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Preface 

The goal of this book is to provide a detailed presentation of the stability of the 
neural networks and evolving intelligent systems. The neural networks and evolving 
intelligent systems are very interesting investigation fields, since they have many 
applications in the prediction and modeling of blending process, population process, 
brain signals, or eye signals. 

The neural networks and the evolving intelligent systems are different in one 
characteristic; however, they are equal in other characteristic. A neural network 
has the ability to reorganize the model and adapt itself to a changing environment 
where the structure is static and the parameters learning is dynamic, while an 
evolving intelligent system has the ability to reorganize the model and adapt itself 
to a changing environment where both the structure and parameters learning are 
dynamic and are performed simultaneously. Therefore, the neural networks and 
the evolving intelligent systems are equal in that in both the parameters learning 
is dynamic, and they are different in that in one the structure is static and in the 
other the structure is dynamic. 

This book is expected to be used primarily by researchers and secondarily 
by students and in the area of intelligent, control, robotic, energy, biological, 
mechanical, mechatronic, and computing systems. 

The suggested use of the book is to be focused on each kind of intelligent system 
because they are different from each other, Chaps. 1–5 for the stability of the neural 
networks, Chaps. 6–10 for the stability of the evolving intelligent systems. 

Mexico City, Mexico José de Jesús Rubio 
2024 
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Chapter 1 
Stability Analysis of Neural Networks 
and Evolving Intelligent Systems 

1 Introduction 

A neural network has the ability to reorganize the model and adapt itself to a 
changing environment where the structure is static and the parameters learning 
is dynamic, while an evolving intelligent system has the ability to reorganize the 
model and adapt itself to a changing environment where both the structure and 
parameters learning are dynamic and are performed simultaneously. The stable 
neural networks and stable evolving intelligent systems are the models where their 
structure, weights, and parameters remain bounded through the time. The neural 
networks and evolving intelligent systems are applied to many online fields, but 
the stability of the neural networks and evolving intelligent systems is not always 
assured, and it could damage the devices causing accidents. Therefore, it would be 
interesting to assure the stability of the neural networks and evolving intelligent 
systems. 

The stable algorithms utilized in the neural networks and evolving intelligent 
systems must satisfy three conditions to assure their stability in the learning: They 
need to be compact, they need to be effective, and they need to be stable. The neural 
networks and evolving intelligent systems have only one hidden layer to assure their 
compactness. The neural networks and evolving intelligent systems are in discrete 
time, where one analysis based on the Lyapunov method is considered to assure 
the stability for the modeling error; additionally, other analysis as a consequence of 
the Lyapunov method is considered to assure the boundedness of the weights and 
parameters. 

This book contains two parts: Part 1 of Chaps. 1–5 contains the stability analysis 
of neural networks, and part 2 of Chaps. 6–10 contains the stability analysis of 
evolving intelligent systems. In this book, the stability analysis of the neural 
networks and evolving intelligent systems is mainly obtained by the Lyapunov 
method. In this book, the neural networks are applied in the prediction of the 
distribution of loads in a warehouse, in the modeling of the wind turbine behavior, 
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in the modeling of the crude oil blending process, and in the modeling of the beetle 
population process, and the evolving intelligent systems are applied in modeling of 
brain signals, in the modeling of eye signals, in the modeling of nonlinear systems 
with dead-zone input, and in the modeling of the Box Jenkins furnace. 

The detailed description of chapters in this book is as follows: 
In Chap. 1, a backpropagation algorithm is introduced for the learning of a neural 

network. The major contributions of this chapter are as follows: (1) A theorem to 
assure the uniform stability of the general discrete-time systems is proposed, (2) 
it is proven that the backpropagation algorithm with a new time varying rate is 
uniformly stable for online identification, and the identification error converges to 
a small zone bounded by an uncertainty, (3) it is proven that the weights’ error 
is bounded by the initial weights’ error, i.e., the overfitting is not presented in the 
proposed algorithm, (4) the backpropagation is applied to predict the distribution 
of loads that a transelevator receives from a trailer and places in the deposits each 
hour in a warehouse, and the deposits in the warehouse can be reserved in advance 
using the prediction results, (5) the backpropagation algorithm is compared with 
the recursive least square algorithm and the Sugeno fuzzy inference system in the 
problem of the prediction of the distribution of loads in a warehouse, giving that the 
first and the second are stable and the third is unstable, and (6) the backpropagation 
algorithm is compared with the recursive least square algorithm and the Kalman 
filter algorithm in an academic example. This work is also published in [1]. 

In Chap. 2, an analytic neural network model is introduced for the modeling 
of the wind turbine behavior. The proposed hybrid method is the combination of 
the analytic and neural network models. The neural network model is used as a 
compensator to improve the approximation of the analytic model. It is guaranteed 
that the error of the analytic neural network model is smaller than the error of the 
analytic model. Two experiments show the effectiveness of the proposed technique. 
This work is also published in [2]. 

In Chap. 3, an interpolation neural network is introduced for the learning of a 
wind turbine behavior with incomplete data. The proposed hybrid method is the 
combination of an interpolation algorithm and a neural network. The interpolation 
algorithm is applied to estimate the missing data of all the variables; later, the neural 
network is employed to learn the output behavior. The proposed method avoids the 
requirement to know all the system data. Experiments show the effectiveness of the 
proposed technique. This work is also published in [3]. 

In Chap. 4, a method to obtain a stable algorithm is presented for the learning 
of a radial basis function neural network. The method consists of the following 
processes: (1) the radial basis function neural network is linearized, (2) the 
algorithm for the learning of the radial basis function neural network is introduced, 
(3) stability of the mentioned technique is assured, (4) convergence of the suggested 
method is guaranteed, and (5) boundedness of parameters in the focused technique is 
assured. The abovementioned method is applied for the learning of two mechatronic 
processes. This work is also published in [4].
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In Chap. 5, a stable neuro fuzzy inference system is designed from the multilayer 
neural network and fuzzy inference system to satisfy the three conditions for the 
big data learning: (1) It utilizes the numerator of the average defuzzifier instead of 
the average defuzzifier to be compact, (2) it employs Gaussian functions instead 
of sigmoid functions to be effective, and (3) it uses a time varying learning speed 
instead of the constant learning speed to be stable. The suggested technique is 
applied for the modeling of the crude oil blending process and the beetle population 
process. This work is also published in [5]. 

In Chap. 6, an online self-organizing fuzzy modified least square (SOFMLS) 
network is proposed. The network generates a new rule, if the smallest distance 
between the new data and all the existing rules (the winner rule) is more than a 
prespecified radius. The major contributions of this chapter are as follows: (1) A 
new network is proposed. In this network, unidimensional membership functions 
are used, and only two parameters for each rule are employed, thus reducing the 
number of parameters. The network avoids the singularity produced by the widths 
in the antecedent part for online learning. (2) A new pruning algorithm based on the 
density is proposed, where the density is the number of times that each rule is used 
in the algorithm. The rule that has the smallest density (the looser rule) in a selected 
number of iterations is pruned if the value of its density is smaller than a prespecified 
threshold. (3) The stability of the proposed algorithm is proven, and the bound for 
the average of the identification error is found. The condition that led the algorithm 
to avoid the local minimum is found, and it is proven that the parameters error is 
bounded by the initial parameters error. Three simulations give the effectiveness of 
the suggested algorithm. This work is also published in [6]. 

In Chap. 7, the modeling problem of nonlinear systems with dead-zone input is 
considered. To solve this problem, an evolving intelligent system is proposed. The 
uniform stability of the modeling error for the aforementioned system is guaranteed 
by means of a Lyapunov-like analysis. The effectiveness of the proposed technique 
is verified by simulations. This work is also published in [7]. 

In Chap. 8, the modeling problem of brain and eye signals is considered. To 
solve this problem, three important evolving and stable intelligent algorithms are 
applied: the sequential adaptive fuzzy inference system (SAFIS), uniform stable 
backpropagation algorithm (SBP), and online SOFMLS networks. The effectiveness 
of the studied methods is verified by simulations. This work is also published in [8]. 

In Chap. 9, the problem of learning in big data is considered. To solve this 
problem, a new algorithm is proposed as the combination of two important evolving 
and stable intelligent algorithms: the SAFIS and stable gradient descent algorithm 
(SGD). The modified sequential adaptive fuzzy inference system (MSAFIS) is the 
SAFIS with the difference that the SGD is used instead of the Kalman filter for 
updating parameters. The SGD improves the Kalman filter because the first obtains 
a better learning in big data. The effectiveness of the introduced method is verified 
by two experiments. This work is also published in [9].
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In Chap. 10, the error convergence of the SAFIS and the MSAFIS is analyzed. 
SAFIS utilizes the extended Kalman filter, while MSAFIS uses the gradient descent 
technique. First, proposed algorithms are linearized to get their modeling dynamic 
equations. Second, Lyapunov strategy is utilized to ensure the error convergence of 
studied networks. Two examples show the performance of advised algorithms. This 
work is also published in [10]. 
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Chapter 2 
A Uniformly Stable Backpropagation 
Algorithm to Train a Feedforward Neural 
Network 

1 Introduction 

The online neural networks can be used in many fields, including nonlinear adaptive 
control, fault detection, diagnostics, performance analysis of dynamic systems, 
pattern and image recognition, time-series, identification of nonlinear systems, intel-
ligent agents, modeling, robotic, and mechatronic systems. The stability problem of 
neural networks is important for the aforementioned online fields, and the stability 
of the neural networks is not always assured. 

There are some researchers who have worked with the stability of continuous 
time neural networks as are [1–9]. 

In [1], they study the approximation and the learning properties of one class 
of recurrent networks, known as high-order neural networks, and they apply these 
architectures to the identification of dynamic systems. In [2], the stability conditions 
of online identification are derived by Lyapunov-Krasovskii approach, which are 
described by linear matrix inequality. In [3], they present the sufficient conditions 
for the global asymptotic stability for a kind of recurrent neural network. In [4], they 
consider the robust stability of neural networks with multiple delays. The work of 
[5] is concerned with the global robust exponential stability of a class of interval 
Cohen-Grossberg neural networks with both multiple time varying delays and 
continuously distributed delays. In [6], the static neural network model and a local 
field neural network model are theoretically compared in terms of their trajectory 
transformation property, equilibrium correspondence property, nontrivial attractive 
manifold property, global convergence, as well as stability in many different senses. 
In [7], dynamic multilayer neural networks are used for nonlinear system online 
identification, and the passivity approach is applied to access several stability 
properties of the neuro-identifier. In [8], the passivity-based approach is used to 
derive stability conditions for dynamic neural networks with different time scales. In 
[9], the Lyapunov function approach is used to rigorously analyze the convergence 
of weights, with the use of the backpropagation algorithm, toward minima of the 
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error function. All the works are interesting, but all consider the continuous-time 
neural networks, and there are some systems that are better described in discrete 
time, for example, the population systems of some kind of animals [10], or the 
annual expenses in an industry [11], or the interest earned by the loan of a bank [11], 
or the prediction of the distribution of loads received each hour in a warehouse, that 
is way it is important to consider the stability of the discrete-time neural networks. 

There are some researchers who have worked with the stability of discrete-time 
neural networks as are [12–17]. 

In [12], a double dead-zone is used to assure the stability of the identification 
error in the gradient descent algorithm. In [13], they derive a condition for 
robust local stability of the multilayer recurrent neural networks. In [14], an 
input to state stability approach is used to create robust training algorithms for 
discrete-time neural networks. The work of [15] suggests new learning laws for 
Mamdani and Takagi-Sugeno-Kang type fuzzy neural networks based on input-
to-state stability approach. In [16], the input-to-state stability approach is applied 
to access robust training algorithms of discrete-time recurrent neural networks. In 
[17], they modify the backpropagation approach, and they employ a time varying 
rate that is determined from the input-output data and the model structure and stable 
learning algorithms for the premise and the consequence parts of the fuzzy rules 
are proposed. All the works propose new neural network algorithms as in [13], or 
they modify the general backpropagation employing a time varying rate to prove 
the input-to-state stability as in [12, 14–17]; in this chapter it is proven that the 
backpropagation algorithm with a new time varying rate is uniformly stable. 

On the other hand, there is some research related with the warehouses as is [18– 
22]. 

The authors in [18] propose a method for selecting and materializing views, 
which selects and horizontally fragments a view and recomputes the size of 
the stored partitioned view while deciding further views to select. In [19], they 
consider a matrix-based discrete event control approach for a warehouse, and the 
control system is organized in two modules: a dynamic model and a controller. 
In [20], they focus on the technical challenges of designing and implementing an 
effective data warehouse for health care information. In [21], they propose, as an 
extension to the data warehouse model, knowledge warehouse architecture that will 
not only facilitate the capturing and coding of knowledge but also enhance the 
retrieval and sharing of knowledge across the organization. In [22], they propose 
a new constrained evolutionary algorithm for the maintenance-cost view-selection 
problem. All the works are interesting, but none uses the neural networks for the 
prediction of the distribution of loads in a warehouse, and in [21], they only mention 
that it could be made. 

In this chapter, it is proposed a theorem to assure the uniform stability of the 
discrete-time systems, it is proven that the backpropagation algorithm with a new 
time varying rate is uniformly stable for online identification, the identification error 
converges to a small zone bounded by the uncertainty, and the weights’ error is 
bounded by the initial weights’ error; the backpropagation is applied to predict 
the distribution of loads that a transelevator receives from a trailer and places
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in the deposits each hour in a warehouse, the deposits in the warehouse can be 
reserved in advance using the prediction results, the backpropagation algorithm 
is compared with the recursive least square algorithm and with the Sugeno fuzzy 
inference system in the problem of the prediction of the distribution of loads inside 
a warehouse, and the backpropagation algorithm is compared with the recursive 
least square and with the Kalman filter in an academic example. 

This chapter is organized as follows. In Sect. 2, the theorem that proves the 
uniformly stability of the discrete-time systems is presented. In Sect. 3, the general 
backpropagation to train a feedforward neural network with a hidden layer is 
presented. In Sect. 4, the uniform stability of the backpropagation algorithm is 
proven. In Sect. 5, the application of the proposed algorithm is described. In Sect. 6, 
a brief description of the warehouse is presented. In Sect. 7, the backpropagation 
algorithm is compared with the recursive least square algorithm, with the Sugeno 
fuzzy inference system, and with the Kalman filter algorithm in the problem of the 
prediction of the distribution of loads in a warehouse and in an academic example. 
Finally, in Sect. 8, the results and the possible future research are explained. 

2 Preliminaries 

Let us consider the following discrete-time nonlinear system: 

.xk+1 = f [xk, uk] , (2.1) 

where uk ∈ Rm
. is the input vector, xk ∈ Rn

. is the state vector, and uk . and xk . are 
known. f is an unknown nonlinear smooth function f ∈ C∞

.. 

Definition 2.1 The system (2.1) is said to be uniformly stable if ∀e > 0., ∃ δ = δ(e). 

such that 

. llxk1ll < δ ⇒ llxkll < e, ∀k > k1. (2.2) 

If the system has δ = δ(e, k),. then the system (2.1) only is stable. 

Now, a basic stability theorem for discrete-time nonlinear systems is given, it is 
an analogous version of the continuous-time version given by Byrnes et al. [23] and 
of the delayed continuous-time version given by Rubio and Yu [12]. 

Theorem 2.1 Let Lk(x(k)). be a Lyapunov function of the discrete-time nonlinear 
system (2.1), if it satisfies 

.
γ1 (llxkll) ≤ Lk(xk) ≤ γ2 (llxkll) ,

ΔLk(xk) ≤ −γ3 (llxkll) + γ3 (δ) ,
(2.3)
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where δ . is a positive constant, γ1 (·). and γ2 (·). are K∞ . functions, and γ3 (·). is a K 
function; then the system (2.1) is uniformly stable. 

Proof See [24] for the proof. 

3 The Backpropagation Algorithm to Train a Neural 
Network 

Let us consider the following unknown discrete-time nonlinear system: 

.y(k) = f [Xk] , (2.4) 

whereXk = [x1(k) . . . , xi(k), . . . , xN(k)]. T = [y(k − 1), . . . , y(k − n), u (k − 1) , . 

. . . , u (k − m)] T ∈ RN×1(N = n+m). is the input vector, u(k−1) ∈ R. is the input 
of the plant, y(k) ∈ R. is the output of the plant, and f is an unknown nonlinear 
function, f ∈ C∞

.. The output of the neural network with one hidden layer can be 
expressed as [25–27] 

.

 y(k) = VkΦk =
M
 

j=1

Vjkφjk,

Φk =  

φ1k, . . . , φjk, . . . , φMk

 lT
,

φjk = tanh

l

N
 

i=1

Wijkxi(k)

l

,

(2.5) 

where i = 1, . . . , N ., j = 1, . . . ,M ., Xk ∈ RN×1
. is the input vector given by (2.4), 

 y(k) ∈ R. is the output of the neural network, Vk ∈ R1×M
. and Wk ∈ RM×N

. are 
the weights of the output and the hidden layer of the neural network, respectively, 
Wijk ∈ R., xi(k) ∈ R., Φk ∈ RM×1

., φjk ∈ R., Vjk ∈ R., and Fig. 2.1 shows the 
feedforward neural network. 

4 Stability of the Backpropagation Algorithm 

The stability of the parameter learning is needed, because this algorithm works 
online. First, the model is linearized, and later, the stability of the proposed 
algorithm is analyzed.
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Fig. 2.1 Architecture of the neural network 

According to the Stone-Weierstrass theorem [28], the unknown nonlinear func-
tion f of (2.4) is approximated as 

.

y(k) = V∗Φ∗k+ ∈f =
M
 

j=1

Vj∗φ∗jk+ ∈f ,

Φ∗k =  

φ∗1k, . . . , φ∗jk, . . . , φ∗Mk

 lT
,

φ∗jk = tanh

l

N
 

i=1

Wij∗xi(k)

l

,

(2.6) 

where Φ∗k ∈ RM×1
., ∈f = y(k) − V∗Φ∗k ∈ R. is the modeling error, φ∗jk ∈ R., 

Vj∗ ∈ R., Wij∗ ∈ R., Vj∗ ∈ R., and Wij∗ ∈ R. are the optimal parameters that can 
minimize the modeling error ∈f . [1]. 

First, the network model is linearized, and it is used to define the parameters 
updating and to prove the stability of the proposed algorithm. 

In the case of two independent variables, a function has a Taylor series as follows: 

.
f (ω1, ω2) = f (ω10 , ω20) + l

ω1 − ω10
l ∂f (ω1,ω2)

∂ω1

+ l

ω2 − ω20
l ∂f (ω1,ω2)

∂ω2
+ Rf ,

(2.7) 

where Rf ∈ R. is the remainder of the Taylor series. If we let ω1 . and ω2 . correspond 
to Wijk ∈ R. and Vjk ∈ R. and ω10 . and ω20 . correspond to Wij∗ ∈ R. and Vj∗ ∈ R. 

and let us define ~Wijk = Wijk − Wij∗ ∈ R. and ~Vjk = Vjk − Vj∗ ∈ R., then the
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Taylor series is applied to linearize (2.5) as follows [2, 12, 29]: 

.VkΦk = V∗Φ∗k +
M
 

j=1

N
 

i=1

~Wijk

∂VkΦk

∂Wijk

+
M
 

j=1

~Vjk

∂VkΦk

∂Vjk

+ Rf , (2.8) 

where ∂VkΦk

∂Wijk
∈ R.and ∂VkΦk

∂Vjk
∈ R.; please note that VkΦk =

M
 

j=1

Vjkφjk .and V∗Φ∗k =
M
 

j=1

Vj∗φ∗jk .. As all the parameters are scalars, the Taylor series is well applied. 

Considering (2.5) and using the chain rule [2, 12, 29–31]  giv  e

.
∂VkΦk

∂Wjk
= Vjk

∂Φk

∂Wjk
= Vjk

∂ tanh

⎛

⎜

⎝

N
 

i=1

Wijkxi (k)

⎞

⎟

⎠

∂Wijk

= Vjksech2(
N
 

i=1

Wijkxi(k))xi(k) = σijk,

(2.9) 

where σijk = Vjk .sech2(
N
 

i=1

Wijkxi(k))xi(k) ∈ R. because Vjk ∈ R., 

sech2(
N
 

i=1

Wijkxi(k)) ∈ R. and xi(k) ∈ R.. 

.
∂VkΦk

∂Vjk

=
∂

M
 

j=1

Vjkφjk

∂Vjk

= φjk, (2.10) 

where φjk = tanh(
N
 

i=1

Wijkxi(k)) ∈ R.. Substituting ∂VkΦk

∂Wijk
. of (2.9) and ∂VkΦk

∂Vjk
. 

of (2.10)  int  o (2.8)  give  s

.

VkΦk = V∗Φ∗k +
M
 

j=1

N
 

i=1

~Wijkσijk

+
M
 

j=1

~Vjkφjk + Rf .

(2.11)
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Let us define the identification error e(k) ∈ R. as follows: 

.e(k) =  y(k) − y(k), (2.12) 

where y(k). and  y(k). are defined in (2.4) and (2.5), respectively. Substitut-
ing (2.5), (2.6), and (2.11)  int  o (2.12)  give  s

.e (k) =
M
 

j=1

~Vjkφjk +
M
 

j=1

N
 

i=1

~Wijkσijk + μ(k), (2.13) 

where μ(k) = Rf − ∈f .. 
From (2.13), it is obtained that 

.

M
 

j=1

~Vjkφjk +
M
 

j=1

N
 

i=1

~Wijkσijk = e (k) − μ(k). (2.14) 

The proposed backpropagation algorithm uses a new time varying rate as follows: 

.
Vjk+1 = Vjk − αkφjke(k),

Wijk+1 = Wijk − αkσijke(k),
(2.15) 

where the new time varying rate αk . is 

. αk = α0

2

⎛

⎝
1
2 +

M
 

j=1

φ2
jk +

M
 

j=1

N
 

i=1

σ 2
ijk

⎞

⎠

,

where i = 1, . . . , N ., j = 1, . . . , M ., σijk = Vjk .sech2(
N
 

i=1

Wijkxi(k))xi(k) ∈ R. 

is defined in (2.9), φjk = tanh(
N
 

i=1

Wijkxi(k)) ∈ R. is defined in (2.5) and used 

in (2.10), e(k). is defined in (2.12), 0 < α0 ≤ 1 ∈ R.,  so 0 < αk ∈ R., and it is 
assumed that the uncertainty is bounded [1, 2, 12, 15, 29, 32–35], where μ. is the 
upper bound of the uncertainty μ(k)., |μ(k)| < μ.. 

Remark 2.1 Please note that e(k) =  y(k)−y(k) =
M
 

j=1

Vjkφjk−y(k).used in (2.15) 

is well defined because Vjk ., φjk ., and y(k). are known. 

The following theorem gives the stability of the proposed backpropagation 
algorithm.
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Theorem 2.2 The backpropagation algorithm (2.5), (2.12), and (2.15) applied for 
the identification of the nonlinear system (2.4) is uniformly stable, and the upper 
bound of the average identification error e2p(k). satisfies 

.lim sup
T →∞

1

T

T
 

k=2

e2p(k) ≤ α0μ
2, (2.16) 

where e2p(k) = αk

2 e2(k−1)., 0 < α0 ≤ 1 ∈ R., and 0 < αk ∈ R. are defined in (2.15), 
e(k). is defined in (2.12), μ. is the upper bound of the uncertainty μ(k)., |μ(k)| < μ.. 

Proof See [24] for the proof. 

Remark 2.2 There are two conditions to apply this algorithm for nonlinear sys-
tems: the first one is that the nonlinear system may have the form described by 
Eq. (2.4), and the second one is that the uncertainty μ(k).may be bounded. 

Remark 2.3 The value of the parameter μ. is unimportant, because this param-
eter is not used in the algorithm. The bound of μ(k). is needed to guarantee 
the stability of the algorithm, but it is not used in the backpropagation algo-
rithm (2.5), (2.12), (2.15). 

Remark 2.4 The fact that μ(k). is bounded has been used for other authors in some 
earlier studies as are [1, 33, 34], and [35] in continuous-time systems and [2, 12, 15, 
29], and [32] in discrete-time systems. 

The following theorem proves that the weights of the proposed backpropagation 
algorithm are bounded. 

Theorem 2.3 When the average error e2p(k). is bigger than the uncertainty α0μ
2
., 

the weights’ error is bounded by the initial weights’ error as follows: 

.

e2p(k) ≥ α0μ
2

=⇒
M
 

j=1

~V 2
jk+1 +

M
 

j=1

N
 

i=1

~W 2
ijk+1 ≤

M
 

j=1

~V 2
j1 +

M
 

j=1

N
 

i=1

~W 2
ij1,

(2.17) 

where i = 1, . . . , N ., j = 1, . . . , M ., ~Vjk .and ~Wijk .are defined in (2.7), ~Vj1 .and ~Wij1 . 

are the initial weights’ error, e2p(k) = αk

2 e2(k)., Vjk+1 ., Wijk+1 ., 0 < α0 ≤ 1 ∈ R., 
and 0 < αk ∈ R. are defined in (2.15), e(k). is defined in (2.12), μ. is the upper bound 
of the uncertainty μ(k)., |μ(k)| < μ.. 

Proof See [24] for the proof. 

Remark 2.5 From Theorem 2.2 the average identification error e2p(k). of the 
backpropagation algorithm is bounded, and from Theorem 2.3 the weights’ error 
~V 2

jk+1 . and ~W 2
ijk+1 . is bounded, i.e., the proposed backpropagation algorithm to 

train a feedforward neural network is uniformly stable in the presence of unknown 
and bounded uncertainties, and the overfitting mentioned in [14] and [27] is not
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presented. In addition, the identification error converges to a small zone bounded by 
the uncertainty μ.. 

5 The Proposed Algorithm 

The proposed algorithm is as follows: 

(1) Obtain the output of the nonlinear system y(k). with Eq. (2.4), note that the 
nonlinear system may have the structure with Eq. (2.4), and the parameter N is 
selected according to this nonlinear system.

(2) Select the following parameters: V1 . and W1 . are selected as random numbers 
between 0 and 1. M is selected as an entire number, and α0 . is selected with 
positive values smaller than or equal to 1; obtain the output of the neural 
network y(1).with Eq. (2.5). 

(3) For each iteration k, obtain the output of the neural network  y(k). with 
Eq. (2.5), also obtain the identification error e(k). with Eq. (2.12), and update 
the parameters Vjk+1 . and Wijk+1 .with Eq. (2.15). 

(4) Note that the behavior of the algorithm could be improved by changing the 
values of M or α0 .. 

Remark 2.6 The proposed neural network has one hidden layer. Some earlier 
results [1, 28], and [31] mention that there is a result where the feedforward neural 
network with one hidden layer is enough to approximate any nonlinear system. 

6 The Warehouse 

An automatic warehouse has elements used to make easy the work of moving 
loads from one place to another one in an automatic way. The loads are some 
objects inside of boxes that are saved in the warehouse until they are sent to the 
costumers. The deposits are the place where the loads are placed. Figure 2.2 shows 
the automatic warehouse in gray color, the deposits in black color, and the loads in 
brown color. 

A transelevator moves inside the warehouse. This transelevator can be used to 
move some load from one place to another one in the warehouse, for example, from 
the floor to the deposit, from the deposit to the floor, from one deposit to another 
one, or from a trailer to the deposits. Figure 2.3 shows a transelevator inside the 
warehouse in yellow color, and Fig. 2.4 shows the same transelevator moving a load. 

Figure 2.5 shows the trailer with the loads that are saved in the warehouse. The 
transelevator takes the loads from the trailer and places them in the deposits. 

In this chapter, the main prediction problem in the warehouse is the distribution 
of the loads that the transelevator receives from the trailer and places in the deposits
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Fig. 2.2 The automatic warehouse 

Fig. 2.3 The transelevator inside the warehouse 

each hour inside the warehouse, and the deposits in the warehouse can be reserved 
in advance using the prediction results. 

7 Simulations 

In this section, two examples are considered. In the first example, the backpropa-
gation algorithm is applied for the prediction of the distribution of loads inside a 
warehouse, and the proposed algorithm is compared with the recursive least square
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Fig. 2.4 The transelevator with a load 

Fig. 2.5 The trailer with loads for the warehouse 

algorithm given by Goodwin and Sin [36] and used by Angelov and Filev [37] and 
Kasabov and Song [38] and with the Sugeno fuzzy inference system given by Jang 
and Sun [27] and Wang [31]. In the second example, the backpropagation algorithm 
is applied in an academic problem, and the proposed algorithm is compared with 
the recursive least square algorithm given by Goodwin and Sin [36] and used by 
Angelov and Filev [37] and Kasabov and Song [38] and with the Kalman filter 
algorithm given by Haykin [25] and Goodwin and Sin [36] and used by Rubio and 
Yu [2].
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The root mean square error (RMSE) [39] is used, and it is given as follows: 

.RMSE =
l

1

N

N
 

k=1

e2(k)

l
1
2

. (2.18) 

Example 2.1 In this example, the backpropagation is applied for the prediction of 
the distribution of loads that the transelevator receives from the trailer and places in 
the deposits each hour in the warehouse, there are three kinds of loads received by 
the transelevator inside the warehouse, these three kinds of loads are denoted as A, 
B, and C, and they are received in the warehouse each hour; the number of loads 
of kind A received each hour in the warehouse can vary from 4 to 5, the number of 
loads of kind B received each hour in the warehouse can vary from 3 to 4, and the 
number of loads of kind C received each hour in the warehouse can vary from 1 to 3. 
The data of 1800 hours are used for the training, and the data of the least 200 hours 
are used for the testing; the prediction is obtained with 200 hours in advance. Three 
neural networks are used for the training, and the same neural networks are used for 
the testing; B(k). andC(k). are the inputs andA(k+200). is the output for the training 
of the first neural network,A(k). and C(k). are the inputs and B(k+200). is the output 
for the training of the second neural network, and A(k). and B(k). are the inputs 
and C(k + 200). is the output for the training of the third neural network. Similar 
inputs are used for the testing of the three neural networks, and the outputs are not 
used for the testing. In this prediction example, the backpropagation algorithm is 
given as (2.5), (2.12), and (2.15) changing y(k). by y(k + 200). and changing e(k). 

by e(k + 200). [36]. The parameters of the backpropagation algorithm are N = 2., 
M = 5., Vj1 . and Wij1 . are random number between 0 and 1, and α0 = 1..  The  
backpropagation algorithm is compared with the recursive least square algorithm 
given by Goodwin and Sin [36] and used by Angelov and Filev [37] and Kasabov 
and Song [38] with parameters P1 = cI ∈ R2×2

., where c = 1., V1 . is a random 
number between 0 and 1 and is compared with the Sugeno fuzzy inference system 
given by Jang and Sun [27] and Wang [31] with parameters M = 2., m1 ., σ1 ., and 
v1 . are random numbers between 0 and 1. The training results are shown in Fig. 2.6, 
and the testing results are shown in Fig. 2.7. Table 2.1 shows the training and the 
testing RMSE results using (2.18). Figure 2.8 shows that in this example not all the 
algorithms are stable because the Sugeno fuzzy inference system is not stable, and 
it is reported in Table 2.1.
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Fig. 2.6 Training results for Example 1 

Fig. 2.7 Testing results for Example 1
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Table 2.1 Results for 
Example 1 

Methods. Training RMSE. Testing RMSE. 

Recursive least square. 0.0717. 0.0121. 

Backpropagation. 0.0321. 3.2561 × 10−5 . 

Sugeno fuzzy inference. NAN 

Fig. 2.8 Training for the Sugeno fuzzy inference system 

From Table 2.1, it can be seen that the backpropagation algorithm achieves better 
accuracy when compared with the recursive least square because the training RMSE 
and the testing RMSE are smaller for the backpropagation algorithm. From Figs. 2.6 
and 2.7, it can be seen that the backpropagation improves the recursive least square 
because the signal of the first one follows better the signal of the plant than the signal 
of the second one. From Fig. 2.8, the Sugeno fuzzy inference system is unstable for 
this prediction example, that is way it is important to guarantee the stability of the 
algorithms. Thus the backpropagation is good for the prediction problems. 

Figure 2.9 shows the average of the identification error for the modified back-
propagation algorithm. From this figure, it can be observed that the average of 

the identification error lim sup
T →∞

1
T

T
 

k=2

e2p(k). decreases, and it will converge to a value 

smaller than the upper bound of the uncertainty α0μ
2
., as stated in Theorem 2.2. 

The simulation of the weights’ error for Theorem 2.3 cannot be obtained because 
the optimal weights which can minimize the modeling error are unknown [1].
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Fig. 2.9 Average identification error for Example 1 

Example 2.2 Let us consider the nonlinear system given in an earlier study [31]: 

.y(k) = 0.3y(k − 1) + 0.6y(k − 2) + f (u(k − 1)), (2.19) 

with f (u(k−1)) = 0.6 sin(πu(k−1))+0.3 sin(3πu(k−1))+0.1 sin(5πu(k−1))., 
and the input is u(k−1) = sin(8π(k−1)/200).. In this example, the backpropagation 
algorithm given as (2.5), (2.12), and (2.15) is used for the identification of the 
nonlinear plant (2.19). The parameters of the backpropagation algorithm are N = 2., 
M = 3., Vj1 . and Wij1 . are random numbers between 0 and 1, and α0 = 0.25..  The  
backpropagation algorithm is compared with the recursive least square algorithm 
given by Goodwin and Sin [36] and used by Angelov and Filev [37] and Kasabov 
and Song [38] with parameters P1 = cI ∈ R2×2

., where c = 1., V1 . is a random 
number between 0 and 1 and is compared with the Kalman filter algorithm given 
by Goodwin and Sin [36] and Haykin [25] and used by Rubio and Yu [2] with 
parameters P1 = cI ∈ R2×2

., where c = 1., R1 = 0.1., R2 = 1., V1 . is a random 
number between 0 and 1. The training results are shown in Fig. 2.10, the testing 
results are shown in Fig. 2.11, and using (2.18) Table 2.2 shows the training and the 
testing RMSE results. 

From Table 2.2, it can be seen that the backpropagation algorithm achieves better 
accuracy when compared with the recursive least square and the Kalman filter 
because the training RMSE and the testing RMSE are smaller for the backpropa-
gation algorithm. From Figs. 2.10 and 2.11, it can be seen that the backpropagation
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Fig. 2.10 Training results for Example 2 

Fig. 2.11 Testing results for Example 2
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Table 2.2 Results for 
Example 2 

Methods. Training RMSE. Testing RMSE. 

Recursive least square. 0.0714. 0.0183. 

Kalman filter. 0.0520. 0.0283. 

Backpropagation. 0.0413. 0.0132. 

Fig. 2.12 Average identification error for Example 2 

improves the recursive least square and the Kalman filter because the signal of the 
first follows better the signal of the plant than the signal of the second and the third. 
Thus, the backpropagation is good for the identification problems. 

Figure 2.12 shows the average of the identification error for the modified 
backpropagation algorithm. From this figure, it can be observed that the average of 

the identification error lim sup
T →∞

1
T

T
 

k=2

e2p(k). decreases, and it will converge to a value 

smaller than the upper bound of the uncertainty α0μ
2
., as stated in Theorem 2.2. 

The simulation of the weights’ error for Theorem 2.3 cannot be obtained because 
the optimal weights which can minimize the modeling error are unknown [1].
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8 Concluding Remarks 

In this chapter, it was proposed a theorem to assure the uniform stability of discrete-
time systems, it was proven that the backpropagation algorithm with a new time 
varying rate is uniformly stable for online identification, the identification error 
converges to a small zone bounded by the uncertainty, and the weights’ error 
are bounded by their initial weights’ error. The backpropagation algorithm was 
compared with the recursive least square algorithm and with the Sugeno fuzzy 
inference system in the problem of the prediction of the distribution of loads each 
hour inside a warehouse, and the backpropagation algorithm was compared with 
the recursive least square and with the Kalman filter in an academic example. From 
the simulation results, it can be seen that the backpropagation algorithm achieved 
better accuracy when compared with the recursive least square algorithm and with 
the Kalman filter algorithm; in addition, the Sugeno fuzzy inference system was 
unstable. Thus, the backpropagation is good for the prediction and the identification 
problems. As a future work, a stable algorithm for the radial basis function will 
be proposed, a new algorithm for the feedforward neural network that guarantees 
asymptotic stability will be proposed, a method to find the number of neurons in the 
hidden layer online will be proposed, and the proposed algorithms will be applied 
for other real problems. 
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Chapter 3 
Analytic Neural Network Model 
of a Wind Turbine 

1 Introduction 

Researchers are often trying to improve the total power of a wind turbine. The 
dynamic model of a wind turbine plays an important role in some applications as 
the control, classification, pattern recognition, or prediction. 

There is some research about neural networks and fuzzy systems. In [1–7], the 
fuzzy systems are used as the structure of evolving fuzzy systems. In [8–13], the 
neural networks are used as the structure of evolving neural networks. New methods 
for exploring the evolution of social groups are mentioned in [14]. An approach 
to predict from a data stream of real estate sales transactions is presented in [15]. 
Considering the above studies, a multilayer neural network is a good alternative for 
the modeling of the wind turbine behavior. 

There is some research about hybrid systems. In [16], the authors make the first 
attempt to develop a hybrid system by integrated case-based reasoning and artificial 
neural networks as a model for mobile phone company. The development of a 
multiscale hierarchical hybrid model based on finite element analysis and neural 
network computation to link mesoscopic scale and macroscopic is presented in [17] 
to simulate the process of bone remodeling. In [18], as an alternative method to 
analytical modeling approaches, this study uses the advantages of neural networks 
such as no required knowledge of internal system parameters, less computational 
effort, and a compact solution for multivariable problems. In [19], both analytical 
and soft computing approaches are used in predicting the performance of an indirect 
evaporative cooling. A hybrid model of a boiler developed with the application of 
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both analytical modeling and artificial intelligence is described in [20]. Two models 
for estimating essential oil extraction yield from Anise, at high pressure condition, 
were used in [21]: mathematical modeling and artificial neural network modeling. 
Considering the aforementioned researches, a hybrid system with a multilayer 
neural network is a good alternative for the modeling of the wind turbine behavior. 

Commonly, the intelligent algorithm is directly used for the modeling of the wind 
turbine behavior; however, in this chapter, the proposed analytic model provides 
a good approximation. Thus, a neural network is proposed as a compensator to 
improve the approximation obtained by the analytic model. The analytic neural net-
work model is a hybrid system which learns the wind turbine behavior considering 
real data of the inputs, states, and output. 

The chapter is structured as follows. In Sect. 2, the dynamic model of a windward 
wind turbine of three blades with a rotatory tower is mentioned. In Sect. 3,  the  
proposed analytic neural network model is presented for the modeling of the wind 
turbine behavior. In Sect. 4, it is guaranteed that the error of the analytic neural 
network model is smaller than the error of the analytic model. In Sect. 5, the analytic 
model and analytic neural network model are compared for the modeling of two 
trajectories of the wind turbine behavior. Finally, in Sect. 6, the conclusion and 
future research are detailed. 

2 Analytic Model of a Wind Turbine with a Rotatory Tower 

The analytic model is described in this section as the first part of the proposed model. 
The following subsection describes the algorithm proposed by this study used to 
approximate the wind turbine behavior. 

This model is divided into four parts: the first is the mechanic model, the second 
is the aerodynamic model, the third is the electric model, and finally, the fourth is 
the combination of the aforementioned models to obtain the final analytic model. 
The dynamic model of the wind turbine is, first, the equations that represent the 
change between the wind energy and mechanic energy, and second, the equations 
that represent the change between the mechanic energy and electric energy. 

2.1 The Analytic Model 

Define the state variables as x1 = i2 ., x2 = θ2 ., x3 = ·
θ2 ., x4 = i1 ., x5 = θ1 ., x6 = ·

θ1 ., 
the inputs as u1 = F2 ., u2 = V1 ., and the output as y = V2 .. Consequently, the
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dynamic model is given as follows [22, 23]: 

.

