
Computational Intelligence Methods and Applications

Baochang Zhang
Tiancheng Wang
Sheng Xu
David Doermann

Neural
Networks
with Model
Compression

Computational Intelligence Methods and
Applications
Founding Editors
Sanghamitra Bandyopadhyay
Ujjwal Maulik
Patrick Siarry

Series Editor

Patrick Siarry, LiSSi, E.A. 3956, Université Paris-Est Créteil, Vitry-sur-Seine,
France

The monographs and textbooks in this series explain methods developed in compu-
tational intelligence (including evolutionary computing, neural networks, and fuzzy
systems), soft computing, statistics, and artificial intelligence, and their applications
in domains such as heuristics and optimization; bioinformatics, computational
biology, and biomedical engineering; image and signal processing, VLSI, and
embedded system design; network design; process engineering; social networking;
and data mining.

Baochang Zhang • Tiancheng Wang • Sheng Xu •
David Doermann

Neural Networks with Model
Compression

Baochang Zhang
Institute of Artificial Intelligence
Beihang University
Beijing, China

Sheng Xu
School of Automation Science and
Electrical Engineering
Beihang University
Beijing, China

Tiancheng Wang
Institute of Artificial Intelligence
Beihang University
Beijing, China

David Doermann
Department of Computer Science and
Engineering
University at Buffalo, State University
Buffalo, NY, USA

ISSN 2510-1765 ISSN 2510-1773 (electronic)
Computational Intelligence Methods and Applications
ISBN 978-981-99-5067-6 ISBN 978-981-99-5068-3 (eBook)
https://doi.org/10.1007/978-981-99-5068-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

Paper in this product is recyclable.

https://doi.org/10.1007/978-981-99-5068-3
https://doi.org/10.1007/978-981-99-5068-3
https://doi.org/10.1007/978-981-99-5068-3
https://doi.org/10.1007/978-981-99-5068-3
https://doi.org/10.1007/978-981-99-5068-3
https://doi.org/10.1007/978-981-99-5068-3
https://doi.org/10.1007/978-981-99-5068-3
https://doi.org/10.1007/978-981-99-5068-3
https://doi.org/10.1007/978-981-99-5068-3
https://doi.org/10.1007/978-981-99-5068-3

Preface

With the swift development of information technology, cloud computing with
centralized data processing cannot meet the needs of applications that require
processing massive amounts of data, and they can only be effectively used when
privacy requires the data to remain at the front-end device. Thus, edge computing
has become necessary to handle the data from embedded devices. Intelligent
edge devices benefit many requirements within real-time unmanned aerial systems,
industrial systems, and privacy-preserving applications.

In recent years, deep learning has been applied to different applications, dramat-
ically improving many artificial intelligence (AI) tasks. However, the incomparable
accuracy of deep learning models is achieved by paying the cost of hungry memory
consumption and high computational complexity, which significantly impedes their
deployment in edge devices with low memory resources. For example, the VGG-
16 network can achieve 92.7% top-5 test accuracy on image classification tasks
with the ImageNet dataset. Still, the entire network contains about 140 million 32-
bit floating-point parameters, requiring more than 500 megabytes of storage space
and performing .1.6 × 1010 floating-point operations. Yet, FPGA-based embedded
devices typically have only a few thousand compute units, which cannot handle the
millions of floating-point operations in standard deep neural network models. On the
other hand, complex neural networks are often accompanied by slower computing
speed and longer inference time, which are not allowed in applications with strict
latency requirements, such as vehicle detection and tracking. Therefore, a natural
thought is to perform model compression and acceleration in neural networks
without significantly decreasing the model performance.

This book introduces the significant advancements of neural networks with
model compression. While quantized operations can enhance the efficiency of
neural networks, they typically result in a decrease in performance. In the last 5
years, many methods have been introduced to improve the performance of quantized
neural networks. To better review these methods, we focus on six aspects: gradient
approximation, quantization, structural design, loss design, optimization, and neural
architecture search. We also review the applications of neural networks with model
compression in visual and audio analysis. There are also other model compression

v

vi Preface

techniques, such as model compression with network pruning, widely used in edge
computing, which we introduce for completeness in this book. From our previous
studies, network pruning and quantized neural networks can be used simultaneously
to complement each other, whereas network pruning on quantized neural networks
can further compress models and improve the generalization ability for many
downstream applications.

Beijing, China Baochang Zhang
Beijing, China Tiancheng Wang
Beijing, China Sheng Xu
Buffalo, NY, USA David Doermann

Contents

1 Introduction . 1
1.1 Background. 1
1.2 Introduction of Deep Learning . 2
1.3 Model Compression and Acceleration . 4
References . 5

2 Binary Neural Networks . 7
2.1 Introduction . 7
2.2 Gradient Approximation . 9
2.3 Quantization . 10
2.4 Structural Design . 14
2.5 Loss Design . 17
2.6 Optimization . 19
2.7 Algorithms for Binary Neural Networks . 22

2.7.1 BNN: Binary Neural Network . 23
2.7.2 XNOR-Net: ImageNet Classification Using Binary

Convolutional Neural Networks . 24
2.7.3 SA-BNN: State-Aware Binary Neural Network 26
2.7.4 PCNN: Projection Convolutional Neural Networks. 31

References . 44

3 Binary Neural Architecture Search . 49
3.1 Introduction . 49
3.2 Neural Architecture Search . 50

3.2.1 ABanditNAS: Anti-bandit for Neural Architecture Search . . . 50
3.2.2 IDARTS: Interactive Differentiable Architecture Search 59
3.2.3 Fast and Unsupervised Neural Architecture

Evolution for Visual Representation Learning 67
3.3 Binary Neural Architecture Search. 76

3.3.1 BNAS: Binarized Neural Architecture Search for
Efficient Object Recognition . 76

vii

viii Contents

3.3.2 BDetNAS: A Fast Binarized Detection Neural
Architecture Search . 88

References . 95

4 Quantization of Neural Networks . 101
4.1 Introduction . 101
4.2 Quantitative Arithmetic Principles . 101
4.3 Uniform and Nonuniform Quantization. 102
4.4 Symmetric and Asymmetric Quantization . 103
4.5 Comparison of Different Quantization Methods . 104

4.5.1 LSQ: Learned Step Size Quantization . 104
4.5.2 TRQ: Ternary Neural Networks with Residual

Quantization. 108
4.5.3 OMPQ: Orthogonal Mixed Precision Quantization 119

References . 127

5 Network Pruning . 131
5.1 Introduction . 131
5.2 Structured Pruning . 133
5.3 Unstructured Pruning . 134
5.4 Network Pruning . 134

5.4.1 Efficient Structured Pruning Based on Deep Feature
Stabilization . 134

5.4.2 Toward Compact and Sparse CNNs via
Expectation-Maximization . 147

5.4.3 Pruning Multi-view Stereo Net for Efficient 3D
Reconstruction . 157

5.4.4 Cogradient Descent for Dependable Learning 168
5.5 Network Pruning on BNNs . 189

5.5.1 Rectified Binary Convolutional Networks with
Generative Adversarial Learning. 189

5.5.2 BONN: Bayesian Optimized Binary Neural Network 198
References . 213

6 Applications . 219
6.1 Introduction . 219
6.2 Image Classification . 219
6.3 Speech Recognition . 220

6.3.1 1-Bit WaveNet: Compression of a Generative Neural
Network in Speech Recognition with Two Binarized
Methods . 220

6.4 Object Detection and Tracking . 227
6.4.1 Data-Adaptive Binary Neural Networks for Efficient

Object Detection and Recognition . 228

Contents ix

6.4.2 Amplitude Suppression and Direction Activation in
Networks for Faster Object Detection . 238

6.4.3 Q-YOLO: Efficient Inference for Real-Time Object
Detection . 249

References . 256

Chapter 1
Introduction

1.1 Background

Recently, there has been a significant increase in the complexity of deep learning
models, with models becoming more and more intricate [2, 3, 7–10]. However, the
hardware on which these models are deployed has not kept up with the increasing
computational demands. Practical limitations such as latency, battery life, and
temperature have created a significant gap between the computational requirements
of these models and the available hardware resources.

To bridge this gap, network quantization has emerged as a popular approach
[1, 4–6]. Network quantization involves mapping single-precision floating-point
weights or activations to lower bit integers, leading to compression and acceleration
of the model. One notable technique in this area is binary neural network (BNN),
which is the simplest version of low-bit networks and has gained significant
attention due to its highly compressed parameters and activation features [1].
Notably, the company Xnor.ai has become prominent for its work on BNNs.
Founded in 2016, the company has raised substantial funding to develop tools
that enable AI algorithms to run on devices rather than remote data centers. This
approach allows for greater privacy and faster processing. Recently, Apple Inc.
acquired Xnor.ai and plans to leverage BNN technology to enhance user privacy
and accelerate processing on its devices.

Deep learning has gained significant importance due to its exceptional perfor-
mance; however, it faces challenges in terms of large memory requirements and high
computational demands, making it difficult to deploy on resource-constrained front-
end devices. For instance, unmanned systems rely on UAVs as computing terminals
with limited memory and computational resources, posing obstacles to real-time
data processing using convolutional neural networks (CNNs). To address these
efficiency concerns, binary neural networks (BNNs) have emerged as promising
solutions for practical applications. BNNs are neural networks that binarize weights,

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Zhang et al., Neural Networks with Model Compression,
Computational Intelligence Methods and Applications,
https://doi.org/10.1007/978-981-99-5068-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5068-3protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1

2 1 Introduction

offering improved storage and computation efficiency. Taking this approach further,
1-bit CNNs achieve extreme compression by binarizing both the weights and
activations, reducing the model size and computational costs even further. Such
highly compressed models are well-suited for front-end computing tasks. Alongside
BNNs, other techniques like pruning neural networks involving quantization are
widely utilized in edge computing.

This book comprehensively analyzes the latest advancements in model com-
pression technologies specifically designed for front-end computing. It offers an
extensive review and summary of existing research, categorized into binary neural
networks, binary neural architecture search, quantization of neural networks, and
network pruning. Furthermore, the book explores the practical applications of these
techniques in computer vision and speech recognition, shedding light on their
potential for future applications in edge computing.

1.2 Introduction of Deep Learning

Deep learning is a subset of machine learning that focuses on developing and
applying artificial neural networks with multiple layers, also known as deep neural
networks. It is inspired by the structure and function of the human brain, specifically
the interconnectedness of neurons.

Deep learning models, also known as deep neural networks, comprise multiple
layers of interconnected artificial neurons called units or nodes. These layers include
an input layer, one or more hidden layers, and an output layer. Each unit in the
network receives input signals, applies a mathematical transformation to them, and
produces an output signal that is passed to the next layer. The weights associated
with each connection between the units determine the strength and impact of the
signals. The key features and concepts of deep learning are as follows:

Neural Network Architecture Deep learning models can have many architectures,
depending on the task and data being addressed. Common architectures include
feedforward neural networks, convolutional neural networks (CNNs) for image
analysis, recurrent neural networks (RNNs) for sequence data, and transformers for
natural language processing tasks.

Training Deep learning models learn from data through training. During training,
the model is presented with a labeled dataset and adjusts its weights to minimize
the difference between its predictions and the true labels. This optimization is
achieved using an algorithm called back propagation (BP), which calculates the
gradients of the model’s performance concerning the weights and updates the
weights accordingly. The process iterates until the model converges to a satisfactory
level of performance.

Activation Functions Activation functions introduce nonlinearities to the neural
network, allowing it to model complex relationships between inputs and outputs.

1.2 Introduction of Deep Learning 3

Common activation functions include sigmoid, hyperbolic tangent (tanh), and
rectified linear unit (ReLU). They help the network learn nonlinear patterns and
make the model more expressive.

Loss Functions Loss functions measure the discrepancy between the predicted
outputs of the model and the true labels in the training data. They provide a
quantitative measure of how well the model is performing. Common loss functions
include mean squared error (MSE) for regression tasks and categorical cross-
entropy for classification tasks.

Optimization Algorithms Optimization algorithms are used to update the neural
network weights during training. Stochastic gradient descent (SGD) is a widely used
optimization algorithm that iteratively adjusts the weights based on the gradients
computed through back propagation. Variants of SGD, such as Adam and RMSprop,
are also commonly employed to improve training efficiency and convergence.

Regularization Deep learning models are prone to overfitting, which occurs when
the model becomes too specialized to the training data and performs poorly on
unseen data. Regularization techniques, such as L1 and L2 regularization, dropout,
and early stopping, are used to prevent overfitting and improve the model’s
generalization ability.

One of the key advantages of deep learning is its ability to automatically learn
feature representations from raw data. Traditionally, in machine learning, feature
engineering is a crucial step where domain experts manually extract relevant
features from the data. In deep learning, the neural network learns these features
directly from the raw data during training. This removes the need for manual feature
engineering and allows the model to discover complex patterns and representations.

Deep learning has achieved remarkable success in various domains. In computer
vision, deep neural networks have achieved state-of-the-art results in tasks such as
image classification, object detection, and image segmentation. Deep learning has
revolutionized machine translation, sentiment analysis, and speech recognition in
natural language processing. It has also been applied to recommender systems, drug
discovery, finance, and autonomous vehicles.

The success of deep learning is due to several factors. Firstly, the availability of
large-scale datasets, such as ImageNet for computer vision or the Common Crawl
dataset for natural language processing, has enabled the training of deep neural
networks with millions or even billions of parameters. Secondly, advancements in
computing power, particularly GPUs (graphics processing units), have accelerated
the training process by performing parallel computations. Lastly, developing effi-
cient algorithms like stochastic gradient descent and its variants has made it feasible
to train deep neural networks effectively.

However, deep learning also presents challenges. Training deep neural networks
requires substantial computational resources, and training times can be lengthy,
especially for complex models. Deep learning models are also data-hungry and
often require large labeled datasets, which may only sometimes be readily available.

4 1 Introduction

Overfitting, where the model becomes too specialized to the training data and
performs poorly on unseen data, is another challenge that needs to be addressed.

Researchers have been exploring techniques to overcome these challenges in
recent years, such as transfer learning, which enables pre-training on large-scale
datasets and fine-tuning on smaller task-specific datasets. There is also ongoing
research on model compression, model acceleration, developing more efficient
architectures, regularization techniques, and ways to leverage smaller datasets
effectively.

Deep learning has revolutionized the field of artificial intelligence, enabling
machines to learn and make intelligent decisions from vast amounts of data. Its
ability to learn complex patterns and representations has significantly advanced in
various domains.

1.3 Model Compression and Acceleration

Model compression and acceleration techniques reduce deep learning models’ size
and computational requirements, making them more efficient and practical for
deployment on resource-constrained devices or in real-time applications. These
techniques aim to balance model performance and efficiency, enabling faster
inference times and reducing memory footprint while preserving or minimizing the
loss in accuracy.

Pruning Pruning involves removing unimportant connections or weights from a
trained neural network. It can be done in various ways, such as magnitude-based
pruning, where weights below a certain threshold are pruned, or structured pruning,
where entire filters or layers are pruned. Pruning reduces the number of parameters
and connections in the network, resulting in a more compact model.

Quantization Quantization reduces the precision of weights and activations in the
neural network from floating-point representation (32-bit) to lower bit representa-
tions (e.g., 8-bit or even lower). By using lower precision, quantization reduces
memory usage and improves computational efficiency, as integer operations are
typically faster than floating-point operations.

Low-Rank Factorization This technique reduces the number of parameters in
a neural network by approximating weight matrices using low-rank factorization
methods. Composing weight matrices into smaller matrices of lower rank can sig-
nificantly reduce the number of parameters while maintaining reasonable accuracy.

Knowledge Distillation Knowledge distillation involves training a smaller “stu-
dent” network to mimic the behavior of a larger “teacher” network. The teacher
network provides soft targets (probability distributions) instead of hard labels during
training. The student network learns to generalize from the teacher’s knowledge,
resulting in a compact model that can achieve comparable performance to the larger
model.

References 5

Model Architecture Design Efficient model architecture design aims to create
compact and lightweight models from scratch. Techniques like depth-wise separable
convolutions, bottleneck layers, and skip connections can reduce the number of
parameters and computational complexity while maintaining or improving perfor-
mance.

Model Parallelism and Model Parallel Training Model parallelism divides
a deep learning model across multiple devices or processors, allowing parallel
computation and reducing the memory requirements for model inference. Similarly,
model parallel training divides the training process across multiple devices, reducing
the memory demand during training and enabling faster convergence.

Hardware Acceleration Hardware accelerators, such as graphics processing
units (GPUs), tensor processing units (TPUs), or field-programmable gate
arrays (FPGAs), are specialized devices designed to accelerate deep learning
computations. These accelerators can significantly speed up the inference and
training processes and improve energy efficiency.

These techniques can be used individually or in combination to achieve model
compression and acceleration. The choice of techniques depends on the specific
requirements of the deployment scenario and the trade-off between model size,
computational efficiency, and accuracy.

Model compression and acceleration techniques have enabled the deployment of
deep learning models on edge devices, mobile devices, and embedded systems, mak-
ing real-time inference and applications like object detection, speech recognition,
and natural language processing feasible in resource-constrained environments.
These techniques have also paved the way for advancements in autonomous
vehicles, the Internet of Things (IoT), and edge computing, where efficient and
lightweight models are crucial for efficient and scalable deployment.

References

1. Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. In Advances in neural information
processing systems, pages 3123–3131, 2015.

2. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

3. Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

4. Hyungjun Kim, Kyungsu Kim, Jinseok Kim, and Jae-Joon Kim. Binaryduo: Reducing gradient
mismatch in binary activation network by coupling binary activations. In International
Conference on Learning Representations.

5. Chunlei Liu, Wenrui Ding, Xin Xia, Baochang Zhang, Jiaxin Gu, Jianzhuang Liu, Rongrong
Ji, and David Doermann. Circulant binary convolutional networks: Enhancing the performance
of 1-bit DCNNs with circulant back propagation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2691–2699, 2019.

6 1 Introduction

6. Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-net:
Imagenet classification using binary convolutional neural networks. In European Conference
on Computer Vision, pages 525–542. Springer, 2016.

7. Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, pages 4510–4520, 2018.

8. Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

9. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9,
2015.

10. Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083, 2017.

Chapter 2
Binary Neural Networks

2.1 Introduction

This chapter provides an overview of the most recent developments in binary
neural network (BNN) technologies, with a particular focus on their suitability for
front-end, edge-based computing. The content includes a thorough examination and
synthesis of current research, organized into various categories such as gradient
approximation, quantization techniques, architectural considerations, loss functions,
optimization methods, and binary neural architecture search. Moreover, the chapter
delves into the real-world applications of BNNs in computer vision and speech
recognition while also contemplating the promising future prospects of BNNs across
diverse domains.

In this chapter, we conduct a comprehensive review of the noteworthy advance-
ments in binary neural networks and 1-bit CNNs. While binarization operations
offer improved efficiency, they often come at the cost of reduced performance.
However, over the past 5 years, several techniques have emerged to enhance the
performance of binary neural networks significantly. To facilitate a comprehensive
review of these methods, we categorize them into six key aspects: gradient
approximation, quantization, structural design, loss design, optimization, and binary
neural architecture search.

Additionally, we delve into the applications of BNNs in object detection, object
tracking, and audio analysis, assessing their efficacy and potential in these specific
domains. By presenting a holistic examination of the recent advancements and
practical use-cases of binary neural networks, we aim to shed light on the promising
future prospects of this technology.

BinaryConnect [12] was the first work attempting to confine weights to either
+1 or . −1 during propagation without binarizing the inputs. Binary operations

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Zhang et al., Neural Networks with Model Compression,
Computational Intelligence Methods and Applications,
https://doi.org/10.1007/978-981-99-5068-3_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5068-3protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-981-99-5068-3_2
https://doi.org/10.1007/978-981-99-5068-3_2
https://doi.org/10.1007/978-981-99-5068-3_2
https://doi.org/10.1007/978-981-99-5068-3_2
https://doi.org/10.1007/978-981-99-5068-3_2
https://doi.org/10.1007/978-981-99-5068-3_2
https://doi.org/10.1007/978-981-99-5068-3_2
https://doi.org/10.1007/978-981-99-5068-3_2
https://doi.org/10.1007/978-981-99-5068-3_2
https://doi.org/10.1007/978-981-99-5068-3_2
https://doi.org/10.1007/978-981-99-5068-3_2

8 2 Binary Neural Networks

possess simplicity and ease of comprehension. One of the approaches to binarize
convolutional neural networks (CNNs) involves the utilization of a sign function:

.ωb =
{+1, if ω ≥ 0

−1, otherwise
, (2.1)

where . ωb is the binarized weight and . ω the real-valued weight. A second way is to
binarize scholastically:

.ωb =
{+1, with probability p = σ(ω)

−1, with probability 1 − p
, (2.2)

where . σ is the “hard sigmoid” function. The training process for binary neural
networks differs slightly from that of full-precision neural networks. During forward
propagation, binary neural networks employ binarized weights instead of full-
precision weights, while backward propagation follows conventional methods. The
gradient . ∂C

∂ωb
(where C is the cost function) needs to be calculated and then

combined with the learning rate to directly update the full-precision weights.
BinaryNet [25] extends beyond BinaryConnect by not only binarizing the

weights but also quantizing the activations. To enforce both weights and activa-
tions to be either +1 or . −1, BinaryNet introduces two methods. Additionally, it
incorporates several modifications to accommodate binary activations. Firstly, it
implements shift-based batch normalization (SBN) to avoid additional multiplica-
tions. Secondly, it employs shift-based AdaMax instead of the ADAM learning rule,
which reduces the number of multiplications. The third modification concerns the
operation performed on the input of the first layer, though specific details are not
provided in this statement. For continuous-valued inputs of the first layer, BinaryNet
represents them as fixed-point numbers with m bits of precision.

While BinaryConnect and BinaryNet demonstrate promising performance on
representative datasets (as shown in Table 5.1), they struggle to perform well on
larger datasets. The constraint of weights to +1 and . −1 hinders effective learning.
Therefore, new methods for training binary neural networks and 1-bit networks need
to be developed to address these limitations. It is worth noting that QNN (quantized
neural networks) [26] proposed training neural networks with extremely low-bit
weights and activations, but the specific details of QNN are omitted in this review
as we primarily focus on binary networks.

Wang et al. [60] proposed binarized deep neural networks (BDNNs) for image
classification tasks, where all the values and operations in the network are binarized.
While BinaryNet deals with convolutional neural networks, BDNNs target essen-
tial artificial neural networks consisting of full-connection layers. Bitwise neural
networks [31] also present a completely bitwise network where all participating
variables are bipolar binaries.

2.2 Gradient Approximation 9

2.2 Gradient Approximation

In BNNs and 1-bit networks, the parameter updates involve full-precision weights
using the gradient . ∂C

∂ωb
. However, during forward propagation, a sign function is

applied between full-precision and binarized weights. Consequently, the gradient of
the sign function must be considered when updating the full-precision weights. As
the derivative of the sign function is zero almost everywhere and becomes infinite at
zero points, approximations using derivable functions are commonly employed to
effectively handle the update process.

The first solution for addressing this issue in a 1-bit network was introduced by
BinaryNet [25]. Assuming that an estimator of . gq for the gradient . ∂C

∂q
, where q is

.Sign(r), has been obtained, the straight-through estimator of . ∂C
∂r

is simply:

.gr = gq1|r|≤1, (2.3)

where .1|r|≤1 equals 1 when .|r| ≤ 1. And it equals 0 in other cases. It can also be
seen as propagating the gradient through the hard tanh, which is a piecewise-linear
activation function.

The Bi-Real Net [44] addresses the approximation of the derivative of the sign
function for activations in binary neural networks. Instead of using Htanh [25] for
this purpose, the Bi-Real Net employs a piecewise polynomial function, resulting in
a more accurate approximation.

Furthermore, the Bi-Real Net introduces a magnitude-aware gradient for weights.
In traditional binary neural networks, the gradient . ∂C

∂W
is solely determined by the

sign of weights and is independent of their magnitude. To enhance the learning
process, the Bi-Real Net replaces the sign function with a magnitude-aware
function, allowing the model to take into account both the sign and magnitude
of weights during parameter updates. This approach contributes to more effective
and fine-grained weight updates, leading to improved overall performance in binary
neural networks.

Xu et al. [72] propose a higher-order approximation for weight binarization
in binary neural networks. They use a long-tailed approximation for activation
binarization, striking a balance between tight approximation and smooth back
propagation.

In DSQ [17], a differentiable soft quantization function is introduced to approx-
imate the standard binary and uniform quantization process. This function uses
hyperbolic tangent functions to gradually approach the staircase function, specifi-
cally for low-bit quantization (similar to the sign function in 1-bit CNN). The binary
DSQ function is as follows:

.Qs(x) =
⎧⎨
⎩

−1, x < −1
1, x > 1
stanh(kx), otherwise

, (2.4)

10 2 Binary Neural Networks

with

.k = 1

2
log(

2

α
− 1), s = 1

1 − α
. (2.5)

DSQ approximates uniform quantization well, especially with a small . α, making
it valuable for training high-accuracy quantized models. Being differentiable, DSQ
allows for smooth parameter updates, contributing to improved accuracy compared
to non-differentiable methods.

In summary, the methods discussed introduce differentiable functions to approxi-
mate the sign function in BinaryConnect. This allows for more accurate computation
of gradients during training. As a result, binary neural networks and 1-bit networks
converge more easily during the training process, leading to improved network
performance and higher accuracy. These differentiable approximations have signif-
icantly advanced the field of binary neural networks and made them more practical
and effective for various applications.

2.3 Quantization

BinaryConnect and BinaryNet use simple quantization methods where the binary
weights are generated by taking the sign of full-precision weights after their update.
However, this approach may lead to significant quantization errors.

Before discussing new methods to improve the quantization process, let’s clarify
the notations used in XNOR-Net [53] for each layer in a convolutional neural
network. For each layer in a convolutional neural network, I is the input, W is
the weight filter, B is the binarized weight (+-1), and H is the binarized input.

In their work, Rastegari et al. [53] introduce binary weight networks (BWN) and
XNOR-Networks. BWN approximates weights with binary values, representing a
variation of binary neural networks. On the other hand, XNOR-Networks binarize
both weights and activation bits, making it a 1-bit network. Both networks utilize a
scaling factor.

In BWN, the real-valued weight filter W is estimated using a binary filter B and
a scaling factor . α. The convolutional operation is then approximated as follows:

.I ∗ W ≈ (I ⊕ B)α, (2.6)

where . ⊕ indicates a convolution without multiplication. By introducing the scaling
factor, binary weight filters reduce memory usage by a factor of .32× compared to
single-precision filters. To ensure W is approximately equal to . αB, BWN defines an
optimization problem, and the optimal solution is:

.B∗ = sign(W), (2.7)

.α∗ = WT sign(W)

n
=

Σ |Wi |
n

= 1

n
||Wr||l1 . (2.8)

2.3 Quantization 11

Indeed, in both BWN and XNOR-Networks, the optimal estimation of binary
weight filters involves taking the sign of weight values. The optimal scaling factor,
. α, for BWN is the absolute average of the absolute weight values. This scaling
factor is crucial in the calculation of gradients during back propagation, allowing
for effective weight updates.

For XNOR-Networks, another scaling factor, . β, is used when binarizing the
input I into H . The core idea of XNOR-Networks is similar to BWN, but the
introduction of . β during activation binarization provides additional optimization
benefits. The experiments demonstrate that this approach significantly outperforms
BinaryConnect and BNN on ImageNet.

In Xu et al.’s work [72], a trainable scaling factor is defined for both weights
and activations, enhancing the adaptability and performance of quantized neural
networks.

LQ-Nets [76] quantize both weights and activations using arbitrary bit widths,
including 1 bit. The learnable nature of the quantizers allows them to be compatible
with bitwise operations, preserving the fast inference benefits of properly quantized
neural networks.

Based on XNOR-Net [53], HORQ [37] introduces a high-order binarization
scheme to achieve a more accurate approximation while retaining the advantages of
binary operations. High-order residual quantization (HORQ) calculates the residual
error and then performs additional thresholding operations to further approximate
the residual. This binary approximation of the residual can be considered a higher-
order binary input. Similar to XNOR-Net, HORQ defines the first-order residual
tensor .R1(x) by computing the difference between the real input and the first-order
binary quantization:

.R1(x) = X − β1H1 ≈ β2H2, (2.9)

where .R1(x) is a real value tensor. By this analogy, .R2(x) can be seen as the second-
order residual tensor, and .β3H3 also approximates it. After recursively performing
the above operations, they obtain order-K residual quantization:

.X =
KΣ

i=1

βiHi. (2.10)

During the training of the HORQ network, the input tensor can be reshaped
into a matrix, allowing it to be expressed as any order of residual quantization.
By considering higher-order residual approximations, HORQ-Net achieves a more
accurate representation of binary values. Experimental results demonstrate that
HORQ-Net outperforms XNOR-Net in terms of accuracy on the CIFAR dataset.

ABC-Net [38] is another network designed to improve the performance of binary
networks. ABC-Net approximates the full-precision weight filter W with a linear

12 2 Binary Neural Networks

combination of M binary filters .B1, B2, . . . , BM ∈ {+1,−1} such that . W ≈ α1β1+
. . . + αMβM . These binary filters are fixed as follows:

.Bi = Fui
(W) := sign(W̄ + uistd(W)), i = 1, 2, . . . , M, (2.11)

where . W̄ and .std(W) are the mean and standard derivation of W . For activations,
ABC-Net employs multiple binary activations to alleviate information loss. Like the
binarization weights, the real activation I is estimated using a linear combination of
N activations .A1, A2, . . . , AN such that .I = β1A1 + . . . + βNAN , where

.A1, A2, . . . , AN = Hv1(R),Hv2(R), . . . , HvN
(R). (2.12)

.H(R) in Eq. 2.12 is a binary function, h is a bounded activation function, I is
the indicator function, and v is a shift parameter. Unlike the input weights, the
parameters . β and v are trainable. Without explicit linear regression, the network
tunes .β '

ns and . v'
ns during training and is fixed for testing. They are expected to learn

and utilize the statistical features of full-precision activations.
Ternary-binary network (TBN) [57] is a convolutional neural network with

ternary inputs and binary weights. It leverages accelerated ternary-binary matrix
multiplication, using efficient operations like XOR, AND, and bit count commonly
found in standard CNNs. TBN achieves an optimal trade-off between memory,
efficiency, and performance. Wang et al. [59] propose a two-step quantization
framework (TSQ) that decomposes network quantization into two stages: code
learning and transformation function learning based on the learned codes. TSQ is
mainly designed for 2-bit neural networks.

LBCNN [28] introduces a local binary convolution (LBC) layer, inspired by local
binary patterns (LBP) used in image descriptors, especially in face recognition.
The LBC layer comprises fixed, sparse, and predefined binary convolutional filters
that remain unchanged during training. It includes a nonlinear activation function
and learnable linear weights. The linear weights combine the activated filter
responses, approximating the corresponding activated filter responses of a standard
convolutional layer. The LBC layer significantly reduces the number of learnable
parameters, offering parameter savings of 9x to 169x compared to a standard
convolutional layer. Additionally, due to the sparse and binary nature of the weights,
it results in up to 169x savings in model size when compared to conventional
convolutions.

In MCN [61], modulation filters (M-Filters) are introduced to recover binarized
filters. M-Filters are designed to approximate unbinarized convolutional filters
within an end-to-end framework. Each layer shares only one M-Filter, leading to
a significant reduction in model size. To reconstruct the unbinarized filters, MCN
employs a modulated process based on the M-Filters and binarized filters. Figure 2.1
illustrates an example of the modulation process. In this example, the M-Filter
has four planes, each expanding to a 3D matrix according to the channels of the
binarized filter. The reconstructed filter Q is obtained through the . ◦ operation
between the binarized filter and each expanded M-Filter.

2.3 Quantization 13

Fig. 2.1 Modulation process based on an M-Filter

Fig. 2.2 MCNs’ convolution

As depicted in Fig. 2.2, the reconstructed filters Q are utilized to compute the
output feature maps F . Figure 2.2 shows four planes, resulting in four channels in
the feature maps. The key advantage of MCN’s convolution is that it maintains the
same number of input and output channels for each feature map, facilitating module
replication and easy implementation of MCNs.

Unlike previous approaches that independently binarize each filter, Bulat et
al. [8] propose parameterizing the weight tensor of each layer using a matrix
or tensor decomposition. The binarization process involves using a quantization
function (e.g., sign function) for the reconstructed weights, while computation in
the latent factorized space is performed in the real domain. This approach offers
several advantages. First, the latent factorization enforces a coupling of filters
before binarization, leading to a significant improvement in the accuracy of trained
models. This coupling allows the model to capture more complex and fine-grained
features, contributing to higher accuracy in tasks. Second, during training, each
convolutional layer’s binary weights are parametrized using a real-valued matrix
or tensor decomposition. However, during inference, reconstructed (binary) weights
are used, which retains the efficiency benefits of binary neural networks during the
testing phase.

14 2 Binary Neural Networks

In contrast to previous approaches that use the same binary method for both
weights and activations, Huang et al. [24] propose a different approach. They
believe that the best performance for binarized neural networks can be achieved
by applying different quantization methods to weights and activations. In their
method, they simultaneously binarize the weights while quantizing the activations.
This simultaneous approach aims to reduce bandwidth.

ReActNet [43] introduces a novel approach to binarized neural networks. It
replaces the traditional sign function with ReAct-Sign and the PReLU function
with ReAct-PReLU. These operations involve a simple channel-wise reshaping and
shifting operation for the activation distribution. In ReAct-Sign and ReAct-PReLU,
the parameters can be updated during training, allowing the network to learn and
adapt to the data. This feature makes ReActNet more flexible and capable of
capturing complex patterns in the data, leading to improved performance compared
to traditional binarized neural networks.

Compared to XNOR-Net [53], both HORQ-Net [37] and ABC-Net [38] use
multiple binary weights and activations, leading to improved performance on binary
tasks. However, this improvement comes at the cost of increased complexity, which
goes against the initial intention of binary neural networks to be efficient and speedy.
To address this challenge, new neural network architectures are continuously being
explored. MCN [61] and LBCNN [28] propose innovative filters while quantizing
parameters. Additionally, they introduce new loss functions to learn these additional
filters.

2.4 Structural Design

Indeed, the fundamental structure of networks like BinaryConnect [12] and Bina-
ryNet [25] closely resembles that of traditional convolutional neural networks,
which may not be optimally suited for binary processing. As a result, researchers
have sought to modify the architecture of binary neural networks to enhance their
accuracy.

In XNOR-Net [53], the block structure in a typical CNN is changed to further
decrease information loss due to binarization. A typical block in a CNN typically
contains different layers in the following order: 1-Convolutional, 2-BatchNorm, 3-
Activation, and 4-Pooling. Before binarization, the input is normalized to have zero
means. This normalization step is crucial in minimizing quantization error during
thresholding at zero. The order of the layers in XNOR-Net is shown in Fig. 2.3.

In the context of Bi-Real Net [44], the poor performance of 1-bit CNNs is
attributed to their limited representation capacity. Representation capacity refers
to the number of possible configurations of a variable, which could be a scalar,
vector, matrix, or tensor. To address this limitation and increase the representation
capability of 1-bit CNNs, Bi-Real Net proposes a straightforward shortcut. The
shortcut in Bi-Real Net preserves the real-valued activations before the sign
function, effectively increasing the network’s representation capacity. The structure

2.4 Structural Design 15

Fig. 2.3 A block in XNOR-Net

Fig. 2.4 1-bit CNN with shortcut

of the block is depicted as “Sign . → 1-bit convolution . → batch normalization . →
addition operator” in Fig. 2.4. The shortcut connects the input activations, which
pass through the sign function in the current block, to the output activations after
the batch normalization in the same block. These two sets of activations are then
combined using an addition operator. The resulting combined activations are then
passed to the sign function in the subsequent block.

By introducing this shortcut and preserving the real activations, Bi-Real Net
seeks to enhance the expressiveness of 1-bit CNNs, ultimately improving their
performance and accuracy in various tasks.

BinaryDenseNet [6] is a new binary neural network (BNN) architecture that
addresses the main drawbacks of BNNs. It is based on DenseNets [23], which
utilize shortcut connections to maintain the information flow throughout the depth
of the network. However, the bottleneck design in DenseNets reduces the flow of
information between layers, which is not suitable for BNNs due to their limited
representation capacity. To overcome this limitation, BinaryDenseNet increases the
growth rate or the number of blocks in the architecture to achieve satisfactory
performance. Specifically, to maintain the same number of parameters as a given
BinaryDenseNet, the growth rate is halved, and the number of blocks is doubled
simultaneously. The architecture of BinaryDenseNet is shown in Fig. 2.5.

16 2 Binary Neural Networks

Fig. 2.5 BinaryDenseNet

MeliusNet [4] introduces a novel architecture that utilizes alternating Dense-
Blocks to increase the feature capacity. Additionally, they propose an Improvement-
Block to enhance the quality of the features. This approach enables 1-bit CNNs to
achieve accuracy comparable to the popular compact network MobileNet-v1 while
maintaining similar model size, number of operations, and accuracy. The building
blocks of MeliusNet are shown in Fig. 2.6.

Group-Net [81] is another approach that enhances the performance of 1-bit
CNNs through structural design. The inspiration behind Group-Net comes from
the idea of a fixed number of binary digits representing a floating-point number in
a computer. Group-Net proposes a novel approach to decompose a network into
binary structures while ensuring that its representability is preserved. Instead of
directly quantizing the network via “value decomposition,” Group-Net leverages
this structured approach.

Bulat et al. [9] were pioneers in exploring the impact of neural network bina-
rization on localization tasks, such as human pose estimation and face alignment.
They introduced a novel hierarchical, parallel, and multiscale residual architecture
that leads to remarkable performance improvements over the standard bottleneck
block, all while keeping the number of parameters unchanged. This achievement
effectively bridges the gap between the original network and its binarized version.
The new architecture introduced by Bulat et al. enhances the size of the receptive
field, which enables the network to capture more context from the input data.
Additionally, it improves the gradient flow within the network, leading to more
efficient and effective learning.

LightNN [15] is a novel model that replaces multiplications in traditional neural
networks with efficient shift and add operations. This innovative approach forms a
new kind of model that significantly reduces the computational complexity while
maintaining high accuracy.

In this section, we have discussed several works that modify the structure of
binary neural networks, leading to improved performance and convergence. XNOR-
Net and Bi-Real Net make subtle adjustments to the original networks to enhance

2.5 Loss Design 17

Fig. 2.6 Building blocks of MeliusNet (c denotes the number of channels in the feature map)

their representation capacity. On the other hand, MCN introduces new filters and
convolutional operations to improve the overall accuracy of the network. Moreover,
the loss function is also adapted to incorporate the new filters, which will be further
elaborated in Sect. 2.5.

2.5 Loss Design

In binary neural networks (BNNs), the loss function plays a crucial role in
estimating the difference between the actual and predicted values of the model.
While classical loss functions like least squares loss and cross-entropy loss are
commonly used in standard neural networks for classification and regression tasks,
specific loss functions have been developed to suit the unique requirements of
BNNs.

In MCNs [61], a novel loss function is introduced, which combines three
components: filter loss, center loss, and softmax loss, in an end-to-end framework.
The overall loss function in MCNs is composed of two main parts:

.L = LM + LS. (2.13)

18 2 Binary Neural Networks

The first part .LM is:

.LM = θ

2

Σ
i,l

||||Cl
i − Ĉl

i ◦ Ml
||||2 + λ

2

Σ
m

||||fm(Ĉ,M) − f̄ (Ĉ,M)
||||2, (2.14)

where C is the full-precision weights, . Ĉ is the binarized weights, M is the M-Filters
defined in Sect. 4.5.3, . fm denotes the feature map of the last convolutional layer
for the mth sample, and . f̄ denotes the class-specific mean feature map of previous
samples. The first entry of .LM represents the filter loss, while the second entry
calculates the center loss using a conventional loss function, such as the softmax
loss.

In PCNNs (projection convolutional neural networks) [19], a novel projection
loss is introduced for discrete back propagation. It defines the quantization of the
input variable as a projection onto a set, enabling the use of a projection loss for
optimization.

BONNs (Bayesian-optimized 1-bit CNNs) [77] propose a Bayesian-optimized
1-bit CNN model, aiming to significantly improve the performance of 1-bit CNNs.
BONNs incorporate prior distributions of full-precision kernels, features, and
filters into a Bayesian framework to construct 1-bit CNNs comprehensively in an
end-to-end manner. In BONNs, the quantization error is denoted as y, and the
full-precision weights as x. To minimize the reconstructed error, they maximize
.p(x|y), optimizing x for quantization. This optimization problem can be converted
to a maximum a posteriori (MAP) since the distribution of x is known. For feature
quantization, a similar method is employed; the Bayesian loss is as follows:

. LB = λ

2

lΣ
l=1

Cl
oΣ

i=1

Cl
iΣ

n=1

{||||k̂l,i
n − wl ◦ kl,i

n

||||2
2

+ v(k
l,i
n+ − μl

i+)T (Ψ l
i+)−1(k

l,i
n+ − μl

i+)

+ v(k
l,i
n− − μl

i−)T (Ψ l
i−)−1(k

l,i
n− − μl

i−)

vlog(det (Ψ l))} + θ

2

MΣ
m=1

{||||fm − cm

||||2

+
NfΣ
n=1

[
σ−2

m,n(fm,n − cm,n)
2 + log(σ 2

m,n)
]
}, (2.15)

where k is the full-precision kernels, w is the reconstructed matrix, v is the variance
of y, . μ is the mean of the kernels, . Ψ is the covariance of the kernels, . fm are the
features of class m, and c is the mean of . fm.

In the work by Zheng et al. [78], they introduce a novel quantization loss
that measures the discrepancy between binary weights and learned real values.
The theoretical analysis provided by Zheng et al. demonstrates the importance of

2.6 Optimization 19

minimizing this weight quantization loss to enhance the performance of binarized
neural networks. On the other hand, Ding et al. [14] propose the use of a distribution
loss to explicitly regulate the activation flow within the network. They develop a
systematic framework to formulate this distribution loss, which helps in guiding
the training process effectively. The empirical results from Ding et al.’s work
illustrate that their proposed distribution loss is robust in terms of selecting training
hyperparameters.

These methods all aim to minimize the error and information loss of quantization,
which improves the compactness and capacity of 1-bit CNNs.

2.6 Optimization

Absolutely, researchers have been actively seeking new training methods to enhance
the performance of binary neural networks (BNNs) and overcome their inherent
limitations. These methods are aimed at improving the effectiveness of BNNs
across various tasks and applications. One approach involves integrating techniques
from other fields into BNNs. By borrowing insights and methods from different
domains, researchers aim to augment the capabilities and performance of BNNs.
This cross-disciplinary approach allows for innovative solutions that can address
specific challenges faced by binary networks. Moreover, improving the training
process is a key focus for enhancing BNNs. Researchers are exploring modifications
to the optimization algorithms used in classical BNNs. These adaptations target
the optimization process to achieve better convergence, stability, and overall
performance.

The work by Sari et al. [60] sheds light on the importance of the BatchNorm
layer in the training process of binary neural networks (BNNs). They demonstrate
that BatchNorm plays a crucial role in preventing exploding gradients, which
can be a significant issue in BNNs due to the binary nature of the weights.
Their findings also suggest that the standard initialization methods commonly
used in full-precision networks may not be suitable for BNNs, highlighting the
need for specialized techniques to handle weight initialization in binary networks.
Additionally, they provide insights into the components of BatchNorm, showing
that only minibatch centering is necessary, which can simplify the implementation
of BatchNorm in BNNs. On the other hand, the experiments conducted by Alizadeh
et al. [1] offer valuable empirical evidence regarding common tricks used in binary
training models. They show that techniques like gradient and weight clipping, often
employed to stabilize training in BNNs, are primarily needed during the final stages
of training to achieve the best performance.

XNOR-Net++ [10] presents an innovative training algorithm for 1-bit convo-
lutional neural networks (CNNs), building upon the foundation of XNOR-Net. In
XNOR-Net++, the authors introduce a novel approach to combine activation and
weight scaling factors into a single scalar, which is learned discriminatively through
back propagation. By unifying these scaling factors, the method aims to streamline

20 2 Binary Neural Networks

the training process and enhance the efficiency of 1-bit CNNs. Additionally, XNOR-
Net++ explores various strategies to construct the shape of the scale factors while
ensuring that the computational budget remains fixed.

The work by Leng et al. [35] draws inspiration from the alternating direction
method of multipliers (ADMM) to address the challenges of training binary neural
networks. By leveraging the principles of ADMM, they propose a novel approach
to decouple the continuous parameters from the discrete constraints in the network.
This decoupling allows them to break down the original complex optimization
problem into several subproblems, each with its own set of constraints. To solve
these subproblems efficiently, Leng et al. employ different gradient and iterative
quantization algorithms. By doing so, they achieve considerably faster convergence
rates compared to traditional optimization methods used in binary neural networks.

In the work of deterministic binary filters (DBFs) [56], the researchers propose
a novel approach to learn weighted coefficients of predefined orthogonal binary
bases instead of directly learning the convolutional filters, as is typically done in
conventional methods. DBFs generate filters by representing them as a linear com-
bination of orthogonal binary codes. These orthogonal binary bases are predefined,
and the learning process focuses on finding the optimal weighted coefficients for
these bases. By doing so, the filters can be efficiently generated in real time.

BinaryRelax [75] presents a two-phase algorithm for training convolutional
neural networks (CNNs) with quantized weights, including binary weights. The
goal is to overcome the challenges posed by hard constraints on binary weights
during training. In the first phase, BinaryRelax relaxes the hard constraint of
binary weights into a continuous regularizer using the Moreau envelope [48].
This regularization term is defined as the squared Euclidean distance between the
weights and the set of quantized weights. By gradually increasing the regularization
parameter, BinaryRelax narrows the gap between the continuous weights and the
quantized state, effectively transitioning toward a binary solution. In the second
phase, BinaryRelax introduces the same quantization scheme but with a small
learning rate. This guarantees that the weights eventually converge to fully quantized
binary values.

CBCNs [41] propose a novel approach to enhance the capacity of binarized
convolutional features using circulant filters (CiFs) and circulant binary convolution
(CBConv). CiFs are 4D tensors of size .K × K × H × H , generated by applying
a circulant transfer matrix M to a learned filter. The matrix M rotates the learned
filter at different angles, effectively expanding its representation capacity. To create
a CiF, the original 2D .H × H learned filter is transformed into a 3D tensor by
replicating it three times and concatenating them. This 3D tensor is then combined
with the circulant transfer matrix M to form the 4D CiF. By utilizing circulant filters
and circulant binary convolution, CBCNs can improve the representation capacity
of binarized neural networks without altering the model size (Fig. 2.7).

Rectified binary convolutional networks (RBCNs) [40] introduce a novel
approach to train 1-bit binary networks using a generative adversarial network
(GAN). The training process involves using the guidance of the corresponding
full-precision model, which leads to significant performance improvements in

2.6 Optimization 21

Fig. 2.7 The generation of CiF

1-bit CNNs. The key innovation in RBCNs is the incorporation of rectified
convolutional layers, which are designed to be generic and flexible. These layers
can be easily integrated into existing deep convolutional neural networks (DCNNs)
like WideResNets and ResNets.

Martinez et al. [45] focus on minimizing the discrepancy between the binary
output and the corresponding real-valued convolution in 1-bit CNNs. They propose
a real-to-binary attention matching approach that is tailored for training these
networks. Additionally, they introduce a progressive bridging strategy to reduce the
architectural gap between real and binary networks through a sequence of teacher-
student pairs.

In contrast, Bethge et al. [5] take a different approach by directly training a
binary network from scratch, without relying on pre-trained full-precision models
or other standard methods. Their training implementation is based on the BMXNet
framework [74].

Helwegen et al. [22] highlight that latent weights with real values in binary neural
networks serve a different purpose compared to weights in real-valued networks.
They propose the binary optimizer (Bop), specifically designed for BNNs, to handle
the unique characteristics of binary weights effectively during the optimization
process.

BinaryDuo [30] presents a novel training scheme for binary activation networks
by coupling two binary activations into a ternary activation during training. They
achieve this by first decoupling a ternary activation into two binary activations,
effectively doubling the number of weights. However, to maintain the parameter
size of the decoupled model and the baseline model, they reduce the coupled ternary
model. The independent update of each weight after decoupling allows for better
optimization, as the two weights no longer share the same value.

BENN [80] leverages classical ensemble methods to enhance the performance
of 1-bit CNNs. While ensemble techniques were traditionally believed to have
limited impact on robust classifiers like deep neural networks, BENN’s analysis
and experiments demonstrate that ensembles are exceptionally effective in boosting
BNNs. The ensemble strategies used in BENN draw from various works such as
[7, 11, 49].

22 2 Binary Neural Networks

Table 2.1 Experimental results of some famous binary methods on ImageNet

Full-precision

Binarized accuracy accuracy

Methods Weights Activations Model Top 1 Top 5 Top 1 Top 5

XNOR-Net [53] Binary Binary ResNet-18 51.2 73.2 69.3 89.2

ABC-Net [38] Binary Binary ResNet-50 70.1 89.7 76.1 92.8

LBCNN [27] Binary – – 62.43a – 64.94 –

Bi-Real Net [44] Binary Binary ResNet-34 62.2 83.9 73.3 91.3

RBCN [40] Binary Binary ResNet-18 59.5 81.6 69.3 89.2

BinaryDenseNet
[6]

– – – 62.5 83.9 – –

. a 13. ×13 Filter

TentacleNet [47] builds on the theory of ensemble learning and makes further
advancements beyond BENN. TentacleNet demonstrates that binary ensembles can
achieve high accuracy while requiring fewer computational resources.

BayesBiNN [46] adopts a principled approach to discrete optimization by using a
distribution over the binary variable. They introduce a Bayesian learning rule [29] to
estimate a Bernoulli approximation to the posterior, resulting in a principled method
for dealing with binary neural networks (Table 2.1).

2.7 Algorithms for Binary Neural Networks

Binarization, the most extreme form of quantization, is the main focus of this book.
It involves representing data using only one bit, either . −1 (or 0) or +1, resulting in
1-bit quantization. Both weights and activations in a binary neural network can be
compressed into a single bit, leading to significant memory savings and hardware-
friendly advantages, such as faster execution, reduced memory consumption, and
improved power efficiency. Groundbreaking works like BNN [25] and XNOR-Net
[53] have demonstrated the effectiveness of binarization, with XNOR-Net achieving
up to 58.

Since the advent of binary neural networks, extensive research has been con-
ducted in computer vision and machine learning fields [21, 42, 54], leading to their
application in various tasks, including image classification [12, 44, 51, 53, 66, 73],
object detection [64, 67, 70, 71], point cloud processing [50, 68], object reiden-
tification [69], and more. Binarization’s hardware-friendly benefits and practical
applications have made it a promising area of research in recent years.

Binarizing a layer in a neural network helps identify its significance and impact
on performance. If performance suffers after binarization, the layer is crucial for the
network. This process aids explainable machine learning and verifies if binarization
preserves essential information. Understanding binarized models contributes to
improving binary neural networks.

2.7 Algorithms for Binary Neural Networks 23

Researchers have extensively studied model binarization to understand its behav-
iors and its relationship with the architecture of deep neural networks. Exploring
binary neural networks helps answer fundamental questions about network topology
and deep network functionality. Thorough exploration of binary neural network
studies contributes to a better understanding of effective and reliable deep learning
models. Notable works, like Bi-Real Net [44], have revealed how components
in binary neural networks function, such as incorporating shortcuts to mitigate
information loss due to binarization.

The structure of shortcuts in binary neural networks, similar to ResNet shortcuts,
allows for better information flow between shallow and deep layers during both
forward and backward propagation. This mechanism helps in avoiding issues like
gradient disappearance and improves the overall performance of the network.
Ensemble approaches in binary neural networks, like building weak classifier
groups, can lead to performance improvements. However, they may also encounter
overfitting problems. Understanding the trade-off between the number of neurons
and the bit width is essential, as it can influence the network’s performance.
Interestingly, real-valued neurons may not be necessary in deep neural networks,
aligning with the idea of biological neural networks. Reducing the bit width of
specific layers can be an efficient method to examine the interpretability of deep
neural networks. Investigating how sensitive different layers are to binarization is
crucial in designing effective binary neural networks. Typically, the first and last
layers in binary neural networks should be kept at higher precision since they play
a more critical role in predicting the network’s output. This section attempts to state
the nature of binary neural networks by introducing some representative work.

2.7.1 BNN: Binary Neural Network

Given an N -layer CNN model, we denote its weight set as .W = {wn}Nn=1 and the
input feature map set as .A = {an

in}Nn=1. The .wn ∈ R
Cn

out×Cn
in×Kn×Kn

and . an
in ∈

R
Cn

in×Wn
in×Hn

in are the convolutional weight and the input feature map in the n-th
layer, where . Cn

in, .C
n
out , and . K

n, respectively, represent the input channel number,
the output channel number, and the kernel size. In addition, .Wn

in and .Hn
in are the

width and height of the feature maps. Then, the convolutional outputs .an
out can be

technically formulated as:

.an
out = wn ⊗ an

in, (2.16)

where . ⊗ represents the convolution operation. In this book, we omit the nonlinear
function for simplicity. Following the prior works [12, 25], binary neural network
(BNN) intends to represent . wn and . an in a binary discrete set as:

.B := {−1(0),+1}.

24 2 Binary Neural Networks

Thus, the 1-bit format of . wn and . an is respectively .bw
n ∈ B

Cn
out×Cn

in×Kn×Kn
and

.ba
n
in ∈ B

Cn
in×Wn

in×Hn
in such that the efficient XNOR and bit-count instructions can

approximate the floating-point convolutional outputs as:

.an
out ≈ bw

n O ba
n
in , (2.17)

where . ◦ represents channel-wise multiplication and . O denotes XNOR and bit-count
instructions.

However, this quantization mode will cause the output amplitude to increase
dramatically, different from the full-precision convolution calculation, and cause
the homogenization of characteristics [53]. Several novel objects are proposed to
address this issue, which will be introduced in the following.

2.7.2 XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks

The scaling factor was first proposed by XNOR-Net [53] to solve this problem. The
weights and the inputs to the convolutional and fully connected layers in XNOR-
Nets are approximated with binary values . B.

The XNOR-Net binarization approach seeks to identify the most accurate
convolutional approximations. Specifically, XNOR-Net employs a scaling factor,
which plays a vital role in the learning of BNNs, and improves the forward pass of
BNNs as:

.an
out ≈ αn ◦ (bw

n O ba
n
in), (2.18)

where .αn = {αn
1 , α

n
2 , . . . , α

n
Cn

out
} ∈ R

Cn
out+ is known as the channel-wise scaling

factor vector to mitigate the output gap between Eq. 2.16 and its approximation of
Eq. 2.18. We denote .A = {αn}Nn=1. Since the weight values are binary, XNOR-Net
can implement the convolution with additions and subtractions. In the following,
we state the XNOR operation for a specific convolution layer, thus omitting the
superscript n for simplicity. Most existing implementations simply follow earlier
studies [44, 53]to optimize . A based on nonparametric optimization as:

.α∗,bw∗ = arg minα,bwJ (α,bw), (2.19)

.J (α,bw) = ||w − αn ◦ bw||22. (2.20)

By expanding Eq. 2.20, we have:

.J (α,bw) = α2(bw)
Tbw − 2α ◦ wTbw + wTw (2.21)

2.7 Algorithms for Binary Neural Networks 25

where .bw ∈ B. Thus, .(bw)Tbw = Cin × K × K . .wTw is also a constant due to . w
being a known variable. Thus, Eq. 2.21 can be rewritten as:

.J (α,bw) = α2 × Cin × K × K − 2α ◦ wTbw + constant. (2.22)

The optimal solution can be achieved by maximizing the following constrained
optimization:

.bw∗ = argmax
bw

wTbw, s.t. bw ∈ B, (2.23)

which can be solved by the sign function:

. bwi =
{+1 wi ≥ 0

−1 wi < 0

which is the optimal solution and is also widely used as a general solution to BNNs
in the following numerous works [44]. To find the optimal value for the scaling
factor . α∗, we take the derivative of .J (·) w.r.t. . α and set it to zero as:

.α∗ = wTbw

Cn
in × Kn × Kn

. (2.24)

By replacing . bw with the sign function, we have that a closed-form solution of . α
can be derived via the channel-wise absolute mean (CAM) as:

.αi = ||wi,:,:,:||1
Cin × K × K

(2.25)

.αi = ||wi,:,:,:||1
M

. Therefore, the optimal estimation of a binary weight filter can be
achieved simply by taking the sign of weight values. The optimal scaling factor is
the average of the absolute weight values.

Based on the explicitly solved . α∗, the training objective of the XNOR-Net-like
BNNs is given in a bilevel form:

.

W∗ = argmin
W
L(W;A∗),

s.t. arg min
αn,bwn

J (α,bw),
(2.26)

which is also known as hard binarization [44]. In the following, we show some
variants of such a binarization function.

26 2 Binary Neural Networks

2.7.3 SA-BNN: State-Aware Binary Neural Network

Binary neural networks (BNNs) have received much attention due to their memory
and computation efficiency. However, the sizable performance gap between BNNs
and their full-precision counterparts hinders BNNs from being deployed in resource-
constrained platforms. The challenge of the performance drop instinctively comes
from the minimal binarization states .{−1, 1}, which would bring many propagation
errors in forward and backward procedures and lead to misleading weight update.

We want to suggest a method to make the training more efficient by suppressing
the fluctuation of the weight update. Specifically, we find that existing methods
[44, 53] possess the identical gradient amplitude for all quantization states .{−1, 1}.
According to our analysis, the frequent weight flip is more likely to happen in this
case. The intuition here is about “whether we can calibrate the amplitude of the two
states slightly distinctive to make their chance of weight flip different to increase
the difficulty of frequent weight flip further?” Inspired by this, a novel state-aware
binary neural network (SA-BNN) [39] equipped with a well-designed state-aware
gradient is proposed in this paper. Expressly, we set separate learnable gradient
coefficients for different states. In this way, the unnecessary weight update can
be impeded efficiently. Besides, we lead to a theorem that the state-aware gradient
can effectively mitigate the frequent weight flip problem, alleviating the ineffective
update issue in BNN optimization.

2.7.3.1 Method

To suppress the frequent weight flips in BNNs, we propose the following state-aware
gradient to stabilize the optimization:

.
∂L

∂x
=

{
∂L
∂x̂

(τ−1
∂x̂
∂x

) if x̂ = −1
∂L
∂x̂

(τ1
∂x̂
∂x

) otherwise
, (2.27)

where .τ−1, τ1 ∈ R are learnable coefficients, which are introduced on the activation
gradients to distinctively treat the two states. We do not apply the distinguishable
parameters .τ = {τ−1, τ1} on the weight gradient (. ∂L

∂w
), since the weights themselves

are learnable in the training process. It is equivalent to regard the state-aware
coefficients . τ and the weights as a whole. Therefore, we do not consider the
state-aware gradient on the weights and instead focus on that on activation in
the following. According to Eq. 2.27, we leverage an extra scale factor on the
activation gradients for each binarization state to impose a mild constraint on the
weight updating. When the two scale factors are equal (.τ−1 = τ1) , it reduces
to the traditional weight updating with state-consistent gradients. Otherwise, it is
the proposed state-aware gradient-based BNNs. Next, we analyze the difference
between these two mechanisms.

2.7 Algorithms for Binary Neural Networks 27

Proposition 2.1 The state-aware gradients (.|τ−1| /= |τ1|) can suppress frequent
weight flip effectively compared with the corresponding state-consistent gradients
(.|τ−1| = |τ1|), leading to more stable training.

Based on the gradient chain rule, the weight-updating procedure can be described
as:

.

wl,t+1 = wl,t − η
∂L

∂wl,t
= wl,t − η

∂L

∂x̂l+1,t (τ
l+1,t ∂x̂l+1,t

∂xl+1,t)
∂xl+1,t

∂ŵl,t

∂ŵl,t

∂wl,t

= wl,t − η
∂L

∂x̂l+1,t (τ
l+1,t ∂x̂l+1,t

∂xl+1,t)x̂
l,t ∂ŵl,t

∂wl,t

= wl,t − τ l+1,t bl,t ,

(2.28)

where . η is the learning rate, t represents the t-th iteration, and

. bl,t = η
∂L

∂x̂l+1,t

∂x̂l+1,t

∂xl+1,t x̂
l,t ∂ŵl,t

∂wl,t
.

For simplicity, we ignore the layer index superscript l in the following analysis.
According to Eq. 2.28, to enable a weight flip (namely, let .sign(wt+1) /= sign(wt)),
it requires to satisfy the constraints .sign(τ tbt) = sign(wt) and .|τ tbt | > |wt |, where
. | · | represents the amplitude of the input. We assume the initial state .sign(wt) = −1,
and the process is similar for the initial state .sign(wt) = 1.

1. If .|τ−1| = |τ1|, the flip probability from the iteration t to .t + 1 is:

.P(sign(wt) /= sign(wt+1)) = N|wt |/N, (2.29)

where .N|wt | represents the total number of . bt satisfying . sign(τ t
1b

t) = sign(wt)

and .|τ t
1b

t | > |wt |, and N represents the total number of b. Similarly, the flip
probability from the iteration .t + 1 to .t + 2 is

.P(sign(wt+1) /= sign(wt+2)) = N|wt+1|/N, (2.30)

where .N|wt+1| represents the total number of .bt+1 satisfying . sign(τ t+1
−1 bt+1) =

sign(wt+1) and .|τ t+1
−1 bt+1| > |wt+1|. Thus, the sequential flip probability from

the iteration t to .t + 2 is:

. P((sign(wt) /= sign(wt+1)) ∩ (sign(wt+1)

/= sign(wt+2))) = (N|wt |N|wt+1|)/N2. (2.31)

2. If .|τ−1| < |τ1|, it remains the same flip probability from the iteration t to . t + 1
as Eq. 2.29. However, when considering the flip probability from iteration .t + 1

28 2 Binary Neural Networks

to .t + 2, the number of .bt+1 that satisfying .|τ t+1
−1 bt+1| > |wt+1|, in this case, is

less than that in the case of .|τ−1| = |τ1|.
Therefore, the state-aware gradient (i.e., .|τ−1| < |τ1|) has a lower probability

of sequential weight flip compared with the conventional state-consistent meth-
ods (i.e., .|τ−1| = |τ1|):

.
P((sign(wt) /= sign(wt+1)) ∩ (sign(wt+1) /= sign(wt+2))||τ−1| < |τ1|)
< P ((sign(wt) /= sign(wt+1)) ∩ (sign(wt+1) /= sign(wt+2))||τ−1| = |τ1|).

(2.32)

3. If .|τ1| < |τ−1|, the process is similar to 2). The state-aware gradient also has a
lower probability of sequential weight flip as:

.
P((sign(wt) /= sign(wt+1)) ∩ (sign(wt+1) /= sign(wt+2))||τ1| < |τ−1|)
< P ((sign(wt) /= sign(wt+1)) ∩ (sign(wt+1) /= sign(wt+2))||τ−1| = |τ1|).

(2.33)

Based on the above analysis, we propose an efficient yet simple solution to realize
the state-aware gradient:

.xl+1 =
{

(sign(τ l
−1x

l) ∗ sign(wl))α if x̂ = −1
(sign(τ l

1x
l) ∗ sign(wl))α otherwise

. (2.34)

Compared to traditional BNNs, we multiply the scale . τ on the activation based on
its state. Note that our paper’s learnable coefficients . τ are per-channel granularity.
In this way, our SA-BNN is established in exchange for a small increase in
computational complexity (only an extra point-wise product between . τ and x).

In particular, Helwegen et al. [22] argue that latent weights are not necessary for
gradient-based optimization of BNNs, and they directly update the state of binarized
weights with:

.wt =
{−wt−1 if |gt | ≥ β and sign(gt) = sign(wt−1)

wt−1 otherwise
, (2.35)

where .gt = (1 − γ)gt−1 + γ ∂L
∂wt , . gt is the exponential moving average and . γ

is the adaptivity rate. Then, under the constraint of .γ = 1, it is easy for the
weight to flip when .| ∂L

∂wt | ≥ β and hard to flip when .| ∂L
∂wt | < β, in which . β

is consistent with the coefficients . τ in our method. However, the method in [22]
suppresses the weight flip equally for different states, while SA-BNN treats different
binarization states distinctively by employing an independent coefficient for each
state. SA-BNN can effectively suppress the frequent weight flip problem, alleviating
the ineffective update issue in BNN optimization. Moreover, unlike the handcrafted

2.7 Algorithms for Binary Neural Networks 29

hyperparameters . β, the coefficients . τ are learnable, avoiding careful tuning during
optimization.

Furthermore, Bai et al. [2] propose ProxQuant by formulating the quantized
network training as a regularized learning problem instead and optimizing it via
the prox-gradient method. Specifically, ProxQuant has access to additional gradient
information at non-quantized points, which avoids the misleading weight update in
training. However, unlike the ProxQuant, which suppresses the frequent weight flip
by designing a dedicated optimizer, SA-BNN alleviates this problem by introducing
independent learnable coefficients for different states, which can work with existing
methods for back propagation and stochastic gradient descent.

In addition, due to the non-differentiability of the sign function in the binarization
process, most existing works employ a surrogate for the gradients [44, 53], in
which the gradients are forced to be 0 for values outside .[−1,+1]. However, once
the value falls outside the truncation interval, the corresponding weight cannot be
updated anymore. This phenomenon greatly limits the training ability of backward
propagation [52]. Different from these methods (i.e., .τ−1 = τ1), our SA-BNN has
the ability to preserve more gradients through learnable coefficients, thus alleviating
the unreliable gradients in BNN optimization.

2.7.3.2 Experiments

We perform experiments on the large-scale dataset ImageNet (ILSVRC12) [55],
which contains approximately .1.2 million training images and 50K validation
images from 1000 categories. In our experiments, we employ .224 × 224 random
crop and center crop for training and inference, respectively. We use ResNet as
our backbone, including ResNet-18, ResNet-34, and ResNet-50 [21]. We use Adam
[33] with the momentum of . 0.9 and set the weight decay to be 0. For the 18-layer
SA-BNN, we run the training algorithm for 90 epochs with a batch size of 256.
The learning rate starts from .0.001 and is decayed twice by multiplying . 0.1 at the
75th and the 85th epoch. For the 34-layer SA-BNN, the training process includes
90 epochs, and the batch size is set to 256. The learning rate starts from .0.001 and
is multiplied by . 0.1 at the 60th and the 80th epoch, respectively. For the 50-layer
SA-BNN, the training process is 70 epochs, and the batch size is 64. The learning
rate starts from .0.0005 and is multiplied by . 0.1 at the 40th and the 60th epoch,
respectively.

We carry out a comparative study with six methods: IR-Net [52], Bop [22],
CI-Net [63], BONN [20], Bi-Real Net [44], and XNOR-Net [53] on ResNet-18,
ResNet-34, and ResNet-50 in Table 2.2. These six works are representative methods
of binarizing both weights and activations for CNNs and achieving state-of-the-art
results.

The comparison in Table 2.2 demonstrates that our SA-BNNs outperform other
networks by a considerable margin regarding the Top-1 accuracy. Note that the
results of the other six works are quoted directly from the corresponding references.
Specifically, the proposed SA-BNN with backbone ResNet-18 outperforms its

30 2 Binary Neural Networks

Table 2.2 Comparison on Top-1 and Top-5 accuracy (%) of SA-BNN with other state-of-the-art
binarization methods, including IR-Net [52], Bop [22], CI-Net [63], BONN [20], Bi-Real Net [44],
and XNOR-Net [53]. “FP” means full precision

SA-BNN IR-Net Bop CI-Net BONN Bi-Real Net XNOR-Net FP

ResNet-18 Top-1 61.7 58.1 56.6 59.9 59.3 56.4 51.2 69.3

Top-5 82.8 80.0 79.4 84.2 81.6 79.5 73.2 89.2

ResNet-34 Top-1 65.5 62.9 − 64.9 − 62.2 − 73.3

Top-5 85.8 84.1 − 86.6 − 83.9 − 91.3

ResNet-50 Top-1 68.7 − − − − 62.6 63.1 74.7

Top-5 87.4 − − − − 83.9 83.6 92.1

Epoch
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

10
20
30
40
50
60
70
80
90

Epoch

10
20
30
40
50
60
70

V
al

id
at

io
n

A
cc

ur
ac

y

V
al

id
at

io
n

A
cc

ur
ac

y

Top-1 Accuracy on ImageNet

XNOR-Net

SA-BNN
Bi-Real Net

95

XNOR-Net

SA-BNN
Bi-Real Net

95

Top-5 Accuracy on ImageNet

Fig. 2.8 Validation accuracy curves of SA-BNN, Bi-Real Net, and XNOR-Net with ResNet-18
backbone on ImageNet

counterpart Bi-Real Net by 5.3% and achieves a roughly 2% relative improvement
over CI-Net. Similar improvements can be observed for ResNet-34 and ResNet-50
networks. In Fig. 2.8, we plot the validation accuracy curves of XNOR-Net, Bi-
Real Net, and SA-BNN (without the contribution of PBN and SC). All networks
are implemented under the same hyperparameter setting. It clearly shows that our
method converges faster and better by learning distinctive gradient coefficients for
binarization states than XNOR-Net and Bi-Real Net. Moreover, our training curve
is smoother, indicating the training process is more stable. Therefore, SA-BNN is
more competitive than other state-of-the-art binary networks.

We further analyze the memory usage saving and speedup in Table 2.3. We
keep the weights and activations in the first convolutional and the last fully
connected layers to be full-precision [44, 53]. For a fair comparison, we use FLOPs
[44] and BOPs [3] to measure the total multiplication computation and bitwise
operations in SA-BNNs, respectively. For ResNet-18 and ResNet-34, the proposed
SA-BNNs reduce the memory usage by 11.14× and 15.81×, respectively, and
achieve computation reduction by 10.74× and 18.21×, in comparison with the full-
precision networks. Compared with Bi-Real Net, we obtain more than 4% accuracy
improvement on ResNet-18 with small additional memory and computational cost.

