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Preface 

With the swift development of information technology, cloud computing with 
centralized data processing cannot meet the needs of applications that require 
processing massive amounts of data, and they can only be effectively used when 
privacy requires the data to remain at the front-end device. Thus, edge computing 
has become necessary to handle the data from embedded devices. Intelligent 
edge devices benefit many requirements within real-time unmanned aerial systems, 
industrial systems, and privacy-preserving applications. 

In recent years, deep learning has been applied to different applications, dramat-
ically improving many artificial intelligence (AI) tasks. However, the incomparable 
accuracy of deep learning models is achieved by paying the cost of hungry memory 
consumption and high computational complexity, which significantly impedes their 
deployment in edge devices with low memory resources. For example, the VGG-
16 network can achieve 92.7% top-5 test accuracy on image classification tasks 
with the ImageNet dataset. Still, the entire network contains about 140 million 32-
bit floating-point parameters, requiring more than 500 megabytes of storage space 
and performing .1.6 × 1010 floating-point operations. Yet, FPGA-based embedded 
devices typically have only a few thousand compute units, which cannot handle the 
millions of floating-point operations in standard deep neural network models. On the 
other hand, complex neural networks are often accompanied by slower computing 
speed and longer inference time, which are not allowed in applications with strict 
latency requirements, such as vehicle detection and tracking. Therefore, a natural 
thought is to perform model compression and acceleration in neural networks 
without significantly decreasing the model performance. 

This book introduces the significant advancements of neural networks with 
model compression. While quantized operations can enhance the efficiency of 
neural networks, they typically result in a decrease in performance. In the last 5 
years, many methods have been introduced to improve the performance of quantized 
neural networks. To better review these methods, we focus on six aspects: gradient 
approximation, quantization, structural design, loss design, optimization, and neural 
architecture search. We also review the applications of neural networks with model 
compression in visual and audio analysis. There are also other model compression
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techniques, such as model compression with network pruning, widely used in edge 
computing, which we introduce for completeness in this book. From our previous 
studies, network pruning and quantized neural networks can be used simultaneously 
to complement each other, whereas network pruning on quantized neural networks 
can further compress models and improve the generalization ability for many 
downstream applications. 

Beijing, China Baochang Zhang 
Beijing, China Tiancheng Wang 
Beijing, China Sheng Xu 
Buffalo, NY, USA David Doermann
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Chapter 1 
Introduction 

1.1 Background 

Recently, there has been a significant increase in the complexity of deep learning 
models, with models becoming more and more intricate [2, 3, 7–10]. However, the 
hardware on which these models are deployed has not kept up with the increasing 
computational demands. Practical limitations such as latency, battery life, and 
temperature have created a significant gap between the computational requirements 
of these models and the available hardware resources. 

To bridge this gap, network quantization has emerged as a popular approach 
[1, 4–6]. Network quantization involves mapping single-precision floating-point 
weights or activations to lower bit integers, leading to compression and acceleration 
of the model. One notable technique in this area is binary neural network (BNN), 
which is the simplest version of low-bit networks and has gained significant 
attention due to its highly compressed parameters and activation features [1]. 
Notably, the company Xnor.ai has become prominent for its work on BNNs. 
Founded in 2016, the company has raised substantial funding to develop tools 
that enable AI algorithms to run on devices rather than remote data centers. This 
approach allows for greater privacy and faster processing. Recently, Apple Inc. 
acquired Xnor.ai and plans to leverage BNN technology to enhance user privacy 
and accelerate processing on its devices. 

Deep learning has gained significant importance due to its exceptional perfor-
mance; however, it faces challenges in terms of large memory requirements and high 
computational demands, making it difficult to deploy on resource-constrained front-
end devices. For instance, unmanned systems rely on UAVs as computing terminals 
with limited memory and computational resources, posing obstacles to real-time 
data processing using convolutional neural networks (CNNs). To address these 
efficiency concerns, binary neural networks (BNNs) have emerged as promising 
solutions for practical applications. BNNs are neural networks that binarize weights, 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
B. Zhang et al., Neural Networks with Model Compression, 
Computational Intelligence Methods and Applications, 
https://doi.org/10.1007/978-981-99-5068-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5068-3protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1
https://doi.org/10.1007/978-981-99-5068-3_1


2 1 Introduction

offering improved storage and computation efficiency. Taking this approach further, 
1-bit CNNs achieve extreme compression by binarizing both the weights and 
activations, reducing the model size and computational costs even further. Such 
highly compressed models are well-suited for front-end computing tasks. Alongside 
BNNs, other techniques like pruning neural networks involving quantization are 
widely utilized in edge computing. 

This book comprehensively analyzes the latest advancements in model com-
pression technologies specifically designed for front-end computing. It offers an 
extensive review and summary of existing research, categorized into binary neural 
networks, binary neural architecture search, quantization of neural networks, and 
network pruning. Furthermore, the book explores the practical applications of these 
techniques in computer vision and speech recognition, shedding light on their 
potential for future applications in edge computing. 

1.2 Introduction of Deep Learning 

Deep learning is a subset of machine learning that focuses on developing and 
applying artificial neural networks with multiple layers, also known as deep neural 
networks. It is inspired by the structure and function of the human brain, specifically 
the interconnectedness of neurons. 

Deep learning models, also known as deep neural networks, comprise multiple 
layers of interconnected artificial neurons called units or nodes. These layers include 
an input layer, one or more hidden layers, and an output layer. Each unit in the 
network receives input signals, applies a mathematical transformation to them, and 
produces an output signal that is passed to the next layer. The weights associated 
with each connection between the units determine the strength and impact of the 
signals. The key features and concepts of deep learning are as follows: 

Neural Network Architecture Deep learning models can have many architectures, 
depending on the task and data being addressed. Common architectures include 
feedforward neural networks, convolutional neural networks (CNNs) for image 
analysis, recurrent neural networks (RNNs) for sequence data, and transformers for 
natural language processing tasks. 

Training Deep learning models learn from data through training. During training, 
the model is presented with a labeled dataset and adjusts its weights to minimize 
the difference between its predictions and the true labels. This optimization is 
achieved using an algorithm called back propagation (BP), which calculates the 
gradients of the model’s performance concerning the weights and updates the 
weights accordingly. The process iterates until the model converges to a satisfactory 
level of performance. 

Activation Functions Activation functions introduce nonlinearities to the neural 
network, allowing it to model complex relationships between inputs and outputs.
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Common activation functions include sigmoid, hyperbolic tangent (tanh), and 
rectified linear unit (ReLU). They help the network learn nonlinear patterns and 
make the model more expressive. 

Loss Functions Loss functions measure the discrepancy between the predicted 
outputs of the model and the true labels in the training data. They provide a 
quantitative measure of how well the model is performing. Common loss functions 
include mean squared error (MSE) for regression tasks and categorical cross-
entropy for classification tasks. 

Optimization Algorithms Optimization algorithms are used to update the neural 
network weights during training. Stochastic gradient descent (SGD) is a widely used 
optimization algorithm that iteratively adjusts the weights based on the gradients 
computed through back propagation. Variants of SGD, such as Adam and RMSprop, 
are also commonly employed to improve training efficiency and convergence. 

Regularization Deep learning models are prone to overfitting, which occurs when 
the model becomes too specialized to the training data and performs poorly on 
unseen data. Regularization techniques, such as L1 and L2 regularization, dropout, 
and early stopping, are used to prevent overfitting and improve the model’s 
generalization ability. 

One of the key advantages of deep learning is its ability to automatically learn 
feature representations from raw data. Traditionally, in machine learning, feature 
engineering is a crucial step where domain experts manually extract relevant 
features from the data. In deep learning, the neural network learns these features 
directly from the raw data during training. This removes the need for manual feature 
engineering and allows the model to discover complex patterns and representations. 

Deep learning has achieved remarkable success in various domains. In computer 
vision, deep neural networks have achieved state-of-the-art results in tasks such as 
image classification, object detection, and image segmentation. Deep learning has 
revolutionized machine translation, sentiment analysis, and speech recognition in 
natural language processing. It has also been applied to recommender systems, drug 
discovery, finance, and autonomous vehicles. 

The success of deep learning is due to several factors. Firstly, the availability of 
large-scale datasets, such as ImageNet for computer vision or the Common Crawl 
dataset for natural language processing, has enabled the training of deep neural 
networks with millions or even billions of parameters. Secondly, advancements in 
computing power, particularly GPUs (graphics processing units), have accelerated 
the training process by performing parallel computations. Lastly, developing effi-
cient algorithms like stochastic gradient descent and its variants has made it feasible 
to train deep neural networks effectively. 

However, deep learning also presents challenges. Training deep neural networks 
requires substantial computational resources, and training times can be lengthy, 
especially for complex models. Deep learning models are also data-hungry and 
often require large labeled datasets, which may only sometimes be readily available.
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Overfitting, where the model becomes too specialized to the training data and 
performs poorly on unseen data, is another challenge that needs to be addressed. 