·
x1 = − (R2+Re)

L2
x1 + k2

L2
x3

·
x2 = x3·

x3 = − kb2
m2l

2
c2

x2 − bb2
m2l

2
c2

x3 − 2πkb2
3m2l

2
c2

+ cos(x5)
3m2l

2
c2

u1
·
x4 = −R1

L1
x4 − k1

L1
x6 + 1

L1
u2

·
x5 = x6·

x6 = − 3kb1
4.5m2l

2
c2

x5 − 3bb1
4.5m1l

2
c2

x6 + km

4.5m2l
2
c2

x4

y = Rex1

u1 = F2a + F2b + F2c

F2a = 1
2x3

ρACp(λ, β)V 3
ω

F2b = 1
2x3

ρACp(λ, β)V 3
ω

F2c = 1
2x3

ρACp(λ, β)V 3
ω

λ = x3R
Vω

,

(3.1) 

where Cp(λ, β) = c1

(
c2
λi

− c3β − c4

)
e−c5/λi + c6λ., 1

λi
= 1

λ+0.08β − 0.035
β3+1

., θ1 . is 

the angular position of the tower motor in rad, θ2 . is the angular position of a wind 
turbine blade in rad, lc2 . is the length of the wind turbine blade center in m, m1 . is 
the tower mass in kg, m2 . is the blade mass in kg, g is the acceleration gravity in 
m/s2 ., l1 . is the constant length of the tower in m, lc1 . is the length of the tower center 
in m, τ2a . is the torque of the generator moved by the blade in kgm 2 .rad/s 2 ., τ1a . is 
the torque of the motor used to move the tower in kgm 2 .rad/s 2 ., kb1 . and kb2 . are the 
spring effect presented when the blade is near to stop in kgm 2 ./s 2 ., bb1 . and bb2 . are 
the shock absorber in kgm 2 .rad/s, F2a ., F2b ., and F2c . are the force of the air received 
by the three blades. Equation (3.1) describes the assumption that the air goes in one 
direction, if θ1 = 0., then the maximum air intake moves the blades of the wind 
turbine, but if the tower turns to the left or to the right and θ1 . changes, then the wind 
turbine turns, and the air intake decreases; km . is a motor magnetic flux constant of 
the tower in Wb, i1 . is the motor armature current of the tower in A, ρ . is the air 
density in Kg/m 3 ., A = πR2

. is the area swept by the rotor blades in m 2 .with radius 
R in m, Vω . is the wind speed in m/s, Cp(λ, β). is the performance coefficient of 
the wind turbine, whose value is a function of the tip speed ratio λ., c1 = 0.5176., 
c2 = 116., c3 = 0.4., c4 = 5., c5 = 21., and c6 = 0.0068. are coefficients, β . is 
the blade pitch angle in rad, k1 . is the motor back emf constant in Vs/rad, k2 . is the 
generator back emf constant in Vs/rad, R1 . is the motor armature resistance in Ω ., R2 . 

is the generator armature resistance in Ω ., L1 . is the motor armature inductance in H, 
L2 . is the generator armature inductance in H, V1 . is the motor armature voltage in V, 
V2 . is the generator armature voltage in V, and i2 . is the generator armature current in 
A. For the generator of this chapter V2 = Rei2 ..
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3 Analytic Neural Network Model of a Wind Turbine 
with a Rotatory Tower 

The neural network is described in this section as the second part of the proposed 
model. The following subsection describes the algorithm proposed by this study 
used for the modeling of a wind turbine behavior. 

Normally, the intelligent algorithm is directly used for the modeling of the wind 
turbine behavior; however, in this chapter, the analytic model of (3.1) yields a 
good approximation. The neural network of this chapter is used to improve the 
approximation obtained by the analytic model. The analytic neural network model 
learns the behavior considering real data of the inputs, states, and output, and the 
eight inputs for the intelligent algorithm are denoted as z1(k) = u1r ., z2(k) = u2r ., 
z3(k) = x1r ., z4(k) = x2r ., z5(k) = x3r ., z6(k) = x4r ., z7(k) = x5r ., and z8(k) = x6r .. 
The output of the analytic neural network model is yr(k) = yr ., where r denotes the 
real data.

The following subsection describes the algorithm proposed by this study used for 
the modeling of the wind turbine behavior. 

4 Analytic Neural Network Model 

The stable backpropagation algorithm is developed with a new time varying rate to 
guarantee its uniformly stability for online identification and its identification error 
converges to a small zone bounded by the uncertainty. The weights’ error is bounded 
by the initial weights’ error, i.e., overfitting and local optimum are eliminated in the 
mentioned algorithm [12, 24]. 

Stable backpropagation algorithm is as follows [12, 24]: 

(1) Obtain the output of the nonlinear system y(k). with Eq. (3.1). Note that the 
nonlinear system may have the structure represented by Eq. (3.2); the parameter 
n = 8. is selected according to this nonlinear system. 

.yr(k) = f [Zk] , (3.2) 

where Zk = [z1(k) . . . , zi(k), . . . , z8(k)]T ∈ R8×1
. is the input vector, f is an 

unknown nonlinear function, f ∈ C∞
., and yr(k). is the real data output of the 

wind turbine. 
(2) Select the following parameters: V1 . and W1 . as random numbers between 0 and 

1, m as an integer number, and α0 . as a positive value smaller than or equal to 1; 
obtain the output of the neural network-y(1).with Eq. (3.3). The analytic neural
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network that approximates the real data output behavior of the wind turbine 
with rotatory tower yr(k). is as follows: 

.

-oNN(k) = y(k) + NN(k)

NN(k) = VkΦk =
m∑

j=1

Vjkφjk

Φk = [
φ1k, . . . , φjk, . . . , φmk

]T

φjk = tanh

(
8∑

i=1

Wijkzi(k)

)
,

(3.3) 

where z1(k)., z2(k)., z3(k)., z4(k)., z5(k)., z6(k)., z7(k)., and z8(k). are the eight 
behavior inputs, and Vjk+1 . and Wijk+1 . are the weights of the hidden and output 
layers, respectively. m is the neuron number in the hidden layer, and y(k). is the 
analytic model output (3.1). φj . is the hyperbolic tangent function. 

(3) For each iteration k, obtain the output of the neural network -oNN(k). with 
Eq. (3.3), also obtain the neural network error eNN(k).with Eq. (3.4), and update 
the parameters Vjk+1 . and Wijk+1 .with Eq. (3.5). 

.eNN(k) = -oNN(k) − yr(k) (3.4) 

.
Vjk+1 = Vjk − αkφjkeNN(k)

Wijk+1 = Wijk − αkσijkeNN(k),
(3.5) 

where the new time varying rate αk . is 

. αk = α0

2

⎛
⎝ 1

2 +
m∑

j=1

φ2
jk +

m∑
j=1

8∑
i=1

σ 2
ijk

⎞
⎠ ,

where i = 1, . . . , 8., j = 1, . . . , m., σijk = Vjk .sech2(
N∑

i=1

Wijkzi(k))zi(k) ∈ R., α0 . 

is the constant learning speed, -oNN(k). is the output of the analytic neural network 
model, and yr(k). is the real data output of the wind turbine. 

Figure 3.1 shows the proposed analytic neural network model for the modeling 
of the wind turbine behavior. 

Remark 3.1 There are two conditions for applying this algorithm for nonlinear 
systems: The first one is that the nonlinear system may have the form described 
by (3.1), and the second one is that the uncertainty μ(k).may be bounded. 

Remark 3.2 The value of the parameter used for the stability of the algorithm μ. 

is unimportant, because this parameter is not used in the algorithm. The bound of
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Fig. 3.1 Analytic neural network model 

μ(k). is needed to guarantee the stability of the algorithm, but it is not used in the 
backpropagation algorithm (3.3), (3.4), (3.5). 

Remark 3.3 The proposed analytic neural network has one hidden layer. It was 
reported in the literature that a feedforward neural network with one hidden layer is 
enough to approximate any nonlinear system. 

Remark 3.4 Note that the behavior of the algorithm could be improved by 
changing the values of m or α0 .. 

5 Main Contribution of the Analytic Neural Network Model 

In this section, the analytic neural network model will be guaranteed to be more 
approximated with the wind turbine behavior than the analytic model. 

Define the analytic error as follows: 

.e(k) = y(k) − yr(k), (3.6) 

where y(k). is the output of the analytic model and yr(k). is the real data output of 
the wind turbine.
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The real data output is rewritten as follows: 

.yr(k) = y(k) + σ(k), (3.7) 

where y(k). is the output of the analytic model, yr(k). is the real data output, and 
σ(k). is the unmodeled dynamic. 

Consider the following theorem. 

Theorem 3.1 ([25]) Suppose that the input universe of discourse U is a compact 
set in Rn

.. Then, for any given real continuous function σ(k). on U and arbitr ary
∈> 0., there exists a neural network NN(k). in the form (3.3) such that 

.sup
x∈U

|NN(k) − σ(k)| <∈ . (3.8) 

That is, the neural network NN(k). is an approximator of σ(k).. 

Proof See [25] for the proof. 

The above theorem can be rewritten as follows: 

Corollary 3.1 The unmodeled dynamic σ(k). of (3.7) is estimated by the neural 
network model NN(k). of (3.3). It is written as follows: 

.NN(k) ≈ σ(k). (3.9) 

The following theorem shows the main contribution of this chapter. 

Theorem 3.2 The neural network error eNN(k). (3.4) of the analytic neural network 
model (3.3) for the modeling of the real data output of the wind turbine yr(k). is 
smaller than the analytic error (3.6) of the analytic model (3.1). It is written as 
follows: 

. |eNN(k)| ≤ |e(k)| . (3.10) 

Proof See [26] for the proof. 

Remark 3.5 The first difference of this analytic neural network model with the 
models considered by [1–12], and [13] is that the other models considered the 
neural network model as the unique algorithm for the approximation of the wind 
turbine behavior, while in this chapter the analytic neural network model (3.3)  is  the  
combination of two models: one is the analytic and the other is the neural network 
to obtain a better approximation. The second difference of analytic neural network 
model with the classical ones is that the second uses signum functions in the hidden 
and in the output layer being computational more complex, and the first uses a 
sigmoid function only in the hidden layer being more simple.
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Remark 3.6 The difference of this analytic neural network model with the hybrid 
models considered by [16–20], and [21] is that the other studies are not applied for 
the modeling of the wind turbine behavior. 

6 Experimental Results 

The analytic neural network model of (3.3) is used for the modeling of the wind 
turbine output. The objective is that the analytic neural network model output-oNN . 

must be nearer with the real output of the wind turbine yr . than the analytic model 
output y. 8412 data are used for the training, and 2804 data are used for the testing. 
The root mean square error is used for the comparison results [10, 12, 13, 22]: 

.RMSE =
(
1

N

N∑
k=1

e2i (k)

) 1
2

, (3.11) 

where N is the number of iterations, and ei(k) = e(k). is the analytic error of (3.6), 
or ei(k) = eNN(k). is the neural network error of (3.4). 

Figure 3.2 shows the prototype of a wind turbine with a rotatory tower which 
is considered for the simulations of the analytic model. This prototype has three 
blades with a rotatory tower which does not use a gear box. Table 3.1 shows the 
parameters of the prototype. The parameters m2 . and lc2 . are obtained from the wind 

Fig. 3.2 Prototype of a wind turbine with rotatory tower
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Table 3.1 Parameters of the prototype 

Parameter Value Parameter Value 

lc2 . 0.5m. Re . 30Ω . 

m2 . 0.5 kg. km . 0.09Wb. 

kb2 . 1 × 10−6 kgm2/s2 . kb1 . 1 × 10−6 kgm2/s2 . 

bb2 . 1 × 10−1 kgm2 rad/s. bb1 . 1 × 10−1 kgm2 rad/s. 

k2 . 0.45Vs/rad. k1 . 0.0045Vs/rad. 

R2 . 6.96Ω . R1 . 18Ω . 

L2 . 6.031 × 10−1H. L1 . 6.031 × 10−1H. 

R lc2 m. Vω . 5m/s. 

ρ . 1.225 kg/m3 . β . 0.5 rad. 

g 9.81m/s2 . 

turbine blades. The parameters R1 ., L1 ., and k1 . are obtained from the tower motor. 
The parameters k2 ., R2 ., Re ., and L2 . are obtained from the wind turbine generator. 
The parameters R, ρ ., Vω ., and β . are obtained from [27–29], and [30]. 

The dynamic model of the wind turbine with a rotatory tower is given by Eq. (3.1) 
with the parameters of Table 3.1. 1 × 10−5

. is considered as the initial condition for 

the plant states x1 = i2 ., x2 = θ2 ., x3 = ·
θ2 ., x4 = i1 ., x5 = θ1 ., and x6 = ·

θ1 .. 

6.1 Example 1 

Example 1 considers the first movement of the wind turbine described as follows: 
(1) From 0 s to 2 s, both inputs are fed; consequently, the tower moves far from the 
maximum air intake, the generator current is decreased, and the wind turbine blades 
stop moving, (2) from 2 s to 4 s, both inputs are not fed; consequently, current is not 
generated, and both the tower and wind turbine blades do not move, (3) from 4 s to 
6 s, both inputs are fed, but the air intake is positive and tower voltage is negative; 
consequently, the tower returns to the maximum air intake, the generator current is 
increased, and the wind turbine blades move, and (4) from 6 s to 8 s, both inputs 
are not fed; consequently, current is not generated, and the tower and wind turbine 
blades do not move. 

The analytic model of (3.1) is used with parameters x1(1) = x2(1) = x3(1) =
x4(1) = x5(1) = x6(1) = 1 × 10−5

.. 
The analytic neural network model of (3.1), (3.3)–(3.5) is used with parameters 

m = 4, α0 = 0.2, V1 = rand., W1 = rand., rand is a random number, x1(1) =
x2(1) = x3(1) = x4(1) = x5(1) = x6(1) = 1 × 10−5

.. 
Figure 3.3 shows the modeling of the wind turbine behavior using the analytic 

model and analytic neural network model for the training. Figure 3.6 shows the 
modeling of the wind turbine behavior using the analytic model and analytic neural 
network model for the testing. RMSE for the analytic model and analytic neural 
network model is presented in Fig. 3.4 for the training and in Fig. 3.7 for the testing.
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Fig. 3.3 Modeling for the training of Example 1 

Fig. 3.4 RMSE for the training of Example 1
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Fig. 3.5 Absolute error for the training of Example 1 

Table 3.2 Comparison of the errors for Example 1 

RMSE for testing. RMSE for testing. 

Analytic model. 0.0171. 0.0086. 

Analytic neural network. 0.0067. 0.0067. 

Absolute errors of Theorem 3.2 for the analytic model and analytic neural network 
model are presented in Fig. 3.5 for the training and in Fig. 3.8 for the testing. 
Table 3.2 shows the root mean square error for the analytic model and analytic 
neural network model. 

From Figs. 3.3, 3.4, and 3.5 and Table 3.2, it is shown that the analytic neural 
network model is the best for the training of the wind turbine behavior because the 
RMSE and absolute error of the above algorithm are the smallest ones. The training 
could be used for online designs as are the control or prediction. 

From Figs. 3.6, 3.7, and 3.8 and Table 3.2, it is shown that the analytic neural 
network model is the best for the testing of the wind turbine behavior because the 
RMSE and absolute error of the above algorithm is the smallest one. The testing 
could be used for offline designs as are the pattern recognition or classification.
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Fig. 3.6 Modeling for the testing of Example 1 

Fig. 3.7 RMSE for the testing of Example 1
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Fig. 3.8 Absolute error for the testing of Example 1 

6.2 Example 2 

Example 2 considers the second movement of the wind turbine described as follows: 
(1) From 0 s to 2 s, the input air is fed, and the tower input is not fed; consequently, 
the tower remains in the maximum air intake, the generator current is maximum, and 
the wind turbine blades have motion, (2) from 2 s to 4 s, the air is not fed, and the 
tower input is fed; consequently, current is not generated, the tower moves far from 
the maximum air intake, and the wind turbine blades do not have motion, (3) from 
4 s to 6 s, the air is fed, and the tower input is not fed; consequently, the tower does 
not move, the generator current is minimum, and the wind turbine blades almost 
do not move; (4) from 6 s to 8 s, the air is not fed, and the tower input is fed with 
a negative voltage; consequently, current is not generated, the tower returns to the 
maximum air intake, and the wind turbine blades do not have motion. 

The analytic model of (3.1) is used with parameters x1(1) = x2(1) = x3(1) =
x4(1) = x5(1) = x6(1) = 1 × 10−5

.. 
The analytic neural network model of (3.1), (3.3)–(3.5) is used with parameters 

m = 4., α0 = 0.2., V1 = rand., W1 = rand., rand is a random number, x1(1) =
x2(1) = x3(1) = x4(1) = x5(1) = x6(1) = 1 × 10−5

.. 
Figure 3.9 shows the modeling of the wind turbine behavior using the analytic 

model and analytic neural network model for the training. Figure 3.12 shows the 
modeling of the wind turbine behavior using the analytic model and analytic neural 
network model for the testing. RMSE for the analytic model and analytic neural 
network model is presented in Fig. 3.10 for the training and in Fig. 3.13 for the
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Fig. 3.9 Modeling for the training of Example 2 

Fig. 3.10 RMSE for the training of Example 2
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Fig. 3.11 Absolute error for the training of Example 2 

Table 3.3 Comparison of the errors for Example 2 

RMSE for testing. RMSE for testing. 

Analytic model. 0.0177. 0.0089. 

Analytic neural network. 0.0059. 0.0072. 

testing. Absolute errors of the theorem 3.2 for the analytic model and analytic 
neural network model are presented in Fig. 3.11 for the training and in Fig. 3.14 
for the testing. Table 3.3 shows the root mean square error for the analytic model 
and analytic neural network model. 

From Figs. 3.9, 3.10, and 3.11 and Table 3.3, it is shown that the analytic neural 
network model is the best for the training of the wind turbine behavior because the 
RMSE and absolute error of the above algorithm is the smallest one. The training 
could be used for online designs as are the control or prediction. 

From Figs. 3.12, 3.13, and 3.14 and Table 3.3, it is shown that the analytic neural 
network model is the best for the testing of the wind turbine behavior because the 
RMSE and absolute error of the above algorithm is the smallest one. The testing 
could be used for offline designs as are the pattern recognition or classification. 

Remark 3.7 Choosing an appropriate number of neurons in the hidden layer is 
important in the behavior, because too many neurons result in a complex system 
that may be unnecessary for the problem and it can cause overfitting [12, 13, 31], 
whereas too few neurons produce a less powerful system that may be insufficient to
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Fig. 3.12 Modeling for the testing of Example 2 

Fig. 3.13 RMSE for the testing of Example 2
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Fig. 3.14 Absolute error for the testing of Example 2 

achieve the objective. The number of neurons is considered as a design parameter, 
and it is determined based on the trial-and-error method. 

Remark 3.8 The difference between the two datasets considered in the experi-
ments is that each dataset represents a different movement of the wind turbine [22]. 

7 Concluding Remarks 

In this chapter, an analytic neural network model and an analytic model were 
compared for the modeling of the wind turbine behavior, giving that the analytic 
neural network model approach improved the analytic model, because the root mean 
square error for the first was the smallest one. The proposed technique could be used 
on control, prediction, pattern recognition, or classification. As a future research, the 
clustering algorithm will be used to estimate the number of hidden layer neurons, 
and the proposed modeling will be used in the design of interesting applications as 
are the control.
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Chapter 4 
Interpolation Neural Network Model 
of a Manufactured Wind Turbine 

1 Introduction 

The hybrid systems have been widely used in the learning of incomplete data for 
the applications of nonlinear modeling [1, 2], prediction [3], pattern recognition 
[4], classification [5, 6], control, fault detection and diagnosis in industrial systems 
[7, 8], visual inspection [9], and cascaded systems [10]. 

There are many studies about hybrid systems for the learning of nonlinear 
behaviors. Despite the proposals, few researches have been carried out in the past to 
perform the learning of incomplete data. 

On the other hand, there are other methods for the learning of nonlinear 
behaviors with incomplete data, but they use noise signals considering the design 
as a stochastic problem, and it would be interesting to consider the design as a 
deterministic problem. 

In this research, a hybrid algorithm as the combination of the stable neural 
network and interpolation algorithm is introduced for the learning of nonlinear 
systems with incomplete data where the design is considered as a deterministic 
problem. It consists in the following two stages. 

First, the interpolation algorithm is used to obtain the missing data of all 
the variables in some nonlinear behavior. Figure 4.1 shows that the interpolation 
algorithm is applied to build the estimation of the variables denoted as x̂l(k). when 
only some points of the real variables denoted as xlr (k). are available. 

Second, after the interpolation algorithm obtains the estimation of the variables, 
Fig. 4.2 shows that the interpolation neural network is employed to learn the output 
nonlinear behavior where the variables estimated by the interpolation algorithm 
denoted as x̂1(k) = ẑ1(k)., x̂2(k) = ẑ2(k).,. . . , x̂n(k) = ẑn(k)., x̂n+1(k) = ŷ(k). are 
used instead of the real variables denoted as x1,r (k) = z1(k)., x2,r (k) = z2(k).,  . . . ,  
xn,r (k) = zn(k)., xn+1,r (k) = yr(k).. ŷ(k). is the target output of the neural network. 
The inputs and output of the neural network are ẑ1(k)., ẑ2(k).,. . . ,̂zn(k). and NN(k)., 
respectively. The importance of the neural network is that while the interpolation 
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Fig. 4.1 Interpolation 
algorithm to estimate all the 
variables with incomplete 
data 

algorithm only estimates the variables of the nonlinear behavior, the neural network 
learns the output behavior. 

In the remainder of this section there will contain the survey of related works. 
Finally, the organization of this chapter will be mentioned. 

1.1 Related Works 

This subsection contains a survey of two kinds of related works: (a) hybrid systems 
for the learning of nonlinear behaviors and (b) methods for the learning of behaviors 
with incomplete data. 

There is some research about the learning with hybrid systems. In [11], a learning 
approach to train uninorm-based hybrid neural networks is suggested. In [12], four 
semi-supervised learning methods are discussed. A specific ensemble strategy is 
developed in [13]. In [14], an approach to the construction of classifiers from 
imbalanced datasets is described. A dynamic pattern recognition method is proposed 
in [15]. In [16] and [17], the use of evolving classifiers for the activity recognition 
is described. Hybrid and ensemble methods in machine learning are focused in 
[18]. In [19], a granular neural network framework for the evolving fuzzy system 
modeling is introduced. A novel hybrid active learning strategy is proposed in [20].
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Fig. 4.2 Interpolation neural network for the learning 

In [21], an enhanced version of the evolving participatory learning approach is 
developed. A class of hybrid-fuzzy models is designed in [22]. A parsimonious 
network based on the fuzzy inference system is addressed in [23]. In [1], a novel 
dynamic parsimonious fuzzy neural network is considered. A holistic concept of 
a fully data-driven modeling tool is proposed in [24]. In [5], a novel evolving 
fuzzy rule-based classifier is proposed. A novel meta-cognitive-based scaffolding 
classifier is considered in [25]. In [6], a novel interval type-2 fuzzy classifier is 
introduced. An evolving hybrid-fuzzy neural network-based modeling approach is 
introduced in [26]. 

Otherwise, there is some research about the learning of nonlinear behaviors with 
incomplete data. In [27], kernel regression method is used for the modeling with 
incomplete data. The story of incomplete and redundant representation modeling is 
introduced in [28]. In [29], the authors propose a new model called sparse hidden
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Markov model. A novel sparse shape composition model is considered in [30]. In 
[31], a method is introduced for regression and classification problems. 

1.2 Organization of the Chapter 

The chapter is structured as follows. In Sect. 2, the interpolation neural network is 
described. In Sect. 3, the interpolation neural network is employed for the modeling 
of two trajectories of the wind turbine behavior. Finally, in Sect. 4, the conclusion 
and future research are detailed. 

2 Interpolation Neural Network 

This section is divided into two subsections which consider the two stages of 
the proposed algorithm. (a) The interpolation algorithm is utilized to estimate the 
nonlinear behavior of all the variables with incomplete data. (b) The interpolation 
neural network is employed for the learning of the nonlinear behavior output with 
incomplete data. 

2.1 Interpolation Algorithm to Estimate the Incomplete Data 

The interpolation algorithm is described in this subsection as the first part of the 
proposed model. The algorithm proposed in this part is used to estimate the missing 
data of all the variables with incomplete data, i.e., the proposed algorithm is a 
multidimension approximator where all the variables are independently estimated. 

Description of the Interpolation Algorithm 

Consider the functions xlr (k) = f (kl) ∈ R.with l = 1, 2, , . . . , n + 1. is the number 
of variables estimated with this algorithm, kl = 1, 2, . . . , T ., T are the iterations 
number for the variables, xlr (k). are the output real data of the nonlinear behaviors. 
The approximation consists in finding x̂l(k). such that they estimate the real variables 
with incomplete data xlr (k).. 

The slopes of xlr (k).denoted asml(k).using the kl .and xlr (k).data of the nonlinear 
behavior are obtained as follows: 

.ml(k) = xlr (k) − xlr (k − 1)

(kl) − (kl − 1)
. (4.1)
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Fig. 4.3 Interpolation algorithm 

The nonlinear behaviors are divided into Nl . intervals, each interval is generated 
by considering the following inequality: 

. |(|ml(k)| − |ml(k − 1)|)| ≥ hl, (4.2) 

where hl . is a small selected threshold parameter, and consider that the signals 
taken from kl . for each of the Nl . intervals are denoted by j . Figure 4.3 shows the 
approximation of the nonlinear behaviors using the interpolation algorithm. 

Equation (4.3) describes the approximation of the nonlinear behaviors using the 
proposed interpolation algorithm [32]: 

.̂xl(k) = (1 − λl(k)) · xl,i,j (k) + λl(k) · xl,f,j (k), (4.3) 

where xl,i,j (k). are the initial values of xlr (k). in the interval j , xl,f,j (k). are the final 
values of xlr (k). in the interval j , kl . are the variant iterations inside of the interval 
j , λl(k). are the variant-in-time parameters of the interval j , and λl(k). are given as 
follows: 

.λl(k) = kl − kl,i,j

kl,f,j − kl,i,j

, (4.4) 

where kl,i,j . are the initial values of λl(k). in the interval j , and kl,f,j . are the final 
values of λl(k). in the interval j .
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It is known that kl,i,j ≤ kl ≤ kl,f,j . for each interval j ; consequently, 0 ≤
λl(k) ≤ 1., and λl(k). always increases. The variant parameters λl(k). are important 
in the proposed interpolation algorithm because x̂l(k). are the approximations of 
xlr (k). from the initial points to the final points for each interval j . The interpolation 
algorithm for the approximation of nonlinear behaviors is as follows: 

(1) Obtain the slope of xlr (k). denoted as ml(k). using the kl . and xlr (k). data of the 
nonlinear behaviors using Eq. (4.1), and select the threshold parameters hl .. 

(2) Obtain the elements’ number in the intervals Nl .with Eq. (4.2). 
(3) The intervals are denoted by j . 
(4) For each interval j , obtain λl(k).with Eq. (4.4). 
(5) For each interval j , obtain x̂l(k). as the approximations of xlr (k). using Eq. (4.3). 

Boundedness of the Interpolation Algorithm 

In this section the variables of the interpolation algorithm will be guaranteed to be 
bounded. Substituting (4.4)  int  o (4.3) of the interpolation algorithm gives 

.̂xl(k) =
(

1 − kl − kl,i,j

kl,f,j − kl,i,j

)

· xl,i,j (k) + kl − kl,i,j

kl,f,j − kl,i,j

· xl,f,j (k). (4.5) 

Equation (4.5) can be rewritten as follows: 

.̂xl(k) = xl,i,j (k) + kl − kl,i,j

kl,f,j − kl,i,j

(

xl,f,j (k) − xl,i,j (k)
)

. (4.6) 

Theorem 4.1 The outputs x̂l(k). of the interpolation algorithm (4.3)–(4.4), (4.6) are  
guaranteed to be bounded by xl,i,j (k). and by xl,f,j (k). for all the intervals j . 

Proof See [33] for the proof. 

Remark 4.1 There are three differences between the interpolation algorithm intro-
duced by Rubio et al. [32] and that considered in this study. The first difference is 
that in [32], the interval number is obtained by the changes in the slopes sign, while 
in this study the interval number is determined by Eq. (4.2). The second difference 
is that in [32], the interpolation algorithm is applied only to estimate the nonlinear 
system output, while in this chapter the interpolation algorithm is used to estimate all 
the nonlinear system variables. The third difference is that in [32], the interpolation 
algorithm is considered alone, while in this research the interpolation algorithm is 
combined with a stable neural network.
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2.2 Neural Network to Learn with Incomplete Data 

The neural network is described in this subsection as the second part of the proposed 
model. This subsection describes the algorithm proposed in this study for the 
modeling of a nonlinear behavior with incomplete data. 

Description of the Neural Network 

In this study, incomplete data are considered; consequently, the neural network of 
this chapter is used to learn the nonlinear behavior using only the variables estimated 
with the interpolation model, not the real data variables, that is, the variables of 
the interpolation algorithm ẑ1(k)., ẑ2(k).,. . . ,̂zn(k)., ŷ(k). are used instead of the real 
variables with incomplete data z1(k)., z2(k), . . . , zn(k)., yr(k).. 

The stable backpropagation algorithm is employed with a new time varying rate 
to guarantee its uniformly stability for online identification and its identification 
error converge to a small zone bounded by the uncertainty. The weights’ error 
is bounded by the initial weights’ error, i.e., overfitting and local optimum are 
eliminated in the mentioned algorithm [2, 3]. 

Stable backpropagation algorithm is as follows [2, 3]: 

(1) Obtain the output of the nonlinear system y(k).. Note that the nonlinear system 
may have the structure represented by Eq. (4.7); the parameter n is selected 
according to this nonlinear system.

.̂y(k) = f [Z(k)] , (4.7) 

where Z(k) = [̂z1(k) . . . , ẑi (k), . . . , ẑn(k)]T ∈ Rn×1
. is the input vector, f is 

an unknown nonlinear function, f ∈ C∞
., and ŷ(k)., ẑ1(k)., ẑ2(k).,. . . ,̂zn(k). are 

the outputs of the interpolation algorithm. 
(2) Select the following parameters: V (1). and W(1). as random numbers between 

0 and 1, m as an integer number, and α0 . as a positive value smaller than or 
equal to 1; obtain the output of the neural network NN(1). with Eq. (4.8). The 
interpolation neural network that learns the real output with incomplete data of 
the nonlinear behavior yr(k). is as follows: 

.

NN(k) = V (k)Φ(k) =
m

∑

j=1

Vj (k)φj (k)

Φk = [

φ1(k), . . . , φj (k), . . . , φm(k)
]T

φj (k) = tanh(
n

∑

i=1

Wij (k)̂zi(k)),

(4.8)



52 4 Interpolation Neural Network Model of a Manufactured Wind Turbine

where ẑ1(k)., ẑ2(k).,. . . ,̂zn(k). are the input estimation with the interpolation 
algorithm, and Vj (k + 1). and Wij (k + 1). are the weights of the hidden and 
output layers, respectively. m is the neuron number in the hidden layer . φj . is 
the hyperbolic tangent function. 

(3) For each iteration k, obtain the output of the neural network NN(k). with 
Eq. (4.8), also obtain the neural network error eNN(k).with Eq. (4.9), and update 
the parameters Vj (k + 1). and Wij (k + 1).with Eq. (4.10). 

.eNN(k) = NN(k) − ŷ(k) (4.9) 

.
Vj (k + 1) = Vj (k) − α(k)φj (k)eNN(k)

Wij (k + 1) = Wij (k) − α(k)σij (k)eNN(k),
(4.10) 

where the new time varying rate α(k). is 

. α(k) = α0

2

⎛

⎝
1
2 +

m
∑

j=1

φ2
j (k) +

m
∑

j=1

n
∑

i=1

σ 2
ij (k)

⎞

⎠ ,

where i = 1, . . . , n., j = 1, . . . , m., σij (k) = Vj (k).sech 2(
n

∑

i=1

Wij (k)zi(k))̂zi(k)

∈ R., α0 . is the constant learning speed, ŷ(k). is the output estimation with 
the interpolation algorithm, NN(k). is the output of the interpolation neural 
network, and ẑ1(k)., ẑ2(k).,. . . ,̂zn(k)., ŷ(k). are the outputs of the interpolation 
algorithm. 

Remark 4.2 The hyperbolic tangent is used as the activation function in the 
proposed neural network because it considers positive and negative values, being 
it more complete than others as the sigmoid function which only considers positive 
values. 

Stability Analysis of the Neural Network 

The following theorem guarantees that the interpolation neural network can approx-
imate a nonlinear behavior. 

Theorem 4.2 ([34]) Suppose that the input universe of discourse U is a compact 
set in Rn

.. Then, for any given real continuous function σ(k). on U and arbitr ary
∈> 0., there exists an interpolation neural network NN(k). in the form (4.8) such  

that 

.sup
x∈U

|NN(k) − ŷ(k)| <∈ . (4.11)
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That is, the neural network NN(k). is an approximator of the output of the 
interpolation algorithm ŷ(k).. 

Proof See [34] for the proof. 

The following theorem gives the stability of the neural network model. 

Theorem 4.3 The interpolation neural network (4.8), (4.9), and (4.10) applied for 
the identification of the nonlinear system (4.7) is uniformly stable, and the upper 
bound of the average identification error e2p(k). satisfies 

.lim sup
T →∞

1

T

T
∑

k=2

e2p(k) ≤ α0μ
2, (4.12) 

where e2p(k) = α(k−1)
2 e2(k − 1)., 0 < α0 ≤ 1 ∈ R. and 0 < α(k) ∈ R. are defined 

in (4.10), e(k). is defined in (4.9), μ(k) = y(k)−
M

∑

j=1

V ∗
j φ∗

j . is an uncertainty, μ. is the 

upper bound of the uncertainty μ(k)., |μ(k)| < μ., φ∗
j = tanh(

N
∑

i=1

W ∗
ij xi(k))., and 

V ∗
j . and W ∗

ij . are unknown weights such that the uncertainty μ(k). is minimized. 

Proof See [2, 3] for the proof. 

The following theorem proves that the weights of the interpolation neural 
network are bounded. 

Theorem 4.4 When the average error e2p(k). is bigger than the uncertainty α0μ
2
., 

the weights’ error is bounded by the initial weights’ error as follows: 

.

e2p(k + 1) ≥ α0μ
2

=⇒
M

∑

j=1

˜V 2
j (k + 1) +

M
∑

j=1

N
∑

i=1

˜W 2
ij (k + 1) ≤

M
∑

j=1

˜V 2
j (1) +

M
∑

j=1

N
∑

i=1

˜W 2
ij (1),

(4.13) 

where i = 1, . . . , N ., j = 1, . . . , M ., ˜Vj (k). and ˜Wij (k) . are the weights’ error, ˜Vj (1). 
and ˜Wij (1). are the initial weights’ error, e2p(k+1) = α(k)

2 e2(k)., Vj (k+1)., Wij (k+
1)., 0 < α0 ≤ 1 ∈ R., and 0 < α(k) ∈ R. are defined in (4.10), e(k). is defined 
in (4.9), μ. is the upper bound of the uncertainty μ(k)., |μ(k)| < μ.. 

Proof See [2, 3] for the proof. 

Remark 4.3 There are two conditions for applying this algorithm for nonlinear 
systems: The first one is that the nonlinear system may have the form described 
by (4.7), and the second one is that the uncertainty μ(k).may be bounded.
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Remark 4.4 The value of the parameter μ. used for the stability of the algorithm 
is unimportant, because this parameter is not used in the algorithm. The bound of 
μ(k). is needed to guarantee the stability of the algorithm, but it is not used in the 
backpropagation algorithm (4.8), (4.9), (4.10). 

Remark 4.5 There is one important difference between the stable neural network 
of [2, 3] and the one considered in this study. It is that in [2, 3], the stable neural 
network is alone used for the learning of short data, while, in this research, the 
stable neural network is combined with the interpolation algorithm for the learning 
of nonlinear systems with incomplete data. 

Remark 4.6 The fuzzy slopes model of [35] has two differences with the inter-
polation neural network of this research: (1) The fuzzy slopes model uses a fuzzy 
inference system, while the interpolation neural network employs the stable neural 
network, obtaining an advantage in the proposed method because a stable algorithm 
guarantees that all the variables will remain bounded, and (2) the fuzzy slopes 
model only considers the output with incomplete data, while the interpolation neural 
network considers all the variables with incomplete data, obtaining an advantage in 
the introduced technique because it is a generalization of the previous one. 

3 Experimental Results 

The interpolation neural network is compared with the fuzzy slopes model of [35] 
for the learning of the wind turbine behavior with incomplete data. The objective is 
that the interpolation neural network output NN  of (4.1)–(4.4), (4.8)–(4.10)  must  
be nearer with the real output of the wind turbine yr . than the fuzzy slopes model 
output. 

Figure 4.4 shows the prototype of the manufactured wind turbine with a rotatory 
tower which is considered for this study. This prototype has three blades with 
a rotatory tower which does not use a gear box. Important research about wind 
turbines is presented in [4, 7, 36]. Table 4.1 shows the parameters of the prototype. 
The parameters m2 . and lc2 . are obtained from the wind turbine blades. The 
parameters R1 ., L1 ., and k1 . are obtained from the tower motor. The parameters k2 ., 
R2 ., Re ., and L2 . are obtained from the wind turbine generator. The parameters R, ρ ., 
Vω ., and β . are obtained from [36]. 

1×10−5
. is considered as the initial condition for the plant states x1 = i2 ., x2 = θ2 ., 

x3 = ·
θ2 ., x4 = i1 ., x5 = θ1 ., and x6 = ·

θ1 .. u1 .is the force of the air received by the 
three blades in km 2 .rad/s 2 ., u2 .is the motor armature voltage in V, θ1 . is the angular 
position of the tower motor in rad, θ2 . is the angular position of a wind turbine 
blade in rad, i1 . is the motor armature current of the tower in A, i2 . is the generator 
armature current in A, and y is the output voltage generated by the wind turbine in 
V. An electronic circuit and a microcontroller board of Arduino are used to digitalize 
and to send the obtained signals to a personal computer. Figure 4.5 shows the real
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Fig. 4.4 Prototype of the manufactured wind turbine 

Table 4.1 Parameters of the prototype 

Parameter Value Parameter Value 

lc2 . 0.5m. Re . 30Ω . 

m2 . 0.5 kg. km . 0.09Wb. 

kb2 . 1 × 10−6 kgm2/s2 . kb1 . 1 × 10−6 kgm2/s2 . 

bb2 . 1 × 10−1 kgm2rad/s. bb1 . 1 × 10−1 kgm2rad/s. 

k2 . 0.45Vs/rad. k1 . 0.0045Vs/rad. 

R2 . 6.96Ω . R1 . 18Ω . 

L2 . 6.031 × 10−1 H. L1 . 6.031 × 10−1 H. 

R lc2 m. Vω . 5m/s. 

ρ . 1.225 kg/m3 . β . 0.5 rad. 

g 9.81m/s2 . 

electronic circuit to save the real data of the electric voltage, electric current, blades 
position, and tower position. 

The interpolation neural network learns the behavior considering real data of the 
inputs and states of the wind turbine behavior, the eight inputs for the nonlinear 
behavior are denoted as z1(k) = u1r ., z2(k) = u2r ., z3(k) = x1r ., z4(k) = x2r .,
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Fig. 4.5 Electronic circuit to save the real data 

z5(k) = x3r ., z6(k) = x4r ., z7(k) = x5r ., and z8(k) = x6r ., and the target output is 
denoted as ŷ(k) = y .. The root mean square error is used for the comparison results 
[2, 32, 37]: 

.RMSE =
(

1

T

T
∑

k=1

e2(k)

)
1
2

, (4.14) 

where T is the iterations number, and e(k) = eFS(k). is the error of the fuzzy slopes 
model, or e(k) = eNN(k). is the error of the interpolation neural network of (4.9). 

3.1 Experiment 1 

Experiment 1 considers the first movement of the wind turbine described as follows: 
(1) From 0 s to 2 s, both inputs are fed; consequently, the tower moves far from the 
maximum air intake, the generator current is decreased, and the wind turbine blades 
stop moving, (2) from 2 s to 4 s, both inputs are not fed; consequently, current is not 
generated, and both the tower and wind turbine blades do not move, (3) from 4 s to 
6 s, both inputs are fed, but the air intake is positive and tower voltage is negative; 
consequently, the tower returns to the maximum air intake, the generator current is 
increased, and the wind turbine blades move, (4) from 6 s to 8 s, both inputs are not 
fed; consequently, current is not generated, and the tower and wind turbine blades 
do not move. The described behavior is repeated three times for the learning and 
once for the testing; consequently, 8412 data are used for the training and 2804 data 
are used for the testing.
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Fig. 4.6 Incomplete data for experiment 1 

The fuzzy slopes model is used with parameters n = 8., m = 4., vi(1) = rand., 
cij (1) = rand., σij (1) = 10 rand., h = 1 × 10−7

., and rand. is a random number 
between 0 and 1. 

The interpolation neural network of (4.1)–(4.4), (4.8)–(4.10) is used with 
parameters n = 8., m = 4., α0 = 0.5., Vj (1) = rand., Wij (1) = rand., h = 1 × 10−7

., 
rand. is a random number between 0 and 1. 

Figure 4.6 shows the incomplete data for the states of the wind turbine behavior. 
Figure 4.7 shows the modeling of the wind turbine behavior using the fuzzy 
slopes model and interpolation neural network for the training. Figure 4.8 shows 
the modeling of the wind turbine behavior using the fuzzy slopes model and 
interpolation neural network for the testing. Table 4.2 shows the root mean square 
error for the fuzzy slopes model and interpolation neural network. 

