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Chapter 1

Matrix algebra and numerical methods

1.1 Recommended literature

[1] Gregoire Allaire et al. Numerical linear algebra. Vol. 55. 2008. Springer, 2008
[7] Rainer Kress. Numerical analysis. Vol. 181. Springer Science & Business Media, 2012
[13] L Richard. ^Burden and J. Douglas Faires. Numerical analysis. Brooks”. In: Cole 
Publishing Company, Pacific Grove, California 93950 (1997), p. 78

1.2 Norms

A vector norm is a function that assigns a non-negative length or size to each vector in 
a vector space. A vector norm || • || on R” (or C”) satisfies the following properties for all 
vectors u, v and scalar a:

1. Non-negativity: ||u|| > 0 and ||u|| = 0 if and only if u = 0.

2. Scalar multiplication: ||au|| = |a|||u||.

3. Triangle inequality: ||u + v|| < ||u|| + ||v||.

Examples of vector norms: Unit circle in vector norms:

1. Manhattan norm (Li norm):

n

hili = Un
i=i

2. Euclidean norm (L2 norm):

3. Maximum norm (L^ norm):

||u||(X) = max|tp|

A matrix norm is a natural extension of vector norms to matrices. For a matrix 
norm || • || on Rmx”, it satisfies the following properties for all matrices A, B and scalar a:

1
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1. Non-negativity: ||A|| > 0 and ||A|| = 0 if and only if A = 0.

2. Scalar multiplication: ||aA|| = |a| ||A||.

3. Subadditivity (Triangle inequality): ||A + B\\ < ||A|| + \\B\\.

4. Submultiplicativity: ||AB|| < ||A||||B||.

Examples of matrix norms:

1. Frobenius norm:

2. Induced (Operator) norm: For a given vector norm || • ||, the induced matrix 
norm is defined as:

(a) Induced Li norm: 
m

Hili = max 52m

(b) Induced L% norm (Spectral norm):

||A||2 = yAmax(AM

where Amax denotes the largest eigenvalue.
(c) Induced norm:

n

1.2.1 Applications of Norms in Numerical Mathematics

Norms are essential in numerical mathematics particularly in the context of error estima­
tion and conditionality. For example, if e = x — x is the error vector (x - exact value, x 
- estimate of x), its norm ||e|| gives a measure of the size of the error. We are calling it 
absolute error. In solving linear system or least square problems, for example, the norm of 
the residual ||Ax — b|| indicates how close the current solution x is to the actual solution. 
If the relative error is small, the computed result x has a high number of valid digits.
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Conditionality

The condition number Cp is defined as

n
At/ 
y output relative error

'--■p A®
®

input relative error

If Cp ~ 1, the task is well-conditioned, whereas if Cp > 100, the task is ill-conditioned.

• The condition number of a matrix A with respect to a norm || • || is defined as: 

k(A) = ||A||||A—x||

• A high condition number indicates that the matrix is ill-conditioned, meaning small 
changes in the input can lead to large changes in the output, which is crucial for 
stability analysis in numerical algorithms.

• Norms help determine the sensitivity of the system Ax = b. If A is ill-conditioned, 
small errors in b or in the elements of A can result in large errors in x.

Example 1:

101® + 10y= 111
10® + y =11

x = 1
y = i

101® + 10y = 111
10® + y =11.1

x = 0
y = ll.l

1.3 Systems of Linear Equations and Direct Methods

In linear algebra, solving systems of linear equations is a fundamental task. A system of 
linear equations can be represented in matrix form as:

Ax = b

where A is a matrix of coefficients, x is a vector of unknowns, and b is a vector of 
constants. Several direct methods are used to find x, including matrix inversion, Gaussian 
elimination, and matrix decomposition.



1.4 Gaussian Elimination without Row Replacement 4

Matrix Inversion

One direct method is to invert the matrix A:

x = A-1b

This method is not always practical, especially for large matrices, due to the compu­
tational complexity of matrix inversion.

Gaussian Elimination

Gaussian elimination transforms the matrix equation Ax = b into an upper triangular 
form:

Ux = b

where U is an upper triangular matrix. This transformation allows us to simplify the 
system for easier solution.

Matrix Decomposition

Matrix decomposition methods, such as LU decomposition, decompose A into a product 
of matrices that are easier to solve.

1.4 Gaussian Elimination without Row Replacement

Gaussian elimination without row replacement follows a straightforward approach to con­
vert the matrix A into an upper triangular matrix U. This process involves the following 
steps:

f. Forward Elimination:

• Start with the first row. Identify the first element of the row (pivot element).
• Subtract multiples of the first row from the rows below it to create zeros in the 

first column below the pivot element.
• Move to the second row and repeat the process to create zeros below the pivot 

element in the second column.
• Continue this process for each subsequent row, always creating zeros below the 

pivot elements.
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2. Upper Triangular Form:

• By the end of the forward elimination process, the matrix A will be transformed 
into an upper triangular matrix U, where all the elements below the main 
diagonal are zeros.

3. Matrix L:

• Simultaneously, a lower triangular matrix L is formed. The elements of L are 
the multipliers used in the forward elimination steps.

• Specifically, for each elimination step I > k, the multiplier m used to eliminate 
the element Aik is stored in Li^.

Example 2, part 1:

Consider the system:

2<ri + 4a?2 — x3 = — 5
X1 + X2 — 3>X3 = —9

4a?i + X2 + 2a?3 = 9

Perform Gaussian elimination without row replacement and decompose A into L and

Solution Steps

1. Initial augmented matrix:

/ 2 4 -1 -5 \
1 1 -3 -9 

^412 9 /

2. First step of forward elimination:

R2^R2-

R3^R3- 2Rr

Resulting in:
/ 2 4 -1 -5 \

0 -1 —2.5 -6.5
\ 0 -7 4 19 y

- The multipliers used are | and 2, which are stored in L at positions L21 and L31, 
respectively.
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3. Second step of forward elimination:

R3^R3- 7R2

Resulting in:
/ 2 4 -1 -5 \

0 -1 —2.5 -6.5
0 0 21.5 64.5 /

- The multiplier used is 7, which is stored in L at position L32.

4. Resulting L and U matrices:

2 
k2

/2 4 -1 \
U= 0 -1 -2.5 

yi 0 21.5 y

1.5 Gaussian Elimination with Partial Pivoting

Gaussian elimination with partial pivoting improves numerical stability by selecting the 
largest possible pivot element in each step. The procedure involves the following steps:

1. Pivot Selection:

• In the first column, find the largest element in absolute value.
• Swap the row containing this element with the first row.
• This ensures the largest possible pivot element is used, reducing the risk of 

numerical instability.

2. Forward Elimination:

• Subtract multiples of the first row from the rows below it to create zeros in the 
first column below the pivot element.

• Move to the second row, select the largest element in the remaining submatrix, 
and swap rows if necessary.

• Continue this process for each subsequent column and row.

3. Upper Triangular Form:

• By the end of the forward elimination process, the matrix A will be transformed 
into an upper triangular matrix U.

4. Permutation Matrix:

• Record the row swaps in a permutation matrix P.

5. Matrix L:

A lower triangular matrix L is simultaneously formed, where each entry 
(for I > k) represents the multiplier used to eliminate the element during 
forward elimination.
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Example 2, part 2:

Solve the same system as in the previous section 1.4 using partial pivoting.

Solution Steps

1. Initial augmented matrix:

/ 2 4 -1 -5 X 
11—3—9

y 4 1 2 9 f

2. Pivot selection and row swap:

• The largest element in the first column is 4.
• Swap Ri and

( 4 1 2 9 \
1 1 -3 -9

4 -1 “5 /

• Record this swap in the permutation matrix P:

P =
(0 0 1\ 

0 1 0 
\1 0 0/

3. First step of forward elimination:

R2^R2-

R'3 <- R'3 -

Resulting in:
/ 4 1 2 9

0 0.75 -3.5 -11.25
3.5 -2 -9.5

- The multipliers used are | and which are stored in L at positions L21 and L31, 
respectively.

4. Second step of pivot selection and row swap:

• The largest element in the second column (below the first row) is 3.5.
• Swap R2 and R3:

/ 4 1 2 9 \
0 3.5 —2 -9.5
0 0.75 -3.5 -11.25 /

Record this swap in the permutation matrix P:
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/O 0 1\
P= 1 0 0

i o;

5. Second step of forward elimination:

R-3 R-3 — 77^2

Resulting in:
/ 4 1 2 9 \

0 3.5 —2 -9.5
0 0 -3.0714 -9.2143 /

- The multiplier used is which is stored in L at position L32. Multipliers at 
positions L21 and L31 swap.

6. Resulting L, U, and P matrices:

fl ° °^ /4 1 2 \ fo 0 1\
L = | 1 0 , U = 0 3.5 —2 , P = 1 0 0

y0 0 -3.0714^ \0 f 0)

1.5.1 Advantages of Gaussian Elimination with Partial Pivoting

Gaussian elimination with partial pivoting offers several significant advantages, particu­
larly in terms of numerical stability and accuracy. Below are the primary advantages of 
this method:

1. Improved Numerical Stability

Partial pivoting helps mitigate numerical instability that can arise due to small 
pivot elements. When small pivot elements are used, the elimination process can 
amplify rounding errors, leading to inaccurate results. By always choosing the largest 
available pivot element in the current column, partial pivoting reduces the risk of 
such errors.
Example: Consider a system of equations where the pivot element is very small:

O.OOOfaq + x? = 1
xi + x2 = 2

Without partial pivoting, using 0.0001 as a pivot can lead to significant rounding 
errors. Partial pivoting would swap the rows to use 1 as the pivot, avoiding these 
issues.

2. Enhanced Accuracy

By ensuring that the largest available pivot element is used at each step, partial 
pivoting minimizes the relative errors in the computations. This leads to more 
accurate solutions, especially for large systems of equations or those with widely 
varying coefficients.
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Example: For a system with coefficients of varying magnitudes:

2aq + 3a?2 = 5
lOOCtei + 1001a?2 = 2000

Partial pivoting would ensure the larger coefficient 1000 is used first, improving the 
accuracy of the subsequent computations.

3. Robustness in Handling Singular or Nearly Singular Matrices

Partial pivoting can help in identifying and dealing with singular or nearly singular 
matrices. In such cases, small pivot elements indicate potential singularity. By 
swapping rows to bring larger elements to the pivot position, partial pivoting can 
sometimes transform the matrix into a form where the solution is more apparent or 
confirm that the matrix is singular.

1.5.2 Full Pivoting

Full pivoting, also known as complete pivoting, is an extension of partial pivoting used 
in Gaussian elimination. In full pivoting, at each step of the elimination process, the 
algorithm searches for the largest absolute element in the entire submatrix (not just the 
column) to use as the pivot. This element is then swapped to the current pivot position by 
exchanging both rows and columns. Full pivoting provides even greater numerical stability 
than partial pivoting, as it minimizes the risk of rounding errors by consistently choosing 
the most significant available pivot element. However, this increased stability comes at 
the cost of additional computational complexity and time, as the algorithm must perform 
a more extensive search and additional row and column swaps.

1.6 Matrix Decompositions

1.6.1 LU Decomposition

The LU decomposition expresses a matrix A as the product of two matrices:

A = L-U

where:

• L is a lower triangular matrix with Is on the main diagonal.

• U is an upper triangular matrix obtained through Gaussian elimination.

To compute L, during Gaussian elimination, a multiple c of the fc-th row is added to 
the Z-th row (for I > k) to create a zero at position l,k. The value —c is then placed in 
the I, k position of matrix L.
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In the general case:

where P is a permutation matrix that accounts for any row exchanges in A.

1.6.1.1 Solving Systems of Linear Equations using LU decomposition

Given a system Ax = b and using the LU decomposition A = LU, we have:

Ax = LU x = b

Let y = Ux. We then solve:

followed by solving:

Ly = b

Ux = y

Example 2, part 3:

We may finish solving system
2xi + 4x2 — X3 = —5

Xi + X2 — 3x3 = —9 
4xi + + 2x3 = 9

as we started in section 1.4.

Solve Ly = b:
/l 0 0x /y?
| 1 0 y2

\2 7 V W

Z-5X
-9

yi = -5
|f/i I .72 -9 y2 -9 - |(-5) = -9 + 2.5 = -6.5

2yi + 7y2 + y3 = 9 => y3 = 9 - 2(-5) - 7(-6.5) = 9 + 10 + 45.5 = 64.5

i “5
-6.5 

y64.5,

Solve Ux = y:
4

-1 
0

-lx 
-2.5 
21.5 /

ZX1X
X-2 

\XJ

z -5 x 
-6.5 

^64.5 y

P • A = L • U

64.5 „
X3 = 2L5 = 3
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-x2 -2.5-3 = -6.5 => x2 = 6.5 - 7.5 = -1

2xi + 4 • (-1) - 1 • 3 = -5 => 2xx - 4 - 3 = -5 => 2xx - 7 = -5 => 2xx = 2

/ 1 \
x = —1

\ 3 /

Xi = 1

Alternatively, if a permutation matrix P is involved:

then:

We solve:

followed by:

PA = LU

PAx = LUx = Pb

Ly = Pb

Ux = y

Example 2, part 4:

We may finish solving system
2xi + 4x2 — %3 = —5 

Xi + X2 — 3x3 = —9
4xi + x2 + 2x3 = 9 

as we started in section 1.5.

Solve Ly = Pb for y:
Z1 0 0x /y? / 9 x
| 1 0 ,2 = -5

n \yi/ \ y/

yi = 9
|l/i + V2 = -5 => y2 = -5 - |(9) = -5 - 4.5 = -9.5 

if/i + ^2 + 1)3 = -9 => y3 -9 - |(9) - ^(-9.5) - -9 - 2.25 + 2.0357 - 

/ 9 \
y —9.5

v-9.2143?

-9.2143

Solve Ux = y for x:

/4
0 

\°

1 2 x
3.5 —2
0 -3.0714z

/x?
x2 

\x3/

z 9 x
-9.5 

v-9.2143z
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-9.2143 n
X3 - -3.0714 “

-95 + 63.5a?2 - 2(3) = -9.5 => x2 = ——:— = -1
3.5

4a+ + x2 + 2a?3 = 9 => 4a? i — 1 + 6 = 9+- 4a? i + 5 = 9 + 4a? i = 4 + xi = 1

/ 1 \
x = —1

V/

1.6.1.2 Calculating the Inverse Matrix using LU decomposition

To find the inverse of A using LU decomposition, we have:

A = LU

Thus:
A-1 = (LU)-1 = U^L-1

With a permutation matrix P:
PA = LU

Therefore:
(PA)-1 = (LU)-1

A~lp~l = U^L-1

and so:
A-1 = U^L^P

1.6.2 QR Decomposition

For a given m x n matrix A with m > n:

A = QR

where:

• Q is an m x m orthogonal matrix (QTQ = I).

• R is an m x n upper triangular matrix.
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QR Decomposition Algorithm using Gram-Schmidt Process

1. For each column vector a, of A, compute:

i-1
U, = ai “ H Pr°Ju3 (a»)

1=1
/ T . \

where projUj.(aO = (ur

2. Normalize u, to get qp

3. Form Q from the orthonormal vectors .

4. To compute R you can use the fact that Q is orthogonal matrix and therefore you 
can simply compute its inverse Q-1 = Q7. From that you can see that R consists 
of the coefficients of the projection.

Example 3: QR Decomposition of a 3x3 Matrix using Gram-Schmidt Process

Consider the matrix:
fl 1 0 \

A = 1 1 -1
V -1 2/

1. Compute the first column of Q: 

/1\ 
ai = 1

V/

Harll = Vl2 + 12 + 12­

- ai - — 1 -Q1 l|ai|| V3

2. Compute the second column of Q: 

/ 1 \ 
a2 = 1

Projqi(a2) = (qfa2) qi = 0= • 1 + ~^= • 1 + -±= 
\ y O \ O y O

i 1
projqi(a2) = -= =-

V-J 1 ■'
\V3/

= V3

\/3 1

, nA P + l-lA 1• ( i) qi = qi = ^qi/ \ V o / \ o

<1\ /A
1 = 1
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3. Compute the third column of Q:

/ 0 \ 
a3 = -1

k2/

Pr°jq2(a3) =

4

q3 =

4. Construct Q and R:

5
Vo

Pr°jqi(a3) = ~y=

1
qi = -^=qi 

o
Projqi(a3) =

\V3

Zl\
1

\V3j

Now compute the projection of a3 onto q2:

projq2(a3) = -

\ W v2;

u3 = a3-projqi(a3)-projq2(a3) =

l|u3|| =

Now we compute R = QTA:

Z-5\6 _5
6

fl1 
3

kl^

6 _5
610

6 _5
6
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5. First row of R:

Rn = qfai

R12 = qfa2 =

R13 = qfa3 =

6. Second row of R:

R22 = q2a2 = ■

R23 = q^a3 = -

7. Third row of R:

T 1R33 = q3 a3 = —= • 0 + - -^•(-l)+0-2 = 1
2

So, R is:
V3 73^

0 1 -1
\0 0 1)

The QR decomposition of A is:

1.6.2.1 Numerical Stability of the Gram-Schmidt Process

The Gram-Schmidt process is a classical method for orthogonalizing a set of vectors, and 
it forms the basis for one approach to QR decomposition. However, it is well-known that 
the classical Gram-Schmidt process can suffer from numerical instability, especially when 
working with finite-precision arithmetic as is common in digital computers. To address the 
numerical instability of the Gram-Schmidt process, other approaches such as Householder 
Reflections and Givens Rotations are often used. These methods improve the numerical 
stability and accuracy of the QR decomposition.

Sources of Instability

Loss of Orthogonality: During the orthogonalization process, small errors can accu­
mulate and cause the resulting vectors to lose their orthogonality. This is primarily due to 
the subtractions involved in the projection steps, which can lead to significant rounding 
errors.
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Round-off Errors: In each step of the Gram-Schmidt process, the projection of one 
vector onto another involves several floating-point operations. The finite precision of these 
operations introduces round-off errors. These errors can grow exponentially, especially 
when the input matrix has columns that are nearly linearly dependent.

Condition Number: The condition number of the input matrix also affects the stabil­
ity. Matrices with high condition numbers are more prone to numerical instability during 
the orthogonalization process.

1.6.2.2 Eigenvalue Computations using QR decomposition

The QR algorithm is one of the most efficient methods for computing eigenvalues and 
eigenvectors of a matrix. By iteratively applying QR decomposition and forming a se­
quence of matrices, the QR algorithm converges to a triangular matrix whose diagonal 
elements are the eigenvalues of the original matrix.

The QR algorithm works by leveraging the fact that orthogonal transformations pre­
serve eigenvalues. At each iteration, the matrix is decomposed into an orthogonal matrix 
Q and an upper triangular matrix R. Multiplying these factors in reverse order (i.e., 
Afc+i = RfcQfc) leads to a new matrix that is similar to the original matrix. This process 
gradually isolates the eigenvalues in the diagonal elements of the resulting upper triangular 
matrix.

Example 4: Computing Eigenvalues using the QR Algorithm

1. Initial Step: Compute the QR Decomposition of A:

A = QoRo

where Qo is an orthogonal matrix and Ro is an upper triangular matrix.

2. Form the Next Matrix:
Ai = RoQo

3. Iterate the Process: Repeat the QR decomposition on Ai to get:

Ai = QiRi and A2 = R1Q1

Continue this process for several iterations until A/,. converges to an upper triangular 
matrix T.

4. Eigenvalues: The diagonal elements of the final upper triangular matrix T are the 
eigenvalues of the original matrix A.

Consider the matrix:
/4 1 -2\

A = 12 0.
^—20 3 J
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For the given matrix A, performing the QR algorithm will eventually yield:

/5.7321 0 0\
T = 0 2.2679 0

k 0 0 M
Thus, the eigenvalues of A are 5.7321, 2.2679, and f.

1.6.2.3 Matrix inverses and determinants using QR decomposition

QR decomposition provides a numerically stable way to compute matrix inverses, determi­
nants, and ranks. The orthogonal matrix Q preserves the norm, which helps in maintaining 
numerical stability and reducing the effects of round-off errors in computations.

Example 5: Computing the Inverse using QR Decomposition

Consider the matrix:

where:

A = QR

2. Solve QRA-1 = I:
RA1 = Qr

1. Compute the QR Decomposition:

3. Compute A  by Back-Substitution:1

A1 = IPq'

where:

4. Result:
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Example 6: Computing the Determinant using QR Decomposition

Consider the same matrix A:

1. Compute the QR Decomposition:

A = QR

2. Compute the Determinant: Since Q is orthogonal, |Q| = ±1. The sign is determined 
based on whether the transformation represented by Q includes a reflection, |Q| = 
— 1, or not |Q| = +1. Therefore, the determinant of A is the product of the diagonal 
elements of R:

det(A) = det(Q) • det(R) = —1 • (^5 • = 5.

1.6.3 Cholesky Decomposition

For a given symmetric positive-definite matrix A:

A = LLt

where:

L is a lower triangular matrix with positive diagonal entries.

L7 is the transpose of L.

1.6.3.1 Cholesky Decomposition Algorithm

Let us start with A G TZ3x3. Given:
0 \

L =

Now, compute the product L • LT:

\-L31

The resulting matrix A = LLT is: 

(

L22 0
L32 L33y^31

A — L21L11
\L31Ln L31L21 + L32L22

Using this we now may express each element of A using elements of L. Generally you do 
it using the following formulae.
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1. Initialize L as a zero matrix.

2. For each z from 1 to n:

• For j from 1 to i — 1:

• Compute the diagonal entries:

i—1

A. - E
k=l

If A is positive-definite all elements of matrix L are real.

Example 7:

Consider the real matrix A that is not positive-definite:

/ 1 2 —1\
A= 2 2 4 

k“4 4 8)

We want to find the Cholesky decomposition of A, i.e., A = LLT, where L i 
triangular matrix.

a lower

Lu

L21

L31

L22

L32

L33

y/ATi = Vl = l
A21 _ 2
Ln 1
^31 _ ~1 _
Ln 1
^22 -L21 = V2 -22 = ^2^4 = ^2 = iV2

A32 ~ L31L2! = 4-(-I-2) = 4 + 2 = 6 = _ ,3
L22 i\/2 i\/2 i\/2

/433 - L2S1 - L22 = y8-(-l)2-(-i3^2)2 = V8 - 1 + 18 =

So, the matrix L is:
/ 1

L = 2
k-4

0 
z^2 

-z3^2

°\
0
5/
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1.6.4 Crout decomposition

Consider a general tridiagonal matrix A:

012 0 ••• 0

021 «22 «23 • • • 0
A = 0 032 «33 • • • 0

&n—l,n
0 0 0 0"n,n—l &nn /

We aim to find matrices L and U such that A = LU, where L is a lower triangular matrix 
and U is an upper triangular matrix with unit diagonal elements.

The general forms of L and U are:

/hi 0 0 ••• 0 \
hi I22 0 ••• 0

L = 0 Z32 133 • • • 0

0
0 0 ln,n— 1 Inn /

U =

/I U12 0 •••
0 1 U23 •• •
00 1 •••

0
0
0

Matrix multiplication A = LU is:

3 0 0
^n— l,n

1 ?

A = LU =

/hi 
hi
0

Z11U12 
Z21O12 + I22 

Z32

0 
Z22O23 

Z32O23 + Z33

0 \
0
0

^0
0 0 ln,n—1

In— l,n
^n,n—l^n—l,n + ^nn/

Expressions for Elements of L and U

For i = j:
i—1

' likAki

k=l

For i > j:

lij — (kij
J-l

' likAkj 

k=l
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For i < j:
i—1

' lik'U'kj 

k=l

Doolittle decomposition is another method for decomposing a matrix into the prod­
uct of a lower triangular matrix and an upper triangular matrix, but with a different 
arrangement. In Doolittle decomposition, the lower triangular matrix L has unit diagonal 
elements, while the upper triangular matrix U has non-unit diagonal elements. This is in 
contrast to Grout decomposition, where the upper triangular matrix U has unit diagonal 
elements, and the lower triangular matrix L can have non-unit diagonal elements.

Grout and Doolittle methods are particularly useful in numerical methods for solving 
systems of linear equations, which frequently arise in the numerical solution of differ­
ential equations using difference schemes. In these schemes, the continuous differential 
equation is discretized, transforming it into a system of algebraic linear equations. The 
resulting coefficient matrix, often tridiagonal, can be efficiently decomposed using Grout 
decomposition. This factorization facilitates the solution of the system through forward 
and backward substitution (similar to general LU decomposition introduced earlier in the 
chapter).

Example 8:

Consider the matrix A:

(2 -1 0 0 \
1 4 1 °
0 13-2

\0 0 2—3/

We want to find matrices L and U such that A = LU, where L is a lower triangular matrix 
and U is an upper triangular matrix with unit diagonal elements.

The resulting matrices L and U are:

/2 0 0 0 \
1 | 0 0
0 1 f 0

\0 0 2 -11/
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1.6.5 Singular Value Decomposition (SVD)

The SVD of a matrix A is:

where:

A = UXVT

• U is an m x m orthogonal matrix (consists of left singular vectors of A).

• S is an m x n diagonal matrix with non-negative real numbers on the diagonal, 
known as the singular values of A.

• VT is an n x n orthogonal matrix (consists of right singular vectors of A).

Fig. 1.1 : Visual representation of singular value decomposition in 2D. It shows the deformation of the 
unit disc using action A and marking two canonical vectors (top). The action is decomposed into two 
rotations represented by U and VT, and scaling represented by S. The image was adapted from [16].

Singular Values and Vectors - definition

A non-negative real number a is a singular value for A G Rm><" if and only if there exist 
unit-length vectors u G JT" and v G R" such that:

Av = (tn, A u = <jv

where u and v are called the left-singular and right-singular vectors for <7, respectively.

Singular Values - computation

Given a matrix A of size m x n, the singular values of A are non-negative real values 
<7i, <72, • • •, <7r, where r is the rank of the matrix. The singular values are defined as 
follows:

1. If A is a square matrix (m = n), the singular values are the positive square roots of 
the eigenvalues of the matrix ATA.
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2. If A is a rectangular matrix (m / n), the singular values are the positive square 
roots of the nonzero eigenvalues of both A7 A and AA7 .

Singular Vectors - computation

1. Left Singular Vectors (u.4): The left singular vectors are the eigenvectors of the 
matrix AA7' corresponding to the non-zero eigenvalues.

2. Right Singular Vectors (v»): The right singular vectors are the eigenvectors of 
the matrix A7A corresponding to the non-zero eigenvalues.

Example 9: Using SVD for Data Compression

1. Perform SVD: Given a data matrix A of size m x n, compute the SVD: A = 
USVT.

2. Truncate Singular Values: Retain only the first k singular values and their cor­
responding columns in U and rows in V.

3. Reconstruct Approximate Data: Create an approximate matrix A' by using 
the truncated versions of U, S, and V: A' = V k^k(V k)T ■

4. Reduced Storage: The reduced matrix A' requires less storage and represents a 
compressed version of the original data.

As an example of this approach, assume you have 25 images of a human face with 
different facial expressions (with a resolution of 200x300 pixels), see Figure 1.2. Assume 
that your observations are observations of the overall images of a pixel (in total 60 000 
observations). Your variables are different images in witch you are looking at the given 
pixel (in total 25 variables). Since the images are similar, pictures of the same face at 
approximately the same position), it makes sense to reduce number of observed variables 
to capture the crucial information in those images. For this purposes we may use SVD 
for Data Compression.

SVD and Principal Component Analysis (PCA) are closely related techniques used in 
data analysis and dimensionality reduction. PCA seeks to find the directions (principal 
components) that maximize the variance in a dataset. This is achieved by diagonalizing 
the covariance matrix of the data. SVD, on the other hand, decomposes the original data 
matrix into three matrices: the left singular vectors, the singular values, and the right 
singular vectors. When the data matrix is centered (i.e., the mean of each column is 
subtracted), the right singular vectors of SVD correspond to the principal components of 
PCA, and the singular values relate to the explained variance by each principal component. 
Thus, performing PCA on a dataset can be efficiently achieved using SVD, making it a 
powerful tool for extracting the most significant features from the data.
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Image 1 Image 1 compressed Image 2 compressed

Image 4 Image 4 compressed Image 5 compressed

Image 8 compressed Image 9 compressed

Image 13 compressed

Image 19 compressed

Image 22 compressed

Image 14 compressed

Image 20 compressed

Image 15 compressed

Image 18 compressed

Fig. 1.2: 25 images of a human face with different facial expressions compressed using SVD decomposition.