2.7 Algorithms for Binary Neural Networks 31

Table 2.3 Memory usage, FLOPs, and BOPs calculation in our method. “MU” represents
memory usage and “MS” represents memory saving

MU MS FLOPs BOPs Speedup

ResNet-18 SA-BNN 33.6 Mbit .11.14× .1.68 × 108 .1.08 × 1010 . 10.74×
Bi-Real Net 33.6 Mbit .11.14× .1.63 × 108 .1.04 × 1010 . 11.06×
XNOR-Net 33.7 Mbit .11.10× .1.67 × 108 .1.07 × 1010 . 10.86×
Full-precision 374.1 Mbit .− .1.81 × 109 .1.16 × 1011 . −

ResNet-34 SA-BNN 44.1 Mbit .15.81× .2.01 × 108 .1.29 × 1010 . 18.21×
Bi-Real Net 43.7 Mbit .15.97× .1.93 × 108 .1.24 × 1010 . 18.99×
XNOR-Net 43.9 Mbit .15.88× .1.98 × 108 .1.27 × 1010 . 18.47×
Full-precision 697.3 Mbit .− .3.66 × 109 .2.34 × 1011 . −

ResNet-50 SA-BNN 144.4 Mbit .5.43× .3.89 × 108 .2.49 × 1010 . 14.65×
Bi-Real Net 143.1 Mbit .5.48× .3.74 × 108 .2.39 × 1010 . 15.24×
XNOR-Net 143.2 Mbit .5.47× .3.81 × 108 .2.44 × 1010 . 14.96×
Full-precision 784.0 Mbit .− .5.70 × 109 .3.65 × 1011 . −

2.7.4 PCNN: Projection Convolutional Neural Networks

Modulated convolutional networks (MCNs) are presented in [62] to binarize kernels,
achieving better results than the baselines. However, in the inference step, MCNs
require reconstructing full-precision convolutional filters from binarized filters,
limiting their use in computationally limited environments. It has been theoretically
and quantitatively demonstrated that simplifying the convolution procedure via
binarized kernels and approximating the original unbinarized kernels is an up-and-
coming solution toward DCNNs’ compression.

Although prior BNNs significantly reduce storage requirements, they also gen-
erally have significant accuracy degradation compared to those using full-precision
kernels and activations. This is mainly because CNN binarization could be solved
by considering discrete optimization in the back propagation (BP) process. Discrete
optimization methods can often guarantee the quality of the solutions they find and
lead to much better performance in practice [16, 32, 34]. Second, the loss caused by
the binarization of CNNs has yet to be well studied.

We propose a new discrete back propagation via projection (DBPP) algorithm to
efficiently build our projection convolutional neural networks (PCNNs) [18] and
obtain highly accurate yet robust BNNs. Theoretically, we achieve a projection
loss by taking advantage of our DBPP algorithms’ ability to perform discrete
optimization on model compression. The advantages of the projection loss also
lie in that it can be jointly learned with the conventional cross-entropy loss in the
same pipeline as back propagation. The two losses are simultaneously optimized in
continuous and discrete spaces, optimally combined by the projection approach in
a theoretical framework. They can enrich the diversity and thus improve modeling
capacity. As shown in Fig. 2.9, we develop a generic projection convolution layer
that can be used in existing convolutional networks. Both the quantized kernels and

32 2 Binary Neural Networks

Fig. 2.9 In PCNNs, a new discrete back propagation via projection is proposed to build binarized
neural networks in an end-to-end manner. Full-precision convolutional kernels . Cl

i are quantized

by projection as . Ĉl
i,j . Due to multiple projections, the diversity is enriched. The resulting kernel

tensor . Dl
i is used the same as in conventional ones. Both the projection loss . Lp and the traditional

loss . Ls are used to train PCNNs. We illustrate our network structure basic block unit based on
ResNet, and more specific details are shown in the dotted box (projection convolution layer). ©
indicates the concatenation operation on the channels. Note that inference does not use projection
matrices . Wl

j and full-precision kernels . Cl
i

the projection are jointly optimized in an end-to-end manner. Our project matrices
are optimized but not for reference, resulting in a compact and efficient learning
architecture. As a general framework, other loss functions (e.g., center loss) can also
be used to further improve the performance of our PCNNs based on a progressive
optimization method.

Discrete optimization is one of the hot topics in mathematics and is widely
used to solve computer vision problems [32, 34]. Conventionally, the discrete
optimization problem is solved by searching for an optimal set of discrete values
concerning minimizing a loss function. This paper proposes a new discrete back
propagation algorithm that uses a projection function to binarize or quantize the
input variables in a unified framework. Due to the flexible projection scheme, we
obtain diverse binarized models with higher performance than the previous ones.

2.7 Algorithms for Binary Neural Networks 33

2.7.4.1 Projection

In our work, we define the quantization of the input variable as a projection onto a
set:

.o := {a1, a2, . . . , aU }, (2.36)

where each element . ai , .i = 1, 2, . . . , U satisfies the constraint . a1 < a2 < . . . < aU

and is the discrete value of the input variable. Then we define the projection of . x ∈ R
onto . o as:

. Po(ω, x) = argmin
ai

||ω ◦ x − ai||, i ∈ {1, . . . , U}, (2.37)

where . ω is a projection matrix and . ◦ denotes the Hadamard product. Equation 2.37
indicates that the projection aims to find the closest discrete value for each
continuous value x. Equation 2.37 is also equal to:

. Po(ω, x) = argmin
ai

||x − ω̂ ◦ ai||, i ∈ {1, . . . , U}, (2.38)

where . 1
ω

= ω̂. During the following derivation of back propagation, we still use
Eq. 2.37 as the basic equation, but in its implementation, one can also use Eq. 2.38
to achieve the optimization of PCNN.

2.7.4.2 Optimization

Minimizing .f (x) are restricted to discrete values, which becomes more challenging
when training a large-scale problem on a huge dataset [13]. We solve the problem
within the back propagation framework by considering (1) the inference process
of the optimized model is based on the quantized variables, which means that the
variable must be quantized in the forward pass (corresponding to the inference)
during training, and the loss is calculated based on the quantized variables; the
variable for back propagation process is not necessarily quantized, which however
needs to fully consider the relationship between quantized variables and their
counterparts. Based on the above considerations, we propose that in the kth iteration,
based on the projection in Eq. 2.37, .x[k] is quantized to .x̂[k] in the forward pass as:

.x̂[k] = Po(ω, x[k]), (2.39)

which is used to improve the back propagation process by defining an objective as:

.
min f (ω, x)

s.t. x̂
[k]
j = P

j
o(ωj , x),

(2.40)

34 2 Binary Neural Networks

where .ωj , j ∈ {1, . . . , J } is the j th projection matrix,1 and J is the total number of
projection matrices. To solve the problem in (2.40), we define our update rule as:

.x ← x[k] − ηδ
[k]
x̂

, (2.41)

where the superscript .[k + 1] is removed from x, . δx̂ is the gradient of .f (ω, x) with
respect to .x = x̂, and . η is the learning rate. The quantization process .x̂[k] ← x[k],
that is, .P j

o(ωj , x
[k]), is equivalent to finding the projection of .ωj ◦ (x + ηδ

[k]
x̂

) onto
. o as:

.x̂[k] = argmin
x̂

{||x̂ − ωj ◦ (x + ηδ
[k]
x̂

)||2, x̂ ∈ o}. (2.42)

Obviously, .x̂[k] is the solution to the problem in (2.42). So, by incorporating
(2.42) into .f (ω, x), we obtain a new formulation for (2.40) based on the Lagrangian
method as:

.min f (ω, x) + λ

2

JΣ
j

||x̂[k] − ωj ◦ (x + ηδ
[k]
x̂

)||2. (2.43)

The newly added part (right) shown in (2.43) is a quadratic function and is referred
to as projection loss.

2.7.4.3 Theoretical Analysis

We closely examine the projection loss in Eq. 2.43 and have:

.x̂[k] − ω ◦ (x + ηδ
[k]
x̂

) = x̂[k] − ω ◦ x − ω ◦ ηδ
[k]
x̂

. (2.44)

We only consider one projection function in this case, so the subscript j of . ωj

is omitted for simplicity. For multiple projections, the analysis is given after that.
In the forward step, only the discrete values participate in the calculation, so their
gradients can be obtained by:

.
∂f (ω, x̂[k])

∂x̂[k] = ω ◦ δ
[k]
x̂

, (2.45)

as . ω and . x̂ are bilinear with each other as .ω ◦ x̂[k]. In our discrete optimization
framework, the values of convolutional kernels are updated according to their
gradients. Taking Eq. 2.45 into consideration, we derive the update rule for .x̂[k+1]

1 Since the kernel parameters x are represented as a matrix, . ωj denotes a matrix as . ω.

2.7 Algorithms for Binary Neural Networks 35

as:

.x̂[k+1] = x̂[k] − η
∂f (ω, x̂[k])

∂x̂[k] = x̂[k] − ω ◦ ηδ
[k]
x̂

. (2.46)

By plugging Eq. 2.46 into Eq. 2.44, we achieve a new objective function or a loss
function that minimizes:

.||x̂[k+1] − ω ◦ x||, (2.47)

to approximate:

.x̂ = ω ◦ x, x = ω−1 ◦ x̂. (2.48)

We further discuss multiple projections, based on Eq. 2.48 and projection loss in
(2.43), and have:

.min
1

2

JΣ
j

||x − ω−1
j ◦ x̂j ||2. (2.49)

We set .g(x) = 1
2

ΣJ
j ||x −ω−1

j ◦ x̂j ||2 and calculate its derivative as .g'(x) = 0, and
we have:

.x = 1

J

JΣ
j

ω−1
j ◦ x̂j , (2.50)

which shows that multiple projections can better reconstruct the full kernels based
on binarized counterparts.

2.7.4.4 Projection Convolutional Neural Networks

Projection convolutional neural networks (PCNNs), shown in Fig. 2.9, work using
DBPP for model quantization. We accomplish this by reformulating our projection
loss shown in (2.43) into the deep learning paradigm as:

.Lp = λ

2

L,IΣ
l,i

JΣ
j

||Ĉl,[k]
i,j − -Wl,[k]

j ◦ (C
l,[k]
i + ηδ

Ĉ
l,[k]
i,j

)||2, (2.51)

36 2 Binary Neural Networks

where .Cl,[k]
i , .l ∈ {1, . . . , L}, i ∈ {1, . . . , I } denotes the ith kernel tensor of the lth

convolutional layer in the kth iteration. .Ĉl,[k]
i,j is the quantized kernel of .Cl,[k]

i via

projection .P
l,j
o , j ∈ {1, . . . , J } as:

.Ĉ
l,[k]
i,j = P

l,j
o (-Wl,[k]

j , C
l,[k]
i), (2.52)

where . -Wl,[k]
j is a tensor, calculated by duplicating a learned projection matrix . W

l,[k]
j

along the channels, which thus fits the dimension of .Cl,[k]
i . .δ

Ĉ
l,[k]
i,j

is the gradient at

.Ĉ
l,[k]
i,j calculated based on . LS , that is, .δĈ

l,[k]
i,j

= ∂LS

∂Ĉ
l,[k]
i,j

. The iteration index . [k] is
omitted for simplicity.

In PCNNs, both the cross-entropy loss and projection loss are used to build the
total loss as:

.L = LS + LP . (2.53)

The proposed projection loss regularizes the continuous values converging onto . oN

while minimizing the cross-entropy loss, illustrated in Figs. 2.11 and 2.12.

2.7.4.5 Forward Propagation Based on Projection Convolution Layer

For each full-precision kernel . Cl
i , the corresponding quantized kernels .Ĉ

l
i,j are

concatenated to construct the kernel . Dl
i that actually participates in the convolution

operation as:

.Dl
i = Ĉl

i,1 ⊕ Ĉl
i,2 ⊕ · · · ⊕ Ĉl

i,J , (2.54)

where . ⊕ denotes the concatenation operation on the tensors. In PCNNs, the
projection convolution is implemented based on . Dl and . F l to calculate the next
layer’s feature map .F l+1:

.F l+1 = Conv2D(F l,Dl), (2.55)

where Conv2D is the traditional 2D convolution. Although our convolutional
kernels are 3D-shaped tensors, we design the following strategy to fit the traditional
2D convolution as:

.F l+1
h,j =

Σ
i,h

F l
h ⊗ Dl

i,j , (2.56)

.F l+1
h = F l

h,1 ⊕ · · · ⊕ F l
h,J , (2.57)

2.7 Algorithms for Binary Neural Networks 37

where . ⊗ denotes the convolutional operation. .F l+1
h,j is the j th channel of the hth

feature map at the .(l + 1)th convolutional layer and . F l
h denotes the hth feature map

at the lth convolutional layer. To be more precise, for example, when .h = 1, for the
j th channel of an output feature map, .F l+1

1,j is the sum of the convolutions between
all the h input feature maps and i corresponding quantized kernels. All channels
of the output feature maps are obtained as .F l+1

h,1 , .., F l+1
h,j , . . . , F l+1

h,J , and they are

concatenated to construct the hth output feature map .F l+1
h .

It should be emphasized that we can utilize multiple projections to increase the
diversity of convolutional kernels . Dl . However, the single projection can perform
much better than the existing BNNs. The essential use of DBPP differs from [38]
based on a single quantization scheme. Within our convolutional scheme, there is
no dimensional disagreement on feature maps and kernels in two successive layers.
Thus, we can replace the traditional convolutional layers with ours to binarize
widely used networks, such as VGGs and ResNets. At inference time, we only store
the set of quantized kernels . Dl

i instead of the full-precision ones; that is, projection
matrices . Wl

j are not used for inference, achieving a reduction in storage.

2.7.4.6 Backward Propagation

According to Eq. 2.53, what should be learned and updated are the full-precision
kernels . Cl

i and the projection matrix . Wl (. -Wl) using the updated equations described
below.

Updating . Cl
i We define . δCi

as the gradient of the full-precision kernel . Ci and have:

.δCl
i
= ∂L

∂Cl
i

= ∂LS

∂Cl
i

+ ∂LP

∂Cl
i

, (2.58)

.Cl
i ← Cl

i − η1δCl
i
, (2.59)

where . η1 is the learning rate for the convolutional kernels. More specifically, for
each item in Eq. 2.58, we have:

.

∂LS

∂Cl
i

=
JΣ
j

∂LS

∂Ĉl
i,j

∂P
l,j

oN (-Wl
j , C

l
i)

∂(-Wl
j ◦ Cl

i)

∂(-Wl
j ◦ Cl

i)

∂Cl
i

=
JΣ
j

∂LS

∂Ĉl
i,j

◦ 1−1≤ -Wl
j ◦Cl

i≤1 ◦ -Wl
j ,

(2.60)

.
∂LP

∂Cl
i

= λ

JΣ
j

[-Wl
j ◦

(
Cl

i + ηδ
Ĉl

i,j

)
− Ĉl

i,j

]
◦ -Wl

j , (2.61)

38 2 Binary Neural Networks

where . 1 is the indicator function [53] widely used to estimate the gradient of the
nondifferentiable function. More specifically, the output of the indicator function is
1 only if the condition is satisfied; otherwise, 0.

Updating .Wl
j Likewise, the gradient of the projection parameter .δWl

j
consists of

the following two parts:

.δWl
j

= ∂L

∂Wl
j

= ∂LS

∂Wl
j

+ ∂LP

∂Wl
j

, (2.62)

.Wl
j ← Wl

j − η2δWl
j
, (2.63)

where . η2 is the learning rate for . Wl
j . We also have the following:

.

∂LS

∂Wl
j

=
JΣ
h

(
∂LS

∂ -Wl
j

)

h

=
JΣ
h

⎛
⎝ IΣ

i

∂LS

∂Ĉl
i,j

∂P
l,j

oN (-Wl
j , C

l
i)

∂(-Wl
j ◦ Cl

i)

∂(-Wl
j ◦ Cl

i)

∂ -Wl
j

⎞
⎠

h

=
JΣ
h

(
IΣ
i

∂LS

∂Ĉl
i,j

◦ 1−1≤ -Wl
j ◦Cl

i≤1 ◦ Cl
i

)

h

,

(2.64)

.
∂LP

∂Wl
j

=λ

JΣ
h

(
IΣ
i

[-Wl
j ◦

(
Cl

i +ηδ
Ĉl

i,j

)
−Ĉl

i,j

]
◦
(
Cl

i +ηδ
Ĉl

i,j

))

h

, (2.65)

where h indicates the hth plane of the tensor along the channels. It shows that the
proposed algorithm can be trained from end to end, and we summarize the training
procedure in Algorithm 1. In the implementation, we use the mean of W in the
forward process but keep the original W in the backward propagation.

Note that in PCNNs for BNNs, we set U = 2 and . a2 = .−a1. Two binarization
processes are used in PCNNs. The first is the kernel binarization, which is done
based on the projection onto . oN , whose elements are calculated based on the mean
absolute values of all full-precision kernels per layer [53] as:

.
1

I

IΣ
i

(
||Cl

i||1
)

, (2.66)

where I is the total number of kernels.

2.7 Algorithms for Binary Neural Networks 39

Algorithm 1: Discrete back propagation via projection
Input:

The training dataset; the full-precision kernels C; the projection matrix W ; the learning
rates η1 and η2.

Output:
The binary or ternary PCNNs are based on the updated C and W .

1: Initialize C and W randomly;
2: repeat
3: // Forward propagation
4: for l = 1 to L do
5: Ĉl

i,j ← P(W, Cl
i); // using Eq. 2.52 (binary) or Eq. 2.68 (ternary)

6: Dl
i ← Concatenate(̂Ci,j); // using Eq. 2.54

7: Perform activation binarization; //using the sign function
8: Traditional 2D convolution; // using Eqs. 2.55, 2.56 and 2.57
9: end for
10: Calculate cross-entropy loss LS ;
11: // Backward propagation
12: Compute δ ̂

Cl
i,j

= ∂LS
∂ Ĉl

i,j
;

13: for l = L to 1 do
14: // Calculate the gradients
15: calculate δCl

i
; // using Eqs. 2.58, 2.60 and 2.61

16: calculate δWl
j
; // using Eqs. 2.62, 2.64 and 2.65

17: // Update the parameters
18: Cl

i ← Cl
i − η1δCl

i
; // Eq. 2.59

19: Wl
j ← Wl

j − η2δWl
j
; //Eq. 2.63

20: end for
21: Adjust the learning rates η1 and η2.
22: until the network converges

2.7.4.7 Progressive Optimization

Training 1-bit CNNs is a highly non-convex optimization problem, and initialization
states will significantly impact the convergence. Unlike the method in [44] that a
real-valued CNN model with the clip function pre-trained on ImageNet initializes
the 1-bit CNN models, we propose applying a progressive optimization strategy in
training 1-bit CNNs. However, a real-valued CNN model can achieve pretty high
classification accuracy, we wonder if the converging states between real-value and
1-bit CNNs, which may mistakenly guide the converging process of 1-bit CNNs.

We believe that compressed ternary CNNs such as TTN [79] and TWN [36]
have better initialization states for binary CNNs. Theoretically, the performance of
models with ternary weights is slightly better than those with binary weights and far
worse than those of real-valued ones. Still, they provide an excellent initialization
state for 1-bit CNNs in our proposed progressive optimization framework. Subse-
quent experiments show that our PCNNs trained from a progressive optimization
strategy perform better than those from scratch, even better than the ternary PCNNs
from scratch.

40 2 Binary Neural Networks

The discrete set for ternary weights is a special case, defined as .o := {a1, a2, a3}.
We further require .a1 = −a3 = A as Eq. 2.66 and .a2 = 0 to be hardware friendly
[36]. Regarding the threshold for ternary weights, we follow the choice made in [58]
as:

.Al = σ × E(|Cl |) ≈ σ

I

IΣ
i

(
||Cl

i||1
)

, (2.67)

where . σ is a constant factor for all layers. Note that [58] applies to Eq. 2.67 on
convolutional inputs or feature maps; we find it appropriate in convolutional weights
as well. Consequently, we redefine the projection in Eq. 2.37 as:

. Po(ω, x) = argmin
ai

||ω ◦ x − 2ai||, i ∈ {1, . . . , U}. (2.68)

In our proposed progressive optimization framework, the PCNNs with ternary
weights (ternary PCNNs) are first trained from scratch and then served as pre-trained
models to progressively fine-tune the PCNNs with binary weights (binary PCNNs).

To alleviate the disturbance caused by the quantization process, intraclass
compactness is further deployed based on the center loss function [65] to improve
performance. Given the input features .xi ∈ Rd or . o and the . yi th class center
.cyi

∈ Rd or . o of the input features, we have:

.LC = γ

2

mΣ
i=1

||xi − cyi
||22, (2.69)

where m denotes the total number of samples or batch size and . γ is a hyperparameter
to balance the center loss with other losses. More details on center loss can be found
in [65]. By incorporating Eq. 2.69 into Eq. 2.53, the total loss is updated as:

.L = LS + LP + LC. (2.70)

We note that the center loss is successfully deployed to handle feature variations
in the training and will be omitted in the inference, so there is no additional
memory storage and computational cost. More intuitive illustrations can be found
in Fig. 2.10, and a more detailed training procedure is described in Algorithm 2.

2.7.4.8 Ablation Study

Parameter As mentioned above, the proposed projection loss, similar to cluster-
ing, can control quantization. We computed the distributions of the full-precision
kernels and visualized the results in Figs. 2.11 and 2.12. The hyperparameter . λ is
designed to balance projection loss and cross-entropy loss. We vary it from .1e − 3

2.7 Algorithms for Binary Neural Networks 41

Fig. 2.10 In our proposed progressive optimization framework, the two additional losses, projec-
tion loss, and center loss are simultaneously optimized in continuous and discrete spaces, optimally
combined by the projection approach in a theoretical framework. The subfigure on the left explains
the softmax function in the cross-entropy loss. The subfigure in the middle illustrates the process
of progressively turning ternary kernel weights into binary ones within our projection approach.
The subfigure on the right shows the function of center loss to force the learned feature maps to
cluster together, class by class. Best viewed in color

Fig. 2.11 We visualize the distribution of kernel weights of the first convolution layer of PCNN-
22. The variance increases when the ratio decreases λ, which balances projection loss and cross-
entropy loss. In particular, when λ = 0 (no projection loss), only one group is obtained, where
the kernel weights are distributed around 0, which could result in instability during binarization.
In contrast, two Gaussians (with projection loss, λ > 0) are more powerful than the single one
(without projection loss), which thus results in better BNNs, as also validated in Table 2.4

to .1e − 5 and finally set it to 0 in Fig. 2.11, where the variance increases as the
number of . λ. When .λ = 0, only one cluster is obtained, where the kernel weights
are tightly distributed around the threshold = 0. This could result in instability during

42 2 Binary Neural Networks

Algorithm 2: Progressive optimization with center loss
Input: The training dataset; the full-precision kernels C; the pre-trained kernels tC from

ternary PCNNs; the projection matrix W ; the learning rates η1 and η2.
Output: The binary PCNNs are based on the updated C and W .
1: Initialize W randomly but C from tC;
2: repeat
3: // Forward propagation
4: for l = 1 to L do
5: Ĉl

i,j ← P(W, Cl
i); // using Eq. 2.52

6: Dl
i ← Concatenate(Ĉi,j); // using Eq. 2.54

7: Perform activation binarization; //using the sign function
8: Traditional 2D convolution; // using Eqs. 2.55, 2.56 and 2.57
9: end for
10: Calculate cross-entropy loss LS ;
11: if using center loss then
12: L' = LS + LC ;
13: else
14: L' = LS ;
15: end if
16: // Backward propagation
17: Compute δ

Ĉl
i,j

= ∂L'
∂Ĉl

i,j

;

18: for l = L to 1 do
19: // Calculate the gradients
20: calculate δCl

i
; // using Eqs. 2.58, 2.60 and 2.61

21: calculate δWl
j
; // using Eqs. 2.62, 2.64 and 2.65

22: // Update the parameters
23: Cl

i ← Cl
i − η1δCl

i
; // Eq. 2.59

24: Wl
j ← Wl

j − η2δWl
j
; // Eq. 2.63

25: end for
26: Adjust the learning rates η1 and η2.
27: until the network converges

–0.06 –0.04 –0.02 0.00 0.02 0.04 0.06 –0.03 –0.02 –0.01 0.00 0.01 0.02 0.03 –0.03 –0.02 –0.01 0.00 0.01 0.02 0.03

epoch=200
Var=1.09e-05

epoch=20
Var=3.24e-05

epoch=2
Var=8.32e-05

Fig. 2.12 With λ fixed to 1e − 4, the variance of the kernel weights decreases from the 2nd epoch
to the 200th epoch, which confirms that the projection loss does not affect the convergence

2.7 Algorithms for Binary Neural Networks 43

Table 2.4 With different λ,
the accuracy of PCNN-22 and
PCNN-40 based on WRN-22
and WRN-40, respectively,
on CIFAR10 dataset

λ
Model 1e − 3 1e − 4 1e − 5 0

PCNN-22 91.92 92.79 92.24 91.52

PCNN-40 92.85 93.78 93.65 92.84

Fig. 2.13 Training and testing curves of PCNN-22 when λ = 0 and 1e − 4, which shows that the
projection affects little on the convergence

binarization because little noise may cause a positive weight to be negative and vice
versa.

We also show the evolution of the distribution of how projection loss works in
the training process in Fig. 2.12. A natural question is: do we always need a large λ?
As a discrete optimization problem, the answer is no. The experiment in Table 2.4
can verify it, i.e., both the projection and cross-entropy losses should be considered
simultaneously with good balance. For example, when λ is set to 1e−4, the accuracy
is higher than those with other values. Thus, we fix λ to 1e − 4 in the following
experiments.

Learning Convergence For PCNN-22 in Table 2.4, the PCNN model is trained for
200 epochs and then used to perform inference. In Fig. 2.13, we plot training and
test loss with λ = 0 and λ = 1e − 4, respectively. It clearly shows that PCNNs with
λ = 1e − 4 (blue curves) converge faster than PCNNs with λ = 0 (yellow curves)
when the epoch number > 150.

Diversity Visualization In Fig. 2.14, we visualize four channels of the binary
kernels Dl

i in the first row, the feature maps produced by Dl
i in the second row,

44 2 Binary Neural Networks

1
3 4

2

Fig. 2.14 Illustration of binary kernels Dl
i (first row), feature maps produced by Dl

i (second row),
and corresponding feature maps after binarization (third row) when J = 4. This confirms the
diversity in PCNNs

and the corresponding feature maps after binarization in the third row when J = 4.
This way helps illustrate the diversity of kernels and feature maps in PCNNs. Thus,
multiple projection functions can capture diverse information and perform highly
based on compressed models.

References

1. Milad Alizadeh, Javier Fernández-Marqués, Nicholas D Lane, and Yarin Gal. An empirical
study of binary neural networks’ optimisation. In Proceedings of the International Conference
on Learning Representations, 2018.

2. Yu Bai, Yu-Xiang Wang, and Edo Liberty. Proxquant: Quantized neural networks via proximal
operators. arXiv preprint arXiv:1810.00861, 2018.

3. Chaim Baskin, Eli Schwartz, Evgenii Zheltonozhskii, Natan Liss, Raja Giryes, Alex M
Bronstein, and Avi Mendelson. Uniq: Uniform noise injection for non-uniform quantization of
neural networks. arXiv preprint arXiv:1804.10969, 2018.

4. Joseph Bethge, Christian Bartz, Haojin Yang, Ying Chen, and Christoph Meinel. Melius-
net: Can binary neural networks achieve mobilenet-level accuracy? arXiv preprint
arXiv:2001.05936, 2020.

References 45

5. Joseph Bethge, Marvin Bornstein, Adrian Loy, Haojin Yang, and Christoph Meinel. Training
competitive binary neural networks from scratch. arXiv preprint arXiv:1812.01965, 2018.

6. Joseph Bethge, Haojin Yang, Marvin Bornstein, and Christoph Meinel. Binarydensenet:
developing an architecture for binary neural networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision Workshops, pages 0–0, 2019.

7. Leo Breiman. Bias, variance, and arcing classifiers. Technical report, Tech. Rep. 460, Statistics
Department, University of California, Berkeley . . . , 1996.

8. Adrian Bulat, Jean Kossaifi, Georgios Tzimiropoulos, and Maja Pantic. Matrix and tensor
decompositions for training binary neural networks. arXiv preprint arXiv:1904.07852, 2019.

9. Adrian Bulat and Georgios Tzimiropoulos. Binarized convolutional landmark localizers for
human pose estimation and face alignment with limited resources. In Proceedings of the IEEE
International Conference on Computer Vision, pages 3706–3714, 2017.

10. Adrian Bulat and Georgios Tzimiropoulos. XNOR-Net++: Improved binary neural networks.
arXiv preprint arXiv:1909.13863, 2019.

11. John G Carney, Pádraig Cunningham, and Umesh Bhagwan. Confidence and prediction
intervals for neural network ensembles. In IJCNN’99. International Joint Conference on
Neural Networks. Proceedings (Cat. No. 99CH36339), volume 2, pages 1215–1218. IEEE,
1999.

12. Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. In Advances in neural information
processing systems, pages 3123–3131, 2015.

13. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

14. Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Marculescu. Regularizing activation
distribution for training binarized deep networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 11408–11417, 2019.

15. Ruizhou Ding, Zeye Liu, Rongye Shi, Diana Marculescu, and RD Blanton. LightNN: Filling
the gap between conventional deep neural networks and binarized networks. In Proceedings of
the on Great Lakes Symposium on VLSI 2017, pages 35–40, 2017.

16. Pedro Felzenszwalb and Ramin Zabih. Discrete optimization algorithms in computer vision.
Tutorial at IEEE International Conference on Computer Vision, 2007.

17. Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin, Fengwei
Yu, and Junjie Yan. Differentiable soft quantization: Bridging full-precision and low-bit neural
networks. In Proceedings of the IEEE International Conference on Computer Vision, pages
4852–4861, 2019.

18. Jiaxin Gu, Ce Li, Baochang Zhang, J. Han, Xianbin Cao, Jianzhuang Liu, and David S.
Doermann. Projection convolutional neural networks for 1-bit CNNs via discrete back
propagation. ArXiv, abs/1811.12755, 2018.

19. Jiaxin Gu, Ce Li, Baochang Zhang, Jungong Han, Xianbin Cao, Jianzhuang Liu, and David
Doermann. Projection convolutional neural networks for 1-bit cnns via discrete back
propagation. In Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

20. Jiaxin Gu, Junhe Zhao, Xiaolong Jiang, Baochang Zhang, Jianzhuang Liu, Guodong Guo, and
Rongrong Ji. Bayesian optimized 1-bit cnns. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 4909–4917, 2019.

21. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

22. Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun Liu, Kwang-Ting Cheng, and
Roeland Nusselder. Latent weights do not exist: Rethinking binarized neural network
optimization. In Advances in neural information processing systems, pages 7531–7542, 2019.

23. Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pages 4700–4708, 2017.

46 2 Binary Neural Networks

24. Kun Huang, Bingbing Ni, and Xiaokang Yang. Efficient quantization for neural networks
with binary weights and low bitwidth activations. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 3854–3861, 2019.

25. Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks. In Advances in neural information processing systems, pages 4107–
4115, 2016.

26. Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quan-
tized neural networks: Training neural networks with low precision weights and activations.
The Journal of Machine Learning Research, 18(1):6869–6898, 2017.

27. Felix Juefei-Xu, Vishnu Naresh Boddeti, and Marios Savvides. Local binary convolutional
neural networks. CoRR, abs/1608.06049, 2016.

28. Felix Juefei-Xu, Vishnu Naresh Boddeti, and Marios Savvides. Local binary convolutional
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 19–28, 2017.

29. Mohammad Emtiyaz Khan and Haavard Rue. Learningalgorithms from bayesian principles.
arXiv preprint arXiv:2002.10778, 2(4), 2020.

30. Hyungjun Kim, Kyungsu Kim, Jinseok Kim, and Jae-Joon Kim. Binaryduo: Reducing gradient
mismatch in binary activation network by coupling binary activations. In International
Conference on Learning Representations.

31. Minje Kim and Paris Smaragdis. Bitwise neural networks. arXiv preprint arXiv:1601.06071,
2016.

32. Seungryong Kim, Dongbo Min, Stephen Lin, and Kwanghoon Sohn. DCTM: Discrete-
continuous transformation matching for semantic flow. In Proceedings of the IEEE
International Conference on Computer Vision, volume 6, 2017.

33. Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

34. Emanuel Laude, Jan-Hendrik Lange, Jonas Sch pfer, Csaba Domokos, Leal-Taix? Laura,
Frank R. Schmidt, Bjoern Andres, and Daniel Cremers. Discrete-continuous ADMM for
transductive inference in higher-order MRFs. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4539–4548, 2018.

35. Cong Leng, Zesheng Dou, Hao Li, Shenghuo Zhu, and Rong Jin. Extremely low bit neural
network: Squeeze the last bit out with admm. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 3466–3473, 2018.

36. Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv preprint arXiv:1605.04711,
2016.

37. Zefan Li, Bingbing Ni, Wenjun Zhang, Xiaokang Yang, and Wen Gao. Performance guaranteed
network acceleration via high-order residual quantization. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2584–2592, 2017.

38. Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network.
In Advances in Neural Information Processing Systems, pages 345–353, 2017.

39. Chunlei Liu, Peng Chen, Bohan Zhuang, Chunhua Shen, Baochang Zhang, and Wenrui Ding.
SA-BNN: State-aware binary neural network. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 2091–2099, 2021.

40. Chunlei Liu, Wenrui Ding, Yuan Hu, Baochang Zhang, Jianzhuang Liu, Guodong Guo,
and David Doermann. Rectified binary convolutional networks with generative adversarial
learning. International Journal of Computer Vision, 129:998–1012, 2021.

41. Chunlei Liu, Wenrui Ding, Xin Xia, Baochang Zhang, Jiaxin Gu, Jianzhuang Liu, Rongrong
Ji, and David Doermann. Circulant binary convolutional networks: Enhancing the performance
of 1-bit DCNNs with circulant back propagation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2691–2699, 2019.

42. Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,
and Alexander C Berg. SSD: Single shot multibox detector. In Proc. of ECCV, 2016.

43. Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting Cheng. Reactnet: Towards
precise binary neural network with generalized activation functions. arXiv preprint
arXiv:2003.03488, 2020.

References 47

44. Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real
net: Enhancing the performance of 1-bit cnns with improved representational capability and
advanced training algorithm. In Proceedings of the European conference on computer vision
(ECCV), pages 722–737, 2018.

45. Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tzimiropoulos. Training binary neural
networks with real-to-binary convolutions. In ICLR. 2020.

46. Xiangming Meng, Roman Bachmann, and Mohammad Emtiyaz Khan. Training binary neural
networks using the bayesian learning rule. In International conference on machine learning,
pages 6852–6861. PMLR, 2020.

47. Luca Mocerino and Andrea Calimera. Tentaclenet: A pseudo-ensemble template for accurate
binary convolutional neural networks. In 2020 2nd IEEE International Conference on Artificial
Intelligence Circuits and Systems (AICAS), pages 261–265. IEEE, 2020.

48. Jean-Jacques Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société
mathématique de France, 93:273–299, 1965.

49. Nikunj C Oza and Stuart J Russell. Online bagging and boosting. In International Workshop
on Artificial Intelligence and Statistics, pages 229–236. PMLR, 2001.

50. Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong
Liu, and Hao Su. Bipointnet: Binary neural network for point clouds. In Proceedings of the
International Conference on Learning Representations, 2021.

51. Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen, Ziran Wei, Fengwei Yu, and
Jingkuan Song. Forward and backward information retention for accurate binary neural
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2250–2259, 2020.

52. Haotong Qin, Ruihao Gong, Xianglong Liu, Ziran Wei, Fengwei Yu, and Jingkuan Song. Ir-
net: Forward and backward information retention for highly accurate binary neural networks.
arXiv preprint arXiv:1909.10788, 2019.

53. Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on
Computer Vision, pages 525–542. Springer, 2016.

54. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time
object detection with region proposal networks. In NeurIPS, 2015.

55. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

56. VW-S Tseng, Sourav Bhattachara, Javier Fernández-Marqués, Milad Alizadeh, Catherine
Tong, and Nicholas D Lane. Deterministic binary filters for convolutional neural networks.
International Joint Conferences on Artificial Intelligence Organization, 2018.

57. Diwen Wan, Fumin Shen, Li Liu, Fan Zhu, Jie Qin, Ling Shao, and Heng Tao Shen. Tbn:
Convolutional neural network with ternary inputs and binary weights. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 315–332, 2018.

58. Diwen Wan, Fumin Shen, Li Liu, Fan Zhu, Jie Qin, Ling Shao, and Heng Tao Shen. Tbn:
Convolutional neural network with ternary inputs and binary weights. In Proceedings of the
European Conference on Computer Vision, pages 315–332, 2018.

59. Peisong Wang, Qinghao Hu, Yifan Zhang, Chunjie Zhang, Yang Liu, and Jian Cheng. Two-step
quantization for low-bit neural networks. In Proceedings of the IEEE Conference on computer
vision and pattern recognition, pages 4376–4384, 2018.

60. Song Wang, Dongchun Ren, Li Chen, Wei Fan, Jun Sun, and Satoshi Naoi. On study of
the binarized deep neural network for image classification. arXiv preprint arXiv:1602.07373,
2016.

61. Xiaodi Wang, Baochang Zhang, Ce Li, Rongrong Ji, Jungong Han, Xianbin Cao, and
Jianzhuang Liu. Modulated convolutional networks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 840–848, 2018.

62. Xiaodi Wang, Baochang Zhang, Ce Li, Rongrong Ji, Jungong Han, Xianbin Cao, and
Jianzhuang Liu. Modulated convolutional networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 840–848, 2018.

48 2 Binary Neural Networks

63. Ziwei Wang, Jiwen Lu, Chenxin Tao, Jie Zhou, and Qi Tian. Learning channel-wise
interactions for binary convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 568–577, 2019.

64. Ziwei Wang, Ziyi Wu, Jiwen Lu, and Jie Zhou. Bidet: An efficient binarized object detector. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2049–2058, 2020.

65. Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning
approach for deep face recognition. In European Conference on Computer Vision (ECCV),
pages 499–515, 2016.

66. Sheng Xu, Yanjing Li, Tiancheng Wang, Teli Ma, Baochang Zhang, Peng Gao, Yu Qiao,
Jinhu Lü, and Guodong Guo. Recurrent bilinear optimization for binary neural networks.
In European Conference on Computer Vision, pages 19–35. Springer, 2022.

67. Sheng Xu, Yanjing Li, Bohan Zeng, Teli Ma, Baochang Zhang, Xianbin Cao, Peng Gao,
and Jinhu Lü. Ida-det: An information discrepancy-aware distillation for 1-bit detectors. In
European Conference on Computer Vision, pages 346–361. Springer, 2022.

68. Sheng Xu, Yanjing Li, Junhe Zhao, Baochang Zhang, and Guodong Guo. Poem: 1-bit point-
wise operations based on expectation-maximization for efficient point cloud processing. In
Proceedings of the British Machine Vision Conference, 2021.

69. Sheng Xu, Chang Liu, Baochang Zhang, Jinhu Lü, Guodong Guo, and David Doermann.
Bire-id: Binary neural network for efficient person re-id. ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), 18(1s):1–22, 2022.

70. Sheng Xu, Zhendong Liu, Xuan Gong, Chunlei Liu, Mingyuan Mao, and Baochang Zhang.
Amplitude suppression and direction activation in networks for 1-bit faster r-cnn. In Proc. of
EMDL, 2020.

71. Sheng Xu, Junhe Zhao, Jinhu Lu, Baochang Zhang, Shumin Han, and David Doermann. Layer-
wise searching for 1-bit detectors. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5682–5691, 2021.

72. Zhe Xu and Ray CC Cheung. Accurate and compact convolutional neural networks with
trained binarization. In 30th British Machine Vision Conference, 2019.

73. Zihan Xu, Mingbao Lin, Jianzhuang Liu, Jie Chen, Ling Shao, Yue Gao, Yonghong Tian, and
Rongrong Ji. ReCU: Reviving the dead weights in binary neural networks. arXiv preprint
arXiv:2103.12369, 2021.

74. Haojin Yang, Martin Fritzsche, Christian Bartz, and Christoph Meinel. BMXNet: An open-
source binary neural network implementation based on MXNet. In Proceedings of the 25th
ACM international conference on Multimedia, pages 1209–1212, 2017.

75. Penghang Yin, Shuai Zhang, Jiancheng Lyu, Stanley Osher, Yingyong Qi, and Jack Xin.
Binaryrelax: A relaxation approach for training deep neural networks with quantized weights.
SIAM Journal on Imaging Sciences, 11(4):2205–2223, 2018.

76. Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. LQ-Nets: Learned
quantization for highly accurate and compact deep neural networks. In Proceedings of the
European conference on computer vision (ECCV), pages 365–382, 2018.

77. Junhe Zhao, Sheng Xu, Baochang Zhang, Jiaxin Gu, David Doermann, and Guodong Guo.
Towards compact 1-bit cnns via bayesian learning. International Journal of Computer Vision,
pages 1–25, 2022.

78. Feng Zheng, Cheng Deng, and Heng Huang. Binarized neural networks for resource-efficient
hashing with minimizing quantization loss. In IJCAI, pages 1032–1040, 2019.

79. Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization.
arXiv preprint arXiv:1612.01064, 2016.

80. Shilin Zhu, Xin Dong, and Hao Su. Binary ensemble neural network: More bits per network
or more networks per bit? In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4923–4932, 2019.

81. Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Structured binary
neural networks for accurate image classification and semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 413–422, 2019.

Chapter 3
Binary Neural Architecture Search

3.1 Introduction

Deep convolutional neural networks (DCNNs) have achieved state-of-the-art per-
formance in various computer vision tasks, including image classification, instance
segmentation, and object detection. The success of DCNNs is attributed to effective
architecture design. Neural architecture search (NAS) is an emerging approach that
automates the process of designing neural architectures, replacing manual design.

NAS has enabled significant improvements in performance across a wide
range of computer vision tasks. Traditionally, network architectures were manually
designed, but NAS automates this process by generating sophisticated neural
architectures. Existing NAS methods can be classified into three main categories:
evolution-based, reinforcement learning-based, and one-shot-based approaches.
These methods leverage different optimization strategies to search for the best neural
architecture for a specific task. NAS has shown promising results in achieving com-
petitive and even superior performance compared to manually designed networks.

To speed up the architecture search process, researchers have explored methods
to reduce the evaluation cost of each candidate architecture. One early approach was
to share weights between searched and newly generated networks [7]. Later, this
idea evolved into a more efficient framework called one-shot architecture search.

In one-shot architecture search, an over-parameterized network or super-network
that includes all candidate operations is trained only once. The final architecture
is obtained by sampling from this super-network. Different approaches have been
proposed to implement one-shot architecture search. For example, some methods
use HyperNet to train the over-parameterized network [4], while others share
parameters among child models to avoid retraining each candidate architecture from
scratch [62].

Differentiable architecture search (DARTS) is a popular one-shot architecture
search method that introduces a differentiable framework, combining the search and

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Zhang et al., Neural Networks with Model Compression,
Computational Intelligence Methods and Applications,
https://doi.org/10.1007/978-981-99-5068-3_3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5068-3protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-981-99-5068-3_3
https://doi.org/10.1007/978-981-99-5068-3_3
https://doi.org/10.1007/978-981-99-5068-3_3
https://doi.org/10.1007/978-981-99-5068-3_3
https://doi.org/10.1007/978-981-99-5068-3_3
https://doi.org/10.1007/978-981-99-5068-3_3
https://doi.org/10.1007/978-981-99-5068-3_3
https://doi.org/10.1007/978-981-99-5068-3_3
https://doi.org/10.1007/978-981-99-5068-3_3
https://doi.org/10.1007/978-981-99-5068-3_3
https://doi.org/10.1007/978-981-99-5068-3_3

50 3 Binary Neural Architecture Search

evaluation stages into one [56]. Despite its simplicity, DARTS has some limitations,
leading researchers to propose improved approaches like PDARTS, which allows
the depth of searched architectures to grow gradually during the training procedure,
reducing search time [15].

ProxylessNAS is another notable method that adopts a differentiable framework
and searches architectures on the target task instead of using a proxy-based
framework [9]. These approaches have significantly accelerated the architecture
search process and led to state-of-the-art neural network architectures.

Binary neural architecture search replaces the real-valued weights and activations
with binarized ones, which consumes much less memory and computational
resources to search binary networks and provides a more promising way to find
network architectures efficiently. These methods can be categorized into direct
binary architecture search and auxiliary binary architecture search. Direct binary
architecture search yields binary architectures directly from well-designed binary
search spaces. As the first art in this field, BNAS. 1 [11] effectively reduces search
time by channel sampling and search space pruning in the early training stages
for a differentiable NAS. BNAS. 2 [43] utilizes diversity in the early search to
learn better performing binary architectures. BMES [63] learns an efficient binary
MobileNet [40] architecture through evolution-based search. However, the accuracy
of the direct binary architecture search can be improved by the auxiliary binary
architecture search [6]. BATS [6] designs a new search space specially tailored for
the binary network and incorporates it into the DARTS framework.

Unlike the methods above, our work is driven by the performance discrepancy
between the 1-bit neural architecture and its real-valued counterpart. We introduce
tangent propagation to explore the accuracy discrepancy and further accelerate
the search process by applying the GGN to the Hessian matrix in optimization.
Furthermore, we introduce a novel decoupled optimization to address asynchronous
convergence in such a differentiable NAS process, leading to better-performed 1-bit
CNNs. The overall framework leads to a novel and effective BNAS process.

To introduce the advances of the NAS area, we separately introduce the
representative works in the NAS and binary NAS in the following.

3.2 Neural Architecture Search

3.2.1 ABanditNAS: Anti-bandit for Neural Architecture
Search

Low search efficiency has prevented NAS from its practical use, and the introduction
of adversarial optimization and a more extensive search space further exacerbates
the issue. Early work directly regards network architecture search as a black-box
optimization problem in a discrete search space and takes thousands of GPU days.
To reduce the search space, a common idea is to adopt a cell-based search space [96].

3.2 Neural Architecture Search 51

However, when searching in a vast and complicated search space, prior cell-based
works may still suffer from memory issues and are computationally intensive with
the number of meta-architecture. For example, DARTS [56] can only optimize over
a small subset of eight cells stacked to form a deep network of 20. To increase
search efficiency, we reformulate NAS as a multi-armed bandit problem with a vast
search space. The multi-armed bandit algorithm targets predicting the best arm in
a sequence of trials to balance the result and its uncertainty. Likewise, NAS aims
to get the best operation from an operation pool at each edge of the model with
finite optimization steps, similar to the multi-armed bandit algorithm. They are both
exploration and exploitation problems. Therefore, we tried to introduce the multi-
armed bandit algorithm into NAS. In addition, the multi-armed bandit algorithm
avoids the gradient descent process and provides good search speed for NAS.
Unlike traditional upper confidence bound (UCB) bandit algorithms that prefer to
sample using UCB and focus on exploration, we propose anti-bandit to exploit
further both UCB and lower confidence bound (LCB) to balance exploration and
exploitation. We achieve an accuracy-bias trade-off during the search process for
the operation performance estimation. Using the test performance to identify the
optimal architecture quickly is desirable. With the help of the anti-bandit algorithm,
our anti-bandit NAS (ABanditNAS) [10] can handle the vast and complicated search
space, where the number of operations that define the space can be 960!

Specifically, our proposed anti-bandit algorithm uses UCB to reduce search
space, and LCB guarantees that every arm is thoroughly tested before abandoning
it, as shown in Fig. 3.1. Based on the observation that the early optimal operation
is not necessarily the optimal one in the end, and the worst operations in the
early stage usually have worse performance in the end [89], we pruned the
operations with the worst UCB, after enough trials selected by the worst LCB.
This means that the operations we finally reserve are certainly a near-optimal
solution. The more tests conducted, the closer UCB and LCB are to the average
value. Therefore, LCB increases, and UCB decreases with increasing sampling
times. Specifically, operations with poor performance in the early stages, such
as parameterized operations, will receive more opportunities but are abandoned
once they are confirmed to be wrong. Meanwhile, weight-free operations will be

Sampling opera ons

An -Bandit LCB

Bi

Bj

Reducing the search space

1

M

m
m v K

1 (1)
M

m
m v K –

CONV
3x3

CONV
5x5

MAX POOL
3x3Iden ty CONV

3x3
Depth-Wise
CONV 3x3

CONV
5x5

CONV
3x3

MAX POOL
3x3

Depth-Wise
CONV 3x3Iden ty

CONV
5x5

MAX POOL
3x3Iden ty

Depth-Wise
CONV 3x3

Ω

L – log(i, j) (i, j)
k k,t (i, j)

k,t

2 Ns (o) = m
n

An -Bandit UCB
log

U
(i, j) (i, j)
k k,t (i, j)

k,t

2 Ns (o) = m +
n

Fig. 3.1 ABanditNAS is divided into two steps: sampling using LCB and abandoning using UCB

52 3 Binary Neural Architecture Search

compared only with parameterized operations when well-trained. On the other hand,
with the operation pruning process, the search space becomes smaller and smaller,
leading to an efficient search process.

3.2.1.1 Anti-Bandit Algorithm

Our goal is to search for network architectures effectively and efficiently. However,
a dilemma exists for NAS about maintaining a network structure that offers
significant rewards (exploitation) or further investigating other network structures
(exploration). Based on probability theory, the multi-armed bandit can solve the
aforementioned exploration-versus-exploitation dilemma, which makes decisions
among competing choices to maximize their expected gain. Specifically, we propose
an anti-bandit that chooses and discards the arm k in the trial based on:

.r̃k − δ̃k ≤ rk ≤ r̃k + δ̃k, (3.1)

where . rk , . ̃rk , and . ̃δk are the true reward, the average reward, and the estimated
variance obtained from arm k. . ̃rk is the value term that favors actions that historically
perform well, and . ̃δk is the exploration term that gives actions an exploration bonus.
.r̃k − δ̃k and .r̃k + δ̃k can be interpreted as the lower and upper bounds of a confidence
interval.

The traditional UCB algorithm, which optimistically substitutes .r̃k + δ̃ for . rk ,
emphasizes exploration but ignores exploitation. Unlike the UCB bandit, we further
exploited the LCB and UCB to balance exploration and exploitation. A smaller LCB
usually has little expectations but a significant variance and should be given a larger
chance to be sampled for more trials. Then, based on the observation that the worst
operations in the early stage usually have worse performance at the end [89], we
use UCB to prune the operation with the worst performance and reduce the search
space. In summary, we adopt LCB, .r̃k − δ̃, to sample the arm, which should be
further optimized, and use UCB, .r̃k + δ̃, to abandon the operation with the minimum
value. Because the variance is bounded and converges, the operating estimate value
is always close to the actual value and gradually approaches the true value as the
number of trials increases. Our anti-bandit algorithm overcomes the limitations
of an exploration-based strategy, including levels of understanding and suboptimal
gaps. The definitions of the value and variance terms and the proof of our proposed
method are shown below.

Definition 1 If an operation on arm k has been recommended . nk times, .rewardi is
the reward on arm k on all trails. The value term of anti-bandit is defined as follows:

.r̃k =
ε

rewardi

nk

. (3.2)

The value of selecting an operation . r̃k is the expected reward .
ε

rewardi we receive
when we take an operation from the possible set of operations. If . nk approaches

3.2 Neural Architecture Search 53

infinity, . r̃k approaches the actual value of the operation . rk . However, the number of
operations . nk cannot be infinite. Therefore, we should approximate the actual value
as closely as possible through the variance.

Definition 2 There exists a difference between the estimated probability . r̃k and the
actual probability . rk , and we can estimate the variance concerning the value:

.δ̃k =
/
2 lnN

n
, (3.3)

where N is the total number of trails.

Proof Suppose .X ∈ [0, 1] represents the theoretical value of each independently
distributed operation. n is the number of times the arm has been played up to trial,
and . pi is the actual value of the operation in the . ith trial. Furthermore, we define

.p =
ε

i pi

n
and .q = 1 − p. Since the variance boundary of independent operations

can represent the global variance boundary (see the Appendix), based on Markov’s
inequality, we can arrive at below:

.

P [X > p + δ] = P [
ε

i

(Xi − pi) > δ]

= P [eλ
ε

i (Xi−pi) > eλδ]

≤ E[eλ
ε

i (Xi−pi)]
eλδ

.

(3.4)

Since we can get .1 + x ≤ ex ≤ 1 + x + x2 when .0 ≤ |x| ≤ 1), . E[eλ
ε

i (Xi−pi)]
in Eq. 3.4 can be further approximated as follows:

.

E[eλ
ε

i (Xi−pi)] =
||

i

E[eλ(Xi−pi)]

≤
||

i

E[1 + λ(Xi − pi) + λ2(Xi − pi)
2]

=
||

i

(1 + λ2v2i)

≤ eλ2v2,

(3.5)

where v denotes the variance of X. Combining Eqs. 3.4 and 3.5 gives . P [X > p +
δ] ≤ eλ2v2

eλδ . Since . λ is a positive constant, it can be obtained by the transformation of

the values .P [X > p + δ] ≤ e−2nδ2 . According to the symmetry of the distribution,
we have .P [X < p − δ] ≤ e−2nδ2 . Finally, we get the following inequality:

.P [|X − p| ≤ δ] ≥ 1 − 2e−2nδ2 . (3.6)

54 3 Binary Neural Architecture Search

We need to decrease . δ as operating recommendations increase. Therefore, we

choose .

/
2 lnN

n
as . ̃δ. That is to say, .p −

/
2 lnN

n
≤ X ≤ p +

/
2 lnN

n
is implemented

at least with probability .1 − 2
N4 . The variance value will gradually decrease as the

trial progresses, and . r̃k will gradually approach . rk . Equation 3.7 shows that we can
achieve a probability of 0.992 when the number of the trial gets 4:

.

/

1 − 2

N4
=

⎧
⎪⎪⎨

⎪⎪⎩

0.857 N = 2

0.975 N = 3

0.992 N = 4.

(3.7)

According to Eq. 3.6, the variance in the anti-bandit algorithm is bounded, and
the lower/upper confidence bounds can be estimated as:

.r̃k −
/
2 lnN

n
≤ rk ≤ r̃k +

/
2 lnN

n
. (3.8)

3.2.1.2 Search Space

Following [56, 89, 96], we search for computation cells as the building blocks of
the final architecture. A cell is a fully connected directed acyclic graph (DAG) of
M nodes, i.e., .{B1, B2, . . . , BM} as shown in Fig. 3.2a. Here, each node is a specific
tensor (e.g., a feature map in convolutional neural networks), and each directed edge
.(i, j) between . Bi and . Bj denotes an operation .o(i,j)(.), which is sampled from

Fig. 3.2 (a) A cell containing four intermediate nodes, namely, . B1, . B2, . B3, . B4, which apply
sampled operations on the input node . B0. . B0 is from the output of the last cell. The output node
concatenates the outputs of the four intermediate nodes. (b) Gabor filter. (c) A generic denoising
block. Following [81], it wraps the denoising operation with a .1 × 1 convolution and an identity
skip connection [36]

3.2 Neural Architecture Search 55

.o(i,j) = {o(i,j)

1 , . . . , o
(i,j)
K }. .{o(i,j)} is the search space of a cell. Each node . Bj

takes its dependent nodes as input and can be obtained by .Bj = Σi<jo
(i,j)(Bi).

The constraint .i < j here is to avoid cycles in a cell. Each cell takes the output
of the last cell as input. For brevity, we denote by . B0 the last node of the previous
cell and the first node of the current cell. Unlike existing approaches that use only
normal and reduction cells, we search for v (.v > 2) cells instead. For general NAS
search, we follow [56] and take seven normal operations, i.e., .3 × 3 max pooling,
.3×3 average pooling, skip connection (identity), .3×3 convolution with rate 2, . 5×5
convolution with rate 2, .3 × 3 depth-wise separable convolution, and .5 × 5 depth-
wise separable convolution. Considering adversarially robust optimization for NAS,
we introduce two additional operations, the .3 × 3 Gabor filter and denoising block,
for model defense. Therefore, the size of the entire search space is .K |EM|×v , where
.EM is the set of possible edges with M intermediate nodes in the fully connected
DAG. In the case with .M = 4 and .v = 6, together with the input node, the total
number of cell structures in the search space is .9(1+2+3+4)×6 = 910×6. Here, we
briefly introduce the two additional operations.

Gabor filter Gabor filters [24, 25] containing frequency and orientation rep-
resentations can characterize the spatial frequency structure in images while
preserving spatial relationships. This operation provides superb robustness for the

network [64]. Gabor filters are defined as .exp(− x'2+γ 2y'2
2σ 2) cos(2π x'

λ
+ ψ). Here,

.x' = x cos θ + y sin θ and .y' = −x sin θ + y cos θ . . σ , . γ , . λ, . ψ , and . θ are learnable
parameters. Note that the symbols used here apply only to the Gabor filter and
are different from the symbols used in the rest of this paper. Figure 3.2b shows
an example of Gabor filters.

Denoising block As described in [81], adversarial perturbations on images will
introduce noise in the features. Therefore, denoising blocks can improve adversarial
robustness by denoising features. Following this, we add the nonlocal mean
denoising block [5] as shown in Fig. 3.2c to the search space to denoise the
features. Calculate a denoised feature map z of an input feature map x by taking
a weighted mean of the spatial locations of the features in general . L as . zp =
1

C(x)

ε
∀q∈L f (xp, xq) · xq , where .f (xp, xq) is a feature-dependent weighting

function and .C(x) is a normalization function.

3.2.1.3 Anti-bandit Strategy for NAS

As described in [85, 89], the validation accuracy ranking of different network
architectures is not a reliable indicator of the final quality of the architecture.
However, the experimental results suggest that if an architecture performs poorly
at the beginning of training, there is little hope that it can be part of the final
optimal model [89]. As training progresses, this observation becomes more and
more specific. Based on this observation, we derive a simple but effective training
strategy. During training and the increasing epochs, we progressively abandon the

56 3 Binary Neural Architecture Search

worst-performing operation and sample the operations with little expectations but a
significant variance for each edge. Unlike [89], which uses the performance as the
evaluation metric to decide which operation should be pruned, we use the anti-bandit
algorithm described in Sect. 3.2.1.1 to decide.

Following UCB in the bandit algorithm, we obtain the initial performance for
each operation on every edge. Specifically, we sample one of the K operations in
.o(i,j) for every edge, and then obtain the validation accuracy a, which is the initial
performance .m

(i,j)

k,0 by adversarially training the sampled network for one epoch and
finally assigning this accuracy to all the sampled operations.

By considering the confidence of the kth operation using Eq. 3.8, the LCB is
calculated by:

.sL(o
(i,j)
k) = m

(i,j)
k,t −

/
2 logN

n
(i,j)
k,t

, (3.9)

where N is the total number of samples, .n(i,j)
k,t refers to the number of times the

kth operation of the edge .(i, j) has been selected, and t is the epoch index. The
first item in Eq. 3.9 is the value term (see Eq. 3.2) which favors the operations
that look good historically. The second is the exploration term (see Eq. 3.3), which
allows operations to get an exploration bonus that grows with .logN . The selection
probability for each operation is defined as:

.p(o
(i,j)
k) = exp{−sL(o

(i,j)
k)}

ε
m exp{−sL(o

(i,j)
m)}

. (3.10)

The minus sign in Eq. 3.10 means we prefer to sample operations with smaller
confidence. After sampling one operation for every edge based on .p(o

(i,j)
k), we

obtain the validation accuracy a by training adversarially the sampled network for
one epoch and then update the performance .m(i,j)

k,t that historically indicates the

validation accuracy of all the sampled operations .o
(i,j)
k as:

.m
(i,j)
k,t = (1 − λ)m

(i,j)

k,t−1 + λ ∗ a, (3.11)

where . λ is a hyperparameter.
Finally, after .K ∗ T samples where T is a hyperparameter, we calculate the

confidence with the UCB according to Eq. 3.8 as:

.sU (o
(i,j)
k) = m

(i,j)
k,t +

/
2 logN

n
(i,j)
k,t

. (3.12)

The operation with minimal UCB for every edge is abandoned. This means that
operations that are given more opportunities but result in poor performance are

3.2 Neural Architecture Search 57

removed. With this pruning strategy, the search space is significantly reduced from
.|o(i,j)|10×6 to .(|o(i,j)| − 1)10×6, and the reduced space becomes:

.o(i,j) ← o(i,j) − {argmin
o
(i,j)
k

sU (o
(i,j)
k)},∀(i, j). (3.13)

The reduction procedure is repeated until the optimal structure is obtained, where
only one operation is left on each edge.

Complexity Analysis There are .O(K |EM|×v) combinations in the search space
discovery process with v types of different cells. In contrast, ABanditNAS reduces
the search space for every .K ∗ T epoch. Therefore, the complexity of the proposed
method is the following:

.O(T ×
Kε

k=2

k) = O(T K2). (3.14)

3.2.1.4 Adversarial Optimization

The goal of adversarial training [58] is to learn networks that are robust to
adversarial attacks. Given a network . fθ parameterized by . θ , a dataset .(xe, ye), a
loss function l, and a threat model . A, the learning problem can be formulated as the
following optimization problem: .minθ

ε
e maxδ∈A l

(
fθ (xe + δ), ye

)
, where . δ is the

adversarial perturbation. In this paper, we consider the typical . l∞ threat model [58],
.A = {δ : ||δ||∞ ≤ ε} for some .ε > 0. Here, .|| · ||∞ is the . l∞ norm distance metric
and . ε is the adversarial manipulation budget. The adversarial training procedure uses
attacks to approximate inner maximization over . A, followed by some variation of
gradient descent on model parameters . θ . For example, one of the earliest versions of
adversarial training uses the fast gradient sign method (FGSM) [29] to approximate
the inner maximization. This could be seen as a relatively inaccurate approximation
of inner maximization for . l∞ perturbations, and it has the closed-form solution:

.θ = ε ·sign
(
∇xl

(
f (x), y

))
. A better approximation of inner maximization is to take

multiple smaller FGSM steps of size . α instead. However, the number of gradient
computations caused by the multiple steps is proportional to .O(EF) in a single
epoch, where E is the size of the dataset and F is the number of steps taken by the
adversary PGD. This is F times higher than standard training with .O(E) gradient
computations per epoch, and adversarial training is typically F times slower. To
accelerate adversarial training, we combine FGSM with random initialization [77]
for our ABanditNAS. Our ABanditNAS with adversarial training is summarized in
Algorithm 3.

58 3 Binary Neural Architecture Search

Algorithm 3: ABanditNAS with adversarial training
Input: Training data, validation data, searching hyper-graph, adversarial perturbation δ,

adversarial manipulation budget ε, K = 9, hyper-parameters α, λ = 0.7, T = 3.
Output: The remaining optimal structure;
t = 0; c = 0;
Get initial performance m (i,j)

k,0 ;
while (K > 1) do

c ← c + 1;
t ← t + 1;
Calculate sL(o (i,j)

k) using Eq. 3.9;
Calculate p(o (i,j)

k) using Eq. 3.10;
Select an architecture by sampling one operation based on p(o (i,j)

k) from o(i,j) for
every edge;
Train the selected architecture adversarially:
for e = 1, . . . , E do

δ = Uniform(−ε, ε);

δ ← δ + α· sign
(
∇x l

(
f (xe + δ), ye

))
;

δ = max
(
min(δ, ε), −ε

)
;

θ ← θ − ∇θ l
(
fθ (xe + δ), ye

)
.

end
Get the accuracy a on the validation data;
Update the performance m (i,j)

k,t using Eq. 3.11;
if c = K ∗ T then

Calculate sU (o (i,j)
k) using Eq. 3.12;

Update the search space {o(i,j)} using Eq. 3.13;
c = 0;
K ← K − 1.

end
end

3.2.1.5 Analysis

Effect on the hyperparameter . λ The hyperparameter . λ balances the performance
between the past and the current. Different values of . λ result in similar search costs.
The performance of the structures searched by ABanditNAS with different values of
. λ is used to find the best . λ. We train the structures in the same setting. From Fig. 3.3,
we can see that when .λ = 0.7, ABanditNAS is most robust.

Effect on the search space We test the performance of ABanditNAS with different
search spaces. We adopt the same experimental setting as the general NAS in this
part. The search space of the general NAS has seven operations. We incrementally
add the Gabor filter, denoising block, 1×1 dilated convolution with rate 2, and 7×7
dilated convolution with rate 2 until the number of operations in the search space
reaches 11. In Table 3.1, # Search Space represents the number of operations in the
search space. Although the search difficulty increases with increasing search space,
ABanditNAS can effectively select the appropriate operations. Each additional

3.2 Neural Architecture Search 59

Fig. 3.3 Performances of structures searched by ABanditNAS with different hyperparameter
values λ

Table 3.1 The performance of ABanditNAS with different search spaces on CIFAR10

Search Accuracy # Params Search cost Search

Architecture space (%) (M) (GPU days) method

ABanditNAS 7 97.13 3.0 0.09 Anti-bandit

ABanditNAS 8 97.47 3.3 0.11 Anti-bandit

ABanditNAS 9 97.52 4.1 0.13 Anti-bandit

ABanditNAS 10 97.53 2.7 0.15 Anti-bandit

ABanditNAS 11 97.66 3.7 0.16 Anti-bandit

operation has little effect on search efficiency, demonstrating the efficiency of
our search method. When the number of operations in the search space is 9, the
classification accuracy of the model searched by ABanditNAS exceeds all the
methods with the same level of search cost.

3.2.2 IDARTS: Interactive Differentiable Architecture Search

In part, NAS has significantly impacted computer vision by reducing the need for
manual work. Recently, Liu et al. [56] proposed differentiable architecture search
(DARTS) as an alternative that makes architecture search more efficient. DARTS
relaxes the search space to be continuous and differentiable. DARTS learns the

60 3 Binary Neural Architecture Search

weight of each operation with gradient descent so that the architecture can be
optimized concerning its validation set performance by gradient descent. Despite
its sophisticated design, DARTS is still subject to an ample yet redundant space
of network architectures and thus suffers from significant memory and compu-
tation overhead. To address the problems of DARTS, researchers have proposed
alternative formulations, including PDARTS [16], DARTS+ [49], PC-DARTS [82],
ProxylessNAS [9], CDARTS [86], Fair DARTS [20], and SGAS [47]. Among them,
PC-DARTS [82] reduces redundancy in the network space by performing a more
efficient search without compromising performance. PC-DARTS only samples a
subset of channels in a super-net during the search to reduce computation and
introduces edge normalization to stabilize the search for network connectivity by
explicitly learning an extra set of edge-selection parameters.

However, these DARTS alternatives need to pay more attention to the intrinsic
relationship between different parameters, and as a result, the selected architecture
could be more robust due to an insufficient training process. The reason is that the
coupling relationship will affect the training of the network architecture to its limit
before it is selected or left out. To address this issue, we introduce a bilinear model
into DARTS and develop a new backpropagation method to decouple the hidden
relationships among variables to facilitate the optimization process. To the best of
our knowledge, few works have formulated DARTS as a bilinear problem.

We address these issues by formulating DARTS as a bilinear optimization
problem and developing the efficient interactive differentiable architecture search.
Figure 3.4 shows the framework of IDARTS [84]. Figure 3.4b shows that the dotted
line results are inefficient compared with IDARTS shown in the solid line. . t1,
. t2 marks the results where the architecture parameter . α is backtracked. IDARTS
coordinates the training of different parameters and fully explores their interaction
based on the backtracking method. Our method allows operations to be selected only

Fig. 3.4 An overview of IDARTS. (a) . α and . β are coupled in IDARTS. The edge and operation
(. βl and . αl) are coupled during the neural architecture search. . xi and . xj represent node 0 and node
2, respectively. .xj = αl,m · βl · Wl,m ⊗ xi is specifically described in Eq. 3.16. (b) A backtracking
method is introduced to coordinate the training of different parameters, which can fully explore
their interaction during training. The dotted line results indicate that the lack of backtracking leads
to the inadequate training of . α, and the solid line indicates an efficient training of IDARTS

3.2 Neural Architecture Search 61

when they are sufficiently trained. We evaluate our IDARTS on image classification
and conduct experiments on the CIFAR10 and ImageNet datasets. The experimental
results show that IDARTS achieves superior performance compared to existing
DARTS approaches, including PC-DARTS [82], CDARTS [86], and FairDARTS
[20].

3.2.2.1 Bilinear Models for DARTS

We first show how DARTS can be formulated as a bilinear optimization problem.
Assume that there are L edges in a cell, and the edge between node . Ni and node . Nj

is the lth edge. Following [56, 82], we take the lth edge, which is formulated as:

.
fl(Wl,m, xi) =

ε

ol,m∈O(l)

αl,m · ol,m(Wl,m ⊗ xi), (3.15)

where .Wl,m denotes the kernels of the mth convolution operation. We assume that
there are M operations on one edge. M refers to the number of all operations. . xi
denotes the feature map of . Ni , . Ol denotes the set of operations, and .αl,m is the
parameter of operation .ol,m on lth edge processed by softmax operation:

.

xj =
ε

i<j

{βl} · fl(xi)

=
ε

i<j

ε

ol,m∈Ol

βlαl,m · ol,m(Wl,m ⊗ xi),
(3.16)

where . βl denotes the parameter of lth edge. To calculate the final architecture, the
softmax is defined on . β and . α. For each intermediate node, we will choose two
edges, which are jointly determined by . α and . β. In Fig. 3.4, we see . α and . β are
coupled in the inference process as shown in Eq. 3.16. . xj is linearly dependent
on both . α and . β, a classic bilinear problem. If an improper operation is selected,
it will affect the selection of the edge and vice versa. It suggests that we should
consider their relationship for better optimization. A basic bilinear optimization
problem attempts to optimize the following objective function in the architecture
search:

. argmin
β,α

G(W,β,α) = argmin
β,α

(L(W,β,α) + R(β)), (3.17)

where .α ∈ R
L×M and .β ∈ R

L×1 are variables to be optimized, . α denotes the
matrix, L is the number of edges, M is the number of operations at each edge, and
.R(·) represents the constraint, which determines where the backtracking occurs.
.L(·) denotes the loss function in the original DARTS models.