The iterations’ number is shown instead of the time in seconds to guarantee that 
in this research incomplete data are employed. From Fig. 4.7 and Table 4.2,  it  is  
shown that the interpolation neural network is the best for the training of the wind 
turbine behavior because the RMSE of the above algorithm is the smallest one. 
The training could be used for online designs such as the control, prediction, or 
fault detection. From Fig. 4.8 and Table 4.2, it is shown that the interpolation neural 
network is the best for the testing of the wind turbine behavior because the RMSE of 
the above algorithm is the smallest one. The testing could be used for offline designs 
such as the pattern recognition or classification.
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Fig. 4.7 Modeling for the training of experiment 1 

Fig. 4.8 Modeling for the testing of experiment 1
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Table 4.2 Comparison of the errors for experiment 1 

RMSE for training. RMSE for testing. 

Fuzzy Slopes Model. 0.0065. 0.0086. 

Interpolation Neural Network. 0.0049. 0.0071. 

3.2 Experiment 2 

Experiment 2 considers the second movement of the wind turbine described as 
follows: (1) From 0 s to 2 s, the input air is fed, and the tower input is not fed; 
consequently, the tower remains in the maximum air intake, the generator current 
is maximum, and the wind turbine blades have motion, (2) from 2 s to 4 s, the 
air is not fed, and the tower input is fed; consequently, current is not generated, 
the tower moves far from the maximum air intake, and the wind turbine blades do 
not have motion, (3) from 4 s to 6 s, the air is fed, and the tower input is not fed; 
consequently, the tower does not move, the generator current is minimum, and the 
wind turbine blades almost do not move, (4) from 6 s to 8 s, the air is not fed, and the 
tower input is fed with a negative voltage; consequently, current is not generated, the 
tower returns to the maximum air intake, and the wind turbine blades do not have 
motion. The described behavior is repeated three times for the learning and once for 
the testing; consequently, 8412 data are used for the training and 2804 data are used 
for the testing. 

The fuzzy slopes model is used with parameters n = 8., m = 4., vi(1) = rand., 
cij (1) = rand., σij (1) = 10 rand., h = 1 × 10−7

., and rand. is a random number 
between 0 and 1. 

The interpolation neural network of (4.1)–(4.4), (4.8)–(4.10) is used with 
parameters n = 8., m = 4., α0 = 0.5., Vj (1) = rand., Wij (1) = rand., h = 5 × 10−8

., 
and rand. is a random number between 0 and 1. 

Figure 4.9 shows the incomplete data for the states of the wind turbine behavior. 
Figure 4.10 shows the modeling of the wind turbine behavior using the fuzzy 
slopes model and interpolation neural network for the training. Figure 4.11 shows 
the modeling of the wind turbine behavior using the fuzzy slopes model and 
interpolation neural network for the testing. Table 4.3 shows the root mean square 
error for the fuzzy slopes model and interpolation neural network. 

The iterations’ number is shown instead of the time in seconds to guarantee that 
in this research incomplete data are employed. From Fig. 4.10 and Table 4.3,  it  is  
shown that the interpolation neural network is the best for the training of the wind 
turbine behavior because the RMSE of the above algorithm is the smallest one. The 
training could be used for online designs such as the control, prediction, or fault 
detection. From Fig. 4.11 and Table 4.3, it is shown that the interpolation neural 
network is the best for the testing of the wind turbine behavior because the RMSE 
of the above algorithm is the smallest one. The testing could be used for offline 
designs such as the pattern recognition or classification.
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Fig. 4.9 Incomplete data for experiment 2 

Fig. 4.10 Modeling for the training of experiment 2
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Fig. 4.11 Modeling for the testing of experiment 2 

Table 4.3 Comparison of the errors for experiment 2 

RMSE for training. RMSE for testing. 

Fuzzy Slopes Model. 0.0065. 0.0086. 

Interpolation Neural Network. 0.0035. 0.0077. 

Remark 4.7 Choosing an appropriate number of hidden neurons is important in 
the behavior, because too many neurons result in a complex system that may be 
unnecessary for the problem, and it can cause overfitting [2], whereas too few 
neurons produce a less powerful system that may be insufficient to achieve the 
objective. The number of hidden neurons is considered as a design parameter, and 
it is determined based on the trial-and-error method. 

4 Concluding Remarks 

In this chapter, the interpolation neural network was introduced. The interpolation 
algorithm was applied to build an estimation of the nonlinear behaviors when 
only some points of the real behavior with incomplete data were available. After 
the interpolation algorithm obtained the estimation of the nonlinear behaviors, the 
neural network was employed to learn the output nonlinear behavior considering
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only the outputs of the interpolation model instead of the real data inputs and output. 
The importance of the neural network is that while the interpolation algorithm only 
estimates the nonlinear behaviors, the neural network learns the output behavior. 
The proposed interpolation neural network was compared with a fuzzy slopes 
model for the modeling of the wind turbine behavior, giving that the first algorithm 
provides higher accuracy compared to the other. The proposed technique could be 
used in control, prediction, pattern recognition, classification, or fault detection. As 
a future research, the proposed strategy will be used for the control design. 
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Chapter 5 
Uniform Stable Radial Basis Function 
Neural Network for the Prediction in Two 
Mechatronic Processes 

1 Introduction 

Neural networks are some kind of intelligent techniques which have been employed 
for the prediction, pattern recognition, modeling, control, and classification in the 
mechatronic processes. 

There is some research about the intelligent techniques. In [1], a learning 
approach to train uninorm-based hybrid neural networks is considered. Nature-
inspired algorithms are described in [2]. In [3], the utilization of nature-inspired 
algorithms in sports is detailed. Intelligent algorithm to save human lives is 
addressed in [4]. In [5], and a granular neural network framework is introduced. The 
time varying coefficients in a model are approximated in [6]. In [7], a clustering 
method is introduced. In [8], a hybrid active learning strategy is proposed. The 
overlapping of radial basis functions inside a cerebellar model arithmetic computer 
is studied in [9]. In [10], the game theoretical models are studied. A hybrid dynamic 
classifier is addressed in [11]. In [12], each part of a pump system is modeled. A 
radial basis function neural network of motion control is discussed in [13]. In [14], 
radial basis function neural networks to perform interval forecasting of the future 
wind speed are proposed. 

From the above proposals, [6, 9, 12, 13], and [14] consider the radial basis 
function neural networks, and it shows that this network is novel and actual research. 
Therefore, new studies in this kind of neural network should be of great interest. 

The backpropagation with variable learning steps, mentioned in [15–18], and 
[19], is employed for the learning of a feedforward neural network. It is an efficient 
algorithm; therefore, it would be good to modify this approach to be employed in a 
radial basis function neural network. 

In this chapter, the algorithm used for the learning of the one hidden layer neural 
network is modified to be applied in a radial basis function neural network. The 
problem is difficult because the one hidden layer neural network uses sigmoid 
functions, while the radial basis function neural network uses Gaussian functions. 
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The Gaussian function can be adapted better to the changing behavior of the systems 
than the sigmoid function for two reasons: (1) The first has one parameter for the 
width and two for the centers, while the second only uses the two parameters for 
the centers, and (2) the first can learn positive and negative values, while the second 
only can learn positive values. Therefore, the design of the addressed algorithm is 
more complex, but it is more effective for the learning. 

On the other hand, there is some research about the stable intelligent systems. 
In [20], a new filter with a finite impulse response structure of models. In [21], a 
passive and exponential filter of switched Hopfield neural networks is used. The 
non-divergence of the original discrete-time algorithms is analyzed in [15]. In [22], 
[23], and [24], stable neuro controllers of nonlinear systems are designed. The 
stability of a Markov jump recurrent neural network and a hierarchical hybrid neural 
network are analyzed in [25] and [26]. In [27], global exponential stability of the 
complex-valued recurrent neural networks is investigated. Global stability of the 
complex-valued neural networks with discrete-time delay is studied in [28]. In [29], 
a class of inertial neural networks with delays is considered. A stable complex 
delayed dynamic network is developed in [30]. In [31], a stable directed complex 
dynamic network is suggested. The concept of impulsive time window is proposed 
in [32]. 

From the aforementioned works, in [20, 21], the stability of continuous-time 
neural networks is studied, in [15, 22, 23], the stability of the backpropagation 
algorithm is introduced, in [25, 26], the stability of continuous-time neural networks 
is described, and in [27–29], the stability of neural networks with delays is analyzed. 
The aforementioned research shows that the stability analysis of algorithms for 
neural networks is an actual issue. In this chapter, the uniform stability of the before 
mentioned method is assured. 

In this chapter the algorithm used for the learning of the one hidden layer neural 
network is modified to be applied in a radial basis function neural network where its 
stability is assured. To reach the stability and convergence of the error to a small 
value, a time varying learning parameter is introduced. It assures an acceptable 
behavior of the algorithm to some undesired situations such as the disturbances or 
faults. 

The rest of this chapter is organized as follows. In Sect. 2, the radial basis 
function neural network is introduced. In Sect. 3, the radial basis function neural 
network is linearized. In Sect. 4, the addressed algorithm for the learning of a radial 
basis function neural network is designed. In Sect. 5, the stability, convergence, and 
boundedness of parameters for the aforementioned strategy are assured. In Sect. 6, 
the focused method is summarized. In Sect. 7, the mentioned algorithm is compared 
with the uniform stable neural network for the two processes. Section 8 describes 
the conclusions and future research alternatives.
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2 Radial Basis Function Neural Network 

Consider the following unknown discrete-time multiple input multiple output 
mechatronic process: 

.yl(k) = fl [Xk] , (5.1) 

where i = 1, . . . , N ., l = 1, . . . , O ., Xk = [x1(k) . . . , xi(k), . . . , xN(k)]T ∈ RN×1
. 

is the input vector, N .is the input number, O is the output number, xi(k) ∈ R. and 
yl(k) ∈ R. are the inputs and outputs of the plant, and f is an unknown and smooth 
nonlinear function, fl ∈ C∞

.. 
The outputs of the radial basis function neural network with one hidden layer are 

as follows: 

.

ŷl(k) = dl(k)
g(k)

=

M
∑

j=1

r̂j l (k)αj (uj (k))

M
∑

j=1

αj (uj (k))

,

αj (uj (k)) = e
−u2j (k)

,

uj (k) =
N

∑

i=1

ŝij (k)
[

xi(k) − t̂i (k)
]

,

(5.2) 

where i = 1, . . . , N ., j = 1, . . . ,M ., l = 1, . . . , O ., xi(k) ∈ R. and ŷl(k) ∈ R. are 
the inputs and outputs of the neural network, r̂j l(k) ∈ R., ŝij (k) ∈ R., t̂i (k) ∈ R. 

are the weights of the output and hidden layers and centers of the neural network, 
respectively, αj (uj (k)) ∈ R. is a nonlinear function, uj (k) ∈ R. is the addition 
function, M is the neuron number in the hidden layer, and O is the output number .
Figure 5.1 shows the architecture of the radial basis function neural network. 

Remark 5.1 Mechatronic processes of the form (5.1) are general because they are 
known as multiple input multiple output processes. Other general processes are the 
delayed processes or the multiple inputs multiple states where the design methods 
are similar. 

3 Linearization of the Radial Basis Function Neural Network 

The linearization of the radial basis function neural network is required for the 
algorithm design and for the stability analysis.



68 5 Uniform Stable Radial Basis Function Neural Network for the Prediction in Two. . .

Fig. 5.1 Architecture of the neural network 

According to the Stone-Weierstrass theorem, the unknown nonlinear function f 
of (5.1) is approximated as 

.

yl(k) = dl∗
g∗ + ∈lf =

M
∑

j=1

rjl∗αj∗

M
∑

j=1

αj∗

+ ∈lf ,

αj∗ = e
−u2j∗ ,

uj∗ =
N

∑

i=1

sij∗ [xi(k) − ti∗] ,

(5.3) 

where ∈lf = yl(k) − dl∗
g∗ ∈ R. are the modeling errors, αj∗ ∈ R., rjl∗ ∈ R., sij∗ ∈ R., 

and ti∗ ∈ R. are the optimal parameters that can minimize the modeling errors ∈lf .. 
In the case of three independent variables, a function has a Taylor series as follows: 

.
fl(ω1, ω2, ω3) = fl(ω10 , ω20 , ω30) + (

ω1 − ω10
) ∂fl(ω1,ω2,ω3)

∂ω1

+ (

ω2 − ω20
) ∂fl(ω1,ω2,ω3)

∂ω2
+ (

ω3 − ω30
) ∂fl(ω1,ω2,ω3)

∂ω3
+ ςlf ,

(5.4)
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where ςlf ∈ R. is the remainder of the Taylor series. ω1 ., ω2 ., and ω3 . correspond to 
r̂j l(k) ∈ R., ŝij (k) ∈ R., and t̂i (k) ∈ R., ω10 ., ω20 ., and ω30 . correspond to rjl∗ ∈ R., 
sij∗ ∈ R., and ti∗ ∈ R., define r̃j l(k) = r̂j l(k) − rjl∗ ∈ R., s̃ij (k) = ŝij (k) −
sij∗ ∈ R., and t̃i (k) = t̂i (k) − ti∗ ∈ R.; consequently, the Taylor series is applied to 
linearize (5.2)  as  follow  s:

.

dl(k)
g(k)

= dl∗
g∗ +

M
∑

j=1

r̃j l(k)
∂

dl (k)

g(k)

∂r̂j l (k)
+

N
∑

i=1

M
∑

j=1

s̃ij (k)
∂

dl (k)

g(k)

∂ŝij (k)

+
N

∑

i=1

t̃i (k)
∂

dl (k)

g(k)

∂ t̂i (k)
+ ςlf ,

(5.5) 

where
∂

dl (k)

g(k)

∂r̂j l (k)
∈ R.,

∂
dl (k)

g(k)

∂ŝij (k)
∈ R., and

∂
dl (k)

g(k)

∂ t̂i (k)
∈ R.; please note that dl(k) =

M
∑

j=1

r̂j l(k)αj (uj (k)) ∈ R., g(k) =
M

∑

j=1

αj (uj (k)) ∈ R.. As all the parameters are 

scalars, the Taylor series can be utilized. Considering (5.2) and using the chain rule, 
it gives 

.

∂
dl(k)
g(k)

∂r̂j l(k)
= Rj(k) = αj (uj (k))

g(k)
, (5.6) 

where αj (uj (k)) = e
−u2j (k)

. and uj (k). are given in (5.2). Subsequently, 

.

∂
dl (k)

g(k)

∂ŝij (k)
= Sijl(k)

= [γj (uj (k))̂rj l (k)+γj (uj (k))ŷl (k)][t̂i (k)−xi (k)]
g(k)

,

(5.7) 

where γj (uj (k)) = 2uj (k)αj (uj (k)) ∈ R..  An  d

.

∂
dl (k)

g(k)

∂ t̂i (k)
= Til(k)

= ŝij (k)[γj (uj (k))̂rj l (k)+γj (uj (k))ŷl (k)]
g(k)

.

(5.8) 

Substituting
∂

dl (k)

g(k)

∂r̂j l (k)
. of (5.6),

∂
dl (k)

g(k)

∂ŝij (k)
. of (5.7), and

∂
dl (k)

g(k)

∂ t̂i (k)
. of (5.8)  int  o (5.5), it gives 

.

dl(k)
g(k)

= dl∗
g∗ +

M
∑

j=1

r̃j l(k)Rj (k) +
N

∑

i=1

M
∑

j=1

s̃ij (k)Sij l(k)

+
N

∑

i=1

t̃i (k)Til(k) + ςlf .

(5.9)
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Define the output errors el(k) ∈ R. as follows: 

.el(k) = ŷl(k) − yl(k), (5.10) 

where yl(k). and ŷl(k). are described in (5.1) and (5.2), respectively. Substitut-
ing (5.2), (5.3), and (5.10)  int  o (5.9)  give  s

.

el (k) =
M
∑

j=1

r̃j l(k)Rj (k) +
N

∑

i=1

M
∑

j=1

s̃ij (k)Sij l(k)

+
N

∑

i=1

t̃i (k)Til(k) + μl(k),

(5.11) 

where μl(k) = ςlf − ∈lf .. 

4 Design of the Addressed Algorithm 

In this section, the addressed algorithm is designed for the learning of a radial basis 
function neural network. 

Theorem 5.1 The addressed algorithm that is the updating function of the radial 
basis function neural network (5.2) for the learning of the mechatronic process (5.1) 
is given as follows: 

.

r̂j l(k + 1) = r̂j l(k) − η(k)Rj (k)el(k),

ŝij (k + 1) = ŝij (k) − η(k)Sij l(k)el(k),

t̂i (k + 1) = t̂i (k) − η(k)Til(k)el(k),

(5.12) 

where Rj (k)., Sijl(k)., and Til(k). are given in (5.6), (5.7), and (5.8), respectively, 
and el(k). are the output errors of (5.10). 

Proof See [33] for the proof. 

Remark 5.2 The difference between the addressed algorithm and the well-known 
backpropagation algorithm is that the first has a time varying learning speed, 
while the second has constant learning speed. The difference between the focused 
algorithm and the time varying learning speed approach is that the second is 
commonly employed in a multilayer neural network, while the first is applied in 
the radial basis function neural network. The radial basis function neural network is 
more complex in the design than the multilayer neural network because the first has 
more parameters than the second. 

Remark 5.3 The conservatism issue of the radial basis function of this study is 
mentioned in two parts as follows: (1) Since the radial basis function has more
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parameters than the multilayer, it has more computational cost because the first 
requires more operations, and this difference is less strong than before because 
now the computers make the operations very fast, and (2) some authors in the past 
mentioned that the radial basis function required more neurons in the hidden layer 
than the multilayer, but in this research, both neural networks use the same number 
of neurons in the hidden layer with satisfactory results. 

5 Stabilization of the Addressed Algorithm 

The addressed algorithm is given in (5.12) with a time varying learning speed as 
follows: 

.

r̂j l(k + 1) = r̂j l(k) − η(k)Rj (k)el(k),

ŝij (k + 1) = ŝij (k) − η(k)Sij l(k)el(k),

t̂i (k + 1) = t̂i (k) − η(k)Til(k)el(k),

(5.13) 

where the new time varying learning speed η(k). is 

. η(k) = η0

2

⎛

⎝
1
2 +

M
∑

j=1

R2
j (k) +

N
∑

i=1

M
∑

j=1

S2
ij l(k) +

N
∑

i=1

T 2
il (k)

⎞

⎠

,

where i = 1, . . . , N ., j = 1, . . . , M ., l = 1, . . . , O ., Rj (k) ∈ R. are described 
in (5.6), Sijl(k) ∈ R. are described in (5.7), Til(k) ∈ R. are described in (5.8), el(k). 

are described in (5.10), 0 < η0 ≤ 1 ∈ R., consequently 0 < η(k) ∈ R., and it 
is assumed that the uncertainty is bounded, where μl . is the upper bound of the 
uncertainty μl(k)., |μl(k)| < μl .. 

Remark 5.4 η(k). is chosen by the user as an average and bounded function such 
that the stability of the algorithm (5.13) can be assured. This kind of function was 
considered in [19], with the difference that the algorithm of this research considers 
three different parameters in the denominator and the previous one only considered 
two different parameters in the denominator. 

The following theorem gives the stability of the addressed algorithm. 

Theorem 5.2 The algorithm (5.2), (5.10), and (5.13) applied for the identification 
of the mechatronic process (5.1) is uniformly stable, and the upper bound of the 
average output errors e2lp(k). satisfies 

.lim sup
T →∞

1

T

T
∑

k=2

e2lp(k) ≤ α0μ
2
l , (5.14)
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where e2lp(k) = η(k−1)
2 e2l (k − 1)., 0 < η0 ≤ 1 ∈ R. and 0 < η(k) ∈ R. are described 

in (5.13), el(k). are described in (5.11), μl . are the upper bound of the uncertainties 
μl(k)., |μl(k)| < μl .. 

Proof See [33] for the proof. 

Remark 5.5 There are two requirements to apply this algorithm for the learning of 
the behavior in mechatronic processes: the first is that the uncertainty μl(k). must 
be bounded, and the second is that the mechatronic process must have the structure 
explained by (5.1). 

Remark 5.6 The bound of μl(k). denoted as μl . is not employed in the introduced 
algorithm (5.2), (5.10), (5.13) because it is only employed to assure its stability. 

The following theorem proves that the weights of the suggested algorithm are 
bounded. 

Theorem 5.3 When the average error e2lp(k + 1). is bigger than the uncertainty 

η0μ
2
l ., the weights’ errors are bounded by the initial weights’ errors as follows: 

.

e2lp(k + 1) ≥ η0μ
2

=⇒
M

∑

j=1

r̃2j l(k) +
M

∑

j=1

N
∑

i=1

s̃2ij (k) +
N

∑

i=1

t̃2i (k)

≤
M

∑

j=1

r̃2j l(1) +
M

∑

j=1

N
∑

i=1

s̃2ij (1) +
N

∑

i=1

t̃2i (1),

(5.15) 

where i = 1, . . . , N ., j = 1, . . . , M ., l = 1, . . . , O ., r̃j l(k)., s̃ij (k)., and t̃i (k) .are 
described in (5.4), r̃j l(1)., s̃ij (1)., and t̃i (1). are the initial weights’ errors, e2lp(k +
1) = 1

2η(k)e2l (k)., r̂j l(k+1)., ŝij (k+1)., t̂i (k+1)., 0 < η0 ≤ 1 ∈ R., and 0 < η(k) ∈ R. 

are described in (5.13), el(k). are described in (5.10), μl . are the upper bound of the 
uncertainties μl(k)., |μl(k)| < μl .. 

Proof See [33] for the proof. 

Remark 5.7 From Theorem 5.2 the average output error e2lp(k + 1). of the intro-

duced approach is bounded, and from Theorem 5.3 the weights’ errors r̃2j l(k)., s̃2ij (k)., 

and t̃2i (k). are bounded, i.e., the suggested method to train a radial basis function 
neural network is uniformly stable in the presence of unmodeled dynamics, and the 
overfitting is avoided. And the output errors converge to a small zone bounded by 
the uncertainty μl ..
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6 The Addressed Algorithm 

The addressed algorithm is as follows: 

(1) Obtain the outputs of the mechatronic process yl(k). with Eq. (5.1). Note that 
the mechatronic process may have the structure represented by Eq. (5.1); the 
parameters N and O are selected according to the input and output number of 
this mechatronic process.

(2) Select the following parameters: r̂j l(1)., ŝij (1)., and t̂i (1). as random numbers 
between 0 and 1, M as an integer number, and η0 . as a positive value smaller 
than or equal to 1; obtain the outputs of the radial basis function neural network 
ŷl(1).with Eq. (5.2). 

(3) For each iteration k, obtain the outputs of the radial basis function neural 
network ŷl(k).with Eq. (5.2), also obtain the output errors el(k).with Eq. (5.10), 
and update the parameters r̂j l(k + 1)., ŝij (k + 1)., and t̂i (k + 1).with Eq. (5.13). 

(4) Note that the behavior of the algorithm could be improved by changing the 
values of η0 . or M . 

Remark 5.8 The radial basis function neural network of this research has one 
hidden layer. A radial basis function neural network with one hidden layer is enough 
to approximate any nonlinear system. 

7 Simulation Results 

In this section, two examples are considered. In the examples, the addressed 
algorithm denoted as USRBFNN is applied for the prediction of the warehouse 
process and for the prediction of the brain behavior. In all cases, the focused method 
is compared with the uniform stable neural network given by Rubio et al. [19] 
denoted as USNN. The root mean square error (RMSE) is used for the comparison 
of algorithms , and it is given as follows: 

.RMSE =
(

1

T

T
∑

k=1

O
∑

l=1

e2l (k)

)
1
2

, (5.16) 

where el(k). are the output errors of (5.10), T is the iterations number, and O is the 
outputs number.
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7.1 Example 1 

In this example, the introduced algorithm is applied for the prediction of the 
distribution of loads that the warehouse receives from a vehicle and places in the 
deposits each hour. There are three kinds of objects received by the warehouse; these 
three kinds of objects are denoted as X, Y , and Z. The three kinds of objects are 
received in the warehouse each hour; the number of objects of kind X received each 
hour change from 0 to 5, the number of objects of kind Y received each hour change 
from 0 to 5, and the number of objects of kind Z received each hour change from 0 
to 10. The data from 1800 iterations are used for the training, and the data for at least 
200 iterations are used for the testing. The prediction is obtained for 200 iterations 
beforehand. One radial basis function neural network is used for the training, and 
the same network is used for the testing. x1(k) = Y (k). and x2(k) = Z(k). are the 
inputs, and y1(k) = X(k + 200). is the output for the learning of the first process. 
x3(k) = X(k).and x4(k) = Z(k).are the inputs, and y2(k) = Y (k+200). is the output 
for the learning of the second process. Finally, x5(k) = X(k). and x6(k) = Y (k). are 
the inputs, and y3(k) = Z(k+200). is the output for the learning of the third process. 

The USRBFNN is given as (5.2), (5.10), and (5.13) with parameters N = 6., 
O = 3., M = 10., η0 = 1., and r̂j l(1)., ŝij (1)., and t̂i (1). are random numbers between 
0 and 1. The USNN is given by Rubio et al. [19] with parameters N = 6., O = 3., 
M = 10., α0 = 1., and Vj1 . and Wij1 . are random numbers between 0 and 1. 

The comparison results for the average output errors are shown in Fig. 5.2 where 
in USRBFNN the final average error is 0.0035.and in USNN of [19] the final average 
error is 0.0088.. Figure 5.3 shows the training results and Fig. 5.4 shows the testing 
results. Table 5.1 shows the training and testing RMSE results using (5.16). 

From Figs. 5.2, 5.3, and 5.4, it is shown that the USRBFNN is better than the 
USNN because the signal of the first follows better the signal of the plant than the 
signal of the second. From Table 5.1, it can be shown that the USRBFNN obtained 
better accuracy when compared with the USNN because the RMSE is smaller for 
the first. Thus, the USRBFNN is preferable for the warehouse process. 

7.2 Example 2 

Here a real dataset of brain signals consisting of 1750 pairs (x(k)., y(k).)  of  35  s  
are used for the training and 250 pairs (x(k)., y(k).) for 5 s are used for the testing. 
The alpha signal is obtained in this study because it has more probabilities to be 
found. The acquisition system is applied with a 28-year-old healthy man when his 
eyes are closed. There are three different signals received by the brain signals; these 
three kinds of signals are denoted as X, Y , and Z. The prediction is obtained for 
250 iterations in advance. One radial basis function neural network is used for the 
training, and the same network is used for the testing. x1(k) = X(k)., x2(k) = Y (k).,
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Fig. 5.2 Average learning errors for Example 1 

Fig. 5.3 Training results for Example 1
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Fig. 5.4 Testing results for Example 1 

Table 5.1 Results for 
Example 1 

Strategies Training RMSE Testing RMSE 

USRBFNN. 0.1238. 0.0255. 

USNN. 0.2005. 0.0604. 

and x3(k) = Z(k). are the inputs and y1(k) = X(k + 250)., y2(k) = Y (k + 250)., and 
y3(k) = Z(k + 250). are the outputs for the training of the brain signals process. 

The USRBFNN is given as (5.2), (5.10), and (5.13) with parameters N = 6., 
O = 3., M = 10., η0 = 1., and r̂j l(1)., ŝij (1)., and t̂i (1). are random numbers between 
0 and 1. The USNN is given by Rubio et al. [19] with parameters N = 6., O = 3., 
M = 10., α0 = 0.5., and Vj1 . and Wij1 . are random numbers between 0 and 1. 

The comparison results for the average output errors are shown in Fig. 5.5 where 
in USRBFNN the final average error is 0.0016.and in USNN of [19] the final average 
error is 0.0370.. Figure 5.6 shows the training results, and Fig. 5.7 shows the testing 
results. Table 5.2 shows the training and testing RMSE results using (5.16). 

From Figs. 5.5, 5.6, and 5.7, it can be shown that the USRBFNN is better than 
the USNN because the signal of the first follows better the signal of the plant than 
the signal of the second. From Table 5.2, it is shown that the USRBFNN obtained 
better accuracy when compared with the USNN because the RMSEs are smaller for 
the first. Thus, the USRBFNN is preferable for the crude oil blending process.
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Fig. 5.5 Average learning errors for Example 2 

8 Concluding Remarks 

In this chapter, a novel algorithm is designed for the learning of a radial basis 
function neural network, and the stability, convergence, and boundedness of param-
eters for the addressed algorithm are assured. From the results, it was shown that 
the focused strategy achieves better accuracy when compared with the uniform 
stable neural network for the prediction of two mechatronic processes. The studied 
method could be used to train a neural network as was applied in this chapter, or 
it could be used as the parameters updating of an evolving intelligent system. As 
a future research, the mentioned method will be used for the control design or for 
the learning of evolving intelligent systems, or the properties of other interesting 
algorithms will be analyzed.
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Fig. 5.6 Training results for Example 2 

Fig. 5.7 Testing results for Example 2



References 79

Table 5.2 Results for 
Example 2 

Strategies Training RMSE Testing RMSE 

USRBFNN. 0.2944. 0.1087. 

USNN. 0.3496. 0.1195. 
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Chapter 6 
USNFIS: Uniform Stable Neuro Fuzzy 
Inference System 

1 Introduction 

The neuro fuzzy intelligent systems are the combination of the neural networks and 
the fuzzy systems which are applied for the learning of nonlinear behaviors. Some 
interesting investigations are detailed as follows. In [1, 2], new clustering algorithms 
utilized in the fault detection are proposed, in [3, 4], novel algorithms employed in 
the classification are described, and in [5, 6], metacognitive learning algorithms are 
introduced. Few researches have been carried out in the past to introduce this kind of 
algorithms to be utilized for the big data learning. Therefore, new efforts to increase 
the knowledge in this interesting issue would be of great interest. 

Big data learning is the learning ability to solve via intelligent systems the 
problems where huge amounts of data are generated and updated during a short 
time; in this kind of systems the processing and analysis of data are important 
challenges. Some interesting works of this topic are described as follows. In [7– 
10], the classification of big data is focused, in [11–13], the modeling of big data 
is analyzed, and in [14, 15], the pattern recognition of big data is studied. In this 
chapter, there are two kinds of big data issues described as follows: (1) the systems 
with many inputs and outputs such as the considered in [7–9, 12, 14, 15]  or  (2)  
the systems with high changing data during a short time such as the considered in
[10, 11, 13]; it is because in both cases huge amounts of data are generated and 
updated during a short time. This study is focused in case (2). On the other hand, in 
the aforementioned research, the stability of the algorithms is not analyzed, and the 
stability of the algorithms should be assured to avoid the damage of the devices due 
to the processing of big quantity of data. 

The stable intelligent systems are the algorithms where the inputs, outputs, 
and parameters remain bounded through the time and where the overfitting is 
avoided. An algorithm with overfit has many parameters relative to the number 
of data; therefore, it has poor learning performance because it overreacts to minor 
fluctuations in the data. There is some research about the stable intelligent systems. 
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In [16–18], the stability of continuous-time fuzzy neural networks is studied, in [19– 
22] the stability of the gradient algorithm is introduced, in [23–25], the stability of 
continuous-time neural networks is described, in [26, 27], the stability of discrete-
time fuzzy systems is analyzed, in [28–30], the stability of continuous-time control 
systems is assured, and in [31, 32], the stability of controlled robotic systems is 
guaranteed. The stability should be assured in big data learning to guarantee a 
satisfactory behavior through the time for this kind of systems. 

Most of the stable algorithms use a time varying learning speed such as the 
mentioned in [19, 21], and [33] for the learning of a multilayer neural network, 
or the mentioned in [20] and [22] for the learning of a fuzzy inference system. It is 
an efficient algorithm; therefore, it would be interesting to modify this algorithm to 
be applied in a neuro fuzzy system. 

In this chapter, a neuro fuzzy inference system with a structure different with 
the multilayer neural network and the fuzzy inference system is suggested. Three 
differences between the introduced algorithm and the multilayer neural network and 
fuzzy inference system are described in function of the compactness, effectiveness, 
and stability as follows. 

1. The suggested algorithm is different with the fuzzy inference system because the 
first only uses the numerator of the average defuzzifier while the second utilizes 
the average defuzzifier. The numerator of the average defuzzifier is better for the 
learning in big data than the average defuzzifier because the first is more compact 
than the second. Consequently, the suggested algorithm is compact. 

2. The introduced algorithm is different with the multilayer neural network because 
the first employs Gaussian functions while the second utilizes sigmoid functions. 
The Gaussian function can be adapted better to the changing behavior of the 
systems than the sigmoid function because the first has three kinds of parameters 
while the second only uses two kinds of parameters and because the first 
considers positive and negative values, while the second only considers positive 
values. Therefore, the proposed algorithm is effective. 

3. The proposed algorithm is different with both the multilayer neural network and 
fuzzy inference system because the first uses a time varying learning speed while 
the other uses a constant learning speed. The time varying learning speed is better 
for the learning in big data than the constant learning speed because the first 
reaches the stability and the boundedness of the parameters while the other does 
not. Thus, the introduced algorithm is stable. 

The chapter is organized as follows. In Sect. 2, the neuro fuzzy inference system 
is presented. In Sect. 3, the closed loop dynamics of the neuro fuzzy inference 
system and the nonlinear system are obtained. In Sect. 4, the introduced algorithm 
for the big data learning of the neuro fuzzy inference system is designed. In Sect. 5, 
the stability, convergence, and boundedness of parameters for the aforementioned 
technique are guaranteed. In Sect. 6, the suggested strategy is summarized. In 
Sect. 7, the recommended algorithm is compared with other two algorithms for 
two processes. Section 8 presents the conclusions and suggests the future research 
directions.
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2 Neuro Fuzzy Inference System 

In this section, first, the big data nonlinear systems studied in this chapter are 
described, and second, the neuro fuzzy inference system for the big data learning 
of the nonlinear system behavior is introduced. 

Consider the big data unknown discrete-time multiple input multiple output 
nonlinear system as follows: 

.yl∗(k) = fl [Zk] , (6.1) 

where i = 1, . . . , N ., l = 1, . . . , O ., Zk = [z1(k) . . . , zi(k), . . . , zN(k)]T ∈ RN×1
. 

is the input vector, N .is the input number, O is the output number, zi(k) ∈ R. and 
yl∗(k) ∈ R. are the inputs and outputs of the plant, and f is an unknown and smooth 
nonlinear function, fl ∈ C∞

.. 
The neuro fuzzy inference system with one hidden layer for the big data learning 

of the nonlinear system (6.1) is described as follows: 

.

yl(k) = dl(k) =
M∑

j=1

ajl(k)αj (uj (k)),

αj (uj (k)) = e
−u2j (k)

,

uj (k) =
N∑

i=1

bij (k) [zi(k) − ci(k)] ,

(6.2) 

where i = 1, . . . , N ., j = 1, . . . ,M ., l = 1, . . . , O ., zi(k) ∈ R. and yl(k) ∈ R. are 
the inputs and outputs of the neuro fuzzy inference system, ajl(k) ∈ R., bij (k) ∈
R., ci(k) ∈ R. are the parameters of the output layer, hidden layer, and centers, 
αj (uj (k)) ∈ R. is a nonlinear function, uj (k) ∈ R. is the addition function, M is 
the number of neurons in the hidden layer, and O is the output number. Figure 6.1 
shows the architecture of the neuro fuzzy inference system where the input layer, 
hidden layer, and output layer are observed. 

Remark 6.1 In [11, 34–36], and [37], the interesting radial basis function neural 
networks are considered. A radial basis function neural network cannot be seen as a 
multilayer neural network because the first utilizes the Gaussian functions while the 
second employs the sigmoid functions. From [38, 39], a radial basis function neural 
network can be seen as a fuzzy inference system because both use the Gaussian 
functions. 

Remark 6.2 The fuzzy inference system is given as follows: 

.[c]cyl(k) = dl(k) =

M∑

j=1

ajl(k)αj (uj (k))

M∑

j=1

αj (uj (k))

, (6.3)
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Fig. 6.1 Architecture of the neuro fuzzy inference system 

. αj (uj (k)) = e
−u2j (k)

,

uj (k) =
N∑

i=1

bij (k) [zi(k) − ci(k)] ,

And the numerator of the average defuzzifier described by the first equation of (6.2) 
is more compact than the average defuzzifier described by the first equation of (6.3) 
because the first utilizes a less number of operations than the second. 

Remark 6.3 The multilayer neural network is given as follows: 

.

yl(k) = dl(k) =
M∑

j=1

ajl(k)αj (uj (k)),

αj (uj (k)) = sig
[
uj (k)

]
,

uj (k) =
N∑

i=1

bij (k)zi(k);

(6.4) 

the Gaussian function explained by the second and third equations of (6.2)  is  more  
effective than the sigmoid function explained by the second and third equations 
of (6.4) because the first utilizes two kinds of parameters while the second employs 
only one kind of parameter.
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3 Closed Loop Dynamics of the Neuro Fuzzy Inference 
System 

In this section, the closed loop dynamics of the neuro fuzzy system applied for the 
big data learning of the nonlinear system behavior are obtained via the linearization 
technique. The closed loop dynamics of the neuro fuzzy inference system are 
required for the algorithm design which described in the next section and for the 
stability analysis which is explained two sections later. 

According to the Stone-Weierstrass theorem [13, 21], the unknown nonlinear 
function f of (6.1) is approximated as follows: 

.

yl∗(k) = dl∗+ ∈lf =
M∑

j=1

ajl∗αj∗+ ∈lf ,

αj∗ = e
−u2j∗ ,

uj∗ =
N∑

i=1

bij∗ [zi(k) − ci∗] ,

(6.5) 

where ∈lf = yl∗(k) − dl∗ ∈ R. is the modeling error, αj∗ ∈ R., ajl∗ ∈ R., bij∗ ∈ R., 
and ci∗ ∈ R. are the optimal parameters that can minimize the modeling error ∈lf .. 
In the case of three independent variables, a function has a Taylor series as follows: 

.
fl(ω1, ω2, ω3) = fl(ω10 , ω20 , ω30) + (

ω1 − ω10
) ∂fl(ω1,ω2,ω3)

∂ω1

+ (
ω2 − ω20

) ∂fl(ω1,ω2,ω3)
∂ω2

+ (
ω3 − ω30

) ∂fl(ω1,ω2,ω3)
∂ω3

+ ξlf ,
(6.6) 

where ξlf ∈ R. is the remainder of the Taylor series. ω1 ., ω2 ., and ω3 . correspond to 
ajl(k) ∈ R., bij (k) ∈ R., and ci(k) ∈ R., ω10 ., ω20 ., and ω30 . correspond to ajl∗ ∈ R., 
bij∗ ∈ R., and ci∗ ∈ R., define ãj l(k) = ajl(k) − ajl∗ ∈ R., b̃ij (k) = bij (k) − bij∗ ∈
R., and c̃i (k) = ci(k) − ci∗ ∈ R.; therefore, the Taylor series is applied to obtain the 
closed loop dynamics of the neuro fuzzy inference system (6.2) and the nonlinear 
system behavior (6.1) as follows: 

.

dl(k) = dl∗ +
M∑

j=1

ãj l(k)
∂dl(k)
∂ajl (k)

+
N∑

i=1

M∑

j=1

b̃ij (k)
∂dl(k)
∂bij (k)

+
N∑

i=1

c̃i (k)
∂dl(k)
∂ci (k)

+ ξlf ,

(6.7) 

where ∂dl(k)
∂ajl (k)

∈ R., ∂dl(k)
∂bij (k)

∈ R., and ∂dl(k)
∂ci (k)

∈ R.; please note that dl(k) =
M∑

j=1

ajl(k)αj (uj (k)) ∈ R.. Since all the parameters are scalars, the Taylor series is
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fully applicable. Considering (6.2) and using the chain rule, it gives 

.
∂dl(k)

∂ajl(k)
= Fj (k) = αj (uj (k)), (6.8) 

where αj (uj (k)) = e
−u2j (k)

. and uj (k). are given in (6.2). Utilizing the same process 
gives 

.

∂dl(k)
∂bij (k)

= Gijl(k)

= γj (uj (k))ajl(k) [ci(k) − zi(k)] ,
(6.9) 

where γj (uj (k)) = 2uj (k)αj (uj (k)) ∈ R.. Again employing the same process gives 

.

∂dl(k)
∂ci (k)

= Hil(k)

= bij (k)γj (uj (k))ajl(k),
(6.10) 

Substituting ∂dl(k)
∂ajl (k)

.of (6.8), ∂dl(k)
∂bij (k)

.of (6.9), and ∂dl(k)
∂ci (k)

.of (6.10)  int  o (6.7), it gives 

.

dl(k) = dl∗ +
M∑

j=1

ãj l(k)Fj (k) +
N∑

i=1

M∑

j=1

b̃ij (k)Gijl(k)

+
N∑

i=1

c̃i (k)Hil(k) + ξlf .

(6.11) 

Define the learning error ỹl(k) ∈ R. as follows: 

.̃yl(k) = yl(k) − yl∗(k), (6.12) 

where yl∗(k). and yl(k). are defined in (6.1) and (6.2), respectively. Substitut-
ing (6.2), (6.5), and (6.12)  int  o (6.11) gives closed loop dynamics: 

.

