  6
MVP (minimum viable product)  120

N
navigation  182
NLP (natural language processing)  35, 36, 196, 242,

258

O
open-ended prompts  259
options field  64
output control  277–278

P
pandas library  272, 273
persona prompt  60
POST command  164
problem domain, identifying  58
process_data function  273
prompt engineering  244–249

advanced prompt types  265
anatomy of prompts  249–254
chain-of-thought prompting  265–268
context manipulation  272–273
crafting prompts  254–257
for requirements extraction  81
fundamental prompt types  257–264
importance of  248
instruction refinement  274, 276
output control  277–278
principles of  255–257
recursive prompting  269–271
techniques for programmers  279–284

prompts
creating  59
defining roles in  73
making more specific  241

punctuation, removing  46
pytest  213, 240
pytest.fixture decorator  240
pytest test  232
Python

creating virtual environment  88
output control in development  278
project  37
testing  212–213

Q
quality control  271
query variable  112
question_id field  64, 134, 190
question management  181
question page  201
Questions class  115, 122, 123, 125, 126, 230, 237, 238,

240

	 313index

questions_correct field  137
question set method, refactoring  171
question_sets table  140, 141, 146, 152, 154
questions.fetch_data  126
questions_incorrect field  137
questions.py  94, 140
questions table  114
question_text field  64
quiz.html file  191, 192
quiz interface  181

R
read() function  43
read (select) operation  252
recursive input  270
recursive prompting  269–271
refactoring code  5
refactoring Questions class  119

database connection pattern  123
human intervention required  122
refactoring AI-generated code  125

refactoring session creation  169
refinement  270
render_template function  116, 127
requests library  267
requirements, extracting from design  81–86, 92

gathering from Gemini  83
multiple AI tools  86
using ChatGPT  82–83
verifying AI-generated requirements  85

response.set_cookie method  170
results.html file  192
results page  202
river_run.py file  301
RNNs (Recurrent Neural Networks)  10
role-based prompting  59, 180

S
security, best practices for  253
self.connection attribute  125
self.cursor  144
Session class  138, 139
session creation, refactoring  169
session_id  137, 146
Session object  167
session, persisting  166
session_set_id  157

session.sid object  167
set data structure  130
SHOW_SCORES state  305
side bar, defined  41
single model  243
SOC-2 Compliant  242
software backend, generating with Tabnine  149

creating sessions and bugs  150–161
software design document  63–68

development plan  67–68
future considerations  65
grading component  65
question pool database  64
question selector  64
system overview  64
technical stack  66
user interface  65

specificity in refinement  271
sqlite3.connect() function  125
sqlite_sequence  223
standalone tools  6–8
store_answer function  190
structured prompts  263
stubbing  79

application  91–94, 97
code example  80

stub generation  92
stubs  92

T
Tabnine  7, 213, 242

creating index page  161
generating software backend with  149–161, 166
refactoring question set method  171
refactoring session creation  169
using for test generation  230

templates, creating  191–193
terminal window  41
test case generation  6
test_connection method  226
test_get_question() function  224
test_get_question_set function  228
testing  71

generative AI
building functional unit tests  224
crafting effective test prompts  230
creating dialog with Copilot  219

314 index

creating fixtures  224
refactoring test connection  226
testing get_question_set function  227
using Copilot for test generation  214
using Tabnine for test generation  230

generative AI for
Blackbox AI  234
making prompt more specific  241
reasons for using  211
using Blackbox AI agent  241

tools for  242
tools for Python testing  212–213
with generative AI  210

test sessions, creating in database  133
text classification  37
text files, reading  43
tokenization  36, 38
tokenizing text  49
training data  243
training phase problems  14
Transformers  10, 11
translation, explained  32

U
UI (User Interface)  84
UI/UX (user interface / user experience)  200
unit tests  212, 232, 237

writing with generative AI  213
update operation  252
user interfaces  179

building with ChatGPT
Blackbox AI results  188
crafting effective UI prompts  182
creating templates  191–193
refinement  190
results  182
strategy from AI tools  180

describing flow of application  194–208
asking ChatGPT for Mermaid flowchart based on

description  196
creating document based on chart  197
creating overall design  198–201
drafting HTML based on wireframes  203–207
entry page  201
final UI for application  207

question page  201
results page  202

with ChatGPT, Gemini results  185
users table  112, 114
user stories  72–76, 92

analyzing output  75
creation  92
defining roles in prompts  73
document  73–75

V
version control  71
vibe coding  285–287

Cursor  287, 290–295
adding context  292–295
feedback  291
interface  287
MAX mode  295
model selection  294
project-wide context and customization  288
selecting mode  293

game development, making changes to game 
298–307

initial prompt to build game  289
results from first prompt  295
running game for first time  297