62 3 Binary Neural Architecture Search

Following [56, 82], the weights of the kernels . W and the architectural parameters
. α, . β are optimized sequentially. The learning procedure for the architectural
parameters involves an optimization as:

.

Wt+1 = argmin
W
Ltrain(Wt, αt , βt),

αt+1 = argmin
α
Lval(Wt+1, αt , βt),

βt+1 = argmin
β
Lval(Wt+1, αt , βt),

(3.18)

where .αt+1 and .βt+1 denote the parameters of operation and edge in the .(t + 1)th
step, and .Wt+1 denotes the kernel of the convolution at the .(t + 1)th step.

In Eq. 3.18, . α and . β are updated independently. However, optimizing . α and . β
independently is improper due to their coupling relationship. We consider the search
process of differentiable architecture search as a bilinear optimization problem and
solve the problem using a new backtracking method. The details will be shown in
Sect. 3.2.2.3.

3.2.2.2 Search Space

By simplifying the architecture search to find the best cell structure, cell-based NAS
methods try to learn a scalable and transferable architecture. Following [56, 82], we
search for normal and reduction computation cells to build the final architecture.
The reduction cells are located at .1/3 and .2/3 of the total network depth; the rest
are normal cells. A normal cell uses operations with a stride of 1 to keep the size
of the input feature map unchanged. The number of output channels is identical to
the number of input channels. A reduction cell uses operations with a stride of 2
to reduce the spatial resolution of feature maps, and the number of output channels
is twice the number of input channels. The set of operations includes .3 × 3 and
.5 × 5 separable convolution, .3 × 3 and .5 × 5 dilated separable convolution, . 3 × 3
max pooling, .3 × 3 average pooling, a zero(none), and a skip connection. A cell
(Fig. 3.5) is a fully connected directed acyclic graph (DAG) of seven nodes. Each
. xi is a latent representation (e.g., a feature map in convolutional networks). Each
directed edge .(i, j) between node . Ni and node . Nj denotes the set of operations
.Ol = {ol,1, . . . , ol,M }. Following [56], there are 2 input nodes, 4 intermediate nodes,
1 output node, and 14 edges per cell during the search. Each cell takes the outputs
of the two previous cells as the input. The output node of a cell is the depth-wise
concatenation of all of the intermediate nodes.

3.2 Neural Architecture Search 63

Fig. 3.5 A cell contains seven nodes, which are two input nodes .N−1 and . N0; four intermediate
nodes . N1, . N2, . N3, and . N4; and one output node

3.2.2.3 Backtracking Back Propagation

We consider the problem from a new perspective where the . β and . α are coupled
in Eq. 3.17. We note that the calculation of the derivative of . α should consider its
coupling relationship with . β. Based on the chain rule [61] and its notations, we
have:

. α̂
t+1 = αt + η1

(
∂G

∂α
+ η2T r

((
∂G

∂β

)T
∂β

∂α

))

, (3.19)

where . η1 represents the learning rate, . η2 represents the coefficient of backtracking,
.α̂t+1 denotes the value backtracked from .αt+1, and .T r(·) represents the trace of
the matrix. .T r(·) means that each element in the matrix . ∂G

∂α
adds the trace of the

corresponding matrix related to . α. Here, . W is omitted for simplicity, and only
structure parameters .α, β are considered during the back propagation process. We
further define:

.Ĝ(β,α) =
(

∂G

∂β

)T

/α, (3.20)

where . Ĝ is defined by considering the bilinear optimization problem as in Eq. 3.17.
Note that .R(·) is only considered when backtracking. Then we have:

.
∂G(β, α)

∂α
= T r

[

αĜ
∂β

∂α

]

. (3.21)

64 3 Binary Neural Architecture Search

We denote .Ĝ = [ĝ1, . . . , ĝL]. Assuming that . β l and . αm are independent when
.l /= m, . αm denotes a column vector, and .α1,m denotes an element in matrix . α, we
have:

.
∂β

∂α
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . .
∂βm

∂α1,m
. . . 0

. . .

. . .

. . .

0 . . .
∂βm

∂αL,m
. . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.22)

and

.αĜ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α1ĝ1 . . . α1ĝl . . . α1ĝL

. . .

. . .

. . .

αLĝ1 . . . αLĝl . . . αLĝL

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.23)

We combine Eqs. 3.22 and 3.23 and get:

.αĜ
∂β

∂α
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . . α1
εL

l=1 ĝl
∂βm

∂αl,m
. . . 0

. . .

. . .

. . .

0 . . . αL

εL
l=1 ĝl

∂βm

∂αl,m
. . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.24)

After that, the trace of Eq. 3.19 is then calculated by:

.T r

[

αt Ĝ
∂β

∂αm

]

= αm

Lε

l=1

ĝl

∂βm

∂αl,m

. (3.25)

3.2 Neural Architecture Search 65

Remembering that .αt+1 = αt + η1
∂G(β,α)

∂α
, IDARTS combines Eqs. 3.19 and 3.25:

.

α̂
t+1 = αt+1 + η

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

εL
l=1 ĝl

∂β1
∂αl,1

.

.

.
εL

l=1 ĝl
∂βL

∂αl,L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

O

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α1

.

.

.

αL

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= αt+1 + η

⎡

⎢
⎢
⎢
⎢
⎢
⎣

< Ĝ,
∂β1
∂α1

>

.

.

.

< Ĝ,
∂βL

∂αL
>

⎤

⎥
⎥
⎥
⎥
⎥
⎦

O

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α1

.

.

.

αL

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= αt+1 + ηγ O αt ,

(3.26)

where . O represents the Hadamard product and .η = η1η2. To simplify the
calculation, . ∂β

∂α
can be approximated by . Aβ

Aα
. Equation 3.26 shows our method

is based on a projection function to solve the coupling problem of the bilinear
optimization by . γ . In this method, we consider the influence of . αt and backtrack
the optimized state at the .(t + 1)th step to form .α̂t+1. We first decide when the
optimization should be backtracked, and the update rule of the proposed IDARTS is
defined as:

.α̂
t+1 =

{
P(αt+1,αt) if R(β) < ζ,

αt+1 otherwise,
(3.27)

where .P(αt+1,αt) = αt+1 + ηγ O αt . .R(β) represents the ranking of .|βl | and . ζ
represents the threshold. We then have:

.ζ = L(S − T) · λ · L|, (3.28)

where T and S denote the beginning and ending epoch of backtracking, . λ denotes
the coefficient, and L denotes the number of edges in a cell. As shown in Eq. 3.28. , ζ
will be increased during searching. By doing so, . α will be backtracked, according
to . β.

3.2.2.4 Comparison of Searching Methods

Figure 3.6 illustrates the comparison of . α for IDARTS and PC-DARTS in the
shallowest edge. The label of the x-axis is the epoch in searching, and the label
of the y-axis is the value of . α. We freeze the hyperparameters, . α and . β, in the first

66 3 Binary Neural Architecture Search

Algorithm 4: IDARTS interactive differentiable architecture search
Input: Training data, validation data, searching hyper-graph, hyper-parameters K = 0,

T = 25, S = 50;
Create architectural parameters α = αl , edge level parameters β = βl and supernet weights W
Create a mixed operation ol parameterized by αl and βl for each edge l;
Output: The structure;
Search for an architecture for S epochs; while (K ≤ S) do

Update parameters α and β;
if (K ≥ T) then

According to Eq. 3.27, we select α that should be backtracked;
backtracking α by Eq. 3.26;

end
Update weights W ;
K ← K + 1;
Find the final architecture based on the learned α and β;

end

Fig. 3.6 Comparison of . α values in the shallowest edge of IDARTS and PC-DARTS on CIFAR10

15 epochs (only network parameters are updated), . α remains unchanged. As the
shortage of interaction between . α and . β in PC-DARTS, . α and . β might easily fall
into the local minima. However, we backtrack the insufficiently trained operations
on this edge to escape from the local minima to select a better operation and, thus, a
better architecture by considering the intrinsic relationship between . α and . β. Due to
the backtracking of . α, the competition between different operations is intensified in
the IDARTS search process, as shown in Fig. 3.6. As a result, it is more conducive
to choosing the most valuable operation than PC-DARTS. In Fig. 3.7, the label of
y-axis is .Lval . We also show that the convergence of IDARTS is similar to that
of PC-DARTS. Although the two have the same convergence rate, we can see that
the final loss of IDARTS converges to a smaller value. The main reason is that
IDARTS has explored the relationship between different parameters and used our
backtracking method to train the architecture parameter . α entirely. We theoretically

3.2 Neural Architecture Search 67

Fig. 3.7 Comparison of searching loss on CIFAR10 with IDARTS and PC-DARTS

derive our method under the framework of gradient descent, which provides a solid
foundation for the convergence analysis of our method.

3.2.3 Fast and Unsupervised Neural Architecture Evolution for
Visual Representation Learning

Learning high-level representations from labeled data and deep learning models
in an end-to-end manner is one of the biggest successes in computer vision in
recent history. These techniques make manually specified features redundant and
significantly improve the state of the art for many real-world applications. Many
challenges remain, however, such as the cost of annotating large datasets and an
insufficient ability to generalize the model. For example, a learned representation
from supervised learning for image classification may lack information such as
texture, which matters little for classification but can be more relevant for later tasks.
Yet adding it makes the representation less general and might be irrelevant for tasks
such as image captioning. Thus, improving representation learning requires features
to be focused on solving a specific task. Unsupervised learning is an important
stepping stone towards robust and generic representation learning [34]. The main
challenge is a significant performance gap compared with supervised learning.

In a scenario where we cannot obtain sufficient annotation, self-supervised
learning is a popular approach to leverage the mutual information of unlabeled
data for training. However, its performance still needs improvement compared
with the supervised methods. One obstacle is that only parameters are learned
in conventional self-supervised methods. To break the performance bottleneck, a
natural idea is to explore NAE to optimize the architectures along with parameter

68 3 Binary Neural Architecture Search

training. Specifically, we can initialize with an architecture found using NAS on
a small supervised dataset and then evolve the architecture on a larger dataset
using unsupervised learning. Currently, existing architecture evolution methods
[7, 94] could be more efficient and cannot deal effectively with the challenging
unsupervised representation learning. Our approach is highly efficient with a
complexity of .O(n2) where n is the size of the operation space.

Here we propose our fast and unsupervised neural architecture evolution (FaU-
NAE) [83] method to search architectures for representation learning. Although
UnNAS [54] discusses the value of a label and discovers that labels are not
necessary for NAS, it cannot solve the problems above because it is computationally
expensive and is trained using supervised learning for real applications. FaUNAE is
introduced to evolve an architecture from an existing architecture manually designed
or searched from one small-scale dataset on another large-scale dataset. This partial
optimization can utilize the existing models to reduce the search cost and improve
search efficiency. The strategy is more practical for real applications, as it can
efficiently adapt to new scenarios with minimal requirements for data labeling.

First, we adopt a trial-and-test method to evolve the initial architecture, which
is more efficient than the traditional evolution methods, which are computationally
expensive and require large amounts of labeled data. Second, we note that the quality
of the architecture could be better estimated due to the absence of labeled data.
To address this, we explore contrastive loss [34] as the evaluation metric for the
operation evaluation. Although our method is built based on contrastive loss [34],
we model our method on the teacher-student framework to mimic the supervised
learning and then estimate the operation performance even without annotations.
Then the architecture can be evolved based on the estimated performance. Third,
we address that one bottleneck in NAS is its explosive search space of up to
. 148. The search space issue is even more challenging for unsupervised NAS built
on an ambiguous performance estimation that further deteriorates the training
process. To address this issue, we follow the principle of survival of the fittest and
eliminating the inferior to build our search algorithm. This significantly improves
search efficiency. Our framework is shown in Fig. 3.8.

Teacher
Reduce

search space

t

s0

s1

s2

...

Contrastive
loss

INPIT

OUTPUT

Conv
3x3

Conv
5x5

SAConv
3x3

SAConv
5x5

INPIT

OUTPUT

Conv
3x3

Conv
5x5

SAConv
3x3

SAConv
5x5

Mutation & Train

K Times

Mutation & Train

K Times

INPIT

OUTPUT

Conv
3x3

Conv
5x5

SAConv
3x3

SAConv
5x5

INPIT

OUTPUT

Conv
3x3

Conv
5x5

SAConv
3x3

SAConv
5x5

INPIT

OUTPUT

Conv
3x3

Conv
5x5

SAConv
3x3

SAConv
5x5

INPIT

OUTPUT

Conv
3x3

Conv
5x5

SAConv
3x3

SAConv
5x5

Student

Search space

INPIT

OUTPUT

Conv
3x3

Conv
5x5

SAConv
3x3

SAConv
5x5

INPIT

OUTPUT

Conv
3x3

Conv
5x5

SAConv
3x3

SAConv
5x5

Search space

←Ω Ω -{arg max }i i i
k,n

k
w(o)

log
sa

i i
k,n k,n i

k

2 Nw(o) = l(o) -

Fig. 3.8 The main framework of the proposed teacher-student search strategy

3.2 Neural Architecture Search 69

Teacher Student

Performance evalution

Search space

Reduce

FU-NAE

Teacher Student

Performance evalution

Search space

Reduce

FU-NAE

InfoNCE loss

Teacher StudentEMA

TS Contrastive Learning

InfoNCE loss

Teacher StudentEMA

TS Contrastive Learning

(a)

Conv
1x1

Conv
3x3

Conv
1x1

Conv
1x1

Conv
1x1

Conv
3x3

Conv
3x3

Conv
1x1

Conv
1x1

Conv
1x1

Conv
1x1

Conv
3x3

Conv
5x5

SAConv
3x3

SAConv
5x5

Conv
1x1

Conv
1x1

Conv
1x1

Conv
1x1

Conv
3x3

Conv
3x3

Conv
5x5

Conv
5x5

SAConv
3x3

SAConv
3x3

SAConv
5x5

SAConv
5x5

fmap in memory

fmap not in memory

(1) Bottleneck (2) Search Block

(b)

Fig. 3.9 (a) The main framework of teacher-student model, which focuses on both the unsuper-
vised neural architecture evolution (left) and contrastive learning (right). (b) Compared with the
original bottleneck (1) in ResNet, a new search block is designed for FaUNAE (2)

3.2.3.1 Search Space

We have experimentally determined that for unsupervised learning, ResNet [36]
is better than cell-based methods for building an architectural space. We denote
this space as .{oi}, where i represents given block. Rather than repeating the
bottleneck (building block in ResNet) with various operations, however, we allow a
set of search blocks shown in Fig. 3.9b with various operations including traditional
convolution with kernel sizes .{3, 5} and split-attention convolution [87] with kernel
sizes .{3, 5} and radixes .{2, 4}. This reduces the model size by sharing the . 1 × 1
convolution to improve the efficiency. To enable a direct trade-off between depth
and block size (indicated by the parameters of the selected operations), we initiate
a deeper over-parameterized network and allow a block to be skipped by adding
the identity operation to the candidate set of its mixed operation. So the set of the
operations . oi in the ith block consists of .M = 7 operations. With a limited model
size, the network can either be shallower by skipping more blocks and using larger

70 3 Binary Neural Architecture Search

ones or choose to be deeper by keeping smaller ones. To accelerate the evolution
process and make use of prior knowledge, the initial structure . α0 is first manually
designed (e.g., ResNet-50, without weight parameters) or searched for by another
NAS (e.g., ProxylessNAS [9]) on different datasets in supervised manner1 , which
are then remapping to the search space.

3.2.3.2 Evolution

The evolutionary strategy is summarized in Algorithm 5. Unlike AmoebaNet [66]
that evaluates the performance of sub-networks sampled from the search space in
a population, our method targets evolving the operation in each block using a trial-
and-test manner. We first mutate the operation based on its mutation probability,
followed by an evaluation step to make sure the mutation is ultimately used.

Mutation An initial structure . α0 is manually designed (e.g., ResNet-50)2 or
searched by another NAS (e.g., ProxylessNAS [9]) on a different dataset using
supervised learning. The initial sub-network . fθs , which is generated by searching
over-parameterized network based on . α0, is then trained using Eq. 3.34 for k steps
to obtain the evaluation metric .l(oi

k). A new architecture . αn (. ok,n) is then constructed
from the old architecture .αn−1 (.ok,n−1) by a transformation or a mutation. The
mutation probability .pmt is defined as:

.pmt(o
i
k,n) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − ε, oi
k,n = oi

k,n−1

1

K − 1
(1 − sai

kε
k' sai

k'
)ε, otherwise

(3.29)

where . sai
k represent the sampling times of the operation . oi

k . In general, the operation
in each block is kept constant with a probability .1 − ε in the beginning. For the
mutation with the probability of . ε, younger (less sample time) operations are more
likely to be selected. Intuitively, keeping the operation constant can be considered
to provide exploitation, while mutations provide exploration [66]. We use two main
mutations, the depth mutation and the op mutation, as in AmoebaNet [66], to modify
the structure generated by the search space described above.

The operation mutation pays attention to the selection of operations in each
block. Once the operation in a block is chosen to mutate, the mutation picks one
of the other operations based on Eq. 3.29. The depth mutation can change the depth
of the sub-network from the over-parameterized network by setting the operation
of one block to the “Identity” operation. We limit the model size as a restriction
metric to search more efficiently and evaluate more reasonable operations. The

1 The evolution is based on unsupervised learning.
2 No weight parameters

3.2 Neural Architecture Search 71

structure can then evolve into a sub-network with the same computational burden.
The probability of the restriction metric .pi

rm is defined as:

.prm(oi
k,n) = − expMS(oi

k,n)
ε

k' expMS(oi
k',n)

, (3.30)

where .MS(oi
k,n) represents number of parameters of the kth operation in the ith

block. The final evolution probability p that combines .pmt and .prm is defined as:

.p(oi
k,n) = λ1 ∗ pmt(o

i
k,n) + (1 − λ1) ∗ prm(oi

k,n), (3.31)

where . λ1 is hyperparameter.

Mutation validation After each evolution, the sub-network is trained using
Eq. 3.34, and the loss is used as the evaluation metric. We observe the current
validation loss a and accordingly update the loss .l(oi

k,n), which historically indicates

the validation loss of all the sampled operations .o
(i,j)
k as:

.l(oi
k,n) = λ2 ∗ l(oi

k,n−1) + (1 − λ2) ∗ a, (3.32)

where . λ2 is a hyperparameter. If the operation which is mutated performs better (less
loss), we apply it as the base of the next evolution; otherwise, we use the original
operation as the base of the next evolution:

.oi
k,n =

⎧
⎨

⎩

oi
k,n, l(o

i
k,n) > l(oi

k,n−1)

oi
k,n−1, else

(3.33)

3.2.3.3 Contrastive Learning

Contrastive learning [31] can significantly improve the performance of unsupervised
visual representation learning. The goal is to make positive sample pairs close
and negative sample pairs far away in the latent space. Prior works [34, 74]
usually investigate contrastive learning by exploring the sample pairs calculated
from the encoder and the momentum encoder [34]. Based on the investigation, we
reformulate the unsupervised/self-supervised NAS as a teacher-student model, as
shown in Fig. 3.9a. Following [34], we build dynamic dictionaries, and the “keys”
(e.g., tokens) t in the dictionary are sampled from data (e.g., images or patches)
and are represented by the teacher network. In general, the keys representation is
.t = fθt (xt), where .fθt (.) = f (oi

k,n; θt ; .) is a teacher network and . xt is a key sample.

Likewise, the “query” . xs is represented by .s = fθs (xs), where . fθs = f (oi
k,n; θs; .)

is a student network. Unsupervised learning trains the student network to perform

72 3 Binary Neural Architecture Search

Algorithm 5: FaUNAE
Input: Training data, Validation data, initial structure α0
Parameter: Searching hyper-graph
Output: Optimal structure α
1: Let n = 1.
2: while (K > 1) do
3: for t = 1, . . . , T epoch do
4: Evolve architecture αn from the old architecture αn−1 based on the evolution

probability p using Eq. 3.31;
5: Construct the Teacher model and the Student model with the same architecture αn,

and then train Student models by gradient descent and update the Teacher model by
EMA using Eq. 3.35;

6: Get the evaluation loss on the validation data using Eq. 3.34;
Use Eq. 3.32 to compute the performance and assign that to all the sampled
operations;
Update αn using Eq. 3.33;

7: end for
8: if t == K ∗ E then
9: Update w(oi

k,n) using Eq. 3.36;
10: Reduce the search space: oi ← oi − argmax

k
w(oi

k,n) ;

11: K ← K − 1;
12: end if
13: end while
14: return α

dictionary lookups. An encoded “query” s should be similar to its matching key and
dissimilar to others. The student and teacher models are NAE sub-networks from
the over-parameterized network described in Sect. 3.2.3.1.

Using a contrastive loss, we train a visual representation student model by
matching an encoded query s to a dictionary of encoded keys. The value of the
contrastive loss is lower when s and t are from the same (positive) sample and
higher when s and t are from different (negative) samples. The contrastive loss
is also deployed in FaUNAE to guide structure evolution to obtain the optimal
structure based on the unlabeled dataset. InfoNCE [60] shown in Fig. 3.9a measures
the similarity using the dot product and is used as our evaluation metric:

.L = − log
exp(s · t+/τ)

εN
n=0 exp(s · tn/τ)

, (3.34)

where . τ is a temperature hyperparameter per [80] and . t+ represents the feature
calculated from the same sample with s. InfoNCE is over one positive and M
negative sample. Intuitively, it is a log loss of a .(M+1)-way softmax-based classifier
that tries to classify s as . t+. Our method is general and can be based on other
contrastive loss functions [31, 39, 76, 80], such as margin-based losses and variants
of NCE losses.

3.2 Neural Architecture Search 73

Following [34, 72], the teacher model is updated as an exponential moving
average (EMA) of the student model:

.θt = m ∗ θt + (1 − m) ∗ θs, (3.35)

where . θs and . θt are the weight of the student model and teacher model, respectively,
updated by back propagation in contrastive learning, and .m ∈ [0, 1) is a smoothing
coefficient hyperparameter.

3.2.3.4 Fast Evolution by Eliminating Operations

One of the most challenging aspects of NAS lies in the inefficient search process,
and we address this issue by eliminating the least potential operations. After . |oi |∗E

epochs, we remove the operations in each block based on performances (loss) and
the sampling times. We define the combination of the two as:

.w(oi
k,n) = l(oi

k,n) −
/
2 logN

sai
k

, (3.36)

where N is the total number of evolutions and mutations and . sai
k refers to the number

of times the kth operation of the ith block has been selected. The first item .l(oi
k,n) in

Eq. 3.36 is calculated based on an accumulation of the validation loss, which favors
the operations that look good historically, and the second term is the exploration
term which allows operations to get an exploration bonus that grows as .logN . The
operation with the minimal w for every block is abandoned. This means that the
operations that are given more opportunities, but result in poor performance, are
removed. With this strategy, the search space which has v blocks is significantly
reduced from .|oi |v to .(|oi | − 1)v , and the reduced space becomes:

.oi ← oi − {argmax
k

w(oi
k,n)}. (3.37)

The reduction procedure is repeated until the optimal structure is obtained when
only one operation is left in each block.

3.2.3.5 Experiments

This section compares FaUNAE with human-designed networks and state-of-the-
art NAS methods for classification on the ImageNet and CIFAR10 datasets. The
evolved architecture on ImageNet is also applied as the backbone of object detection
on the PASCAL VOC and COCO datasets. Due to page limitations, the experimental
results on CIFAR10 and PASCAL VOC are shown in the supplemental material.

74 3 Binary Neural Architecture Search

Evolution and Training Protocol The evolution and training protocol used in
our experiments is described in this section. We first set global average pooling
and a two-layer MLP [14] head (hidden layer 2048-d, with ReLU) which has a
fixed-dimensional output (128-d [80]) after the hypernet and searched network. The
output vector is normalized by its L2 norm [80], representing the query or key.
The temperature . τ in Eq. 3.34 is set as .0.2 [80], and the smoothing coefficient
hyperparameter m in Eq. 3.35 is set as .0.999. The data augmentation setting
follows MoCoV2 [17]. A .224 × 224-pixel cropped patch is taken from a randomly
resized image and is then subjected to random color jittering, random horizontal
flip, random grayscale conversion, and blur augmentation [14]. We use the SGD
optimizer with an initial learning rate of .0.03 (annealed down to zero following a
cosine schedule without restart), a momentum of . 0.9, a weight decay of .0.0001, and
batch size of 256 in 8 GPUs.

In experiments, we first evolve the initial structure . α0 on an over-parameterized
network that uses ResNet50 as the backbone to build the architecture space (details
can be found in Sect. 3.2.3.1) on ImageNet. We set initial structure . α0 as a
random structure, ResNet50, and structure searched by Proexyless on ImageNet100,
respectively, to show the importance of prior knowledge. During the architecture
search, the 128M training samples of ImageNet are divided into two subsets, . 80%
for the training set for training the network weights and the remainder as a validation
set for mutation validation and search space reduction. We set the channel as half
of that of ResNet50 for efficiency and attention to the evolution of operation rather
than the channel. So the model size of search space can be reduced to a quarter,
and we set hyperparameter .E = 3, so the total number of epochs is .

εM
m=2 k ∗ E.

The hyperparameter . λ1 and . λ2 are set to . 0.9 and . 0.3. After evolution, we train the
searched network on ImageNet unsupervised for 200 epochs. We run the experiment
multiple times and find that the resulting architectures only show slight variation in
performance, demonstrating the proposed method’s stability.

Results for Classification Following a common protocol, we verify our method by
linearly classifying frozen features. In this subsection, we perform unsupervised pre-
training on ImageNet, and then we freeze the features and train a supervised linear
classifier (a fully connected layer followed by softmax). We train this classifier
on the global average pooling features of the evaluated network for 100 epochs.
We report Top-1 classification accuracy on the ImageNet validation set. For this
experiment, we set the initial learning rate as 30 and weight decay 0 same with [34].

The results for different architectures on ImageNet are summarized in Table 3.2.
We use 8 Tesla V100 GPUs to search for about 46 hours. Table 3.2 shows that
FaUNAE outperforms ResNet50, ResNet101, ResNet170, and . AMDIMsmall/large
with higher accuracy. FaUNAE also performs better than the structure sampled
randomly from the search space described in Sect. 3.2.3.1 on Top-1 accuracy (. 68.3
vs. .66.2), demonstrating our method’s effectiveness. When compared with other
NAS methods like Proxyless, which uses the same search space as FaUNAE, our

3.2 Neural Architecture Search 75

Table 3.2 Comparisons under the linear classification protocol on ImageNet

Params Search cost Search

Architecture Method Accuracy (%) (M) (GPU days) method

ResNet50 InstDisc [80] 54.0 24 – Manual

ResNet50 LocalAgg [93] 58.8 24 – Manual

ResNet101 CPC v1 [39] 48.7 28 – Manual

.ResNet170wider CPC v2 [37] 65.9 303 – Manual

.ResNet50L+ab CMC [73] 64.1 47 – Manual

.AMDIMsmall AMDIM [3] 63.5 194 – Manual

.AMDIMlarge AMDIM [3] 68.1 626 – Manual

ResNet50 MoCo v1 [34] 60.6 24 – Manual

ResNet50 MoCo v2 [17] 67.5 24 – Manual

ResNet50 SimCLR [14] 66.6 24 – Manual

Random MoCo v2 66.2 23 – Random

Proxyless MoCo v2 67.8 23 23.1 Gradient-base

FaUNAE (Random) MoCo v2 67.4 24 15.3 Evolution

FaUNAE (ResNet50) MoCo v2 67.8 24 15.3 Evolution

FaUNAE (Proxyless) MoCo v2 68.3 30 15.3 Evolution

SA
Co

nv
4 3

x3

SA
Co

nv
2 3

x3

Co
nv

 3x
3

SA
Co

nv
4 5

x5

SA
Co

nv
4 3

x3

SA
Co

nv
4 3

x3

SA
Co

nv
4 3

x3

Co
nv

 3x
3

SA
Co

nv
4 3

x3

SA
Co

nv
4 3

x3

SA
Co

nv
2 3

x3

SA
Co

nv
2 3

x3

SA
Co

nv
4 3

x3

SA
Co

nv
4 3

x3

SA
Co

nv
2 3

x3

SA
Co

nv
4 3

x3

SA
Co

nv
4 3

x3

SA
Co

nv
4 3

x3

SA
Co

nv
2 3

x3

Co
nv

 3x
3

SA
Co

nv
4 5

x5

SA
Co

nv
4 3

x3

SA
Co

nv
4 3

x3

SA
Co

nv
4 3

x3

Co
nv

 3x
3

SA
Co

nv
4 3

x3

SA
Co

nv
4 3

x3

SA
Co

nv
2 3

x3

SA
Co

nv
2 3

x3

SA
Co

nv
4 3

x3

SA
Co

nv
4 3

x3

SA
Co

nv
2 3

x3

SA
Co

nv
4 3

x3

SA
Co

nv
4 3

x3

3x
22

4x
22

4

32
x1

12
x1

12

64
x5

6x
56

12
8x

28
x2

8

25
6x

14
x1

4

51
2x

7x
7

Fig. 3.10 Detailed structures of the best structure discovered on ImageNet. “SAConv2” and
“SAConv4” denote split-attention bottleneck convolution layer with radixes of 2 and 4, respectively

method obtains a better performance with higher accuracy (.67.8 vs. .68.3) and with
a much faster search speed (.23.1 vs. .15.3 GPU days).

We also set different initial structures . α0 including random structure, ResNet50,
and structure searched by Proxyless on ImageNet100. As shown in Table 3.2,
we find that the better the initial structure, the better the performance, which
shows the importance of prior knowledge. For the structure (Fig. 3.10) obtained
by ABanditNAS on ImageNet, we find that the structure on unsupervised learning
prefers a small kernel size and a split-attention convolution [87], which also shows
the effective of split-attention convolution and the rationality of FaUNAE.

Results on Object Detection and Segmentation Learning transferable features is
the primary goal of unsupervised learning. ImageNet supervised pre-training is most
influential when initializing fine-tuning in object detection and segmentation (e.g.,
[26, 27, 67]). Next, we compare FaUNAE with ImageNet supervised pre-training,
transferred to various tasks including PASCAL VOC [22] (in the attached files),
COCO [52].

76 3 Binary Neural Architecture Search

Table 3.3 Object detection and instance segmentation results on COCO with Mask R-CNN. . APbb

means bounding-box AP and .APmk means mask AP

Architecture Method .AP bb .AP bb
50 .AP bb

75 .APmk .APmk
50 . APmk

75

ResNet50 super. 40.0 59.9 43.1 34.7 56.5 36.9

ResNet50 MoCo v1[34] 40.7 60.5 44.1 35.4 57.3 37.6

FaUNAE MoCo v2 43.1 63.0 47.2 37.7 60.2 40.6

We apply Mask R-CNN [35] with the C4 backbone as the detector, with batch
normalization tuned and implemented as in [79]. All layers are fine-tuned end-to-
end, and the image scale is 480x800 pixels during training and 800x800 at inference.
We fine-tune all layers end-to-end. We fine-tune on the train2017 set (.∼ 118k
images) and evaluate it on val2017. The schedule is the default . 2× [28].

Table 3.3 shows the results on the COCO dataset with the C4 backbones. With
the . 2× schedule, FaUNAE is better than its ImageNet-supervised counterpart on all
metrics. Due to the absent result of MoCo v2 [17], we do not compare it with our
FaUNAE. We run their code for this comparison, which is even worse than v1. Also,
FaUNAE is better than ResNet50 trained with unsupervised MoCo v1 [34].

3.3 Binary Neural Architecture Search

3.3.1 BNAS: Binarized Neural Architecture Search for
Efficient Object Recognition

Efficient computing has become one of the hottest topics in academia and industry.
It will be vital for the 5G networks to provide hardware-friendly and efficient
solutions for practical and wild applications [59]. Edge computing is computing
resources that are closer to the end user. This makes applications faster and more
user-friendly [13]. It enables mobile or embedded devices to provide real-time
intelligent analysis of big data, reducing the pressure on the cloud computing center
and improving availability [33]. However, edge computing is still challenged by its
limited computational ability, memory and storage, and severe performance loss,
making edge computing models inefficient for feature calculation and inference
[46].

A possible solution for efficient edge computing can be achieved based on
compressed deep models, which fall mainly into network pruning, knowledge
distillation, and model quantization. Network pruning [32] aims to remove network
connections with less significance, and knowledge distillation [38] introduces
a teacher-student model, which uses the soft targets generated by the teacher
model to guide the student model with a much smaller model size, to achieve
knowledge transfer. Differently, model quantization [42] calculates neural networks
with low-bit weights and activations to compress a model more efficiently, which

3.3 Binary Neural Architecture Search 77

is also orthogonal to the other two. The binarized model is widely considered
one of the most efficient ways to perform computing on embedded devices with
extremely low computational cost. Binarized filters have been used in traditional
convolutional neural networks (CNNs) to compress deep models [42, 57, 65],
showing up to 58-time speedup and 32-time memory saving. In [65], the XNOR
network is presented where the weights and inputs attached to the convolution
are approximated with binary values. This efficiently implements convolutional
operations by reconstructing the unbinarized filters with a single scaling factor.
[92] introduces .2∼ 4-bit quantization based on a two-stage approach to quantizing
weights and activations, significantly improving the efficiency and performance
of quantized models. Furthermore, WAGE [78] is proposed to discretize both the
training and inference processes and quantizes not only weights and activations
but also gradients and errors. In [30], a projection convolutional neural network
(PCNN) is proposed to realize binarized neural networks (BNNs) based on a
simple back propagation algorithm. In our previous work [88], we propose a
novel approach called Bayesian-optimized 1-bit CNNs (denoted BONNs), taking
advantage of Bayesian learning to significantly improve the performance of extreme
1-bit CNNs. Other practices in [1, 21, 71] with improvements over previous work.
Binarized models show the advantages of computational cost reduction and memory
savings but, unfortunately, suffer from performance loss when handling wild data
in practical applications. The main reasons are twofold. On the one hand, there is
still a gap between low-bit weights/activations and full-precision weights/activations
on feature representation, which should be investigated from new perspectives. On
the other hand, traditional binarized networks are based on the neural architecture
manually designed for full-precision networks, which means that the design of
binarized architecture still needs to be explored.

Traditional neural architecture search (NAS) has attracted significant atten-
tion with remarkable performance in various deep learning tasks. For example,
impressive results have been shown for reinforcement learning (RL)-based methods
[95, 96], which train and evaluate more than .20,000 neural networks across 500
GPUs over 4 days. Recent methods like differentiable architecture search (DARTS)
reduce search time by formulating the task differently [56]. DARTS relaxes the
search space to be continuous so that the architecture can be optimized concerning
its validation set performance by gradient descent, which provides a fast solution
for an effective network architecture search. To reduce redundancy in the network
space, partially connected DARTS (PC-DARTS) was recently introduced to perform
a more efficient search without compromising the performance of DARTS [82].

Although DARTS or its variants have a smaller model size than traditional
light models, the searched network still needs to improve its inference process
due to the complicated architectures generated by multiple stacked full-precision
convolution operations. Consequently, the searched network for embedded devices
must still be more computationally expensive and efficient. At the same time,
existing gradient-based approaches select operations without meaningful guidance.
The search process is inefficient, and the selected operation might exhibit significant

78 3 Binary Neural Architecture Search

Output

O

PC-DARTS

Performance-based

BB-1B0

Averaging

B4B2 B3B1

Binarization

MSE

Fig. 3.11 The proposed binarized neural architecture search (BNAS) framework. In BNAS, the
search cell is a fully connected directed acyclic graph with four nodes calculated based on PC-
DARTS and a performance-based method. We also reformulate the optimization of binarization of
CNNs in the same framework

vulnerability to model attacks based on gradient information [29, 58], also for wild
data. These problems require further exploration to overcome these challenges.

To address these challenges, we transfer the NAS to a binarized neural architec-
ture search (BNAS) [12], exploring the advantages of binarized neural networks
(BNNs) on memory saving and computational cost reduction. In our BNAS
framework, as shown in Fig. 3.11, we use PC-DARTS as a warm-up step, followed
by the performance-based method to improve the robustness of the resulting BNNs
for the wild data. Furthermore, based on observation, the early optimal operation is
not necessarily optimal at the end, and the worst operation at the early stage usually
performs worse at the end [90]. We take advantage of PC-DARTS and performance
evaluation to reduce operating space. This means that the operations we finally
reserve are certainly a near-optimal solution. On the other hand, with the operation
pruning process, the search space becomes smaller and smaller, leading to an
efficient search process. We show that the BNNs obtained by BNAS can outperform
conventional BNN models by a large margin. It is a significant contribution to the
field of BNNs considering that the performance of conventional BNNs is not yet
comparable with those of their corresponding full-precision models in terms of
accuracy. To further validate the performance of our method, we also implemented a
1-bit BNAS in the same framework. Unlike BNNs (only kernels are binarized), 1-bit
CNNs suffer from a poor performance evaluation problem for binarized operations
with binarized activations in the beginning due to insufficient training. We assume
BNAS as a multi-armed bandit problem and introduce an exploration term based on
the upper confidence bound (UCB) [2] to improve the search performance.

The exploration term handles the exploration-exploitation dilemma in the multi-
armed bandit problem. We lead a new performance measure based on UCB by

3.3 Binary Neural Architecture Search 79

(1)

Upda ng
likelihoods

Reducing
search space

Selec ng
opera ons

Bi

Bj

0.021 0.12 -0.22 0.321 ... -0.069α

CONV
3x3

MAX POOL
3x3

Bi

Bj

Iden ty

Sampling

0.67+0.34 0.89+0.295 0.42+0.26 1.1+0.295 ... 0.7+0.19

CONV
5x5

MAX POOL
3x3

Iden ty CONV
3x3

Depth-Wise
CONV 3x3

Searching

1.01 1.185 0.68 1.395 ... 0.89

Feature map in memory

Feature map not in memory

CONV
3x3

MAX POOL
3x3

CONV
5x5

CONV
3x3

MAX POOL
3x3

Depth-Wise
CONV 3x3Iden ty

Iden ty

CONV
5x5

CONV
3x3

MAX POOL
3x3

Depth-Wise
CONV 3x3Iden ty

likelihoods

(2)
(3)

(4)(5)

Fig. 3.12 The main steps of our BNAS: (1) Search for an architecture based on O(i,j) using PC-
DARTS. (2) Select half of the operations with less potential from O(i,j) for each edge, resulting in
O(i,j)

smaller . (3) Select an architecture by sampling (without replacement) one operation from O(i,j)
smaller

for every edge and then train the selected architecture. (4) Update the likelihood of selection of the
operation s(o

(i,j)
k) based on the accuracy obtained from the selected architecture on the validation

data. (5) Abandon the operation with the minimal likelihood of selection of the search space {O(i,j)}
for every edge

considering both the performance evaluation and the number of trials for operation
pruning in the same framework. This means the operation is ultimately abandoned
only when sufficiently evaluated (Fig. 3.12).

The search process for our BNAS consists of two steps. One is the potential oper-
ation ordering based on partially connected DARTS (PC-DARTS) [82], which also
serves as a baseline for our BNAS. It is further improved with a second operation
reduction step guided by a performance-based strategy. In the operation reduction
step, we prune one operation at each iteration from one-half of the operations with
less potential, as calculated by PC-DARTS. As such, the optimization of the two
steps becomes faster and faster because the search space is reduced due to the
operation pruning. We can take advantage of the differential framework of DARTS,
where search and performance evaluation are in the same setting. We also enrich
the DARTS search strategy. The gradient is used to determine which operation is
better, and the proposed performance evaluation is included to reduce the search
space further.

3.3.1.1 Search Space

Following [56, 95, 96], we search for a computing cell as the building block of
the final architecture. A network consists of a predefined number of cells [95],
which can be normal cells or reduction cells. Each cell takes the outputs of the two
previous cells as input. A cell is a fully connected directed acyclic graph (DAG) of
M nodes, i.e., {B1, B2, . . . , BM }, as illustrated in Fig. 3.13a. Each node Bi takes

80 3 Binary Neural Architecture Search

(a) Cell

(b) Operation Set

B-1

-1N

0N

2N

3N

4N

Output

1N

+

33×3 binarized
conv

Depth-wise
binarized conv

Identity

Bi Bj

ZeroZero

Fig. 3.13 (a) A cell contains seven nodes; two input nodes .B−1 and . B0; four intermediate nodes
. B1, . B2, . B3, . B4 that apply sampled operations on the input nodes and upper nodes; and an output
node that concatenates the outputs of the four intermediate nodes. (b) The set of operations . O(i,j)

between . Bi and . Bj , including binarized convolutions

its dependent nodes as input and generates an output through a sum operation
.Bj = ε

i<j o(i,j)(Bi). Here each node is a specific tensor.
Unlike conventional convolutions, our BNAS is achieved by transforming all

convolutions in . O into binarized convolutions. We denote the full-precision and
binarized kernels as X and . X̂, respectively. A convolution operation in . O is
represented as .Bj = Bi ⊗ X̂ as shown in Fig. 3.13b, where . ⊗ denotes convolution.
To build BNAS, one critical step is how to binarize the kernels from X to . X̂, which
can be implemented based on state-of-the-art BNNs, such as XNOR or PCNN.
Optimizing BNNs is more challenging than conventional CNNs [30, 65], adding an
additional burden to NAS. To solve it, we introduce channel sampling and reduction
in operating space in differentiable NAS to significantly reduce the cost of GPU
hours, leading to efficient BNAS.

3.3 Binary Neural Architecture Search 81

3.3.1.2 Binarized Optimization for BNAS

The inference process of a BNN model is based on binarized kernels, which means
that the kernels must be binarized in the forward step (corresponding to inference)
during training. Contrary to the forward process, the resulting kernels are not
binarized during back propagation and can be full-precision.

To achieve binarized weights, we first divide each convolutional kernel into two
parts (amplitude and direction) and formulate the current binarized methods in a
unified framework. We elaborate D, A, and . Â: . Dl

i are the directions of the full-
precision kernels . Xl

i of the . lth convolutional layer, .l ∈ {1, · · · , N}; . Al shared by

all . Dl
i represents the amplitude of the . lth convolutional layer; . Âl and . Al are of the

same size; and all elements of . Âl are equal to the average of the elements of . Al .
In the forward pass, . Âl is used instead of the full-precision . Al . In this case, . Âl can
be considered a scalar. Full-precision . Al is only used for back propagation during
training. Note that our formulation can represent both XNOR based on the scalar
and simplified PCNN [30] whose scalar is learnable as a projection matrix.

We represent . X̂ by the amplitude and direction as

.X̂ = Â O D, (3.38)

where . O denotes the element-wise multiplication between matrices. We then define
an amplitude loss function to reconstruct the full-precision kernels as:

.L
Â

= θ

2

ε

i,l

||Xl
i − X̂l

i||2 = θ

2

ε

i,l

||Xl
i − Âl O Dl

i||2, (3.39)

where .Dl
i = sign(Xl

i) represents the binarized kernel. . X
l
i is the full-precision model

updated during the backpropagation process in PCNNs, while . Âl is calculated
based on a closed-form solution in XNOR. Element-wise multiplication combines
binarized kernels and amplitude matrices to approximate full-precision kernels. The
final loss function is defined by considering:

.LS = 1

2S

ε

s

||Ŷs − Ys||22, (3.40)

where . Ŷs is the label of the . sth example and . Ys is the corresponding classification
results. Finally, the overall loss function L is applied to supervise the training of
BNAS in back propagation as:

.L = LS + L
Â
. (3.41)

Binarized optimization is used to optimize neural architecture search, leading
to our binarized neural architecture search (BNAS). To this end, we use partially

82 3 Binary Neural Architecture Search

connected DARTS (PC-DARTS) to achieve operation potential ordering, which
serves as a warm-up step for our BNAS. Denote by .Ltrain and .Lval the training
and validation losses, respectively. Both losses are determined by the architecture
. α and the binarized weights . X̂ in the network. The goal of the warm-up step is to
find . X̂∗ and . α∗ that minimize the validation loss .Lval(X̂

∗, α∗), where the weights
. X̂∗ associated with the architecture are obtained by minimizing the training loss
.X̂∗ = argmin

X̂

Ltrain(X̂, α∗).

This implies a bilevel optimization problem with . α as the upper-level variable
and . X̂ as the lower-level variable:

.

argmin
α

Lval(X̂
∗, α)

s.t. X̂∗ = argmin
X̂

Ltrain(X̂, α).
(3.42)

To better understand our method, we also review the core idea of PC-DARTS,
which can take advantage of partial channel connections to improve memory
efficiency. For example, the connection from . Bi to . Bj involves defining a channel
sampling mask .S(i,j), which assigns 1 to selected channels and 0 to masked ones.
The selected channels are sent to a mixed computation of .|O(i,j)| operations, while
the masked ones bypass these operations. They are copied directly to the output,
which is formulated as:

.

f (i,j)(Bi, S
(i,j))

=
ε

o
i,j
k ∈O(i,j)

exp{α
o
(i,j)
k

}
ε

o
(i,j)

k' ∈O(i,j) exp{α
o
(i,j)

k'
} · o

(i,j)
k (S(i,j) ∗ Bi)

+ (1 − S(i,j)) ∗ Bi,

(3.43)

where .S(i,j) ∗ Bi and .(1 − S(i,j)) ∗ Bi denote the selected and masked channels,
respectively, and .α

o
(i,j)
k

is the parameter of operation .o
(i,j)
k between . Bi and . Bj .

PC-DARTS sets the proportion of selected channels to .1/C by considering C as a
hyperparameter. In this case, the computational cost can be reduced by C. However,
the size of the entire search space is .2×K |EM|, where .EM is the set of possible edges
with M intermediate nodes in the fully connected DAG, and the “2” comes from the
two types of cells. In our case with .M = 4, together with the two input nodes, the
total number of cell structures in the search space is .2 × 82+3+4+5 = 2 × 814. This
is a vast space to search for binarized neural architectures, which need more time
than a full-precision NAS. Therefore, efficient optimization strategies are required
for BNAS.

3.3 Binary Neural Architecture Search 83

3.3.1.3 Performance-Based Strategy for BNAS

Reinforcement learning could be more efficient in architecture search due to delayed
rewards in network training. That is, the evaluation of a structure is usually done
after the network training converges. On the other hand, we can evaluate a cell
when training the network. Inspired by [85], we use a performance-based strategy
to increase search efficiency by a large margin. [85] did a series of experiments
showing that in the early stage of training, the validation accuracy ranking of
different network architectures is not a reliable indicator of the quality of the
final architecture. However, we observe that the results of the experiments suggest
that if an architecture performs poorly at the beginning of training, there is little
hope that it can be part of the final optimal model. As training progresses, this
observation shows less uncertainty. Based on this observation, we derive a simple
yet effective operation-abandoning process. We progressively abandon the worst-
performing operation on each edge during training and increasing epochs.

To this end, we reduce the search space .{O(i,j)} after the warm-up step achieved
by PC-DARTS to increase search efficiency. According to .{α

o
(i,j)
k

}, we can select
half of the operations with less potential than .O(i,j) for each edge, resulting in
.O(i,j)

smaller . After that, we randomly sample one operation from the .K/2 operations in

.O(i,j)
smaller for every edge, then obtain the validation accuracy by training the sampled

network for one epoch, and finally assign this accuracy to all the sampled operations.
These three steps are performed .K/2 times by sampling without replacement, giving
each operation exactly one accuracy for every edge.

We repeat it T times. Thus, each operation for every edge has T accuracies
.{y(i,j)

k,1 , y
(i,j)

k,2 , . . . , y
(i,j)
k,T }. Then we define the selection likelihood of the kth oper-

ation in .O(i,j)
smaller for each edge as:

.ssmaller (o
(i,j)
k) = exp{ȳ(i,j)

k }
ε

m exp{ȳ(i,j)
m }

, (3.44)

where .ȳ(i,j)
k = 1

T

ε
t y

(i,j)
k,t . And the selection likelihoods of the other operations

not in .O(i,j)
smaller are defined as:

.
slarger (o

(i,j)
k) = 1

2
(max
o
(i,j)
k

{ssmaller (o
(i,j)
k)} + 1

|K/2|
ε

o
(i,j)
k

ssmaller (o
(i,j)
k)),

(3.45)

where .|K/2| denotes the smallest integer .≥ K/2. It is used because K can be
an odd integer during iteration in the proposed Algorithm 6. Equation 3.45 is an

84 3 Binary Neural Architecture Search

estimate for the remaining operations using a value balanced between the maximum
and the average of .ssmaller (o

(i,j)
k). Then, .s(o(i,j)

k) is updated by:

. s(o
(i,j)
k) ←1

2
s(o

(i,j)
k) + q

(i,j)
k ssmaller (o

(i,j)
k)+ (1 − q

(i,j)
k)slarger (o

(i,j)
k),

(3.46)

where .q
(i,j)
k is a mask, which is 1 for the operations in .O(i,j)

smaller and 0 for the others.
When searching for BNAS, we do not use PC-DARTS as a warm-up to

consider efficiency because quantizing feature maps is slower. Therefore, . O(i,j)
smaller

is .O(i,j). Also, we introduce an exploration term into Eq. 3.46 based on bandit [2].
In machine learning, the multi-armed bandit problem is a classic reinforcement
learning problem that exemplifies the exploration-exploitation trade-off dilemma:
shall we stick to an arm that has given high reward so far (exploitation) or rather
probe other arms further (exploration)? The upper confidence bound (UCB) is
widely used for dealing with the exploration-exploitation dilemma in the multi-
armed bandit problem. Then, with the above analysis, Eq. 3.46 becomes:

.s(o
(i,j)
k) ← s(o

(i,j)
k) + δ ∗

/
2 logN

n
(i,j)
k,t

(3.47)

where N is the total number of samples, .n(i,j)
k,t refers to the number of times the kth

operation of the edge .(i, j) has been selected, and t is the epoch index. The first item
in Eq. 3.47 is the value term, which favors historically good operations. The second
is the exploration term, which allows operations to get an exploration bonus that
grows with .logN . And this work uses .δ = 2 to balance the value and exploration
terms. We also test other values, which achieve slightly worse results. Thus, 1-bit
convolutions, which misbehave in sufficient trials, are prone to be abandoned.

Finally, we abandon the operation with a minimal likelihood of selection for
each edge. The size of the search space is significantly reduced from . 2 × |O(i,j)|14
to .2 × (|O(i,j)| − 1)14. We have the following:

.O(i,j) ← O(i,j) − {argmin
o
(i,j)
k

s(o
(i,j)
k)}. (3.48)

The optimal structure is obtained when only one operation is left on each edge.
Our performance-based search algorithm is presented in Algorithm 6. Note that
in line 1, PC-DARTS is performed for L epochs as a warm-up to find an initial
architecture, and line 14 is used to update the architecture parameters .α

o
(i,j)
k

for all

edges due to reduction of the search space .{O(i,j)}.

3.3 Binary Neural Architecture Search 85

Algorithm 6: Performance-based search
Input:Training data, Validation data, Searching hyper-graph: G, K = 8, T = 3, V = 1,
L = 5, s(o (i,j)

k) = 0 for all edges
Output: Optimal structure α
1: Search an architecture for L epochs based on O(i,j) using PC-DARTS
2: while (K > 1) do
3: Select O(i,j)

smaller consisting of |K/2| operations with smallest α
o (i,j)
k

from O(i,j) for

every edge;
4: for t = 1, . . . , T epoch do
5: O'(i,j)

smaller ← O(i,j)
smaller ;

6: for e = 1, . . . , |K/2| epoch do
7: Select an architecture by sampling (without replacement) one operation from

O'(i,j)
smaller for every edge

8: Train the selected architecture and get the accuracy on the validation data
9: Assign this accuracy to all the sampled operations;
10: end for
11: end for
12: Update s(o (i,j)

k) using Eq. 3.46;
13: if 1 bit then
14: Update s(o (i,j)

k) using Eq. 3.47;
15: end if
16: Update the search space {O(i,j)} using Eq. 3.48;
17: Search the architecture for V epochs based on O(i,j) using PC-DARTS;
18: K = K − 1;
19: end while

3.3.1.4 Gradient Update for BNAS

In BNAS, . X̂l in the . lth layer is used to calculate the output feature maps .F l+1 as:

.F l+1 = ACconv(F l, X̂l), (3.49)

where ACconv denotes the amplitude convolution operation designed in Eq. 3.50.
In ACconv, the output feature map channels are generated as follows:

.F l+1
h =

ε

i,g

F l
g ⊗ X̂l

i , (3.50)

where . ⊗ denotes the convolution operation; .F l+1
h is the .hth feature map in the

.(l + 1)th convolutional layer; and . F l
g denotes the .gth feature map in the . lth

convolutional layer. Note that the BNAS kernels are binarized, whereas for 1-bit
BNAS, both the kernels and the activations are binarized. Similar to previous work
[30, 57, 65], the 1-bit BNAS is obtained by binarizing the kernels and activations
simultaneously. In addition, we replace ReLU with PReLU to reserve harmful
elements generated by a 1-bit convolution.

86 3 Binary Neural Architecture Search

In BNAS, full-precision kernels . Xi and amplitude matrices A need to be learned
and updated. The kernels and the matrices are jointly learned. BNAS updates the
full-precision kernels and amplitude matrices in each convolutional layer. In what
follows, the layer index l is omitted for simplicity.

We denote . δXi
as the gradient of the full-precision kernel . Xi , and we have:

.δXi
= ∂L

∂Xi

= ∂LS

∂Xi

+ ∂L
Â

∂Xi

, (3.51)

.Xi ← Xi − η1δXi
, (3.52)

where . η1 is a learning rate. Then we have:

.
∂LS

∂Xi

= ∂LS

∂X̂i

· ∂X̂i

∂Xi

= ∂LS

∂X̂i

· Â · 1, (3.53)

.
∂L

Â

∂Xi

= θ · (Xi − Â O Di), (3.54)

where . Xi is the full-precision convolutional kernel corresponding to . Di and . 1 is the
indicator function [65] widely used to estimate the gradient of the nondifferentiable
function.

After updating X, we update the amplitude matrix A. Let . δA be the gradient of
. A. According to Eq. 3.41, we have:

.δA = ∂L

∂A
= ∂LS

∂A
+ ∂L

Â

∂A
, (3.55)

.A ← |A − η2δA|, (3.56)

where . η2 is another learning rate. Note that the amplitudes are always set to be
nonnegative. Then we have:

.
∂LS

∂A
=

ε

i

∂LS

∂X̂i

· ∂X̂i

∂Â
· ∂Â

∂A
=

ε

i

∂LS

∂X̂i

· Di, (3.57)

.
∂L

Â

∂A
= ∂L

Â

∂Â
· ∂Â

∂A
= −θ · (Xi − Â O Di) · Di, (3.58)

where . ∂Â
∂A

is set to 1 for an easy implementation of the algorithm. Note that . Â and
A are used in the forward-pass and back propagation asynchronously. The above
derivations show that BNAS is learnable with the new BP algorithm.

3.3 Binary Neural Architecture Search 87

3.3.1.5 Ablation Study

We use the same datasets and evaluation metrics as the existing NAS works
[8, 55, 56, 96]. First, most experiments are conducted on CIFAR-10 [44], and the
color intensities of all images are normalized to .[−1,+1]. During the architecture
search, the 50K training samples of CIFAR-10 are divided into two subsets of
equal size, one to train the network weights and the other to search the architecture
hyperparameters. When reducing the search space, we randomly select 5K images
from the training set as a validation set (used on line 8 of Algorithm 6). Especially
for 1-bit BNAS, we replace ReLU with PReLU to avoid the disappearance of
negative numbers generated by a 1-bit convolution. The bandit strategy is introduced
to solve the insufficient training problem caused by the binarization of both kernels
and activations. To further show the efficiency of our method, we also search for the
architecture on ImageNet directly.

In the search process, we consider a total of six cells in the network, where
the reduction cell is inserted in the second and fourth layers, and the others are
normal cells. There are .M = 4 intermediate nodes in each cell. Our experiments
follow PC-DARTS. We set the hyperparameter C in PC-DARTS to 2 for CIFAR-
10 so that only .1/2 features are sampled for each edge. The batch size is set to
128 during the search for an architecture for .L = 5 epochs based on .O(i,j) (line
1 of Algorithm 6). Note that for .5 ≤ L ≤ 10, a larger L has little effect on the
final performance but costs more search time, as shown in Table 3.4. We freeze
network hyperparameters, such as . α, and allow only network parameters, such as
filter weights, to be tuned in the first three epochs. Then in the next two epochs, we
train both the network hyperparameters and the network parameters. This is done to
provide initialization for the network parameters, thus alleviating the drawback of
parameterized operations compared to free-parameter operations. We also set . T = 3
(line 4 in Algorithm 6) and .V = 1 (line 14), so the network is trained in fewer than
60 epochs, with a larger batch size of 400 (due to few operation samplings) during
the reduction of the search space. The initial number of channels is 16. We use
momentum-based SGD to optimize network weights, with an initial learning rate
of .0.025 (annealed to zero following a cosine schedule), a momentum of 0.9, and
a weight decay of .5 × 10−4. The learning rate to find the hyperparameters is set to
.0.01. When we search for the architecture directly on ImageNet, we use the same
parameters as when searching on CIFAR-10, except that the initial learning rate is
set to . 0.05

Table 3.4 With different L, the accuracy and search cost of BNAS based on PCNN on the
CIFAR10 dataset

L
Model 3 5 7 9 11

Accuracy (%) 95.8 96.06 95.94 96.01 96.03

Search cost 0.0664 0.09375 0.1109 0.1321 0.1687

88 3 Binary Neural Architecture Search

3.3.2 BDetNAS: A Fast Binarized Detection Neural
Architecture Search

3.3.2.1 Search Space

We follow the same settings as previous NAS works [56, 91] to search for a
computation cell as the building block of the final architecture. As plotted in
Fig. 3.14, the search space is related to three main elements: node, cell, and network.
We will describe the binarized architecture search space and the method to build the
binarized network as below.

Node As the fundamental elements that compose cells, each node Fi is a set of
specific feature maps. To formulate a directed acyclic graph (DAG), each node has
its connections. Possible operation set between nodes (i, j) is denoted asOi,j , where
a practicable operation is selected to transform Fi to Fj as shown in Fig. 3.14c.

In a cell, nodes can be divided into three categories: input node, intermediate
node, and output node. Each cell takes the output of previous two cells as the input
node. And each intermediate node takes the input node and previous intermediate
nodes as the input. Then we concatenate all intermediate nodes to formulate the
final output node. Following this guideline as [56], we form a possible operation
set, denoted as O, consisting of |O| = 8 operations: (1) 3 × 3 max pooling, (2) no

Fig. 3.14 (a) The Faster R-CNN detector with searched network consisting of stacked cell. (b) A
cell contains seven nodes; two input nodes F−1, F0; four intermediate nodes F1, F2, F3, F4 that
apply sampled operations on the input nodes and upper nodes; and an output node that concatenates
the outputs of the four intermediate nodes. © denotes the concatenating operation. (c) The search
space of BDetNAS, link operation between input, and intermediate nodes will be selected among
the possible operations Oi,j

3.3 Binary Neural Architecture Search 89

connection (zero), (3) .3×3 average pooling, (4) skip connection (identity), (5) . 3×3
dilated convolution with rate 2, (6) .5 × 5 dilated convolution with rate 2, (7) . 3 × 3
depth-wise separable convolution, and (8) .5 × 5 depth-wise separable convolution.
Moreover, a binarized NAS is achieved by transforming all the convolutions in . O to
binarized convolutions as shown in Fig. 3.14c.

Cell A cell is defined as a tiny convolutional network with complex connections
and multiple operation layers. Cells can be categorized into two classes, i.e., normal
cell and reduction cell. We define the input shape of cells as .K × W × C. A normal
cell uses the operations with stride 1, so its input and output shape are identical, i.e.,
.K × W × C. Following the guideline of common heuristic in most human designed
convolutional neural networks [36, 41, 70], C is doubled when the stride is 2. Hence,
a reduction cell uses the operations with the stride set to 2, and the output shape is
.K/2 × W/2 × 2C.

We set the cell according to [56], which is formed by seven nodes and
correspondingly .2+3+4+5 = 14 possible connections as illustrated in Fig. 3.14b.
The edge between two nodes denotes a possible operation which will be selected
according to the performance-based strategy. In training, we form an architecture
every epoch by sampling operations without replacement. And we optimize the
search space according to our search space reduction algorithm. In addition, we
should cut the 14 possible connections down to 8. Thus, we select the top eight
probabilities to generate the final cells in testing. Therefore, the size of the whole
search space is .2×82+3+4+5 = 2×814, which is an extremely large space to search.
Hence, efficient optimization methods are required.

Network A backbone network consists of a predefined number of stacked cells,
which take the output of two previous cells as the input. Among the cells, there
are either normal cells with stride set as 1 or reduction cells with the stride set
as 2. Following [56], we employ two stem cells with the total stride set as 8 to
preprocess the raw image. Hence, only two kinds of cells are generated. Based on
the performance ranking hypothesis [91], we train a small stacked network with six
cells (two reduction cells and f our normal cells) for search. And then we employ
the corresponding 20-cell network of the optimal 6-cell network for pre-training and
fine-tuning. A Faster R-CNN detector [68] with the searched backbone is plotted as
shown in Fig. 3.14a.

3.3.2.2 Performance-Based Strategy for BDetNAS

The core idea of our search algorithm is to sample randomly and reduce the search
space step by step according to the testing accuracy. In general, we select an edge
between specific nodes .(i, j) from operation sets and test the network compose of
the selected edges without replacement. We record the performance information
according to the test accuracy and accordingly optimize the search space.

90 3 Binary Neural Architecture Search

To accomplish this, we implement the operation sampling on . Oi,j . We randomly
sample an edge .ok

i,j from .Oi,j to form a network for test. After that, we update the
performance of each operation between nodes i and j as:

.s(ok
i,j) =

εN
e=1 ye · m

k,e
i,j

εN
e=1 m

k,e
i,j

, (3.59)

where N denotes the current training epoch and .1 ≤ e ≤ N . . ye denotes the test
accuracy of the e-th epoch. And .m

k,e
i,j denotes an indicative variable defined as:

.m
k,e
i,j =

{
1, ok

i,j is selected in e−th epoch

0, else
(3.60)

Equation 3.59 indicates taking the average test accuracy of the epochs, where .ok
i,j is

selected, as the performance of .s(ok
i,j).

We define the iteration times .T = 3 for sampling without replacement. We first
repeat sampling .|Oi,j | × T = 8 × 3 = 24 epochs and then reduce the search space
as:

.Oi,j ← Oi,j − argmin
ok
i,j

s(ok
i,j). (3.61)

After Eq. 3.61, the search space size of every edge is reduced to .|Oi,j | − 1 for
one cell. As a result, the whole search space size is significantly reduced from
.2 × (|Oi,j |)L to .2 × (|Oi,j | − 1)L, where L is the number of cells. Then we repeat
the search space reduction process until .|Oi,j | = 1 to achieve the final architecture.
The number of total epochs is .(8 + 7 + · · · + 2) ∗ 3 = 108, which is efficient.

3.3.2.3 Optimization for BDetNAS

To achieve a binarized NAS, kernel weights are binarized by decomposing the full-
precision kernel X into amplitude and direction as:

.X̂ = A · D, (3.62)

where A and D respectively denote the amplitude and the direction of X. D is the
.l1-normalized matrix, which is element-wisely calculated by .sign(X) as . −1

|X| for

negative X and . 1|X| for positive X. . |X| denotes the number of elements in X. A is a
scalar. Then a binarized convolution can be formulated as:

.Fj = Fi ◦ X̂i,j , (3.63)

where . ◦ denotes convolution.

3.3 Binary Neural Architecture Search 91

Algorithm 7: BDetNAS framework

Input: Training data, validation data, Oi,j and s(ok
i,j) = 0 for all edges, supernet and e = 0;

Output: Optimal backbone architecture a∗, optimal w∗
D for object detection;

1: Initialize w randomly;
2: repeat
3: Sample ok

i,j randomly with no replacement.
4: for t = 1 to T do
5: Train the selected architecture according to Eq. 3.65.
6: end for
7: Test the trained network and calculate the test accuracy ye.
8: Update the s(ok

i,j) via Eq. 3.59.
9: if e == |Oi,j | × T then
10: Update Oi,j via Eq. 3.61.
11: end if
12: e ← e + 1
13: until |Oi,j | = 1
14: Pre-train searched a∗ and get w∗

P on ImageNet.
15: Initialize w ← w∗

P and fine-tune on VOC/COCO.
16: Get a∗ and w∗

D .

We then define an amplitude loss function to reconstruct the full-precision
kernels as:

. LA =
Lε

l

ε

Fi,Fj ∈Cl

||Xi,j − X̂i,j||22

=
Lε

l

ε

Fi,Fj ∈Cl

||Xi,j − Ai,j · Di,j||22, (3.64)

where . Cl denotes the l-th cell. .Xi,j denotes the full-precision kernel and . X̂i,j

denotes a reconstructed one. The total loss for optimization in search process is:

.L = LCls + α

2
LA, (3.65)

where .LCls is the conventional loss function, e.g., cross entropy. . α is a hyperparam-
eter.

3.3.2.4 Experiments

In this section, we compare our BDetNAS with state-of-the-art manually designed
and other NAS object detectors. Moreover, we also compare the BNNs obtained by
our BDetNAS based on XNOR [65] to validate effectiveness of our method. More

92 3 Binary Neural Architecture Search

experimental results are also provided in the supplementary material. GPU days are
counted according to NVIDIA GTX 1080Ti, which is the same as DetNAS [18]. All
the experiments and models are implemented with PyTorch.

Experimental Settings

Search on ImageNet+VOC/COCO For search process, we use the commonly
used .1.28M ImageNet ILSVRC2012 [45] and Cropped&Resized detection
dataset for training images, as plotted in Fig. 5.5. The Cropped&Resized VOC
trainval07+12 [23] has .46.9k images over 20 classes. Likewise, the
Cropped&Resized COCO trainval35k [53] has .0.86M images over 80 classes.
Hence, we get an augmented dataset of .1.33M images for search on VOC
trainval07+12 and of .2.14M images for search on COCO trainval35k.
When calculating the accuracy, we randomly select 5K images from the training
set as a validation set (in line 7 of Algorithm 7). As illustrated in Sect. 3.3.2.2, 108
epochs are needed for search. And we use a batch size of 512 on 4 NVIDIA
GTX 1080Ti GPUs for 280k iterations for ImageNet ILSVRC2012 + VOC
trainval07+12 and 450k iterations on ImageNet ILSVRC2012 + COCO
trainval35k.

Pre-training on ImageNet For ImageNet classification dataset, we use the com-
monly used .1.28M ImageNet ILSVRC2012 [45]. To get a pre-trained backbone on
ImageNet, the network is trained from scratch for 250 epochs with a batch size of
512. We use the SGD optimizer with a momentum of . 0.9, an initial learning rate
of .0.05 (decayed down to zero following a cosine schedule), and a weight decay of
.3 × 10−5. Additional enhancements are adopted including label smoothing and an
auxiliary loss tower during training.

Fine-tuning on VOC/COCO We validate our method with Faster R-CNN [68]
detector. The training images are randomly flipped for augmentation. Then a
superposition of the original data and the augmented data is used for training. 40k
input images are employed for VOC trainval07+12 and 230k input images are
employed for COCO trainval35k. Note that COCO trainval35k used here
is the left part with 5k COCO minival taken away. We train on 4 GPUs with a
total of 4 images per mini-batch for 27k iterations on VOC and 150k iterations on
COCO. The weights of backbone are initialized with ImageNet pre-training. The
parameters of region proposal network (RPN) are randomly initialized. We set the
weight decay as .1 × 10−4 and momentum as . 0.9. Initial learning rate is . 4 × 10−3

and we decay the rate at the 8th epoch of the total ten epochs.

Results on VOC test2007
Hyperparameter . α is set as .2 × 10−5 for search on VOC trainval07+12.
Relevant ablation study is attached in supplementary material. We compare our
method with manually designed networks with a similar model size, state-of-the-
art quantization methods, and networks searched by NAS. The manually designed
backbones include ResNet [36] and VGG [70]. Binarized ResNet-34 implemented

3.3 Binary Neural Architecture Search 93

Table 3.5 Comparison with the state-of-the-art object detectors on VOC test2007

Backbone Params Search Cost

Detector Backbone mAP (M) (GPU days)

Faster R-CNN [68] ResNet-18 [36] 73.2 10.67 (32 bits) –

Faster R-CNN [68] ResNet-34[36] 75.6 20.27 (32 bits) –

Faster R-CNN [68] VGG-16 [70] 73.5 15.21 (32 bits) –

Faster R-CNN [68] ResNet-34 [75] 59.0 20.27 (1 bit) –

Faster R-CNN [68] ResNet-34 [65] 54.7 20.27 (1 bit) –

FPN [50] DetNAS [18] 81.5 4.34 (32 bits) 35

RetinaNet [51] DetNAS [18] 80.1 5.07 (32 bits) 35

Faster R-CNN [68] FairNAS [19] 67.3 6.72 (1 bit) 8.1

Faster R-CNN [68] BDetNAS (XNOR[65]) 68.8 6.23 (1 bit) 8.3
Faster R-CNN[68] BDetNAS 70.8 6.51 (1 bit) 8.1

by TBN [75] and XNOR [65] are considered in our comparison. In addition, we
compare our BDetNAS with state-of-the-art DetNAS [18].