ỹl(k) =
M∑

j=1

ãj l(k)Fj (k) +
N∑

i=1

M∑

j=1

b̃ij (k)Gijl(k)

+
N∑

i=1

c̃i (k)Hil(k) + μl(k),

(6.13) 

where μl(k) = ξlf − ∈lf ..
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4 Design of the Recommended Algorithm 

In this section, the recommended algorithm utilized in a neuro fuzzy inference 
system is designed for the big data learning of the nonlinear system behavior. In 
this part, the adapting law of the proposed algorithm is obtained. 

Theorem 6.1 The introduced algorithm that is the updating function of the neuro 
fuzzy inference system (6.2) for the big data learning of the nonlinear system (6.1) 
is given as follows: 

.

ajl(k + 1) = ajl(k) − η(k)Fj (k)ỹl(k),

bij (k + 1) = bij (k) − η(k)Gijl(k)ỹl(k),

ci(k + 1) = ci(k) − η(k)Hil(k)ỹl(k),

(6.14) 

where Fj (k)., Gijl(k)., and Hil(k). are given in (6.8), (6.9), and (6.10), respectively, 
and ỹl(k). is the learning error of (6.12). 

Proof See [40] for the proof. 

5 Stability Analysis of the Introduced Algorithm 

In this section, the recommended stable algorithm utilized in a neuro fuzzy inference 
system is designed for the big data learning of the nonlinear system behavior. In 
this part, the time varying learning speed used in the adapting law of the proposed 
algorithm is suggested; furthermore, the stability and convergence of the introduced 
algorithm are assured. 

The introduced algorithm is given in (6.14) with a time varying learning speed 
as follows: 

.

ajl(k + 1) = ajl(k) − η(k)Fj (k)ỹl(k),

bij (k + 1) = bij (k) − η(k)Gijl(k)ỹl(k),

ci(k + 1) = ci(k) − η(k)Hil(k)ỹl(k),

(6.15) 

where the new time varying learning speed η(k). is as follows: 

. η(k) = η0

2

⎛

⎝ 1
2 +

M∑

j=1

F 2
j (k) +

N∑

i=1

M∑

j=1

G2
ij l(k) +

N∑

i=1

H 2
il(k)

⎞

⎠

,

where i = 1, . . . , N ., j = 1, . . . , M ., l = 1, . . . , O ., Fj (k) ∈ R. is defined in (6.8), 
Gijl(k) ∈ R. is defined in (6.9), Hil(k) ∈ R. is defined in (6.10), ỹl(k). is defined



88 6 USNFIS: Uniform Stable Neuro Fuzzy Inference System

in (6.12), 0 < η0 ≤ 1 ∈ R., consequently 0 < η(k) ∈ R., μl . is its upper bound of the 
uncertainty μl(k)., |μl(k)| < μl .. 

Remark 6.4 η(k). is the one main part of the recommended algorithm, and it is 
selected by the designer as an average and bounded function such as the stability of 
the algorithm (6.15) can be assured. 

The following theorem gives the stability of the suggested algorithm. 

Theorem 6.2 The algorithm (6.2), (6.12), and (6.15) applied for the big data 
learning of the nonlinear system (6.1) is uniformly stable, and the upper bound 
of the average learning error ỹ2

lp(k). satisfies 

.lim sup
T →∞

1

T

T∑

k=2

ỹ2
lp(k) ≤ α0μ

2
l , (6.16) 

where ỹ2
lp(k) = η(k−1)

2 ỹ2
l (k − 1)., 0 < η0 ≤ 1 ∈ R. and 0 < η(k) ∈ R. are defined 

in (6.15), ỹl(k). is defined in (6.12), μl . is the upper bound of the uncertainty μl(k)., 
|μl(k)| < μl .. 

Proof See [40] for the proof. 

Remark 6.5 There are two requirements to apply this algorithm for the big data 
learning of the nonlinear system behavior: the first is that the uncertainty μl(k). 

should be bounded, and the second is that the nonlinear system should have the 
structure described by Eq. (6.1). 

Remark 6.6 The bound of μl(k). denoted as μl . is not utilized in the suggested 
algorithm (6.2), (6.12), (6.15) because it is only considered to assure its stability. 

The following theorem proves that the parameters of the introduced algorithm 
are bounded. 

Theorem 6.3 When the average learning error ỹ2
lp(k + 1). is bigger than the 

uncertainty η0μ
2
l ., the parameters error is bounded by the initial parameters error 

as follows: 

.

ỹ2
lp(k + 1) ≥ η0μ

2

=⇒
M∑

j=1

ã2j l(k) +
M∑

j=1

N∑

i=1

b̃2ij (k) +
N∑

i=1

c̃2i (k)

≤
M∑

j=1

ã2j l(1) +
M∑

j=1

N∑

i=1

b̃2ij (1) +
N∑

i=1

c̃2i (1),

(6.17) 

where i = 1, . . . , N ., j = 1, . . . , M ., l = 1, . . . , O ., ãj l(k)., b̃ij (k)., and c̃i (k) .are 
defined in (6.6), ãj l(1)., b̃ij (1)., and c̃i (1). are the initial parameters errors, ỹ2

lp(k +
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1) = 1 2η(k)ỹ2 
l (k)., ajl(k + 1)., bij (k + 1)., ci(k + 1)., 0 < η0 ≤ 1 ∈ R., and 0 <

η(k) ∈ R. are defined in (6.15), ỹl(k). is defined in (6.12), μl . is the upper bound of 
the uncertainty μl(k)., |μl(k)| < μl .. 

Proof See [40] for the proof. 

Remark 6.7 From Theorem 6.2 the average learning error ỹ2
lp(k + 1). of the 

suggested method is bounded, and from Theorem 6.3 the parameters errors ã2j l(k)., 

b̃2ij (k)., and c̃2i (k). are bounded, i.e., the introduced technique for the learning of 
a neuro fuzzy inference system is uniformly stable in the presence of unmodeled 
dynamics, and the overfitting is avoided. Furthermore, the learning error converges 
to a small zone bounded by the unmodeled dynamics μl .. 

6 The Suggested Algorithm 

In this section, the steps of the application for suggested algorithm are explained. 

(1) Obtain the outputs of the nonlinear system yl∗(k). with Eq. (6.1). Note that 
the nonlinear system may have the structure represented by Eq. (6.1); the 
parameters N and O are selected according to the input and output number 
of this nonlinear system.

(2) Select the following parameters: ajl(1)., bij (1)., and ci(1). as random numbers 
between 0 and 1, M as an integer number, and η0 . as a positive value smaller 
than or equal to 1; obtain the outputs of the neuro fuzzy inference system yl(1). 
with Eq. (6.2). 

(3) For each iteration k, obtain the outputs of the neuro fuzzy inference system 
yl(k). with Eq. (6.2), also obtain the learning error ỹl(k). with Eq. (6.12), and 
update the parameters ajl(k + 1)., bij (k + 1)., and ci(k + 1).with Eq. (6.15). 

(4) Note that the behavior of the algorithm could be improved by selecting other 
values for M or η0 .. 

Remark 6.8 The focused neuro fuzzy inference system has one hidden layer. A 
neuro fuzzy inference system with one hidden layer is sufficient to approximate any 
nonlinear system. 

7 Results 

In this section, two examples are considered. In the examples, the suggested 
algorithm is applied for the big data learning of the crude oil blending process and 
the beetle population process. In all cases, the recommended algorithm denoted as 
USNFIS is compared with the fuzzy inference system of [22] denoted as FIS and 
with the gradient algorithm of [21] denoted as G. It is important to note that the
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three mentioned algorithms are stable with the difference that the G is a multilayer 
neural network which utilizes sigmoid functions, the FIS is a fuzzy inference system 
which employs the average defuzzifier, while the USNFIS is a uniform stable fuzzy 
inference system which considers Gaussian functions and the numerator of the 
average defuzzifier. The root mean square error (RMSE) is used for the algorithms 
comparison, and it is given as follows: 

.RMSE =
(
1

T

T∑

k=1

O∑

l=1

ỹ2
l (k)

) 1
2

, (6.18) 

where ỹl(k). is the learning error of (6.12), T is the iteration number, and O is the 
output number.

7.1 Crude Oil Blending Process 

In this example, the studied algorithm is applied for the modeling of the crude oil 
blending process [13]. One neuro fuzzy inference system is utilized for the training, 
and the same system is utilized for the testing. The crude oil blending process has 
six inputs and three outputs which are high changing data during a short time. The 
inputs are z1(k) = L3 ., z2(k) = Puerto. Ceiba, and the output is y1∗(k) = Qa . for 
the first blending process, the inputs are z3(k) = Qb ., z4(k) = Maya ., and the output 
is y2∗(k) = Qc . for the second blending process, and the inputs are z5(k) = Qc ., 
z6(k) = El . Golpe, and the output is y3∗(k) = In = International . for the third 
blending process. In all the cases the o .API is considered. The data of 7875 iterations 
of operation are used for the training, and the data of the least 525 iterations are used 
for the testing. 

G is given by Rubio et al. [21] with parameters N = 6., O = 3., M = 10., α0 = 1., 
and Vj1 . and Wij1 . are random numbers between 0 and 1. 

FIS is given by Rubio [22] with parameters N = 6., O = 3., M = 10., η0 = 1., 
and ajl(1)., bij (1)., and ci(1). are random numbers between 0 and 1. 

USNFIS is given as (6.2), (6.12), and (6.15) with parameters N = 6., O = 3., 
M = 10., η0 = 1., ajl(1)., bij (1)., and ci(1). are random numbers between 0 and 1. 

Figure 6.2 shows the comparison results for the average learning error where in 
USNFIS the final average error is 7.6086 × 10−4

.,  in  FIS  o  f [22] the final average 
error is 0.0020., and in G of [21] the final average error is 0.0016.. Figure 6.3 
shows the training results, and Fig. 6.4 shows the testing results. Table 6.1 shows 
the training RMSE results, and Table 6.2 shows the testing RMSE results for many 
intermediate iterations termed with th via Eq. (6.18). 

From Figs. 6.2, 6.3, and 6.4, it is observed that USNFIS is better than both the 
G and FIS because the signal of the first follows better the signal of the plant 
than the signal of the other. From Tables 6.1 and 6.2, it can be observed that the 
USNFIS obtained better accuracy when it is compared with both G and FIS because
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Fig. 6.2 Average learning errors for the oil blending process 

the RMSE is smaller for the first. Thus, the USNFIS is preferable for the big data 
learning of the oil blending process. 

7.2 Beetle Population Process 

In this example, the introduced algorithm is applied for the modeling on the 
flour beetle population [41]. The beetle population process has six inputs and 
three outputs which are high changing data during a short time. The model of 
experimental population studies of a model of flour beetle population dynamics 
describes an age-structured population: 

.

L(k + 1) = b
f
A(k)e−ceaA(k)−celL(k),

P (k + 1) = [1 − μl]L(k),

A(k + 1) = P(k)e−cpaA(k) + [1 − μa]A(k),

(6.19)
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Fig. 6.3 Training results for the oil blending process 

where: 
b

f =. Larvae recruits per adult = 11.98. numbers 
cea =. Susceptibility of eggs to cannibalism by adults = 0.011. unitless 
cel =. Susceptibility of eggs to cannibalism by larvae = 0.013. unitless 
cpa =. Susceptibility of pupae to cannibalism by adults = 0.017. unitless 
μl =. Fraction of larvae dying (not cannibalism) = 0.513. unitless 
μa =. Fraction of adults dying = 0.96. unitless 
L(k). are the Larvae which starts with 250 numbers, P(k). are the Pupae which 

starts with 5 numbers, and A(k). are the Adults which starts with 100 numbers. The 
data of 7800 iterations of operation are used for the training, and the data of the 
least 200 iterations are used for the testing. One neuro fuzzy inference system is 
used for the training, and the same system is used for the testing. z1(k) = P(k). and 
z2(k) = A(k). are the inputs, and y1∗(k) = L(k + 1). is the output for the training 
of the first population process. z3(k) = L(k). and z4(k) = A(k). are the inputs, and 
y2∗(k) = P(k + 1). is the output for the training of the second population process. 
Finally, z5(k) = L(k). and z6(k) = P(k). are the inputs, and y3∗(k) = A(k + 1). is 
the output for the training of the third population process.
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Fig. 6.4 Testing results for the oil blending process 

Table 6.1 RMSE training results for the oil blending process 

Techniques 1000th. 2000th. 3000th. 4000th. 5000th. 6000th. 7000th. 7875th. 

G. 0.1588. 0.1473. 0.1419. 0.1409. 0.1404. 0.1399. 0.1389. 0.1389. 

FIS. 0.1624. 0.1580. 0.1560. 0.1547. 0.1540. 0.1534. 0.1530. 0.1528. 

USNFIS. 0.1473. 0.1183. 0.1037. 0.0946. 0.0882. 0.0833. 0.0794. 0.0766. 

Table 6.2 RMSE testing 
results for the oil blending 
process 

Techniques 8075th. 8275th. 8400th. 

G. 0.0353. 0.0311. 0.0228. 

FIS. 0.0375. 0.0331. 0.0240. 

USNFIS. 0.0122. 0.0107. 0.0077. 

G is given by Rubio et al. [21] with parameters N = 6., O = 3., M = 10., α0 = 1., 
and Vj1 . and Wij1 . are random numbers between 0 and 1. 

FIS is given by Rubio [22] with parameters N = 6., O = 3., M = 10., η0 = 1., 
and ajl(1)., bij (1)., and ci(1). are random numbers between 0 and 1. 

USNFIS is given as (6.2), (6.12), and (6.15) with parameters N = 6., O = 3., 
M = 10., η0 = 1., and ajl(1)., bij (1)., and ci(1). are random numbers between 0 
and 1.
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Fig. 6.5 Average learning errors for the beetle population process 

Figure 6.5 shows the comparison results of the average learning error where in 
USNFIS the final average error is 8.5516 × 10−4

.,  in  FIS  o  f [22] the final average 
error is 0.0011., and in G of [21] the final average error is 0.0382.. Figure 6.6 
shows the training results, and Fig. 6.7 shows the testing results. Table 6.3 shows 
the training RMSE results, and Table 6.4 shows the testing RMSE results for many 
intermediate iterations termed with th via Eq. (6.18). 

From Figs. 6.5, 6.6, and 6.7, it can be observed that the USNFIS is better than 
both G and FIS because the signal of the first follows better the signal of the plant 
than the signal of the other. From Tables 6.3 and 6.4, it is observed that the USNFIS 
achieves better accuracy when it is compared with both G and FIS because the 
RMSE is smaller for the first. Thus, the USNFIS is preferable for the big data 
learning of the beetle population process.
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Fig. 6.6 Training results for the beetle population process 

8 Concluding Remarks 

In this chapter, a novel algorithm is designed for the big data learning of a 
neuro fuzzy inference system, and the stability, convergence, and boundedness of 
parameters for the studied technique are guaranteed. From the results, it is shown 
that the introduced approach achieves better accuracy for the big data learning of 
nonlinear system behaviors when it is compared with both the gradient and fuzzy 
inference system methods. The suggested technique could be used to train a neuro 
fuzzy inference system such as it is applied in this chapter, or it could be used as 
the parameters updating of an evolving intelligent system. As a future research, the 
focused method will be applied in the control or in the evolving intelligent systems, 
or other new algorithms will be designed.
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Fig. 6.7 Training results for the beetle population process 

Table 6.3 RMSE training results for the beetle population process 

Techniques 1000th. 2000th. 3000th. 4000th. 5000th. 6000th. 7000th. 7800th. 

G. 0.4267. 0.4263. 0.4257. 0.4254. 0.4252. 0.4250. 0.4248. 0.4247. 

FIS. 0.3092. 0.2291. 0.1967. 0.1788. 0.1652. 0.1536. 0.1437. 0.1369. 

USNFIS. 0.1841. 0.1321. 0.1089. 0.0951. 0.0856. 0.0786. 0.0732. 0.0696. 

Table 6.4 RMSE testing 
results for the beetle 
population process 

Techniques 7900th. 8000th. 

G. 0.0644. 0.0460. 

FIS. 0.0066. 0.0047. 

USNFIS. 0.0027. 0.0019. 

References 

1. E. Lughofer, M. Sayed-Mouchaweh, Autonomous data stream clustering implementing split-
and-merge concepts-towards a plug-and-play approach. Inf. Sci. 304, 54–79 (2015) 

2. E. Lughofer, Hybrid active learning for reducing the annotation effort of operators in 
classification systems. Pattern Recognit. 45, 884–896 (2012)



References 97

3. M. Pratama, S.G. Anavatti, E. Lughofer, GENEFIS: toward an effective localist network. IEEE 
Trans. Fuzzy Syst. 22(3), 547–562 (2014) 

4. M. Pratama, S.G. Anavatti, M.-J. Er, E. Lughofer, pClass: an effective classifier for streaming 
examples. IEEE Trans. Fuzzy Syst. 23(2), 369–386 (2015) 

5. M. Pratama, G. Zhang, M.J. Er, S. Anavatti, An incremental type-2 meta-cognitive extreme 
learning machine. IEEE Trans. Cybernet. 47(2), 339–353 (2017) 

6. M. Pratama, J. Lu, S. Anavatti, E. Lughofer, C.-P. Lim, An incremental meta-cognitive-based 
scaffolding fuzzy neural network. Neurocomputing 171, 89–105 (2016) 

7. D. Kangin, P. Angelov, J.A. Iglesias, A. Sanchis, Evolving classifier TEDAClass for big data. 
Procedia Comput. Sci. 53, 9–18 (2015) 

8. A. Roy, A classification algorithm for high-dimensional data. Procedia Comput. Sci. 53, 345– 
355 (2015) 

9. A. Roy, P.D. Mackin, S. Mukhopadhyay, Methods for pattern selection, class-specific feature 
selection and classification for automated learning. Neural Networks 41, 113–129 (2013) 

10. A. Roy, On findings of category and other concept cells in the brain: some theoretical 
perspectives on mental representation. Cognit. Comput. 7, 279–284 (2015) 

11. Y. Li, Q. Liu, S.R. Tan, R.H.M. Chan, High-resolution time-frequency analysis of EEG signals 
using multiscale radial basis functions. Neurocomputing 195, 96–103 (2016) 

12. B. Luitel, G.K. Venayagamoorthy, Cellular computational networks-a scalable architecture for 
learning the dynamics of large networked systems. Neural Networks 50, 120–123 (2014) 

13. J.J. Rubio, Least square neural network model of the crude oil blending process. Neural 
Networks 78, 88–96 (2016) 

14. B. Xu, K. Huang, I. King, C.L. Liu, J. Sun, N. Satoshi, Graphical lasso quadratic discriminant 
function and its application to character recognition. Neurocomputing 129, 33–40 (2014) 

15. M.C. Yuen, I. King, K.S. Leung, TaskRec: a task recommendation framework in crowdsourcing 
systems. Neural Proces. Lett. 41(2), 223–238 (2015) 

16. C.K. Ahn, A new solution to the induced l ∞. finite impulse response filtering problem based 
on two matrix inequalities. Int. J. Control 87(2), 404–409 (2014) 

17. C.K. Ahn, M.T. Lim, Model predictive stabilizer for T-S fuzzy recurrent multilayer neural 
network models with general terminal weighting matrix. Neural Comput. Appl. 23(suppl 1), 
S271-S277 (2013) 

18. C.K. Ahn, An error passivation approach to filtering for switched neural networks with noise 
disturbance. Neural Comput. Appl. 21(5), 853–861 (2012) 

19. J. Cheng-Lv, Z. Yi, Y. Li, Non-divergence of stochastic discrete time algorithms for PCA neural 
networks. IEEE Trans. Neural Networks Learn. Syst. 26(2), 394–399 (2015) 

20. J.A. Meda-Campaña, J. Rodriguez-Valdez, T. Hernandez-Cortes, R. Tapia-Herrera, V. Nosov, 
Analysis of the fuzzy controllability property and stabilization for a class of T-S fuzzy models. 
IEEE Trans. Fuzzy Syst. 23(2), 291–301 (2015) 

21. J.J. Rubio, P. Angelov, J. Pacheco, An uniformly stable backpropagation algorithm to train a 
feedforward neural network. IEEE Trans. Neural Networks 22(3), 356–366 (2011) 

22. J.J. Rubio, Fuzzy slopes model of nonlinear systems with sparse data. Soft Comput. 19(12), 
3507–3514 (2015) 

23. R. Rakkiyappan, R. Sasirekha, Y. Zhu, L. Zhang, H ∞. state estimator design for discrete-time 
switched neural networks with multiple missing measurements and sojourn probabilities. J. 
Franklin Instit. 353, 1358–1385 (2016) 

24. L. Zhang, Y. Zhu, W.X. Zheng, Energy-to-peak state estimation for Markov jump RNNs 
with time-varying delays via nonsynchronous filter with nonstationary mode transitions. IEEE 
Trans. Neural Networks Learn. Syst. 26(10), 2346–2356 (2015) 

25. L. Zhang, Y. Zhu, W.X. Zheng, Synchronization and state estimation of a class of hierarchical 
hybrid neural networks with time-varying delays. IEEE Trans. Neural Networks Learn. Syst. 
27(2), 459–470 (2016) 

26. Z. Ning, L. Zhang, J.J. Rubio, X. Yin, Asynchronous filtering for discrete-time fuzzy affine 
systems with variable quantization density. IEEE Trans. Cybernet. 47(1), 153–164 (2017)



98 6 USNFIS: Uniform Stable Neuro Fuzzy Inference System

27. L. Zhang, T. Yang, P. Shi, M. Liu, Stability and stabilization of a class of discrete-time fuzzy 
systems with semi-Markov stochastic uncertainties. IEEE Trans. Syst. Man Cybern.: Syst. 
46(12), 1642–1653 (2016) 

28. Y. Pan, M.J. Er, D. Huang, Q. Wang, Adaptive fuzzy control with guaranteed convergence of 
optimal approximation error. IEEE Trans. Fuzzy Syst. 19(5), 807–818 (2011) 

29. T. Sun, H. Pei, Y. Pan, C. Zhang, Robust wavelet network control for a class of autonomous 
vehicles to track environmental contour line. Neurocomputing 74, 2886–2892 (2011) 

30. Y. Pan, H. Yu, Biomimetic hybrid feedback feedforward neural-network learning control. IEEE 
Trans. Neural Networks Learn. Syst. 28(6), 1481–1487 (2017) 

31. Y. Pan, Y. Liu, B. Xu, H. Yu, Hybrid feedback feedforward: an efficient design of adaptive 
neural network control. Neural Networks 76, 122–134 (2016) 

32. T. Sun, H. Pei, Y. Pan, C. Zhang, Robust adaptive neural network control for environmental 
boundary tracking by mobile robots. Int. J. Rob. Nonlin. Control 23, 123–136 (2013) 

33. E. Lughofer, Evolving Fuzzy Systems-Methodologies, Advanced Concepts and Applications 
(Springer, Berlin, 2011). ISBN: 978-3-642-18086-6 

34. C.J.B. Macnab, Using RBFs in a CMAC to prevent parameter drift in adaptive control. 
Neurocomputing 205, 45–52 (2016) 

35. Q. Wu, X. Wang, Q. Shen, Research on dynamic modeling and simulation of axial-flow 
pumping system based on RBF neural network. Neurocomputing 186, 200–206 (2016) 

36. R. Yang, P.V. Er, Z. Wang, K.K. Tan, An FBF neural network approach towards precision 
motion system with selective sensor fusion. Neurocomputing 199, 31–39 (2016) 

37. C. Zhang, H. Wei, L. Xie, Y. Shen, K. Zhang, Direct interval forecasting of winds peed 
using radial basis function neural networks in a multi-objective optimization framework. 
Neurocomputing 205, 53–63 (2016) 

38. J.S. Roger-Jang, C.T. Sun, E. Mitzutani, Neuro-Fuzzy and Soft Computing, a Computational 
Approach to Learning and Machine Intelligence (Pearson College Div; first edition, 1997). 
ISBN: 0-13-261066-3 

39. J.J. Rubio, A method with neural networks for the classification of fruits and vegetables. Soft 
Comput. 21, 7207–7220 (2017) 

40. J.J. Rubio, USNFIS: uniform stable neuro fuzzy inference system. Neurocomputing 262, 57– 
66 (2017) 

41. J.J. Rubio, Stability analysis for an on-line evolving neuro-fuzzy recurrent network, in Evolving 
Intelligent Systems: Methodology and Applications (John Willey and Sons, Hoboken; IEEE 
Press, Piscataway, 2010). Chapter 8, pp. 173–199. ISBN: 978-0-470-28719-4



Chapter 7 
SOFMLS: Online Self-organizing Fuzzy 
Modified Least Square Network 

1 Introduction 

Both neural networks and fuzzy logic are universal estimators, which can approx-
imate any nonlinear function to any prescribed accuracy, provided that sufficient 
hidden neurons or fuzzy rules are available. Recent results show that the fusion 
procedure of these two different technologies seems to be very effective for 
nonlinear system identification [1]. In the last few years, the application of fuzzy 
neural networks for nonlinear system identification has been a very active area [2– 
4]. Structure and parameters learning are involved in the identification of a system 
with fuzzy neural networks. 

The system identification can be classified into two groups: (1) offline identifica-
tion [5–10] and (2) online identification [11–21]. 

In offline identification, the update of the parameters and the structure take place 
only after the whole training dataset has been presented, i.e., only after each epoch. 
In this kind of identification, the structure learning is used to generate the fuzzy 
rules by trial-and-error approaches, like the unbiasedness criterion [8]. Several 
approaches generate fuzzy rules from numerical data. One of the most common 
methods for structure initialization is the uniform partitioning of each input variable 
into fuzzy sets, resulting in a fuzzy grid. This approach is followed in ANFIS [6]. 
In an earlier study [5], the Takagi-Sugeno model was used for designing several 
neuro fuzzy identifiers. This approach consists of two learning phases: (1) structure 
learning, which involves finding the most important subset of variables of all the 
possible ones, the partition of the input space, and determining the number of fuzzy 
rules, and (2) parameters learning, which involves approximating some unknown 
parameters by the parameter updating. The parameter updating is employed after 
the structure is decided. Most of the structure learning methods are based on data 
clustering, such as the fuzzy C-means clustering [22] and the mountain clustering 
[10]. 
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In online identification, structure and parameters learning are updated imme-
diately after presentation of each input-output pair, i.e., after each iteration. The 
online identification also includes (1) structure learning and (2) parameters learning. 
For structure learning, the clustering methods are mainly used. In the clustering, 
to update fuzzy rules, distance from the centers of fuzzy rules, potentials of new 
data sample, and error from previous step are used. Different mechanisms are 
employed in constructing the structure. The resource allocating network (RAN) [18] 
uses a geometric growing criterion to update the fuzzy rules. The evolving fuzzy 
neural networks (EFuNNs) [15] use the difference between two membership vectors 
to update the fuzzy rules. The dynamic evolving neural fuzzy inference system 
(DENFIS) [16], the self-constructing neural fuzzy inference network (SONFIN) 
[13], and the recurrent self-organizing neural fuzzy inference network (RSONFIN) 
[14] use the distance to update the fuzzy rules. The evolving Takagi-Sugeno (ETS) 
model [11] uses the potential to update the fuzzy rules. The Takagi-Sugeno inference 
algorithm of an earlier study [23] considers input and output data to update the rules. 

A self-constructing algorithm is no longer a practical system if the number of 
input-output pairs is large, because the number of rules grows even if some data are 
grouped into clusters. Therefore, a pruning method is needed. The self-constructing 
neural fuzzy networks mentioned earlier do not have a pruning method, even though 
they can be used for online learning. To extract fuzzy rules in a growing fashion 
from a large numerical database, some self-constructing fuzzy networks have been 
presented. It has been shown that the dynamic fuzzy neural network (DFNN) [19] 
approach provides good results, and the error reduction ratio of each radial basis 
function neuron is used to decide which radial basis function neurons are important 
to the network. Thus, the less important radial basis function neuron may be deleted. 
The general dynamic fuzzy neural network (GDFNN) proposed in [20] tries to give 
reasonable explanations for some predefined training parameters in DFNN. These 
methods, however, depend on the number of total training data. In an earlier study 
[11], it was considered that if a new datum, which is accepted as a focal point of 
a new rule, is too close to a previously existing rule, then the old rule is replaced 
by the new one. The self-organizing fuzzy neural network (SOFNN) [17] approach 
proposes a pruning method devised from the optimal brain surgeon (OBS) approach 
[24]. The basic idea of the SOFNN is to use the second derivative information to find 
the unimportant neuron. In the simplified method for learning in evolving Takagi-
Sugeno fuzzy models (simpl_eTS) [12], the density as the population is considered, 
the population of each cluster is monitored, and if it amounts to less than 1% of the 
total data samples, that cluster is ignored. The cluster is ignored in the algorithm at 
this iteration, but the rule is not pruned; thus, the network cannot decrease. In the 
Sequential Adaptive Fuzzy Inference System (SAFIS) [25], one threshold parameter 
is used for adding a rule, and another threshold parameter is employed for pruning 
a rule as shown in this chapter; however, they do not use the concept of density. 

On the other hand, the stability problem of fuzzy neural networks is important 
for online identification, and the neural fuzzy networks mentioned earlier do not 
guarantee the stability. It is well known that normal identification algorithms 
(e.g., gradient descent and least square) are stable in ideal conditions. However,
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in the presence of unmodeled dynamics, they may become unstable. The lack 
of robustness of the parameter identification was demonstrated earlier [26], and 
became a hot issue in the 1980s, when some robust modification techniques were 
suggested [27]. Some robust modifications must be applied to assure stability with 
respect to uncertainties. Projection operator is an effective tool to guarantee that 
the fuzzy identification is bounded [9, 27]. Input-to-state stability (ISS) approach 
is applied for nonlinear system identification, using the gradient descent algorithm 
for the fuzzy networks [21] and for the neural networks [28]. A double dead-zone 
is used to assure the stability of the identification error in the gradient descent 
algorithm [29]. On the other hand, the Lyapunov method is used to prove that a 
double dead-zone Kalman filter training is stable [30]. 

In this chapter, an online self-organizing fuzzy modified least square (SOFMLS) 
network is proposed to address these problems in the nonlinear system identifi-
cation. Structure and parameter learning are active at the same time-step in the 
algorithm. The model is capable of perceiving the change in the actual system 
and adapting (self-organize) itself to the new situation. A new network that uses 
unidimensional membership functions for each rule is proposed, and it avoids the 
singularity produced by the widths in the antecedent part for online identification. 
It generates a new rule if the smallest distance between the new data and all the 
existing rules (the winner rule) is more than a prespecified radius, and it considers 
input and output data when a new rule is generated. To obtain faster parameter 
convergence, a modified least square algorithm is used in parameters learning 
to train the centers and the widths in the antecedent part and the centers in the 
consequent part. A new pruning algorithm based on the density is proposed, where 
the density indicates the number of elements for each rule. The rule that has the 
smallest density (the looser rule) in a selected number of iterations is pruned if the 
value of its density is smaller than a specified threshold. The stability of the proposed 
algorithm is proven, and the bound of the average of the identification error is found. 
The condition that led the algorithm to avoid the local minimum is found, and it is 
proven that the parameters error is bounded by the initial parameters error. 

2 Network for Nonlinear Identification 

Let us consider the following unknown discrete-time nonlinear system: 

.y(k − 1) = f [X(k − 1)] , (7.1) 

where X(k − 1) = [x1(k − 1) . . . xN(k − 1)] = [y(k − 2), . . . , y(k − n − 1), u . 

(k − 2) , . . . , u (k − m − 1)] ∈ RN
. (N = n+m.) is the input vector, |u(k − 1)|2 ≤

u., y(k−1). is the output of the plant, and f is an unknown nonlinear smooth f unction
f ∈ C∞.. A generic fuzzy model is presented as a collection of fuzzy rules in the
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following form (Mamdani fuzzy model [9]): 

.
Rj : IF x1 is A1,j and x2 is A2,j and . . . xN is AN,j

THEN v is Bj ,
(7.2) 

where M(j = 1, 2 . . . M). fuzzy IF THEN rules and N fuzzy sets are used for 
each rule to perform a mapping from an input linguistic v ector X(k − 1) =
[x1(k − 1) . . . xN(k − 1)] eRN

. (N = n + m.) to an output linguistic scalar veR.. 
A1,j . . . AN,j ., and Bj . are the standard fuzzy sets. Each input variable xi . has N 
fuzzy sets. By using mean inference, center-average defuzzifier and center fuzzifier, 
called Sugeno fuzzy inference system with weighted average (FIS), the output of 
the fuzzy logic system can be expressed [7, 9]  a  s

.

ŷ(k − 1) = a(k − 1)/b(k − 1),

a(k − 1) =
M
∑

j=1

vj (k − 1)zj (k − 1),

b(k − 1) =
M

∑

j=1

zj (k − 1),

zj (k − 1) = exp
[

−γ 2
j (k − 1)

]

,

γj (k − 1) =

N
∑

i=1

wj (k−1)(xi (k−1)−cj (k−1))

N
,

(7.3) 

where xi(k−1). are inputs of system (7.1), (i = 1 . . . N .), cj (k−1). and wj(k−1) =
1

σj (k−1) . are the centers and the widths of the membership functions of the antecedent 
part, respectively, j = 1 . . . M ., vj (k−1).are the centers of the membership functions 
of the consequent part. Let us define the functions φj (k − 1). from (7.3)  a  s [28] 

.φj (k − 1) = zj (k − 1)/b(k − 1). (7.4) 

Then (7.3) can be rewritten as follows (Fig. 7.1): 

.̂y(k − 1) =
M
∑

j=1

vj (k − 1)φj (k − 1) = V T (k − 1)Φ(k − 1), (7.5) 

where V (k − 1) = [

vj (k − 1) . . . vM(k − 1)
]T

eRM
. and Φ(k − 1) =

[

φj (k − 1) . . . φM(k − 1)
]T

eRM
.. 

Remark 7.1 The networks of many earlier studies [7, 9, 11, 17], and [25]  use  
membership functions as shown in this study, but they use the following functions:
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Fig. 7.1 Architecture of the fuzzy system 

. γj (k − 1) =
N

∑

i=1

1

σij (k − 1)

(

xi(k − 1) − cij (k − 1)
)

.

The first, in the antecedent part of the networks of the abovementioned references, 
2N parameters are used for each membership function (cij (k − 1)., σij (k − 1).) 
called multidimensional membership functions, while in the antecedent part of the 
network in this study two parameters are used for each rule (cj (k − 1)., wj(k − 1).), 
called unidimensional membership functions, as can be seen in (7.3). Second, the 
networks of the abovementioned references use 1

σij (k−1) .which can cause singularity 

in online learning, while the network of this study uses wj(k−1) = 1
σj (k−1) . to avoid 

singularity. Some authors use the sum inference [17], while some use the product 
inference [9, 11, 12, 16], and others employ the norm inference [7, 25]; however, 
in this study a new inference called mean inference is used. The mean inference is 
defined in (7.3)  as γj (k − 1).. 

3 Structure Learning 

Choosing an appropriate number of rules is important in the design of fuzzy neural 
systems, because too many rules result in a complex fuzzy neural system that may 
be unnecessary for the problem, whereas too few rules produce a less powerful fuzzy 
neural system, which may be insufficient to achieve the objective. The number of 
rules is seen as a design parameter. It is determined based on the input-output pairs
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and the number of elements of each rule. The basic idea is to group the input-output 
pairs into clusters and use one rule for one cluster, i.e., the number of rules equals 
the number of clusters. 

One of the simplest clustering algorithms is the nearest neighborhood clustering 
algorithm. In this algorithm, the first datum is considered as the first center of the 
first cluster. If the distance between the new data and its nearest cluster is less than 
a prespecified value (the radius r), then the nearest cluster to the data is updated; 
otherwise, this datum is considered as a new cluster center. The details are given as 
follows. 

Let X(k − 1). be the newly incoming pattern; then from (7.3) an auxiliary 
parameter p(k − 1). is obtained as 

.p(k − 1) = max
1≤j≤M

zj (k − 1). (7.6) 

If p(k − 1) ≥ r ., where r is a prespecified radius, r ∈ (0, 1)., then a rule is not 
generated. The winner rule j∗

. is presented in the algorithm when zj (k − 1) =
p(k−1).. As the winner rule is a rule that increments its importance in the algorithm, 
its density must be increased and is updated as 

.dj∗(k) = dj∗(k) + 1. (7.7) 

If p(k−1) < r ., then a new rule is generated and M = M +1.. Once a new rule is 
generated, the next step is to assign initial centers and widths of the corresponding 
membership functions, and a new density with value of 1 is generated for this rule 
as follows: 

.
cM+1(k) =

N
∑

i=1

xi (k)

N
, wM+1(k) =

N
∑

i=1

[

xi (k)−cj∗ (k)
]

N
,

vM+1(k) = y(k) dM+1(k) = 1.

(7.8) 

The abovementioned algorithm will no longer be a practical system if the number 
of input-output pairs is large, because the number of rules (clusters) grows, even if 
some data are grouped into rules (clusters). Therefore, one needs a pruning method. 
A new pruning algorithm based on the density is proposed, where the density is the 
number of times that each rule is used in the algorithm. From (7.8), it can be seen 
that when a new rule is generated, its density starts with 1, and from (7.7) it can 
be seen that when a datum is grouped in an existing rule, the density of this rule 
is increased by 1. Thus, each cluster (rule) has its own density. The least important 
rule is the one that has the smallest density. After some iterations ( ΔL.), the least 
important rule is pruned if the value of its density is smaller than a prespecified 
threshold ( du .), i.e., this rule is unnecessary in the algorithm. The details are given 
as follows: 

Each ΔL. iteration, where ΔL ∈ N ., dmin(k). is considered as follows:
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.dmin(k) = min
1≤j≤M

dj (k), (7.9) 

If M ≥ 2. and dmin(k) ≤ du ., this rule is pruned, where du ∈ N . is the minimum 
selected density that is allowed. It is called the threshold parameter. Once a rule 
is pruned, the next step is to assign centers and widths of the corresponding 
membership functions. The looser rule j∗ . is presented in the algorithm when 
dj (k) = dmin(k).. The looser rule is the less important rule of the algorithm, if 
j ≤ j∗ ., nothing is modified, but if j > j∗ ., then all the parameters are moved to 
organize them as follows: 

.
cj−1(k) = cj (k), wj−1(k) = wj(k),

vj−1(k) = vj (k), dj−1(k) = dj (k).
(7.10) 

In this way, the looser rule j∗ . is sent to the last element (j = M .). For j = M .,  the  
looser rule is pruned as follo ws:

.cM(k) = 0, wM(k) = 0, vM(k) = 0, dM(k) = 0. (7.11) 

Consequently, M is updated as M = M − 1. to decrease the size of the network. 
If dmin(k − 1) > du . or M = 1., then this rule is not pruned. If there is only one 

rule denoted as M = 1., then the algorithm cannot prune this rule. 
Finally, L is updated as L = L + ΔL.. 

Remark 7.2 The parameters L and ΔL. are needed, because the pruning algorithm 
is not active at each iteration. The initial value of L is ΔL., and the pruning 
algorithm works at the first time when k = L., and consequently, L is increased 
by ΔL.. The pruning algorithm works for each ΔL. iteration. The parameter ΔL. 

was determined empirically as 5du .; thus, the pruning algorithm only has du . as the 
designing parameter. 

Remark 7.3 It can be seen that the max.of zj (k−1). is taken in (7.6). This idea was 
taken from the competitive learning of the ART recurrent neural network [7, 31]  to  
obtain the winner rule (in the case of the ART network, it is the winner neuron).

Remark 7.4 In an earlier study [17], the second derivative of an objective function 
is used to find the unimportant rule. In this study, the density parameter is used 
to find the unimportant rule. In another study [12] the density as the population is 
considered, the population of each cluster is monitored, and if it amounts to less 
than 1% of the total data samples, the cluster is ignored at this iteration. The rule 
is ignored as vd min(k) = 0., and subsequently, this weight is ignored in the term 
ŷ(k − 1). of (7.5). The cluster is ignored in the algorithm at this iteration, but the 
rule is not pruned; thus, the network cannot decrease. In an earlier study [25], two 
threshold parameters are considered, one for adding rules and the other for removing 
rules; however, they did not use the density.
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4 Parameters Learning 

The stability of structure and parameters learning is needed, because this algorithm 
works online. First, the model is linearized, and later, the stability of the proposed 
algorithm is analyzed. 