Example 10: Iterative Closest Point

The Iterative Closest Point (1CP) algorithm is a popular method for aligning point clouds, 
which are collections of data points in a 3D space. 1CP is widely used in fields such 
as robotics, computer vision, and computer graphics. Its goal is to find the optimal 
transformation (rotation and translation) that minimizes the distance between two sets 
of points.

How ICP Works

1. Initialization: Start with two point clouds: the source (or model) point cloud and 
the target (or reference) point cloud. The source point cloud is the one you want to 
align with the target point cloud.

2. Matching: For each point in the source point cloud, find the closest point in the 
target point cloud. This step pairs each point in the source cloud with its nearest 
neighbor in the target cloud.
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3. Transformation Estimation: Compute the transformation (rotation and trans­
lation) that best aligns the matched points. This is usually done using methods 
like Singular Value Decomposition (SVD) to find the optimal transformation that 
minimizes the mean squared error between the matched points.

4. Apply Transformation: Apply the estimated transformation to the source point 
cloud.

5. Repeat: Repeat the matching, estimation, and application steps iteratively until 
convergence. Convergence is typically defined by a small change in the error metric 
or a fixed number of iterations.

Details of ICP implementation

Here we provide a potential implementation of the ICP algorithm for point sets A, B E R2. 
This algorithm can be similarly extended to handle higher-dimensional data.

Step 1: Find Closest Points

For each point a, in the source point set A, the algorithm finds the closest point b, in the 
target point set B. This is done by calculating the Euclidean distance between each source 
point and all target points. The Euclidean distance between two points a, = (a»i, a»2) and 
bj = (fyi,fy2) is given by:

d(apbj) = y(«,i - bji)2 + (ai2 - bj2y

The algorithm finds the point b, in B that minimizes this distance for each a, in A.

Step 2: Compute Centroids

The centroid of a point set is the average of all points in the set. For the source point set 
A = {ai, a2,..., &n}, the centroid ca is calculated as:

Similarly, the centroid cp of the corresponding points in the target set B is given by:

1 N
Cb = n>>

t=l
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Step 3: Center the Points

Once the centroids ca and c/> are computed, both the source and target points are trans­
lated to have their centroids at the origin. This is done by subtracting the centroids from 
each point in the respective sets:

ai = a« — CA

b' = bi - cB

These centered point sets A' and B' are then used for calculating the optimal rotation.

Step 4: Find the Optimal Rotation (SVD)

To find the optimal rotation matrix R, we first compute the covariance matrix //. which 
represents the relationship between the centered source points and the centered target 
points:

N 
// ya'7b; 

i=l

The next step is to perform Singular Value Decomposition (SVD) on the covariance matrix 
H. SVD decomposes H into three matrices U, S, and V such that:

H = U^VT

The optimal rotation matrix ROptimai is then calculated as:

-^optimal = VU

To ensure that the rotation is proper (i.e., no reflection), if the determinant of ^optimal 
is negative, we adjust the sign of the last column of V before recomputing the rotation 
matrix.

Step 5: Compute the Optimal Translation

Once the optimal rotation matrix ROptimai is found, the translation vector iOptimai is cal­
culated by aligning the centroids of the source and target point sets:

^optimal ^optimal*-?!

Step 6: Apply the Transformation

The computed rotation ROptimai and translation iOptimai are applied to the source point 
set. Each point at in the source is transformed as:

a, — ^optimala« V ^optimal

This updates the source point set to align more closely with the target.
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Step 7: Check for Convergence

After applying the transformation, the algorithm computes the mean squared error (MSE) 
between the transformed source points and their corresponding closest points in the target 
set:

1 NMSE = E IKew -M2
i=l

If the change in error between iterations is smaller than a predefined tolerance, the algo­
rithm concludes that the transformation has converged and stops. Otherwise, the process 
repeats in the next iteration.

1.7 Least Squares Method

Theoretical Background

Consider the system of linear equations represented by A • x = b. Often, this system 
is unsolvable in the exact sense. For any given vector x, we define the residue rx as 
rx = b — A • x. The vector x is termed the solution in the sense of least squares if it 
satisfies ||r£|| < ||r^|| for any x.

To understand the solution better, we introduce some concepts related to the matrix 
A. The range space of the matrix A is denoted by and its orthogonal complement 
is 7?.±(A). Any vector b can be decomposed into b = bi + 62, where bi G 7t(A) and 
62 G 7£-l(A). It follows that AT • &2 = 0. The vector x that solves the least squares 
problem is then the solution of the system A • x = bi.

Normal Equations

To find the least squares solution, we start with the equation A • x = bi. By multiplying 
both sides of this equation by AT, we obtain the normal equations:

At • A • x = At ■ bi.

AT-b1 = AT ■b1+AT-b2 = AT ■ b.

Thus, x is the solution to the system AT • A • x = .47 • b. This solution is unique if the 
columns of A are linearly independent. In such a case, the solution is given by:

x = (ATA)~1ATb.

The least squares solution can also be expressed using the pseudoinverse. The pseu­
doinverse A+ of A provides a generalization of the inverse for non-square or singular 
matrices. The pseudoinverse is defined as:

A+ = (AtA)~1At
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Thus, the least squares solution can be written as:

x = A+ ■ b

This approach works for any matrix A, whether it is square or rectangular, and provides 
the optimal solution in the least squares sense.

Function Approximation

The least squares method is also applicable in function approximation. Suppose we are 
given points xq, ... ,xn and corresponding function values Jo,..., fn. Additionally, assume 
we have a set of base functions d>o,..., d>m. Our goal is to approximate the function using 
a linear combination of these base functions:

d>(a;) = cod>o(X) d---------1- cmA‘m(x)-

We aim to find the parameters co,... ,cm that minimize the sum of squared differences 
between the given function values and the approximating function at the points Xk'.

n
E [*(«)- Ah 
fc=0

To find these parameters in the sense of least squares, we set up the following system 
of equations:

cod>o(Ao) + ci$i(a;o) d-------- k cm$m(x0) = f0,
Co$o(®i) + ci$i(a;i) d-------- k cmd>m(aq) = Ji,

co^o(^n) + cid>i(a;n) d---------k cm$m(xrt) = fn

We can represent this system in matrix form as A • c = /, where A is the matrix of 
the base functions evaluated at the given points, and / is the vector of function values:

$m(z0) \/ $0(^0)
<ho(Ai)

$i(z0) 
d>i(aq)

( f0\ 
fl

\ fn J\ d>o(aT.) ^i(^n)

The parameters c = (co, • • •, cm)T are then given by the normal equations:

AT.A-c = AT-f,

which simplifies to:
c = • A) 1 At • /.
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Fig. 1.3: Approximation of data by linear function using least square method.

Example 11: Linear Function Approximation

Consider an example where we have the following data points:

Xt 1 2 3 4 5 6 7 8 9 10
fi 2.7 5.5 7.5 9.0 11.3 12.6 14.9 17.4 19.3 21.5

We seek a linear function to approximate this data. Using the base functions d>o(.r) = 1 
and d>i(.r) = x, we construct the matrix A and the vector /:

/I 1 \ / 2.7 X
1 2 5.5
1 3 7.5
1 4 9.0
1 5 11.3A = 1 6 , / = 12.6
1 7 14.9
1 8 17.4
1 9 19.3

\ 1 10 / \ 21.5 /

Solving the normal equations, we find:

1.0267
2.0261

yielding the approximating function:

£(x) = 1-0267 + 2.0261®.
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Example 12: Model Height of Girls

The following table contains measurements of the height of students from a local primary, 
secondary, and high school, ranging in age from 5 to 18 years. Assume that the height 
increases linearly for girls between the ages of 5 and 12. For girls older than 12, the height 
remains constant. Use the least-squares method to estimate the exact dependence for the 
given data. What height does your model predict for:

(a) A 12-year-old girl?

(b) A 5-year-old girl?

Age (years) 15.5 17.8 16.5 7.8 5.5 9.0 6.2 12.0 10.5 8.3 14.0 13.5 18.0
Height (cm) 170 168 167 134 114 139 121 154 144 130 160 159 169

Table 1.1: Height and Age Data of Girls (sample of data), full data are stored in file heigth_of_girls.txt

Solution

We begin by extracting the relevant information from the table, namely the age X and 
height Y of the girls. We then use a piecewise linear model where the height increases 
linearly until the age of 12 and remains constant thereafter.

To construct the model, we define two functions:

/(a;) = (x < 12) • (x — 12) 

representing the linear increase for ages below 12, and

5(rr) = 1

representing the constant height for ages above 12.

Using these functions, we form a design matrix A and apply the least squares method 
to find the coefficients c that best fit the data. The resulting height function is:

/z(a?) = ci • f(x) + c2 • g(x)

After performing the calculations, the model predicts the following heights:

• For a 12-year-old girl: The height is approximately 165.5820 cm.

• For a 5-year-old girl: The height is approximately 107.6141 cm.
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Fig. 1.4: Model of Height vs Age of Girls using least-square method.



Chapter 2

Interpolation

2.1 Recommended literature

[7] Rainer Kress. Numerical analysis. Vol. 181. Springer Science & Business Media, 2012
[13] L Richard. “Burden and J. Douglas Faires. Numerical analysis. Brooks”. In: Cole 
Publishing Company, Pacific Grove, California 93950 (1997), p. 78

2.2 Introduction to Interpolation

Interpolation is a method used to estimate values of unknown function that fall within the 
range of a discrete set of known data points. It is a fundamental technique in numerical 
analysis, data fitting, and numerical modeling. The goal of interpolation is to construct 
new data points within the range of known data points.

Mathematically speaking, given points (knots) To,..., T.,t, where xt Xj for i j, 
and given function values (measurements) fo,...,fn, where ft = f(xf), we consider the 
function 3>(t) = ao^o(^) 3------ H aAfi) that depends on the parameters ao, ■ • •, an. The
problem of interpolation is to find the parameters ao, • • •, an such that the conditions

Hd) = C for i = 0,1,... ,n,

are fulfilled.

Examples include:

3>(a?) = ao + Qi® + • • • + anxn, a polynomial,

and
3>(a?) = ao Taic’‘T + • • • + anemx, a trigonometric polynomial.

2.3 Polynomial Interpolation

Polynomial interpolation involves approximating a given set of data points with a polyno­
mial function. Given a set of n 4 1 data points (to, yo), (-M, yi), • • •, (t„, yn), polynomial 
interpolation finds a polynomial P(t) of degree at most n such that P(t4) = y4 for all 
i = 0,1,..., n.

For given points (x.t.,fi),i = 0,... ,n, where t,; Xj for i j, there exists a unique 
polynomial P of degree at most n such that

P(t,;) =/», i = 0,...,n.

32
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Uniqueness: If Pi(aq) = P2(aq) = fi, i = 0,... ,n, then Q = Pi — P2 is a polynomial 
of degree at most n and Q(xi) = 0, i = 0,... ,n, i.e., Q has n + 1 roots so Q must be 
the zero polynomial.

Existence: To construct P, we construct the polynomials Lp

• Li is a polynomial of degree n,

Points Xj,j i are roots of Lp

Li(x) = Ai(x - a?0) • • • (a? - aq_i)(a? - aq+i) ■■■(x-xn),

Li(x) = AiTp(x), where 7p(a?) = — xi)-

Since Li(xi) = I, we have

Ki(Xi) '

2.3.1 Lagrange Interpolation

The construction described in the previous paragraph is called the Lagrange interpolation.
To recapitulate, the Lagrange interpolation polynomial is constructed as follows:

Define the Lagrange Basis Polynomials:

Each Li{x) is a polynomial of degree n that is equal to 1 at xt and 0 at Xj for j i.

Construct the Interpolating Polynomial:

p(x) = '^2yiLAx')

This polynomial P(a?) is a linear combination of the basis polynomials Li(x) weighted 
by the data values tp.
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Effective Calculation of Li

The calculation of one base polynomial Li is O(n2), meaning that the direct calculation 
of the interpolation polynomial is O(n3).

To improve efficiency of the algorithm we may use Horner’s scheme. It allows us to 
compute P in O(n2). The computation consists of the following steps:

n
1. Compute in(x) = II — xj)> which is O(n2), 

j=o

2. Compute 7Fi(a?) = w(a?)/(a? — Xi) using Horner’s scheme, which is O(n),

3. Compute 7r(a?i) using Horner’s scheme, which is O(n),

4. Finally, compute the polynomial P in O(n2).

The Lagrange construction is useful when you need to create several interpolation 
polynomials for the same values of the independent variable x but different values of the 
dependent variable y. An example of such a scenario is measuring a human characteristic 
y during regular medical examinations (the timing of the examinations is given by the 
independent variable x) and finding the continuous dependence of such a characteristic 
using interpolation. The timing of the regular examinations is fixed, so the independent 
variable x remains the same for different patients, but the measured values y vary for each 
patient.

Example:

Construct Lagrange interpolation polynomial for the given data: Xi -1 0 1 3
7T -3 i -i i

Solution using direct construction:

LoW =
(x — 0)(a? — f)(a? — 3)

O
O

 | H
 

s W +
to

 | S to
1 

00
 | co

(-f-O)(-f-!)(-!-3)

Li(x) =
(a? + f)(a? — f)(a? — 3) _ 1 3 _
(0 + l)(0-l)(0 — 3) 3

2 1■ x — -x + 1 
o

Lltx) = (a; + 1) (a; — 0) (a; — 3) _ 1 3
(f + f)(f — 0)(f — 3) 4

1 2 3+ -a? +-x

=
(a? + f)(a? — 0)(a? — f) 1 3 
(3 + 1)(3 — 0)(3 — 1) “ 24^

1
----- a?

24

P(x) = —3Lo(a?) + L\(x) — Lz(x) + L$(x) = a?3 — 3a?2 + 1
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Solution using Horner scheme:

w(.r) = (a? + l)(a? — 0)(a? — l)(a? — 3) = x4 — 3x3 — x2 + 3x
7To(.t) = w(x) : (x + 1)
7Ti(x) = w(x) : (x — 0)
7T2(.t) = w(x) : (x — 1)
7T3(x) = w(x) : (x — 3)

Using the Horner scheme for division w(.r) : (a? + l) we construct £o(.r), and other base 
polynomials can be computed similarly.

w 1 -3-130
=> 7To(.t) = x3 — 4x2 + 3x

Using Horner scheme we can evaluate 7Fo(^o) = tto(—1): 

tto(-I) = -8

7r(a?) 1-4 3 0
1 -5 8 1-8

Finally, L0(x) = = - j(x3 - 4x2 + 3x).

Fig. 2.1: Lagrange base polynomials
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2.3.2 Newton Interpolation

The Newton interpolation polynomial is constructed using divided differences. The steps 
are as follows:

Calculate the Divided Differences:

The first divided difference is:
f N = yt

The second divided difference is:

f\,r. T i _ /N “ /N
Xj — Xi

The general fc-th divided difference is:

... > /[‘T:+1> • • • i ‘T:+fc] • • • > Xi+k—1]
J [Xi, ‘T:+1> • • • > ‘T:+fcJ =

xt+k ~ xt

Construct the Newton Polynomial:

The Newton interpolation polynomial is:

P(x) = do + ai(.r — .To) + az(x — xo)(.t — a?i) + • • • + an(x — xo)(.t — a?i) • • • (a? — xn_i)

where the coefficients at are the divided differences:

at = J[xo,.Ti, . . . ,X,;]
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Table of divided differences:

The divided differences for Newton interpolation can be computed using a recursive tree 
structure. This structure systematically computes the coefficients needed for the Newton 
polynomial. Here’s a detailed step-by-step process for constructing the divided differences 
tree.

J[a?o, • • • ,xn]

The first column contains the y-values of the data points. Each subsequent column in 
the tree is computed from the differences of the previous column, divided by the difference 
in the corresponding a?-values. The tree is built level by level, starting from the first column 
(the y-values).

To proof P(xi) = fi, we start with the original polynomial:

F(a?) = f[x0] + flxo,x-i](x - x0) + f\x0,x1,x2](x - xq)(x - aq) +
3------ h f[x0, . . . ,xn\(x - Xq) • • • (x - Xn_Q

Now, we substitute x = xq:

P{xq) = f[x0] = f0

Now, we substitute x = xp

P(xQ = f[x0] + J[a?o,aq](aq - x0) = fo + ———(x! - x0) = Ji (Z*  1 Xq

Now, we substitute x = x2:

P(x2) = f[x0] + f[x0,Xi\(x2 - Xq) + f[x0, Xi, X2](x2 - Xq)(x2 - Xi) =
= f\xo] + f\xo, aq](a?2 - x0) + ^X2,X1^—/[Fh^i] _ Xq^X2 _ x j =

2?2 Xq

= /M + f[xo, aq]a?2 - /[^o, xi]xq + f[xi,x2]x2 + J[a?0, aq]aq - /[aq,a?2]ah-
/2 — fi- J[a?o,aq]a?2 = P(xQ + f[x!,x2](x2 -xQ = fi----------- (x2 - xQ = f2
x2 — Xi

Similarly, we can proceed with an arbitrary x^

The Newton construction is useful in scenarios where a new data point (xn+i,yn+i) 
is added (thus giving you n + 2 points) and you have already computed the interpolation 
for the original set of n + 1 points. This is particularly beneficial in situations where you 
need to increase the precision of the function estimation.
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Example:

Construct Newton interpolation polynomial for the given data: 12 3 4
1 4 9 16

Third Column:First Column: Second Column:

X X X f[x0, Xi, x2]
1 1 1 1 4 — 1   9

2-1 — d 1 1 3 5-3 _ 1
3-1 ~ 1

2 4 2 4 9—4 _  r
3-2 ~ 0 2 4 5 — = 14-2 -1-

3 9 3 9 16—9 _  7
4-3 — ' 3 9 7

4 16 4 16 4 16

Fourth Column:

f[x0, Xi, x2] f[x0, Xi, X2, £3]

So, the divided differences 
are:

X
1 1 3 1 — = 04-1 u f[xo] = 1
2 4 5 1 f[xo, £1] = 3
3 9 7 f[x0, Xi, x2] = 1
4 16 f[x0,x1,x2,x3] = 0

The Newton polynomial is:

P(x) = 1 + 3(x — 1) + l(a? — l)(a? — 2) + 0(a? — l)(a? — 2)(ai — 3)
P(x) = 1 + 3(x — 1) + (a? — l)(a? — 2)
P(x) = 1 + 3x — 3 + x2 — 3x + 2
P(x) = x2

2.4 Error of Polynomial Interpolation

The error of polynomial interpolation for a function f(x) is given by the interpolation 
error formula:

f(x) - p(x) = m
for some £ in the interval [a, b\. The error depends on the distribution of interpolation 

points Xi.

2.4.1 Selecting Points to Minimize Error

To minimize interpolation error in the L2 norm for a general continuous function, Cheby­
shev nodes are often used. Chebyshev nodes are given by:

= cos
2i + 1 \
-------- 7T2n + 2 J i = 0,1,..., n
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Benefits of Chebyshev Nodes

1. Minimize the Maximum Error: The distribution of Chebyshev nodes reduces 
the maximum value of the product

n 

n<T - d) 
i=0

over the interval [—1,1]. This product, known as the interpolation polynomial’s 
Lebesgue function, tends to have smaller maximum values when Chebyshev nodes 
are used compared to equidistant nodes. This effectively minimizes the interpolation 
error, particularly near the boundaries of the interval.

2. Reduction of Runge Phenomenon: The Runge phenomenon, which is the large 
oscillation that occurs when using equally spaced nodes for interpolation of certain 
functions, is significantly mitigated by the use of Chebyshev nodes. The clustering 
of Chebyshev nodes near the interval’s endpoints reduces these oscillations.

3. Uniform Distribution of Error: Chebyshev nodes provide a near-optimal dis­
tribution of interpolation points that balances the error across the interval. The 
error tends to be more uniformly distributed, leading to a more accurate overall 
interpolation.

4. Connection to Chebyshev Polynomials: The Chebyshev polynomials them­
selves have the property of minimizing the maximum deviation from zero among all 
polynomials of the same degree with leading coefficient 1. This property translates 
to the interpolation error when using Chebyshev nodes.

2.5 Definitions of Linear, Bilinear, and Trilinear Interpola­
tion

Linear Interpolation

Linear interpolation is a special case of polynomial interpolation, where the interpolating 
polynomial is of degree one. It is commonly used for piecewise interpolation, where a linear 
function is applied between consecutive data points. In this context, linear interpolation 
can also be viewed as a special case of splines, specifically a linear spline, which will be 
discussed later in this chapter.

Used for one-dimensional data. It approximates the value /(a;) within an interval 
[o?o, a?i] by:

x (x - x0')f(xl') + (aq - x')f(x0')
Xl — Xo
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neighbour

2D nearest- 
neighbour

Fig. 2.3: Comparing nearest neighbor and linear interpolation in ID and 2D. The figure was adapted 
from [15].

Bilinear Interpolation

Extends linear interpolation to two dimensions. Given points (xo,yo), (.Ti,yi), it interpo­
lates a value f(x, y) based on linear interpolations along both dimensions.

y) w /(.T0, yo)
(.Ti - .r)(yi - y) 

(.Ti - .r0)(yi - y0)
+ /(Ti,yo)

(.t - .r0)(yi - y)
(.Ti - .r0)(yi - y0)

+ /(To,yi)
(.Ti - ,r)(y - y0)

(.Ti - .r0)(yi - y0)
+ /Oi, £/i)

(.t - .r0)(y - y0)
(.Ti - .r0)(yi - y0)

Trilinear Interpolation

Extends bilinear interpolation to three dimensions. It involves interpolating within a cube 
and uses linear interpolation first along one dimension, then another, and finally the third.

i i i

f(x,y,z) % EEE /l/j i zk} 
i=0j=0k=0

(,Ti-t - T)(yi-J - y)(Ti-fc - t) 
(xi - .r0)(yi - y0)(zi - z0)

Each interpolation method serves different purposes and has its advantages based on 
the dimensionality and distribution of the data points.
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2.6 Radial Basis Functions Interpolation

Radial basis functions (RBF) are a type of real-valued function whose value depends only 
on the distance from a central point. In mathematical terms, a radial basis function <f> is 
defined as 0(||a? — c||), where x is the input vector, c is the center of the function, and || • || 
denotes the Euclidean norm.

Common Radial Basis Functions

Several types of RBFs are commonly used in practice:

• Gaussian: </>(r) = e~e2r2

• Inverse Multiquadric: <j>(r) = , 1 „
Vi+O)

• Thin Plate Spline: </>(r) = r2 ln(r)

Here, r = ||a? — c|| and e is a shape parameter that can adjust the width of the basis 
function.

Advantages of RBF interpolation

• RBF interpolation can handle scattered and irregularly spaced data points, making 
it suitable for complex and non-uniform data distributions.

• Depending on the chosen RBF, the resulting interpolant can have higher-order con­
tinuity (e.g., Gaussian RBFs produce infinitely differentiable surfaces).

RBF Interpolation Process

Given a set of data points where X{ G R" and yi G R, the goal is to find an
interpolant function s(x) such that s(xi) = y, for all i. The RBF interpolant is typically 
expressed as:

N

«(□?) = 12 'W(lla: _ M)
i=l

where Xi are coefficients to be determined, <f> is the chosen RBF.
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Solving for Coefficients

To determine the coefficients Xt one typically solves a linear system derived from the 
interpolation conditions. Specifically, the system of equations can be written as:

N

- %ll) = Vt for all i = f,... ,7V

This linear system can be represented in matrix form and solved using standard nu­
merical linear algebra techniques.

2.7 Spline Interpolation

Spline interpolation is a method used to construct a smooth function that passes through 
a given set of points. This technique is particularly useful in numerical analysis for ap­
proximating complex functions using piecewise polynomials. The key advantage of spline 
interpolation over polynomial interpolation is that it avoids the problem of oscillation 
between points, providing a smoother and more accurate fit.

Given a set of points, known as knots, a?o, ®i, • • • ,xn with a?0 < aq < ... < xn, and 
corresponding function values Jo, /i, • • •, /«, spline interpolation aims to find a function 
S(x) that not only passes through these points but also has certain smoothness properties.

Parameters:

• r (degree): The degree of the piecewise polynomial segments.

• cl (defect): The number of continuous derivatives the spline maintains.

A spline S of degree r with defect cl is a piecewise polynomial of degree r that has 
continuous derivatives up to order r — d. The space of such splines is denoted by <Srq.

2.7.1 Linear Splines

In section 2.5 we naturally introduced piecewise-linear interpolation as a generalization 
of polynomial interpolation. Piecewise-linear interpolation also fits a definition of splines. 
Consider the space 5iq, which consists of piecewise linear continuous functions. A spline 
S in this space is uniquely determined by the function values Jo, /1,... , This results 
in a piecewise linear function that connects each pair of consecutive points with a straight 
line, ensuring continuity at each knot.
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Fig. 2.4: Piecewise linear spline

2.7.2 Cubic Splines

For a more sophisticated approximation, consider <$34, the space of piecewise cubic poly­
nomials with continuous second derivatives. A cubic spline S G <$3,1 is defined on each 
subinterval Ij, = [aq, 4'fc+i] by a cubic polynomial:

-f- A A a.^)'

Determining the Parameters

The cubic spline across n subintervals requires 4n parameters (4 for each subinterval). 
However, these parameters are subject to several conditions ensuring the spline’s smooth­
ness and continuity:

• Continuity at each internal knot aq/zq,... ,.rn-i: n — 1 conditions.

• Continuity of the first derivative S' at each internal knot: n — 1 conditions.

• Continuity of the second derivative S" at each internal knot: n — 1 conditions.

• The spline passing through each given point (aq, fk): n + 1 conditions.

Thus, the total number of conditions is 4n — 2.
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Boundary Conditions

lb obtain a unique cubic spline, additional boundary conditions are required. Common 
choices include:

1. Complete Cubic Spline: Specifying the first derivatives at the endpoints, S'(xq) 
and S'(xn).

2. Natural Cubic Spline: Setting the second derivatives at the endpoints to zero, 
5"(x0) = S"(xn) = 0.

3. Not-a-Knot Condition: Ensuring the third derivative is continuous at the second 
and the last but one knots.

4. Periodic Spline: Requiring the function and its derivatives to be periodic, S(xq) = 
S(xn), S'(x0) = S'(xn), and S"(xo) = S"(xn).

Fig. 2.5 : Cubic interpolation spline with not-a-knot bondary conditions
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Fig. 2.6: Complete cubic interpolation spline

2.8 Examples

Example 1: Finding an intersection points of a curve with a plane

In this example, we demonstrate how to use interpolation to find the intersection points of 
a curve with a plane. The original curve is obtained using a numerical ordinary differential 
equation (ODE) solver. The coordinates of the points that lie on the curve in 3D space 
are stored in data.mat. Our goal is to approximate the part of the curve that intersects 
with a specified plane.

Procedure

We begin by loading the coordinates x, y, and z from data.mat and plotting the 3D curve.
To visualize the plane, we create a mesh grid and plot the plane in the 3D space.
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y -1 0.5 x

Fig. 2. 7: The 3D curve

Next, we identify the points where the curve intersects the plane. Specifically, we look 
for points where the (/-coordinate changes from positive to negative values, indicating an 
intersection with the plane.

(a) The desirable points visualize on the 3D curve.

Fig. 2.8: The 3D curve with identified desirable points.
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(b) The plain visualization of the desirable points.

To improve the accuracy of the intersection points, we perform linear interpolation. 
For each pair of points around the intersection, we estimate the exact coordinates of the 
intersection using the formula for linear interpolation.

Finally, we plot the resulting intersection points in the Tz-plane to visualize the points 
of interest.
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(a) The plain visualization of the improved desirable 
points.

Fig. 2.9: The 3D curve with desirable points improved using linear interpolation.

(b) The plain visualization of the improved desir­
able points.

This example illustrates the use of linear interpolation to Hud intersection points of a 
curve with a plane. By accurately estimating these points, we can better understand the 
behavior of the curve in relation to the plane.

Example 2: Bilinear interpolation to enhance a low-resolution figure

In the Held of image processing, enhancing the resolution of images is a critical task, espe­
cially when dealing with images that are originally captured or stored at low resolutions. 
One common technique used for this purpose is bilinear interpolation. This method im­
proves the visual quality of a low-resolution image by estimating the pixel values based 
on the linear interpolation of the nearest neighboring pixels.

In example, we demonstrate the process of using bilinear interpolation to enhance 
a low-resolution figure. We then compare the improved image with its high-resolution 
predecessor to evaluate the effectiveness of the interpolation technique. This comparison 
provides insights into how well the interpolation method preserves the details and quality 
of the original high-resolution image.

