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Preface

The goal of this book is to provide a detailed presentation of the stability of the
neural networks and evolving intelligent systems. The neural networks and evolving
intelligent systems are very interesting investigation fields, since they have many
applications in the prediction and modeling of blending process, population process,
brain signals, or eye signals.

The neural networks and the evolving intelligent systems are different in one
characteristic; however, they are equal in other characteristic. A neural network
has the ability to reorganize the model and adapt itself to a changing environment
where the structure is static and the parameters learning is dynamic, while an
evolving intelligent system has the ability to reorganize the model and adapt itself
to a changing environment where both the structure and parameters learning are
dynamic and are performed simultaneously. Therefore, the neural networks and
the evolving intelligent systems are equal in that in both the parameters learning
is dynamic, and they are different in that in one the structure is static and in the
other the structure is dynamic.

This book is expected to be used primarily by researchers and secondarily
by students and in the area of intelligent, control, robotic, energy, biological,
mechanical, mechatronic, and computing systems.

The suggested use of the book is to be focused on each kind of intelligent system
because they are different from each other, Chaps. 1-5 for the stability of the neural
networks, Chaps. 610 for the stability of the evolving intelligent systems.

Mexico City, Mexico José de Jesus Rubio
2024
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Chapter 1 ®
Stability Analysis of Neural Networks iy
and Evolving Intelligent Systems

1 Introduction

A neural network has the ability to reorganize the model and adapt itself to a
changing environment where the structure is static and the parameters learning
is dynamic, while an evolving intelligent system has the ability to reorganize the
model and adapt itself to a changing environment where both the structure and
parameters learning are dynamic and are performed simultaneously. The stable
neural networks and stable evolving intelligent systems are the models where their
structure, weights, and parameters remain bounded through the time. The neural
networks and evolving intelligent systems are applied to many online fields, but
the stability of the neural networks and evolving intelligent systems is not always
assured, and it could damage the devices causing accidents. Therefore, it would be
interesting to assure the stability of the neural networks and evolving intelligent
systems.

The stable algorithms utilized in the neural networks and evolving intelligent
systems must satisfy three conditions to assure their stability in the learning: They
need to be compact, they need to be effective, and they need to be stable. The neural
networks and evolving intelligent systems have only one hidden layer to assure their
compactness. The neural networks and evolving intelligent systems are in discrete
time, where one analysis based on the Lyapunov method is considered to assure
the stability for the modeling error; additionally, other analysis as a consequence of
the Lyapunov method is considered to assure the boundedness of the weights and
parameters.

This book contains two parts: Part 1 of Chaps. 1-5 contains the stability analysis
of neural networks, and part 2 of Chaps.6-10 contains the stability analysis of
evolving intelligent systems. In this book, the stability analysis of the neural
networks and evolving intelligent systems is mainly obtained by the Lyapunov
method. In this book, the neural networks are applied in the prediction of the
distribution of loads in a warehouse, in the modeling of the wind turbine behavior,
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in the modeling of the crude oil blending process, and in the modeling of the beetle
population process, and the evolving intelligent systems are applied in modeling of
brain signals, in the modeling of eye signals, in the modeling of nonlinear systems
with dead-zone input, and in the modeling of the Box Jenkins furnace.

The detailed description of chapters in this book is as follows:

In Chap. 1, a backpropagation algorithm is introduced for the learning of a neural
network. The major contributions of this chapter are as follows: (1) A theorem to
assure the uniform stability of the general discrete-time systems is proposed, (2)
it is proven that the backpropagation algorithm with a new time varying rate is
uniformly stable for online identification, and the identification error converges to
a small zone bounded by an uncertainty, (3) it is proven that the weights’ error
is bounded by the initial weights’ error, i.e., the overfitting is not presented in the
proposed algorithm, (4) the backpropagation is applied to predict the distribution
of loads that a transelevator receives from a trailer and places in the deposits each
hour in a warehouse, and the deposits in the warehouse can be reserved in advance
using the prediction results, (5) the backpropagation algorithm is compared with
the recursive least square algorithm and the Sugeno fuzzy inference system in the
problem of the prediction of the distribution of loads in a warehouse, giving that the
first and the second are stable and the third is unstable, and (6) the backpropagation
algorithm is compared with the recursive least square algorithm and the Kalman
filter algorithm in an academic example. This work is also published in [1].

In Chap. 2, an analytic neural network model is introduced for the modeling
of the wind turbine behavior. The proposed hybrid method is the combination of
the analytic and neural network models. The neural network model is used as a
compensator to improve the approximation of the analytic model. It is guaranteed
that the error of the analytic neural network model is smaller than the error of the
analytic model. Two experiments show the effectiveness of the proposed technique.
This work is also published in [2].

In Chap. 3, an interpolation neural network is introduced for the learning of a
wind turbine behavior with incomplete data. The proposed hybrid method is the
combination of an interpolation algorithm and a neural network. The interpolation
algorithm is applied to estimate the missing data of all the variables; later, the neural
network is employed to learn the output behavior. The proposed method avoids the
requirement to know all the system data. Experiments show the effectiveness of the
proposed technique. This work is also published in [3].

In Chap. 4, a method to obtain a stable algorithm is presented for the learning
of a radial basis function neural network. The method consists of the following
processes: (1) the radial basis function neural network is linearized, (2) the
algorithm for the learning of the radial basis function neural network is introduced,
(3) stability of the mentioned technique is assured, (4) convergence of the suggested
method is guaranteed, and (5) boundedness of parameters in the focused technique is
assured. The abovementioned method is applied for the learning of two mechatronic
processes. This work is also published in [4].
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In Chap. 5, a stable neuro fuzzy inference system is designed from the multilayer
neural network and fuzzy inference system to satisfy the three conditions for the
big data learning: (1) It utilizes the numerator of the average defuzzifier instead of
the average defuzzifier to be compact, (2) it employs Gaussian functions instead
of sigmoid functions to be effective, and (3) it uses a time varying learning speed
instead of the constant learning speed to be stable. The suggested technique is
applied for the modeling of the crude oil blending process and the beetle population
process. This work is also published in [5].

In Chap. 6, an online self-organizing fuzzy modified least square (SOFMLS)
network is proposed. The network generates a new rule, if the smallest distance
between the new data and all the existing rules (the winner rule) is more than a
prespecified radius. The major contributions of this chapter are as follows: (1) A
new network is proposed. In this network, unidimensional membership functions
are used, and only two parameters for each rule are employed, thus reducing the
number of parameters. The network avoids the singularity produced by the widths
in the antecedent part for online learning. (2) A new pruning algorithm based on the
density is proposed, where the density is the number of times that each rule is used
in the algorithm. The rule that has the smallest density (the looser rule) in a selected
number of iterations is pruned if the value of its density is smaller than a prespecified
threshold. (3) The stability of the proposed algorithm is proven, and the bound for
the average of the identification error is found. The condition that led the algorithm
to avoid the local minimum is found, and it is proven that the parameters error is
bounded by the initial parameters error. Three simulations give the effectiveness of
the suggested algorithm. This work is also published in [6].

In Chap. 7, the modeling problem of nonlinear systems with dead-zone input is
considered. To solve this problem, an evolving intelligent system is proposed. The
uniform stability of the modeling error for the aforementioned system is guaranteed
by means of a Lyapunov-like analysis. The effectiveness of the proposed technique
is verified by simulations. This work is also published in [7].

In Chap. 8, the modeling problem of brain and eye signals is considered. To
solve this problem, three important evolving and stable intelligent algorithms are
applied: the sequential adaptive fuzzy inference system (SAFIS), uniform stable
backpropagation algorithm (SBP), and online SOFMLS networks. The effectiveness
of the studied methods is verified by simulations. This work is also published in [8].

In Chap.9, the problem of learning in big data is considered. To solve this
problem, a new algorithm is proposed as the combination of two important evolving
and stable intelligent algorithms: the SAFIS and stable gradient descent algorithm
(SGD). The modified sequential adaptive fuzzy inference system (MSAFIS) is the
SAFIS with the difference that the SGD is used instead of the Kalman filter for
updating parameters. The SGD improves the Kalman filter because the first obtains
a better learning in big data. The effectiveness of the introduced method is verified
by two experiments. This work is also published in [9].
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In Chap. 10, the error convergence of the SAFIS and the MSAFIS is analyzed.

SAFIS utilizes the extended Kalman filter, while MSAFIS uses the gradient descent
technique. First, proposed algorithms are linearized to get their modeling dynamic
equations. Second, Lyapunov strategy is utilized to ensure the error convergence of
studied networks. Two examples show the performance of advised algorithms. This
work is also published in [10].
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Chapter 2 )
A Uniformly Stable Backpropagation oy
Algorithm to Train a Feedforward Neural
Network

1 Introduction

The online neural networks can be used in many fields, including nonlinear adaptive
control, fault detection, diagnostics, performance analysis of dynamic systems,
pattern and image recognition, time-series, identification of nonlinear systems, intel-
ligent agents, modeling, robotic, and mechatronic systems. The stability problem of
neural networks is important for the aforementioned online fields, and the stability
of the neural networks is not always assured.

There are some researchers who have worked with the stability of continuous
time neural networks as are [1-9].

In [1], they study the approximation and the learning properties of one class
of recurrent networks, known as high-order neural networks, and they apply these
architectures to the identification of dynamic systems. In [2], the stability conditions
of online identification are derived by Lyapunov-Krasovskii approach, which are
described by linear matrix inequality. In [3], they present the sufficient conditions
for the global asymptotic stability for a kind of recurrent neural network. In [4], they
consider the robust stability of neural networks with multiple delays. The work of
[5] is concerned with the global robust exponential stability of a class of interval
Cohen-Grossberg neural networks with both multiple time varying delays and
continuously distributed delays. In [6], the static neural network model and a local
field neural network model are theoretically compared in terms of their trajectory
transformation property, equilibrium correspondence property, nontrivial attractive
manifold property, global convergence, as well as stability in many different senses.
In [7], dynamic multilayer neural networks are used for nonlinear system online
identification, and the passivity approach is applied to access several stability
properties of the neuro-identifier. In [8], the passivity-based approach is used to
derive stability conditions for dynamic neural networks with different time scales. In
[9], the Lyapunov function approach is used to rigorously analyze the convergence
of weights, with the use of the backpropagation algorithm, toward minima of the
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6 2 A Uniformly Stable Backpropagation Algorithm to Train a Feedforward Neural. . .

error function. All the works are interesting, but all consider the continuous-time
neural networks, and there are some systems that are better described in discrete
time, for example, the population systems of some kind of animals [10], or the
annual expenses in an industry [11], or the interest earned by the loan of a bank [11],
or the prediction of the distribution of loads received each hour in a warehouse, that
is way it is important to consider the stability of the discrete-time neural networks.

There are some researchers who have worked with the stability of discrete-time
neural networks as are [12-17].

In [12], a double dead-zone is used to assure the stability of the identification
error in the gradient descent algorithm. In [13], they derive a condition for
robust local stability of the multilayer recurrent neural networks. In [14], an
input to state stability approach is used to create robust training algorithms for
discrete-time neural networks. The work of [15] suggests new learning laws for
Mamdani and Takagi-Sugeno-Kang type fuzzy neural networks based on input-
to-state stability approach. In [16], the input-to-state stability approach is applied
to access robust training algorithms of discrete-time recurrent neural networks. In
[17], they modify the backpropagation approach, and they employ a time varying
rate that is determined from the input-output data and the model structure and stable
learning algorithms for the premise and the consequence parts of the fuzzy rules
are proposed. All the works propose new neural network algorithms as in [13], or
they modify the general backpropagation employing a time varying rate to prove
the input-to-state stability as in [12, 14—17]; in this chapter it is proven that the
backpropagation algorithm with a new time varying rate is uniformly stable.

On the other hand, there is some research related with the warehouses as is [18—
22].

The authors in [18] propose a method for selecting and materializing views,
which selects and horizontally fragments a view and recomputes the size of
the stored partitioned view while deciding further views to select. In [19], they
consider a matrix-based discrete event control approach for a warehouse, and the
control system is organized in two modules: a dynamic model and a controller.
In [20], they focus on the technical challenges of designing and implementing an
effective data warehouse for health care information. In [21], they propose, as an
extension to the data warehouse model, knowledge warehouse architecture that will
not only facilitate the capturing and coding of knowledge but also enhance the
retrieval and sharing of knowledge across the organization. In [22], they propose
a new constrained evolutionary algorithm for the maintenance-cost view-selection
problem. All the works are interesting, but none uses the neural networks for the
prediction of the distribution of loads in a warehouse, and in [21], they only mention
that it could be made.

In this chapter, it is proposed a theorem to assure the uniform stability of the
discrete-time systems, it is proven that the backpropagation algorithm with a new
time varying rate is uniformly stable for online identification, the identification error
converges to a small zone bounded by the uncertainty, and the weights’ error is
bounded by the initial weights’ error; the backpropagation is applied to predict
the distribution of loads that a transelevator receives from a trailer and places
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in the deposits each hour in a warehouse, the deposits in the warehouse can be
reserved in advance using the prediction results, the backpropagation algorithm
is compared with the recursive least square algorithm and with the Sugeno fuzzy
inference system in the problem of the prediction of the distribution of loads inside
a warehouse, and the backpropagation algorithm is compared with the recursive
least square and with the Kalman filter in an academic example.

This chapter is organized as follows. In Sect.2, the theorem that proves the
uniformly stability of the discrete-time systems is presented. In Sect. 3, the general
backpropagation to train a feedforward neural network with a hidden layer is
presented. In Sect. 4, the uniform stability of the backpropagation algorithm is
proven. In Sect. 5, the application of the proposed algorithm is described. In Sect. 6,
a brief description of the warehouse is presented. In Sect. 7, the backpropagation
algorithm is compared with the recursive least square algorithm, with the Sugeno
fuzzy inference system, and with the Kalman filter algorithm in the problem of the
prediction of the distribution of loads in a warehouse and in an academic example.
Finally, in Sect. 8, the results and the possible future research are explained.

2 Preliminaries

Let us consider the following discrete-time nonlinear system:

X1 = f Lok, ur], (2.1)
where u; € R™ is the input vector, x; € R" is the state vector, and uy and xj are
known. f is an unknown nonlinear smooth function f € C*.

Definition 2.1 The system (2.1) is said to be uniformly stable if Ve > 0,35 = §(¢)
such that

lxkill <8 = llxkll <€, Vk> k. (2.2)

If the system has § = § (e, k), then the system (2.1) only is stable.

Now, a basic stability theorem for discrete-time nonlinear systems is given, it is
an analogous version of the continuous-time version given by Byrnes et al. [23] and
of the delayed continuous-time version given by Rubio and Yu [12].

Theorem 2.1 Let Li(x(k)) be a Lyapunov function of the discrete-time nonlinear
system (2.1), if it satisfies

71 (xel) < L) < y2 (lxell)

2.3)
AL (xp) < =y3 (lxelD) + v3 (),
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where § is a positive constant, y| (-) and y> (-) are K functions, and y3 () is a K
function, then the system (2.1) is uniformly stable.

Proof See [24] for the proof.

3 The Backpropagation Algorithm to Train a Neural
Network

Let us consider the following unknown discrete-time nonlinear system:
y(k) = f [ Xkl (2.4)

where X = [x1(k) ..., xj(k), ..., xn(R)]T =[ytk = 1), ..., y(k —n),u(k — 1),

consu(k=m)]T € RVN (N = n4+m) is the input vector, u(k—1) € R is the input
of the plant, y(k) € R is the output of the plant, and f is an unknown nonlinear
function, f € C*. The output of the neural network with one hidden layer can be
expressed as [25-27]

M
y(k) = Vi®y = Zvjk(ﬁjk,
=1
D = [¢)1k,...,¢>jk,...,¢)Mk]T, (2.5)
N

¢jr = tanh (ZWijkxi (k)> ,

i=1

wherei =1,...,N,j=1,...,M, X} € RN*1 s the input vector given by (2.4),
J(k) € R is the output of the neural network, V; € R'>*M and Wy € RM*V are
the weights of the output and the hidden layer of the neural network, respectively,
Wijk € R, xi(k) € R, & € RM 1 djk € R, Vi € R, and Fig.2.1 shows the
feedforward neural network.

4 Stability of the Backpropagation Algorithm

The stability of the parameter learning is needed, because this algorithm works
online. First, the model is linearized, and later, the stability of the proposed
algorithm is analyzed.
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Fig. 2.1 Architecture of the neural network

According to the Stone-Weierstrass theorem [28], the unknown nonlinear func-
tion f of (2.4) is approximated as

M
y(k) = Vi@t €5= Zvj*¢*jk+ €f,
j=1
T
Dy = [(b*lk’ s Qs e ¢*Mk] > (2.6)
N

¢jx = tanh (Zwi,*x,» (k)) :
i=1
where @, € RM*1, €= y(k) — Viu®y € R is the modeling error, ¢y € R,
Vis € R, Wije € R, Vi € R, and W;;, € R are the optimal parameters that can
minimize the modeling error € [1].
First, the network model is linearized, and it is used to define the parameters
updating and to prove the stability of the proposed algorithm.
In the case of two independent variables, a function has a Taylor series as follows:

Af (w1, w2)

flor, w2) = f(wo, wyp0) + (“)1 - a)lo) dw] (2.7)

+ (02— o) 90 4 Ry
where Ry € 3 is the remainder of the Taylor series. If we let w; and w> correspond
to W;jr € I and Vik € R and w0 and wyo correspond to Wijj. € Rand Vi, e N
and let us define W;jx = Wijx — Wijx € Rand Vi = Vi — Vi, € R, then the
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Taylor series is applied to linearize (2.5) as follows [2, 12, 29]:

M N M
Vi Dy Vi Dy
Vidp = Ve + Y Wip—— + Y Vit + Ry, 2.8)
P OWijk s oVik
M
where %‘é’{,@‘ € Rand ‘W"@ € R; please note that V; @y = Zvjkquk and V, @y =
j=1

M
Zvj*¢* jk- As all the parameters are scalars, the Taylor series is well applied.

j=I
Considering (2.5) and using the chain rule [2, 12, 29-31] give

d tanh (Z Wijkxi (k))
Vi Py P

W . VTkawy E)Wk = Vijk Wik 2.9)
N

= Vixsech? (Y Wijixi (k)x; (k) = oy,
i=1

where ojj = ijsech2(ZWijkx,'(k))xi(k) € R because Vik € R,
i=1
N l
sech?() " W;jixi (k) € R and x; (k) € R.
i=1

M
Y Vikdik
oVidy i=1
— = / _ = ik, (2.10)
Vi Vi

N

where ¢ = tanh(ZW,]kx, (k)) € . Substituting % avk(b" of (2.9) and BV"@
i=1

of (2.10) into (2.8) gives

M N
Vidr = VoD + ZZWijkO’ijk
y j=li=l @2.11)

+2ij¢jk + Ry.
J=1
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Let us define the identification error e(k) € R as follows:
e(k) =y(k) — y(k), (2.12)

where y(k) and y(k) are defined in (2.4) and (2.5), respectively. Substitut-
ing (2.5), (2.6), and (2.11) into (2.12) gives

e (k) = va,k + ZZWl,kol,k + k), (2.13)
j=1li=1
where (k) = Ry— €.
From (2.13), it is obtained that
M M N
D Vikpix + DY Wijkoij = e (k) — (k). (2.14)
j=1 j=li=1

The proposed backpropagation algorithm uses a new time varying rate as follows:

Vik+1 = Vjk — axpjre(k), 2.15)
Wijir1 = Wijk — agoijre(k),

where the new time varying rate oy is

(<00]

o =
M

2|3+ 2 ,k+ZZ%k

j=1 j=1li=1

N
where i = 1,...,N,j = 1,...,M, Oijk = ijSCChZ(ZWijkxi(k))x,'(k) e R
i=1
N

is defined in (2.9), ¢ = tanh(ZW,-jkxi (k)) € R is defined in (2.5) and used

i=1

in (2.10), e(k) is defined in (2.12),0 < g < 1 € R,500 < a; € R, and it is
assumed that the uncertainty is bounded [1, 2, 12, 15, 29, 32-35], where w is the
upper bound of the uncertainty w(k), |n(k)| < .

M
Remark 2.1 Please note that e(k) = J(k)—y(k) = Zvjk¢ ik—y (k) used in (2.15)

j=1
is well defined because Vi, ¢ j«, and y(k) are known.

The following theorem gives the stability of the proposed backpropagation

algorithm.
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Theorem 2.2 The backpropagation algorithm (2.5), (2.12), and (2.15) applied for
the identification of the nonlinear system (2.4) is uniformly stable, and the upper
bound of the average identification error ef, (k) satisfies

lim sup— Ze (k) < aoi?, (2.16)
T—o00 k >

where e2 (k) =3 %e2(k—1),0 <ag <1 € R, and0 < ay € R are defined in (2.15),
e(k) is deﬁned in (2.12), @ is the upper bound of the uncertainty u(k), |u(k)| < m.

Proof See [24] for the proof.

Remark 2.2 There are two conditions to apply this algorithm for nonlinear sys-
tems: the first one is that the nonlinear system may have the form described by
Eq. (2.4), and the second one is that the uncertainty w (k) may be bounded.

Remark 2.3 The value of the parameter it is unimportant, because this param-
eter is not used in the algorithm. The bound of w(k) is needed to guarantee
the stability of the algorithm, but it is not used in the backpropagation algo-
rithm (2.5), (2.12), (2.15).

Remark 2.4 The fact that (k) is bounded has been used for other authors in some
earlier studies as are [1, 33, 34], and [35] in continuous-time systems and [2, 12, 15,
29], and [32] in discrete-time systems.

The following theorem proves that the weights of the proposed backpropagation
algorithm are bounded.

Theorem 2.3 When the average error e% (k) is bigger than the uncertainty aoi>,
the weights’ error is bounded by the initial weights’ error as follows:

e (k) > aoit”

M N M N M - M N (2 17)
- ZVJZkJrl + ZZ ijk+1 = sz ZZ ijl° ’
=1 = -

j=li=1

wherei =1,...,N,j=1,..., M, ij and Wijk are defined in (2.7), le and Wijl
are the initial weights’ error, ef,(k) = O‘Tkez(k), Viket, Wijk41, 0 < ap < 1 € R,
and 0 < ay € R are defined in (2.15), e(k) is defined in (2.12), 1t is the upper bound
of the uncertainty u(k), |uk)| < m.

Proof See [24] for the proof.

Remark 2.5 From Theorem 2.2 the average identification error ez (k) of the
backpropaganon algorithm is bounded, and from Theorem 2.3 the welghts error
V]2k 41 and Wl Tkt is bounded, i.e., the proposed backpropagation algorithm to
train a feedforward neural network is uniformly stable in the presence of unknown

and bounded uncertainties, and the overfitting mentioned in [14] and [27] is not
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presented. In addition, the identification error converges to a small zone bounded by
the uncertainty [.

S The Proposed Algorithm

The proposed algorithm is as follows:

(1) Obtain the output of the nonlinear system y(k) with Eq.(2.4), note that the
nonlinear system may have the structure with Eq. (2.4), and the parameter N is
selected according to this nonlinear system.

(2) Select the following parameters: Vi and W are selected as random numbers
between 0 and 1. M is selected as an entire number, and « is selected with
positive values smaller than or equal to 1; obtain the output of the neural
network y(1) with Eq. (2.5).

(3) For each iteration k, obtain the output of the neural network y(k) with
Eq. (2.5), also obtain the identification error e(k) with Eq.(2.12), and update
the parameters Vi1 and W; ;41 with Eq. (2.15).

(4) Note that the behavior of the algorithm could be improved by changing the
values of M or «y.

Remark 2.6 The proposed neural network has one hidden layer. Some earlier
results [1, 28], and [31] mention that there is a result where the feedforward neural
network with one hidden layer is enough to approximate any nonlinear system.

6 The Warehouse

An automatic warehouse has elements used to make easy the work of moving
loads from one place to another one in an automatic way. The loads are some
objects inside of boxes that are saved in the warehouse until they are sent to the
costumers. The deposits are the place where the loads are placed. Figure 2.2 shows
the automatic warehouse in gray color, the deposits in black color, and the loads in
brown color.

A transelevator moves inside the warehouse. This transelevator can be used to
move some load from one place to another one in the warehouse, for example, from
the floor to the deposit, from the deposit to the floor, from one deposit to another
one, or from a trailer to the deposits. Figure 2.3 shows a transelevator inside the
warehouse in yellow color, and Fig. 2.4 shows the same transelevator moving a load.

Figure 2.5 shows the trailer with the loads that are saved in the warehouse. The
transelevator takes the loads from the trailer and places them in the deposits.

In this chapter, the main prediction problem in the warehouse is the distribution
of the loads that the transelevator receives from the trailer and places in the deposits
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Fig. 2.2 The automatic warehouse

Fig. 2.3 The transelevator inside the warehouse

each hour inside the warehouse, and the deposits in the warehouse can be reserved
in advance using the prediction results.

7 Simulations

In this section, two examples are considered. In the first example, the backpropa-
gation algorithm is applied for the prediction of the distribution of loads inside a
warehouse, and the proposed algorithm is compared with the recursive least square
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Fig. 2.4 The transelevator with a load

Fig. 2.5 The trailer with loads for the warehouse

algorithm given by Goodwin and Sin [36] and used by Angelov and Filev [37] and
Kasabov and Song [38] and with the Sugeno fuzzy inference system given by Jang
and Sun [27] and Wang [31]. In the second example, the backpropagation algorithm
is applied in an academic problem, and the proposed algorithm is compared with
the recursive least square algorithm given by Goodwin and Sin [36] and used by
Angelov and Filev [37] and Kasabov and Song [38] and with the Kalman filter
algorithm given by Haykin [25] and Goodwin and Sin [36] and used by Rubio and
Yu [2].
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The root mean square error (RMSE) [39] is used, and it is given as follows:

1

R :
RMSE = (NZez(k)> ) (2.18)

k=1

Example 2.1 In this example, the backpropagation is applied for the prediction of
the distribution of loads that the transelevator receives from the trailer and places in
the deposits each hour in the warehouse, there are three kinds of loads received by
the transelevator inside the warehouse, these three kinds of loads are denoted as A,
B, and C, and they are received in the warehouse each hour; the number of loads
of kind A received each hour in the warehouse can vary from 4 to 5, the number of
loads of kind B received each hour in the warehouse can vary from 3 to 4, and the
number of loads of kind C received each hour in the warehouse can vary from 1 to 3.
The data of 1800 hours are used for the training, and the data of the least 200 hours
are used for the testing; the prediction is obtained with 200 hours in advance. Three
neural networks are used for the training, and the same neural networks are used for
the testing; B(k) and C (k) are the inputs and A (k+200) is the output for the training
of the first neural network, A (k) and C (k) are the inputs and B(k-+200) is the output
for the training of the second neural network, and A(k) and B(k) are the inputs
and C(k + 200) is the output for the training of the third neural network. Similar
inputs are used for the testing of the three neural networks, and the outputs are not
used for the testing. In this prediction example, the backpropagation algorithm is
given as (2.5), (2.12), and (2.15) changing y(k) by y(k + 200) and changing e (k)
by e(k + 200) [36]. The parameters of the backpropagation algorithm are N = 2,
M =5, Vj; and W;;; are random number between 0 and 1, and 9 = 1. The
backpropagation algorithm is compared with the recursive least square algorithm
given by Goodwin and Sin [36] and used by Angelov and Filev [37] and Kasabov
and Song [38] with parameters P; = ¢l € §RzX2, where ¢ = 1, Vj is a random
number between 0 and 1 and is compared with the Sugeno fuzzy inference system
given by Jang and Sun [27] and Wang [31] with parameters M = 2, m1, o1, and
v1 are random numbers between 0 and 1. The training results are shown in Fig. 2.6,
and the testing results are shown in Fig.2.7. Table 2.1 shows the training and the
testing RMSE results using (2.18). Figure 2.8 shows that in this example not all the
algorithms are stable because the Sugeno fuzzy inference system is not stable, and
it is reported in Table 2.1.
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Fig. 2.6 Training results for Example 1

Fig. 2.7 Testing results for Example 1

17
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Table 2.1 Results for Methods Training RMSE | Testing RMSE
Example 1 -
Recursive least square | 0.0717 0.0121
Backpropagation 0.0321 3.2561 x 1073

Sugeno fuzzy inference | NAN

Fig. 2.8 Training for the Sugeno fuzzy inference system

From Table 2.1, it can be seen that the backpropagation algorithm achieves better
accuracy when compared with the recursive least square because the training RMSE
and the testing RMSE are smaller for the backpropagation algorithm. From Figs. 2.6
and 2.7, it can be seen that the backpropagation improves the recursive least square
because the signal of the first one follows better the signal of the plant than the signal
of the second one. From Fig. 2.8, the Sugeno fuzzy inference system is unstable for
this prediction example, that is way it is important to guarantee the stability of the
algorithms. Thus the backpropagation is good for the prediction problems.

Figure 2.9 shows the average of the identification error for the modified back-

propagation algorithm. From this figure, it can be observed that the average of
T

the identification error lim sup% Zei (k) decreases, and it will converge to a value
T—o0 k=2
smaller than the upper bound of the uncertainty agfi>, as stated in Theorem 2.2.
The simulation of the weights’ error for Theorem 2.3 cannot be obtained because
the optimal weights which can minimize the modeling error are unknown [1].
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Fig. 2.9 Average identification error for Example 1

Example 2.2 Let us consider the nonlinear system given in an earlier study [31]:
y(k) =03yk — 1) +0.6y(k —2) + f(u(k — 1)), (2.19)

with f(u(k—1)) = 0.6sin(ru(k—1))+0.3sin(3ru(k—1))+0.1sin(Sru(k—1)),
and the input is u(k—1) = sin(8x (k—1)/200). In this example, the backpropagation
algorithm given as (2.5), (2.12), and (2.15) is used for the identification of the
nonlinear plant (2.19). The parameters of the backpropagation algorithm are N = 2,
M = 3, V;; and W;;; are random numbers between 0 and 1, and g = 0.25. The
backpropagation algorithm is compared with the recursive least square algorithm
given by Goodwin and Sin [36] and used by Angelov and Filev [37] and Kasabov
and Song [38] with parameters P; = ¢l € 3?2“, where ¢ = 1, V| is a random
number between 0 and 1 and is compared with the Kalman filter algorithm given
by Goodwin and Sin [36] and Haykin [25] and used by Rubio and Yu [2] with
parameters Py = cl € §R2X2, where c = 1, Ry = 0.1, R, = 1, V; is a random
number between 0 and 1. The training results are shown in Fig.2.10, the testing
results are shown in Fig. 2.11, and using (2.18) Table 2.2 shows the training and the
testing RMSE results.

From Table 2.2, it can be seen that the backpropagation algorithm achieves better
accuracy when compared with the recursive least square and the Kalman filter
because the training RMSE and the testing RMSE are smaller for the backpropa-
gation algorithm. From Figs.2.10 and 2.11, it can be seen that the backpropagation
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Fig. 2.10 Training results for Example 2

Fig. 2.11 Testing results for Example 2
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Table 2.2 Results for Methods Training RMSE | Testing RMSE
Example 2 -
Recursive least square | 0.0714 0.0183
Kalman filter 0.0520 0.0283
Backpropagation 0.0413 0.0132

Fig. 2.12 Average identification error for Example 2

improves the recursive least square and the Kalman filter because the signal of the
first follows better the signal of the plant than the signal of the second and the third.
Thus, the backpropagation is good for the identification problems.

Figure 2.12 shows the average of the identification error for the modified

backpropagation algorithm. From this figure, it can be observed that the average of
T

the identification error lim sup%Zei (k) decreases, and it will converge to a value
T—o0 k=2
smaller than the upper bound of the uncertainty agjz2, as stated in Theorem 2.2.
The simulation of the weights’ error for Theorem 2.3 cannot be obtained because
the optimal weights which can minimize the modeling error are unknown [1].
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8 Concluding Remarks

In this chapter, it was proposed a theorem to assure the uniform stability of discrete-
time systems, it was proven that the backpropagation algorithm with a new time
varying rate is uniformly stable for online identification, the identification error
converges to a small zone bounded by the uncertainty, and the weights’ error
are bounded by their initial weights’ error. The backpropagation algorithm was
compared with the recursive least square algorithm and with the Sugeno fuzzy
inference system in the problem of the prediction of the distribution of loads each
hour inside a warehouse, and the backpropagation algorithm was compared with
the recursive least square and with the Kalman filter in an academic example. From
the simulation results, it can be seen that the backpropagation algorithm achieved
better accuracy when compared with the recursive least square algorithm and with
the Kalman filter algorithm; in addition, the Sugeno fuzzy inference system was
unstable. Thus, the backpropagation is good for the prediction and the identification
problems. As a future work, a stable algorithm for the radial basis function will
be proposed, a new algorithm for the feedforward neural network that guarantees
asymptotic stability will be proposed, a method to find the number of neurons in the
hidden layer online will be proposed, and the proposed algorithms will be applied
for other real problems.
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Chapter 3 )
Analytic Neural Network Model oy
of a Wind Turbine

1 Introduction

Researchers are often trying to improve the total power of a wind turbine. The
dynamic model of a wind turbine plays an important role in some applications as
the control, classification, pattern recognition, or prediction.

There is some research about neural networks and fuzzy systems. In [1-7], the
fuzzy systems are used as the structure of evolving fuzzy systems. In [8—13], the
neural networks are used as the structure of evolving neural networks. New methods
for exploring the evolution of social groups are mentioned in [14]. An approach
to predict from a data stream of real estate sales transactions is presented in [15].
Considering the above studies, a multilayer neural network is a good alternative for
the modeling of the wind turbine behavior.

There is some research about hybrid systems. In [16], the authors make the first
attempt to develop a hybrid system by integrated case-based reasoning and artificial
neural networks as a model for mobile phone company. The development of a
multiscale hierarchical hybrid model based on finite element analysis and neural
network computation to link mesoscopic scale and macroscopic is presented in [17]
to simulate the process of bone remodeling. In [18], as an alternative method to
analytical modeling approaches, this study uses the advantages of neural networks
such as no required knowledge of internal system parameters, less computational
effort, and a compact solution for multivariable problems. In [19], both analytical
and soft computing approaches are used in predicting the performance of an indirect
evaporative cooling. A hybrid model of a boiler developed with the application of
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both analytical modeling and artificial intelligence is described in [20]. Two models
for estimating essential oil extraction yield from Anise, at high pressure condition,
were used in [21]: mathematical modeling and artificial neural network modeling.
Considering the aforementioned researches, a hybrid system with a multilayer
neural network is a good alternative for the modeling of the wind turbine behavior.

Commonly, the intelligent algorithm is directly used for the modeling of the wind
turbine behavior; however, in this chapter, the proposed analytic model provides
a good approximation. Thus, a neural network is proposed as a compensator to
improve the approximation obtained by the analytic model. The analytic neural net-
work model is a hybrid system which learns the wind turbine behavior considering
real data of the inputs, states, and output.

The chapter is structured as follows. In Sect. 2, the dynamic model of a windward
wind turbine of three blades with a rotatory tower is mentioned. In Sect. 3, the
proposed analytic neural network model is presented for the modeling of the wind
turbine behavior. In Sect. 4, it is guaranteed that the error of the analytic neural
network model is smaller than the error of the analytic model. In Sect. 5, the analytic
model and analytic neural network model are compared for the modeling of two
trajectories of the wind turbine behavior. Finally, in Sect. 6, the conclusion and
future research are detailed.

2 Analytic Model of a Wind Turbine with a Rotatory Tower

The analytic model is described in this section as the first part of the proposed model.
The following subsection describes the algorithm proposed by this study used to
approximate the wind turbine behavior.

This model is divided into four parts: the first is the mechanic model, the second
is the aerodynamic model, the third is the electric model, and finally, the fourth is
the combination of the aforementioned models to obtain the final analytic model.
The dynamic model of the wind turbine is, first, the equations that represent the
change between the wind energy and mechanic energy, and second, the equations
that represent the change between the mechanic energy and electric energy.