As illustrated in Table 3.5, Faster R-CNN [68] with full-precision ResNet-18,
VGG-16 and ResNet-34 achieves .73.2, .73.5, and.75.6 mAP on VOC test2007,
respectively, while BDetNAS incurs only .1.4%, .1.7%, and .4.8% mAP loss with
a compressed model size by .52×, .74×, and .99×. For binarized ResNet-34
implemented via XNOR [65] and TBN [75], our BDetNAS achieve .16.1% and
.11.8% mAP higher as well as compress the memory usage by .3.2×.

Compared with the full-precision detectors obtained by DetNAS [18], the
binarized networks with our BDetNAS have acceptable mAP loss but with much
more compressed models. Note that the numbers of parameters of backbones
searched by DetNAS [18] are less than 5M. However, the binarized networks only
need 1 bit to save one parameter, while the full-precision networks need 32 bits.
Hence, our BDetNAS saves about .21× and .25× memory, which is an obviously
superior trade-off for real applications. In terms of search efficiency, our framework
searches directly on image classification task from scratch and needs no advanced
pre-training or fine-tuning compared to DetNAS. Hence, our BDetNAS is more than
.4× faster compared with DetNAS. The superiority is attributed to the proposed
scheme of search space reduction and novel search framework.

In addition, we reimplement FairNAS [19], i.e., random search under the same
setup as ours for fair comparison. As illustrated in the last rows of Table 3.5,
BDetNAS outperforms FairNAS [19] with .3.5% mAP higher after searching for
same epochs. This demonstrates that our BDetNAS can effectively improve the
performance of the backbone. Compared to BDetNAS implemented by XNOR [65],
the BDetNAS with our novel quantization method achieves higher mAP with similar
memory usage. This demonstrates our novel quantization framework is of great
effect (Fig. 3.15).

94 3 Binary Neural Architecture Search

F-1

F1

skip_connect

F3

sep_conv_3x3

F0

max_pool_3x3

F2

max_pool_3x3
max_pool_3x3

Outputmax_pool_3x3

F4dil_conv_3x3
max_pool_3x3

F-1

F1

avg_pool_3x3

F2

dil_conv_3x3

F3

dil_conv_5x5

F0

sep_conv_3x3

dil_conv_5x5

sep_conv_3x3

F4 sep_conv_3x3

Output

sep_conv_3x3

F-1

F1

skip_connect

F4

max_pool_3x3

F0

max_pool_3x3

F2
sep_conv_3x3

F3
max_pool_3x3

max_pool_3x3

Output

dil_conv_3x3

max_pool_3x3

F-1 F1
max_pool_3x3

F3

max_pool_3x3

F4
sep_conv_3x3

F0 sep_conv_3x3
F2 dil_conv_5x5

dil_conv_3x3

sep_conv_3x3

Output

sep_conv_3x3

(b)

(a)

(c)

(d)

Fig. 3.15 Detailed structures of the best cells discovered using BDetNAS based on our quantiza-
tion methods. In the normal cell, the stride of the operations on two input nodes is 1, and in the
reduction cell, the stride is 2. (a) Normal cell on VOC. (b) Reduction cell on VOC. (c) Normal cell
on COCO. (d) Reduction cell on COCO

Results on COCO minival
We further compare BDetNAS with other state of the arts on COCO minival.
Hyperparameter α is set as 1×10−5 for search on COCO trainval35k. Relevant
ablation study is attached in supplementary material. The backbones for comparison

References 95

Table 3.6 Comparison with the state-of-the-art object detectors on COCO minival

mAP Backbone params Search cost

Detector Backbone AP AP.0.5 AP.0.75 (M) (GPU days)

Faster R-CNN
[68]

ResNet-18 [36] 32.2 53.8 34.0 10.67 (32 bits) –

Faster R-CNN
[68]

MobileNetV2 [69] 29.0 49.7 29.5 3.4(32 bits) –

Faster R-CNN
[68]

ResNet-18 [48] 28.1 48.4 29.3 10.67 (1 bit) –

Faster R-CNN
[68]

MobleNetV2 [48] 25.5 45.3 25.7 3.4 (1 bit) –

RetinaNet [51] DetNAS [18] 34.1 – – 5.07 (32 bits) 44

Faster R-CNN
[68]

BDetNAS 29.0 49.2 29.7 6.30 (1 bit) 13.4

consist of manually designed full-precision ones such as MobileNetV2 [69] and
ResNet-18 [36], binarized one such as FQN [48], and searched one by DetNAS [18].
From the results in Table 3.6, we have the following observations: (1) BDetNAS
performs equally to human-designed light full-precision networks MobileNetV2
(.29.0 vs. .29.0) as well as save memory usage by .17× on the same detector. (2)
Compared with binarized ResNet-18 by FQN [48], BDetNAS achieves .0.4% mAP
higher as well as compress the model by .1.7×. And BDetNAS achieves 3.5. %
mAP higher compared with binarized MobileNetV2 by FQN[48]. (3) BDetNAS
saves memory usage by .26× with only .5.1%mAP lower (.29.0 vs. .34.1) compared
with DetNAS [18] on RetinaNet [51]. Moreover, our search cost is only .30.4% of
DetNAS.

References

1. Milad Alizadeh, Javier Fernández-Marqués, Nicholas D Lane, and Yarin Gal. An empirical
study of binary neural networks’ optimisation. In Proceedings of the International Conference
on Learning Representations, 2018.

2. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit
problem. In Machine learning, 2002.

3. Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by
maximizing mutual information across views. In NeurIPS, 2019.

4. Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model
architecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

5. A. Buades, B. Coll, and J. Morel. A non-local algorithm for image denoising. In CVPR, 2005.
6. Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. Bats: Binary architecture search.

In Proc. of ECCV, pages 309–325, 2020.
7. Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search

by network transformation. In AAAI, 2018.
8. Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-level network

transformation for efficient architecture search. In International Conference on Machine
Learning, pages 678–687. PMLR, 2018.

96 3 Binary Neural Architecture Search

9. Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on
target task and hardware. In ICLR, 2019.

10. Hanlin Chen, Baochang Zhang, Shenjun Xue, Xuan Gong, Hong Liu, Rongrong Ji, and
David S. Doermann. Anti-bandit neural architecture search for model defense. ArXiv,
abs/2008.00698, 2020.

11. Hanlin Chen, Li’an Zhuo, Baochang Zhang, Xiawu Zheng, Jianzhuang Liu, Rongrong Ji,
David Doermann, and Guodong Guo. Binarized neural architecture search for efficient object
recognition. International Journal of Computer Vision, 129(2):501–516, 2021.

12. Hanlin Chen, Li’an Zhuo, Baochang Zhang, Xiawu Zheng, Jianzhuang Liu, Rongrong Ji,
David S. Doermann, and Guodong Guo. Binarized neural architecture search for efficient
object recognition. International Journal of Computer Vision, 129:501–516, 2020.

13. Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review. In Proceedings of
the IEEE, 2019.

14. Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. arXiv:2002.05709, 2020.

15. Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search:
Bridging the depth gap between search and evaluation. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 1294–1303, 2019.

16. Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search:
Bridging the depth gap between search and evaluation. In Proc. of ICCV, 2019.

17. Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv:2003.04297, 2020.

18. Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng, Xinyu Xiao, and Jian Sun. Detnas:
Backbone search for object detection. In NIPS, pages 6638–6648, 2019.

19. Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fairnas: Rethinking evaluation fairness
of weight sharing neural architecture search. arXiv preprint arXiv:1907.01845, 2019.

20. Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. Fair darts: Eliminating unfair
advantages in differentiable architecture search. In Proc. of ECCV, 2020.

21. Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Marculescu. Regularizing activation
distribution for training binarized deep networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 11408–11417, 2019.

22. Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisser-
man. The pascal visual object classes (voc) challenge. IJCV, 2010.

23. Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisser-
man. The pascal visual object classes (voc) challenge. International Journal of Computer
Vision, 2010.

24. D. Gabor. Electrical engineers part iii: Radio and communication engineering, j. Journal
of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering
1945-1948, 1946.

25. D. Gabor. Theory of communication. part 1: The analysis of information. Journal of the
Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 1946.

26. Ross Girshick. Fast r-cnn. In ICCV, 2015.
27. Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for

accurate object detection and semantic segmentation. In CVPR, 2014.
28. Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr Dollár, and Kaiming He. Detectron.

https://github.com/facebookresearch/detectron, 2018.
29. I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.

arXiv, 2014.
30. Jiaxin Gu, Ce Li, Baochang Zhang, Jungong Han, Xianbin Cao, Jianzhuang Liu, and David

Doermann. Projection convolutional neural networks for 1-bit cnns via discrete back
propagation. In Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

31. Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an
invariant mapping. In CVPR, 2006.

https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron

References 97

32. Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In NIPS, pages 1135–1143, 2015.

33. Yiwen Han, Xiaofei Wang, Victor Leung, Dusit Niyato, Xueqiang Yan, and Xu Chen.
Convergence of edge computing and deep learning: A comprehensive survey. In arXiv, 2019.

34. Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020.

35. Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017.
36. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

37. Olivier J Hénaff, Ali Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord. Data-efficient
image recognition with contrastive predictive coding. arXiv:1905.09272, 2019.

38. Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
Computer Science, 14(7):38–39, 2015.

39. R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. In ICLR, 2019.

40. Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

41. Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

42. Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks. In Advances in neural information processing systems, pages 4107–
4115, 2016.

43. Dahyun Kim, Kunal Pratap Singh, and Jonghyun Choi. Learning architectures for binary
networks. In Proc. of ECCV, pages 575–591, 2020.

44. Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

45. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS),
pages 1097–1105, 2012.

46. En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. Edge ai: On-demand accelerating deep neural
network inference via edge computing. In IEEE Transactions on Wireless Communications,
2019.

47. Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias Muller, Ali Thabet, and Bernard
Ghanem. Sgas: Sequential greedy architecture search. In Proc. of CVPR, 2020.

48. Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Junjie Yan, and Rui Fan. Fully quantized
network for object detection. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

49. Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He, Weiran Huang, Kechen Zhuang,
and Zhenguo Li. DARTS+: improved differentiable architecture search with early stopping.
arXiv, 2019.

50. Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2117–2125, 2017.

51. Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

52. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV,
2014.

98 3 Binary Neural Architecture Search

53. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
European Conference on Computer Vision (ECCV), pages 740–755, 2014.

54. Chenxi Liu, Piotr Dollár, Kaiming He, Ross Girshick, Alan Yuille, and Saining Xie. Are labels
necessary for neural architecture search? arXiv:2003.12056, 2020.

55. Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In
Proceedings of the European Conference on Computer Vision, pages 19–34, 2018.

56. H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. In ICLR, 2019.
57. Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real

net: Enhancing the performance of 1-bit cnns with improved representational capability and
advanced training algorithm. In Proceedings of the European conference on computer vision
(ECCV), pages 722–737, 2018.

58. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
resistant to adversarial attacks. In ICLR, 2017.

59. Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief. Mobile edge
computing: Survey and research outlook. In arXiv, 2017.

60. Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv:1807.03748, 2018.

61. Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical
University of Denmark, 7(15):510, 2008.

62. Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural
architecture search via parameter sharing. In ICML, 2018.

63. Hai Phan, Zechun Liu, Dang Huynh, Marios Savvides, Kwang-Ting Cheng, and Zhiqiang
Shen. Binarizing mobilenet via evolution-based searching. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 13420–13429, 2020.

64. Juan C. Pérez, Motasem Alfarra, Guillaume Jeanneret, Adel Bibi, Ali Kassem Thabet, Bernard
Ghanem, and Pablo Arbeláez. Robust gabor networks. arXiv, 2019.

65. Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on
Computer Vision, pages 525–542. Springer, 2016.

66. Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for
image classifier architecture search. In AAAI, 2019.

67. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In NeurIPS, 2015.

68. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2016.

69. Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

70. Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

71. Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary neural network with
high accuracy? In Thirty-First AAAI conference on artificial intelligence, 2017.

72. Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In NIPS, 2017.

73. Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding.
arXiv:1906.05849, 2019.

74. Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In
ICLR, 2020.

75. Diwen Wan, Fumin Shen, Li Liu, Fan Zhu, Jie Qin, Ling Shao, and Heng Tao Shen. Tbn:
Convolutional neural network with ternary inputs and binary weights. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 315–332, 2018.

References 99

76. Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using
videos. In CVPR, 2015.

77. Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial
training. In ICLR, 2020.

78. Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and inference with integers
in deep neural networks. In Proceedings of the International Conference on Learning
Representationss, pages 1–14, 2018.

79. Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

80. Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via
non-parametric instance discrimination. In CVPR, 2018.

81. C. Xie, Y. Wu, L. V. D. Maaten, A. L. Yuille, and K. He. Feature denoising for improving
adversarial robustness. In CVPR, 2019.

82. Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
Pc-darts: Partial channel connections for memory-efficient architecture search. arXiv preprint
arXiv:1907.05737, 2019.

83. Shenjun Xue, Hanlin Chen, Chunyu Xie, Baochang Zhang, Xuan Gong, and David S.
Doermann. Fast and unsupervised neural architecture evolution for visual representation
learning. IEEE Computational Intelligence Magazine, 16:22–32, 2021.

84. Shenjun Xue, Runqi Wang, Baochang Zhang, Tian Wang, Guodong Guo, and David S.
Doermann. Idarts: Interactive differentiable architecture search. 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 1143–1152, 2021.

85. C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, and F. Hutter. Nas-bench-101: Towards
reproducible neural architecture search. In ICML, 2019.

86. Hongyuan Yu and Houwen Peng. Cyclic differentiable architecture search. arXiv, 2020.
87. Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong

He, Jonas Mueller, R Manmatha, et al. Resnest: Split-attention networks. arXiv:2004.08955,
2020.

88. Junhe Zhao, Sheng Xu, Baochang Zhang, Jiaxin Gu, David Doermann, and Guodong Guo.
Towards compact 1-bit cnns via bayesian learning. International Journal of Computer Vision,
pages 1–25, 2022.

89. Xiawu Zheng, Rongrong Ji, Lang Tang, Yan Wan, Baochang Zhang, Yongjian Wu, Yunsheng
Wu, and Ling Shao. Dynamic distribution pruning for efficient network architecture search.
arXiv preprint arXiv:1905.13543, 2019.

90. Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang Zhang, Jianzhuang Liu, and Qi Tian.
Multinomial distribution learning for effective neural architecture search. In CVPR, 2019.

91. Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang Zhang, Jianzhuang Liu, and Qi Tian.
Multinomial distribution learning for effective neural architecture search. In ICCV, October
2019.

92. Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Towards effective
low-bitwidth convolutional neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7920–7928, 2018.

93. Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local aggregation for unsupervised
learning of visual embeddings. In ICCV, 2019.

94. B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable
image recognition. In CVPR, 2018.

95. Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In
International Conference on Learning Representations (ICLR), pages 1–16, 2017.

96. Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8697–8710, 2018.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

Chapter 4
Quantization of Neural Networks

4.1 Introduction

Quantization has emerged as a highly successful strategy for both training and infer-
ence of neural networks (NN). While the challenges of numerical representation
and quantization have been long-standing in digital computing, NNs offer unique
opportunities for advancements in this area. Although this survey primarily focuses
on quantization for inference, it is important to acknowledge that quantization has
also shown promise in NN training [2, 7, 15, 25].

In particular, innovations in half-precision and mixed precision training have
played a crucial role in achieving higher throughput in AI accelerators [9, 20].
However, pushing beyond half-precision without extensive tuning has proven to be
a significant challenge, and recent research on quantization has mainly centered
around the inference stage of neural networks.

4.2 Quantitative Arithmetic Principles

Given a neural network (NN) model with N layers, we represent the set of weights
as .W = wnn = 1N and the set of input features as .A = aninn = 1N . Here, . wn is the
convolutional weight matrix for the n-th layer, with dimensions .Cnout ×Cn

in, where
.Cn

in and .Cn
out are the input and output channel numbers, respectively. Similarly, . an

in

is the input feature map for the n-th layer, with dimensions . Cn
in.

The output feature map .an
out of the n-th layer can be technically formulated as:

.an
out = wn · an

in, (4.1)

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Zhang et al., Neural Networks with Model Compression,
Computational Intelligence Methods and Applications,
https://doi.org/10.1007/978-981-99-5068-3_4

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5068-3protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-981-99-5068-3_4
https://doi.org/10.1007/978-981-99-5068-3_4
https://doi.org/10.1007/978-981-99-5068-3_4
https://doi.org/10.1007/978-981-99-5068-3_4
https://doi.org/10.1007/978-981-99-5068-3_4
https://doi.org/10.1007/978-981-99-5068-3_4
https://doi.org/10.1007/978-981-99-5068-3_4
https://doi.org/10.1007/978-981-99-5068-3_4
https://doi.org/10.1007/978-981-99-5068-3_4
https://doi.org/10.1007/978-981-99-5068-3_4
https://doi.org/10.1007/978-981-99-5068-3_4

102 4 Quantization of Neural Networks

where . · represents matrix multiplication. For simplicity, we omit the nonlinear
activation function in this formulation. Following the prior works [24], quantized
neural network (QNN) intends to represent . wn and . an in a low-bit format as:

. Q : = {q1, · · · , qU },

where . qi , .i = 1, · · · , U satisfying .q1 < · · · < qU , are defined as quantized values
of the original variable. Note that x can be the input feature . an or the weights . wn. In
this way, .qw

n ∈ Q
Cn

out×Cn
in and .qa

n
in ∈ Q

Cn
in such that the float-point convolutional

outputs can be approximated by the efficient XNOR and bit-count instructions as:

.an
out ≈ qw

n ⊙ qa
n
in . (4.2)

The key challenge in QNNs is how to define the quantization set . Q, and the methods
to achieve this are further described in the following sections.

4.3 Uniform and Nonuniform Quantization

In quantized neural networks (QNNs), we need to define a function that can quantize
the weights and activations of the neural network to a finite set of values. One
popular choice for this quantization function is the uniform quantization function,
which is defined as follows:

.qx = INT
(x

S

)
− Z, (4.3)

where x is a real-valued input (activation or weight), S is a real-valued scaling
factor, and Z is an integer zero point. The function .INT converts a real number
to an integer value using a rounding technique such as rounding to the nearest
integer or truncation. In other words, the quantization function maps real values x
to some integer value, allowing us to represent the original continuous values with
a finite set of discrete values. This method of quantization is also known as uniform
quantization.

Besides, nonuniform quantization methods produce quantized values that are not
necessarily uniformly spaced. The formal definition of nonuniform quantization is
shown as:

.qx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q1, if x ≤ ∆1,

. . .

qi, if ∆i−1 < x ≤ ∆i,

. . .

qU , if x > ∆U.

(4.4)

4.4 Symmetric and Asymmetric Quantization 103

where . qi represents the discrete quantization levels and . ∆i denotes the quantization
steps. When the value of a real number x falls between the quantization steps . ∆i −1
and .i+1, the quantizer Q projects it to the associated quantization level . qi . It should
be noted that neither . qi nor . ∆i are evenly spaced.

Nonuniform quantization techniques offer the potential to achieve higher accu-
racy for a fixed bit width compared to uniform quantization. This is because
nonuniform quantization allows for better representation of data distributions by
focusing on essential value regions and determining appropriate dynamic ranges.
One common scenario where nonuniform quantization is beneficial is when dealing
with bell-shaped distributions of weights and activations, which often have long
tails. In such cases, various nonuniform quantization methods have been developed
to accommodate these specific distributions. One popular approach is the rule-
based nonuniform quantization using a logarithmic distribution. In this method, the
quantization steps and levels are increased exponentially instead of linearly.

Recent advances in quantization techniques have treated quantization as an
optimization problem to enhance performance. The objective is to minimize the
difference between the original tensor and its quantized version by adjusting the
quantization steps or levels in the quantizer . qx . This can be formulated as an
optimization problem:

.min
q

|qx − x|22 (4.5)

Nonuniform quantization can also benefit from learnable quantizers, where the
quantization steps are optimized through an iterative process or gradient descent
along with the model parameters.

Overall, nonuniform quantization offers the advantage of better representing
data by distributing bits and discretizing the parameter range unevenly. However,
implementing nonuniform quantization effectively on standard computer hardware,
such as GPUs and CPUs, can be challenging. As a result, uniform quantization
remains the predominant method due to its straightforward implementation and
efficient mapping to hardware, making it more suitable for practical deployment
in various computing platforms.

4.4 Symmetric and Asymmetric Quantization

The choice of the scaling factor, S, in uniform quantization (Eq. 4.2) is critical as
it determines the granularity of quantization and ultimately impacts the accuracy of
the quantized representation. The value of S affects how the range of real values, x,
is divided into a specified number of segments, and it directly influences the size of
each partition. The clip range .[α, β] defines the range of real values that should be

104 4 Quantization of Neural Networks

quantized, and the bit width b determines the number of bits used for quantization.
The formula for S is given by:

.S = β − α

2b − 1
, (4.6)

where .[α, β] is the clip range and b is the bit width. Choosing an appropriate clip
range is crucial as it directly affects the quantization precision and the overall quality
of the quantized model. This process is known as calibration, an essential step in
uniform quantization.

Asymmetric quantization may use a tighter clip range compared to symmetric
quantization. This is especially useful for signals with imbalanced values, such as
activations after ReLU, which always have nonnegative values.

Symmetric quantization, on the other hand, simplifies the quantization function
by centering the zero point at .Z = 0, resulting in the following expression:

.qx = INT
(x

S

)
. (4.7)

In practice, using the whole-range approach often leads to greater accuracy.
Symmetric quantization is commonly employed for quantizing weights due to
its simplicity and reduced computational cost during inference. However, for
quantizing activations, asymmetric quantization may be more effective as the offset
in asymmetric activations can be absorbed into the bias or used to initialize the
accumulator, leading to improved performance.

4.5 Comparison of Different Quantization Methods

4.5.1 LSQ: Learned Step Size Quantization

Fixed quantization methods that rely on user-defined settings do not guarantee
optimal network performance and may still produce suboptimal results even if they
minimize quantization error. An alternative approach is learning the quantization
mapping by minimizing task loss, directly improving the desired metric. However,
this method is challenging because the quantizer is discontinuous and requires
an accurate approximation of its gradient, which existing methods [8] have done
roughly that overlooks the effects of transitions between quantized states.

This section introduces a new method for learning the quantization mapping for
each layer in a deep network called learned step size quantization (LSQ) [13]. LSQ
improves on previous methods with two key innovations. First, we offer a simple
way to estimate the gradient of the quantizer step size, considering the impact of
transitions between quantized states. This results in more advanced optimization
when learning the step size as a model parameter. Second, we introduce a heuristic to

4.5 Comparison of Different Quantization Methods 105

balance the magnitude of step size updates with weight updates, leading to improved
convergence. Our approach can be used to quantize both activations and weights and
is compatible with existing techniques for back propagation and stochastic gradient
descent.

4.5.1.1 Notations

The goal of quantization in deep networks is to reduce the precision of the weights
and the activations during the inference time to increase computational efficiency.
Given the data to quantize v, the quantizer step size s, and the number of positive
and negative quantization levels (.QP and . QN), a quantizer is used to compute
. ̂v, a quantized representation on the whole scale of the data, and . ̂v, a quantized
representation of the data at the same scale as v:

.v̄ = ⎿clip(v/s,−QN,QP)⏌ (4.8)

.v̂ = v̄ × s (4.9)

This technique uses low-precision inputs, represented by . w̄ and . x̄, in matrix
multiplication units for convolutional or fully connected layers in deep learning
networks. The low-precision integer matrix multiplication units can be computed
efficiently, and a step size then scale the output with a relatively low-cost high-
precision scalar-tensor multiplication. This scaling step has the potential to be
combined with other operations, such as batch normalization, through algebraic
merging, as shown in Fig. 4.1. This approach aims to minimize the memory and
computational costs associated with matrix multiplication.

Fig. 4.1 Computation of a low-precision convolution or fully connected layer, as envisioned here

106 4 Quantization of Neural Networks

4.5.1.2 Step Size Gradient

LSQ offers a way of determining s based on the training loss through the incorpora-
tion of a gradient into the step size parameter of the quantizer as:

∂v̂

∂s
=

⎧
⎨
⎩

−v/s + ⎿v/s⏌, if − QN < v/s < Qp,

−QN, if v/s ≤ x,

QP , if v/s ≥ Qp.

(4.10)

The gradient is calculated using the straight-through estimator, as proposed by
[4], to approximate the gradient through the round function as a direct pass. The
round function remains unchanged to differentiate downstream operations, while all
other operations are differentiated conventionally.

The gradient calculated by LSQ is different from other similar approximations
(Fig. 4.2) in that it does not transform the data before quantization (Jung et al.,
2018) or estimate the gradient by algebraically canceling terms after removing
the round operation from the forward equation, resulting in ∂v̂/∂s = 0 when
−QN < v/s < QP [8]. In these previous methods, the proximity of v to
the transition point between quantized states does not impact the gradient of the
quantization parameters. However, it is intuitive that the closer a value of v is to a
quantization transition point, the more likely it is to change its quantization bin v̂
with a slight change in s, resulting in a significant jump in v̂. This means that ∂v̂/∂s

should increase as the distance from v to a transition point decreases, as observed in
the LSQ gradient. Notably, this gradient emerges naturally from the simple quantizer
formulation and the use of the straight-through estimator for the round function.

In LSQ, each layer of weights and each layer of activations have their unique
step size represented as a 32-bit floating point value. These step sizes are initialized

3

2

1

0
0

3

2

1

0

1 2 3 4Transition
Point

Transition
Point

Transition
Point 0 1 2 3 4Transition

Point
Transition

Point
Transition

Point

∂v

∂s

ˆvˆ

V V

LSQ
QIL
PACT

a b

Fig. 4.2 Given s = 1,QN = 0,QP = 3, (a) quantizer output and (b) gradients of the quantizer
output concerning step size, s, for LSQ, or a related parameter controlling the width of the
quantized domain (equal to s(QP + QN)) for QIL [26] and PACT [8]. The gradient employed by
LSQ is sensitive to the distance between v and each transition point, whereas the gradient employed
by QIL [26] is sensitive only to the distance from quantizer clip points and the gradient employed
by PACT [8] is zero everywhere below the clip point. Here, we demonstrate that networks trained
with the LSQ gradient reach a higher accuracy than those trained with the QIL or PACT gradients
in prior work

4.5 Comparison of Different Quantization Methods 107

to .2|v|/√QP and calculated from the initial weight values or the first batch of
activations, respectively.

4.5.1.3 Step Size Gradient Scale

It has been demonstrated that good convergence during training can be achieved
when the ratio of average update magnitude to average parameter magnitude is
consistent across all weight layers in a network. Setting the learning rate correctly
helps prevent updates from being too large and causing repeated overshooting of
local minima or too small, leading to a slow convergence time. Based on this
reasoning, it is reasonable to assume that each step size should also have its
update magnitude proportional to its parameter magnitude, similarly to the weights.
Therefore, for a network trained on a loss function L, the ratio

.R = ∇sL

s
/
‖∇wL‖
‖w‖ , (4.11)

should be close to 1, where .‖x‖ denotes the l2-norm of z. However, as precision
increases, the step size parameter is expected to be smaller (due to finer quantiza-
tion), and the step size updates are expected to be larger (due to the accumulation
of updates from more quantized items when computing its gradient). A gradient
scale g is multiplied by the step size loss to address this. For the weight step size,
g is calculated as .1/

√
NWQP , and for the activation step size, g is calculated as

.1/
√

NWQP , where .NW is the number of weights in a layer and . Nf is the number
of features in a layer.

4.5.1.4 Training

LSQ trains the model quantizers by making the step sizes learnable parameters,
with the loss gradient computed using the quantizer gradient mentioned earlier.
In contrast, other model parameters can be trained with conventional techniques.
A common method of training quantized networks [10] is employed where full-
precision weights are stored and updated, while quantized weights and activations
are used for forward and backward passes. The gradient through the quantizer round
function is calculated using the straight-through estimator [4] so that:

.
∂v̂

∂v
=

{
1, if − QN < v/s < Qp,

0, otherwise,
(4.12)

and stochastic gradient descent is used to update parameters.
For ease of training, the input to the matrix multiplication layers is set to . ̂v,

mathematically equivalent to the inference operations described above. The input
activations and weights are set to 2, 3, 4, or 8 bits for all matrix multiplication layers

108 4 Quantization of Neural Networks

except the first and last, which are always set to 8 bits. This standard practice in
quantized networks has been shown to improve performance significantly. All other
parameters are represented using FP32. Quantized networks are initialized using
weights from a trained full-precision model with a similar architecture before being
fine-tuned in the quantized space.

4.5.2 TRQ: Ternary Neural Networks with Residual
Quantization

4.5.2.1 Preliminary

The main operation in deep neural networks is expressed as

.z = w⏉a, (4.13)

where .w ∈ R
n indicates the weight vector and .a ∈ R

n indicates the input activation
vector computed by the previous network layer.

A ternary neural network means representing the floating-point weights and/or
activations with ternary values. Formally, the quantization can be expressed as:

.Qx(x) = βxTx, (4.14)

where . x indicates floating-point parameters including weights . w and activations . a
and . Tx denotes ternary values after the quantization on . x. . βx is a scalar used to
scale the ternary values, which can be computed from the floating-point parameters
or learned via back propagation. . Tx is usually obtained by thresholding function:

.Tx =

⎧⎪⎪⎨
⎪⎪⎩

+1 if x > ∆

0 if |x| ⩽ ∆,

−1 if x < −∆

(4.15)

where . ∆ denotes a fixed threshold used for quantization. With the ternary weights
and activations, the vector multiplications in the forward propagation can be
reformulated as:

.z = Qw(w)⏉Qa(a) = βwβa(Tw ⊙ Ta), (4.16)

where . ⊙ represents the inner product for vectors with bitwise operations.
In general, the derivative of quantization function .Qx(x) is non-differentiable and

thus unpractical to directly apply the back propagation to perform the training phase.

4.5 Comparison of Different Quantization Methods 109

For this issue, we follow the now widely adopted “straight-through estimator (STE)”
[23] to approximate the partial gradient calculation, which is formally expressed as:

.
∂Qx (x)

∂x
≈ β1|x|⩽1. (4.17)

TNNs with Residual Quantization (TRQ)
Existing TNNs are based on directly thresholding method for ternary implemen-
tation, inevitably causing performance degradation due to an inaccurate mapping
of full-precision values to ternary counterparts. To deal with the issue, residual
quantization (TRQ) [29] is introduced to learn TNNs. TRQ can extract binarized
stem and residual, respectively, by performing recursive quantization on full-
precision weights, which are combined to generate refined ternary representation,
leading to the stem-residual framework for TNNs.

In our stem-residual ternarization framework, the stem is first extracted as a
coarse fitting for full-precision weight . w, which is calculated by performing . sign(·)
on . w as:

.Sw = αsign(w), (4.18)

where . α is a learnable coefficient, which avoids a very careful tuning to seek the
optimal quantization scale compared with the previous methods. Then, we further
calculate the quantization error as:

.R = w − Sw (4.19)

Furthermore, we calculate the residual .Rw from . R by performing .sign(·) on the
quantization error . R:

.Rw = αsign(R). (4.20)

Based on Eqs. 4.18 and 4.20, we finally obtain our ternary weight designed for
more accurate approximation as:

.Tw = Sw + Rw. (4.21)

Up to now, we achieve the ternary quantization in a stem framework, with the full-
precision weights quantized to ternary values, i.e., .{−2α, 0, 2α}. Obviously, seeking
a better coefficient . α is significantly important for the effectiveness of quantizer,
which would be elaborated in the following section.

Backward Propagation of TRQ
In the backward propagation, what need to be learned and updated are the full-
precision weight . w and the learnable coefficient . α. For the stem-residual framework,

110 4 Quantization of Neural Networks

the two kinds of parameters are jointly learned. And in each layer, TRQ updates the
. w first and then the . α.

Update . w: For . w updating, the gradient through the quantizer to weights are
estimated by a STE that pass the gradient whose weight value is in the range of
(-2. α, 2. α):

.
∂Tw

∂w
= 1|x|⩽2α. (4.22)

Then, we can obtain the updating process of . w:

. δw = ∂L

∂Tw

∂Tw

∂w
, (4.23)

.w ← w − ηδw, (4.24)

where L is the loss function and . η is the learning rate.

Update . α: The coefficient . α determines the scale of binarized stem and residual,
which is directly related to the quality of the ternary weights. Moreover, we also
empirically find the recognition performance is quite sensitive to the . α. Thus, rather
than a coarse gradient acquired like . w, we disassemble the quantizer to calculate a
finer gradient of . α:

.
∂Tw

∂α
= sign(w) + sign(R) + α

∂sign(R)

∂α
(4.25)

where

.

∂sign(R)

∂α
= ∂sign(R)

∂R
∂R
∂α

= 1|R|⩽1 (−sign(w)) .

(4.26)

Then, we can obtain the updating process of . α:

. δα =
∑ ∂L

∂Tw

∂Tw

∂α
, (4.27)

. α ← α − ηδα. (4.28)

4.5.2.2 Generalization to n-Bit Quantization

We focus on ternary quantization in this paper, while it does not mean that TRQ is
limited to ternary applications. Actually, TRQ could also be generalized to multiple

4.5 Comparison of Different Quantization Methods 111

bits by recursively encoding residual. In this section, we propose a feasible scheme
for TRQ expansion, which is not the only way and could be further explored in the
future work.

We obtain the subtly quantized weights by recursively performing quantization
on full-precision weights. In this process, residual at different quantization levels
is generated for refining the quantized weights. Here for n-bit (.n = 2, 3, 4, . . .)
quantization, we define the residual at level .i (i = 1, 2, . . . , 2n − 3) as . Ri

w, which
could be computed as:

.Ri
w = αsign(w − Ti−1

w), (4.29)

where .Ti−1
w denotes the quantized weights at (.i − 1)th level, and we recursively

acquire the quantized weights at level i as:

.Ti
w = Ti−1

w + Ri
w. (4.30)

Here we regard the ternary quantization as the initial state for recursive quantization
as:

.T0
w = Sw + αsign(w − Sw). (4.31)

Based on such recursive quantization, we could easily obtain the residual at different
levels, thus refining the residual and reducing the approximation error with the full-
precision counterparts.

For the updating of . α in backward propagation, due to the complexity of recursive
process, we just roughly estimate the gradient . α by regarding it as the coefficient of
. Sw and . Ri

w:

.
∂Tw

∂α
= Sw +

2n−3∑
i=0

Ri
w. (4.32)

4.5.2.3 Complexity Analysis

A comprehensive comparison on computational complexity is shown in Table 4.1.
We assume that the input number of the neuron is N , i.e., N inputs and one neuron
output. For computational complexity of TNNs, we follow the setting of GXNOR-
Net [11] for a comparison. As described in GXNOR-Net, with the event-driven
paradigm, the resting computation would occur when the weight or activation of
TNNs is zero, and the exception cases are achieved by XNOR operations. As
a result, the computational complexity of TNNs is similar to BNNs, half of the
network with 1-bit weights and 2-bit activations. Noted that for TRQ, the stem-
residual framework is only employed on weights; thus, it also enjoys the low
complexity .O(N) as normal TNNs.

112 4 Quantization of Neural Networks

Table 4.1 Operation overhead comparisons with different computing bit width

Operations

Bit width(A/W) Multiplication Accumulation XNOR BitCount Complexity

32/32 N N 0 0 –

1/1 0 0 N 1 O(N)

2/1 0 0 2N 1 O(2N)

ter/ter 0 0 0. ∼N 0/1 O(N)

4.5.2.4 Differences of TRQ from Existing Residual Quantization Methods

Residual quantization has been first proposed in high-order residual quantization
(HORQ) [32] to enhance the performance of BNNs, further being explored by
[16, 18] to be encoded into low-bit width CNNs. All above works compute residual
error and recursively approximate it by a series of binary maps. However, limited
by the residual scales, they can be just applied to n-bit quantization, with no
generalization ability to arbitrary value quantization even parameter changes, such
as the TNNs emphasized in this paper. Instead, our TRQ enjoys the flexibility
by the skillful combination of the binarized stem and residual, thus enabling
ternary quantization and even arbitrary value quantization by recursively refining
the residual. Moreover, a key feature of the prior residual schemes is the use of
analytically calculated scaling coefficients, which can be suboptimal. In contrast,
our TRQ employs learnable coefficient . α to minimize the training loss, thus
fully utilizing the strength of back propagation algorithm to seek for the suitable
quantization scale automatically.

4.5.2.5 Implementation Details

Data Preprocessing
For CIFAR-10/100, all the images are padded with 4 pixels on each side, and then
a random 32 × 32 crop is applied, followed by a random horizontal flip. During
inference, the scaled images are used without any augmentation. For ImageNet,
training images are randomly cropped into the resolution of 224 × 224. After that,
the images are normalized using the mean and standard deviation. No additional
augmentations are performed except the random horizontal flip. However, for
validation images, we use center crop instead of random crop and no flip is applied
(Fig. 4.3).

Training Procedure
We conduct experiments mainly on ResNet [21] backbones, including ResNet-18
and ResNet-34. VGG-Small [38] is also leveraged for the CIFAR-10 and CIFAR-
100 experiments. Similar with previous works [17, 28, 34], we do not quantize
the first and last layers. For experiments on CIFAR-10/100, we run the training
algorithm for 200 epochs with a batch size of 256. Besides, a linear learning rate

4.5 Comparison of Different Quantization Methods 113

Fig. 4.3 The Top-1 accuracy (%) on CIFAR-10 and CIFAR-100 with different initial α

decay scheduler is used, and the initial learning rate is set to 0.01. For experiments
on ImageNet, we train the models for up to 100 epochs with a batch size of 256.
The learning rate starts from 0.001 and is decayed twice by multiplying 0.1 at 75th
and 95th epoch. For all settings, Adam with momentum of 0.9 is adopted as the
optimizer.

4.5.2.6 Ablation Study on CIFAR

In this section, we first perform hyperparameter sweeps to determine the value of
initial α to use. Following this we analyze the necessity of α, then show TRQ’s
generalization to multiple bits, and finally evaluate the effectiveness of TRQ on
CIFAR datasets.

Initial Value of α

The initiation of parameters is always important for network training. Thus, we
set different initial values 0.10, 0.3, 0.5, 0.8, 1, 1.5, and 2 to α, to explore their
influence on classification. The experiments are performed on the CIFAR-10/100
with ResNet-18 backbone. From the results on CIFAR-10 in Fig. 4.4, we can
observe that the performance is similar when the initial values of α are set between
0.8 and 1.5, and the best performance can be obtained at 1.5. Meanwhile, from the
results on CIFAR-100, the good performance plateau appears when initial α is at the

114 4 Quantization of Neural Networks

Fig. 4.4 Evolution of α values in different layers during training with ResNet-18 backbone on
CIFAR-100

Table 4.2 The accuracy (%)
of TRQ with and without α
(TRQ and TRQ-wo) and with
fixed α = 0.6 (TRQ-0.6) on
CIFAR-100

Width TRQ-wo TRQ TRQ-0.6

ResNet-18 16-16-32-64 52.1 54.9 53.9

ResNet-18 32-32-64-128 60.5 62.7 61.3

VGG-Small – 62.6 65.4 60.5

range between 0.8 and 1, and the performance of initial value 1 performs slightly
better than that of 0.8. For both CIFAR-10 and CIFAR-100, the performance of
initial values outside the 0.5 to 1.5 is fairly worse, which shows the importance
of setting the initial value of α carefully. Based on the above discoveries, we set
the initial value of α as 1 in the following experiments, which shows a stably high
classification performance on both two datasets.

Analysis of α

α is introduced in stem-residual framework to automatically seek for a reasonable
quantization scale. To valid the necessity of α, we provide the experiments with and
without α on CIFAR-100 with the backbone ResNet-18. As shown in Table 4.2,
compared with the TRQ without α (TRQ-wo), TRQ achieves better performance by
a large margin (more than 2%), thus indicating that α is quite important for training
TRQ.

4.5 Comparison of Different Quantization Methods 115

Simultaneously, as illustrated in Fig. 4.4, we explore how the value of . α changes
during training. It can be observed that . α converges to around . 0.6 with training.
However, this doesn’t mean that . α should be fixed and not optimized. As shown in
Table 4.2, we compare the results in two cases, i.e., . α is fixed to . 0.6 (TRQ-0.6) and
. α is optimized by back propagation. As we can see, when fixed . α as . 0.6, a greater
performance decrease happens. When employed with VGG-Small backbone, the
accuracy even drops nearly . 5% compared with the learnable . α, thus validating the
superiority of the learnable . α. We conjecture that is because with the learnable . α
in stem-residual framework, the quantizer could be automatically fine-tuned to find
the best quantization mapping for each layer, thus yielding better performance than
the fixed case.

Quantization Error
In order to better understand our TRQ, which achieves more accurate mapping
between ternary weights and their full-precision counterparts, we adopt mean square
error (MSE) [14] to calculate the quantization error between . w and . Tw:

.E = 1

M

∑ (
w − Tw

w

)2

, (4.33)

where M denotes the total number of weights in each layer. In Fig. 4.5, we plot
the quantization error for the 2th–17th layer of ResNet-18. The results show our
methods (the red histogram) have lower quantization error compared with baseline
(the gray histogram) which achieved with the method in Section 3.1 in most layers.
In particular, the quantization error can be reduced by more than .25% (. 0.8 vs . 0.6)
in the 9th layer.

Fig. 4.5 Quantization error of TRQ and baseline based on ResNet-18 backbone

116 4 Quantization of Neural Networks

Fig. 4.6 The results of TRQ with multi-bits expansion on CIFAR-100

Generalization to n-Bit Quantization
We illustrate that our TRQ can not only improve the performance on ternary
quantization but also could be generalized to multiple bits. Here we adopt the
expansion method described in Sect. 3.4 and perform the experiments on CIFAR-
100 with the backbone of ResNet-18. The baseline model is implemented in a
similar way as DoReFa-Net [45]. As shown in Fig. 4.6, we can see that the accuracy
of TRQ increases (.56.2% → 58.3% → 58.5%) as the bit width increases from
2bit to 4bit, indicating that the compound residual at multi-levels could refine the
quantized weights, thus improving the recognition accuracy. Moreover, our TRQ
consistently surpasses the baseline on each bit width (.0.4%, 1.1%, 1.0% on 2bit,
3bit, and 4bit, respectively), which demonstrates the superiority and potential of the
residual quantization on multiple bits.

Evaluation on CIFAR
To validate the effectiveness of TRQ, here we perform ablation evaluation on
CIFAR datasets. Three backbones are used in this experiment, including VGG-
Small, ResNet-18 with the width of 16-16-32-64 and 32-32-64-128. We report the
performance of baseline and TRQ on both CIFAR-10 and CIFAR-100 in Table 4.3.
As shown in Table 4.3, for ResNet-18, TRQ achieves stable improvement on both
CIFAR-10 and CIFAR-100 datasets compared with the corresponding baseline.
Moreover, TRQ with the backbone ResNet-18 whose width is 32-32-64-128 even

4.5 Comparison of Different Quantization Methods 117

Table 4.3 The experimental comparison of baseline and TRQ on CIFAR datasets

CIFAR-10/% CIFAR-100/%

ResNet-18 Full-precision 87.7 58.2

16-16-32-64 Baseline 85.2 54.8

TRQ 85.5 54.9

ResNet-18 Full-precision 90.9 63.0

32-32-64-128 Baseline 87.5 60.6

TRQ 89.3 62.7

VGG-Small Full-precision 92.6 66.8

Baseline 89.1 61.8

TRQ 91.2 65.4

realizes nearly lossless ternarization on CIFAR-100 (only with a .0.3% performance
drop). All these demonstrate the effectiveness of TRQ on ResNet. For VGG-
Small, our TRQ consistently surpasses the baseline by a margin of .2.1% and
.3.5% on CIFAR-10 and CIFAR-100, respectively, which further shows the general
improvement brought by TRQ.

Comparison on ImageNet
We further analyze the effectiveness of TRQ on the large-scale dataset ImageNet.
Since the dataset is challenged for network optimization, we use multi-batch
normalization (multi-bn) strategy on ResNet architecture to alleviate optimization
problems, which is termed as TRQ-bn in the experiment. For a basic block in
TRQ-bn, three batch normalization layers are employed: the first is a pre-bn [43]
before quantization, the second is a normal bn following the ternary convolutional
layer, and the last is an additional bn following the shortcut. Such multi-bn can
significantly improve the network performance by improving the distribution of
feature maps with only small additional memory and computation.

We illustrate the training and validation accuracy curves of baseline, TRQ, and
TRQ-bn in Fig. 4.7, which are based on a ResNet-18 backbone. From Fig. 4.7,
we can observe that TRQ greatly improves the convergence speed of TNNs.
Simultaneously, from the results in Table 4.4, TRQ improves baseline by .1.0% on
both ResNet-18 and ResNet-34 Top-1 accuracy, which validates the effectiveness
of our TRQ on large-scale dataset. Moreover, TRQ-bn could further obtain an
improvement of about .2% on both the two networks, which finally achieves
approximately .93% of the accuracy of their full-precision counterparts.

To evaluate the overall performance of TRQ, we further compare TRQ with
four state-of-the-art quantization on ImageNet, i.e., XNOR-Net [36], BiReal-Net
[34], LQ-Net [43], HWGQ [6], and RTN [30]. To perform fair comparison with
RTN whose quantization procedure of weight and activation are both improved, we
apply residual quantization to activation as well, leading to TRQ-a. The results are
reported in Table 4.4. From Table 4.4, by comparing with the state-of-the-art BNNs
including XNOR-Net and BiReal-Net, we can significantly boost the performance.

118 4 Quantization of Neural Networks

Fig. 4.7 Accuracy curves of baseline, TRQ, and TRQ-bn with ResNet-18 backbone on ImageNet.
(a) Training accuracy curves on ImageNet. (b) Validation accuracy curves on ImageNet

For example, TRQ outperforms XNOR-Net and BiReal-Net by .11% and .6% on
ResNet-18, respectively. It is because that ternary values .{−1, 0, 1} have stronger
representational capability than binary values .{−1, 1}, while the complexity of the
two methods is the same because of the event-driven paradigm in TNNs. Moreover,
our TRQ can even achieve better performance than the methods with . O(2N)

complexity, including the “A/W = 2/1” cases in LQ-Net and HWGQ. Besides,

4.5 Comparison of Different Quantization Methods 119

Table 4.4 Comparison of Top-1 and Top-5 accuracy on ImageNet

Network Method A/W Top-1/% Top-5/% Complexity

ResNet-18 Full-precision 32/32 69.3 89.2 –

Baseline ter/ter 61.6 82.7 O(N)

TRQ(ours) ter/ter 62.6 83.7 O(N)

TRQ-bn(ours) ter/ter 64.4 85.1 O(N)

TRQ-a(ours) ter/ter 65.7 85.9 O(N)

RTN ter/ter 64.5 – O(N)

XNOR-Net 1/1 51.2 73.2 O(N)

BiReal-Net 1/1 56.4 79.5 O(N)

LQ-Net 2/1 62.6 84.3 O(2N)

ResNet-34 Full-precision 32/32 73.3 91.3 –

Baseline ter/ter 65.2 85.7 O(N)

TRQ(ours) ter/ter 66.2 86.3 O(N)

TRQ-bn(ours) ter/ter 68.2 87.7 O(N)

BiReal-Net 1/1 62.2 83.9 O(N)

LQ-Net 2/1 66.6 86.9 O(2N)

HWGQ 2/1 64.3 85.7 O(2N)

our TRQ-a surpasses RTN 1.2% in accuracy, demonstrating the advantage of the
effective residual quantization scheme.

4.5.3 OMPQ: Orthogonal Mixed Precision Quantization

Recently, we have seen a noticeable trend in deep learning, that models have
a rapidly increasing complexity [21, 22, 37–39, 44]. Due to practical limitations
such as latency, battery, and temperature, the host hardware where the models
are deployed cannot keep up with this trend. It results in a large, ever-increasing
gap between computational demands and resources. To address this issue, network
quantization [3, 23, 27, 33, 36], which maps single-precision floating-point weights
or activations to lower bit integers for compression and acceleration, has attracted
considerable research attention. Network quantization can be naturally formulated
as an optimization problem, and a straightforward approach is to relax the con-
straints to make it a tractable optimization problem at the cost of an approximated
solution. e.g. straight-through estimation (STE) [4].

With the recent development of inference hardware, arithmetic operations with
variable bit width have become possible, bringing further flexibility to network
quantization. To take full advantage of hardware capabilities, mixed precision
quantization [12, 31, 41, 42] aims to quantize different network layers to different
bit widths to achieve a better trade-off between compression ratio and accuracy.
While benefiting from the extra flexibility, mixed precision quantization also needs

120 4 Quantization of Neural Networks

a more complicated and challenging optimization problem with a non-differentiable
and extremely nonconvex objective function. Therefore, existing approaches [12,
31, 41, 42] often require numerous data and computing resources to search for the
optimal bit configuration.

For example, FracBits [42] approximates bit width by performing a first-order
Taylor expansion on the adjacent integer, making the bit variable differentiable.
This allows it to integrate the search process into training to obtain the optimal
bit configuration. However, the search and training process still requires many
computation resources to derive a decent solution. To resolve the significant demand
for training data, Dong et al. [12] use the average eigenvalue of the Hessian matrix
of each layer as the metric for bit allocation. However, the matrix-free Hutchinson
algorithm to implicitly calculate the average of the eigenvalues of the Hessian matrix
still needs 50 iterations for each network layer. Another direction is black-box
optimization. For example, Wang et al. [41] use reinforcement learning to allocate
the bits of each layer. Li et al. [31] use an evolutionary search algorithm [19] to
derive the optimal bit configuration, together with a block reconstruction strategy
to optimize the quantized model efficiently. But the population evolution process
requires input data .1, 024 and iterations 100, which are time-consuming.

Different from the existing approaches of black-box optimization or constraint
relaxation, we propose constructing a proxy metric, which could have a substantially
different form, but be highly correlated with the objective function of the original
linear programming. In general, we propose to obtain the optimal bit configuration
by using the orthogonality of the neural network. Specifically, we deconstruct the
neural network model into a set of functions and define the orthogonality of the
model by extending its definition from a function .f : R → R to the entire
network .f : Rm → R

n. Orthogonality measurement could be performed efficiently
with Monte Carlo sampling and the Cauchy-Schwarz inequality, based on which
we propose an efficient metric named ORthogonality Metric (ORM) as the proxy
metric. As illustrated in Fig. 4.8, we only need a single-pass search process on a
small amount of data with ORM. In addition, we derive an equivalent form of ORM
to accelerate the computation.

On the other hand, model orthogonality and quantization accuracy are positively
correlated on different networks. Therefore, maximizing model orthogonality is
taken as our objective function. Meanwhile, our experiments show that layer
orthogonality and bit width are positively correlated. We assign a more significant
bit width to the layer with larger orthogonality while combining specific constraints
to construct a linear programming problem. The optimal bit configuration can be
obtained simply by solving the linear programming problem (Fig. 4.9).

4.5.3.1 Network Orthogonality

A neural network can be naturally decomposed into a set of layers or functions.
Formally, for the given input .x ∈ R

1×(C×H×W), we decompose a neural network
into .F = {f1, f2, · · · , fL}, where . fi represents the transformation from the input x

4.5 Comparison of Different Quantization Methods 121

Searching Cost (iterations)

FracBits

HAWQ

BRECQ

Ours

1050

120

0

100

400 80 120 ~ 1040 1080160

Searching Data
3000 600 900 ~ 1.1M 1.2M1200

FracBits

HAWQ

BRECQ

Ours

1.2M

256

64

1024

Fig. 4.8 Comparison of the resources used to obtain the optimal bit configuration between our
algorithm and other mixed precision algorithms (FracBits [42], HAWQ [12], BRECQ [31]) on
ResNet-18. “Search Data” is the number of input images

32 bit

32 bit

32 bit

32 bit

()

()

()

(,)

ORM Matrix

3 bit

8 bit

7 bit

4 bit

Mini-Batch Data

()

(a) Deconstruct the Network (b) Calculate ORM Matrix (c) Construct Linear Programming Problem

Feasible
Region

Objective Function Gradient

Interior Point

Fig. 4.9 Overview. Left: Deconstruct the model into a set of functionsF. Middle: ORM symmetric
matrix calculated from F. Right: Linear programming problem constructed by the importance
factor θ to derive optimal bit configuration

to the result of the i-th layer. In other words, if gi represents the function of of the

i-th layer, then fi(x) = gi

(
fi−1(x)

) = gi

(
gi−1

(· · · g1(x)
))
. Here, we introduce

the inner product [1] between the functions fi and fj , which is formally defined as:

〈
fi, fj

〉
P(x)

=
∫

D
fi(x)P (x)fj (x)T dx, (4.34)

122 4 Quantization of Neural Networks

where .fi(x) ∈ R
1×(Ci×Hi×Wi), .fj (x) ∈ R

1×(Cj ×Hj ×Wj) are known functions

when the model is given and . D is the domain of x. If we set .f (m)
i (x) to be the

m-th element of .fi(x), then .P(x) ∈ R
(Ci×Hi×Wi)×(Cj ×Hj ×Wj) is the probability

density matrix between .fi(x) and .fj (x), where .Pm,n(x) is the probability density

function of the random variable .f (m)
i (x) · f

(n)
j (x). According to the definition in

[1], .
〈
fi, fj

〉
P(x)

= 0 means that . fi and . fj are weighted orthogonal. In other

words, .
〈
fi, fj

〉
P(x)

is negatively correlated with the orthogonality between . fi and

. fj . When we have a known set of functions to quantify .F = {fi}Li=1, to approximate
an arbitrary function . h∗, the quantization error can be expressed as the mean
square error: .ξ

∫
D |h∗(x) − ∑

i ψifi(x)|2dx, where . ξ and . ψi are the combination
coefficient. According to the Parseval equality [40], if . F is an orthogonal basis
function set, the mean square error could reach 0. Furthermore, the orthogonality
between the basis functions is more substantial; the mean square error is smaller,
i.e., and the model corresponding to the linear combination of basis functions has
a more robust representation capability. Here, we further introduce this insight to
network quantization. The larger the bit, the greater the representational capability
of the corresponding model [34]. Specifically, we propose to assign a larger bit
width to the layer with stronger orthogonality against all other layers to maximize
the representation capability of the model. However, Eq. 4.34 has the integral of a
continuous function, which is untractable in practice. Therefore, we derive a novel
metric to efficiently approximate the orthogonality of each layer in Sect. 4.5.3.2.

4.5.3.2 Efficient Orthogonality Metric

To avoid the intractable integral, we propose using Monte Carlo sampling to
approximate the orthogonality of the layers. Specifically, from the Monte Carlo
integration perspective in [5], Eq. 4.34 can be rewritten as:

.

〈
fi, fj

〉
P(x)

=
∫

D
fi(x)P (x)fj (x)T dx

=
∥∥∥EP(x)[fj (x)T fi(x)]

∥∥∥
F
.

(4.35)

We randomly obtain N samples .x1, x2, . . . , xN from a training dataset with the
probability density matrix .P(x), which allows the expectation . EP(x)[fj (x)T fi(x)]
to be further approximated as:

.

∥∥∥EP(x)[fj (x)T fi(x)]
∥∥∥

F
≈ 1

N

∥∥∥∥∥
N∑

n=1

fj (xn)
T fi(xn)

∥∥∥∥∥
F

= 1

N

∥∥∥fj (X)T fi(X)

∥∥∥
F
,

(4.36)

4.5 Comparison of Different Quantization Methods 123

where .fi(X) ∈ R
N×(Ci×Hi×Wi) represents the output of the i-th layer, . fj (X) ∈

R
N×(Cj ×Hj ×Wj) represents the output of the j -th layer, and .|| · ||F is the Frobenius

norm. From Eqs. 4.35–4.36, we have:

.N

∫

D
fi(x)P (x)fj (x)T dx ≈

∥∥∥fj (X)T fi(X)

∥∥∥
F
. (4.37)

However, the comparison of orthogonality between different layers is difficult due
to differences in dimensionality. To this end, we use the Cauchy-Schwarz inequality
to normalize it to .[0, 1] for the different layers. Applying the Cauchy-Schwarz
inequality to the left side of Eq. 4.37, we have:

.

0 ≤
(

N

∫

D
fi(x)P (x)fj (x)T dx

)2

≤
∫

D
Nfi(x)Pi(x)fi(x)T dx

∫

D
Nfj (x)Pj (x)fj (x)T dx.

(4.38)

We substitute Eq. 4.37 into Eq. 4.38 and perform some simplifications to derive our
ORthogonality Metric (ORM):1

.ORM(X, fi, fj) = ||fj (X)T fi(X)||2
F

||fi(X)T fi(X)||F ||fj (X)T fj (X)||F , (4.39)

where ORM .∈ [0, 1]. . fi and . fj are orthogonal when .ORM = 0. On the contrary,
. fi and . fj depend on .ORM = 1. Therefore, ORM is negatively correlated with
orthogonality.

Calculation Acceleration Given a specific model, calculating Eq. 4.39 involves
huge matrices. Suppose that .fi(X) ∈ R

N×(Ci×Hi×Wi), .fj (X) ∈ R
N×(Cj ×Hj ×Wj),

and that the dimension of the features in the j -th layer is larger than that of
the i-th layer. Furthermore, the time complexity of computing .ORM(X, fi, fj) is
.O(NC2

j H 2
j W 2

j). The huge matrix occupies a lot of memory resources and increases
the entire algorithm’s time complexity by several orders of magnitude. Therefore,
we derive an equivalent form to accelerate the calculation. If we take .Y = fi(X),
.Z = fj (X) as an example, then .YYT , ZZT ∈ R

N×N . We have the following:

.||ZT Y ||2F =
〈
vec(YY T), vec(ZZT)

〉
, (4.40)

1 ORM is formally consistent with CKA. However, we pioneered discovering its relationship with
quantized model accuracy. We confirmed its validity in mixed precision quantization from the
perspective of function orthogonality, and CKA explores the relationship between hidden layers
from the perspective of similarity. In other words, CKA implicitly verifies the validity of ORM
further.

124 4 Quantization of Neural Networks

where vec(. ·) represents the operation of flattening matrix into vector. From Eq. 4.40,
the time complexity of calculating .ORM(X, fi, fj) becomes . O(N2CjHjWj)

through the inner product of vectors. When the number of samples N is larger than
the dimension of features .C × H × W , the norm form is faster to calculate due to
the lower time complexity and vice versa.

4.5.3.3 Mixed Precision Quantization

Effectiveness of ORM on Mixed Precision Quantization ORM directly indicates
the importance of the layer in the network, which can eventually be used to
decide the bit width configuration. We conducted extensive experiments to provide
sufficient and reliable evidence for this claim. Specifically, we first sample different
quantization configurations for ResNet-18 and MobileNetV2. We were then fine-
tuning to obtain the performance. Meanwhile, the overall orthogonality of the
sampled models is calculated separately. Interestingly, we find that the orthogonality
and performance of the model are positively correlated with the sum of ORM in
Fig. 4.10. Naturally, inspired by this finding, maximizing orthogonality is taken as
our objective function, which is employed to integrate the model size constraints
and construct a linear programming problem to obtain the final bit configuration.

For a specific neural network, we can calculate an orthogonality matrix K , where
kij = ORM(X, fi, fj). K is a symmetric matrix, and the diagonal elements are 1.
We add the non-diagonal elements of each row of the matrix:

.γi =
L∑

j=1

kij − 1. (4.41)

Fig. 4.10 Relationship between orthogonality and accuracy for different quantization configura-
tions on ResNet-18 and MobileNetV2

4.5 Comparison of Different Quantization Methods 125

The smaller γi means stronger orthogonality between fi and other functions in the
set of functions F, and it also means that the former i layers of the neural network
are more independent. Thus, we use the monotonically decreasing function e−x to
model this relationship:

.θi = e−βγi , (4.42)

where β is a hyperparameter to control the bit width difference between different
layers; we also investigate the other monotonically decreasing functions (for details,
refer to Sect. 4.5.3.5). θi is used as the important factor for the former i layers of the
network, and then we define a linear programming problem as follows:

.

Objective: max
b

L∑
i=1

⎛
⎝ bi

L − i + 1

L∑
j=i

θj

⎞
⎠ ,

Constraints:
L∑
i

M(bi) ≤ T.

(4.43)

M(bi) is the model size of the i-th layer under bi bit quantization and T represents
the target model size. b is the optimal bit configuration. Maximizing the objective
function means assigning the larger bit width to a more independent layer, which
implicitly maximizes the model’s representation capability.

Solving the linear programming problem in Eq. 4.43 is highly efficient which
only takes a few seconds on a single CPU. In other words, our method is highly
efficient (9s on MobileNetV2) compared to previous methods [12, 31, 42], which
require a lot of data or iterations to search. In addition, our algorithm can be
combined as a plug-and-play module with quantization-aware training or post-
training quantization schemes due to the high efficiency and low data requirements.

4.5.3.4 Experiment

The ImageNet dataset includes 1.2M training data and 50,000 validation data. We
randomly obtain 64 training data samples for ResNet-18/50 and 32 training data
samples for MobileNetV2 following similar data preprocessing [21] to derive the
set of functions . F. For the models with many parameters, we directly adopt the
round function to convert the bit width into an integer after linear programming.
Meanwhile, we adopt a depth-first search (DFS) to find the bit configuration that
strictly meets the different constraints for a small model, e.g. ResNet-18. The
processes above are highly efficient and only take a few seconds on these devices.
Additionally, OMPQ [35] is flexible and can leverage different search spaces with
QAT and PTQ under different requirements. The fine-tuning implementation details
are listed below.

126 4 Quantization of Neural Networks

For the experiments on the QAT quantization scheme, we use two NVIDIA
Tesla V100 GPUs. Our quantization framework does not contain integer division
or floating-point numbers in the network. In the training process, the initial learning
rate is set to .1e − 4, and the batch size is set to 128. We use the cosine learning
rate scheduler and the SGD optimizer with weight decay .1e − 4 during 90 epochs
without distillation. Following the previous work, we fix the weight and activation
values of the first and last layers at 8 bits, where the search space is 4–8 bits.

4.5.3.5 Ablation Study

Monotonically Decreasing Function We then investigate the monotonically
decreasing function in Eq. 4.42. The second-order derivatives of monotonically
decreasing functions in Eq. 4.42 influence the changing rate of orthogonality
differences. In other words, the variance of the orthogonality between different
layers becomes larger as the rate increases. We test the accuracy of five different
monotonically decreasing functions on quantization-aware training of ResNet-18
(6.7Mb) and post-training quantization of MobileNetV2 (0.9Mb). We fixed the
activation to 8 bit.

It can be seen from Table 4.5 that accuracy gradually decreases while the
change rate increases. We also observe that a more significant change rate for the
corresponding bit configuration means a more aggressive bit allocation strategy.
In other words, OMPQ tends to assign more different bits between layers at
a high rate of change, leading to worse performance in network quantization.
Another interesting observation is the accuracy of ResNet-18 and MobileNetV2.
Specifically, quantization-aware training on ResNet-18 requires numerous data,
making the accuracy change insignificant. In contrast, post-training quantization on
MobileNetV2 cannot assign bit configuration that meets the model constraints when
the functions are set to −x3 or −ex . To this end, we select e−x as our monotonically
decreasing function in the following experiments.

Deconstruction Granularity We study the impact of different granularities of
deconstruction on the model’s accuracy. Specifically, we tested four different granu-
larities, including layer-wise, block-wise, stage-wise, and net-wise, in the quantized-
aware training of ResNet-18 and the post-training quantization of MobileNetV2.

Table 4.5 The Top-1
accuracy (%) with different
monotonically decreasing
functions on ResNet-18 and
MobileNetV2

Decreasing ResNet-18 MobileNetV2 Changing

Function (. %) (. %) Rate

.e−x .72.30 63.51 . e−x

.−logx .72.26 .63.20 . x−2

.−x 72.36 .63.0 0

.−x3 .71.71 – . 6x

.−ex – – .ex

References 127

Table 4.6 Top-1 accuracy (%) of different deconstruction granularity. The activation bit widths
of MobileNetV2 and ResNet-18 are both 8. ∗ means a mixed bit

Model W bit Layer Block Stage Net

ResNet-18 5∗ 72.51 72.52 72.47 72.31

MobileNetV2 3∗ 69.37 69.10 68.86 63.99

As reported in Table 4.6, the accuracy of the two models increases with finer
granularities. This difference is more significant in MobileNetV2 due to the different
sensitiveness between point-wise and depth-wise convolutions. Thus, we employ
layer-wise granularity in the following experiments.

References

1. George B Arfken and Hans J Weber. Mathematical methods for physicists, 1999.
2. Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods for 8-bit training

of neural networks. Advances in neural information processing systems, 31, 2018.
3. Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization of convolu-

tional networks for rapid-deployment. Neural Information Processing Systems(NeurIPS), 32,
2019.

4. Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432,
2013.

5. Russel E Caflisch. Monte carlo and quasi-monte carlo methods. Acta numerica, 7:1–49, 1998.
6. Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning with low precision

by half-wave gaussian quantization. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5918–5926, 2017.

7. Brian Chmiel, Liad Ben-Uri, Moran Shkolnik, Elad Hoffer, Ron Banner, and Daniel Soudry.
Neural gradients are near-lognormal: improved quantized and sparse training. arXiv preprint
arXiv:2006.08173, 2020.

8. Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi
Srinivasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized
neural networks. arXiv preprint arXiv:1805.06085, 2018.

9. Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural networks
with low precision multiplications. arXiv preprint arXiv:1412.7024, 2014.

10. Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. In Advances in neural information
processing systems, pages 3123–3131, 2015.

11. Lei Deng, Peng Jiao, Jing Pei, Zhenzhi Wu, and Guoqi Li. Gxnor-net: Training deep neural
networks with ternary weights and activations without full-precision memory under a unified
discretization framework. Neural Networks, 100:49–58, 2018.

12. Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. Hawq-v2: Hessian aware trace-weighted quantization of neural networks. In Neural
Information Processing Systems(NeurIPS), pages 18518–18529, 2020.

13. Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and
Dharmendra S. Modha. Learned step size quantization. ArXiv, abs/1902.08153, 2019.

14. Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and
Dharmendra S Modha. Learned step size quantization. arXiv preprint arXiv:1902.08153,
2019.

128 4 Quantization of Neural Networks

15. Fartash Faghri, Iman Tabrizian, Ilia Markov, Dan Alistarh, Daniel M Roy, and Ali Ramezani-
Kebrya. Adaptive gradient quantization for data-parallel sgd. Advances in neural information
processing systems, 33:3174–3185, 2020.

16. Joshua Fromm, Shwetak Patel, and Matthai Philipose. Heterogeneous bitwidth binarization in
convolutional neural networks. In Advances in Neural Information Processing Systems, pages
4006–4015, 2018.

17. Jiaxin Gu, Ce Li, Baochang Zhang, Jungong Han, Xianbin Cao, Jianzhuang Liu, and David
Doermann. Projection convolutional neural networks for 1-bit cnns via discrete back
propagation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 8344–8351, 2019.

18. Yiwen Guo, Anbang Yao, Hao Zhao, and Yurong Chen. Network sketching: Exploiting binary
structure in deep cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5955–5963, 2017.

19. Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XVI 16, pages 544–560. Springer, 2020.

20. Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning
with limited numerical precision. In International conference on machine learning, pages
1737–1746. PMLR, 2015.

21. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

22. Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

23. Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks. In Advances in neural information processing systems, pages 4107–
4115, 2016.

24. Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quan-
tized neural networks: Training neural networks with low precision weights and activations.
The Journal of Machine Learning Research, 18(1):6869–6898, 2017.

25. Tianchu Ji, Shraddhan Jain, Michael Ferdman, Peter Milder, H Andrew Schwartz, and Niranjan
Balasubramanian. On the distribution, sparsity, and inference-time quantization of attention
values in transformers. arXiv preprint arXiv:2106.01335, 2021.

26. Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Youngjun Kwak, Jae-Joon Han,
and Changkyu Choi. Joint training of low-precision neural network with quantization interval
parameters. arXiv preprint arXiv:1808.05779, 2, 2018.

27. Hyungjun Kim, Kyungsu Kim, Jinseok Kim, and Jae-Joon Kim. Binaryduo: Reducing gradient
mismatch in binary activation network by coupling binary activations. In International
Conference on Learning Representations.

28. Hyungjun Kim, Kyungsu Kim, Jinseok Kim, and Jae-Joon Kim. Binaryduo: Reducing
gradient mismatch in binary activation network by coupling binary activations. arXiv preprint
arXiv:2002.06517, 2020.

29. Yue Li, Wenrui Ding, Chunlei Liu, Baochang Zhang, and Guodong Guo. Trq: Ternary neural
networks with residual quantization. In AAAI Conference on Artificial Intelligence, 2021.

30. Yuhang Li, Xin Dong, Sai Qian Zhang, Haoli Bai, Yuanpeng Chen, and Wei Wang. Rtn:
Reparameterized ternary network. In AAAI, pages 4780–4787, 2020.

31. Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang,
and Shi Gu. {BRECQ}: Pushing the limit of post-training quantization by block reconstruction.
In International Conference on Learning Representations (ICLR), 2021.

32. Zefan Li, Bingbing Ni, Wenjun Zhang, Xiaokang Yang, and Wen Gao. Performance guaranteed
network acceleration via high-order residual quantization. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2584–2592, 2017.

References 129

33. Chunlei Liu, Wenrui Ding, Xin Xia, Baochang Zhang, Jiaxin Gu, Jianzhuang Liu, Rongrong Ji,
and David Doermann. Circulant binary convolutional networks: Enhancing the performance
of 1-bit dcnns with circulant back propagation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2691–2699, 2019.

34. Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real
net: Enhancing the performance of 1-bit cnns with improved representational capability and
advanced training algorithm. In Proceedings of the European conference on computer vision
(ECCV), pages 722–737, 2018.

35. Yuexiao Ma, Taisong Jin, Xiawu Zheng, Yan Wang, Huixia Li, Guannan Jiang, Wei Zhang, and
Rongrong Ji. Ompq: Orthogonal mixed precision quantization. ArXiv, abs/2109.07865, 2021.

36. Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on
Computer Vision, pages 525–542. Springer, 2016.

37. Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, pages 4510–4520, 2018.

38. Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

39. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9,
2015.

40. James Tanton. Encyclopedia of Mathematics. Facts on file, 2005.
41. Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated

quantization with mixed precision. In Computer Vision and Pattern Recognition (CVPR), pages
8612–8620, 2019.

42. Linjie Yang and Qing Jin. Fracbits: Mixed precision quantization via fractional bit-widths.
AAAI Conference on Artificial Intelligence (AAAI), 35:10612–10620, 2021.

43. Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned
quantization for highly accurate and compact deep neural networks. In Proceedings of the
European conference on computer vision (ECCV), pages 365–382, 2018.

44. Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083, 2017.

45. Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-
net: Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016.

Chapter 5
Network Pruning

5.1 Introduction

Network pruning is a technique used in deep learning to reduce the size and
complexity of neural networks by eliminating unnecessary connections or param-
eters. Pruning aims to create more efficient and streamlined models that maintain
or improve performance while reducing computational requirements and memory
footprint.

Pruning involves identifying and removing unimportant connections or param-
eters from the neural network. Importance criteria are used to determine the
significance of each connection or parameter. Some standard criteria include:

Magnitude-based criteria Connections or parameters with small magnitudes are
considered less important and are pruned. This can be done by setting a threshold
below which connections are removed or keeping the top-k connections with the
highest magnitudes.

Sensitivity-based criteria Connections or parameters that have the most negligible
impact on the model’s performance are pruned. This is typically determined by
calculating the gradients or sensitivities of the output concerning each connection
or parameter.

Once the important criteria are defined, pruning methods remove the connections
or parameters identified as unimportant. Pruning can be categorized into different
techniques:

Weight pruning Weight pruning eliminates individual connections or parameters
based on their importance. This can result in a sparse model where some connections
have zero values.

Structured pruning Structured pruning removes entire filters, channels, or layers
instead of individual connections. This approach can lead to more efficient and

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Zhang et al., Neural Networks with Model Compression,
Computational Intelligence Methods and Applications,
https://doi.org/10.1007/978-981-99-5068-3_5

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5068-3protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-981-99-5068-3_5
https://doi.org/10.1007/978-981-99-5068-3_5
https://doi.org/10.1007/978-981-99-5068-3_5
https://doi.org/10.1007/978-981-99-5068-3_5
https://doi.org/10.1007/978-981-99-5068-3_5
https://doi.org/10.1007/978-981-99-5068-3_5
https://doi.org/10.1007/978-981-99-5068-3_5
https://doi.org/10.1007/978-981-99-5068-3_5
https://doi.org/10.1007/978-981-99-5068-3_5
https://doi.org/10.1007/978-981-99-5068-3_5
https://doi.org/10.1007/978-981-99-5068-3_5

132 5 Network Pruning

regular network structures and may require specialized hardware support for
practical inference.

Unit pruning Unit pruning involves removing entire neurons or units from the
network. This can be based on their importance or by analyzing their impact on the
network’s performance.

Network pruning is often performed iteratively to achieve higher levels of
sparsity (the proportion of pruned connections in the network). The process involves
multiple pruning iterations, where the least essential connections are successively
removed. Pruning can be applied layer-wise or globally across the entire network.

Pruning can be integrated into the training process itself. This approach, known
as “structured sparsity training” or “learning with sparsity,” involves introducing
regularization techniques that naturally encourage the network to sparsify during
training. This leads to a more efficient model, eliminating the need for post-training
pruning.

One of the primary advantages of network pruning is the reduction in model size.
Pruning creates a more compact model by eliminating unnecessary connections and
parameters from the neural network. This size reduction has practical implications,
especially in limited storage or memory capacity. Smaller models are easier to store,
transmit, and deploy, making them more feasible for real-world applications.

Pruning also leads to improved computational efficiency. By removing unim-
portant connections, the computational workload during inference is reduced. This
results in faster inference times, which is crucial for real-time applications or
situations requiring low-latency responses. The streamlined model can also leverage
efficient sparse matrix operations and specialized hardware accelerators, further
enhancing computational efficiency.

Another benefit of network pruning is the reduction in memory footprint. The
memory requirements for storing and processing the model are reduced by prun-
ing sparse connections. This is particularly advantageous in resource-constrained
environments like mobile devices or embedded systems. It allows for the efficient
execution of deep learning models in memory-limited scenarios.

Network pruning facilitates the compression and deployment of models. The
reduced size and complexity of pruned models make them easier to compress and
deploy. They require less storage space and bandwidth, making them suitable for
scenarios with limited resources or low-bandwidth networks. Pruned models can be
efficiently deployed on edge devices, IoT devices, or cloud platforms, enabling the
scalable and resource-efficient deployment of deep learning models.

It’s important to note that the degree of pruning should be carefully balanced
to achieve the desired benefits without significantly sacrificing model performance.
Aggressive pruning may lead to accuracy degradation, so a trade-off between model
size reduction and performance should be considered during the pruning process.

5.2 Structured Pruning 133

5.2 Structured Pruning

Structured pruning reduces model size and complexity by pruning entire structured
components, such as channels, layers, or blocks, rather than individual weights or
filters. Structured pruning methods aim to maintain the inherent structure of the
network while achieving model compression. By removing entire structured com-
ponents, rather than randomly selecting individual parameters, structured pruning
preserves the architectural characteristics of the network. This allows for more
efficient hardware acceleration, reduced memory footprint, and simplified model
deployment.

There are different types of structured pruning techniques commonly used:

Channel Pruning Channel pruning involves removing entire channels or feature
maps from convolutional layers. Channels represent specific patterns or feature
detectors learned by the network. Channel pruning reduces the model’s complexity
and computational requirements by eliminating redundant or less important chan-
nels.

Layer Pruning Layer pruning focuses on pruning entire layers from the network
architecture. Less critical or contributing layers are identified and removed, resulting
in a shallower model. This reduces the number of parameters and simplifies the
overall structure of the network.

Block Pruning Block pruning targets the removal of entire blocks or modules
within the network. Blocks often represent repeated structures or groups of layers.
The network’s complexity is reduced by pruning these blocks while maintaining
the essential architectural characteristics. This can be particularly effective in deep
networks with complex architectures.

Structured Sparsity Structured sparsity techniques enforce structured sparsity
patterns within the network. Instead of pruning individual weights or filters, specific
structured patterns or structures within the network must be sparse. This can involve
enforcing sparsity in specific rows, columns, or other structured patterns of weight
matrices.

The benefits of structured pruning are numerous. Structured pruning enables
efficient hardware acceleration by leveraging specialized hardware accelerators
to exploit structured sparsity patterns. This results in faster inference times and
improved energy efficiency. Secondly, it significantly reduces the memory footprint
of neural networks, making them more suitable for deployment on memory-
constrained devices or in scenarios with limited storage capacity. Structured pruning
simplifies model deployment by reducing complexity and facilitating the model
transfer, compression, and integration into production systems.

134 5 Network Pruning

5.3 Unstructured Pruning

Unstructured pruning is a technique used in deep learning to reduce the size
and complexity of neural networks by selectively removing individual weights or
filters without considering their structural relationships. Unlike structured pruning,
which prunes entire structured components, unstructured pruning focuses on the
fine-grained elimination of individual parameters based on their importance or
redundancy. This approach offers flexibility in achieving model compression but
may result in irregular and unstructured sparsity patterns.

Unstructured pruning offers flexibility in achieving model compression since
individual parameters can be selectively pruned. This allows for fine-grained control
over the sparsity level and significantly reduces model size. Targeting and removing
redundant or less important weights can also achieve high compression rates. The
model’s size and memory requirements can be significantly reduced by eliminating
these parameters.

Unstructured pruning does not disrupt the structural integrity of the network
since individual weights or filters are pruned independently. This means the model’s
architecture remains unchanged, allowing for easier integration and transfer of
pruned models.

However, the irregular and unstructured sparsity patterns introduced by this
technique may need to be more efficiently utilized by hardware accelerators
designed for structured sparsity. Additionally, unstructured pruning may require
careful fine-tuning to recover performance, as removing individual parameters can
lead to a more significant performance drop than structured pruning.

5.4 Network Pruning

5.4.1 Efficient Structured Pruning Based on Deep Feature
Stabilization

Conventional filter pruning methods generally rely on the important criteria such as
the .l1-norm value [40] and .l2-norm value [21] of filters. Two central problems
may lie in the existing methods. Firstly, the important criterion can only be
employed on filter selection, i.e., a block cannot be evaluated by criteria such
as norm criterion. Secondly, the importance of each filter seems too simple and
inefficient due to the existence of batch normalization (BN) [30] and nonlinear
activation functions, e.g., rectifier linear unit (ReLU) [13]. To overcome these
two shortcomings, the reconstruction-based method is introduced. He et al. [23]
propose a channel pruning method based on the local reconstruction error of every
block and optimized the reconstruction loss via most minor absolute shrinkage
and selection operator (LASSO) [59] regression. Likewise, accelerated proximal
gradient (APG) [73] and Taylor expansion [42] are employed to optimize the

5.4 Network Pruning 135

Fig. 5.1 An illustration of EPFS. From left to right lies the training process. The yellow and green
square sets denote feature maps and filters, respectively. As represented in the middle, our EPFS
can be effectively implemented in block or filter selection by setting the specific full-precision
soft masks after specific layers. The soft mask and other parameters will be updated via FISTA and
SGD, respectively. When the mask element is zero, the corresponding filter or block is equivalent to
being pruned. . LM , . LC and . LS are employed to supervise mask sparsity, deep feature stabilization,
and network output, respectively

reconstruction loss. However, the small reconstruction error might be magnified and
propagated in the deep networks, leading to large reconstruction errors in the global
outputs.

We propose an end-to-end efficient pruning method based on feature stability
(EPFS) [68]. The framework of EPFS is shown in Fig. 5.1. For block pruning,
we introduce a mask on the output of the layers and use the sparsity supervision,
i.e., .l1-norm, to supervise the updating of the mask. We introduce a novel .l2-
regularization term for filter pruning to supervise mask updating. The sparsity
supervision and cross-entropy make up a couple of adversaries between sparsity
and accuracy. The center loss [64] is employed to further stabilize the deep feature
during learning. However, using conventional stochastic gradient descent (SGD)
to optimize the mask tends to obtain lower performance. Thus, we introduce a
fast iterative shrinkage-thresholding algorithm (FISTA) [3, 14] to optimize the
learning process, achieving a faster and more reliable pruning process of the
mask.

5.4.1.1 Preliminaries

Consider a CNN model consisting of L layers (convolutional and fully connected
layers) interlaced with rectifier linear units (ReLU) and pooling. We can formulate
the convolutional layer’s output size as .Kl × Wl × Cl . Hence, we define a
convolution-batch normalization (Conv-BN) operation transforming the input tensor

136 5 Network Pruning

.xl−1 ∈ R
Kl−1×Wl−1×Cl−1

to the output tensor .xl ∈ R
Kl×Wl×Cl

as:

. xl
j = f l(xl−1,F l ,π l ,β l , τ l , γ l)

= γ l
j

ΣCl−1

i=1 xl−1
i ∗ F l

i,j − πl
j

τ l
j

+ βl
j , (5.1)

where . Cl represents the number of channels in the l-th layer. . xl
j and .xl−1

i are the
j -th output feature map and the i-th input feature map at the l-th layer. . ∗ denotes
the convolutional operation. .(πl

j , τ
l
j , β

l
j , γ

l
j) are the corresponding BN parameters

of the j -th channel. .F l
i,j is the i-th kernel of the j -th filter of the l-th layer.

5.4.1.2 Sparse Supervision for Block Pruning

As shown in Fig. 5.1, different soft masks should be deployed for different pruning
tasks. We will state this subsection in three parts, i.e., mask setups for block and
filter pruning, respectively, and loss formulation.

We first modify the denotation in Eq. 5.1 block-wise for block selection. As
plotted in Fig. 5.1, we introduce a scalar . mk for selecting the k-th block. Considering
the k-th block containing . kN layers, we formulate it as:

. xk = mk · Fk(xk−1,F k,πk,βk, τ k, γ k) + S(xk−1)

= mk · f k1 ◦ f k2 ◦ f k3 ◦ · · · f kN + S(xk−1) (5.2)

where .f 1 ◦ f 2 = f 2(f 1). . f ki denotes the .kn-th layer in the k-th block in sequence,
i.e., .f kn(xkn−1,F kn,πkn,βkn, τ kn, γ kn). .S() denotes the shortcut transformation.
We introduce a learnable mask .m = [m1, · · · ,mL] to scale the output. To guarantee
the input of the following blocks is not 0, we only implement the mask to the blocks
having residual connections, rather than blocks in generalized meaning such as [26,
54]. For the convergence of mask, we use .l1-regularization to punish . m to optimize
the elements to 0. Therefore, . m is learned by:

.LM = μ

KΣ

k=1

|mk|, (5.3)

where . mk represents the mask scalar for every block.

5.4 Network Pruning 137

5.4.1.3 Constrained Sparse Supervision for Filter Pruning

For filter pruning, we introduce a vector . ml sized .1 × 1 × Cl to scale the output of
l-th Conv-BN layer. We formulate the filter selection process as:

. xl
j = f l(ml−1 ⊗ xl−1, F l

j , π
l
j , β

l
j , τ

l
j , γ

l
j)

= γ l
j

ΣCl−1

i=1 (ml−1
i · xl−1

i) ∗ F l
i,j − πl

j

τ l
j

+ βl
j , (5.4)

where . ⊗ denotes element-wise multiplication. Equation 5.4 denotes scaling the
output of .(l − 1)-th Conv-BN layer by soft mask .ml−1.

Unlike the prior work [23, 43], we introduce a novel constraint for sparse
supervision deployed on filter pruning as:

.LM = μ

LΣ

l=1

||ml||1 + α

LΣ

l=1

Cl
Σ

j=1

||ml
j − ||F l

j||2||22, (5.5)

where we introduce a strong constraint to guarantee the safe convergence of . m.
As we observe that the .l1-regularization may cause damage to the architecture, we
introduce the .l2-regularization to consider the magnitude of filters. We only zero . ml

j

when the filter magnitude .||F l
j||2 is close to zero. In Eq. 5.5, .LM represents the loss

function to update the mask. K and L denote the network’s total blocks and layers.
. μ and . α are hyperparameters to control the proportion of sparsity and constraint.
Note that the constraint .||ml

j − ||F l
j||2||22 is only employed in updating . m.

5.4.1.4 Loss Function

Cross-entropy is still employed in the learning process to improve image classifica-
tion accuracy. It is formulated as:

.LS = −
QΣ

q=1

log
e
WL

yq
xL−1

(q)
+bL

yq

ΣP
p=1 e

WL
p xL−1

(q)
+bL

p

, (5.6)

where .xL−1
(q) denotes the deep feature of the q-th input in mini-batch. Q denotes the

mini-batch size. For .q ∈ Q, . yq denotes the network’s forecast of the .yq -th class in
P .

138 5 Network Pruning

Furthermore, we introduce center loss [64] to maintain the feature stabilization
of the pruned networks. The center loss function is defined as:

.LC = λ

2

QΣ

q=1

||xL−1
(q) − cyq ||22. (5.7)

In Eq. 5.7, .xL−1
(q) is the deep feature of q-th input image in batch. .g(x) ∈ R

CL−1×CL
.

.CL−1 and . CL are the channels of input and output, respectively. . cyq is the feature
center of the ground truth label of q-th input, which denotes the feature center of
every class. And . λ is the hyperparameter for balancing the proportion of center loss
and two others. SGD updates c. We will give a more detailed description in the next
subsection.

We use joint supervision through cross-entropy and center loss [64] to achieve
discriminative feature learning. The formulation is given as:

.L = LS +LC +LM . (5.8)

= −
QΣ

q=1

log
e W

L
yq x

L−1+bL
yq

ΣP
p=1 e

WL
p x

L−1+bL
p

+
λ
2

QΣ

q=1

||xL−1
(q) − cyq ||2 2 +LM. (5.9)

The joint loss well supervises the output and deep feature.

5.4.1.5 Optimization

SGD can be directly introduced to update the feature center . cp and model
parameters . W to solve the optimization problem in Eq. 5.9. We update . W and . cp

as

.ct+1
p = ct − βδcp (5.10)

.Wt+1 = ct − ηδW (5.11)

.δcp =
ΣP

p=1 I(yq = p) · (cp − xL−1)

1 + ΣP
p=1 I(yq = p)

(5.12)

5.4 Network Pruning 139

. δW = ∂LS

∂W
+ λ

∂LC

∂W

= ∂LS

∂W
+ λ

∂LC

∂xL−1
· ∂xL−1

∂W

= ∂LS

∂W
+ λ

∂xL−1

∂W
· (xL−1 − cyq) (5.13)

In Eq. 5.12, .I(yq = p) is the indicative function, defined as:

.I(yq = p) =
{
0, yq /= p

1, yq = p
(5.14)

Then every simple weight in convolution or BN layer can be updated as Eq. 5.13.
However, it is unreliable to implement SGD to solve the optimization problem in
Eq. 5.3. Because the SGD may bring the vibration of . LM , affecting the convergence
of the mask learning. The misleading mask may remove the necessary structures and
decrease the accuracy. Thus, a threshold is required to limit the vibration. Under this
guiding ideology, we introduce FISTA [14] to optimize . LM .

We first use SGD to optimize the .Wp and c. The whole procedure relies on the
original forward-backward pass. Then, we introduce FISTA to solve . m as:

. argmin
m
LM + R(m) (5.15)

The mask . m can be updated by FISTA with the initial .τ 1 = 1:

. τ 1 = 1

τ t+1 = 1 +
√
1 + 4[τ t+1]2

2
. (5.16)

yt+1 = mt +
τ t − 1
τ t+1 [mt − mt−1]. (5.17)

wt+1 = yt+1 − ηt+1 · ∂G[mt+1]
∂mt+1 . (5.18)

mt+1 = sign(wt+1) ◦ max
{
|wt+1| − ηt+1 · μ

}
. (5.19)

. η is an iterative learning rate. The whole optimization procedure is shown in
Algorithm 8.

140 5 Network Pruning

Algorithm 8: The updating algorithm of EPFS

Input: Training data x0 = {x0
(1), . . . , x

0
(Q)} with a mini-batch size Q, mask factor μ, number

of steps t , maximum iterations T , mask step iteration number S.
Output: The weights W and mask m

1 Initialize W , m ∼ N(0, 1) and k = 1
2 repeat
3 For t steps do
4 Forward pass masked network in a sample mini-batch of Q examples get

{
xL−1

(1) , . . . , xL−1
(Q)

}
and

{
xL

(1), . . . , xL
(Q)

}
.

5 Update theWp by Eqs. 5.10 and 5.12
6 Update the each cj by Eqs. 5.11 and 5.13
7 If t == S, then it is the mask step:
8 Update the m with FISTA from Eqs. 5.15 to 5.19.
9 end for

10 until convergence or t reaches the maximum iterations T

5.4.1.6 Pruning on ResNet

Unlike VGGNets [55] or AlexNets [35], in ResNets, each residual block contains
two or three convolutional layers (followed by both BN and ReLU) and shortcut
connections. For the consistency of two parts for the sum operation, the number
of output feature maps in the last convolutional layer must be consistent with that
of the projection shortcut layer. In particular, when the dimensions of input/output
channels are mismatched in a residual block, the shortcut connections perform a
linear projection.

This work implements our EPFS method on ResNet-18 (two convolutional layers
in each block) for filter pruning. We focus on pruning the first layer in each residual
block, as illustrated in Fig. 5.2c. And no pruning operation is conducted in the last
convolutional layer of each residual block. About . 128−76

128 = 40.2% parameters are

Fig. 5.2 Illustration of pruning ResNet-18. The red value is the number of remaining fil-
ters/channels. (a) Original block of ResNet-18. (b) Block pruning for ResNet-18. (c) Filter pruning
for ResNet-18

5.4 Network Pruning 141

pruned as illustrated in Fig. 5.2c, which make up a large proportion in the residual
block.

For block pruning, the parameters of shortcut connection are far less than those
of residual mapping. And the shortcut provides the chance to scale the mapping
out to 0 without breaking the shape of the output. So, the strategy to set masks is
clear. We add the mask before the comprehensive point of mapping and shortcut.
The pruned ResNet-18 can be viewed as Fig. 5.2b.

5.4.1.7 Experiments

We implement extensive experiments to validate the effectiveness of our EPFS
on filter pruning and block pruning. For filter pruning, we use six convolutional
networks on two datasets, i.e., ResNet-20, ResNet-56 [21], VGGNet [56], and
MobileNetV3-Large/Small [26] on CIFAR-10 [34] and ResNet-18 [19] on Ima-
geNet ILSVRC2012 [35]. For block pruning, we also use six convolutional networks
on two datasets, i.e., ResNet-20, ResNet-56, MobileNetV3-Large/Small on CIFAR-
10, ResNet-18, and MobileNetV3-Small on ImageNet ILSVRC2012. Furthermore,
we implement the comprehensive pruning (pruning block and filter sequentially),
using three models on two datasets, i.e., ResNet-20, ResNet-56 on CIFAR-10, and
ResNet-18 on ImageNet ILSVRC2012.

We use PyTorch [51] to implement our EPFS method. We use four NVIDIA GTX
2080 Ti GPUs with 128GB of RAM to compute the above learning process. The
hyperparameter . μ is selected in the .[0.001, 1] range after cross-validation. And . λ
is set to .0.0003. The weight decay is set to .0.0001, and the momentum is . 0.9. The
initial learning rate of . LS , . LM , i.e., . η is set as . 0.1. And it will be scaled by a factor
of . 0.1 every 20 epochs. The learning rate of feature center, i.e., . β, is set as . 0.5. Total
epochs are 60.

We evaluate the performance of EPFS on CIFAR-10 for five networks, ResNet-
20/ResNet-56, MobileNetV3-Large/MobileNetV3-Small, and VGGNet. For block
pruning, ResNet-20 and ResNet-56 have 9 and 27 blocks for pruning, respectively.
In MobileNetV3, there are no shortcuts in the downsampling blocks. Therefore,
MobileNetV3-Large has 15 blocks, in which only 10 have residual connections
that can be pruned. Likewise, MobileNetV3-Small has 7 of 11 blocks that can be
pruned. For filter pruning, we implement it on ResNet-20/ResNet-56 and VGGNet.
Moreover, we implement the comprehensive pruning on ResNet-20/ResNet-56 and
compare its performance with the ones using block/filter pruning alone. P.S., we
use EPFS-B/F-. μ denoting implementing block/filter pruning via EPFS with special
hyperparameter . μ. EPFS-C-.μ1-. μ2 denotes the comprehensive pruning, i.e., block
and filter pruning sequentially. . μ1 and . μ2 denote the hyperparameters used for block
and filter pruning, respectively. . α is set to .1 × 10−4.

ResNet-20 To evaluate the effectiveness of our method, we prune ResNet-20,
where the mask’s effectiveness can be examined subtly. The pruning results are
shown in Table 5.1. For ResNet-20, when . μ is set to . 0.6, three out of nine

142 5 Network Pruning

Table 5.1 Filter/block/comprehensive pruning for ResNet-20 on CIFAR-10

Model Top-1/+FT% Params(PR%) FLOPs(PR%) Speedup

ResNet-20 [19] .92.17 .0.27M .40.55M –

MIL [9] –/.91.43 – .32.31M(.20.3%) . 1.26×
SFP [21] .90.83/– – .23.44M(.42.2%) . 1.73×
EPFS-B-.0.6 .91.51/.91.91 .0.20M(.24.6%) .30.83M(.24.0%) . 1.32×
EPFS-B-.0.8 .91.31/.91.50 .0.17M(.36.9%) .22.72M(.44.0%) . 1.79×
EPFS-F-.0.05 .90.20/.90.83 .0.14M(.51.1%) .20.84M(.48.6%) . 1.94×
EPFS-C-.0.6-.0.05 .90.01/.90.98 .0.12M(.56.0%) .18.98M(.53.2%) . 2.14×

Table 5.2 Filter/block/comprehensive pruning for ResNet-56 on CIFAR-10

Model Top-1/+FT% Params(PR%) FLOPs(PR%) Speedup

ResNet-56 [19] .93.26 .0.85M .125.49M –

PFEC [40] –/.93.06 – .90.9M(.27.6%) . 1.21×
CP [23] .90.80/.91.80 – 62M(.50.6%) . 2.02×
NISP [71] –/.93.01 – 81M(.35.5%) . 1.55×
EPFS-B-.0.6 .91.16/.92.89 .0.61M(.27.7%) .75.91M(.39.5%) . 1.65×
EPFS-B-.0.8 .90.91/.92.34 .0.35M(.58.6%) .65.32M(.47.9%) . 1.92×
EPFS-F-.0.01 .92.10/.92.96 .0.68M(.20.0%) .89.60M(.28.6%) . 1.40×
EPFS-F-.0.05 .90.92/.92.09 .0.34M(.40.1%) .64.50M(.44.7%) . 1.81×
EPFS-C-.0.6-.0.05 .91.71/.92.53 .0.28M(.67.1%) .56.47M(.55.0%) . 2.22×

residual blocks are pruned with .24.0% FLOPs pruned rate, and we only have . 0.26%
accuracy decrease. This indicates that there are redundant blocks for ResNet-20.
Compared with SFP [21], our method achieves a much better performance. As for
filter pruning, when . μ is set to .0.05, .48.6% FLOPs are removed with .1.34% absolute
accuracy drop. Moreover, the comprehensive pruning can remove .53.2% FLOPs
with only a .1.19% performance decrease, demonstrating that we have achieved a
new state-of-the-art result.

ResNet-56 For ResNet-56, the pruning results are shown in Table 5.2. For block
pruning, when . μ is set to . 0.6, 11 out of 27 residual blocks are pruned, thus
realizing .39.5% FLOPs pruned rate with a decrease of .0.37% accuracy. Compared
with CP [23], PFEC [40], and NISP [71], our method achieves a much better
trade-off between accuracy and compression rate. As for filter pruning, when . μ
is set to .0.01, .28.6% FLOPs are removed with .0.30% absolute accuracy drop.
Moreover, comprehensive pruning can lead to a .55.0% pruning rate with only a
.0.73% performance decrease. It gains a higher accuracy and pruning rate than EPFS-
B-. 0.8 and EPFS-F-.0.05, demonstrating the structured redundancy accounting for a
large proportion in both width and depth aspects.

MobileNetV3-Large/MobileNetV3-Small MobileNetV3 is the state-of-the-art
model. It was obtained by neural architecture search (NAS) [77]. We implement
the block pruning for MobileNetV3 to validate our method’s effectiveness and

5.4 Network Pruning 143

Table 5.3 Block pruning for MobileNetV3-Large/MobileNetV3-Small on CIFAR-10

Model Top-1/+FT% Params(PR%) FLOPs(PR%) Speedup

MobileNetV3-Large [26] .94.05 .4.18M .227.74M –

EPFS-B-.0.2 .93.71/.93.81 .3.41M(.18.4%) .179.50M(.21.2%) . 1.26×
EPFS-B-.0.6 .93.83/.94.07 .2.95M(.29.4%) .140.03M(.38.5%) . 1.62×
EPFS-B-.0.8 .93.22/.93.32 .3.01M(.27.9%) .146.97M(.35.5%) . 1.55×
MobileNetV3-Small [26] .93.14 .2.93M .66.17M –

EPFS-B-.0.2 .92.81/.92.90 .2.79M(.4.64%) .45.00M(.32.0%) . 1.47×
EPFS-B-.0.6 .92.79/.92.82 .2.55M(.12.9%) .38.18M(.42.3%) . 1.73×
EPFS-B-.0.8 .90.99/.91.13 .2.55M(.27.9%) .37.51M(.43.3%) . 1.77×

Table 5.4 Filter pruning for VGGNet on CIFAR-10

Model Top-1/+FT% Params(PR%) FLOPs(PR%) Speedup

VGGNet [55] .93.50 .14.98M .313.73M –

PFEC [40] .93.40 .5.40(.64.0%) .206.00M(.34.3%) . 1.21×
EPFS-F-.0.001 .91.37/.93.61 .6.49M(.56.7%) .200.2M(.36.2%) . 1.57×
EPFS-F-.0.005 .92.57/.94.67 .4.41M(.69.1%) .156.87M(.47.5%) . 1.90×

generalization ability. Results are shown in Table 5.3. For MobileNetV3-Large,
when . μ is set to . 0.6, 4 out of 11 blocks are pruned with .38.5% FLOPs pruned
rate, and we achieve a .0.02% accuracy increase. For MobileNetV3-Small, when . μ
is set to . 0.6, two out of seven blocks are pruned with .42.3% FLOPs pruned rate,
and we achieve only .0.28% accuracy decrease. Finally, the pruned model has about
.93% accuracy and only .36.91M FLOPs on CIFAR-10, resulting in new state-of-
the-art results. The experiments on MobileNetV3 demonstrate that the searched
architectures by NAS still have redundancy, while our EPFS can efficiently reduce
it.

VGGNet For VGGNet, there are no blocks. Hence, we deploy filter pruning via
EPFS on VGGNet, whose results are shown in Table 5.4. We set the hyperparameter
. μ in .[0.001, 0.01], for a small . μ that is needed to balance the .LM produced by 4736
channels in VGGNet. When . μ is set to .0.005, 2022 out of 4736 channels are pruned,
thus removing .47.5% FLOPs. Compared with PFEC [40], our method achieves a
much better accuracy and compression rate performance (Fig. 5.3).

We further evaluate the performance of EPFS on large-scale ImageNet and
ILSVRC2012 in two networks, ResNet-18 and MobileNetV3-Small. ResNet-18 and
MobileNetV3-Small have eight and six blocks to prune for the block pruning,
respectively. We then implement filter pruning on ResNet-18. Moreover, we imple-
ment the comprehensive pruning on ResNet-18 and compare its performance with
the ones using block/filter pruning alone. And . α is set to .1 × 10−4.

ResNet-18 We also evaluated our method on ImageNet using ResNet-18. We train
the pruned network with a mini-batch size of 128 for 60 epochs. As shown in
Table 5.5, our method can obtain .1.41× and .1.86× speedup by setting . μ to .0.2

144 5 Network Pruning

Fig. 5.3 ImageNet ILSVRC2012 dataset

Table 5.5 Filter/block/comprehensive pruning for ResNet-18 on ImageNet ILSVRC2012

Model Top-1/+FT% Top-5/+FT% Params (PR%) FLOPs (PR%) Speed Up

ResNet-18 [19] .69.75 .89.24 .10.67M .1.81B –

MIL [9] –/.66.33 –/.86.94 – .1.18B(.34.6%) . 1.54×
SFP [21] –/.67.10 –/.87.78 – .1.05B(.41.8%) . 1.72×
FPGM [22] .67.78/.68.34 .88.01/.88.53 – .1.05B(.41.8%) . 1.72×
EPFS-B-.0.2 .67.91/.68.21 .87.80/.88.20 .8.13M(.23.8%) .1.28B(.29.3%) . 1.41×
EPFS-B-.0.6 .66.79/.67.53 .86.91/.87.83 .7.12M(.33.3%) .0.98B(.46.0%) . 1.86×
EPFS-F-.0.05 .67.21/.67.81 .87.12/.88.37 .6.98M(.34.6%) .1.05B(.42.1%) . 1.72×
EPFS-C-.0.6-.0.05 .67.41/.68.12 .87.30/.88.29 .5.65M(.47.0%) .0.81B(.55.2%) . 2.23×

and . 0.5 for block pruning, with the decrease of .1.56%/.1.04% and .2.23%/. 1.41%
in Top-1/Top-5 accuracy, respectively. For filter pruning, our EPFS obtained the
.67.81% Top-1 accuracy with .34.6% FLOPs removed. Furthermore, we implement
comprehensive pruning for ResNet-18 on ImageNet ILSVRC2012. We set the
hyperparameter . μ as .0.6 and .0.05 for block and filter pruning, respectively.
Our EPFS can obtain .68.12% Top-1 and .88.29% Top-5 accuracy with . 2.23×
acceleration, largely outperforming the state of the art.

MobileNetV3-Small We implement the block pruning in MobileNetV3-Small on
ImageNet ILSVRC2012 to validate the effectiveness of our method. Results are
shown in Table 5.6. When . μ is set to . 0.2, three out of seven blocks are pruned with
.31.8% FLOPs pruned rate, and we achieve only .1.30% accuracy drop. And when .μ

5.4 Network Pruning 145

Table 5.6 Block pruning for MobileNetV3-Small on ImageNet ILSVRC2012

Model Top-1/+FT% Top-5/+FT% Params (PR%) FLOPs (PR%) Speed Up
MobileNetV3-
Small[26] .67.4 .87.1 .2.93M .66.17M –

EPFS-B-.0.2 .64.82/.66.10 .85.45/.86.15 .1.92M(.34.5%) .45.12M(.31.8%) . 1.41×
EPFS-B-.0.6 .64.51/.65.81 .84.78/.85.91 .1.71M(.41.6%) .37.10M(.43.9%) . 1.86×

Table 5.7 Controlled block pruning experiments for different optimizers on CIFAR-10. . μ is set
as . 0.6 and . 0.2 for MobileNetV3-Small and ResNet-20, respectively

Model Top-1/+FT% Params(PR%) FLOPs(PR%)

ResNet-20 [19] .92.17 .0.27M .40.55M

EPFS-FISTA .91.51/.91.91 .0.20M(.24.6%) .30.83M(.24.0%)

EPFS-SGD .91.51/.91.55 .0.21M(.22.2%) .32.34M(.20.2%)

EPFS-LASSO .90.13/.90.99 .0.19M(.29.6%) .28.31M(.30.2%)

MobileNetV3-Small .93.14 .2.93M .66.17M

EPFS-FISTA .92.81/.92.90 .2.79M(.4.64%) .45.00M(.32.0%)

EPFS-SGD .91.82/.91.88 .2.62M(.10.6%) .43.11M(.34.8%)

EPFS-LASSO .90.12/.90.45 .2.37M(.19.1%) .38.12M(.42.4%)

is set to . 0.6, f our out of seven blocks are pruned with .41.6% FLOPs pruned rate,
and we lead to .1.59% accuracy decrease and new state-of-the-art results.

5.4.1.8 Ablation Study

The effectiveness of our method comes from FISTA and center loss. To examine
how they affect the final performance, we select ResNet-20 and MobileNetV3-
Large/MobileNetV3-Small for an ablation study.

FISTA In our ablation, we use ResNet-20 and MobileNetV3-Small to prune
networks based on FISTA, SGD, and LASSO. The results are presented in Table 5.7.
Compared to SGD, FISTA achieves a higher accuracy and better pruning rate in
the same experimental settings. Compared to LASSO, FISTA achieves a higher
accuracy with a lower pruning rate. However, these results also demonstrate that
the pruned network via FISTA achieves a better trade-off than LASSO. The SGD
optimizer can provide better initial parameters to prune a network, but its fine-tuning
performance is worse than FISTA. Generally, EPFS with FISTA can fast and steadily
prune the network and achieve better accuracy than SGD and LASSO. As plotted
in Fig. 5.4, . LM , . LS , and .LC can converge pretty well. .LM is updated on specific
iterations via FISTA so that the loss curve descends discretely.

146 5 Network Pruning

(a) (b)

(c)

Fig. 5.4 Loss curve of LM , LS , and LC

Table 5.8 Controlled block pruning experiments for center loss on CIFAR-10. μ is set as 0.6.
EPFS∗ denotes the control group without center loss

Model Top-1/+FT% Params(PR%) FLOPs(PR%)

MobileNetV3-Large [26] 94.05 4.18M 227.74M

EPFS 93.83/94.07 2.95M(29.4%) 140.03M(38.5%)

EPFS∗ 93.54/93.65 2.72M(22.2%) 128.76M(43.5%)

MobileNetV3-Small [26] 93.14 2.93M 66.17M

EPFS 92.79/92.82 2.55M(12.9%) 38.18M(42.3%)

EPFS∗ 91.60/91.86 2.51M(14.3%) 29.48M(55.4%)

Center Loss To find out whether the center loss works, we used MobileNetV3-
Large/MobileNetV3-Small to prune in two situations distinguished by the existence
of center loss. The results are presented in Table 5.8. For MobileNetV3-Large,
the EPFS without center loss got the decrease of 0.38% accuracy. Also, the EPFS
without center loss achieves a decrease of 0.96% accuracy for MobileNetV3-Small.
We conclude that center loss is vital in optimizing masks and stabilizing deep
features.

5.4 Network Pruning 147

5.4.2 Toward Compact and Sparse CNNs via
Expectation-Maximization

Among structured pruning, filter pruning has attracted the most attention for its
ability to slim the network, making it a thinner architecture without specific
hardware support for accelerating. Similarly, block pruning can reduce the FLOPs
of networks by shortening the network architecture. We produce a thinner and
shorter architecture after pruning using the two methods. Most previous filter
pruning methods [21, 22, 40] were based on the information of filters, such as
the value of filter norm. They use the norm information to evaluate the filter and
then hard prune or zero the filters which fail the criterion. Other methods are
based on various techniques to zero out the filters, including generative adversarial
learning [43], greedy search [46], Taylor expansion [42], etc.. These methods have
achieved a high pruning rate with an acceptable performance drop. However, prior
methods have three main areas for improvement. The first one is that filter pruning
criterion based only on filter information remains insufficient, which resulted from
the existence of nonlinear activation functions (e.g., rectifier linear unit (ReLU)),
and other complex operations (e.g., batch normalization (BN)). For example,
computing the convolution of vector .a = (0, 1)T by vector .b = (5, 1)T and
.c = (1, 4)T , we have .ReLU(a ∗ b) < ReLU(a ∗ c), while .||c||1 < ||b||1 and
.||c||2 < ||b||2. The second one is that prior work devoted to zeroing the output
of filters may cause permanent structured damage in training. For instance, a full-
precision mask is employed to sparse the output feature maps under the supervision
of . l1 regularization while lacking an efficient backtracking mechanism. Once the
damage is caused to structured, i.e., an unsatisfactory element is updated to zero,
it will never be repaired for the sparsity supervision of .l1-norm. Moreover, fine-
tuning always demands zeroing out the pruning pattern for the damage caused in
training. However, the fine-tuning process may cause additional redundancy for
pruned architecture, which causes less sparsity of remaining filters and more or less
performance drop for prior pruning methods.

We focus on training a network with less redundancy and higher sparsity. The
intention is to employ the expectation-maximization (EM) algorithm in the training
process, as illustrated in Fig. 5.5. First, we analyze the distribution of filters in
hyperspace, i.e., employ the Gaussian mixture models (GMM) to analyze the filters
and EM algorithm to solve the GMM. The expectation step (E-step) is deployed to
cluster the filters into the maximum likelihood distribution group. The maximization
step (M-step) is employed in calculating the maximum likelihood distribution
parameters and formulating a well-defined loss function to monitor the filters with
similar distribution to converge to be consistent. Dynamic clustering method is
implemented to reanalyze and re-cluster the filters to improve the distribution
diversity. After a certain number of epochs, the distribution loss can converge to
zero, which means the current network is identical to the pruned one. We fine-tune
the clustered networks to optimal inter-cluster sparsity and then we can prune the
network with the optimal weights.

148 5 Network Pruning

Fig. 5.5 Illustration of SPEM scheme. (a) The process includes warming up the EM algorithm,
clustering the filters via the expectation step, averaging the output feature maps of every cluster,
calculating the loss, optimizing parameters, and pruning the well-trained model. (b) Detailed
illustration of training via EM, including clustering the filters with different distributions in
hyperspace, averaging the output of the same cluster. For instance, the first layer’s 1-st and 2-
nd filters are clustered together. (c) Pruning two layers with filters of the same cluster sharing the
consistent distribution. For instance, trim the filters sharing the same distribution to one such as
the 2-nd filter in the first layer and 2-nd and 3-rd filters in the second layer. In particular, the 2-nd
kernels of every filter in the second layer should be pruned by adding the second kernels to their
corresponding 1-st ones

5.4.2.1 Preliminaries

As shown in Fig. 5.5, we analyze the l-th layer, and we should categorize the filters
into distributions. In modern CNNs, the BN is always followed after convolutions.
For the consistency of pruned networks, we regard the possible subsequent BN and
scaling layers as part of the convolutional layer. First, denote the output of the j -th
filter in l-th layer as:

xl
j = γ l

j

ΣCl−1

i=1 xl−1
i ∗ F l

i,j − πl
j

τ l
j

+ βl
j , (5.20)

where Cl represents the number of channels in l-th layer. xl
j and xl−1

i are the

j output feature map and i-th input feature map at the l-th layer. F l
i,j denotes

the i-th kernel of j -th filter at l-th layer. ∗ denotes the convolutional operation.
(πl

j , τ
l
j , β

l
j , γ

l
j) are the corresponding BN parameters of j -th channel. Hence, the

parameter set of j -th channel at i-th layer is formulated as:

Wl
j =

{
F l

j , γ l
j , βl

j , πl
j , τ l

j

}
. (5.21)

5.4 Network Pruning 149

To analyze the distribution, we propose the hypothesis that every filter in a
pre-trained network approximately satisfies multidimensional Gaussian distribution,
i.e., .F l

j ∼ N(μl
j , Σ

l
j). And the filters satisfy the individual hypothesis for the

linearity of convolution. The clustering process can be simplified by categorizing the
filters with similar distributions into the same cluster. To simplify the computation,
we reshape the matrix .F l

j ∈ R
kl×wl×Cl−1

to a vector .F l
j ∈ R

(kl ·wl ·Cl−1)×1 during
cluster process, which also satisfies the individual hypothesis.

5.4.2.2 Distribution-Aware Forward and Loss Function

Based on the hypothesis above, the l-th layer satisfies the GMM. The pruning ratio
can define the GMM’s dimension . Kl . Then we have:

. Kl =< Cl × (1 − E) >

P(F l |Ol) = αl
k

Kl
Σ

k=1

0(F l |Ol
k), (5.22)

where . E is a pre-defined pruning ratio to supervise the clustering process. . < a >

represents rounding the float a to its integer approximation. . αl
k represents the ratio

of k-th distribution accounting. . Cl is the dimension of l-th layer. Hence, . Kl is the
number of clusters and the dimension of GMM. . Ol

k denote the parameter of k-th
distribution, i.e., .(μl

k,Σ
l
k). . O

l denotes the assembly of . Ol
k . . F

l denotes the assembly
of filters at l-th layer as well as the observed data. Then we introduce the hidden
variable . ξ l

jk to formulate the maximum likelihood estimation (MLE) of GMM as:

.ξ l
jk =

{
1, F l

j ∈ Dl
k

0, else
(5.23)

In Eq. 5.23, . ξ l
jk is the hidden variable describing the affiliation between j -th filter

and k-th cluster at l-th layer. . Dl
k denotes the k-th distribution at l-th layer.

Based on the multi-dim Gaussian distribution hypothesis and the preliminaries
above, we formulate MLE as:

. P(F l |Ol) =
Kl
||

k=1

α|Dl
k |

Cl
||

j=1

⎧
⎨

⎩

1

(2π)
d
2 |Σl

j |
1
2

× exp

[

−1

2
(F l

j − μl
k)

T Σl−1

j (F l
j − μl

k)

]
⎫
⎬

⎭

ξ l
jk

,

(5.24)

where .|Dl
k| = ΣCl

j=1 ξjk and .Cl = ΣKl

k=1 |Dl
k|. d represents the dimension of filter,

i.e., .kl · wl · Cl−1. Next, we introduce the EM algorithm.

150 5 Network Pruning

Expectation step First, we formulate the . Q function as:

.

Q(Ol ,Ol,e) =E

[
log P(F l , ξ l |Ol)|F l ,Ol,e

]

=
Kl
Σ

k=1

⎧
⎨

⎩

Cl
Σ

j=1

(Eξ l
jk)logα

l
k

+
Cl
Σ

j=1

(Eξ l
jk)

[

−1

2
log (2π)d |Σl

j | +1

2
(F l

j − μl
k)

T Σl−1

j (F l
j − μl

k)

]}

,

where e denotes the current epoch number since we only cluster the filter once at the
beginning of every epoch. Then compute the MLE of . ξ l

jk , i.e., .E(ξ l
jk|F l ,Ol) via:

. E(ξ l
jk|F l ,Ol) =P(ξ l

jk = 1|F l ,Ol)

= αl
k0(F l

j |Ol
k)

ΣKl

k=1 αl
k0(F l

j |Ol
k)

. (5.25)

We denote .E(ξ l
jk|F l ,Ol) as .ξ̂ l

jk for simplification. .ξ̂ l
jk represents the relativity

between k-th and j -th filter. Then we can modify the Q function by substituting
.Eξ l

jk by the estimation . ̂ξ l
jk , so we have:

. Q(Ol ,Ol,t) =
Kl
Σ

k=1

{
Dl

klog αl
k+

Cl
Σ

j=1

ξ̂ l
jk

[

−1

2
log (2π)d |Σl

j | +1

2
(F l

j − μl
k)

T Σl−1

j (F l
j − μl

k)

]}

.

(5.26)

In this way, we finish the E-step.

Then we find the coordinations of the max value of every row in . ̂ξ
l
. For instance,

if . ̂ξ l
jk is the maximum one in j -th row, the j -th filter will be categorized into the

k-th distribution cluster, as well as the corresponding BN parameter. Thus, we finish
the clustering process by the E-step. Now the filters with similar distributions have
been sorted out; we can define the forward and update the rule of filters. Take the
k-th cluster, including the j -th filter at l-th layer, for example. We define the forward
function as:

.xl∗
k = 1

|Dl
k|

Σ

F l
j ∈Dl

k

ΣCl−1

i=1 xl−1∗
i ∗ F l

i,j − πl
j

τ l
j

+ βl
j . (5.27)

5.4 Network Pruning 151

Equation 5.27 represents the procedure in that we average the output of parameters
in the same cluster. . xl∗

k represents the averaged output feature map of k-th cluster.
Due to the distribution of filters in the same cluster being similar and the linearity
of convolution, the outputs should also be similar. Consequently, the average
conduction will not dramatically influence the network accuracy. In this way, we
have formulated the forward propagation of the network successfully.

Maximization step We formulate the optimization problem as:

.Ol,e+1 = arg max
Ol
Q(Ol ,Ol,e) (5.28)

As mentioned above, . Ol
k represents .(μl

k,Σ
l
k), and we can compute .μl

k,Σ
l
k and . αl

k

by enforcing their corresponding partial derivatives toward . Q to 0. Then we have:

.μ̂
l,e+1
k =

ΣCl

j=1 ξ̂
l,e
jk F

l,e
j

ΣCl

j=1 ξ̂
l,e
jk

. (5.29)

Σ̂
l,e+1
k =

ΣCl
j=1 ξ̂

l,e
jk (F l,e

j − μ l,e
k)T (F l,e

j − μ l,e
k)

ΣCl
j=1 ξ̂

l,e
jk

. (5.30)

α̂ l,e
k =

ΣCl
j=1 ξ̂

l,e
jk

Cl
(5.31)

To supervise filters in the same cluster to converge to the same distribution, the
loss function of i-th layer during e-th epoch can be formulated as:

.Ll,e
Dμ

=
Kl
Σ

k=1

α̂
l,e
k

|Dl
k|

Σ

F l
j ∈Dl

k

||F l
j − μ̂

l,e
k ||22, (5.32)

.Ll,e
DΣ

=
Kl
Σ

k=1

α̂
l,e
k

|Dl
k|

Σ

F l
j ∈Dl

k

||(F l
j − μ̂

l,e
k)T (F l

j − μ̂
l,e
k) − Σ̂

l,e
k ||22. (5.33)

In Eqs. 5.32 and 5.33, we formulate the supervision to constrain the constraint of
filters. We denote .Ll,e

D as . Ll
D for simplification. Likewise, the . LD of BN parameters

can be solved according to single-dimensional GMM. Hence, we can formulate . LD

as:

.LD =
LΣ

l=1

Ll
Dμ

+Ll
DΣ

, (5.34)

152 5 Network Pruning

where L denotes the number of total layers of the network. The total loss supervising
the parameters is formulated as:

.L = LS + λLD. (5.35)

In Eq. 5.35, the loss . L consists of . LS and . LD , i.e., cross-entropy and the distribution
loss defined above.

5.4.2.3 Optimization and Analysis

We use the stochastic gradient descent (SGD) to optimize the . F l
j . Since we average

some parameter output, the gradient derived from . LS should satisfy the chain rule.
In contrast, the .LD comprises the parameters themselves, and the gradient can be
computed straightforwardly. Hence, we formulate the optimization of the filter in
k-th cluster as:

.F
l,t+1
j ← F

l,t
j − ηAF

l,t
j , (5.36)

where . η is the learning rate. Then the gradient .AF
l,t
j can be solved as:

. AF
l,t
j = ∂L

∂F l
j

=∂LS

∂F l
j

+ λ
∂LD

∂F l
j

=
Kl
Σ

k=1

ˆξ l
jk

|Dl
k|

· ∂LS

∂xl∗
k

· ∂xl
j

∂F l
j

+ λ

(
∂Ll

Dμ

∂F l
j

+ δ · λ
∂Ll

Dσ

∂F l
j

)

. (5.37)

Based on Eq. 5.37, all the gradients become solvable. And the optimization of . F l
j

becomes easy. Likewise, the parameter of BN can be solved similarly. Then the
general train algorithm is shown in Algorithm 1.

5.4.2.4 Filter Modification

After training, the well-trained . W is outputted. The filters of k-th cluster follow the
same distribution, so we can leave the first one and trim others. Then we use . F l

k to
denote the left one. So the l-th layer parameter set after filter pruning is:

. F l =
{
F l

k ∈ Dl
k|1 ≤ k ≤ Kl

}

(5.38)

5.4 Network Pruning 153

Algorithm 9: Algorithm of FEM-BP

Input: Training data x0 = {
x0
1 , · · · , x0

m

}
and the corresponding ground truth labels,

hyperparameter λ, learning rate η, and filter pruning ratio E.
Output: The trained parameterW.
Initialize W=Wbaseline and e = 1. Warm up the EM algorithm for rounds and get a set
of

{
μ0,Σ0, α0

}

for e ≤ MaxEpoch do
if Le−1

D /= 0 then
Compute and select the maximum expectation clusters from Eqs. 5.22 to 5.26.
Compute the GMM distribution center via Eqs. 5.27 to 5.31.

end if
for t ≤ MaxIter do

Forward the training data x0 = {
x0
1 , · · · , x0

m

}
via through the network.

Calculate the network loss from Eqs. 5.32 to 5.35.
Update W from Eqs. 5.36 to 5.37.

end for
end forObtain the sparse and compact W∗ from W
return: W∗

As the output dimension of the l-th layer drops to .Kl =< Cl × (1 − E) > after
pruning, the input dimension .(l + 1)-th layer changes correspondingly. In the same
way, the input dimension of l-th layer changes to .Kl−1. Hence, we sum the kernels
corresponding to the same input to make the dimension identical, as illustrated
in Fig. 5.5c. Then k-th filter in l-th layer changes to .F l∗

k ∈ R
kl×wl×Kl−1

, and BN
parameters obey the existence of their filters.

5.4.2.5 Experiments

Models and datasets We evaluated our SPEM method by conducting compre-
hensive experiments using eight convolutional neural networks on two datasets,
i.e., ResNet-20/ResNet-32/ResNet-56 and VGGNet on CIFAR-10 [34] and ResNet-
18/ResNet-34/ResNet-50 [19] VGGNet on ImageNet ILSVRC2012 [35]. CIFAR-
10 is a dataset consisting of 50,000 training images and 10,000 test images with
a size of .32 × 32 from 10 classes. And ImageNet ILSVRC2012 is the large-scale
dataset with 1.28M training images and 50,000 validation images with a size of
.224 × 224 from 1000 classes.

Implementations We implement the ResNets for experiments conducted on
CIFAR-10 and according to [19] for experiments conducted on ImageNet
ILSVRC2012. We implemented our training process on 1 NVIDIA 2080TI GPU
with 11GB and 128G RAM for experiments conducted on CIFAR-10. And for
experiments conducted on ImageNet ILSVRC2012, we implemented our training
process on 3 NVIDIA TITANV GPUs with 12GB and 96GB RAM. The weight
decay is set as 1 × 10−4, and momentum is 0.9. The hyperparameter λ is set as
1× 10−4 and 5× 10−6 for experiments on CIFAR-10 and ImageNet ILSVRC2012,

154 5 Network Pruning

respectively. P.S., we use SPEM-E to present the setting of the pruning rate in
experiments.

We evaluate SPEM’s performance on CIFAR-10 using ResNet-20/ResNet-
32/ResNet-56 and VGGNet. The initial learning rate η is set to 0.1, and the learning
strategy is to scale the η by a factor of 0.1 at the 100-th and 150-th epoch. The
total number of epochs is 200. And batch size is 128. Table 5.9 shows the accuracy
of the base and pruned model and their absolute disparity. FLOPs of the pruned
model and the pruning rate of FLOPs are also shown. We only display the results
with filter pruning rate set as 30% and 40% in Table 5.9, which can achieve about
1 − (1 − 30%)2 = 51% and 1 − (1 − 40%)2 = 64% FLOPs pruning rate. Prior
works mostly prune the FLOPs at a ratio from 30% to 65%. So we show these two
kinds of results for fair comparison. More results with a filter pruning rate set from
10% to 90% will be displayed in efficiency analysis.

ResNets As shown in Table 5.9, we present the experimental results with hyperpa-
rameter E set as 30% and 40%. Hence, the corresponding architecture after pruning
is 11-22-45 and 10-19-38, respectively. Our SPEM achieved the state-of-the-art
trade-off between acceleration and accuracy. For example, FPEM-40% achieves
an 11.8% higher pruning rate on ResNet-20 compared to FPGM with fine-tuning,
with only 0.08% Top-1 accuracy lower. Likewise, FPEM-30% achieves only a 1.5%
lower pruning rate on ResNet-20 compared to FPGM while having 0.36% Top-1
accuracy higher. To conclude, SPEM achieves a better trade-off between accuracy
and acceleration than FPGM. Similarly, SPEM far outperforms MIL and SFP.

On ResNet-32, situations are similar to the ones on ResNet-20. Compared to
FPGM, SPEM-30% can achieve a comparable pruning rate with 0.19% accuracy
higher. And SPEM-40% achieves 1.05% and 1.71% accuracy higher than MIL/SFP
with muck higher pruning rate. In conclusion, SPEM advances the state of the art
on pruning ResNet-32.

On ResNet-56, we observe three phenomena: (1) FPEM-30% outperforms all
the listed work with the lower pruning rate on Top-1 accuracy. (2) FPEM-40%
outperforms C-SGD with a higher accuracy by 0.13% and higher pruning rate by
13.3%. (3) FPEM achieves a higher Top-1 accuracy than the baseline as well as
accelerating the base ResNet-56 by a factor of 2.11× and 2.83×, which indicates
that SPEM can achieve an architecture with fewer redundancy as well as higher
capability to extracting features.

VGGNet We further validate our SPEM on the single-branch network such as
VGGNet. Results are listed at the bottom of Table 5.9. As our work can prune
without fine-tuning for the particular pruning method based on consistency, we
selected the fine-tuned results of prior works for a fair comparison. Compared
to PFEC, GAL, and FPGM, SPEM-30% can achieve a higher pruning rate with
the Top-1 accuracy 1.01%, 0.99%, and 0.41% higher. Moreover, SPEM-40% can
achieve 63.9% pruning rate, i.e., 2.77× acceleration, with only 0.05% accuracy
drop, which is the best pruning result.

5.4 Network Pruning 155

Table 5.9 Results on CIFAR-10. The “Acc. ↓” is the accuracy drop between the pruned model and
the baseline model; the smaller, the better. And the “FLOPs ↓” is the rate describing how much the
pruned FLOPs count in the baseline model; the higher, the better

Model Method Base Top-1% Pruned Top-1% Top-1 Acc. ↓ % FLOPs FLOPs ↓ %

ResNet-20 MIL [9] – 91.68 – 2.60E7 20.3

ResNet-20 SFP [21] 92.20 90.83 1.37 2.43E7 42.2

ResNet-20 FPGM [22] 92.20 91.99 0.21 1.87E7 54.0

ResNet-20 SPEM-30% 92.17 92.35 −0.18 1.92E7 52.5
ResNet-20 SPEM-40% 92.17 91.91 0.26 1.38E7 65.8
ResNet-32 MIL [9] 92.33 90.74 1.59 4.70E7 31.2

ResNet-32 SFP [21] 92.63 92.08 0.55 4.03E7 41.5

ResNet-32 FPGM [22] 92.63 92.82 −0.19 3.23E7 53.2

ResNet-32 SPEM-30% 92.63 93.03 −0.43 3.26E7 52.6
ResNet-32 SPEM-40% 92.63 92.79 −0.13 2.35E7 65.9
ResNet-56 PFEC [40] 93.04 93.06 −0.02 9.09E7 27.6

ResNet-56 CP [23] 92.80 91.80 1.00 – 50.0

ResNet-56 SFP [21] 93.59 92.26 1.33 5.94E7 52.6

ResNet-56 FPGM [22] 93.59 93.49 0.10 5.94E7 52.6

ResNet-56 C-SGD [8] 93.39 93.44 −0.05 4.91E7 60.9

ResNet-56 SPEM-30% 93.26 93.76 −0.50 5.94E7 52.7
ResNet-56 SPEM-40% 93.26 93.57 −0.31 4.28E7 65.9
VGGNet PFEC [40] 93.58 93.40 0.56 2.16E8 34.3

VGGNet GAL [43] 93.96 93.42 0.54 1.80E8 45.2

VGGNet FPGM [22] 93.58 94.00 −0.42 – 34.2

VGGNet SPEM-30% 93.96 94.41 −0.45 1.54E8 50.9
VGGNet SPEM-40% 93.96 93.91 0.05 1.13E8 63.9

SPEM is further evaluated on ImageNet ILSVRC2012 with ResNet-18/ResNet-
34/ResNet-50 and VGGNet. We train the pruning network for 100 epochs with an
initial learning rate η set as 0.1 and scaled by a factor of 0.1 at the 40-th, 60-th,
and 80-th epoch. We implement the process on three GPUs with a mini-batch size
of 128 for ResNet-18/ResNet-34 and VGGNet and 64 for ResNet-50, respectively.
We plan to prune about 40%–60% FLOPs for models implemented on ImageNet
ILSVRC2012. Hence, we will set E as 30% and 40$ for comparison.

ResNets As shown in Table 5.10, SPEM outperforms the prior works on ILSVRC-
2012 dataset again. On ResNet-18, SPEM achieves the higher inference speedup,
but its Top-1 accuracy exceeds by 1.99% and 1.22%, respectively. Compared to
FPGM, SPEM-40% achieves higher accuracy by 21.1% with only an accuracy lower
by 0.09%.

156 5 Network Pruning

Ta
bl
e
5.
10

R
es
ul
t o

n
Im

ag
eN

et
 I
L
SV

R
C
20
12

M
od
el

M
et
ho
d

B
as
e

To
p-
1%

Pr
un
ed

To
p-
1%

To

p-
1

A
cc
.↓

%

B
as
e

To
p-
5%

Pr
un
ed

To
p-
5%

To

p-
5

A
cc
.↓

%

FL
O
Ps

↓ %

R
es
N
et
-1
8

M
IL
 [
9]

69
.9
8

66
.3
3

3.
65

89
.2
4

86
.9
4

2.
30

34
.6

R
es
N
et
-1
8

SF
P
[2
1]

70
.2
8

67
.1
0

3.
18

89
.6
3

87
.7
8

1.
85

41
.8

R
es
N
et
-1
8

FP
G
M
 [
22
]

70
.2
8

68
.4
1

1.
87

89
.6
3

88
.4
8

1.
15

41
.8

R
es
N
et
-1
8

SP
E
M
-4
0%

69
.7
0

68
.3
2

1.
58

89
.3
9

88
.1
6

1.
22

62
.9

R
es
N
et
-3
4

SF
P[
21

]
73
.9
2

71
.8
3

2.
09

91
.6
2

90
.3
3

1.
29

41
.1

R
es
N
et
-3
4

FP
G
M
[2
2]

73
.9
2

72
.6
3

1.
29

91
.6
2

91
.0
8

0.
54

41
.1

R
es
N
et
-3
4

SP
E
M
-4
0%

73
.9
2

91
.6
2

R
es
N
et
-5
0

T
hi
N
et
[4
6]

72
.8
8

72
.0
4

0.
84

91
.1
4

90
.6
7

0.
47

36
.8

R
es
N
et
-5
0

G
D
P[
42

]
75
.1
3

71
.8
9

1.
39

92
.3
0

90
.7
1

1.
59

51
.3

R
es
N
et
-5
0

SF
P[
21

]
76
.1
5

74
.6
1

1.
54

92
.8
7

92
.0
6

0.
81

41
.8

R
es
N
et
-5
0

FP
G
M
[2
2]

76
.1
5

74
.8
3

1.
32

92
.8
7

92
.3
2

0.
55

53
.5

R
es
N
et
-5
0

C
-S
G
D
[8
]

75
.3
3

74
.9
3

0.
40

92
.5
6

90
.2
7

0.
29

46
.2

R
es
N
et
-5
0

M
et
aP
ru
ni
ng
[8
]

76
.6
0

75
.4
0

1.
20

-
-

-
51
.2

R
es
N
et
-5
0

SP
E
M
-3
0%

75
.2
2

74
.9
6

0.
26

92
.4
1

91
.9
8

0.
43

50
.2

V
G
G
N
et

SF
P[
21

]
73
.9
2

71
.8
3

2.
09

91
.6
2

90
.3
3

1.
29

41
.1

V
G
G
N
et

FP
G
M
[2
2]

73
.9
2

72
.6
3

1.
29

91
.6
2

91
.0
8

0.
54

41
.1

V
G
G
N
et

SP
E
M
-4
0%

73
.9
2

91
.6
2

5.4 Network Pruning 157

5.4.2.6 Efficiency Analysis

Model Sparsity with Pruning Rate Inspired by the linearity of convolution, the
amount of feature information extracted by convolutions relies much on the sparsity
of filters. Hence, we define the sparsity of the filter . F l

j as .||F l
j − F l

GM||2, where
.F l

GM is the geometric median of filters at l-th layer as defined in [22]. We plot the
layer-wise sparsity of ResNet-20, ResNet-32, ResNet-56, and VGGNet in Fig. 5.6.
For example, we can observe that the sparsity of pruned ResNet-32 with a pruning
rate set from .10% to .40% can achieve comparable or higher layer-wise sparsity than
baseline ResNet-32, which can subtly clarify the reason why the pruned ResNet-32
via SPEM can achieve even higher accuracy as well as satisfying acceleration rate
compared to the baseline. In addition, we analyze the source of sparsity. It is derived
from the strong constraint set in Eq. 5.27. For the outputs of filters in one cluster to
be averaged, one cluster can only extract the same amount of features as just one
filter. Then the gradient derived from cross-entropy forces the cluster to optimize
for a sparser distribution. Hence, our main motivation can be proved theoretically
and experimentally.

Another phenomenon that should be paid attention to is that the deeper network
gains lower sparsity. Hence, the deeper network can accept the higher pruning
rate while maintaining accuracy. For instance, pruning .40% filters on ResNet-
20 and ResNet-32 will achieve .0.26% and .−0.13% accuracy drop. This subtly
demonstrates our viewpoint. Moreover, based on this viewpoint, we can further
consider pruning the blocks and filtering for deep redundant networks such as
ResNets and MoblieNets.

Joint Pruning Cooperated with Block Pruning Inspired by the GAL [43] and
the model sparsity analysis, we conduct some additional experiments on pruning
cooperated with block pruning set as [43] to analyze the efficiency on ResNet-56.
As illustrated in Table 5.11, SPEM can work jointly with the block pruning methods.
In particular, training via SPEM can effectively substitute the fine-tuning process.
SPEM+GAL can achieve 3.75× and 4.69× theoretical acceleration rates.

5.4.3 Pruning Multi-view Stereo Net for Efficient 3D
Reconstruction

Recent improvements in compatibility enable a fast 3D reconstruction with better
accuracy and completeness, which have a wide range of applications, ranging from
mapping, photogrammetry, autonomous driving, and robot planning to augmented
reality and virtual reality, among many other scenarios [31, 48, 69]. To model a
3D space, depth information has to be inferred when reconstructing 3D scenarios.
The most common approaches for depth inference are based on cameras with depth
sensors such as Kinect, which restricts the accessibility for the outdoor environment.

158 5 Network Pruning

(a) (b)

(c) (d)

Fig. 5.6 Layer-wise sparsity analysis on various models and accuracy analysis. (a) Sparsity
analysis on ResNet-20. (b) Sparsity analysis on ResNet-32. (c) Sparsity analysis on ResNet-56.
(d) Accuracy of pruned model

Table 5.11 Comparison on GAL, SPEM, and SPEM+GAL. Accele. Denotes the theoretical
acceleration rate

Method Base Top-1% Pruned Top-1% Top-1 Acc. ↓ % FLOPs FLOPs ↓ % Accele.

SPEM-30% 93.26 93.76 −0.50 5.94E7 52.7 2.09×
GAL-0.6 [43] 93.26 93.38 −0.12 8.21E7 37.6 1.60×
SPEM-
30%+GAL-
0.6
[43]

93.26 93.26 0.00 3.35E7 73.3 3.75×

SPEM-40% 93.26 93.57 −0.31 4.28E7 65.9 2.93×
SPEM-
40%+GAL-
0.6
[43]

93.26 93.07 0.19 2.80E7 78.7 4.69×

5.4 Network Pruning 159

Also, such methods usually exert other forms of influence on the surface, which
may cause other problems. In such a scenario, reconstructing from visible images is
a practical choice. The stereo reconstruction problem was initially solved based on
two visible images, while real-time multi-view processing could be more practical
due to high computational cost [31, 48].

We are particularly interested in multi-view stereo (MVS). It is a more popular
option in applications since more than two views improve accuracy and complete-
ness, especially in occlusion cases. In terms of application scenarios, if multiple
views are from a single moving camera and the camera captures an object from
different views, a slightly different scene, or a moving object over time, then the
sequence of multi-view stereo settings can be used to solve the problems of 3D
reconstruction [12], structure from motion [61, 65, 66], visual SLAM [38] and visual
odometry [25], and so on.

5.4.3.1 Channel Pruning for 2D CNNs

To speed up the reconstruction, we introduce PruMVS [67], which adds a soft mask
to the 2D CNNs for feature extraction to prune the redundant channels and train a
dense encoder-decoder structure to help prune the 3D CNNs. We first focus on filter
pruning (a.k.a., channel pruning) and aim to zero out some unnecessary filters by
learning a soft mask. More specifically, we warp masks on each channel on the 2D
part to mark the importance of the according to filter (Fig. 5.7b). The approach has
several advantages. Firstly, such a technique could significantly reduce the model’s
size by exploiting the redundancy among filters since it has been observed that some
filters are unimportant in a common CNN structure [43, 63]. Secondly, without
customizing other structures in the network, pruning filters can handle many other
similar MVS learning models with similar architectures. Lastly, we can produce
desired redundancy by adding regularization terms on loss according to the mask
and training the network. The value of the related mask could indicate the less
important information. By eliminating the channel of the 2D network, the data fed
into the 3D part would be significantly reduced.

5.4.3.2 Optimization Based on a Mixed Back Propagation

The soft mask removes the corresponding channels and filters for 2D CNNs. We
define the weights in 2D CNNs as . W, the soft mask as . m, and . λ as the parameter
controlling L1 regularization term and denote the loss function as .L(W,m), which
will be detailed in the next section. The model parameters . W, . m are learned by
solving:

. argmin
W,m

L(W,m) + λ||m||1. (5.39)

160 5 Network Pruning

Fig. 5.7 PruMVS overview. (a) is a general description of our network, (b) corresponds to the
mask, and (c) corresponds to refinement in (a). Detailed description: (a) The architecture of
PruMVS. Reference and source images go through an eight-layer 2D CNN with a mask attached to
the last layer to generate feature maps and sort out the redundant filters. Differentiable homography
is used to warp the 2D images to 3D volumes and operate a variance-based algorithm to aggregate
all the volumes into a single cost volume. The output depth map is generated from a 3D CNN
similar to U-Net. (b) The illustration of channel pruning. The yellow channel in the figure denotes
the redundant filter, of which the corresponding mask would be trained to zero. (c) Depth map
refinement

Our pruning approach is simple yet principled [1, 2], and we just use . m as a soft
mask added on each filter as:

.F l+1
h = mgf (

Σ

g

F l
g ∗Wl

h,g), (5.40)

where . F l
g and .F l+1

h are the .h-th input feature map and the .g-th output feature
map at the .l-th layer. . ∗ and .f (·) refer to the convolutional operator and activation,
respectively. The mask . m can be learned end-to-end in the mixed backpropagation
process, which will be detailed later. In particular, the fast iterative shrinkage-
thresholding algorithm (FISTA) [3, 43] is used to optimize . m, which leads to a
sparse solution of the soft mask and is built based on the L1-norm minimization.

Stochastic gradient descent (SGD) or RMSprop can be directly introduced to
solve the optimization problem in Eq. 5.39. However, they are less efficient in
convergence, and by using RMSprop, we have observed non-convergence scaling
factors in the soft mask . m. Also, most factors are of the same order of magnitude,
i.e., which does not create enough sparsity in the soft mask layer. Therefore, we need
a threshold to remove the corresponding structures whose scaling factors are lower
than the threshold. By doing so, the accuracy of the pruned network is significantly
lower than the baseline. To solve this problem, we use the proximal operator,

5.4 Network Pruning 161

a.k.a., the proximal gradient optimization, where the SGD and the constraint are
updated separately [1, 2]. We introduce FISTA into the model to effectively solve
the optimization via two alternating steps updating . W and . m.