(a) high resolution (b) reduced resolution (c) interpolated figure

Fig. 2.10: Using bilinear interpolation, we enhanced a low-resolution figure and compared it with its 
high-resolution predecessor.
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Fig. 2.11: Spline interpolation of implicit curve: (a) the original image, (b) extracted boundary of the 
heart, (c) interpolated image. In (c) blue dots marks the original boundary point, black crosses the data 
points selected for the interpolation, Greek numbers six different segments where the interpolation was 
performed, red line the resulting classical interpolation spline, green line the resulting inverse interpolation 
spline.

Example 3: Spline interpolation of implicit curve

The goal of this example is to extract an analytic curve that defines the bordering surface 
of an image from a photograph, see Figure 2.11. By segmenting the image data and 
applying spline interpolation techniques, we aim to accurately capture the implicit curve 
that represents the boundary.

Segmenting the data is essential for accurately analyzing an implicit curve within the 
image. An implicit curve is defined by an equation f(x,y') = 0, which means that y is not 
explicitly given as a function of x. To apply interpolation effectively, the image is divided 
into regions where the curve can be locally approximated by functions or where the rela­
tionship between x and y can be better managed. Segmenting the data is also necessary to 
manage regions where the curve’s smoothness needs to be deliberately disrupted, ensuring 
that the interpolation reflects the actual characteristics of the border.

Classical Spline Interpolation

In regions where y can be treated as a function of x, classical spline interpolation is used. 
This technique helps in fitting a smooth curve through the data points. For each segment, 
unique x-coordinates are identified, and y-values are interpolated at specific knot points. 
A spline is then fitted through these knots, providing a smooth approximation of the 
curve.

Inverse Spline Interpolation

In regions where x can be treated as a function of y, inverse spline interpolation is applied. 
This is useful for segments where the implicit curve has a steep slope or vertical segments. 
Unique y-coordinates are identified, and x-values are interpolated at specific knot points. 
A spline is fitted through these knots, offering a smooth representation of the curve.
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Example 4: RBF interpolation and surface reconstruction

This example demonstrates the use of Radial Basis Function (RBF) interpolation to recon­
struct a smooth surface from scattered data points generated from a normal distribution. 
The code also compares the RBF interpolation results with those obtained from bilinear 
interpolation. The scattered data points represent the surface z = sin(7ra?) • cos(tfj/).

You should see that the results of the linear interpolation are not smooth as a key 
difference. Linear interpolation produces piecewise linear surfaces, which means that 
the interpolated surface is composed of flat triangles (in 2D) or tetrahedra (in higher 
dimensions) between the known data points. This can result in a surface that is not 
differentiable at the edges of these elements, leading to a lack of smoothness. In contrast, 
Radial Basis Function (RBF) interpolation uses smooth, continuous functions to model 
the surface. RBF interpolation can produce a surface that is infinitely differentiable, 
depending on the choice of the basis function, such as the Gaussian function. This results 
in a much smoother and more natural-looking surface, especially when the underlying 
data is expected to have smooth transitions.

Additionally, RBF interpolation is well-suited for extrapolation beyond the range of the 
original data points. The basis functions used in RBF interpolation have global support, 
meaning they can influence the interpolated values even at points far from the known 
data. This allows RBF interpolation to provide reasonable estimates for extrapolated 
values, whereas linear interpolation, being local, may not perform as well in extrapolation 
scenarios.
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Fig. 2.12:

Original Scattered Points

Reconstructed Surface Using Bilinear Interpolation

RBF interpolation vs. bilinear interpolation: Sparse scattered data points A'. 1' generated
from a normal distribution. Estimating surface z = sin(Tra) • cos(ttj/).



Chapter 3

Iterations and stability review

3.1 Recommended literature

[4] Saber Elaydi. An introduction to difference equations. 3rd. ed. ^Jew York: Springer, 
2005. ISBN: 03-872-3059-9
[9] Yuri A Kuznetsov. Elements of Applied, Bifurcation Theory. 2nd ed. New York: 
Springer, 1998. ISBN: 03-879-8382-1

3.2 Difference equations

A general n-th order difference equation can be written as:

J'k-\-n — f (k, J'k ■> ^'fc+1, • • • , 'I'k+n— 1) (3-1)

where:

• x is a state variable,

• .To, • • • Tn-i are the initial iterations,

• / is a given function.

For example, a first-order difference equation can be expressed as:

■£fc+i

Equation 3.1 is called autonomous (or time-invariant) if

'L'k+n f^Aki ‘H+l; • • • i 'J'k+n— 1);

otherwise it is called non-autonomous.

An easiest example of difference equation is a first-order linear difference equation. It 
can be written as:

•Tfc+i = (kf xk + bk (A:) (3-2)

51
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where:

• .Tfc is the sequence or function of interest,

• and 6/. are given functions of k, which can also be constants,

• if 6/. is identically equal to zero the function is called homogeneous,

• if 6/. is not identically equal to zero the function is called non-homogeneous.

Suppose the initial value is .tq. -The general solution of equation (3.2) con be expressed 
as:

/fc-1 \ fc-1 / fc-1
Xk = (n a>') n a>' 

\i=0 / j=0 \ *= j + 1
(3-3)

Examples

1. Prove formula (3.3) for constant dk(Jt) = a and arbitrary bk(Jt) G R. Start with 
solution of homogeneous equation and then proceed with homogeneous equation. 
Use mathematical induction.

2. Find solution of x(n + 1) = 5x(n) + 7n, a?(0) = 2.

3. Suppose that a loan of 1,000,000 CZK is to be amortized by equal monthly pay­
ments. If the interest rate is 5% compounded monthly, find the monthly payment 
required to pay off the loan in 30 years.

4. A space (three-dimensional) is divided by n planes, nonparallel, and no four planes 
having a point in common.

(a) Write a difference equation that describes the number of regions created.
(b) Find the number of these regions.

Solution

1. Consider the homogeneous linear difference equation:

x(n + 1) = ax(ji)

The solution to the homogeneous equation can be found by iterating from the initial 
condition x(0):

,t(1) = aa?(0)

x(2) = a.r(l) = a2a?(0)
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x(n) = anx(O)

Now, consider the non-homogeneous linear difference equation:

x(n + 1) = ax(n) + &(n)
Assume that the particular solution is of the form a?p(n). The general solution to 
the non-homogeneous equation is:

x(n) = Xh(n) + xp(n)

where Xh(n) is the solution to the homogeneous equation and a?p(n) is a particular 
solution to the non-homogeneous equation.
Use mathematical induction to prove that the solution is:

n—1
x(n) = anx(0~) + an~1~kb(k')

k=0

Base Case: For n = 0,

-i
a?(0) = a°a?(0) + y^ a~r~kb(k) = a?(0)

fc=0

Inductive Step: Assume the formula holds for n:

n—1
x(n) = anx(0~) + y^ an~1~kb(k')

k=0

For n + 1:

x(n + 1) = ax(n) + b(n)

Using the inductive hypothesis:

C
n—1 \

anx(0~) + y^ an~1~kb(k') j + b(n) 
k=0 /

n— 1
x(n + 1) = an+1a?(0) + y^ an~kb(k') + b(n)

k=0

n— 1
x(n + 1) = an+1a?(0) + y^ an~kb(k') + a°6(n)

k=0 
n

x(n + 1) = an+1a?(0) + y^ an~kb(k) 
k=0

Thus, by induction, the formula is proved.
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2. Find the solution of x(n + 1) = 5a?(n) + 7n, a?(0) = 2.
The homogeneous equation is:

xh(n + 1) = 5^(n)

The solution to the homogeneous equation is:

%h(n) = C • 5n

To find a particular solution xp(n), we try a solution of the form xp(n) = An + B. 
Substitute into the non-homogeneous equation:

A(n + 1) + B = 5(An + B) + 7n

An + A + B = 5 An + 5B + 7n

An + A + B = 5 An + 5B + 7n

Equating coefficients:

A = 7, A + B = 5B

B=*  = l
4 4

Thus, the particular solution is:

7 
xp(n) = 7n + -

The general solution is:

7 
x(n) = Xh(n) + xp(n) = C • 5” + 7n + -

Using the initial condition a?(0) = 2:

7
a?(0) = C-5° + 7- 0 + - = 2

7
C + - = 2

4

4 4

Therefore, the solution is:

4 7a;(n) = - • 5” + 7n + -4 4
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3. To derive the formula for the monthly payment M for a loan with principal P, 
interest rate r (expressed as a monthly rate), and a term of n months using a 
difference equation, we can start by defining the difference equation for the loan 
balance.
Let Bfc be the loan balance after k months. The difference equation describing the 
loan balance can be written as:

Bk+1 = (f + r)Bk - M

Where:

• Bk+i is the loan balance after k + f months.
• Bk is the loan balance after k months.
• M is the monthly payment.
• r is the monthly interest rate.

At the beginning of the loan, the balance is equal to the principal: Bo = P. 
We can solve this difference equation to find the value of M.

(a) Substitute k = 0 to get the initial condition:

Bi = (f + r)B0 - M

Bi = (f + r)P — M

(b) Continue the iteration process:

For k = f :
B2 = (1 + r)Bi - M

= (f + r)((f + r)P — M) — M
= (f + r)2P — (1 + r)M — M

For k = 2 :
B3 = (f + r)B2 - M

= (f + r)((f + r)2P — (1 + r)M — M) — M
= (f + r)3P — (1 + r)2M — (1 + r)M — M

Continuing this process, for k = n — f:

Bn = (f + r)nP - M((f + rf1 + (f + r)n“2 + ... + f)

Bn = (f + r)nP - M((f + rf1 + (f + r)n“2 + ... + f)

(c) At the end of the loan term, Bn = 0:

0 = (f + r)”P - M((f + r)”-1 + (f + r)”-2 + ... + f)
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(d) Now, we can solve for M:

M((l + r)”-1 + (1 + r)n“2 + ... + 1) = (1 + r)”P

a/1-<1 += p
r

where in our case:

• P = 1,000, 000 CZK is the principal loan amount.
• r = = ttL is the monthly interest rate.12 24U J

• n = 30 x 12 = 360 is the total number of payments.

Substituting the values:

— fl + —I360 0 01 86M = 1,000,000 • 2401 i \3qo 1 ~ 1, 000,000 • —— ss 5,373.46
(1 + 2Zo)360 - 1 3.46 77

So the monthly payment required to pay off the loan in 30 years is approximately:

M k 5,373.46 CZK

4. (a) Difference Equation

Let R(n) be the number of regions created by n planes. The difference equation 
describing the number of regions is:

R(n + 1) = P(n) + n

(b) Find the Number of Regions

The initial condition is R(0) = 1.
To solve the difference equation:

R(n + 1) = R(n) + n

Substituting into both sides from n = 0 to n = k:

k
R(k~) = R(0) + n

n=0

Since R(0) = 1 and 52«=o n = :

W) = 1 + ^+12

Thus, the number of regions created by n planes is:

fl(n) = j +
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Example 5: Decay Rate of Uranium Isotopes

The decay constant, denoted by A, is a parameter that characterizes the rate at which a 
radioactive substance undergoes decay. It is defined as the probability per unit time that 
a given atom will decay. The half-life, denoted by ti/2, is the time required for half of 
the atoms in a sample of a radioactive substance to decay.

1. Formulate difference equation for radioactive decay using a decay constant A.

2. Assume two isotopes of uranium and their half-life ti/2. Namely:

• Uranium-238 (U-238): ti/2 is approximately 4.468 billion years.
• Uranium-235 (U-235): ti/2 is approximately 703.8 million years.

What are the decay constants A for them?

Difference Equation for Radioactive Decay

A difference equation describing a decay process can be formulated using the decay con­
stant A and the initial number of atoms Nq. For discrete time steps, the number of atoms 
N at time step t can be expressed as follows:

N(t + f) = A(t) - ATV(t)

However, to make this more precise and conventional, we often use a small time step 
At. The discrete form of the exponential decay law is:

N(t + At) = N(t) (f - AAt)

where:

• 7V(t) is the number of atoms at time t.

• At is the discrete time step.

• A is the decay constant.

If we start with an initial number of atoms Ao at t = 0, the equation can be expressed 
as:

N(t + At) = No (1 - AAt)^+1

As At —> 0, this expression approaches the form of an exponential decay. Specifically:
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lim (1 - AAi)At = e~xt 
At^O

Therefore, the continuous form of the decay equation is:

2V(t) = Noe~xt

You can substitute N(t) = and t = U/2 solve for t-i/2.

Zn(2)
ii/2

. For U-238:
A =--------~ 1.55 x 10“10 per year

4.468 x 309 years

. For U-235:
A = w 9.85 x 3O-10 per year.

703.8 x 306 years

3.3 Equilibrium Definition

For a difference equation xn+i = f(n,xn), an equilibrium sequence {a?*}  (fixed point) 
is a sequence that satisfies:

x*  = f(n, x*).

3.4 Stability Definitions

For a difference equation xn+i = f(n,xn):

f. Stable Equilibrium Sequence: An equilibrium sequence {a;*  } is stable if for every 
e > 0, there exists a 5 > 0 such that if |a?o — ®ol < then ^xn — a?*|  < e for all n > 0.

Ve > 0, 35 > 0 such that if |a?o — ®ol < then ^xn — x*  | < e for all n > 0.

2. Asymptotically Stable Equilibrium Sequence: An equilibrium sequence {a?}  
is asymptotically stable if it is stable and Hindoo \xn — x  | = 0. That is, there exists 
a 5 > 0 such that if |a?o — ®ol < then lim^oo |a?n — x  | = 0.

*
*

*

35 > 0 such that if |a?o — ®ol < then lim \xn — x*  | = 0.

3. Unstable Equilibrium Sequence: An equilibrium sequence {a?  } is unstable if it 
is not stable.

*
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Examples

Example 6: Simple Linear Autonomous System

2-n+l — aXn

Equilibrium

The equilibrium point x*  is found by solving:

* * x = ax

Thus, x*  = 0 is the equilibrium point.

Stability

Linearize around x*  = 0:
fn+1 —

where en = xn — x* .

• If |a| < 1, x  = 0 is asymptotically stable.*

• If |a| > 1, x  = 0 is unstable.*

• If |a| = 1, x  = 0 is stable, but not asymptotically stable.*

Example 7: Logistic map

The basic form of the logistic map is a first-order, nonlinear difference equation given by:

Xn+l = rxn(l - xn)

where:

• xn represents the population size at the n-th time step, normalized so that the 
carrying capacity of the environment is 1.

• r is a positive constant representing the intrinsic growth rate of the population.

The logistic map arises from the assumption that the population growth rate decreases 
linearly as the population size approaches the carrying capacity of the environment. The 
term rxn(l — xn) represents the net growth rate, where rxn is the maximum per capita 
growth rate and (1 — xn) represents the fraction of resources available for growth.
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Equilibrium

The equilibrium points x*  are found by solving:

x*  = rx*(l  — x*~)

Thus, x*  = 0 and x*  = 1 — ± (for r > f) are the equilibrium points.

Stability

Linearize around x*:
en+1 = r(l - 2x*)e n

For x*  = 0:
S'n+l — TOn

- If |r| < 1, x  = 0 is asymptotically stable.*
- If |r| > 1, x  = 0 is unstable.*

For x*  = 1 —
en+i = (2 - r)En

- If |2 — r| < 1, x  = 1 — £ is asymptotically stable.*
- If |2 — r| > 1, x  = 1 — £ is unstable.*

Example 8: Simple Non-Autonomous System

Consider a non-autonomous difference equation:

1 sin(n)

Equilibrium

To find the equilibrium sequence {a?*  }, solve:

A correct sequence that approximates the equilibrium is:

2 sin(n)
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Stability

Linearize around x*:
S'n+l = 2^n

Since ||| < 1, the equilibrium sequence x*  = 2sl^"J is asymptotically stable.

Example 9: Logistic grow with seasonal effect

Consider a non-autonomous system:

Xn+1 =xn [1 - ) + a cos(ftn)\ K (n) J

Equilibrium

Find the equilibrium sequence {a?*  } by solving:

x*  \
1 — T^, . ) + a cos(bn) K (n) J

This typically requires numerical methods for specific K(ri).

Stability

Linearize around x*:
Ci+1 —

. 2x*  \
“ K(ny£n

The stability depends on 1 — . If this term is less than 1 in magnitude for all n,
the equilibrium sequence is stable. Otherwise, it is unstable.

3.5 Criterion for Asymptotic Stability

Consider an autonomous difference equation of the form:

Xn+l = f(Xn)

Let x*  be an equilibrium point, i.e., x*  = f(x*).  The equilibrium point x*  is asymp­
totically stable if the magnitude of the derivative of / evaluated at x*  is less than 1:

inr*)|<f.
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3.6 Destabilization through Bifurcations

Fold (Saddle-Node) Bifurcation

A fold bifurcation occurs when a pair of fixed points (equilibria) of the difference equation 
xn+i = f(xn) are created or destroyed as a parameter // is varied. This typically happens 
when a stable and an unstable fixed point collide and annihilate each other.

Conditions for Fold Bifurcation

- At the bifurcation point, there is a fixed point x  such that: 

f(x,/r)  = x

*

* *

- The first derivative of / with respect to x at x  is:*

- Non-degeneracy and transversality conditions

At the fold bifurcation, the slope of the function / at the fixed point is 1, and the 
curvature is non-zero, leading to the merging and subsequent disappearance of two fixed 
points.

There exists two important non-generic bifurcations associated to /'(a?*,//)  = 1. Those 
are:

Transcritical Bifurcation: At the transcritical bifurcation, the fixed points inter­
change their stability as the parameter // passes through the bifurcation value.

- Fixed points condition: J(a?i) = x\ and f(x^) = xl2

- Derivative condition: J'(a?i) = 1 and /'(x^) = 1

- Higher-order terms determine stability exchange.

Pitchfork Bifurcation: In the pitchfork bifurcation, the original fixed point becomes 
unstable and two new stable fixed points emerge.

- Fixed point condition: f(x)  = x* *

- Derivative condition: = 1

- Second derivative condition: /"(a?)  = 0*

- Third derivative condition: /"'(a?)  0*
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Flip (Period-Doubling) Bifurcation

A flip bifurcation occurs when a fixed point of the difference equation xn+i = f(xn~) loses 
stability, and a periodic orbit of period 2 emerges. This is also known as a period-doubling 
bifurcation.

Conditions for Flip Bifurcation

- At the bifurcation point, there is a fixed point x  such that:*

f(x*,ii)  = x*

- The first derivative of / with respect to x at x  is:*

- Non-degeneracy and transversality conditions:

D

At the flip bifurcation, the fixed point becomes unstable, and a new stable periodic 
orbit with double the period of the original fixed point emerges, indicated by the slope of 
the function / at the fixed point being -1.

3.7 Definition of a Cobweb Plot

A cobweb plot is a graphical representation used to visualize the behavior of a dynamic 
system described by an autonomous difference equation xn+i = f(xn). It helps to illus­
trate the iterative process of the system’s evolution over time.

The cobweb plot consists of two key components:

1. Iterative Dynamics: The plot shows the iteration of the difference equation, typ­
ically represented by a function f(x), where x is the current state of the system. 
Starting from an initial value xq, the plot illustrates the sequence of points (xn, xn+i) 
as the system evolves over discrete time steps.

2. Identity Line: The diagonal line y = x represents the identity line, where the 
^-coordinate is equal to the y-coordinate. This line helps visualize the equilibrium 
points of the system, where xn+\ = xn.

To create a cobweb plot:
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1. Start with an initial value Xq on the rr-axis.

2. Plot the point (a?o, J(a?o)) on the graph, where J(a?o) is the value of the difference 
equation evaluated at xq.

3. Draw a vertical line from the point (a?o, J(a?o)) to the identity line.

4. At the intersection point, plot the point (/(a?o),/(/(®o)))-

5. Repeat steps 3 and 4 for subsequent iterations to create a "cobweb" pattern.

The resulting plot visually demonstrates the behavior of the system, including con­
vergence to equilibrium points, periodic orbits, or chaotic behavior, depending on the 
properties of the difference equation.

For asymptotically stable points the slope of / evaluated in the equilibrium x*  is larger 
than —3 and smaller than 1.

Example 10: Logistic map

Study dynamics of logistic map
x*  = rx*(l  — x*)

for x G [0,1] and r G [0,4], In the previous chapter we showed that logistic map has two 
equlibria. We also determined their asymptotic stability:

• For x*  = 0:

- If |r| < 1, x  = 0 is asymptotically stable.*
- If |r| > 1, x  = 0 is unstable.*

• For x*  = 1 —

- If |2 — r| < 1, x  = 1 — £ is asymptotically stable.*
- If |2 — r| > 1, x  = 1 — £ is unstable.*

1. What dynamical phenomenon occur in the logistic map while parameter r is 
crossing critical values r = 1 and r = 3?

2. Create a Cobweb Plot for logistic map. Use xq = 1 and r G {0.9,1.5, 2.5,3.2,3.46,3.6,4}.

Solution

- For r < 1: The fixed point x  = 0 is stable, and the solution tends to zero.*

xn+i = rxn(l — xn~) with 0 < r < 1

- At r = 1: A transcritical bifurcation occurs; the fixed point x  = 0 becomes 
unstable, and a new stable fixed point x  = 1 — £ appears for r > 1.

*
*

Xn+1 = rxn(l - xn) with r = 1
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- For 1 < r < 3: The fixed point, x  = 1 — 1 is stable, and the system converges to 
this fixed point.

*

®7i+i = — xn) with 1 < r < 3

- At r = 3: A period-doubling bifurcation occurs, and the fixed point x  = 1 — | 
becomes unstable. A stable period-2 orbit emerges for r > 3.

*

®n+i = rx„,(f — Xn) with r = 3

Solution of the part 2 is provided as Matlab live script logistic_map.mlx. Notice 
that 3 < r < 4 the logistic map undergoes cascade of period doubling and that leads to 
deterministic chaos. You can find more about this phenomenon in [4, 9].

3.8 Linear Homogeneous Difference Equations with Con­
stant Coefficients

A linear homogeneous difference equation with constant coefficients can be ex­
pressed as:

+ G'H-l^fc+n-1 + ’ ’ ’ + al®fc+l + — 0

where a.o, fli, • • •, an are constants, and an 0.

General Solution

The solution to this equation involves the characteristic polynomial associated with it:

(inLC1 + an-iXn 1 + • • • + fliA + a.o — 0

1. Find the roots of the characteristic polynomial: The roots of the characteristic 
polynomial can be real or complex and may have multiplicity. Let these roots be 
Ai, A2,..., Aft, with corresponding multiplicities mi, m2, • • •, mj,.

2. Construct the general solution:

• For each distinct root A> with multiplicity np, the contribution to the general 
solution is:

Xi(n) — (Gi + Cun + • • • + Cm,nm''- X)A”

• For each distinct pair of complex roots Ay+i = a±/3z (where a,/3 G R) we can 
apply Euler’s formula, e,e = cos(0) + zsin(0):
The complex roots a ± fffi can be written as:

a + {ffi = re'^

a — /3i = re 
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where r = ^a2 * + (32 and cf> = tan 1 We can therefore apply Euler’s 
formula to A^+i:

2. Matrix representation: This system can be written in matrix form:

Xfc+1 = BXfc

(a + = ak (cos(/3A:) + i sin(/3A;) 

(a — (3i)k = ak (cos(/3A:) — i sin(/3A;))

General solution of the difference equation is linear combination of all the contributions 
mentioned above where constants are determined by initial conditions.

Relation to Systems of Linear Equations

f. Homogeneous linear difference equations can be converted to systems of 
first-order linear difference equations. For example, the n-th order difference 
equation:

d-rffk+n + On-l^fc+n-1 + ’ ’ ’ + OlTfc+l + = 0

can be rewritten as a system of first-order difference equations:

'x[ = xk
1 24+1 = xk+l = xk

xk+l = xk+2 = XAk

< Xk+1 = xk+3 = X4k

= Xk+n-i = X^
2 
k

where X/,.
Xk+l

and B is a matrix composed of the coefficients from the

\Xk+n—1/ 
system above.

3. Solution via eigenvalues and eigenvectors: The general solution to this system 
is determined by the eigenvalues and eigenvectors of the matrix B, which correspond 
to the roots of the characteristic polynomial of the original difference equation.

The structure and solutions of homogeneous linear difference equations with constant 
coefficients are deeply tied to the linear algebraic properties of the associated coefficient 
matrices. This interplay allows for methods from linear algebra to be applied to difference 
equations and vice versa.
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3.9 Leslie Model

Definition

The Leslie model is a discrete, age-structured population projection model used in demog­
raphy and ecology to describe the growth and structure of a population over time. It uses 
a Leslie matrix, which incorporates age-specific fertility and survival rates, to project the 
population distribution across different age classes.

Let n(t) be a vector representing the population size at time t, where each element 
«j(t) represents the number of individuals in the z-th age class at time t. The population 
at the next time step, n(t + 1), is given by:

n(t + I) = Ln(t)

where L is the Leslie matrix, defined as:

Z/i /2 • ■ fm—1 frn^
si 0 • ■ 0 0

L = 0 82 ■ • 0 0

0 • ■ sm_i o y

Here, ft represents the fertility rate of the z-th age class, and Si represents the survival 
rate from the z-th age class to the (z + l)-th age class.

Perron-Frobenius Theorem

A nonnegative matrix is a matrix in which all the entries are greater than or equal to zero. 
Formally, an n x n matrix A = [a-ij] is nonnegative if:

Ojj > 0 for all I < i,j < n.

A nonnegative n x n matrix A is irreducible if, for every pair of indices z and j, there 
exists a positive integer k such that the (z, j)-th entry of Ak (the matrix A raised to the 
power k) is positive:

> 0 for some k > 0.

For a non-negative, irreducible matrix A, the Perron-Frobenius theorem states:

I. There exists a unique largest positive eigenvalue Amax such that Amax > 0.

2. The eigenvalue Amax has a corresponding positive eigenvector.

3. The spectral radius (the largest absolute value of the eigenvalues) is equal to Amax.



3.10 Markov Chains 68

Applying Perron-Frobenius to the Leslie Model

The Leslie matrix L is non-negative and often irreducible. By applying the Perron- 
Frobenius theorem, we derive the following properties:

Population Growth Rate

The dominant eigenvalue Amax of the Leslie matrix L determines the long-term growth 
rate of the population: If Amax > 1, the population grows exponentially. If Amax < 1, the 
population declines. If Amax = 1, the population remains constant.

Stable Age Distribution

The eigenvector vmax corresponding to Amax represents the stable age distribution:

Lvmax — Amaxvmax

As time progresses, the population vector n(t) converges to a direction proportional to 
Vmax, regardless of the initial population distribution n(0).

Asymptotic Behavior

Given an initial population vector n(0), the population at time t is: 

n(t) = £*11(0)

Using spectral decomposition, L can be written in terms of its eigenvalues and eigenvectors. 
As t —> oo, the term involving Amax dominates:

'max v max

Thus, the long-term behavior of the population is determined by the dominant eigen­
value and the corresponding eigenvector of the Leslie matrix. To know more about this 
application in contex of the history of studying population dynamics see [2],

Example: Study the following paper [3] Larry B. Crowder et al. “Predicting the Im­
pact of Turtle Excluder Devices on Loggerhead Sea Turtle Populations”. In: Ecological 
Applications 4.3 (1994), pp. 437-445. ISSN: 1051-0761. DOI: 10.2307/1941948.

3.10 Markov Chains

A Markov chain is a stochastic process that undergoes transitions from one state to another 
on a state space. It is a memoryless process, meaning the probability of transitioning to 
the next state depends only on the current state and not on the previous states.

https://doi.org/10.2307/1941948
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For a discrete-time Markov chain, we can describe the system’s behavior over time 
using a transition matrix. The general solution of difference equations is closely related 
to the long-term behavior of Markov chains.

Discrete-Time Markov Chain

Let {Xt} be a discrete-time Markov chain with a finite state space S = {1,2,..., n}. The 
transition probability matrix P is an n x n matrix where each element pij represents the 
probability of transitioning from state i to state j in one time step:

P = lPij] where pi:j = P(Xt+i = j | Xt = i)

State Vector

Let v(t) be the state vector at time t, where each element ty(t) represents the probability 
of being in state i at time t:

, . ^2(t)
v(t) = .

The evolution of the state vector over time can be described by the difference equation:

v(t + 1) = Pv(t)

Long-Term Behavior

As t —> oo, the behavior of v(t) is dominated by the eigenvalue of P with the largest 
absolute value (which is 1 for a Markov chain with a stationary distribution). Let Ai = 1 
be the largest eigenvalue and ui be the corresponding eigenvector (which corresponds to 
the stationary distribution):

v(t) ~ ui as t —> oo

This implies that the state vector converges to the stationary distribution ui, providing 
the long-term behavior of the Markov chain.