Researchers have been exploring techniques to overcome these challenges in 
recent years, such as transfer learning, which enables pre-training on large-scale 
datasets and fine-tuning on smaller task-specific datasets. There is also ongoing 
research on model compression, model acceleration, developing more efficient 
architectures, regularization techniques, and ways to leverage smaller datasets 
effectively. 

Deep learning has revolutionized the field of artificial intelligence, enabling 
machines to learn and make intelligent decisions from vast amounts of data. Its 
ability to learn complex patterns and representations has significantly advanced in 
various domains. 

1.3 Model Compression and Acceleration 

Model compression and acceleration techniques reduce deep learning models’ size 
and computational requirements, making them more efficient and practical for 
deployment on resource-constrained devices or in real-time applications. These 
techniques aim to balance model performance and efficiency, enabling faster 
inference times and reducing memory footprint while preserving or minimizing the 
loss in accuracy. 

Pruning Pruning involves removing unimportant connections or weights from a 
trained neural network. It can be done in various ways, such as magnitude-based 
pruning, where weights below a certain threshold are pruned, or structured pruning, 
where entire filters or layers are pruned. Pruning reduces the number of parameters 
and connections in the network, resulting in a more compact model. 

Quantization Quantization reduces the precision of weights and activations in the 
neural network from floating-point representation (32-bit) to lower bit representa-
tions (e.g., 8-bit or even lower). By using lower precision, quantization reduces 
memory usage and improves computational efficiency, as integer operations are 
typically faster than floating-point operations. 

Low-Rank Factorization This technique reduces the number of parameters in 
a neural network by approximating weight matrices using low-rank factorization 
methods. Composing weight matrices into smaller matrices of lower rank can sig-
nificantly reduce the number of parameters while maintaining reasonable accuracy. 

Knowledge Distillation Knowledge distillation involves training a smaller “stu-
dent” network to mimic the behavior of a larger “teacher” network. The teacher 
network provides soft targets (probability distributions) instead of hard labels during 
training. The student network learns to generalize from the teacher’s knowledge, 
resulting in a compact model that can achieve comparable performance to the larger 
model.
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Model Architecture Design Efficient model architecture design aims to create 
compact and lightweight models from scratch. Techniques like depth-wise separable 
convolutions, bottleneck layers, and skip connections can reduce the number of 
parameters and computational complexity while maintaining or improving perfor-
mance. 

Model Parallelism and Model Parallel Training Model parallelism divides 
a deep learning model across multiple devices or processors, allowing parallel 
computation and reducing the memory requirements for model inference. Similarly, 
model parallel training divides the training process across multiple devices, reducing 
the memory demand during training and enabling faster convergence. 

Hardware Acceleration Hardware accelerators, such as graphics processing 
units (GPUs), tensor processing units (TPUs), or field-programmable gate 
arrays (FPGAs), are specialized devices designed to accelerate deep learning 
computations. These accelerators can significantly speed up the inference and 
training processes and improve energy efficiency. 

These techniques can be used individually or in combination to achieve model 
compression and acceleration. The choice of techniques depends on the specific 
requirements of the deployment scenario and the trade-off between model size, 
computational efficiency, and accuracy. 

Model compression and acceleration techniques have enabled the deployment of 
deep learning models on edge devices, mobile devices, and embedded systems, mak-
ing real-time inference and applications like object detection, speech recognition, 
and natural language processing feasible in resource-constrained environments. 
These techniques have also paved the way for advancements in autonomous 
vehicles, the Internet of Things (IoT), and edge computing, where efficient and 
lightweight models are crucial for efficient and scalable deployment. 
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Chapter 2 
Binary Neural Networks 

2.1 Introduction 

This chapter provides an overview of the most recent developments in binary 
neural network (BNN) technologies, with a particular focus on their suitability for 
front-end, edge-based computing. The content includes a thorough examination and 
synthesis of current research, organized into various categories such as gradient 
approximation, quantization techniques, architectural considerations, loss functions, 
optimization methods, and binary neural architecture search. Moreover, the chapter 
delves into the real-world applications of BNNs in computer vision and speech 
recognition while also contemplating the promising future prospects of BNNs across 
diverse domains. 

In this chapter, we conduct a comprehensive review of the noteworthy advance-
ments in binary neural networks and 1-bit CNNs. While binarization operations 
offer improved efficiency, they often come at the cost of reduced performance. 
However, over the past 5 years, several techniques have emerged to enhance the 
performance of binary neural networks significantly. To facilitate a comprehensive 
review of these methods, we categorize them into six key aspects: gradient 
approximation, quantization, structural design, loss design, optimization, and binary 
neural architecture search. 

Additionally, we delve into the applications of BNNs in object detection, object 
tracking, and audio analysis, assessing their efficacy and potential in these specific 
domains. By presenting a holistic examination of the recent advancements and 
practical use-cases of binary neural networks, we aim to shed light on the promising 
future prospects of this technology. 

BinaryConnect [12] was the first work attempting to confine weights to either 
+1 or . −1 during propagation without binarizing the inputs. Binary operations 
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possess simplicity and ease of comprehension. One of the approaches to binarize 
convolutional neural networks (CNNs) involves the utilization of a sign function: 

.ωb =
{+1, if ω ≥ 0

−1, otherwise
, (2.1) 

where . ωb is the binarized weight and . ω the real-valued weight. A second way is to 
binarize scholastically: 

.ωb =
{+1, with probability p = σ(ω)

−1, with probability 1 − p
, (2.2) 

where . σ is the “hard sigmoid” function. The training process for binary neural 
networks differs slightly from that of full-precision neural networks. During forward 
propagation, binary neural networks employ binarized weights instead of full-
precision weights, while backward propagation follows conventional methods. The 
gradient . ∂C

∂ωb
(where C is the cost function) needs to be calculated and then 

combined with the learning rate to directly update the full-precision weights. 
BinaryNet [25] extends beyond BinaryConnect by not only binarizing the 

weights but also quantizing the activations. To enforce both weights and activa-
tions to be either +1 or . −1, BinaryNet introduces two methods. Additionally, it 
incorporates several modifications to accommodate binary activations. Firstly, it 
implements shift-based batch normalization (SBN) to avoid additional multiplica-
tions. Secondly, it employs shift-based AdaMax instead of the ADAM learning rule, 
which reduces the number of multiplications. The third modification concerns the 
operation performed on the input of the first layer, though specific details are not 
provided in this statement. For continuous-valued inputs of the first layer, BinaryNet 
represents them as fixed-point numbers with m bits of precision. 

While BinaryConnect and BinaryNet demonstrate promising performance on 
representative datasets (as shown in Table 5.1), they struggle to perform well on 
larger datasets. The constraint of weights to +1 and . −1 hinders effective learning. 
Therefore, new methods for training binary neural networks and 1-bit networks need 
to be developed to address these limitations. It is worth noting that QNN (quantized 
neural networks) [26] proposed training neural networks with extremely low-bit 
weights and activations, but the specific details of QNN are omitted in this review 
as we primarily focus on binary networks. 

Wang et al. [60] proposed binarized deep neural networks (BDNNs) for image 
classification tasks, where all the values and operations in the network are binarized. 
While BinaryNet deals with convolutional neural networks, BDNNs target essen-
tial artificial neural networks consisting of full-connection layers. Bitwise neural 
networks [31] also present a completely bitwise network where all participating 
variables are bipolar binaries.
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2.2 Gradient Approximation 

In BNNs and 1-bit networks, the parameter updates involve full-precision weights 
using the gradient . ∂C

∂ωb
. However, during forward propagation, a sign function is 

applied between full-precision and binarized weights. Consequently, the gradient of 
the sign function must be considered when updating the full-precision weights. As 
the derivative of the sign function is zero almost everywhere and becomes infinite at 
zero points, approximations using derivable functions are commonly employed to 
effectively handle the update process. 

The first solution for addressing this issue in a 1-bit network was introduced by 
BinaryNet [25]. Assuming that an estimator of . gq for the gradient . ∂C

∂q
, where q is 

.Sign(r), has been obtained, the straight-through estimator of . ∂C
∂r

is simply: 

.gr = gq1|r|≤1, (2.3) 

where .1|r|≤1 equals 1 when .|r| ≤ 1. And it equals 0 in other cases. It can also be 
seen as propagating the gradient through the hard tanh, which is a piecewise-linear 
activation function. 

The Bi-Real Net [44] addresses the approximation of the derivative of the sign 
function for activations in binary neural networks. Instead of using Htanh  [25] for  
this purpose, the Bi-Real Net employs a piecewise polynomial function, resulting in 
a more accurate approximation. 

Furthermore, the Bi-Real Net introduces a magnitude-aware gradient for weights. 
In traditional binary neural networks, the gradient . ∂C

∂W
is solely determined by the 

sign of weights and is independent of their magnitude. To enhance the learning 
process, the Bi-Real Net replaces the sign function with a magnitude-aware 
function, allowing the model to take into account both the sign and magnitude 
of weights during parameter updates. This approach contributes to more effective 
and fine-grained weight updates, leading to improved overall performance in binary 
neural networks. 