1. Fixing . m, we use RMSprop to update . W by descending its gradient.
2. Fixing . W, then . m is updated by FISTA with the initialization of .α(1) = 1:

.n(k+1) = m(k) + α(k) − 1

α(k+1)

(
m(k) − m(k−1)

)
, (5.41)

.α(k+1) = 1

2

(

1 +
/
1 + 4α2

(k)

)

, (5.42)

.m(k+1) = proxγ(k+1)λ||·||1

(

n(k+1) − γ(k+1)
∂L(·,n(k+1))

∂n(k+1)

)

, (5.43)

where .γ(k+1) is the learning rate at the iteration .k + 1 and . proxγ(k+1)λ||·||1(xi) =
sign(xi) ◦ (|xi | − γ(k+1)λ)+. We can learn desirable zero and sparsity in soft mask
. m with an appropriate learning rate (Fig. 5.8).

5.4.3.3 3D CNN Pruning

As mentioned in our motivation, 3D CNNs are vital to an MVS system. For
a UNet-like architecture, simply pruning channels based on existing pruning
techniques are impractical for 3D CNN architecture, considering skip connections,
and deconvolutions prevent us from using the most regular pruning strategies.

We have made several attempts to prune the 3D CNNs by adding soft masks,
a frequently used method, yet the result could have been better. The many soft
masks trained are of the same magnitude and don’t show a specific pattern, i.e.,
zeroing out a specific channel. When a threshold filters out channels, the resulting
reconstruction quality slumps significantly. This is likely caused by the fact that
(1) the 3D channels in the 3D CNNs relate to each other closely and (2) the 3D
CNNs are of the UNet-like architecture, which contains many skip connections
and deconvolutions. The feature maps from the decoder are combined with those
from the encoder sub-network via skip connections. Therefore, removing a specific
feature map may lead to the information being lost in both the decoder and encoder.

To address it, we propose a novel pruning technique by training a hierarchical
architecture and simply adopting its more minor part in our proposed PruMVS
model. As shown in the network architecture (see Fig. 5.9), we add nested and dense
skip connections, which is similar to U-Net++ [76], a deeply supervised encoder-
decoder network where the encoder and decoder sub-networks are connected
through a series of nested, dense skip pathways. When trained in deep supervision,
the convolutional layers we add to the skip pathway can be pruned; thus, only level
0 is left. By adding convolutional blocks in the skipping connections and training

162 5 Network Pruning

Fig. 5.8 Illustration of different levels in the 3D nested U-Net. The first level consists of two
convolutional operations, while the other levels are shown in the picture above. Every level has an
output, and we pick everyone to evaluate the final result, which helps pruning

the extensive network altogether, the model integrates features of different levels,
and at last, we prune all the upper levels out, which helps prevent the interference
of the connections between levels.

Every level could be regarded as a smaller version of the higher level and could
generate its result. The re-designed skip pathways aim at reducing the semantic
gap between the feature maps of the encoder and decoder sub-networks. The
underlying hypothesis behind our architecture is that the model can more effectively
capture fine-grained details of the foreground objects when high-resolution feature
maps from the encoder network are gradually enriched before fusion with the
corresponding semantically rich feature maps from the decoder network. Moreover,
the network would have a more accessible learning task when the feature maps from
the decoder and encoder networks are semantically similar. Higher-level results
could help lower-level weights to train better through back propagation, i.e., to
improve gradient flow through the skip connections. To help training converge more
efficiently and prevent the deep model from gradients vanishing or exploding, we

5.4 Network Pruning 163

Fig. 5.9 A hierarchal architecture for 3D regularization. The 3D network shapes like a nested U-
Net and has four levels. It consists of an encoder and decoder whose sub-network is connected by
skip pathways represented by arrows

also adopt the deep supervision idea [37] by adding loss from different levels’
results.

Now, we formulate the volume as follows:

.V ij =

⎧
⎪⎨

⎪⎩

C2(V
i−1,j), j = 0

C1(V
i,0), j = 1

Σj−1
0 C1(V

i,k) + D(V i+1,j−1), j > 1
(5.44)

.V ij denotes the volume at the location .(i, j) where i indexes the de-convolutional
layer along the encoder; j denotes the sequential volume at the same ith level. . C2(·)
is a two-stride convolutional operation with a batch normalization to downsample
the input, and .C1(·) is a one-stride convolutional layer. .D(·) denotes an up-
sampling layer through a two-stride de-convolutional operation. Figure 5.9 shows
the overview of the proposed architecture. To be more specific, volumes at level
.j = 0 only receive an input from the previous downsampling convolutional layer,
and volumes at level .j = 1 receive an input from a common convolutional layer.
Volumes at level .j > 1 receive two inputs from the neighboring two volumes from
the .j − 1 level, generating one from the convolutional layer and the other from the
up-sampling de-convolutional operation. We obtain the output of .j −1 level volume
by adding these two inputs.

164 5 Network Pruning

Our new investigation shows that training a hierarchical architecture improves
the performance of a low-level network compared to simply training a low-level
network. As a result, a lower-level network can obtain performance close to the
whole net with a smaller model size. The completeness of the proposed network is
better than other networks, mainly because the redundant parameters are pruned out,
and only the nonredundant parameters remain. Due to the reduction of parameters,
the model is not only more efficient but also more generalizable. The result is shown
in the Experiments section.

5.4.3.4 Loss Function

Following MVSNet [69], we let .pvalid denote the set that contains valid ground
truth pixels, .d(p) denote the ground truth depth value of pixel p, .di(p) denote the
initial depth estimation, and .dr(p) denote the refined depth estimation, and then we
define the loss function as:

.Loss =
Σ

p∈pvalid

||d(p) − d̂i (p)||
' '' '

Loss0

+σ · ||d(p) − d̂r (p)||
' '' '

Loss1

(5.45)

Here Loss0 came from the distance between the initial depth estimation and
the ground truth depth, and Loss1 came from the distance between refined depth
estimation and the ground truth depth. . σ leverages the two losses in the loss
function. The total loss function will be modified in the following due to pruning.

Taking advantage of the nested skip connections, all the semantic level creates
feature maps of the same size. As we enabled deep supervision in the new
architecture, results from different levels will all be considered in the loss function.
Thus, we obtain a new loss function as follows:

.L =
3Σ

l=0

Σ

p∈pvalid

||d(p) − d̂
j
i (p)||l

' '' '
Loss0

+σ · ||d(p) − d̂
j
r (p)||l' '' '

Loss1

(5.46)

The parameter . σ is set to . 1.0 in the experiment. l denotes the level of the network.
The model can infer two modes through deep supervision: improved performance
by taking the average of different level outputs and a pruned mode by adopting the
single network level.

5.4.3.5 Implementation of 2D/3D MVS Net

Feature extraction The input . Ii includes selected source images and a reference
image. An eight-layer 2D CNN is applied, where the strides of layers 3 and 6 are
set to 2 to divide the feature pyramids into three scales. Two convolutional layers

5.4 Network Pruning 165

are applied to extract the higher-level image representation within each scale. Each
convolutional layer is followed by a rectified linear unit (ReLU) except for the last
layer. Also, similar to common matching tasks, parameters are shared among all
feature pyramids for efficiency. The outputs of the 2D CNNs are N 32-channel
feature maps downsized by four in each dimension compared with input images.
Compared with simply performing dense matching on original images, the extracted
feature maps significantly boost the reconstruction quality.

Finally, we will obtain N feature maps according to N different views, each
of which is the size of .H4 × W

4 × C, where H and W is the height and width
of the input image and C indicates the number of channels. It is noteworthy
that though the image frame is downsized after feature extraction, the original
neighboring information of each remaining pixel has already been encoded into
the 32-channel pixel descriptor, which prevents dense matching from losing helpful
context information.

2D to 3D Next, a 3D volume is built from the extracted feature maps and input
cameras. While previous works [32] divide the space using regular grids, for our task
of depth map inference, we construct the cost volume upon the reference viewing
frustum. All feature maps are warped into different frontal-parallel planes of the
reference camera to form N feature volumes {Vi}N

i=1.
In the 3D vision, a homography matrix H is used to relate a plane from one

camera view into another and is subject to the rotation and translation of both views.
As captured by a perspective transformation, 3D points are mapped onto image
planes using the transformation matrix as x(i) = K[R|T]X, where K represents the
camera intrinsic, R is the rotation matrix, and T denotes the translation. Formally,
let {Ki ,Ri ,Ti} be the camera parameters of image ith and ni be the principal axis of
the reference camera, and the homography for the ith feature map and the reference
feature map at depth d could be expressed as a 3 × 3 matrix Hi (d) [69]:

.Hi (d) = Ki · Ri · (I − (t1 − ti) · nT
1

d
) · RT

1 · KT
1 (5.47)

Without loss of generality, the homography for reference feature map F1 itself is
a 3 × 3 identity matrix. The warping process is similar to that of the classical plane
sweeping stereo [7], except that the differentiable bilinear interpolation is used to
sample pixels from feature maps{Fi}N

i=1 rather than images {Ii}N
i=1. As the core step

to bridge the 2D feature extraction and the 3D regularized networks, the warping
operation is implemented differently, enabling end-to-end training.

Cost volume As we obtain the feature volumes Vi(d) of multiple angles, including
reference image and source images numbered i, the next step is to fuse the multiple
features into one cost volume in the 3D space, representing the extent of which each
point in the 3D space matches among different angles. Note that the size of each
feature volume is W

4 × H
4 × D × C, where H, W, D, C are the input image height,

width, depth sample number, and the channel number of the feature map. The cost
volume should be of the same size to represent every point in the 3D space. We

166 5 Network Pruning

then adapt variance among all feature volumes and define the cost volume as such
variance, i.e.:

.C = Var(V) =
ΣN

i=1(Vi − V)2

N
(5.48)

where N means the number of feature volumes, the same as the number of input
images. As the squared deviation of a random variable from its mean, the variance
measures the extent to which the value deviated from their mean, i.e., a point
holding a relatively low variance shows that its value matches from various angles,
explaining that the point in the 3D space is more probable to exist as a frontier in the
real world since it also shows that various viewing rays should intersect at that point.
On the other hand, a point having a high variance indicates that it is less probable to
represent a point in the real-world 3D space.

Regularization As shown in some other research, particularly researches involving
learning approaches [27, 32, 33], the raw cost volume generated by directly
matching between different angles could be noisy and thus need refinement. Such
a step is also known as cost volume regularization. It should consider smoothness
constraints and depth information to refine the cost-volume point representation.

As described above, the cost volume C represents the matching extent of each
3D point. Therefore, the regularization step takes in cost volume C, which contains
complete information of the agreement on each point from various angles, refines
it, and outputs the probability volume P, which indicates the probability distribution
for the depth inference, i.e., the probability of each point as the boundary of the 3D
object in the real world.

Notably, such a process is usually accomplished by a 3D CNN regularization
network, which we replaced with the multi-scale 3D CNNs in our proposed
architecture, as shown in Fig. 5.7a.

Refinement While the depth map retrieved from the probability volume is a
qualified output, the reconstruction boundaries may suffer from over-smoothing due
to the large receptive field involved in the regularization, similar to the problems
in semantic segmentation and image matting. Since the reference image contains
boundary cues, the initial depth map is refined using the reference image as a
supplement whose boundary information is complete, as shown in Fig. 5.7c.

The initial depth map and the resized reference image are concatenated as a 4-
channel input. This is then passed through three 32-channel 2D convolutional layers
and one 1-channel convolutional layer to learn the depth residual. The initial depth
map is then added back to generate the refined depth map. Also, to prevent bias at
a particular depth scale, we pre-scale the initial depth magnitude to the range [0, 1]
and convert it back after the refinement. The last layer does not contain the BN layer
and the ReLU unit to learn the negative residual.

Filtering and depth map fusion The original depth maps are inaccurate, and those
outliers must be filtered out. Photometric and geometric consistency are the criteria

5.4 Network Pruning 167

we propose to filter out the outliers. Photometric consistency measures the matching
quality, while geometric consistency measures the consistency of the maps among
various views, and the pixels should be visible in at least three viewpoints. As
is shown in the network, cost volume will go through a softmax layer to get a
probability volume, and we filter out the pixel whose probability is lower than a
threshold of 0.8.

Referring to many other MVS approaches, we choose to operate a fusion step to
aggregate every depth map, which use different reference images in various views
to decrease the error of the reconstructed model. We use the fusion algorithm of
Gipuma [11] in our model, which differs from [69], and obtain different results in
our comparison.

The mismatches mainly occur in untextured and shaded areas outside the
camera’s viewing frustum. Many of these cases can be found because depth maps
estimated from different viewpoints differ. To detect those mismatches, we again
declare that each image, in turn, the reference view, converts its depth map into a
dense set of 3D points and re-projects them onto each of the N − 1 other views,
producing a 2D coordinate pi and a parallax d̂i for each view. If d̂i is equal to the
relating di , which is kept in the depth map, the match is considered to be correct with
a threshold fε which is based on the scale of the reconstructed figure. The depth is
accepted if consistent in more than fε . The parameters that filter out some pixels are
unreliable and must be set under a trade-off between accuracy and completeness.
Different applications require different settings. In our work, we apply the same
setting on every model to estimate their performance impartially.

5.4.3.6 Performance Comparison

To show how our proposed PruMVS balance the reconstruction performance and the
model size pretty well, we examine our approach on the evaluation set consisting of
22 scenes and compare it with the other state-of-the-art methods, including not only
the baseline MVSNet [69] but also Gipuma [11], Camp [6], Tola [60], SurfaceNet
[32], and Furu [10] which is called PMVS in [69].

To ensure the methods are all evaluated similarly, we utilized the same depth
fusion algorithm with the same settings on our network. For other models that
reconstruct from grids and point clouds with only steps similar to depth fusion and
filtering, we experiment on the best settings they proposed with their techniques,
which is fair to them. Notably, due to the variety of 3D reconstruction approaches
(point cloud, depth map, grids, voxels), such post-processing and refinement steps
(fusion and filtering) may vary significantly. But we have controlled varying factors
as much as possible in the evaluation.

Table 5.12 compares the quantitative evaluations: PruMVS maintains good
accuracy and completeness, which is comparable to the best ones. Even the smallest
model outperforms most other approaches, and the 32-channel level 0 model
obtained the best completeness. It is noticeable that the objective of our model is
to accelerate the reconstruction, which is very useful for practical applications.

168 5 Network Pruning

Table 5.12 Comparison with
other methods

Methods Error Comp.(err) Overall(err)

Furu (PMVS) 0.613 0.941 0.777

Gipuma 0.283 0.873 0.578

Camp 0.834 0.554 0.694

Tola 0.342 1.190 0.766

Colmap 0.400 0.664 0.532

SurfaceNet 0.454 1.354 0.904

MVSNet 0.569 0.609 0.589

PruMVS level 0 0.495 0.433 0.464
PruMVS level 0 16C 0.510 0.451 0.481

Fig. 5.10 Qualitative comparison to ground truth in DTU dataset and the reconstruction model
generated by other networks

Figure 5.10 summarizes the qualitative comparison against the ground truth and
the baseline MVSNet and Furu, SurfaceNet, and Tola.

5.4.4 Cogradient Descent for Dependable Learning

5.4.4.1 Gradient Descent

A basic bilinear optimization problem attempts to optimize the following objective
function as:

. argmin
A,x

G(A, x) = ||b − Ax||22 + λ||x||1 + R(A), (5.49)

where .b ∈ R
M×1 is an observation that can be characterized by .A ∈ R

M×N and
.x ∈ R

N×1. .R(·) represents the regularization, typically the . l1 or . l2 norm. . ||b−Ax||22
can be replaced by any function with the form . Ax. Bilinear models generally have
one variable with a sparsity constraint such as . l1 regularization with the aim of
avoiding overfitting.

5.4 Network Pruning 169

Assuming . A and . x are independent, the conventional gradient descent method can
be used to solve the bilinear optimization problem as:

.At+1 = At + η1
∂G

∂A
, (5.50)

where

.(
∂G

∂A
)T = xt (Axt − b)T = xt Ĝ(A, x). (5.51)

The function . Ĝ is defined by considering the bilinear optimization problem as in
Eq. 5.49, and we have:

.Ĝ(A, x) = (Axt − b)T . (5.52)

Equation 5.51 shows that the gradient for . A tends to vanish, when . x approaches
zero due to the sparsity regularization term .||x||1. Although it has a chance to
be corrected in some tasks, more likely, the update will cause an asynchronous
convergence. Note that for simplicity, the regularization term on A is not considered.
Similarly, for . x, we have:

.xt+1 = xt + η2
∂G

∂x
. (5.53)

. η1 and . η2 are the learning rates. The conventional gradient descent algorithm for
bilinear models iteratively optimizes one variable while keeping the other fixed. This
unfortunately ignores the relationship of the two hidden variables in optimization.

5.4.4.2 Cogradient Descent for Dependable Learning

We consider the problem from a new perspective such that . A and . x are coupled.
Firstly, based on the chain rule [52] and its notations, we have:

. x̂t+1
j = xt

j + η2

(
∂G

∂xj

+ T r

((
∂G

∂A

)T
∂A
∂xj

))

, (5.54)

where .(∂G
∂A)T = xt Ĝ(A, x) as shown in Eq. 5.51. .T r(·) represents the trace of

the matrix, which means that each element in the matrix . ∂G
∂xj

adds the trace of the
corresponding matrix related to . xj . Considering:

.
∂G

∂A
= AxtxT ,t − bxT ,t , (5.55)

170 5 Network Pruning

we have:

.

∂G(A)

∂xj

= T r[(AxtxT ,t − bxT ,t)T
∂A
∂xj

]

= T r[((Axt − b)xT ,t)T] ∂A
∂xj

= T r[xt Ĝ
∂A
∂xj

],

(5.56)

where .Ĝ = (Axt − b)T = [ĝ1, . . . , ĝM]. Supposing that . Ai and . xj are independent
when .i /= j , we have:

.
∂A
∂xj

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . .
∂A1j
∂xj

. . . 0

. . .

. . .

. . .

0 . . .
∂AMj

∂xj
. . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.57)

and:

.xĜ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1ĝ1 . . . x1ĝj . . . x1ĝM

. . .

. . .

. . .

xN ĝ1 . . . xN ĝj . . . xN ĝM

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (5.58)

Combining Eqs. 5.57 and 5.58, we have:

.xĜ
∂A
∂xj

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . . x1
ΣM

i ĝi
∂Aij

∂xj
. . . 0

. . .

. . .

. . .

0 . . . xN

ΣM
i ĝi

∂Aij

∂xj
. . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.59)

The trace of Eq. 5.59 is then calculated by:

.T r[xt Ĝ
∂A
∂xj

] = xj

MΣ

i

ĝi

∂Aij

∂xj

. (5.60)

5.4 Network Pruning 171

Remembering that .xt+1 = xt + η2
∂G
∂x , CoGD is established by combining Eqs. 5.54

and 5.60:

.

x̂t+1 = xt+1 + η2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ΣM
i ĝi

∂Ai1
∂x1

.

.

.
ΣM

i ĝi
∂AiN

∂xN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

O

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

.

.

.

xN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= xt+1 + η2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

< Ĝ, ∂A1
∂x1

>

.

.

.

< Ĝ,
∂AN

∂xN
>

⎤

⎥
⎥
⎥
⎥
⎥
⎦

O

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

.

.

.

xN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= xt+1 + η2c O xt .

(5.61)

We further define the kernelized version of . c and have:

. c =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

K̂(Ĝ, ∂A1
∂x1

)

.

.

.

K̂(Ĝ,
∂AN

∂xN
)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (5.62)

where .K̂(., .) is a kernel function.1 Remembering that Eq. 5.53, .xt+1 = xt + η2
∂G
∂x ,

Eq. 5.54 then becomes:

.x̂t+1 = xt+1 + η2ct O xt , (5.63)

where . O represents the Hadamard product. It is then reformulated as a projection
function as:

.x̂t+1 = P(xt+1, xt) = xt+1 + β O xt , (5.64)

which shows the rationality of our method, . i.e., it is based on a projection function
to solve the asynchronous problem of the bilinear optimization by controlling . β.

We first judge when an asynchronous convergence happens in the optimization
based on a form of logical operation as:

.(¬s(x)) ∧ (s(A)) = 1, (5.65)

1 .K̂(x1, x2) = (x1 · x2)k .

172 5 Network Pruning

and

.s(∗) =
{
1 if R(∗) ≥ α,

0 otherwise,
(5.66)

where . α represents the threshold which changes for different applications. Equa-
tion 5.65 describes an assumption that an asynchronous convergence happens for . A
and . x when their norms become significantly different. Accordingly, the update rule
of the proposed CoGD [62] is defined as:

.x̂t+1 =
{

P(xt+1, xt) if (¬s(x)) ∧ (s(A)) = 1,

xt+1 otherwise,
(5.67)

which leads to a synchronous convergence and generalizes the conventional gradient
descent method. CoGD is then established.

Note that c in Eq. 5.61 is calculated based on . Ĝ, which differs for applications.

.
∂Aj

∂xj
≈ AAj

Axj
, where . A denotes the difference of the variable over the epoch related

to the convergence speed. .
∂Aj

∂xj
= 1, if .Axj or . xj approaches to zero. With above

derivation, we define CoGD within the gradient descent framework, providing a
solid foundation for the convergence analysis of CoGD. Based on CoGD, the
variables are sufficiently trained and decoupled, which can enhance the causality
of the learning system [74].

5.4.4.3 Applications

We apply the proposed algorithm on convolutional sparse coding (CSC) and deep
learning to validate its general applicability to bilinear problems including image
inpainting, image reconstruction, network pruning, and CNN model training.

Convolutional Sparse Coding
CSC operates on the whole image, decomposing a global dictionary and set of
features. The CSC problem is theoretically more challenging than the patch-
based sparse coding [47] and requires more sophisticated optimization model. The
reconstruction process is usually based on a bilinear optimization model formulated
as:

.

argmin
A,x

1

2
||b − Ax||2F + λ ||x||1

s.t. ||Ak||22 ≤ 1 ∀k ∈ {1, . . . , K},
(5.68)

where . b denotes input images.

5.4 Network Pruning 173

.x = [xT
1 , . . . , xT

K]T denotes coefficients under sparsity regularization. . λ is the
sparsity regularization factor. .A = [A1, . . . ,AK] is a concatenation of Toeplitz
matrices representing the convolution with the kernel filters . Ak , where K is the
number of the kernels.

In Eq. 5.68, the optimized objectives or models are influenced by two or more
hidden factors that interact to produce the observations. Existing solution tends to
decompose the bilinear optimization problem into manageable subproblems [24,
50]. Without considering the relationship between two hidden factors, however,
existing methods suffer from suboptimal solutions caused by an asynchronous
convergence speed of the hidden variables. We attempt to purse an optimized
solution based on the proposed CoGD.

Specifically, we introduce a diagonal or block-diagonal matrix . m to the sparse
coding framework defined in [17] and reformulate Eq. 5.68 as:

. argmin
A,x

f1(Ax) +
KΣ

k=1

(f2(xk) + f3(Ak)), (5.69)

where

.

f1(v) = 1

2
||b − mv||2F ,

f2(v) = λ ||v||1 ,

f3(v) = indc(v).

(5.70)

In Eq. 5.70, .indc(·) is an indicator function defined on the convex set of the
constraints .C = {x| ||Sx||22 ≤ 1}. Similar to Eq. 5.67, we have:

. x̂k =
{

P(xt+1
k , xt

k) if (¬s(xk)) ∧ (s(Ak)) = 1

xt+1
k otherwise

, (5.71)

which solve the two coupled variables iteratively. .P(xt+1
k , xt

k) is calculated based
on .Ĝ(A, x), which is defined in Eq. 5.52.

5.4.4.4 Network Pruning

Network pruning, particularly convolutional channel pruning, has received
increased attention for compressing CNNs. Early works in this area tended
to directly prune the kernel based on simple criteria like the norm of kernel
weights [40] or use a greedy algorithm [46]. Recent approaches have formulated
network pruning as a bilinear optimization problem with soft masks and sparsity
regularization [23, 28, 43, 70].

Based on the framework of channel pruning [23, 28, 43, 70], we apply the
proposed CoGD for network pruning. To prune a channel of the network, the soft

174 5 Network Pruning

Conv-Mask-BN-ReLU-Mask

BN
ReLU

Input
FeatureMaps

0.81

0.34

Sign(Mask)

0.04

0

1

1

0

0
Output

FeatureMaps

0.78

0.34

Rollback

0

0

0.81

0.34

0.04

0

Cogradient(Mask)

l+1-Layerl-Layer I-Layer

Dense
Sparse

Fig. 5.11 The forward process with the soft mask

mask m is introduced after the convolutional layer to guide the output channel
pruning. This is defined as a bilinear model as:

F l+1
j = f (

Σ

i

F l
i ⊗ (W l

i,jmj)), (5.72)

where F l
j and F l+1

j are the i-th input and the j -th output feature maps at the l-th

and (l +1)-th layer. Wl
i,j are convolutional filters corresponding to the soft maskm.

⊗ and f (·) respectively refer to convolutional operator and activation.
In this framework shown in Fig. 5.11, the soft mask m is learned end-to-end in

the back propagation process. To be consistent with other pruning works, we use W
andm instead of A and x. A general optimization function for network pruning with
a soft mask is defined as:

argmin
W,m

L(W,m) + λ||m||1 + R(W), (5.73)

where L(W,m) is the loss function, described in details below. With the sparsity
constraint on m, the convolutional filters with zero value in the corresponding
soft mask are regarded as useless filters. This means that these filters and their
corresponding channels in the feature maps have no significant contribution to the
network predictions and should be pruned. There is, however, a dilemma in the
pruning-aware training in that the pruned filters are not evaluated well before they
are pruned, which leads to suboptimal pruning. In particular, the soft mask m and
the corresponding kernels are not sparse in a synchronous manner, which can prune
the kernels still of potentials. To address this problem, we apply the proposed CoGD
to calculate the soft maskm, by reformulating Eq. 5.67 as:

m̂l,t+1
j =

{
P(mj

l,t+1,mj
l,t) if (¬s(ml,t

j)) ∧ s(
Σ

i W l
i,j)=1

ml,t+1
j otherwise,

(5.74)

5.4 Network Pruning 175

where .Wi,j represents the 2D kernel of the i-th input channel of the j -th filter. . β,
. αW , and . αm are detailed in experiments. The form of . Ĝ is specific for different
applications. For CNN pruning, based on Eq. 5.51, we simplify the calculation of . Ĝ

as:

.Ĝ = ∂L
∂Wi,j

/mj . (5.75)

Note that the autograd package in deep learning frameworks such as PyTorch [51]
can automatically calculate . ∂L

∂Wi,j
. We then substitute Eq. 5.75 into Eq. 5.62 to train

our network and prune CNNs based on the new mask . m̂ in Eq. 5.74.
To examine how our CoGD works for network pruning, we use GAL [43] as

an example to describe our CoGD for CNN pruning. A pruned network obtained
through GAL with .l1-regularization on the soft mask is used to approximate the
pre-trained network by aligning their outputs. The discriminator D with weights
.WD is introduced to discriminate between the output of the pre-trained network
and the pruned network. The pruned network generator G with weights .WG and
soft mask . m is learned together with D by using the knowledge from supervised
features of the baseline. Accordingly, the soft mask . m, the new mask . m̂, the pruned
network weights . WG, and the discriminator weights .WD are simultaneously learned
by solving the optimization problem as follows:

.

arg min
WG,m

max
WD,m̂

LAdv(WG, m̂,WD) +Ldata(WG, m̂)

+Lreg(WG,m,WD).

(5.76)

where .L(W,m) = LAdv(WG, m̂,WD)+Ldata(WG, m̂) and .Lreg(WG,m,WD) are
related to .λ||m||1 + R(W) in Eq. 5.73. .LAdv(WG, m̂,WD) is the adversarial loss to
train the two-player game between the pre-trained network and the pruned network
that compete with each other.

The advantages of CoGD in network pruning are threefold. First, CoGD that
optimizes the bilinear pruning model leads to a synchronous gradient convergence.
Second, the process is controllable by a threshold, which makes the pruning rate
easy to adjust. Third, the CoGD method for network pruning is scalable, . i.e., it can
be built upon other state-of-the-art networks for better performance.

CNN Training
The last but not the least, CoGD can be fused with the batch normalization (BN)
layer and improve the performance of CNN models. As is known, the BN layer
can redistribute the features, resulting in the convergence of the feature and kernel
learning in an asynchronous manner. CoGD is then introduced to synchronize their
learning speeds to sufficiently train CNN models. Specifically, we backtrack sparse
convolutional kernels through evaluating the sparsity of the BN layer, leading to
an efficient training process. An interesting application of CoGD is studied in CNN
learning. Considering the linearity of the convolutional operation, CNN training can

176 5 Network Pruning

also be considered as a bilinear optimization task as:

.F l+1
j = f (BN(

Σ

i

F l
i ⊗ Wl

i,j)), (5.77)

where . F l
j and .F l+1

j are the .i-th input and the .j -th output feature maps at the l-th

and .(l + 1)-th layer, .Wl
i,j are convolutional filters, and . ⊗, .BN(·), and .f (·) refer to

convolutional operator, batch normalization, and activation, respectively. However,
the convolutional operation is not as efficient as a traditional bilinear model. We
instead consider a batch normalization (BN) layer to validate our method, which can
be formulated as a bilinear optimization problem as detailed in Sect. 4.2. We use the
CoGD to replace SGD to efficiently learn the CNN, with the aim of validating the
effectiveness of the proposed method.

To ease presentation, we first copy Eq. 5.77 as:

.F l+1
j = f (BN(

Σ

i

F l
i ⊗ Wl

i,j)), and (5.78)

then redefine the BN model as:

.

BN(x) = γ
x − μB√
σB + ε

+ β,

μB = 1

m

mΣ

i=1

xi,

σB = 1

m

mΣ

i=1

(xi − μB)2,

(5.79)

where m is the mini-batch size, .μB and . σB are mean and variance obtained by
feature calculation in the BN layer. . γ and . β are the learnable parameters, and . ε is a
small number to avoid dividing by zero.

According to Eqs. 5.78 and 5.79, we can easily know that . γ and W are
bilinear. We use the sparsity of . γ instead of the whole convolutional features for
kernel backtracking, which simplifies the operation and improves the backtracking
efficiency. Similar to network pruning, we also use . γ and W instead of . A and . x in
this part. A general optimization for CNN training with the BN layer is:

. argmin
W,γ

L(W, γ) + λ||W||1, (5.80)

5.4 Network Pruning 177

where .L(W, γ) is the loss function defined on Eqs. 5.78 and 5.79. CoGD is then
applied to train CNNs, by reformulating Eq. 5.67 as:

. Ŵ
l,t+1
i,j =

{
P(Wi,j

l,t+1,Wi,j
l,t) if (¬s(γ l

j)) ∧ s(
Σ

i W l
i,j)=1

Wi,j
l,t otherwise,

(5.81)

where . γ l
j is the j -th learnable parameter in the l-th BN layer. .Wi,j represents the

2D kernel of the i-th input channel of the j -th filter. Similar to network pruning, we
define:

.Ĝ = ∂L
∂Wi,j

/γ j , (5.82)

where .
∂L

∂Wi,j
is obtained based on the autograd package in deep learning frameworks

such as PyTorch [51]. Similar to network pruning, we substitute Eq. 5.82 into
Eq. 5.62, to use CoGD for CNN training.

5.4.4.5 Experiments

In this section, CoGD is first analyzed and compared with classical optimization
methods on a baseline problem. It is then validated on the problems of CSC, network
pruning, and CNN model training.

Baseline Problem
A baseline problem is first used as an example to illustrate the superiority of our
algorithm. The problem is the optimization of Beale function2 under constraint of
.F(x1, x2) = beale(x1, x2) + ||x1|| + x2

2 . The Beale function has the same form
as Eq. 5.49 and can be regraded as a bilinear optimization problem with respect to
variables .x1x2. During optimization, the learning rate . η2 is set as .0.001, .0.005, and
. 0.1 for “SGD,” “momentum,” and “Adam,” respectively. The thresholds . αx1 and . αx2

for CoGD are set to 1 and . 0.5. .β = 0.001η2ct with .
∂x2
∂x1

≈ Ax2
Ax1

, where . A denotes the

difference of variable over the epoch. .Ax2
Ax1

= 1, when .Ax2 or . x2 approaches zero.
The total number of iterations is 200.

In Fig. 5.12, we compare the optimization paths of CoGD with those of the three
widely used optimization methods – “SGD,” “momentum,” and “Adam.” It can be
seen that algorithms equipped with CoGD have shorter optimization paths than their
counterparts. Particularly, the ADAM-CoGD algorithm has a much shorter path than
ADAM, demonstrating the fast convergence of the proposed CoGD algorithm. The
similar convergence with shorter paths means that CoGD facilitates efficient and
sufficient training.

2 .beale(x1, x2) = (1.5 − x1 + x1x2)
2 + (2.25 − x1 + x1x

2
2)

2 + (2.62 − x1 + x1x
3
2)

2.

178 5 Network Pruning

x1
-3.6 -2.7 -1.8 -0.9 0 0.9 1.8 2.7 3.6 4.5

x2

-3.6

-2.7

-1.8

-0.9

0

0.9

1.8

2.7

3.6

4.5

SGD
SGD+CoGD
Momentum
Momentum+CoGD
Adam
Adam+CoGD

Fig. 5.12 Comparison of classical gradient algorithm with CoGD.The background is the contour
map of Beale functions. The algorithms with CoGD have short optimization paths compared with
their counterparts, which shows that CoGD facilitates efficient and sufficient training

Convolutional Sparse Coding

Experimental Setting The CoGD for convolutional sparse coding (CSC) is evalu-
ated on two public datasets: the fruit dataset [72] and the city dataset [24, 72], each
of which consists of ten images with 100 × 100 resolution. To evaluate the quality
of the reconstructed images, we use two standard metrics, the peak signal-to-noise
ratio (PSNR, unit: dB), and the structural similarity (SSIM). The higher the PSNR
and the SSIM values are, the better the visual quality of the reconstructed image is.
The evaluation metrics are defined as:

PSNR = 10 × log10(
MAX2

MSR
), (5.83)

where MSE is the mean square error of clean image and noisy image. MAX is the
maximum pixel value of the image:

SSIM(x, y) = (2μxμy + C1)(2σxy + C2)

(mu2x + μ2
y + C1)(σ 2

x + σ 2
y + C2)

, (5.84)

where μ is the mean of samples. σ is the variance of samples. σxy is the covariance
of the samples. C is a constant, C1 = (0.01 × MAX)2, C2 = (0.03 × MAX)2

5.4 Network Pruning 179

Implementation Details The reconstruction model is implemented based on the
conventional CSC method [17], while we introduce the CoGD with the kernelized
projection function to achieve a better convergence and higher reconstruction
accuracy. One hundred of filters with size 11. ×11 are set as model parameters. . αx
is set to the mean of .||xk||1. . αA is calculated as the median of the sorted results
of . βk . As shown in Eq. 5.62, linear and polynomial kernel functions are used in
the experiment, which can both improve the performance of our method. For a fair
comparison, we use the same hyperparameters (. η2) in both our method and [17]. We
also test .β = 0.1η2ct , which achieves a similar performance as the linear kernel.

Results The CSC with the proposed CoGD algorithm is evaluated with two tasks
including image reconstruction and image inpainting.

For image inpainting, we randomly sample the data with a 75% subsampling rate,
to obtain the incomplete data. Like [24], we test our method on contrast-normalized
images. We first learn filters from all the incomplete data under the guidance of
the soft mask . m and then reconstruct the incomplete data by fixing the learned
filters. We show inpainting results of the normalized data in Fig. 5.13. Moreover, to

Image

Incomplete
Observations

Ours

FFCSC

Fig. 5.13 Inpainting for the normalized city dataset. From top to bottom: the original images,
incomplete observations, reconstructions with FFCSC [24], and reconstructions with our proposed
algorithm

180 5 Network Pruning

compare with FFCSC, inpainting results on the fruit and city datasets are shown in
Table 5.13. It can be seen that our method achieves a better PSNR and SSIM in all
cases, while the average PSNR and SSIM improvements are impressively 1.78 and
0.017 db.

For image reconstruction, we reconstruct the images on the fruit and city
datasets. One hundred of 11. ×11 filters are trained and compared with those of
FFCSC [24]. Figure 5.14 shows the resulting filters after convergence within the
same 20 iterations. It can be seen that the proposed reconstruction method, driven
with CoGD, converges with a lower loss. When comparing the PSNR and the SSIM
of our method with FFCSC in Table 5.14, we can see that in most cases, our method
achieves higher PSNR and SSIM. The average PSNR and SSIM improvements are
respectively .1.27 db and .0.005.

Considering that PSNR is calculated with a .log function, the performance
improvement shown in Tables 5.13 and 5.14 is significant. Such improvements show
that the kernelized projection function improves the performance of the algorithm
and reveal the nonlinear interaction of the variables.

Network Pruning We have evaluated the proposed CoGD algorithm on network
pruning using the CIFAR-10 and ILSVRC12 ImageNet datasets for the image
classification tasks. The commonly used ResNets and MobileNetV2 are used as
the backbone networks to get the pruned network models.

Experimental Setting

Datasets CIFAR-10 is a natural image classification dataset containing a training
set of .50,000 and a testing set of .10,000 .32 × 32 color images distributed over
ten classes, including airplanes, automobiles, birds, cats, deer, dogs, frogs, horses,
ships, and trucks. The ImageNet classification dataset is more challenging due to
the significant increase of image categories, image samples, and sample diversity.
For the 1000 categories of images, there are . 1.2 million images for training and
50k images for validation. The large data divergence set a ground challenge for the
optimization algorithms when pruning network models.

Implementation We use PyTorch to implement our method with 3 NVIDIA
TITAN V and 2 Tesla V100 GPUs. The weight decay and the momentum are set
to .0.0002 and . 0.9, respectively. The hyperparameter . λm is selected through cross-
validation in the range .[0.01, 0.1] for ResNet and MobileNetv2. The drop rate is set
to . 0.1. The other training parameters are described on a per experiment basis.

To better demonstrate our method, we denote CoGD-a as an approximated
pruning rate of .(1 − a)% for corresponding channels. a is associated with the
threshold . αW , which is given by its sorted result. For example, if .a = 0.5, . αW is the
median of the sorted result. . αm is set to be . 0.5 for easy implementation. Similarly,
.β = 0.001η2ct with . ∂W

∂mj
≈ AW

Amj
. Note that our training cost is similar to that of

[43], since we use our method once per epoch without additional cost.

5.4 Network Pruning 181

Ta
bl
e
5.
13

In
pa
in
tin

g
re
su
lts
 f
or
 c
on
vo
lu
tio

na
l fi

lte
rs
 le
ar
ne
d
w
ith

 th
e
pr
op

os
ed
 m

et
ho

d
an
d
w
ith

 F
FC

SC
 [
24
].
 A
ll
re
co
ns
tr
uc
tio

ns
 a
re
 p
er
fo
rm

ed
 w
ith

 7
5%

da
ta
 s
ub

sa
m
pl
in
g.
 T
he
 p
ro
po

se
d
C
oG

D
 a
ch
ie
ve
s
be
tte

r
PS

N
R
 a
nd

 S
SI
M
 in

 a
ll
ca
se
s

D
at
as
et

Fr
ui
t

1
2

3
4

5
6

7
8

9
10

A
ve
ra
ge

PS
N
R
 (
dB

)
[2
4]

25
.3
7

24
.3
1

25
.0
8

24
.2
7

23
.0
9

25
.5
1

22
.7
4

24
.1
0

19
.4
7

22
.5
8

23
.6
5

C
oG

D
(k
er
ne
liz
ed
,

.k
=

1)

26
.3
7

24
.4
5

25
.1
9

25
.4
3

24
.9
1

27
.9
0

24
.2
6

25
.4
0

24
.7
0

24
.4
6

25
.3
1

C
oG

D
(k
er
ne
liz
ed
,

.k
=

2)

27
.9
3

26
.7
3

27
.1
9

25
.2
5

23
.5
4

25
.0
2

26
.2
9

24
.1
2

24
.4
8

24
.0
4

25
.4
7

C
oG

D
(k
er
ne
liz
ed
,

.k
=

3)

28
.8
5

26
.4
1

27
.3
5

25
.6
8

24
.4
4

26
.9
1

25
.5
6

25
.4
6

24
.5
1

22
.4
2

25
.7
6

SS
IM

[2
4]

0.
91
18

0.
90
36

0.
90
43

0.
89
75

0.
88
83

0.
92
42

0.
89
21

0.
88
99

0.
89
09

0.
89
74

0.
90
00

C
oG

D
(k
er
ne
liz
ed
,

.k
=

1)

0.
94
52

0.
92
17

0.
93
48

0.
91
14

0.
90
36

0.
94
83

0.
91
09

0.
90
41

0.
92
15

0.
90
97

0.
92
11

C
oG

D
(k
er
ne
liz
ed
,

.k
=

2)

0.
94
83

0.
93
01

0.
92
94

0.
90
61

0.
89
39

0.
94
54

0.
92
45

0.
89
90

0.
92
08

0.
90
54

0.
92
03

C
oG

D
(k
er
ne
liz
ed
,

.k
=

3)

0.
94
90

0.
92
22

0.
93
42

0.
91
81

0.
88
10

0.
94
64

0.
91
37

0.
90
72

0.
91
75

0.
87
82

0.
91
68

D
at
as
et

C
ity

1
2

3
4

5
6

7
8

9
10

A
ve
ra
ge

PS
N
R
 (
dB

)
[2
4]

26
.5
5

24
.4
8

25
.4
5

21
.8
2

24
.2
9

25
.6
5

19
.1
1

25
.5
2

22
.6
7

27
.5
1

24
.3
1

C
oG

D
(k
er
ne
liz
ed
,

.k
=

1)

26
.5
8

25
.7
5

26
.3
6

25
.0
6

26
.5
7

24
.5
5

21
.4
5

26
.1
3

24
.7
1

28
.6
6

25
.5
8

C
oG

D
(k
er
ne
liz
ed
,

.k
=

2)

27
.9
3

26
.7
3

27
.1
9

25
.8
3

24
.4
1

25
.3
1

26
.2
9

24
.7
0

24
.4
8

24
.6
2

25
.7
6

C
oG

D
(k
er
ne
liz
ed
,

.k
=

3)

25
.9
1

25
.9
5

25
.2
1

26
.2
6

26
.6
3

27
.6
8

21
.5
4

25
.8
6

24
.7
4

27
.6
9

25
.7
5

(c
on
tin

ue
d)

182 5 Network Pruning

Ta
bl
e
5.
13

(c
on
tin

ue
d)

D
at
as
et

Fr
ui
t

1
2

3
4

5
6

7
8

9
10

A
ve
ra
ge

SS
IM

[2
4]

0.
92
84

0.
92
04

0.
93
68

0.
90
56

0.
91
93

0.
92
02

0.
91
40

0.
92
58

0.
90
27

0.
92
61

0.
91
99

C
oG

D
(k
er
ne
liz
ed
,

.k
=

1)

0.
93
97

0.
92
69

0.
94
33

0.
92
89

0.
93
50

0.
92
17

0.
94
11

0.
92
98

0.
91
11

0.
93
65

0.
93
14

C
oG

D
(k
er
ne
liz
ed
,

.k
=

2)

0.
94
98

0.
93
16

0.
94
09

0.
91
76

0.
91
89

0.
94
54

0.
93
60

0.
93
05

0.
93
23

0.
92
84

0.
93
18

C
oG

D
(k
er
ne
liz
ed
,

.k
=

3)

0.
93
72

0.
92
91

0.
94
29

0.
92
54

0.
93
61

0.
93
33

0.
93
73

0.
93
31

0.
91
78

0.
93
72

0.
93
29

5.4 Network Pruning 183

Fig. 5.14 Filters learned on fruit and city datasets. Thumbnails of the datasets along with filters
learned with FFCSC [24] (left) and with CoGD (right) are shown. The proposed reconstruction
method reports lower objectives. (Best viewed in color with zoom)

CIFAR-10
We evaluated the proposed network pruning method on CIFAR-10 for two popular
networks, ResNets and MobileNetV2. The stage kernels are set to 64-128-256-512
for ResNet-18 and 16-32-64 for ResNet-110. For all networks, we add a soft mask
only after the first convolutional layer within each block to simultaneously prune
the output channel of the current convolutional layer and input channel of the next
convolutional layer. The mini-batch size is set to be 128 for 100 epochs, and the
initial learning rate is set to .0.01, scaled by . 0.1 over 30 epochs.

Fine-tuning In the network fine-tuning after pruning, we only reserve the student
model. According to the “zeros” in each soft mask, we remove the corresponding
output channels of the current convolutional layer and corresponding input channels
of the next convolutional layer. We then obtain a pruned network with fewer

184 5 Network Pruning

Ta
bl
e
5.
14

R
ec
on

st
ru
ct
io
n
re
su
lts
 f
or
 fi
lte

rs
 le
ar
ne
d
w
ith

 th
e
pr
op

os
ed
 m

et
ho

d
an
d
w
ith

 F
FC

SC
 [
24
].
 W

ith
 th

e
ex
ce
pt
io
n
of
 s
ix
 im

ag
es
, t
he
 p
ro
po
se
d
m
et
ho
d

ac
hi
ev
es
 b
et
te
r
PS

N
R
 a
nd

 S
SI
M

D
at
as
et

Fr
ui
t

1
2

3
4

5
6

7
8

9
10

A
ve
ra
ge

PS
N
R
 (
dB

)
[2
4]

30
.9
0

29
.5
2

26
.9
0

28
.0
9

22
.2
5

27
.9
3

27
.1
0

27
.0
5

23
.6
5

23
.6
5

26
.7
0

C
oG

D
(k
er
ne
liz
ed
,.k

=
1)

31
.4
6

29
.1
2

27
.2
6

28
.8
0

25
.2
1

27
.3
5

26
.2
5

27
.4
8

25
.3
0

27
.8
4

27
.6
0

C
oG

D
(k
er
ne
liz
ed
,.k

=
2)

30
.5
4

28
.7
7

30
.3
3

28
.6
4

25
.7
2

30
.3
1

28
.0
7

27
.4
6

25
.2
2

26
.1
4

28
.1
2

SS
IM

[2
4]

0.
97
06

0.
96
51

0.
96
25

0.
96
29

0.
94
33

0.
97
12

0.
95
81

0.
95
24

0.
96
08

0.
95
46

0.
96
02

C
oG

D
(k
er
ne
liz
ed
,.k

=
1)

0.
97
31

0.
96
48

0.
96
40

0.
96
07

0.
95
66

0.
97
17

0.
95
87

0.
95
62

0.
96
42

0.
96
51

0.
96
35

C
oG

D
(k
er
ne
liz
ed
,.k

=
2)

0.
97
05

0.
96
75

0.
96
60

0.
96
40

0.
94
77

0.
97
28

0.
95
92

0.
95
72

0.
96
48

0.
96
42

0.
96
79

D
at
as
et

C
ity

1
2

3
4

5
6

7
8

9
10

A
ve
ra
ge

PS
N
R
 (
dB

)
[2
4]

30
.1
1

27
.8
6

28
.9
1

26
.7
0

27
.8
5

28
.6
2

18
.6
3

28
.1
4

27
.2
0

25
.8
1

26
.9
8

C
oG

D
(k
er
ne
liz
ed
,.k

=
1)

30
.2
9

28
.7
7

28
.5
1

26
.2
9

28
.5
0

30
.3
6

21
.2
2

29
.0
7

27
.4
5

30
.5
4

28
.1
0

C
oG

D
(k
er
ne
liz
ed
,.k

=
2)

30
.6
1

28
.5
7

27
.3
7

27
.6
6

28
.5
7

29
.8
7

21
.4
8

27
.0
8

26
.8
2

29
.8
6

27
.7
9

SS
IM

[2
4]

0.
97
04

0.
96
60

0.
97
03

0.
96
24

0.
96
19

0.
96
13

0.
94
59

0.
96
47

0.
95
31

0.
96
16

0.
96
18

C
oG

D
(k
er
ne
liz
ed
,.k

=
1)

0.
97
17

0.
96
60

0.
97
02

0.
96
28

0.
96
27

0.
96
24

0.
95
93

0.
96
63

0.
95
71

0.
96
32

0.
96
42

C
oG

D
(k
er
ne
liz
ed
,.k

=
2)

0.
96
97

0.
96
46

0.
96
81

0.
96
2

0.
96
13

0.
95
94

0.
95
41

0.
96
07

0.
95
38

0.
96
20

0.
96
31

5.4 Network Pruning 185

Table 5.15 Pruning results of ResNet-18/ResNet-110 and MobilenetV2 on CIFAR-10. M =
million (. 106)

Model FLOPs (M) Reduction Accuracy/+FT (%)

ResNet-18 [20] 555.42 – 95.31

CoGD-0.5 274.74 0.51.× 95.11/95.30

CoGD-0.8 423.87 0.24.× 95.19/95.41
ResNet-56 [20] 125.49 – 93.26

GAL-0.6 [43] 78.30 0.38.× 92.98/93.38

GAL-0.8 [43] 49.99 0.60.× 90.36/91.58

CoGD-0.5 48.90 0.61.× 92.38/92.95

CoGD-0.8 82.85 0.34.× 93.16/93.59
ResNet-110 [20] 252.89 – 93.68

GAL-0.1 [43] 205.70 0.20.× 92.65/93.59

GAL-0.5 [43] 130.20 0.49.× 92.65/92.74

CoGD-0.5 95.03 0.62.× 93.31/93.45

CoGD-0.8 135.76 0.46.× 93.42/93.66

MobileNet-V2 [54] 91.15 – 94.43

CoGD-0.5 50.10 0.45.× 94.25/–

parameters and that requires fewer FLOPs. We use the same batch size of 256 for
60 epochs as in training. The initial learning rate is changed to . 0.1 and scaled by . 0.1
over 15 epochs. Note that a similar fine-tuning strategy was used in GAL [43].

Results Two kinds of networks are tested on the CIFAR-10 database – ResNets
and MobileNet-V2. In this section, we only test the linear kernel, which achieves a
similar performance as the full-precision model.

Results for ResNets are shown in Table 5.15. Compared to the pre-trained
network for ResNet-18 with .95.31% accuracy, CoGD-. 0.5 achieves a .0.51× FLOP
reduction with negligible accuracy drop .0.01%. Among other structured pruning
methods for ResNet-110, CoGD-. 0.5 has a larger FLOP reduction than GAL-. 0.1
(.95.03M vs. .205.70M), but with similar accuracy (.93.45% vs. .93.59%). These
results demonstrate that our method can prune the network efficiently and generate
a more compressed model with higher performance.

For MobileNetV2, the pruning results are summarized in Table 5.15. Compared
to the pre-trained network, CoGD-.0.5 achieves a .0.45× FLOP reduction with
a .0.18% accuracy drop. The results indicate that CoGD is easily employed on
efficient networks with depth-wise separable convolution, which is worth exploring
in practical applications.

ImageNet
For ILSVRC12 ImageNet, we test our CoGD based on ResNet-50. We train the
network with a batch size of 256 for 60 epochs. The initial learning rate is set to
.0.01 and scaled by . 0.1 over 15 epochs. Other hyperparameters follow the settings

186 5 Network Pruning

Table 5.16 Pruning results of ResNet-50 on ImageNet. B means billion (. 109)

Model FLOPs (B) Reduction Accuracy/+FT (%)

ResNet-50 [20] 4.09 – 76.24

ThiNet-50 [46] 1.71 0.58.× 71.01

ThiNet-30 [46] 1.10 0.73.× 68.42

CP[23] 2.73 0.33.× 72.30

GDP-0.5 [42] 1.57 0.62.× 69.58

GDP-0.6 [42] 1.88 0.54.× 71.19

SSS-26 [29] 2.33 0.43.× 71.82

SSS-32 [29] 2.82 0.31.× 74.18

RBP [75] 1.78 0.56.× 71.50

RRBP [75] 1.86 0.55.× 73.00

GAL-0.1 [43] 2.33 0.43.× –/71.95

GAL-0.5 [43] 1.58 0.61.× –/69.88

CoGD-0.5 2.67 0.35.× 75.15/75.62

used on CIFAR-10. The fine-tuning process follows the setting on CIFAR-10 with
the initial learning rate .0.00001.

Table 5.16 shows that CoGD achieves state-of-the-art performance on the
ILSVRC12 ImageNet. For ResNet-50, CoGD-.0.5 further shows a .0.35× FLOP
reduction while achieving only a .0.62% drop in accuracy.

5.4.4.6 Ablation Study

We use ResNet-18 on CIFAR-10 for an ablation study to evaluate the effectiveness
of our method.

Effect on CoGD We train the pruned network with and without CoGD by using
the same parameters. As shown in Table 5.17, we obtain an error rate of .4.70% and
a .0.51× FLOP reduction with CoGD, compared to the error rate of .5.19% and a
.0.32× FLOP reduction without CoGD, validating the effectiveness of CoGD.

Synchronous convergence In Fig. 5.15, the training curve shows that the conver-
gence of CoGD is similar to that of GAL with SGD-based optimization within
an epoch, especially for the last epochs when converging in a similar speed. We
theoretically derive CoGD within the gradient descent framework, which provides
a theoretical foundation for the convergence, which is validated by the experiments.
As a summary, the main differences between SGD and CoGD are twofold. First, we
change the initial point for each epoch. Second, we explore the coupling relationship
between the hidden factors to improve a bilinear model within the gradient descent
framework. Such differences do not change the convergence of CoGD compared
with the SGD method.

5.4 Network Pruning 187

Table 5.17 Pruning results
on CIFAR-10 with CoGD or
SGD. M means million (106)

Optimizer Accuracy (%) FLOPs/Baseline (M)

SGD 94.81 376.12/555.43

CoGD 95.30 274.74/555.43

Fig. 5.15 Comparison of training loss on CIFAR-10 with CoGD and SGD

In Fig. 5.16, we show the convergence in a synchronous manner of the 4th layer’s
variables when pruning CNNs. For better visualization, the learning rate of m
is enlarged by 100x. On the curves, we observe that the two variables converge
synchronously and that neither variable gets stuck into a local minimum. This
validates that CoGD avoids vanishing gradient for the coupled variables.

CNN Training
Similar to network pruning, we have further evaluated CoGD algorithm for CNN
model training on CIFAR-10 and ILSVRC12 ImageNet datasets. Specifically, we
use ResNet-18 as the backbone CNN to test our algorithm. The network stages are
64-128-256-512. The learning rate is optimized by a cosine updating schedule with
an initial learning rate 0.1. The algorithm iterates 200 epochs. The weight decay
and momentum are respectively set to 0.0001 and 0.9. The model is trained on 2
GPUs (Titan V) with a mini-batch size of 128. We follow the similar augmentation
strategy in [20] and add the cutout method for training. When training the model,
horizontal flipping and 32 × 32 crop are used as data augmentation. The cutout
size is set to 16. Similar to CNN pruning, a is set to 0.95 to compute αγ and αW .
To improve the efficiency, we directly backtrack the corresponding weights. For

188 5 Network Pruning

(a)

(b)

Fig. 5.16 Convergence comparison of the variables in the fourth convolutional layer when pruning
CNNs. The curves are obtained using SGD and CoGD-. 0.5 on CIFAR-10. With CoGD, the two
variables converge synchronously while avoiding either variable gets stuck in a local convergence
(local minimum of the objective function), which validates that CoGD can avoid vanishing gradient
for the coupled variables

ILSVRC12 ImageNet, the initial learning rate is set to .0.01, and the total epochs are
120.

With ResNet-18 backbone, we simply replace the SGD algorithm with the pro-
posed CoGD for model training. In Table 5.18, it can be seen that the performance
is improved by .1.25% (70.75% vs. 69.50%) on the large-scale ImageNet dataset. In
addition, the improvement is also observed on CIFAR-10. We report the results for
different kernels, which show that the performance are relatively stable for .k = 1

5.5 Network Pruning on BNNs 189

Table 5.18 Results for CNN
training on CIFAR-10 and
ImageNet

Accuracy(%)

Models CIFAR-10 ImageNet

ResNet-18 (SGD)[20] 95.31 69.50

ResNet-18 (CoGD with k = 1) 95.80 70.30

ResNet-18 (CoGD with k = 2) 96.10 70.75

and .k = 2. These results validate the effectiveness and generality of the proposed
CoGD algorithm.

5.5 Network Pruning on BNNs

5.5.1 Rectified Binary Convolutional Networks with Generative
Adversarial Learning

Quantization techniques involve representing network weights and activations using
low-bit fixed-point integers, enabling efficient computation with bitwise operations.

Binarization, as proposed in [45, 53], takes quantization to the extreme by using
only a single bit to represent both weights and activations, where they are assigned
values of either . +1 or . −1. This work focuses on creating compact binary neural
networks (BNNs) by combining quantization and network pruning strategies.

Despite advancements in 1-bit quantization and network pruning, only a few
studies have merged these methods into a cohesive framework to enhance their syn-
ergy. Introducing pruning techniques into 1-bit CNNs becomes necessary because
not all filters and kernels have equal significance or warrant identical quantization.
One potential solution involves pruning the network first and then applying 1-bit
quantization to the remaining weights, resulting in a more compressed network.
However, this approach must consider the disparities between binarized and full-
precision parameters during pruning. As a promising alternative, one can prune the
quantized network directly. Nevertheless, devising a unified framework to combine
quantization and pruning remains an open question.

To tackle these challenges, we propose a novel approach called rectified binary
convolutional network (RBCN) [44] to train a binary neural network (BNN) using
a generative adversarial network (GAN) framework. Our motivation stems from
GANs’ ability to match two data distributions, namely, the full-precision and 1-bit
networks. This can be seen as distilling or exploiting the knowledge from the full-
precision model to benefit its 1-bit counterpart.

In the training process of RBCN, the key binarization steps are depicted in
Fig. 5.17. Here, the full-precision model and the 1-bit model (generator) generate
“real” and “fake” feature maps, respectively, which are then fed to the discrimina-
tors. The discriminators aim to distinguish between the “real” and “fake” samples,
while the generator attempts to deceive the discriminators. This process results

190 5 Network Pruning

Fig. 5.17 This figure shows the framework for integrating the rectified binary convolutional
network (RBCN) with generative adversarial network (GAN) learning. The full-precision model
provides “real” feature maps, while the 1-bit model (as a generator) provides “fake” feature maps to
discriminators trying to distinguish “real” from “fake.” Meanwhile, the generator tries to make the
discriminators work improperly. When this process is repeated, both the full-precision feature maps
and kernels (across all convolutional layers) are sufficiently employed to enhance the capacity of
the 1-bit model. Note that (1) the full-precision model is used only in learning but not in inference;
(2) after training, the full-precision learned filters W are discarded, and only the binarized filters
. Ŵ and the shared learnable matrices C are kept in RBCN for the calculation of the feature maps
in inference

in a rectified operation and a unique architecture that provides a more accurate
estimation of the full-precision model.

Furthermore, we explore the application of pruning to enhance the practical
usability of the 1-bit model within the GAN framework. To achieve this goal, we
seamlessly integrate quantization and pruning into a unified framework.

5.5.1.1 Loss Function

The rectification process involves combining full-precision kernels and feature
maps to improve the binarization process. It includes two main components: kernel
approximation and adversarial learning.

The learnable kernel approximation results in a unique architecture that provides
a precise estimation of the convolutional filters by minimizing the kernel loss. This
allows the RBCN to achieve better performance and more accurate representations.

To accomplish this, discriminators denoted as .D(·) with filters Y are introduced.
Their purpose is to distinguish between feature maps R obtained from the full-
precision model and feature maps T generated by the RBCN. The RBCN generator,
equipped with filters W and matrices C, is trained using knowledge from the
supervised feature maps R.

5.5 Network Pruning on BNNs 191

In summary, the optimization problem involves learning the parameters W , C,
and Y by solving the following optimization problem:

. arg min
W,Ŵ,C

max
Y

L = LAdv(W, Ŵ , C, Y) + LS(W, Ŵ , C) + LKernel(W, Ŵ , C),

(5.85)

where .LAdv(W, Ŵ , C, Y) is the adversarial loss as:

. LAdv(W, Ŵ , C, Y) = log(D(R;Y)) + log(1 − D(T ;Y)), (5.86)

where .D(·) consists of a series of basic blocks, each containing linear and
LeakyRelu layers. We also have multiple discriminators to rectify the binarization
training process.

In addition, .LKernel(W, Ŵ , C) denotes the kernel loss between the learned full-
precision filters W and the binarized filters . Ŵ and is defined as:

. LKernel(W, Ŵ , C) = λ1/2||W − CŴ ||2, (5.87)

where . λ1 is a balance parameter. Finally, . LS is a traditional problem-dependent loss,
such as softmax loss. The adversarial, kernel, and softmax loss are regularizations
on . L .

We also have omitted .log(·) and rewritten the optimization in Eq. 5.85 as in
Eq. 5.88 for simplicity:

. min
W,Ŵ ,C

LS(W, Ŵ , C) + λ1/2
Σ

l

Σ

i

||Wl
i − ClŴ l

i ||2 +
Σ

l

Σ

i

||1 − D(T l
i ;Y)||2.
(5.88)

where i represents the . ith channel and l represents the . lth layer. In Eq. 5.88, the
objective is to obtain W , . Ŵ and C with Y fixed, which is why the term .D(R;Y) in
Eq. 5.85 can be ignored. The advantage of our formulation in Eq. 5.88 lies in that
the loss function is trainable, which means it can be easily incorporated into existing
learning frameworks.

5.5.1.2 Learning RBCNs

In RBCNs, convolution is implemented using . Wl , . Cl , and .F l
in to calculate output

feature maps .F l
out as:

. F l
out = RBConv(F l

in; Ŵ l, Cl) = Conv(F l
in, Ŵ

l O Cl), (5.89)

192 5 Network Pruning

where RBConv denotes the convolution operation implemented as a new module,
. F l

in and .F l
out are the feature maps before and after convolution, respectively. . Wl are

full-precision filters, the values of . Ŵ l are 1 or . −1, and . O is the operation of the
element-by-element product.

During the backward propagation process of RBCNs, the full-precision filters
W and the learnable matrices C must be learned and updated. These two sets of
parameters are jointly learned. We update W first and then C in each convolutional
layer.

Update W Let .δWl
i
be the gradient of the full-precision filter . Wl

i . During back

propagation, the gradients are first passed to . Ŵ l
i and then to . Wl

i . Thus:

.δWl
i

= ∂L

∂Wl
i

= ∂L

∂Ŵ l
i

∂Ŵ l
i

∂W l
i

, (5.90)

where

.
∂Ŵ l

i

∂W l
i

=
⎧
⎨

⎩

1.2 + 2Wl
i , −1 ≤ Wl

i < 0,
2 − 2Wl

i , 0 ≤ Wl
i < 1,

10, otherwise,
(5.91)

which is an approximation of . 2× the Dirac delta function [45]. Furthermore:

.
∂L

∂Ŵ l
i

= ∂LS

∂Ŵ l
i

+ ∂LKernel

∂Ŵ l
i

+ ∂LAdv

∂Ŵ l
i

, (5.92)

and:

.Wl
i ← Wl

i − η1δWl
i
, (5.93)

where . η1 is the learning rate. Then:

.
∂LKernel

∂Ŵ l
i

= −λ1(W
l
i − ClŴ l

i)C
l, (5.94)

.
∂LAdv

∂Ŵ l
i

= −2(1 − D(T l
i ;Y))

∂D

∂Ŵ l
i

. (5.95)

Update C We further update the learnable matrix . Cl with . Wl fixed. Let . δCl be the
gradient of . Cl . Then we have:

.δCl = ∂LS

∂Cl
+ ∂LKernel

∂Cl
+ ∂LAdv

∂Cl
, (5.96)

5.5 Network Pruning on BNNs 193

and:

.Cl ← Cl − η2δCl , (5.97)

where . η2 is another learning rate. Furthermore:

.

∂LKernel

∂Cl
= −λ1

Σ

i

(W l
i − ClŴ l

i)Ŵ
l
i , (5.98)

.
∂LAdv

∂Cl
= −

Σ

i

2(1 − D(T l
i ;Y))

∂D

∂Cl
. (5.99)

The derivations presented demonstrate that the rectified process is trainable in an
end-to-end manner. During training, we update the other parameters independently
while keeping the convolutional layer’s parameters fixed. This approach helps
to enhance the variety of feature maps in each layer, which accelerates training
convergence and fully explores the potential of 1-bit networks.

In our implementation, we replace all the values of . Cl with their average
during the forward process. This simplification reduces the matrix calculations
to scalar operations, leading to faster computation during inference. By utilizing
this approach, we achieve a significant speedup in the model’s execution without
compromising its performance.

5.5.1.3 Network Pruning

After binarizing the CNNs, we further prune the resulting 1-bit CNNs to increase
model efficiency and improve the flexibility of RBCNs in practical scenarios. The
optimization pruning process is performed under the generative adversarial learning
framework using the method described in [43].

To achieve this, we employ a soft mask that allows us to remove specific
structures, such as filters, while maintaining performance close to the baseline
accuracy. The discriminator .Dp(·) with weights . Yp is introduced to distinguish
between the output of the baseline network . Rp and that of the pruned 1-bit network
. Tp.

The pruned network is denoted by parameters . Wp, . Ŵp, . Cp, and a soft mask . Mp.
These parameters are learned together with . Yp using knowledge from the supervised
features of the baseline network.

194 5 Network Pruning

We jointly optimize the parameters . Wp, . Ŵp, . Cp, . Mp, and . Yp by solving the
following optimization problem:

.

arg min
Wp,Ŵp,Cp,Mp

max
Yp

Lp = LAdv_p(Wp, Ŵp, Cp,Mp, Yp)

+ LKernel_p(Wp, Ŵp, Cp)

LS_p(Wp, Ŵp, Cp) + LData_p(Wp, Ŵp, Cp,Mp) + LReg_p(Mp, Yp),

(5.100)

where .Lp is the pruning loss function, and the forms of . LAdv_p(Wp, Ŵp, Cp,

Mp, Yp) and .LKernel_p(Wp, Ŵp, Cp) are:

. LAdv_p(Wp, Ŵp, Cp,Mp, Yp) = log(Dp(Rp;Yp)) + log(1 − Dp(Tp;Yp)),

(5.101)
. LKernel_p(Wp, Ŵp, Cp) = λ1/2||Wp − CpŴp||2. (5.102)

.LS_p is a traditional problem-dependent loss such as softmax loss. .LData_p is the
data loss between the output features of the baseline and the pruned network and is
used to align the output of these two networks. The data loss can then be expressed
as the MSE loss:

. LData_p(Wp, Ŵp, Cp,Mp) = 1

2n

||
||Rp − Tp

||
||2, (5.103)

where n is the size of the mini-batch.
.LReg_p(Mp, Yp) is a regularizer on . Wp,. Ŵp,. Mp, and . Yp, which can be split into

two parts as follows:

.LReg_p(Mp, Yp) = Rλ(Mp) + R(Yp), (5.104)

where .R(Yp) = log(Dp(Tp;Yp)), .Rλ(Mp) is a sparsity regularizer form with
parameters . λ and .Rλ(Mp) = λ||Mp||l1 .

As with the process in binarization, the update of the discriminators is omitted in
the following description. We have also omitted .log(·) for simplicity and rewritten
the optimization of Eq. 5.100 as:

.

min
Wp,Ŵp,Cp,Mp

λ1/2
Σ

l

Σ

i

||Wl
p,i − ClŴ l

p,i ||2 +
Σ

l

Σ

i

||1 − D(T l
p,i;Y)||2

+ LS_p(Wp, Ŵp, Cp) + 1

2n

||
||Rp − Tp

||
||2 + λ||Mp||l1 .

(5.105)

5.5 Network Pruning on BNNs 195

5.5.1.4 Learning Pruned RBCNs

In pruned RBCNs, the convolution is implemented as:

. F l
out,p = RBConv(F l

in,p; Ŵ l
p ◦ Ml

p,Cl
p) = Conv(F l

in,p, (Ŵp ◦ Ml
p) O Cl

p),

(5.106)

where . ◦ is an operator that obtains the pruned weight with mask . Mp. The other part
of the forward propagation in the pruned RBCNs is the same as in the RBCNs.

In pruned RBCNs, what needs to be learned and updated are full-precision filters
. Wp, learnable matrices . Cp, and soft mask . Mp. In each convolutional layer, these
three sets of parameters are jointly learned.

Update .Mp .Mp is updated by FISTA [42] with the initialization of .α(1) = 1. Then
we obtain the following:

. α(k+1) = 1

2
(1 +

/
1 + 4α2

(k)), (5.107)

. y(k+1) = Mp,(k) + a(k) − 1

a(k+1)
(Mp,(k) − Mp,(k−1)), (5.108)

. Mp,(k+1) = proxη(k+1)λ||·||1 (y(k+1) − ηk+1
∂(LAdv_p + LData_p)

∂(y(k+1))
), (5.109)

where .ηk+1 is the learning rate in iteration .k+1 and . proxη(k+1)λ||·||1 (zi) = sign(zi)·
(|zi | − η0λ)+; more details can be found in [43].

Update .Wp Let .δWl
p,i

be the gradient of the full-precision filter .Wl
p,i . During back

propagation, the gradients pass to .Ŵ l
p,i first and then to .Wl

p,i . Furthermore:

. δWl
p,i

= ∂Lp

∂Ŵ l
p,i

= ∂LS_p

∂Ŵ l
p,i

+ ∂LAdv_p

∂Ŵ l
p,i

+ ∂LKernel_p

∂Ŵ l
p,i

+ ∂LData_p

∂Ŵ l
p,i

, (5.110)

and:

.Wl
p,i ← Wl

p,i − ηp,1δWl
p,i

, (5.111)

where .ηp,1 is the learning rate, .
∂LKernel_p

∂Ŵ l
p,i

and .
∂LAdv_p

∂Ŵ l
p,i

are:

.

∂LKernel_p

∂Ŵ l
p,i

= −λ1(W
l
p,i − Cl

pŴ l
p,i)C

l
p, (5.112)

196 5 Network Pruning

.
∂LAdv_p

∂Ŵ l
p,i

= −2(1 − D(T l
p,i;Yp))

∂Dp

∂Ŵ l
p,i

. (5.113)

And:

.