Example 11: User Navigation on a Website

Scenario: A website has three main pages: Si: Home Page, S?: Products Page, S3: 
Checkout Page. The website administrator wants to model the behavior of users as they 
navigate between these pages. Based on user data, they determine the following transition 
probabilities:
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• From the Home Page, users move to the Products Page with a probability of 0.5 
and stay on the Home Page with a probability of 0.5.

• From the Products Page, users move to the Checkout Page with a probability of 0.1, 
return to the Home Page with a probability of 0.2, and stay on the Products Page 
with a probability of 0.7.

• From the Checkout Page, users return to the Home Page with a probability of 0.1, 
return to the Products Page with a probability of 0.3, and stay on the Checkout 
Page with a probability of 0.6.

f. Write down transition probability matrix.

2. Find the steady-state distribution representing long-term behavior of the model.

3. Assume user starts at Home Page. Write down the probability distribution after fO 
steps.

Solution: These probabilities can be represented in the transition matrix P:

/0.5 0.2 0.1\
P= 0.5 0.7 0.3

\0 0.1 0.6/

Steady-State Distribution: By analyzing the eigenvectors and eigenvalues, par­
ticularly the dominant eigenvalue (Ai = 1), the website can determine the steady-state 
distribution of users across the pages. The normalized eigenvector for Ai = 1 indicates 
that, over time, approximately 33.33% of users will be on each page.

Short-Term Predictions: Using P10, the website can find the expected distribution 
of users starting from the Home Page.

/1\
The result of (PT)10 • 0

\°J
is approximately:

/0.26505226\ 
0.58872298 

^0.14622476,

Example 12: One-Dimensional Random Walk

Suppose we have a random walk on the integers {0,1,2,..., n}, where at each time step, 
the walker moves to an adjacent state with equal probability. We can describe the tran­
sition probabilities as follows:

• If the walker is at state i (where 1 < i < n — 1), there is a probability of 0.5 of 
moving to state i — 1 and a probability of 0.5 of moving to state i + 1.
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• If the walker is at the boundary states (0 or n), the walker stays in the same state.

1. Write down the transition probability matrix for n = 4.

2. Assume walker starts at state 1. Write down a probability distribution of walker’s 
position after two steps.

3. Write down a probability distribution of walker’s position as the number of steps 
tends to infinity.

Solution: The transition probability matrix P for this random walk can be constructed 
as follows. Suppose we have a random walk on {0,1, 2, 3, 4}. The transition matrix P is:

(1 0.5 0 0 0\
0 0 0.5 0 0

p = 0 0.5 0 0.5 0
0 0 0.5 0 0

^0 0 0 0.5 V

In general, for a random walk on {0,1,2,..., n}, the transition matrix P will have the 
following form:

/I 0.5 0 ••• 0 0 0\
0 0 0.5 ••• 0 0 0
0 0.5 0 ••• 0 0 0

P =
0 0 0 ••• 0 0.5 0
0 0 0 ••• 0.5 0 0

w 0 0 ••• 0 0.5 1/

Consider the initial state vector v(0) where the walker starts at state 1: 
/0\

1 
v(0) =

Using the transition matrix P for {0,1, 2, 3}, the state vector at time t = 1 is:

/I 0.5 0 0 0\ 2 /0\ /0.5\
0 0 0.5 0 0 1 0.25

v(2) = P2v(0) = 0 0.5 0 0.5 0 0 = 0
0 0 0.5 0 0 0 0.25

^0 0 0 0.5 1) 1 o J

Long-Term Behavior: For matrix P, both the algebraic and geometric multi­
plicity of eigenvalue 1 is 2. Corresponding eigenvectors are Vi = (1,0,0,0,0)T and 
v2 = (0,0,0,0, If. As t —> oo, for the random walk on a finite state space with ab­
sorbing states (like 0 and n), the long-term behavior is that the walker will eventually be 
absorbed at one of these states, the exact probability ratio depends on v(0).
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3.11 Power Method

The power method is an iterative algorithm used to find the dominant eigenvalue and its 
corresponding eigenvector of a matrix A.

Given a matrix A and an initial vector xq, the method iteratively computes:

x/,-i —
.4x/,.
w

Eigenvalue Estimation: Once the vector has converged to an eigenvector vmax, the 
dominant eigenvalue can be estimated as:

vT 4vx vmax^vmax
/'max ~ 

vmaxvmax

When we represent the system of difference equations in matrix form, the behavior of 
the system over iterations is governed by the matrix A. Specifically, consider the system:

Xfc+i = Axfc

where x/_. is the state vector at step k. The general solution to this system can be expressed 
in terms of the eigenvalues and eigenvectors of A.

Let Xi be the eigenvalues of A and v, be the corresponding eigenvectors. If A is 
diagonalizable, we can write:

A = EAE-1

where V is the matrix of eigenvectors and A is the diagonal matrix of eigenvalues. The 
solution can then be expressed as:

xfc = Akxo = (IGW-I)fcxo = VAfcV_1x0

As k —> oo, the behavior of x/_. is dominated by the eigenvalue Amax with the largest 
magnitude (dominant eigenvalue). The corresponding eigenvector vmax gives the mode 
shape of the system.

• Stability: The magnitude |Amax| determines the stability of the system. If |Amax| < 
1, then Xfc —> 0 as k —> oo, indicating stability. If |Amax| > 1, x& grows without 
bound, indicating instability.

• Mode Shape: The eigenvector vmax associated with Amax describes how the com­
ponents of Xfc evolve relative to each other as k —> oo. Specifically, as k —> oo, the 
state vector x/_. aligns with vmax.
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3.12 Autonomous Systems of Nonlinear Difference Equa­
tions

An autonomous system of nonlinear difference equations refers to a system of equa­
tions where the next state of the dependent variables is determined by the current state, 
independent of an external variable such as time. Mathematically, it can be expressed as:

Xfc+l = f(xfe)

where x/_. G R" is the vector of dependent variables at the discrete time step k, and 
f(xfc) is a vector-valued function representing the system dynamics.

3.12.1 Equilibrium Points

An equilibrium point (or fixed point) of an autonomous difference equation system is 
a point x*  G R" where the system remains at rest if it starts there. Mathematically, x*  is 
an equilibrium point if:

x*  = f(x*)

At this point, the state of the system does not change from one time step to the next.

3.12.2 Linearization of Nonlinear Difference Systems

To analyze the stability of equilibria in nonlinear difference systems, linearization is a com­
mon approach. Given an equilibrium point x*,  the nonlinear system can be approximated 
by a linear system in the vicinity of x*.

The linearization process involves computing the Jacobi matrix J of f at x*:

The linearized system around the equilibrium point x*  is then given by:

yfc+i = Jyfc

where y/,. = x/_. — x*  represents the perturbation from the equilibrium.
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3.12.3 Criteria for Stability of Equilibria

The stability of the equilibrium point x*  in the linearized system can be analyzed by 
examining the eigenvalues of the Jacobi matrix J. Notice that we can apply definitions of 
stability introduced in section 3.4.

• Stable Equilibrium (Asymptotically Stable): If all eigenvalues of J have mag­
nitudes less than one (i.e., |A,;| < 1 for all i), the equilibrium x  is asymptotically 
stable. Perturbations from x  will decay exponentially over time, and the system 
will return to the equilibrium state.

*
*

• Unstable Equilibrium: If at least one eigenvalue of J has a magnitude greater 
than one (i.e., |A,;| > 1 for some z), the equilibrium x  is unstable. Perturbations 
from x  will grow exponentially over time, and the system will move away from the 
equilibrium state.

*
*

• Marginally Stable (or Lyapunov Stable) Equilibrium: If all eigenvalues of 
J have magnitudes less than or equal to one (i.e., |A,;| < 1 for all z) and at least 
one eigenvalue has a magnitude exactly equal to one (i.e., |AJ = 1 for some z), 
further analysis is required. The system may be stable (in the sense of Lyapunov) 
if perturbations neither grow nor decay, but this stability is not asymptotic. This 
scenario often necessitates a more detailed nonlinear analysis to determine stability.

In section 3.6 we introduced one-parameter bifurcation of an equilibrium. The same 
one-parameter bifurcation can be studied in systems of nonlinear difference equations 
though technique that is called Central Manifold Theorem, see [9]. Additionally, there 
exists another one-parameter bifurcation associated with a pair of complex conjugate 
eigenvalues of the Jacobi matrix J called Neimark-Sacker pNS) bifurcation. NS bifurcation 
leads to the emergence of quasi-periodic behavior or invariant closed curves (cycles) in the 
phase space, see [9].



Chapter 4

Fixed Point Iterative Methods

4.1 Recommended literature
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mff.cuni.cz/~kucera/Numerical_Methods_forNonlinearEquations.pdf
[14] Josef Stoer et al. Introduction to numerical analysis. Vol. 1993. Springer, 1980

4.2 Fixed Point Iterative Methods in the Context of Differ­
ence Equations

4.2.1 Problem Definition

Consider a nonlinear equation of the form:

/C) = 0

1V solve this equation using fixed point iteration, we rewrite it as:

x = g(x)

Here, g(x) is a function that transforms the problem into finding a fixed point of g. That 
is, a point x*  such that g(x*)  = x*• The fixed point iteration generates a sequence {a?,J 
given by:

•Ai+l = g(xn)

Example 1:

Find solution of /(a?) = 0 on [0,1], Does the suggested iterative function g(x) work?

• /(a?) = x — 2‘T-2 ==> g(x) = 2‘T-2, a?o = 1

• /(a?) = x — 2~x ==> g{x~) = 2~x,xq = 1

• /(a?) = 3x2 — x. — 1 ==> g(x) = 3x2 — 1, a?o = 1
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Solution:

• For f(x) = x — 2T-2 with g(x~) = 2X~2 and .tq = 1:

- The function g(x) = 2X~2 appears to converge to a fixed point upon iteration 
starting from a?o = 1, but a detailed convergence analysis is needed to confirm.

• For /(x) = x — 2~x with g(x) = 2~x and a?o = 1:

- The function g(x) = 2~x also appears to converge to a fixed point upon iteration 
starting from a?0 = 1.

• For f(x) = 3x2 — x — 1 with g(x) = 3x2 — 1 and a?o = 1:

- The function g(x) = 3a?2 —1 diverges, indicating it does not work as an iterative 
method for the given interval.

4.2.2 Convergence and Stability

For the iterative method to converge to the fixed point x* , we analyze the stability of the 
difference equation a?n+i = g(xn). This analysis involves examining the derivative g'(x) at 
the fixed point. Let us recall concept of asymptotic stability, that was discussed in section 
3.4. Mathematically, asymptotic stability is captured by the condition:

k7V)|<f

for differentiable map g(x). This condition ensures that g(x) is a contraction mapping 
near the fixed point, meaning it pulls points closer together with each iteration.

• Intuitive Explanation: If |fif'(a?)|  < 1, a small perturbation e from the fixed point 
x  will result in a smaller perturbation in the next iteration. This shrinking effect 
ensures that successive iterates get closer to the fixed point, leading to convergence.

*
*

• Mathematical Explanation:

Xn+1 ~ + g'(x*)(x n - x*)  = x*  + g'(x*)(x n - x*)

Denoting the error en = xn — x*:

Gn+l » ff'(x*)e n

For |</(a?*)|  < 1, en converges to 0 as n increases, indicating convergence to x*.

Lipschitz Condition

The Lipschitz condition is a more general criterion ensuring that the function g(x) does 
not distort distances too much. Specifically, g(x) is Lipschitz continuous if there exists a 
constant L such that:

\g(x) -g(y)\ < L\x - y\ for all x, y.
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When L < 1, g(x) is a contraction mapping, guaranteeing that the fixed point iteration 
will converge to a unique fixed point. This can be linked to the derivative condition for 
differentiable functions:

|/(z)| < L < f.

Fixed point method on [a, b]

If g([a, b\) >-> [a, b] satisfies the Lipschitz condition with L < I on interval [a, b], then:

• Uniqueness: There is a unique fixed point in the interval [a, b\.

• Convergence: The iterative sequence {a?n} will converge to this fixed point from 
any starting point within the interval Xq G [a, b\.

Example 2: Applying Fixed Point Iteration

Let us apply these concepts to an example:

Solve f(x) = x2 — 3x + 2 = 0 using fixed point iteration.

1. Rewrite the Equation:

2. Check the Convergence Condition:

, 2x g(x) = —
o

For convergence, we need | < 1. Evaluate this condition near the fixed point(s):

For |<7'(a?)| < 1:

3. Verify Interval Mapping:

To ensure an interval [—j, j 
verify that:

Evaluating at the endpoints:

g

2x 3
T 1 I1' 2

is such that g maps [—|, j] into itself. We need to

3 ( 3\ 3
~2 ~9 V 2) “ 2

( 3\ \ 2/— = « 1.42
t 2/ 3
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2

1.42

The minimum value at x = 0:

4(0)
2
- ~ 0.67 
o

3

3

The maximum value at x =

3
2

1.42

Since all these values lie within [—j, |], g(x) maps the interval [—|, j] into itself.

4. Iterative Scheme: Start with an initial guess Xo within the interval (~|, |) and 
iterate:

%n+l — 3

By ensuring g(x) satisfies the Lipschitz condition with L < 1 and that the derivative 
|4,(a?)| < 1 near the fixed point, we can guarantee the convergence of the fixed point 
iteration method.

Error Estimation using Lipschitz Constant

Let x*  be the fixed point such that x*  = g(x*).  The error at the n-th iteration is defined 
as:

-- zy> _ n —

From the Lipschitz condition, we have:

-4(y)l < L\x-y\

Applying this to the error:

|e„+i| = |a?n+i - a?*|  = |5(a?n) - 5(a?*)|  < L\xn - a?*|  = L\en\

This recursive relation shows that the error at each step is at most L times the error 
at the previous step. Therefore, we can write:

|en+i | < L | en |

We can use the estimate above to find an approximation of error of the method:

TH i> n > 1 : ^Xm Xn\ = \xm %m— 1 A %m— 1 %m—2 T ’ ’ ’ T ^n+l %n\



4.2 Fixed Point Iterative Methods in the Context of Difference Equations 79

< Lm-1|aq - a?0| + Lm~2\Xl - rr01 + - - - + Ln\Xi - Xo|

= Ln\e0\ (L™-1-™ + + ... + £ + 1)

m— 1—n
K- xn\= lim \Xm-Xn\< lim L”|e0| V ff m—>oo m—>oo £J

i=0

= L"|e0|£r

«=o

Ln
1-L leo|

Ln
\Xn - *̂1  < le°l

For a differentiable function g studied on interval [a,b], the error bound can be ex­
pressed as:

i-l S

where £ G [a, b] and for all X G [a, b] |g'(£)| > |s,/(^)|- |s,/(£)| plays the role of the Lipschitz 
constant L. Meaning if |(?/(ac)| w 0 on [a, b] the error is immediately negligible, and if 
|^'(a?)| ~ 1 the error is shrinking slower.

Example 3:

2 3Look at those three iterative functions g(x) = 2~x, g(x) = 2~x , g(x) = 2~x . Look 
specifically at the slope of g(x) at a fixed point and see how quick is the convergence of 
the fixed-point iterative method.

Solution:

1. g(x) = 2 x

• Fixed Point: X  ss 0.6412*
• Derivative at Fixed Point: g'tgr')  ~ —0.4444*
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2. g(x.) = 2

• Fixed Point: x  w 0.7071*
• Derivative at Fixed Point: g'(x)  —0.6931*

3. g(x) = 2-x'

• Fixed Point: x  w 0.7465*
• Derivative at Fixed Point: g'f.x')  w —0.8685*

Analysis of Convergence

The speed of convergence of the fixed-point iterative method is influenced by the 
magnitude of the derivative at the fixed point. The closer |</(x*)|  is to 0, the faster the 
convergence. Here are the results:

• For g(x') = 2 x:
^'(0.6412)1 ~ 0.4444

This indicates relatively faster convergence.

• fory(.r) 2J'~:
1^(0.7071)1 ~ 0.6931

This indicates moderate convergence.

• For g(x) = 2 J':':
1^(0.7481)1 ~ 0.8706

This indicates slower convergence.

4.3 Newton method

4.3.1 Motivation

In Example 1, section 4.2.1, we saw that probably the easiest way to get iterative function 
g that allows use to solve /(x) = 0 is a g(x) = x — /(x). But the fixed-point method with 
<7(x) = x — f(x) may not always be convergent. Therefore let us modify g(x). Assume the 
iterative function g in the following form g(x) = x — on interval I. Our goal is to select 
K so that for some L: (i) |</(x)| < 1 Va? G I to ensure that the method is convergent, and 
(ii) |</(.t)| is close to zero to speed up the convergence. Consider a computation of \fa. 
using /(x) = x2 — a => g(x) = x — for example (see Example 4). You will find 
that K needs to be close to /'(x*).  This ensures that g'tx') = 1 — is close to 0 near 
x*.  If we work on this ideas further we can use an integrative function g in the following 
form:

h(x)
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f(x)h(x) — f(x)h'(x) 
h2(x)

For h(x) = f'(x), assuming that f"(x) exists:

g'W =
f(x)f"(x)

Generally, since f(x) is close to zero, g'(x) is close to zero. But that is not always the 
case. When searching, for example, for multiple roots, not only /(a;) is close to zero near 
the root, but also /'(a?), so g'(x) may not be close to zero.

f(Xn) 

f'(Xn)

4.3.2 Newton Method for a Single Nonlinear Equation

Given a function /(a?), the Newton method is given by formula:

Xn+1 = Xn

where:

• xn is the current approximation,

• f(xn) is the function value at xn,

• f(xn) is the derivative of the function at

The process is repeated until the difference between successive approximations is 
smaller than a given tolerance.

X„.

Geometric Description of Newton Method

Newton method finds successively better approximations to the root of a function by 
leveraging the tangent line at the current approximation. Therefore Newton method is 
somethimes called Tangent method.

1. Starting Point: Begin with an initial guess Xq.

2. Tangent Line: At Xq, compute the function value J(a?o) and the derivative f'(xo). 
The tangent line to the curve at this point is given by:

y = f(xo) + f(x0)(x - x0)
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3. Intersection with x-axis: The next approximation xj_ is found where this tangent 
line intersects the x-axis. Set y = 0 and solve for x:

0 = f(x0) + /'(MOi - x0)

x-y = x0
f(xo') 
f(xo)

4. Iterate: Repeat the process with x\ to find ^2, and so on, until the approximations 
converge to the root.

6

5

4

3

2

1

0

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

Fig. 4.1: Graphical visualization of the Newton method.

4.3.3 Newton Method for Systems of Nonlinear Equations

For a system of n nonlinear equations, F(x) = 0, where F is a vector-valued function 
and x is a vector of n variables, Newton method is derived using the first-order Taylor 
expansion of each equation around a current guess x^)_

Consider the system of nonlinear equations:

fa(xy,X.2, ■ ■ . .2?„)

/„(x1,x2,. . . ,X„)
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Each function /»(x) can be approximated using a first-order Taylor expansion around the 
current iterate For each i = 1,..., n, we have:

Ji(x(fc) + Ax(fc)) ss /i(x(fc)) + ^-(x(fc))Aa?jfc).

j=i

Explicitly, the system of equations becomes:

fi(x« + Ax<fc’) « /i(/’) + ^(x^^Aa;^ + • • • + ^(^)&x(k\ 
OX 1 OX^

/2(x(fc) + Ax(fc)) « /2(x«) + ^(x^A^f} + • • • + 
OX I oxn

fnUJk) + Ax(fc)) « /„(x(fc)) + |^(x(fc))A4fc) + • • • + f^(x(fc))Aa4fc). 
OXI OXn

In matrix form, the system can be written using the Jacobian matrix J(x^fc)) as:

F(x(fc) + Ax<fc’) « F(x(fc)) + J(/’)A/’,

where the Jacobian matrix J(x) is:

'dfl dfl ... dfl'
9x± dxo 9xn
dfz dfl . . . df2

j/ \ _ 9xi 9x2 9xn
= . . . . •

dfn dfn ... dfn
_9xi 9X2 9xn _

To find the next iterate x(fc+1\ we set F(x(fc+1)) = 0. Using the Taylor expansion:

0 « F(xW) + J(x(fc))Ax(fc\

Rearranging, we get the linear system:

J(x«)Ax« = -F(xW),

which is solved for the correction Ax^.

Steps of the Newton Method for Systems

I. Initial Guess: Start with an initial guess xq.

2. Linear System Solution: At each iteration k, solve the linear system: 

J(xfc)Axfc = -F(xfc)

for the correction Ax^.

3. Update the Solution: Update the solution:

Xfc+i = xfc + Axfc

4. Convergence Check: The process is repeated until ||Ax(fc)|| becomes sufficiently 
small, ensuring convergence to the solution x.
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Geometric description of the method

The Jacobian matrix J(x) is constructed using the gradients of the functions /». Each 
row of the Jacobian matrix is the gradient of the corresponding function /p

V/i(x)’

V/n(x)_

The gradient of a function is a vector of its partial derivatives with respect to each 
variable Xf.

dfi_ ... Ahlv mxj — [9;C1 dX2 axn]

The gradients in the Jacobian matrix provide a linear approximation of the functions fi 
around the current guess x(fc\ This approximation helps in solving the system of linear 
equations for the update step. Graphically the solution of the linear system in update 
step is intersection of tangent planes to graph to each function fi and plane /(x) = 0.

Example 5: Newton Method for the System of Nonlinear Equations

We aim to solve the following system of nonlinear equations using Newton method:

a?2 — aq + 1 = 0

xi + X2 ~ %xi = 0

Step 1: Define the System of Equations and the Jacobian Matrix

We represent the system in vector form as follows:

fi{x1,x2') = a^-aq + 1 
/2(aq,x2) “ a^ + a^-2aq

Newton method for systems of nonlinear equations requires the Jacobian matrix, which 
is composed of the partial derivatives of the functions f^fx^x^ and f2(x^x2). The 
Jacobian matrix J(x) for this system is given by:

J(x) = dx2

dx2 _

-1 2x2
2aq — 2 2x2

This matrix will be used in each iteration to compute the Newton step, Ax^fc\
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(Ex
‘Ix)7 

(Ex
‘lx)7

Fig. 4.2: Newton method for systems of equations, see Example 5
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Step 2: Iterative Process Using Newton Method

First Iteration:

We start with an initial guess = [4,2]T.

1. Evaluate the function F(x(°)):

F(x(0)) = 22 - 4 + 1
42 + 22 - 2 • 4

1
12

2. Evaluate the Jacobian J(x^°)) at x^ = [4, 2]T:

2 • 2
2 • 2

J(x(0)) = -1 
2-4-2

-1 4
6 4

3. Solve for Ax°>  by solving the linear system:*

J(x(0)]Ax(0) = — F(x(0)]

-1 
6

4
4 |a40)

-1
-12

Solving this system results in:

AtfJ0’ = -1.5714, aJT = -0.6429

4. Update the solution:

X(1) = x(°) + Ax(°) = -1.5714
-0.6429

2.4286
1.3571

The new approximation for the solution after the first iteration is x^ = [2.4286,1.3571]T.

By repeating this iterative process, updating the solution at each step, the Newton 
method will converge towards a solution. In this case, after several iterations, the values 
of x will tend to:

* 1.6180
? 0.7862

This is an approximation of the root of the system of nonlinear equations. As the 
number of iterations increases, the solution becomes more accurate, with the values of a?i 
and X2 converging to 1.6180 and 0.7862, respectively. Figure 4.2 visualize the iterative 
process.
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4.3.4 Numerical Continuation Using One Parameter

Numerical continuation is a method used to track the solutions of a system of equations as a 
parameter varies. It can be seen as a predictor-corrector method because it employs a two- 
step iterative process to approximate the solution curve of a system. In the prediction step, 
an initial guess of the new solution is made using extrapolation techniques, often based on 
the tangent or higher-order derivatives of the solution curve. This guess is typically quite 
rough but provides a starting point close to the actual solution. In the correction step, 
this initial guess is refined by applying Newton method or other root-finding algorithms 
to ensure that it satisfies the underlying equations more precisely. By alternating between 
these prediction and correction steps, numerical continuation efficiently tracks the solution 
path through parameter values.

Fig. 4.3: Graphical visualization of the numerical continuation process.

Numerical continuation is just one example of a common principal of numerical math­
ematics call the predictor-corrector method. The motivation behind this method lies in its 
ability to balance efficiency and accuracy. The prediction step offers a quick, computation­
ally inexpensive estimate of the solution. This step provides a provisional solution that, 
while not exact, is sufficiently close to the true solution to make the next step more effec­
tive. The correction step then refines this estimate, using more precise methods such as 
Newton. This iterative refinement ensures that the final solution is accurate, conforming 
closely to the desired tolerance. By combining these two steps, predictor-corrector meth­
ods harness the strengths of both: the speed of simple and the accuracy of more complex. 
Another field of numerical mathematics where this principal is particularly valuable is 
solving ordinary differential equations (ODEs).

4.3.4.1 Natural Continuation

In natural continuation, one parameter A in the system F(x, A) = 0 is varied, and the 
system is solved iteratively for each value of A.
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Steps of the Natural Continuation

1. Start with a known solution (xq, Ao).

2. Increment the parameter A by a small step AA.

3. Use Newton method to solve F(x, A + AA) = 0 starting from the previous solution 
Xprev •

4.3.4.2 Pseudo-arclength Continuation

Pseudo-arclength continuation allows continuation past limit points, cusp point, or more 
generally singular points by parameterizing the solution path with an arc-length parame­
ter s. A limit point is identified at the folding point of a curve. At this point, the curve 
changes direction, indicating a sharp transition or singularity in the behavior of the func­
tion. A cusp point on a curve is a point where the curve has a sharp point, i.e., where the 
curve does not have a well-defined tangent.

Steps of the Pseudo-arclength Continuation

1. Define an augmented system that includes the original equations and an additional 
constraint to fix the arc length.

2. Solve the augmented system using Newton method:

f F(x, A) = 0
[v (x Xprev, A Aprev) A.S = 0

where v is a tangent vector, and As is the step in arc length.

Example 6

The success of continuation methods depends on the nature of the equations and the 
singularities encountered:

1. For F(x, A) = 3a?2 + A, natural continuation fails at the fold (0,0), whereas pseudo­
arclength continuation succeeds.

2. For F(a?, A) = a?3+4Aa?+A2, both natural and pseudo-arclength continuation struggle 
at the branch point (0,0).

To avoid problems described above we may evaluate functions on a grid (usually math­
ematical software do so while producing implicit plots) and find contour at zero-level set. 
This method may be computationally inefficient specifically it the evaluations of desirable 
function is costly. On the other hand both singularities and branch points may cause 
difficulties while performing continuation.
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4.3.5 Gauss-Newton Method

The Gauss-Newton method is used to solve nonlinear least squares problems, particularly 
when dealing with over-determined systems. For a system of equations F(x) where F 
represents residuals, the objective is to minimize ||F(x)||2.

1. Start with an initial guess Xq.

2. At each iteration, solve the linear least squares problem:

J(xn)TJ(xn)Axn = -J(xn)TF(xn)

where J(xn) is the Jacobian matrix of F at xn.

3. Update the solution: xn+i = xn + Axn.

4. Repeat until convergence.

We can express an integration of the Gauss-Newton method using the left pseudoin­
verse of J(xfe):

Axfc = - J(xfc)+r(xfc)

Here, J(xfc)+. denotes the Moore-Penrose pseudoinverse of J(xfe). For the left pseudoin­
verse specifically:

J(xfc)+ = (J(xfc)TJ(xfc))-1J(xfc)T.

Example 7: Logistic Growth Model for human population

We have historical world population data and we want to fit the logistic growth model to 
this data to estimate the parameters K, y0, and r. The logistic growth model is given by:

f + Axao -rt 
yo

where y(t) is the population at time t, K is the carrying capacity, yo is the initial population 
size, r is the growth rate. Let us assume we have the following world population data (in 
billions):
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Year Population
1950
1960
1970
1980
1990
2000
2010
2020

2.53
3.03
3.70
4.45
5.32
6.12
6.92
7.80

Solution

The residuals r, are the differences between the observed data points and the model 
predictions:

r'1 1 i K-y0 rt.:
yo

Compute the Jacobian matrix J of the residuals with respect to the parameters K, 
yo, and r: Jij = where 0 = [K, yo, r]T. Start with an initial guess for the parameters, 
say Ko = 10, yo = 2.5, and ro = 0.02. Update the parameters using the Gauss-Newton 
iteration:

Ok+i = 0k~ (J(0fc)TJ(^))-1J(^)Tr(0fc).
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Year

Fig. 4.4: Logistic grow of the human population. The estimated parameters are I\ = 12.8087, j/0 = 2.488, 
r = 0.026599.