2.1 The Analytic Model

Define the state variables as x1 = i2, xp = 6, x3 = 02, x4 = i1, X5 = 01, x6 = 01,
the inputs as u; = F, up = Vi, and the output as y = V5. Consequently, the
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dynamic model is given as follows [22, 23]:

(R2+Re)

X1 =——F—=x1+ —X3
X3 =x3
Lo ki b . 271](;,2 cos(x5)
*3 = m2[32x2 mal2, B3 + 3mal%,
s Tk T
X4 = — L1x4 1x6—|—Llu2
X5 = X6
o _ 3kb] _ 3}7[)1 ki
X6 = T Em LS T Dm0 T s 3.1
Y = Rexi

uy = Foq + Fop + Fac
Fa = 2mpAc @ BV,

Fy = 2)C3pAC,,<A BV,
Fye = zmpAC (A, ,3)‘/3
R
A= x‘3,
where C, (1, B) = c1 (;—f — 3B — 04) e~ 5/hi 4 e, % = m — %, 0y is

the angular position of the tower motor in rad, 6 is the angular position of a wind
turbine blade in rad, /., is the length of the wind turbine blade center in m, m| is
the tower mass in kg, m is the blade mass in kg, g is the acceleration gravity in
m/s2, [ is the constant length of the tower in m, /.| is the length of the tower center
in m, 1, is the torque of the generator moved by the blade in kngrad/sz, T1g 18
the torque of the motor used to move the tower in kgmzrad/sz, kp1 and kpp are the
spring effect presented when the blade is near to stop in kgm?/s%, by and by, are
the shock absorber in kgm2rad/s, F>,, F»p, and F>. are the force of the air received
by the three blades. Equation (3.1) describes the assumption that the air goes in one
direction, if 87 = 0, then the maximum air intake moves the blades of the wind
turbine, but if the tower turns to the left or to the right and 6 changes, then the wind
turbine turns, and the air intake decreases; k;, is a motor magnetic flux constant of
the tower in Wb, iy is the motor armature current of the tower in A, p is the air
density in Kg/m>, A = 7 R? is the area swept by the rotor blades in m? with radius
R in m, V,, is the wind speed in m/s, C, (A, B) is the performance coefficient of
the wind turbine, whose value is a function of the tip speed ratio A, c; = 0.5176,
cy = 116, c3 = 04, c4 = 5,¢c5 = 21, and ¢ = 0.0068 are coefficients, 8 is
the blade pitch angle in rad, k; is the motor back emf constant in Vs/rad, k; is the
generator back emf constant in Vs/rad, R is the motor armature resistance in £2, R;
is the generator armature resistance in §2, L is the motor armature inductance in H,
L, is the generator armature inductance in H, V| is the motor armature voltage in V,
V;, is the generator armature voltage in V, and i; is the generator armature current in
A. For the generator of this chapter Vo = R.i».
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3 Analytic Neural Network Model of a Wind Turbine
with a Rotatory Tower

The neural network is described in this section as the second part of the proposed
model. The following subsection describes the algorithm proposed by this study
used for the modeling of a wind turbine behavior.

Normally, the intelligent algorithm is directly used for the modeling of the wind
turbine behavior; however, in this chapter, the analytic model of (3.1) yields a
good approximation. The neural network of this chapter is used to improve the
approximation obtained by the analytic model. The analytic neural network model
learns the behavior considering real data of the inputs, states, and output, and the
eight inputs for the intelligent algorithm are denoted as z1(k) = ui,, z2(k) = uay,
z3(k) = x1y, z4(k) = x2r, z5(k) = x3;, 26(k) = x4r, 27(k) = x5,, and zg(k) = xer.
The output of the analytic neural network model is y, (k) = y,, where r denotes the
real data.

The following subsection describes the algorithm proposed by this study used for
the modeling of the wind turbine behavior.

4 Analytic Neural Network Model

The stable backpropagation algorithm is developed with a new time varying rate to
guarantee its uniformly stability for online identification and its identification error
converges to a small zone bounded by the uncertainty. The weights’ error is bounded
by the initial weights’ error, i.e., overfitting and local optimum are eliminated in the
mentioned algorithm [12, 24].

Stable backpropagation algorithm is as follows [12, 24]:

(1) Obtain the output of the nonlinear system y(k) with Eq.(3.1). Note that the
nonlinear system may have the structure represented by Eq. (3.2); the parameter
n = 8 is selected according to this nonlinear system.

yr(k) = f1Zi], (3.2)

where Z; = [z1k) ..., zi(k), ..., 25T € <1 is the input vector, f is an
unknown nonlinear function, f € C°°, and y, (k) is the real data output of the
wind turbine.

(2) Select the following parameters: V| and W as random numbers between 0 and
1, m as an integer number, and « as a positive value smaller than or equal to 1;
obtain the output of the neural network y(1) with Eq. (3.3). The analytic neural
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network that approximates the real data output behavior of the wind turbine
with rotatory tower y, (k) is as follows:

onn (k) = y(k) + NN (k)

m
NN (k) = Vi@ = Zvjk¢jk
j=1

3.3
‘sz[¢1k,---7¢jk,---,¢mk]T G-

8
¢jx = tanh (Zwi,-kzxk)) :

i=1

where z1(k), z2(k), z3(k), za(k), z5(k), ze(k), z7(k), and zg(k) are the eight
behavior inputs, and V1 and W;ji4 are the weights of the hidden and output
layers, respectively. m is the neuron number in the hidden layer, and y (k) is the
analytic model output (3.1). ¢; is the hyperbolic tangent function.

(3) For each iteration k, obtain the output of the neural network oy y (k) with
Eq. (3.3), also obtain the neural network error ey y (k) with Eq. (3.4), and update
the parameters V1 and W;jr1 with Eq. (3.5).

enn (k) =onn (k) — yr(k) (3.4)

Vik+1 = Vijr — axdjrenn (k)

3.5)
Wijk+1 = Wijk — aroijrenn (k),

where the new time varying rate oy is

o0

o) =
m 8

m
2 2+ 295+ 2D o |-
j=I

j=li=1

N
wherei = 1,....8,j = 1,....m, oyjx = Vixsech> (Y Wijizi(k))zi (k) € R, o
i=1
is the constant learning speed, oy (k) is the output of the analytic neural network
model, and y, (k) is the real data output of the wind turbine.
Figure 3.1 shows the proposed analytic neural network model for the modeling
of the wind turbine behavior.

Remark 3.1 There are two conditions for applying this algorithm for nonlinear
systems: The first one is that the nonlinear system may have the form described
by (3.1), and the second one is that the uncertainty w (k) may be bounded.

Remark 3.2 The value of the parameter used for the stability of the algorithm &
is unimportant, because this parameter is not used in the algorithm. The bound of
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Fig. 3.1 Analytic neural network model

w(k) is needed to guarantee the stability of the algorithm, but it is not used in the
backpropagation algorithm (3.3), (3.4), (3.5).

Remark 3.3 The proposed analytic neural network has one hidden layer. It was
reported in the literature that a feedforward neural network with one hidden layer is
enough to approximate any nonlinear system.

Remark 3.4 Note that the behavior of the algorithm could be improved by
changing the values of m or «y.

5 Main Contribution of the Analytic Neural Network Model

In this section, the analytic neural network model will be guaranteed to be more
approximated with the wind turbine behavior than the analytic model.
Define the analytic error as follows:

e(k) = y(k) — yr(k), (3.6)

where y(k) is the output of the analytic model and y, (k) is the real data output of
the wind turbine.
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The real data output is rewritten as follows:

yr(k) = y(k) + o (k), (3.7)

where y(k) is the output of the analytic model, y, (k) is the real data output, and
o (k) is the unmodeled dynamic.
Consider the following theorem.

Theorem 3.1 ([25]) Suppose that the input universe of discourse U is a compact
set in R". Then, for any given real continuous function o (k) on U and arbitrary
e€> 0, there exists a neural network N N (k) in the form (3.3) such that

sup INN (k) — o (k)| <€ . 3.8)

xeU

That is, the neural network N N (k) is an approximator of o (k).
Proof See [25] for the proof.
The above theorem can be rewritten as follows:

Corollary 3.1 The unmodeled dynamic o (k) of (3.7) is estimated by the neural
network model N N (k) of (3.3). It is written as follows:

NN (k) =~ o (k). (3.9)

The following theorem shows the main contribution of this chapter.

Theorem 3.2 The neural network error ey (k) (3.4) of the analytic neural network
model (3.3) for the modeling of the real data output of the wind turbine y, (k) is
smaller than the analytic error (3.6) of the analytic model (3.1). It is written as
follows:

lenn (k)| < le(k)]. (3.10)

Proof See [26] for the proof.

Remark 3.5 The first difference of this analytic neural network model with the
models considered by [1-12], and [13] is that the other models considered the
neural network model as the unique algorithm for the approximation of the wind
turbine behavior, while in this chapter the analytic neural network model (3.3) is the
combination of two models: one is the analytic and the other is the neural network
to obtain a better approximation. The second difference of analytic neural network
model with the classical ones is that the second uses signum functions in the hidden
and in the output layer being computational more complex, and the first uses a
sigmoid function only in the hidden layer being more simple.
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Remark 3.6 The difference of this analytic neural network model with the hybrid
models considered by [16-20], and [21] is that the other studies are not applied for
the modeling of the wind turbine behavior.

6 Experimental Results

The analytic neural network model of (3.3) is used for the modeling of the wind
turbine output. The objective is that the analytic neural network model output oy x
must be nearer with the real output of the wind turbine y, than the analytic model
output y. 8412 data are used for the training, and 2804 data are used for the testing.
The root mean square error is used for the comparison results [10, 12, 13, 22]:

L X 5
== 2
RMSE_<N;e,(k)> , (3.11)

where N is the number of iterations, and e; (k) = e(k) is the analytic error of (3.6),
or ¢; (k) = eyn (k) is the neural network error of (3.4).

Figure 3.2 shows the prototype of a wind turbine with a rotatory tower which
is considered for the simulations of the analytic model. This prototype has three
blades with a rotatory tower which does not use a gear box. Table 3.1 shows the
parameters of the prototype. The parameters m, and /., are obtained from the wind

Fig. 3.2 Prototype of a wind turbine with rotatory tower
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Table 3.1 Parameters of the prototype

33

Parameter Value Parameter Value
leo 0.5m R, 3082
my 0.5kg ki 0.09 Wb
kp2 1x10°° kgmz/s2 kp1 1x107° kgm2/s2
by 1 x 107! kgm? rad/s bp1 1 x 107! kgm? rad/s
ko 0.45 Vs/rad ki 0.0045 Vs/rad
Ry 6.9682 Ry 1882
L, 6.031 x 10~'H L 6.031 x 10~'H
R l.om Vo S5m/s
1.225 kg/m® B 0.5rad
g 9.81 m/s?

turbine blades. The parameters Ry, L1, and k| are obtained from the tower motor.
The parameters k>, R>, R, and L, are obtained from the wind turbine generator.
The parameters R, p, V,,, and § are obtained from [27-29], and [30].

The dynamic model of the wind turbine with a rotatory tower is given by Eq. (3.1)
with the parameters of Table 3.1. 1 x 107 is considered as the initial condition for

the plant states x; = i2, x = 6, x3 = 0, x4 = i1, x5 = 01, and x¢ = 0.

6.1 Example 1

Example 1 considers the first movement of the wind turbine described as follows:
(1) From O's to 2 s, both inputs are fed; consequently, the tower moves far from the
maximum air intake, the generator current is decreased, and the wind turbine blades
stop moving, (2) from 2 s to 4 s, both inputs are not fed; consequently, current is not
generated, and both the tower and wind turbine blades do not move, (3) from 4 s to
6, both inputs are fed, but the air intake is positive and tower voltage is negative;
consequently, the tower returns to the maximum air intake, the generator current is
increased, and the wind turbine blades move, and (4) from 65 to 8 s, both inputs
are not fed; consequently, current is not generated, and the tower and wind turbine
blades do not move.

The analytic model of (3.1) is used with parameters x1(1) = x2(1) = x3(1) =
x4(1) = x5(1) = x6(1) = 1 x 1075.

The analytic neural network model of (3.1), (3.3)—(3.5) is used with parameters
m = 4,ap = 0.2, Vi = rand, W; = rand, rand is a random number, x{(1) =
x2(1) = x3(1) = x4(1) = x5(1) = x6(1) =1 x 107,

Figure 3.3 shows the modeling of the wind turbine behavior using the analytic
model and analytic neural network model for the training. Figure 3.6 shows the
modeling of the wind turbine behavior using the analytic model and analytic neural
network model for the testing. RMSE for the analytic model and analytic neural
network model is presented in Fig. 3.4 for the training and in Fig. 3.7 for the testing.
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Fig. 3.3 Modeling for the training of Example 1

Fig. 3.4 RMSE for the training of Example 1
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Fig. 3.5 Absolute error for the training of Example 1

Table 3.2 Comparison of the errors for Example 1

RMSE for testing RMSE for testing
Analytic model 0.0171 0.0086
Analytic neural network 0.0067 0.0067

Absolute errors of Theorem 3.2 for the analytic model and analytic neural network
model are presented in Fig.3.5 for the training and in Fig.3.8 for the testing.
Table 3.2 shows the root mean square error for the analytic model and analytic
neural network model.

From Figs. 3.3, 3.4, and 3.5 and Table 3.2, it is shown that the analytic neural
network model is the best for the training of the wind turbine behavior because the
RMSE and absolute error of the above algorithm are the smallest ones. The training
could be used for online designs as are the control or prediction.

From Figs. 3.6, 3.7, and 3.8 and Table 3.2, it is shown that the analytic neural
network model is the best for the testing of the wind turbine behavior because the
RMSE and absolute error of the above algorithm is the smallest one. The testing
could be used for offline designs as are the pattern recognition or classification.
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Fig. 3.6 Modeling for the testing of Example 1

Fig. 3.7 RMSE for the testing of Example 1
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Fig. 3.8 Absolute error for the testing of Example 1

6.2 Example 2

Example 2 considers the second movement of the wind turbine described as follows:
(1) From Os to 2 s, the input air is fed, and the tower input is not fed; consequently,
the tower remains in the maximum air intake, the generator current is maximum, and
the wind turbine blades have motion, (2) from 2s to 4 s, the air is not fed, and the
tower input is fed; consequently, current is not generated, the tower moves far from
the maximum air intake, and the wind turbine blades do not have motion, (3) from
45 to 6, the air is fed, and the tower input is not fed; consequently, the tower does
not move, the generator current is minimum, and the wind turbine blades almost
do not move; (4) from 65 to 8 s, the air is not fed, and the tower input is fed with
a negative voltage; consequently, current is not generated, the tower returns to the
maximum air intake, and the wind turbine blades do not have motion.

The analytic model of (3.1) is used with parameters x;(1) = x2(1) = x3(1) =
x4(1) = x5(1) = x6(1) = 1 x 107°.

The analytic neural network model of (3.1), (3.3)—(3.5) is used with parameters
m = 4, g = 0.2, Vi = rand, W; = rand, rand is a random number, x;(1) =
x2(1) = x3(1) = x4(1) = x5(1) = x6(1) = 1 x 107,

Figure 3.9 shows the modeling of the wind turbine behavior using the analytic
model and analytic neural network model for the training. Figure 3.12 shows the
modeling of the wind turbine behavior using the analytic model and analytic neural
network model for the testing. RMSE for the analytic model and analytic neural
network model is presented in Fig.3.10 for the training and in Fig.3.13 for the
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Fig. 3.9 Modeling for the training of Example 2

Fig. 3.10 RMSE for the training of Example 2
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Fig. 3.11 Absolute error for the training of Example 2

Table 3.3 Comparison of the errors for Example 2

RMSE for testing RMSE for testing
Analytic model 0.0177 0.0089
Analytic neural network 0.0059 0.0072

testing. Absolute errors of the theorem 3.2 for the analytic model and analytic
neural network model are presented in Fig.3.11 for the training and in Fig.3.14
for the testing. Table 3.3 shows the root mean square error for the analytic model
and analytic neural network model.

From Figs. 3.9, 3.10, and 3.11 and Table 3.3, it is shown that the analytic neural
network model is the best for the training of the wind turbine behavior because the
RMSE and absolute error of the above algorithm is the smallest one. The training
could be used for online designs as are the control or prediction.

From Figs. 3.12, 3.13, and 3.14 and Table 3.3, it is shown that the analytic neural
network model is the best for the testing of the wind turbine behavior because the
RMSE and absolute error of the above algorithm is the smallest one. The testing
could be used for offline designs as are the pattern recognition or classification.

Remark 3.7 Choosing an appropriate number of neurons in the hidden layer is
important in the behavior, because too many neurons result in a complex system
that may be unnecessary for the problem and it can cause overfitting [12, 13, 31],
whereas too few neurons produce a less powerful system that may be insufficient to
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Fig. 3.12 Modeling for the testing of Example 2

Fig. 3.13 RMSE for the testing of Example 2
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Fig. 3.14 Absolute error for the testing of Example 2

achieve the objective. The number of neurons is considered as a design parameter,
and it is determined based on the trial-and-error method.

Remark 3.8 The difference between the two datasets considered in the experi-
ments is that each dataset represents a different movement of the wind turbine [22].

7 Concluding Remarks

In this chapter, an analytic neural network model and an analytic model were
compared for the modeling of the wind turbine behavior, giving that the analytic
neural network model approach improved the analytic model, because the root mean
square error for the first was the smallest one. The proposed technique could be used
on control, prediction, pattern recognition, or classification. As a future research, the
clustering algorithm will be used to estimate the number of hidden layer neurons,
and the proposed modeling will be used in the design of interesting applications as
are the control.
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Chapter 4

Interpolation Neural Network Model oy
of a Manufactured Wind Turbine

1 Introduction

The hybrid systems have been widely used in the learning of incomplete data for
the applications of nonlinear modeling [1, 2], prediction [3], pattern recognition
[4], classification [5, 6], control, fault detection and diagnosis in industrial systems
[7, 8], visual inspection [9], and cascaded systems [10].

There are many studies about hybrid systems for the learning of nonlinear
behaviors. Despite the proposals, few researches have been carried out in the past to
perform the learning of incomplete data.

On the other hand, there are other methods for the learning of nonlinear
behaviors with incomplete data, but they use noise signals considering the design
as a stochastic problem, and it would be interesting to consider the design as a
deterministic problem.

In this research, a hybrid algorithm as the combination of the stable neural
network and interpolation algorithm is introduced for the learning of nonlinear
systems with incomplete data where the design is considered as a deterministic
problem. It consists in the following two stages.

First, the interpolation algorithm is used to obtain the missing data of all
the variables in some nonlinear behavior. Figure 4.1 shows that the interpolation
algorithm is applied to build the estimation of the variables denoted as X; (k) when
only some points of the real variables denoted as x;,- (k) are available.

Second, after the interpolation algorithm obtains the estimation of the variables,
Fig. 4.2 shows that the interpolation neural network is employed to learn the output
nonlinear behavior where the variables estimated by the interpolation algorithm
denoted as x| (k) = Z1(k), Xa(k) = Z22(k),..., Xy (k) = Zp(k), Xnr1(k) = (k) are
used instead of the real variables denoted as x1 (k) = z1(k), x2,,(k) = z2(k), ...,
Xn.r(k) = 2, (k), xp41.(k) = yr(k). (k) is the target output of the neural network.
The inputs and output of the neural network are 73 (k), 22(k),. .., 2, (k) and NN (k),
respectively. The importance of the neural network is that while the interpolation
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Fig. 4.1 Interpolation
algorithm to estimate all the
variables with incomplete
data

algorithm only estimates the variables of the nonlinear behavior, the neural network
learns the output behavior.

In the remainder of this section there will contain the survey of related works.
Finally, the organization of this chapter will be mentioned.

1.1 Related Works

This subsection contains a survey of two kinds of related works: (a) hybrid systems
for the learning of nonlinear behaviors and (b) methods for the learning of behaviors
with incomplete data.

There is some research about the learning with hybrid systems. In [11], a learning
approach to train uninorm-based hybrid neural networks is suggested. In [12], four
semi-supervised learning methods are discussed. A specific ensemble strategy is
developed in [13]. In [14], an approach to the construction of classifiers from
imbalanced datasets is described. A dynamic pattern recognition method is proposed
in [15]. In [16] and [17], the use of evolving classifiers for the activity recognition
is described. Hybrid and ensemble methods in machine learning are focused in
[18]. In [19], a granular neural network framework for the evolving fuzzy system
modeling is introduced. A novel hybrid active learning strategy is proposed in [20].
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Fig. 4.2 Interpolation neural network for the learning

In [21], an enhanced version of the evolving participatory learning approach is
developed. A class of hybrid-fuzzy models is designed in [22]. A parsimonious
network based on the fuzzy inference system is addressed in [23]. In [1], a novel
dynamic parsimonious fuzzy neural network is considered. A holistic concept of
a fully data-driven modeling tool is proposed in [24]. In [5], a novel evolving
fuzzy rule-based classifier is proposed. A novel meta-cognitive-based scaffolding
classifier is considered in [25]. In [6], a novel interval type-2 fuzzy classifier is
introduced. An evolving hybrid-fuzzy neural network-based modeling approach is
introduced in [26].

Otherwise, there is some research about the learning of nonlinear behaviors with
incomplete data. In [27], kernel regression method is used for the modeling with
incomplete data. The story of incomplete and redundant representation modeling is
introduced in [28]. In [29], the authors propose a new model called sparse hidden
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Markov model. A novel sparse shape composition model is considered in [30]. In
[31], a method is introduced for regression and classification problems.

1.2 Organization of the Chapter

The chapter is structured as follows. In Sect. 2, the interpolation neural network is
described. In Sect. 3, the interpolation neural network is employed for the modeling
of two trajectories of the wind turbine behavior. Finally, in Sect. 4, the conclusion
and future research are detailed.

2 Interpolation Neural Network

This section is divided into two subsections which consider the two stages of
the proposed algorithm. (a) The interpolation algorithm is utilized to estimate the
nonlinear behavior of all the variables with incomplete data. (b) The interpolation
neural network is employed for the learning of the nonlinear behavior output with
incomplete data.

2.1 Interpolation Algorithm to Estimate the Incomplete Data

The interpolation algorithm is described in this subsection as the first part of the
proposed model. The algorithm proposed in this part is used to estimate the missing
data of all the variables with incomplete data, i.e., the proposed algorithm is a
multidimension approximator where all the variables are independently estimated.

Description of the Interpolation Algorithm

Consider the functions x;, (k) = f(k;) € Rwithl =1,2,,...,n+ 11is the number
of variables estimated with this algorithm, k; = 1,2,..., T, T are the iterations
number for the variables, x;- (k) are the output real data of the nonlinear behaviors.
The approximation consists in finding X; (k) such that they estimate the real variables
with incomplete data x;, (k).

The slopes of x;, (k) denoted as m; (k) using the k; and x;, (k) data of the nonlinear
behavior are obtained as follows:

xir (k) — xir(k — 1)

k) = . 4.1
MO = =k = @D
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Fig. 4.3 Interpolation algorithm

The nonlinear behaviors are divided into N; intervals, each interval is generated
by considering the following inequality:

|(Imy (k)| — |m(k — D] = hy, (4.2)

where h; is a small selected threshold parameter, and consider that the signals
taken from k; for each of the N; intervals are denoted by j. Figure 4.3 shows the
approximation of the nonlinear behaviors using the interpolation algorithm.

Equation (4.3) describes the approximation of the nonlinear behaviors using the
proposed interpolation algorithm [32]:

x(k) = (1 = (k) - xp,i,j (k) + Ay (k) - x1, 1, (k), (4.3)

where x; ; j (k) are the initial values of x;, (k) in the interval j, x; f,j (k) are the final
values of x;-(k) in the interval j, k; are the variant iterations inside of the interval
J» A (k) are the variant-in-time parameters of the interval j, and A;(k) are given as
follows:

ki — ki j

k) = ————,
ki fj—kiij

4.4)

where k; ; ; are the initial values of A;(k) in the interval j, and k; ¢, ; are the final
values of A;(k) in the interval j.
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It is known that k;; ; < k; < k; s ; for each interval j; consequently, 0 <
Ar(k) < 1, and X;(k) always increases. The variant parameters A;(k) are important
in the proposed interpolation algorithm because X;(k) are the approximations of
x1r (k) from the initial points to the final points for each interval j. The interpolation
algorithm for the approximation of nonlinear behaviors is as follows:

(1) Obtain the slope of x;, (k) denoted as m; (k) using the k; and x;,- (k) data of the
nonlinear behaviors using Eq. (4.1), and select the threshold parameters 4;.

(2) Obtain the elements’ number in the intervals N; with Eq. (4.2).

(3) The intervals are denoted by ;.

(4) For each interval j, obtain X; (k) with Eq. (4.4).

(5) For each interval j, obtain X; (k) as the approximations of x; (k) using Eq. (4.3).

Boundedness of the Interpolation Algorithm

In this section the variables of the interpolation algorithm will be guaranteed to be
bounded. Substituting (4.4) into (4.3) of the interpolation algorithm gives

fik) = (1 o by ) g0+ @)
ki g —kiij ki gj—kiij
Equation (4.5) can be rewritten as follows:
~ ki — ki
xi(k) = xp5,(k) + P — (x1, £, (k) — x1,i,j (k) . (4.6)
1.7 — kiij

Theorem 4.1 The outputs x; (k) of the interpolation algorithm (4.3)—(4.4), (4.6) are
guaranteed to be bounded by x; ; j (k) and by x; ¢, j (k) for all the intervals j.

Proof See [33] for the proof.

Remark 4.1 There are three differences between the interpolation algorithm intro-
duced by Rubio et al. [32] and that considered in this study. The first difference is
that in [32], the interval number is obtained by the changes in the slopes sign, while
in this study the interval number is determined by Eq. (4.2). The second difference
is that in [32], the interpolation algorithm is applied only to estimate the nonlinear
system output, while in this chapter the interpolation algorithm is used to estimate all
the nonlinear system variables. The third difference is that in [32], the interpolation
algorithm is considered alone, while in this research the interpolation algorithm is
combined with a stable neural network.
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2.2 Neural Network to Learn with Incomplete Data

The neural network is described in this subsection as the second part of the proposed
model. This subsection describes the algorithm proposed in this study for the
modeling of a nonlinear behavior with incomplete data.

Description of the Neural Network

In this study, incomplete data are considered; consequently, the neural network of
this chapter is used to learn the nonlinear behavior using only the variables estimated
with the interpolation model, not the real data variables, that is, the variables of
the interpolation algorithm 73 (k), Z2(k),. .. 2, (k), (k) are used instead of the real
variables with incomplete data z1(k), z2(k), .. ., 2, (k), y- (k).

The stable backpropagation algorithm is employed with a new time varying rate
to guarantee its uniformly stability for online identification and its identification
error converge to a small zone bounded by the uncertainty. The weights’ error
is bounded by the initial weights’ error, i.e., overfitting and local optimum are
eliminated in the mentioned algorithm [2, 3].

Stable backpropagation algorithm is as follows [2, 3]:

(1) Obtain the output of the nonlinear system y(k). Note that the nonlinear system
may have the structure represented by Eq. (4.7); the parameter n is selected
according to this nonlinear system.

y(k) = f1Z(K)], (4.7)

where Z(k) = [Z1(k) ..., Zi(k), ..., Zu(k)]" € R is the input vector, f is
an unknown nonlinear function, f € C*, and y(k), Z1(k), Z2(k),...,z, (k) are
the outputs of the interpolation algorithm.

(2) Select the following parameters: V(1) and W (1) as random numbers between
0 and 1, m as an integer number, and ¢ as a positive value smaller than or
equal to 1; obtain the output of the neural network NN (1) with Eq. (4.8). The
interpolation neural network that learns the real output with incomplete data of
the nonlinear behavior y, (k) is as follows:

NN(K) = VKD K) =Y Vi), (k)
j=1

O = [$1(K), ..., b (K), ., (0] (4.8)
¢jk) = tanh(ZWij (k)zi (k)),

i=1
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where Z1(k), Z2(k),...,Z,(k) are the input estimation with the interpolation
algorithm, and V;(k + 1) and W;;(k + 1) are the weights of the hidden and
output layers, respectively. m is the neuron number in the hidden layer. ¢; is
the hyperbolic tangent function.

(3) For each iteration k, obtain the output of the neural network NN (k) with
Eq. (4.8), also obtain the neural network error ey y (k) with Eq. (4.9), and update
the parameters V;(k + 1) and W;; (k + 1) with Eq. (4.10).

enn(k) = NN (k) — y(k) (4.9)

Vitk+1) = V;k) —alk)p;(k)enn (k)

(4.10)
Wijtk + 1) = Wi (k) — a(k)o;j(kenn (k),

where the new time varying rate o (k) is

(200]

2[5+ 630+ > or ) |,
j=1

j=li=1

alk) =

n
wherei =1,...,n, j=1,...,m, 05 (k) = Vj(k)sechZ(ZWU(k)zi(k))’z‘i(k)
i=1
€ R, ag is the constant learning speed, y(k) is the output estimation with
the interpolation algorithm, N N (k) is the output of the interpolation neural
network, and 71 (k), Z2(k),...,z,(k), (k) are the outputs of the interpolation
algorithm.

Remark 4.2 The hyperbolic tangent is used as the activation function in the
proposed neural network because it considers positive and negative values, being
it more complete than others as the sigmoid function which only considers positive
values.

Stability Analysis of the Neural Network

The following theorem guarantees that the interpolation neural network can approx-
imate a nonlinear behavior.

Theorem 4.2 ([34]) Suppose that the input universe of discourse U is a compact
set in R"*. Then, for any given real continuous function o (k) on U and arbitrary

€> 0, there exists an interpolation neural network N N (k) in the form (4.8) such
that

sup [INN (k) — (k)| <€ . 4.11)

xeU
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That is, the neural network NN (k) is an approximator of the output of the
interpolation algorithm y (k).

Proof See [34] for the proof.
The following theorem gives the stability of the neural network model.

Theorem 4.3 The interpolation neural network (4.8), (4.9), and (4.10) applied for
the identification of the nonlinear system (4.7) is uniformly stable, and the upper
bound of the average identification error ef, (k) satisfies

T

lim sup— Ze (k) <0l0/1, 4.12)
T—o00 k )

where e?,(k) = @e%k —1),0<ayp<1e€Rand0 < a(k) € R are defined
M
in (4.10), e(k) is defined in (4.9), u(k) = y(k) — ZV}W}}‘ is an uncertainty, [t is the
j=l1
N
upper bound of the uncertainty u(k), |nk)| < @, d);'f = tanh(ZW;';xi (k)), and

V;‘ and W;;- are unknown weights such that the uncertainty (1(k) is minimized.
Proof See [2, 3] for the proof.

The following theorem proves that the weights of the interpolation neural
network are bounded.

Theorem 4.4 When the average error e%, (k) is bigger than the uncertainty agii>,
the weights’ error is bounded by the initial weights’ error as follows:

ez(k—i-l)zozoﬁz

— Zv2(k + 1)+ ZZwiZ;(k +1) < sz(l) + ZZW,%-(D, (4.13)

j=li=l1 j=li=1

wherei =1,...,N,j=1,..., M, vj(k) and W,-j(k) are the weights’ error, Vj(l)
and Wij(l) are the initial weights’ error, e%, k+1) = @ez(k), Vitk+1), W;j(k+
1), 0 <ag <1 € R and 0 < a(k) € R are defined in (4.10), e(k) is defined
in (4.9), 1t is the upper bound of the uncertainty u(k), |uk)| < 1.

Proof See [2, 3] for the proof.

Remark 4.3 There are two conditions for applying this algorithm for nonlinear
systems: The first one is that the nonlinear system may have the form described
by (4.7), and the second one is that the uncertainty p (k) may be bounded.
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Remark 4.4 The value of the parameter i used for the stability of the algorithm
is unimportant, because this parameter is not used in the algorithm. The bound of
w(k) is needed to guarantee the stability of the algorithm, but it is not used in the
backpropagation algorithm (4.8), (4.9), (4.10).

Remark 4.5 There is one important difference between the stable neural network
of [2, 3] and the one considered in this study. It is that in [2, 3], the stable neural
network is alone used for the learning of short data, while, in this research, the
stable neural network is combined with the interpolation algorithm for the learning
of nonlinear systems with incomplete data.

Remark 4.6 The fuzzy slopes model of [35] has two differences with the inter-
polation neural network of this research: (1) The fuzzy slopes model uses a fuzzy
inference system, while the interpolation neural network employs the stable neural
network, obtaining an advantage in the proposed method because a stable algorithm
guarantees that all the variables will remain bounded, and (2) the fuzzy slopes
model only considers the output with incomplete data, while the interpolation neural
network considers all the variables with incomplete data, obtaining an advantage in
the introduced technique because it is a generalization of the previous one.

3 Experimental Results

The interpolation neural network is compared with the fuzzy slopes model of [35]
for the learning of the wind turbine behavior with incomplete data. The objective is
that the interpolation neural network output NN of (4.1)—(4.4), (4.8)—(4.10) must
be nearer with the real output of the wind turbine y, than the fuzzy slopes model
output.

Figure 4.4 shows the prototype of the manufactured wind turbine with a rotatory
tower which is considered for this study. This prototype has three blades with
a rotatory tower which does not use a gear box. Important research about wind
turbines is presented in [4, 7, 36]. Table 4.1 shows the parameters of the prototype.
The parameters m, and /., are obtained from the wind turbine blades. The
parameters R, L1, and k; are obtained from the tower motor. The parameters k»,
R>, R, and L are obtained from the wind turbine generator. The parameters R, p,
V., and B are obtained from [36].

1x 1073 is considered as the initial condition for the plant states x; = iz, x3 = 63,

x3 = 02, x4 = i1, x5 = 01, and xg = 01. uy is the force of the air received by the
three blades in km?rad/s?, u5 is the motor armature voltage in V, 6; is the angular
position of the tower motor in rad, 6, is the angular position of a wind turbine
blade in rad, i; is the motor armature current of the tower in A, i» is the generator
armature current in A, and y is the output voltage generated by the wind turbine in
V. An electronic circuit and a microcontroller board of Arduino are used to digitalize
and to send the obtained signals to a personal computer. Figure 4.5 shows the real
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Fig. 4.4 Prototype of the manufactured wind turbine

Table 4.1 Parameters of the prototype

Parameter Value Parameter Value

I 0.5m R, 3082

my 0.5kg ko 0.09 Wb

kpo 1 x 107 kgm?/s? k1 1 x 1075 kgm?/s?

by 1 x 10~ kgm?rad/s by 1 x 10~ kgm?rad/s

ko 0.45 Vs/rad k1 0.0045 Vs/rad

R, 6.9652 R 1882

Ly 6.031 x 10! H Ly 6.031 x 10"'H
lom Vo 5m/s

0 1.225kg/m? B 0.5rad

g 9.81 m/s?

electronic circuit to save the real data of the electric voltage, electric current, blades
position, and tower position.

The interpolation neural network learns the behavior considering real data of the
inputs and states of the wind turbine behavior, the eight inputs for the nonlinear
behavior are denoted as z1(k) = uy,, z2(k) = uor, z3(k) = x1r, z4(k) = x2,,
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Fig. 4.5 Electronic circuit to save the real data

z5(k) = x3r, z6(k) = xar, 77(k) = x5, and zg3(k) = x¢, and the target output is
denoted as y(k) = y. The root mean square error is used for the comparison results
[2,32,37]:

1

1< :
RMSE = (7 Z&(k)) , (4.14)

k=1

where T is the iterations number, and e(k) = epgs(k) is the error of the fuzzy slopes
model, or e(k) = enn (k) is the error of the interpolation neural network of (4.9).