According to Stone-Weierstrass theorem [32], the unknown nonlinear function f 
of (7.1) is approximated as 

.y(k − 1) =
M

∑

j=1

v∗
j φ∗

j (k − 1)+ ∈f = V ∗T Φ∗(k − 1)+ ∈f , (7.12) 

where ∈f = y(k − 1) − V ∗T Φ∗(k − 1). is the modeling error, φ∗
j (k − 1) = z∗

j (k −

1)/b∗(k−1)., b∗(k−1) =
M
∑

j=1

z∗
j (k−1)., z∗

j (k−1) = exp
[

−γ ∗2
j (k − 1)

]

., γ ∗
j (k−1) =

N
∑

i=1

w∗
j

(

xi(k − 1) − c∗
j

)

., where v∗
j ., w∗

j ., and c∗
j . are the optimal parameters that can 

minimize the modeling error ∈f . [33]. 
First, the network model is linearized and will be used to define the parameters 

updating and to prove the stability of the proposed algorithm. 
In the case of three independent variables, a smooth function has a Taylor series 

as 

.
f (ω1, ω2, ω3) = f (ω10, ω20 , ω30) + ∂f (ω1,ω2,ω3)

∂ω1

(

ω1 − ω10
) +

∂f (ω1,ω2,ω3)
∂ω2

(

ω2 − ω20
) + ∂f (ω1,ω2,ω3)

∂ω3

(

ω3 − ω30
) + Rf ,

(7.13) 

where Rf . is the remainder of the Taylor series. If we let ω1 ., ω2 ., and ω3 . correspond 
to cj (k − 1)., wj(k − 1)., and vj (k)., ω10 ., ω20 ., ω30 . correspond to c

∗
j ., w∗

j ., and v∗
j ., 

let us define c̃j (k − 1) = cj (k − 1) − c∗
j ., w̃j (k − 1) = wj(k − 1) − w∗

j . and 
ṽj (k − 1) = vj (k − 1) − v∗

j ., and then the Taylor series is applied to linearize (7.3) 
and (7.5)  a  s

.

V T (k − 1)Φ(k − 1) = V ∗T Φ∗(k − 1) +
M
∑

j=1

∂V T (k−1)Φ(k−1)
∂cj (k−1) c̃j (k − 1)

+
M

∑

j=1

∂V T (k−1)Φ(k−1)
∂wj (k−1) w̃j (k − 1) +

M
∑

j=1

∂V T (k−1)Φ(k−1)
∂vj (k−1) ṽj (k − 1) + Rf .

(7.14) 

Considering (7.3), (7.4), and (7.5), and using the chain rule [9, 13, 29, 30], gives
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. 

∂V T (k−1)Φ(k−1)
∂cj (k−1)

= ∂V T (k−1)Φ(k−1)
∂a(k−1)

∂a(k−1)
∂zj (k−1)

∂zj (k−1)
∂γj (k−1)

∂γj (k−1)
∂cj (k−1)

+ ∂V T (k−1)Φ(k−1)
∂b(k−1)

∂b(k−1)
∂zj (k−1)

∂zj (k−1)
∂γj (k−1)

∂γj (k−1)
∂cj (k−1)

= 2γj (k − 1)zj (k − 1)wj (k − 1)
vj (k−1)
b(k−1)

−2γj (k − 1)zj (k − 1)wj (k − 1) a(k−1)
b2(k−1)

,

∂V T (k−1)Φ(k−1)
∂cj (k−1) = 2γj (k − 1)zj (k − 1)wj (k − 1) [

vj (k−1)−ŷ(k−1)]
b(k−1) ,

. 

∂V T (k−1)Φ(k−1)
∂wj (k−1)

= ∂V T (k−1)Φ(k−1)
∂a(k−1)

∂a(k−1)
∂zj (k−1)

∂zj (k−1)
∂γj (k−1)

∂γj (k−1)
∂wj (k−1)

+ ∂V T (k−1)Φ(k−1)
∂b(k−1)

∂b(k−1)
∂zj (k−1)

∂zj (k−1)
∂γj (k−1)

∂γj (k−1)
∂wj (k−1)

= −2γj (k − 1)zj (k − 1)

N
∑

i=1

[xi (k−1)−cj (k−1)]

N

vj (k−1)
b(k−1)

+2γj (k − 1)zj (k − 1)

N
∑

i=1

[xi (k−1)−cj (k−1)]

N
a(k−1)
b2(k−1)

,

∂V T (k−1)Φ(k−1)
∂wj (k−1) = 2γj (k − 1)zj (k − 1)

N
∑

i=1

[xi (k−1)−cj (k−1)]

N

[ŷ(k−1)−vj (k−1)]
b(k−1) ,

. 
∂V T (k − 1)Φ(k − 1)

∂vj (k − 1)
=

∂

M
∑

j=1

vj (k − 1)φj (k − 1)

∂vj (k − 1)
= φj (k − 1).

Substituting ∂V T (k−1)Φ(k−1)
∂cj (k−1) ., ∂V T (k−1)Φ(k−1)

∂wj (k−1) ., and ∂V T (k−1)Φ(k−1)
∂vj (k−1) . in (7.14)  give  s

. 

V T (k − 1)Φ(k − 1) = V ∗T Φ∗(k − 1) +
M

∑

j=1

φj (k − 1)̃vj (k − 1) + Rf

+
M

∑

j=1

2γj (k − 1)zj (k − 1)wj (k − 1) [
vj (k−1)−ŷ(k−1)]

b(k−1) c̃j (k − 1)

+
M

∑

j=1

2γj (k − 1)zj (k − 1)

N
∑

i=1

[xi (k−1)−cj (k−1)]

N

[ŷ(k−1)−vj (k−1)]
b(k−1) w̃j (k − 1).

(7.15)
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Let us define Bc
j (k − 1)., Bw

j (k − 1)., and Bv
j (k − 1). as 

. 

Bc
j (k − 1) = 2γj (k − 1)zj (k − 1)wj (k − 1) [

vj (k−1)−ŷ(k−1)]
b(k−1) ,

Bw
j (k − 1) = −2γj (k − 1)zj (k − 1)

N
∑

i=1

[xi (k−1)−cj (k−1)]

N

[ŷ(k−1)−vj (k−1)]
b(k−1) ,

Bv
j (k − 1) = φj (k − 1).

(7.16) 
Using the abovementioned definitions in (7.15)  give  s

.

V T (k − 1)Φ(k − 1) = V ∗T Φ∗(k − 1) +
M
∑

j=1

Bc
j (k − 1)̃cj (k − 1)

+
M

∑

j=1

Bw
j (k − 1)w̃j (k − 1) +

M
∑

j=1

Bv
j (k − 1)̃vj (k − 1) + Rf .

(7.17) 

Let us define the identification error as 

.e(k − 1) = ŷ(k − 1) − y(k − 1). (7.18) 

As
M

∑

j=1

Bc
j (k − 1)̃cj (k − 1).,

M
∑

j=1

Bw
j (k − 1)w̃j (k − 1)., and

M
∑

j=1

Bv
j (k − 1)̃vj (k − 1). 

are the product of two vectors, substituting (7.5), (7.12), and (7.18)  i  n (7.17)  give  s

.e (k − 1) = BT
k−1

˜θ(k − 1) + μ(k − 1), (7.19) 

where BT
k−1 = [

Bc
1(k − 1), . . . , Bc

M(k − 1), Bw
1 (k − 1), . . . , Bw

M(k−1), Bv
1 (k−1) ., 

. . . , Bv
M(k − 1)

] ∈ R1×3M
.,˜θ(k−1) = [̃c1(k − 1), . . . , c̃M(k − 1), w̃1(k − 1), . . . , . 

w̃M(k − 1), ṽ1(k − 1), . . . , ṽM(k − 1)]T ∈ R3M×1
., μ(k − 1) = Rf − ∈f ., 

Bc
j (k − 1)., Bw

j (k − 1). and Bv
j (k − 1). are defined in (7.16). Thus, ˜θj (k − 1) =

θj (k − 1) − θ∗
j .. 

The least square [11, 16] is modified to get the stability of the algorithm, and 
subsequently, the modified least square to train the parameters and the structure is 
given as 

.
θ(k) = θ(k − 1) − 1

Qk−1
PkBk−1e(k − 1),

Pk = Pk−1 − 1
Rk−1

Pk−1Bk−1B
T
k−1Pk−1,

(7.20) 

where Qk−1 = R2 + BT
k−1Pk−1Bk−1 ∈ R., Rk−1 = 2Qk−1 + BT

k−1Pk−1Bk−1 ∈ R., 
0 < R2 ∈ R., Bk−1 . and θ(k − 1). are given in (7.19), and it is assumed that the 
uncertainty is bounded [29, 30, 33], where μ. is the upper bound of the uncertainty
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μ(k −1), |μ(k − 1)| < μ.. Pk−1 ∈ R3M×3M
. is a positive definite covariance matrix, 

P1 = cI ., where c > 0. is a scalar constant and I ∈ R3M×3M
. is the identity matrix. 

The computational complexity of the algorithm is O(NcM
2). [34], where Nc . is 

the size of Rk−1 ..  The  value  of Nc . is 1, while M is the size of θ(k). and is also 
the number of rules. The storage requirements are O(M2). [34]. It can be seen that 
the complexity requirements depend only on the number of rules. Therefore, it is 
important to have a low number of rules to have low memory requirements. 

The following theorem gives the stability of the proposed algorithm. 

Theorem 7.1 The modified least square algorithm to train structure and parame-
ters is uniformly stable, and the upper bound of the average error J (k − 1). satisfies 

.lim sup
T →∞

1

T

T
∑

k=2

J (k − 1) ≤ μ2

R2
, (7.21) 

where J (k − 1) =
[

BT
k−1Pk−1Bk−1

]2

Q2
k−1Rk−1

e2(k − 1).. 

Proof See [35] for the proof. 

Remark 7.5 From (7.21) it can be seen that the final iteration parameter (time) 
T tends to infinity; thus, the stability of the proposed algorithm is preserved when
T → ∞.. 

Remark 7.6 The parameter M (number of rules) is finite, because the algorithm 
adds the necessary rules and prunes the unnecessary rules to adapt itself to the 
changing environment. The number of rules, M , is changed by the clustering and 
pruning algorithms, and M only changes the dimension of BT

k−1 . and θ(k − 1).; thus, 
the stability result is preserved. 

Remark 7.7 The theorem given in the study by Rubio and Yu [30]  is  very  
conservative, because it uses two dead-zones. However, Theorem 7.1 in this study 
is better, because it does not use any dead-zone. 

Remark 7.8 The value of the parameter μ. is unimportant, because this parameter is 
not used in the algorithm. The bound of μ(k −1). is needed in order to guarantee the 
stability in the algorithm. This fact has been used in some earlier studies [29, 30, 33]. 

Corollary 7.1 The parameters error ˜θ(k). is bounded as follows: 

.
∥

∥˜θ(k)
∥

∥

2 ≤ ∥

∥˜θ(1)
∥

∥

2
, (7.22) 

where ˜θ(1). is the initial parameters error. 

Proof See [35] for the proof. 

Remark 7.9 From (7.22), it can be seen that for the modified least square algo-
rithm, the parameters error is bounded by the initial parameters error. This result
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is better than that presented in earlier studies [21] and [28], because in these earlier 
studies they presented the stability analysis of a modified backpropagation algorithm 
for which even if the output error is convergent, it does not guarantee that the 
parameters error is bounded. Maybe, the parameters error can be very high and 
can make the system unstable. 

Corollary 7.2 The average error must satisfy J (k) ≤ J (k − 1). to avoid the local 
minimum. The average error J (k −1). of the modified least square algorithm avoids 

the local minimum when J (k − 1) ≥ β ., where 0 < β = μ2

R2
+ 1

c

∥

∥˜θ(1)
∥

∥

2
< ∞. and 

c is defined in (7.20). 

Proof See [35] for the proof. 

Remark 7.10 In an earlier study [36], a set of constraints to assure the inter-
pretability of the membership functions has been given. These constraints help to 
avoid the local minimum, which is a problem of the backpropagation algorithm 
[7, 9, 13, 31, 36]. In this study, a modified least square algorithm is used [11, 12, 16, 
17, 25, 30, 34]. The least square algorithm does not need to satisfy the constraints 
to assure the interpretability of the membership functions, because this algorithm 
does not have the problem of the local minimum, as can be seen in Corollary 7.2. 
In addition, the least square algorithm has faster parameters convergence than the 
backpropagation algorithm [11, 30, 34]. 

5 The Proposed Algorithm 

The proposed algorithm is as follows: 

1. Select the following parameters: the parameter of the modified least square 
algorithm is R2 > 0 ∈ R., the parameter of the clustering algorithm is 0 <

r < 1 ∈ R., and the parameter of the pruning algorithm is du ∈ N .,  (L = L+ΔL., 
ΔL = 5du .). 

2. For the first data k = 1. (where k is the number of iterations), M = 1. (where 
M is the number of rules or clusters), the initial parameters of the modified least 
square algorithm are P1 = cI ∈ R3M×3M

. (where 0 < c ∈ R.), v1(1) = y(1)., 

c1(1) =

N
∑

i=1

xi (1)

N
., and w1(1) = rand ∈ (0, 1). ( v1 . is the initial parameter of 

the consequent part, c1 . and w1 . are the centers and widths of the membership 
function of the antecedent part), and the initial parameter of the clustering and 
pruning algorithms is d1(1) = 1. (where d is the density parameter).

3. For the other data where k ≥ 2., evaluate the fuzzy network parameters zj (k − 1). 
and b(k − 1). with (7.3), evaluate the output of the fuzzy network ŷ(k − 1). 
with (7.3), (7.4), and (7.5), evaluate the identification error e(k − 1).with (7.18), 
update the parameters of the modified least square algorithm vj (k)., cj (k)., and
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wj(k). with (7.20), and evaluate the parameter of the clustering and pruning 
algorithm p(k − 1).with (7.6). 

The updating of the clustering algorithm is as follows: 
4. If p(k − 1) ≥ r ., then a rule is not generated, the winner rule j∗

. is presented 
when zj (k − 1) = p(k − 1)., and the value of the density dj∗(k). of this rule is 
updated with (7.7). The winner rule is a rule that increments its importance in the 
algorithm. Go to 3. 

5. If p(k−1) < r ., then a new rule is generated (M = M+1)., where r ∈ (0, 1). (e.g., 
the number of rules is increased by 1), the initial values of cM+1(k)., wM+1(k)., 
vM+1(k)., and dM+1(k). are assigned to the new rule with (7.8), and the missing 
parameters are added to have Pk ∈ R3(M+1)x3(M+1)

. with diagonal elements 
(where Pk ., vj (k)., cj (k)., and wj(k). are the parameters of the modified least 
square algorithm, and dj (k). is the parameter of the density, j = 1 . . . M .). Go 
to 3. 
The updating of the pruning algorithm is as follows: 

6. For the case where k = L., the pruning algorithm works (the pruning algorithm 
is not active at each iteration) and evaluates the minimum density dmin(k). 

with (7.9), and L is updated as L = L + ΔL.. 
7. If M ≥ 2. and dmin(k) ≤ du ., then this rule is pruned, where du ∈ N . is 

the threshold of the density, and the looser rule j∗ . is presented when dj (k) =
dmin(k).. The looser rule is the least important rule of the algorithm, the values 
of cj (k)., wj(k)., vj (k)., and dj (k). are assigned with (7.10) and (7.11) to prune 
the looser rule j∗ ., and in the same way, the values of Pk . are assigned to prune 
the looser rule j∗ . (where Pk ., vj (k)., cj (k)., and wj(k). are the parameters of 
the modified least square algorithm and dj (k). is the parameter of the density, 
j = 1 . . . M .), and M is updated as M = M − 1. (e.g., the number of rules is 
decreased by 1). Go to 3. 

8. If dmin(k) > du . or M = 1., then this rule is not pruned. Go to 3. 

6 Simulations 

In this section, the suggested online self-organized algorithm is applied for nonlinear 
system identification. Note that in this study, the structure and parameters learning 
work at each time-step and they work online. The proposed network will be 
compared with networks that add and remove rules online, such as the Simpl_eTS 
[12], the SOFNN [17], and the SAFIS [25], because these networks have good 
performance. 

Example 7.1 Let us consider the nonlinear system given and used in earlier studies 
[9, 25]: 

.y(k) = y(k − 1)y(k − 2) [y(k − 1) − 0.5]

1 + y2(k − 1) + y2(k − 2)
+ u(k − 1). (7.23)
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Table 7.1 Results for Example 7.1 

Methods. No. of rules. Training RMSE. Testing RMSE. 

eTS(r = 1.8, Ω = 106). 49 0.0292. 0.0212. 

Simpl_eTS (r = 2.0, Ω = 106). 22 0.0528. 0.0225. 

SAFIS (γ = 0.997, εmax = 1, k = 1). 17 0.0539. 0.0221. 

(εmin = 0.1, eg = 0.05, ep = 0.005). 

SOFMLS. 5 0.0341. 0.0201. 

Fig. 7.2 Growth of rules for Example 7.1 

As in the earlier studies [9, 25], the input u(k). is given by u(k) = sin(2πk/25).. 
The parameters of the SOFMLS are P1 = cI ∈ R3x3

., where c = 0.25., R2 = 0.1., 
r = 0.9., and du = 6.. For the purpose of training and testing, 5000 and 200 data are 
produced, respectively. The average performance comparison of the SOFMLS with 
the eTS [11], the Simpl_eTS [12], and the SAFIS [25] is shown in Table 7.1, where 
the root mean square error (RMSE) [15]  i  s

.RMSE =
(

1

N

N
∑

k=1

e2(k − 1)

)
1
2

. (7.24) 

From Table 7.1, it can be seen that the SOFMLS achieves better accuracy when 
compared with the other networks. In addition, the SOFMLS achieves this accuracy 
with the smallest number of rules. The evolution of the fuzzy rules for the SOFMLS 
for a typical run is shown in Fig. 7.2. From this figure, it can be seen that the 
SOFMLS produces five rules, and changes in the behavior are before 500 iterations.
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Fig. 7.3 Growth of rules for 500 iterations for Example 7.1 

Figure 7.3 gives a clear illustration of the rule evolution tendency from 0 to 500 
iterations and shows how the SOFMLS can automatically add and prune a rule 
during learning. 

Figure 7.4 shows the resulting fuzzy membership functions in the antecedent part 
for the SOFMLS. 

Figure 7.5 shows the evolution of the parameters c, w, and v for 1000 iterations 
for the SOFMLS. From this figure, it can be seen that some parameters appear when 
a new rule is added, and some disappear when a rule is pruned. 

Figure 7.6 shows the average of the identification error for the SOFMLS. From 
this figure, it can be observed that the average of the identification error is bounded 
during training as in Theorem 7.1. 

Figure 7.7 shows the testing result for the SOFMLS. 

Example 7.2 Let us consider the nonlinear system given in an earlier study [9]: 

.y(k + 1) = 0.3y(k) + 0.6y(k − 1) + f (u(k)). (7.25) 

With f (u(k)) = 0.6 sin(πu(k))+0.3 sin(3πu(k))+0.1 sin(5πu(k))., the input is 
u(k) = sin(2πk/200).. The initial parameters of the SOFMLS are P1 = cI ∈ R3x3

., 
where c = 0.35., R2 = 0.1., r = 0.93., and du = 6.. For the purpose of training 
and testing, 3000 and 200 data are produced, respectively. The average performance 
comparison of the SOFMLS with the SAFIS [25] is shown in Table 7.2, where the 
RMSE of (7.24) is used.
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Fig. 7.4 Membership functions for Example 7.1 

Fig. 7.5 Evolution of parameters of the network for Example 7.1 

From Table 7.2, it can be seen that the SOFMLS achieves better accuracy when 
compared with the other network. In addition, the SOFMLS achieves this accuracy 
with the smallest number of rules. The evolution of the fuzzy rules for the SOFMLS
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Fig. 7.6 Average error for Example 7.1 

Fig. 7.7 Testing result for Example 7.1 

and the SAFIS for a typical run are shown in Fig. 7.8. From this figure, it can be 
seen that the SOFMLS produces 6 rules and the SAFIS produces 11 rules.
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Table 7.2 Results for Example 7.2 

Methods. No. of rules. Training RMSE. Testing RMSE. 

SAFIS (γ = 0.997, εmax = 2, k = 2). 11 0.0507. 0.0909. 

(εmin = 0.2, eg = 0.03, ep = 0.003). 

SOFMLS. 6 0.0516. 0.0290. 

Fig. 7.8 Growth of rules for Example 7.2 

Figure 7.9 gives a clear illustration for the rule evolution tendency from 0 to 500 
iterations and also shows that both the networks can automatically add and prune a 
rule during learning. 

Figure 7.10 shows the resulting fuzzy membership functions in the antecedent 
part for the SOFMLS. 

Figure 7.11 shows the evolution of the parameters c, w, and v for 1000 iterations 
for the SOFMLS. From this figure, it can be seen that some parameters appear when 
a new rule is added and some disappear when a rule is pruned. 

Figure 7.12 shows the average of the identification error for the SOFMLS. From 
this figure, it can be observed that the identification error is bounded during the 
training as in Theorem 7.1. 

Figure 7.13 shows the testing result for the SOFMLS. 

Example 7.3 The identification of the Box Jenkins furnace [37]  is  a  well-known  
problem. There are originally 290 data pairs (u(k)., y(k).). y(k). is the output CO2 . 

concentration, and u(k). is the input gas flow rate. A total of 200 samples are used 
for training, and the remaining 90 are used for testing. For the network, a series
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Fig. 7.9 Growth of rules for 500 iterations for Example 7.2 

Fig. 7.10 Membership functions for Example 7.2 

parallel model is used to model this system as ŷ(k) = f (y(k − 1), u(k − 4))..  The  
parameters of the SOFMLS are P1 = cI ∈ R3x3

., where c = 750., R2 = 0.1.,
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Fig. 7.11 Evolution of parameters of the network for Example 7.2 

Fig. 7.12 Average error for Example 7.2
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Fig. 7.13 Testing result for Example 7.2 

Table 7.3 Results for Example 7.3 

Methods. No. of rules. Testing RMSE. 

eTS(r = 0.4, Ω = 750). 5 0.0490. 

Simpl_eTS (r = 0.4, Ω = 750). 3 0.0485. 

SOFNN (δ = .07, krmse = 0.3, kd(1) = kd(2) = 1.4). 4 0.0480. 

(σ0 = 1, kd(3) = kd(3) = kd(3) = kd(3) = 0.5). 

SOFMLS. 5 0.0474. 

r = 0.9., and du = 6.. The average performance comparison of the SOFMLS with 
the eTS [11], the Simpl_eTS [12], and the SOFNN [17] is shown in Table 6.3, where 
the RMSE of (7.24) is used. 

From Table 7.3, it can be observed that the SOFMLS achieves better accuracy 
when compared with the other networks. In addition, the SOFMLS achieves this 
accuracy with a similar number of rules. The evolution of the fuzzy rules for the 
SOFMLS for a typical run is shown in Fig. 7.14. From this figure, it can be seen that 
the SOFMLS produces five rules. 

Figure 7.15 shows the resulting fuzzy membership functions in the antecedent 
part for the SOFMLS. 

Figure 7.16 shows the evolution of the parameters c, w, and v for the SOFMLS. 
From this figure, it can be seen that some parameters appear when a new rule is 
added and some disappear when a rule is pruned.
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Fig. 7.14 Growth of rules for Example 7.3 

Fig. 7.15 Membership functions for Example 7.3 

Figure 7.17 shows the average of the identification error for the SOFMLS. From 
this figure, it can be observed that the identification error during the training is 
bounded as in Theorem 7.1.
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Fig. 7.16 Evolution of parameters of the network for Example 7.3 

Fig. 7.17 Average error for Example 7.3
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Fig. 7.18 Training and testing results for Example 7.3 

Figure 7.18 shows the training and testing results for the SOFMLS; the first 200 
samples belong of the training, and the remaining 90 are of the testing. 

7 Concluding Remarks 

In this chapter, a quick and efficient approach for system modeling using a fuzzy 
modified least square network is presented, which does not require retraining of 
the whole model. It is based on recursive building of the rule base by unsupervised 
and supervised learning, the rule-based model structure learning, and parameters 
estimation. The adaptive nature of this model, in addition to the transparent and 
compact form of fuzzy rules, makes it a promising candidate for online modeling 
and control of complex competitive processes with neural networks. From a 
dynamic system point of view, such training can be useful for all neural network 
applications requiring real-time updating of the weights. The main advantages of 
the approach are that (1) the network can develop an existing model when the data 
changes, (2) the network can start to learn a process from a single data sample and 
improve its performance through the time, and (3) it is recursive and highly effective. 
The proposed concept can be used in many fields, including nonlinear adaptive 
control, fault detection and diagnostics, performance analysis of dynamic systems, 
pattern and image recognition, time-series, identification of nonlinear systems, 
intelligent agents, and modeling. The results illustrate the viability, efficiency, and
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the potential of the approach when a limited amount of initial information is 
obtained. These characteristics are especially important in autonomous, robotics, 
and mechatronic systems. 
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Chapter 8 
Evolving Intelligent System 
for the Modeling of Nonlinear Systems 
with Dead-Zone Input 

1 Introduction 

Non-smooth nonlinear characteristics such as dead-zone, backlash, and hysteresis 
are common in actuators, sensors such as mechanical connections, hydraulic servo-
valves, and electric servomotors; they also appear in biomedical systems. Dead-zone 
is one of the most important nonsmooth nonlinearities in many industrial processes, 
which can severely limit the system performance, and its study has been drawing 
much interest in the control community for a long time. Some important results 
are shown in [1–4], and [5]. In many works, controllers are proposed; however, a 
modeling system has not been introduced. The modeling system can be used for 
the failure prediction, disturbance rejection, trajectory generation, observer, and 
controller designs on the systems where the nonlinear behavior that includes the 
dead-zone is unknown. 

On the other hand, the evolving intelligent systems are characterized by abilities 
to adjust their structure and parameters to the varying characteristics of the 
environment (with the term of environment embracing processes/phenomena in 
which the system has to interact or deal with the users using the system). Some 
important results are presented by [6–17], and [18]. From the above works, [6– 
11, 15–18] use interesting clustering algorithms, and [6–8, 11, 16, 17] present novel 
pruning algorithms as in this study; nevertheless, an evolving intelligent system 
for the modeling of recurrent nonlinear systems with dead-zone input is rarely 
presented. 
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Finally, the stable intelligent systems are characterized to be systems where 
some kind of stability is guaranteed, i.e., if there is boundedness on inputs of the 
algorithm, then there is also boundedness on outputs. Some important studies are 
given by [3, 4, 18–27], and [28]. The aforementioned works do not consider the 
stability analysis of a recurrent evolving intelligent system for the modeling of a 
nonlinear system with dead-zone input. 

In this chapter, a stable evolving intelligent system is addressed for the modeling 
of nonlinear systems with dead-zone input. In addition, the stability of the proposed 
algorithm is guaranteed. 

The chapter is organized as follows. In Sect. 2, the nonlinear system with dead-
zone input is presented. In Sect. 3, the evolving intelligent system is introduced. 
In Sect. 4, the evolving intelligent system is linearized. In Sect. 5, the structure 
updating of the evolving intelligent system is described. In Sect. 6, the stability of the 
above algorithm is guaranteed. In Sect. 7, the proposed algorithm is summarized. In 
Sect. 8, the proposed algorithm is used for the modeling of two synthetic problems. 
Section 9 presents conclusions and suggests future research directions. 

2 Nonlinear System 

In this study, the system which will be modeled is composed of a nonlinear plant 
preceded by an actuator with a nonsymmetric dead-zone in such a way that the 
dead-zone output is the input of the plant: 

.
xi(k) = xi(k − 1) + T xi+1(k − 1), i = 1, . . . , n − 1,

xn(k) = xn(k − 1) + T [f (x(k − 1)) + g (x(k − 1), u(k − 1))] ,
(8.1) 

where i = 1 . . . n., xi (k). is the ith state, x (k − 1) = [x1 (k − 1) , x2 (k − 1) , . . . ,

xn (k − 1)] ∈ Rn
., u (k − 1) ∈ R. is the output of the dead-zone and input of the 

system, and u (k − 1). and x (k − 1). are known. f and g are the unknown nonlinear 
smooth functions. T ∈ R. is the sample time. The nonsymmetric dead-zone can be 
represented by 

.u(k − 1) = DZ(v(k − 1)) =
⎧
⎨

⎩

mr (v(k − 1) − br) v(k − 1) ≥ br

0 bl < v(k − 1) < br

ml (v(k − 1) − bl) v(k − 1) ≤ bl,

(8.2)
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where mr . and ml . are the right and left constant slopes for the dead-zone character-
istic, and br . and bl . represent the right and left breakpoints. Note that v(k − 1) ∈ R. 

is the input of the dead-zone. 
The nonlinear system (8.1)–(8.2) can be rewritten in the multivariable Brunovsky 

form [3]: 

.
xi(k) = xi(k − 1) + T xi+1(k − 1), i = 1, . . . , n − 1,

xn(k) = hn [x(k − 1), u(k − 1)] ,
(8.3) 

where i = 1 . . . n., xi (k). is the ith state, u (k − 1) ∈ R. is the dead-zone output given 
by (8.2), x (k − 1) = [x1 (k − 1) , x2 (k − 1) , . . . , xn (k − 1)] ∈ Rn

.. hn ∈ R. is an 
unknown nonlinear smooth function. 

Remark 8.1 The nonlinear systems with dead-zone (8.3) are inspired by the 
actuators used to move the links of robotic systems which are second order systems 
with the Brunovsky form [29, 30]. 

3 Evolving Intelligent System 

The following parallel [31, 32] recurrent neural network is used to model the 
nonlinear system (8.3): 

.
x̂i (k) = x̂i (k − 1) + T x̂i+1(k − 1), i = 1, . . . , n − 1,

x̂n(k) = sx̂n(k − 1) + f̂k−1 + ĝk−1,
(8.4) 

where i = 1 . . . n., f̂k−1 = V1k−1σ(k − 1)., ĝk−1 = V2k−1φ(k − 1)u(k − 1)., x̂i (k). 

represents the ith state of the neural network, ̂x (k) = [̂x1 (k) , x̂2 (k) , . . . , x̂n (k)] ∈
Rn

.. The parameter s ∈ R. is a stable scalar (where its value should lie within the 
unit circle). The weights in the output layer are V1k ∈ R1×m1 ., V2k ∈ R1×m2 .. σ . is 
m1 .-dimensional vector function, and φ(·) ∈ Rm2×m2 . is a diagonal matrix, which 
are given as follows: 

.
σ(k − 1) = [

σ1(k − 1), σ2(k − 1), · · · σm1(k − 1)
]T

,

φ(k − 1) = diag
[
φ1(k − 1), φ2(k − 1), · · · φm2(k − 1)

]
,

(8.5)
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where σi . and φi . are given later. Each input variable xi . has n fuzzy sets. From [33, 
34], it is known, by using product inference, center-average defuzzifier and center 
fuzzifier, called Sugeno fuzzy inference system with weighted average (FIS), the 
output of the fuzzy logic system can be expressed as 

.

f̂k−1 = a1(k−1)
b1(k−1)

,

a1(k − 1) =
m1∑

j=1

v1j (k − 1)z1j (k − 1),

b1(k − 1) =
m1∑

j=1

z1j (k − 1),

z1j (k − 1) = exp
[
−γ 2

1j (k − 1)
]
,

γ1j (k − 1) = w1j (k − 1)
(
x̂n(k − 1) − c1j (k − 1)

)
,

ĝk−1 = a2(k−1)
b2(k−1)

,

a2(k − 1) =
m2∑

j=1

v2j (k − 1)z2j (k − 1)uj (k − 1),

b2(k − 1) =
m2∑

j=1

z2j (k − 1),

z2j (k − 1) = exp
[
−γ 2

2j (k − 1)
]
,

γ2j (k − 1) = w2j (k − 1)
(
x̂n(k − 1) − c2j (k − 1)

)
,

(8.6) 

where x̂n(k − 1). is the nth state of the system (8.4), c1j (k − 1). and w1j (k − 1). 

are the centers and the widths of the membership function of the antecedent part, 
respectively, j = 1 . . . m1 ., and vj (k − 1). is the center of the membership function 
of the consequent part. 

Remark 8.2 The weighted average radial basis function of [33] is again (8.6) where 
x̂n(k − 1). is the state of the system (8.4), c1j (k − 1). and w1j (k − 1). are the centers 
and widths of the hidden layer, respectively, j = 1 . . . m1 ., and vj (k − 1). are the 
weights of the output layer. In the radial basis function network of [33], 1

σ1j (k−1)
. is 

used instead of w1j (k − 1).. In this study, w1j (k − 1). is used instead of 1
σ1j (k−1)

. to 
avoid singularity in the modeling process. 

Define σj (k − 1). and φj (k − 1). as follows: 

.
σj (k − 1) = z1j (k − 1)/b1(k − 1),

φj (k − 1) = z2j (k − 1)/b2(k − 1).
(8.7)
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The above functions are the same given in (8.5); therefore, (8.6) can be written as 
follows: 

.

f̂k−1 =
m1∑

j=1

v1j (k − 1)σj (k − 1) = V1,k−1σ(k − 1),

ĝk−1 =
m2∑

j=1

v2j (k − 1)φj (k − 1)uj (k − 1) = V2,k−1φ(k − 1)u(k − 1),

(8.8) 

where V1,k−1 = [
v11(k − 1) . . . v1m1(k − 1)

]T
eRm1 . and V2,k−1 = [v21(k − 1) . . .

v2m2(k − 1)
]T

eRm2 .. The parameter m1 . is changing with the algorithm structure, 
while the parameter m2 . is fixed and it is the dimension of u(k − 1).. See Fig. 8.1. 

Remark 8.3 The proposed algorithm of Fig. 8.1 is different with the Kalman filter 
method of [25, 27, 35], and Fig. 8.2, for three reasons: The first reason is that 
the Kalman filter approximates all the functions, while the proposed algorithm 
approximates only the last function, i.e., the first n − 1. states are linear and 
dependent of the n state because the system has the multivariable Brunovsky form 
[3]; therefore, only the last function gives the approximation of the system, and less 
computation is required. Other way to explain this fact is that the Kalman filter of 
[25, 27, 35] uses  n algorithms, while the proposed technique uses only one algorithm 
to obtain the modeling of the system. The second reason is that in the Kalman 
filter method only the parameters are changing with the time, while in the proposed 
algorithm the parameters and structure are changing with the time. The third reason 
is that in the Kalman filter of [25, 27, 35], the series-parallel model is used [31, 32] 
where xn(k). of (8.3) is considered as the input of f̂k−1 . and ĝk−1 ., while in this work, 
the parallel model is used [31, 32] where the state x̂n(k). of (8.4) is considered as the 
input of f̂k−1 . and ĝk−1 .. 

Remark 8.4 There are three differences between the proposed algorithm of Fig. 8.1 
with the evolving method of [36] and Fig. 8.2. The first difference is that the 
evolving system of [36] approximates all the functions, while the proposed algo-
rithm approximates only the last function, i.e., the first n − 1. states are linear and 
dependent of the n state because the system has the multivariable Brunovsky form 
[3]; therefore, only the last function gives the approximation of the system, and less 
computation is required. Other way to explain this fact is that the evolving system 
of [36] uses  n algorithms, while the proposed technique uses only one algorithm 
to obtain the modeling of the system. The second difference is that in the evolving 
method of [36], the series-parallel model is used [31, 32] where xn(k). of (8.3) is  
considered as the input of f̂k−1 . and ĝk−1 ., while in this work, the parallel model 
is used [31, 32] where the state x̂n(k). of (8.4) is considered as the input of f̂k−1 . 

and ĝk−1 .; consequently, less information of the system is required in the proposed 
algorithm. And finally, the third difference is that the evolving method of [36] is  
applied on biological nonlinear systems, while the proposed method is applied on 
nonlinear systems with dead-zone input.
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Fig. 8.1 Modified evolving intelligent system 

4 Linearization of the Evolving Intelligent System 

In this section, the model is linearized to find the parameters updating and to prove 
the stability of the proposed algorithm. The stability of the structure and output is 
required because this algorithm works on-line. 

According to the Stone-Weierstrass theorem [37], the unknown nonlinear sys-
tem (8.3) can be written in the following form: 

.
xi(k) = xi(k − 1) + T xi+1(k − 1), i = 1, . . . , n − 1,

xn(k) = sxn(k − 1) + fk−1 + gk−1,
(8.9)
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Fig. 8.2 Evolving intelligent system 

where fk−1 = V ∗
1,k−1σ

∗(k − 1)+ ∈f

k−1 ., gk−1 = V ∗
2,k−1φ

∗(k − 1)u(k − 1)+ ∈g

k−1 ., 

∈f

k−1 + ∈g

k−1= hn [x(k), u(k)] − sxn(k − 1) − fk−1 − gk−1 . represents unmodeled 

dynamics. By [37], it is known that the term ∈f

k−1 + ∈g

k−1 . can be made arbitrarily 
small by simply selecting an appropriate number of the hidden neurons. The 
unknown nonlinear function fk−1 . of (8.9) is  

.fk−1 =
m1∑

j=1

v∗
1j (k − 1)σ ∗

j (k − 1)+ ∈f

k−1= V ∗
1,k−1σ

∗(k − 1)+ ∈f

k−1, (8.10)
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where φ∗
j (k − 1) = z∗

1j (k − 1)/b∗
1(k − 1)., b∗

1(k − 1) =
m1∑

j=1

z∗
1j (k − 1)., z∗

1j (k − 1) =

exp
[
−γ ∗2

1j (k − 1)
]
., γ ∗

1j (k − 1) = w∗
1j

(
xn(k − 1) − c∗

1j

)
., v∗

1j ., w∗
1j ., and c∗

1j . are the 

optimal parameters which can minimize the modeling error ∈f

k−1 . [37]. In the case 
of three independent variables, a smooth function has a Taylor series as follows: 

.
f (α1, α2, α3) = f (α10 , α20 , α30) + ∂f (α1,α2,α3)

∂α1

(
α1 − α10

)

+ ∂f (α1,α2,α3)
∂α2

(
α2 − α20

) + ∂f (α1,α2,α3)
∂α3

(
α3 − α30

) + R
f

k−1,
(8.11) 

where R
f

k−1 . is the remainder of the Taylor series. Let α1 ., α2 ., and α3 . correspond 
to c1j (k − 1)., w1j (k − 1)., and v1j (k)., α10 ., α20 ., and α30 . correspond to c∗

1j ., w∗
1j ., 

and v∗
1j .. Define c̃1j (k − 1) = c1j (k − 1) − c∗

1j ., w̃1j (k − 1) = w1j (k − 1) − w∗
1j ., 

and ṽ1j (k − 1) = v1j (k − 1) − v∗
1j .. Thus, the Taylor series is applied to linearize 

V1,k−1σ(k − 1). of (8.6) and (8.8) as follows: 

.

V1,k−1σ(k − 1) = V ∗
1,k−1σ

∗(k − 1) +
m1∑

j=1

∂V1,k−1σ(k−1)

∂c1j (k−1)
c̃1j (k − 1)

+
m1∑

j=1

∂V1,k−1σ(k−1)

∂w1j (k−1)
w̃1j (k − 1) +

m1∑

j=1

∂V1,k−1σ(k−1)

∂v1j (k−1)
ṽ1j (k − 1) + R

f

k−1.

(8.12) 

Considering (8.6), (8.7), and (8.8) and using the chain rule [18, 22, 34], it gives 

.

∂V1,k−1σ(k−1)

∂c1j (k−1)
= ∂V1,k−1σ(k−1)

∂a1i (k−1)
∂a1i (k−1)
∂z1j (k−1)

∂z1j (k−1)

∂γ1j (k−1)

∂γ1j (k−1)

∂c1j (k−1)

+ ∂V1,k−1σ(k−1)

∂b1(k−1)
∂b1(k−1)
∂z1j (k−1)

∂z1j (k−1)

∂γ1j (k−1)

∂γ1j (k−1)

∂c1j (k−1)

= 2γ1j (k − 1)z1j (k − 1)w1j (k − 1)
v1j (k−1)−f̂k−1

b1(k−1)
,

∂V1,k−1σ(k−1)

∂w1j (k−1)
= ∂V1,k−1σ(k−1)

∂a1i (k−1)
∂a1i (k−1)
∂z1j (k−1)

∂z1j (k−1)

∂γ1j (k−1)

∂γ1j (k−1)

∂w1j (k−1)

+ ∂V1,k−1σ(k−1)

∂b1(k−1)
∂b1(k−1)
∂z1j (k−1)

∂z1j (k−1)

∂γ1j (k−1)

∂γ1j (k−1)

∂w1j (k−1)

= 2γ1j (k − 1)z1j (k − 1)
[
x̂n(k − 1) − c1j (k − 1)

] f̂k−1−v1j (k−1)

b1(k−1)
,

∂V1,k−1σ(k−1)

∂v1j (k−1)
=

m1∑

j=1

v1j (k−1)σj (k−1)

∂v1j (k−1)
= σj (k − 1).
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Substituting ∂V1,k−1σ(k−1)

∂c1j (k−1)
., ∂V1,k−1σ(k−1)

∂w1j (k−1)
., and ∂V1,k−1σ(k−1)

∂v1j (k−1)
. in Eq. (8.12), it gives 

. 