∂LData_p

∂Ŵ l
p,i

= −1

n
(Rp − Tp)

∂Tp

∂Ŵ l
p,i

, (5.114)

Update .Cp We further update the learnable matrix . Cl
p with . Wl

p and .Ml
p fixed. Let

.δCl
p
be the gradient of . Cl

p. Then we have:

.δCl
p

= ∂Lp

∂Ĉl
p

= ∂LS_p

∂Ĉl
p

+ ∂LAdv_p

∂Ĉl
p

+ ∂LKernel_p

∂Ĉl
p

+ ∂LData_p

∂Ĉl
p

, (5.115)

and:

.Cl
p ← Cl

p − ηp,2δCl
p
. (5.116)

and.
∂LKernel_p

∂Cl
p

and .
∂LAdv_p

∂Cl
p

are:

.

∂LKernel_p

∂Cl
p

= −λ1
Σ

i

(W l
p,i − Cl

pŴ l
p,i)Ŵ

l
p,i , (5.117)

.
∂LAdv_p

∂Cl
p

= −
Σ

i

2(1 − Dp(T l
p,i;Yp))

∂Dp

∂Cl
p

. (5.118)

Furthermore:

.

∂LData_p

∂Cl
p

= 1

n

Σ

i

(Rp − Tp)
∂Tp

∂Cl
p

. (5.119)

The complete training process is summarized in Algorithm 10, including the update
of the discriminators.

5.5.1.5 Ablation Study

This section investigates the contributions of kernel approximation, GAN, and the
update strategy in improving the performance of RBCNs, using CIFAR-100 dataset
and ResNet-18 with different kernel stages.

5.5 Network Pruning on BNNs 197

Algorithm 10: Pruned RBCN
Input: The training dataset, the pre-trained 1-bit CNNs model, the feature maps Rp from the

pre-trained model, the pruning rate, and the hyper-parameters, including the initial learning
rate, weight decay, convolution stride, and padding size.

Output: The pruned RBCN with updated parameters Wp , Ŵp , Mp and Cp .
1: repeat
2: Randomly sample a mini-batch;
3: // Forward propagation
4: Training a pruned architecture // Using Eqs. 5.17–5.22
5: for all l = 1 to L convolutional layer do
6: F l

out,p = Conv(F l
in,p, (̂Wl

p ◦ Mp) O Cl
p);

7: end for
8: // Backward propagation
9: for all l = L to 1 do
10: Update the discriminators Dl

p(·) by ascending their stochastic gradients:
11: ∇Dl

p
(log(Dl

p(Rl
p; Yp)) + log(1 − Dl

p(T l p; Yp)) + log(Dl
p(Tp; Yp)));

12: Update soft mask Mp by FISTA // Using Eqs. 5.24–5.26
13: Calculate the gradients δWl

p
; // Using Eqs. 5.27–5.31

14: Wl
p ← Wl

p − ηp,1δWl
p
; // Update the weights

15: Calculate the gradient δCl
p
; // Using Eqs. 5.32–5.36

16: Cl
p ← Cl

p − ηp,2δCl
p
; // Update the learnable matrix

17: end for
18: until the maximum epoch
19: Ŵ = sign(W).

Table 5.19 Performance (accuracy, %) contributions of the components in RBCNs on CIFAR-
100, where Bi =Bi-Real Net, R = RBConv, G =GAN, and B = update strategy. The numbers in
bold represent the best results

Kernel stage Bi R R+G R+G+B

RBCN 32-32-64-128 54.92 56.54 59.13 61.64
RBCN 32-64-128-256 63.11 63.49 64.93 65.38
RBCN 64-64-128-256 63.81 64.13 65.02 66.27

1. We replace the convolution in Bi-Real Net with our kernel approximation
(RBConv) and compare the results. The comparison is shown in the “Bi” and
“R” columns of Table 5.19. RBCN achieves an accuracy improvement of . 1.62%
over Bi-Real Net (.56.54% vs. .54.92%) using the same network structure as
in ResNet-18. This substantial improvement validates the effectiveness of the
learnable matrices.

2. Incorporating GAN into RBCN results in a further performance boost of . 2.59%
(.59.13% vs. .56.54%) with the kernel stage of 32-32-64-128. This demonstrates
that GAN helps to mitigate the problem of getting stuck in poor local minima
during training, leading to better overall performance.

3. We enhance RBCNs by updating the batch normalization (BN) layers with fixed
W and C after each epoch. This strategy further increases the accuracy by

198 5 Network Pruning

.2.51% (.61.64% vs. .59.13%) in CIFAR-100 with 32-32-64-128 kernel stage. This
improvement shows the effectiveness of the update strategy and its ability to
contribute to the model’s performance.

In summary, the kernel approximation, GAN, and the update strategy play crucial
roles in enhancing the accuracy of RBCNs, and their combined effect results in
significant improvements over the baseline Bi-Real Net, making RBCNs a powerful
choice for image classification tasks on CIFAR-100 dataset.

5.5.2 BONN: Bayesian Optimized Binary Neural Network

Bayesian learning is a statistical modeling paradigm based on Bayes’ theorem. It
provides practical learning algorithms and facilitates understanding of other learn-
ing methods. Bayesian learning is particularly advantageous in solving probabilistic
graphical models, enabling information exchange between perception and inference
tasks, handling conditional dependencies in high-dimensional data, and effective
uncertainty modeling. Bayesian neural networks (BayesNNs) have been extensively
studied, with recent developments in their efficacy [4, 36, 41, 57].

Estimating the posterior distribution is essential in Bayesian inference as it
represents uncertainties for both data and parameters. However, obtaining an exact
analytical solution for the posterior distribution is challenging due to the large
number of parameters in neural networks. To address this, various approaches have
been proposed, including optimization-based techniques like variational inference
(VI) and sampling-based methods such as Markov chain Monte Carlo (MCMC).
MCMC provides sampling-based estimates of the posterior distribution but is com-
putationally expensive for large datasets. On the other hand, VI tends to converge
faster and has been applied to various Bayesian models, including BayesNNs [5, 58].

Despite the progress in 1-bit quantization and network pruning, few works have
integrated both in a unified framework to enhance each other. However, introducing
pruning techniques into 1-bit CNNs is crucial. Not all filters and kernels are equally
important or suitable for quantization, as verified in subsequent experiments.

One potential approach is to perform pruning first, removing less important filters
or parameters from the network, and then apply 1-bit quantization to the remaining
network to achieve further compression.

However, pruning a 1-bit CNN requires special considerations due to the
difference between binarized and full-precision parameters. While 1-bit CNNs
tend to be more redundant before and after binarization, the pruning process must
carefully account for the impact of quantization on the remaining parameters.

Alternatively, conducting pruning over Bayesian neural networks (BNNs) is
a promising alternative. BNNs have been shown to provide better uncertainty
modeling and representation ability, making them suitable candidates for pruning
while preserving performance.

5.5 Network Pruning on BNNs 199

However, developing a unified framework to first calculate a 1-bit network and
then prune it remains an open challenge. The representation ability of 1-bit networks
may deteriorate due to quantization, affecting the backpropagation process and
rendering existing optimization schemes ineffective.

To tackle the challenge of designing a unified framework for pruning 1-bit
CNNs, Bayesian learning, a well-established global optimization scheme [5, 49],
is leveraged to prune 1-bit CNNs [16].

The Bayesian learning approach begins by binarizing the full-precision kernels
to two quantization values (centers), resulting in 1-bit CNNs. The quantization error
is minimized by modeling the full-precision kernels as a Gaussian mixture, where
each Gaussian is centered on its corresponding quantization value.

Using the two centers for 1-bit CNNs, a mixture model is constructed to
represent the full-precision kernels. Subsequently, the Bayesian learning framework
introduces a novel pruning operation for 1-bit CNNs. Filters are divided into two
groups, with the assumption that filters within each group follow the same Gaussian
distribution. The weights of filters in one group are then replaced with their average,
effectively pruning the network and reducing its complexity.

The general framework for this approach is illustrated in Fig. 5.18, and it
incorporates three innovative elements in the learning procedure of 1-bit CNNs with
compression: (1) minimizing the reconstruction error of the parameters before and
after quantization, (2) modeling the parameter distribution as a Gaussian mixture
with two modes centered on the binarized values, and (3) pruning the quantized
network by maximizing a posterior probability.

Further analysis leads to the development of three new losses and their corre-
sponding learning algorithms, namely, the Bayesian kernel loss, Bayesian feature
loss, and Bayesian pruning loss. These losses are jointly applied with the con-
ventional cross-entropy loss within the same back propagation pipeline, inheriting
the advantages of Bayesian learning during model quantization and pruning.
Additionally, the proposed losses comprehensively supervise the 1-bit CNN training
process concerning kernel and feature distributions.

In conclusion, the application of Bayesian learning in pruning 1-bit CNNs
presents a promising direction for improving the compressed model’s applicability
in practical applications.

5.5.2.1 Bayesian Formulation for Compact 1-Bit CNNs

The state-of-the-art methods for learning 1-bit CNNs, such as [15, 39, 53], involve
optimization in both continuous and discrete spaces. Training a 1-bit CNN typically
comprises three steps: a forward pass (inference) using binarized weights (. ̂x), a
backward pass involving gradient calculations, and a parameter update that leads to
full-precision weights (. x).

The crucial factor influencing the performance of a quantized network, as
demonstrated in [15, 39, 53], is how to connect the binarized weights . ̂x with
the full-precision weights . x. This connection determines the effectiveness of the

200 5 Network Pruning

Fig. 5.18 The evolution of the prior .p(x), the distribution of the observation . y, and the posterior
.p(x|y) during learning, where . x is the latent variable representing the full-precision parameters
and . y is the quantization error. Initially, the parameters . x are initialized according to a single-
mode Gaussian distribution. When our learning algorithm converges, the ideal case is that (i) . p(y)

becomes a Gaussian distribution .N(0, ν), which corresponds to the minimum reconstruction error,
and (ii) .p(x|y) = p(x) is a Gaussian mixture distribution with two modes where the binarized
values . ̂x and . −x̂ are located

quantized model. In this paper, the authors propose to address this challenge using
a probabilistic framework to learn optimal 1-bit CNNs.

5.5.2.2 Bayesian Learning Losses

Bayesian kernel loss Given a network weight parameter . x, its quantized code
should be as close to its original (full-precision) code as possible so that the
quantization error is minimized. We then define:

.y = w−1 ◦ x̂ − x, (5.120)

where .x, x̂ ∈ Rn are the full-precision and quantized vectors, respectively, . w ∈ Rn

denotes the learned vector to reconstruct . x, . ◦ represents the Hadamard product, and
.y ∼ G(0, ν) is the reconstruction error that is assumed to obey a Gaussian prior
with zero mean and variance . ν. Under the most probable . y (corresponding to . y = 0
and .x = w−1 ◦ x̂, i.e., the minimum reconstruction error), we maximize .p(x|y) to
optimize . x for quantization (e.g., 1-bit CNNs) as:

.maxp(x|y), (5.121)

5.5 Network Pruning on BNNs 201

Fig. 5.19 By considering the prior distributions of the kernels and features in the Bayesian
framework, we achieve three new Bayesian losses to optimize the 1-bit CNNs. The Bayesian
kernel loss improves the layer-wise kernel distribution of each convolutional layer, the Bayesian
feature loss introduces the intraclass compactness to alleviate the disturbance induced by the
quantization process, and the Bayesian pruning loss centralizes channels following the same
Gaussian distribution for pruning. The Bayesian feature loss is applied only to the fully connected
layer

which can be solved based on Bayesian learning that uses Bayes’ theorem to
determine the conditional probability of a hypothesis given limited observations.
We note that the calculation of BNNs is still based on optimizing . x, as shown
in Fig. 5.19, where the binarization is performed based on the sign function.
Equation 5.121 is complicated and difficult to solve due to the unknown .w−1 as
shown in Eq. 5.120. From a Bayesian learning perspective, we resolve this problem
via maximum a posteriori (MAP):

.

maxp(x|y) = maxp(y|x)p(x)

= min ||x̂ − w ◦ x||22 − 2ν log
(
p(x)

)
,

(5.122)

where

.p(y|x) ∝ exp(− 1

2ν
||y||22) ∝ exp(− 1

2ν
||x̂ − w ◦ x||22). (5.123)

In Eq. 5.123, we assume that all components of the quantization error y are i.i.d.,
thus resulting in a simplified form. As shown in Fig. 5.19, for 1-bit CNNs, x is
usually quantized to two numbers with the same absolute value. We neglect the
overlap between the two numbers, and thus p(x) is modeled as a Gaussian mixture

202 5 Network Pruning

with two modes:

.

p(x)= 1

2
(2π)−

N
2 det(ψ)−

1
2

{

exp
(− (x − μ)T ψ−1(x − μ)

2

)

+ exp
(− (x + μ)T ψ−1(x + μ)

2

)
}

≈ 1

2
(2π)−

N
2 det(ψ)−

1
2

{

exp
(− (x+−μ+)Tψ+−1(x+ − μ+)

2

)

+ exp
(− (x− + μ−)T ψ−−1(x− + μ−)

2

)
}

,

(5.124)

where x is divided into x+ and x− according to the signs of the elements in x, and
N is the dimension of x. Accordingly, Eq. 5.122 can be rewritten as:

.

min||x̂ − w ◦ x||22 + ν(x+ − μ+)T ψ−1+ (x+ − μ+)

+ ν(x− + μ−)T ψ−1− (x− + μ−) + ν log
(
det(ψ)

)
,

(5.125)

where μ− and μ+ are solved independently. det(ψ) is accordingly set to be the
determinant of the matrix ψ− or ψ+. We call Eq. 5.125 the Bayesian kernel loss.

Bayesian feature loss We also design a Bayesian feature loss to alleviate the
disturbance caused by the extreme quantization process in 1-bit CNNs. Considering
the intraclass compactness, the features f m of the m-th class supposedly follow a
Gaussian distribution with the mean cm as revealed in the center loss [64]. Similarly
to the Bayesian kernel loss, we define ym

f = f m − cm and ym
f ∼ N(0, σm), and we

have:

.min||f m − cm||22+
NfΣ

n=1

[

σ−2
m,n(fm,n−cm,n)

2+log(σ 2
m,n)

]

, (5.126)

which is called the Bayesian feature loss. In Eq. 5.126, σm,n, fm,n and cm,n are the
n-th elements of σm, f m and cm, respectively. We take the latent distributions of
kernel weights and features into consideration in the same framework and introduce
Bayesian losses to improve the capacity of 1-bit CNNs.

5.5.2.3 Bayesian Pruning

After binarizing CNNs, we prune the 1-bit CNNs using a Bayesian learning
framework. The idea is to group similar channels together and then replace filters
within each group with their average during optimization. The representation of the
kernel weights of the l-th layer is a tensor . K l with dimensions .Cl

o × Cl
i × Hl × Wl ,

5.5 Network Pruning on BNNs 203

where . Cl
o and . Cl

i are the numbers of output and input channels, respectively, and . Hl

and . Wl represent the height and width of the kernels.
To simplify the notation, we define . K l as a concatenation of individual filters

. K l
i for .i = 1, 2, . . . , Cl

o, where . K
l
i is a three-dimensional filter with dimensions

.Cl
i × Hl × Wl .
The pruning process begins by using the K-means algorithm to divide the filters

into different groups based on similarity. The assumption is that filters within each
group follow the same Gaussian distribution during training. The goal is to find
the average . K that can replace all . K i’s within the same group, which effectively
assimilates similar filters into a single one.

This pruning problem leads to a similar formulation as in Eq. 5.122, and it
involves learning the average filter . K with a Gaussian distribution constraint. This
type of learning process with a Gaussian distribution constraint has been widely
considered in other works [18].

Accordingly, Bayesian learning is used to prune 1-bit CNNs. We denote . ε as the
difference between a filter and its mean, i.e., .ε = K − K , following a Gaussian
distribution for simplicity. To calculate . K , we minimize . ε based on MAP in our
Bayesian framework, and we have:

.K = argmax
K

p(K|ε) = argmax
K

p(ε|K)p(K), (5.127)

.p(ε|K) ∝ exp(− 1

2ν
||ε||22) ∝ exp(− 1

2ν
||K − K||22), (5.128)

and .p(K) is similar to Eq. 5.124 but with one mode. Thus, we have:

.
min||K − K||22 + ν(K − K)T ψ−1(K − K)

+ ν log
(
det(ψ)

)
,

(5.129)

which is called the Bayesian pruning loss. In summary, the proposed Bayesian
pruning approach is more general, assuming that similar kernels follow a Gaussian
distribution and are represented by their centers for pruning. This results in a
more flexible and suitable pruning method for binary neural networks compared
to existing techniques. We introduce Bayesian losses and Bayesian pruning within
the same framework, considering the latent distributions of kernel weights, features,
and filters. This enhances the capacity of 1-bit CNNs and captures uncertainties,
leading to improved performance. Experimental results demonstrate that the pro-
posed Bayesian optimization-based neural networks (BONNs) outperform existing
pruning methods.

204 5 Network Pruning

5.5.2.4 BONNs

We employ the three Bayesian losses to optimize 1-bit CNNs, which form our
Bayesian optimized 1-bit CNNs (BONNs). To do this, we reformulate the first two
Bayesian losses for 1-bit CNNs as:

.

LB = λ

2

LΣ

l=1

Cl
oΣ

i=1

Cl
iΣ

n=1

{||k̂l,i

n − wl ◦ kl,i
n ||22

+ ν(kl,i
n + − μl

i+)T (ψ l
i+)−1(kl,i

n + − μl
i+)

+ ν(kl,i
n − + μl

i−)T (ψ l
i−)−1(kl,i

n − + μl
i−)

+ ν log(det(ψ l))
} + θ

2

MΣ

m=1

{||f m − cm||22

+
NfΣ

n=1

[
σ−2

m,n(fm,n − cm,n)
2 + log(σ 2

m,n)
] }

,

(5.130)

where .kl,i
n , l ∈ {1, . . . , L}, i ∈ {1, . . . , Cl

o}, n ∈ {1, . . . , Cl
i }, is the vectorization

of the i-th kernel matrix at the l-th convolutional layer, . wl is a vector used to
modulate . kl,i

n , and . μl
i and . ψ

l
i are the mean and covariance of the i-th kernel vector

at the l-th layer, respectively. And we term .LB the Bayesian optimization loss.
Furthermore, we assume that the parameters in the same kernel are independent.
Thus, . ψ l

i becomes a diagonal matrix with the identical value .(σ l
i)

2, where .(σ l
i)

2 is
the variance of the i-th kernel of the l-th layer.

In order to speed up the calculation of the inverse of . ψ l
i , all elements of . μl

i

are made identical and equal to . μl
i . Additionally, during the forward process in the

implementation, all elements of . wl are replaced by their average. This optimization
results in only a scalar instead of a matrix being involved in the inference, leading
to significantly accelerated computation.

After training 1-bit CNNs, the Bayesian pruning loss .LP is utilized for the
optimization of feature channels. The expression for . LP is given by:

.

LP =
LΣ

l=1

JlΣ

j=1

IjΣ

i=1

{||K l
i,j − K

l

j ||22

+ ν(K l
i,j − K

l

j)
T (ψ l

j)
−1(K l

i,j − K
l

j) + ν log
(
det(ψ l

j)
)}

,

(5.131)

where . Jl is the number of Gaussian clusters (groups) of the l-th layer, and .K l
i,j for

.i = 1, 2, . . . , Ij , are the . K l
i’s that belong to the j -th group. In the implementation,

5.5 Network Pruning on BNNs 205

. Jl is defined as .int(Cl
o × ε), where . ε is a predefined pruning rate, and one . ε is used

for all layers.

Notably, when the j -th Gaussian has only one sample .K l
i,j , .K

l

j = K l
i,j , and . ψj

becomes a unit matrix.
In the BONN framework, the total loss L is a combination of three individual

losses: the cross-entropy loss . LS , the Bayesian optimization loss . LB , and the
Bayesian pruning loss . LP . The expression for the total loss is given as:

.L = LS + LB + ζLP , (5.132)

where . ζ is a hyperparameter that is set to 0 during binarization training and 1
during pruning. The Bayesian optimization loss . LB constrains the distribution of
the convolution kernels to a symmetric Gaussian mixture with two modes. It ensures

that the quantization error is minimized through the term .||k̂l,i

n − wl ◦ kl,i
n ||22, where

. ̂k
l,i

n is the quantized kernel and . wl is the learnable vector used to reconstruct the full-
precision kernel . kl,i

n . The Bayesian feature loss works to modify the distribution of
the features, reducing intraclass variation for improved classification performance.
Finally, the Bayesian pruning loss drives the kernels toward their means, effectively
compressing the 1-bit CNNs further by assimilating similar filters into single ones.

5.5.2.5 Forward Propagation

During forward propagation in BONNs, the binarized kernels and activations
significantly accelerate the convolution computation. The reconstruction vector,
denoted as . w in Eq. 5.120, plays a crucial role in 1-bit CNNs. . wl becomes a scalar . wl

in each layer, where . wl is the mean of . wl and is calculated online. The convolution
process can be represented as:

.O l+1 = ((wl)−1K̂
l
) ∗ Ô

l = (wl)−1(K̂
l ∗ Ô

l
), (5.133)

where . Ô
l
denotes the binarized feature map of the l-th layer, and .Ol+1 is the feature

map of the .(l + 1)-th layer. As shown in Eq. 5.133, the actual convolution is still
binary, and .Ol+1 is obtained by simply multiplying .(wl)−1 and the binarization
convolution. For each layer, only one floating-point multiplication is added, which
is negligible for BONNs.

In addition, we consider the Gaussian distribution in the forward process of
Bayesian pruning, which updates every filter in one group based on its mean.

Specifically, we replace each filter .K l
i,j = (1 − γ)K l

i,j + γK
l

j during pruning.

206 5 Network Pruning

Algorithm 11: Optimizing 1-bit CNNs with Bayesian learning
Input:

The full-precision kernels k, the reconstruction vector w, the learning rate η,
regularization parameters λ, θ and variance ν, and the training dataset.

Output:
The BONN with the updated k, w, μ, σ , cm, σm.

1: Initialize k and w randomly, and then estimate μ, σ based on the average and variance of
k, respectively;

2: repeat
3: // Forward propagation
4: for l = 1 to L do
5: k̂

l
i = wl ◦ sign(kl

i), ∀i; // Each element of wl is replaced by the average of all
elements wl .

6: Perform activation binarization; // Using the sign function

7: Perform 2D convolution with k̂
l
i , ∀i;

8: end for
9: // Backward propagation
10: Compute δ

k̂
l
i
= ∂Ls

∂ ̂k
l
i
,∀l, i;

11: for l = L to 1 do
12: Calculate δkl

i
, δwl , δμl

i
, δσ l

i
; // using Eqs. 5.134∼5.141

13: Update parameters kl
i , wl , μl

i , σ
l
i using SGD;

14: end for
15: Update cm, σm;
16: until convergence

5.5.2.6 Asynchronous Backward Propagation

To minimize Eq. 5.130, we update . kl,i
n , . wl , . μl

i , . σ
l
i , . cm, and .σm using stochastic

gradient descent (SGD) in an asynchronous manner, which updates . w instead of . w
as elaborated below.

Updating .kl,i
n We define .δkl,i

n
as the gradient of the full-precision kernel . kl,i

n , and
we have:

.δkl,i
n

= ∂L

∂kl,i
n

= ∂LS

∂kl,i
n

+ ∂LB

∂kl,i
n

. (5.134)

For each term in Eq. 5.134, we have:

.

∂LS

∂kl,i
n

= ∂LS

∂ k̂
l,i

n

∂ k̂
l,i

n

∂(wl ◦ kl,i
n)

∂(wl ◦ kl,i
n)

∂kl,i
n

= ∂LS

∂ k̂
l,i

n

◦ 1−1≤wl◦kl,i
n ≤1 ◦ wl ,

(5.135)

5.5 Network Pruning on BNNs 207

.

∂LB

∂kl,i
n

= λ{wl ◦
[
wl ◦ kl,i

n − k̂
l,i

n

]

+ ν[(σ l
i)

−2 ◦ (kl
i+ − μl

i+)

+ (σ l
i)

−2 ◦ (kl
i− + μl

i−)],

(5.136)

where . 1 is the indicator function that is widely used to estimate the gradient of
nondifferentiable parameters [53], and .(σ l

i)
−2 is a vector whose elements are all

equal to .(σ l
i)

−2.

Updating . wl Unlike the forward process, . w is used in back propagation to
calculate the gradients. This process is similar to the way to calculate . x̂ from . x
asynchronously. Specifically, . δwl is composed of the following two parts:

.δwl = ∂L

∂wl
= ∂LS

∂wl
+ ∂LB

∂wl
. (5.137)

For each term in Eq. 5.137, we have:

.

∂LS

∂wl
=

IlΣ

i=1

NIlΣ

n=1

∂LS

∂ k̂
l,i

n

∂ k̂
l,i

n

∂(wl ◦ kl,i
n)

∂(wl ◦ kl,i
n)

∂wl

=
IlΣ

i=1

NILΣ

n=1

∂LS

∂ k̂
l,i

n

◦ 1−1≤wl◦kl,i
n ≤1 ◦ kl,i

n ,

(5.138)

.
∂LB

∂wl
= λ

IlΣ

i=1

NIlΣ

n=1

(wl ◦ kl,i
n − k̂

l,i

n) ◦ kl,i
n . (5.139)

Updating . μl
i and . σ

l
i Note that we use the same . μl

i and . σ
l
i for each kernel (see

Sect. 3.2). So, the gradients here are scalars. The gradients . δμl
i
and . δσ l

i
are calculated

as:

.

δμl
i
= ∂L

∂μl
i

= ∂LB

∂μl
i

= λν

Cl
i ×Hl×Wl

Cl
iΣ

n=1

Hl×Wl
Σ

p=1

⎧
⎨

⎩

(σ l
i)

−2(μl
i − kl,i

n,p), kl,i
n,p ≥ 0,

(σ l
i)

−2(μl
i + kl,i

n,p), kl,i
n,p < 0,

(5.140)

208 5 Network Pruning

.

δσ l
i

= ∂L

∂σ l
i

= ∂LB

∂σ l
i

= λν

Cl
i×Hl×Wl

Cl
iΣ

n=1

Hl×Wl
Σ

p=1

⎧
⎨

⎩

−(σ l
i)

−3(kl,i
n,p−μl

i)
2+(σ l

i)
−1,kl,i

n,p ≥0,

−(σ l
i)

−3(kl,i
n,p+μl

i)
2+(σ l

i)
−1,kl,i

n,p <0,

(5.141)

where .kl,i
n,p, p ∈ {1, . . . , H l × Wl}, denotes the p-th element of . kl,i

n . In the fine-
tuning process, we update . cm using the same strategy as center loss [64]. The update
of .σm,n based on . LB is straightforward and is not elaborated here for brevity.

Updating .K l
i,j In pruning, we aim to converge the filters to their mean gradually.

So we replace each filter .K l
i,j with its corresponding mean .K

l

i,j . The gradient of the
mean is represented as follows:

.

∂L

∂K l
i,j

= ∂LS

∂K l
i,j

+ ∂LB

∂K l
i,j

+ ∂LP

∂K l
i,j

= ∂LS

∂K
l

j

∂K
l

j

∂K l
i,j

+ ∂LB

∂K
l

j

∂K
l

j

∂K l
i,j

+ ∂LP

∂K l
i,j

= 1

Ij

(∂LS

∂K
l

j

+ ∂LB

∂K
l

j

) + 2(K l
i,j −Kj)

+ 2ν(ψ l
j)

−1(K l
i,j −Kj),

(5.142)

where .K
l

j = 1
Ij

ΣIj

i=1 K l
i,j that is used to update the filters in a group by mean

. K
l

j . We leave the first filter in each group to prune redundant filters and remove the
others. However, such an operation changes the distribution of the input channel of
the batch norm layer, resulting in a dimension mismatch for the next convolutional
layer. To solve the problem, we keep the size of the batch norm layer, whose values
correspond to the removed filters, set to zero. In this way, the removed information
is retained to the greatest extent. In summary, we show that the proposed method
is trainable from end to end. The learning procedure is detailed in Algorithms 11
and 12 (Figs. 5.20 and 5.21).

5.5.2.7 Ablation Study

Hyperparameter Selection In this section, we conduct evaluations to study the
effects of hyperparameters on the performance of BONNs, specifically focusing on
. λ and . θ . These hyperparameters are used to balance the Bayesian kernel loss and the
Bayesian feature loss, respectively, and are crucial in adjusting the distributions of

5.5 Network Pruning on BNNs 209

Algorithm 12: Pruning 1-bit CNNs with Bayesian learning
Input:

The pre-trained 1-bit CNN model with parameters K , the reconstruction vector w, the
learning rate η, regularization parameters λ, θ , variance ν and convergence rate γ and
the training dataset.

Output:
The pruned BONN with updated K , w, μ, σ , cm, σm.

1: repeat
2: // Forward propagation
3: for l = 1 to L do
4: K l

i,j = (1 − γ)K l
i,j + γ K l j ;

5: k̂
l
i = wl ◦ sign(kl

i), ∀i; // Each element of wl is replaced by the average of all
elements wl .

6: Perform activation binarization; // Using the sign function

7: Perform 2D convolution with k̂
l
i , ∀i;

8: end for
9: // Backward propagation
10: Compute δ

k̂
l
i
= ∂Ls

∂ ̂k
l
i
,∀l, i;

11: for l = L to 1 do
12: Calculate δkl

i
, δwl , δμl

i
, δσ l

i
; // using Eqs. 5.137∼5.142

13: Update parameters kl
i , wl , μl

i , σ
l
i using SGD;

14: end for
15: Update cm, σm;
16: until Filters in the same group are similar enough

kernels and features for better performance.We use wide residual networks (WRN-
22 and WRN-40) for our evaluations. The implementation details are provided
below.

In Table 5.20, we vary . λ while setting . θ to zero to understand the influence of the
Bayesian kernel loss on the kernel distribution. The results show that incorporating
the Bayesian kernel loss effectively improves the accuracy on CIFAR-10. However,
simply increasing . λ does not lead to higher accuracy. Instead, finding an appropriate
value of . λ is essential to strike the right balance between the cross-entropy loss and
the Bayesian kernel loss. For instance, when . λ is set to .1e − 4, we achieve the best
classification accuracy, indicating an optimal balance.

Next, we study the effect of the hyperparameter . θ on the intraclass variations
of features using different values of . θ . Similar to the observations with . λ, the
classification accuracy varies with . θ , demonstrating that the Bayesian feature loss
can contribute to better classification accuracy when an appropriate value of . θ is
chosen.

Furthermore, we evaluate the convergence performance of our method in com-
parison to other methods using ResNet-18 on ImageNet ILSVRC12. The training
curve of XNOR-Net shows vigorous oscillations, which suggests suboptimal learn-
ing. In contrast, our BONN achieves better training and test accuracy, indicating
improved convergence performance.

210 5 Network Pruning

Fig. 5.20 The images on the left are the input images chosen from the ImageNet ILSVRC12
dataset. Right images are feature maps and binary feature maps from different layers of BONNs.
The first and third rows are feature maps for each group, while the second and fourth rows are
corresponding binary feature maps. Although binarization of the feature map causes information
loss, BONNs could extract essential features for accurate classification

Effectiveness of Bayesian Binarization on ImageNet ILSVRC12 We experi-
mented with examining how each loss affects performance better to understand
Bayesian losses on the large-scale ImageNet ILSVRC12 dataset. Based on the
experiments described above, we set . λ to .1e − 4 and . θ to .1e − 3 if they are used.
As shown in Table 5.21, both the Bayesian kernel loss and Bayesian feature loss
can independently improve the accuracy on ImageNet. When applied together, the
Top-1 accuracy reaches the highest value of 59.3%.

Weight Distribution Figure 5.22 further illustrates the distribution of the kernel
weights, with . λ fixed to .1e − 4. During the training process, the distribution
gradually approaches the two-mode GMM, as assumed previously, confirming
the effectiveness of the Bayesian kernel loss in a more intuitive way. We also
compare the kernel weight distribution between XNOR-Net and BONN. As shown
in Fig. 5.23, the kernel weights learned in XNOR-Net are tightly distributed around

5.5 Network Pruning on BNNs 211

Epoch
0 10 20 30 40 50 60 70

A
cc

ur
ac

y

10

15

20

25

30

35

40

45

50

55

60

Top-1 on ImageNet

BONN-Train
BONN-Test
XNOR-Train
XNOR-Test

Epoch
0 10 20 30 40 50 60 70

A
cc

ur
ac

y

20

30

40

50

60

70

80

Top-5 on ImageNet

BONN-Train
BONN-Test
XNOR-Train
XNOR-Test

Fig. 5.21 Training and test accuracies on ImageNet when λ = 1e − 4 shows the superiority of the
proposed BONN over XNOR-Net. The backbone of the two networks is ResNet-18

Table 5.20 With different λ and θ , we evaluate the accuracies of BONNs based on WRN-22
and WRN-40 on CIFAR-10/CIFAR-100. When varying λ, the Bayesian feature loss is not used
(θ = 0). However, when varying θ , we choose the optimal loss weight (λ = 1e − 4) for the
Bayesian kernel loss

WRN-22 (BONN) WRN-40 (BONN)

Hyper-param. CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

λ 1e − 3 85.82 59.32 85.79 58.84

1e − 4 86.23 59.77 87.12 60.32
1e − 5 85.74 57.73 86.22 59.93

0 84.97 55.38 84.61 56.03

θ 1e − 2 87.34 60.31 87.23 60.83

1e − 3 86.49 60.37 87.18 61.25
1e − 4 86.27 60.91 87.41 61.03

0 86.23 59.77 87.12 60.32

Table 5.21 Effect of
Bayesian losses on the
ImageNet dataset. The
backbone is ResNet-18

Bayesian kernel loss x Y x Y

Bayesian feature loss x x Y Y

Accuracy Top-1 56.3 58.3 58.4 59.3
Top-5 79.8 80.8 80.8 81.6

the threshold value, but those in BONN are regularized in a two-mode GMM style.
Figure 5.24 shows the evolution of the binarized values during the training process
of XNOR-Net and BONN. The two different patterns indicate that the binarized
values learned in BONN are more diverse.

212 5 Network Pruning

Fig. 5.22 We demonstrate the kernel weight distribution of the first binarized convolutional layer
of BONNs. Before training, we initialize the kernels as a single-mode Gaussian distribution. From
the 2-th epoch to the 200-th epoch, with . λ fixed to .1e − 4, the distribution of the kernel weights
becomes more and more compact with two modes, which confirms that the Bayesian kernel loss
can regularize the kernels into a promising distribution for binarization

Fig. 5.23 The weight distributions of XNOR and BONN are based on WRN-22 (2nd, 8th, and
14th convolutional layers) after 200 epochs. The weight distribution difference between XNOR and
BONN indicates that the kernels are regularized across the convolutional layers with the proposed
Bayesian kernel loss

References 213

–0.06 –0.04 –0.02 0.00 0.02 0.04 0.06 –0.03 –0.02 –0.01 0.00 0.01 0.02 0.03 –0.03 –0.02 –0.01 0.00 0.01 0.02 0.03

epoch=200
Var=1.09e-05

epoch=20
Var=3.24e-05

epoch=2
Var=8.32e-05

Fig. 5.24 Evolution of the binarized values, |x|s, during the XNOR and BONN training process.
They are both based on WRN-22 (2nd, 3rd, 8th, and 14th convolutional layers), and the curves
do not share the same y-axis. The binarized values of XNOR-Net tend to converge to small and
similar values, but these of BONN are learned diversely

Table 5.22 Effect of
Bayesian feature loss on the
ImageNet dataset. The core is
ResNet-18 and ResNet-50
with real value

Model ResNet-18 ResNet-50

Bayesian feature loss x Y x Y

Accuracy Top-1 69.3 69.9 76.6 77.0
Top-5 89.2 89.8 92.4 92.7

Effectiveness of Bayesian Feature Loss on Real-Valued Models
We have applied our Bayesian feature loss on real-valued models, specifically
ResNet-18 and ResNet-50 [19]. During retraining, we incorporated our Bayesian
feature loss for 70 epochs, setting the hyperparameter θ to 1e − 3. The SGD
optimizer was used with an initial learning rate of 0.1, and a learning rate schedule
that decreases to 10% every 30 epochs.

The results, as shown in Table 5.22, demonstrate that our Bayesian feature loss
significantly improves the performance of models with real values. Specifically,
the Top-1 accuracies of ResNet-18 and ResNet-50 are boosted by 0.6% and 0.4%,
respectively.

References

1. Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks. In
Advances in neural information processing systems, pages 2270–2278, 2016.

2. Jose M Alvarez and Mathieu Salzmann. Compression-aware training of deep networks. In
Advances in Neural Information Processing Systems, pages 856–867, 2017.

3. Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

4. Christopher M Bishop. Bayesian neural networks. Journal of the Brazilian Computer Society,
4(1):61–68, 1997.

5. Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncer-
tainty in neural network. In Proceedings of the International Conference on Machine Learning,
pages 1613–1622, 2015.

214 5 Network Pruning

6. Neill DF Campbell, George Vogiatzis, Carlos Hernández, and Roberto Cipolla. Using multiple
hypotheses to improve depth-maps for multi-view stereo. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 766–779. Springer, 2008.

7. Robert T Collins. A space-sweep approach to true multi-image matching. In Proceedings
CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages
358–363. IEEE, 1996.

8. Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning
very deep convolutional networks with complicated structure. In CVPR, pages 4943–4953,
2019.

9. Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan. More is less: A more complicated
network with less inference complexity. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5840–5848, 2017.

10. Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview stereopsis. IEEE
transactions on pattern analysis and machine intelligence, 32(8):1362–1376, 2009.

11. Silvano Galliani, Katrin Lasinger, and Konrad Schindler. Massively parallel multiview
stereopsis by surface normal diffusion. In Proceedings of the IEEE International Conference
on Computer Vision, pages 873–881, 2015.

12. Andre Gaschler, Darius Burschka, and Gregory Hager. Epipolar-based stereo tracking without
explicit 3d reconstruction. In 2010 20th International Conference on Pattern Recognition,
pages 1755–1758. IEEE, 2010.

13. Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
International Conference on Artificial Intelligence and Statistics (AISTATS), pages 315–323,
2011.

14. Tom Goldstein, Christoph Studer, and Richard Baraniuk. A field guide to forward-backward
splitting with a fasta implementation. arXiv preprint arXiv:1411.3406, 2014.

15. Jiaxin Gu, Ce Li, Baochang Zhang, Jungong Han, Xianbin Cao, Jianzhuang Liu, and David
Doermann. Projection convolutional neural networks for 1-bit cnns via discrete back
propagation. In Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

16. Jiaxin Gu, Junhe Zhao, Xiaolong Jiang, Baochang Zhang, Jianzhuang Liu, Guodong Guo, and
Rongrong Ji. Bayesian optimized 1-bit cnns. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 4909–4917, 2019.

17. Shuhang Gu, Wangmeng Zuo, Qi Xie, Deyu Meng, Xiangchu Feng, and Lei Zhang. Convolu-
tional sparse coding for image super-resolution. In ICCV, pages 1823–1831, 2015.

18. Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The elements of
statistical learning: data mining, inference and prediction. The Mathematical Intelligencer,
27(2):83–85, 2005.

19. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

20. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pages 770–778, 2016.

21. Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning
for accelerating deep convolutional neural networks. In International Joint Conference on
Artificial Intelligence (IJCAI), pages 2234–2240, 2018.

22. Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median
for deep convolutional neural networks acceleration. In CVPR, pages 4340–4349, 2019.

23. Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. In ICCV, pages 1398–1406, 2017.

24. Felix Heide, Wolfgang Heidrich, and Gordon Wetzstein. Fast and flexible convolutional sparse
coding. In CVPR, pages 5135–5143, 2015.

25. Andrew Howard. Real-time stereo visual odometry for autonomous ground vehicles. In
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3946–3952.
IEEE, 2008.

References 215

26. Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3.
In IEEE International Conference on Computer Vision (ICCV), pages 1314–1324, 2019.

27. Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra Ahuja, and Jia-Bin Huang. Deepmvs:
Learning multi-view stereopsis. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2821–2830, 2018.

28. Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural
networks. In ECCV, pages 304–320, 2018.

29. Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural
networks. In ECCV, pages 304–320, 2018.

30. Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

31. Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola, and Henrik Aanæs. Large scale
multi-view stereopsis evaluation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 406–413, 2014.

32. Mengqi Ji, Juergen Gall, Haitian Zheng, Yebin Liu, and Lu Fang. Surfacenet: An end-to-end 3d
neural network for multiview stereopsis. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2307–2315, 2017.

33. Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy, Abraham
Bachrach, and Adam Bry. End-to-end learning of geometry and context for deep stereo
regression. In Proceedings of the IEEE International Conference on Computer Vision, pages
66–75, 2017.

34. Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

35. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS),
pages 1097–1105, 2012.

36. Jouko Lampinen and Aki Vehtari. Bayesian approach for neural networks—review and case
studies. Neural networks, 14(3):257–274, 2001.

37. Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. In Artificial intelligence and statistics, pages 562–570, 2015.

38. Thomas Lemaire, Cyrille Berger, Il-Kyun Jung, and Simon Lacroix. Vision-based slam: Stereo
and monocular approaches. International Journal of Computer Vision, 74(3):343–364, 2007.

39. Cong Leng, Zesheng Dou, Hao Li, Shenghuo Zhu, and Rong Jin. Extremely low bit neural
network: Squeeze the last bit out with admm. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 3466–3473, 2018.

40. Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

41. Faming Liang, Qizhai Li, and Lei Zhou. Bayesian neural networks for selection of drug
sensitive genes. Journal of the American Statistical Association, 113(523):955–972, 2018.

42. Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue Huang, and Baochang Zhang.
Accelerating convolutional networks via global & dynamic filter pruning. In IJCAI, pages
2425–2432, 2018.

43. Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, and David Doermann. Towards
optimal structured cnn pruning via generative adversarial learning. In CVPR, 2019.

44. Chunlei Liu, Wenrui Ding, Yuan Hu, Baochang Zhang, Jianzhuang Liu, Guodong Guo,
and David Doermann. Rectified binary convolutional networks with generative adversarial
learning. International Journal of Computer Vision, 129:998–1012, 2021.

45. Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real
net: Enhancing the performance of 1-bit cnns with improved representational capability and
advanced training algorithm. In Proceedings of the European conference on computer vision
(ECCV), pages 722–737, 2018.

46. Jianhao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep
neural network compression. In ICCV, pages 5068–5076, 2017.

216 5 Network Pruning

47. Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning for matrix
factorization and sparse coding. Journal of Machine Learning Research, 11(Jan):19–60, 2010.

48. M. Menze and A. Geiger. Object scene flow for autonomous vehicles. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 3061–3070, 2015.

49. Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of bayesian methods
for seeking the extremum. Towards global optimization, 2(117-129):2, 1978.

50. Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and Trends® in
Optimization, 1(3):127–239, 2014.

51. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems, pages 8024–8035, 2019.

52. Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical
University of Denmark, 7(15):510, 2008.

53. Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on
Computer Vision, pages 525–542. Springer, 2016.

54. Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, pages 4510–4520, 2018.

55. Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

56. Pravendra Singh, Vinay Kumar Verma, Piyush Rai, and Vinay Namboodiri. Leveraging filter
correlations for deep model compression. In The IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 835–844, 2020.

57. Shengyang Sun, Changyou Chen, and Lawrence Carin. Learning structured weight uncertainty
in bayesian neural networks. In Proceedings of the Artificial Intelligence and Statistics, pages
1283–1292, 2017.

58. Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional variational
bayesian neural networks. In Proceedings of the International Conference on Learning
Representations, pages 1–22, 2019.

59. Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

60. Engin Tola, Christoph Strecha, and Pascal Fua. Efficient large-scale multi-view stereo for ultra
high-resolution image sets. Machine Vision and Applications, 23(5):903–920, 2012.

61. Hanzi Wang, Daniel Mirota, Masaru Ishii, and Gregory D Hager. Robust motion estimation and
structure recovery from endoscopic image sequences with an adaptive scale kernel consensus
estimator. In 2008 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–7.
IEEE, 2008.

62. Runqi Wang, Baochang Zhang, Li’an Zhuo, Qixiang Ye, and David Doermann. Cogradient
descent for dependable learning. arXiv preprint arXiv:2106.10617, 2021.

63. Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity
in deep neural networks. In Advances in neural information processing systems, pages 2074–
2082, 2016.

64. Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning
approach for deep face recognition. In European Conference on Computer Vision (ECCV),
pages 499–515, 2016.

65. Xiang Xiang. A brief review on visual tracking methods. In Third Chinese Conference on
Intelligent Visual Surveillance, 2011.

66. Xiang Xiang, Daniel Mirota, Austin Reiter, and Gregory D Hager. Is multi-model feature
matching better for endoscopic motion estimation? In International Workshop on Computer-
Assisted and Robotic Endoscopy, pages 88–98. Springer, 2014.

67. Xiang Xiang, Zhiyuan Wang, Shan Lao, and Baochang Zhang. Pruning multi-view stereo net
for efficient 3d reconstruction. Isprs Journal of Photogrammetry and Remote Sensing, 168:17–
27, 2020.

References 217

68. Sheng Xu, Hanlin Chen, Xuan Gong, Kexin Liu, Jinhu Lu, and Baochang Zhang. Efficient
structured pruning based on deep feature stabilization. Neural Computing and Applications,
33:7409–7420, 2021.

69. Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. Mvsnet: Depth inference for
unstructured multi-view stereo. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 767–783, 2018.

70. Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. In ICLR, 2018.

71. Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei
Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance
score propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9194–9203, 2018.

72. Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional
networks. In CVPR, pages 2528–2535. IEEE, 2010.

73. Ziming Zhang and Venkatesh Saligrama. Rapid: Rapidly accelerated proximal gradient
algorithms for convex minimization. In International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 3796–3800, 2015.

74. et al. Zhang K, Schölkopf B. Learning causality and causality-related learning: some recent
progress. National science review, 2018.

75. Yuefu Zhou, Ya Zhang, Yanfeng Wang, and Qi Tian. Accelerate cnn via recursive bayesian
pruning. In ICCV, pages 3306–3315, 2019.

76. Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang.
Unet++: A nested u-net architecture for medical image segmentation. In Deep Learning in
Medical Image Analysis and Multimodalf Learning for Clinical Decision Support, pages 3–11.
Springer, 2018.

77. Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In
International Conference on Learning Representations (ICLR), pages 1–16, 2017.

Chapter 6
Applications

6.1 Introduction

The success of binary neural networks makes it possible to apply deep learning
models to edge computing. Neural network models have been used in various real
tasks with the help of these binary methods, including image classification, image
classification, speech recognition, and object detection and tracking. In this section,
we introduce the applications of binary neural networks in these fields.

In this chapter, we introduce the applications of binary neural networks in com-
puter vision. Specifically, we introduce the vision tasks, including object detection,
speech recognition, person reidentification, and 3D point cloud processing.

6.2 Image Classification

Image classification aims to group images into different semantic classes together.
Many works regard the completion of image classification as the criterion for
the success of binary neural networks. Five datasets are commonly used for
image classification tasks: MNIST [42], SVHN, CIFAR-10 [26], CIFAR-100, and
ImageNet [52]. Among them, ImageNet is the most difficult to train and consists of
100 classes of images. Table 2.1 shows the experimental results of some of the most
popular binary methods on ImageNet.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Zhang et al., Neural Networks with Model Compression,
Computational Intelligence Methods and Applications,
https://doi.org/10.1007/978-981-99-5068-3_6

219

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5068-3protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-981-99-5068-3_6
https://doi.org/10.1007/978-981-99-5068-3_6
https://doi.org/10.1007/978-981-99-5068-3_6
https://doi.org/10.1007/978-981-99-5068-3_6
https://doi.org/10.1007/978-981-99-5068-3_6
https://doi.org/10.1007/978-981-99-5068-3_6
https://doi.org/10.1007/978-981-99-5068-3_6
https://doi.org/10.1007/978-981-99-5068-3_6
https://doi.org/10.1007/978-981-99-5068-3_6
https://doi.org/10.1007/978-981-99-5068-3_6
https://doi.org/10.1007/978-981-99-5068-3_6

220 6 Applications

6.3 Speech Recognition

Speech recognition is a technique or capability that enables a program or system to
process human speech. We can use binary methods to complete speech recognition
tasks in edge computing devices.

Xiang et al. [67] applied binary DNNs to speech recognition tasks. Experiments
on TIMIT phone recognition and 50-hour Switchboard speech recognition show that
binary DNNs can run about four times faster than standard DNNs during inference,
with roughly 10.0% relative accuracy reduction.

Zheng et al. [74] and Yin et al. [71] also implement binarized convolutional
neural network-based speech recognition tasks.

6.3.1 1-Bit WaveNet: Compression of a Generative Neural
Network in Speech Recognition with Two Binarized
Methods

Instead of traditional speech recognition applications on remote servers, speech
recognition is gradually becoming popular on mobile devices. However, significant
memory and computational resource requirements restrict full-precision neural
networks. Before solving the hardware deployment problem on mobile devices, we
needed more parameters to run or store these DCNNs. To resolve these challenges,
Rastegari et al. [47] use binary operations to approximate convolutions using
binarized kernel weights and input. In recent years, Zhou et al. presented DoReFa-
Net [76] that could speed training and inference with 1-bit convolution filters with
low bit width parameter gradients. Lin et al. [33] binarized multiple activations
and weights to approximately replace the weights of real value. Consequently, the
degradation of prediction accuracy is decreased. Zhuang et al. proposed a two-
stage optimization method to quantize weights and activations and then train a
4-bit model. This results in no performance reduction compared to its real value
counterpart at the baseline. McDonnell [39] achieves equivalent binarized results
compared to the basic baseline by applying scaling factors to balance each layer
with constant unlearned values and standard deviations specific to the initial layer.
In contrast to baseline models, Wang et al. [61] proposed MCNs that only substitute
full-precision kernels with binarized parameters and obtain excellent performance.

Although these BNNs save considerable memory and computational power,
the accuracy of vision or speech tasks is reduced. The main explanations are as
follows: (1) In previous work, they rarely resolved the process of CNN binarization
by discrete optimization [10]. (2) Considering binarized and filter losses, existing
approaches could not trade them off well.

In this work, considering the outstanding achievements of BNNs in computer
vision and existing binary RNN research in speech recognition [46], we propose
a new binarization application through two technologies (Bi-Real Net [37] and

6.3 Speech Recognition 221

PCNN [15]) on WaveNet to accomplish our speech keyword recognition mission
and acquire the closest-to-baseline accuracy with subtle numerical error. We
demonstrate the principle of our new 1-bit WaveNet via extraordinary dilated causal
convolutions and residual blocks, which compress the baseline up to a third of its
original size with similar accuracy. Three technical novelties of our work include
the following: (1) the entire framework of our new 1-bit WaveNet [11] based on
binary dilated causal convolutions, which enlarge receptive fields, is presented in
our speech keyword recognition tasks to save memory and computational resources;
(2) a new application in speech recognition is proposed by binarization of 1D
convolution; and (3) an audio keywords dataset that could be tested by our model
and prepared to facilitate future research is collected and labeled.

6.3.1.1 Network Architecture

In this work, we propose a 1-bit neural network model [23] based on WaveNet that
has achieved exceptional performance on the raw audio waveform. WaveNet is a
deep autoregressive neural network with a point-by-point sampling method, and it
could achieve high-quality audio via a conditional probability formula as follows:

.P(X) =
N||

n=1

P (xn | x1, . . . , xn−1) (6.1)

where past speech samples from previous steps generate each . xn.
Figure 6.1 shows the 1-bit WaveNet architecture, which contains a preprocessing

data module that converts raw clear keyword spectrogram data into Mel frequency
cepstrum coefficient (MFCC) and then inputs these data into the main network, the
principal part of this WaveNet, which is composed of several residual blocks, and
a DenseNet that ensures that the outputs could be distributed as a categorical form
to facilitate the calculation, and, meanwhile, it could solve the overflow problem in
the model.

Dilated Causal Convolutions This WaveNet model is based on PixelCNN [56],
which discarded the pooling layers in the architecture but used a unique 1D
convolution many times, called the causal convolution. The modeling process could
certainly be in the correct time sequence, that is, the output . P (xn+1 | x1, . . . , xn)

produced by the model can only be generated from the present steps, but not from
the predictions of the future. After predicting each audio sample, the model receives
and applies it to the next prediction. Causal convolution-trained complicated
sequences save more time than traditional RNNs such as LSTMs or GRUs [44]
due to cutoff recurrent connections. Furthermore, convolutions with holes (dilated
convolutions) include a new hyperparameter named the dilation rate to increase
kernels’ reception field efficiently. Similarly to subsampled layers, the output and
the input of dilated convolutions have an equivalent size. Our model could use
only several layers to enlarge the receptive fields with considerable input resolution

222 6 Applications

Spectogram MFCC

Residual
Block

Labels
CTC

Loss
DensNet

Fig. 6.1 In the 1-bit WaveNet, a new binarized application via Bi-Real Net and PCNN is used to
compress the speech recognition model. This flowchart illustrates the network architecture with all
techniques in this work. See the text for a detailed description of the model

and reasonable computational resources. In our work, we apply five layers with the
dilation from . 20 to . 24.

Gated Activation Units and Residual Blocks We used the same gated activation
unit as the original WaveNet [44]:

.z = tanh
(
Wf,k ∗ x

) O σ
(
Wg,k ∗ x

)
(6.2)

where x is the output of dilated causal convolutions, W is a trainable convolution
kernel, . O denotes the Hadamard product, . ∗ denotes the convolutional operation,
and .σ(·) is a sigmoid function whose nonlinearity works better than other activation
functions in speech recognition tasks [41].

This model uses three residual blocks to accelerate the convergence process when
training deep convolutional neural networks. Figure 6.2 illustrates more details
about one of our residual blocks.

6.3 Speech Recognition 223

Fig. 6.2 The proposed residual block modified from WaveNet [44], which adds some of the
BatchNorm layers and our new 1-bit causal convolution.. ⊗ denotes the element-wise multiplication
operator

6.3.1.2 Bi-Real Net Binarization

In our neural network, we binarized weights through a sign function in 1-bit dilated
causal convolutions:

.wb = Sign (wr) =
{−1 if wr < 0

+1 otherwise
(6.3)

where . wr denotes the real weight. In the backward propagation of the training
process, we will use the real weight to update the binary weights called the
magnitude-aware gradient regarding the weights [37] to update the binary weights,
i.e., .Wl

b ∈ {−1,+1}. Because convolutions are one-dimensional in our 1-bit
WaveNet, .Wl

b in the following equations is a one-dimensional vector. Traditional
gradient descent is too small to update binary weights, so Courbariaux proposed
a training approach that used a full-precision weight and a sign function [5].
Therefore, . Wl

r will be changed in the back propagation as follows:

.Wl,t+1
r = Wl,t

r − η
∂L

∂Wl,t
r

= Wl,t
r − η

∂L
∂Wl,t

b

∂Wl,t
b

∂Wl,t
r

(6.4)

224 6 Applications

.
∂Wl,t

b (i, j)

∂Wl,t
r (i, j)

=
{
1 ifWl,t

r (i, j) ∈ [−1, 1]
0 otherwise

(6.5)

where .
∂Wl,t

b (i,j)

∂Wl,t
r (i,j)

denotes the element-wise derivative and . ∂L
∂Wl,t

b

is derived from the

chain rule. Given that, we proposed a new magnitude-aware function to substitute
the sign function as follows:

.W
l,t

b =

||||||Wl,t
r

||||||
1,1|||Wl,t

r

|||
Sign

(
Wl,t

r

)
(6.6)

Hence, . Wl
r updates to:

.Wl,t+1
r = Wl,t

r − η
∂L

∂W
l,t

b

∂W
l,t

b

∂Wl,t
r

(6.7)

where

.
∂W

l,t

b

∂Wl,t
r

≈

||||||Wl,t
r

||||||
1,1|||Wl,t

r

|||
(6.8)

.

∂ Sign
(
Wl,t

r

)

∂Wl,t
r

≈ 1|||Wl,t
r

|||<1
(6.9)

and . θ̄ l,t is related to the magnitude of .Wl,t
b . Eventually, as we show in Fig. 6.3, this

magnitude-aware function changes the weight’s sign obviously so that the stochastic
gradient descent (SGD) could not achieve this significant effect [37].

6.3.1.3 Projection Convolutional Neural Network Binarization

Projection Loss Figure 6.4 shows the projection convolutional neural network
(PCNN) strategy that uses a discrete back propagation via projection [15] to
compress our model. The projection loss obtained by optimization is as follows:

.Lp = λ

2

L,IΣ

l,i

JΣ

j

||||||Ĉ
l,[k]
i,j − -Wl,[k]

j ⊗
(
C

l,[k]
i + ηδ

Ĉl
i,j ,[k]

)||||||
2

(6.10)

6.3 Speech Recognition 225

Fig. 6.3 Illustration of the
training architecture of 1-bit
WaveNet by Bi-Real Net.
Note that W is weighted; the
superscript l means the lth
block, which includes
magnitude-aware sign, 1-bit
causal convolution, and
BatchNorm; and the subscript
r and b denote real values and
binary values, respectively

where . ⊗ denotes the element-wise multiplication operator, J is the total number
of projections, l denotes the layer index, . [k] is the iteration index, and i, j is the
kernel index. The projection index and . λ, respectively, denote a trade-off scaler
for the projection loss. In speech recognition, W is generally a 1D projection
vector. Specifically, in the kth iteration, .Cl,[k]

i means the ith filter vector of the

lth convolutional layer and .Ĉl,[k]
i,j = P

l,j
O

(
-Wl,[k]

j ⊗ C
l,[k]
i

)
denotes the binarized

kernel of .Cl,[k]
i that includes a duplicated dimensional-corresponding projection

vector . -Wl,[k]
j . .ηδ

Ĉl
i,j ,[k] means the gradient of .Ĉl,[k]

i,j from the loss of CTC at the

beginning [14]. Figure 6.4 shows the principle of projection loss. We omit . [k] in the
following content for convenience. In our 1-bit WaveNets, we should calculate both
the CTC loss and projection loss as the total loss as follows:

.L = LC + LP (6.11)

Forward Propagation In PCNNs, we concatenate each Ĉl
i,j that is binarized from

the relevant real value filter Cl
i,j to define the kernel D

l
i .

.Dl
i = Ĉl

i,1 ⊕ Ĉl
i,2 ⊕ · · · ⊕ Ĉl

i,J (6.12)

Note that ⊕ is the convolutional concatenating operation. From Dl and F l , we
achieve the projection convolution and then calculate the feature map F l+1 of the
next layer:

.F l+1 = Conv 1D
(
F l,Dl

)
(6.13)

226 6 Applications

Fig. 6.4 In one-dimensional PCNNs, we propose a discrete back propagation through projection
to binarize our WaveNet end-to-end [15]. By using the projection, we binarize the convolutional
filters of real value . Cl

i to the binary counterpart .hatCl
i,j . Solid and dashed lines indicate the paths

of . LC and . LP . Note that . ⊕ is the convolutional concatenation operation in the network

where Conv 1D is the ordinary 1D convolution. We use this method to fit the
dimensional difference between 1D convolutions and 2D convolutional filters:

.F l+1
h,j =

Σ

i,h

F l
h ◦ Dl

i,j (6.14)

.F l+1
h = F l

h,1 ⊕ · · · ⊕ F l
h,J (6.15)

where ◦ denotes the convolutional operation and h is the index of the feature map.

6.4 Object Detection and Tracking 227

Backward Propagation Taking into account projection loss, we should train and
update the real value filters Cl

i and the projection matrix Wl by these formulas as
follows:

.δCl
i
= ∂L

∂Cl
i

= ∂LS

∂Cl
i

+ ∂LP

∂Cl
i

(6.16)

.Cl
i ← Cl

i − η1δCl
i

(6.17)

.δWl
j

= ∂L

∂Wl
j

= ∂LS

∂Wl
j

+ ∂LP

∂Wl
j

(6.18)

.Wl
j ← Wl

j − η2δWl
j

(6.19)

Note that η1, η2 is the learning rate of the convolutional filters and Wl
j . We could

substitute PCNNs for ordinary convolutions due to the dimensional consistency of
two continuous layers [15]. 1-bit WaveNets achieve a decrease in computational
resources using this method.

6.4 Object Detection and Tracking

Object detection is the process of finding a target from a scene, while object
tracking is the follow-up of a target in consecutive frames in a video. Deep learning-
based object detection can generally be classified into two categories: two-stage
and single-stage object detection. Two-stage detectors, for example, Faster R-
CNN [49], FPN [29], and Cascade R-CNN [4], generate region proposals in the
first stage and refine them in the second. In localization, R-CNN [13] utilizes the L2
norm between predicted and target offsets as the object function, which can cause
gradient explosions when errors are significant. Fast R-CNN [12] and Faster R-
CNN [49] proposed a smooth loss of L1 that keeps the gradient of large prediction
errors consistent. One-stage detectors, e.g., RetinaNet [30] and YOLO [48], classify
and regress objects concurrently, which are highly efficient but suffer from lower
accuracy. Recent methods [51, 72] have been used to improve localization accuracy
using IoU-related values (insertion over union) as regression targets. IoU loss [72]
utilized the negative log of IoU as object functions directly, which incorporates the
dependency between box coordinates and adapts to multi-scale training. GIoU [51]
extends the IoU loss to nonoverlapping cases by considering the shape properties of
the compared objects. CIoU loss [75] incorporates more geometric measurements,
that is, overlap area, central point distance, and aspect ratio, and achieves better
convergence.

228 6 Applications

Table 6.1 Results reported
in Liu et al. [34]

Dataset Index SiamFC XNOR RB-SF

GOT-10K AO 0.348 0.251 0.327

SR 0.383 0.230 0.343

OTB50 Precision 0.761 0.457 0.706

SR 0.556 0.323 0.496

OTB100 Precision 0.808 0.541 0.786

SR 0.602 0.394 0.572

UAV123 Precision 0.745 0.547 0.688

SR 0.528 0.374 0.497

Sun et al. [54] propose a fast object detection algorithm based on BNNs.
Compared to full-precision convolution, this new method results in 62 times faster
convolutional operations and 32 times memory saving in theory.

Liu et al. [34] experiment on object tracking after proposing RBCNs. They used
the SiamFC network as the backbone for object tracking and binarized the SiamFC
as the rectified binary convolutional SiamFC network (RB-SF). They evaluated
RBSF in four datasets, GOT-10K [22], OTB50 [65], OTB100 [66], and UAV123
[40], using accuracy occupy (AO) and success rate (SR). The results are shown in
Table 6.1.

Yang et al. [69] propose a new method to optimize a deep neural network based
on YOLO-based object tracking simultaneously using approximate weight bina-
rization, trainable threshold group binarization activation function, and separable
convolution methods according to depth, significantly reducing the complexity of
computation and model size.

6.4.1 Data-Adaptive Binary Neural Networks for Efficient
Object Detection and Recognition

One of the ugliest aspects of 1-bit CNNs lies in the gap between full-precision
weights and their quantization counterpart. The focus of the existing methods is to
minimize the gap. To this end, the convolutional kernel is usually divided into two
parts, the amplitude and direction, while the feature maps are only in the direction
for efficient calculation. The existing binarization methods can be formulated in a
unified framework where (1) . Dl

i are the directions of the full-precision kernels . W
l
i

of the ith channel in the lth convolutional layer, .i ∈ {1, · · · , I }, .l ∈ {1, · · · , N};
(2) . Al is shared by all . Dl

i represents the amplitude of the lth convolutional layer;

and (3) . Âl
i and . A

l
i are of the same size and all the elements of . Âl

i are equal to the

average of the elements of . Al
i . . X̂

l
i denotes the direction of input . X

l
i . In the forward

pass, . Âl is used instead of the full-precision weights . Al . The full-precision weights
. Al are only used for back propagation during training. Note that the formulation
can represent XNOR based on a scalar [47], and also simplified PCNN [15] whose

6.4 Object Detection and Tracking 229

scalar is learnable as a projection matrix, or even XNOR++, which decomposes
tensor . Â into vectors in the three directions of the channel, height, and width [3].
We represent . Ŵ by the amplitude and direction as:

.Ŵ = D O Â, (6.20)

where . O denotes the element-wise multiplication between matrices. We can calcu-
late the binary convolution output . Ô as:

.Ô = X̂ ∗ Ŵ = (X̂ * D) O Â, (6.21)

where . ∗ and . * denote convolution (floating-point multiplication and addition) and
bit convolution (bitwise XNOR and pop-count operations), respectively.

6.4.1.1 Data-Adaptive Amplitude Method

Existing methods fail to calculate the data-adaptive amplitude to better approx-
imate the full-precision feature maps. This explains the primary reason for the
performance gap between 1-bit CNNs and their full-precision counterpart. Without
considering the amplitude of X, there is an inevitable gap between . Ô and O because
the fixed . Â is irrelevant to input X. To address this issue, an intuitive idea is to let
. Â become a function .Â(X) with X as the input. In 1-bit CNNs, we use .X̂ * D to
substitute for X because .X̂ * D contains the information of both X and W , which
will have a better representation capacity. Because the amplitude . Â is not fixed but
adaptive to the input data, we call our method data-adaptive binary neural network
(DA-BNN) [73]. And we have:

.Ô = (X̂ * D) O Â(X̂ * D), (6.22)

where .Â(.) is related to the input and will burden the computation of CNNs. To
address this problem, we use attention-based methods [60, 64] and introduce a
lightweight module to implement .Â(.). The module is designed by considering both
channel and spatial (height . × width) levels. For simplicity, we denote .X̂ * D as . M̂

in the following sections. To solve the problem, we introduce the attention method
to calculate a data-adaptive amplitude for better performance. We lead two data-
adaptive amplitude methods: channel-based and spatial-based.

6.4.1.2 Data-Adaptive Channel Amplitude

To calculate the channel amplitude .ÂC(M̂), we consider the feature maps from
two perspectives, within and between channels, similar to the attention mechanism
[21, 60]. We introduce the global average pooling layer to reduce the other two
dimensions and extract features within channels. Compared with the convolution,

230 6 Applications

Fig. 6.5 The calculation of
the channel amplitude

the global average pooling layer adds no extra parameters and fewer calculations.
Considering the cross-channel interaction, a 1D convolution is applied to fuse the
information of each channel with its neighbors.

However, because real-valued convolution parameters are often nearly zero,
easily influenced by the weight decay, the binarization of parameters always
means an amplification compared with the real-value convolution. The result of
the binary convolution is usually much more significant when compared with the
corresponding real-valued convolution [36, 53]. Thus, the amplitude Â(M̂) should
be a small value, solved by a sigmoid function that maps the amplitude into (0, 1).
Furthermore, the sigmoid function is also used to guarantee Â(.) merely learns the
amplitude information, not the direction. By doing so, we represent the channel
amplitude ÂC(M̂) as:

ÂC(M̂) = σ(kc ∗ AvgPool(M̂)), (6.23)

where σ denotes the sigmoid function and kc is the kernel of 1D convolution. A
specific module is illustrated in Fig. 6.5.

6.4.1.3 Data-Adaptive Spatial Amplitude

Similar to calculating the attention network, we use pooling layers and convolution
to calculate the spatial amplitude. In Fig. 6.6, we demonstrate the corresponding
structure. We utilize the average and maximum pooling together and then use a

6.4 Object Detection and Tracking 231

Fig. 6.6 The calculation of
spatial amplitude

.3 × 3 convolution instead of the 1D convolution to deal with the spatial data. We
calculate the spatial amplitude .ÂS(M̂) as:

.ÂS(M̂) = σ(ks ∗
[
AvgPool(M̂);MaxPool(M̂)

]
). (6.24)

However, when the features are binarized in the next block, the amplification
information will be eliminated, and only the direction information will be retained.
To keep the amplitude information, we redistribute features using an additional
BN, added before the binarization of the feature map. By doing so, the amplitude
will be partially converted into the direction information by improving the feature
distribution.

6.4.1.4 Experiment on Object Recognition

We use ImageNet [8] to train our models. Considering the size of the dataset, we
apply ResNet-18 [19] on ImageNet for a fair comparison with other quantization
networks.

ILSVRC12 ImageNet is a large-scale dataset that contains over 1.2million
training images and 50K validation images from 1000 categories. To train ResNet-
18 on ImageNet, models are trained in a two-step training method, similar to
[36–38]. The training process is divided into two stages. In the first stage, we
train a full-precision network that keeps the weights and activations real-valued
for 60 epochs. Networks are optimized using stochastic gradient descent (SGD)
to stabilize the pre-trained model. At this stage, we set the weight decay to 3e. −4,
the momentum to 0.9, and the learning rate to 0.1. In the second stage, the network

232 6 Applications

loads the parameters and binarizes the weights and activations. An Adam optimizer
is used to sufficiently train the binary model, following the settings of [37]. The
learning rate is set to 1e−3, and the weight decay is fixed to 0. In both stages, the
batch size is 360, and the learning rate is adjusted following a cosine schedule until
annealing down to 0. Following the settings in [38], we use PReLU activations [18]
instead of the ReLU activations and keep the real-valued downsample and double
skip connections.

6.4.1.5 Ablation Study on Object Recognition

In this section, we evaluate the effects of data-adaptive amplitude on the perfor-
mance of 1-bit CNNs.

The BN layer in ResNet-18 is set after the convolution. We, however, add an extra
BN layer in front of the 1-bit convolution to redistribute the features and turn the
information of amplitude into the direction to cope with the information loss in the
binarization process. We test the effectiveness of the addition of BN on ImageNet by
ResNet-18. The channel amplitude and spatial amplitude are used in parallel. The
specific structure is demonstrated in Fig. 6.7 and the results are shown in Table 6.2:

Fig. 6.7 Network architectures of ResNet-18, Bi-Real Net on ResNet-18, and DA-BNN on
ResNet-18. Note that the scale factor is added to the convolution in Bi-Real Net, and we adjust
its position to make the comparison clear with the same principle

Table 6.2 Different structures of binary neural networks are tested on ImageNet ILSVRC12.
“BN” refers to the use of the front batch normalization layer. All the models are based on ResNet-
18

Binary BN Amplitude Acc.