3.1 Experiment 1

Experiment 1 considers the first movement of the wind turbine described as follows:
(1) From O s to 2 s, both inputs are fed; consequently, the tower moves far from the
maximum air intake, the generator current is decreased, and the wind turbine blades
stop moving, (2) from 2 s to 4 s, both inputs are not fed; consequently, current is not
generated, and both the tower and wind turbine blades do not move, (3) from 4 s to
6 s, both inputs are fed, but the air intake is positive and tower voltage is negative;
consequently, the tower returns to the maximum air intake, the generator current is
increased, and the wind turbine blades move, (4) from 6 s to 8 s, both inputs are not
fed; consequently, current is not generated, and the tower and wind turbine blades
do not move. The described behavior is repeated three times for the learning and
once for the testing; consequently, 8412 data are used for the training and 2804 data
are used for the testing.
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Fig. 4.6 Incomplete data for experiment 1

The fuzzy slopes model is used with parameters n = 8, m = 4, v;(1) = rand,
¢ij(1) = rand, 0;;(1) = 10rand, 2 = 1 x 10~7, and rand is a random number
between 0 and 1.

The interpolation neural network of (4.1)-(4.4), (4.8)—(4.10) is used with
parameters n = 8, m = 4, o9 = 0.5, V;(1) =rand, W;;(1) =rand, h = 1 x 1077,
rand is a random number between 0 and 1.

Figure 4.6 shows the incomplete data for the states of the wind turbine behavior.
Figure 4.7 shows the modeling of the wind turbine behavior using the fuzzy
slopes model and interpolation neural network for the training. Figure 4.8 shows
the modeling of the wind turbine behavior using the fuzzy slopes model and
interpolation neural network for the testing. Table 4.2 shows the root mean square
error for the fuzzy slopes model and interpolation neural network.

The iterations’ number is shown instead of the time in seconds to guarantee that
in this research incomplete data are employed. From Fig.4.7 and Table 4.2, it is
shown that the interpolation neural network is the best for the training of the wind
turbine behavior because the RMSE of the above algorithm is the smallest one.
The training could be used for online designs such as the control, prediction, or
fault detection. From Fig. 4.8 and Table 4.2, it is shown that the interpolation neural
network is the best for the testing of the wind turbine behavior because the RMSE of
the above algorithm is the smallest one. The testing could be used for offline designs
such as the pattern recognition or classification.
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Fig. 4.7 Modeling for the training of experiment 1

Fig. 4.8 Modeling for the testing of experiment 1
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Table 4.2 Comparison of the errors for experiment 1

RMSE for training RMSE for testing
Fuzzy Slopes Model 0.0065 0.0086
Interpolation Neural Network 0.0049 0.0071

3.2 Experiment 2

Experiment 2 considers the second movement of the wind turbine described as
follows: (1) From O s to 2 s, the input air is fed, and the tower input is not fed;
consequently, the tower remains in the maximum air intake, the generator current
is maximum, and the wind turbine blades have motion, (2) from 2 s to 4 s, the
air is not fed, and the tower input is fed; consequently, current is not generated,
the tower moves far from the maximum air intake, and the wind turbine blades do
not have motion, (3) from 4 s to 6 s, the air is fed, and the tower input is not fed;
consequently, the tower does not move, the generator current is minimum, and the
wind turbine blades almost do not move, (4) from 6 s to 8 s, the air is not fed, and the
tower input is fed with a negative voltage; consequently, current is not generated, the
tower returns to the maximum air intake, and the wind turbine blades do not have
motion. The described behavior is repeated three times for the learning and once for
the testing; consequently, 8412 data are used for the training and 2804 data are used
for the testing.

The fuzzy slopes model is used with parameters n = 8, m = 4, v;(1) = rand,
¢;j(1) = rand, 0;;(1) = 10rand, h = 1 x 1077, and rand is a random number
between 0 and 1.

The interpolation neural network of (4.1)—(4.4), (4.8)—(4.10) is used with
parameters n = 8, m =4, ap = 0.5, V;(1) =rand, W;;(1) =rand, h =5 x 1078,
and rand is a random number between 0 and 1.

Figure 4.9 shows the incomplete data for the states of the wind turbine behavior.
Figure 4.10 shows the modeling of the wind turbine behavior using the fuzzy
slopes model and interpolation neural network for the training. Figure 4.11 shows
the modeling of the wind turbine behavior using the fuzzy slopes model and
interpolation neural network for the testing. Table 4.3 shows the root mean square
error for the fuzzy slopes model and interpolation neural network.

The iterations’ number is shown instead of the time in seconds to guarantee that
in this research incomplete data are employed. From Fig.4.10 and Table 4.3, it is
shown that the interpolation neural network is the best for the training of the wind
turbine behavior because the RMSE of the above algorithm is the smallest one. The
training could be used for online designs such as the control, prediction, or fault
detection. From Fig.4.11 and Table 4.3, it is shown that the interpolation neural
network is the best for the testing of the wind turbine behavior because the RMSE
of the above algorithm is the smallest one. The testing could be used for offline
designs such as the pattern recognition or classification.
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Fig. 4.9 Incomplete data for experiment 2

Fig. 4.10 Modeling for the training of experiment 2
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Fig. 4.11 Modeling for the testing of experiment 2

Table 4.3 Comparison of the errors for experiment 2

RMSE for training RMSE for testing
Fuzzy Slopes Model 0.0065 0.0086
Interpolation Neural Network 0.0035 0.0077

Remark 4.7 Choosing an appropriate number of hidden neurons is important in
the behavior, because too many neurons result in a complex system that may be
unnecessary for the problem, and it can cause overfitting [2], whereas too few
neurons produce a less powerful system that may be insufficient to achieve the
objective. The number of hidden neurons is considered as a design parameter, and
it is determined based on the trial-and-error method.

4 Concluding Remarks

In this chapter, the interpolation neural network was introduced. The interpolation
algorithm was applied to build an estimation of the nonlinear behaviors when
only some points of the real behavior with incomplete data were available. After
the interpolation algorithm obtained the estimation of the nonlinear behaviors, the
neural network was employed to learn the output nonlinear behavior considering
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only the outputs of the interpolation model instead of the real data inputs and output.
The importance of the neural network is that while the interpolation algorithm only
estimates the nonlinear behaviors, the neural network learns the output behavior.
The proposed interpolation neural network was compared with a fuzzy slopes
model for the modeling of the wind turbine behavior, giving that the first algorithm
provides higher accuracy compared to the other. The proposed technique could be
used in control, prediction, pattern recognition, classification, or fault detection. As
a future research, the proposed strategy will be used for the control design.
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Chapter 5 )
Uniform Stable Radial Basis Function ekt
Neural Network for the Prediction in Two
Mechatronic Processes

1 Introduction

Neural networks are some kind of intelligent techniques which have been employed
for the prediction, pattern recognition, modeling, control, and classification in the
mechatronic processes.

There is some research about the intelligent techniques. In [1], a learning
approach to train uninorm-based hybrid neural networks is considered. Nature-
inspired algorithms are described in [2]. In [3], the utilization of nature-inspired
algorithms in sports is detailed. Intelligent algorithm to save human lives is
addressed in [4]. In [5], and a granular neural network framework is introduced. The
time varying coefficients in a model are approximated in [6]. In [7], a clustering
method is introduced. In [8], a hybrid active learning strategy is proposed. The
overlapping of radial basis functions inside a cerebellar model arithmetic computer
is studied in [9]. In [10], the game theoretical models are studied. A hybrid dynamic
classifier is addressed in [11]. In [12], each part of a pump system is modeled. A
radial basis function neural network of motion control is discussed in [13]. In [14],
radial basis function neural networks to perform interval forecasting of the future
wind speed are proposed.

From the above proposals, [6, 9, 12, 13], and [14] consider the radial basis
function neural networks, and it shows that this network is novel and actual research.
Therefore, new studies in this kind of neural network should be of great interest.

The backpropagation with variable learning steps, mentioned in [15-18], and
[19], is employed for the learning of a feedforward neural network. It is an efficient
algorithm; therefore, it would be good to modify this approach to be employed in a
radial basis function neural network.

In this chapter, the algorithm used for the learning of the one hidden layer neural
network is modified to be applied in a radial basis function neural network. The
problem is difficult because the one hidden layer neural network uses sigmoid
functions, while the radial basis function neural network uses Gaussian functions.
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The Gaussian function can be adapted better to the changing behavior of the systems
than the sigmoid function for two reasons: (1) The first has one parameter for the
width and two for the centers, while the second only uses the two parameters for
the centers, and (2) the first can learn positive and negative values, while the second
only can learn positive values. Therefore, the design of the addressed algorithm is
more complex, but it is more effective for the learning.

On the other hand, there is some research about the stable intelligent systems.
In [20], a new filter with a finite impulse response structure of models. In [21], a
passive and exponential filter of switched Hopfield neural networks is used. The
non-divergence of the original discrete-time algorithms is analyzed in [15]. In [22],
[23], and [24], stable neuro controllers of nonlinear systems are designed. The
stability of a Markov jump recurrent neural network and a hierarchical hybrid neural
network are analyzed in [25] and [26]. In [27], global exponential stability of the
complex-valued recurrent neural networks is investigated. Global stability of the
complex-valued neural networks with discrete-time delay is studied in [28]. In [29],
a class of inertial neural networks with delays is considered. A stable complex
delayed dynamic network is developed in [30]. In [31], a stable directed complex
dynamic network is suggested. The concept of impulsive time window is proposed
in [32].

From the aforementioned works, in [20, 21], the stability of continuous-time
neural networks is studied, in [15, 22, 23], the stability of the backpropagation
algorithm is introduced, in [25, 26], the stability of continuous-time neural networks
is described, and in [27-29], the stability of neural networks with delays is analyzed.
The aforementioned research shows that the stability analysis of algorithms for
neural networks is an actual issue. In this chapter, the uniform stability of the before
mentioned method is assured.

In this chapter the algorithm used for the learning of the one hidden layer neural
network is modified to be applied in a radial basis function neural network where its
stability is assured. To reach the stability and convergence of the error to a small
value, a time varying learning parameter is introduced. It assures an acceptable
behavior of the algorithm to some undesired situations such as the disturbances or
faults.

The rest of this chapter is organized as follows. In Sect.2, the radial basis
function neural network is introduced. In Sect. 3, the radial basis function neural
network is linearized. In Sect. 4, the addressed algorithm for the learning of a radial
basis function neural network is designed. In Sect. 5, the stability, convergence, and
boundedness of parameters for the aforementioned strategy are assured. In Sect. 6,
the focused method is summarized. In Sect. 7, the mentioned algorithm is compared
with the uniform stable neural network for the two processes. Section 8 describes
the conclusions and future research alternatives.
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2 Radial Basis Function Neural Network

Consider the following unknown discrete-time multiple input multiple output
mechatronic process:

yik) = fi[Xkl, (5.1

wherei =1,....,N,l=1,...,0, Xy = [x1(k) ..., xi(k), ..., xy()]T € RN*]
is the input vector, N is the input number, O is the output number, x; (k) € R and
yi(k) € R are the inputs and outputs of the plant, and f is an unknown and smooth
nonlinear function, f; € C*°.

The outputs of the radial basis function neural network with one hidden layer are
as follows:

M
D CRG)
~ _dik) _ j=1
)’I(k) =%k = M s
;a,(u,( ) 52)

ajujk)) =5,
N

wj(k) =Y 5ij(k) [xi (k) =G (k)]

i=1

wherei =1,...,N,j=1,...,M, I =1,...,0, x;(k) € R and y;(k) € R are
the inputs and outputs of the neural network, 7;;(k) € R, 5;;(k) € R, k) e R
are the weights of the output and hidden layers and centers of the neural network,
respectively, o j(u;(k)) € R is a nonlinear function, u;(k) € ¥ is the addition
function, M is the neuron number in the hidden layer, and O is the output number.
Figure 5.1 shows the architecture of the radial basis function neural network.

Remark 5.1 Mechatronic processes of the form (5.1) are general because they are
known as multiple input multiple output processes. Other general processes are the
delayed processes or the multiple inputs multiple states where the design methods
are similar.

3 Linearization of the Radial Basis Function Neural Network

The linearization of the radial basis function neural network is required for the
algorithm design and for the stability analysis.
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Fig. 5.1 Architecture of the neural network

According to the Stone-Weierstrass theorem, the unknown nonlinear function f
of (5.1) is approximated as

M
Zr_/l*aj*
=
(k) = %+ == M + ey,

o
~ (5.3)
@ = e,

N
i =Y siju[xi (k) = tin]

i=1

where €;r= y;(k) — i ¢ R are the modeling errors, ajx € R, rjie € N, 515 € N,
and #;, € N are the optimal parameters that can minimize the modeling errors €.
In the case of three independent variables, a function has a Taylor series as follows:

filwr1, w2, @3) = fi(wyo, w0, w30) + (@1 — w)o) %ﬁzw‘) (5.4)

(02 — ) LD 4 (03 — ) HR2) 4 g,
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where ¢;r € R is the remainder of the Taylor series. w1, w>, and w3 correspond to
Tii(k) € R, 555 (k) € R, and 1i(k) € R, w0, wy0, and w30 correspond to 1, € R,
Sijx € R, and t;, € R, define 7]‘1(]() = 7'\]'1(/() — Fjlx € x, :S?ij(k) = fv\,-j(k) —
sij« € N, and 1 (k) = 1;(k) — t;x € R; consequently, the Taylor series is applied to
linearize (5.2) as follows:

d(k) d](k)
di(k) _ dix [0) F163)
B = g +Zrﬂ(")ar1(k) +ZZ%<’<>as T
et (5.5)
+Zr,<k> T+ qy,
i=1
4 k) dy k)
where arfl”(‘;{) e X, asg(écli) € R, and azgél;c)) € W; please note that dj(k) =
M M

Z?ﬂ(k)a,-(u i) e R, gh) = Zaj(u j(k)) € R. As all the parameters are
j=1 j=1

scalars, the Taylor series can be utilized. Considering (5.2) and using the chain rule,
it gives

a4k (i (k
s® :Rj(k)zw

“2®)_ , 5.6
arji (k) g(k) G0
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where aj(uj(k)) =e and u j (k) are given in (5.2). Subsequently,

P dj (k)

s = S k)
ETG I Siji (5.7)
[V/(”](k))rjl(k)+yj(u/(k))yl(k)][tl (k)—x; (k)]
g(k)

where y; (u; (k) = 2uj(k)a; (u; (k) € R. And

dy (k)

P = Tak)

_ Y1/("()[1//(14 (k))rll(k)ﬂ’/(ll (k))yz(k)]
- g(k)

(5.8)

k) dy (k) dj (k)

9
Substituting 3rg“‘) of (5.6), ay"'(") of (5.7), and 5 g”‘) of (5.8) into (5.5), it gives

M N M
o =L+ D @R K + Y 5 (K)Siji k)
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N = (5.9)
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Define the output errors ¢; (k) € R as follows:
er(k) = yi(k) — yi(k), (5.10)

where y;(k) and y;(k) are described in (5.1) and (5.2), respectively. Substitut-
ing (5.2), (5.3), and (5.10) into (5.9) gives

M N M
er (k) =Y TR (k) + Y > 5 (k) S;j1(k)
=ty i=lj=1 (5.11)
+Y L) T (k) + k),

i=1

where /L](k) = GIf— E[f.

4 Design of the Addressed Algorithm

In this section, the addressed algorithm is designed for the learning of a radial basis
function neural network.

Theorem 5.1 The addressed algorithm that is the updating function of the radial
basis function neural network (5.2) for the learning of the mechatronic process (5.1)
is given as follows:

Tk +1) =7j(k) — n(k)R; (k)e (k),
5ij(k + 1) =T (k) — n(k)Siji (ke (k), (5.12)
Gk +1) =1 (k) — n(k) Ty (k)er (k),

where Rj(k), Siji(k), and T;(k) are given in (5.6), (5.7), and (5.8), respectively,
and e;(k) are the output errors of (5.10).

Proof See [33] for the proof.

Remark 5.2 The difference between the addressed algorithm and the well-known
backpropagation algorithm is that the first has a time varying learning speed,
while the second has constant learning speed. The difference between the focused
algorithm and the time varying learning speed approach is that the second is
commonly employed in a multilayer neural network, while the first is applied in
the radial basis function neural network. The radial basis function neural network is
more complex in the design than the multilayer neural network because the first has
more parameters than the second.

Remark 5.3 The conservatism issue of the radial basis function of this study is
mentioned in two parts as follows: (1) Since the radial basis function has more
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parameters than the multilayer, it has more computational cost because the first
requires more operations, and this difference is less strong than before because
now the computers make the operations very fast, and (2) some authors in the past
mentioned that the radial basis function required more neurons in the hidden layer
than the multilayer, but in this research, both neural networks use the same number
of neurons in the hidden layer with satisfactory results.

5 Stabilization of the Addressed Algorithm

The addressed algorithm is given in (5.12) with a time varying learning speed as
follows:

Ttk +1) =7j(k) — n(k)R; (ke (k),
5k + 1) =5 (k) — n(k)S;j1 (ke (k), (5.13)
%tk +1) =1(k) — nk)Tik)e (k),

where the new time varying learning speed 71 (k) is

n(k) = 10 ,

M N M N
A EEDNHOED W IACED WG
j=1 =

i=1j=1

wherei = 1,...,N,j =1,....M,l =1,...,0, Rjk) € R are described
in (5.6), S;j; (k) € R are described in (5.7), Tj; (k) € R are described in (5.8), ¢; (k)
are described in (5.10), 0 < g < 1 € R, consequently 0 < n(k) € R, and it
is assumed that the uncertainty is bounded, where 7z; is the upper bound of the
uncertainty p;(k), |wi(k)| < 1.

Remark 5.4 n(k) is chosen by the user as an average and bounded function such
that the stability of the algorithm (5.13) can be assured. This kind of function was
considered in [19], with the difference that the algorithm of this research considers
three different parameters in the denominator and the previous one only considered
two different parameters in the denominator.

The following theorem gives the stability of the addressed algorithm.

Theorem 5.2 The algorithm (5.2), (5.10), and (5.13) applied for the identification
of the mechatronic process (5.1) is uniformly stable, and the upper bound of the
average output errors elzp (k) satisfies

T

1
limsup— Y €2 (k) < agii?, (5.14)
T—>ooka2:£ Ip 1
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where elzp(k) = @e?(k —1),0<n <1eRand0 < nk) € R are described
in (5.13), e; (k) are described in (5.11), [1; are the upper bound of the uncertainties
pi(k), [ (k)] < 1.

Proof See [33] for the proof.

Remark 5.5 There are two requirements to apply this algorithm for the learning of
the behavior in mechatronic processes: the first is that the uncertainty u; (k) must

be bounded, and the second is that the mechatronic process must have the structure
explained by (5.1).

Remark 5.6 The bound of 1, (k) denoted as i; is not employed in the introduced
algorithm (5.2), (5.10), (5.13) because it is only employed to assure its stability.

The following theorem proves that the weights of the suggested algorithm are
bounded.
Theorem 5.3 When the average error elzp (k + 1) is bigger than the uncertainty

noﬁlz, the weights’ errors are bounded by the initial weights’ errors as follows:
ef, (k + 1) > nofe’
N

M
= (k) + SH) + ) T (k)
2 ;X;S (5.15)
N

S I ID» S Ur 2

j=1 j=1li=1 i=1

wherei = 1,...,N, j =1,....M, 1 =1,...,0, 7j(k), 5 k), and 1; (k) are
described in (5.4), ¥j; (1), 5;;(1), and 1:(1) are the initial weights’ errors, elzp (k +
D) = Intkye? (k), 7y (k+1), 5 (k+1), 5 (k+1),0 < ng < 1 € R, and 0 < n(k) € R
are described in (5.13), e;(k) are described in (5.10), w; are the upper bound of the
uncertainties u(k), | (k)| < ;.

Proof See [33] for the proof.

Remark 5.7 From Theorem 5.2 the average output error elzp (k + 1) of the intro-
duced approach is bounded, and from Theorem 5.3 the weights’ errors 7/2.[ k), E?/ k),
and ?iz(k) are bounded, i.e., the suggested method to train a radial basis function
neural network is uniformly stable in the presence of unmodeled dynamics, and the
overfitting is avoided. And the output errors converge to a small zone bounded by
the uncertainty ;.



7 Simulation Results 73
6 The Addressed Algorithm

The addressed algorithm is as follows:

(1) Obtain the outputs of the mechatronic process y;(k) with Eq. (5.1). Note that
the mechatronic process may have the structure represented by Eq. (5.1); the
parameters N and O are selected according to the input and output number of
this mechatronic process.

(2) Select the following parameters: ?j;(l), S (1), and % (1) as random numbers
between 0 and 1, M as an integer number, and 719 as a positive value smaller
than or equal to 1; obtain the outputs of the radial basis function neural network
(1) with Eq. (5.2).

(3) For each iteration k, obtain the outputs of the radial basis function neural
network y; (k) with Eq. (5.2), also obtain the output errors ¢; (k) with Eq. (5.10),
and update the parameters 7j;(k + 1), (k + 1), and 7; (k 4+ 1) with Eq. (5.13).

(4) Note that the behavior of the algorithm could be improved by changing the
values of ng or M.

Remark 5.8 The radial basis function neural network of this research has one
hidden layer. A radial basis function neural network with one hidden layer is enough
to approximate any nonlinear system.

7 Simulation Results

In this section, two examples are considered. In the examples, the addressed
algorithm denoted as USRBFNN is applied for the prediction of the warehouse
process and for the prediction of the brain behavior. In all cases, the focused method
is compared with the uniform stable neural network given by Rubio et al. [19]
denoted as USNN. The root mean square error (RMSE) is used for the comparison
of algorithms , and it is given as follows:

1 T O ) %
RMSE = <?ZZL’1 (k)) , (5.16)

k=11=1

where ¢; (k) are the output errors of (5.10), T is the iterations number, and O is the
outputs number.
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7.1 Example 1

In this example, the introduced algorithm is applied for the prediction of the
distribution of loads that the warehouse receives from a vehicle and places in the
deposits each hour. There are three kinds of objects received by the warehouse; these
three kinds of objects are denoted as X, Y, and Z. The three kinds of objects are
received in the warehouse each hour; the number of objects of kind X received each
hour change from O to 5, the number of objects of kind Y received each hour change
from O to 5, and the number of objects of kind Z received each hour change from 0
to 10. The data from 1800 iterations are used for the training, and the data for at least
200 iterations are used for the testing. The prediction is obtained for 200 iterations
beforehand. One radial basis function neural network is used for the training, and
the same network is used for the testing. x;(k) = Y (k) and x2(k) = Z(k) are the
inputs, and y; (k) = X (k + 200) is the output for the learning of the first process.
x3(k) = X (k) and x4(k) = Z(k) are the inputs, and y; (k) = Y (k4200) is the output
for the learning of the second process. Finally, xs5(k) = X (k) and x¢(k) = Y (k) are
the inputs, and y3(k) = Z(k+200) is the output for the learning of the third process.

The USRBFNN is given as (5.2), (5.10), and (5.13) with parameters N = 6,
0 =3,M=10,n = 1,and7;;(1),5; (1), and 7; (1) are random numbers between
0 and 1. The USNN is given by Rubio et al. [19] with parameters N = 6, O = 3,
M =10, 9 = 1, and V1 and W;;; are random numbers between 0 and 1.

The comparison results for the average output errors are shown in Fig. 5.2 where
in USRBFNN the final average error is 0.0035 and in USNN of [19] the final average
error is 0.0088. Figure 5.3 shows the training results and Fig. 5.4 shows the testing
results. Table 5.1 shows the training and testing RMSE results using (5.16).

From Figs.5.2, 5.3, and 5.4, it is shown that the USRBFNN is better than the
USNN because the signal of the first follows better the signal of the plant than the
signal of the second. From Table 5.1, it can be shown that the USRBFNN obtained
better accuracy when compared with the USNN because the RMSE is smaller for
the first. Thus, the USRBFNN is preferable for the warehouse process.

7.2 Example 2

Here a real dataset of brain signals consisting of 1750 pairs (x(k), y(k)) of 35 s
are used for the training and 250 pairs (x(k), y(k)) for 5 s are used for the testing.
The alpha signal is obtained in this study because it has more probabilities to be
found. The acquisition system is applied with a 28-year-old healthy man when his
eyes are closed. There are three different signals received by the brain signals; these
three kinds of signals are denoted as X, Y, and Z. The prediction is obtained for
250 iterations in advance. One radial basis function neural network is used for the
training, and the same network is used for the testing. x1 (k) = X (k), xa(k) = Y (k),
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Fig. 5.2 Average learning errors for Example 1

Fig. 5.3 Training results for Example 1

75



76 5 Uniform Stable Radial Basis Function Neural Network for the Prediction in Two. ..

Fig. 5.4 Testing results for Example 1

Table 5.1 Results for

Strategies Training RMSE | Testing RMSE
Example 1

USRBEFNN | 0.1238 0.0255
USNN 0.2005 0.0604

and x3(k) = Z(k) are the inputs and y; (k) = X (k 4+ 250), y»(k) = Y (k+250), and
y3(k) = Z(k + 250) are the outputs for the training of the brain signals process.

The USRBFNN is given as (5.2), (5.10), and (5.13) with parameters N = 6,
0 =3,M=10,n = 1,and7j;(1),5; (1), and 7; (1) are random numbers between
0 and 1. The USNN is given by Rubio et al. [19] with parameters N = 6, O = 3,
M =10, g = 0.5, and V;; and W;;; are random numbers between 0 and 1.

The comparison results for the average output errors are shown in Fig. 5.5 where
in USRBFNN the final average error is 0.0016 and in USNN of [19] the final average
error is 0.0370. Figure 5.6 shows the training results, and Fig. 5.7 shows the testing
results. Table 5.2 shows the training and testing RMSE results using (5.16).

From Figs.5.5, 5.6, and 5.7, it can be shown that the USRBFNN is better than
the USNN because the signal of the first follows better the signal of the plant than
the signal of the second. From Table 5.2, it is shown that the USRBFNN obtained
better accuracy when compared with the USNN because the RMSEs are smaller for
the first. Thus, the USRBFNN is preferable for the crude oil blending process.
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Fig. 5.5 Average learning errors for Example 2

8 Concluding Remarks

In this chapter, a novel algorithm is designed for the learning of a radial basis
function neural network, and the stability, convergence, and boundedness of param-
eters for the addressed algorithm are assured. From the results, it was shown that
the focused strategy achieves better accuracy when compared with the uniform
stable neural network for the prediction of two mechatronic processes. The studied
method could be used to train a neural network as was applied in this chapter, or
it could be used as the parameters updating of an evolving intelligent system. As
a future research, the mentioned method will be used for the control design or for
the learning of evolving intelligent systems, or the properties of other interesting
algorithms will be analyzed.
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Fig. 5.6 Training results for Example 2

Fig. 5.7 Testing results for Example 2
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Chapter 6 ®
USNFIS: Uniform Stable Neuro Fuzzy iy
Inference System

1 Introduction

The neuro fuzzy intelligent systems are the combination of the neural networks and
the fuzzy systems which are applied for the learning of nonlinear behaviors. Some
interesting investigations are detailed as follows. In [1, 2], new clustering algorithms
utilized in the fault detection are proposed, in [3, 4], novel algorithms employed in
the classification are described, and in [5, 6], metacognitive learning algorithms are
introduced. Few researches have been carried out in the past to introduce this kind of
algorithms to be utilized for the big data learning. Therefore, new efforts to increase
the knowledge in this interesting issue would be of great interest.

Big data learning is the learning ability to solve via intelligent systems the
problems where huge amounts of data are generated and updated during a short
time; in this kind of systems the processing and analysis of data are important
challenges. Some interesting works of this topic are described as follows. In [7—
10], the classification of big data is focused, in [11-13], the modeling of big data
is analyzed, and in [14, 15], the pattern recognition of big data is studied. In this
chapter, there are two kinds of big data issues described as follows: (1) the systems
with many inputs and outputs such as the considered in [7-9, 12, 14, 15] or (2)
the systems with high changing data during a short time such as the considered in
[10, 11, 13]; it is because in both cases huge amounts of data are generated and
updated during a short time. This study is focused in case (2). On the other hand, in
the aforementioned research, the stability of the algorithms is not analyzed, and the
stability of the algorithms should be assured to avoid the damage of the devices due
to the processing of big quantity of data.

The stable intelligent systems are the algorithms where the inputs, outputs,
and parameters remain bounded through the time and where the overfitting is
avoided. An algorithm with overfit has many parameters relative to the number
of data; therefore, it has poor learning performance because it overreacts to minor
fluctuations in the data. There is some research about the stable intelligent systems.
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In [16-18], the stability of continuous-time fuzzy neural networks is studied, in [19—
22] the stability of the gradient algorithm is introduced, in [23-25], the stability of
continuous-time neural networks is described, in [26, 27], the stability of discrete-
time fuzzy systems is analyzed, in [28-30], the stability of continuous-time control
systems is assured, and in [31, 32], the stability of controlled robotic systems is
guaranteed. The stability should be assured in big data learning to guarantee a
satisfactory behavior through the time for this kind of systems.

Most of the stable algorithms use a time varying learning speed such as the
mentioned in [19, 21], and [33] for the learning of a multilayer neural network,
or the mentioned in [20] and [22] for the learning of a fuzzy inference system. It is
an efficient algorithm; therefore, it would be interesting to modify this algorithm to
be applied in a neuro fuzzy system.

In this chapter, a neuro fuzzy inference system with a structure different with
the multilayer neural network and the fuzzy inference system is suggested. Three
differences between the introduced algorithm and the multilayer neural network and
fuzzy inference system are described in function of the compactness, effectiveness,
and stability as follows.

1. The suggested algorithm is different with the fuzzy inference system because the
first only uses the numerator of the average defuzzifier while the second utilizes
the average defuzzifier. The numerator of the average defuzzifier is better for the
learning in big data than the average defuzzifier because the first is more compact
than the second. Consequently, the suggested algorithm is compact.

2. The introduced algorithm is different with the multilayer neural network because
the first employs Gaussian functions while the second utilizes sigmoid functions.
The Gaussian function can be adapted better to the changing behavior of the
systems than the sigmoid function because the first has three kinds of parameters
while the second only uses two kinds of parameters and because the first
considers positive and negative values, while the second only considers positive
values. Therefore, the proposed algorithm is effective.

3. The proposed algorithm is different with both the multilayer neural network and
fuzzy inference system because the first uses a time varying learning speed while
the other uses a constant learning speed. The time varying learning speed is better
for the learning in big data than the constant learning speed because the first
reaches the stability and the boundedness of the parameters while the other does
not. Thus, the introduced algorithm is stable.

The chapter is organized as follows. In Sect. 2, the neuro fuzzy inference system
is presented. In Sect. 3, the closed loop dynamics of the neuro fuzzy inference
system and the nonlinear system are obtained. In Sect. 4, the introduced algorithm
for the big data learning of the neuro fuzzy inference system is designed. In Sect. 5,
the stability, convergence, and boundedness of parameters for the aforementioned
technique are guaranteed. In Sect. 6, the suggested strategy is summarized. In
Sect. 7, the recommended algorithm is compared with other two algorithms for
two processes. Section 8 presents the conclusions and suggests the future research
directions.
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2 Neuro Fuzzy Inference System

In this section, first, the big data nonlinear systems studied in this chapter are
described, and second, the neuro fuzzy inference system for the big data learning
of the nonlinear system behavior is introduced.

Consider the big data unknown discrete-time multiple input multiple output
nonlinear system as follows:

yix(k) = fi[Zi], (6.1)

wherei =1,....,N,[=1,...,0,Z¢ = [21(k) ..., zi(k), ..., zn(K)]" € RN*1
is the input vector, N is the input number, O is the output number, z; (k) € R and
vix(k) € R are the inputs and outputs of the plant, and f is an unknown and smooth
nonlinear function, f; € C*.

The neuro fuzzy inference system with one hidden layer for the big data learning
of the nonlinear system (6.1) is described as follows:

M
k) = dyk) =Y ajik)eju;(k)),
j=1
aj(ujk)) =5, 6.2)
N

wj(k) =Y bij (k) [zi (k) — c; (k)]

i=1

wherei =1,...,N,j=1,...,M,l =1,...,0, zi(k) € Rand y;(k) € R are
the inputs and outputs of the neuro fuzzy inference system, aj; (k) € ¥, b;;j (k) €
R, ci(k) € R are the parameters of the output layer, hidden layer, and centers,
a;(uj(k)) € R is a nonlinear function, u;(k) € RN is the addition function, M is
the number of neurons in the hidden layer, and O is the output number. Figure 6.1
shows the architecture of the neuro fuzzy inference system where the input layer,
hidden layer, and output layer are observed.

Remark 6.1 In [11, 34-36], and [37], the interesting radial basis function neural
networks are considered. A radial basis function neural network cannot be seen as a
multilayer neural network because the first utilizes the Gaussian functions while the
second employs the sigmoid functions. From [38, 39], a radial basis function neural
network can be seen as a fuzzy inference system because both use the Gaussian
functions.

Remark 6.2 The fuzzy inference system is given as follows:

M
> ajilkye(u(k))
j=1

[cleyi(k) = di(k) = (6.3)

M s

> orj(uj (k)

j=1
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Fig. 6.1 Architecture of the neuro fuzzy inference system

k) = 9,

N
uj(k) = Zbij(k) [zi (k) — ¢i(K)],

i=1

And the numerator of the average defuzzifier described by the first equation of (6.2)
is more compact than the average defuzzifier described by the first equation of (6.3)
because the first utilizes a less number of operations than the second.

Remark 6.3 The multilayer neural network is given as follows:

M
k) = ditk) =Y aji(k)e;(u; (k).
j=1
aj(ujk)) =sig [uj(k)] , (6.4)
N

wj(k) ="y bij(k)zi (k);

i=1

the Gaussian function explained by the second and third equations of (6.2) is more
effective than the sigmoid function explained by the second and third equations
of (6.4) because the first utilizes two kinds of parameters while the second employs
only one kind of parameter.
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3 Closed Loop Dynamics of the Neuro Fuzzy Inference
System

In this section, the closed loop dynamics of the neuro fuzzy system applied for the
big data learning of the nonlinear system behavior are obtained via the linearization
technique. The closed loop dynamics of the neuro fuzzy inference system are
required for the algorithm design which described in the next section and for the
stability analysis which is explained two sections later.

According to the Stone-Weierstrass theorem [13, 21], the unknown nonlinear
function f of (6.1) is approximated as follows:

M
Vix(k) = di+ €= Zajl*aj*‘f‘ €ir,
Jj= 1
@ = e, (6.5)
N

Ujx = Zbij* [zi (k) — cix],
i=1

where €;r= y«(k) — djx € 3 is the modeling error, o, € RN, ajix € N, bijx € R,
and c;; € R are the optimal parameters that can minimize the modeling error €.
In the case of three independent variables, a function has a Taylor series as follows:

filwr, w2, w3) = fi(wo, Wy, w30) + (a)1 — a)lo) %ﬁzw%) (6.6)
(02— o) PR (1 — ) 22 1y |

where & € R is the remainder of the Taylor series. w1, wz, and w3 correspond to
ajl(k) e R, bij(k) € RN, and ¢; (k) € R, w0, w0, and w30 ccorrespond to ajl* e R,

bijx € R, and ¢;; € R, define @i (k) = ajj(k) —aji € R, b,](k) =b;j(k) — bjjx €
R, and ¢; (k) = c; (k) — cix € R; therefore, the Taylor series is applied to obtain the
closed loop dynamics of the neuro fuzzy inference system (6.2) and the nonlinear
system behavior (6.1) as follows:

M
di(k) = dis + ) 51 (0) GGy + Zzbu (b B8
j=1 i=1j=1 ©.7)
N .