4.4 Methods derived from Newton method

4.4.1 Secant Method

d%e Secant. Method is a root-finding algorithm that, unlike Newton Method, does not 
require the derivative of the function. Instead, it uses a finite difference approximation to 
the derivative. Given two initial approximations .To and .'iq, the iteration is:

_  ff\ %n—l
x„+1 /(a,j _

The Secant Method approximates the derivative /'(.r) as:

x _ /(Tn) - /(Tn-l)
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4.4.2 Regula Falsi Method

The Regula Falsi Method (or False Position Method) is another iterative method to find 
roots. It combines the ideas of the bisection method and the secant method. It guarantees 
that the root remains bracketed within an interval [a, b\. The iteration is defined by:

^n+l =&-/(&) /(fl)

Here, a and b are such that /(a) and /(ft) have opposite signs (i.e., /(a)/(&) < 0), 
ensuring a root exists in the interval [a, b\. In each iteration we change a or b to xn+i and 
preserve property /(a)/(&) < 0.

The Regula Falsi (or False Position) method shares similarities with both the Secant 
Method and the Bisection Method.

Connection to the Secant Method

The Regula Falsi Method can be seen as a modified version of the Secant Method where 
the interval [a, b] is dynamically updated to ensure that the root is always bracketed. 
Specifically:

• If f(xn+i) and /(ft) have opposite signs, set a = xn+i and keep b unchanged.

• Otherwise, set b = xn+i and keep a unchanged.

This ensures that the root always lies between a and b, improving the robustness of the 
method compared to the Secant Method.

Connection to the Bisection Method

The key connection lies in how the interval is updated to ensure the root remains bracketed.

Bisection Method

The Bisection Method is a simple root-finding algorithm that relies on the Intermediate 
Value Theorem. Given a continuous function f(x) on an interval [a, b] where f(a) f(b) < 0, 
the method iteratively halves the interval until it converges to the root. The iteration is:

1. Compute the midpoint: c =

2. Evaluate /(c).
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3. Update the interval:

• If J(a)/(c) < 0, set b = c.
• Otherwise, set a = c.

The Regula Falsi method uses a linear interpolation, potentially finding the root faster 
while still ensuring the root is bracketed, improving on the Bisection Method’s interval 
halving approach.

4.4.3 Quasi-Newton Methods for Multiple Variables

Quasi-Newton methods approximate the Jacobian matrix (see section 4.3.3) rather than 
computing it exactly. From that perspective Secant method can be seen as a special 
example of Quasi-Newton for single variable. One of the popular Quasi-Newton methods 
for multiple variables is Broyden method.

Broyden Method

Broyden method updates an approximate Jacobian B„, at each iteration. The iteration 
for Broyden method is:

x.„.+i = x.„. - Bn1F(x„.)

After updating x, the Jacobian approximation B is updated using the formula:

B,i+i — B.,t +
(AFW - BwAx.„.)Ax^ 

Ax£Axn

where: Axn = x,,.+i - xn, AF„. = F(x,,.+i) - F(x,Q

Explanation of the formula for Bn+i

• Difference in Function Values: AFj, represents how much the function values have 
changed after taking the step Axj,.

• Current Approximation Error: B^Ax^ is the current Jacobian’s estimate of the 
function change. The difference AFj. — B^Ax^ indicates the error in the Jacobian’s 
prediction.

• Rank-One Update: The term ^AFfc(~Bj;AxA^AxA- represents a rank-one correction to ZAX/j
the approximate Jacobian B/ This correction adjusts the Jacobian to better match 
the observed change in the function values.
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• Normalization: The denominator Ax^Axj, normalizes the update to ensure it is 
appropriately scaled.

Algorithm Steps

1. Initialization:

• Choose an initial guess xq.
• Compute F(xq) and an initial approximation Bo to the Jacobian matrix.

2. Iteration:

• Solve BnAxn = —F(xn) for Axn.
• Update xn+i = xn + Axn.
• Compute F(xn+i).
• Update the Jacobian approximation Bn+i using the formula above.
• Check for convergence (e.g., if ||F(xn+i)|| is sufficiently small).

4.5 Rate of Convergence

The rate of convergence describes how quickly a sequence approaches its limit as the 
number of terms increases. It is a measure of the speed at which the terms of the sequence 
get closer to the limit. All the definition bellow all formulated for single nonlinear equation, 
equivalently we may proceed for systems of nonlinear equations, while instead of absolute 
values we are going to apply an arbitrary vector norms.

Definition: Given a sequence (xn) that converges to a limit L, the rate of convergence 
provides a quantitative description of how fast xn approaches L as n —> oo.

The rate of convergence is often classified into different categories, depending on the 
relationship between the sequence and its limit. Here are some common types:

Sublinear Convergence: A sequence (xn) is said to converge sublinearly to a limit L

This means that the sequence converges to L more slowly than any linear rate. The ratio 
of successive errors approaches 1 as n goes to infinity, indicating very slow convergence.

Linear Convergence: If there exists a constant C (with 0 < C < 1) such that:

|ar.+i - L\ < C^Xn - L\

for sufficiently large n, then the sequence (a?n) is said to converge linearly to L. Linear 
convergence implies that the error \xn — L\ decreases by a constant proportion in each 
iteration.
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Superlinear Convergence: If the sequence (xn) converges faster than linearly but not 
as fast as quadratic convergence, it is said to converge superlinearly. Formally, if:

lim
\xn - L\

= 0

then the sequence converges superlinearly.

Quadratic Convergence: If there exists a constant C (with C > 0) such that:

|^n+l - L\ < c{xn - L\2

for sufficiently large n, then the sequence (a?n) is said to converge quadratically to L. 
Quadratic convergence implies that the error \xn — L\ squares in each iteration, leading 
to very rapid convergence.

Convergence with Order p: A sequence (xn) converges to L with order p (where p > 1) 
if there exists a constant C > 0 such that:

l^n+i - L\ < C\xn - L\p

for sufficiently large n. This means that the sequence converges faster than quadratically 
if p > 2.

Theorem: Let g : R —> R be a continuously differentiable function, and let x*  be a fixed 
point of g (i.e., g(x*~)  = x*).  If the sequence {xn} is defined by the iteration xn+i = g(xn\ 
then:

1. If |<7/(cc)|  < 1, the iteration converges to x  with a linear rate of convergence.* *

2. If g'(x~)  = 0 and \g"(x)|  0, the iteration converges to x  with a quadratic rate of* * *
convergence.

3. More generally, if g<-k\x')  = 0 for k = 1,2,... ,p — 1 and g^tx)  0, the iteration 
converges to x  with a rate of convergence p.

* *
*

Proof: The proof involves analyzing the behavior of the iterates near the fixed point x* .

Linear Convergence: If |<7/(cc*)|  < 1, then there exists a neighborhood around x*  such 
that |y(a:)| < 1 for all x in that neighborhood. By the mean value theorem, for xn close 
to x*  \

|^n+i -*̂1  = |5(a?n) -5(a?*)|  = |p'(cn)(xn -a?*)|  < {xn -a?*|

where cn is some point between xn and x*.  This implies linear convergence.

Quadratic Convergence If g'(x*)  = 0 and g"(x*)  0, we use a second-order Taylor
expansion of g around x*:
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g(x) = x*  + ^g"(x*)(x  — a;*) 2 + O((x — a;*) 3)

Thus,

Xn+1 — x*  = g(xn) — x*  = -g"(x*)(x n - x*) 2 + O((xn - a?*) 3)

Hence, |a?n+i—a?*|  ~ C\xn— ad|2, indicating quadratic convergence. The genral formula 
can be proven similarly. □

The following table gives an overview of rates of convergence for commonly used meth­
ods. To achieve maximal rates as are written in the table, other conditions may need to 
be fulfilled, but in practical applications are not usually checked.

Method Rate of Convergence
Newton Method Quadratic (2)
Secant Method Superlinear (ss 1.618)

Bisection Method Linear (1)
Regula-Falsi Method Linear (1)

Broyden Method Superlinear (ss 1.5)

Example 8

Find a root of a?3—10 = 0 using (a) Regula-falsi (R-F) method on interval [1,3], (b) Newton 
method with a?o = 4. For both methods generate sequences ek. Plot a dependence e^+i 
on gfc and give it into the context of convergence rates of iterative methods.

Regula-Falsi method - Iteration Formula

a?0 = a,xr= b, xk+1 = xk - ^Xk^Xk and f(xk')f(xs') < 0 for s G {k, k - 1} 
f(xk) - f(xs)

Iterations

Iteration 1: a-0 = 1, aq = 3
n r- o -q /(3)(3-l) 17-2 34Iteration 2. a-2 3 3 _ (_g) 3 ~ 1.6923077

Iteration 3: x3 = 1.6923077 - . 1.9965072
/(1.6923077) - J(3)
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Newton Method - Iteration Formula

Iterations

f(xk) 
f'(xk)

2-fe+l — Xk

Iteration 1: Xi = 4---- -—-5— = 4 —— % 2.875000
3 • 42 48

2 8753 — 10
Iteration 2: X2 = 2.875 -----———5— ~ 2.319943

3 • 2.875J

Error Sequence Let x* 
for each iteration.

• Newton Method: This method typically exhibits quadratic convergence. The plot 
of efc+i vs. efc should approximate a quadratic function.

^10 ~ 2.1544. The error sequence ek = \xk — a?*| is computed

k xk
R-F Newton R-F Newton

0 1.000000 4.000000 1.154435 1.845565
1 3.000000 2.875000 0.845565 0.720565
2 1.692308 2.319943 0.462127 0.165509
3 1.996507 2.165962 0.157928 0.011527
4 2.104111 2.154496 0.050324 0.000061
5 2.167187 2.154435 0.012753 0.000000
6 2.154133 2.154435 0.000301 0.000000
7 2.154433 2.154435 0.000002 0.000000

Convergence Rate Analysis

• Regula-Falsi Method: This method typically exhibits linear convergence. The 
plot of efc+i vs. ek should approximate a line with a slope less than 1.
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Fig. 4.5: Dependence of e^+i on and fits of corresponding curves (linear function for Regnla-falsi 
method, Quadratic function for Newton method) using least square method.

Example 9

Find a non-trivial fixed point for logistic map for a = 1.5, 2.5,1,3 using fixed point iterative 
method. Plot a dependence on and give it into the context of convergence rates 
of iterative methods. Plot a dependence of on k and give it into the context of 
convergence rates of iterative methods.

Solution:

For the logistic map xn+i = axn(l — xn):

For a = 1.5 and a = 2.5:

• The sequences generated by the fixed point iteration method show linear conver­
gence.

• The plots of le/c+il vs. display a linear relationship with a slope less than 1, 
indicating that the error decreases steadily at a linear rate.

For a = 1:

• There exists only trivial fixed point (a?* = 0), and the sequences converge to zero.

• The convergence is sublinear, as seen from the plot of which tends to 1, 
indicating a slower rate of error reduction compared to linear convergence.
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+ l 
Z/

l+
l

For a = 3:

• J’he sequences show sublinear convergence.

• The plot, of tends to 1, indicating a slower convergence rate, characterized by 
a gradual reduction in error over iterations.

Fig. 4.8: Fixed point for logistic map for a = 1, terminating condition |ra-. — ;r*| < 10 9
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Fig. 4.9: Fixed point for logistic map for a = 3, terminating condition — ;r*| < 10' 9

4.5.1 Proof of Quadratic Convergence of Newton Method

Given a function J(.r) with a root x*,  Newton method is defined by:

f(Xk) 
f'M

We want to show that the convergence rate of Newton method is quadratic, i.e., 

kfc+1 -*̂1  < C\xk -x*{ 2

for some constant C and for all k sufficiently large.

1. Assumptions and Setup:

Assume that:

• J(x)  = 0 (i.e., x  is a root of /).* *
• / is twice continuously differentiable in a neighborhood around x .*
• f'(x)^0.*

2. Taylor Series Expansion:

Consider the Taylor series expansion of / around x*:

f(xk) = /(:C) + f(x*)(x k - :C) + ^^(xk -

for some between xk and x*.
Since J(x*)  = 0, the expansion simplifies to:

f(xk) = f'(x*)(x k - x*)  + ^{xk - x^2

3. Newton Iteration:

Applying Newton method:
fM 
f'M■I'fc+l — Xk

Substitute the Taylor expansion of f(xk):

^fc+1 — %k
f(x*)(x k — X*)  + $ (Xk — X*) 2 

f'M
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4. Approximate /'(a^):
Since /'(a?) is continuous and xk is close to x*,  we can approximate: 

f(xk) v f'(x*)

5. Simplify:
Simplifying the expression:

Therefore:
f(x*)(x k — x*)  + $ (xk — x*) 2 

^+1 - Xk

/ « iMy^(aqc - a?*)2
Xk+1 ~ Xk (xk x*')  2

Xk+i~xk xk+x*  [ l (xk a?*) 2

* fXk+i ~ x 2f'(x*')^ Xk X

6. Error Term:

Let ek = xk — x* be the error at the A;-th iteration. Then:
* /"(&) 2

ek+i=Xk+i x « 2ft^ek

Hence:
। । ~ f"(&) , |2 n
lefc+i| ~ 2/'(a?*)

4.5.2 Basins of Attraction and criteria of convergence

Definition

A basin of attraction for a fixed point in an iterative method is the set of initial points that 
lead to convergence to that specific fixed point under the iteration. For Newton method, 
the basin of attraction of a root a of F(x) is the set:

B(a) = {xo G R” I lim xn = a}

where xn is the sequence generated by Newton method starting from xq.

Example 10: Fractal Nature of Basins of Attraction

The basins of attraction for Newton method can exhibit fractal structures. This fractal 
nature arises from the complex dynamics of the iterative process, especially in cases where 
there are multiple roots. Small changes in the initial guess can lead to convergence to 
different roots, creating a highly intricate boundary between basins.
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Basin of Attraction for x5 — 1

Consider the polynomial /(.r) = x5 — 1. The roots of this polynomial are the complex 
fifth roots of unity, and they are given by:

afc = e2^/5 for fc = 0,l,2,3,4

where i is the imaginary unit. Explicitly, these roots are:

ci'o — 1,
= e2m/5; 

a2 = e4™/5, 
a3 = e6m/5; 

a4 = eSm/5.

Each of these roots has its own basin of attraction under Newton method. The basins 
of attraction for the polynomial x5 — 1 are regions in the complex plane such that any 
initial guess within a given region will converge to a particular root. Let us visualize the 
basin of attraction of root «o = 1, see Figure 4.10.

Fig. 4.10: Basin of attraction of a-o = 1 as a root of f(,r) = x5 — 1 using a sequence given by Newton 
method.

Fourier conditions

For function / of a single variable x we may examine convergence using the following 
conditions.
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1. Let / be continuous up to the second derivative in [a, b], f(o) ■ f(Jj) < 0.

2. /' and /" doesn’t change its sign in [a, b], and \/x G [a, b] : /'(a?) 0

Let’s choose xq g {a, b} such that J(a?o) • f" > 0. Then the sequence generated by Newton 
method converges monotonously to x. The convergence is quadratic.

It is important to note that these conditions are sufficient but not necessary. There 
can be cases where Newton method converges quadratically even if these conditions are 
not fully satisfied.

4.5.3 Big O and Little o Notation

1. Big O Notation (O): This notation is used to describe an upper bound on the growth 
rate of a function. For a function f(x), we say f(x) = O{g{x)') as x —> oo if there 
exist constants C and M such that

|/(a?)| < C\g(%)I f°r all x > M.

2. Little o Notation (o): This notation is used to describe a function that grows much 
slower than another function. We say f(x) = o{g{x)') as x —> oo if for every constant 
e > 0, there exists a constant M such that

|/(a?)| < e|<7(a?)| f°r all x > M.

Connection to Convergence Rates

1. Linear Convergence: If an iterative method has a linear convergence rate, the error 
in the next iteration is proportional to the error in the current iteration. In Big O 
notation, we write:

Gfc+l = O(Cfc).

This indicates that the error decreases linearly with each iteration.

2. Superlinear Convergence: If an iterative method has a superlinear convergence rate, 
the error decreases faster than linear but not necessarily quadratically. Using Little 
o notation:

Gfc+l = o(efc).

This indicates that the ratio —> 0 as k —> oo, meaning the error reduction
accelerates.

3. Quadratic Convergence: If an iterative method has a quadratic convergence rate, 
the error in the next iteration is proportional to the square of the current error. In 
Big O notation, we write:

efc+i = O(e^).

This indicates that the error decreases quadratically, resulting in a very rapid con­
vergence.
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4.5.4 Convergence Acceleration and Steffensen Method

Convergence acceleration techniques aim to enhance the rate of convergence of an iterative 
process. In numerical analysis, these techniques are vital for improving the efficiency of 
methods that exhibit slow convergence. The objective is to transform a sequence with 
linear or sub-linear convergence into one with faster convergence, ideally quadratic or 
higher-order convergence.

Steffensen method is an iterative technique used to find the roots of a function, provid­
ing an accelerated convergence. The method is based on Aitken A2 process and is defined 
as follows:

Given an initial guess Xq, Steffensen iteration is:

~ _ _________ (g(An) - Xn)2
Xn+1 Xn gt.gt.Xn)') - ^(Xn) + Xn

This method approximates the root of /(a;) = 0 by accelerating convergence of itera­
tion process xn+i = g(xn~) and typically achieves quadratic convergence under suitable 
conditions.

Example 11: Multiple Roots and Linear Convergence of Newton Method

Consider the case where f(x) has a multiple root. A multiple root occurs when /(a) = 0 
and f'(o) = 0, but /"(of) 0. For example, the function /(a:) = (x — a)2 has a double
root at x = a.

When applying Newton method to /(a?) with a multiple root, the iteration formula is:

f(Xn) 
f'(Xn)

Xn+1 — Xn

However, in the presence of multiple roots, Newton method converges only linearly. 
This is because the derivative f(x) is small near the root, slowing down the convergence.

To achieve quadratic convergence in such cases, we can employ one of the following 
strategies:

1. Modification of Newton Method for Multiple Roots:

For a function /(a?) with a root of multiplicity m, modify Newton method as:

^n+1 — %n
f(Xn) 
f'(Xn)
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This modification accounts for the multiplicity m and restores quadratic convergence.

2. Using a New Function u(a?) =

Define a new function u(a?):

u(a?) =
/'(t)

Applying Newton method to u(a?) helps address the issue of multiple roots, as it trans­
forms the original problem into one where the roots are simple, enhancing the convergence 
rate.

3. Steffensen Method:

Steffensen method can also be used to accelerate the convergence:

2-n+l — Xn
(gtXn) - Xn)2 

ff(ff(xn)) - 2g(xn) +xn’

where

, , f(x)

By applying Steffensen iteration, we achieve quadratic convergence without requiring 
the explicit knowledge of the multiplicity of the root.

Example 12: Steffensen method

Let us consider the sequence generated from the iterative method applied to the function 
g(x) = cos(a?). The goal is to find the root x, which is approximately 0.739085.

The data from the iterative process is as follows:
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Table 4.1: Iterative process for g(x) = cos(a:)

IT Xn x error ratio
0 1 0.260915 NaN
1 0.540302 -0.198783 -0.761868
2 0.857553 0.118468 -0.595968
3 0.654290 -0.084795 -0.715653
4 0.793462 0.054377 -0.641429
5 0.701369 -0.037716 -0.693704
6 0.763959 0.024874 -0.659556
7 0.722103 -0.016982 -0.682986
8 0.750418 0.011333 -0.667516
9 0.731404 -0.007681 -0.678091
10 0.744237 0.005152 -0.671030
11 0.735604 -0.003481 -0.675431
12 0.741426 0.002341 -0.672350

To apply the Steffenson process, we use the formula:

~ _ _________ (g(a+) - xn)2
Xn+1 Xn g{g{Xn)) - 2g(xn) + xn

1. Initial Iteration:

x0 = 1, x1 = 0.540302, x2 = 0.857553

2. Compute Aitken Accelerated Value:

(0.540302 - I)2 
0.857553 - 2-0.540302 + 1 

x0 = 0.728010

3. Compute two new iterations using the fixed point method and use Aitken accelerated 
value again. Repeat the process until the ending criterion is fulfilled.

Intuition Behind Aitken A2 Process

The original sequence converges linearly, meaning each term xn is incrementally closer to 
the limit x by a factor. Aitken A2 process leverages the differences between successive 
terms to predict a better estimate for the limit, effectively removing the linear error term. 
By using the differences, it provides an accelerated convergence towards the limit.
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Aitken A2 Process

Aitken A2 process is a method for accelerating the convergence of a sequence. It is 
particularly useful when dealing with sequences that converge linearly, helping to achieve 
faster convergence by transforming the original sequence. This method is often applied in 
iterative numerical methods where convergence speed is crucial.

Given a sequence {a?n}, Aitken A2 process produces a new sequence {xn} defined by:

~ (A+i - xn)2

• Numerator (a;n+i — xn)2: This term represents the squared difference between 
successive terms. By squaring the difference, we emphasize the extent of change, 
making it more significant in the adjustment process.

• Denominator x„2 — 2xn+i + xn: This is the second forward difference, which 
captures the acceleration or deceleration in the sequence values. It helps in under­
standing the curvature or bending of the sequence.

Understanding the Components

• Forward Differences: The forward difference Axn measures the change between 
successive terms of the sequence:

The second forward difference A2xn measures the change in these changes:

A2xn = A(Axn) = xn+2 - 2xn+1 + xn

These differences help to understand how the sequence is evolving and provide a 
way to predict its behavior.

• Linear Convergence: If a sequence {a?n} converges linearly to L, then:

xn « L + Cpn

where 0 < p < 1 is the rate of convergence, and C is a constant. The idea is to 
eliminate the term involving pn to get a better estimate of L.

The Goal

The aim of Aitken A2 process is to estimate the limit of a sequence more accurately by 
using the information from the sequence itself. If is converging to a limit L, the idea 
is to create a new sequence {xn} that converges to L faster than the original sequence.
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Derivation of the Aitken A2 formula

For a linearly convergent sequence, we have approximately the following relation between 
three successive error terms.

&k
&k &k—1

xk — x ~ xk-i — x

If we solve Xk+i_xXk X Xk—1 for x.

We will get the formula for Aitken 52-method

„ (xk+1 - Xk)2 ~
X ~ Xk------------ -------------- = Xk.

Xk+2 ^%k+l A Xk

Why It Works?

Aitken A2 process works by effectively removing the linear term Cpn from the sequence 
approximation, leaving a more accurate estimate of the limit L. Here’s a step-by-step 
breakdown:

1. Approximate xn+i and xn+2'- If the sequence {xn} converges linearly, we can 
write:

Xn+1 ~ L + Cpn+1

Xn+2 ~ L + Cpn+2

2. Forward Differences: Calculate the first and second forward differences:

Ax. w Cpn+1 - Cpn = Cpn(p - 1)

A2a?n ~ (L + Qn+2)-2(L + Cpn+1) + (L + Cpn) = Cpn(p2 - 2p +1) = Cpn(p —I)2

3. Substitute into the Aitken Formula:

(cy(p-i))2 r
Cpn(j) — l)2

c2p2w(p- l)2 
Cpn(p — I)2 = xn - Cpn

4. Result:
x* n & L + Cpn - Cpn = L

Hence, x*  is a better estimate of L and converges more rapidly than the original 
sequence.



Chapter 5

Iterative solving of systems of linear 
equations

5.1 Recommended literature
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0427(00)00403-9
[14] Josef Stoer et al. Introduction to numerical analysis. Vol. 1993. Springer, 1980

5.2 Introduction

Iterative methods are widely used to solve systems of linear equations, particularly when 
the system is large and/or sparse. Unlike direct methods (such as Gaussian elimination), 
iterative methods start with an initial approximation to the solution and improve it step 
by step. The general form of a linear system is:

Ax = b

where A is an n x n matrix, x is an unknown vector, and b is a known vector. 
Iterative methods generate a sequence of approximations x^fc^ that ideally converge to the 
true solution x.

The general form of an iterative method can be written as:

x(fe+1) = Mx(fe) + c

where M is the iteration matrix, c is a constant vector, and x^ is the A:-th approxi­
mation to the solution.

Motivation to Study Large Sparse Matrice

In the realm of numerical analysis and scientific computing, large sparse matrices are a 
fundamental tool. These matrices, which contain a significant number of zero elements, 
arise naturally in various applications such as network theory, image processing, and 
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partial differential equations. One particular area of interest is the study of tree diagonal 
matrices using the discrete version of the heat equation.

The heat equation is a partial differential equation (PDE) that describes how heat 
diffuses through a given region over time. When discretized, it provides a framework for 
understanding how heat or other diffusive processes propagate across a network or grid, 
which can be represented by a graph. In such cases, the graph’s adjacency matrix is often 
large and sparse, with a tree structure representing hierarchical or recursive connections.

Studying the discrete heat equation on such matrices allows us to explore the dynamics 
of diffusion processes in complex networks, with applications ranging from thermodynam­
ics to financial systems and even machine learning. Moreover, the specific structure of tree 
diagonal matrices offers computational advantages, as they often allow for more efficient 
algorithms for solving linear systems, eigenvalue problems, and matrix factorization.

As an example we consider the heat equation, which describes how heat diffuses 
through a medium:

du(x,t) d2u(x,t) 
dt a dx2 ’

where u(x, t) is the temperature at position x and time t, and a is the thermal diffu­
sivity of the material.

To solve this equation numerically, we discretize the spatial domain into equally spaced 
points, with spacing h. Similarly, we discretize the time domain into equally spaced points, 
with spacing At. Let uf denote the temperature at the z-th spatial point at time tn. The 
second derivative with respect to x can be approximated using the finite difference method:

d2u(x,t) <+1 — 2u” + u”i 
dx2 h2

Similarly, the time derivative can be approximated as:

dufx, t) u”+1 — uf 
dt At '

Substituting these approximations into the heat equation gives:

uf+l - uf uf+l - 2uf + uf rb b   X b bl
At h2 '

Rearranging, we obtain:

ur+i = < + ^«+i-2<+<_1).
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This can be written in matrix form as:

u”+1 = Au”,

where u” = [u”, u?,, • • •, 117' is the vector of temperatures at time tn, and A is the
matrix given by:

where I is the identity matrix, and L is the Laplacian matrix associated with the 
discrete spatial grid. For a one-dimensional domain, L is a tridiagonal matrix:

—2
1 
0

1 0
—2 1

1 —2

0
0
0

0 0 0 ••• -2

If you want to avoid the formulation using partial differential equations (PDEs), you 
can think of it in a more intuitive way by imagining a metal stick and observing how heat 
spreads through it. Instead of dealing with continuous variables, you select a finite number 
of points along the stick. At each of these points, the temperature at a given time t is 
influenced only by the temperatures at the neighboring points, but crucially, only from the 
previous time step t — At. Of course, the description of the boundary points is different; 
at these endpoints, the first and last equations may differ, as they need to account for the 
lack of neighboring points on one side, which could involve fixed temperatures, insulated 
ends, or other specific boundary conditions. This approach simplifies the problem by 
focusing on how the temperature at each discrete point evolves based on its immediate 
surroundings, providing a straightforward way to model heat diffusion without diving into 
the complexities of PDEs.

5.3 Jacobi and Gauss-Seidel Methods

5.3.1 Jacobi Method

The Jacobi method is one of the simplest iterative methods. It is defined by decomposing 
the matrix A:

A=D+L+U



5.3 Jacobi and Gauss-Seidel Methods 112

where L is the strictly lower triangular part and U the strictly upper triangular part 
of A.

The iterative scheme in matrix form is then:

x(fc+i) = D-ib _ D-i(L + u)x(fc)

Here, the iteration matrix is M = —D-1(L + U). Convergence of the Jacobi method 
depends on the spectral radius p(M).

We can express the method equivalently in equation form. The z-th equation of the 
system is:

+ • • • + + • • • + Uinxn — bj,

The component Xi is expressed as:

7 . bi
—Xj J----- ,
an J an 

j=i

and it is used as the new (k + l)-th iteration: 

n rfc+i _ \ ' ।•.G, 7 | •
an J an

j=l 
iG

Simply speaking, we express the component Xi from z-th equation.