Xu et al. [72] propose a higher-order approximation for weight binarization 
in binary neural networks. They use a long-tailed approximation for activation 
binarization, striking a balance between tight approximation and smooth back 
propagation. 

In DSQ [17], a differentiable soft quantization function is introduced to approx-
imate the standard binary and uniform quantization process. This function uses 
hyperbolic tangent functions to gradually approach the staircase function, specifi-
cally for low-bit quantization (similar to the sign function in 1-bit CNN). The binary 
DSQ function is as follows: 

.Qs(x) =
⎧⎨
⎩

−1, x < −1
1, x > 1
stanh(kx), otherwise

, (2.4)
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with 

.k = 1

2
log(

2

α
− 1), s = 1

1 − α
. (2.5) 

DSQ approximates uniform quantization well, especially with a small . α, making 
it valuable for training high-accuracy quantized models. Being differentiable, DSQ 
allows for smooth parameter updates, contributing to improved accuracy compared 
to non-differentiable methods. 

In summary, the methods discussed introduce differentiable functions to approxi-
mate the sign function in BinaryConnect. This allows for more accurate computation 
of gradients during training. As a result, binary neural networks and 1-bit networks 
converge more easily during the training process, leading to improved network 
performance and higher accuracy. These differentiable approximations have signif-
icantly advanced the field of binary neural networks and made them more practical 
and effective for various applications. 

2.3 Quantization 

BinaryConnect and BinaryNet use simple quantization methods where the binary 
weights are generated by taking the sign of full-precision weights after their update. 
However, this approach may lead to significant quantization errors. 

Before discussing new methods to improve the quantization process, let’s clarify 
the notations used in XNOR-Net [53] for each layer in a convolutional neural 
network. For each layer in a convolutional neural network, I is the input, W is 
the weight filter, B is the binarized weight (+-1), and H is the binarized input. 

In their work, Rastegari et al. [53] introduce binary weight networks (BWN) and 
XNOR-Networks. BWN approximates weights with binary values, representing a 
variation of binary neural networks. On the other hand, XNOR-Networks binarize 
both weights and activation bits, making it a 1-bit network. Both networks utilize a 
scaling factor. 

In BWN, the real-valued weight filter W is estimated using a binary filter B and 
a scaling factor . α. The convolutional operation is then approximated as follows: 

.I ∗ W ≈ (I ⊕ B)α, (2.6) 

where . ⊕ indicates a convolution without multiplication. By introducing the scaling 
factor, binary weight filters reduce memory usage by a factor of .32× compared to 
single-precision filters. To ensure W is approximately equal to . αB, BWN defines an 
optimization problem, and the optimal solution is: 

.B∗ = sign(W), (2.7) 

.α∗ = WT sign(W)

n
=

Σ |Wi |
n

= 1

n
||Wr||l1 . (2.8)
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Indeed, in both BWN and XNOR-Networks, the optimal estimation of binary 
weight filters involves taking the sign of weight values. The optimal scaling factor, 
. α, for BWN is the absolute average of the absolute weight values. This scaling 
factor is crucial in the calculation of gradients during back propagation, allowing 
for effective weight updates. 

For XNOR-Networks, another scaling factor, . β, is used when binarizing the 
input I into H . The core idea of XNOR-Networks is similar to BWN, but the 
introduction of . β during activation binarization provides additional optimization 
benefits. The experiments demonstrate that this approach significantly outperforms 
BinaryConnect and BNN on ImageNet. 

In Xu et al.’s work [72], a trainable scaling factor is defined for both weights 
and activations, enhancing the adaptability and performance of quantized neural 
networks. 

LQ-Nets [76] quantize both weights and activations using arbitrary bit widths, 
including 1 bit. The learnable nature of the quantizers allows them to be compatible 
with bitwise operations, preserving the fast inference benefits of properly quantized 
neural networks. 

Based on XNOR-Net [53], HORQ [37] introduces a high-order binarization 
scheme to achieve a more accurate approximation while retaining the advantages of 
binary operations. High-order residual quantization (HORQ) calculates the residual 
error and then performs additional thresholding operations to further approximate 
the residual. This binary approximation of the residual can be considered a higher-
order binary input. Similar to XNOR-Net, HORQ defines the first-order residual 
tensor .R1(x) by computing the difference between the real input and the first-order 
binary quantization: 

.R1(x) = X − β1H1 ≈ β2H2, (2.9) 

where .R1(x) is a real value tensor. By this analogy, .R2(x) can be seen as the second-
order residual tensor, and .β3H3 also approximates it. After recursively performing 
the above operations, they obtain order-K residual quantization: 

.X =
KΣ

i=1

βiHi. (2.10) 

During the training of the HORQ network, the input tensor can be reshaped 
into a matrix, allowing it to be expressed as any order of residual quantization. 
By considering higher-order residual approximations, HORQ-Net achieves a more 
accurate representation of binary values. Experimental results demonstrate that 
HORQ-Net outperforms XNOR-Net in terms of accuracy on the CIFAR dataset. 

ABC-Net [38] is another network designed to improve the performance of binary 
networks. ABC-Net approximates the full-precision weight filter W with a linear
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combination of M binary filters .B1, B2, . . . , BM ∈ {+1,−1} such that . W ≈ α1β1+
. . . + αMβM . These binary filters are fixed as follows: 

.Bi = Fui
(W) := sign(W̄ + uistd(W)), i = 1, 2, . . . , M, (2.11) 

where . W̄ and .std(W) are the mean and standard derivation of W . For activations, 
ABC-Net employs multiple binary activations to alleviate information loss. Like the 
binarization weights, the real activation I is estimated using a linear combination of 
N activations .A1, A2, . . . , AN such that .I = β1A1 + . . . + βNAN , where 

.A1, A2, . . . , AN = Hv1(R),Hv2(R), . . . , HvN
(R). (2.12) 

.H(R) in Eq. 2.12 is a binary function, h is a bounded activation function, I is 
the indicator function, and v is a shift parameter. Unlike the input weights, the 
parameters . β and v are trainable. Without explicit linear regression, the network 
tunes .β '

ns and . v'
ns during training and is fixed for testing. They are expected to learn 

and utilize the statistical features of full-precision activations. 
Ternary-binary network (TBN) [57] is a convolutional neural network with 

ternary inputs and binary weights. It leverages accelerated ternary-binary matrix 
multiplication, using efficient operations like XOR, AND, and bit count commonly 
found in standard CNNs. TBN achieves an optimal trade-off between memory, 
efficiency, and performance. Wang et al. [59] propose a two-step quantization 
framework (TSQ) that decomposes network quantization into two stages: code 
learning and transformation function learning based on the learned codes. TSQ is 
mainly designed for 2-bit neural networks. 

LBCNN [28] introduces a local binary convolution (LBC) layer, inspired by local 
binary patterns (LBP) used in image descriptors, especially in face recognition. 
The LBC layer comprises fixed, sparse, and predefined binary convolutional filters 
that remain unchanged during training. It includes a nonlinear activation function 
and learnable linear weights. The linear weights combine the activated filter 
responses, approximating the corresponding activated filter responses of a standard 
convolutional layer. The LBC layer significantly reduces the number of learnable 
parameters, offering parameter savings of 9x to 169x compared to a standard 
convolutional layer. Additionally, due to the sparse and binary nature of the weights, 
it results in up to 169x savings in model size when compared to conventional 
convolutions. 

In MCN [61], modulation filters (M-Filters) are introduced to recover binarized 
filters. M-Filters are designed to approximate unbinarized convolutional filters 
within an end-to-end framework. Each layer shares only one M-Filter, leading to 
a significant reduction in model size. To reconstruct the unbinarized filters, MCN 
employs a modulated process based on the M-Filters and binarized filters. Figure 2.1 
illustrates an example of the modulation process. In this example, the M-Filter 
has four planes, each expanding to a 3D matrix according to the channels of the 
binarized filter. The reconstructed filter Q is obtained through the . ◦ operation 
between the binarized filter and each expanded M-Filter.
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Fig. 2.1 Modulation process based on an M-Filter 

Fig. 2.2 MCNs’ convolution 

As depicted in Fig. 2.2, the reconstructed filters Q are utilized to compute the 
output feature maps F . Figure 2.2 shows four planes, resulting in four channels in 
the feature maps. The key advantage of MCN’s convolution is that it maintains the 
same number of input and output channels for each feature map, facilitating module 
replication and easy implementation of MCNs. 

Unlike previous approaches that independently binarize each filter, Bulat et 
al. [8] propose parameterizing the weight tensor of each layer using a matrix 
or tensor decomposition. The binarization process involves using a quantization 
function (e.g., sign function) for the reconstructed weights, while computation in 
the latent factorized space is performed in the real domain. This approach offers 
several advantages. First, the latent factorization enforces a coupling of filters 
before binarization, leading to a significant improvement in the accuracy of trained 
models. This coupling allows the model to capture more complex and fine-grained 
features, contributing to higher accuracy in tasks. Second, during training, each 
convolutional layer’s binary weights are parametrized using a real-valued matrix 
or tensor decomposition. However, during inference, reconstructed (binary) weights 
are used, which retains the efficiency benefits of binary neural networks during the 
testing phase.
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In contrast to previous approaches that use the same binary method for both 
weights and activations, Huang et al. [24] propose a different approach. They 
believe that the best performance for binarized neural networks can be achieved 
by applying different quantization methods to weights and activations. In their 
method, they simultaneously binarize the weights while quantizing the activations. 
This simultaneous approach aims to reduce bandwidth. 