+Y Gk G + &y,

k k dy (k
where ;jjz((k)) e X, i;)li[j((k)) € %, and gclEk; € R, please note that dj(k) =

M
Za ji(k)aj(uj(k)) € RN. Since all the parameters are scalars, the Taylor series is

j=1
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fully applicable. Considering (6.2) and using the chain rule, it gives

O _ pyw = a0 (6.8)
— F: (k) = a:(u: , )
9a1(k) J juj
where aj (u (k) = eiui(k) and u (k) are given in (6.2). Utilizing the same process

gives

odi(k) _ ..
W = thl(k)

(6.9)
=yjujk))aj k) [ci(k) — zi(k)],

where y;(uj(k)) = 2uj(k)oj(uj(k)) € R. Again employing the same process gives

adi(k) _ gy
ch(k) = Hll(k)

(6.10)
= b;j(k)y;(u;jk))aj(k),

Substituting G of (6.8), G of (6.9), and 5 of (6.10) into (6.7), it gives

M N M
di(k) = di + Y @) Fi(k) + Y bij(k)Giji(k)

=1 i=1j=1
=y J (6.11)
+Y G Hi(k) + &f.

i=1

Define the learning error y; (k) € R as follows:

yik) = yi(k) = yix (k). (6.12)

where y;.(k) and y;(k) are defined in (6.1) and (6.2), respectively. Substitut-
ing (6.2), (6.5), and (6.12) into (6.11) gives closed loop dynamics:

M N M
ik =Y a0 Fik)+ Y > bij(k)Giji (k)
= i=lj=l1 (6.13)
+> G (k) Hy (k) + k),
i=1

where (k) = & r— €.
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4 Design of the Recommended Algorithm

In this section, the recommended algorithm utilized in a neuro fuzzy inference
system is designed for the big data learning of the nonlinear system behavior. In
this part, the adapting law of the proposed algorithm is obtained.

Theorem 6.1 The introduced algorithm that is the updating function of the neuro
fuzzy inference system (6.2) for the big data learning of the nonlinear system (6.1)
is given as follows:

ajitk +1) = aji(k) — (k) F;(k)yi k),
bij(k + 1) = bij (k) — n(k)Giji(k)yi (k), (6.14)
ci(k + 1) = ¢;(k) — n(k) Hj1 (k) (k),

where Fj(k), Giji(k), and H;;(k) are given in (6.8), (6.9), and (6.10), respectively,
and (k) is the learning error of (6.12).

Proof See [40] for the proof.

5 Stability Analysis of the Introduced Algorithm

In this section, the recommended stable algorithm utilized in a neuro fuzzy inference
system is designed for the big data learning of the nonlinear system behavior. In
this part, the time varying learning speed used in the adapting law of the proposed
algorithm is suggested; furthermore, the stability and convergence of the introduced
algorithm are assured.

The introduced algorithm is given in (6.14) with a time varying learning speed
as follows:

ajitk +1) = aji(k) — nk) F;(k)yi k),
bij(k + 1) = bij (k) — n(k)Giji(k)yi (k), (6.15)
ci(k + 1) = c¢j(k) — n(k)Hiy (k) (k).

where the new time varying learning speed 7 (k) is as follows:

n(k) = 10 ,

M N M N
2|1+ ZFJZ(k) + ZZG%I(M + ZHizl(k)
o i=1

i=1j=1

wherei =1,...,N,j=1,.... M, =1,...,0, Fjk) € ¥ is defined in (6.8),
Giji(k) € N is defined in (6.9), H;;(k) € R is defined in (6.10), Vi (k) is defined
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in (6.12),0 < no < 1 € R, consequently 0 < n(k) € R, ; is its upper bound of the
uncertainty p;(k), | (k)| < ;.

Remark 6.4 n(k) is the one main part of the recommended algorithm, and it is
selected by the designer as an average and bounded function such as the stability of
the algorithm (6.15) can be assured.

The following theorem gives the stability of the suggested algorithm.

Theorem 6.2 The algorithm (6.2), (6.12), and (6.15) applied for the big data
learning of the nonlinear system (6.1) is uniformly stable, and the upper bound
of the average learning error S}lap(k) satisfies

T

lim sup— Zylp(k) < aofi?, (6.16)
T—o00 k >

where 77 Yip (k) = ntk— 1)”Jz(k 1),0<ny <1eRand0 < n(k) € R are defined
in (6. ]5) v (k) is deﬁned in (6.12), 1, is the upper bound of the uncertainty ju;(k),

Il ()] < .-

Proof See [40] for the proof.

Remark 6.5 There are two requirements to apply this algorithm for the big data
learning of the nonlinear system behavior: the first is that the uncertainty w;(k)

should be bounded, and the second is that the nonlinear system should have the
structure described by Eq. (6.1).

Remark 6.6 The bound of p;(k) denoted as 1; is not utilized in the suggested
algorithm (6.2), (6.12), (6.15) because it is only considered to assure its stability.

The following theorem proves that the parameters of the introduced algorithm
are bounded.
Theorem 6.3 When the average learning error ilQp(k + 1) is bigger than the

uncertainty noﬁlz, the parameters error is bounded by the initial parameters error
as follows:

i?p(k+ 1) > noi”

N

ﬁz l(k)+ZZb2(k) Z
j ll 1 (617)

N
20

Z~21(1) +ZZb3,(1>

j=1li=1

where i = 1, ,N, j=1, .M, 1 =1, , 0, ajz(k) b,J(k) and c,(k) are
defined in (6. 6) ajl(l) blj (1), and c; (1) are the mmal parameters errors, ylp (k +
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) = 3n()FFKk), ajitk + 1), bijk + 1), citk +1),0 < o < 1 € R, and 0 <
n(k) € R are defined in (6.15), y;(k) is defined in (6.12), 11, is the upper bound of
the uncertainty w;(k), (k)| < ;.

Proof See [40] for the proof.

Remark 6.7 From Theorem 6.2 the average learning error }?p(k + 1) of the
suggested method is bounded, and from Theorem 6.3 the parameters errors 5]21 k),

l?lzj (k), and 'E?(k) are bounded, i.e., the introduced technique for the learning of
a neuro fuzzy inference system is uniformly stable in the presence of unmodeled
dynamics, and the overfitting is avoided. Furthermore, the learning error converges
to a small zone bounded by the unmodeled dynamics ;.

6 The Suggested Algorithm

In this section, the steps of the application for suggested algorithm are explained.

(1) Obtain the outputs of the nonlinear system yj, (k) with Eq.(6.1). Note that
the nonlinear system may have the structure represented by Eq.(6.1); the
parameters N and O are selected according to the input and output number
of this nonlinear system.

(2) Select the following parameters: aj;(1), b;;j (1), and ¢;(1) as random numbers
between 0 and 1, M as an integer number, and 7¢ as a positive value smaller
than or equal to 1; obtain the outputs of the neuro fuzzy inference system y;(1)
with Eq. (6.2).

(3) For each iteration k, obtain the outputs of the neuro fuzzy inference system
yi (k) with Eq.(6.2), also obtain the learning error y;(k) with Eq. (6.12), and
update the parameters a;(k + 1), b;j(k + 1), and ¢; (k + 1) with Eq. (6.15).

(4) Note that the behavior of the algorithm could be improved by selecting other
values for M or 7.

Remark 6.8 The focused neuro fuzzy inference system has one hidden layer. A
neuro fuzzy inference system with one hidden layer is sufficient to approximate any
nonlinear system.

7 Results

In this section, two examples are considered. In the examples, the suggested
algorithm is applied for the big data learning of the crude oil blending process and
the beetle population process. In all cases, the recommended algorithm denoted as
USNEFIS is compared with the fuzzy inference system of [22] denoted as FIS and
with the gradient algorithm of [21] denoted as G. It is important to note that the
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three mentioned algorithms are stable with the difference that the G is a multilayer
neural network which utilizes sigmoid functions, the FIS is a fuzzy inference system
which employs the average defuzzifier, while the USNFIS is a uniform stable fuzzy
inference system which considers Gaussian functions and the numerator of the
average defuzzifier. The root mean square error (RMSE) is used for the algorithms
comparison, and it is given as follows:

(| .o 2
~
RMSE = (; E E vi (k)) , (6.18)

k=11=1

where y;(k) is the learning error of (6.12), T is the iteration number, and O is the
output number.

7.1 Crude Oil Blending Process

In this example, the studied algorithm is applied for the modeling of the crude oil
blending process [13]. One neuro fuzzy inference system is utilized for the training,
and the same system is utilized for the testing. The crude oil blending process has
six inputs and three outputs which are high changing data during a short time. The
inputs are 71 (k) = L3, zo(k) = Puerto Ceiba, and the output is yi,(k) = Q, for
the first blending process, the inputs are z3(k) = Qp, z4(k) = Maya, and the output
is y2«(k) = Q. for the second blending process, and the inputs are z5(k) = Q,
z6(k) = El Golpe, and the output is y3.(k) = I,, = International for the third
blending process. In all the cases the ° API is considered. The data of 7875 iterations
of operation are used for the training, and the data of the least 525 iterations are used
for the testing.

G is given by Rubio et al. [21] with parameters N =6, 0 =3, M = 10, ¢ = 1,
and V;; and W;;; are random numbers between 0 and 1.

FIS is given by Rubio [22] with parameters N = 6, O = 3, M = 10, no = 1,
and aj; (1), b;; (1), and ¢; (1) are random numbers between 0 and 1.

USNFIS is given as (6.2), (6.12), and (6.15) with parameters N = 6, O = 3,
M =10,n0 =1, aj;(1), b;;(1), and ¢; (1) are random numbers between 0 and 1.

Figure 6.2 shows the comparison results for the average learning error where in
USNFIS the final average error is 7.6086 x 10™, in FIS of [22] the final average
error is 0.0020, and in G of [21] the final average error is 0.0016. Figure 6.3
shows the training results, and Fig. 6.4 shows the testing results. Table 6.1 shows
the training RMSE results, and Table 6.2 shows the testing RMSE results for many
intermediate iterations termed with th via Eq. (6.18).

From Figs. 6.2, 6.3, and 6.4, it is observed that USNFIS is better than both the
G and FIS because the signal of the first follows better the signal of the plant
than the signal of the other. From Tables 6.1 and 6.2, it can be observed that the
USNFIS obtained better accuracy when it is compared with both G and FIS because
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Fig. 6.2 Average learning errors for the oil blending process

the RMSE is smaller for the first. Thus, the USNFIS is preferable for the big data
learning of the oil blending process.

7.2 Beetle Population Process

In this example, the introduced algorithm is applied for the modeling on the
flour beetle population [41]. The beetle population process has six inputs and
three outputs which are high changing data during a short time. The model of
experimental population studies of a model of flour beetle population dynamics
describes an age-structured population:

L(k+1) =b,A(k)e ccat®)cal®),
P(k+1) =[1 - w]Lk), (6.19)
Alk+1) = P(k)e=re A0 4 [1 — pa] Ak),
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Fig. 6.3 Training results for the oil blending process

where:

b, = Larvae recruits per adult = 11.98 numbers

cea = Susceptibility of eggs to cannibalism by adults = 0.011 unitless

cel = Susceptibility of eggs to cannibalism by larvae = 0.013 unitless

¢pa = Susceptibility of pupae to cannibalism by adults = 0.017 unitless

w; = Fraction of larvae dying (not cannibalism) = 0.513 unitless

g = Fraction of adults dying = 0.96 unitless

L (k) are the Larvae which starts with 250 numbers, P (k) are the Pupae which
starts with 5 numbers, and A (k) are the Adults which starts with 100 numbers. The
data of 7800 iterations of operation are used for the training, and the data of the
least 200 iterations are used for the testing. One neuro fuzzy inference system is
used for the training, and the same system is used for the testing. z1 (k) = P (k) and
z2(k) = A(k) are the inputs, and y1.(k) = L(k + 1) is the output for the training
of the first population process. z3(k) = L(k) and z4(k) = A(k) are the inputs, and
y2.(k) = P(k + 1) is the output for the training of the second population process.
Finally, z5(k) = L(k) and z¢(k) = P (k) are the inputs, and y3.(k) = Ak + 1) is
the output for the training of the third population process.
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Fig. 6.4 Testing results for the oil blending process

Table 6.1 RMSE training results for the oil blending process

Techniques | 1000th
G 0.1588
FIS 0.1624

USNFIS 0.1473

Table 6.2 RMSE testing
results for the oil blending
process

2000th
0.1473
0.1580
0.1183

3000th
0.1419
0.1560
0.1037

4000th
0.1409
0.1547
0.0946

5000th
0.1404
0.1540
0.0882

Techniques
G

FIS
USNFIS

6000th
0.1399
0.1534
0.0833

8075th
0.0353
0.0375
0.0122

7000th
0.1389
0.1530
0.0794

8275th
0.0311
0.0331
0.0107

93

7875th
0.1389
0.1528
0.0766

8400th
0.0228
0.0240
0.0077

G is given by Rubio et al. [21] with parameters N =6, 0 =3, M = 10, ¢ = 1,
and V;; and W;;; are random numbers between 0 and 1.
FIS is given by Rubio [22] with parameters N = 6, O = 3, M = 10, no = 1,

and aj; (1), b;;(1), and ¢; (1) are random numbers between 0 and 1.

USNFIS is given as (6.2), (6.12), and (6.15) with parameters N = 6, O = 3,
M = 10, no = 1, and aj;(1), b;;(1), and ¢;(1) are random numbers between 0

and 1.
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Fig. 6.5 Average learning errors for the beetle population process

Figure 6.5 shows the comparison results of the average learning error where in
USNFIS the final average error is 8.5516 x 10~*, in FIS of [22] the final average
error is 0.0011, and in G of [21] the final average error is 0.0382. Figure 6.6
shows the training results, and Fig. 6.7 shows the testing results. Table 6.3 shows
the training RMSE results, and Table 6.4 shows the testing RMSE results for many
intermediate iterations termed with th via Eq. (6.18).

From Figs. 6.5, 6.6, and 6.7, it can be observed that the USNFIS is better than
both G and FIS because the signal of the first follows better the signal of the plant
than the signal of the other. From Tables 6.3 and 6.4, it is observed that the USNFIS
achieves better accuracy when it is compared with both G and FIS because the
RMSE is smaller for the first. Thus, the USNFIS is preferable for the big data
learning of the beetle population process.
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Fig. 6.6 Training results for the beetle population process

8 Concluding Remarks

In this chapter, a novel algorithm is designed for the big data learning of a
neuro fuzzy inference system, and the stability, convergence, and boundedness of
parameters for the studied technique are guaranteed. From the results, it is shown
that the introduced approach achieves better accuracy for the big data learning of
nonlinear system behaviors when it is compared with both the gradient and fuzzy
inference system methods. The suggested technique could be used to train a neuro
fuzzy inference system such as it is applied in this chapter, or it could be used as
the parameters updating of an evolving intelligent system. As a future research, the
focused method will be applied in the control or in the evolving intelligent systems,
or other new algorithms will be designed.
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Fig. 6.7 Training results for the beetle population process

Table 6.3 RMSE training results for the beetle population process

Techniques | 1000th | 2000th | 3000th | 4000th |5000th | 6000th |7000th | 7800th
G 0.4267 |0.4263 |0.4257 |0.4254 0.4252 |0.4250 |0.4248 |0.4247
FIS 0.3092 |0.2291 |0.1967 |0.1788 |0.1652 |0.1536 |0.1437 |0.1369
USNFIS 0.1841 |0.1321 |0.1089 |0.0951 |0.0856 |0.0786 |0.0732 |0.0696

Table 6.4 RMSE testing Techniques | 7900th | 8000th
results for the beetle G 0.0644 | 0.0460
population process : :
FIS 0.0066 |0.0047
USNFIS 0.0027 |0.0019
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Chapter 7 ®
SOFMLS: Online Self-organizing Fuzzy iy
Modified Least Square Network

1 Introduction

Both neural networks and fuzzy logic are universal estimators, which can approx-
imate any nonlinear function to any prescribed accuracy, provided that sufficient
hidden neurons or fuzzy rules are available. Recent results show that the fusion
procedure of these two different technologies seems to be very effective for
nonlinear system identification [1]. In the last few years, the application of fuzzy
neural networks for nonlinear system identification has been a very active area [2—
4]. Structure and parameters learning are involved in the identification of a system
with fuzzy neural networks.

The system identification can be classified into two groups: (1) offline identifica-
tion [5—10] and (2) online identification [11-21].

In offline identification, the update of the parameters and the structure take place
only after the whole training dataset has been presented, i.e., only after each epoch.
In this kind of identification, the structure learning is used to generate the fuzzy
rules by trial-and-error approaches, like the unbiasedness criterion [8]. Several
approaches generate fuzzy rules from numerical data. One of the most common
methods for structure initialization is the uniform partitioning of each input variable
into fuzzy sets, resulting in a fuzzy grid. This approach is followed in ANFIS [6].
In an earlier study [5], the Takagi-Sugeno model was used for designing several
neuro fuzzy identifiers. This approach consists of two learning phases: (1) structure
learning, which involves finding the most important subset of variables of all the
possible ones, the partition of the input space, and determining the number of fuzzy
rules, and (2) parameters learning, which involves approximating some unknown
parameters by the parameter updating. The parameter updating is employed after
the structure is decided. Most of the structure learning methods are based on data
clustering, such as the fuzzy C-means clustering [22] and the mountain clustering
[10].
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In online identification, structure and parameters learning are updated imme-
diately after presentation of each input-output pair, i.e., after each iteration. The
online identification also includes (1) structure learning and (2) parameters learning.
For structure learning, the clustering methods are mainly used. In the clustering,
to update fuzzy rules, distance from the centers of fuzzy rules, potentials of new
data sample, and error from previous step are used. Different mechanisms are
employed in constructing the structure. The resource allocating network (RAN) [18]
uses a geometric growing criterion to update the fuzzy rules. The evolving fuzzy
neural networks (EFuNNs) [15] use the difference between two membership vectors
to update the fuzzy rules. The dynamic evolving neural fuzzy inference system
(DENFIS) [16], the self-constructing neural fuzzy inference network (SONFIN)
[13], and the recurrent self-organizing neural fuzzy inference network (RSONFIN)
[14] use the distance to update the fuzzy rules. The evolving Takagi-Sugeno (ETS)
model [11] uses the potential to update the fuzzy rules. The Takagi-Sugeno inference
algorithm of an earlier study [23] considers input and output data to update the rules.

A self-constructing algorithm is no longer a practical system if the number of
input-output pairs is large, because the number of rules grows even if some data are
grouped into clusters. Therefore, a pruning method is needed. The self-constructing
neural fuzzy networks mentioned earlier do not have a pruning method, even though
they can be used for online learning. To extract fuzzy rules in a growing fashion
from a large numerical database, some self-constructing fuzzy networks have been
presented. It has been shown that the dynamic fuzzy neural network (DFNN) [19]
approach provides good results, and the error reduction ratio of each radial basis
function neuron is used to decide which radial basis function neurons are important
to the network. Thus, the less important radial basis function neuron may be deleted.
The general dynamic fuzzy neural network (GDFNN) proposed in [20] tries to give
reasonable explanations for some predefined training parameters in DFNN. These
methods, however, depend on the number of total training data. In an earlier study
[11], it was considered that if a new datum, which is accepted as a focal point of
a new rule, is too close to a previously existing rule, then the old rule is replaced
by the new one. The self-organizing fuzzy neural network (SOFNN) [17] approach
proposes a pruning method devised from the optimal brain surgeon (OBS) approach
[24]. The basic idea of the SOFNN is to use the second derivative information to find
the unimportant neuron. In the simplified method for learning in evolving Takagi-
Sugeno fuzzy models (simpl_eTS) [12], the density as the population is considered,
the population of each cluster is monitored, and if it amounts to less than 1% of the
total data samples, that cluster is ignored. The cluster is ignored in the algorithm at
this iteration, but the rule is not pruned; thus, the network cannot decrease. In the
Sequential Adaptive Fuzzy Inference System (SAFIS) [25], one threshold parameter
is used for adding a rule, and another threshold parameter is employed for pruning
a rule as shown in this chapter; however, they do not use the concept of density.

On the other hand, the stability problem of fuzzy neural networks is important
for online identification, and the neural fuzzy networks mentioned earlier do not
guarantee the stability. It is well known that normal identification algorithms
(e.g., gradient descent and least square) are stable in ideal conditions. However,
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in the presence of unmodeled dynamics, they may become unstable. The lack
of robustness of the parameter identification was demonstrated earlier [26], and
became a hot issue in the 1980s, when some robust modification techniques were
suggested [27]. Some robust modifications must be applied to assure stability with
respect to uncertainties. Projection operator is an effective tool to guarantee that
the fuzzy identification is bounded [9, 27]. Input-to-state stability (ISS) approach
is applied for nonlinear system identification, using the gradient descent algorithm
for the fuzzy networks [21] and for the neural networks [28]. A double dead-zone
is used to assure the stability of the identification error in the gradient descent
algorithm [29]. On the other hand, the Lyapunov method is used to prove that a
double dead-zone Kalman filter training is stable [30].

In this chapter, an online self-organizing fuzzy modified least square (SOFMLYS)
network is proposed to address these problems in the nonlinear system identifi-
cation. Structure and parameter learning are active at the same time-step in the
algorithm. The model is capable of perceiving the change in the actual system
and adapting (self-organize) itself to the new situation. A new network that uses
unidimensional membership functions for each rule is proposed, and it avoids the
singularity produced by the widths in the antecedent part for online identification.
It generates a new rule if the smallest distance between the new data and all the
existing rules (the winner rule) is more than a prespecified radius, and it considers
input and output data when a new rule is generated. To obtain faster parameter
convergence, a modified least square algorithm is used in parameters learning
to train the centers and the widths in the antecedent part and the centers in the
consequent part. A new pruning algorithm based on the density is proposed, where
the density indicates the number of elements for each rule. The rule that has the
smallest density (the looser rule) in a selected number of iterations is pruned if the
value of its density is smaller than a specified threshold. The stability of the proposed
algorithm is proven, and the bound of the average of the identification error is found.
The condition that led the algorithm to avoid the local minimum is found, and it is
proven that the parameters error is bounded by the initial parameters error.

2 Network for Nonlinear Identification

Let us consider the following unknown discrete-time nonlinear system:
yk—1) = f[X(k—1)], (7.1

where X(k — 1) = [xi(k—1)...xyk—1)] = [y(k—=2),...,y(k—n—1),u
k—=2),....,u(k—m—1)]eRY (N =n+m)is the input vector, [u(k — 1)|* <
u, y(k—1) is the output of the plant, and f is an unknown nonlinear smooth function
f € C®°. A generic fuzzy model is presented as a collection of fuzzy rules in the



102 7 SOFMLS: Online Self-organizing Fuzzy Modified Least Square Network

following form (Mamdani fuzzy model [9]):

Rj ZIF)C[ is Al’j andxz is Az,j and .. XN is AN,j

. (7.2)
THEN v is Bj,

where M(j = 1,2...M) fuzzy IF THEN rules and N fuzzy sets are used for
each rule to perform a mapping from an input linguistic vector X(k — 1) =
xitk—1)...xy(k — D]eRY (N = n + m) to an output linguistic scalar veR.
Ay j...Ap,j, and B; are the standard fuzzy sets. Each input variable x; has N
fuzzy sets. By using mean inference, center-average defuzzifier and center fuzzifier,
called Sugeno fuzzy inference system with weighted average (FIS), the output of
the fuzzy logic system can be expressed [7, 9] as

Yk —1) =ak—1)/btk — 1),
M

ak —1) = vk — Dz;(k — 1),

j=1

M
bk —1) =Y zjk — 1), (7.3)

j=1
2= 1) =exp[~y2k = 1],

N
ij k=1) (x; (k—=1)—c; (k—1))
yitk—1) == - ,

where x; (k — 1) are inputs of system (7.1), (i = 1...N),cj(k—1)andw;(k—1) =
ﬁ are the centers and the widths of the membership functions of the antecedent

part, respectively, j = 1... M, v;(k—1) are the centers of the membership functions
of the consequent part. Let us define the functions ¢; (k — 1) from (7.3) as [28]

pjk—1)=z;(k—1)/bk —1). (7.4)
Then (7.3) can be rewritten as follows (Fig. 7.1):
M
}‘(k—l):Zvj(k—l)@(k—l): VIik— Dok —1), (7.5)
j=1

where V(k — 1) = [Uj(k—l)---vM(k—l)]Teﬁ%M and @k — 1) =
[pjtk —1)...ppk — 1)]T63?M.

Remark 7.1 The networks of many earlier studies [7, 9, 11, 17], and [25] use
membership functions as shown in this study, but they use the following functions:
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Fig. 7.1 Architecture of the fuzzy system

N

1
yitk—1) = Zw—_l) (xi Gk = 1) —¢;j(k = D).
i=1""

The first, in the antecedent part of the networks of the abovementioned references,
2N parameters are used for each membership function (¢;j(k — 1), o0;j(k — 1))
called multidimensional membership functions, while in the antecedent part of the
network in this study two parameters are used for each rule (c;(k — 1), w; (k — 1)),
called unidimensional membership functions, as can be seen in (7.3). Second, the
networks of the abovementioned references use m which can cause singularity

in online learning, while the network of this study uses w; (k—1) = ﬁ to avoid
singularity. Some authors use the sum inference [17], while some use the product
inference [9, 11, 12, 16], and others employ the norm inference [7, 25]; however,
in this study a new inference called mean inference is used. The mean inference is
defined in (7.3) as y;(k — 1).

3 Structure Learning

Choosing an appropriate number of rules is important in the design of fuzzy neural
systems, because too many rules result in a complex fuzzy neural system that may
be unnecessary for the problem, whereas too few rules produce a less powerful fuzzy
neural system, which may be insufficient to achieve the objective. The number of
rules is seen as a design parameter. It is determined based on the input-output pairs
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and the number of elements of each rule. The basic idea is to group the input-output
pairs into clusters and use one rule for one cluster, i.e., the number of rules equals
the number of clusters.

One of the simplest clustering algorithms is the nearest neighborhood clustering
algorithm. In this algorithm, the first datum is considered as the first center of the
first cluster. If the distance between the new data and its nearest cluster is less than
a prespecified value (the radius r), then the nearest cluster to the data is updated;
otherwise, this datum is considered as a new cluster center. The details are given as
follows.

Let X(k — 1) be the newly incoming pattern; then from (7.3) an auxiliary
parameter p(k — 1) is obtained as

pk—1)= ];njansz(k —1). (7.6)

If p(k — 1) > r, where r is a prespecified radius, r € (0, 1), then a rule is not
generated. The winner rule j* is presented in the algorithm when z;(k — 1) =
p(k—1). As the winner rule is a rule that increments its importance in the algorithm,
its density must be increased and is updated as

dj=(k) = dj= (k) + 1. (7.7)

If p(k—1) < r, then a new rule is generated and M = M + 1. Once a new rule is
generated, the next step is to assign initial centers and widths of the corresponding
membership functions, and a new density with value of 1 is generated for this rule
as follows:

N N
Zx,-(k) Z [xi (k)—c jx (k)]
_iml i1 (7.8)
emi1 () = =g—,  wypi k) = S—F5——o,

vm+1(k) = y(k) dy1(k) = 1.

The abovementioned algorithm will no longer be a practical system if the number
of input-output pairs is large, because the number of rules (clusters) grows, even if
some data are grouped into rules (clusters). Therefore, one needs a pruning method.
A new pruning algorithm based on the density is proposed, where the density is the
number of times that each rule is used in the algorithm. From (7.8), it can be seen
that when a new rule is generated, its density starts with 1, and from (7.7) it can
be seen that when a datum is grouped in an existing rule, the density of this rule
is increased by 1. Thus, each cluster (rule) has its own density. The least important
rule is the one that has the smallest density. After some iterations (AL), the least
important rule is pruned if the value of its density is smaller than a prespecified
threshold (d,), i.e., this rule is unnecessary in the algorithm. The details are given
as follows:
Each AL iteration, where AL € N, dyin(k) is considered as follows:
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dmin(k) = min d;(k), (7.9)
I<j=<M

If M > 2 and dpin(k) < d,, this rule is pruned, where d, € N is the minimum
selected density that is allowed. It is called the threshold parameter. Once a rule
is pruned, the next step is to assign centers and widths of the corresponding
membership functions. The looser rule j, is presented in the algorithm when
dj(k) = dmin(k). The looser rule is the less important rule of the algorithm, if
J =< Jjx, nothing is modified, but if j > j,, then all the parameters are moved to
organize them as follows:

ci—1(k)y =cjk), wj_1(k) =w;k), (7.10)
vk = i), dj1(k) = d; (k).

In this way, the looser rule j is sent to the last element (j = M). For j = M, the
looser rule is pruned as follows:

em) =0, wy(k) =0, vyuk)=0, dyk) =0. (7.11)

Consequently, M is updated as M = M — 1 to decrease the size of the network.

If dmin(k — 1) > d,, or M = 1, then this rule is not pruned. If there is only one
rule denoted as M = 1, then the algorithm cannot prune this rule.

Finally, L isupdatedas L = L + AL.

Remark 7.2 The parameters L and AL are needed, because the pruning algorithm
is not active at each iteration. The initial value of L is AL, and the pruning
algorithm works at the first time when k = L, and consequently, L is increased
by AL. The pruning algorithm works for each AL iteration. The parameter AL
was determined empirically as 5d,,; thus, the pruning algorithm only has d,, as the
designing parameter.

Remark 7.3 It can be seen that the max of z;(k—1) is taken in (7.6). This idea was
taken from the competitive learning of the ART recurrent neural network [7, 31] to
obtain the winner rule (in the case of the ART network, it is the winner neuron).

Remark 7.4 In an earlier study [17], the second derivative of an objective function
is used to find the unimportant rule. In this study, the density parameter is used
to find the unimportant rule. In another study [12] the density as the population is
considered, the population of each cluster is monitored, and if it amounts to less
than 1% of the total data samples, the cluster is ignored at this iteration. The rule
is ignored as vgmin(k) = 0, and subsequently, this weight is ignored in the term
V(k — 1) of (7.5). The cluster is ignored in the algorithm at this iteration, but the
rule is not pruned; thus, the network cannot decrease. In an earlier study [25], two
threshold parameters are considered, one for adding rules and the other for removing
rules; however, they did not use the density.
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4 Parameters Learning

The stability of structure and parameters learning is needed, because this algorithm
works online. First, the model is linearized, and later, the stability of the proposed
algorithm is analyzed.

According to Stone-Weierstrass theorem [32], the unknown nonlinear function f
of (7.1) is approximated as

M
Yk —1) = "vigik — D+ ;= V7T d*(k — D+ €, (7.12)
j=1

where €= y(k — 1) — V*T@*(k — 1) is the modeling error, ik —1) =23k —
M

* * — * * — *2 * —

D/B* (=1, b*(k=1) = Y 25 0—1), Z5k=1) = exp [ =yt = D], yj k=) =
j=1

Zw}f <xi k—1)— c;‘) where v;f, w;f, and cj are the optimal parameters that can

minimize the modeling error €y [33].

First, the network model is linearized and will be used to define the parameters
updating and to prove the stability of the proposed algorithm.

In the case of three independent variables, a smooth function has a Taylor series
as

flor, w2, 03) = f(wo, wy, w) + f’f’(“”—oﬁf“m (w1 — wp0) + 13
—af(wéfzz ) () — wy) + —af(wéaﬁz 23 (w3 — wy) + Ry, '

where R is the remainder of the Taylor series. If we let 1, w3, and w3 correspond
tocjk —1), wjk — 1), and v;(k), w0, wy, w30 correspond to c;f, w}f, and v;‘f,
1~et us define ¢j(k — 1) = ¢;k — 1) — c;f, Witk —1) = wjtk — 1) — w;’f and
vitk—1D) =vjk—1)— v}‘, and then the Taylor series is applied to linearize (7.3)
and (7.5) as

M
av T o
VI = D@k — 1) = VT %k — 1) + Y WD (k- 1)
/= (7.14)
VT (k—DP (k=1 ~ W hk=Dd k=1~
Z Bw;(k—1) /(k—l)"‘zw i(k—1)+ Ry.

j=1

Considering (7.3), (7.4), and (7.5), and using the chain rule [9, 13, 29, 30], gives
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VI (k=)@ (k—1)
dac; (k—1)
VT k=)D (k—1) da(k—1) 9z;(k—1) dy;(k—1)
= da(k—T) 9z;(k—1) 9y;(k—1) dac;(k—1)
VT (k—1)@(k—1) db(k—1) 9zj(k—1) dy;(k—1)
b(k—1) 3z;(k—1) dy;(k—1D) dc;(k—1)

(k-1
=2y (k — D)zj(k — Dw;(k — 1) =p
—2yjtk —Dzj(k — Dwjk — 1) a(k—1)

b2(k—1)°
VT k—Ddk—1) _ [v; (k=) —Fk—1)]
VT (k=)@ (k—1)
dw;k—1)
VI k=D @ (k—1) dak—1) 3z;(k=1) dy;(k—=1)
= da(k—1) 3z;(k—1) 3y;(k—1) dw;(k—1)
VT (k—1)@ (k—1) db(k—1) 9z;j(k—1) dy;(k—1)
ab(k—1) 9z, (k—1) 3y; (k—1) dw, (k—1)
N
Z[xi(k—l)—cj-(k—l)]
= i (k—1
= 2y;(k — Dz;(k — D= e
N
Z[x,-(k—l)—c]-(k—l)]
(k — izl atk—1)
N
Z[x,—(k—l)—c]-(k—l)]
WVIk=DP*h=1) _ ., ) i=1 [Fk—D)—v; (k—1)]
dw; k-1 2yj(k = Dzj(k — 1)+ N B0=1) ’
M
) 0> ik — Dk — 1)
oVitk—1)dk—-1) j=1
= =k —1).
vk —1) vk —1)
o VIG=DeGk=1) VI (k=DP*k=1) VT k=D (k=1) - .
Substituting k-1 w1 and Bu,G—1) in (7.14) gives
M
VI — D@k —1)=VTo*hk— 1)+ Y ¢k — DTk — 1) + Ry
j=1
Y [v; (k=) =Fk—1)]
+ " 2y;k = Dz (k — Dw;(k — )T o — 1)
j=1
N
o Z[x,-(k—n—c,(k—l)]
i— Fk—1)—v;(k—=1)] ~
+3 2y — Dzjk — = =D 015,k — ).
j=1

(7.15)
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Let us define BJC.(k -1, B}”(k — 1), and B}’(k —1)as

BS(k — 1) = 2y;(k — Dz (k — Dw;(k — 1) & h=eD],

blk—1)
N
Z[x,-(kfl)fcj(kfl)]
i Fk—1)—v;(k—1
BY(k — 1) = —2p;(k — Dz (k — )=y = -vik=b]
B.}’(k —-D=¢jk-1).
(7.16)
Using the abovementioned definitions in (7.15) gives
M
VIik-—Dok -1 =VvV7To*k —1)+ ZB]C.(k — DTk —1)
y u /=l (7.17)
+Y BY(k— ik — 1)+ Y BY(k— DTk — 1) + Ry.
j=l1 j=1
Let us define the identification error as
ek—1) =3k —-1)—yk —1). (7.18)

M M M

As ZBJC.(k — )Tk — 1), ZB;”(k — Dk — 1), and ZB}?(k — DTk —1)
j=I j=I j=I

are the product of two vectors, substituting (7.5), (7.12), and (7.18) in (7.17) gives

e(k—1)= Bl 6k —1)+ puk — 1), (7.19)

where BkT_l = [Bf(k —1),....,By(k—=1),B"(k—=1),..., Bj;(k—1), B{ (k—1),
o BY (k= D] e RUM G(k—1) = [E1(k — 1), ..., Sk — D), Tk —1),...,
Dy k = 1), 0k = 1), ..., 0k = D" € WM uk — 1) = Re— €,
B]‘f(k — 1), B}”(k — 1) and B}’(k — 1) are defined in (7.16). Thus, 6;(k — 1) =
Ojtk —1) — 9]*.