5.3.2 Gauss-Seidel Method

The Gauss-Seidel method improves upon the Jacobi method by using updated values as 
soon as they are available. The matrix A is decomposed as:

A=D+L+U

where L is the strictly lower triangular part and U the strictly upper triangular part 
of A.

The iterative scheme is:

x(fc+i) = (D + L)-1b - (D + L)-1Ux(fc)

The iteration matrix for Gauss-Seidel is M = —(D + L)-1U. Convergence for Gauss- 
Seidel is typically faster than for Jacobi (but not necessarly).
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We can express the method equivalently in equation form. The z-th equation of the 
system is:

+ * * * + (^ii^i T * * * T — bi

The component of the new iteration is used in the following step:

x± + 1 = ---- (bl — 012^2 — 013^3 “ 014^4 — • • • )
an v 7

a?2+1 = ----- (&2 - a21^1 + 1 - 023^3 - 024^4 -••• )
«22 V 7

«33 V
™fc+l _ 1 (h n rrT+1 ,, 1 ,, nfi

( C^3 ^31 &x ^32^2 0-34^4 • • •

Simply speaking, we express the component Xi from z-th equation. Unlike the Jacobi 
method in the Gauss-Seidel method, we use x('+1 to express x^+1 for z < j, in other words 
we always use the newest possible interactions.

Computing Specified Inverse Matrices

In both Jacobi and Gauss-Seidel methods, the inverse matrices D-1 and (D + L)-1 play 
a crucial role. For diagonal matrices D, the inverse is straightforward to compute:

D 1 = diag (—,—,...,----
\flll 022 dnn

For lower triangular matrices (D + L), the inverse can be computed efficiently through 
forward substitution.

5.4 Criteria of convergence

A contraction mapping in the context of iterative methods is a function that brings points 
closer together. Specifically, for an iterative method defined by:

x(fc+1) = Mx^ + c,

the method is a contraction mapping if there exists a constant (3 < 1 such that:

IIxU+F _x|| < Z3||x<fc> — x||,
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where x is the true solution. The key idea is that the distance between successive 
approximations decreases geometrically, ensuring convergence.

The spectral radius p(M) of the iteration matrix M is directly related to whether the 
iterative method is a contraction mapping. The spectral radius is defined as the largest 
absolute value of the eigenvalues of M:

p(M) = max | Ai|,

where Xi are the eigenvalues of M.

For the iterative method to be a contraction mapping (and hence converge), the spec­
tral radius must satisfy:

p(M) < 1.

This condition ensures that the influence of any errors or deviations from the true 
solution diminishes with each iteration. Therefore, the condition p(M) < 1 guarantees 
that the iterative process will contract towards the true solution, leading to convergence. 
Notice that convergence is quaratied for any intial itration.

5.4.1 Diagonal Dominance Theorem

The diagonal dominance theorem provides a sufficient condition for the convergence of the 
Jacobi and Gauss-Seidel methods. It states:

Theorem (Diagonal Dominance): Let A be an n x n matrix. If A is strictly 
diagonally dominant, i.e., for every i = 1, 2,..., n:

la««l > y? \aij\ (strictly row diagonally dominant), 

la»d > yZlaL'l (strictly column diagonally dominant),

then the iterative methods like Jacobi and Gauss-Seidel are guaranteed to converge.

Explanation:

• Diagonal dominance ensures that the diagonal elements an are large enough relative 
to the off-diagonal elements. This structure means that each equation in the system 
is more strongly determined by its own unknown than by the unknowns from other 
equations, making the system stable and conducive to iterative methods.
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• The strict diagonal dominance implies that the iteration matrices D-1R for Ja­
cobi and L-1U for Gauss-Seidel have a spectral radius less than 1, which is why 
convergence is ensured.

5.4.2 Positive Definiteness Theorem

Positive definiteness is another criterion often used to guarantee convergence, especially 
in the context of the Gauss-Seidel method.

Theorem (Positive Definiteness): Let A be an n x n symmetric matrix. If A is 
positive definite, meaning for any non-zero vector z:

zvAz > 0,

then the Gauss-Seidel method will converge.

Explanation:

• A matrix A is positive definite if all its eigenvalues are positive. This property 
ensures that the matrix A is well-behaved, meaning it has no negative or zero eigen­
values that could destabilize the iteration process.

• When A is symmetric and positive definite, the iteration matrix M used in the 
Gauss-Seidel method has a spectral radius less than 1, ensuring that the method 
will converge.

5.5 Relaxation Method

Relaxation method extend the Gauss-Seidel methods by introducing a relaxation param­
eter w. The general form for these methods is:

(fc+i) _ x(fc) । _ x(fcA
A. ----- A. LU I A.(-“ig A. j

where xGS ' is the updated solution from the Gauss-Seidel iteration. The relaxation 
parameter w can accelerate convergence if chosen correctly. The iteration matrix of the 
method can be expressed as: M = — (ZJ+wL)-1 [(w — 1)D + uU], and c = (_D+wL)-1(wb)

5.5.1 Optimal Selection of Relaxation Parameter

For relaxation method, selecting the optimal w is crucial. If w is too large, the method 
may diverge. If w is too small, convergence will be slow. The optimal w depends on the 
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spectral radius of the iteration matrix, a) is typically chosen within the range 0 < a) < 2. 
If 0 < w < 1, then, the method gives a new estimate that lies somewhere between the 
old estimate and the Gauss-Seidel estimate; in this case, the algorithm is termed “under­
relaxation”. If 1 < w < 2, then the new estimate lies on the extension of the vector 
joining the old estimate and the Gauss-Seidel estimate, and hence the algorithm is termed 
“over-relaxation ”.

In practice, w is often found through experimentation or by using theoretical estimates 
based on the properties of the matrix A. In some cases we may compute w analytically. 
For example, for tridiagonal matrices with non-zero diagonal elements with p(Mj) < 1 
we estimate w in the form

_ 2
Wopt " 1 +v'l-XMjp’

where p(Mj) is the spectral radius of the Jacobi iteration matrix.

Relaxation methods can significantly improve the efficiency of solving large systems, 
particularly when combined with preconditioning techniques that further reduce the spec­
tral radius of the iteration matrix.

5.6 Two-Grid method

5.6.1 Defect correction principle

This approach is especially useful in iterative solvers and multigrid methods, where direct 
inversion of the matrix is impractical due to the size and complexity of the problem.

The defect correction principle is a technique used in numerical linear algebra to im­
prove the accuracy of an approximate solution to a linear system of equations. The basic 
idea is to iteratively correct the error (or defect) in the current approximate solution, 
thereby refining it towards the exact solution.

Consider a linear system:

Ax = b

where A is an n x n matrix, x is the unknown solution vector, and b is the given 
right-hand side vector.

If xo is an initial approximation to the true solution x, then the residual (or defect) 
ro associated with this approximation is defined as:

r0 = b - Ax0
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The residual ro represents the error in the current approximation. The idea of defect 
correction is to solve a new system that aims to reduce this residual. Specifically, we seek 
a correction term d such that:

Ad = r0

We observe that the correction term d will, in general, be small compared to xq, and 
therefore it is unnecessary to solve the defect correction equation exactly. We may relly 
on using an approximation of A-1. Once d is found, the improved approximation Xi is 
obtained by:

Xi = X0 + d

This process can be iteratively repeated, with the residual and correction being up­
dated at each step, leading to a sequence of increasingly accurate approximations: 

M l — ^-k + dfc

where d/_. is the solution to:

Adk = rfc and rfc = b - Axfc.

In general, the defect correction principle, combined with the approximation of the 
inverse matrix A, forms a powerful framework for iterative methods, allowing for efficient 
and systematic refinement of solutions in large-scale linear systems.

5.6.2 Two-Grid Method

In the context of two-grid method, the defect correction principle is effectively utilized 
by approximating the inverse of the matrix A on a so-called coarse grid. The coarse 
grid represents a simplified or downsampled version of the original problem, leading to a 
smaller matrix than A, which acts on the fine grid.

The key idea is to project the fine-grid problem onto the coarse grid, where the com­
putation of an approximate inverse of the matrix is much more manageable due to the 
reduced size. This coarse-grid approximation serves as a cost-effective substitute for the 
exact inverse of A and is particularly useful for eliminating low-frequency errors, which 
are difficult to address on the fine grid alone.

Once the coarse-grid correction is computed, it is interpolated back to the fine grid 
to update the fine-grid solution. This process allows for efficient error reduction across 
different frequency components, leveraging the coarse-grid approximation to accelerate 
convergence and improve the accuracy of the overall solution.

More preciselly the two-grid method to solves the linear system Ax = b involves:
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1. Pre-Smoothing: Applying a few iterations of the Gauss-Seidel method on the fine 
grid.

2. Residual Computation: Calculating the residual on the fine grid.

3. Restriction: Averaging adjacent fine-grid residuals and fine-grid matrix A to create 
a smaller coarse-grid system.

4. Coarse-Grid Solution: Solving the simplified system on the coarse grid.

5. Interpolation: Transferring the coarse-grid correction back to the fine grid.

6. Post-Smoothing: Further refining the solution on the fine grid using Gauss-Seidel.

5.7 Examples

Example 1:

Solve the system using Jacobi and Gauss-Seidel iterative methods.

Solution:

3x + y + z = 4
—x — ly — z = 3
x + 2y — k = 4

Jacobi Iterations

• For x:
(„+1) _ 4 - - ;<“>

X 3

• For y:
(n+1) = 3 + x^+z^

y -4

• For z:
) _ 4-^-2^)
“ —4

Given the initial guess:

= 0, 
y(0) = 0, 

^(0) = 0.
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Iteration 1

Using the initial guess values, compute the first iteration:

Iteration 2

4-°-o_ f
3 “ 3’

(1) = 3 + 0 + 0 = _3
7 —4 4’

(1) _ 4—0—2x0 _
-4 '

Based on the results from Iteration 1:

,(2) = 3 + I ~ 1 = JL = _I = _5
—4 —4 12 6’

^(2) 4 + | + l 19 4 23= ----- 4-----  _----- 1-----_ ----
3 12 12 12’

^(2)
4 _  23 1 3 25 nr

_ 12'2 _ 12 _
—4 —4 24'

Gauss-Seidel Iterations

• For x:
,„+1) _ 4 - yM -

X 3

• For y:
(n+1) _ 3 + ^+0+^)

y -4

• For z:
(n+D _ 4 - ^+1) - 2i/"+1)

“ —4

Given the initial guess:

= 0, 
y(0) = 0, 
zw = 0.
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Iteration 1

Using the initial guess values, compute the first iteration:

a?(1) = 4-0-0 _ 4
“ 3’3

?.(i) 3 + | + 0 3 + | 13
y — —4 “ 1 12’

Z<X) 4-1-2 7 13 5 A
12/ 4 — 4 । 13

3 ~r 6 29
—4 —4 24

Iteration 2

Using updated values from the previous iteration:

t(2) 4 + 13 । 29
12 ~r 24 151
3 72 ’

?,(2) 3 + 151 29
72 24 35

y —4 36’

ra? 4 - 151 9 (
72 \

355
“36 ) 2 77

—4 - 288

Example 2:

Solve systems of linear equations and graphically demonstrate the solution. Try changing 
the order of equations.

1.

4a? — y = 3
a? + 3y = 4

2.

a? + y = 3
—a? + y = 4

3.

1.1a? + y = 3
—a? + y = 4
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Solution

Part 1

System:

1. 4x — y = 3
2. x + 3y = 4

(a) Jacobi method

Fig. 5.1 : Visualization of iterations for Part 1 starting with initial conditions xo = —4. yo = —4.

(b) Gauss-Seidel method

Observations:

• Convergence of the Jacobi method is slower than the Gauss-Seidel method.

• The Jacobi method can be graphically represented the following way: Create a line 
segment parallel to the x-axis starting at the initial iteration and ending at a point 
on the strait line representing the first equation. Create a line segment parallel to 
the y-axis starting at the initial iteration and ending at a point on the strait line 
representing the second equation. Create a rectangle that consists of the two lines 
described above arid two additional parallel lines. The next iteration lies in the point 
that is opposite to the initial one.

• The Gauss-Seidel method can be graphically represented the following way: Create 
a line segment parallel to the x-axis starting at the initial iteration and ending at a 
new point on the strait line representing the first equation. Create a line segment 
parallel to the y-axis starting at the new point and ending at a point on the strait 
line representing the second equation.

• Gauss-Seidel method iterations lie on the straight line representing the second equa­
tion.

• Applying iterative methods such as Gauss-Seidel and Jacobi can exhibit a shift from 
convergent to divergent behaviors when the order of equations is altered.

• In the reverse order the divergence of the Gauss-Seidel method is faster than of the 
Jacobi method.
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Matrix Formulation:

4 -1 b 3
41 3

Decompose A into D, L, and U:

Jacobi Iteration Matrix Mjacobi:

MJacobi = D-1(L + U) = 4
i
4i

Having eigenvalues 0.2887z, —0.2887z. Therefore p(Mjacobi) = 0.2887.

Gauss-Seidel Iteration Matrix Mc:auss_seidei:

MGauss_Seidel = (D + L) XU =

First, compute (D + L) x:
1
4 1

’ 12

0
1
3

Thus, IVIcauss-Seidel IS-

■M-Gauss-Seidel —
1

12

-1 
0

_ 17
12

0 0

Having eigenvalues 0,0.0833. Therefore p(MGauss_Seidei) = 0.0833 < MGauss.Seidei-

Part 2

System:

1. x + y = 3
2. — x + y = 4

Observations:
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-5 0 5

(a) Jacobi method (b) Gauss-Seidel method

Fig. 5.2: Visualization of iterations for Part 2 starting with initial conditions xo = 0. yu = 0.

• Here, the equations describe perpendicular lines, leading to neither the Jacobi nor 
the Gauss-Seidel method converging, regardless of the equation order.

• The solutions tend to cycle, demonstrating oscillatory behavior without settling at 
a convergence point.

Matrix Formulation:

1
1

Decompose A into D, L, and U:

Jacobi Iteration Matrix Mjacobi:

MJacobi = D-1(L + U) = J i

Having eigenvalues i,—i. Therefore p(Mjacobi) = 1.

Gauss-Seidel Iteration Matrix MQauss_seidel:

Mcauss-Seidel = (D + L) =
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First, compute (D + L) 1

TllUS, M(Jauss-Seidel F.

-M-Gauss-Seidel —
1
1

0
1

0 1
0 0

0 1
0 1

Having eigenvalues 0,1. Therefore p(MGauss.Seidei) = 1-

Part 3

System:

1. l.l.r + (/ = 3
2. - x + y = 4

Fig. 5.3: Visualization of iterations for Part 3 starting with initial conditions xq = 0. yo = 0.

(b) Gauss-Seidel method

Observations:

• The lines are nearly perpendicular, resulting in slow convergence or divergence in 
the iterative solutions.

Such behaviors are sensitive to the initial guess and the numerical details of the 
applied method.

Matrix Formulation:

1.1
-1

1
1 ’
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Decompose A into D, L, and U:

1.1 0 0 0
1 0

0 1
0 00 1

Jacobi Iteration Matrix Mjacobi:

MJacobi = D-1(L + U) = 0 _°x J _°x

Having eigenvalues 0.9492z, — 0.9492z. Therefore p(Mjacobi) = 0.9492.

Gauss-Seidel Iteration Matrix Mcauss-Seideb

MGauss-Seidel — (D + L) U —
0 1
0 0

First, compute (D + L) 1

1

Thus, MQauss-Sejdel is.

M^Gauss-Seidel — 1.1 1
1.1

1
1.1 1
1.1

0
1

0 1
0 0

0

Having eigenvalues 0,0.9009. Therefore p(MGauss-Seidei) = 0.9009.

Example 3:

Use the relaxation parameter w to speed up the Gauss-Seidel method for the system.

1.1a; + y = 3
-x + y = 4

Solution

We can apply relaxation methods with various values w G (0,2). We may for example 
try all values in {0.01, 0.02,... 1.99} to solve the system using relaxation method with the 
given w with limit of 500 iterations and tolerance e < 10-3. This leads to x,,r,i = 0.75. 
To find (jjopt is a one-dimensional optimization task on interval (0,2). We may more 
sophisticated optimization method to find a minimum, plausible methods will be discussed 
in the next chapter in section 6.2.
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Fig. 5.4: Number of iteration used to find a solution of linear system using relaxation methods with 
different ui.

Example 4:

Solve the three-diagonal system of 10 equations with 10 unknowns using Jacobi and Gauss- 
Seidel iterative methods. Use also more sophisticated relaxation method and two-grid 
method.

/ 2 -1 0 0
-1 2 -1 0
0 -1 2 -1

0 0 0 0
\0 0 0 0

0 0 0 \
0 0 0 /IX0 0 0

x =

-1 2 -1
0 -1 2 /

Solution

The Jacobi method, known for its simplicity and parallelization capability, provided a 
solution vector x.„, after 512 iterations. The spectral radius for this method was approx­
imately 0.959, indicating a relatively slow convergence rate. The final solution vector 
was:
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’ 4.9999999972 ' 
8.9999999946 
11.9999999925 
13.999999991 
14.9999999901 
14.9999999901 
13.999999991 
11.9999999925 
8.9999999946 
4.9999999972

While the method converges, the high number of iterations required reflects the method’s 
inefficiency for large or stiff systems.

The Gauss-Seidel method improves upon the Jacobi method by using the updated 
values as soon as they are available, leading to faster convergence. In your results, this 
method required 265 iterations with a spectral radius of approximately 0.921. The solution 
vector was:

'4.9999999984'
8.9999999970
11.9999999959
13.9999999953
14.9999999951
14.9999999953
13.9999999958
11.9999999967
8.9999999977
4.9999999989

This method shows a better convergence rate compared to Jacobi, but still, the itera­
tion count is significant, making it less ideal for very large systems.

The relaxation method, which is an extension of the Gauss-Seidel method, introduced 
a relaxation factor (w) to accelerate convergence. We may estimate relaxation parameter 
(jj through simulations resulting in w of 1.60. With an optimal w of 1.60, the method 
achieved convergence in just 48 iterations. The resulting solution vector was:
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' 5.0000000004' 
9.0000000013 
12.0000000013 
14.0000000012 
15.0000000010 
15.0000000008 
14.0000000005 
12.0000000003 
9.0000000001 
4.9999999999

(a) Number of iterations needed to compute the so­
lution (b) Spectral radius of the SOR iteration matrix

Fig. 5.5 : Estimation of optimal parameter cvOpt for SOR method.

This dramatic reduction in iteration count highlights the efficiency of the Successive 
Over-Relaxation (SOR) method, especially when the optimal relaxation parameter is used. 
The accuracy of the solution is also markedly high, with negligible deviations from the 
true values.

These results (dearly demonstrate the trade-offs between simplicity and efficiency 
among the three methods. While the Jacobi method is the easiest to implement, it is 
also the slowest in terms of convergence. The Gauss-Seidel method offers a moderate 
improvement, reducing the number of iterations significantly. However, the SOR method 
stands out for its exceptional convergence speed, provided that the relaxation factor is 
well-chosen. Thus, for solving large linear systems where computational efficiency is cru­
cial, the SOR method is typically the preferred choice. A plausible workaround for SOR 
method is (i) to solve the system with crude tolerance to estimate optimal w, or (ii) to 
compute the spectral radius of the iteration matrix, and then in the second step use the 
optimal w to improve the estimate of the solution. Another option is to study theoretical 
properties of matrix of the linear system. For tridiagonal matrix with spectral radius for 
Jacobi method smaller than 1 we may use the estimate

(JOpt — - /. /t» «■ x -, ~ 1-56.p i + yi - p(Mj)2

Another possible extension of the Gauss-Seidel method is the two-grid method. In ap­
plying the two-grid method to solve the studied three-diagonal linear system, the method 
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converged in 11 iterations For each iteration, 3 Gauss-Seidel iterations were performed 
during both the pre-smoothing and post-smoothing phases. The coarse-grid correction 
was calculated by solving the smaller 5x5 system exactly. The performance of the two- 
grid method in this setting was similar to that of the relaxation method for achieving the 
same final precision. When increasing the dimension of the original linear system from 
10 x 10 to 20 x 20 while keeping the remaining setting the same, the two-grid method 
required 12 iterations, which was slightly better, but not dramatically, than the relaxation 
method, with the total iteration count reaching 89. In contrast, a simple Jacobi method 
would require almost 2000 iterations, Gauss-Seidel would need nearly 1000 iterations.



Chapter 6

Optimization

6.1 Recommended literature

[11] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999

6.2 Optimization in 'IZ

Optimization is a fundamental concept in mathematics and applied sciences, dealing with 
the process of finding the best solution to a given problem. In the context of real-valued 
functions, optimization refers to finding the minimum or maximum value of a function 
within a certain domain.

Consider a continuous real function / defined on an interval 1 = [«,&]. The function 
/ attains its minimum value on I at the point x G I, referred to as the minimum point of 
/. The numerical methods for finding the minimum point x can be broadly categorized 
into:

• Comparative methods (we need only values of function / to find the minimum)

• Gradient methods (we need also derivatives of function / to find the minimum)

A function / is called unimodal on I if it is decreasing on [a, ,-r] and increasing on [,-r, b\. 
We will focus on searching minimum of unimodal functions. Firstly we recall two simple 
methods.

6.2.1 Analytic Method

The analytic approach to finding the minimum involves the following steps:

• Identify the stationary point x,  where (a?)  = 0.* *

• If (x)  > 0, then x  is a minimum.* *

• For a unimodal function /, the point x  is always a minimum.*

130
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This method requires the differentiation of the function / and solving system of non­
linear equations to identify the stationary point. We may apply a Newton to identify the 
stationary point. We solve system

d/(r) « ,// x n) = /(a;) = 0,

assuming f"(x) is known.

Algorithm

• Start with an initial condition xo-

• Update the point using the formula:

_ f'{Xk)
M -Xk

6.2.2 Simple Division Method

The simple division method follows these steps:

• Define equally spaced points a = xq, Xi, ..., xn-i, xn = b on I.

• Evaluate the function at each point and find the minimum value among J(a?o), • • •, f(xn).

• Approximate x ~ x^ with an error of h = for a unimodal function /.

This is an easiest comparative method. However, requires significant computational 
effort. In the following sections we will focus on decressing number of evaluations of 
function / needed to obtain the solution.

6.2.3 Bisection Method

The bisection method is a more efficient alternative and follows this algorithm:

• Define equally spaced points a = xq, Xi,X2,X3,X4 =b on I with step size h =

• Identify the minimum value from /(aq), f(x2), f(xs).

• Narrow down the interval to 1, a?fc+i], which is half the length of the previous
interval.

• Repeat the process with two new points in every step until the interval is sufficiently 
small.

The computational complexity of the method involves calculating two new functional 
values at each step while halving the interval length.
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3
X

Fig. 6.1 : Bisection optimization method for fix') = |sin(;r)| on interval [2,4].

6.2.4 Golden Ratio Method

The golden ratio method involves the following steps:

• Define points a = Xi, x-2, X3, X4 = b in I, dividing the points according to the golden 
ratio g = 'Z5.u A

• Find the minimal value from /(.T2) and /(.T3) at .Tfc.

• Narrow the interval to [xk-i, .1T+1L which is Ifg the length of the previous interval. 
Three of the original four points remain the same.

• Calculate the missing point and its functional value, then repeat the process until 
the interval is sufficiently small.

The computational complexity involves calculating one new functional value at each 
step while reducing the interval length by approximately 0.618 of the previous length.

6.2.5 Computational complexity of comparative methods

When analyzing the number of function evaluations required by the simple division method, 
the bisection method, and the golden ratio method, given an error tolerance of e = 

where n is a natural number, we observe specific patterns in the efficiency of each 
method. Given that b — a = 1, the precision p is The analysis is performed using 
n G {2,3, 4,..., 5000}, which provides the following details:
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2 2.5 3 3.5 4

1

0.8
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0.4

0.2

0

-0.2

-0.4

-0.6

Fig. 6.2 : Golden Ratio method for f(x~) = |sin(;c)| on interval [2,4].

1. Simple Division Method:

• The number of function evaluations required is n + 1.
• This method exhibits a linear relationship with n, meaning as n increases, the 

number of evaluations increases directly. For example, when n = 1000, the 
number of evaluations is 1001.

2. Bisection Method:

• The number of function evaluations required is 2 • (flog2(?i)] — 1) + 3.
• This results in a logarithmic relationship with n. For instance, when n = 1000, 

the number of evaluations is 21, and for n - 5000, it increases to 25.

3. Golden Ratio Method:

• The number of function evaluations required is piog^(?f)1 + 1, where <f> is the 
golden ratio, approximately 1.618.

• This also results in a logarithmic relationship, but with a different base com­
pared to the bisection method. For example, when n = 1000, the number of 
evaluations is 19, and for n = 5000, it is 22.

Plot 6.3 demonstrates that for smaller values of n, the simple division method requires 
far more evaluations compared to the bisection and golden ratio methods. As n increases, 
representing higher precision, the golden ratio method consistently requires the fewest 
evaluations, followed by the bisection method. The simple division method, however, 
continues to scale linearly, resulting in the highest number of evaluations among the three 
methods for any given precision.
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Fig. 6.3: Computational complexity of comparative methods

This comparison highlights the superior efficiency of the golden ratio method, espe­
cially as the required precision increases, making it the most suitable choice for applications 
demanding high accuracy with minimal function evaluations.

6.2.6 Fibonacci Method

The Fibonacci method is asymptotically equivalent to the golden ratio method and is 
particularly useful when the number of steps N > 2 is predetermined.

The Fibonacci sequence is defined as F’o = F’i = 1, F'fc+1 = Fj. + Fk-i for k = 1, 2,..., 
and it asymptotically approaches the golden ratio. An alternative definition is = 
gA + l-(l-g)A + l

The Fibonacci method involves the following steps:

• Divide the interval [a, b] using the Fibonacci sequence ratio:

do = b — a, di = do / N
/'vi

• For each step, update the distance dk = dk-ip^2 Kk-

• The points are chosen similarly to the golden ratio method.
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6.2.7 Golden Ratio vs. Fibonacci

To derive an alternative definition, we solve the Fibonacci sequence’s difference equation:

Fn — Fn_\ + Fn_2,

with the initial conditions Fp = 0 and Fi = 1. The standard method for solving such a 
second-order linear recurrence relation involves assuming a solution of the form Fn = rn, 
where r is a constant. Substituting this into the difference equation yields the character­
istic equation:

r2 — r — 1 = 0.

The solutions to this quadratic equation are: 

1 ± ^5 
2r =

which correspond to the golden ratio g = 1+2V^ and its conjugate 1 — g =

Thus, the general solution to the difference equation is:

Fn = A-gn + B ■ (1 — g)n,

where A and B are constants determined by the initial conditions. Applying the initial 
conditions, we obtain Binet’s formula:

r-(i-g)w

where g = 1+2V^ is the golden ratio. The term (1 — g~)n is negligible for large n, leading to
the approximation:

gn
\/5'

When comparing the Fibonacci method and the Golden ratio method in the context 
of function optimization, we analyze the error reduction after N steps.

For the Golden ratio method, the error after N steps is given by:

, dl>(lG,N = ~iv > gN

where do is the initial interval size, and g is the golden ratio.

For the Fibonacci method, the error after N steps is given by:

dp,N =
dp

Fn+i ’

where F/v+i is the (N + l)-th Fibonacci number.

We know that:
gN+l - (f - g)N+l gN+l 

PN = ~ 5
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because (1 — g)N+1 becomes negligible for large TV. Substituting this approximation into 
the expression for dp,N, we get:

d.o • x/b
d>F,N « ^N+1 ■

Now, we can compare the two methods by evaluating the ratio of the errors:

dp,N irVt gN ■ y/5 v/5

Given that g = 1+^ w 1.618, we have:

dp,N 1-618 ~ i
dpN x/b

This result indicates that the Fibonacci method reduces the interval size about 1.17 times 
faster than the Golden ratio method after the same number of steps.

Fig. 6.4: Comparison of the shirking ratio between Fibonacci method and the golden ratio method for 
different number of iterations.

6.3 Quadratic Interpolation Method

Quadratic interpolation is a method used to approximate a function by a quadratic poly­
nomial (a second-degree polynomial). This method is particularly useful in numerical 
optimization and root-finding problems. The idea behind quadratic interpolation is to
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(a) Quadratic interpolation method /(x) —sin2(x') 
on interval [2.4].

(b) Quadratic interpolation method /(x) — |sin(x)| 
on interval [2,4] after several iterations.