ReActNet [43] introduces a novel approach to binarized neural networks. It 
replaces the traditional sign function with ReAct-Sign and the PReLU function 
with ReAct-PReLU. These operations involve a simple channel-wise reshaping and 
shifting operation for the activation distribution. In ReAct-Sign and ReAct-PReLU, 
the parameters can be updated during training, allowing the network to learn and 
adapt to the data. This feature makes ReActNet more flexible and capable of 
capturing complex patterns in the data, leading to improved performance compared 
to traditional binarized neural networks. 

Compared to XNOR-Net [53], both HORQ-Net [37] and ABC-Net [38] use  
multiple binary weights and activations, leading to improved performance on binary 
tasks. However, this improvement comes at the cost of increased complexity, which 
goes against the initial intention of binary neural networks to be efficient and speedy. 
To address this challenge, new neural network architectures are continuously being 
explored. MCN [61] and LBCNN [28] propose innovative filters while quantizing 
parameters. Additionally, they introduce new loss functions to learn these additional 
filters. 

2.4 Structural Design 

Indeed, the fundamental structure of networks like BinaryConnect [12] and Bina-
ryNet [25] closely resembles that of traditional convolutional neural networks, 
which may not be optimally suited for binary processing. As a result, researchers 
have sought to modify the architecture of binary neural networks to enhance their 
accuracy. 

In XNOR-Net [53], the block structure in a typical CNN is changed to further 
decrease information loss due to binarization. A typical block in a CNN typically 
contains different layers in the following order: 1-Convolutional, 2-BatchNorm, 3-
Activation, and 4-Pooling. Before binarization, the input is normalized to have zero 
means. This normalization step is crucial in minimizing quantization error during 
thresholding at zero. The order of the layers in XNOR-Net is shown in Fig. 2.3. 

In the context of Bi-Real Net [44], the poor performance of 1-bit CNNs is 
attributed to their limited representation capacity. Representation capacity refers 
to the number of possible configurations of a variable, which could be a scalar, 
vector, matrix, or tensor. To address this limitation and increase the representation 
capability of 1-bit CNNs, Bi-Real Net proposes a straightforward shortcut. The 
shortcut in Bi-Real Net preserves the real-valued activations before the sign 
function, effectively increasing the network’s representation capacity. The structure
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Fig. 2.3 A block in XNOR-Net 

Fig. 2.4 1-bit CNN with shortcut 

of the block is depicted as “Sign . → 1-bit convolution . → batch normalization . →
addition operator” in Fig. 2.4. The shortcut connects the input activations, which 
pass through the sign function in the current block, to the output activations after 
the batch normalization in the same block. These two sets of activations are then 
combined using an addition operator. The resulting combined activations are then 
passed to the sign function in the subsequent block. 

By introducing this shortcut and preserving the real activations, Bi-Real Net 
seeks to enhance the expressiveness of 1-bit CNNs, ultimately improving their 
performance and accuracy in various tasks. 

BinaryDenseNet [6] is a new binary neural network (BNN) architecture that 
addresses the main drawbacks of BNNs. It is based on DenseNets [23], which 
utilize shortcut connections to maintain the information flow throughout the depth 
of the network. However, the bottleneck design in DenseNets reduces the flow of 
information between layers, which is not suitable for BNNs due to their limited 
representation capacity. To overcome this limitation, BinaryDenseNet increases the 
growth rate or the number of blocks in the architecture to achieve satisfactory 
performance. Specifically, to maintain the same number of parameters as a given 
BinaryDenseNet, the growth rate is halved, and the number of blocks is doubled 
simultaneously. The architecture of BinaryDenseNet is shown in Fig. 2.5.
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Fig. 2.5 BinaryDenseNet 

MeliusNet [4] introduces a novel architecture that utilizes alternating Dense-
Blocks to increase the feature capacity. Additionally, they propose an Improvement-
Block to enhance the quality of the features. This approach enables 1-bit CNNs to 
achieve accuracy comparable to the popular compact network MobileNet-v1 while 
maintaining similar model size, number of operations, and accuracy. The building 
blocks of MeliusNet are shown in Fig. 2.6. 

Group-Net [81] is another approach that enhances the performance of 1-bit 
CNNs through structural design. The inspiration behind Group-Net comes from 
the idea of a fixed number of binary digits representing a floating-point number in 
a computer. Group-Net proposes a novel approach to decompose a network into 
binary structures while ensuring that its representability is preserved. Instead of 
directly quantizing the network via “value decomposition,” Group-Net leverages 
this structured approach. 

Bulat et al. [9] were pioneers in exploring the impact of neural network bina-
rization on localization tasks, such as human pose estimation and face alignment. 
They introduced a novel hierarchical, parallel, and multiscale residual architecture 
that leads to remarkable performance improvements over the standard bottleneck 
block, all while keeping the number of parameters unchanged. This achievement 
effectively bridges the gap between the original network and its binarized version. 
The new architecture introduced by Bulat et al. enhances the size of the receptive 
field, which enables the network to capture more context from the input data. 
Additionally, it improves the gradient flow within the network, leading to more 
efficient and effective learning. 

LightNN [15] is a novel model that replaces multiplications in traditional neural 
networks with efficient shift and add operations. This innovative approach forms a 
new kind of model that significantly reduces the computational complexity while 
maintaining high accuracy. 

In this section, we have discussed several works that modify the structure of 
binary neural networks, leading to improved performance and convergence. XNOR-
Net and Bi-Real Net make subtle adjustments to the original networks to enhance
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Fig. 2.6 Building blocks of MeliusNet (c denotes the number of channels in the feature map) 

their representation capacity. On the other hand, MCN introduces new filters and 
convolutional operations to improve the overall accuracy of the network. Moreover, 
the loss function is also adapted to incorporate the new filters, which will be further 
elaborated in Sect. 2.5. 

2.5 Loss Design 

In binary neural networks (BNNs), the loss function plays a crucial role in 
estimating the difference between the actual and predicted values of the model. 
While classical loss functions like least squares loss and cross-entropy loss are 
commonly used in standard neural networks for classification and regression tasks, 
specific loss functions have been developed to suit the unique requirements of 
BNNs. 

In MCNs [61], a novel loss function is introduced, which combines three 
components: filter loss, center loss, and softmax loss, in an end-to-end framework. 
The overall loss function in MCNs is composed of two main parts: 

.L = LM + LS. (2.13)
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The first part .LM is: 

.LM = θ

2

Σ
i,l

||||Cl
i − Ĉl

i ◦ Ml
||||2 + λ

2

Σ
m

||||fm(Ĉ,M) − f̄ (Ĉ,M)
||||2, (2.14) 

where C is the full-precision weights, . Ĉ is the binarized weights, M is the M-Filters 
defined in Sect. 4.5.3, . fm denotes the feature map of the last convolutional layer 
for the mth sample, and . f̄ denotes the class-specific mean feature map of previous 
samples. The first entry of .LM represents the filter loss, while the second entry 
calculates the center loss using a conventional loss function, such as the softmax 
loss. 

In PCNNs (projection convolutional neural networks) [19], a novel projection 
loss is introduced for discrete back propagation. It defines the quantization of the 
input variable as a projection onto a set, enabling the use of a projection loss for 
optimization. 

BONNs (Bayesian-optimized 1-bit CNNs) [77] propose a Bayesian-optimized 
1-bit CNN model, aiming to significantly improve the performance of 1-bit CNNs. 
BONNs incorporate prior distributions of full-precision kernels, features, and 
filters into a Bayesian framework to construct 1-bit CNNs comprehensively in an 
end-to-end manner. In BONNs, the quantization error is denoted as y, and the 
full-precision weights as x. To minimize the reconstructed error, they maximize 
.p(x|y), optimizing x for quantization. This optimization problem can be converted 
to a maximum a posteriori (MAP) since the distribution of x is known. For feature 
quantization, a similar method is employed; the Bayesian loss is as follows: 
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where k is the full-precision kernels, w is the reconstructed matrix, v is the variance 
of y, . μ is the mean of the kernels, . Ψ is the covariance of the kernels, . fm are the 
features of class m, and c is the mean of . fm. 

In the work by Zheng et al. [78], they introduce a novel quantization loss 
that measures the discrepancy between binary weights and learned real values. 
The theoretical analysis provided by Zheng et al. demonstrates the importance of
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minimizing this weight quantization loss to enhance the performance of binarized 
neural networks. On the other hand, Ding et al. [14] propose the use of a distribution 
loss to explicitly regulate the activation flow within the network. They develop a 
systematic framework to formulate this distribution loss, which helps in guiding 
the training process effectively. The empirical results from Ding et al.’s work 
illustrate that their proposed distribution loss is robust in terms of selecting training 
hyperparameters. 