V1,k−1σ(k − 1) =
m1∑

j=1

σj (k − 1)̃v1j (k − 1)

+
m1∑

j=1

2γ1j (k − 1)z1j (k − 1)w1j (k − 1)
v1j (k−1)−f̂k−1

b1(k−1)
c̃1j (k − 1)

+
m1∑

j=1

2γ1j (k − 1)z1j (k − 1)
[
x̂n(k − 1) − c1j (k − 1)

] f̂k−1−v1j (k−1)

b1(k−1)
w̃1j (k − 1)

+V ∗
1,k−1σ

∗(k − 1) + R
f

k−1.

(8.13) 
Define Bc

1j (k − 1)., Bw
1j (k − 1)., and Bv

1j (k − 1). as 

. 

Bc
1j (k − 1) = 2γ1j (k − 1)z1j (k − 1)w1j (k − 1)

v1j (k−1)−f̂k−1
b1(k−1)

,

Bw
1j (k − 1) = 2γ1j (k − 1)z1j (k − 1)

[
x̂n(k − 1) − c1j (k − 1)

] f̂k−1−v1j (k−1)

b1(k−1)
,

Bv
1nj (k − 1) = σj (k − 1).

(8.14) 
Note that σj (k − 1). is repeated for each i in Bv

1j (k − 1)., and using the above 
definitions in (8.13), it gives 

.

V1,k−1σ(k − 1) =
m1∑

j=1

Bc
1j (k − 1)̃c1j (k − 1)

+
m1∑

j=1

Bw
1j (k − 1)w̃1j (k − 1) +

m1∑

j=1

Bv
1j (k − 1)̃v1j (k − 1)

+V ∗
1,k−1σ

∗(k − 1) + R
f

k−1.

(8.15) 

Define f̃k−1 = f̂k−1 − fk−1 ., and substituting (8.8), (8.10), and f̃k−1 . into (8.15), 
it gives 

.f̃k−1 = B
f T

k−1θ̃
f (k − 1) + μf (k − 1), (8.16) 

where Bf T

k−1 = [Bc
11(k−1), . . . , Bc

1m1
(k−1), Bw

11(k−1), . . . , Bw
1m1

(k−1), Bv
11(k−

1), . . . , Bv
1m1

(k−1)] ∈ R1×3m1 ., ̃θf (k−1) = [̃c11(k−1), . . . , c̃1m1(k−1), w̃11(k−
1), . . . , w̃1m1(k − 1), ṽ11(k − 1), . . . , ṽ1m1(k − 1)]T ∈ R3m1×1

., thus θ̃ f (k − 1) =
θf (k − 1) − θf ∗

., Bc
1j (k − 1)., Bw

1j (k − 1)., and Bv
1j (k − 1). are given in (8.14), 

μf (k − 1) = R
f

k−1− ∈f

k−1 .. Similarly in g̃k−1 = ĝk−1 − gk−1 ., it gives  

.̃gk−1 = B
gT

k−1θ̃
g(k − 1) + μg(k − 1), (8.17)
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where BgT

k−1 = [Bc
21(k−1), . . . , Bc

2m2
(k−1), Bw

21(k−1), . . . , Bw
2m2

(k−1), Bv
21(k−

1), . . . , Bv
2m2

(k−1)] ∈ R1×3m2 ., ̃θg(k−1) = [̃c21(k−1), . . . , c̃2m2(k−1), w̃21(k−
1), . . . , w̃2m2(k − 1), ṽ21(k − 1), . . . , ṽ2m2(k − 1)]T ∈ R3m2×1

., thus θ̃ g(k − 1) =
θg(k−1)−θg∗

., Bc
2j (k−1) = 2uj (k−1)γ2j (k−1)z2j (k−1)w2j (k−1)

v2j (k−1)−ĝk−1
b2(k−1)

., 

Bw
2j (k−1) = 2uj (k−1)γ2j (k−1)z2j (k−1)

[
x̂n(k − 1) − c2j (k − 1)

] ĝk−1−v2j (k−1)

b2(k−1)
., 

and Bv
2j (k − 1) = uj (k − 1)φj (k − 1)., μg(k − 1) = R

g

k−1− ∈g

k−1 .. Define the 
modeling error as follows: 

.e(k − 1) = ŷ(k − 1) − y(k − 1), (8.18) 

where ŷ(k − 1) = f̂k−1 + ĝk−1 = x̂n(k) − sx̂n(k − 1). is the network output and 
y(k − 1) = fk−1 + gk−1 = xn(k) − sxn(k − 1). is the nonlinear system output, 
e(k −1) ∈ R.; therefore, substituting ŷ(k −1)., y(k −1)., (8.16), and (8.17) in (8.18), 
it gives 

.e (k − 1) = BT
k−1θ̃ (k − 1) + μ(k − 1), (8.19) 

where BT
k−1 = [BgT (k − 1), Bf T (k − 1)] ∈ R1×3(m2+m1) ., θ̃ (k − 1) = [θ̃ g(k −

1), θ̃f (k −1)]T ∈ R3(m2+m1)×1
., μ(k −1) = μg(k −1)+μf (k −1) ∈ R., θ̃ f (k −1). 

and Bf T (k−1). are given in (8.16), and θ̃ g(k−1). and BgT (k−1). are given in (8.17). 
Define the state error as x̃n(k) = x̂n(k) − xn(k).. From (8.18), it gives x̂n(k) =

sx̂n(k − 1) + ŷ(k − 1). and xn(k) = sxn(k − 1) + y(k − 1)., and subtracting the 
second equation to the first gives x̂n(k) − xn(k) = s [̂xn(k − 1) − xn(k − 1)] +
[̂y(k − 1) − y(k − 1)].. Substituting x̃n(k). and e(k − 1). of (8.18) in the above 
equation gives 

.̃xn(k) = sx̃n(k − 1) + e(k − 1). (8.20) 

5 Structure Updating 

Choosing an appropriate number of hidden neurons is important in designing 
evolving intelligent systems, because too many hidden neurons result in a complex 
evolving system that may be unnecessary for the problem, and it can cause 
overfitting [33], whereas too few hidden neurons produce a less powerful neural 
system that may be insufficient to achieve the objective. The number of hidden 
neurons is considered as a design parameter, and it is determined based on the input-
output pairs and on the number of elements of each hidden neuron. The basic idea 
is to group the input-output pairs into clusters and use one hidden neuron for one 
cluster; i.e., the number of hidden neurons equals the number of clusters [6–11, 15– 
18, 22].
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One of the simplest clustering algorithms is the nearest neighborhood clustering 
algorithm. In this algorithm, the first data are considered as the center of the first 
cluster. Then, if the distances from a datum to the cluster centers are less than a 
prespecified value (the radius r), this datum is set into the closest cluster; otherwise, 
set this datum as a new cluster center. The details are given as follows. 

Consider xn(k − 1). as a newly incoming pattern; then from (8.6) it is obtained: 

.p(k − 1) = max
1≤j≤m1

z1j (k − 1). (8.21) 

If p(k − 1) < r ., then a new hidden neuron is generated (each hidden neuron 
corresponds to each center), and m1 = m1 + 1., where r is a selected radius,
r ∈ (0, 1) .. Once a new hidden neuron is generated, the next step is to assign initial 
centers and widths of the network, and a new density with value 1 is generated for 
this hidden neuron. 

.
c1,m1+1(k) = xn(k), w1,m1+1(k) = rand,

v1m1+1(k) = y(k), dm1+1(k) = 1.
(8.22) 

If p(k − 1) ≥ r ., then a hidden neuron is not generated. If z1j (k − 1) = p(k − 1)., 
the winner neuron j∗

. is obtained, and the winner neuron is a neuron that increments 
its importance in the algorithm, then its density must be increased and is updated as 
follows: 

.dj∗(k) = dj∗(k) + 1. (8.23) 

The above algorithm is no longer a practical system if the number of input-output 
pairs is large because the number of hidden neurons (clusters) grows, even some 
data are grouped into hidden neurons (clusters). Therefore, a pruning method is 
required [6–8, 11, 16, 17, 22]. The pruning algorithm is based on the density where 
the density is the number of times each hidden neuron is used in the algorithm. 
From (8.22), it is obtained that when a new hidden neuron is generated, its density 
starts at one, and from (8.23), it is known that when a datum is grouped in an existing 
hidden neuron, the density of this hidden neuron is increased by one. Then, each 
cluster (hidden neuron) has its own density. The least important hidden neuron is 
the hidden neuron which has the smallest density. After some iterations ( ΔL.) the  
least important hidden neuron is pruned if the value of its density is smaller than a 
specified umbral ( du .). The details are given as follows. 

Each ΔL. iterations where ΔL ∈ ℵ., consider 

.dmin(k) = min
1≤j≤m1

dj (k), (8.24) 

If m1 ≥ 2. (if there is one hidden neuron given as m1 = 1., the hidden neuron cannot 
be pruned) and if dmin(k) ≤ du ., this hidden neuron is pruned, where du ∈ ℵ. is 
the minimum selected allowed density, and it is called the umbral parameter. Once a
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hidden neuron is pruned, the next step is to assign centers and widths of the network. 
When dj (k) = dmin(k). the looser neuron j∗ . is obtained, the looser neuron is the 
least important neuron of the algorithm, if j ≤ j∗ . do nothing, but if j > j∗ . all the 
parameters are updated as follows: 

.
c1,j−1(k) = c1,j (k), w1,j−1(k) = w1,j (k),

v1j−1(k) = v1j (k), dj−1(k) = dj (k).
(8.25) 

The above parameters updating moves the looser neuron j∗ . to the last element ( j =
m1 .). For j = m1 ., the looser neuron is pruned as follows: 

.c1,m1(k) = 0, w1,m1(k) = 0, v1m1(k) = 0, dm1(k) = 0. (8.26) 

Then m1 . is updated as m1 = m1 − 1. to decrease the size of the network. 
If dmin(k − 1) > du . or m1 = 1., do nothing. 
Finally L is updated as L = L + ΔL.. 

Remark 8.5 The parameters L and ΔL. are because the pruning algorithm does not 
work in each iteration. The initial value of L is ΔL., the pruning algorithm works at 
the first time when k = L., and then L is increased by ΔL.. The pruning algorithm 
works each ΔL. iteration. The parameter ΔL. is found empirically as 5du .; thus, the 
pruning algorithm only has du . as the design parameter. 

6 Stability Analysis 

First, an important definition and theorem are mentioned. Later, the main stability 
theorem is presented. 

Consider the following discrete-time nonlinear system: 

.xk+1 = f [xk, uk] , (8.27) 

where uk ∈ Rm
. is the input vector, xk ∈ Rn

. is the state vector, and uk . and xk . are 
known. f is an unknown nonlinear smooth function f ∈ C∞

.. 

Definition 8.1 The system (8.27) is said to be uniformly stable if ∀e > 0., ∃δ = δ(e). 

such that 

. llxk1ll < δ ⇒ llxkll < e, ∀k > k1. (8.28) 

If the system has δ = δ(e, k)., then the system (8.27) is simply stable. 

Now, a theorem for the stability of discrete-time nonlinear systems taken from 
[22] will be given.
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Theorem 8.1 Let Lk(x(k)). be a Lyapunov-like function of the discrete-time non-
linear system (8.27), if it satisfies 

.
γ1 (llxkll) ≤ Lk(xk) ≤ γ2 (llxkll) ,

ΔLk(xk) ≤ −γ3 (llxkll) + γ3 (δ) ,
(8.29) 

where δ . is a positive constant, γ1 (·). and γ2 (·). are K∞ . functions, and γ3 (·). is a K 
function; then the system (8.27) is uniformly stable. 

Proof See [22] for the proof. 

Remark 8.6 The continuous-time version of the above theorem is given by [38]. 
The main difference between the continuous-time stability theorem of [38] and 
the discrete-time stability theorem of [22] is that in the first, the derivative of the 
Lyapunov function is used, and in the second, the difference of the Lyapunov-like 
function is used. 

Now, the stability of the proposed algorithm is analyzed. 

Theorem 8.2 Consider the evolving intelligent system (8.4), (8.6), (8.22), (8.30)  to  
model the nonlinear systems with dead-zone input (8.1), (8.2), (8.3), and use the 
recursive least square updating function: 

.
θ(k) = θ(k − 1) − 1

Qk−1
PkBk−1e(k − 1),

Pk = Pk−1 − 1
Rk−1

Pk−1Bk−1B
T
k−1Pk−1,

(8.30) 

where Qk−1 = 10 + BT
k−1Pk−1Bk−1 ., Rk−1 = 2Qk−1 + BT

k−1Pk−1Bk−1 ., BT
k−1 . and 

θ(k − 1). are given in (8.19), and Pk−1 ∈ R3(m2+m1)×3(m2+m1) . is a positive definite 
covariance matrix. Therefore, the average error of the modeling error is uniformly 
stable and will converge to 

.lim sup
T →∞

T∑

k=2

(
BT

k−1Pk−1Bk−1
)2

Q2
k−1Rk−1

e2(k − 1) ≤ μ

10
, (8.31) 

where μ. is the upper bound of the uncertainty μ(k − 1)., |μ(k − 1)| < μ.. 

Proof See [39] for the proof. 

Remark 8.7 The parameter m1 . (number of neurons) is finite because the clustering 
and pruning algorithms do not let m1 . become infinity. The number of neurons m1 . 

is changed by the clustering and pruning algorithms, and m1 . only changes the 
dimension of BT

k−1 . and θ(k − 1).; thus the stability result is preserved.
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7 Proposed Algorithm 

The proposed algorithm is finally as follows: 

1. Select the following parameters: for the clustering algorithm as 0 < r < 1 ∈ R. 

and for the pruning algorithm as du ∈ N . (L = L + ΔL., ΔL = 5du .). If r is 
bigger, more neurons could be generated. If du . is smaller, more neurons could 
be pruned. If there are many neurons that are generated and pruned, then it could 
cause like a chattering in the modeling. Consequently, only the required neurons 
should be generated and pruned in the algorithm. 

2. For the first data k = 1. (where k is the iterations number) and m1 = 1. (where m1 . 

is the hidden neurons number), the initial parameters of the least square algorithm 
are P1 ∈ R3(m2+m1)×3(m2+m1) . with diagonal elements, v11(1) = y(1)., c11(1) =
x(1)., and w11(1) = rand ∈ (5, 15). ( v11 . is the initial parameter of the consequent 
part, and c11 . and w11 . are the centers and widths of the membership function of 
the antecedent part), rand. is a random number which lets to find some similar 
alternative results, v21(1) = y(1)., c21(1) = xn(1)., w21(1) = rand., m2 =.size of 
the input u(k)., and the initial parameter of the clustering and pruning algorithm 
is d1(1) = 1. (where d is the density parameter).

3. For the other data k ≥ 2., evaluate the network parameters z1j (k − 1)., b1(k − 1)., 
z2j (k − 1)., and b2(k − 1). with (8.6), evaluate the output of the network ŷ(k − 1). 

with (8.7), (8.8), and (8.18), evaluate the modeling error e(k − 1). with (8.18), 
update the parameters of the least square algorithm v1j (k)., c1j (k)., w1j (k)., 
v2j (k)., c2j (k)., and w2j (k). with (8.30) (where j = 1 . . . m1 . for f̂k−1 . and 
j = 1 . . . m2 . for ĝk−1 .), and evaluate the parameter of the clustering and pruning 
algorithms p(k − 1). with (8.21). 
The updating of the clustering algorithm is as follows: 

4. If p(k − 1) < r ., then a new neuron is generated (m1 = m1 + 1)., where r ∈
(0, 1). (i.e., the number of neuron is increased by one), assign initial values to the 
new neuron as c1m1+1(k)., w1m1+1(k)., v1m1+1(k)., and dm1+1(k). with (8.22), the 
values are assigned for Pk ∈ R3(m2+m1+1)×3(m2+m1+1)

. from elements m2 + 1. to 
m2 + m1 + 1. with diagonal elements (where Pk ., v1j (k)., c1j (k)., and w1j (k). are 
the parameters of the least square algorithm, and dj (k). is the density parameter, 
j = 1 . . . m1 .), and go to 3. 

5. If p(k − 1) ≥ r ., then a neuron is not generated, and if z1j (k − 1) = p(k − 1)., 
the winner neuron j∗

. is obtained, the value of the density dj∗(k). of this hidden 
neuron is updated with (8.23), the winner neuron is a hidden neuron that 
increments its importance in the algorithm, and go to 3. 
The updating of the pruning algorithm is as follows: 

6. For the case that k = L., the pruning algorithm works (the pruning algorithm does 
not work in each iteration), evaluate the minimum density dmin(k). with (8.24), 
and L is updated as L = L + ΔL.. 

7. If m1 ≥ 2. and if dmin(k) ≤ du ., this hidden neuron is pruned, where du ∈ N . 

is the density umbral, if dj (k − 1) = dmin(k). the looser neuron j∗ . is obtained, 
the looser neuron is the least important neuron of the algorithm, assign values
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to c1j (k)., w1j (k)., v1j (k)., and dj (k). with (8.25) and (8.26) to prune the looser 
neuron j∗ ., assign values for Pk ∈ R3(m2+m1−1)x3(m2+m1−1)

. from elements m2+1. 

to m2 +m1 − 1. with diagonal elements to prune the looser neuron j∗ ., (where Pk ., 
v1j (k)c1j (k)., and w1j (k). are the parameters of the least square algorithm and 
dj (k). is the density parameter j = 1 . . . m1 .), update m1 . as m1 = m1 − 1. (i.e., 
the number of hidden neurons is decreased by one), and go to 3. 

8. If dmin(k) > du . or m1 = 1., this neuron is not pruned, and go to 3. 

8 Simulations 

In this section, the suggested online evolving intelligent system is applied for the 
modeling of nonlinear system with dead-zone input. Note that the structure and 
parameters updating of the proposed approach work at the same time. The algorithm 
of this chapter is compared with the Kalman filter algorithm of [25, 27, 35] and with 
the evolving algorithm of [36] because the above neuro fuzzy systems have a similar 
structure. In this section the proposed algorithm is called ModifiedEvolving, the 
Kalman filter is called KalmanFilter, and the evolving algorithm is called Evolving. 

The root mean square error (RMSE) is used to obtain the algorithms’ perfor-
mance, and it is given as follows [18, 22]: 

.RMSE =
(

1

N

n∑

k=1

x̃2
i (k)

) 1
2

, (8.32) 

where x̃i (k). is the state error of (8.20), and n is the state number .

Example 8.1 The nonlinear system used for the modeling is expressed as follows: 

.

x1(k) = x1(k − 1) + T x2(k − 1),

x2(k) = x2(k − 1)

+T

[

1.3
(

1−exp(−x1(k−1))
1+exp(−x2(k−1))

)
− 2

(
sin(x1(k−1)) cos(x2(k−1))

x2
1 (k−1)+x2

2 (k−1)+1

)

+
(

sin(x1(k−1)x2(k−1))+cos2(x2(k−1))+1.5
1.5

)
u(k − 1) + 0.2 rand

]
,

(8.33) 

where v(k − 1) = 0.18 sin (1.5π(k − 1)T ) + 0.28 sin (0.5π(k − 1)T )., T = 0.01. is 
the system input, the dead-zone u(k − 1). is given as (8.2) with mr = 0.1., ml = 0.1., 
br = 0.1., bl = −0.1. for the first half of the time, and mr = 0.2., ml = 0.2., br = 0.2., 
bl = −0.2. for the second half of the time. x1(1) = 0.5., x2(1) = 0. are the initial 
conditions. The nonlinear system has the form (8.1). The data for 2000 iterations are 
used for the modeling. The signal 0.2 rand. is a noise signal where rand. are random 
numbers.
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Fig. 8.3 The dead-zone 

KalmanFilter is given in [25, 27, 35], with parameters x(k) = [x1 (k) , x1 (k)]T ., 
x̂ (k) ∈ R2

., P11 = P21 = diag(1 × 10−6) ∈ R2(1+1)×2(1+1)
.. 

Evolving is given in [36] with parameters x(k) = [x1 (k) , x1 (k)]T ., x̂ (k) ∈ R2
., 

S = diag(0.1) ∈ R2×2
., P11 = P21 = diag(100) ∈ R3(1+1)×2(1+1)

., r = 0.7., and 
du = 4.. 

ModifiedEvolving is given as (8.4), (8.6) or (8.4), (8.7), (8.8) with parameters 
x(k) = [x1 (k) , x2 (k)]T ., x̂ (k) ∈ R2

., s = 0.1., P1 = diag(100) ∈ R3(1+1)×2(1+1)
., 

r = 0.7., and du = 4.. 
Figure 8.3 shows the dead-zone. The states’ approximation is shown in Figs. 8.4 

and 8.5, and state errors are shown in Fig. 8.5. The growth of the hidden neurons is 
shown in Fig. 8.6. Table 8.1 shows the comparison of the RMSE and neurons for the 
modeling of three algorithms. 

From Fig. 8.3, it is shown that the dead-zone changes in the half of the time. 
From Figs. 8.4, 8.5, 8.6, and 8.7 and Table 8.1, it can be seen that ModifiedEvolving 
achieves better accuracy when compared with both the Evolving and KalmanFilter 
because the first follows better the signals than the others, and also the RMSE 
and neuron number for the first are smaller than for the others. Consequently, the 
proposed algorithm is good for the modeling of the first nonlinear system with dead-
zone input.
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Fig. 8.4 The approximation of the state x1 . 

Fig. 8.5 The approximation of the state x2 .
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Fig. 8.6 The RMSE 

Table 8.1 Results for 
Example 8.1 

Methods. Neurons RMSE. 

KalmanFilter. 12 0.1798. 

Evolving. 12 0.0240. 

ModifiedEvolving. 7 0.0036. 

Example 8.2 The nonlinear system used for the modeling is expressed as follows 
[3]: 

. 

x1(k) = x1(k − 1) + T x2(k − 1),

x2(k) = x2(k − 1)

+T

[

−2.3
(

1−exp(−x1(k−1))
1+exp(−x2(k−1))

)
+ 3.7

(
x2(k−1) sin(x1(k−1)x2(k−1)) cos(x2(k−1))

x2
1 (k−1)+x2

2 (k−1)+1

)

+1.5x1(k − 1)x2(k − 1) + 0.7x1(k − 1)x3
2(k − 1) sin(2x1(k − 1))

+0.4x2
1(k − 1)x2(k − 1) + 3.5u(k − 1) − 0.5 rand

]
,

(8.34) 
where v(k − 1) = 0.18 sin (1.5π(k − 1)T ) + 0.28 sin (0.5π(k − 1)T )., T = 0.01. is 
the system input, the dead-zone u(k − 1). is given as (8.2) with mr = 0.1., ml = 0.1., 
br = 0.1., bl = −0.1. for the first half of the time, and mr = 0.05., ml = 0.05., 
br = 0.05., bl = −0.05. for the second half of the time. x1(1) = 0.5., and x2(1) = 0. 

are the initial conditions. The nonlinear system has the form (8.1). The data for 2000
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Fig. 8.7 The neurons number 

iterations are used for the modeling. The signal − 0.5 rand. is a noise signal where 
rand. are random numbers. 

KalmanFilter is given in [25, 27, 35], with parameters x(k) = [x1 (k) , x1 (k)]T ., 
x̂ (k) ∈ R2

., P11 = P21 = diag(1 × 10−6) ∈ R2(1+1)×2(1+1)
.. 

Evolving is given in [36] with parameters x(k) = [x1 (k) , x1 (k)]T ., x̂ (k) ∈ R2
., 

S = diag(0.1) ∈ R2×2
., P11 = P21 = diag(100) ∈ R3(1+1)×2(1+1)

., r = 0.7., and 
du = 4.. 

ModifiedEvolving is given as (8.4), (8.6) or (8.4), (8.7), and (8.8) with parameters 
x(k) = [x1 (k) , x2 (k)]T ., x̂ (k) ∈ R2

., s = 0.1., P1 = diag(100) ∈ R3(1+1)×3(1+1)
., 

r = 0.7., and du = 4.. 
Figure 8.8 shows the dead-zone. The states’ approximation is shown in Figs. 8.9 

and 8.10, and state errors are shown in Fig. 8.11. The growth of the hidden neurons 
is shown in Fig. 8.12. Table 8.2 shows the comparison of the RMSE and neurons for 
the modeling of three algorithms. 

From Fig. 8.8, it is shown that the dead-zone changes in the half of the time. From 
Figs. 8.9, 8.10, 8.11, and 8.12 and Table 8.2, it can be seen that ModifiedEvolving 
achieves better accuracy when compared with both the Evolving and KalmanFilter 
because the first follows better the signals than the others, and also the RMSE 
and neuron number for the first are smaller than for the others. Consequently, the 
proposed algorithm is good for the modeling of the second nonlinear system with 
dead-zone input.
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Fig. 8.8 The dead-zone 

Fig. 8.9 The approximation of the state x1 .
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Fig. 8.10 The approximation of the state x2 . 

Fig. 8.11 The RMSE
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Fig. 8.12 The neurons number 

Table 8.2 Results for 
Example 8.2 

Methods. Neurons RMSE. 

KalmanFilter. 12 0.2030. 

Evolving. 10 0.0337. 

ModifiedEvolving. 9 0.0059. 

Remark 8.8 The nonlinear systems (8.33) and (8.34) are different because in the 
first fk−1 . is bounded and gk−1 . changes with the time, while in the second fk−1 . is 
not bounded and gk−1 . is constant. In addition, the noise signals are different for both 
models. 

Remark 8.9 The proposed algorithm approximates the behavior of the nonlinear 
systems (8.33), (8.34) which includes fk−1 . and gk−1 ., and the dead-zone u(k − 1). is 
inside of gk−1 .; therefore, the proposed algorithm approximates the behavior of the 
nonlinear systems considering the dead-zone behavior. 

9 Concluding Remarks 

In this chapter, an approach using an evolving intelligent system was presented 
for the modeling of nonlinear systems with dead-zone input. It is effective, as it 
does not require retraining of the whole model. It is based on recursive building
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of the hidden neuron base by unsupervised and supervised learning, the hidden 
neuron-based model structure learning and parameter estimation. The simulation 
showed the proposed evolving system achieves better performance when compared 
with both the Kalman filter and evolving algorithms for the modeling of nonlinear 
systems with dead-zone input. The results illustrate the viability, efficiency, and 
the potential of the approach when it used a limited amount of initial information, 
especially important in autonomous systems and robotics. As a future research, the 
proposed evolving intelligent system will be applied for the modeling of robotic or 
mechatronic systems. 
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Chapter 9 
Evolving Intelligent Algorithms 
for the Modeling of Brain and Eye Signals 

1 Introduction 

In recent years, there are two important topics that are related with the modeling; 
they are the evolving intelligent systems and stable intelligent systems. 

The evolving intelligent systems are characterized by abilities to adjust their 
structure and parameters to the varying characteristics of the environment (with the 
term of environment embracing processes/phenomena with which the system has to 
interact and or deal with the users using the system) [1–3]. Some important results 
are given by Garcia-Cuesta and Iglesias [4], Juang et al. [5], Leite et al. [6], Lemos 
et al. [7, 8], Lughofer [9], Lughofer and Angelov [10], Lughofer and Bouchot [11], 
Lughofer [12, 13], Maciel et al. [14], Ordoñez et al. [15], and Rong et al. [16–18]. 
The problem of the classification of streaming data from a dimensionality reduction 
perspective is addressed by Garcia-Cuesta and Iglesias [4]. The implementation 
of a zero-order Takagi-Sugeno-Kang (TSK)-type fuzzy neural network (FNN) is 
proposed by Juang et al. [5]. An evolving fuzzy granular framework to learn from 
and model time varying fuzzy input-output data streams is introduced by Leite et al. 
[6]. A class of evolving fuzzy rule-based system as an approach for multivariable 
Gaussian adaptive fuzzy modeling is considered by Lemos et al. [7]. A new 
approach for evolving fuzzy modeling using tree structures is proposed by Lemos 
et al. [8]. A new algorithm for incremental learning of a specific form of Takagi-
Sugeno fuzzy systems is introduced by Lughofer [9]. New approaches to handling 
drift and shift in online data streams with the help of evolving fuzzy systems 
(EFSs) are presented by Lughofer and Angelov [10]. In [11], the authors examine 
approaches for reducing the complexity of EFSs by eliminating local redundancies 
during training. A new methodology for conducting active learning in a single-pass 
online learning context is introduced by Lughofer [12]. New dynamic split-and-
merge operations for evolving cluster models, which are learned incrementally and 
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expanded on the fly from data streams, are considered by Lughofer [13]. In [14], the 
authors address option pricing using an evolving fuzzy system model and Brazilian 
interest rate options data. The use of evolving classifiers for activity recognition 
from sensor readings in ambient assisted living environments is described by 
Ordoñez et al. [15]. In [16], a Sequential Adaptive Fuzzy Inference System called 
SAFIS is developed based on the functional equivalence between a radial basis 
function network and a fuzzy inference system (FIS). The performance evaluation 
of the recently developed Sequential Adaptive Fuzzy Inference System (SAFIS) 
algorithm for classification problems is presented by Rong et al. [17]. In [18], 
two adaptive fuzzy control schemes including indirect and direct frameworks are 
developed for suppressing the wing-rock motion. The above systems are evolving 
and soft; however, they are not guaranteed to be stable. 

The stable intelligent systems are characterized to be systems where some kind 
of stability is guaranteed, i.e., for bounded inputs in the algorithms, there are also 
bounded outputs and bounded parameters. Some important results are given by 
Ahn [19], Ahn and Lim [20], Ren and Lv [21], Rubio et al. [22, 23], Wang and 
Huang [24], Yu and Rubio [25], and Zhang et al. [26]. In [19], an error passivation 
approach is used to derive a new passive and exponential filter for switched Hopfield 
neural networks with time delay and noise disturbance. The model predictive 
stabilization problem for Takagi-Sugeno (T-S) fuzzy multilayer neural networks 
with general terminal weighting matrix is investigated by Ahn and Lim [20]. Two 
stable neural networks are introduced by Ren and Lv [21] and Rubio et al. [22]. The 
aforementioned studies are stable and soft; nevertheless, they are not evolving. 

There is research where evolving and stable characteristics are possible and also 
combined whenever assuring some sort of convergence to optimality given by Rubio 
et al. [23], Lughofer [27], and Rubio [28]. The systems are novel because they merge 
the main characteristics of the above techniques into one algorithm which has the 
main characteristics to be evolving, soft, and stable. See Fig. 9.1. 

This chapter presents the comparison of three intelligent algorithms for the 
modeling of brain and eye signals. The signals could be applied for the patients 
who cannot move their bodies; therefore, they could use their brains or their eyes to 
say what they want or need. The algorithms are the SAFIS algorithm [16] which is 
an evolving intelligent system, SBP [22], which is a stable intelligent system, and 
SOFMLS [28], which is an evolving and stable intelligent system. 

The chapter is organized as follows. In Sect. 2, the SAFIS, SBP, and SOFMLS 
algorithms are detailed. In Sect. 3, the encephalography (EEG) and electrooculo-
gram (EOG) signals are described. In Sect. 4, the comparison of three algorithms for 
the modeling of brain and eye signals is presented. Section 5 presents conclusions 
and suggests future research directions.
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Fig. 9.1 Evolving and stable intelligent systems 

2 Preliminaries 

In this section the three algorithms of this chapter are described. 

2.1 SAFIS Algorithm 

A sequential adaptive fuzzy inference system (SAFIS) is developed based on 
the functional equivalence between a radial basis function network and a fuzzy 
inference system (FIS). In SAFIS, the concept of “Influence” of a fuzzy rule is 
introduced, and using this the fuzzy rules are added or removed based on the input 
data received so far. If the input data do not warrant adding of fuzzy rules, then 
only the parameters of the “closest” (in a Euclidean sense) rule are updated using 
an extended Kalman filter (EKF) scheme.
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The SAFIS algorithm is summarized as below [16]: 
Given the growing and pruning thresholds eg ., ep . for each observation ( xk ., yk .), 

where xk ∈ RNx ., yk ∈ RNy . and k = 1, 2, . . . ,. do: 

(1) Compute the overall system output: 

.̂yk =

Nh
∑

n=1

anRn(xk)

Nh
∑

n=1

Rn(xk)

, (9.1) 

where 

. Rn(xk) = exp

(

− 1

σ 2
n

llxk − μnll2
)

,

where Nh . is the number of fuzzy rules. 
(2) Calculate the parameters required in the growth criterion: 

.εk = max
{

εmaxγ
n, εmin

}

, 0 < γ < 1, (9.2) 

.ek = yk − ŷk. (9.3) 

(3) Apply the criterion for adding rules: 

If 

. llxk − μrnll > εk, (9.4) 

and 

.Einf(Nh + 1) = |ek| (1.8n llxk − μrnll)Nx

Nh+1
∑

n=1

(1.8σn)Nx

> eg, (9.5) 

and allocate a new rule with 

.

aNn+1 = ek,

μNh+1 = xk,

σNh+1 = n llxk − μrnll .

(9.6)
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Else, adjust the system parameters arn ., μrn ., σrn . for the nearest rule only by using 
the EKF method: 

.

Kk = Pk−1Bk

[

Rk + BT
k Pk−1Bk

]−1
,

θk = θk−1 + Kkek,

Pk = [

I − KkB
T
k

]

Pk−1 + qI,

(9.7) 

where θk = [θ1 · · · θrn · · · θNh]T = [a1, μ1, σ1 .,. . . ,arn, μrn, σrn .,. . . ,  aNh, μNh,

σNh].. 
Check the criterion for pruning the rule: 
If 

.Einf(rn) = |arn| (1.8σrn)
Nx

Nh+1
∑

n=1

(1.8σn)Nx

, (9.8) 

remove the rnth rule, and reduce the dimensionality of EKF. 
EndIf. EndIf. 

Remark 9.1 The significance of a neuron proposed in GAP–RBF is defined based 
on the average contribution of an individual neuron to the output of the RBF 
network. Under this definition, one may need to estimate the input distribution 
range S(X) = |arn|

Nh+1
∑

n=1

(1.8σn)Nx

.. However, the influence of a rule introduced in this 

chapter is different from the significance of a neuron proposed in GAP–RBF. In 
fact, the influence of a neuron is defined as the relevant significance of the neuron 
compared to summation of significance of all the existing RBF neurons. As seen 
from Eq. (9.8), with the introduction of influence one need not estimate the input 
distribution range and the implementation has been simplified. 

Remark 9.2 In parameter modification, SAFIS utilizes a winner rule strategy 
similar to the work done by Huang et al. The key idea of the winner rule strategy is 
that only the parameters related to the selected winner rule are updated by the EKF 
algorithm in every step. The “winner rule” is defined as the rule that is the closest (in 
the Euclidean distance sense) to the current input data as in. As a result, in SAFIS, 
a fast computation is achieved. 

Remark 9.3 In SAFIS, some parameters need to be decided in advance according 
to the problems considered. They include the distance thresholds (εmax ., εmin ., γ .), the 
overlap factor (n) for determining the width of the newly added rule, the growing 
threshold ( eg .) for a new rule, and the pruning threshold ( ep .) for removing an 
insignificant rule. A general selection procedure for the predefined parameters is 
given as follows: max is set to around the upper bound of input variables, εmin . is 
set to around 10%. of εmax ., and γ . is set to around 0.99.. ep . is set to around 10%.
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of eg .. The overlap factor (n) is utilized to initialize the width of the newly added 
rule and chosen according to different problems. It is suggested to be chosen in 
the range [ 1.0., 2.0.]. The growing threshold eg . is chosen according to the system 
performance. The smaller the eg ., the better the system performance, but the resulting 
system structure is more complex. 

2.2 SBP Algorithm 

The stable backpropagation (SBP) algorithm is developed with a new time varying 
rate to guarantee its uniformly stability for online identification, and its identification 
error converges to a small zone bounded by the uncertainty. The weights’ error is 
bounded by the initial weights’ error, i.e., overfitting is eliminated in the mentioned 
algorithm [29]. 

The SBP algorithm is as follows [22]: 

(1) Obtain the output of the nonlinear system y(k). with Eq. (9.9). Note that the 
nonlinear system may have the structure represented by Eq. (9.9); the parameter 
N is selected according to this nonlinear system.

.y(k) = f [Xk] , (9.9) 

where Xk = [x1(k) . . . , xi(k), . . . , xN(k)]T = [y(k − 1), . . . , y(k − n), . 

u (k − 1) , . . . , u (k − m)]T ∈ RN×1
. (N = n + m.) is the input vector, 

u(k − 1) ∈ R. is the input of the plant, y(k) ∈ R. is the output of the plant, 
and f is an unknown nonlinear function, f ∈ C∞

.. 
(2) Select the following parameters: V1 . and W1 . as random numbers between 0 and 

1, M as an integer number, and α0 . as a positive value smaller or equal to 1; 
obtain the output of the NN ŷ(1). with Eq. (9.10). 

.

ŷ(k) = VkΦk =
M

∑

j=1

Vjkφjk,

Φk = [

φ1k, . . . , φjk, . . . , φMk

]T
,

φjk = tanh(

N
∑

i=1

Wijkxi(k)).

(9.10) 

(3) For each iteration k, obtain the output of the NN ŷ(k). with Eq. (9.10), also 
obtain the identification error e(k). with Eq. (9.11), and update the parameters 
Vjk+1 . and Wijk+1 . with Eq. (9.12). 

.e(k) = ŷ(k) − y(k), (9.11)
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.
Vjk+1 = Vjk − αkφjke(k),

Wijk+1 = Wijk − αkσijke(k),
(9.12) 

where the new time varying rate αk . is 

. αk = α0

2

⎛

⎝
1
2 +

M
∑

j=1

φ2
jk +

M
∑

j=1

N
∑

i=1

σ 2
ijk

⎞

⎠

,

where i = 1, . . . , N ., j = 1, . . . ,M ., σijk = Vjk .sech2(

N
∑

i=1

Wijkxi(k))xi(k) ∈ R.. 

Remark 9.4 There are two conditions for applying this algorithm for nonlinear 
systems: The first one is that the nonlinear system may have the form described by 
(9.9), and the second one is that the uncertainty μ(k). may be bounded. 

Remark 9.5 The value of the parameter used for the stability of the algorithm μ. 

is unimportant, because this parameter is not used in the algorithm. The bound of 
μ(k). is needed to guarantee the stability of the algorithm, but it is not used in the 
BP algorithm (9.10), (9.11), (9.12). 

Remark 9.6 The proposed NN has one hidden layer. It was reported in the 
literature that a feedforward neural network with one hidden layer is enough to 
approximate any nonlinear system. 

Remark 9.7 Note that the behavior of the algorithm could be improved by 
changing the values of M or α0 .. 

2.3 SOFMLS Algorithm 

An online self-organizing fuzzy modified least-square (SOFMLS) network has 
the ability to reorganize the model and adapt itself to a changing environment 
where both the structure and learning parameters are performed simultaneously. The 
stability of the mentioned algorithm is guaranteed, and the bound for the average 
identification error is found. 

The SOFMLS algorithm is as follows [28]: 

(1) Select the following parameters: The parameter of the modified least square 
algorithm is R2 > 0 ∈ R., the parameter of the clustering algorithm is 0 < r <

1 ∈ R., and the parameter of the pruning algorithm is du ∈ N . (L = L + ΔL., 
ΔL = 5du .). 

(2) For the first data k = 1. (where k is the number of iterations), M = 1. (where M 
is the number of rules or clusters), the initial parameters of the modified least
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square algorithm are P1 = cI ∈ R3M×3M
. (where 0 < c ∈ R.), v1(1) = y(1)., 

c1(1) =

N
∑

i=1

xi (1)

N
., and w1(1) = rand ∈ (0, 1). ( v1 . is the initial parameter of 

the consequent part, c1 . and w1 . are the centers and widths of the membership 
function of the antecedent part), and the initial parameter of the clustering and 
pruning algorithms is d1(1) = 1. (where d is the density parameter).

(3) For the other data where k ≥ 2., evaluate the fuzzy network parameters zj (k−1). 

and b(k − 1). with (9.13), evaluate the output of the fuzzy network ŷ(k − 1). 

with (9.13), (9.14), and (9.15), also evaluate the identification error e(k − 1). 

with (9.16), update the parameters of the modified least square algorithm vj (k)., 
cj (k)., and wj(k). with (9.17), and evaluate the parameter of the clustering and 
pruning algorithm p(k − 1). with (9.18). 

.

b(k − 1) =
M
∑

j=1

zj (k − 1),

zj (k − 1) = exp
[

−γ 2
j (k − 1)

]

,

γj (k − 1) =

N
∑

i=1

wj (k−1)(xi (k−1)−cj (k−1))

N
,

(9.13) 

.φj (k − 1) = zj (k − 1)/b(k − 1), (9.14) 

.̂y(k − 1) =
M
∑

j=1

vj (k − 1)φj (k − 1) = V T (k − 1)Φ(k − 1), (9.15) 

.e(k − 1) = ŷ(k − 1) − y(k − 1), (9.16) 

.
θ(k) = θ(k − 1) − 1

Qk−1
PkBk−1e(k − 1),

Pk = Pk−1 − 1
Rk−1

Pk−1Bk−1B
T
k−1Pk−1,

(9.17) 

.p(k − 1) = max
1≤j≤M

zj (k − 1). (9.18) 

The updating of the clustering algorithm is as follows: 
(4) If p(k − 1) ≥ r ., then a rule is not generated, the winner rule j∗

. is presented 
when zj (k − 1) = p(k − 1)., and the value of the density dj∗(k). of this rule is 
updated with (9.19). The winner rule is a rule that increments its importance in 
the algorithm. Go to 3. 