Fig. 6.5: Quadratic interpolation method: estimation of minimum (blue star), given point a, b,c (red 
stars), original function (blue line), polynomial approximation (

approximate the function with a parabola, which is then used to estimate the location of 
the function’s extremum (minimum or maximum) or root.

Given three points (^2,3/2), and (^3,7/3) on the graph of a function /(rr),
quadratic interpolation fits a parabola P(x) = ax2 + bx + c through these points, see 
figure 6.5a. In practice P(x) is an interpolation polynomial. We may proceed using 
following algorithm:

• Let c 6 [a, b], where c is typically the midpoint of the interval.

• Construct an interpolation polynomial (a parabola) through points a, b, and c.

• Find the minimum at point d - the zero point of the derivative:

a + b —

• Repeat the construction for points a, d, c, or c, d, b, depending on the subinterval 
containing d.

• If c = d, choose a different c. Plausible add/subtract a small number to/from c.

The convergence of the quadratic interpolation method, especially when applied to 
optimization problems, depends on several factors:

• Proximity to the True Extremum: The success and convergence of quadratic 
interpolation depend significantly on how close the initial interpolation points are 
to the true extremum or root of the function. If the points are well-chosen and he 
near the desired extremum, the method is more likely to converge quickly.

• Spacing of Points: If the points are too far apart or unevenly spaced, the quadratic 
approximation may poorly represent the underlying function, leading to slow or non­
convergence. Ideally, the points should be chosen such that they are neither too close
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(which can cause numerical instability) nor too far apart (which can lead to poor 
approximation).

• Continuity and Differentiability: Quadratic interpolation requires the function 
to be smooth, at least continuous and differentiable up to the second derivative. 
Functions with discontinuities or sharp changes in slope may lead to inaccurate 
interpolation results and impede convergence.

• Local Curvature: The method assumes that the function behaves quadratically 
near the extremum or root. If the function is highly non-quadratic or has a flat region 
near the extremum, the quadratic model might not provide a good approximation, 
resulting in slow convergence or divergence.

• Second Derivative (Curvature): If the second derivative is very small near the 
extremum, indicating a flat region, the quadratic approximation might poorly esti­
mate the extremum, delaying convergence.

• Sensitivity to Round-Off Errors: The method can be sensitive to numerical 
round-off errors, especially if the points are not chosen carefully. Ill-conditioned 
problems where the interpolated points are very close together can lead to large 
errors in the coefficients of the quadratic polynomial, thereby affecting convergence.

Tb illustrate potential issues with the convergence of the method, refer to Figure 6.5.

6.3.1 Examples

Example 1:

Start with Example 3 from the previous chapter 5. Use the relaxation parameter w to 
speed up the Gauss-Seidel method for the system.

l.Lr + y = 3
—x + y = 4

Find w using one-dimensional optimization on interval [0,2].

Solution:

First, we define a function /, which has its minimum at wopt. This function employs 
relaxation methods, where w is the input parameter and the number of iterations required 
to approximate the solution serves as the output. Optimization is conducted over the 
interval [0.5,1], as simulations in the previous chapter indicate that values outside this 
range result in excessively high iteration counts and potential inaccuracies in computa­
tions. The system is solved using the relaxation method with a limit of 500 iterations and 
a tolerance of e < 10-3. This process determines wopt = 0.8021, achieving convergence 
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after 6 iterations. The difference from previous estimates arises because the same num­
ber of iterations is observed for multiple values of w. The function / is not unimodal, 
introducing challenges in the estimation process.

For the second approach, we redefine / using relaxation methods with w as the input 
parameter, but instead of calculating the number of iterations, we determine the spectral 
radius of the matrix M = (D — rh'i 1 [(1 — w)£> + ivU] and use this as the output value. 
Optimization is performed over the interval [0,2], This approach yields wopt = 0.8394, 
with the solution reached after 7 iterations.

Example 2:

Start with Example 12 from the chapter 1. The following table contains measurements 
of the height of students from a local primary, secondary, and high school, ranging in 
age from 5 to 18 years. Assume that the height increases linearly for girls between the 
ages of 5 and some unknown age w. For girls older than w, the height remains constant. 
Use the one-dimensional optimization and the least-squares method to estimate the exact 
dependence for the given data. What height does your model predict for:

(a) A 12-year-old girl?

(b) A 5-year-old girl?

Age (years) 15.5 17.8 16.5 7.8 5.5 9.0 6.2 12.0 10.5 8.3 14.0 13.5 18.0
Height (cm) 170 168 167 134 114 139 121 154 144 130 160 159 169

Table 6.1: Height and Age Data of Girls (sample of data), full data are stored in file heigth_of_girls .txt

6.3.2 Solution:

Again, we begin by extracting the relevant information from the table, namely the age 
X and height Y of the girls. We then define / using a piecewise linear model where the 
height increases linearly until the age of w and remains constant thereafter. Parameter w 
is an input to the function /. The output should measure how good the given fit is, and 
for this purpose, we use the sum of residuals squared (SRS).

To construct the model, we define two functions:

/(a?) = (a? < w) • (a? — w) 

representing the linear increase for ages below w, and

^(a?) = 1

representing the constant height for ages above w.
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Using these functions, we form a design matrix A and apply the least squares method 
to find the coefficients c that best fit the data. The resulting height function is:

h(x) = ci • /(a?) + c2 • g(x)

The sum of residuals squared (SRS) is calculated as the output of the function /, 
providing a measure of how well the model fits the data:

srs = £(k - hM)2 
»=i

where T;; are the observed heights and h(XQ are the predicted heights from our model. 
A smaller SRS value indicates a better fit.

The optimal value of w is wopt = 12.2169. For w = wopt, the model predicts the 
following heights:

• For a 12-year-old girl: The height is approximately 164.3877 cm.

• For a 5-year-old girl: The height is approximately 108.4261 cm.

180

170

160

_ 150
-C CD 
o 140 
I

130

120

110

100
4 6 8 10 12 14 16 18

x (Age)

Fig. 6.6: Model of Height vs Age of Girls using one-dimensional optimization and least-square method.

This analysis demonstrates the use of change point regression, a numerical technique 
designed to model data that exhibits a distinct shift in behavior at a specific point, known 
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as the change point. In this example, the change point w represents the age at which the 
rate of height increase transitions from a linear growth to a plateau. By incorporating this 
change point into the model, we can more accurately capture the underlying dynamics of 
the data. Change point regression is particularly valuable in statistical analysis when the 
relationship between variables is not uniform across the entire range of data. It allows for 
the detection and modeling of structural breaks, leading to improved model accuracy and 
deeper insights into the data’s behavior.

6.4 Optimization in

This section focuses on optimization techniques in R'"', the space of //.-dimensional real 
vectors, which is a common setting for many practical optimization problems. The core 
objective in optimization is to minimize (or maximize) a function / : R” —> R. Formally, 
given a function /(x), where x G R”, we seek a point x*  G R” such that:

2. Order: Evaluate the function /(x) at each vertex and order the vertices such that
/(xi) < /(x2) < < /(xn+i).

/(x*)  < /(x) for all x G R".

There are various methods to tackle this problem, especially when /(x) is nonlin­
ear. Similarly to optimization in TZ, these methods can broadly be classified into gra­
dient (derivative-based) and comparative (derivative-free) methods. In this chapter, we 
will explore several widely-used optimization techniques in R” , including the Nelder-Mead 
method, gradient descent method, Newton’s method and its variants (Quasi-Newton meth­
ods), and the Conjugate Gradient method.

For visualization of the algorithms described in the text see https: //www. benf rederickson. 
com/numerical-optimization/ .

6.5 Nelder-Mead Method

The Nelder-Mead method, also known as the downhill simplex method, is a widely-used 
derivative-free optimization technique. It is particularly useful when the gradient of the 
function is difficult or impossible to compute. The method operates by constructing a 
simplex, which is a geometric figure with //. + 1 vertices in R”. For instance, in R2, a 
simplex is a triangle, and in R3, it is a tetrahedron.

6.5.1 Algorithm

1. Initialization: Start with n + 1 initial points Xi, x2,..., xn+i, which form the 
vertices of the simplex.

https://www.benfrederickson.com/numerical-optimization/
https://www.benfrederickson.com/numerical-optimization/
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Fig. 6.7: Simplexes in 7\’2 and Tv'.

contract 
outside

shrink

Fig. 6.8: Visualization of Nelder-Mead Method in 7?2.

3. Reflection: Compute the centroid xc of the first n vertices (excluding the worst 
vertex x„.+i) and reflect the worst point x„.+i through the centroid:

pr = xc + a(xc — xn+i),

where a > 0 is the reflection coefficient.

4. Expansion: If f(pr) is better than /(xi), expand the simplex by extending the 
reflection:

pe = xc + 7(pr -xc),

where 7 > 1 is the expansion coefficient.

5. Contraction: If f(pr) is worse than perform a contraction. The contraction 
can be either outside or inside, depending on the performance of the reflection:

• Outside Contraction (closer to the original simplex than the reflection):

p0 = xc + /3(pr -xc),

where 0 < (3 < 1 is the outside contraction coefficient.
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Inside Contraction (inside the original simplex):

Pi = xc - /3(xc - xn+i),

where 0 < (3 < 1 is the inside contraction coefficient.

6. Shrink: If the reflection, expansion, or contraction do not improve the function, 
shrink the simplex towards the best vertex:

Xj = xi + 5(xj — xi) for all i = 2,..., n + 1,

where 0 < <5 < 1 is the shrink coefficient.

7. Termination: Repeat the steps above until convergence, typically when the size 
of the simplex becomes sufficiently small or the change in function values between 
iterations falls below a certain threshold.

The Nelder-Mead method is simple to implement and works well for many types of 
functions, but it may struggle with high-dimensional problems or functions with many 
local minima.

6.6 Gradient Descent Method

The Gradient Descent method is a first-order optimization algorithm used to minimize 
functions by iteratively moving in the direction of the steepest descent, i.e., the negative 
of the gradient. This method assumes that the function /(x) is differentiable, and the 
gradient V/(x) can be computed.

6.6.1 Algorithm

1. Initialization: Choose an initial point xo and a learning rate T] > 0.

2. Iteration: Update the current point x/_. using the gradient:

Xfc+i = xfc - r?V/(xfc).

3. Termination: Repeat the iteration until convergence, typically when the gradi­
ent V/(xfc) becomes very small or the change in function value is below a certain 
threshold.

The convergence of convergence gradient descent method can be slow, especially for 
functions with ill-conditioned Hessians. Modifications such as adaptive learning rates can 
enhance the performance of the basic gradient descent algorithm.
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6.7 Newton Method

Newton Method is a second-order optimization technique that utilizes both the gradient 
and the Hessian matrix (second-order partial derivatives) of the function to find the min­
imum. The method is known for its fast convergence near the optimum, especially for 
convex functions.

6.7.1 Local extremes in R"

The Newton method is derived from an analytical approach to find local extremes of 
function f : R" —> R. To find the extreme points (minima, maxima, or saddle points) of 
function / : R” —> R analytically, the following steps are generally used:

1. Compute the Gradient (V/): The gradient of / is a vector of all its first partial 
derivatives:

dl df_ df_ 
dxi’ dx2 ’''' ’ dxn

The points where V/ = 0 are the critical points, which are candidates for extreme 
points.

2. Set the Gradient to Zero: Solve the system of equations obtained by setting each 
component of the gradient equal to zero:

V/(aq,a?2,... ,xn) = 0

This gives you the critical points x*.

3. Compute the Hessian Matrix (H(/)): The Hessian matrix is the matrix of all 
second partial derivatives:

W)

d2f 
dx±dx2 

d2f

a2f - 
dx±dxn

d2.f 
9x29%n

d2f 
9x2t

The Hessian matrix evaluated at a critical point gives information about the nature 
of the extreme.

6.7.2 Algorithm

The key idea is to solve the system of equations given by the gradient of the function 
V/ = 0 using Newton method for systems of nonlinear equation.

1. Initialization: Start with an initial guess xq.
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2. Iteration: Update the current point x/_. using the Newton step:

xfc+i = xfc - H-1(xfc)V/(xfc),

where H(x&) is the Hessian matrix of /(x) at x&.

3. Termination: Repeat the iteration until convergence, typically when the gradient 
V/(xfc) is close to zero.

Similarly to Newton method for solving systems of nonlinear equations, Newton opti­
mization method can converge very quickly, especially for functions that are well-approximated 
by a quadratic near the minimum. The main drawback is the computational cost of com­
puting and inverting the Hessian matrix, particularly in high dimensions. Additionally, if 
the Hessian is not positive definite, the method may not converge.

6.8 Quasi-Newton Methods

Quasi-Newton methods are an extension of Newton method that avoid the explicit com­
putation of the Hessian matrix. Instead, they construct an approximation to the Hessian 
matrix using information from the gradients.

6.8.1 Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algorithm

One of the most popular Quasi-Newton methods is the BFGS algorithm. It updates 
an estimate of the inverse Hessian matrix using gradient information from successive 
iterations.

6.8.1.1 Algorithm

1. Initialization: Choose an initial point xo and an initial Hessian approximation 
Ho = I (identity matrix).

2. Iteration: For each iteration k:

(a) Compute the gradient g/,. = V/(xfc).
(b) Compute the step p/, = —Hfcgfc.
(c) Update the point x^+i = x^ + p^.

(d) Compute the difference in gradients y/,. = gfc+i — gfc and the difference in points 
Sfc = Xfc-1-l Xfc.

(e) Update the Hessian approximation:

T
U TJ i hy I. rlfc+i — M/ -|------=—

yksk

HfcSfcS^Hf 
SfcHfcSfc

3. Termination: Continue iterating until convergence.
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About the update of Hessian approximation

The formula updates the inverse Hessian matrix at each iteration:

T
U TJ i y k 
ilfe+1 — rl/ 4------r—

yk sk

HfcSfcsfHf

where

• H/: The inverse Hessian matrix approximation at iteration k.

• Sfc = Xfc+1 — x^: The difference between consecutive iterations of the variable vector 
x.

• Yfc = V/(xfc+i) — V/(xfc): The difference between the gradients (first derivatives) 
of the function at consecutive points.

Each term can be interpreted as following:

• First Term: H/ is the current approximation of the inverse Hessian matrix. The 
new approximation Hfc+i starts with this value.

T
• Second Term: is a rank-one update that adjusts H/ based on the curvature

y /j

information provided by y/,. and S&. This term ensures that the updated matrix 
satisfies the secant equation, a key condition in quasi-Newton methods.

HsSss'H7

• Third Term: —is a rank-two update that corrects the approximation to en- Sfe k&k
sure it remains symmetric and positive definite, properties necessary for convergence 
to the correct minimum.

Let us explain in detail the key second term in the BFGS formula.

y^yf 
T i 

yksk

is specifically designed to ensure that the updated inverse Hessian matrix satisfies 
the secant equation. This term is a rank-one update (since it’s the outer product of 
two vectors), meaning it adds a small, specific adjustment to the current inverse Hessian 
matrix H^. By adding this term, the update guarantees that Hfc+i satisfies the secant 
equation H^y^. = s&. This adjustment corrects the previous approximation to account 
for the new curvature information provided by y/,. and S&.

BFGS is widely used due to its balance between the simplicity of gradient descent 
and the rapid convergence of Newton method. It provides a practical approach to solving 
large-scale optimization problems where computing the full Hessian is infeasible.
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6.9 Conjugate Gradient Method

The Conjugate Gradient method is a powerful technique for solving large-scale optimiza­
tion problems, particularly those that involve minimizing a quadratic function or solving 
large systems of linear equations. It is especially effective for functions where the Hessian 
matrix is sparse or large, making it impractical to compute or store explicitly.

6.9.1 Algorithm

The first step of the method copies the step of the gradient descend method. Meaning 
we just take one step in a direction of the steepest descend of the function starting from 
the original guess. But then it uses information about the geometry of the surface in the 
upcoming steps to get to the minimum faster.

1. Initialization: Start with an initial guess xo and compute the initial gradient 
go = V/(xo). Set the initial search direction do = —go-

2. Iteration: For each iteration k:

(a) Compute the step size o/,. that minimizes /(x^ + o/xl/J.
(b) Update the point Xfc+1 = x^ + o/xl/..
(c) Compute the new gradient gfc+i = V/(x^+i).
(d) Update the search direction:

dfc+i = —gfc+i +/5fcdfc,

where (3k is a scalar that ensures dfc+i is conjugate to the previous directions.

3. Termination: Repeat the iteration until the gradient gfc+i is sufficiently small, 
indicating that a minimum has been approached.

6.9.2 Computation of &k and (3k

• Step size o/,.: The optimal step size ak is typically found by performing a line 
search along the direction d/,..

• Conjugate Coefficient (3k- The coefficient (3k can be computed using different 
formulas, depending on the variant of the Conjugate Gradient method:

— Fletcher-Reeves: This formula calculates (3k based on the norm of the gradi­
ent vectors at the current and previous steps. Geometrically, this can be seen 
as a measure of how much the gradient has changed in length between two 
consecutive iterations. If the gradient remains nearly the same in length, (3k 
will be close to 1, retaining much of the previous search direction. If the gra­
dient changes significantly, (3k will adjust the new search direction accordingly, 
reducing or increasing the influence of the previous direction.

. IlgMlll2/ J 7. = -----------------  .
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— Polak-Ribiere: This version of [3^ takes into account not only the norms of 
the gradients but also the difference between the gradients at consecutive steps. 
Geometrically, this reflects the change in direction of the gradient vectors. If 
the gradient direction changes rapidly (indicating curvature in the optimization 
landscape), {3^ adjusts more significantly, ensuring the new search direction 
better accounts for this curvature.

a gfc+i(gfc+i gfc)

The Conjugate Gradient method is particularly useful for large-scale problems where 
the Hessian matrix is too large to store or compute explicitly. It is commonly used 
in machine learning, numerical simulations, and other areas that raquire solving large 
systems of linear equations. The method is especially efficient when the objective function 
is quadratic, but it can also be extended to more general nonlinear functions.

6.10 Examples

Example 3:

Start with Example 2 from the this chapter 6. The following table contains measurements 
of the height of students from a local primary, secondary, and high school, ranging in age 
from 5 to 18 years. Assume that the height increases linearly for girls between the ages 
of 5 and some unknown age tel, than the slope changes, but the increase is still linear till 
some unknown age w‘2. For girls older than w2, the height remains constant. Use the two­
dimensional optimization and the least-squares method to estimate the exact dependence 
for the given data. What height does your model predict for:

(a) A 12-year-old girl?

(b) A 5-year-old girl?

Age (years) 10.5 6.2 12.8 11.1 14.0 14.1 13.3 5.4 5.9 9.2
Height (cm) 153 122 171 152 162 159 172 115 118 152

Table 6.2: Weight and Age Data of Girls (sample of data), full data are stored in file 
heigth_of_girls_2.txt

Solution:

Similarly to example 3, to estimate the growth patterns of girls from collected age and 
height data, we utilize the function /, designed to optimize our piecewise linear model by 
determining two critical breakpoints, up and up.

The modeling process involves several phases:
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• Before wp. Height growth is modeled by /(a?) = (x < Wi) • (x — Wi) plus g(x) = 
(x < Wi) • (x — W2), describing the linear increase in height during the early growth 
stages.

• Between wi and //q: The growth is modeled by g(x) = (x < W2) ■ (x — W2), 
accounting for the continued linear increase at a different rate.

• After W2'- Height is considered constant, modeled by h(x) = 1, indicating no further 
growth.

These base functions contribute to constructing the design matrix A within the func­
tion /. This matrix, combined with the height vector Y, enables the computation of 
coefficients through a least squares method. The resultant model h(x) = ci • f(x) + 02 • 
g(x) + C3 • h(x) is derived from these calculations.

The function / accepts wi and W2 as inputs and outputs the sum of residuals squared 
(SRS), which quantifies the discrepancy between the observed heights and those predicted 
by our model. By minimizing the SRS through the optimization of uq and W2 in /, we 
enhance the model’s accuracy.

The optimal values of (wi,W2) are (wiopt, W2Opt) = (8.5000,12.6458). For the optimal 
values the model predicts the following heights:

• For a 12-year-old girl: The height is approximately 161.6799 cm.

• For a 5-year-old girl: The height is approximately 108.9935 cm.
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Fig. 6.9: Model of Height vs Age of Girls using two-dimensional optimization and leas.i-square method.



Chapter 7

Numerical integration

7.1 Recommended literature

7.2 Quadrature Formulae

Given points a?o,... ,xn are such that a < xq < x\ <■■■ < xn < b. The function values at 
these points are /0, ■ ■ ■ ,fn, where fk = f(xk).

To approximate the integral of a function /(rr) over the interval [u, b], we use the 
interpolation polynomial P(rr) for the given data:

rb rb
I f(x) dx ~ P(x) dx

J a -/a

When the points are equally spaced with a step h, we obtain the Newton-Cotes for­
mulae.

7.3 Newton—Cotes formulae

(a) Trapezoidal rule

Fig. 7.1 : Newton-Cotes formulae to integrate x + sin(x) over interval [0, 5].

2 3
(a+tf)/2

(b) Simpson rule

Trapezoidal Rule

For n = 1, where a = xq and b = Ti, with function values /(«,) and /(&), the interpolation 
polynomial P(rr) is:

151
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The integral of this polynomial over [a, b] is given by:

fb x , /(a) + /(b) xP(x) dx =------ ------- (b — a)
J a 2

Error: The error for the Trapezoidal rule is given by:

W) = ^3/(2)(0

where £ is some point in the interval [a, b\.

Simpson Rule

For n = 2, let xq = a, Xi = a + h = and x2 = a + 2h = b. The function values are /o, 
/i, and /2, where fi = f(xf). The interpolation polynomial P(x) is:

pz x _ J (x - x-C)(x - X2) + J. (x - Xp)(x - X2) + J. (x - Xp)(x - a?i) 
J (x0 - a?i)(a?0 - x2) J (a?i - a?0)(a?i - a?2) J (a?2 - a?0)(a?2 - a?i)

The integral of this polynomial over [a, b] is:

fb ,, . , y6 nz x , b - a \ fa + b\ 1 hf(x) dx ps P(a?) dx = —— /(a) + 4/ —— + /(b) = - [/0 + 4/i + /2]
J a Ja & \ 2 / J 3

Error: The error for Simpson’s rule is given by:

W) = ^5/(4)(£) 
yu

where £ is some point in the interval [a, b\.

3/8-Rule

For n = 3, let xq = a, Xi = a + h = —ph x2 = a + 2h = and x% = a + 3h = b. The 
function values are /o, /1, f2, and /s, where fi = f(xf). The integral of the interpolation 
polynomial is: 

r!> rb OU
f(x) dx ps P(x~) dx = — [f0 + 3/i + 3/2 + /3]

Ja Ja 0

Error: The error for the 3/8-rule is given by:

W) = ^5/(4)(e)

where £ is some point in the interval [a, b\.
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Milne Rule

For n = 4, let. = a, ay = a + 7?., a:2 = « + 27?., .7:3 = a + 37?., and aq = a + 47? = b. 
The function values are /o, /1, fz, fs, and fa, where fa = faxfa. The integral of the 
interpolation polynomial is:

rfc rb 2/1
I fax) dx K I P(x) dx = [7fo + 32/i + 12/2 + 32 fa + 7/4]

Ja Ja 45

Error: The error for Milne rule is given by:

M/) = ^7(6)«)
where £ is some point in the interval [a, b\.

7.3.1 Composite Rules

0123456 0123456

(a) Trapezoidal rule using 6 sub-intervals (b) Simpson rule using 3 sub-intervals.

Fig. 7.2: Newton-Cotes formulae to integrate sinp) over interval [0,6] using 7 points.

Newton-Cotes rule Number of sub-intervals (m)
Trapezoidal Rule m = N — 1
Simpson Rule N-l m =

3/8 Rule A/-1 m =
Milne Rule m =
General Rule m = A^-1-

Table 7.1: Number of sub-intervals m for given number of function evaluations N in Newton-Cotes 
composite rules

Composite Trapezoidal Rule

Given equidistant points a = xq < x3 < ■ ■ ■ < b = xn, with x/+i = 
rule is applied to each interval [ay, x/+i]:

fb hfax) dx « - [/o + 2/1 + 2/2 + • • • + 2/„._i
J a

= xt + h, the trapezoidal

F fn]
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Composite Simpson Rule

Given equidistant points a = a?o<aq <•••<& = xn, with n even and Xi+i = Xi + h, the 
Simpson’s rule is applied to each interval [x2i, #21+2]:

[ f{^)dxK, — [fo + 4/i + 2/2 + 4/3 + 2/4 + • • • + 2/n_2 + 4/n_i + fn\

7.4 Gaussian Quadrature Formulae

The degree of precision of the quadrature formula Q(f) is m if E(Pi) = 0 for all polyno­
mials Pi of degree i with 0 < i < m, and E(Pm+i) Q. Gaussian quadrature formulae 
achieve the highest possible degree of precision, 2n + l. These formulae allow the selection 
of both the points Xi and the weights Ai to optimize accuracy. Before introducing them 
we prove that 2n + 1 is the highest possible degree of precision.

1. The quadrature formula obtained by integrating the interpolation polynomial at 
points xq, ..., xn has a degree of precision of at least n.
Proof:

Consider any polynomial p(x) of degree m < n. Since p(x) is of degree m < n, the 
interpolation polynomial P(x) for this function is exactly p(x) itself, i.e., P(x) = 
p(x). Therefore:

Q(/) = I f(x) dx 
J a

This shows that the quadrature formula is exact for any polynomial of degree m < n, 
meaning the error E(f) = 0 for all such polynomials.
Hence, the quadrature formula has a degree of precision of at least n. 
■

2. The quadrature formula Q(f) = ZXo A/» has a degree of precision at most 2n + 4.
Proof:

To show that the quadrature formula has a degree of precision of at most 2n +1, we 
need to show that it cannot be exact for polynomials of degree higher than 2n + 1.
Assume that the quadrature formula is exact for all polynomials of degree m < 2n+l. 
Consider the polynomial: n

^(x)=ii(-_
i=0

This polynomial in(x) has degree n + 1 and vanishes at each of the interpolation 
points a?o, xi,..., xn, i.e., cu(xi) = 0 for i = 0,1,..., n.
Now consider the polynomial w2(a?), which is of degree 2n + 2. By assumption, the 
quadrature formula should be exact for this polynomial if it were to have a degree 
of precision greater than 2n + 1. However, we know:

n n
Ai(jj2(xi) = Ai • 0 = 0 

«=0 «=0



7.5 Gauss quadrature formulae 155

but:
fb 

uj2(x) dx > 0
J a

This contradiction shows that the quadrature formula cannot be exact for poly­
nomials of degree 2n + 2. Therefore, the highest degree polynomial for which the 
quadrature formula can be exact is 2n + 1.
Hence, the quadrature formula Q(f) = ZXo Aifi has a degree of precision at most 
2n + 1.

7.5 Gauss quadrature formulae

Gaussian quadrature is a powerful numerical integration technique that offers high ac­
curacy by optimally choosing both the evaluation points (nodes) and the corresponding 
weights. Unlike other quadrature methods, such as the Newton-Cotes formulas, which use 
equally spaced nodes, Gaussian quadrature strategically selects nodes that are the roots of 
orthogonal polynomials with respect to a given weight function. This approach minimizes 
the error and maximizes the degree of precision for the integral approximation.

The central concept of Gaussian quadrature is that you can select n + f nodes and 
their corresponding weights (in total 2n + 2 unknowns) such that the resulting formula 
exactly integrates polynomials of degree up to 2n + f. This makes Gaussian quadrature 
particularly effective for evaluating integrals where the integrand can be well-approximated 
by a polynomial.

The integral over [a, b] with a weight function w(x) is given by:

rb n
w(x)f(x)dx = ^Aif(xi) + E(f)

Ja i=0

where w(x) is the weight function that may include singularities.

There are various types of Gaussian quadrature, each associated with a different family 
of orthogonal polynomials, such as Gauss-Legendre, and Gauss-Chebyshev quadrature. 
Each type is suited to integrals with different weight functions and domains.

7.5.1 Gauss Legendre Integration

In Gauss-Legendre integration we integrate over interval [—1,1]. The nodes Xi are the 
roots of the Legendre polynomial Pn(x), where n + 1 is the number of points in the
quadrature.