These methods all aim to minimize the error and information loss of quantization, 
which improves the compactness and capacity of 1-bit CNNs. 

2.6 Optimization 

Absolutely, researchers have been actively seeking new training methods to enhance 
the performance of binary neural networks (BNNs) and overcome their inherent 
limitations. These methods are aimed at improving the effectiveness of BNNs 
across various tasks and applications. One approach involves integrating techniques 
from other fields into BNNs. By borrowing insights and methods from different 
domains, researchers aim to augment the capabilities and performance of BNNs. 
This cross-disciplinary approach allows for innovative solutions that can address 
specific challenges faced by binary networks. Moreover, improving the training 
process is a key focus for enhancing BNNs. Researchers are exploring modifications 
to the optimization algorithms used in classical BNNs. These adaptations target 
the optimization process to achieve better convergence, stability, and overall 
performance. 

The work by Sari et al.  [60] sheds light on the importance of the BatchNorm 
layer in the training process of binary neural networks (BNNs). They demonstrate 
that BatchNorm plays a crucial role in preventing exploding gradients, which 
can be a significant issue in BNNs due to the binary nature of the weights. 
Their findings also suggest that the standard initialization methods commonly 
used in full-precision networks may not be suitable for BNNs, highlighting the 
need for specialized techniques to handle weight initialization in binary networks. 
Additionally, they provide insights into the components of BatchNorm, showing 
that only minibatch centering is necessary, which can simplify the implementation 
of BatchNorm in BNNs. On the other hand, the experiments conducted by Alizadeh 
et al. [1] offer valuable empirical evidence regarding common tricks used in binary 
training models. They show that techniques like gradient and weight clipping, often 
employed to stabilize training in BNNs, are primarily needed during the final stages 
of training to achieve the best performance. 

XNOR-Net++ [10] presents an innovative training algorithm for 1-bit convo-
lutional neural networks (CNNs), building upon the foundation of XNOR-Net. In 
XNOR-Net++, the authors introduce a novel approach to combine activation and 
weight scaling factors into a single scalar, which is learned discriminatively through 
back propagation. By unifying these scaling factors, the method aims to streamline
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the training process and enhance the efficiency of 1-bit CNNs. Additionally, XNOR-
Net++ explores various strategies to construct the shape of the scale factors while 
ensuring that the computational budget remains fixed. 

The work by Leng et al. [35] draws inspiration from the alternating direction 
method of multipliers (ADMM) to address the challenges of training binary neural 
networks. By leveraging the principles of ADMM, they propose a novel approach 
to decouple the continuous parameters from the discrete constraints in the network. 
This decoupling allows them to break down the original complex optimization 
problem into several subproblems, each with its own set of constraints. To solve 
these subproblems efficiently, Leng et al. employ different gradient and iterative 
quantization algorithms. By doing so, they achieve considerably faster convergence 
rates compared to traditional optimization methods used in binary neural networks. 

In the work of deterministic binary filters (DBFs) [56], the researchers propose 
a novel approach to learn weighted coefficients of predefined orthogonal binary 
bases instead of directly learning the convolutional filters, as is typically done in 
conventional methods. DBFs generate filters by representing them as a linear com-
bination of orthogonal binary codes. These orthogonal binary bases are predefined, 
and the learning process focuses on finding the optimal weighted coefficients for 
these bases. By doing so, the filters can be efficiently generated in real time. 

BinaryRelax [75] presents a two-phase algorithm for training convolutional 
neural networks (CNNs) with quantized weights, including binary weights. The 
goal is to overcome the challenges posed by hard constraints on binary weights 
during training. In the first phase, BinaryRelax relaxes the hard constraint of 
binary weights into a continuous regularizer using the Moreau envelope [48]. 
This regularization term is defined as the squared Euclidean distance between the 
weights and the set of quantized weights. By gradually increasing the regularization 
parameter, BinaryRelax narrows the gap between the continuous weights and the 
quantized state, effectively transitioning toward a binary solution. In the second 
phase, BinaryRelax introduces the same quantization scheme but with a small 
learning rate. This guarantees that the weights eventually converge to fully quantized 
binary values. 

CBCNs [41] propose a novel approach to enhance the capacity of binarized 
convolutional features using circulant filters (CiFs) and circulant binary convolution 
(CBConv). CiFs are 4D tensors of size .K × K × H × H , generated by applying 
a circulant transfer matrix M to a learned filter. The matrix M rotates the learned 
filter at different angles, effectively expanding its representation capacity. To create 
a CiF, the original 2D .H × H learned filter is transformed into a 3D tensor by 
replicating it three times and concatenating them. This 3D tensor is then combined 
with the circulant transfer matrix M to form the 4D CiF. By utilizing circulant filters 
and circulant binary convolution, CBCNs can improve the representation capacity 
of binarized neural networks without altering the model size (Fig. 2.7). 

Rectified binary convolutional networks (RBCNs) [40] introduce a novel 
approach to train 1-bit binary networks using a generative adversarial network 
(GAN). The training process involves using the guidance of the corresponding 
full-precision model, which leads to significant performance improvements in
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Fig. 2.7 The generation of CiF 

1-bit CNNs. The key innovation in RBCNs is the incorporation of rectified 
convolutional layers, which are designed to be generic and flexible. These layers 
can be easily integrated into existing deep convolutional neural networks (DCNNs) 
like WideResNets and ResNets. 

Martinez et al. [45] focus on minimizing the discrepancy between the binary 
output and the corresponding real-valued convolution in 1-bit CNNs. They propose 
a real-to-binary attention matching approach that is tailored for training these 
networks. Additionally, they introduce a progressive bridging strategy to reduce the 
architectural gap between real and binary networks through a sequence of teacher-
student pairs. 

In contrast, Bethge et al. [5] take a different approach by directly training a 
binary network from scratch, without relying on pre-trained full-precision models 
or other standard methods. Their training implementation is based on the BMXNet 
framework [74]. 

Helwegen et al. [22] highlight that latent weights with real values in binary neural 
networks serve a different purpose compared to weights in real-valued networks. 
They propose the binary optimizer (Bop), specifically designed for BNNs, to handle 
the unique characteristics of binary weights effectively during the optimization 
process. 

BinaryDuo [30] presents a novel training scheme for binary activation networks 
by coupling two binary activations into a ternary activation during training. They 
achieve this by first decoupling a ternary activation into two binary activations, 
effectively doubling the number of weights. However, to maintain the parameter 
size of the decoupled model and the baseline model, they reduce the coupled ternary 
model. The independent update of each weight after decoupling allows for better 
optimization, as the two weights no longer share the same value. 

BENN [80] leverages classical ensemble methods to enhance the performance 
of 1-bit CNNs. While ensemble techniques were traditionally believed to have 
limited impact on robust classifiers like deep neural networks, BENN’s analysis 
and experiments demonstrate that ensembles are exceptionally effective in boosting 
BNNs. The ensemble strategies used in BENN draw from various works such as 
[7, 11, 49].
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Table 2.1 Experimental results of some famous binary methods on ImageNet 

Full-precision 

Binarized accuracy accuracy 

Methods Weights Activations Model Top 1 Top 5 Top 1 Top 5 

XNOR-Net [53] Binary Binary ResNet-18 51.2 73.2 69.3 89.2 

ABC-Net [38] Binary Binary ResNet-50 70.1 89.7 76.1 92.8 

LBCNN [27] Binary – – 62.43a – 64.94 – 

Bi-Real Net [44] Binary Binary ResNet-34 62.2 83.9 73.3 91.3 

RBCN [40] Binary Binary ResNet-18 59.5 81.6 69.3 89.2 

BinaryDenseNet 
[6] 

– – – 62.5 83.9 – – 

. a 13. ×13 Filter 

TentacleNet [47] builds on the theory of ensemble learning and makes further 
advancements beyond BENN. TentacleNet demonstrates that binary ensembles can 
achieve high accuracy while requiring fewer computational resources. 

BayesBiNN [46] adopts a principled approach to discrete optimization by using a 
distribution over the binary variable. They introduce a Bayesian learning rule [29] to  
estimate a Bernoulli approximation to the posterior, resulting in a principled method 
for dealing with binary neural networks (Table 2.1). 

2.7 Algorithms for Binary Neural Networks 

Binarization, the most extreme form of quantization, is the main focus of this book. 
It involves representing data using only one bit, either . −1 (or 0) or +1, resulting in 
1-bit quantization. Both weights and activations in a binary neural network can be 
compressed into a single bit, leading to significant memory savings and hardware-
friendly advantages, such as faster execution, reduced memory consumption, and 
improved power efficiency. Groundbreaking works like BNN [25] and XNOR-Net 
[53] have demonstrated the effectiveness of binarization, with XNOR-Net achieving 
up to 58. 

Since the advent of binary neural networks, extensive research has been con-
ducted in computer vision and machine learning fields [21, 42, 54], leading to their 
application in various tasks, including image classification [12, 44, 51, 53, 66, 73], 
object detection [64, 67, 70, 71], point cloud processing [50, 68], object reiden-
tification [69], and more. Binarization’s hardware-friendly benefits and practical 
applications have made it a promising area of research in recent years. 