The least square [11, 16] is modified to get the stability of the algorithm, and
subsequently, the modified least square to train the parameters and the structure is
given as

0(k) =0k — 1) — 5= PiBi—1e(k — 1),

Py = P — ﬁPk—lBk—lBkT_lpk—l’

(7.20)

where Qy—1 = Ry + B_ | Pk—1Bi—1 € R, Rke1 =20Qk—1+ Bl_ | P_1Bi_1 € R,
0 < Ry € R, By—1 and O(k — 1) are given in (7.19), and it is assumed that the
uncertainty is bounded [29, 30, 33], where 1 is the upper bound of the uncertainty
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pk—=1), |uk — )| <. Pe_y € R3M3M jgq positive definite covariance matrix,
Py = cI, where ¢ > 0 is a scalar constant and I € R**>*3M g the identity matrix.

The computational complexity of the algorithm is O (N.M 2) [34], where N, is
the size of Ry_1. The value of N, is 1, while M is the size of (k) and is also
the number of rules. The storage requirements are O (M 2) [34]. It can be seen that
the complexity requirements depend only on the number of rules. Therefore, it is
important to have a low number of rules to have low memory requirements.

The following theorem gives the stability of the proposed algorithm.

Theorem 7.1 The modified least square algorithm to train structure and parame-
ters is uniformly stable, and the upper bound of the average error J(k — 1) satisfies

T —2
1 o
limsup—S Tk — 1) < & (7.21)
T%ookaX:; R2
T 2
where J(k — 1) = BaPotBal” 2 )

07 Ry

Proof See [35] for the proof.

Remark 7.5 From (7.21) it can be seen that the final iteration parameter (time)
T tends to infinity; thus, the stability of the proposed algorithm is preserved when
T — oo.

Remark 7.6 The parameter M (number of rules) is finite, because the algorithm
adds the necessary rules and prunes the unnecessary rules to adapt itself to the
changing environment. The number of rules, M, is changed by the clustering and
pruning algorithms, and M only changes the dimension of BkT_1 and 6 (k — 1); thus,
the stability result is preserved.

Remark 7.7 The theorem given in the study by Rubio and Yu [30] is very
conservative, because it uses two dead-zones. However, Theorem 7.1 in this study
is better, because it does not use any dead-zone.

Remark 7.8 The value of the parameter it is unimportant, because this parameter is
not used in the algorithm. The bound of (k — 1) is needed in order to guarantee the
stability in the algorithm. This fact has been used in some earlier studies [29, 30, 33].

Corollary 7.1 The parameters error 6(k) is bounded as follows:

|8 < Jam]?.

(7.22)

where 8 (1) is the initial parameters error.
Proof See [35] for the proof.

Remark 7.9 From (7.22), it can be seen that for the modified least square algo-
rithm, the parameters error is bounded by the initial parameters error. This result
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is better than that presented in earlier studies [21] and [28], because in these earlier
studies they presented the stability analysis of a modified backpropagation algorithm
for which even if the output error is convergent, it does not guarantee that the
parameters error is bounded. Maybe, the parameters error can be very high and
can make the system unstable.

Corollary 7.2 The average error must satisfy J(k) < J(k — 1) to avoid the local

minimum. The average error J (k — 1) of the modified least square algorithm avoids
-2 ~

the local minimum when J(k — 1) > B, where 0 < = lié_z + % ||9(1)H2 < 00 and

c is defined in (7.20).

Proof See [35] for the proof.

Remark 7.10 In an earlier study [36], a set of constraints to assure the inter-
pretability of the membership functions has been given. These constraints help to
avoid the local minimum, which is a problem of the backpropagation algorithm
[7,9, 13, 31, 36]. In this study, a modified least square algorithm is used [11, 12, 16,
17, 25, 30, 34]. The least square algorithm does not need to satisfy the constraints
to assure the interpretability of the membership functions, because this algorithm
does not have the problem of the local minimum, as can be seen in Corollary 7.2.
In addition, the least square algorithm has faster parameters convergence than the
backpropagation algorithm [11, 30, 34].

S The Proposed Algorithm

The proposed algorithm is as follows:

1. Select the following parameters: the parameter of the modified least square
algorithm is R, > 0 € R, the parameter of the clustering algorithm is 0 <
r < 1 € &, and the parameter of the pruning algorithmisd, € N, (L = L+ AL,
AL = 5dy).

2. For the first data k = 1 (where k is the number of iterations), M = 1 (where
M is the number of rules or clusters), the initial parameters of the modified least

square algorithm are P; = ¢l € MM (where 0 < ¢ € R), vi(1) = y(1),
N

> xn

ci(l) = ile ,and wi(l) = rand € (0, 1) (v; is the initial parameter of
the consequent part, ¢ and w; are the centers and widths of the membership
function of the antecedent part), and the initial parameter of the clustering and
pruning algorithms is d1 (1) = 1 (where d is the density parameter).

3. For the other data where k > 2, evaluate the fuzzy network parameters z; (k — 1)
and b(k — 1) with (7.3), evaluate the output of the fuzzy network y(k — 1)
with (7.3), (7.4), and (7.5), evaluate the identification error e(k — 1) with (7.18),
update the parameters of the modified least square algorithm v; (k), c;(k), and
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w; (k) with (7.20), and evaluate the parameter of the clustering and pruning
algorithm p(k — 1) with (7.6).
The updating of the clustering algorithm is as follows:

4. If p(k — 1) > r, then a rule is not generated, the winner rule j* is presented
when z;(k — 1) = p(k — 1), and the value of the density d ;= (k) of this rule is
updated with (7.7). The winner rule is a rule that increments its importance in the
algorithm. Go to 3.

5. If p(k—1) < r, then anew rule is generated (M = M +1), wherer € (0, 1) (e.g.,
the number of rules is increased by 1), the initial values of cp11(k), war1(k),
vy+1(k), and dpr41(k) are assigned to the new rule with (7.8), and the missing
parameters are added to have P, € R3MFTDBMHD with diagonal elements
(where Py, vj(k), cj(k), and w;(k) are the parameters of the modified least
square algorithm, and d; (k) is the parameter of the density, j = 1...M). Go
to 3.

The updating of the pruning algorithm is as follows:

6. For the case where k = L, the pruning algorithm works (the pruning algorithm
is not active at each iteration) and evaluates the minimum density dpin(k)
with (7.9), and L isupdatedas L = L + AL.

7.1t M > 2 and dpin(k) < d,, then this rule is pruned, where d, € N is
the threshold of the density, and the looser rule j, is presented when d; (k) =
dmin (k). The looser rule is the least important rule of the algorithm, the values
of ¢;j(k), wj(k), vj(k), and d;(k) are assigned with (7.10) and (7.11) to prune
the looser rule j,, and in the same way, the values of Pj are assigned to prune
the looser rule j, (where Py, v;(k), cj(k), and w;(k) are the parameters of
the modified least square algorithm and d (k) is the parameter of the density,
j=1...M),and M is updated as M = M — 1 (e.g., the number of rules is
decreased by 1). Go to 3.

8. If dpin(k) > d, or M = 1, then this rule is not pruned. Go to 3.

6 Simulations

In this section, the suggested online self-organized algorithm is applied for nonlinear
system identification. Note that in this study, the structure and parameters learning
work at each time-step and they work online. The proposed network will be
compared with networks that add and remove rules online, such as the Simpl_eTS
[12], the SOFNN [17], and the SAFIS [25], because these networks have good
performance.

Example 7.1 Let us consider the nonlinear system given and used in earlier studies
[9, 25]:

_ Yk =Dyt =2)[yk — 1) —0.5]

k
y &) T+ 2k — 1)+ y2(k—2)

+uk —1). (7.23)
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Table 7.1 Results for Example 7.1

Methods No. of rules | Training RMSE | Testing RMSE
eTS(r = 1.8, 2 = 10%) 49 0.0292 0.0212
Simpl_eTS (r = 2.0, 2 = 10°) 22 0.0528 0.0225

SAFIS (y =0.997, emax = 1,k =1) |17 0.0539 0.0221

(émin = 0.1, e = 0.05, e, = 0.005)

SOFMLS 5 0.0341 0.0201

Fig. 7.2 Growth of rules for Example 7.1

As in the earlier studies [9, 25], the input u (k) is given by u(k) = sin(2wk/25).
The parameters of the SOFMLS are P = ¢l € §R3X3, where ¢ = 0.25, R, = 0.1,
r = 0.9, and d,, = 6. For the purpose of training and testing, 5000 and 200 data are
produced, respectively. The average performance comparison of the SOFMLS with
the eTS [11], the Simpl_eTS [12], and the SAFIS [25] is shown in Table 7.1, where
the root mean square error (RMSE) [15] is

| 3
N 201
RMSE = (Nl;e (k 1)) ) (7.24)

From Table 7.1, it can be seen that the SOFMLS achieves better accuracy when
compared with the other networks. In addition, the SOFMLS achieves this accuracy
with the smallest number of rules. The evolution of the fuzzy rules for the SOFMLS
for a typical run is shown in Fig.7.2. From this figure, it can be seen that the
SOFMLS produces five rules, and changes in the behavior are before 500 iterations.
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Fig. 7.3 Growth of rules for 500 iterations for Example 7.1

Figure 7.3 gives a clear illustration of the rule evolution tendency from 0 to 500
iterations and shows how the SOFMLS can automatically add and prune a rule
during learning.

Figure 7.4 shows the resulting fuzzy membership functions in the antecedent part
for the SOFMLS.

Figure 7.5 shows the evolution of the parameters ¢, w, and v for 1000 iterations
for the SOFMLS. From this figure, it can be seen that some parameters appear when
a new rule is added, and some disappear when a rule is pruned.

Figure 7.6 shows the average of the identification error for the SOFMLS. From
this figure, it can be observed that the average of the identification error is bounded
during training as in Theorem 7.1.

Figure 7.7 shows the testing result for the SOFMLS.

Example 7.2 Let us consider the nonlinear system given in an earlier study [9]:
vk +1) =03yk) +0.6y(k — 1) + f(u(k)). (7.25)

With f(u(k)) = 0.6sin(wru(k))+0.3sin(3ru(k))+0.1sin(Swu(k)), the input is
u(k) = sin(2wk/200). The initial parameters of the SOFMLS are P = cI € R3x3,
where ¢ = 0.35, R, = 0.1, » = 0.93, and d;, = 6. For the purpose of training
and testing, 3000 and 200 data are produced, respectively. The average performance
comparison of the SOFMLS with the SAFIS [25] is shown in Table 7.2, where the
RMSE of (7.24) is used.
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Fig. 7.4 Membership functions for Example 7.1

Fig. 7.5 Evolution of parameters of the network for Example 7.1

From Table 7.2, it can be seen that the SOFMLS achieves better accuracy when
compared with the other network. In addition, the SOFMLS achieves this accuracy
with the smallest number of rules. The evolution of the fuzzy rules for the SOFMLS
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Fig. 7.6 Average error for Example 7.1

Fig. 7.7 Testing result for Example 7.1

and the SAFIS for a typical run are shown in Fig.7.8. From this figure, it can be
seen that the SOFMLS produces 6 rules and the SAFIS produces 11 rules.
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Table 7.2 Results for Example 7.2

Methods No. of rules Training RMSE Testing RMSE
SAFIS (y =0.997, ¢max =2,k =2) 11 0.0507 0.0909

(emin = 0.2, ¢, = 0.03, ¢, = 0.003)

SOFMLS 6 0.0516 0.0290

Fig. 7.8 Growth of rules for Example 7.2

Figure 7.9 gives a clear illustration for the rule evolution tendency from 0 to 500
iterations and also shows that both the networks can automatically add and prune a
rule during learning.

Figure 7.10 shows the resulting fuzzy membership functions in the antecedent
part for the SOFMLS.

Figure 7.11 shows the evolution of the parameters ¢, w, and v for 1000 iterations
for the SOFMLS. From this figure, it can be seen that some parameters appear when
a new rule is added and some disappear when a rule is pruned.

Figure 7.12 shows the average of the identification error for the SOFMLS. From
this figure, it can be observed that the identification error is bounded during the
training as in Theorem 7.1.

Figure 7.13 shows the testing result for the SOFMLS.

Example 7.3 The identification of the Box Jenkins furnace [37] is a well-known
problem. There are originally 290 data pairs (u(k), y(k)). y(k) is the output C O,
concentration, and u (k) is the input gas flow rate. A total of 200 samples are used
for training, and the remaining 90 are used for testing. For the network, a series
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Fig. 7.9 Growth of rules for 500 iterations for Example 7.2

Fig. 7.10 Membership functions for Example 7.2

parallel model is used to model this system as y(k) = f(y(k — 1), u(k — 4)). The
parameters of the SOFMLS are P = ¢l € %3)‘3, where ¢ = 750, R, = 0.1,
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Fig. 7.11 Evolution of parameters of the network for Example 7.2

Fig. 7.12 Average error for Example 7.2
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Fig. 7.13 Testing result for Example 7.2

Table 7.3 Results for Example 7.3

Methods No. of rules | Testing RMSE
eTS(r = 0.4, 2 = 750) 5 0.0490
Simpl_eTS (r = 0.4, 2 = 750) 3 0.0485
SOENN (8 = .07, kymse = 0.3, kq(1) = kq(2) = 1.4) |4 0.0480

(00 =1,ka(3) = ka(3) = ka(3) = ka(3) = 0.5)

SOFMLS 5 0.0474

r = 0.9, and d,, = 6. The average performance comparison of the SOFMLS with
the eTS [11], the Simpl_eTS [12], and the SOFNN [17] is shown in Table 6.3, where
the RMSE of (7.24) is used.

From Table 7.3, it can be observed that the SOFMLS achieves better accuracy
when compared with the other networks. In addition, the SOFMLS achieves this
accuracy with a similar number of rules. The evolution of the fuzzy rules for the
SOFMLS for a typical run is shown in Fig. 7.14. From this figure, it can be seen that
the SOFMLS produces five rules.

Figure 7.15 shows the resulting fuzzy membership functions in the antecedent
part for the SOFMLS.

Figure 7.16 shows the evolution of the parameters ¢, w, and v for the SOFMLS.
From this figure, it can be seen that some parameters appear when a new rule is
added and some disappear when a rule is pruned.
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Fig. 7.14 Growth of rules for Example 7.3

Fig. 7.15 Membership functions for Example 7.3

Figure 7.17 shows the average of the identification error for the SOFMLS. From
this figure, it can be observed that the identification error during the training is
bounded as in Theorem 7.1.
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Fig. 7.16 Evolution of parameters of the network for Example 7.3

Fig. 7.17 Average error for Example 7.3
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Fig. 7.18 Training and testing results for Example 7.3

Figure 7.18 shows the training and testing results for the SOFMLS; the first 200
samples belong of the training, and the remaining 90 are of the testing.

7 Concluding Remarks

In this chapter, a quick and efficient approach for system modeling using a fuzzy
modified least square network is presented, which does not require retraining of
the whole model. It is based on recursive building of the rule base by unsupervised
and supervised learning, the rule-based model structure learning, and parameters
estimation. The adaptive nature of this model, in addition to the transparent and
compact form of fuzzy rules, makes it a promising candidate for online modeling
and control of complex competitive processes with neural networks. From a
dynamic system point of view, such training can be useful for all neural network
applications requiring real-time updating of the weights. The main advantages of
the approach are that (1) the network can develop an existing model when the data
changes, (2) the network can start to learn a process from a single data sample and
improve its performance through the time, and (3) it is recursive and highly effective.
The proposed concept can be used in many fields, including nonlinear adaptive
control, fault detection and diagnostics, performance analysis of dynamic systems,
pattern and image recognition, time-series, identification of nonlinear systems,
intelligent agents, and modeling. The results illustrate the viability, efficiency, and
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the potential of the approach when a limited amount of initial information is
obtained. These characteristics are especially important in autonomous, robotics,
and mechatronic systems.
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Chapter 8 )
Evolving Intelligent System iy
for the Modeling of Nonlinear Systems

with Dead-Zone Input

1 Introduction

Non-smooth nonlinear characteristics such as dead-zone, backlash, and hysteresis
are common in actuators, sensors such as mechanical connections, hydraulic servo-
valves, and electric servomotors; they also appear in biomedical systems. Dead-zone
is one of the most important nonsmooth nonlinearities in many industrial processes,
which can severely limit the system performance, and its study has been drawing
much interest in the control community for a long time. Some important results
are shown in [1-4], and [5]. In many works, controllers are proposed; however, a
modeling system has not been introduced. The modeling system can be used for
the failure prediction, disturbance rejection, trajectory generation, observer, and
controller designs on the systems where the nonlinear behavior that includes the
dead-zone is unknown.

On the other hand, the evolving intelligent systems are characterized by abilities
to adjust their structure and parameters to the varying characteristics of the
environment (with the term of environment embracing processes/phenomena in
which the system has to interact or deal with the users using the system). Some
important results are presented by [6—17], and [18]. From the above works, [6—
11, 15-18] use interesting clustering algorithms, and [6-8, 11, 16, 17] present novel
pruning algorithms as in this study; nevertheless, an evolving intelligent system
for the modeling of recurrent nonlinear systems with dead-zone input is rarely
presented.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 125
J. de J. Rubio, Stability Analysis of Neural Networks and Evolving
Intelligent Systems, https://doi.org/10.1007/978-3-031-87282-2_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-87282-2protect T1	extunderscore 8&domain=pdf
https://doi.org/10.1007/978-3-031-87282-2_8
https://doi.org/10.1007/978-3-031-87282-2_8
https://doi.org/10.1007/978-3-031-87282-2_8
https://doi.org/10.1007/978-3-031-87282-2_8
https://doi.org/10.1007/978-3-031-87282-2_8
https://doi.org/10.1007/978-3-031-87282-2_8
https://doi.org/10.1007/978-3-031-87282-2_8
https://doi.org/10.1007/978-3-031-87282-2_8
https://doi.org/10.1007/978-3-031-87282-2_8
https://doi.org/10.1007/978-3-031-87282-2_8
https://doi.org/10.1007/978-3-031-87282-2_8

126 8 Evolving Intelligent System for the Modeling of Nonlinear Systems with Dead-. ..

Finally, the stable intelligent systems are characterized to be systems where
some kind of stability is guaranteed, i.e., if there is boundedness on inputs of the
algorithm, then there is also boundedness on outputs. Some important studies are
given by [3, 4, 18-27], and [28]. The aforementioned works do not consider the
stability analysis of a recurrent evolving intelligent system for the modeling of a
nonlinear system with dead-zone input.

In this chapter, a stable evolving intelligent system is addressed for the modeling
of nonlinear systems with dead-zone input. In addition, the stability of the proposed
algorithm is guaranteed.

The chapter is organized as follows. In Sect. 2, the nonlinear system with dead-
zone input is presented. In Sect. 3, the evolving intelligent system is introduced.
In Sect.4, the evolving intelligent system is linearized. In Sect.5, the structure
updating of the evolving intelligent system is described. In Sect. 6, the stability of the
above algorithm is guaranteed. In Sect. 7, the proposed algorithm is summarized. In
Sect. 8, the proposed algorithm is used for the modeling of two synthetic problems.
Section 9 presents conclusions and suggests future research directions.

2 Nonlinear System

In this study, the system which will be modeled is composed of a nonlinear plant
preceded by an actuator with a nonsymmetric dead-zone in such a way that the
dead-zone output is the input of the plant:

xi(k) =x;(k— 1) +Txipgk—1), i=1,....n—1,

8.1
Xp(k) =xp(k =D+ T[f (x(k = 1) +gxk—1),uk—1))], @D

where i = 1...n, x; (k) isthe ith state, x (k — 1) = [x; (k—1), x20(k=1), ...,
xp(k—1)] € R, u(k—1) € R is the output of the dead-zone and input of the
system, and u (k — 1) and x (k — 1) are known. f and g are the unknown nonlinear
smooth functions. 7" € R is the sample time. The nonsymmetric dead-zone can be
represented by

my (vk =1) =by) vk =1) = b,
utk —1) =DZ(wk — 1)) = 0 by<vk—1)<b  (82)
mp(vk —1) =by) vk =1) < b,
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where m, and m; are the right and left constant slopes for the dead-zone character-
istic, and b, and b; represent the right and left breakpoints. Note that v(k — 1) € &
is the input of the dead-zone.

The nonlinear system (8.1)—(8.2) can be rewritten in the multivariable Brunovsky
form [3]:

xi(k) =xitk— 1)+ Txjp k=1, i=1,...,n—1, 8.3)

xn(k) = hy [x(k = 1), u(k — D], '
wherei = 1...n, x; (k) is the ith state, u (k — 1) € R is the dead-zone output given
by 82, x(k—1) =[x k—1),xpk—1),...,x, (k—1)] € R". h, € Risan
unknown nonlinear smooth function.

Remark 8.1 The nonlinear systems with dead-zone (8.3) are inspired by the
actuators used to move the links of robotic systems which are second order systems
with the Brunovsky form [29, 30].

3 Evolving Intelligent System

The following parallel [31, 32] recurrent neural network is used to model the
nonlinear system (8.3):

Xik) =%tk =)+ Txip(k=1), i=1,....,n—1, 8.4)
Xn(k) = sXu(k — 1) + fe—1 + 8k—1, )
wherei =1...n, fAk_l = Vii_1o0(k — 1), g1 = Vor_19(k — Du(k — 1), x; (k)
represents the ith state of the neural network, x (k) = [x1 (k) , %2 (k) , ..., %, (k)] €
R". The parameter s € R is a stable scalar (where its value should lie within the
unit circle). The weights in the output layer are Vi € RIxmi Vor € RIxm2 5 g
m1-dimensional vector function, and ¢(-) € R"2*™2 is a diagonal matrix, which
are given as follows:

ok —1) = [o1(k — 1), 020k — 1), -+ -0, (k — D]",

. (8.5)
Pk — 1) = diag [¢1(k — 1), pa(k — 1), -+, (k — D],
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where o; and ¢; are given later. Each input variable x; has n fuzzy sets. From [33,
34], it is known, by using product inference, center-average defuzzifier and center
fuzzifier, called Sugeno fuzzy inference system with weighted average (FIS), the
output of the fuzzy logic system can be expressed as

ﬁ_] _ai(k=1)

- bl(k‘%’
ark — 1) =Y vij(k— Dzyjk = 1),
j=1
bitk—1) = z1;(k = D),
j=1
71j(k —1) =exp [—ylzj(k - 1)] ,
yjk =D = wyk =1 (Balk = 1) —c1jk — 1)), 86)

8k—1 = B k=1)>

my
ay(k —1) = vk — Dzaj(k — Duj(k — 1),
j=1

my
bak —1) =Y 22k — 1),
j=1
22j(k — 1) = exp [—ij(k - 1)] ,
yajtk = 1) =wajtk = 1) Xtk — 1) — 25k = 1)),

where X, (k — 1) is the nth state of the system (8.4), c1jk — 1) and wyj(k — 1)
are the centers and the widths of the membership function of the antecedent part,
respectively, j = 1...mq, and vj(k — 1) is the center of the membership function
of the consequent part.

Remark 8.2 The weighted average radial basis function of [33] is again (8.6) where
X, (k — 1) is the state of the system (8.4), c1j(k — 1) and wy(k — 1) are the centers
and widths of the hidden layer, respectively, j = 1...mq, and v;(k — 1) are the

weights of the output layer. In the radial basis function network of [33], m 18
J
used instead of wy;(k — 1). In this study, wy;(k — 1) is used instead of GI,(ITI) to

avoid singularity in the modeling process.

Define o (k — 1) and ¢ (k — 1) as follows:

ojtk—1)=z1;(k = 1)/b1(k = 1),

8.7
¢jk —1) =z2;(k — 1)/ba(k — 1). @D



3 Evolving Intelligent System 129
The above functions are the same given in (8.5); therefore, (8.6) can be written as

follows:

my

fior = itk = Dojk — 1) = Vi ok — 1),

j=1
my (8.8)
Bio1 =Y vk — Dpj(k — Dujtk — 1) = Vag1p(k — Duk — 1),
j=1

where Vi 4_1 = [vi1k = D). vpm, (k = D] €R™ and Vayoy = [vag(k—1)...

Vo, (k — 1)]T €2, The parameter m| is changing with the algorithm structure,
while the parameter m is fixed and it is the dimension of u(k — 1). See Fig. 8.1.

Remark 8.3 The proposed algorithm of Fig. 8.1 is different with the Kalman filter
method of [25, 27, 35], and Fig. 8.2, for three reasons: The first reason is that
the Kalman filter approximates all the functions, while the proposed algorithm
approximates only the last function, i.e., the first n — 1 states are linear and
dependent of the n state because the system has the multivariable Brunovsky form
[3]; therefore, only the last function gives the approximation of the system, and less
computation is required. Other way to explain this fact is that the Kalman filter of
[25,27,35] uses n algorithms, while the proposed technique uses only one algorithm
to obtain the modeling of the system. The second reason is that in the Kalman
filter method only the parameters are changing with the time, while in the proposed
algorithm the parameters and structure are changing with the time. The third reason
is that in the Kalman filter of [25, 27, 35], the series-parallel model is used [31, 32]
where x, (k) of (8.3) is considered as the input of ﬁfl and g_1, while in this work,
the parallel model is used [31, 32] where the state X, (k) of (8.4) is considered as the
input of ﬁq and gr—_1.

Remark 8.4 There are three differences between the proposed algorithm of Fig. 8.1
with the evolving method of [36] and Fig.8.2. The first difference is that the
evolving system of [36] approximates all the functions, while the proposed algo-
rithm approximates only the last function, i.e., the first n — 1 states are linear and
dependent of the n state because the system has the multivariable Brunovsky form
[3]; therefore, only the last function gives the approximation of the system, and less
computation is required. Other way to explain this fact is that the evolving system
of [36] uses n algorithms, while the proposed technique uses only one algorithm
to obtain the modeling of the system. The second difference is that in the evolving
method of [36], the series-parallel model is used [31, 32] where x, (k) of (8.3) is
considered as the input of ﬁ_l and gj_1, while in this work, the parallel model
is used [31, 32] where the state X, (k) of (8.4) is considered as the input of ﬁ_l
and gj_1; consequently, less information of the system is required in the proposed
algorithm. And finally, the third difference is that the evolving method of [36] is
applied on biological nonlinear systems, while the proposed method is applied on
nonlinear systems with dead-zone input.
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Fig. 8.1 Modified evolving intelligent system

4 Linearization of the Evolving Intelligent System

In this section, the model is linearized to find the parameters updating and to prove
the stability of the proposed algorithm. The stability of the structure and output is
required because this algorithm works on-line.

According to the Stone-Weierstrass theorem [37], the unknown nonlinear sys-
tem (8.3) can be written in the following form:

xik) =xik =D +Txip1(k=1), i=1,...,n—1,

8.9
Xp (k) = sxu(k — 1) + fre—1 + gk—1, 89
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Fig. 8.2 Evolving intelligent system

where fk*l = Vlfk—la*(k - D+ el{—l’ 8k—1 = V;k_l(p*(k — Du(k — D+ ei—l’

e,{_l + ef_lz hy [x(k), u(k)] — sx,(k — 1) — fr—1 — gk—1 represents unmodeled

dynamics. By [37], it is known that the term e,{_l + e,f_ | can be made arbitrarily
small by simply selecting an appropriate number of the hidden neurons. The

unknown nonlinear function f;_ of (8.9) is

mi
fiet = > vk = Dotk — D+ el = Vi _jo* k- D+ el (8.10)
j=1
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mi
where ¢ (k — 1) = 2}, (k — 1)/b}(k — 1), b (k — 1) = Zz’{j(k — 1), z};(k—1) =
j=1
exp [ 7/1] 2(k — 1)], yl*j(k -1 = w]“j (xn(k -1 - CT]')’ vi‘j, wi‘j, and c]"j are the
optimal parameters which can minimize the modeling error e,{_ 1 [37]. In the case
of three independent variables, a smooth function has a Taylor series as follows:
flar, a2, @3) = flap, oy, az0) + {”(O“T"?‘“) (a1 — a)0)

(8.11)
+ ML) (o) — ary0) + AL (g — ) + R,

where R,{_l is the remainder of the Taylor series. Let o, a2, and o3 correspond
to clj(k 1), wyj(k — 1), and vy (k), oo, atp0, and az0 correspond to CT/" wi‘j,
and vl Define ¢ (k — 1) = clj(k 1) — CT] wijk—1) =wyjk—1) — w}‘l
and v1(k — 1) = vij(k — 1) — v},. Thus, the Taylor series is applied to linearize
Vik—10(k — 1) of (8.6) and (8. 8) as follows:

aV, k—1)~
Vik—to(k—1) = Vi _ ok — 1) + Z%ﬂ))q](k -1

/= (8.12)
WVik-10(k=1) ~ AV g_10(k—1) ~
+Z alwl k1) 1](k—1)+Z 5”1 =D Ul](k—1)+Rk 1-

Considering (8.6), (8.7), and (8.8) and using the chain rule [18, 22, 34], it gives

Vik_1ok=1) _ Vig_10(k=1) day;(k—1) 9z1j(k—=1) dy1;(k—1)
dc1jk—=T) = dapk—=1) Bzu(k*l)aylj(k*l) dcyj(k—T)
+3V1.k—10(k—1) dby (k—1) 9z (k—1) dyy;(k—1)
by (k—1) dzyj(k—1) dy1j(k—1) dcyj(k—1)
vyjk—1
— 21k — Dz — Dwy (= 228D,
AVik—1ok=1) _ Vi,_10(k=1) da;;(k—1) 9z1(k—1) dy;;(k—1)
dwyjk—=1) dayi(k—1)  dzyj(k—1) dyyj(k—1) dwy;(k—1)
L WVicio (D) by 1) D21 1) oy, 13
b1 (k—T)  9z1; (k—1) 3y, (k—T) dwy; (k—1)

=2y1jk — Dzyjk — D [Tk — 1) —c1j(k — 1

mi

Zvlj(k—l)dj(k—l)

oVyg_1o(k—=1) _ j=1 o
du k=1 Ju1; (k—1) =ojk—1).

Foo1—vij(k—1)
) et
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WVik—10k=1) 9Vir—10(k-1)

oy i Vik—10(k=1 .
Substituting der =D > B k=T)

,and B, G—D) in Eq. (8.12), it gives

Vigoro(k—1) =Y otk — Dy j(k — 1)

j=1
mi
k—1 ~

+Y 2p1j(k = Dzyj(k — Dwyj(k — 1)% jk=1)

j=1

P k—1) ~

+Zzy1j(k—1)zu(k—1)[xn(k—1)—c1,(k—1)]% W1k — 1)

j=1

+Vi otk — D+ R]|
(8.13)
Define ij(k —1), B}”j(k — 1), and ij(k —1)as

, k=D~ fie
B (k — 1) = 21 (k — Dagj(k — Dwyj(k — )22t

~ fee1—v1; (k=1
By (k — 1) = 2y1(k — Dapj(k — 1) [£a(k — 1) — eq(k — 1] Lpuf=D,
1n](k D=ojk—1).
(8.14)
Note that oj(k — 1) is repeated for each i in Bi’j (k — 1), and using the above

definitions in (8.13), it gives

mi
Vik-10(k—1) =Y Bf;(k = Dk — 1)
j=1
mj ! mi
+Y Bk — Dby (k— D)+ Y By (k— Dk — 1)
Jj=1 j=1
HVEo* k=) + R

(8.15)

Define fi_1 = fi—1 — fe1, and substituting (8.8), (8.10), and f;_; into (8.15),
it gives

Fict = BN k= 1)+ 1l k- 1), (8.16)
where B{", = [B{(k—1),.... B, (k—1), BYj(k—1),.... B, (k—1), B}, (k—
1),...,Bfm1(k—1)]eafel“m',ef(k—l):[cu(k—l),...,clml(k—l),w“(k—

D, Wi, (k= 1), 1k — 1), .o, Ty (k — DT € R thus 67 (k — 1) =
0f(k — 1) — 6%, Bf;(k — 1), B (k — 1), and B}, (k — 1) are given in (8.14),

/Lf(k —1) = R,{;l— e,{;]. Slmllarly ingr—1 = gr—1 — gr—1, it gives

o1 = BELOE(k— 1) + pf(k — 1), 8.17)
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where BT\ = [BS,(k—1), ..., B, (k—1), BY(k—1).....BY, (k—1), By (k—
D..... B}, (k=1)] € RV, G8(k—1) = [Ca(k— 1), ..., Comy (k — 1), W21 (k —
1), .o, Womy (k= 1), Tag(k — 1), ..., Doy (k — DT € R3M2X1 thus 9% (k — 1) =
08 (k—1)—05*, BS; (k—1) = 2u; (k—1)ya; (k—1)za; (k— D (k—1) 2081

Br—1)
-~ Qk—1—v2i(k—1
BY.(k—1) = 2u j(k—1)y2j (k=2 (k—1) [T (k — 1) — e (k — 1)] S=—21E=D.

and B} (k — 1) = uj(k — Dok — 1), bk = 1) = R{ ,— €} _,. Define the
modeling error as follows:

ek —1) =5k —1)— y(k — 1), (8.18)

where y(k — 1) = fAk_l + gr_1 = X(k) — sx, (k — 1) is the network output and
vk — 1) = fr—1 + gk—1 = xn(k) — sx,(k — 1) is the nonlinear system output,
e(k — 1) € R; therefore, substituting y(k — 1), y(k — 1), (8.16), and (8.17) in (8.18),
it gives

ek—1)=Bl 0k —1)+ uk—1), (8.19)

where Bl | = [B$T(k — 1), B/T(k — 1)] € RV3m4m0) gk — 1) = [98(k —
1,07 (k—1)]T e R3matmxl e — 1) = u8k—1)+pul k=1 e R, 6/ (k—1)
and B/T (k—1) are givenin (8.16), and 68 (k—1) and B&T (k—1) are given in (8.17).

Define the state error as X, (k) = X, (k) — x, (k). From (8.18), it gives X, (k) =
sxp(k — 1) +y(k — 1) and x, (k) = sx,(k — 1) + y(k — 1), and subtracting the
second equation to the first gives X, (k) — x,(k) = s[X,(k — 1) —x,(k — D] +
[y(k — 1) — y(k — 1)]. Substituting X, (k) and e(k — 1) of (8.18) in the above
equation gives

X (k) = 5%, (k — 1) + e(k — 1). (8.20)

5 Structure Updating

Choosing an appropriate number of hidden neurons is important in designing
evolving intelligent systems, because too many hidden neurons result in a complex
evolving system that may be unnecessary for the problem, and it can cause
overfitting [33], whereas too few hidden neurons produce a less powerful neural
system that may be insufficient to achieve the objective. The number of hidden
neurons is considered as a design parameter, and it is determined based on the input-
output pairs and on the number of elements of each hidden neuron. The basic idea
is to group the input-output pairs into clusters and use one hidden neuron for one
cluster; i.e., the number of hidden neurons equals the number of clusters [6—11, 15—
18, 22].
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One of the simplest clustering algorithms is the nearest neighborhood clustering
algorithm. In this algorithm, the first data are considered as the center of the first
cluster. Then, if the distances from a datum to the cluster centers are less than a
prespecified value (the radius r), this datum is set into the closest cluster; otherwise,
set this datum as a new cluster center. The details are given as follows.

Consider x, (k — 1) as a newly incoming pattern; then from (8.6) it is obtained:

plk—1)= max z1;(k—1). (8.21)
1<j<ml

If p(k — 1) < r, then a new hidden neuron is generated (each hidden neuron
corresponds to each center), and m; = mj + 1, where r is a selected radius,
r € (0, ). Once a new hidden neuron is generated, the next step is to assign initial
centers and widths of the network, and a new density with value 1 is generated for
this hidden neuron.

Cl,my+1 (k) = xp(k), wl,ml—i-l(k) = rand,

8.22
Uln11+l(k) = y(k), dn11+l(k) =1 ( )

If p(k — 1) > r, then a hidden neuron is not generated. If z1;(k — 1) = p(k — 1),
the winner neuron j* is obtained, and the winner neuron is a neuron that increments
its importance in the algorithm, then its density must be increased and is updated as
follows:

dje (k) = dje (k) + 1. (8.23)

The above algorithm is no longer a practical system if the number of input-output
pairs is large because the number of hidden neurons (clusters) grows, even some
data are grouped into hidden neurons (clusters). Therefore, a pruning method is
required [6-8, 11, 16, 17, 22]. The pruning algorithm is based on the density where
the density is the number of times each hidden neuron is used in the algorithm.
From (8.22), it is obtained that when a new hidden neuron is generated, its density
starts at one, and from (8.23), it is known that when a datum is grouped in an existing
hidden neuron, the density of this hidden neuron is increased by one. Then, each
cluster (hidden neuron) has its own density. The least important hidden neuron is
the hidden neuron which has the smallest density. After some iterations (AL) the
least important hidden neuron is pruned if the value of its density is smaller than a
specified umbral (d,,). The details are given as follows.