× × × 69.30 √ × × 57.60 √ √ × 59.32 √ √ √
63.08

The bolds denote the best results

6.4 Object Detection and Tracking 233

Table 6.3 We apply the channel and spatial adaptive amplitude, respectively, to evaluate their
effectiveness. All models are trained in a two-step method. The accuracy of step 1 corresponds to
the real-valued model, while the accuracy of step 2 corresponds to the binarization counterpart

Method Acc.of step1 Acc. Of step2

Baseline 67.73 57.60

Spatial 67.36 60.18

Channel 69.32 61.63

Channel+spatial 69.41 62.48

Channel & spatial 69.29 63.08

The bolds denote the best results

directly using the additional front BN, an increase of 1.72% in accuracy is observed
compared to the normal binarization in ResNet-18. If we add the adaptive amplitude,
the accuracy of networks can be improved by about 4%, which proves that the
additional BN is helpful for further improving the performance of binary neural
networks.

In Eq. 6.22, the data-adaptive amplitude .Â(.) can be calculated using the channel
amplitude and spatial amplitude in sequence or parallel. To this end, we test
three data-adaptive amplitude combinations of the channel amplitude and spatial
amplitude: sequential channel-spatial, sequential spatial-channel, and parallel, using
both amplitude modules. Scale factor methods are also tested for comparison.
We evaluate the performance of data-adaptive amplitude on ImageNet, based on
ResNet-18. Unlike the experiments in Table 6.3, a two-step training method is used
here. In the first stage, we train the model with real-valued weights and feature maps
as a pre-training step. In the second step, the model loads the parameters trained in
the first step and binarizes the weights and features corresponding to the binary
models. We record the best performance of the model at each stage.

Figure 6.8 shows the curves for the Top-1 accuracy of different methods. The
sudden drop of the curves denotes the switch of training stages from full-precision to
binarized models. The best accuracy of different methods is illustrated in Table 6.3:
spatial amplitude has little influence on the real-valued model but increases the
performance of binary neural network by about 2.5%, whereas channel amplitudes
can improve the accuracy of both full-precision model and binarized model by
2% and 4%, respectively. Different configurations of adaptive amplitude methods
influence the performance of full-precision models and binary models differently.
The sequential channel and spatial method performs better on full-precision models,
while the one in parallel performs better for binary models. These results verify that
a proper arrangement of the amplitude methods is essential to further improve the
performance.

6.4.1.6 Network Accuracy Comparison on ImageNet

To evaluate the performance of DA-BNN, we compare its performance with
other state-of-the-art quantized networks, including BWN [47] DoReFa-Net [76],

234 6 Applications

0 20 40 60 80 100 120

Epochs

10

20

30

40

50

60

70

A
cc

. 1

baseline
spatial
channel
channel + spatial
channel & spatial

Fig. 6.8 The convergence curves of DA-BNN. The “baseline” label means no extra modules are
used. We use our proposed modified structure. The “channel” and “spatial” labels denote applying
the corresponding amplitude modules. The “channel + spatial” label and “channel & spatial”
represent different combination methods. It should be noted that the sudden drop in 60 epochs
is caused by switching the training steps when both weights and activations are binarized

TBN [57], BNN [6], XNOR-Net [47], ABC-Net [33], Bi-Real Net [37], PCNN [15],
BONN [17], CI-Net [62], BinaryDuo [25], real-to-binary [38], and ReActNet [36]
and reported Top-1 and Top-5 accuracies in Table 6.4. Note that all models are based
on ResNet-18 with 69.3% Top-1 accuracy on the full-precision model.

We first applied our DA-BNN based on Bi-Real Net, achieving outstanding
performance among neural networks with binary weights and activations. However,
Bi-Real Net focuses more on optimizing binarization and ignores the significance
of amplitude in 1-bit convolution, just using the mean of the real-valued weights
as the scale factor. In contrast, our method focuses on the adaptive amplitude to
improve the representation capacity, an essential enhancement to Bi-Real Net. By
applying our DA-BNN on Bi-Real Net, we use our adaptive amplitude instead of the
scale factor and modify those above. Above 6% improvement is achieved under the
Bi-Real Net framework, which exceeds most binarization methods. It is also worth
mentioning that DoReFa-Net and TBN use more than 1-bit to quantify activations,
yet we still perform better.

However, our DA-BNN is not limited to a specific quantization method and can
be combined with other binarization methods for more significant improvement. To
further evaluate the potential of our DA-BNN, we combine it with ReActNet, which
achieves the highest binary accuracy based on ResNet-18 on ImageNet, to the best
of our knowledge. Note that for a fair comparison, we remove the scale factor used
in ReActNet to ensure the used amplitude is learned in our adaptive methods. Based
on the ReActNet, it obtains even higher accuracy, with just a 3% gap to the full-
precision model.

6.4 Object Detection and Tracking 235

Table 6.4 Accuracy of
state-of-the-art quantization
networks and our DA-BNN
on ImageNet. “W” and “A”
refer to the weight and
activation of the bit width,
respectively. All the models
are based on ResNet-18

Model W/A(bit) Top-1 Top-5

ResNet-18 32/32 69.3 89.2

BWN 1/32 60.8 83.0

DoReFa-Net 1/4 59.2 81.5

TBN 1/2 55.6 79.0

BNN 1/1 42.2 67.1

XNOR-Net 1/1 51.2 73.2

ABC-Net 1/1 42.7 67.6

Bi-Real Neta 1/1 56.4 79.5

PCNN 1/1 57.3 80.0

BONN 1/1 59.3 81.6

CI-Net 1/1 59.9 84.2

BinaryDuoa 1/1 60.9 82.6

DA-BNNa (based on Bi-Real Net) 1/1 63.1 84.3
Real-to-binarya 1/1 65.4 –

ReActNeta 1/1 65.5 –

DA-BNNa (based on ReActNet) 1/1 66.3 86.7

The bolds denote the best results
aA real-valued or partly real-valued (just binarized activation)
model is used for pre-training. Because our method is not specific
to the quantitative process, we use two different binarization
frameworks, Bi-Real Net and ReActNet. Note that the first DA-
BNN is based on Bi-Real Net, and the experimental settings refer
to the description above. As for ReActNet, we keep all the settings
the same except for the scale factor change with our data-adaptive
amplitude

In short, we achieve a new state-of-the-art performance compared to other
BNNs, and a much closer performance to full-precision models, which validates
the superiority of DA-BNN for the BNN calculation.

6.4.1.7 Experiment on Object Detection

We evaluate our method on the PASCAL VOC dataset, composed of natural images
from 20 classes. We train our model on the VOC 2007 and VOC 2012 trainval sets,
which consist of around 16k images, and we evaluate our method on the VOC 2007
test set, including about 5k images. Following the setting of [9], we use the mean
average precision (mAP) as the evaluation criterion.

We train our DA-BNN with the Faster R-CNN [50] detection framework with the
ResNet-18 backbone [19] aforementioned. Following implementing binary neural
networks in [37], we remain the first and last layer in the detection networks’ real-
valued. The same pipeline as [50] is utilized when training our DA-BNN with a
Faster R-CNN detector. For efficient object detection, we binarize all the . 3 × 3
convolution operations in the following models, except the first convolution and

236 6 Applications

full-connected layer in Faster R-CNN, following the same settings as XNOR-Net
[47] and BiDet [63]. We modify the architecture of ResNets following [63].

As for the details of training settings, we pre-train the binary backbone network
in DA-BNN fashion on the ImageNet dataset, as depicted in Sect. 6.4.1.4. Then we
fine-tune the backbone and detection parts collaboratively for the object detection
task. The batch size is assigned to be 16, with the SGD optimizer applied. The
number of epochs is 12, and the learning rate varies according to the framework
and backbone. A multistep learning rate schedule is employed for the Faster-RCNN,
which decays twice by multiplying by 0.1 at the 8th and 11th epoch of the 12 epochs
(Table 6.5 and Fig. 6.9).

6.4.1.8 Performance Comparison on PASCAL VOC

In this section, we compare the proposed DA-BNN with state-of-the-art 1-bit neural
networks, including XNOR-Net [47], Bi-Real Net [37], and BiDet [63] for the task
of object detection on the PASCAL VOC datasets.

Table 6.5 Comparison of mAP (. %) with state-of-the-art BNNs in Faster R-CNN frameworks
with ResNet-18 on VOC test2007. The detector with the real-valued and multi-bit backbone is
given for reference. Input resolution is set as .600 × 1000. The bold denotes the best result

Quantization method W/A(bit) mAP(. %)

Full-precision 32/32 74.5

XNOR-Net 1/1 48.9

Bi-Real Net 1/1 58.2

BiDet 1/1 59.5

DA-BNN 1/1 63.5

Fig. 6.9 Qualitative results on PASCAL VOC test2007 (best viewed in color)

6.4 Object Detection and Tracking 237

Compared to other 1-bit methods, we observe a significant performance advan-
tage over other state of the arts. With the ResNet-18 backbone, we achieve . 63.5%
mAP, outperforming XNOR-Net, Bi-Real Net, and BiDet by 14.6. %, 5.3. %, and 4.0. %
mAP with the similar memory usage and FLOPs.

In short, we achieved a new state-of-the-art performance compared to other
BNNs on PASCAL VOC. We are also much closer in performance to full-precision
models, as demonstrated in experiments, validating the superiority of DA-BNN.

6.4.1.9 Computation and Storage Analysis

Inevitably, using a data-adaptive amplitude will increase the computation and
storage for a more accurate approximation to real-valued convolution. However, the
additional structures are lightweight and efficient. The additional part is negligible
compared to the computation and storage of 1-bit convolution. In detail, the
additional storage in adaptive amplitude is the weight of the convolution. In channel
amplitude, we use a simple 1D convolution with a size of three, and thus the number
of additional parameters is .3× 32 (32 denotes 32 bits). A .3× 3 convolution is used
in the spatial amplitude with two input and one output channels. Thus, its storage
is .9 × 2 × 32. Both are far less than the storage of corresponding 1-bit convolution
due to the large numbers of convolution channels. The primary source of the extra
computation comes from the structure modification, where just a few parameters
are introduced compared to the whole model. So the storage increase has almost no
influence on the storage of original 1-bit networks.

We calculate the computational and storage complexity compared to BNN
networks and full-precision networks to show the ignorable addition of memory
and speed up during inferences. The memory usage is represented by the storage
for parameters of networks, which is calculated as the summation of 32-bit times
real-valued parameters and 1-bit times binary parameters. We use FLOPs to
measure computational complexity. Referring to [37, 47], the acceleration of 1-bit
convolution is about 64 times the real-valued convolution. We follow these methods
and calculate corresponding FLOPs.

Table 6.6 compares computational complexity, and storage cost, across different
quantization methods on ResNet-18 and Faster R-CNN frameworks. The proposed
DA-BNN saves the storage cost by .11.04× and reduces the computation by . 10.80×
in ResNet-18. On Faster R-CNN, as a result of the decrease of full-precision
parameters in the fully connected layer, better performance of saving the storage and
computation by .18.62× and .15.77×, respectively, has been achieved, which keeps
the same level as other 1-bit CNN methods. In summary, our adaptive amplitude
introduces negligible storage (less than 1%) and little computation (less than 8%)
but can significantly enhance BNNs’ performance.

238 6 Applications

Table 6.6 We show the memory usage as well as the flops of the DA-BNN. The calculation
method is the same as Bi-Real Net

Model Method Memory usage Memory saving FLOPs (.×108)

ResNet-18 Full-precision 374.1 Mbit – 18.26

XNOR-Net 33.7 Mbit 11.10.× 1.67

Bi-Real Net 33.6 Mbit 11.14.× 1.63

Channel 33.9 Mbit 11.04.× 1.65

Spatial 33.9 Mbit 11.04.× 1.67

DA-BNN 33.9 Mbit 11.04.× 1.69

Faster R-CNN Full-precision 379.9 Mbit – 360.14

XNOR-Net 20.2 Mbit 18.81.× 21.29

Bi-Real Net 20.1 Mbit 18.90.× 21.27

BiDet 20.1 Mbit 18.90.× 21.27

DA-BNN 20.4 Mbit 18.62.× 22.84

6.4.2 Amplitude Suppression and Direction Activation in
Networks for Faster Object Detection

6.4.2.1 Methodology

In this paper, we propose an amplitude suppression and direction activation in
the Faster R-CNN framework (ASDA-FRCNN) [68] to compress DCNNs for
highly efficient object detection. The shared amplitude between full-precision and
quantized kernels is significantly suppressed during binarization, which can lead to
a new simple but effective loss. The concept of ASDA is generic and flexible and
can be easily incorporated into existing DCNNs such WideResNets and ResNets
and applied to many vision tasks including object classification.

Problem Formulation
The inference process of any binary neural network (BNN) model is based on the
binarized kernels. This means that the kernels must be binarized in the forward
step (corresponding to the inference) during training, so that the training loss is
calculated based on the binarized filters. Unlike the forward process, during back
propagation, the resulting kernels do not need to be binarized and can be full-
precision. In this case, the full-precision kernels are binarized to gradually bridge
the binarization gap during training. Therefore, the learning of most BNN models
involves both discrete and continuous spaces, which poses a great challenge in
practice.

To address these challenges and improve the optimization of binarizing CNNs,
we decouple the full-precision kernel X and represent it by the amplitude and
direction as:

.X̂ = A · D, (6.25)

6.4 Object Detection and Tracking 239

where A and D respectively denote the amplitude and the direction of X. D is the
.l1-normalized matrix and calculated by .sign(X) as .− 1

size(X)
for negative X and

.
1

size(X)
for positive X. A is a scalar.

Corollary 6.1 To obtain an optimized BNN, we solve:

.X = X̂ = A · D, (6.26)

based on the assumption that X and . X̂ share similar amplitude.

This corollary is a bilinear problem, where A and D need to be calculated
simultaneously. Existing methods tend to split the problem into easily solved
subproblems, and then solve them using the alternating direction method of
multipliers (ADMM) [20, 70], which might be less efficient for the BNN calculation.
To simplify the process, we proposed to calculate the amplitude A based on the
back propagation algorithm since D can be solved based on the .sign(.) function.
In addition, due to the shared amplitude between the full-precision kernels and
binarized kernels, we can easily suppress it and thus lead to a highly efficient
detector.

Forward Propagation in ASDA-FRCNN
In order to achieve binarized weights, we design a new loss function in ASDA-
FRCNN. Note that only the kernels of ASDA-FRCNN are binarized, while for 1-bit
ASDA-FRCNN, both the kernels and the activations are binarized. These are briefly
described at the end of Sect. 6.4.2.2. Here we define D, A, and A as follows. .Dl

i,j is

the direction of the full-precision kernel .Xl
i,j . .X

l
i,j denotes the i-th kernel in the j -th

filter at l-th convolutional layer, .l ∈ {1, · · · , N}; . Al shared by all .Dl
i,j represents the

amplitude of the l-th convolutional layer; . Al and . Al are of the same size and all the
elements of . Al are equal to the average of the elements of . Al . In the forward pass,
. Al is used instead of the full-precision . Al . In this situation, . Al can be considered a
scalar. The full-precision . Al is only used for back propagation during training. This
process is the same as the way of calculating . X̂ from X in an asynchronous manner,
which is also illustrated in Fig. 5.5.

Accordingly, Eq. 6.25 is represented for ASDA-FRCNN at l-th layer as:

.Dl
i,j = sign(Xl

i,j)

size(Xl
i,j)

, (6.27)

.X̂l
i,j = Al · Dl

i,j , (6.28)

where .Dl
i,j represents the binarized kernel, .i.e., direction. .size(Xl

i,j) is the number

of weights of .size(Xl
i,j). With the i-th binary kernel in j -th filter at l-th layer

240 6 Applications

reconstructed, we can formulate the forward path of feature maps as:

. F l+1
j = Hl+1

j (F l , Al,Dl)

=
Σ

i

F l
i ⊗ X̂l

i,j

= Al
Σ

i

F l
i ⊗ Dl

i,j , (6.29)

where we use .Hl+1 to denote the mapping at .l + 1-th layer in the abstract sense and
.Hl+1

j is the j -th output feature map. . ⊗ denotes the convolution operation; .F l+1
j is

the j -th feature map in the .(l + 1) aligned convolutional layer. .F l ,Dl denotes the
aggregate of feature maps and directions at l-th layer, respectively. . F l

i denotes the
i-th feature map in the lth convolutional layer.

Loss Function of ASDA-FRCNN
We then define an amplitude loss function to reconstruct the full-precision kernels
as:

. LA =
Σ

l

Σ

j

Σ

i

||Xl
i,j − X̂l

i,j||22

=
Σ

l

Al
Σ

j

Σ

i

||Xl
i,j − Dl

i,j||22, (6.30)

.Xl
i,j is normalized by dividing .||Xl

i,j||1. Under Corollary 6.1, X and . X̂ share similar
amplitude, thus formulating a strong supervision to minimize the reconstruction
error. Then we also need a loss to monitor the detection process as:

. LS = 1

S

Σ

k

Lcls(pk, p
gt
k) + λ

1

M

Σ

k

p
gt
k Lreg(tk, t

gt
k)

= 1

S

Σ

k

− log
[
p

gt
k · pk + (1 − p

gt
k) · (1 − pk)

]

+λ
1

M

Σ

k

p
gt
k smoothl1(tk, t

gt
k), (6.31)

where S denotes the mini-batch size and M denotes the anchor locations. .pk, tk ,
are a positive prediction and a vector presenting four coordinates of anchor k. Their
detailed definitions are:

.pk = Ps

[
HN(FN−1, AN−1,DN−1)

]
. (6.32)

tk = Tk

[
HN (FN−1, AN−1, DN−1)

]
, (6.33)

6.4 Object Detection and Tracking 241

.p
gt
k and . tgt

k are their ground truth labels, respectively. . Pk and . Tk denote obtaining
the probability and location information of k-th anchor from last layer. N is the total
number of layers and the function .smoothl1(x) is defined as:

.smoothl1(x) =
{
0.5 · x2, if |x| < 1

|x| − 0.5, else
(6.34)

Finally, the overall loss function L is applied to supervise the training of ASDA-
FRCNN in the back propagation algorithm and is defined as:

.L = LS + μLA, (6.35)

6.4.2.2 Back Propagation

In ASDA-FRCNN, what needs to be learned and updated are the full-precision
kernels . Xi and the amplitude A. The kernels and the matrices are jointly optimized.
In each convolutional layer, ASDA-FRCNN updates the full-precision kernels and
then the amplitude. In what follows, the layer index l is omitted for simplicity.

Updating X
We denote . δXi

as the gradient of the full-precision kernel .Xl
i,j and have:

.Xl
i,j ← Xl

i,j − η1δXl
i,j

, (6.36)

where . η1 is a learning rate. .δXl
i,j

is calculated as:

. δXl
i,j

= ∂LS

∂Xl
i,j

+ ∂LA

∂Xl
i,j

= ∂LS

∂X̂l
i,j

· ∂X̂l
i,j

∂Xl
i,j

+ 2 · A(Xl
i,j − Dl

i,j)
∂Xl

i,j

∂Xl
i,j

= A ·
[

∂LS

∂X̂l
i,j

· 1 + 2(Xl
i,j − Dl

i,j)
∂Xl

i,j

∂Xl
i,j

]
, (6.37)

.Xl
i,j is the full-precision convolutional kernel corresponding to .Dl

i,j , and . 1 is the
indicator function [47] widely used to estimate the gradient of the non-differentiable
function.

242 6 Applications

6.4.2.3 Amplitude Calculation and Suppression

After updating X, we update the amplitude A. Let . δA be the gradient of . A.
According to Eq. 6.35, we have:

.Al ← |Al − η2δAl |, (6.38)

where . η2 is another learning rate. And . δAl is calculated as:

. δAl = ∂LS

∂Al
+ ∂LA

∂Al

=
Σ

j

Σ

i

[
∂LS

∂X̂l
i,j

· Dl
i,j + ||Xl

i,j − Dl
i,j||22

]
, (6.39)

Note that the amplitudes are always set to nonnegative. By setting a very small . μ
in Eq. 6.35, we actually suppress amplitude . Al directly. The parameter evaluation is
extensively explored in the experimental section, which shows that such suppression
is highly effective. On the contrary, the direction information is always used in the
forward process.

Our 1-bit ASDA-FRCNN is also based on binarizing the kernels and activations
simultaneously as in [7, 47]. These derivations show that ASDA-FRCNN is learn-
able with our BP algorithm. We summarize the training procedure in Algorithm 13.

Algorithm 13: Optimized ASDA-FRCNN via back propagation
Input:

The training dataset; the full-precision kernels X; the amplitude scalar A; the learning
rates η1 and η2.

Output:
The ASDA-FRCNN with the learned X, A.

1: Initialize X and A randomly;
2: repeat
3: // Forward propagation
4: for l = 1 to L do
5: Compute X̂l

i,j from Eqs. 6.27 to 6.28;
6: if 1 bit feature maps then
7: F l

i,j =sign(F l
i,j);

8: end if
9: Compute F l+1

j via Eq. 6.29, ∀i, j ;
10: end for
11: // Backward propagation
12: for l = L to 1 do
13: Calculate δXl

i,j
, δAl ; // using Eqs. 6.36∼6.39

14: Update parameters Xl
i,j and A

l using back propagation;
15: end for
16: until the algorithm converges.

6.4 Object Detection and Tracking 243

6.4.2.4 Experiments

Datasets and Implementation Details
We evaluated our ASDA-FRCNN method on two most widely applied detection
datasets: PASCAL VOC and MS COCO. PASCAL VOC 2007 [9] dataset consists
of about 5k train/val images and 5k test images over 20 object categories. We also
provide results by training on PASCAL VOC 2007+2012 train/val and testing on
PASCAL VOC 2007 test. More experiments are deployed on MS COCO 2014 [31],
which consists of 240k train/val images, 5k minival images, and 40k test-dev images
over 80 object categories. Furthermore, as our approach shows great feasibility, we
deploy ASDA ResNet-18 on ImageNet ILSVRC2012 [27] in ResNet-18 [19].

We implemented the training process plotted in Algorithm 13 on 3 NVIDIA
TITAN Xp GPUs with 128GB of RAM via PyTorch [45]. The weight decay,
momentum, and hyperparameter λ are set as 0.0001, 0.9, and 10, respectively. W and
A are the weight and activation, respectively. Full-precision model is implemented
with 32-bit weight and 32-bit activation. And 1-bit ASDA Faster is implemented
with 1-bit weight and 1-bit activation. We modify the architecture of ResNet-18
and ResNet-34 following [37] by substituting ReLU with PReLU [18], and the final
results of our ASDA Res-18 are fine-tuned based on the pre-trained models with
only kernel weights binarized, halving the learning rate during training. NOTE: 1-
bit ASDA-FRCNN is employed in ablation study; thus, W and A are 1-bit.

6.4.2.5 Ablation Study

Parameter μ
As mentioned above, the proposed loss has the ability to control the process of
quantization. Hyperparameter μ is introduced in Eq. 6.35 to balance the loss and
suppress the influence of the amplitude. To evaluate the influence of μ, we deploy

Table 6.7 Test mAP on PASCAL VOC 2007 dataset in ResNet-18 backbone. Training method
includes VOC2007 only and VOC2007+2012. The bolds represent the best results

μ
Model 1e − 4 5e − 5 2e − 5 1e − 5

1-bit ASDA-FRCNN VOC07 47.4 51.1 54.6 48.6

1-bit ASDA-FRCNN VOC07+12 56.3 61.5 63.4 61.1

Table 6.8 Test mAP on PASCAL VOC 2007 dataset in ResNet-34 backbone. Training method is
VOC2007+2012

μ
Model 5e − 5 2e − 5 1e − 5 5e − 6

1-bit ASDA-FRCNN VOC07+12 54.1 60.2 65.5 61.7

The bolds denote the best results

244 6 Applications

1 2 3 4 5 6 7 8 9 10

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
m

pl
itu

de

=1e-4
=5e-5
=2e-5
=1e-6

Fig. 6.10 Al at first Conv layer in the sixth block with different μ. Training method is
VOC2007+2012. Model is ResNet-18

controlled experiments on ResNet-18 on PASCAL VOC 2007. Results are shown in
Tables 6.7 and 6.8.

In ResNet-18, it is observed that the network achieve the better performance as
we suppress μ. Thus, we fix μ to 5e −4 in the following experiments in ResNet-18.
In addition, we analyze the amplitude of a certain layer in ResNet-18. As plotted
in Fig. 6.10, Al is suppressed more deeply as the μ becomes smaller, which subtly
demonstrates our intuition in Sect. 6.4.2.3.

In ResNet-34, LA increases as the model size expends. And the hyperparameter
μ should be lower to suppress the amplitude more. As shown in Table 6.8, the
network obtains the best performance when μ is set to 1e − 5. Thus, we fix μ to
1e − 5 in the following experiments in ResNet-34.

Learning Convergence
Figure 6.11 plots the LS curve with different μ. Obviously, when μ is set to
2e − 5, LS can converge to a lower level, which shows the network obtains a better
performance.

Experimental Verification of Corollary 6.1
As plotted in Fig. 6.12, l2-norm summation of kernels in the first and second layer
in 6-th block is similar to the corresponding amplitudes as the scatters distribute
uniformly around the positive scale curve. This ablation result strongly proves our
Corollary 6.1 (Fig. 6.13).

6.4 Object Detection and Tracking 245

0 1 2 3 4 5 6 7 8 9

104

0.4

0.5

0.6

0.7

0.8

0.9

1

=1e-4
=5e-5
=2e-5
=1e-6

Fig. 6.11 Training LS with different μ. Training method is VOC2007+2012. Model is ResNet-18

8.8 9 9.2 9.4 9.6 9.8 10
8.8

9

9.2

9.4

9.6

9.8

10

39 40 41 42 43 44 45
39

40

41

42

43

44

45

Fig. 6.12 Training ||X||2 and ||X̂||2 scatter with epochs. Red line is the positive scale curve. The
left one is the first layer in the sixth block and the right one is the second layer

6.4.2.6 Object Detection

Results on PASCAL VOC Datasets
We compare the performance of our results with other state-of-the-art binary
methods such as XNOR [47], TBN [57], and Bi-Real [37]. The comparison results
for object detection are illustrated in Tables 6.9 and 6.10.

246 6 Applications

Fig. 6.13 Detection results on PASCAL VOC 2007 test

Table 6.9 Test mAP on
PASCAL VOC 2007 dataset
in ResNet-18 backbone.
Training method is VOC2007
only and VOC2007+2012.
“W” and “A” refer to the
weight and activation bit
width, respectively

Model W A mAP FPS

VOC2007 only

Faster R-CNN-Res18 32 32 67.8 12.26

Bi-Real [37] 1 1 51.0 12.26a

ASDA-FRCNN 1 32 56.6 12.26
1-bit ASDA-FRCNN 1 1 54.6 12.26a

VOC2007+2012

Faster R-CNN-Res18 32 32 73.2 12.26

Bi-Real [37] 1 1 60.6 12.26a

ASDA-FRCNN 1 32 66.4 12.26
1-bit ASDA-FRCNN 1 1 63.4 12.26a

The bolds denote the best results
aDue to hardware constraints, binary acceleration
cannot be reflected on the PC, but theoretically it
can accelerate 58 times. So we estimate FPS as 711

Table 6.10 Test mAP on
PASCAL VOC 2007 dataset
in ResNet-34 backbone.
Training method is
VOC2007+2012

Model W A mAP FPS

Faster R-CNN-Res34 32 32 75.6 8.01

XNOR [47] 1 2 54.7 –

TBN [57] 1 2 59.0 –

ASDA-FRCNN 1 32 TBD 8.01
1-bit ASDA-FRCNN 1 1 65.5 8.01a

The bolds denote the best results
a Estimated 464 FPS

It is observed that at least a 6.5% mAP as well as 1.45× acceleration improve-
ment is gained with our 1-bit ASDA-FRCNN over TBN in ResNet-34. When μ is
set to 2e − 5, the detection performance is the highest. In ResNet-18, we deploy Bi-
Real [37] in the same experimental settings for contrast. Our 1-bit ASDA-FRCNN
outperforms the other two methods with the same compression ratio.

6.4 Object Detection and Tracking 247

We further plot the test AP of every class in the PASCAL VOC 2007 test. As is
shown in Fig. 6.14, ASDA-FRCNN achieves a higher AP on all 20 classes than Bi-
Real, and 1-bit ASDA-FRCNN outperforms Bi-Real in 16 out of 20 classes. Hence,
we can conclude that ASDA Faster R-CNN achieves the better performance than
Bi-Real.

Results on MS COCO Datasets
We use the μ value of 2e − 5 empirically. Then we compare the performance of
our results with other state-of-the-art algorithms including one-stage fast object
detection methods SSD [35], YOLO [48], RetinaNet [30] and CenterNet [77]. The
comparison results for object detection are illustrated in Table 6.11.

aero bike bird boat bottle bus car cat chair cow table dog horse mbik perso plant sheep sofa train tv
Class

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Faster R-CNN-Res18
1-bit ASDA FRCNN
Bi-Real
ASDA FRCNN

Fig. 6.14 APs of every class on PASCAL VOC 2007 test

Table 6.11 Test mAP@.5 and mAP@[.5, .95] on MS COCO test-dev in ResNet-18 backbone.
Training method includes MS COCO Train+Val. Note that only ASDA-FRCNN is the binary
approach

Model W/A mAP @.5 mAP @[.5, .95] FPS

SSD321 [35] 32/32 45.4 28.0 61

YOLOv3-320 [48] 32/32 59.0 28.2 45

RetinaNet-50-500 [30] 32/32 59.0 32.5 14

CenterNet-Res18 [77] 32/32 44.9 28.1 142

Faster R-CNN [50] 32/32 42.7 21.9 6.25

ASDA-FRCNN 1/32 41.5 21.4 6.25
1-bit ASDA-FRCNN 1/1 37.5 19.4 6.25a

The bolds denote the best results
aEstimated 362 FPS

248 6 Applications

It is observed that our 1-bit ASDA-FRCNN is faster than the other one-stage
detectors. It can process estimated 362 images per second, which is far more than
other state-of-the-art methods. These results are very meaningful on mobile and
embedded devices.

6.4.2.7 Image Classification

For ImageNet [27], we employ two data augmentation techniques sequentially: (1)
randomly cropping patches of .224×224 from the original image and (2) horizontally
flipping the extracted patches in the training. While in the testing, the Top-1 and
Top-5 accuracies on the validation set with single center crop are measured.

In Table 6.12, we compare our ASDA ResNet-18 with several other state-of-the-
art models. The first part of the comparison is based on ResNet-18 with 69.3% Top-1
accuracy on the full-precision model. Although BWN [47] and DoReFa-Net [76]
achieve Top-1 accuracy with degradation of less than 10%, it should be noted that
they apply full-precision and 4-bit activations, respectively. With both of the weights
and activations binarized, the BNN model in [7], ABC-Net [33], and XNOR-Net
[47] fail to maintain the accuracy and are inferior to our 1-bit ASDA Res-18. For
example, compared with the result of PCNN [16], 1-bit ASDA Res-18 increases
the Top-1 accuracy by 2.29%. Note that our algorithm still works very well on the
classification task, which further validates the significance of our method. In short,
we achieved a new state-of-the-art performance compared to other BNNs, which
clearly validate the superiority of our method for the BNN computing.

Memory Usage and Efficiency Analysis
Memory use is analyzed by comparing our approach with the state-of-the-art
XNOR-Net [47] and the corresponding full-precision network. The memory usage
is computed as the sum of 32 bits multiplied by the number of full-precision kernels
and 1 bit times the number of the binary kernels in the networks. As shown in
Table 6.13, our proposed ASDA-FRCNN reduces the memory usage by 10.2. × and
14.4. × compared with the full-precision Faster R-CNN based on ResNet-18 and

Table 6.12 Test Top-1 and
Top-5 accuracy on ImageNet
ILSVRC2012 in ResNet-18.
The bolds represent the best
results

Model W A Top-1 Top-5

ResNet-18 [19] 32 32 69.3 89.2

BWN [47] 1 32 60.8 83.0

DoReFa-Net [76] 1 4 59.2 81.5

TBN [57] 1 2 55.6 79.0

XNOR-Net [47] 1 1 51.2 73.2

BNN [7] 1 1 42.2 67.1

ABC-Net [33] 1 1 42.7 67.6

Bi-Real Net [37] 1 1 56.4 79.5

PCNN [16] 1 1 57.3 80.0

1-bit ASDA Res-18 1 1 59.59 82.11

6.4 Object Detection and Tracking 249

Table 6.13 Memory usage and efficiency of convolution comparison on detection and classifica-
tion binary and full-precision models

Model Memory usage Memory saving Speedup

1-bit ASDA-FRCNN Res-18 35.5 Mbit 10.2.× 58. ×
Faster R-CNN Res-18 361.3 Mbit – –

1-bit ASDA-FRCNN Res-34 46.5 Mbit 14.4.× 58. ×
TBN Res-34 [57] 46.5 Mbit 14.4.× 40. ×
Faster R-CNN Res-34 669.9 Mbit – –

1-bit ASDA Res-18 33.7 Mbit 11.1.× 58. ×
XNOR-Net [47] 33.7 Mbit 11.1.× 58. ×
ResNet-18 374.1 Mbit – –

ResNet-34, respectively. Our proposed ASDA ResNet-18 realizes 11.1. × memory
saving and 58. × acceleration compared to the full-precision one. The reason is that
the projection parameters . Wl

j are only used when training for enriching the diversity
in ASDA-FRCNN, whereas they are not used during inference. For efficiency
analysis, if all of the operands of the convolutions are binary, then the convolutions
can be estimated by XNOR and bitcounting operations, which gains .58× speedup
in CPUs [47].

6.4.3 Q-YOLO: Efficient Inference for Real-Time Object
Detection

6.4.3.1 Preliminaries

Network Quantization Process
We first review the main steps of the post-training quantization (PTQ) process
and supply the details. Firstly, the network is trained or provided as a pre-trained
model using full-precision and floating-point arithmetic for weights and activations.
Subsequently, numerical representations of weights and activations are suitably
transformed for quantization. Finally, the fully quantized network is either deployed
on integer arithmetic hardware or simulated on GPUs, enabling efficient inference
with reduced memory storage and computational requirements while maintaining
reasonable accuracy levels.

6.4.3.2 Uniform Quantization

Assuming the quantization bit width is b, the quantizer .Q(x|b) can be formulated as
a function that maps a floating-point number .x ∈ R to the nearest quantization bin:

.Q(x|b) : R → x̂, (6.40)

250 6 Applications

.x̂ =
{ {−2b−1, · · · , 2b−1 − 1} Signed,

{0 · · · , 2b − 1} Unsigned.
(6.41)

There are various quantizers .Q(x|b), where uniform [24] are typically used. Uniform
quantization is well supported on most hardware platforms. Its unsigned quantizer
.Q(x|b) can be defined as:

.Q(x|b) = clip(L x
sx

| + zpx, 0, 2
b − 1), (6.42)

where . sx (scale) and .zpx (zero-point) are quantization parameters. In Eq. 6.43, u
(upper) and l (lower) define the quantization grid limits:

.sx = u − l

2b − 1
, zpx = clip(L− l

s
|, 0, 2b − 1). (6.43)

The dequantization process can be formulated as follows:

.x̃ = (x̂ − zpx) × sx. (6.44)

6.4.3.3 Quantization Range Setting

The quantization range setting establishes the quantization grid’s upper and lower
clipping thresholds, denoted as u and l, respectively. The crucial trade-off in range
setting lies in the balance between two types of errors: clipping error and rounding
error. Clipping error arises when data is truncated to fit within the predefined
grid limits, as described in Eq. 6.43. Such truncation leads to information loss
and decreased precision in the resulting quantized representation. On the other
hand, rounding error occurs due to the imprecision introduced during the rounding
operation, as described in Eq. 6.42. This error can accumulate over time and impact
the overall accuracy of the quantized representation. The following methods provide
different trade-offs between the two quantities. MinMax In the experiments, we use
the MinMax method for weight quantization, where clipping thresholds . lx and . ux
are formulated as:

.lx =min(x), ux = max(x). (6.45)

This leads to no clipping error. However, this approach is sensitive to outliers, as
strong outliers may cause excessive rounding errors. Mean Squared Error (MSE)
One way to mitigate the problem of large outliers is by employing an MSE-based
range setting. In this method, we determine . lx and . ux that minimize the mean
squared error (MSE) between the original and quantized tensor:

.arg min
lx,ux

MSE(x,Qlx,ux), (6.46)

6.4 Object Detection and Tracking 251

where . x represents the original tensor and .Qlx,ux denotes the quantized tensor
produced using the determined clipping thresholds . lx and . ux. The optimization
problem is commonly solved using grid search, golden section method, or analytical
approximations with closed-form solutions.

6.4.3.4 Unilateral Histogram (UH)-Based Activation Quantization

To address the issue of activation value imbalance, we propose a new approach
called unilateral histogram (UH)-based activation quantization. We empirically
study the activation values after forward propagation through the calibration dataset.
We observe a concentrated distribution of values near the lower bound, accompanied
by a noticeable decrease in occurrences above zero. Further analysis of the activation
values reveals that the empirical value of . −0.2785 is the lower bound. This
phenomenon can be attributed to the frequent utilization of the Swish (SILU)
activation function in the YOLO series.

Algorithm 14: Unilateral histogram (UH)-based activation quantization
1: Input: FP32 Histogram H with 2048 bins
2: for i in range(128, 2048) do
3: Reference distribution P ← H [0 : i]
4: Outliers count c ← Σ2047

j=i H [j]
5: P [i − 1] ← P [i − 1] + c
6: P ← PΣ

j (P [j])
7: Candidate distribution C ← Quantize H [0 : i] into 128 levels
8: Expand C to have i bins
9: Q ← CΣ

j (C[j])
10: MSE[i] ← Mean Squared Error(P, Q)
11: end for
12: Output: Index m for which MSE[m] is minimal.

Based on the empirical evidence, we introduce an asymmetric quantization
approach called unilateral histogram (UH)-based activation quantization. In UH, we
iteratively determine the maximum truncation value that minimizes the quantization
error while keeping the minimum truncation value fixed at . −0.2785, as illustrated
in the following:

.ux = arg min
lx,ux

MSE(x,Qlx,ux), lx = −0.2785. (6.47)

To evaluate the quantization error during the search for the maximum truncation
value, we utilize the fp32 floating-point numbers derived from the center values
of the gathered 2048 bins, as introduced in Algorithm 14. These numbers are
successively quantized, considering the current maximum truncation value. Through

252 6 Applications

this iterative process, we identify the optimal truncation range. The UH activation
quantization method offers two key advantages. Firstly, it significantly reduces
calibration time. Secondly, it ensures stable activation quantization by allowing a
more extensive set of integers to represent the frequently occurring activation values
between 0 and . −0.2785, thereby improving quantization accuracy.

6.4.3.5 Experiments

To assess the performance of the proposed Q-YOLO [59] detectors, we conducted
a comprehensive series of experiments on the widely recognized COCO 2017
[32] detection benchmark. As one of the most popular object detection datasets,
COCO 2017 [32] has become instrumental in benchmarking state-of-the-art object
detectors, thanks to its rich annotations and challenging scenarios. Throughout our
experimental analysis, we employed standard COCO metrics on the bounding box
detection task to evaluate the efficacy of our approach.

Implementation Details
We randomly selected 1500 training images from the COCO train2017 dataset
[32] as the calibration data, which served as the foundation for optimizing the model
parameters. The performance evaluation occurred on the COCO val2017 dataset
[32], comprising 5000 images. The image size is set to 640. ×640.

Unless otherwise noted, our experiments employed symmetric channel-wise
quantization for weights and asymmetric layer-wise quantization for activations.
We consistently applied the MinMax approach for quantizing weights to ensure a
fair and unbiased comparison. The input and output layers of the model are more
sensitive to the loss of accuracy. To maintain the model’s overall performance, the
original accuracy of these layers is usually retained. We also follow this practice.

Main Results
We apply our proposed Q-YOLO to quantize YOLOv5s [55], YOLOv5m [55],
YOLOv7 [58], and YOLOv7x [58], which have an increasing number of parameters.
The results of the full-precision model and the 8-bit and 4-bit quantized models
using MinMax, percentile, and Q-YOLO methods are all presented in Table 6.14.

Table 6.14 compares several quantization approaches and detection methods
in computing complexity and storage cost. Our Q-YOLO significantly accelerates
computation and reduces storage requirements for various YOLO detectors. Simi-
larly, in terms of detection accuracy, when using Q-YOLO to quantize the YOLOv5
series models to 8 bits, there is virtually no decline in the average precision (AP)
value compared to the full-precision model. As the number of model parameters
increases dramatically, quantizing the YOLOv7 series models to 8 bits results in
a slight decrease in accuracy. When quantizing models to 4 bits, the accuracy
experiences a significant loss due to the reduced expressiveness of 4-bit integer
representation. Particularly, when using the MinMax quantization method, the
model loses all its accuracy, whereas the percentile method, which roughly truncates
99.99% of the extreme values, fails to bring notable improvement. Differently, Q-

6.4 Object Detection and Tracking 253

Ta
bl
e
6.
14

A
 c
om

pa
ri
so
n
of
 v
ar
io
us
 q
ua
nt
iz
at
io
n
m
et
ho
ds
 a
pp
lie
d
to
 Y
O
L
O
v5
s
[5
5]
, Y

O
L
O
v5
m
 [
55
],
 Y
O
L
O
v7
 [
58

],
 a
nd
 Y
O
L
O
v7
x
[5
8]
, w

hi
ch
 h
av
e
an

in
cr
ea
si
ng
 n
um

be
r
of
 p
ar
am

et
er
s,
 o
n
th
e
C
O
C
O
 v
a
l
2
0
1
7
 d
at
as
et
 [
32

].
 T
he
 t
er
m
 b
its
 (
W
-A

)
re
pr
es
en
ts
 t
he
 b
it
w
id
th
 o
f
w
ei
gh
ts
 a
nd
 a
ct
iv
at
io
ns
. T

he
 b
es
t

re
su
lts
 a
re
 d
is
pl
ay
ed
 in

 b
ol
d

M
od
el
s

M
et
ho
d

B
its

Si
ze

. (M
B
)

O
Ps

. (G
)

A
P

A
P. 5

0
A
P. 7

5
A
P. s

A
P. m

A
P. l

Y
O
L
O
v5
s
[5
5]

R
ea
l-
va
lu
ed

32
–3
2

57
.6

16
.5

37
.4

57
.1

40
.1

21
.6

42
.3

48
.9

M
in
M
ax

8–
8

14
.4

4.
23

37
.2

56
.9

39
.8

21
.4

42
.2

48
.5

Pe
rc
en
til
e
[2
8]

36
.9

56
.4

39
.6

21
.3

42
.4

48
.1

Q
-Y

O
L
O

37
.4

56
.9

39
.8

21
.4

42
.4

48
.8

Pe
rc
en
til
e
[2
8]

4–
4

7.
7

2.
16

7.
0

14
.2

6.
3

4.
1

10
.7

7.
9

Q
-Y

O
L
O

14
.0

26
.2

13
.5

7.
9

17
.6

19
.0

Y
O
L
O
v5
m
 [
55

]
R
ea
l-
va
lu
ed

32
–3
2

16
9.
6

49
.0

45
.1

64
.1

49
28
.1

50
.6

57
.8

M
in
M
ax

8–
8

42
.4

12
.4

44
.9

64
48
.9

27
.8

50
.5

57
.4

Pe
rc
en
til
e
[2
8]

44
.6

63
.5

48
.4

28
.4

50
.4

57
.8

Q
-Y

O
L
O

45
.1

64
.1

48
.9

28
50
.6

57
.7

Pe
rc
en
til
e
[2
8]

4–
4

21
.2

6.
33

19
.4

35
.6

19
.1

14
.6

28
.3

17
.2

Q
-Y

O
L
O

28
.8

46
30
.5

15
.4

33
.8

38
.7

Y
O
L
O
v7
 [
58

]
R
ea
l-
va
lu
ed

32
–3
2

29
5.
2

10
4.
7

50
.8

69
.6

54
.9

34
.9

55
.6

66
.3

M
in
M
ax

8–
8

73
.8

27
.2

50
.6

69
.5

54
.8

34
.1

55
.5

65
.9

Pe
rc
en
til
e
[2
8]

50
.5

69
.3

54
.6

34
.5

55
.4

66
.2

Q
-Y

O
L
O

50
.7

69
.5

54
.8

34
.8

55
.5

66
.2

Pe
rc
en
til
e
[2
8]

4–
4

36
.9

14
.1

16
.7

26
.9

17
.8

10
.3

20
.1

20
.2

Q
-Y

O
L
O

37
.3

55
.0

40
.9

21
.5

41
.4

53
.0

Y
O
L
O
v7
x
[5
8]

R
ea
l-
va
lu
ed

32
–3
2

25
.5

18
9.
9

52
.5

71
.0

56
.6

36
.6

57
.3

68
.0

M
in
M
ax

8–
8

14
2.
6

49
.5

52
.3

70
.9

56
.7

36
.6

57
.1

67
.7

Pe
rc
en
til
e
[2
8]

52
.0

70
.5

56
.1

36
.0

56
.8

67
.9

Q
-Y

O
L
O

52
.4

70
.9

56
.5

36
.2

57
.2

67
.8

Pe
rc
en
til
e
[2
8]

4–
4

71
.3

25
.6

36
.8

55
.3

40
.5

21
.2

41
.7

49
.3

Q
-Y

O
L
O

37
.6

57
.8

42
.1

23
.7

43
.8

49
.1

254 6 Applications

YOLO successfully identifies a more appropriate scale for quantization, resulting
in a considerable enhancement compared to conventional post-training quantization
(PTQ) methods.

6.4.3.6 Ablation Study

Symmetry in Activation Quantization
Nowadays, quantization schemes are often subject to hardware limitations; for
instance, NVIDIA [43] only supports symmetric quantization, as it is more
inference-speed friendly. Therefore, discussing the symmetry in activation value
quantization is meaningful. Table 6.15 compares results using Q-YOLO for
symmetric and asymmetric quantization, with the latter exhibiting higher accuracy.
The range of negative activation values lies between 0 and −0.2785, while the
range of positive activation values exceeds that of the negative ones. The accuracy
will naturally decrease if we force equal integer expression bit numbers on both
positive and negative sides. Moreover, this decline becomes more pronounced as
the quantization bit number decreases.

6.4.3.7 Quantization Type

In Table 6.16, we analyze the impact of different quantization types on the perfor-
mance of the YOLOv5s and YOLOv5m models, considering three cases: quantizing
only the weights (only weights), quantizing only the activation values (only activa-
tion), and quantizing both weights and activation values (weights+activation). The
results demonstrate that, compared to quantizing the activation values, quantizing
the weights consistently induces more considerable performance degradation. Addi-
tionally, the lower the number of bits, the greater the loss incurred by quantization.

Table 6.15 A comparison of symmetrical analysis of activation value quantization. Asymmetric
indicates the use of an asymmetric activation value quantization scheme, while symmetric refers to
the symmetric quantization of activation values

models Bits Symmetry AP AP.50 AP.75 AP.s AP.m AP. l
YOLOv5s [55] Real-valued – 37.4 57.1 40.1 21.6 42.3 48.9

6–6 Asymmetric 35.9 55.7 38.3 20.4 41.0 47.6

Symmetric 34.4 53.9 37.0 19.3 39.8 45.0

4–4 Asymmetric 14.0 26.2 13.5 7.9 17.6 19.0

Symmetric 2.7 5.9 2.2 1.3 4.2 4.6

YOLOv5m [55] Real-valued – 45.1 64.1 49.0 28.1 50.6 57.8

6–6 Asymmetric 44.0 63.1 47.7 28 49.9 56.8

Symmetric 42.4 61.1 46.0 25.3 48.3 55.9

4–4 Asymmetric 28.8 46.0 30.5 15.4 33.8 38.7

Symmetric 11.3 24.8 8.6 7.5 15.2 14.5

6.4 Object Detection and Tracking 255

Table 6.16 A comparison of quantization type. The term only weights signifies that only the
weights are quantized, only activation indicates that only the activation values are quantized, and
weights+activation represents the quantization of both activation values and weights

models Bits Quantization type AP AP50 AP75 APs APm APl

YOLOv5s [55] Real-valued – 37.4 57.1 40.1 21.6 42.3 48.9

6–32 Only weights 36.7(−0.7) 56.6 39.3 20.9 41.4 48.4

32–6 Only activation 36.6(−0.8) 56.2 39.3 21.0 42.0 47.9

6–6 Weights+activation 35.9 55.7 38.3 20.4 41.0 47.6

4–32 Only weights 19.6(−16.3) 35.6 19.3 11.3 22.5 25.7

32–4 Only activation 30.6(−5.3) 49.1 32.6 17.0 36.7 40.7

4–4 Weights+activation 14.0 26.2 13.5 7.9 17.6 19

YOLOv5m [55] Real-valued – 45.1 64.1 49.0 28.1 50.6 57.8

6–32 Only weights 44.7(−0.4) 63.9 48.6 28.0 50.3 57.3

32–6 Only activation 44.3(−0.8) 63.4 48.1 28.4 50.3 57.2

6–6 Weights+activation 44 63.1 47.7 28.0 49.9 56.8

4–32 Only weights 34.6(−9.4) 54.0 37.3 20.0 39.2 45.3

32–4 Only activation 37.7(−6.3) 57.3 41.8 23.7 44.1 51.0

4–4 Weights+activation 28.8 46.0 30.5 15.4 33.8 38.7

In YOLO, the weights learned by a neural network essentially represent the knowl-
edge acquired by the network, making the precision of the weights crucial for model
performance. In contrast, activation values serve as intermediate representations
of input data propagating through the network and can tolerate some degree of
quantization error to a certain extent.

6.4.3.8 Inference Speed

To practically verify the acceleration benefits brought about by our quantization
scheme, we conducted inference speed tests on both GPU and CPU platforms. For
the GPU, we selected the commonly used desktop GPU NVIDIA RTX 4090 [43]
and the NVIDIA Tesla T4 [43], often used in computing centers for inference
tasks. Due to our limited CPU resources, we only tested Intel products, the
i7-12700H and i9-10900, both of which have . ×86 architecture. We chose
TensorRT [1] and OpenVINO [2] for deployment tools. The entire process involved
converting the weights from the torch framework into an ONNX model with QDQ
nodes and deploying them onto specific inference frameworks. The inference mode
was set to single-image serial inference, with an image size of .640 × 640. As
most current inference frameworks only support symmetric quantization and 8-
bit quantization, we had to choose a symmetric 8-bit quantization scheme, which
resulted in a minimal decrease in accuracy compared to asymmetric schemes. As
shown in Table 6.17, the acceleration is extremely significant, especially for the
larger YOLOv7 model, wherein the speedup ratio when using a GPU even exceeded

256 6 Applications

Table 6.17 The inference speed of the quantized model is essential. The quantization scheme
adopts uniform quantization, with single-image inference mode and an image size of 640 . × 640.
TensorRT [1]is selected as the GPU inference library, while OpenVINO [2] is chosen for the CPU
inference library

GPU speed/ms Intel CPU speed/ms

Models Bits AP RTX 4090 Tesla T4 i7-12700H(. ×86) i9-10900(. ×86)

YOLOv5s 32–32 37.4 4.9 7.1 48.7 38.7

8–8 37.3 3.0 4.5 33.6 23.4

YOLOv7 32–32 50.8 16.8 22.4 269.8 307.8

8–8 50.6 5.4 7.8 120.4 145.2

3. × compared to the full-precision model. This demonstrates that quantization in
real-time detectors can bring about a remarkable acceleration.

References

1. NVIDIA TensorRT. https://developer.nvidia.com/tensorrt. Accessed: 2022-09-03.
2. OpenVINO Toolkit. https://docs.openvinotoolkit.org/latest/index.html. Accessed: 2022-09-03.
3. Adrian Bulat and Georgios Tzimiropoulos. Xnor-net++: Improved binary neural networks.

arXiv preprint arXiv:1909.13863, 2019.
4. Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
6154–6162, 2018.

5. Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. In Advances in neural information
processing systems, pages 3123–3131, 2015.

6. Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

7. Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

8. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

9. Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisser-
man. The pascal visual object classes (voc) challenge. International Journal of Computer
Vision, 2010.

10. Pedro Felzenszwalb and Ramin Zabih. Discrete optimization algorithms in computer vision.
Tutorial at CVPR, 2007.

11. Sicheng Gao, Runqi Wang, Liuyang Jiang, and Baochang Zhang. 1-bit wavenet: compressing
a generative neural network in speech recognition with two binarized methods. In 2021 IEEE
16th conference on industrial electronics and applications (ICIEA), pages 2043–2047. IEEE,
2021.

12. Ross Girshick. Fast r-cnn. In ICCV, 2015.
13. Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for

accurate object detection and semantic segmentation. In CVPR, 2014.

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://docs.openvinotoolkit.org/latest/index.html
https://docs.openvinotoolkit.org/latest/index.html
https://docs.openvinotoolkit.org/latest/index.html
https://docs.openvinotoolkit.org/latest/index.html
https://docs.openvinotoolkit.org/latest/index.html
https://docs.openvinotoolkit.org/latest/index.html
https://docs.openvinotoolkit.org/latest/index.html

References 257

14. Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist
temporal classification: labelling unsegmented sequence data with recurrent neural networks.
In Proceedings of the 23rd international conference on Machine learning, pages 369–376,
2006.

15. Jiaxin Gu, Ce Li, Baochang Zhang, Jungong Han, Xianbin Cao, Jianzhuang Liu, and David
Doermann. Projection convolutional neural networks for 1-bit cnns via discrete back
propagation. In Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

16. Jiaxin Gu, Ce Li, Baochang Zhang, Jungong Han, Xianbin Cao, Jianzhuang Liu, and David
Doermann. Projection convolutional neural networks for 1-bit cnns via discrete back
propagation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 8344–8351, 2019.

17. Jiaxin Gu, Junhe Zhao, Xiaolong Jiang, Baochang Zhang, Jianzhuang Liu, Guodong Guo, and
Rongrong Ji. Bayesian optimized 1-bit cnns. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 4909–4917, 2019.

18. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

19. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

20. Felix Heide, Wolfgang Heidrich, and Gordon Wetzstein. Fast and flexible convolutional sparse
coding. In CVPR, pages 5135–5143, 2015.

21. Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, pages 7132–7141, 2018.

22. Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A large high-diversity benchmark
for generic object tracking in the wild. IEEE transactions on pattern analysis and machine
intelligence, 43(5):1562–1577, 2019.

23. Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks. In Advances in neural information processing systems, pages 4107–
4115, 2016.

24. Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2704–2713, 2018.

25. Hyungjun Kim, Kyungsu Kim, Jinseok Kim, and Jae-Joon Kim. Binaryduo: Reducing gradient
mismatch in binary activation network by coupling binary activations. In International
Conference on Learning Representations, 2019.

26. Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

27. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS),
pages 1097–1105, 2012.

28. Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Junjie Yan, and Rui Fan. Fully quantized
network for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2810–2819, 2019.

29. Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2117–2125, 2017.

30. Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

31. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
European Conference on Computer Vision (ECCV), pages 740–755, 2014.

258 6 Applications

32. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV,
2014.

33. Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network.
In Advances in Neural Information Processing Systems, pages 345–353, 2017.

34. Chunlei Liu, Wenrui Ding, Yuan Hu, Baochang Zhang, Jianzhuang Liu, Guodong Guo,
and David Doermann. Rectified binary convolutional networks with generative adversarial
learning. International Journal of Computer Vision, 129:998–1012, 2021.

35. Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,
and Alexander C Berg. Ssd: Single shot multibox detector. In Proc. of ECCV, 2016.

36. Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting Cheng. Reactnet: Towards
precise binary neural network with generalized activation functions. arXiv preprint
arXiv:2003.03488, 2020.

37. Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real
net: Enhancing the performance of 1-bit cnns with improved representational capability and
advanced training algorithm. In Proceedings of the European conference on computer vision
(ECCV), pages 722–737, 2018.

38. Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tzimiropoulos. Training binary
neural networks with real-to-binary convolutions. In International Conference on Learning
Representations, 2019.

39. Mark D McDonnell. Training wide residual networks for deployment using a single bit for
each weight. arXiv preprint arXiv:1802.08530, 2018.

40. Matthias Mueller, Neil Smith, and Bernard Ghanem. A benchmark and simulator for uav
tracking. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part I 14, pages 445–461. Springer, 2016.

41. Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning (ICML-
10), pages 807–814, 2010.

42. Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

43. NVIDIA. Nvidia corporation, 2022. Available at: https://www.nvidia.com/.
44. Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex

Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

45. Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS Workshops, 2017.

46. Rohit Prabhavalkar, Ouais Alsharif, Antoine Bruguier, and Lan McGraw. On the compression
of recurrent neural networks with an application to lvcsr acoustic modeling for embedded
speech recognition. In 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5970–5974. IEEE, 2016.

47. Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on
Computer Vision, pages 525–542. Springer, 2016.

48. Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

49. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In NeurIPS, 2015.

50. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2016.

https://www.nvidia.com/
https://www.nvidia.com/
https://www.nvidia.com/
https://www.nvidia.com/

References 259

51. Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio
Savarese. Generalized intersection over union: Ametric and a loss for bounding box regression.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
658–666, 2019.

52. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

53. Kunal Pratap Singh, Dahyun Kim, and Jonghyun Choi. Learning architectures for binary
networks. arXiv preprint arXiv:2002.06963, 2020.

54. Siyang Sun, Yingjie Yin, Xingang Wang, De Xu, Wenqi Wu, and Qingyi Gu. Fast object
detection based on binary deep convolution neural networks. CAAI transactions on intelligence
technology, 3(4):191–197, 2018.

55. Ultralytics. YOLOv5: PyTorch implementation of YOLOv5 real-time object detection. https://
github.com/ultralytics/yolov5, 2021.

56. Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al.
Conditional image generation with pixelcnn decoders. Advances in neural information
processing systems, 29, 2016.

57. Diwen Wan, Fumin Shen, Li Liu, Fan Zhu, Jie Qin, Ling Shao, and Heng Tao Shen. Tbn:
Convolutional neural network with ternary inputs and binary weights. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 315–332, 2018.

58. Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-
of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7464–7475, 2023.

59. Ming Wang, Hui Xian Sun, Jun Shi, Xuhui Liu, Baochang Zhang, and Xianbin Cao. Q-yolo:
Efficient inference for real-time object detection. ArXiv, abs/2307.04816, 2023.

60. Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, and Qinghua Hu. Eca-
net: Efficient channel attention for deep convolutional neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11534–11542,
2020.

61. Xiaodi Wang, Baochang Zhang, Ce Li, Rongrong Ji, Jungong Han, Xianbin Cao, and
Jianzhuang Liu. Modulated convolutional networks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 840–848, 2018.

62. Ziwei Wang, Jiwen Lu, Chenxin Tao, Jie Zhou, and Qi Tian. Learning channel-wise
interactions for binary convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 568–577, 2019.

63. Ziwei Wang, Ziyi Wu, Jiwen Lu, and Jie Zhou. Bidet: An efficient binarized object detector. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2049–2058, 2020.

64. Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional
block attention module. In Proceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018.

65. Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object tracking: A benchmark. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2411–
2418, 2013.

66. Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object tracking benchmark. IEEE Transactions
on Pattern Analysis & Machine Intelligence, 37(09):1834–1848, 2015.

67. Xu Xiang, Yanmin Qian, and Kai Yu. Binary deep neural networks for speech recognition. In
INTERSPEECH, pages 533–537, 2017.

68. Sheng Xu, Zhendong Liu, Xuan Gong, Chunlei Liu, Mingyuan Mao, and Baochang Zhang.
Amplitude suppression and direction activation in networks for 1-bit faster r-cnn. Proceedings
of the 4th International Workshop on Embedded and Mobile Deep Learning, 2020.

69. Li Yang, Zhezhi He, and Deliang Fan. Binarized depthwise separable neural network for object
tracking in fpga. In Proceedings of the 2019 on Great Lakes Symposium on VLSI, pages 347–
350, 2019.

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5

260 6 Applications

70. Linlin Yang, Ce Li, Jungong Han, Chen Chen, Qixiang Ye, Baochang Zhang, Xianbin Cao,
and Wanquan Liu. Image reconstruction via manifold constrained convolutional sparse coding
for image sets. JSTSP, 11(7):1072–1081, 2017.

71. Shouyi Yin, Peng Ouyang, Shixuan Zheng, Dandan Song, Xiudong Li, Leibo Liu, and Shaojun
Wei. A 141 uw, 2.46 pj/neuron binarized convolutional neural network based self-learning
speech recognition processor in 28nm cmos. In 2018 IEEE Symposium on VLSI Circuits,
pages 139–140. IEEE, 2018.

72. Jiahui Yu, Yuning Jiang, Zhangyang Wang, Zhimin Cao, and Thomas Huang. Unitbox: An
advanced object detection network. In Proceedings of the 24th ACM international conference
on Multimedia, pages 516–520, 2016.

73. Junhe Zhao, Sheng Xu, Runqi Wang, Baochang Zhang, Guodong Guo, David S. Doermann,
and Dianmin Sun. Data-adaptive binary neural networks for efficient object detection and
recognition. Pattern Recognit. Lett., 153:239–245, 2021.

74. Shixuan Zheng, Peng Ouyang, Dandan Song, Xiudong Li, Leibo Liu, Shaojun Wei, and Shouyi
Yin. An ultra-low power binarized convolutional neural network-based speech recognition
processor with on-chip self-learning. IEEE Transactions on Circuits and Systems I: Regular
Papers, 66(12):4648–4661, 2019.

75. Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang Ye, and Dongwei Ren. Distance-
iou loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages 12993–13000, 2020.

76. Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-
net: Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016.

77. Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points. arXiv preprint
arXiv:1904.07850, 2019.

	Preface
	Contents
	1 Introduction
	1.1 Background
	1.2 Introduction of Deep Learning
	1.3 Model Compression and Acceleration
	References

	2 Binary Neural Networks
	2.1 Introduction
	2.2 Gradient Approximation
	2.3 Quantization
	2.4 Structural Design
	2.5 Loss Design
	2.6 Optimization
	2.7 Algorithms for Binary Neural Networks
	2.7.1 BNN: Binary Neural Network
	2.7.2 XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
	2.7.3 SA-BNN: State-Aware Binary Neural Network
	2.7.3.1 Method
	2.7.3.2 Experiments

	2.7.4 PCNN: Projection Convolutional Neural Networks
	2.7.4.1 Projection
	2.7.4.2 Optimization
	2.7.4.3 Theoretical Analysis
	2.7.4.4 Projection Convolutional Neural Networks
	2.7.4.5 Forward Propagation Based on Projection Convolution Layer
	2.7.4.6 Backward Propagation
	2.7.4.7 Progressive Optimization
	2.7.4.8 Ablation Study

	References

	3 Binary Neural Architecture Search
	3.1 Introduction
	3.2 Neural Architecture Search
	3.2.1 ABanditNAS: Anti-bandit for Neural Architecture Search
	3.2.1.1 Anti-Bandit Algorithm
	3.2.1.2 Search Space
	3.2.1.3 Anti-bandit Strategy for NAS
	3.2.1.4 Adversarial Optimization
	3.2.1.5 Analysis

	3.2.2 IDARTS: Interactive Differentiable Architecture Search
	3.2.2.1 Bilinear Models for DARTS
	3.2.2.2 Search Space
	3.2.2.3 Backtracking Back Propagation
	3.2.2.4 Comparison of Searching Methods

	3.2.3 Fast and Unsupervised Neural Architecture Evolution for Visual Representation Learning
	3.2.3.1 Search Space
	3.2.3.2 Evolution
	3.2.3.3 Contrastive Learning
	3.2.3.4 Fast Evolution by Eliminating Operations
	3.2.3.5 Experiments

	3.3 Binary Neural Architecture Search
	3.3.1 BNAS: Binarized Neural Architecture Search for Efficient Object Recognition
	3.3.1.1 Search Space
	3.3.1.2 Binarized Optimization for BNAS
	3.3.1.3 Performance-Based Strategy for BNAS
	3.3.1.4 Gradient Update for BNAS
	3.3.1.5 Ablation Study

	3.3.2 BDetNAS: A Fast Binarized Detection Neural Architecture Search
	3.3.2.1 Search Space
	3.3.2.2 Performance-Based Strategy for BDetNAS
	3.3.2.3 Optimization for BDetNAS
	3.3.2.4 Experiments

	References

	4 Quantization of Neural Networks
	4.1 Introduction
	4.2 Quantitative Arithmetic Principles
	4.3 Uniform and Nonuniform Quantization
	4.4 Symmetric and Asymmetric Quantization
	4.5 Comparison of Different Quantization Methods
	4.5.1 LSQ: Learned Step Size Quantization
	4.5.1.1 Notations
	4.5.1.2 Step Size Gradient
	4.5.1.3 Step Size Gradient Scale
	4.5.1.4 Training

	4.5.2 TRQ: Ternary Neural Networks with Residual Quantization
	4.5.2.1 Preliminary
	4.5.2.2 Generalization to n-Bit Quantization
	4.5.2.3 Complexity Analysis
	4.5.2.4 Differences of TRQ from Existing Residual Quantization Methods
	4.5.2.5 Implementation Details
	4.5.2.6 Ablation Study on CIFAR

	4.5.3 OMPQ: Orthogonal Mixed Precision Quantization
	4.5.3.1 Network Orthogonality
	4.5.3.2 Efficient Orthogonality Metric
	4.5.3.3 Mixed Precision Quantization
	4.5.3.4 Experiment
	4.5.3.5 Ablation Study

	References

	5 Network Pruning
	5.1 Introduction
	5.2 Structured Pruning
	5.3 Unstructured Pruning
	5.4 Network Pruning
	5.4.1 Efficient Structured Pruning Based on Deep Feature Stabilization
	5.4.1.1 Preliminaries
	5.4.1.2 Sparse Supervision for Block Pruning
	5.4.1.3 Constrained Sparse Supervision for Filter Pruning
	5.4.1.4 Loss Function
	5.4.1.5 Optimization
	5.4.1.6 Pruning on ResNet
	5.4.1.7 Experiments
	5.4.1.8 Ablation Study

	5.4.2 Toward Compact and Sparse CNNs via Expectation-Maximization
	5.4.2.1 Preliminaries
	5.4.2.2 Distribution-Aware Forward and Loss Function
	5.4.2.3 Optimization and Analysis
	5.4.2.4 Filter Modification
	5.4.2.5 Experiments
	5.4.2.6 Efficiency Analysis

	5.4.3 Pruning Multi-view Stereo Net for Efficient 3D Reconstruction
	5.4.3.1 Channel Pruning for 2D CNNs
	5.4.3.2 Optimization Based on a Mixed Back Propagation
	5.4.3.3 3D CNN Pruning
	5.4.3.4 Loss Function
	5.4.3.5 Implementation of 2D/3D MVS Net
	5.4.3.6 Performance Comparison

	5.4.4 Cogradient Descent for Dependable Learning
	5.4.4.1 Gradient Descent
	5.4.4.2 Cogradient Descent for Dependable Learning
	5.4.4.3 Applications
	5.4.4.4 Network Pruning
	5.4.4.5 Experiments
	5.4.4.6 Ablation Study

	5.5 Network Pruning on BNNs
	5.5.1 Rectified Binary Convolutional Networks with Generative Adversarial Learning
	5.5.1.1 Loss Function
	5.5.1.2 Learning RBCNs
	5.5.1.3 Network Pruning
	5.5.1.4 Learning Pruned RBCNs
	5.5.1.5 Ablation Study

	5.5.2 BONN: Bayesian Optimized Binary Neural Network
	5.5.2.1 Bayesian Formulation for Compact 1-Bit CNNs
	5.5.2.2 Bayesian Learning Losses
	5.5.2.3 Bayesian Pruning
	5.5.2.4 BONNs
	5.5.2.5 Forward Propagation
	5.5.2.6 Asynchronous Backward Propagation
	5.5.2.7 Ablation Study

	References

	6 Applications
	6.1 Introduction
	6.2 Image Classification
	6.3 Speech Recognition
	6.3.1 1-Bit WaveNet: Compression of a Generative Neural Network in Speech Recognition with Two Binarized Methods
	6.3.1.1 Network Architecture
	6.3.1.2 Bi-Real Net Binarization
	6.3.1.3 Projection Convolutional Neural Network Binarization

	6.4 Object Detection and Tracking
	6.4.1 Data-Adaptive Binary Neural Networks for Efficient Object Detection and Recognition
	6.4.1.1 Data-Adaptive Amplitude Method
	6.4.1.2 Data-Adaptive Channel Amplitude
	6.4.1.3 Data-Adaptive Spatial Amplitude
	6.4.1.4 Experiment on Object Recognition
	6.4.1.5 Ablation Study on Object Recognition
	6.4.1.6 Network Accuracy Comparison on ImageNet
	6.4.1.7 Experiment on Object Detection
	6.4.1.8 Performance Comparison on PASCAL VOC
	6.4.1.9 Computation and Storage Analysis

	6.4.2 Amplitude Suppression and Direction Activation in Networks for Faster Object Detection
	6.4.2.1 Methodology
	6.4.2.2 Back Propagation
	6.4.2.3 Amplitude Calculation and Suppression
	6.4.2.4 Experiments
	6.4.2.5 Ablation Study
	6.4.2.6 Object Detection
	6.4.2.7 Image Classification

	6.4.3 Q-YOLO: Efficient Inference for Real-Time Object Detection
	6.4.3.1 Preliminaries
	6.4.3.2 Uniform Quantization
	6.4.3.3 Quantization Range Setting
	6.4.3.4 Unilateral Histogram (UH)-Based Activation Quantization
	6.4.3.5 Experiments
	6.4.3.6 Ablation Study
	6.4.3.7 Quantization Type
	6.4.3.8 Inference Speed

	References