Binarizing a layer in a neural network helps identify its significance and impact 
on performance. If performance suffers after binarization, the layer is crucial for the 
network. This process aids explainable machine learning and verifies if binarization 
preserves essential information. Understanding binarized models contributes to 
improving binary neural networks.
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Researchers have extensively studied model binarization to understand its behav-
iors and its relationship with the architecture of deep neural networks. Exploring 
binary neural networks helps answer fundamental questions about network topology 
and deep network functionality. Thorough exploration of binary neural network 
studies contributes to a better understanding of effective and reliable deep learning 
models. Notable works, like Bi-Real Net [44], have revealed how components 
in binary neural networks function, such as incorporating shortcuts to mitigate 
information loss due to binarization. 

The structure of shortcuts in binary neural networks, similar to ResNet shortcuts, 
allows for better information flow between shallow and deep layers during both 
forward and backward propagation. This mechanism helps in avoiding issues like 
gradient disappearance and improves the overall performance of the network. 
Ensemble approaches in binary neural networks, like building weak classifier 
groups, can lead to performance improvements. However, they may also encounter 
overfitting problems. Understanding the trade-off between the number of neurons 
and the bit width is essential, as it can influence the network’s performance. 
Interestingly, real-valued neurons may not be necessary in deep neural networks, 
aligning with the idea of biological neural networks. Reducing the bit width of 
specific layers can be an efficient method to examine the interpretability of deep 
neural networks. Investigating how sensitive different layers are to binarization is 
crucial in designing effective binary neural networks. Typically, the first and last 
layers in binary neural networks should be kept at higher precision since they play 
a more critical role in predicting the network’s output. This section attempts to state 
the nature of binary neural networks by introducing some representative work. 

2.7.1 BNN: Binary Neural Network 

Given an N -layer CNN model, we denote its weight set as .W = {wn}Nn=1 and the 
input feature map set as .A = {an

in}Nn=1. The  .wn ∈ R
Cn

out×Cn
in×Kn×Kn

and . an
in ∈

R
Cn

in×Wn
in×Hn

in are the convolutional weight and the input feature map in the n-th 
layer, where . Cn

in, .C
n
out , and . K

n, respectively, represent the input channel number, 
the output channel number, and the kernel size. In addition, .Wn

in and .Hn
in are the 

width and height of the feature maps. Then, the convolutional outputs .an
out can be 

technically formulated as: 

.an
out = wn ⊗ an

in, (2.16) 

where . ⊗ represents the convolution operation. In this book, we omit the nonlinear 
function for simplicity. Following the prior works [12, 25], binary neural network 
(BNN) intends to represent . wn and . an in a binary discrete set as: 

.B := {−1(0),+1}.
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Thus, the 1-bit format of . wn and . an is respectively .bw
n ∈ B

Cn
out×Cn

in×Kn×Kn
and 

.ba
n
in ∈ B

Cn
in×Wn

in×Hn
in such that the efficient XNOR and bit-count instructions can 

approximate the floating-point convolutional outputs as: 

.an
out ≈ bw

n O ba
n
in , (2.17) 

where . ◦ represents channel-wise multiplication and . O denotes XNOR and bit-count 
instructions. 

However, this quantization mode will cause the output amplitude to increase 
dramatically, different from the full-precision convolution calculation, and cause 
the homogenization of characteristics [53]. Several novel objects are proposed to 
address this issue, which will be introduced in the following. 

2.7.2 XNOR-Net: ImageNet Classification Using Binary 
Convolutional Neural Networks 

The scaling factor was first proposed by XNOR-Net [53] to solve this problem. The 
weights and the inputs to the convolutional and fully connected layers in XNOR-
Nets are approximated with binary values . B. 

The XNOR-Net binarization approach seeks to identify the most accurate 
convolutional approximations. Specifically, XNOR-Net employs a scaling factor, 
which plays a vital role in the learning of BNNs, and improves the forward pass of 
BNNs as: 

.an
out ≈ αn ◦ (bw

n O ba
n
in), (2.18) 

where .αn = {αn
1 , α

n
2 , . . . , α

n
Cn

out
} ∈ R

Cn
out+ is known as the channel-wise scaling 

factor vector to mitigate the output gap between Eq. 2.16 and its approximation of 
Eq. 2.18. We denote .A = {αn}Nn=1. Since the weight values are binary, XNOR-Net 
can implement the convolution with additions and subtractions. In the following, 
we state the XNOR operation for a specific convolution layer, thus omitting the 
superscript n for simplicity. Most existing implementations simply follow earlier 
studies [44, 53]to optimize . A based on nonparametric optimization as: 

.α∗,bw∗ = arg minα,bwJ (α,bw), (2.19) 

.J (α,bw) = ||w − αn ◦ bw||22. (2.20) 

By expanding Eq. 2.20, we have:  

.J (α,bw) = α2(bw)
Tbw − 2α ◦ wTbw + wTw (2.21)
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where .bw ∈ B. Thus, .(bw)Tbw = Cin × K × K . .wTw is also a constant due to . w
being a known variable. Thus, Eq. 2.21 can be rewritten as: 

.J (α,bw) = α2 × Cin × K × K − 2α ◦ wTbw + constant. (2.22) 

The optimal solution can be achieved by maximizing the following constrained 
optimization: 

.bw∗ = argmax
bw

wTbw, s.t. bw ∈ B, (2.23) 

which can be solved by the sign function: 

. bwi =
{+1 wi ≥ 0

−1 wi < 0

which is the optimal solution and is also widely used as a general solution to BNNs 
in the following numerous works [44]. To find the optimal value for the scaling 
factor . α∗, we take the derivative of .J (·) w.r.t. . α and set it to zero as: 

.α∗ = wTbw

Cn
in × Kn × Kn

. (2.24) 

By replacing . bw with the sign function, we have that a closed-form solution of . α
can be derived via the channel-wise absolute mean (CAM) as: 

.αi = ||wi,:,:,:||1
Cin × K × K

(2.25) 

.αi = ||wi,:,:,:||1
M

. Therefore, the optimal estimation of a binary weight filter can be 
achieved simply by taking the sign of weight values. The optimal scaling factor is 
the average of the absolute weight values. 

Based on the explicitly solved . α∗, the training objective of the XNOR-Net-like 
BNNs is given in a bilevel form: 

.

W∗ = argmin
W
L(W;A∗),

s.t. arg min
αn,bwn

J (α,bw),
(2.26) 

which is also known as hard binarization [44]. In the following, we show some 
variants of such a binarization function.
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2.7.3 SA-BNN: State-Aware Binary Neural Network 

Binary neural networks (BNNs) have received much attention due to their memory 
and computation efficiency. However, the sizable performance gap between BNNs 
and their full-precision counterparts hinders BNNs from being deployed in resource-
constrained platforms. The challenge of the performance drop instinctively comes 
from the minimal binarization states .{−1, 1}, which would bring many propagation 
errors in forward and backward procedures and lead to misleading weight update. 

We want to suggest a method to make the training more efficient by suppressing 
the fluctuation of the weight update. Specifically, we find that existing methods 
[44, 53] possess the identical gradient amplitude for all quantization states .{−1, 1}. 
According to our analysis, the frequent weight flip is more likely to happen in this 
case. The intuition here is about “whether we can calibrate the amplitude of the two 
states slightly distinctive to make their chance of weight flip different to increase 
the difficulty of frequent weight flip further?” Inspired by this, a novel state-aware 
binary neural network (SA-BNN) [39] equipped with a well-designed state-aware 
gradient is proposed in this paper. Expressly, we set separate learnable gradient 
coefficients for different states. In this way, the unnecessary weight update can 
be impeded efficiently. Besides, we lead to a theorem that the state-aware gradient 
can effectively mitigate the frequent weight flip problem, alleviating the ineffective 
update issue in BNN optimization. 

2.7.3.1 Method 

To suppress the frequent weight flips in BNNs, we propose the following state-aware 
gradient to stabilize the optimization: 

.
∂L

∂x
=

{
∂L
∂x̂

(τ−1
∂x̂
∂x

) if x̂ = −1
∂L
∂x̂

(τ1
∂x̂
∂x

) otherwise
, (2.27) 

where .τ−1, τ1 ∈ R are learnable coefficients, which are introduced on the activation 
gradients to distinctively treat the two states. We do not apply the distinguishable 
parameters .τ = {τ−1, τ1} on the weight gradient (. ∂L

∂w
), since the weights themselves 

are learnable in the training process. It is equivalent to regard the state-aware 
coefficients . τ and the weights as a whole. Therefore, we do not consider the 
state-aware gradient on the weights and instead focus on that on activation in 
the following. According to Eq. 2.27, we leverage an extra scale factor on the 
activation gradients for each binarization state to impose a mild constraint on the 
weight updating. When the two scale factors are equal (.τ−1 = τ1) , it reduces 
to the traditional weight updating with state-consistent gradients. Otherwise, it is 
the proposed state-aware gradient-based BNNs. Next, we analyze the difference 
between these two mechanisms.
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Proposition 2.1 The state-aware gradients (.|τ−1| /= |τ1|) can suppress frequent 
weight flip effectively compared with the corresponding state-consistent gradients 
(.|τ−1| = |τ1|), leading to more stable training. 