Each AL iterations where AL € R, consider

din(0) = min d;(6) (8.24)
=jz=mj

If my > 2 (if there is one hidden neuron given as m| = 1, the hidden neuron cannot
be pruned) and if dmin(k) < d,, this hidden neuron is pruned, where d, € N is
the minimum selected allowed density, and it is called the umbral parameter. Once a
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hidden neuron is pruned, the next step is to assign centers and widths of the network.
When dj (k) = dpin(k) the looser neuron j, is obtained, the looser neuron is the
least important neuron of the algorithm, if j < j, do nothing, but if j > j, all the
parameters are updated as follows:

clj—1k) =c1,j k), wy j_1(k) =wy, k),

8.25
vij—1(k) =vi(k), dj1(k) =d;k). (8.2

The above parameters updating moves the looser neuron j, to the last element (j =
my1). For j = m, the looser neuron is pruned as follows:

ctom (k) =0, wim k) =0, vy, (k) =0, dp,(k)=0. (8.26)

Then m is updated as m; = m| — 1 to decrease the size of the network.
If dmin(k — 1) > d,, or m1 = 1, do nothing.
Finally L isupdatedas L = L + AL.

Remark 8.5 The parameters L and AL are because the pruning algorithm does not
work in each iteration. The initial value of L is AL, the pruning algorithm works at
the first time when k = L, and then L is increased by AL. The pruning algorithm
works each AL iteration. The parameter AL is found empirically as 5d,,; thus, the
pruning algorithm only has d,, as the design parameter.

6 Stability Analysis

First, an important definition and theorem are mentioned. Later, the main stability
theorem is presented.
Consider the following discrete-time nonlinear system:

X1 = f [xk, uel, (8.27)

where u; € R™ is the input vector, x; € R" is the state vector, and uy and xj are
known. f is an unknown nonlinear smooth function f € C*°.
Definition 8.1 The system (8.27) is said to be uniformly stable if Ve > 0,35 = 8(¢)
such that

lxkill <& = llxkll <€, Vk>ki. (3.28)

If the system has § = §(e, k), then the system (8.27) is simply stable.

Now, a theorem for the stability of discrete-time nonlinear systems taken from
[22] will be given.
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Theorem 8.1 Let Li(x(k)) be a Lyapunov-like function of the discrete-time non-
linear system (8.27), if it satisfies

v1 (lxkl) < L) < y2 Ulxell)

8.29
ALi(x0) < —y3 (k) + 73 8), (8:29)

where § is a positive constant, y| (-) and y> (-) are K functions, and y3 () is a K
function, then the system (8.27) is uniformly stable.

Proof See [22] for the proof.

Remark 8.6 The continuous-time version of the above theorem is given by [38].
The main difference between the continuous-time stability theorem of [38] and
the discrete-time stability theorem of [22] is that in the first, the derivative of the
Lyapunov function is used, and in the second, the difference of the Lyapunov-like
function is used.

Now, the stability of the proposed algorithm is analyzed.

Theorem 8.2 Consider the evolving intelligent system (8.4), (8.6), (8.22), (8.30) to
model the nonlinear systems with dead-zone input (8.1), (8.2), (8.3), and use the
recursive least square updating function:

(k) =0k — 1) — 5= PiBi—te(k — 1), (8.30)

Py = Py — ﬁpk—lBk—lBkT,IPk—l, ’
where Qr—1 = 10 + B]Z—_lpklekfly Ri—1 =20k—1 + BkT_IPklekfly Bl?—l and
0(k — 1) are given in (8.19), and Py_; € R3M2tm>x3matm) i g positive definite
covariance matrix. Therefore, the average error of the modeling error is uniformly
stable and will converge to

2
Bl  Pi_1Bi_ m
limsup ) :( -1 Pt Bit) Ahk—1 <X, (8.31)

where W is the upper bound of the uncertainty u(k — 1), |uk — 1)| < 1.
Proof See [39] for the proof.

Remark 8.7 The parameter m (number of neurons) is finite because the clustering
and pruning algorithms do not let m; become infinity. The number of neurons m
is changed by the clustering and pruning algorithms, and m; only changes the
dimension of BkT_l and 0 (k — 1); thus the stability result is preserved.
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7 Proposed Algorithm

The proposed algorithm is finally as follows:

1.

Select the following parameters: for the clustering algorithmas 0 <r < 1 € R
and for the pruning algorithm as d, € N (L = L + AL, AL = 5d,). If r is
bigger, more neurons could be generated. If d, is smaller, more neurons could
be pruned. If there are many neurons that are generated and pruned, then it could
cause like a chattering in the modeling. Consequently, only the required neurons
should be generated and pruned in the algorithm.

. For the first data k = 1 (where k is the iterations number) and m = 1 (where m

is the hidden neurons number), the initial parameters of the least square algorithm
are P; € RImatm)x30matm) ywih diagonal elements, vy (1) = y(1), c11(1) =
x(1), and wi1(1) = rand € (5, 15) (v is the initial parameter of the consequent
part, and c11 and wq; are the centers and widths of the membership function of
the antecedent part), rand is a random number which lets to find some similar
alternative results, vo1 (1) = y(1), c21(1) = x,(1), wp1(1) = rand, my =size of
the input u(k), and the initial parameter of the clustering and pruning algorithm
is d1 (1) = 1 (where d is the density parameter).

. For the other data k > 2, evaluate the network parameters z;;(k — 1), by (k — 1),

22j(k — 1), and by (k — 1) with (8.6), evaluate the output of the network yk—1)
with (8.7), (8.8), and (8.18), evaluate the modeling error e(k — 1) with (8.18),
update the parameters of the least square algorithm vy;(k), ¢y j(k),Awl j k),
v2j(k), c2j(k), and wyj(k) with (8.30) (where j = 1...m; for f;_; and
Jj = 1...my for g;_1), and evaluate the parameter of the clustering and pruning
algorithms p(k — 1) with (8.21).

The updating of the clustering algorithm is as follows:

. If p(k — 1) < r, then a new neuron is generated (m; = my + 1), where r €

(0, 1) (i.e., the number of neuron is increased by one), assign initial values to the
NEW Neuron as Cim;+1(k), Wi, +1k), Vim +1(k), and dy,, 41 (k) with (8.22), the
values are assigned for Py € S‘Eé(m”ml“)“(m”m‘“) from elements m» + 1 to
my + my + 1 with diagonal elements (where Py, vy;(k), c1j(k), and wy (k) are
the parameters of the least square algorithm, and d (k) is the density parameter,
j=1...mp),and go to 3.

. If p(k — 1) > r, then a neuron is not generated, and if z1;(k — 1) = p(k — 1),

the winner neuron j* is obtained, the value of the density d ;= (k) of this hidden
neuron is updated with (8.23), the winner neuron is a hidden neuron that
increments its importance in the algorithm, and go to 3.

The updating of the pruning algorithm is as follows:

. For the case that k = L, the pruning algorithm works (the pruning algorithm does

not work in each iteration), evaluate the minimum density dpin (k) with (8.24),
and L isupdatedas L = L + AL.

. If my > 2 and if dpin(k) < dy, this hidden neuron is pruned, where d,, € N

is the density umbral, if dj(k — 1) = dpin(k) the looser neuron j, is obtained,
the looser neuron is the least important neuron of the algorithm, assign values
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to c1(k), wyj(k), vij(k), and d;(k) with (8.25) and (8.26) to prune the looser
neuron jy, assign values for Py € R32Fm=Dx30ma+mi=1) from elements my+1
to my +m — 1 with diagonal elements to prune the looser neuron j,, (where Py,
v1j(k)cyj(k), and wy (k) are the parameters of the least square algorithm and
dj(k) is the density parameter j = 1...m1), update m; as m; = m; — 1 (i.e.,
the number of hidden neurons is decreased by one), and go to 3.

8. If dpin(k) > d, or my = 1, this neuron is not pruned, and go to 3.

8 Simulations

In this section, the suggested online evolving intelligent system is applied for the
modeling of nonlinear system with dead-zone input. Note that the structure and
parameters updating of the proposed approach work at the same time. The algorithm
of this chapter is compared with the Kalman filter algorithm of [25, 27, 35] and with
the evolving algorithm of [36] because the above neuro fuzzy systems have a similar
structure. In this section the proposed algorithm is called ModifiedEvolving, the
Kalman filter is called KalmanFilter, and the evolving algorithm is called Evolving.

The root mean square error (RMSE) is used to obtain the algorithms’ perfor-
mance, and it is given as follows [18, 22]:

1
(1)
RMSE = <ﬁk§xi (k)) , (8.32)

where X; (k) is the state error of (8.20), and 7 is the state number.

Example 8.1 The nonlinear system used for the modeling is expressed as follows:

x1(k) =x1(k = 1) + Txp(k — 1),
x2(k) = x2(k — 1)

l—exp(—x1(k—=1)) _ sin(xy (k=1)) cos(xa (k—1)) (8.33)
+T 1'3<1+eXP(—xz(k—1))> 2 2 k=1 +x3(k—1)+1 )

: 2
+ (sm(xl(k—l)xz(k—l)])'—st-cos (xz(k—l))+1.5> ulk —1) + 0.2rand] ,

where v(k — 1) = 0.18 sin (1.57(k — 1)T) 4+ 0.28 sin (0.57(k — 1)T), T = 0.01 is
the system input, the dead-zone u(k — 1) is given as (8.2) with m, = 0.1, m; = 0.1,
b, = 0.1, b = —0.1 for the first half of the time, and m, = 0.2, m; = 0.2, b, = 0.2,
b; = —0.2 for the second half of the time. x{(1) = 0.5, x,(1) = 0 are the initial
conditions. The nonlinear system has the form (8.1). The data for 2000 iterations are
used for the modeling. The signal 0.2 rand is a noise signal where rand are random
numbers.
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Fig. 8.3 The dead-zone

KalmanFilter is given in [25, 27, 35], with parameters x (k) = [x1 (k) , x1 (k)]T,
T (k) € B2, P11 = Py = diag(1 x 1076) ¢ R21+D>x20+D,

Evolving is given in [36] with parameters x (k) = [x] (k) , x1 (k)]T, X (k) € §R2,
S = diag(0.1) € R**2, P;; = Py; = diag(100) € R3+D>x20+D " — 07 and
dy, = 4.

ModifiedEvolving is given as (8.4), (8.6) or (8.4), (8.7), (8.8) with parameters
x(k) = [x1 (k) , x2 ()T, T (k) € R%, s = 0.1, P, = diag(100) € RII+D>20+D
r=0.7,and d, = 4.

Figure 8.3 shows the dead-zone. The states’ approximation is shown in Figs. 8.4
and 8.5, and state errors are shown in Fig. 8.5. The growth of the hidden neurons is
shown in Fig. 8.6. Table 8.1 shows the comparison of the RMSE and neurons for the
modeling of three algorithms.

From Fig. 8.3, it is shown that the dead-zone changes in the half of the time.
From Figs. 8.4, 8.5, 8.6, and 8.7 and Table 8.1, it can be seen that ModifiedEvolving
achieves better accuracy when compared with both the Evolving and KalmanFilter
because the first follows better the signals than the others, and also the RMSE
and neuron number for the first are smaller than for the others. Consequently, the
proposed algorithm is good for the modeling of the first nonlinear system with dead-
zone input.
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Fig. 8.4 The approximation of the state x|

Fig. 8.5 The approximation of the state xo
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Fig. 8.6 The RMSE

Table 8.1 Results for Methods Neurons | RMSE
Example 8.1 -
KalmanFilter 12 0.1798
Evolving 12 0.0240
ModifiedEvolving | 7 0.0036

Example 8.2 The nonlinear system used for the modeling is expressed as follows

[3]:

xi(k) =x1(k = 1) + Txa(k — 1),
x2(k) = xa(k — 1)

4T [_2'3 (M) +37 <x2(k—1)Sin(xl(k—l)xz(k—l))COS(Xz(k—l))>

I+exp(—x2(k—1)) =1 +x3(k—1)+1
+1.5x1(k — Dxo(k — 1) +0.7x1 (k — l)xé’(k — 1) sin(2xq(k — 1))
+0.4x12(k — Dxp(k — 1) +3.5u(k — 1) — 0.5 rand] ,

(8.34)
where v(k — 1) = 0.18sin (1.57(k — 1)T) + 0.28 sin (0.57(k — 1)T), T = 0.01 is
the system input, the dead-zone u(k — 1) is given as (8.2) with m, = 0.1, m; = 0.1,
b, = 0.1, by = —0.1 for the first half of the time, and m, = 0.05, m; = 0.05,
b, = 0.05, by = —0.05 for the second half of the time. x; (1) = 0.5, and x,(1) =0
are the initial conditions. The nonlinear system has the form (8.1). The data for 2000
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Fig. 8.7 The neurons number

iterations are used for the modeling. The signal — 0.5rand is a noise signal where
rand are random numbers.

KalmanFilter is given in [25, 27, 35], with parameters x (k) = [x] (k) , x| "7,
T (k) € R2, P11 = Py = diag(l x 1070) ¢ R2I+D>20+D,

Evolving is given in [36] with parameters x (k) = [x] (k) , x| 17, % (k) € R?,
S = diag(0.1) € R**2, P = Py = diag(100) € R3IT*20+D 1 — 0.7, and
dy = 4.

ModifiedEvolving is given as (8.4), (8.6) or (8.4), (8.7), and (8.8) with parameters
x(k) = [x1 (k) , x2 (O)]T, T (k) € R%, s = 0.1, P, = diag(100) € R3UFD>x3A+D,
r=0.7,and d, = 4.

Figure 8.8 shows the dead-zone. The states’ approximation is shown in Figs. 8.9
and 8.10, and state errors are shown in Fig. 8.11. The growth of the hidden neurons
is shown in Fig. 8.12. Table 8.2 shows the comparison of the RMSE and neurons for
the modeling of three algorithms.

From Fig. 8.8, it is shown that the dead-zone changes in the half of the time. From
Figs. 8.9, 8.10, 8.11, and 8.12 and Table 8.2, it can be seen that ModifiedEvolving
achieves better accuracy when compared with both the Evolving and KalmanFilter
because the first follows better the signals than the others, and also the RMSE
and neuron number for the first are smaller than for the others. Consequently, the
proposed algorithm is good for the modeling of the second nonlinear system with
dead-zone input.
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Fig. 8.8 The dead-zone

Fig. 8.9 The approximation of the state x1
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Fig. 8.10 The approximation of the state x

Fig. 8.11 The RMSE
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Fig. 8.12 The neurons number

Table 8.2 Results for Methods Neurons | RMSE
Example 8.2 -
KalmanFilter 12 0.2030
Evolving 10 0.0337
ModifiedEvolving | 9 0.0059

Remark 8.8 The nonlinear systems (8.33) and (8.34) are different because in the
first fx—1 is bounded and gx_; changes with the time, while in the second f;_; is
not bounded and gi_ is constant. In addition, the noise signals are different for both
models.

Remark 8.9 The proposed algorithm approximates the behavior of the nonlinear
systems (8.33), (8.34) which includes fy_1 and gx_1, and the dead-zone u(k — 1) is
inside of gx_1; therefore, the proposed algorithm approximates the behavior of the
nonlinear systems considering the dead-zone behavior.

9 Concluding Remarks

In this chapter, an approach using an evolving intelligent system was presented
for the modeling of nonlinear systems with dead-zone input. It is effective, as it
does not require retraining of the whole model. It is based on recursive building
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of the hidden neuron base by unsupervised and supervised learning, the hidden
neuron-based model structure learning and parameter estimation. The simulation
showed the proposed evolving system achieves better performance when compared
with both the Kalman filter and evolving algorithms for the modeling of nonlinear
systems with dead-zone input. The results illustrate the viability, efficiency, and
the potential of the approach when it used a limited amount of initial information,
especially important in autonomous systems and robotics. As a future research, the
proposed evolving intelligent system will be applied for the modeling of robotic or
mechatronic systems.
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Chapter 9 ®
Evolving Intelligent Algorithms oy
for the Modeling of Brain and Eye Signals

1 Introduction

In recent years, there are two important topics that are related with the modeling;
they are the evolving intelligent systems and stable intelligent systems.

The evolving intelligent systems are characterized by abilities to adjust their
structure and parameters to the varying characteristics of the environment (with the
term of environment embracing processes/phenomena with which the system has to
interact and or deal with the users using the system) [1-3]. Some important results
are given by Garcia-Cuesta and Iglesias [4], Juang et al. [5], Leite et al. [6], Lemos
et al. [7, 8], Lughofer [9], Lughofer and Angelov [10], Lughofer and Bouchot [11],
Lughofer [12, 13], Maciel et al. [14], Ordofiez et al. [15], and Rong et al. [16-18].
The problem of the classification of streaming data from a dimensionality reduction
perspective is addressed by Garcia-Cuesta and Iglesias [4]. The implementation
of a zero-order Takagi-Sugeno-Kang (TSK)-type fuzzy neural network (FNN) is
proposed by Juang et al. [S]. An evolving fuzzy granular framework to learn from
and model time varying fuzzy input-output data streams is introduced by Leite et al.
[6]. A class of evolving fuzzy rule-based system as an approach for multivariable
Gaussian adaptive fuzzy modeling is considered by Lemos et al. [7]. A new
approach for evolving fuzzy modeling using tree structures is proposed by Lemos
et al. [8]. A new algorithm for incremental learning of a specific form of Takagi-
Sugeno fuzzy systems is introduced by Lughofer [9]. New approaches to handling
drift and shift in online data streams with the help of evolving fuzzy systems
(EFSs) are presented by Lughofer and Angelov [10]. In [11], the authors examine
approaches for reducing the complexity of EFSs by eliminating local redundancies
during training. A new methodology for conducting active learning in a single-pass
online learning context is introduced by Lughofer [12]. New dynamic split-and-
merge operations for evolving cluster models, which are learned incrementally and

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 149
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expanded on the fly from data streams, are considered by Lughofer [13]. In [14], the
authors address option pricing using an evolving fuzzy system model and Brazilian
interest rate options data. The use of evolving classifiers for activity recognition
from sensor readings in ambient assisted living environments is described by
Ordoiiez et al. [15]. In [16], a Sequential Adaptive Fuzzy Inference System called
SAFIS is developed based on the functional equivalence between a radial basis
function network and a fuzzy inference system (FIS). The performance evaluation
of the recently developed Sequential Adaptive Fuzzy Inference System (SAFIS)
algorithm for classification problems is presented by Rong et al. [17]. In [18],
two adaptive fuzzy control schemes including indirect and direct frameworks are
developed for suppressing the wing-rock motion. The above systems are evolving
and soft; however, they are not guaranteed to be stable.

The stable intelligent systems are characterized to be systems where some kind
of stability is guaranteed, i.e., for bounded inputs in the algorithms, there are also
bounded outputs and bounded parameters. Some important results are given by
Ahn [19], Ahn and Lim [20], Ren and Lv [21], Rubio et al. [22, 23], Wang and
Huang [24], Yu and Rubio [25], and Zhang et al. [26]. In [19], an error passivation
approach is used to derive a new passive and exponential filter for switched Hopfield
neural networks with time delay and noise disturbance. The model predictive
stabilization problem for Takagi-Sugeno (T-S) fuzzy multilayer neural networks
with general terminal weighting matrix is investigated by Ahn and Lim [20]. Two
stable neural networks are introduced by Ren and Lv [21] and Rubio et al. [22]. The
aforementioned studies are stable and soft; nevertheless, they are not evolving.

There is research where evolving and stable characteristics are possible and also
combined whenever assuring some sort of convergence to optimality given by Rubio
etal. [23], Lughofer [27], and Rubio [28]. The systems are novel because they merge
the main characteristics of the above techniques into one algorithm which has the
main characteristics to be evolving, soft, and stable. See Fig.9.1.

This chapter presents the comparison of three intelligent algorithms for the
modeling of brain and eye signals. The signals could be applied for the patients
who cannot move their bodies; therefore, they could use their brains or their eyes to
say what they want or need. The algorithms are the SAFIS algorithm [16] which is
an evolving intelligent system, SBP [22], which is a stable intelligent system, and
SOFMLS [28], which is an evolving and stable intelligent system.

The chapter is organized as follows. In Sect. 2, the SAFIS, SBP, and SOFMLS
algorithms are detailed. In Sect. 3, the encephalography (EEG) and electrooculo-
gram (EOG) signals are described. In Sect. 4, the comparison of three algorithms for
the modeling of brain and eye signals is presented. Section 5 presents conclusions
and suggests future research directions.
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Fig. 9.1 Evolving and stable intelligent systems

2 Preliminaries

In this section the three algorithms of this chapter are described.

2.1 SAFIS Algorithm

A sequential adaptive fuzzy inference system (SAFIS) is developed based on
the functional equivalence between a radial basis function network and a fuzzy
inference system (FIS). In SAFIS, the concept of “Influence” of a fuzzy rule is
introduced, and using this the fuzzy rules are added or removed based on the input
data received so far. If the input data do not warrant adding of fuzzy rules, then
only the parameters of the “closest” (in a Euclidean sense) rule are updated using
an extended Kalman filter (EKF) scheme.
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The SAFIS algorithm is summarized as below [16]:

Given the growing and pruning thresholds eg, e, for each observation (xx, yi),

where x; € %Nx,yk eRMandk=1,2,..., do:

(1) Compute the overall system output:

Ny
Zaan (xx)
~ _ n=1
k = Ni ,
> Ru(x)
n=1

where

1
Ry (xk) = exp (—; llxx — Mn”z) ;

n

where N, is the number of fuzzy rules.
(2) Calculate the parameters required in the growth criterion:

e = max {emaxy”, émin}, 0 <y < 1,
ek = Yk — Yk-
(3) Apply the criterion for adding rules:
If
lxk — trnll > €,

and

(1.8n [|xk — ern D™ .
Np+1

> (1.8g,)Nx
n=1

Eint(Np + 1) = |e|

and allocate a new rule with

ANn+1 = €k,
MUNh+1 = Xk,
ONmt1 =1 Xk — ppnll -

9.1

9.2)

9.3)

(9.4)

9.5)

(9.6)
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Else, adjust the system parameters a,,, 4, 0y, for the nearest rule only by using
the EKF method:

-1
Ky = Pe—\Bi [Ri + Bl Pe—1B] ™,

Ok = Ok—1 + Krex, 9.7
Pe=[I — KxBl'] Pc1 + g1,

Where Qk = [01 e 97‘)’! o 'eNh]T = [als M1, 015« 5Qrns brns Orpse «« s@Nhy MNR>
onNR].
Check the criterion for pruning the rule:
If
(1.80,,) N
Eine(rn) = layn| #, 9.8)

> (1.8g,)Nx
n=1

remove the rnth rule, and reduce the dimensionality of EKF.
EndIf. EndlIf.

Remark 9.1 The significance of a neuron proposed in GAP-RBF is defined based
on the average contribution of an individual neuron to the output of the RBF
network. Under this definition, one may need to estimate the input distribution

range S(X) = MLH% However, the influence of a rule introduced in this

> (8o
1

n=
chapter is different from the significance of a neuron proposed in GAP-RBF. In
fact, the influence of a neuron is defined as the relevant significance of the neuron
compared to summation of significance of all the existing RBF neurons. As seen
from Eq. (9.8), with the introduction of influence one need not estimate the input
distribution range and the implementation has been simplified.

Remark 9.2 In parameter modification, SAFIS utilizes a winner rule strategy
similar to the work done by Huang et al. The key idea of the winner rule strategy is
that only the parameters related to the selected winner rule are updated by the EKF
algorithm in every step. The “winner rule” is defined as the rule that is the closest (in
the Euclidean distance sense) to the current input data as in. As a result, in SAFIS,
a fast computation is achieved.

Remark 9.3 In SAFIS, some parameters need to be decided in advance according
to the problems considered. They include the distance thresholds (€max, Emin, V), the
overlap factor (n) for determining the width of the newly added rule, the growing
threshold (e;) for a new rule, and the pruning threshold (e,) for removing an
insignificant rule. A general selection procedure for the predefined parameters is
given as follows: max is set to around the upper bound of input variables, enin is
set to around 10% of emax, and y is set to around 0.99. ¢, is set to around 10%
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of e,. The overlap factor (n) is utilized to initialize the width of the newly added
rule and chosen according to different problems. It is suggested to be chosen in
the range [1.0, 2.0]. The growing threshold e, is chosen according to the system
performance. The smaller the eg, the better the system performance, but the resulting
system structure is more complex.

2.2 SBP Algorithm

The stable backpropagation (SBP) algorithm is developed with a new time varying
rate to guarantee its uniformly stability for online identification, and its identification
error converges to a small zone bounded by the uncertainty. The weights’ error is
bounded by the initial weights’ error, i.e., overfitting is eliminated in the mentioned
algorithm [29].

The SBP algorithm is as follows [22]:

(1) Obtain the output of the nonlinear system y(k) with Eq.(9.9). Note that the
nonlinear system may have the structure represented by Eq. (9.9); the parameter
N is selected according to this nonlinear system.

yk) = f[Xk], 9.9)

where X = [xi(k)...,x;(k), ..., xn(R)]T = [yk—=1),...,yk—n),
utk=1),...,utk—m]1" € RV*' (N = n + m) is the input vector,
u(k — 1) € R is the input of the plant, y(k) € R is the output of the plant,
and f is an unknown nonlinear function, f € C°.

(2) Select the following parameters: V| and W as random numbers between 0 and
1, M as an integer number, and o as a positive value smaller or equal to 1;
obtain the output of the NN y(1) with Eq. (9.10).

M
y(k) = Vidy = Zijdyk,
j=1
P = [¢1k,.-.,¢jk,--.,¢Mk]T, (9.10)
N

¢k = tanh (Y _ Wijexi ().

i=1

(3) For each iteration k, obtain the output of the NN y(k) with Eq.(9.10), also
obtain the identification error e(k) with Eq.(9.11), and update the parameters
Vik41 and W;jr1 with Eq. (9.12).

e(k) =y(k) — y(k), O.11)
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Vikt1 = Vik — axdpjre(k),
Wijk+1 = Wijk — axoijre(k),

(9.12)
where the new time varying rate oy is
@0

M M N ’
2| 3+ ¢+ DD ok
j=1

j=li=1

O =

N
wherei =1,...,N,j=1,..., M,0;j4 = ijsechz(ZWijkxi(k))xi(k) e R.
i=1
Remark 9.4 There are two conditions for applying this algorithm for nonlinear
systems: The first one is that the nonlinear system may have the form described by
(9.9), and the second one is that the uncertainty w (k) may be bounded.

Remark 9.5 The value of the parameter used for the stability of the algorithm &
is unimportant, because this parameter is not used in the algorithm. The bound of
w(k) is needed to guarantee the stability of the algorithm, but it is not used in the
BP algorithm (9.10), (9.11), (9.12).

Remark 9.6 The proposed NN has one hidden layer. It was reported in the
literature that a feedforward neural network with one hidden layer is enough to
approximate any nonlinear system.

Remark 9.7 Note that the behavior of the algorithm could be improved by
changing the values of M or «g.

2.3 SOFMLS Algorithm

An online self-organizing fuzzy modified least-square (SOFMLS) network has
the ability to reorganize the model and adapt itself to a changing environment
where both the structure and learning parameters are performed simultaneously. The
stability of the mentioned algorithm is guaranteed, and the bound for the average
identification error is found.

The SOFMLS algorithm is as follows [28]:

(1) Select the following parameters: The parameter of the modified least square
algorithm is Ry > 0 € R, the parameter of the clustering algorithm is 0 < r <
1 € R, and the parameter of the pruning algorithmisd, € N (L = L + AL,
AL = 5d,).

(2) For the first data k = 1 (where k is the number of iterations), M = 1 (where M
is the number of rules or clusters), the initial parameters of the modified least
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square algorithm are P = ¢l € FIMIM (where 0 < ¢ € R), v1(1) = y(1),
N

> w

c1(1) = ile ,and wi(1) = rand € (0, 1) (v; is the initial parameter of
the consequent part, c; and w; are the centers and widths of the membership
function of the antecedent part), and the initial parameter of the clustering and
pruning algorithms is d; (1) = 1 (where d is the density parameter).

For the other data where k > 2, evaluate the fuzzy network parameters z ; (k—1)
and b(k — 1) with (9.13), evaluate the output of the fuzzy network y(k — 1)
with (9.13), (9.14), and (9.15), also evaluate the identification error e(k — 1)
with (9.16), update the parameters of the modified least square algorithm v; (k),
c¢j(k), and w; (k) with (9.17), and evaluate the parameter of the clustering and
pruning algorithm p(k — 1) with (9.18).

M
blk—1) = zj(k—1),

j=1
2= 1) =exp|—y2k— 1], ©.13)

N
ij(k—l)(x,- (k=1)—c;j(k—1))

yitk—1) == N :
¢jtk —1) = z;(k — 1)/b(k — 1), (9.14)
M
Yk =1 =Y vitk— Dtk —1) =V (k—DHPk—1), (9.15)
j=1
etk —1) =5k — 1) — y(k — 1), (9.16)
— Ok —1)— L _
0(k) = 0(k 1)1 e PkBk_Tle(k 1), ©.17
P = Pr—1 — g Pe—1Bk—1By_; Pi—1,
ptk—1) = max z;(k —1). (9.18)

The updating of the clustering algorithm is as follows:

If p(k — 1) > r, then a rule is not generated, the winner rule j* is presented
when z;(k — 1) = p(k — 1), and the value of the density d = (k) of this rule is
updated with (9.19). The winner rule is a rule that increments its importance in
the algorithm. Go to 3.

dje (k) = dje (k) + 1. (9.19)
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(5) If p(k — 1) < r, then a new rule is generated (M = M + 1), where r €
(0, 1) (e.g., the number of rules is increased by 1), the initial values of cps41(k),
w41 k), vyr+1(k), and dpr41 (k) are assigned to the new rule with (9.20), and
the missing parameters are added to have P, € RIMAD>SMAD gieh diagonal
elements (where P, vj(k), c;(k), and w; (k) are the parameters of the modified
least square algorithm, and d; (k) is the parameter of the density, j = 1... M).
Goto 3.

N

> xi [ () =0 (0] ©20)
e = S wy () = E—mp——, '

vm+1(k) = y(k),  dyyi(k) = 1.

Mz

The updating of the pruning algorithm is as follows:

(6) For the case where k = L, the pruning algorithm works (the pruning algorithm
is not active at each iteration) and evaluates the minimum density dmin (k)
with (9.21), and L isupdatedas L = L + AL.

dmin(k) = min d; (k). 9.21)
I<j<Mm

(7) If M > 2 and dpin(k) < dy, then this rule is pruned, where d,, € N is the
density threshold, and the looser rule j, is presented when d;(k) = dmin(k).
The looser rule is the least important rule of the algorithm, the values of c; (k),
w;(k), vj(k), and d; (k) are assigned with (9.22) and (9.23) to prune the looser
rule j,, and in the same way, the values of Py are assigned to prune the looser
rule j, (where Py, v;(k), cj(k), and w;(k) are the parameters of the modified
least square algorithm and d; (k) is the density parameter, j = 1... M), and M
is updated as M = M — 1 (e.g., the number of rules is decreased by 1). Go to 3.

i) = (0, w1 (K) = w; k), 02
w1 (k) = vj(K), i1 (k) = d; k), ©-22)

em) =0, wy®k) =0, wvy(k)=0, dyk) =D0. (9.23)

(8) If dmin(k) > d, or M = 1, then this rule is not pruned. Go to 3.

Remark 9.8 The networks of many earlier studies use membership functions, as
shown in this study, and they also use the function y; (k —1). First, in the antecedent
part of the networks of the aforementioned references, 2N parameters are used for
each rule of the multidimensional membership functions, while in the antecedent
part of the network used in this study, two parameters are used for each rule
of the unidimensional membership functions (9.13). Second, the networks of the
aforementioned references use 1/0;;(k — 1), which can cause singularity in online
learning, while the network used in this study uses w;(k — 1) = 1/0j(k — 1) to
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avoid singularity. Some authors use the sum inference, product inference, or norm
inference; however, in this study, the mean inference y;(k — 1) (9.13) is used.

Remark 9.9 The idea to take the maximum of z;(k — 1) as in (9.18) to obtain the
winner rule is taken from the competitive learning of the adaptive resonance theory
(ART) recurrent neural network (in the case of the ART network, the winner rule is
the winner neuron).

Remark 9.10 In an earlier research, the second derivative of an objective function
is used to find the unimportant rule. In this study, the density parameter is used
to find the unimportant rule. In another study, the density as the population is
considered, the population of each cluster is monitored, and if it amounts to less
than 1% of the total data samples, the cluster is ignored at this iteration. The rule
is ignored as vgmin(k) = 0, and subsequently, this weight is ignored in the term
y(k — 1) of (9.15). The cluster is ignored in the algorithm at this iteration, but
the rule is not pruned; thus, the network cannot decrease. In other earlier work, two
threshold parameters are considered: one for adding rules and the other for removing
rules; however, they did not use the density parameter.

Remark 9.11 The parameter M (number of rules) is finite, because the algorithm
adds the necessary rules and prunes the unnecessary rules to adapt itself to the
changing environment. The number of rules M is changed by the clustering and
pruning algorithms, and M changes only the dimension of BkT_l and 6 (k — 1); thus,
the stability result is preserved.

Remark 9.12 The value of the parameter used for the stability of the algorithm @
is unimportant, because this parameter is not used in the algorithm. The bound of
u(k — 1) is needed to guarantee the stability in the algorithm.

Remark 9.13 The parameters L and AL are needed in (9.21), because the pruning
algorithm is not active at each iteration. The initial value of L is AL, and the pruning
algorithm works at the first time when k = L, and consequently, L is increased
by AL. The pruning algorithm works for each AL iteration. The parameter AL
was determined empirically as 5d,,; thus, the pruning algorithm has only d,, as the
designing parameter. Note that the behavior of the algorithm could be improved by
changing the values of ¢, R, r, or d,.

3 The Brain and Eye Signals

This section describes the characteristics of the brain and eye signals.

3.1 The EEG Signals

The difference of the potential in one membrane is obtained by the exchange
between the ions (Na+, Cl-, K+) being in the same. The neurons have a potential
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difference between the inside and outside which is called rest potential, and this
potential represents constant changes because of the impulses given by the neighbor
neurons [30, 31]. This potential difference can be measured in the brain cortex
using electrodes that convert the ion flow into electric flow. The characteristic of
the encephalography signal (EEG) is of 5-300 w0V in amplitude and of 0—150 Hz in
frequency [32, 33].

The EEG signals are waves similar to periodic, but the waves can change from
one time to other, and they have some characteristics which allow the modeling
[34, 35], as are the amplitude, the frequency, the morphology, the band, the rhythm,
and the duration [30, 33].

The following paragraphs show the characteristics that are considered for an adult
in vigilance [30, 33].

Alpha signal. It is the normal rhythm of the bottom and is the most stable and
typical in the human. It is found in the frequencies of 8—12 Hz+ 1 Hz. The amplitude
is between 20 and 60 wV. It can be seen generally in posterior regions with more
amplitude in the occipital lobes. See Fig. 9.2. It is more evident when the patient is
awake with closed eyes and in physical and mental rest, and it is stopped when the
eyes are opened or with the mental activity [30, 36].

Fig. 9.2 EEG signals
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Beta signal. It is found in the frequencies >13 Hz, in general between 14 and
35 Hz. The amplitude is usually low from 5 to 10 0V and is symmetric [30, 36]. See
Fig.9.2.