Vibe coding, concepts  288

W
with statement  127
word

co-occurrence  37
frequency  37
types  37

workflow with AI assistance  17–22
code generation and assistance  20
code review and analysis  20–21
documentation and content generation  22
ideation and planning  18
testing and debugging  22

WTForms library  188

Z
zero-shot prompting  257

How Generative AI Tools Create Code

You write prompt

AI assistant

Pattern matching

Response creation

Generated code

Training data

Source code Documentation

Learned from1. Request Learned from

6. Feedback

2. Process

3. Generate

4. Deliver

You verify output5. Review

ISBN-13: 978-1-63343-727-2

T
aking a systematic approach to coding with Al will de-
liver the clarity, consistency, and scalability you need for
production-grade applications. With practice, you can

use AI tools to break down complex problems, generate main-
tainable code, enhance your models, and streamline debug-
ging, testing, and collaboration. As you learn to work with
AI’s strengths—and recognize its limitations—you’ll build
more reliable software and fi nd that the quality of your gener-
ated code improves signifi cantly.

Coding with AI shows you how to gain massive benefi ts from
a powerful array of AI-driven development tools and tech-
niques. And it shares the insights and methods you need to
use them eff ectively in professional projects. Following realis-
tic examples, you’ll learn AI coding for database integration,
designing a UI, and establishing an automated testing suite.
You’ll even vibe code a game—but only after you’ve built a
rock-solid foundation.

What’s Inside
● Incorporate AI into your development workfl ow
● Create pro-quality documentation and tests
● Debug and refactor software effi ciently
● Create and organize reusable prompts

For professional software developers. Examples in Python.

Jeremy C. Morgan has two decades of experience as an engineer
building software for everything from Fortune 100 companies
to tiny startups.

SOFTWARE DEVELOPMENT

M A N N I N G

“Delivers exactly what
working developers need:
practical techniques that

 actually work.”
—Scott Hanselman, Microsoft

“You’ll be writing prompt-
engineering poetry.”—Lars Klint, Atlassian

“Blends years of software
experience with hands-on

knowledge of top AI coding
techniques. Essential.”—Steve Buchanan, Jamf

“Detailed use of AI in
real-world applications.

 A great job!”—Santosh Yadav, Celonis

Jeremy C. Morgan

For print book owners, all digital formats are free:
https://www.manning.com/freebook

Coding with AI

	Coding with AI
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1
	1 Introducing generative AI
	1.1	Generative AI for coders
	1.1.1	Code generation and autocompletion
	1.1.2	Bug detection and automated fixes
	1.1.3	Documentation generation
	1.1.4	Code refactoring and optimization
	1.1.5	Test case generation and mock data creation

	1.2	Developer tools landscape
	1.2.1	Integrated developer tools
	1.2.2	Standalone tools

	1.3	How does generative AI work?
	1.4	What is an LLM, and why should I care?
	1.5	Why do these tools sometimes get it wrong?
	1.5.1	How LLMs differ from databases
	1.5.2	Training phase problems
	1.5.3	Misinterpreting context

	1.6	The potential of LLMs
	1.7	Generative AI vs. code completion
	1.7.1	Other types of generative AI
	1.7.2	Why coders care about generative AI

	1.8	Project workflow with AI assistance
	1.8.1	Ideation and planning
	1.8.2	Code generation and assistance
	1.8.3	Code review and analysis
	1.8.4	Testing and debugging
	1.8.5	Documentation and content generation

	1.9	Choosing the right generative AI tools
	1.9.1	Data quality and availability
	1.9.2	Integration with development workflows
	1.9.3	Quality assurance
	1.9.4	Keeping up with evolving tools
	1.9.5	Shift in focus

	1.10	Don’t fear the rise of AI
	1.11	Go forth and code!

	2 First steps with AI-assisted coding
	2.1	What is GitHub Copilot?
	2.1.1	How GitHub Copilot works
	2.1.2	Interacting with GitHub Copilot