Based on the gradient chain rule, the weight-updating procedure can be described 
as: 

. 

wl,t+1 = wl,t − η
∂L

∂wl,t
= wl,t − η

∂L

∂x̂l+1,t (τ
l+1,t ∂x̂l+1,t

∂xl+1,t )
∂xl+1,t

∂ŵl,t

∂ŵl,t

∂wl,t

= wl,t − η
∂L

∂x̂l+1,t (τ
l+1,t ∂x̂l+1,t

∂xl+1,t )x̂
l,t ∂ŵl,t

∂wl,t

= wl,t − τ l+1,t bl,t ,

(2.28) 

where . η is the learning rate, t represents the t-th iteration, and 

. bl,t = η
∂L

∂x̂l+1,t

∂x̂l+1,t

∂xl+1,t x̂
l,t ∂ŵl,t

∂wl,t
.

For simplicity, we ignore the layer index superscript l in the following analysis. 
According to Eq. 2.28, to enable a weight flip (namely, let .sign(wt+1) /= sign(wt )), 
it requires to satisfy the constraints .sign(τ tbt ) = sign(wt ) and .|τ tbt | > |wt |, where 
. | · | represents the amplitude of the input. We assume the initial state .sign(wt ) = −1, 
and the process is similar for the initial state .sign(wt ) = 1. 

1. If .|τ−1| = |τ1|, the flip probability from the iteration t to .t + 1 is: 

.P(sign(wt ) /= sign(wt+1)) = N|wt |/N, (2.29) 

where .N|wt | represents the total number of . bt satisfying . sign(τ t
1b

t ) = sign(wt )

and .|τ t
1b

t | > |wt |, and N represents the total number of b. Similarly, the flip 
probability from the iteration .t + 1 to .t + 2 is 

.P(sign(wt+1) /= sign(wt+2)) = N|wt+1|/N, (2.30) 

where .N|wt+1| represents the total number of .bt+1 satisfying . sign(τ t+1
−1 bt+1) =

sign(wt+1) and .|τ t+1
−1 bt+1| > |wt+1|. Thus, the sequential flip probability from 

the iteration t to .t + 2 is: 

. P((sign(wt ) /= sign(wt+1)) ∩ (sign(wt+1)

/= sign(wt+2))) = (N|wt |N|wt+1|)/N2. (2.31) 

2. If .|τ−1| < |τ1|, it remains the same flip probability from the iteration t to . t + 1
as Eq. 2.29. However, when considering the flip probability from iteration .t + 1
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to .t + 2, the number of .bt+1 that satisfying .|τ t+1
−1 bt+1| > |wt+1|, in this case, is 

less than that in the case of .|τ−1| = |τ1|. 
Therefore, the state-aware gradient (i.e., .|τ−1| < |τ1|) has a lower probability 

of sequential weight flip compared with the conventional state-consistent meth-
ods (i.e., .|τ−1| = |τ1|): 

. 
P((sign(wt ) /= sign(wt+1)) ∩ (sign(wt+1) /= sign(wt+2))||τ−1| < |τ1|)
< P ((sign(wt ) /= sign(wt+1)) ∩ (sign(wt+1) /= sign(wt+2))||τ−1| = |τ1|).

(2.32) 

3. If .|τ1| < |τ−1|, the process is similar to 2). The state-aware gradient also has a 
lower probability of sequential weight flip as: 

. 
P((sign(wt ) /= sign(wt+1)) ∩ (sign(wt+1) /= sign(wt+2))||τ1| < |τ−1|)
< P ((sign(wt ) /= sign(wt+1)) ∩ (sign(wt+1) /= sign(wt+2))||τ−1| = |τ1|).

(2.33) 

Based on the above analysis, we propose an efficient yet simple solution to realize 
the state-aware gradient: 

.xl+1 =
{

(sign(τ l
−1x

l) ∗ sign(wl))α if x̂ = −1
(sign(τ l

1x
l) ∗ sign(wl))α otherwise

. (2.34) 

Compared to traditional BNNs, we multiply the scale . τ on the activation based on 
its state. Note that our paper’s learnable coefficients . τ are per-channel granularity. 
In this way, our SA-BNN is established in exchange for a small increase in 
computational complexity (only an extra point-wise product between . τ and x). 

In particular, Helwegen et al. [22] argue that latent weights are not necessary for 
gradient-based optimization of BNNs, and they directly update the state of binarized 
weights with: 

.wt =
{−wt−1 if |gt | ≥ β and sign(gt ) = sign(wt−1)

wt−1 otherwise
, (2.35) 

where .gt = (1 − γ )gt−1 + γ ∂L
∂wt , . gt is the exponential moving average and . γ

is the adaptivity rate. Then, under the constraint of .γ = 1, it is easy for the 
weight to flip when .| ∂L

∂wt | ≥ β and hard to flip when .| ∂L
∂wt | < β, in which . β

is consistent with the coefficients . τ in our method. However, the method in [22] 
suppresses the weight flip equally for different states, while SA-BNN treats different 
binarization states distinctively by employing an independent coefficient for each 
state. SA-BNN can effectively suppress the frequent weight flip problem, alleviating 
the ineffective update issue in BNN optimization. Moreover, unlike the handcrafted
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hyperparameters . β, the coefficients . τ are learnable, avoiding careful tuning during 
optimization. 

Furthermore, Bai et al. [2] propose ProxQuant by formulating the quantized 
network training as a regularized learning problem instead and optimizing it via 
the prox-gradient method. Specifically, ProxQuant has access to additional gradient 
information at non-quantized points, which avoids the misleading weight update in 
training. However, unlike the ProxQuant, which suppresses the frequent weight flip 
by designing a dedicated optimizer, SA-BNN alleviates this problem by introducing 
independent learnable coefficients for different states, which can work with existing 
methods for back propagation and stochastic gradient descent. 

In addition, due to the non-differentiability of the sign function in the binarization 
process, most existing works employ a surrogate for the gradients [44, 53], in 
which the gradients are forced to be 0 for values outside .[−1,+1]. However, once 
the value falls outside the truncation interval, the corresponding weight cannot be 
updated anymore. This phenomenon greatly limits the training ability of backward 
propagation [52]. Different from these methods (i.e., .τ−1 = τ1), our SA-BNN has 
the ability to preserve more gradients through learnable coefficients, thus alleviating 
the unreliable gradients in BNN optimization. 

2.7.3.2 Experiments 

We perform experiments on the large-scale dataset ImageNet (ILSVRC12) [55], 
which contains approximately .1.2 million training images and 50K validation 
images from 1000 categories. In our experiments, we employ .224 × 224 random 
crop and center crop for training and inference, respectively. We use ResNet as 
our backbone, including ResNet-18, ResNet-34, and ResNet-50 [21]. We use Adam 
[33] with the momentum of . 0.9 and set the weight decay to be 0. For the 18-layer 
SA-BNN, we run the training algorithm for 90 epochs with a batch size of 256. 
The learning rate starts from .0.001 and is decayed twice by multiplying . 0.1 at the 
75th and the 85th epoch. For the 34-layer SA-BNN, the training process includes 
90 epochs, and the batch size is set to 256. The learning rate starts from .0.001 and 
is multiplied by . 0.1 at the 60th and the 80th epoch, respectively. For the 50-layer 
SA-BNN, the training process is 70 epochs, and the batch size is 64. The learning 
rate starts from .0.0005 and is multiplied by . 0.1 at the 40th and the 60th epoch, 
respectively. 

We carry out a comparative study with six methods: IR-Net [52], Bop [22], 
CI-Net [63], BONN [20], Bi-Real Net [44], and XNOR-Net [53] on ResNet-18, 
ResNet-34, and ResNet-50 in Table 2.2. These six works are representative methods 
of binarizing both weights and activations for CNNs and achieving state-of-the-art 
results. 