Theta signal. It has a frequency of 4—-8 Hz, is of half of low voltage, and is found
in the temporal regions [30, 36]. See Fig.9.2.

Delta signal. It is found in the second and the third stages of the dream. It has a
frequency of 0.5-3.5 Hz, and the amplitude is generally higher than 75 wV [30, 36].
See Fig.9.2.

3.2 The EOG Signals

The EOG signals are the signals obtained as a result of the eye movements of a
patient, and these EOG signals are detected using three electrodes: one electrode
on the temple, one above and other underneath of the eye. Usually, the detected
signals are by direct current (DC) coupling to specify the direction of the gaze. In
the experiments of this chapter, three electrodes are placed on the dominant side of
the patient eye according to the optimum positions suggested by Hori et al. [37],
Rubio et al. [38], and Yamagishi et al. [39].

Figure 9.3 shows the relationship between real eye movements (input) and the
EOG signals (output) of the system. Denote the upper and lower thresholds of the
vertical channel Ch.V as V1 and V2, respectively, and denote the upper and lower
thresholds of the horizontal channel Ch.H as H1 and H2, respectively. When the
EOG potential exceeds one of these thresholds, the output assumes ON, and when
the EOG potential does not exceed one of these thresholds, the output assumes OFF.
The process of transforming the EOG signals from the intention of the patient is as
follows [38, 39]:

1. Output Up is when it is obtained an Up behavior: First, Threshold V1 of the
vertical channel becomes ON, while Threshold V2 is OFF, and second, Threshold

Fig. 9.3 EOG signals
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V2 of the vertical channel becomes ON, while Threshold V1 becomes OFF. H1
and H2 of the horizontal channel remain OFF all the time.

2. Output Down is when it is obtained a Down behavior: First, Threshold V2 of the
vertical channel becomes ON, while Threshold V1 is OFF, and second, Threshold
V1 of the vertical channel becomes ON, while Threshold V2 becomes OFF. H1
and H2 of the horizontal channel remain OFF all the time.

4 Simulations

In this section, the three above detailed algorithms are applied for the modeling of
brain and eye signals. The aforementioned signals could be applied for patient who
cannot move their bodies; consequently, they could use their brains or their eyes to
say what they want or need. The SAFIS of [16], SOFMLS of [28], and SBP of [22]
are compared for the modeling of brain signals in Example 1 and for the modeling
of eye signals in Example 2. The root mean square error (RMSE) of [22, 28, 33, 40]
is used for the comparison results:

LN 3
_ | = 2
RMSE = (N];e (k)) , (9.24)

where e (k) is the learning error of (9.3), (9.16), and (9.11).

4.1 Example 1

Consider real data of brain signals [33] where 5528 pairs (u(k), y(k)) of 5.528 s are
used for the learning and 1844 pairs (u(k), y(k)) for 1.844 s are used for the testing.
The alpha signal is obtained in this study because it has more probabilities to be
found. The acquisition system is applied with a 28-year-old healthy man when his
eyes are closed. The inputs of all the intelligent systems are y(k), y(k+1), y(k+2),
y(k + 3), and the output of the intelligent systems is y(k + 4).

Considering Remark 9.3, the parameters for the SAFIS algorithm [16] are N, =
4,y =0.997, emax = 2,1 = 2, émin = 0.2, ¢, = 0.03, ¢, = 0.003. Considering
Remark 9.7, the parameters of the SBP algorithm [22] are N = 4, M = 4, ap =
0.25. Considering Remark 9.13, the parameters of the SOFMLS algorithm [28] are
N =4,P =cl € R* wherec =1, R, = 0.1,7 = 0.973, and d,, = 6.

Figure 9.4 shows the comparison results for the learning of the three algorithms.
Figure 9.5 gives the illustration of the rule (neuron) evolution for the three
algorithms during learning. Figure 9.6 shows the comparison results for the testing
of the three algorithms. Table 9.1 shows the RMSE comparison results for the
algorithms using (9.24).
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Fig. 9.4 Learning for Example 1

Fig. 9.5 Rule (neuron) evolution for Example 1
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Fig. 9.6 Testing for Example 1

Table 9.1 Results for Example 1

Methods Rules(Neurons) Learning RMSE Testing RMSE
SBP 4 0.0121 0.0233
SAFIS 29 0.0224 0.0077
SOFMLS 4 0.0118 0.0041

From Figs. 9.4, 9.5, and 9.6 and Table 9.1, it can be seen that the SOFMLS
presents the smallest learning and testing RMSE, the SAFIS presents the biggest
learning RMSE, the SBP presents the biggest testing RMSE, the SOFMLS and SBP
give the smallest number of neurons, and the SAFIS gives the biggest number of
neurons.

4.2 Example 2

Consider real data of eye signals of the up behavior [38] where 3572 pairs (u(k),
y(k)) of 3.572 s are used for the learning and 1192 pairs (u(k), y(k)) for 1.192
s are used for the testing. The up signals are used in this chapter. The acquisition
system is applied with a 25-year-old healthy man when his eyes are moving, and two
electrodes are used to find the signals as described in the aforementioned section.
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Fig. 9.7 Learning for Example 2

The inputs of all the intelligent systems are y(k), y(k + 1), y(k + 2), y(k + 3), and
the output of the intelligent systems is y(k + 4).

Considering Remark 9.3, the parameters for the SAFIS [16] are Ny, = 4, y =
0.986, emax = 0.1, n = 2, emin = 0.01, ¢, = 0.01, ¢, = 0.001. Considering
Remark 9.7, the parameters of the SBP [22] are N = 4, M = 3, a9 = 0.25.
Considering Remark 9.13, the parameters of the SOFMLS [28] are N = 4, P =
cl € R**3, where ¢ = 1, Ry = 0.1, = 0.973, and d,, = 6.

Figure 9.7 shows the comparison results for the learning of the three algorithms.
Figure 9.8 gives the illustration of the rule (neuron) evolution for the three
algorithms during learning. Figure 9.9 shows the comparison results for the testing
of the three algorithms. Table 9.2 shows the RMSE comparison results for the
algorithms using (9.24).

From Figs.9.7, 9.8, and 9.9 and Table 9.2, it can be seen that the SOFMLS
presents the smallest testing RMSE, the SBP presents the smallest learning RMSE,
the SAFIS presents the biggest learning RMSE, the SBP presents the biggest testing
RMSE, the SOFMLS gives the smallest number of neurons, and the SAFIS gives
the biggest number of neurons.
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Fig. 9.8 Rule (neuron) evolution for Example 2

Fig. 9.9 Testing for Example 2
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Table 9.2 Results for Example 2

Methods Rules(Neurons) Learning RMSE Testing RMSE
SBP 3 0.0146 0.0285
SAFIS 56 0.0434 0.0259
SOFMLS 2 0.0190 0.0157

4.3 Example 3

Consider real data of brain signals [33] where 5528 pairs (u(k), y(k)) of 5.528 s are
used for the learning and 1844 pairs (u(k), y(k)) for 1.844 s are used for the testing.
The alpha signal is obtained in this study because it has more probabilities to be
found. The acquisition system is applied with a 28-year-old healthy man when his
eyes are closed. The inputs of all the intelligent systems are y(k), y(k+1), y(k+2),
y(k + 3), and the output of the intelligent systems is y(k + 4).

Considering Remark 9.3, the parameters for the SAFIS algorithm [16] are N, =
4,y =099, emax = 1, n = 2, gmin = 0.1, ¢, = 0.01, ¢, = 0.001. Considering
Remark 9.7, the parameters of the SBP algorithm of [22] are N = 4, M = 3,
oo = 0.5. Considering Remark 9.13, the parameters of the SOFMLS algorithm [28]
are N =4, P, = cI € R**3, where c = 1, Ry = 0.05, 7 = 0.93, and d,, = 6.

Figure 9.10 shows the comparison results for the learning of the three algorithms.
Figure 9.11 gives the illustration of the rule (neuron) evolution for the three

Fig. 9.10 Learning for Example 3
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Fig. 9.11 Rule (neuron) evolution for Example 3

algorithms during learning. Figure 9.12 shows the comparison results for the testing
of the three algorithms. Table 9.3 shows the RMSE comparison results for the
algorithms using (9.24).

From Figs. 9.10, 9.11, and 9.12 and Table 9.3, it can be seen that the SOFMLS
presents the smallest learning and testing RMSE, the SAFIS presents the biggest
learning RMSE, the SBP presents the biggest testing RMSE, the SOFMLS gives the
smallest number of neurons, and the SAFIS gives the biggest number of neurons.

4.4 Example 4

Consider real data of eye signals of the down behavior [38] where 3572 pairs (u(k),
y(k)) of 3.572 s are used for the learning and 1192 pairs (u(k), y(k)) for 1.192
s are used for the testing. The up signals are used in this chapter. The acquisition
system is applied with a 25-year-old healthy man when his eyes are moving, and two
electrodes are used to find the signals as described in the aforementioned section.
The inputs of all the intelligent systems are y(k), y(k + 1), y(k +2), y(k + 3), and
the output of the intelligent systems is y(k + 4).

Considering Remark 9.3, the parameters for the SAFIS [16] are N, = 4,
y = 099, emax = 0.1, n = 2, epin = 0.01, ¢, = 0.01, ¢, = 0.001.
Considering Remark 9.7, the parameters of the SBP [22] are N = 4, M = 3,
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Fig. 9.12 Testing for Example 3

Table 9.3 Results for Example 3

Methods Rules(Neurons) Learning RMSE Testing RMSE
SBP 3 0.0079 0.3443
SAFIS 29 0.0256 0.0077
SOFMLS 2 0.0067 0.0043

a9 = 0.5. Considering Remark 9.13, the parameters of the SOFMLS [28] are
N =4, Py =cl € %, where ¢ = 1, Ry = 0.05, r = 0.96, and d,, = 6.

Figure 9.13 shows the comparison results for the learning of the three algorithms.
Figure 9.14 gives the illustration of the rule (neuron) evolution for the three
algorithms during learning. Figure 9.15 shows the comparison results for the testing
of the three algorithms. Table 9.4 shows the RMSE comparison results for the
algorithms using (9.24).

From Figs.9.13, 9.14, and 9.15 and Table 9.4, it can be seen that the SOFMLS
presents the smallest learning and testing RMSE, the SAFIS presents the biggest
learning RMSE, the SBP presents the biggest testing RMSE, the SOFMLS and SBP
give the smallest number of neurons, and the SAFIS gives the biggest number of
neurons.

Remark 9.14 In the simulations, selecting different parameters for the algorithms
of each example, the results present small variations.
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Fig. 9.13 Learning for Example 4

Fig. 9.14 Rule (neuron) evolution for Example 4
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Fig. 9.15 Testing for Example 4

Table 9.4 Results for Example 4

Methods Rules(Neurons) Learning RMSE Testing RMSE
SBP 4 0.0180 0.0305
SAFIS 40 0.0373 0.0297
SOFMLS 4 0.0146 0.0128

Remark 9.15 The SAFIS algorithm is applied in two synthetic examples and in the
Makey-Glass time-series prediction problem [16]. The SBP algorithm is applied in
a synthetic example and in the prediction of the loads distribution in a warehouse
[22]. The SOFMLS algorithm is applied in two synthetic examples and in the Box-
Jenkins furnace. This study is novel because it shows that the three algorithms can
be used for the modeling of other different kind of systems which are the real brain
and eye signals.

Remark 9.16 There is not a winner algorithm because the assumed tuning param-
eters for each method play their important role.
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5 Concluding Remarks

This chapter successfully demonstrated the development of the SAFIS, SBP, and
SOFMLS algorithms for the modeling of brain and eye signals. The simulation
showed that the three algorithms can be used satisfactorily for the learning and
testing of the real brain and eye signals. The learning could be applied for the
control or prediction designs, and the testing could be applied for the classification,
diagnosis, or prediction designs. The three methods can be used for the modeling of
continuous and soft nonlinear systems or for the modeling of any of the conventional
body signals. The three techniques are similar in that some parameters need to be
decided in advance according to the problems considered, and other parameters are
updated through the time. As a future work, some new evolving and stable intelligent
algorithms will be designed.

References

1. P. Angelov, D. Filev, N. Kasabov, Evolving Intelligent Systems, Methodology and Applications
(Wiley, New York, 2010)

2. M. Sayed-Mouchaweh, E. Lughofer, Learning in Non-Stationary Environments: Methods and
Applications (Springer, New York, 2012)

3. D. Leite, P. Costa, F. Gomide, Interval approach for evolving granular system modeling, in
Learning in Non-Stationary Environments: Methods and Applications (Springer, New York,
2012), pp. 273-304

4. E. Garcia-Cuesta, J.A. Iglesias, User modeling: through statistical analysis and subspace
learning. Expert Syst. Appl. 39, 5243-5250 (2012)

5. C.F. Juang, T.C. Chen, W.Y. Cheng, Speedup of implementing fuzzy neural networks with
high-dimensional inputs through parallel processing on graphic processing units. IEEE Trans.
Fuzzy Syst. 19(4), 717-728 (2011)

6. D. Leite, R. Ballini, P. Costa, F. Gomide, Evolving fuzzy granular modeling from nonstationary
fuzzy data streams, Evol. Syst. 3(2), 65-79 (2012)

7. A. Lemos, W. Caminhas, F. Gomide, Multivariable Gaussian evolving fuzzy modeling system.
IEEE Trans. Fuzzy Syst. 19(1), 91-104 (2011)

8. A. Lemos, W. Caminhas, F. Gomide, Fuzzy evolving linear regression trees. Evol. Syst. 2(1),
1-14 (2011)

9. E. Lughofer, FLEXFIS: a robust incremental learning approach for evolving Takagi-Sugeno
fuzzy models. IEEE Trans. Fuzzy Syst. 16(6), 1393-1410 (2008)

10. E. Lughofer, P. Angelov, Handling drifts and shifts in online data streams with evolving fuzzy
systems. Appl. Soft Comput. 11(2), 2057-2068 (2011)

11. E. Lughofer, J.L.. Bouchot, A. Shaker, On-line elimination of local redundancies in evolving
fuzzy systems. Evol. Syst. 2, 165-187 (2011)

12. E. Lughofer, Single pass active learning with conflict and ignorance. Evol. Syst. 3, 251-271
(2012)

13. E. Lughofer, A dynamic split-and-merge approach for evolving cluster models. Evol. Syst. 3,
135-151 (2012)

14. L. Maciel, A. Lemos, F. Gomide, R. Ballini, Evolving fuzzy systems for pricing fixed income
options. Evol. Syst. 3, 5-18 (2012)



172 9 Evolving Intelligent Algorithms for the Modeling of Brain and Eye Signals

15. EJ. Ordoifiez, J.A. Iglesias, P. de Toledo, A. Ledezma, Online activity recognition using
evolving classifiers. Expert Syst. Appl. 40(4), 1248-1255 (2013)

16. H.J. Rong, N. Sundararajan, G.B. Huang, P. Saratchandran, Sequential adaptive fuzzy inference
system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets Syst. 157(9),
1260-1275 (2006)

17. HJ. Rong, N. Sundararajan, G.-B. Huang, G.-S. Zhao, Extended sequential adaptive fuzzy
inference system for classification problems. Evol. Syst. 2(2), 71-82 (2011)

18. H.J. Rong, S. Han, G.S. Zhao, Adaptive fuzzy control of aircraft wing-rock motion. Appl. Soft
Comput. 14(Part B), 181-193 (2014)

19. C.K. Ahn, An error passivation approach to filtering for switched neural networks with noise
disturbance. Neural Comput. Appl. 21(5), 853-861 (2012)

20. C.K. Ahn, M.T. Lim, Model predictive stabilizer for T-S fuzzy recurrent multilayer neural
network models with general terminal weighting matrix. Neural Comput. Appl. 23, 271-277
(2013)

21. X. Ren, X. Lv, Identification of extended Hammerstein systems using dynamic self-optimizing
neural networks. IEEE Trans. Neural Netw. 22(8), 1169-1179 (2011)

22.J.J. Rubio, P. Angelov, J. Pacheco, An uniformly stable backpropagation algorithm to train a
feedforward neural network. IEEE Trans. Neural Netw. 22(3), 356-366 (2011)

23.J.J. Rubio, D.M. Vazquez, J. Pacheco, Backpropagation to train an evolving radial basis
function neural network. Evol. Syst. 1(3), 173-180 (2010)

24. X. Wang, Y. Huang, Convergence study in an extended Kalman filter-based training of
recurrent neural networks. IEEE Trans. Neural Netw. 22(4), 588-600 (2011)

25. W. Yu, J.J. Rubio, Recurrent neural network training with stable bounding ellipsoid algorithm.
IEEE Trans. Neural Netw. 20(6), 983-991 (2009)

26. W. Zhang, W. Wu, M. Yao, Boundedness and convergence of bath backpropagation algorithm
with penalty with feedforward neural networks. Neurocomputing 89(15), 141-146 (2012)

27. E. Lughofer, Evolving Fuzzy Systems, Methodologies, Advanced Concepts and Applications
(Springer, Berlin, 2011)

28. J.J. Rubio, SOFMLS: online Self-organizing fuzzy modified least square network. IEEE Trans.
Fuzzy Syst. 17(6), 1296-1309 (2009)

29. J.J. Rubio, J.H. Perez Cruz, Evolving intelligent system for the modelling of nonlinear systems
with dead-zone input. Appl. Soft Comput. 14(Part B), 289-304 (2014)

30. C. Martinez, B. Rojas, Técnicas de Electroencefalografia, 2da edicién, Secretaria de Educacién
Pidblica, Comunicaciones Cientificas Mexicanas S.A. de C.V., México (1998). ISBN: 968—
7858-12-5

31. J.B. Webster, Medical Instrumentation, Application and Design, 4th edn. (Wiley, United States
of America, 2010)

32. C. Ramirez, M. Hernandez, Procesamiento en tiempo real de variables Fisioldgicas, in
Universidad Nacional de Experimental de Tachira, Decanato de Investigacion, Grupo de
Biomédica

33. J.J. Rubio, D.M. Vazquez, D. Mujica-Vargas, Acquisition system and approximation of brain
signals. IET Sci. Meas. Technol. 7(4), 232-239 (2013)

34. F. Gibbs, E. Gibbs, Atlas of electroencephalography, Changes whit age, asleep., Addison
Wesley, Massachusetts, 1, 82-89, (1950).

35. D. Klass, D. Daly, Current Practice of Clinical Electroencephalography, Chap 5 (Raven Press,
New York, 1975), pp. 69-109

36. S. De Castro, J. Perez, Manual de patologia general, 6ta Edicion (Masson Elsevier, Barcelona,
2006). ISBN: 978 84 458 1540 3

37.J. Hori, K. Sakano, Y. Saitoh, Development of a communication support device controlled by
eye movements and voluntary eye blink. IEICE Trans. Inf. Syst. E89D(6), 1790-1797 (2006)

38. J.J. Rubio, F. Ortiz, C.R. Mariaca, J.C. Tovar, A method for online pattern recognition for
abnormal eye movements. Neural Comput. Appl. 22(3-4), 597-605 (2013)



References 173

39. K. Yamagishi, J. Hori, M. Miyakama, Development of EOG-based communication system
controlled by eight-directional eye movements, in Proceedings of the 28th IEEE EMBS Annual
International Conference (2006), pp. 2574-2577

40. D.M. Vazquez, J.J. Rubio, J. Pacheco, A characterization framework for epileptic signals. IET
Image Process. 6(9), 1227-1235 (2012)



Chapter 10 ®
MSAFIS: An Evolving Fuzzy Inference iy
System

1 Introduction

The recent years have witnessed the emergence of an important topic related to
process learning which is learning from big data (LBD). LBD is concerned with
the development and application of learning algorithms for very large, possibly
complex, datasets that cannot be accommodated in the main memory. To cope with
this requirement, different techniques and technologies have been proposed:

1. Parallel and distributed computing (e.g., Hadoop): Data are split into portions
and sent to parallel machines to be processed and learned from.

2. Online learning, known also as sequential learning, one-pass learning, real-
time learning, evolving systems, etc.: The learning algorithms learn sequentially,
either batch-based or point-based, potentially using one single machine.

Although these techniques are not new from a pure scientific point of view, the
deluge of data available everywhere has given a refreshing and renewable interest to
them. In this chapter we will focus on online learning.

Online learning faces the challenge of accurately estimating models using incom-
ing data whose statistical characteristics are not known a priori. In nonstationary
environments, the challenge becomes even more important, since the model’s
behavior may need to change drastically over time [1]. Online learning aims at
ensuring continuous adaptation of the model being fitted to the data. When learning,
ideally only the model should be stored in memory. For instance, in rule-based
systems (RBSs), only rules should be memorized. The model is then adjusted in
future learning steps. In the case of RBS, as new data arrive, new rules may be
created, and existing ones may be modified or removed allowing the overall model
to evolve over time [2] and [3]. In [4], online fuzzy models are discussed.

In general evolving systems are online learning algorithms whose structure and
parameters are very flexible in order to adapt to ever-changing environments [5—
10]. Online processing of data with a particular focus on the design issues of online
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evolving systems is considered in [11]. In [2], online self-learning fuzzy classifier,
called GT2FC standing for “Growing Type-2 Fuzzy Classifier,” is presented. The
proposed approach shows how type-2 fuzzy rules can be learned online in an
evolving way from data streams. GT2FC was applied in the context of smart homes.
In [12], the authors explore the application of interactive and online learning of user
profiles in the context of information filtering using evolutionary algorithms. In [13],
an evolving algorithm for learning computer user behavior is introduced.

Evolving systems have been very popular, for instance, in [14], a learning
approach to train uninorm-based hybrid neural networks is mentioned. The use of
evolving classifiers for activity recognition is described in [15] and [16]. In [17, 18],
and [19], novel efficient techniques of evolving intelligent systems are discussed.
A dynamic pattern recognition method is introduced in [20]. In [21], an approach
for classifying huge amounts of different news articles is designed. An evolving
method that is able to keep track of computer users is proposed in [13]. In [22],
a new approach called evolving principal component clustering is addressed. A
new clustering method is suggested in [23]. In [24] and [25], novel evolving fuzzy-
rule-based classifiers are addressed. An evolving neural fuzzy modeling approach is
constructed in [26]. In [27], a novel approach in fault diagnosis is studied.

Stable systems are characterized by the boundedness criterion, i.e., if bounded
algorithm inputs are employed, then the outputs and parameters exponentially decay
to a small and bounded zone. In [28], the author uses an induced Loo approach to
create a new filter with a finite impulse response structure for state-space models
with external disturbances. The model predictive stabilization problem for Takagi-
Sugeno fuzzy multilayer neural networks with general terminal weighting matrix is
investigated in [29]. In [30], an error passivation approach is used to derive a new
passive and exponential filter for switched Hopfield neural networks with time delay
and noise disturbance. Two robust intelligent controllers for nonlinear systems with
dead-zone are addressed in [31] and [32]. In [33] and [34], two stable controllers
are introduced.

However, most of these algorithms operate offline and are not designed to
handle big data. The present chapter presents the combination of two algorithms:
the sequential adaptive fuzzy inference system (SAFIS) [35] which is an evolving
algorithm and the stable gradient descent algorithm (SGD) [3] which is a stable
algorithm. Such a combination, called the MSAFIS, aims to devise an efficient
evolving algorithm that can cope with data streams as a case of big data. MSAFIS
exploits the SGD algorithm to update parameters, while SAFIS relies on the Kalman
filter. SGD has the advantage that it outperforms Kalman filter [3].

The chapter is organized as follows. In Sect. 2, the SAFIS, SGD, and MSAFIS
algorithms are detailed. In Sect. 3, the brain encephalography (EEG) and the eye
electrooculogram (EOG) signals are described. Using an EEG and an EOG dataset,
SAFIS, SGD, and MSAFIS are evaluated and compared in Sect.4. Section 5
concludes the chapter and suggests future research directions.



2 Presentation of the Algorithms 177
2 Presentation of the Algorithms

In this section the three algorithms SAFIS, SGD, and MSAFIS are described.
Furthermore, the differences of the three algorithms are explained.

2.1 SAFIS Algorithm

The sequential adaptive fuzzy inference system (SAFIS) is developed based on
the functional equivalence between a radial basis function network and a fuzzy
inference system (FIS) resulting in a neuro fuzzy system. In SAFIS, the concept
of “Influence” of a fuzzy rule is introduced, and using this the fuzzy rules are added
or removed based on the input data received so far. If the input data do not warrant
adding of fuzzy rules, then only the parameters of the “closest” (in a Euclidean
sense) rule are updated using an extended Kalman filter (EKF) scheme.

The SAFIS algorithm is summarized as below [35]:

For each observation (z(k), y(k)), where z(k) € RY, y(k) € R, and k =
1,2,...,do:

(1) Compute the overall system output:

M
> 0j(k)R;(zi (k)

j=

yk) = (10.1)

M ’

D Rj(zi (k)
j=1
where
Rj(zi(k)) = exp <——

and M is the number of fuzzy rules, R;(z;(k)) is the firing strength of the jth rule,
and o (k) is the weight of the normalized rule. Note that each rule is represented as
aradial basis function described by its center m j (k) and its spread §; (k).

(2) Calculate the parameters required in the growth criterion:

€(k) = max {emaxrk, emin} ,0< 1 <1, (10.2)
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where €nax and €pj, are the threshold largest and smallest distances admitted
between the inputs and the corresponding nearest center of rules. The parameter
7 (0 < Tt < 1) indicates the decay constant. The error of the kth input is given as
follows:

y(k) = y(k) = y(k). (10.3)
where y(k) and y(k) are the output and the estimated output, respectively.
(3) Apply the criterion for adding rules if the following two conditions are
satisfied:
If
|zi (k) —m (k)| > k), (10.4)

and

1.8K ||zi(k) — m (k) [)™
Laklat -m@)"

> (188 (k)N

j=1

Ying(M + 1) = [y (k)| (10.5)

where y, is the growing threshold. A new rule M + 1 is added if y, is exceeded.
The new rule M + 1 is given as follows:

oms1(k) =y(k),
mpr1(k) = z; (k), (10.6)
Spr1(k) = K |lzi(k) —mp1 (R |

If no rule is added, the nearest rule jm is obtained as follows:

minR;(z(k)) = jm = j, (10.7)
J

and adjust the system parameters o;(k), m(k), §;(k) for the nearest rule only by
using the extended Kalman filter (EKF) method:

pk) = @k — 1) + Pr_tb(k — 1) [a + b (k — 1) Pe_1b(k — 1)]7] y(k),
Pe = Peoy — Pib(k — 1) [p+ b7 (k= ) Peibk — D]
b (k — ) Pe_i + g1,
(10.8)
where (k) = [p1(K)--- g3 = [mjmK), ojm®), 8;m(®1T, Pi=ql,
g and p are parameters selected by the designer, 0 < ¢q < 1, 0 <



2 Presentation of the Algorithms 179

po< L b=lbi(k), ba()by(01T, by (=2 IO GO0 O],

M
[ZR,-(zxk»]aim(k)
j=1

j - j i i —m; 2 . .
bz(k)zz[o,m(k) TR jm (zi (k) || zi () =1 jum (K) || . by(k)= Rjm(zi (k)

M M
{ZR_,- e <k)>}~}-m ® [ZR,— (z,’(k))}
j=1 j=1

, and [ is the

identity matrix.
(4) If the following criterion is satisfied:

1.88 (b))
L’—()) < Vp (10.9)
> (188 (k)N

j=1

Yint(jm) = |0jm (k)|

then, remove the jm rule and reduce the dimensionality of EKF. Note that y, is the
pruning threshold.

Remark 10.1 The significance of a rule proposed in growing and pruning radial
basis function (GAP-RBF) neural network is defined based on the average contribu-

tion of an individual rule to the output of the RBF network. Under this definition, one
lojm®)]
M

Z(l.g&,-(k))lv
j=1

the influence of a rule introduced in this chapter is different from the significance
of a rule proposed in GAP-RBF. In fact, the influence of a rule is defined as the
relevant significance of the rule compared to summation of significance of all the
existing RBF rules. As seen from Eq. (10.7), with the introduction of influence one
need not estimate the input distribution range, and the implementation has been
simplified.

may need to estimate the input distribution range S(z) = . However,

Remark 10.2 In parameter modification, SAFIS utilizes a winner rule strategy
similar to the work done by Huang et al. [36]. The key idea of the winner rule
strategy is that only the parameters related to the selected winner rule are updated
by the EKF algorithm in every step. The “winner rule” is defined as the rule that is
closest (in the Euclidean distance sense) to the current input data. As a result, SAFIS
is computationally efficient.

Remark 10.3 In SAFIS, some parameters need to be decided in advance according
to the problems considered. They include the distance thresholds (€max, €min, T), the
overlap factor K for determining the width of the newly added rule, the growing
threshold (y,) for a new rule, and the pruning threshold (y,) for removing an
insignificant rule. A general selection procedure for the predefined parameters is
given as follows: max is set to around the upper bound of input variables, €y;j, is set
to around 10% of epax, and 7 is set to around 0.99. y,, is set to around 10% of y,.
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€max 15 observed in the range [1.0, 10.0]. The overlap factor K is utilized to initialize
the width of the newly added rule and chosen according to different problems; it is
observed in the range [1.0, 2.0]. The growing threshold y, is chosen according to
the system performance; it is observed in the range [0.001, 0.05]. The smaller the
¥g» the better the system performance, but the resulting system structure is more
complex.

2.2 SGD Algorithm

The stable gradient descent (SGD) algorithm is developed with a new time-varying
rate to guarantee its uniformly stability for online identification and its identification
error converges to a small zone bounded by the uncertainty. The weights’ error is
bounded by the initial weights’ error, i.e., hence the overfitting is avoided. The SGD
algorithm is as follows [3]:

(1) Compute the output of the nonlinear system y(k) with Eq. (10.10). Note that
the nonlinear system may have the structure represented by Eq. (10.10), and the
parameter N is selected according to this nonlinear system.

yk) = flz(k)], (10.10)

where z(k) = [z1k)....zi(k),....zv()1T = [ytk=1),...,y(k —n),
uk =1y, ..., uk —m)]" € RV (N = n+m) is the input vector, u(k — 1) € R
is the input of the plant, y(k) € R is the output of the plant, and f is an unknown
nonlinear function, f € C*.

(2) Select the following parameters: o(1) and w(1) as random numbers between
0 and 1, M as an integer number, and «( as a positive value smaller or equal to 1;
obtain the output y(1) using Eq. (10.11).

M
k) =Y 0;(k)B; k),
J=l (10.11)

N
Bj(k) = tanh() “wi; (k)zi (k).

i=1

(3) For each iteration k, obtain the output y(k) with Eq. (10.11), also obtain the
identification error y (k) with Eq. (10.12):

y(k) = y(k) — y(k), (10.12)
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and update the parameters o (k) and w;; (k) using Eq. (10.13):

0jk)y =0jk — 1) —ak — DBk — DYk — 1),

~ 10.13
Wi (k) = wij (k — 1) — a(k — Dy;j(k — Dk — 1), (10.13)

where the new time varying rate « (k) is

atk —1) = adl ,

M M N
203+ ) BUh—D+D Y yik—1)
j=1

j=li=1

N
wherei=1,...,N,j=1,....M,y;;(k—1) = oj(k)sechz(Zwij(k —1Dzik—
i=1
Mzik—1) e R.
Remark 10.4 There are two conditions for applying this algorithm for nonlinear

systems: The first one is that the nonlinear system may have the form described by
M

(10.10), and the second one is that the uncertainty w(k) = y(k) — Zo’]‘f ﬂ;‘f may be
j=1
N
bounded, ,37 = tanh(Zw;‘/zi (k)), and 0’; and w;‘j are unknown weights such that
i=1
the uncertainty (k) is minimized.
Remark 10.5 The value of the parameter used for the stability of the algorithm &
is unimportant, because this parameter is not used in the algorithm. The bound of
w(k) is needed to guarantee the stability of the algorithm, but it is not used in the
SGD algorithm (10.11), (10.12), (10.13).

Remark 10.6 The proposed SGD has one hidden layer. It was reported in the
literature that a feedforward neural network with one hidden layer is enough to
approximate any nonlinear system.

Remark 10.7 Note that the behavior of the algorithm could be improved or
deteriorated by changing the values of M or «p.

2.3 MSAFIS

The MSAFIS is the SAFIS algorithm with the modification of Egs. (10.3) and (10.8)
by Egs. (10.12) and (10.13) and using the parameters of the SAFIS algorithm m ; (k),
8j(k), 0j(k) instead of the parameters of the SGD algorithm wj;;(k), o (k). The
MSAFIS algorithm is summarized as follows.
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For each observation (z(k), y(k)), where z(k) € R", y(k) € R, and k =
1,2,..., do:
(1) Compute the overall system output:

M
3 0; (R (zi ()
Sty ==

) (10.14)
M

ZRj (zi (k)

j=1

where

1
Rj(zi (k) = exp (—% |z k) — m ) ||2) ,

J

and M is the number of fuzzy rules, R;(z;(k)) is the firing strength of the jth rule,
and o/ (k) is the weight of the normalized rule. Note that each rule is represented as
aradial basis function described by its center m ; (k) and its spread J; (k).

(2) Calculate the parameters required in the growth criterion:

€(k) = max {emaxt", emm} ,0<1 <1, (10.15)

where €max and e, are the threshold largest and smallest distances admitted
between the inputs and corresponding nearest center of rules. The parameter 7 (0 <
T < 1) indicates the decay constant. The error of the kth input is given as follows:

y(k) = y(k) — y(k), (10.16)

(3) Apply the criterion for adding rules if the following two conditions are
satisfied:
If

|zi (k) — mj (k)| > e(k), (10.17)
and

1.8K ||zi (k) — m; () |)~
(15K fato —m])"

> (1885 (k)N

j=1

Yint(M + 1) = [y (b)|

(10.18)

where y, is the growing threshold. A new rule M + 1 is added if y, is exceeded.
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The new rule M + 1 is given as follows:

om+1(k) =y(k),
may1(k) = zi (k), (10.19)
Sms1(k) = K |lzi(k) —mpy1 (k)|

If no rule is added, the nearest rule jm is obtained as follows:

minR;(z(k)) = jm = j, (10.20)
J

and adjust the system parameters o;(k), m(k), §;(k) for the nearest rule only by
using the stable gradient descent algorithm:

o) = otk — 1) — a(k — Dbk — D5k — 1), (10.21)

where p(K)=lp1(k), @2(0), @317 =m0, 0jm (k). 8T, bUO=Ib1(K),
2[0jm (k)= ()| R jm (zi (k) [zi (k) —m jm (k)
ba(k), b3 ()17, by (k=21 O] [ ]

{ZR_,«Z[ (k))},z-m ®
j=1

M M
{ZR e (k)):|5§m ®) {ZR e (k))]
j=1 j=1

time varying rate o(k — 1) is

)

, and the new

a0

5 :
2 (% + Y bk — 1))

=1

ak—1)=

where « is a parameter selected by the designer, 0 < g < 1.
(4) If the following criterion is satisfied:
If

1.8 im (k)"
Yint(jm) = |0jm (k)| LJ—()) < Yps (10.22)

> (188 (k)N

j=1

then, remove the jm rule, and reduce the dimensionality of SGD. Note that y,, is
the pruning threshold.

Remark 10.8 In MSAFIS, some parameters need to be decided in advance accord-
ing to the problems considered. They include the distance thresholds (€max, €min,
7), the overlap factor K for determining the width of the newly added rule, the
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growing threshold (y,) for a new rule, and the pruning threshold (y,) for removing
an insignificant rule. A general selection procedure for the predefined parameters is
given as follows: max is set to around the upper bound of input variables, €y;j, is set
to around 10% of €pax, and 7 is set to around 0.99. y,, is set to around 10% of y,.
€max 15 observed in the range [1.0, 10.0]. The overlap factor K is utilized to initialize
the width of the newly added rule and chosen according to different problems; it is
observed in the range [1.0, 2.0]. The growing threshold y, is chosen according to
the system performance; it is observed in the range [0.001, 0.05]. The smaller the
Yg, the better the system performance, but the resulting system structure is more

complex.