.dj∗(k) = dj∗(k) + 1. (9.19)
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(5) If p(k − 1) < r ., then a new rule is generated (M = M + 1)., where r ∈
(0, 1). (e.g., the number of rules is increased by 1), the initial values of cM+1(k)., 
wM+1(k)., vM+1(k)., and dM+1(k). are assigned to the new rule with (9.20), and 
the missing parameters are added to have Pk ∈ R3(M+1)×3(M+1)

. with diagonal 
elements (where Pk ., vj (k)., cj (k)., and wj(k). are the parameters of the modified 
least square algorithm, and dj (k). is the parameter of the density, j = 1 . . . M .). 
Go to 3. 

.
cM+1(k) =

N
∑

i=1

xi (k)

N
, wM+1(k) =

N
∑

i=1

[

xi (k)−cj∗ (k)
]

N
,

vM+1(k) = y(k), dM+1(k) = 1.

(9.20) 

The updating of the pruning algorithm is as follows: 
(6) For the case where k = L., the pruning algorithm works (the pruning algorithm 

is not active at each iteration) and evaluates the minimum density dmin(k). 

with (9.21), and L is updated as L = L + ΔL.. 

.dmin(k) = min
1≤j≤M

dj (k). (9.21) 

(7) If M ≥ 2. and dmin(k) ≤ du ., then this rule is pruned, where du ∈ N . is the 
density threshold, and the looser rule j∗ . is presented when dj (k) = dmin(k).. 
The looser rule is the least important rule of the algorithm, the values of cj (k)., 
wj(k)., vj (k)., and dj (k). are assigned with (9.22) and (9.23) to prune the looser 
rule j∗ ., and in the same way, the values of Pk . are assigned to prune the looser 
rule j∗ . (where Pk ., vj (k)., cj (k)., and wj(k). are the parameters of the modified 
least square algorithm and dj (k). is the density parameter, j = 1 . . . M .), and M 
is updated as M = M − 1. (e.g., the number of rules is decreased by 1). Go to 3. 

.
cj−1(k) = cj (k), wj−1(k) = wj(k),

vj−1(k) = vj (k), dj−1(k) = dj (k),
(9.22) 

.cM(k) = 0, wM(k) = 0, vM(k) = 0, dM(k) = 0. (9.23) 

(8) If dmin(k) > du . or M = 1., then this rule is not pruned. Go to 3. 

Remark 9.8 The networks of many earlier studies use membership functions, as 
shown in this study, and they also use the function γj (k−1).. First, in the antecedent 
part of the networks of the aforementioned references, 2N parameters are used for 
each rule of the multidimensional membership functions, while in the antecedent 
part of the network used in this study, two parameters are used for each rule 
of the unidimensional membership functions (9.13). Second, the networks of the 
aforementioned references use 1/σij (k − 1)., which can cause singularity in online 
learning, while the network used in this study uses wj(k − 1) = 1/σj (k − 1). to
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avoid singularity. Some authors use the sum inference, product inference, or norm 
inference; however, in this study, the mean inference γj (k − 1). (9.13) is used. 

Remark 9.9 The idea to take the maximum of zj (k − 1). as in (9.18) to obtain the 
winner rule is taken from the competitive learning of the adaptive resonance theory 
(ART) recurrent neural network (in the case of the ART network, the winner rule is 
the winner neuron). 

Remark 9.10 In an earlier research, the second derivative of an objective function 
is used to find the unimportant rule. In this study, the density parameter is used 
to find the unimportant rule. In another study, the density as the population is 
considered, the population of each cluster is monitored, and if it amounts to less 
than 1%. of the total data samples, the cluster is ignored at this iteration. The rule 
is ignored as vd min(k) = 0., and subsequently, this weight is ignored in the term 
ŷ(k − 1). of (9.15). The cluster is ignored in the algorithm at this iteration, but 
the rule is not pruned; thus, the network cannot decrease. In other earlier work, two 
threshold parameters are considered: one for adding rules and the other for removing 
rules; however, they did not use the density parameter. 

Remark 9.11 The parameter M (number of rules) is finite, because the algorithm 
adds the necessary rules and prunes the unnecessary rules to adapt itself to the 
changing environment. The number of rules M is changed by the clustering and 
pruning algorithms, and M changes only the dimension of BT

k−1 . and θ(k − 1).; thus, 
the stability result is preserved. 

Remark 9.12 The value of the parameter used for the stability of the algorithm μ. 

is unimportant, because this parameter is not used in the algorithm. The bound of 
μ(k − 1). is needed to guarantee the stability in the algorithm. 

Remark 9.13 The parameters L and ΔL. are needed in (9.21), because the pruning 
algorithm is not active at each iteration. The initial value of L is ΔL., and the pruning 
algorithm works at the first time when k = L., and consequently, L is increased 
by ΔL.. The pruning algorithm works for each ΔL. iteration. The parameter ΔL. 

was determined empirically as 5du .; thus, the pruning algorithm has only du . as the 
designing parameter. Note that the behavior of the algorithm could be improved by 
changing the values of c, R2 ., r , or  du .. 

3 The Brain and Eye Signals 

This section describes the characteristics of the brain and eye signals. 

3.1 The EEG Signals 

The difference of the potential in one membrane is obtained by the exchange 
between the ions (Na+, Cl-, K+) being in the same. The neurons have a potential
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difference between the inside and outside which is called rest potential, and this 
potential represents constant changes because of the impulses given by the neighbor 
neurons [30, 31]. This potential difference can be measured in the brain cortex 
using electrodes that convert the ion flow into electric flow. The characteristic of 
the encephalography signal (EEG) is of 5–300 μ.V in amplitude and of 0–150.Hz in 
frequency [32, 33]. 

The EEG signals are waves similar to periodic, but the waves can change from 
one time to other, and they have some characteristics which allow the modeling 
[34, 35], as are the amplitude, the frequency, the morphology, the band, the rhythm, 
and the duration [30, 33]. 

The following paragraphs show the characteristics that are considered for an adult 
in vigilance [30, 33]. 

Alpha signal. It is the normal rhythm of the bottom and is the most stable and 
typical in the human. It is found in the frequencies of 8–12.Hz± 1.Hz. The amplitude 
is between 20 and 60 μ.V. It can be seen generally in posterior regions with more 
amplitude in the occipital lobes. See Fig. 9.2. It is more evident when the patient is 
awake with closed eyes and in physical and mental rest, and it is stopped when the 
eyes are opened or with the mental activity [30, 36]. 

Fig. 9.2 EEG signals
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Beta signal. It is found in the frequencies >13.Hz, in general between 14 and 
35 Hz. The amplitude is usually low from 5 to 10 μ.V and is symmetric [30, 36]. See 
Fig. 9.2. 

Theta signal. It has a frequency of 4–8.Hz, is of half of low voltage, and is found 
in the temporal regions [30, 36]. See Fig. 9.2. 

Delta signal. It is found in the second and the third stages of the dream. It has a 
frequency of 0.5–3.5.Hz, and the amplitude is generally higher than 75 μ.V [30, 36]. 
See Fig. 9.2. 

3.2 The EOG Signals 

The EOG signals are the signals obtained as a result of the eye movements of a 
patient, and these EOG signals are detected using three electrodes: one electrode 
on the temple, one above and other underneath of the eye. Usually, the detected 
signals are by direct current (DC) coupling to specify the direction of the gaze. In 
the experiments of this chapter, three electrodes are placed on the dominant side of 
the patient eye according to the optimum positions suggested by Hori et al. [37], 
Rubio et al. [38], and Yamagishi et al. [39]. 

Figure 9.3 shows the relationship between real eye movements (input) and the 
EOG signals (output) of the system. Denote the upper and lower thresholds of the 
vertical channel Ch.V as V1 and V2, respectively, and denote the upper and lower 
thresholds of the horizontal channel Ch.H as H1 and H2, respectively. When the 
EOG potential exceeds one of these thresholds, the output assumes ON, and when 
the EOG potential does not exceed one of these thresholds, the output assumes OFF. 
The process of transforming the EOG signals from the intention of the patient is as 
follows [38, 39]: 

1. Output Up is when it is obtained an Up behavior: First, Threshold V1 of the 
vertical channel becomes ON, while Threshold V2 is OFF, and second, Threshold 

Fig. 9.3 EOG signals
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V2 of the vertical channel becomes ON, while Threshold V1 becomes OFF. H1 
and H2 of the horizontal channel remain OFF all the time. 

2. Output Down is when it is obtained a Down behavior: First, Threshold V2 of the 
vertical channel becomes ON, while Threshold V1 is OFF, and second, Threshold 
V1 of the vertical channel becomes ON, while Threshold V2 becomes OFF. H1 
and H2 of the horizontal channel remain OFF all the time. 

4 Simulations 

In this section, the three above detailed algorithms are applied for the modeling of 
brain and eye signals. The aforementioned signals could be applied for patient who 
cannot move their bodies; consequently, they could use their brains or their eyes to 
say what they want or need. The SAFIS of [16], SOFMLS of [28], and SBP of [22] 
are compared for the modeling of brain signals in Example 1 and for the modeling 
of eye signals in Example 2. The root mean square error (RMSE) of [22, 28, 33, 40] 
is used for the comparison results: 

.RMSE =
(

1

N

N
∑

k=1

e2(k)

)
1
2

, (9.24) 

where e(k). is the learning error of (9.3), (9.16), and (9.11). 

4.1 Example 1 

Consider real data of brain signals [33] where 5528 pairs (u(k)., y(k).) of  5.528. s are  
used for the learning and 1844 pairs (u(k)., y(k).) for  1.844. s are used for the testing. 
The alpha signal is obtained in this study because it has more probabilities to be 
found. The acquisition system is applied with a 28-year-old healthy man when his 
eyes are closed. The inputs of all the intelligent systems are y(k)., y(k+1)., y(k+2)., 
y(k + 3)., and the output of the intelligent systems is y(k + 4).. 

Considering Remark 9.3, the parameters for the SAFIS algorithm [16] are  Nx =
4., γ = 0.997., εmax = 2., n = 2., εmin = 0.2., eg = 0.03., ep = 0.003.. Considering 
Remark 9.7, the parameters of the SBP algorithm [22] are  N = 4., M = 4., α0 =
0.25.. Considering Remark 9.13, the parameters of the SOFMLS algorithm [28] are  
N = 4., P1 = cI ∈ R3x3

., where c = 1., R2 = 0.1., r = 0.973., and du = 6.. 
Figure 9.4 shows the comparison results for the learning of the three algorithms. 

Figure 9.5 gives the illustration of the rule (neuron) evolution for the three 
algorithms during learning. Figure 9.6 shows the comparison results for the testing 
of the three algorithms. Table 9.1 shows the RMSE comparison results for the 
algorithms using (9.24).
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Fig. 9.4 Learning for Example 1 

Fig. 9.5 Rule (neuron) evolution for Example 1
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Fig. 9.6 Testing for Example 1 

Table 9.1 Results for Example 1 

Methods. Rules(Neurons). Learning RMSE. Testing RMSE. 

SBP. 4 0.0121. 0.0233. 

SAFIS. 29 0.0224. 0.0077. 

SOFMLS. 4 0.0118. 0.0041. 

From Figs. 9.4, 9.5, and 9.6 and Table 9.1, it can be seen that the SOFMLS 
presents the smallest learning and testing RMSE, the SAFIS presents the biggest 
learning RMSE, the SBP presents the biggest testing RMSE, the SOFMLS and SBP 
give the smallest number of neurons, and the SAFIS gives the biggest number of 
neurons. 

4.2 Example 2 

Consider real data of eye signals of the up behavior [38] where 3572 pairs (u(k)., 
y(k).) of  3.572. s are used for the learning and 1192 pairs (u(k)., y(k).) for  1.192. 

s are used for the testing. The up signals are used in this chapter. The acquisition 
system is applied with a 25-year-old healthy man when his eyes are moving, and two 
electrodes are used to find the signals as described in the aforementioned section.
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Fig. 9.7 Learning for Example 2 

The inputs of all the intelligent systems are y(k)., y(k + 1)., y(k + 2)., y(k + 3)., and 
the output of the intelligent systems is y(k + 4).. 

Considering Remark 9.3, the parameters for the SAFIS [16] are Nx = 4., γ =
0.986., εmax = 0.1., n = 2., εmin = 0.01., eg = 0.01., ep = 0.001.. Considering 
Remark 9.7, the parameters of the SBP [22] are  N = 4., M = 3., α0 = 0.25.. 
Considering Remark 9.13, the parameters of the SOFMLS [28] are  N = 4., P1 =
cI ∈ R3x3

., where c = 1., R2 = 0.1., r = 0.973., and du = 6.. 
Figure 9.7 shows the comparison results for the learning of the three algorithms. 

Figure 9.8 gives the illustration of the rule (neuron) evolution for the three 
algorithms during learning. Figure 9.9 shows the comparison results for the testing 
of the three algorithms. Table 9.2 shows the RMSE comparison results for the 
algorithms using (9.24). 

From Figs. 9.7, 9.8, and 9.9 and Table 9.2, it can be seen that the SOFMLS 
presents the smallest testing RMSE, the SBP presents the smallest learning RMSE, 
the SAFIS presents the biggest learning RMSE, the SBP presents the biggest testing 
RMSE, the SOFMLS gives the smallest number of neurons, and the SAFIS gives 
the biggest number of neurons.
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Fig. 9.8 Rule (neuron) evolution for Example 2 

Fig. 9.9 Testing for Example 2
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Table 9.2 Results for Example 2 

Methods. Rules(Neurons). Learning RMSE. Testing RMSE. 

SBP. 3 0.0146. 0.0285. 

SAFIS. 56 0.0434. 0.0259. 

SOFMLS. 2 0.0190. 0.0157. 

4.3 Example 3 

Consider real data of brain signals [33] where 5528 pairs (u(k)., y(k).) of  5.528. s are  
used for the learning and 1844 pairs (u(k)., y(k).) for  1.844. s are used for the testing. 
The alpha signal is obtained in this study because it has more probabilities to be 
found. The acquisition system is applied with a 28-year-old healthy man when his 
eyes are closed. The inputs of all the intelligent systems are y(k)., y(k+1)., y(k+2)., 
y(k + 3)., and the output of the intelligent systems is y(k + 4).. 

Considering Remark 9.3, the parameters for the SAFIS algorithm [16] are  Nx =
4., γ = 0.99., εmax = 1., n = 2., εmin = 0.1., eg = 0.01., ep = 0.001.. Considering 
Remark 9.7, the parameters of the SBP algorithm of [22] are  N = 4., M = 3., 
α0 = 0.5.. Considering Remark 9.13, the parameters of the SOFMLS algorithm [28] 
are N = 4., P1 = cI ∈ R3x3

., where c = 1., R2 = 0.05., r = 0.93., and du = 6.. 
Figure 9.10 shows the comparison results for the learning of the three algorithms. 

Figure 9.11 gives the illustration of the rule (neuron) evolution for the three 

Fig. 9.10 Learning for Example 3
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Fig. 9.11 Rule (neuron) evolution for Example 3 

algorithms during learning. Figure 9.12 shows the comparison results for the testing 
of the three algorithms. Table 9.3 shows the RMSE comparison results for the 
algorithms using (9.24). 

From Figs. 9.10, 9.11, and 9.12 and Table 9.3, it can be seen that the SOFMLS 
presents the smallest learning and testing RMSE, the SAFIS presents the biggest 
learning RMSE, the SBP presents the biggest testing RMSE, the SOFMLS gives the 
smallest number of neurons, and the SAFIS gives the biggest number of neurons. 

4.4 Example 4 

Consider real data of eye signals of the down behavior [38] where 3572 pairs (u(k)., 
y(k).) of  3.572. s are used for the learning and 1192 pairs (u(k)., y(k).) for  1.192. 

s are used for the testing. The up signals are used in this chapter. The acquisition 
system is applied with a 25-year-old healthy man when his eyes are moving, and two 
electrodes are used to find the signals as described in the aforementioned section. 
The inputs of all the intelligent systems are y(k)., y(k + 1)., y(k + 2)., y(k + 3)., and 
the output of the intelligent systems is y(k + 4).. 

Considering Remark 9.3, the parameters for the SAFIS [16] are Nx = 4., 
γ = 0.99., εmax = 0.1., n = 2., εmin = 0.01., eg = 0.01., ep = 0.001.. 
Considering Remark 9.7, the parameters of the SBP [22] are  N = 4., M = 3.,
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Fig. 9.12 Testing for Example 3 

Table 9.3 Results for Example 3 

Methods. Rules(Neurons). Learning RMSE. Testing RMSE. 

SBP. 3 0.0079. 0.3443. 

SAFIS. 29 0.0256. 0.0077. 

SOFMLS. 2 0.0067. 0.0043. 

α0 = 0.5.. Considering Remark 9.13, the parameters of the SOFMLS [28] are  
N = 4., P1 = cI ∈ R3x3

., where c = 1., R2 = 0.05., r = 0.96., and du = 6.. 
Figure 9.13 shows the comparison results for the learning of the three algorithms. 

Figure 9.14 gives the illustration of the rule (neuron) evolution for the three 
algorithms during learning. Figure 9.15 shows the comparison results for the testing 
of the three algorithms. Table 9.4 shows the RMSE comparison results for the 
algorithms using (9.24). 

From Figs. 9.13, 9.14, and 9.15 and Table 9.4, it can be seen that the SOFMLS 
presents the smallest learning and testing RMSE, the SAFIS presents the biggest 
learning RMSE, the SBP presents the biggest testing RMSE, the SOFMLS and SBP 
give the smallest number of neurons, and the SAFIS gives the biggest number of 
neurons. 

Remark 9.14 In the simulations, selecting different parameters for the algorithms 
of each example, the results present small variations.
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Fig. 9.13 Learning for Example 4 

Fig. 9.14 Rule (neuron) evolution for Example 4
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Fig. 9.15 Testing for Example 4 

Table 9.4 Results for Example 4 

Methods. Rules(Neurons). Learning RMSE. Testing RMSE. 

SBP. 4 0.0180. 0.0305. 

SAFIS. 40 0.0373. 0.0297. 

SOFMLS. 4 0.0146. 0.0128. 

Remark 9.15 The SAFIS algorithm is applied in two synthetic examples and in the 
Makey-Glass time-series prediction problem [16]. The SBP algorithm is applied in 
a synthetic example and in the prediction of the loads distribution in a warehouse 
[22]. The SOFMLS algorithm is applied in two synthetic examples and in the Box-
Jenkins furnace. This study is novel because it shows that the three algorithms can 
be used for the modeling of other different kind of systems which are the real brain 
and eye signals. 

Remark 9.16 There is not a winner algorithm because the assumed tuning param-
eters for each method play their important role.
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5 Concluding Remarks 

This chapter successfully demonstrated the development of the SAFIS, SBP, and 
SOFMLS algorithms for the modeling of brain and eye signals. The simulation 
showed that the three algorithms can be used satisfactorily for the learning and 
testing of the real brain and eye signals. The learning could be applied for the 
control or prediction designs, and the testing could be applied for the classification, 
diagnosis, or prediction designs. The three methods can be used for the modeling of 
continuous and soft nonlinear systems or for the modeling of any of the conventional 
body signals. The three techniques are similar in that some parameters need to be 
decided in advance according to the problems considered, and other parameters are 
updated through the time. As a future work, some new evolving and stable intelligent 
algorithms will be designed. 
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Chapter 10 
MSAFIS: An Evolving Fuzzy Inference 
System 

1 Introduction 

The recent years have witnessed the emergence of an important topic related to 
process learning which is learning from big data (LBD). LBD is concerned with 
the development and application of learning algorithms for very large, possibly 
complex, datasets that cannot be accommodated in the main memory. To cope with 
this requirement, different techniques and technologies have been proposed: 

1. Parallel and distributed computing (e.g., Hadoop): Data are split into portions 
and sent to parallel machines to be processed and learned from. 

2. Online learning, known also as sequential learning, one-pass learning, real-
time learning, evolving systems, etc.: The learning algorithms learn sequentially, 
either batch-based or point-based, potentially using one single machine. 

Although these techniques are not new from a pure scientific point of view, the 
deluge of data available everywhere has given a refreshing and renewable interest to 
them. In this chapter we will focus on online learning. 

Online learning faces the challenge of accurately estimating models using incom-
ing data whose statistical characteristics are not known a priori. In nonstationary 
environments, the challenge becomes even more important, since the model’s 
behavior may need to change drastically over time [1]. Online learning aims at 
ensuring continuous adaptation of the model being fitted to the data. When learning, 
ideally only the model should be stored in memory. For instance, in rule-based 
systems (RBSs), only rules should be memorized. The model is then adjusted in 
future learning steps. In the case of RBS, as new data arrive, new rules may be 
created, and existing ones may be modified or removed allowing the overall model 
to evolve over time [2] and [3]. In [4], online fuzzy models are discussed. 

In general evolving systems are online learning algorithms whose structure and 
parameters are very flexible in order to adapt to ever-changing environments [5– 
10]. Online processing of data with a particular focus on the design issues of online 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
J. de J. Rubio, Stability Analysis of Neural Networks and Evolving 
Intelligent Systems, https://doi.org/10.1007/978-3-031-87282-2_10

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-87282-2protect T1	extunderscore 10&domain=pdf
https://doi.org/10.1007/978-3-031-87282-2_10
https://doi.org/10.1007/978-3-031-87282-2_10
https://doi.org/10.1007/978-3-031-87282-2_10
https://doi.org/10.1007/978-3-031-87282-2_10
https://doi.org/10.1007/978-3-031-87282-2_10
https://doi.org/10.1007/978-3-031-87282-2_10
https://doi.org/10.1007/978-3-031-87282-2_10
https://doi.org/10.1007/978-3-031-87282-2_10
https://doi.org/10.1007/978-3-031-87282-2_10
https://doi.org/10.1007/978-3-031-87282-2_10
https://doi.org/10.1007/978-3-031-87282-2_10


176 10 MSAFIS: An Evolving Fuzzy Inference System

evolving systems is considered in [11]. In [2], online self-learning fuzzy classifier, 
called GT2FC standing for “Growing Type-2 Fuzzy Classifier,” is presented. The 
proposed approach shows how type-2 fuzzy rules can be learned online in an 
evolving way from data streams. GT2FC was applied in the context of smart homes. 
In [12], the authors explore the application of interactive and online learning of user 
profiles in the context of information filtering using evolutionary algorithms. In [13], 
an evolving algorithm for learning computer user behavior is introduced. 

Evolving systems have been very popular, for instance, in [14], a learning 
approach to train uninorm-based hybrid neural networks is mentioned. The use of 
evolving classifiers for activity recognition is described in [15] and [16]. In [17, 18], 
and [19], novel efficient techniques of evolving intelligent systems are discussed. 
A dynamic pattern recognition method is introduced in [20]. In [21], an approach 
for classifying huge amounts of different news articles is designed. An evolving 
method that is able to keep track of computer users is proposed in [13]. In [22], 
a new approach called evolving principal component clustering is addressed. A 
new clustering method is suggested in [23]. In [24] and [25], novel evolving fuzzy-
rule-based classifiers are addressed. An evolving neural fuzzy modeling approach is 
constructed in [26]. In [27], a novel approach in fault diagnosis is studied. 

Stable systems are characterized by the boundedness criterion, i.e., if bounded 
algorithm inputs are employed, then the outputs and parameters exponentially decay 
to a small and bounded zone. In [28], the author uses an induced L ∞. approach to 
create a new filter with a finite impulse response structure for state-space models 
with external disturbances. The model predictive stabilization problem for Takagi-
Sugeno fuzzy multilayer neural networks with general terminal weighting matrix is 
investigated in [29]. In [30], an error passivation approach is used to derive a new 
passive and exponential filter for switched Hopfield neural networks with time delay 
and noise disturbance. Two robust intelligent controllers for nonlinear systems with 
dead-zone are addressed in [31] and [32]. In [33] and [34], two stable controllers 
are introduced. 

However, most of these algorithms operate offline and are not designed to 
handle big data. The present chapter presents the combination of two algorithms: 
the sequential adaptive fuzzy inference system (SAFIS) [35] which is an evolving 
algorithm and the stable gradient descent algorithm (SGD) [3] which is a stable 
algorithm. Such a combination, called the MSAFIS, aims to devise an efficient 
evolving algorithm that can cope with data streams as a case of big data. MSAFIS 
exploits the SGD algorithm to update parameters, while SAFIS relies on the Kalman 
filter. SGD has the advantage that it outperforms Kalman filter [3]. 

The chapter is organized as follows. In Sect. 2, the SAFIS, SGD, and MSAFIS 
algorithms are detailed. In Sect. 3, the brain encephalography (EEG) and the eye 
electrooculogram (EOG) signals are described. Using an EEG and an EOG dataset, 
SAFIS, SGD, and MSAFIS are evaluated and compared in Sect. 4. Section 5 
concludes the chapter and suggests future research directions.
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2 Presentation of the Algorithms 

In this section the three algorithms SAFIS, SGD, and MSAFIS are described. 
Furthermore, the differences of the three algorithms are explained. 

2.1 SAFIS Algorithm 

The sequential adaptive fuzzy inference system (SAFIS) is developed based on 
the functional equivalence between a radial basis function network and a fuzzy 
inference system (FIS) resulting in a neuro fuzzy system. In SAFIS, the concept 
of “Influence” of a fuzzy rule is introduced, and using this the fuzzy rules are added 
or removed based on the input data received so far. If the input data do not warrant 
adding of fuzzy rules, then only the parameters of the “closest” (in a Euclidean 
sense) rule are updated using an extended Kalman filter (EKF) scheme. 

The SAFIS algorithm is summarized as below [35]: 
For each observation (z(k)., y(k).), where z(k) ∈ RN

., y(k) ∈ R., and k =
1, 2, . . . ,. do: 

(1) Compute the overall system output: 

.̂y(k) =

M
∑

j=1

oj (k)Rj (zi(k))

M
∑

j=1

Rj (zi(k))

, (10.1) 

where 

. Rj (zi(k)) = exp

(

− 1

δ2j (k)

∥

∥zi(k) − mj(k)
∥

∥

2

)

,

and M is the number of fuzzy rules, Rj (zi(k)). is the firing strength of the j th rule, 
and oj (k). is the weight of the normalized rule. Note that each rule is represented as 
a radial basis function described by its center mj(k). and its spread δj (k).. 

(2) Calculate the parameters required in the growth criterion: 

.e(k) = max
{

emaxτ
k, emin

}

, 0 < τ < 1, (10.2)
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where emax . and emin . are the threshold largest and smallest distances admitted 
between the inputs and the corresponding nearest center of rules. The parameter 
τ (0 < τ < 1). indicates the decay constant. The error of the kth input is given as 
follows: 

.̃y(k) = y(k) − ŷ(k). (10.3) 

where y(k). and ŷ(k). are the output and the estimated output, respectively. 
(3) Apply the criterion for adding rules if the following two conditions are 

satisfied: 
If 

.
∥

∥zi(k) − mj(k)
∥

∥ > e(k), (10.4) 

and 

.Yinf(M + 1) = |̃y(k)|
(

1.8K
∥

∥zi(k) − mj(k)
∥

∥

)N

M+1
∑

j=1

(1.8δj (k))N

> yg, (10.5) 

where yg . is the growing threshold. A new rule M + 1. is added if yg . is exceeded. 
The new rule M + 1. is given as follows: 

.

oM+1(k) = ỹ(k),

mM+1(k) = zi(k),

δM+1(k) = K llzi(k) − mM+1(k)ll .

(10.6) 

If no rule is added, the nearest rule jm  is obtained as follo ws:

.min
j

Rj (z(k)) =⇒ jm = j, (10.7) 

and adjust the system parameters oj (k)., mj(k)., δj (k). for the nearest rule only by 
using the extended Kalman filter (EKF) method: 

. 

ϕ(k) = ϕ(k − 1) + Pk−1b(k − 1)
[

a + bT (k − 1)Pk−1b(k − 1)
]−1

ỹ(k),

Pk = Pk−1 − Pk−1b(k − 1)
[

p + bT (k − 1)Pk−1b(k − 1)
]−1

bT (k − 1)Pk−1 + qI,

(10.8) 
where ϕ(k) = [ϕ1(k) · · · ϕ3(k)]T = [mjm(k)., ojm(k)., δjm(k)]T ., P1 .=qI , 
q and p are parameters selected by the designer, 0 < q < 1., 0 <
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p  <  1., b(k).=[b1(k)., b2(k).,b3(k)]T ., b1(k).=
2[ojm(k)−ŷ(k)]Rjm(zi (k))[zi (k)−mjm(k)]

⎡

⎢

⎣

M
∑

j=1

Rj (zi (k))

⎤

⎥

⎦δ2jm(k)

., 

b2(k).=
2[ojm(k)−ŷ(k)]Rjm(zi (k))llzi (k)−mjm(k)ll2

⎡

⎢

⎣

M
∑

j=1

Rj (zi (k))

⎤

⎥

⎦δ3jm(k)

., b3(k).=
Rjm(zi (k))

⎡

⎢

⎣

M
∑

j=1

Rj (zi (k))

⎤

⎥

⎦

., and I is the 

identity matrix.
(4) If the following criterion is satisfied: 

.Yinf(jm) = ∣

∣ojm(k)
∣

∣

(

1.8δjm(k)
)N

M
∑

j=1

(1.8δj (k))N

< yp, (10.9) 

then, remove the jm  rule and reduce the dimensionality of EKF. Note that yp . is the 
pruning threshold. 

Remark 10.1 The significance of a rule proposed in growing and pruning radial 
basis function (GAP-RBF) neural network is defined based on the average contribu-
tion of an individual rule to the output of the RBF network. Under this definition, one 

may need to estimate the input distribution range S(z) = |ojm(k)|
M

∑

j=1

(1.8δj (k))N

.. However, 

the influence of a rule introduced in this chapter is different from the significance 
of a rule proposed in GAP-RBF. In fact, the influence of a rule is defined as the 
relevant significance of the rule compared to summation of significance of all the 
existing RBF rules. As seen from Eq. (10.7), with the introduction of influence one 
need not estimate the input distribution range, and the implementation has been 
simplified. 

Remark 10.2 In parameter modification, SAFIS utilizes a winner rule strategy 
similar to the work done by Huang et al. [36]. The key idea of the winner rule 
strategy is that only the parameters related to the selected winner rule are updated 
by the EKF algorithm in every step. The “winner rule” is defined as the rule that is 
closest (in the Euclidean distance sense) to the current input data. As a result, SAFIS 
is computationally efficient. 

Remark 10.3 In SAFIS, some parameters need to be decided in advance according 
to the problems considered. They include the distance thresholds (emax ., emin ., τ .), the 
overlap factor K for determining the width of the newly added rule, the growing 
threshold (yg .) for a new rule, and the pruning threshold ( yp .) for removing an 
insignificant rule. A general selection procedure for the predefined parameters is 
given as follows: max is set to around the upper bound of input variables, emin . is set 
to around 10%. of emax ., and τ . is set to around 0.99.. yp . is set to around 10%. of yg ..
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emax . is observed in the range [ 1.0., 10.0.]. The overlap factor K is utilized to initialize 
the width of the newly added rule and chosen according to different problems; it is 
observed in the range [1.0., 2.0.]. The growing threshold yg . is chosen according to 
the system performance; it is observed in the range [0.001., 0.05.]. The smaller the 
yg ., the better the system performance, but the resulting system structure is more 
complex. 

2.2 SGD Algorithm 

The stable gradient descent (SGD) algorithm is developed with a new time-varying 
rate to guarantee its uniformly stability for online identification and its identification 
error converges to a small zone bounded by the uncertainty. The weights’ error is 
bounded by the initial weights’ error, i.e., hence the overfitting is avoided. The SGD 
algorithm is as follows [3]: 

(1) Compute the output of the nonlinear system y(k). with Eq. (10.10). Note that 
the nonlinear system may have the structure represented by Eq. (10.10), and the 
parameter N is selected according to this nonlinear system.

.y(k) = f [z(k)] , (10.10) 

where z(k) = [z1(k) . . . , zi(k), . . . , zN(k)]T = [y(k − 1), . . . , y(k − n),

u (k − 1) , . . . , u (k − m)]T ∈ RN×1
. (N = n+m.) is the input vector, u(k −1) ∈ R. 

is the input of the plant, y(k) ∈ R. is the output of the plant, and f is an unknown 
nonlinear function, f ∈ C∞

.. 
(2) Select the following parameters: o(1). and w(1). as random numbers between 

0 and 1, M as an integer number, and α0 . as a positive value smaller or equal to 1; 
obtain the output ŷ(1). using Eq. (10.11). 

.

ŷ(k) =
M

∑

j=1

oj (k)βj (k),

βj (k) = tanh(
N

∑

i=1

wij (k)zi(k)).

(10.11) 

(3) For each iteration k, obtain the output ŷ(k). with Eq. (10.11), also obtain the 
identification error ỹ(k).with Eq. (10.12): 

.̃y(k) = ŷ(k) − y(k), (10.12)
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and update the parameters oj (k). and wij (k). using Eq. (10.13): 

.
oj (k) = oj (k − 1) − α(k − 1)βj (k − 1)ỹ(k − 1),
wij (k) = wij (k − 1) − α(k − 1)γij (k − 1)ỹ(k − 1),

(10.13) 

where the new time varying rate α(k). is 

. α(k − 1) = α0

2

⎛

⎝
1
2 +

M
∑

j=1

β2
j (k − 1) +

M
∑

j=1

N
∑

i=1

γ 2
ij (k − 1)

⎞

⎠

,

where i = 1, . . . , N ., j = 1, . . . , M ., γij (k − 1) = oj (k).sech 2(
N

∑

i=1

wij (k − 1)zi(k −
1))zi(k − 1) ∈ R.. 

Remark 10.4 There are two conditions for applying this algorithm for nonlinear 
systems: The first one is that the nonlinear system may have the form described by 

(10.10), and the second one is that the uncertainty μ(k) = y(k) −
M
∑

j=1

o∗
j β

∗
j .may be 

bounded, β∗
j = tanh(

N
∑

i=1

w∗
ij zi(k))., and o∗

j . and w∗
ij . are unknown weights such that 

the uncertainty μ(k). is minimized. 

Remark 10.5 The value of the parameter used for the stability of the algorithm μ. 

is unimportant, because this parameter is not used in the algorithm. The bound of 
μ(k). is needed to guarantee the stability of the algorithm, but it is not used in the 
SGD algorithm (10.11), (10.12), (10.13). 

Remark 10.6 The proposed SGD has one hidden layer. It was reported in the 
literature that a feedforward neural network with one hidden layer is enough to 
approximate any nonlinear system. 

Remark 10.7 Note that the behavior of the algorithm could be improved or 
deteriorated by changing the values of M or α0 .. 

2.3 MSAFIS 

The MSAFIS is the SAFIS algorithm with the modification of Eqs. (10.3) and (10.8) 
by Eqs. (10.12) and (10.13) and using the parameters of the SAFIS algorithmmj(k)., 
δj (k)., oj (k). instead of the parameters of the SGD algorithm wij (k)., oj (k)..  The  
MSAFIS algorithm is summarized as follows.
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For each observation (z(k)., y(k).), where z(k) ∈ RN
., y(k) ∈ R., and k =

1, 2, . . . ,. do: 
(1) Compute the overall system output: 

.̂y(k) =

M
∑

j=1

oj (k)Rj (zi(k))

M
∑

j=1

Rj (zi(k))

, (10.14) 

where 

. Rj (zi(k)) = exp

(

− 1

δ2j (k)

∥

∥zi(k) − mj(k)
∥

∥

2

)

,

and M is the number of fuzzy rules, Rj (zi(k)). is the firing strength of the j th rule, 
and oj (k). is the weight of the normalized rule. Note that each rule is represented as 
a radial basis function described by its center mj(k). and its spread δj (k).. 

(2) Calculate the parameters required in the growth criterion: 

.e(k) = max
{

emaxτ
k, emin

}

, 0 < τ < 1, (10.15) 

where emax . and emin . are the threshold largest and smallest distances admitted 
between the inputs and corresponding nearest center of rules. The parameter τ (0 <

τ < 1). indicates the decay constant. The error of the kth input is given as follows: 

.̃y(k) = ŷ(k) − y(k), (10.16) 

(3) Apply the criterion for adding rules if the following two conditions are 
satisfied: 

If 

.
∥

∥zi(k) − mj(k)
∥

∥ > e(k), (10.17) 

and 

.Yinf(M + 1) = |̃y(k)|
(

1.8K
∥

∥zi(k) − mj(k)
∥

∥

)N

M+1
∑

j=1

(1.8δj (k))N

> yg. (10.18) 

where yg . is the growing threshold. A new rule M + 1. is added if yg . is exceeded.
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The new rule M + 1. is given as follows: 

.

oM+1(k) = ỹ(k),

mM+1(k) = zi(k),

δM+1(k) = K llzi(k) − mM+1(k)ll .

(10.19) 

If no rule is added, the nearest rule jm  is obtained as follo ws:

.min
j

Rj (z(k)) =⇒ jm = j, (10.20) 

and adjust the system parameters oj (k)., mj(k)., δj (k). for the nearest rule only by 
using the stable gradient descent algorithm: 

.ϕ(k) = ϕ(k − 1) − α(k − 1)b(k − 1)ỹ(k − 1), (10.21) 

where ϕ(k).=[ϕ1(k)., ϕ2(k)., ϕ3(k)]T .=[mjm(k)., ojm(k)., δjm(k)]T ., b(k).=[b1(k)., 

b2(k)., b3(k)]T ., b1(k).=
2[ojm(k)−ŷ(k)]Rjm(zi (k))[zi (k)−mjm(k)]

⎡

⎢

⎣

M
∑

j=1

Rj (zi (k))

⎤

⎥

⎦δ2jm(k)

., 

b2(k).=
2[ojm(k)−ŷ(k)]Rjm(zi (k))llzi (k)−mjm(k)ll2

⎡

⎢

⎣

M
∑

j=1

Rj (zi (k))

⎤

⎥

⎦δ3jm(k)

., b3(k).=
Rjm(zi (k))

⎡

⎢

⎣

M
∑

j=1

Rj (zi (k))

⎤

⎥

⎦

., and the new 

time varying rate α(k − 1). is 

. α(k − 1) = α0

2

(

1
2 +

3
∑

l=1

b2l (k − 1)

) ,

where α0 . is a parameter selected by the designer, 0 < α0 < 1.. 
(4) If the following criterion is satisfied: 

If 

.Yinf(jm) = ∣

∣ojm(k)
∣

∣

(

1.8δjm(k)
)N

M
∑

j=1

(1.8δj (k))N

< yp, (10.22) 

then, remove the jm  rule, and reduce the dimensionality of SGD. Note that yp . is 
the pruning threshold. 

Remark 10.8 In MSAFIS, some parameters need to be decided in advance accord-
ing to the problems considered. They include the distance thresholds (emax ., emin ., 
τ .), the overlap factor K for determining the width of the newly added rule, the



184 10 MSAFIS: An Evolving Fuzzy Inference System

growing threshold ( yg .) for a new rule, and the pruning threshold ( yp .) for removing 
an insignificant rule. A general selection procedure for the predefined parameters is 
given as follows: max is set to around the upper bound of input variables, emin . is set 
to around 10%. of emax ., and τ . is set to around 0.99.. yp . is set to around 10%. of yg .. 
emax . is observed in the range [ 1.0., 10.0.]. The overlap factor K is utilized to initialize 
the width of the newly added rule and chosen according to different problems; it is 
observed in the range [1.0., 2.0.]. The growing threshold yg . is chosen according to 
the system performance; it is observed in the range [0.001., 0.05.]. The smaller the 
yg ., the better the system performance, but the resulting system structure is more 
complex. 

2.4 Comparison of the Three Algorithms 

In this subsection, the comparison between the three algorithms is described. 
Table 10.1 shows several aspects about the three algorithms. 
Table 10.2 shows an overview of the modifications made to the SAFIS to evolve 

the new method, called MSAFIS. 
Note that the SGD is not included in Table 10.2 because it is more different than 

the other two algorithms. 

Table 10.1 Characteristics of the three algorithms 

SAFIS. SGD. MSAFIS. 

If it is applied to systems 
which have important 
changes through the time, an 
acceptable result can be 
assured 

If it is applied to systems 
which have important 
changes through the time, an 
acceptable result cannot be 
assured 

If it is applied to systems 
which have important 
changes through the time, an 
acceptable result can be 
assured 

If it is applied to unstable 
systems, an acceptable result 
cannot be assured 

If it is applied to unstable 
systems, an acceptable result 
can be assured 

If it is applied to unstable 
systems, an acceptable result 
can be assured 

It can be applied in many 
systems as are the biology, 
mechatronic, mechanic, 
thermal, robotic, economic, 
etc. 