1 dn
Pn^ “ 2nn! daE ((a:2 - l)n)

These roots are symmetric about zero. The weights Wi associated with each node Xi are 
non-negative and are found using the relation:
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2 
(l-^)[P/(^)]2

Table 7.2: Gauss-Legendre Integration Coefficients and Legendre Polynomials

n Nodes Xi Weights up Legendre Polynomial Pn(x)
0 xi = 0 wi = 2 Pq(x) = X
1 ah =

%2 =
Wi = 1
w2 = 1

Pi(x) = |(3a?2 — 1)
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W1 = ^° 

W2= 18±^30

_ 18-P30
"i - 36

P^(x) = j(35a?4 — 30a;2 + 3)

Properties of Legendre polynomials

• Orthogonality: Legendre polynomials are orthogonal with respect to the inner 
product defined by:

(Pm,Pn) = / ^Pm(x)Pn(x) dx = 0 for m n

This orthogonality ensures that the Legendre polynomials are independent, meaning 
no polynomial in the set can be expressed as a linear combination of the others.

• Polynomial Basis: The set of Legendre polynomials {Po(x), Pi(x),. .., Pn{x)} 
forms a basis for the space of polynomials of degree m < n. This means that 
any polynomial p(x) of degree m < n can be written as:

p(x) = coPo(x) + ci Pi (a;) d------k cnPn(a;)

where cq, Ci,..., cn are constants.

Adjustment of Nodes and Weights for the Interval [a, b]

When using Gauss-Legendre quadrature, the nodes Xi and weights up are originally de­
fined for the standard interval [—1,1]. However, if you need to integrate over a different 
interval [a,b], you must adjust the nodes and weights accordingly. The nodes Xi in the 
interval [—1,1] are transformed to the corresponding nodes Op in the interval [a, b] using 
the following linear transformation:
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where

• scales the interval [—1,1] to match the length of the interval [a, b\.

• shifts the nodes from the center of [—1,1] to the center of [a,b\.

The weights Wi in the interval [—1,1] are adjusted to match the interval [a, b] by simply 
scaling them by the factor

~ b — a Wi = —^—Wi-

With these adjustments, the Gauss-Legendre quadrature formula for integrating a function 
f(x) over the interval [a, b] with n points is:

Example 1:

Let us integrate the function sin(a;) over the interval [0,6] using the Gauss-Legendre 
quadrature formula with 1 to 4 points.

Solution: For integrating a function f(x) over an interval [a, b] using Gauss-Legendre 
quadrature with n points, the formula is:

Here, xt and wt are the nodes and weights for the standard interval [—1,1]. For the interval 
[a,b], the nodes and weights are adjusted as shown in the formula.

1-Point Gauss-Legendre Quadrature:

Node: aq = 0
Weight: uq = 2

0.8467

2-Point Gauss-Legendre Quadrature:

Nodes: aq = x2 =
Weights: wi = 1, w2 = 1

1 \
1 x sin 3 x T 3^ Tlx sin fs x —T 3

) V vz3 -0.1395
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3-Point Gauss-Legendre Quadrature:

Nodes: xi = x2 = 0, x3 =
Weights: wi = w2 = w3 = |

5
- x sin
9

8 ■ 5 ■- x sm(3) + - x sin9 9
0.0546

4-Point Gauss-Legendre Quadrature:

Nodes: xl = -^ + x2 = | x3 = x4 = ^ +

Weights: w4 = w4 = w2 = w3 = 18~^g/8°

y6
I sin(ai) dx 0.0392 
o

7.5.2 Gauss Chebyshev Integration

Gauss-Chebyshev integration uses the interval [—1,1] with the weight function w(x) = 
The integration points Xi are the roots of the Chebyshev polynomials Tn(x), 

defined by:
Tn(x) = cos(narccos(a?)).

Table 7.3: Gauss-Chebyshev Integration Coefficients and Chebyshev Polynomials

n Nodes Xi Weights Wi Chebyshev Polynomial Tn(x)
0 Xi = cos (|) = 0 Wl = y = 7F T\(x) = x
1 X! = COS (Jf J = 

x2 = cos Q) = £ £ tO
 

h-

II 
II

to
|t|

 to|
t| T2(x) = 2x2 — 1

2 Xi = cos 1 yp ) = ~2
X2 = COS (y) = 0 

^3 = cos(f) = es
s 

W
 tO i-

1

II II II T3(x) = 4x3 — 3x

3 Xi = cos = — cos (f)
X2 = COS ( ) = — COS ( )

X3 = COS (yy) = COS (yy) 

X4 = COS (F) = cos ( ?F ) se
es

 
hU

 
W

 
to

II II II
 

II T4(x) = 8x4 — 8x2 + 1

Again, these polynomials are orthogonal over [—1,1] with the weight function w(x) and 
set of all Chebyshev polynomials up to given n forms a basis for the space of polynomials
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of degree up to n. The Gauss-Chebyshev quadrature rule for an integral is given by:

f1 f(x) 
J-l \/l — X2

I sin(a;) dx
o

dx
n

i=l

where xt are the roots of the Chebyshev polynomial Tn(x) and the weights Ai = are 
constant.

7.6 Monte Carlo integration

The idea behind this method is simple yet powerful. We simulate random points uniformly 
distributed over the rectangle [a, b] x [0, M]. The fraction of points that lie below the 
curve f(x) approximates the area under the curve. This approximation becomes more 
accurate as the number of random points increases, aligning with the law of large numbers, 
which states that the average of a large number of independent and identically distributed 
random variables converges to the expected value.

Let / be a non-negative function defined on the interval [a,b], and suppose f(x) < M 
for every x G [a,b\. Consider the scenario where [Xi,14],..., [Xn, W] are observations 
of the random vector [X, T] distributed uniformly on the rectangle [a, b] x [0, M]. The 
probability that Y is less than or equal to /(X) can be expressed as:

P(Y < /(X)) = k M(b-a)

This probability can be approximated using the following Monte Carlo method:

1 n
Il - 1 t=l

where I is the indicator function, which equals f if 14 < f(Xi) and 0 otherwise. Thus, the 
integral f(x) dx can be approximated as:

[b f/ \ , M(b — a) y- f(x)dx&- - -----
Ja b i=l

This method leverages the law of large numbers, where the approximation becomes more 
accurate as the number of observations n increases.

Example 4: Estimation of J0  sin(x) dx2

Let us use the Monte Carlo method to estimate the integral:
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Fig. 7.3: Montecarlo integration of function sin(i).

Solution:

We can apply the above method by choosing J(.r) = sin(.r), a = 0, b = and M = 1 
(since sin(.r) < 1 for all x G [0, ^]). By generating random points [Ab, K] in the rectangle 
[0, x [0,1], we can estimate the integral using:

Example 5: Approximation of 7?

The Monte Carlo method can also be used to approximate %. Consider a square of side 
length 2, centered at the origin, and a circle of radius 1 inscribed in the square. The area 
of the square is 4, and the area of the circle is %.

n=10. Simulation tt=2.8000

-1 -0.5 0 0.5 1

Fig. 7.4: Approximation of tt using Monte Carlo method.

-1 -0.5 0 0.5 1
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Solution:

To approximate 7r, generate random coordinates (x, y) uniformly distributed in the square 
[—1,1] x [—1,1]. The fraction of points that fall inside the circle, determined by the 
condition x2 + y2 < 1, is:

Number of points inside the circle 7?
Total number of points 4

Thus, 7F can be estimated as:

Number of points inside the circle 7F ss 4 x --------------------------------------------
Total number of points

By generating n = 10,100,1000 points and counting the number of points inside the circle, 
we can estimate % and compare the results with the true value.

Example 6: Volume of an Ellipsoid

The Monte Carlo method can also be extended to three dimensions to calculate the volume 
of an ellipsoid with principal semiaxes a = 2, b = 3, and c = 1.

Solution:

The volume of the ellipsoid is given by:

4 4
V = -Trabc = -7fx2x3x1 = 87f 

3 3

To approximate this volume using the Monte Carlo method, generate random coordinates 
(x, y, z) uniformly distributed in the cuboid [—2,2] x [—3,3] x [—1,1]. The fraction of 
points that lie inside the ellipsoid, determined by the condition:

x2 y2 z2
-----1- — 4----  a2 b2 c2

< 1

is used to estimate the volume:

C ~ ^cuboid x Number of points inside the ellipsoid 
n

where Kuboid = 8 x 6 x 2 = 96. By repeating this process k = 100 times with n = 1000 
points, we can obtain a reliable estimate of the ellipsoid’s volume and compare it with the 
true volume 8%.



Chapter 8

Numerical differentiation and solving 
differential equations

8.1 Recommended literature

[14] Josef Stoer et al. Introduction to numerical analysis. Vol. 1993. Springer, 1980
[13] L Richard. ^Burden and J. Douglas Faires. Numerical analysis. Brooks”. In: Cole
Publishing Company, Pacific Grove, California 93950 (1997), p. 78

8.2 Numerical Computation of Derivative

Nnmerical computation of derivatives is essential in solving differential eqnations, where 
exact analytical solutions are often unavailable. The interpolation polynomial and its 
derivative, alongside Taylor series expansions, provide effective methods for approximating 
derivatives from discrete data points.

8.2.1 Derivative Approximation Using Interpolation Polynomial

Given a set of data points (,tq, Jo), (ti, Ji),..., (xn, fn), we can approximate the derivative 
of the function /(.t) using the derivative of the interpolation polynomial P(.t) that fits 
these points. The general approach is:

• First-Order Difference: When n = 1 (i.e., two points .To and ti), the interpolation 
polynomial P(.t) is linear, and its derivative at any point t within the interval is 
given by:

/'(t) « P'(t) =
T1 — .To

This represents a simple finite difference approximation of the derivative.

• Second-Order Difference: When n = 2 (i.e., three points tq, ti, and t2), the 
interpolation polynomial P(.t) is quadratic, and is given by:

p, ) _ J. (t - T1)(t - T2) + J. (t - Tq)(t - T2) + (t - Tq)(t - Tl)
‘ (.To - T1)(.TO - T2) J (.Ti - TO)(.T1 - T2) J ' (.T2 - .T0)(.T2 - Ti)

The derivative of this polynomial, P'(.t), can be calculated as:

pl., _ j, 2t - Ti - t2 + 2t - tq - t2 ! f 2t - t0 - Ti 
‘ J (.To - T1)(.Tq - T2) (Ti - T0)(.Ti - T2) fT2 - To)(.T2 - Ti)

162
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For equally spaced points, where aq — a?o = a?2 — aq = h, this simplifies to:

P'(x) = ^2x ~ Xl ~ x^ ~ 2f^2x ~xo~ ^2) + /2(2a; - a?0 - a?i)]

Specifically, at the given points:

P» = ^-(-3/o + 4A-/2) 
ZXI

P\xi) = ^h-fo)
ZXI

P'O2) = N/0-4/1+3/2)
zx1

The second derivative of the interpolation polynomial P"(a;) at these points is given 
by:

P"W = ^(/o-2/i + /2).

8.2.2 Derivative Approximation Using Taylor Series

Taylor series expansions provide another method to approximate derivatives. Given a 
function /(a?) and its Taylor series expansion around a point x, we can derive approxima­
tions for the first and second derivatives:

• First Derivative: Using the Taylor series expansions of /(a? + li) and /(a? — h\.

f(x} = ^x + ^-^x-hCo(i^
This central difference formula is widely used for its second-order accuracy.
We may derive the formula the following way:

- Taylor Series Expansion of /(a? + h):

... ... J"(a?)/z2 J"'(a?)/z3 /w,i,/(a? + /z) = /(a?) + / (a?)/z + -—------+ -—------- + O(/z4)
2 b

- Taylor Series Expansion of /(a? — h):

j./ x /•// /"(a?)/?2 /w(a?)/z3f(x -ti) = /(a;) - f {x)h + ------ J + O(/z4)
2 b

Now, subtract the expansion of f(x — h) from f(x + h)\

f(x + 0 - /O - 0 = 2/'(a;)/z + + O(/z4)

Dividing both sides by 2h, we get the central difference approximation for the first 
derivative:

/'(a?) = + +
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• Second Derivative: Using the Taylor series expansions of f(x + h) and f(x — h), 
but adding them instead of subtracting, we get:

f"(x) = + K}~ + ~ + O(/z2)

This formula is also second-order accurate and is commonly used in numerical dif­
ferentiation.

8.3 Numerical Solution of Ordinary Differential Equations

Numerical methods are essential for solving ordinary differential equations (ODEs) when 
analytical solutions are unavailable. The Euler methods—explicit and implicit—are foun­
dational techniques in this area.

8.3.1 Explicit Euler Method

The explicit Euler method is straightforward and computes the next value of the solution 
using the current value and the derivative:

f/n+l = Un + hf (xn, yn)

This method is easy to implement but may suffer from stability issues, especially for stiff 
equations.

8.3.2 Implicit Euler Method

The implicit Euler method improves stability by using the derivative at the next time 
step:

f/n+l = Un + hf(xn+l, t/n+1)

Although more stable, this method requires solving an implicit equation at each step, 
often necessitating iterative solvers.

8.3.3 Predictor-Corrector Methods

Predictor-corrector methods combine the simplicity of the explicit Euler method with the 
stability of the implicit method. The predictor step estimates the solution using an 
explicit method, and the corrector step refines this estimate using an implicit method.
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8.3.4 Solving ODEs Using Runge-Kutta Methods

Runge-Kutta methods are a powerful and widely used family of numerical techniques for 
solving ordinary differential equations (ODEs). These methods improve upon simpler ap­
proaches, such as the Euler method, by providing higher-order accuracy while maintaining 
relatively low computational complexity.

8.3.4.1 The Fourth-Order Runge-Kutta Method (RK4)

The fourth-order Runge-Kutta method (RK4) is the most popular and commonly used 
variant of the Runge-Kutta family. It strikes an excellent balance between accuracy and 
computational effort, making it the method of choice for many practical applications.

Given an initial value problem of the form:

dy
-^ = y(to)=yo,

the RK4 method advances the solution from tn to tn+i = tn + At by calculating four 
intermediate slopes:

kl — f y-n) >

The solution at the next time step is then given by:

t/n+l — !Ji' 4--- 7“(^1 + —/i'2 + 2/;':; + kl).6

Here’s what each step represents:

• k\ is the slope at the beginning of the time step.

• N is the slope at the midpoint of the interval, using the slope from ki.

• is another midpoint slope, but using k2 to refine the estimate.

• Aq is the slope at the end of the interval, incorporating all previous estimates.

By combining these slopes with appropriate weights, RK4 effectively captures the 
behavior of the solution across the entire interval, leading to a fourth-order accurate 
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method. This means that the error per step is on the order of O(At5), and the total 
accumulated error across the entire interval is O(At4).

Runge-Kutta 4(5), or RK45, is an extension of the RK4 method that provides adaptive 
step size control. RK45 simultaneously computes two solutions—one using a fourth-order 
method and another using a fifth-order method. The difference between these two solu­
tions provides an estimate of the local truncation error. This error estimate is then used to 
adjust the step size dynamically, making the method both efficient and accurate. RK45 
is particularly useful for problems where the solution exhibits rapid changes in certain 
regions, as it automatically reduces the step size to maintain accuracy and increases it 
when possible to save computational time.

8.4 Second-Order Differential Equations with Boundary Con­
ditions

Second-order differential equations are common in various physical systems, including 
mechanical vibrations, electrical circuits, and fluid dynamics. Solving these equations 
numerically involves discretizing the equation using finite differences, which converts the 
differential equation into a system of algebraic equations.

Given a second-order differential equation of the form:

y"(x) + p(x)y'(x) + q(x)y(x) = r(x)

with boundary conditions y(a) = a and y(b) = /3, we can discretize the domain into 
equally spaced points a?o,aq,... ,xn with step size h. The second derivative at each point 
can be approximated using:

/// \ Ui—l ~ + Vi+1
y (^) ~--------- ------------

Substituting this into the differential equation gives a system of linear equations that can 
be solved for y0, y±,..., yn. The boundary conditions are used to set the values at the 
endpoints.

8.5 Numerical Solution of Partial Differential Equations

Partial differential equations (PDEs) describe the behavior of physical systems involving 
multiple independent variables, such as time and space. In the one-dimensional case, 
we consider PDEs where the quantity of interest depends on a single spatial variable x 
and time t. Common examples include the heat equation, the wave equation, and the 
advection equation.
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8.5.1 Discretization of the Spatial and Temporal Domains

The numerical solution of a one-dimensional PDE typically involves discretizing both the 
spatial domain and the temporal domain. This process converts the continuous PDE into 
a set of algebraic equations that can be solved using computational methods.

8.5.1.1 Spatial Discretization

Consider the spatial domain x G [a, b\. We discretize this domain into M equally spaced 
points:

Xi = a + iN.x, for i = 0,1,..., M,

where N.x = is the spatial step size. The solution u(x,t) at these points is approxi­
mated by Uj(t) = u(xi,t).

8.5.1.2 Temporal Discretization

Similarly, the time domain t E [0, T] is discretized into N time steps:

tn = nAt, for n = 0,1,..., N,

where At = is the time step size. The solution at time tn is approximated by u” = 
u(xi,tn')-

8.5.2 Finite Difference Method

The finite difference method is one of the most commonly used techniques for numerically 
solving PDEs. It involves approximating the derivatives in the PDE with finite differences.

8.5.2.1 Approximation of Spatial Derivatives

Consider a PDE involving the spatial derivative or the second-order spatial derivative
These derivatives can be approximated using finite difference formulas:

• First-Order Derivative: The first derivative can be approximated using the cen­
tral difference formula:

du _ <+i~<-i
<9a? x. 2Ax '

Alternatively, forward or backward difference schemes can be used:

du _ <+i ~ <
<9a? x. Ax

(forward difference),
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du ~ uf-uf 1 
dX Xl ^X

(backward difference).

• Second-Order Derivative: The second derivative can be approximated using the 
central difference formula:

d2u u”+1 - 2u” + u”_i
dx2 x. Aa?2

8.5.2.2 Approximation of Temporal Derivatives

For the time derivative we can use similar finite difference approximations:

• Forward Difference (Explicit): The forward difference formula approximates the 
time derivative as:

du uf+1 — uf 
dt tn N.t '

This is commonly used in explicit time-stepping schemes.

• Backward Difference (Implicit): The backward difference formula is given by: 

du u'i — u™-1 
dt tn N.t '

This is typically used in implicit time-stepping schemes, which are more stable for 
stiff problems.

• Central Difference: The central difference formula for the time derivative is:

dt tn 2N.t

This is often used in schemes that require a higher order of accuracy.

8.5.3 Explicit and Implicit Schemes

Based on the finite difference approximations, we can develop explicit or implicit numerical 
schemes to solve the PDE.

8.5.3.1 Explicit Scheme

In an explicit scheme, the solution at the next time step u”+1 is calculated directly from 
known values at the current or previous time steps. For example, applying the explicit 
scheme to the heat equation:

du d2u
dt a dx2’
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we get:
,n+l 
'i = < + _

Explicit schemes are straightforward to implement but may require very small time steps 
At to ensure stability, particularly when the spatial step size Ax is small.

8.5.3.2 Implicit Scheme

In an implicit scheme, the solution at the next time step w''1 depends on unknown values 
at the same time step. For the heat equation, the implicit scheme might look like:

,n+l 
'i

= i (->in+1
Aa?2 \ *+1

• Robin Boundary Conditions: A combination of Dirichlet and Neumann condi­
tions, where a linear combination of the function value and its derivative is specified 
at the boundaries.

- 2<+1 + rCi1)

This equation is implicit because w''1 appears on both sides. Implicit schemes are gen­
erally more stable and allow for larger time steps, but they require solving a system of 
linear equations at each time step, which can be computationally expensive.

8.5.4 Boundary and Initial Conditions

The numerical solution of PDEs requires specifying boundary and initial conditions.

8.5.4.1 Initial Conditions

For time-dependent PDEs, initial conditions specify the state of the system at the start of 
the simulation, i.e., u(a?,0) = f(x). These conditions are used to initialize the numerical 
scheme.

8.5.4.2 Boundary Conditions

Boundary conditions specify the behavior of the solution at the edges of the spatial domain. 
Common types of boundary conditions include:

• Dirichlet Boundary Conditions: Specify the value of the solution at the bound­
aries, e.g., u(a,t) = 5i(t) and u(b,t) = 92(f)-

• Neumann Boundary Conditions: Specify the value of the derivative of the 
solution at the boundaries, e.g., |^(a,t) = hi(t) and t) = h2(t)-
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8.6 Examples

Example 1:

Consider the second-order differential equation: 

y" + y = cos(a?) 

with boundary conditions 7/(0) = 0 and y (^) = 1.

1. Discretize the interval [0, with points Xg = 0, aq = and x2 = f.

2. Use the formula for the second derivative:
I (q 1 f) 7T

y"(x) * - 2y(X1) + y(x2)] = ^[0 - 2y(-) + 1]7+ 7+ 4
3. Substitute this into the differential equation: 

16 77
^2 [0 - 2y(-) + 1] + y(x) = cos(a?)

4. Evaluate at aq = ^: 
16r„ „ ,7r. \/2;?[(>-2!,(-) + l|+9(J)= —

5. Solve for y (|):
(x\ _ V2tt2 -32

y V 4 V 2(7t2 - 32)

When the size step size h = we may compute the solution in point using 
a single linear equation of one unknown. For smaller step size h this approach leads to 
system of three-diagonal system of linear equations. In this concrete example, we use step 
size h = allowing to get solution y(x) in nine points t/i, ... 7/9. This leads to system of 
nine linear equations:

40.5281/2 - 80.057 t/i = 0.98769
40.528 t/i -80.057 t/2 + 40.528 7/3 = 0.95106
40.528 7/2 - 80.0577/3 + 40.528 t/4 = 0.89101
40.528 7/3 — 80.057 7/4 + 40.528 7/5 = 0.80902
40.528 7/4 — 80.057 7/5 + 40.528 t/6 = 0.70711
40.528 7/5 — 80.057 7/6 + 40.528 7/7 = 0.58779
40.528 t/6 - 80.0577/7 + 40.528 t/8 = 0.45399
40.528 7/7 — 80.057 t/8 + 40.528 7/9 = 0.30902

40.528 t/8 - 80.057 7/9 = -40.372
The system is thee-diagonal with

/—80.0569 40.5285 0 0 0 0 0 0 0 \40.5285 -80.0569 40.5285 0 0 0 0 0 0
0 40.5285 -80.0569 40.5285 0 0 0 0 0
0 0 40.5285 -80.0569 40.5285 0 0 0 0

A = 0 0 0 40.5285 -80.0569 40.5285 0 0 0
0 0 0 0 40.5285 -80.0569 40.5285 0 0
0 0 0 0 0 40.5285 -80.0569 40.5285 0
0 0 0 0 0 0 40.5285 -80.0569 40.5285

\ o 0 0 0 0 0 0 40.5285 —80.0569/
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/ 0.9877 \ 
0.9511 
0.8910 
0.8090 
0.7071 
0.5878 
0.4540 
0.3090

\-40.3720/

and is effectively solvable using exactly by Grout or Doolitle decomposition, or numerically 
by relaxation method or two-grid method.

For this particular example analytical solution is known and can be expressed as y(x) = 
sin(ai)(| + 1 — f). When we compare it visually with the solution obtained numerically, 
the differences in results are almost unnoticeable.

Example 2: Van der Pol Oscillator and Limit Cycle Detection

The Van der Pol oscillator is a well-known example of a nonlinear dynamical system 
that exhibits a limit cycle, which is a closed trajectory in phase space that the system’s 
trajectories converge to, regardless of initial conditions. The governing equation for the 
Van der Pol oscillator is given by: 

where p is a parameter that controls the nonlinearity and the strength of the damping.

Conversion of the Second-Order ODE to a System of First-Order ODEs

To solve this equation numerically, it is often advantageous to convert the second-order 
differential equation into a system of first-order differential equations. This is a standard 
technique in numerical analysis, as many numerical methods are designed specifically for 
first-order systems.

Given the second-order ODE:

we introduce a new variable z = which represents the first derivative of y with respect 
to time t. By substituting z into the original equation, we obtain a system of two first-order
ODEs:

dy 
dt

- = M(1 - y^ - y-

This system now describes the same dynamics as the original second-order equation but 
in a form that is more amenable to numerical methods.
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Numerical Solution of the Van der Pol Oscillator

The Van der Pol oscillator can be solved as either an initial value problem (IVP) or a 
boundary value problem (BVP), depending on the specifics of the physical situation or 
mathematical formulation.

Initial Value Problem

In the initial value problem (IVP), the solution is determined by specifying the initial 
conditions at a single point in time, typically at t = to. The goal is to find a function 
t/(i) that satisfies the differential equations and adheres to these initial conditions as the 
system evolves over time. For the Van der Pol oscillator, with initial conditions t/(io) = f/o 
and z(to) = zq, we can employ various numerical methods, such as the explicit Euler 
method, the implicit Euler method, or the Runge-Kutta methods, to solve the system:

4 dz 2
Tt=z'

Explicit Euler Method:
f/n+l = Un + ^t ■ Zn, 

Zn+1 = Zn + At • L(f - y^)zn - yn

Implicit Euler Method:
Un+l = Dn + At • Zn+1-,

Zn+1 = Zn T At • [//(I l/n+l)Zn+l Un+1

Predictor-Corrector Method:

f. Predictor (Explicit Euler):

(predict)
•C l = yn + At • Zn

(predict) 
^n+1 = Zn + At • [//(I - Vn'jZn ~ Vn] ■

2. Corrector (Implicit Euler):

। / । (predict) xyn+i = yn + ^- -(zn + 4+i b

n+1 = n + ~ [+1 - + M(1 - - £?“’] •

These methods are typically used to simulate the Van der Pol oscillator over time, 
allowing us to observe the evolution of the system from given initial conditions.
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Fig. 8.1 : Solution of the Van der Pol Oscillator equation with y =1.0, total time span T = 100 and step 
size dt = 0.01 using the predictor corrector method using explict Euler as predictor and implicit Euler as 
corrector.

Boundary Value Problem

In a boundary value problem (BVP), the solution is determined by specifying the con­
ditions at two or more points, typically at the boundaries of the domain, such as t = to 
and t = tf. The goal is to find a function y(t) that satisfies the differential equations and 
meets these boundary conditions. For instance, we may need to find y(t) that satisfies:

y(fo) = yo, y(t/) = y.f-

To solve the Van der Pol oscillator as a boundary value problem, we can use numerical 
methods such as the finite difference method or the shooting method. In the shooting 
method, we treat the BVP as an initial value problem, guessing the initial conditions at 
t = to and iterating until the boundary condition at t = tf is satisfied.

Limit Cycle Detection as a Boundary Value Problem

Limit cycle detection in dynamical systems, such as the Van der Pol oscillator, can be 
framed as a boundary value problem (BVP). Instead of focusing on the initial conditions 
alone, we seek to determine a periodic solution y(f) that satisfies the system’s equations 
over one complete cycle, ensuring that the solution returns to the same state after a period 
T. For the Van der Pol oscillator, the system is given by:

UjL UjL

which, when converted into a system of first-order DDEs, becomes:

dz
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y (position)

Fig. 8.2: Shooting Method to Find Limit Cycle of the Van der Pol Oscillator equation with y = 1.0, 
transient time to settle on the limit cycle T = 500, and step size dt = 0.0001 using secant method to 
solve 1/(0) — y(T~) = 0, where 1/(0) is initial condition after transient, and using initial guess of period 
7b = 6,71 = 7. '

To detect a limit cycle, we impose the periodic boundary conditions:

y(0) = y(T), z(ti) = z(T),

where T is the unknown period of the oscillation. The goal is to find T, along with the 
functions y(t) and z(t), such that these conditions are satisfied.

This can be approached by treating the detection of the limit cycle as a BVP where 
we seek to find a periodic solution that satisfies:

Here, F represents the difference between the states at the start and end of one period.

Numerical Approach

A numerical method suitable for this kind of BVP is the shooting method, where we 
iteratively adjust the initial conditions and the period T to satisfy the periodic boundary 
conditions. Specifically, we:

1. Guess an initial period T and initial conditions y(0) and <:(0).

2. Integrate the system of ODEs from t = 0 to t = T using a numerical method such 
as the Euler method.

3. Evaluate the difference r/(T) — y(0) and z(T) — <:(0) obtained from integration and 
the initial values y(0) and z(0). Compute a norm of the vector of differences.

4. Adjust T, y(0), arid <:(0) iteratively using a derivative free root-finding method to 
minimize the difference and satisfy y(0) = r/(T) or/and <:(0) = z(T).
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When the conditions are met, the solution corresponds to a limit cycle of the system. 
By formulating the problem in this way, the periodicity of the limit cycle is enforced 
through the boundary conditions, ensuring that the solution is indeed periodic and that 
the system has settled into a stable oscillatory pattern.
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