	2.2	Common patterns
	2.3	Context is everything
	2.4	What is NLP?
	2.5	A simple Python project
	2.5.1	Preparing your development environment
	2.5.2	Creating the application
	2.5.3	Side quest: Testing the function speed

	Part 2
	3 Design and discovery
	3.1	Getting to know ChatGPT
	3.2	The problem
	3.3	Creating the right prompt
	3.4	Measuring the effect on the design process
	3.5	A design document created with ChatGPT
	3.6	Software design document: HAM radio license practice test application
	3.7	Digging deeper
	3.7.1	System overview (section 2)
	3.7.2	Technical stack (section 5)

	3.8	Generating user stories for our project
	3.8.1	Defining roles in prompts
	3.8.2	The output: User stories document
	3.8.3	Analyzing the output
	3.8.4	User stories document in detail

	4 Coding the first version of our application
	4.1	Stubbing: Building the skeleton of your application
	4.1.1	A simple code example

	4.2	Extracting requirements from the design
	4.2.1	Step 1: Extract the requirements using ChatGPT
	4.2.2	Step 2: Gathering requirements from Gemini

	4.3	Setting up our development environment
	4.4	Flask application structure
	4.5	Stubbing out our application
	4.6	Running our application

	5 Using Blackbox AI to generate base code
	5.1	Application development with generative AI tools
	5.2	Setting up the development environment
	5.3	Developing core features
	5.3.1	Creating the database
	5.3.2	Connecting to our database
	5.3.3	Calling our database from the frontend
	5.3.4	Refactoring our Questions class
	5.3.5	Modifying our entry point (App.py)
	5.3.6	Pulling a set of questions
	5.3.7	Creating a test session in the database
	5.3.8	Creating code for the test session
	5.3.9	Generating a question set
	5.3.10	Verifying our test session was created
	5.3.11	Conclusion

	6 Generating a software backend with Tabnine
	6.1	Creating a session and our first bug
	6.2	Creating an index page
	6.2.1	Persisting the session
	6.2.2	Refactoring session creation
	6.2.3	Refactoring our question set method
	6.2.4	Creating an end session function that ends the test

	Part 3
	7 Building user interfaces with ChatGPT
	7.1	Getting our strategy from our AI tools
	7.1.1	ChatGPT Results
	7.1.2	Gemini Results
	7.1.3	Blackbox AI results

	7.2	Creating our templates
	7.3	Describing the flow of our application
	7.3.1	Creating an overall design
	7.3.2	Drafting HTML based on our wireframes
	7.3.3	The final UI for our application

	8 Building effective tests with generative AI
	8.1	Why use generative AI for testing?
	8.2	What are unit tests?
	8.3	The tools we’ll use for Python testing
	8.3.1	Github Copilot
	8.3.2	Tabnine
	8.3.3	Blackbox AI

	8.4	Writing unit tests with generative AI
	8.4.1	unittest or pytest?
	8.4.2	Using Copilot for test generation
	8.4.3	Using Tabnine for test generation
	8.4.4	Applying Blackbox AI for test generation
	8.4.5	Which tool should you use for testing?

	9 Prompt engineering
	9.1	Understanding prompt engineering
	9.1.1	Why prompt engineering matters

	9.2	Understanding the anatomy of a prompt
	9.3	Crafting the ultimate prompt
	9.3.1	Prompt engineering principles

	9.4	Fundamental prompt types
	9.4.1	Zero-shot prompting
	9.4.2	Few-shot prompting
	9.4.3	Open-ended prompts
	9.4.4	Constrained prompts
	9.4.5	Using iterative prompts
	9.4.6	Structured prompts

	9.5	Advanced prompt types
	9.5.1	Chain-of-thought prompting
	9.5.2	Recursive prompting
	9.5.3	Context manipulation
	9.5.4	Instruction refinement
	9.5.5	Output control
	9.5.6	Wrap up

	9.6	Prompt techniques for programmers
	9.6.1	Examples

	10 Vibe coding with Cursor
	10.1	What is vibe coding?
	10.2	What is Cursor, and why is it different?
	10.2.1	The interface
	10.2.2	Project-wide context and customization

	10.3	First concept
	10.4	The initial prompt to build our game
	10.5	Cursor basics
	10.5.1	Giving feedback
	10.5.2	Adding context
	10.5.3	Selecting a mode
	10.5.4	Model selection
	10.5.5	MAX mode

	10.6	Results from the first prompt
	10.7	Running our game for the first time
	10.8	Making changes to our game

	index