It can be applied in many 
systems as are the biology, 
mechatronic, mechanic, 
thermal, robotic, economic, 
etc. 

It can be applied in many 
systems as are the biology, 
mechatronic, mechanic, 
thermal, robotic, economic, 
etc. 

Table 10.2 Differences between the SAFIS and MSAFIS 

SAFIS. MSAFIS. 

Equation (10.3). The error is obtained by 
subtracting the estimated output to the output 

Equation (10.16). The error is obtained by 
subtracting the output to the estimated output 

Equation (10.8). The parameters are adjusted 
using the extended Kalman filter algorithm 

Equation (10.21). The parameters are 
adjusted using the stable gradient descent 
algorithm
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3 The Brain and Eye Signals 

This section describes the characteristics of the brain and eye signals. 

3.1 The EEG Signals 

The difference of the potential in one membrane is obtained by the exchange 
between the ions (Na +.,Cl −.,K +.) being in the same. The rules have a potential 
difference between the inside and outside which is called rest potential, and this 
potential represents constant changes because of the impulses given by the neighbor 
rules. This potential difference can be measured in the brain cortex using electrodes 
that convert the ion flow into electric flow. The characteristic of the encephalography 
signal (EEG) is of 5−300μ.V in amplitude and of 0−150.Hz in frequency [37]. 

The EEG signals are waves similar to periodic, but the waves can change from 
one time to other, and they have some characteristics that allow the learning, as are 
the amplitude, the frequency, the morphology, the band, the rhythm, and the duration 
[37]. 

The following paragraphs show the characteristics which are considered for an 
adult in vigilance [37]. 

Alpha signal. It is the normal rhythm of the bottom and is the most stable 
and typical in the human. It is found in the frequencies of 8−12.Hz ± 1.Hz. The 
amplitude is between 20 and 60μ.V. It can be seen generally in posterior regions 
with more amplitude in the occipital lobes. See Fig. 10.1. It is more evident when 
the patient is awake with closed eyes and in physical and mental rest, and it is 
stopped when the eyes are opened or with the mental activity. 

Beta signal. It is found in the frequencies >13.Hz, in general between 14 and 
35Hz. The amplitude is usually low from 5 to 10μ.V and is symmetric. See 
Fig. 10.1. 

Theta signal. It has a frequency of 4−8.Hz, is of half of low voltage, and is found 
in the temporal regions. See Fig. 10.1. 

Delta signal. It is found in the second and the third stages of the dream. It has 
a frequency of 0.5−3.5.Hz, and the amplitude is generally higher than 75μ.V. See 
Fig. 10.1. 

3.2 The EOG Signals 

The electrooculograms (EOGs) are the signals obtained as a result of the eye 
movements of a patient, and these EOGs are detected using three electrodes: one 
electrode on the temple, one above, and other underneath of the eye. Usually, the 
detected signals are by direct current (DC) coupling to specify the direction of the
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Fig. 10.1 EEG signals 

gaze. In the experiments of this chapter, three electrodes are placed on the dominant 
side of the patient eye according to the optimum positions suggested by Rubio et al. 
[38]. 

Figure 10.2 shows the relationship between real eye movements (input) and the 
EOG signals (output) of the system. Denote the upper and lower thresholds of the 
vertical channel Ch.V as V1 and V2, respectively, and denote the upper and lower 
thresholds of the horizontal channel Ch.H as H1 and H2, respectively. When the 
EOG potential exceeds one of these thresholds, the output assumes ON, and when 
the EOG potential does not exceed one of these thresholds, the output assumes OFF. 
The process of transforming the EOG signals from the intention of the patient is as 
follows [38]: 

1. Output Up is when it is obtained an Up behavior: First, Threshold V1 of the 
vertical channel becomes ON, while Threshold V2 is OFF, and second, Threshold 
V2 of the vertical channel becomes ON, while Threshold V1 becomes OFF. H1 and 
H2 of the horizontal channel remain OFF all the time. 

2. Output Down is when it is obtained a Down behavior: First, Threshold V2 
of the vertical channel becomes ON, while Threshold V1 is OFF, and second, 
Threshold V1 of the vertical channel becomes ON, while Threshold V2 becomes 
OFF. H1 and H2 of the horizontal channel remain OFF all the time.
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Fig. 10.2 EOG signals 

4 Results 

In this section, the three above detailed algorithms are applied for the learning of 
brain and eye signals with big data. The aforementioned signals could be applied 
for patient who cannot move their bodies; consequently, they could use their brains 
or their eyes to say what they want or need. The SAFIS of [35], SGD of [3], and 
MSAFIS are compared for the learning sequentially: 

– Brain signals: experiment 1 
– Eye signals: experiment 2 

In the training of the learning phase, the parameters of the algorithms are 
incrementally learned as data are presented, while in the testing phase such 
parameters do not change, and hence the algorithms can be compared in terms of 
performance. 

The root mean square error (RMSE) of [3, 37] is used to measure the performance 
and is expressed as 

.RMSE =
(

1

N

N
∑

k=1

ỹ2(k)

)
1
2

, (10.23) 

where ỹ(k). is the learning error expressed by Eqs. (10.3), (10.12), and (10.16). 

4.1 Experiment 1 

Here a real dataset of brain signals consisting of 20000 pairs (u(k)., y(k).)  of  20 s  is  
used to train the training, 2000 pairs (u(k). and y(k).) for 2 s used to test the learning. 
The alpha signal is obtained in this chapter because it has more probabilities to be 
found. The acquisition system is applied with a 28-year-old healthy man when his
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Fig. 10.3 Training for experiment 1 

eyes are closed. The inputs of all the intelligent systems are y(k)., y(k+1)., y(k+2)., 
y(k + 3)., and the output of the intelligent systems is y(k + 4).. 

Considering Remark 10.3, the parameters for the SAFIS algorithm [35]  ar  e N =
4., τ = 0.99., K = 2., emax = 1., emin = 0.1., yg = 0.01., yp = 0.001., q = 0.1., 
p = 0.1.. Considering Remark 10.7, the parameters of the SGD algorithm of [3] 
are N = 4., M = 5., α0 = 0.5.. Considering Remark 10.8, the parameters of the 
MSAFIS are N = 4., τ = 0.99., K = 2., emax = 2., emin = 0.2., yg = 0.05., 
yp = 0.005., α0 = 1.. 

Figure 10.3 shows the comparison results for the training of learning in the 
three algorithms. Figure 10.4 introduces the illustration of the rule evolution for the 
three algorithms during training. Figure 10.5 presents the comparison results for the 
testing of learning in the three algorithms. Table 10.3 shows the RMSE comparison 
results for the algorithms using (10.23). 

From Figs. 10.3, 10.4, and 10.5 and Table 10.3, it can be seen that the SGD 
presents the smallest training RMSE, the MSAFIS presents the smallest testing 
RMSE, and the MSAFIS obtains the smallest number of rules.
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Fig. 10.4 Rule evolution for experiment 1 

Fig. 10.5 Testing for experiment 1
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Table 10.3 Results for 
experiment 1 

Methods. Rules. Training RMSE. Testing RMSE. 

SGD. 5 0.0043. 0.0217. 

SAFIS. 29 0.0145. 0.0177. 

MSAFIS. 3 0.0331. 0.0045. 

Fig. 10.6 Training for experiment 2 

4.2 Experiment 2 

Here a dataset of eye signals of the down behavior is considered where 3572 pairs 
(u(k)., y(k).)  of 3.572. s are used to train the learning and 1192 pairs (u(k)., y(k).) 
for 1.192. s are used to test the learning. The acquisition system is applied with a 
25-year-old healthy man when his eyes are moving, and two electrodes are used to 
find the signals as described in the aforementioned section. The inputs of all the 
intelligent systems are y(k)., y(k + 1)., y(k + 2)., y(k + 3)., and the output of the 
intelligent systems is y(k + 4).. 

Considering Remark 10.3, the parameters for the SAFIS [35]  are N = 4., τ =
0.986., K = 2., emax = 2., emin = 0.2., yg = 0.01., yp = 0.001., q = 0.1., p = 0.1.. 
Considering Remark 10.7, the parameters of the SGD [3]  are N = 4., M = 9., 
α0 = 0.5.. Considering Remark 10.8, the parameters of the MSAFIS are N = 4., 
τ = 0.986., K = 2., emax = 2., emin = 0.2., yg = 0.01., yp = 0.001., α0 = 1.. 

Figure 10.6 shows the comparison results for the training of learning in the 
three algorithms. Figure 10.7 introduces the illustration of the rule evolution for the 
three algorithms during training. Figure 10.8 presents the comparison results for the
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Fig. 10.7 Rule evolution for experiment 2 

Fig. 10.8 Testing for experiment 2
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Table 10.4 Results for 
experiment 2 

Methods. Rules. Training RMSE. Testing RMSE. 

SGD. 9 0.0252. 0.0290. 

SAFIS. 10 0.0263. 0.0404. 

MSAFIS. 9 0.0706. 0.0172. 

testing of learning in the three algorithms. Table 10.4 shows the RMSE comparison 
results for the algorithms using (10.23). 

From Figs. 10.6, 10.7, and 10.8 and Table 10.4, it can be seen that the SGD 
presents the smallest training RMSE, the MSAFIS presents the smallest testing 
RMSE, and the MSAFIS and SGD obtain the smallest number of rules. 

Remark 10.9 The SAFIS algorithm is applied in two synthetic examples and in the 
Makey-Glass time series prediction problem [35]. The SGD algorithm is applied in 
a synthetic example and in the prediction of the loads distribution in a warehouse 
[3]. This chapter is novel because it shows that the three algorithms can be used 
for the learning of other different kind of systems which are the real brain and eye 
signals with big data. 

5 Concluding Remarks 

This chapter proposed a combination of two algorithms SAFIS and SGD resulting in 
MSAFIS. Considering the different experiments, this new algorithm provides better 
compactness and higher accuracy compared to the original ones. It is worthwhile to 
mention, because as MSAFIS and SAFIS and SGD are based on online learning, 
they can handle big datasets of any size. They can also be applied to control, 
prediction, classification, and diagnosis. Here they were successfully used to learn 
from a challenging dataset of brain and eye signals. As a future work, the stability 
of the MSAFIS will be analyzed. 
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Chapter 11 
Error Convergence Analysis of the SAFIS 
and MSAFIS 

1 Introduction 

Evolving intelligent networks are inspired by the idea of network model evolution 
in a dynamically changing and evolving environment. They use gradual change with 
the aim of life-long modeling and updating self-organization including network 
structure evolution to update to the environment as structures for information 
representation with the ability to fully update their structure and adjust their 
weights. Evolving intelligent networks have been highly applied in prognostic 
health management plants; two examples are the studying machine failure detection 
and management of their life cycle. 

Evolving intelligent networks have become very popular in the application of 
prognostic health management plants. Online active modeling concepts have been 
studied in [1]. In [2], a generalized smart evolving modeling engine of a fuzzy 
network is investigated. A novel bi-criteria active modeling approach is mentioned 
in [3]. In [4], a novel incremental type-2 metacognitive extreme modeling machine 
is addressed. The metacognitive scaffolding modeling machine is introduced in [5]. 
In [6], a parsimonious random vector functional link network is discussed. A new 
modeling strategy termed as GenSparseFIS is researched in [7]. In [8] and [9], 
hybrid dynamic data-driven approaches are suggested. An enhanced convolutional 
neural network is studied in [10]. A sequential adaptive fuzzy inference system 
called SAFIS is developed in [11]. In [12], the performance evaluation of the SAFIS 
is studied. A modified sequential adaptive fuzzy inference system called MSAFIS 
is proposed in [13]. In evolving intelligent networks, the error convergence is not 
frequently analyzed. 

When the error of a prognostic health management plant is not convergent, the 
plant output may be infinite even though the plant input is finite. This causes a 
number of practical problems. For instance, error not convergent in failure detection 
of a robot arm may cause the robot to move dangerously without any alarm. 
Also, these errors that are not convergent often incur a certain amount of physical 
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damage in plants, which can become costly. Nonetheless, errors are inherently not 
convergent in many plants, for example, a fighter jet or a rocket at liftoff. Although 
evolving intelligent networks can be designed to be applied in prognostic health 
management plants, it is important to ensure their error convergence to reach an 
acceptable performance. Error convergent intelligent networks are characterized 
by the boundedness criterion, i.e., if bounded inputs are utilized, then outputs are 
ensured to be bounded. 

Error convergent intelligent networks also have become very popular in the 
application of prognostic health management plants. The L-infinity performance 
analysis of a neural network is taken into account in [14]. In [15] and [16], 
robust evolving cloud-based controllers are presented. Robust common spatial 
pattern feature extraction algorithms are designed in [17] and [18]. In [19], a 
command-filtered backstepping update control is researched. Composite update 
locally weighted modeling control approaches are proposed in [20] and [21]. In [22] 
and [23], the asymptotic error convergence analysis of generalized neural networks 
is addressed. Fuzzy convergent controllers are discussed in [24] and [25]. It is not 
frequent that error convergent intelligent networks are also evolving. 

In this chapter, Lyapunov strategy is utilized to analyze error convergence of the 
SAFIS and MSAFIS for their application in prognostic health management plants. 
SAFIS employs an extended Kalman filter, and it is linearized to get its modeling 
dynamic equation; after, error convergence based on the Lyapunov strategy is 
analyzed. MSAFIS employs the gradient descent technique, and it is linearized 
to acquire its modeling dynamic equation; later, error convergence based on the 
Lyapunov strategy is analyzed. Figure 11.1 shows the error convergence analysis 
steps of both algorithms. 

Fig. 11.1 Error convergence 
analysis of the SUFIN and 
CSUFIN
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The chapter is organized as follows. In Sect. 3, error convergence of the SAFIS 
is analyzed. Error convergence of the MSAFIS is analyzed in Sect. 4. In Sect. 5, 
performance of the SAFIS and MSAFIS is detailed in two examples. The conclusion 
and future research are explained in Sect. 6. 

2 Prognostic Health Management Plant 

Take into account the next prognostic health management plant: 

.γ (k) = f [χ(k)] , (11.1) 

where χ(k) = [χ1(k).,  . . . , χi(k).,  . . . , χN(k)]T = [γ (k−1).,  . . . , γ (k−n).,υ (k − 1)., 
. . . , υ (k − m)]T ∈ RN×1

. (N = n + m.) is the input vector, υ(k − 1) ∈ R. is the 
plant input, γ (k) ∈ R. is the plant output, and f is an unknown nonlinear function,
f ∈ C∞

.. 

3 Error Convergence Analysis of the SAFIS 

3.1 Description of the SAFIS 

The sequential adaptive fuzzy inference system (SAFIS) is developed based on 
the functional equivalence between a radial basis function network and a fuzzy 
inference network producing a fuzzy neural network. In SAFIS, using that neurons 
are added or removed based on the input data received so far. If the input data do 
not warrant adding of neurons, then only weights of the “closest” (in a Euclidean 
sense) neuron are updated using an extended Kalman filter. 

The SAFIS algorithm is summarized in the next paragraphs [11]. 
For each data (χ(k)., γ (k).), where χ(k) ∈ RN

., γ (k) ∈ R., and k = 1, 2, . . . ,. do: 
(1) Get the network output: 

.

γ̂s(k) =

Ls
∑

r=1

os,r (k)Ss,r (k)

Ls
∑

r=1

Ss,r (k)

,

Ss,r (k) = exp
(

− 1
ξ2s,r (k)

∥

∥χi(k) − μs,r (k)
∥

∥

2
)

,

(11.2)
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where Ls . is the neuron number, Ss,r (k). is the firing strength of the rth neuron, and 
os,r (k). is the normalized neuron. Note that each neuron is expressed as a radial basis 
function network described by its center μs,r (k). and its spread ξs,r (k).. 

(2) Acquire terms needed in the growth criterion: 

.εs(k) = max
{

εs,maxη
k
s , εs,min

}

, 0 < ηs < 1, (11.3) 

where εs,max . and εs,min . are the threshold largest and smallest distances admitted 
between inputs and the corresponding nearest center of neurons. The term ηs (0 <

ηs < 1). indicates the decay constant. The modeling error is in the next equation: 

.γ̃s(k) = γ̂s(k) − γ (k), (11.4) 

where γ (k). and γ̂s(k). are the output and estimated output, respectively. 
(3) Use the criterion for adding neurons if the next two conditions are fulfilled: 
If 

.
∥

∥χi(k) − μs,r (k)
∥

∥ > εs(k), (11.5) 

and 

.Ys,inf(Ls + 1) = |γ̃s(k)|
(

1.8Ks

∥

∥χi(k) − μs,r (k)
∥

∥

)N

Ls+1
∑

r=1

(1.8ξs,r (k))N

> γs,g, (11.6) 

where γs,g . is the growing threshold. A new neuron Ls + 1. is added if γs,g . is 
exceeded. 

The new neuron Ls + 1. is in the next equation: 

.

os,Ls+1(k) = −γ̃s(k),

μs,Ls+1(k) = χi(k),

ξs,Ls+1(k) = Ks

∥

∥χi(k) − μs,Ls+1(k)
∥

∥ .

(11.7) 

If no neuron is added, the nearest neuron rs is gotten in the next equation:

.min
r

Ss,r (k) =⇒ rs = r, (11.8)
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and update the network weights os,r (k)., μs,r (k)., ξs,r (k). for the nearest neuron by 
using the extended Kalman filter: 

.
ϕs(k + 1) = ϕs(k) − 1

as(k)
Gs(k + 1)ds(k)γ̃s(k),

Gs(k + 1) = Gs(k) − 1
bs(k)

Gs(k)ds(k)dT
s (k)Gs(k),

(11.9) 

with 

. 
ϕs(k) = [

ϕs,1(k), ϕs,2(k), ϕs,3(k)
]T

,

ds(k) = [ds,1(k), ds,2(k), ds,3(k)]T ,

and 

. 

ϕs,1(k) = μs,rs(k), ϕs,2(k) = ξs,rs(k), ϕs,3(k) = os,rs(k),

ds,1(k) = 2[os,rs (k)−γ̂s (k)]Ss,rs (k)[χi(k)−μs,rs (k)]
⎡

⎢

⎣

Ls
∑

r=1

Ss,r (k)

⎤

⎥

⎦ξ2s,rs (k)

,

ds,2(k) = 2[os,rs (k)−γ̂s (k)]Ss,rs (k)llχi(k)−μs,rs (k)ll2

⎡

⎢

⎣

Ls
∑

r=1

Ss,r (k)

⎤

⎥

⎦ξ3s,rs (k)

,

ds,3(k) = Ss,rs (k)
⎡

⎢

⎣

Ls
∑

r=1

Ss,r (k)

⎤

⎥

⎦

,

as(k) = bs,2 + dT
s (k)Gs(k)ds(k) ∈ R., bs(k) = as(k) + dT

s (k)Gs(k)ds(k) ∈ R., 
Gs(1).=gs,eI ., gs,e . is a term selected by the designer, 0 < gs,e ≤ 1., 0 < bs,2 ≤ 1., 
and I is the identity matrix.

(4) If the next criterion is fulfilled: 

.Ys,inf(rs) = ∣

∣os,rs(k)
∣

∣

(

1.8ξs,rs(k)
)N

Ls
∑

r=1

(1.8ξs,r (k))N

< γs,p, (11.10) 

then, remove the rs neuron, and reduce the dimensionality of extended Kalman 
filter. Note that γs,p . is the pruning threshold. 

3.2 Linearization of the SAFIS 

The linearization of SAFIS is needed for its error convergence analysis.
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Utilize the SAFIS output of (11.2) in the next equation: 

.

γ̂s(k) = Fs(k) =

Ls
∑

r=1

os,r (k)Ss,r (k)

Ls
∑

r=1

Ss,r (k)

,

Ss,r (k) = exp
(

− 1
ξ2s,r (k)

∥

∥χi(k) − μs,r (k)
∥

∥

2
)

.

(11.11) 

According to the Stone-Weierstrass theorem, the unknown nonlinear function f 
of (11.1) is approximated in the next equation: 

.

γ (k) = Fs,∗+ ∈s,f =

Ls
∑

r=1

os,r∗Ss,r∗(k)

Ls
∑

r=1

Ss,r∗(k)

+ ∈s,f ,

Ss,r∗(k) = exp
(

− 1
ξ2s,r∗

∥

∥χi(k) − μs,r∗
∥

∥

2
)

,

(11.12) 

where ∈s,f = γ (k) − Fs,∗ ∈ R. is the modeling error, Ss,r∗(k) ∈ R., μs,r∗ ∈ R., 
ξs,r∗ ∈ R., os,r∗ ∈ R.,μs,r∗ ., ξs,r∗ ., and os,r∗ .are the optimal weights that can minimize 
the modeling error ∈s,f .. In the case of three independent variables, a function has 
a Taylor series of the next equation: 

.

f (w1,w2,w3) = f (w10,w20 ,w30)

+ (

w1 − w10
) ∂f (w1,w2,w3)

∂w1
+ (

w2 − w20
) ∂f (w1,w2,w3)

∂w2

+ (

w3 − w30
) ∂f (w1,w2,w3)

∂w3
+ bs,f ,

(11.13) 

where bs,f ∈ R. is the remainder of the Taylor series. w1 ., w2 ., and w3 . correspond 
to μs,r (k) ∈ R., ξs,r (k) ∈ R., and os,r (k) ∈ R., w10 ., w20 ., and w30 . correspond to 
μs,r∗ ∈ R., ξs,r∗ ∈ R., and os,r∗ ∈ R.; therefore, the Taylor series is applied to 
linearize (11.11) as in the next equation: 

.

Fs(k) = Fs,∗ +
Ls
∑

r=1

μ̃s,r (k)
∂Fs (k)
∂μs,r (k)

+
Ls
∑

r=1

˜ξs,r (k)
∂Fs (k)
∂ξs,r (k)

+
Ls
∑

r=1

õs,r (k)
∂Fs (k)
∂os,r (k)

+ bs,f ,

(11.14)
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where μ̃s,r (k) = μs,r (k) − μs,r∗ ∈ R.,˜ξs,r (k) = ξs,r (k) − ξs,r∗ ∈ R., and õs,r (k) =
os,r (k) − os,r∗ ∈ R.. Acquiring partial derivatives, it produces 

.

∂Fs (k)
∂μs,r (k)

= ds,1(k)

= 2[os,rs (k)−γ̂s (k)]Ss,rs (k)[χi(k)−μs,rs (k)]
⎡

⎢

⎣

Ls
∑

r=1

Ss,r (k)

⎤

⎥

⎦ξ2s,rs (k)

. (11.15) 

Subsequently, 

.

∂Fs (k)
∂ξs,r (k)

= ds,2(k)

= 2[os,rs (k)−γ̂s (k)]Ss,rs (k)llχi(k)−μs,rs (k)ll2

⎡

⎢

⎣

Ls
∑

r=1

Ss,r (k)

⎤

⎥

⎦ξ3s,rs (k)

, (11.16) 

and 

.
∂Fs(k)

∂os,r (k)
= ds,3(k) = Ss,rs(k)

[

Ls
∑

r=1

Ss,r (k)

]
. (11.17) 

Substituting ds,1(k). of (11.15), ds,2(k). of (11.16), and ds,3(k). of (11.17) 
into (11.14), it produces 

.

Fs(k) = Fs,∗ +
Ls
∑

r=1

μ̃s,r (k)ds,1(k)

+
Ls
∑

r=1

˜ξs,r (k)ds,2(k) +
Ls
∑

r=1

õs,r (k)ds,3(k) + bs,f .

(11.18) 

Take into account the modeling error γ̃s(k) ∈ R. of (11.4) of the next equation: 

.γ̃s(k) = γ̂s(k) − γ (k), (11.19)
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where γ (k). and γ̂s(k). are defined in (11.1) and (11.11), respectively. Substitut-
ing (11.11), (11.12), and (11.19)  int  o (11.18) produces 

.

γ̃s(k) =
Ls
∑

r=1

μ̃s,r (k)ds,1(k) +
Ls
∑

r=1

˜ξs,r (k)ds,2(k)

+
Ls
∑

r=1

õs,r (k)ds,3(k) + βs(k),

(11.20) 

where βs(k) = bs,f − ∈s,f .. 
From (11.20), the modeling dynamic equation can be expressed as in the next 

equation: 

.γ̃s(k) = dT
s (k)ϕ̃s(k) + βs(k), (11.21) 

where ds(k) = [ds,1(k)., ds,2(k)., ds,3(k)]T ∈ R1×3Ls ., ϕ̃s(k) = [

ϕ̃s,1(k), ϕ̃s,2(k),

ϕ̃s,3(k)
]T = [μ̃s,rs(k)., ˜ξs,rs(k)., õs,rs(k)]T ∈ R3Ls×1

..  From μ̃s,r (k)., ˜ξs,r (k)., and 
õs,r (k). of (11.14) produces ϕ̃s(k) = ϕs(k) − ϕs,∗ ., ϕs,∗ . are the optimal weights that 
can minimize the modeling error βs(k).. 

3.3 Error Convergence of the SAFIS 

In this section, the error convergence of the SAFIS is analyzed. Lyapunov strategy 
is selected because it can be used for the error convergence analysis of nonlinear 
networks. The next theorem shows the first main contribution of this chapter. 

Theorem 11.1 The modeling error of the extended Kalman filter (11.4), (11.9)  as  
updating of the SAFIS (11.2), (11.11) applied for the modeling of prognostic health 
management plants (11.1) is uniformly convergent, and the upper bound of the 
average modeling error Ωs(k). fulfills 

.lim sup
T →∞

1

T

T
∑

k=2

Ωs(k) ≤ β
2
s

bs,2
, (11.22) 

where Ωs(k) =
[

dT
s (k)Gs(k)ds(k)

]2

bs(k)a2s (k)
γ̃ 2
s (k)., as(k) = bs,2 + dT

s (k)Gs(k)ds(k) > 0., 

bs(k) = as(k) + dT
s (k)Gs(k)ds(k) > 0.. 

Proof See [26] for the proof.
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4 Error Convergence Analysis of the MSAFIS 

4.1 Description of the MSAFIS 

The modified sequential adaptive fuzzy inference system (MSAFIS) is the SAFIS 
algorithm with the modification of the extended Kalman filter (11.9) by the gradient 
descent technique, but using the similar structure than the SAFIS algorithm. 

The MSAFIS algorithm is summarized in [13]. The MSAFIS algorithm basically 
utilizes Eqs. (11.2)–(11.8), (11.10) of the SAFIS algorithm. The difference of the 
MSAFIS is in Eq. (11.9), where the SAFIS uses the extended Kalman filter and it is 
denoted with a subscript s, while the MSAFIS uses the gradient descent technique 
and it is denoted with a subscript c. The change is detailed in the next sentence. 

Update network weights oc,r (k)., μc,r (k)., ξc,r (k). for the nearest neuron by using 
the gradient descent technique: 

.

ϕc(k + 1) = ϕc(k) − gc(k)dc(k)γ̃c(k),

gc(k) = gc,g

2

⎛

⎜

⎝

1
2+

3
∑

j=1

d2c,j (k)

⎞

⎟

⎠

,
(11.23) 

with 

. 
ϕc(k) = [

ϕc,1(k), ϕc,2(k), ϕc,3(k)
]T

,

dc(k) = [dc,1(k), dc,2(k), dc,3(k)]T ,

and 

. 

ϕc,1(k) = μc,rc(k), ϕc,2(k) = ξc,rc(k), ϕc,3(k) = oc,rc(k),

dc,1(k) = 2[oc,rc(k)−γ̂c(k)]Sc,rc(k)[χi(k)−μc,rc(k)]
⎡

⎢

⎣

Lc
∑

r=1

Sc,r (k)

⎤

⎥

⎦ξ2c,rc(k)

,

dc,2(k) = 2[oc,rc(k)−γ̂c(k)]Sc,rc(k)llχi(k)−μc,rc(k)ll2

⎡

⎢

⎣

Lc
∑

r=1

Sc,r (k)

⎤

⎥

⎦ξ3c,rc(k)

,

dc,3(k) = Sc,rc(k)
⎡

⎢

⎣

Lc
∑

r=1

Sc,r (k)

⎤

⎥

⎦

,

gc(k). is the time varying rate, and gc,g . is a term selected by the designer, 0 < gc,g ≤
1..
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Remark 11.1 In SAFIS and MSAFIS, some terms should be selected in advance 
according to the prognostic health management plant. They include the distance 
thresholds (εs,max ., εs,min ., ηs .) and (εc,max ., εc,min ., ηc .), the overlap factors Ks . and Kc . 

for determining the width of newly added neurons, the growing thresholds ( γs,g .) 
and ( γc,p .) for adding a new significant neuron, and the pruning thresholds ( γs,p .) 
and ( γc,p .) for removing an insignificant neuron. A general selection procedure for 
predefined terms is in the next sentence: max is set to around the upper bound of 
input variables, εs,min . and εc,min . are set to around 10%. of εs,max . and εc,max ., and ηs . 

and ηc . are set to around 0.99.. γs,p . and γc,p . are set to around 10%. of γs,g . and γc,g .. 
εs,max . and εc,max . are seen in the range [ 1.0., 10.0.]. The overlap factors Ks . and Kc . 

are utilized to initialize the width of the newly added neuron and selected according 
to the prognostic health management plant, and they are seen in the range [ 1.0., 
2.0.]. The growing thresholds γs,g . and γc,g . are selected according to the network 
performance, and they are seen in the range [0.001., 0.05.]. The smaller the γs,g . and 
γc,g ., the better the network performance, but the resulting network structures are 
more complex. 

Remark 11.2 In the SAFIS and MSAFIS, each neuron r is equivalent to each rule 
r , and the neurons number Ls . and Lc . are equivalent to the rules number Ls . and Lc .. 
Thus, the neurons are equivalent to the rules in the SAFIS and MSAFIS. 

Remark 11.3 Even the SAFIS and MSAFIS are in structure similar, they are 
completely different in the weights adjust; the SAFIS uses the extended Kalman 
filter (11.9), while the MSAFIS uses the gradient descent technique (11.23), and it 
produces significant changes in the structures of both algorithms. 

Remark 11.4 The SAFIS and MSAFIS have the purpose to use the least required 
neurons to get a satisfactory modeling; they have one hidden layer with the least 
possible neurons number. The SAFIS and MSAFIS have two types of scalability: 
the first scalability is to increase the neurons number in the hidden layer, and the 
second scalability is to include other hidden layer with more neurons. Both types of 
scalability are contrary to the main purpose of both algorithms. 

Remark 11.5 Since SAFIS and MSAFIS are self-organization algorithms to 
dynamically update their structure and adjust their weights to get an acceptable 
modeling, they gradually optimize their weights and structure. 

Remark 11.6 Step 4 of the SAFIS and MSAFIS uses pruning algorithms to remove 
the insignificant neurons; it avoids that SAFIS and MSAFIS grow indeterminately. 

4.2 Linearization of the MSAFIS 

The linearization of MSAFIS is needed for its error convergence analysis.
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Use the MSAFIS output of (11.2) by changing the subscript s for c as in the next 
equation: 

.

γ̂c(k) = Fc(k) =

Lc
∑

r=1

oc,r (k)Sc,r (k)

Lc
∑

r=1

Sc,r (k)

,

Sc,r (k) = exp
(

− 1
ξ2c,r (k)

∥

∥χi(k) − μc,r (k)
∥

∥

2
)

.

(11.24) 

Using the same linearization method described by Eqs. (11.11)–(11.20) produces 

.

γ̃c(k) =
Lc
∑

r=1

μ̃c,r (k)dc,1(k) +
Lc
∑

r=1

˜ξc,r (k)dc,2(k)

+
Lc
∑

r=1

õc,r (k)dc,3(k) + βc(k),

(11.25) 

where βc(k) = bc,f − ∈c,f .. μ̃c,r (k) = μc,r (k) − μc,r∗ ∈ R., ˜ξc,r (k) = ξc,r (k) −
ξc,r∗ ∈ R., õc,r (k) = oc,r (k) − oc,r∗ ∈ R.. μc,r (k)., ξc,r (k)., oc,r (k)., dc,1(k)., dc,2(k)., 
dc,3(k). are described (11.23). μc,r∗ ., ξc,r∗ ., oc,r∗ . are the optimal weights that can 
minimize the modeling error βc(k).. 

From (11.25), the modeling dynamic equation can be expressed as in the next 
equation: 

.γ̃c(k) = dT
c (k)ϕ̃c(k) + βc(k), (11.26) 

where dc(k) = [dc,1(k)., dc,2(k)., dc,3(k)]T ∈ R1×3Lc ., ϕ̃c(k) = [

ϕ̃c,1(k), ϕ̃c,2(k),

ϕ̃c,3(k)
]T = [μ̃c,rc(k)., ˜ξc,rc(k)., õc,rc(k)]T ∈ R3Lc×1

..  From μ̃c,r (k)., ˜ξc,r (k)., and 
õc,r (k). of (11.25) produces ϕ̃c(k) = ϕc(k) − ϕc,∗ ., ϕc,∗ . are the optimal weights that 
can minimize the modeling error βc(k).. 

4.3 Error Convergence of the MSAFIS 

In this section, the error convergence of the MSAFIS is analyzed. Lyapunov strategy 
is selected because it can be used for the error convergence analysis of nonlinear 
networks. The next theorem shows the second main contribution of this chapter.
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Theorem 11.2 The modeling error of the gradient descent technique (11.4), (11.23) 
as updating of the MSAFIS (11.24) applied for the modeling of prognostic health 
management plants (11.1) is uniformly convergent, and the upper bound of the 
average modeling error Ωc(k). fulfills 

.lim sup
T →∞

1

T

T
∑

k=2

Ωc(k) ≤ gc,gβ
2
c, (11.27) 

where Ωc(k) = gc(k−1)
2 γ̃ 2

c (k − 1)., 0 < gc,g ≤ 1 ∈ R. and 0 < gc(k) ∈ R. are 
described in (11.23), γ̃c(k). are described in (11.4), βc . is the upper bound of the 
uncertainty βc(k)., |βc(k)| < βc .. 

Proof See [26] for the proof. 

Remark 11.7 The terms Ls . (neurons number) in the SAFIS and Lc . (neurons 
number) in the MSAFIS are finite, because the algorithms add the significant 
neurons and prune the insignificant neurons to update themself to the changing 
environment. The neuron numbers Ls .and Lc .are changed by the adding and pruning 
algorithms, and Ls . and Lc . change only the dimension of dT

s (k)., ϕs(k)., dT
c (k)., and 

ϕc(k).; thus, the error convergence results are preserved. 

5 Examples 

In this part of the chapter, the studied algorithms are applied for the modeling 
of two numerical examples. The two selected numerical examples have the two 
main characteristics: First, they are nonlinear plants with the structure of Eq. (11.1), 
and second, they let to show the characteristics of both algorithms. In all cases, 
the MSAFIS will be compared with the SAFIS. The differences between three 
algorithms were explained in before sections. The root mean square error denoted 
as MSE is utilized for comparisons: 

.MSE =
(

1

T

T
∑

k=1

γ̃ 2(k)

)
1
2

, (11.28) 

with γ̃ 2(k) = γ̃ 2
s (k). as the modeling error for the SAFIS, and γ̃ 2(k) = γ̃ 2

c (k). as the 
modeling error for the MSAFIS.
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Fig. 11.2 Neurons number for Example 1 

5.1 Example 1 

The plant of Example 1 is expressed in the next equation: 

.

γ (k) = γ (k−1)γ (k−2)[γ (k−1)−0.5]
1+γ (k−1)2+γ (k−2)2

+ υ(k − 1),

υ(k − 1) = sin
(

2π(k−1)
25

)

.
(11.29) 

The nonlinear plant of Eqs. (11.1) and (11.29) is utilized where inputs are 
χ1(k) = γ (k − 1)., χ2(k) = γ (k − 2)., χ3(k) = υ(k − 1). and the output is 
γ (k) = γ (k).. The data of 3000 iterations are used for the training. 

Terms of the SAFIS algorithm [11]  are N = 3., ηs = 0.99., Ks = 1., εs,max = 5., 
εs,min = 0.5., γs,g = 0.01., γs,p = 0.001., gs,e = 0.01., bs,2 = 0.2.. 

Terms of the MSAFIS algorithm [13]  are N = 3., ηc = 0.99., Kc = 1., εc,max = 5., 
εc,min = 0.5., γc,g = 0.01., γc,p = 0.001., gc,g = 1.. 

Figures 11.2, 11.3, 11.4, and 11.5 show the comparisons for the neurons number, 
the generated neurons, MSE convergence, and training of the SAFIS and MSAFIS. 
The training MSE comparisons of (11.28) are shown in Table 11.1. 

From Figs. 11.2 and 11.3, it is observed that both algorithms reach the same 
neurons number. From Fig. 11.4 and Table 11.1, it is observed that the MSAFIS has 
better convergence than the SAFIS because the MSE is smaller for the first. From 
Fig. 11.5, it is observed that the MSAFIS improves the SAFIS because the signal
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Fig. 11.3 Generated neurons for Example 1 

Fig. 11.4 MSE convergence for Example 1
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Fig. 11.5 Training for Example 1 

Table 11.1 Comparisons for 
Example 1 

Strategy Training MSE 

SAFIS 0.1740. 

MSAFIS 0.0730. 

of the first reaches better the plant signal than the signal of the second. Then, the 
MSAFIS is the best option for the plant modeling in Example 1. 

5.2 Example 2 

The plant of Example 2 is expressed in the next equation: 

. 

γ (k) = 0.3γ (k − 1) + 0.6γ (k − 2) + f (υ(k − 1)),
f (υ(k − 1)) = 0.6 sin(πυ(k − 1)) + 0.3 sin(3πυ(k − 1)) + 0.1 sin(5πυ(k − 1)),

υ(k − 1) = sin
(

2π(k−1)
200

)

,

(11.30) 
The nonlinear plant of Eqs. (11.1) and (11.30) where inputs are χ1(k) = γ (k−1)., 

χ2(k) = γ (k − 2)., χ3(k) = υ(k − 1). and the output is γ (k) = γ (k).. The data of 
3000 iterations are used for the training.



210 11 Error Convergence Analysis of the SAFIS and MSAFIS

Fig. 11.6 Neurons number for Example 2 

Terms of the SAFIS algorithm [11]  are N = 3., ηs = 0.99., Ks = 1., εs,max = 5., 
εs,min = 0.5., γs,g = 0.01., γs,p = 0.001., gs,e = 0.01., bs,2 = 0.2.. 

Terms of the MSAFIS algorithm [13]  are N = 3., ηc = 0.99., Kc = 1., εc,max = 5., 
εc,min = 0.5., γc,g = 0.01., γc,p = 0.001., gc,g = 1.. 

Figures 11.6, 11.7, 11.8, and 11.9 show the comparisons for the neurons number, 
the generated neurons, MSE convergence, and training of the SAFIS and MSAFIS. 
The training MSE comparisons of (11.28) are shown in Table 11.2. 

From Figs. 11.6 and 11.7, it is observed that both algorithms reach the same 
neuron number. From Fig. 11.8 and Table 11.2, it is observed that the MSAFIS has 
better convergence than the SAFIS because the MSE is smaller for the first. From 
Fig. 11.9, it is observed that the MSAFIS improves the SAFIS because the signal 
of the first reaches better the plant signal than the signal of the second. Then, the 
MSAFIS is the best option for the plant modeling in Example 2. 

Remark 11.8 Take into account that SAFIS and MSAFIS have the purpose to use 
the least required neurons to get a satisfactory modeling. SAFIS and MSAFIS of 
Example 2 in this chapter are compared with the well-recognized ANFIS algorithm 
of Example 3 in [27]. While ANFIS uses seven neurons to get a satisfactory result, 
SAFIS and MSAFIS use five neurons denoted in Fig. 11.6. This result shows the 
SAFIS and MSAFIS use a less number of neurons than the ANFIS. Thus, the SAFIS 
and MSAFIS are more compact than the ANFIS for the modeling.
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Fig. 11.7 Generated neurons for Example 2 

Fig. 11.8 MSE convergence for Example 2
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Fig. 11.9 Training for Example 2 

Table 11.2 Comparisons for 
Example 2 

Strategy Training MSE 

SAFIS 0.1349. 

MSAFIS 0.0705. 

6 Concluding Remarks 

In this chapter, the error convergence of the SAFIS and MSAFIS was ensured. 
Utilizing two different examples, the MSAFIS produced higher accuracy compared 
to the SAFIS. It is worthwhile to mention, because as MSAFIS and SAFIS are 
based on online modeling, they can handle datasets of any size. They can also be 
applied in machine failure detection or management of the life cycle. Here they 
were successfully applied for the modeling of nonlinear plants. In the future, the 
error convergence of other evolving intelligent networks will be analyzed, or the 
SAFIS and MSAFIS will be applied in a prognostic health management plant.
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