2.4 Comparison of the Three Algorithms

In this subsection, the comparison between the three algorithms is described.
Table 10.1 shows several aspects about the three algorithms.
Table 10.2 shows an overview of the modifications made to the SAFIS to evolve
the new method, called MSAFIS.
Note that the SGD is not included in Table 10.2 because it is more different than

the other two algorithms.

Table 10.1 Characteristics of the three algorithms

SAFIS

If it is applied to systems
which have important
changes through the time, an
acceptable result can be
assured

If it is applied to unstable
systems, an acceptable result
cannot be assured

It can be applied in many
systems as are the biology,
mechatronic, mechanic,
thermal, robotic, economic,
etc.

SGD

If it is applied to systems
which have important
changes through the time, an
acceptable result cannot be
assured

If it is applied to unstable
systems, an acceptable result
can be assured

It can be applied in many
systems as are the biology,
mechatronic, mechanic,
thermal, robotic, economic,
etc.

Table 10.2 Differences between the SAFIS and MSAFIS

SAFIS

Equation (10.3). The error is obtained by
subtracting the estimated output to the output
Equation (10.8). The parameters are adjusted
using the extended Kalman filter algorithm

MSAFIS

algorithm

MSAFIS

If it is applied to systems
which have important
changes through the time, an
acceptable result can be
assured

If it is applied to unstable
systems, an acceptable result
can be assured

It can be applied in many
systems as are the biology,
mechatronic, mechanic,
thermal, robotic, economic,
etc.

Equation (10.16). The error is obtained by
subtracting the output to the estimated output
Equation (10.21). The parameters are
adjusted using the stable gradient descent
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3 The Brain and Eye Signals

This section describes the characteristics of the brain and eye signals.

3.1 The EEG Signals

The difference of the potential in one membrane is obtained by the exchange
between the ions (Na+,Cl—,K+) being in the same. The rules have a potential
difference between the inside and outside which is called rest potential, and this
potential represents constant changes because of the impulses given by the neighbor
rules. This potential difference can be measured in the brain cortex using electrodes
that convert the ion flow into electric flow. The characteristic of the encephalography
signal (EEQG) is of 5—300 1V in amplitude and of 0—150 Hz in frequency [37].

The EEG signals are waves similar to periodic, but the waves can change from
one time to other, and they have some characteristics that allow the learning, as are
the amplitude, the frequency, the morphology, the band, the rhythm, and the duration
[37].

The following paragraphs show the characteristics which are considered for an
adult in vigilance [37].

Alpha signal. It is the normal rhythm of the bottom and is the most stable
and typical in the human. It is found in the frequencies of 8—12Hz 4 1Hz. The
amplitude is between 20 and 60 wV. It can be seen generally in posterior regions
with more amplitude in the occipital lobes. See Fig. 10.1. It is more evident when
the patient is awake with closed eyes and in physical and mental rest, and it is
stopped when the eyes are opened or with the mental activity.

Beta signal. It is found in the frequencies >13 Hz, in general between 14 and
35Hz. The amplitude is usually low from 5 to 10wV and is symmetric. See
Fig. 10.1.

Theta signal. It has a frequency of 4—8 Hz, is of half of low voltage, and is found
in the temporal regions. See Fig. 10.1.

Delta signal. It is found in the second and the third stages of the dream. It has
a frequency of 0.5—3.5Hz, and the amplitude is generally higher than 75 wV. See
Fig. 10.1.

3.2 The EOG Signals

The electrooculograms (EOGs) are the signals obtained as a result of the eye
movements of a patient, and these EOGs are detected using three electrodes: one
electrode on the temple, one above, and other underneath of the eye. Usually, the
detected signals are by direct current (DC) coupling to specify the direction of the
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Fig. 10.1 EEG signals

gaze. In the experiments of this chapter, three electrodes are placed on the dominant
side of the patient eye according to the optimum positions suggested by Rubio et al.
[38].

Figure 10.2 shows the relationship between real eye movements (input) and the
EOG signals (output) of the system. Denote the upper and lower thresholds of the
vertical channel Ch.V as V1 and V2, respectively, and denote the upper and lower
thresholds of the horizontal channel Ch.H as H1 and H2, respectively. When the
EOG potential exceeds one of these thresholds, the output assumes ON, and when
the EOG potential does not exceed one of these thresholds, the output assumes OFF.
The process of transforming the EOG signals from the intention of the patient is as
follows [38]:

1. Output Up is when it is obtained an Up behavior: First, Threshold V1 of the
vertical channel becomes ON, while Threshold V2 is OFF, and second, Threshold
V2 of the vertical channel becomes ON, while Threshold V1 becomes OFF. H1 and
H2 of the horizontal channel remain OFF all the time.

2. Output Down is when it is obtained a Down behavior: First, Threshold V2
of the vertical channel becomes ON, while Threshold V1 is OFF, and second,
Threshold V1 of the vertical channel becomes ON, while Threshold V2 becomes
OFF. H1 and H2 of the horizontal channel remain OFF all the time.
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Fig. 10.2 EOG signals

4 Results

In this section, the three above detailed algorithms are applied for the learning of
brain and eye signals with big data. The aforementioned signals could be applied
for patient who cannot move their bodies; consequently, they could use their brains
or their eyes to say what they want or need. The SAFIS of [35], SGD of [3], and
MSAFIS are compared for the learning sequentially:

— Brain signals: experiment 1
— Eye signals: experiment 2

In the training of the learning phase, the parameters of the algorithms are
incrementally learned as data are presented, while in the testing phase such
parameters do not change, and hence the algorithms can be compared in terms of
performance.

The root mean square error (RMSE) of [3, 37] is used to measure the performance
and is expressed as

1

1 & ?
I ~2
RMSE = <Nk§y (k)) , (10.23)

where Y (k) is the learning error expressed by Egs. (10.3), (10.12), and (10.16).

4.1 Experiment 1

Here a real dataset of brain signals consisting of 20000 pairs (u(k), y(k)) of 20 s is
used to train the training, 2000 pairs (u (k) and y(k)) for 2 s used to test the learning.
The alpha signal is obtained in this chapter because it has more probabilities to be
found. The acquisition system is applied with a 28-year-old healthy man when his
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Fig. 10.3 Training for experiment 1

eyes are closed. The inputs of all the intelligent systems are y(k), y(k+1), y(k+2),
y(k + 3), and the output of the intelligent systems is y(k + 4).

Considering Remark 10.3, the parameters for the SAFIS algorithm [35] are N =
4,1 =099, K =2, €max = 1, €min = 0.1, y, = 0.01, y, = 0.001, ¢ = 0.1,
p = 0.1. Considering Remark 10.7, the parameters of the SGD algorithm of [3]
are N = 4, M = 5, ap = 0.5. Considering Remark 10.8, the parameters of the
MSAFIS are N = 4,7 = 099, K = 2, €qax = 2, €min = 0.2, y, = 0.05,
yp =0.005, a9 = 1.

Figure 10.3 shows the comparison results for the training of learning in the
three algorithms. Figure 10.4 introduces the illustration of the rule evolution for the
three algorithms during training. Figure 10.5 presents the comparison results for the
testing of learning in the three algorithms. Table 10.3 shows the RMSE comparison
results for the algorithms using (10.23).

From Figs. 10.3, 10.4, and 10.5 and Table 10.3, it can be seen that the SGD
presents the smallest training RMSE, the MSAFIS presents the smallest testing
RMSE, and the MSAFIS obtains the smallest number of rules.
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Fig. 10.4 Rule evolution for experiment 1

Fig. 10.5 Testing for experiment 1
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Table. 10.3 Results for Methods | Rules | Training RMSE | Testing RMSE
experiment | SGD 5 0.0043 0.0217
SAFIS 29  0.0145 0.0177
MSAFIS | 3 0.0331 0.0045

Fig. 10.6 Training for experiment 2

4.2 Experiment 2

Here a dataset of eye signals of the down behavior is considered where 3572 pairs
(u(k), y(k)) of 3.572 s are used to train the learning and 1192 pairs (u(k), y(k))
for 1.192 s are used to test the learning. The acquisition system is applied with a
25-year-old healthy man when his eyes are moving, and two electrodes are used to
find the signals as described in the aforementioned section. The inputs of all the
intelligent systems are y(k), y(k + 1), y(k + 2), y(k + 3), and the output of the
intelligent systems is y(k + 4).

Considering Remark 10.3, the parameters for the SAFIS [35] are N = 4, 1 =
0.986, K = 2, €max = 2, €min = 0.2, y, = 0.01, y, = 0.001, g = 0.1, p = 0.1.
Considering Remark 10.7, the parameters of the SGD [3] are N = 4, M = 9,
oo = 0.5. Considering Remark 10.8, the parameters of the MSAFIS are N = 4,
7 =0.986, K =2, €max = 2, €min = 0.2, y, = 0.01, y, =0.001, op = 1.

Figure 10.6 shows the comparison results for the training of learning in the
three algorithms. Figure 10.7 introduces the illustration of the rule evolution for the
three algorithms during training. Figure 10.8 presents the comparison results for the
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Fig. 10.7 Rule evolution for experiment 2

Fig. 10.8 Testing for experiment 2
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Table. 10.4 Results for Methods | Rules | Training RMSE | Testing RMSE
experiment 2
SGD 9 0.0252 0.0290
SAFIS 10 0.0263 0.0404
MSAFIS | 9 0.0706 0.0172

testing of learning in the three algorithms. Table 10.4 shows the RMSE comparison
results for the algorithms using (10.23).

From Figs. 10.6, 10.7, and 10.8 and Table 10.4, it can be seen that the SGD
presents the smallest training RMSE, the MSAFIS presents the smallest testing
RMSE, and the MSAFIS and SGD obtain the smallest number of rules.

Remark 10.9 The SAFIS algorithm is applied in two synthetic examples and in the
Makey-Glass time series prediction problem [35]. The SGD algorithm is applied in
a synthetic example and in the prediction of the loads distribution in a warehouse
[3]. This chapter is novel because it shows that the three algorithms can be used
for the learning of other different kind of systems which are the real brain and eye
signals with big data.

5 Concluding Remarks

This chapter proposed a combination of two algorithms SAFIS and SGD resulting in
MSAFIS. Considering the different experiments, this new algorithm provides better
compactness and higher accuracy compared to the original ones. It is worthwhile to
mention, because as MSAFIS and SAFIS and SGD are based on online learning,
they can handle big datasets of any size. They can also be applied to control,
prediction, classification, and diagnosis. Here they were successfully used to learn
from a challenging dataset of brain and eye signals. As a future work, the stability
of the MSAFIS will be analyzed.
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Chapter 11

l‘)
Error Convergence Analysis of the SAFIS <
and MSAFIS

1 Introduction

Evolving intelligent networks are inspired by the idea of network model evolution
in a dynamically changing and evolving environment. They use gradual change with
the aim of life-long modeling and updating self-organization including network
structure evolution to update to the environment as structures for information
representation with the ability to fully update their structure and adjust their
weights. Evolving intelligent networks have been highly applied in prognostic
health management plants; two examples are the studying machine failure detection
and management of their life cycle.

Evolving intelligent networks have become very popular in the application of
prognostic health management plants. Online active modeling concepts have been
studied in [1]. In [2], a generalized smart evolving modeling engine of a fuzzy
network is investigated. A novel bi-criteria active modeling approach is mentioned
in [3]. In [4], a novel incremental type-2 metacognitive extreme modeling machine
is addressed. The metacognitive scaffolding modeling machine is introduced in [5].
In [6], a parsimonious random vector functional link network is discussed. A new
modeling strategy termed as GenSparseFIS is researched in [7]. In [8] and [9],
hybrid dynamic data-driven approaches are suggested. An enhanced convolutional
neural network is studied in [10]. A sequential adaptive fuzzy inference system
called SAFIS is developed in [11]. In [12], the performance evaluation of the SAFIS
is studied. A modified sequential adaptive fuzzy inference system called MSAFIS
is proposed in [13]. In evolving intelligent networks, the error convergence is not
frequently analyzed.

When the error of a prognostic health management plant is not convergent, the
plant output may be infinite even though the plant input is finite. This causes a
number of practical problems. For instance, error not convergent in failure detection
of a robot arm may cause the robot to move dangerously without any alarm.
Also, these errors that are not convergent often incur a certain amount of physical
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damage in plants, which can become costly. Nonetheless, errors are inherently not
convergent in many plants, for example, a fighter jet or a rocket at liftoff. Although
evolving intelligent networks can be designed to be applied in prognostic health
management plants, it is important to ensure their error convergence to reach an
acceptable performance. Error convergent intelligent networks are characterized
by the boundedness criterion, i.e., if bounded inputs are utilized, then outputs are
ensured to be bounded.

Error convergent intelligent networks also have become very popular in the
application of prognostic health management plants. The L-infinity performance
analysis of a neural network is taken into account in [14]. In [15] and [16],
robust evolving cloud-based controllers are presented. Robust common spatial
pattern feature extraction algorithms are designed in [17] and [18]. In [19], a
command-filtered backstepping update control is researched. Composite update
locally weighted modeling control approaches are proposed in [20] and [21]. In [22]
and [23], the asymptotic error convergence analysis of generalized neural networks
is addressed. Fuzzy convergent controllers are discussed in [24] and [25]. It is not
frequent that error convergent intelligent networks are also evolving.

In this chapter, Lyapunov strategy is utilized to analyze error convergence of the
SAFIS and MSAFIS for their application in prognostic health management plants.
SAFIS employs an extended Kalman filter, and it is linearized to get its modeling
dynamic equation; after, error convergence based on the Lyapunov strategy is
analyzed. MSAFIS employs the gradient descent technique, and it is linearized
to acquire its modeling dynamic equation; later, error convergence based on the
Lyapunov strategy is analyzed. Figure 11.1 shows the error convergence analysis
steps of both algorithms.

Fig. 11.1 Error convergence
analysis of the SUFIN and
CSUFIN
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The chapter is organized as follows. In Sect. 3, error convergence of the SAFIS
is analyzed. Error convergence of the MSAFIS is analyzed in Sect.4. In Sect. 5,
performance of the SAFIS and MSAFIS is detailed in two examples. The conclusion
and future research are explained in Sect. 6.

2 Prognostic Health Management Plant

Take into account the next prognostic health management plant:
yk) = fIx(0)], (11.1)

where X(k) = [Xl(k)’ B Xl(k)7 LR XN(k)]T = [V(k_ 1)7 e V(k_n),U (k - 1)9
o uk—m))T € RV (N = n + m) is the input vector, v(k — 1) € R is the
plant input, y (k) € R is the plant output, and f is an unknown nonlinear function,
fecC™.

3 Error Convergence Analysis of the SAFIS

3.1 Description of the SAFIS

The sequential adaptive fuzzy inference system (SAFIS) is developed based on
the functional equivalence between a radial basis function network and a fuzzy
inference network producing a fuzzy neural network. In SAFIS, using that neurons
are added or removed based on the input data received so far. If the input data do
not warrant adding of neurons, then only weights of the “closest” (in a Euclidean
sense) neuron are updated using an extended Kalman filter.

The SAFIS algorithm is summarized in the next paragraphs [11].

For each data (x (k), y (k)), where x (k) € RN, y(k) e R,and k = 1,2, ..., do:

(1) Get the network output:

Ly

D o080

Volk) = =,
> s
r=1

S0r0) = exp (— 2l |60 = s, 07)

(11.2)
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where L; is the neuron number, Ss (k) is the firing strength of the rth neuron, and
05, (k) is the normalized neuron. Note that each neuron is expressed as a radial basis
function network described by its center u - (k) and its spread & , (k).

(2) Acquire terms needed in the growth criterion:

&s(k) = max {83,max77§, 8s,min} ,0<ny <1, (11.3)

where &5 max and & min are the threshold largest and smallest distances admitted
between inputs and the corresponding nearest center of neurons. The term n; (0 <
ns < 1) indicates the decay constant. The modeling error is in the next equation:

Vs (k) = ys (k) — y (k), (11.4)

where y (k) and 75 (k) are the output and estimated output, respectively.
(3) Use the criterion for adding neurons if the next two conditions are fulfilled:
If

[ xi (k) = ps.r (K)|| > &5k, (11.5)
and

(18K, i (k) — 124, |)™
Lg+1 7 Ve

> (8 (k)Y

r=1

Ysint(Ls + 1) = V5 (k)] (11.6)

where y; , is the growing threshold. A new neuron Ly + 1 is added if y; 4 is
exceeded.
The new neuron L, + 1 is in the next equation:

05.L,+1(k) = =5 (k),
s, L+1(k) = xi(k), (11.7)
Ee.L,+1(k) = Ky || xi (k) — s, L, 410 | -

If no neuron is added, the nearest neuron rs is gotten in the next equation:

minS; (k) = rs =, (11.8)
r
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and update the network weights os ,(k), s, r(k), &, (k) for the nearest neuron by
using the extended Kalman filter:

sk + 1) = 95 (k) = o5 G (k + Dds ()75 k),

Gs(k+ 1) = Gs(k) — 5455 Gs (k) (k)] (k) G (k), (11.9)
with
@s(k) = [@1(K), @5 2(0), 93]
dy (k) = [dy1 (k). dy2 (k). ds 30017,
and

Qos,l(k) = Ms,rs (k), (ps,2(k) = ";:s,rs (k)s (Ps,3(k) = Os.rs (k)’
dy 1 (k) = 2Loers®=FO]S0rs O 0 —pts.rs O]

L,
[Zss,xk)]sﬁm(k)
r=1

2 vrsk*:k Ss.rs (k ik* s.rxk :
dy (k) = [05,rs ()= Ps (k) ]S, s () | i (K) — ps, s () |

Lg ’
|: Ss.r (k):| £3,5(k)
r=1

SY rs k
dy3(k) = _ Sers®)

. )
[Zss,r(k)]
r=1

as(k) = byy + dl (k)G (k)ds(k) € R, bs(k) = ag(k) + d] (k)G (k)ds(k) € R,
Gs(1)=gs.e1, gs,¢ 13 a term selected by the designer, 0 < g5, < 1,0 < by < 1,
and 7 is the identity matrix.

(4) If the next criterion is fulfilled:

’

(1.8, .5 (k)"

Ly

> (18 (k)Y

r=1

Yyint(rs) = | 05,5 (k)| < Vs, ps (11.10)

then, remove the rs neuron, and reduce the dimensionality of extended Kalman
filter. Note that y; , is the pruning threshold.

3.2 Linearization of the SAFIS

The linearization of SAFIS is needed for its error convergence analysis.
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Utilize the SAFIS output of (11.2) in the next equation:

Ly

> o008,k

Vo (k) = Fi(k) = "=—r,
D st
r=1

S50 = exp (— i a0 — s 0])

(11.11)

According to the Stone-Weierstrass theorem, the unknown nonlinear function f
of (11.1) is approximated in the next equation:

L

Zos,r* Ss,rx (k)

V(k) = ]:s,*"‘ s, f= r:}ﬂ—"" es,f»
D Serth)
r=1

Sors®) = exp (~ gt 168 = o)

(11.12)

where €5 r= y(k) — F;« € R is the modeling error, Sg ,«(k) € R, ps e € N,
Esrx €M, 05 rx € N, s rxs Es rs, ad 05 4 are the optimal weights that can minimize
the modeling error &, r. In the case of three independent variables, a function has
a Taylor series of the next equation:

f (@1, @2, @3) = f(w0, Dy, @30)

+ (@1 — wy0) LT 4 (o) — ) ML) (11.13)
+ (w3 — ) LEERE b

where b, € R is the remainder of the Taylor series. @, @y, and @3 correspond
to ws (k) € R, &.,(k) € R, and o, (k) € R, w0, @y, and w30 correspond to
Usrx € R, Erx € R, and o5, € R; therefore, the Taylor series is applied to
linearize (11.11) as in the next equation:

Ly
]:s(k) = ]:s,* + Zﬁs,r(k) g%,fr(é{k))
=1
L, r L, (11.14)
+Y E 0P8+ 35 (02 b g,
r=I1 r=I1
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where [i;,, (k) = ts,r (k) — s, € R, gs,r(k) =& (k) — & 4 € R, and as,r(k) =
05,1 (k) — 05 1 € R. Acquiring partial derivatives, it produces

Subsequently,

and

Sl = dy1 (k)
— 2[0.v,rs (k)=Ps (k)]Ss.r.r (k) [Xi (k)—ps,rs (k)]

L,
{Zss,wk)]s&m(k)
r=I1

(11.15)

aF (k) _
S = dy 2 (k)

2[00 (=5 ]Sy () Lot ) =115 ) ||
= : (11.16)

Ls
{Zs”(k)} £, (6)
r=1

OF, (k) S
o0 dy (k) = —" (11.17)

Ly
[Z&,Ak)]
r=1

Substituting d (k) of (11.15), dsa2(k) of (11.16), and ds3(k) of (11.17)
into (11.14), it produces

Ly

Fok) = Fout Y s r(k)ds 1 (k)

r=1 (11.18)

L L
+Y & (ks 2(k) + Y 05 (k)ds 3(K) + by 5.

r=1

Take into account the modeling error 5 (k) € t of (11.4) of the next equation:

Ys(k) = v (k) — y (k), (11.19)
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where y (k) and y,(k) are defined in (11.1) and (11.11), respectively. Substitut-
ing (11.11), (11.12), and (11.19) into (11.18) produces

Ly Ly
Polk) =Y g ()ds 1 (k) + Y Es.r (k)ds 2(K)
L r=1 r=I (11.20)
+ 0, (k)ds 3(k) + By (k).

r=1

where B; (k) = by, f— €5, 1.
From (11.20), the modeling dynamic equation can be expressed as in the next
equation:

Vs (k) = d (@5 (k) + Bs (k) (11.21)

where dy(k) = [dy1(k), ds2(k), ds 30017 € RV Gi(k) = [@5,1(k), @5 2(k),
Fs 3 (0] = [ rs k), & s (K), 3y rs ()] € R3EXT. From fi , (k), &, (k), and
0s.r (k) of (11.14) produces @ (k) = @g(k) — @54, 5.+ are the optimal weights that
can minimize the modeling error B (k).

3.3 Error Convergence of the SAFIS

In this section, the error convergence of the SAFIS is analyzed. Lyapunov strategy
is selected because it can be used for the error convergence analysis of nonlinear
networks. The next theorem shows the first main contribution of this chapter.

Theorem 11.1 The modeling error of the extended Kalman filter (11.4), (11.9) as
updating of the SAFIS (11.2), (11.11) applied for the modeling of prognostic health
management plants (11.1) is uniformly convergent, and the upper bound of the
average modeling error 24 (k) fulfills

1 T 32
limsup— Y 2,(k) < —-, (11.22)
T—o00 Tl; * bs,2
[d] ()G (s ()]

where 2,(k) = SQEEROL20, a,(0) = bz + dT K)Gy0)ds (k) > 0,
by (k) = as(k) +dI (k)G (k)ds (k) > 0.
Proof See [26] for the proof.
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4 Error Convergence Analysis of the MSAFIS

4.1 Description of the MSAFIS

The modified sequential adaptive fuzzy inference system (MSAFIS) is the SAFIS
algorithm with the modification of the extended Kalman filter (11.9) by the gradient
descent technique, but using the similar structure than the SAFIS algorithm.

The MSAFIS algorithm is summarized in [13]. The MSAFIS algorithm basically
utilizes Eqgs. (11.2)—(11.8), (11.10) of the SAFIS algorithm. The difference of the
MSAFIS is in Eq. (11.9), where the SAFIS uses the extended Kalman filter and it is
denoted with a subscript s, while the MSAFIS uses the gradient descent technique
and it is denoted with a subscript c¢. The change is detailed in the next sentence.

Update network weights o, ,(k), i¢, - (k), & - (k) for the nearest neuron by using
the gradient descent technique:

ek +1) = @c(k) — gc(k)dc(k)i;c(k)s
gell) = ——Ses

3
j=1

(11.23)

with

0 (k) = [e1(K), @e (k) 93],
de(k) = [dey (k) dea(k), de 3 ()17,

and

(ﬂc,l(k) = Mc,rc(k)a (pc,Z(k) = %-c,rc(k)a @c,3(k) = Oc,rc(k),
d. 1 (k) = 2[0c,re (k) =Pe (k) ] Se.re () [ Xi () —ptere (k)]

L.
[Zsﬂ,r(m}gﬂ(k)
r=1

2 crck_/\ck S(‘.rck i (k)— C,r(‘k 2
deo(k) = [0c.rc ()= (k) ] Se,re () || Xi () —pc.re () ||

L. )
[ Sc,r(k)] 3,000
r=1

dc,?,(k) — Sc,rc(k)

L. ’
|: Sc‘r(k):|
r=1

gc(k) is the time varying rate, and g, , is a term selected by the designer, 0 < g¢ , <
1.

)
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Remark 11.1 In SAFIS and MSAFIS, some terms should be selected in advance
according to the prognostic health management plant. They include the distance
thresholds (&5, max, €s,min> Ns) and (&¢ max, Ec.min» N¢), the overlap factors K and K,
for determining the width of newly added neurons, the growing thresholds (s, )
and (y.,p) for adding a new significant neuron, and the pruning thresholds (s, )
and (y,,p) for removing an insignificant neuron. A general selection procedure for
predefined terms is in the next sentence: max is set to around the upper bound of
input variables, &5 min and & min are set to around 10% of &5 max and €. max, and 1
and 7. are set to around 0.99. y; , and y. , are set to around 10% of y; ¢ and y. ,.
€s.max and & max are seen in the range [1.0, 10.0]. The overlap factors K and K,
are utilized to initialize the width of the newly added neuron and selected according
to the prognostic health management plant, and they are seen in the range [1.0,
2.0]. The growing thresholds y; , and y, , are selected according to the network
performance, and they are seen in the range [0.001, 0.05]. The smaller the y; , and
Ye,g» the better the network performance, but the resulting network structures are
more complex.

Remark 11.2 In the SAFIS and MSAFIS, each neuron r is equivalent to each rule
r, and the neurons number L and L. are equivalent to the rules number L and L.
Thus, the neurons are equivalent to the rules in the SAFIS and MSAFIS.

Remark 11.3 Even the SAFIS and MSAFIS are in structure similar, they are
completely different in the weights adjust; the SAFIS uses the extended Kalman
filter (11.9), while the MSAFIS uses the gradient descent technique (11.23), and it
produces significant changes in the structures of both algorithms.

Remark 11.4 The SAFIS and MSAFIS have the purpose to use the least required
neurons to get a satisfactory modeling; they have one hidden layer with the least
possible neurons number. The SAFIS and MSAFIS have two types of scalability:
the first scalability is to increase the neurons number in the hidden layer, and the
second scalability is to include other hidden layer with more neurons. Both types of
scalability are contrary to the main purpose of both algorithms.

Remark 11.5 Since SAFIS and MSAFIS are self-organization algorithms to
dynamically update their structure and adjust their weights to get an acceptable
modeling, they gradually optimize their weights and structure.

Remark 11.6 Step 4 of the SAFIS and MSAFIS uses pruning algorithms to remove
the insignificant neurons; it avoids that SAFIS and MSAFIS grow indeterminately.

4.2 Linearization of the MSAFIS

The linearization of MSAFIS is needed for its error convergence analysis.
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Use the MSAFIS output of (11.2) by changing the subscript s for ¢ as in the next
equation:

Lc

D oer®)5e, k)

Velk) = Felk) = =1
D Sert
r=1

Se.r(k) = exp (— g5 1000 = e O).

9

(11.24)

Using the same linearization method described by Egs. (11.11)—(11.20) produces

L. L.
Velk) =Y e (K)de1 (k) + Y Eer(k)de 2 (k)
L r=l r=1 (11.25)
+Y Ocr (k)de 3 (k) + Be(k),

r=1

where B.(k) = bc,f_ €, f- ﬁc,r(k) = Mc,r(k) — MHerx € R, Ec,r(k) = Ec,r(k) -
Eerx € R, 5/c,r(k) = Oc,r(k) — Oc,rx € . I/Lc,r(k)s ";:c,r(k)’ Oc,r(k)s dc,l(k), dc,Z(k),
dc3(k) are described (11.23). ficrx, &c.rxs Oc.rs are the optimal weights that can
minimize the modeling error B. (k).

From (11.25), the modeling dynamic equation can be expressed as in the next
equation:

Vek) = d} ()@ (k) + B (k), (11.26)

where d. (k) = [dc,1(k), dea(k), de3(k)]T € RV, Go(k) = [Fe(k), Gea(k),

~ T ~ ~ ~ ~ ~

Ge 3] = e re(k), Ecrek), Bere(0)]” € RF!. From fic ,(k), &, (k), and
Oc.r (k) of (11.25) produces @ (k) = @c(k) — @c x, ¢c.x are the optimal weights that
can minimize the modeling error 8. (k).

4.3 Error Convergence of the MSAFIS

In this section, the error convergence of the MSAFIS is analyzed. Lyapunov strategy
is selected because it can be used for the error convergence analysis of nonlinear
networks. The next theorem shows the second main contribution of this chapter.



206 11 Error Convergence Analysis of the SAFIS and MSAFIS

Theorem 11.2 The modeling error of the gradient descent technique (11.4), (11.23)
as updating of the MSAFIS (11.24) applied for the modeling of prognostic health
management plants (11.1) is uniformly convergent, and the upper bound of the
average modeling error 2. (k) fulfills

T

1 _
limsup— Y "$2.(k) < 2eoPos (11.27)
T— 00 Tk=2

where 2:(k) = #&D52(k — 1), 0 < geo < 1 € Rand 0 < ge(k) € R are
described in (11.23), y.(k) are described in (11.4), B, is the upper bound of the
uncertainty B.(k), |B:(k)| < B..

Proof See [26] for the proof.

Remark 11.7 The terms Lg (neurons number) in the SAFIS and L. (neurons
number) in the MSAFIS are finite, because the algorithms add the significant
neurons and prune the insignificant neurons to update themself to the changing
environment. The neuron numbers Lg and L. are changed by the adding and pruning
algorithms, and L; and L. change only the dimension of dST k), ps(k), dCT (k), and
@.(k); thus, the error convergence results are preserved.

5 Examples

In this part of the chapter, the studied algorithms are applied for the modeling
of two numerical examples. The two selected numerical examples have the two
main characteristics: First, they are nonlinear plants with the structure of Eq. (11.1),
and second, they let to show the characteristics of both algorithms. In all cases,
the MSAFIS will be compared with the SAFIS. The differences between three
algorithms were explained in before sections. The root mean square error denoted
as MSE is utilized for comparisons:

L 3
MSE = | = 72| . 11.28
(T;V ( )) (11.28)

with 2 (k) = 2 (k) as the modeling error for the SAFIS, and 7% (k) = y2(k) as the
modeling error for the MSAFIS.
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Fig. 11.2 Neurons number for Example 1

5.1 Example 1

The plant of Example 1 is expressed in the next equation:

_ pU Dy 2y G-1)-05]

r® =T e e TrE=D: 11.29

U(k_l)_sin(m) (11.29)
- 25

The nonlinear plant of Eqs.(11.1) and (11.29) is utilized where inputs are
x1tk) = y(k — 1), yotk) = y(k — 2), x3(k) = v(k — 1) and the output is
y (k) = y (k). The data of 3000 iterations are used for the training.

Terms of the SAFIS algorithm [11] are N = 3, n, = 0.99, Ks = 1, &5, max = 5,
€s,min = 0.5, Y50 = 0.01, y5 , = 0.001, g5 = 0.01, by > = 0.2.

Terms of the MSAFIS algorithm [13]are N = 3, n, = 0.99, K, = 1, ¢, max = 5,
ge,min = 0.5, e g = 0.01, ¥, =0.001, g. o = 1.

Figures 11.2, 11.3, 11.4, and 11.5 show the comparisons for the neurons number,
the generated neurons, MSE convergence, and training of the SAFIS and MSAFIS.
The training MSE comparisons of (11.28) are shown in Table 11.1.

From Figs. 11.2 and 11.3, it is observed that both algorithms reach the same
neurons number. From Fig. 11.4 and Table 11.1, it is observed that the MSAFIS has
better convergence than the SAFIS because the MSE is smaller for the first. From
Fig. 11.5, it is observed that the MSAFIS improves the SAFIS because the signal
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Fig. 11.3 Generated neurons for Example 1

Fig. 11.4 MSE convergence for Example 1
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Fig. 11.5 Training for Example 1

Table 11.1 Comparisons for

Strategy | Training MSE
Example 1

SAFIS 0.1740
MSAFIS |0.0730

of the first reaches better the plant signal than the signal of the second. Then, the
MSAFIS is the best option for the plant modeling in Example 1.

5.2 Example 2

The plant of Example 2 is expressed in the next equation:

y(k) =03y (k — 1) + 0.6y (k —2) + f(v(k — 1)),
Sk —1)) =0.6sin(rv(k — 1)) +0.3sin(3rv(k — 1)) + 0.1 sin(Srv(k — 1)),

o (2mtk=1)
vk—1) = s1n( ”200 ),

(11.30)

The nonlinear plant of Egs. (11.1) and (11.30) where inputs are x1 (k) = y (k—1),

x2(k) = y(k —2), x3(k) = v(k — 1) and the output is y (k) = y (k). The data of
3000 iterations are used for the training.



210 11 Error Convergence Analysis of the SAFIS and MSAFIS

Fig. 11.6 Neurons number for Example 2

Terms of the SAFIS algorithm [11] are N = 3, 1, = 0.99, Ks = 1, &5, max = 5,
es,min = 0.5, ¥5,, = 0.01, y5, , = 0.001, g5 = 0.01, by > = 0.2.

Terms of the MSAFIS algorithm [13] are N = 3, n, = 0.99, K. = 1, & max = 95,
ge,min = 0.5, ¥e,g = 0.01, ¥, =0.001, gc o = 1.

Figures 11.6, 11.7, 11.8, and 11.9 show the comparisons for the neurons number,
the generated neurons, MSE convergence, and training of the SAFIS and MSAFIS.
The training MSE comparisons of (11.28) are shown in Table 11.2.

From Figs.11.6 and 11.7, it is observed that both algorithms reach the same
neuron number. From Fig. 11.8 and Table 11.2, it is observed that the MSAFIS has
better convergence than the SAFIS because the MSE is smaller for the first. From
Fig. 11.9, it is observed that the MSAFIS improves the SAFIS because the signal
of the first reaches better the plant signal than the signal of the second. Then, the
MSAFIS is the best option for the plant modeling in Example 2.

Remark 11.8 Take into account that SAFIS and MSAFIS have the purpose to use
the least required neurons to get a satisfactory modeling. SAFIS and MSAFIS of
Example 2 in this chapter are compared with the well-recognized ANFIS algorithm
of Example 3 in [27]. While ANFIS uses seven neurons to get a satisfactory result,
SAFIS and MSAFIS use five neurons denoted in Fig. 11.6. This result shows the
SAFIS and MSAFIS use a less number of neurons than the ANFIS. Thus, the SAFIS
and MSAFIS are more compact than the ANFIS for the modeling.
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Fig. 11.7 Generated neurons for Example 2

Fig. 11.8 MSE convergence for Example 2



212 11 Error Convergence Analysis of the SAFIS and MSAFIS

Fig. 11.9 Training for Example 2

Table 11.2 Comparisons for

Strategy | Training MSE
Example 2

SAFIS 0.1349
MSAFIS | 0.0705

6 Concluding Remarks

In this chapter, the error convergence of the SAFIS and MSAFIS was ensured.
Utilizing two different examples, the MSAFIS produced higher accuracy compared
to the SAFIS. It is worthwhile to mention, because as MSAFIS and SAFIS are
based on online modeling, they can handle datasets of any size. They can also be
applied in machine failure detection or management of the life cycle. Here they
were successfully applied for the modeling of nonlinear plants. In the future, the
error convergence of other evolving intelligent networks will be analyzed, or the
SAFIS and MSAFIS will be applied in a prognostic health management plant.
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