The comparison in Table 2.2 demonstrates that our SA-BNNs outperform other 
networks by a considerable margin regarding the Top-1 accuracy. Note that the 
results of the other six works are quoted directly from the corresponding references. 
Specifically, the proposed SA-BNN with backbone ResNet-18 outperforms its
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Table 2.2 Comparison on Top-1 and Top-5 accuracy (%) of SA-BNN with other state-of-the-art 
binarization methods, including IR-Net [52], Bop [22], CI-Net [63], BONN [20], Bi-Real Net [44], 
and XNOR-Net [53]. “FP” means full precision 

SA-BNN IR-Net Bop CI-Net BONN Bi-Real Net XNOR-Net FP 

ResNet-18 Top-1 61.7 58.1 56.6 59.9 59.3 56.4 51.2 69.3 

Top-5 82.8 80.0 79.4 84.2 81.6 79.5 73.2 89.2 

ResNet-34 Top-1 65.5 62.9 − 64.9 − 62.2 − 73.3 

Top-5 85.8 84.1 − 86.6 − 83.9 − 91.3 

ResNet-50 Top-1 68.7 − − − − 62.6 63.1 74.7 

Top-5 87.4 − − − − 83.9 83.6 92.1 

Epoch 
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 

10 
20 
30 
40 
50 
60 
70 
80 
90 

Epoch 

10 
20 
30 
40 
50 
60 
70 

V
al

id
at

io
n 

A
cc

ur
ac

y 

V
al

id
at

io
n 

A
cc

ur
ac

y 

Top-1 Accuracy on ImageNet 

XNOR-Net 

SA-BNN 
Bi-Real Net 

95 

XNOR-Net 

SA-BNN 
Bi-Real Net 

95 

Top-5 Accuracy on ImageNet 

Fig. 2.8 Validation accuracy curves of SA-BNN, Bi-Real Net, and XNOR-Net with ResNet-18 
backbone on ImageNet 

counterpart Bi-Real Net by 5.3% and achieves a roughly 2% relative improvement 
over CI-Net. Similar improvements can be observed for ResNet-34 and ResNet-50 
networks. In Fig. 2.8, we plot the validation accuracy curves of XNOR-Net, Bi-
Real Net, and SA-BNN (without the contribution of PBN and SC). All networks 
are implemented under the same hyperparameter setting. It clearly shows that our 
method converges faster and better by learning distinctive gradient coefficients for 
binarization states than XNOR-Net and Bi-Real Net. Moreover, our training curve 
is smoother, indicating the training process is more stable. Therefore, SA-BNN is 
more competitive than other state-of-the-art binary networks. 

We further analyze the memory usage saving and speedup in Table 2.3. We  
keep the weights and activations in the first convolutional and the last fully 
connected layers to be full-precision [44, 53]. For a fair comparison, we use FLOPs 
[44] and BOPs [3] to measure the total multiplication computation and bitwise 
operations in SA-BNNs, respectively. For ResNet-18 and ResNet-34, the proposed 
SA-BNNs reduce the memory usage by 11.14× and 15.81×, respectively, and 
achieve computation reduction by 10.74× and 18.21×, in comparison with the full-
precision networks. Compared with Bi-Real Net, we obtain more than 4% accuracy 
improvement on ResNet-18 with small additional memory and computational cost.
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Table 2.3 Memory usage, FLOPs, and BOPs calculation in our method. “MU” represents 
memory usage and “MS” represents memory saving 

MU MS FLOPs BOPs Speedup 

ResNet-18 SA-BNN 33.6 Mbit .11.14× .1.68 × 108 .1.08 × 1010 . 10.74×
Bi-Real Net 33.6 Mbit .11.14× .1.63 × 108 .1.04 × 1010 . 11.06×
XNOR-Net 33.7 Mbit .11.10× .1.67 × 108 .1.07 × 1010 . 10.86×
Full-precision 374.1 Mbit .− .1.81 × 109 .1.16 × 1011 . −

ResNet-34 SA-BNN 44.1 Mbit .15.81× .2.01 × 108 .1.29 × 1010 . 18.21×
Bi-Real Net 43.7 Mbit .15.97× .1.93 × 108 .1.24 × 1010 . 18.99×
XNOR-Net 43.9 Mbit .15.88× .1.98 × 108 .1.27 × 1010 . 18.47×
Full-precision 697.3 Mbit .− .3.66 × 109 .2.34 × 1011 . −

ResNet-50 SA-BNN 144.4 Mbit .5.43× .3.89 × 108 .2.49 × 1010 . 14.65×
Bi-Real Net 143.1 Mbit .5.48× .3.74 × 108 .2.39 × 1010 . 15.24×
XNOR-Net 143.2 Mbit .5.47× .3.81 × 108 .2.44 × 1010 . 14.96×
Full-precision 784.0 Mbit .− .5.70 × 109 .3.65 × 1011 . −

2.7.4 PCNN: Projection Convolutional Neural Networks 

Modulated convolutional networks (MCNs) are presented in [62] to binarize kernels, 
achieving better results than the baselines. However, in the inference step, MCNs 
require reconstructing full-precision convolutional filters from binarized filters, 
limiting their use in computationally limited environments. It has been theoretically 
and quantitatively demonstrated that simplifying the convolution procedure via 
binarized kernels and approximating the original unbinarized kernels is an up-and-
coming solution toward DCNNs’ compression. 

Although prior BNNs significantly reduce storage requirements, they also gen-
erally have significant accuracy degradation compared to those using full-precision 
kernels and activations. This is mainly because CNN binarization could be solved 
by considering discrete optimization in the back propagation (BP) process. Discrete 
optimization methods can often guarantee the quality of the solutions they find and 
lead to much better performance in practice [16, 32, 34]. Second, the loss caused by 
the binarization of CNNs has yet to be well studied. 

We propose a new discrete back propagation via projection (DBPP) algorithm to 
efficiently build our projection convolutional neural networks (PCNNs) [18] and 
obtain highly accurate yet robust BNNs. Theoretically, we achieve a projection 
loss by taking advantage of our DBPP algorithms’ ability to perform discrete 
optimization on model compression. The advantages of the projection loss also 
lie in that it can be jointly learned with the conventional cross-entropy loss in the 
same pipeline as back propagation. The two losses are simultaneously optimized in 
continuous and discrete spaces, optimally combined by the projection approach in 
a theoretical framework. They can enrich the diversity and thus improve modeling 
capacity. As shown in Fig. 2.9, we develop a generic projection convolution layer 
that can be used in existing convolutional networks. Both the quantized kernels and
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Fig. 2.9 In PCNNs, a new discrete back propagation via projection is proposed to build binarized 
neural networks in an end-to-end manner. Full-precision convolutional kernels . Cl

i are quantized 

by projection as . Ĉl
i,j . Due to multiple projections, the diversity is enriched. The resulting kernel 

tensor . Dl
i is used the same as in conventional ones. Both the projection loss . Lp and the traditional 

loss . Ls are used to train PCNNs. We illustrate our network structure basic block unit based on 
ResNet, and more specific details are shown in the dotted box (projection convolution layer). © 
indicates the concatenation operation on the channels. Note that inference does not use projection 
matrices . Wl

j and full-precision kernels . Cl
i

the projection are jointly optimized in an end-to-end manner. Our project matrices 
are optimized but not for reference, resulting in a compact and efficient learning 
architecture. As a general framework, other loss functions (e.g., center loss) can also 
be used to further improve the performance of our PCNNs based on a progressive 
optimization method. 

Discrete optimization is one of the hot topics in mathematics and is widely 
used to solve computer vision problems [32, 34]. Conventionally, the discrete 
optimization problem is solved by searching for an optimal set of discrete values 
concerning minimizing a loss function. This paper proposes a new discrete back 
propagation algorithm that uses a projection function to binarize or quantize the 
input variables in a unified framework. Due to the flexible projection scheme, we 
obtain diverse binarized models with higher performance than the previous ones.
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2.7.4.1 Projection 

In our work, we define the quantization of the input variable as a projection onto a 
set: 

.o := {a1, a2, . . . , aU }, (2.36) 

where each element . ai , .i = 1, 2, . . . , U satisfies the constraint . a1 < a2 < . . . < aU

and is the discrete value of the input variable. Then we define the projection of . x ∈ R
onto . o as: 

. Po(ω, x) = argmin
ai

||ω ◦ x − ai||, i ∈ {1, . . . , U}, (2.37) 

where . ω is a projection matrix and . ◦ denotes the Hadamard product. Equation 2.37 
indicates that the projection aims to find the closest discrete value for each 
continuous value x. Equation 2.37 is also equal to: 

. Po(ω, x) = argmin
ai

||x − ω̂ ◦ ai||, i ∈ {1, . . . , U}, (2.38) 

where . 1
ω

= ω̂. During the following derivation of back propagation, we still use 
Eq. 2.37 as the basic equation, but in its implementation, one can also use Eq. 2.38 
to achieve the optimization of PCNN. 

2.7.4.2 Optimization 

Minimizing .f (x) are restricted to discrete values, which becomes more challenging 
when training a large-scale problem on a huge dataset [13]. We solve the problem 
within the back propagation framework by considering (1) the inference process 
of the optimized model is based on the quantized variables, which means that the 
variable must be quantized in the forward pass (corresponding to the inference) 
during training, and the loss is calculated based on the quantized variables; the 
variable for back propagation process is not necessarily quantized, which however 
needs to fully consider the relationship between quantized variables and their 
counterparts. Based on the above considerations, we propose that in the kth iteration, 
based on the projection in Eq. 2.37, .x[k] is quantized to .x̂[k] in the forward pass as: 

.x̂[k] = Po(ω, x[k]), (2.39) 

which is used to improve the back propagation process by defining an objective as: 

.
min f (ω, x)

s.t. x̂
[k]
j = P

j
o(ωj , x),

(2.40)
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where .ωj , j ∈ {1, . . . , J } is the j th projection matrix,1 and J is the total number of 
projection matrices. To solve the problem in (2.40), we define our update rule as: 

.x ← x[k] − ηδ
[k]
x̂

, (2.41) 

where the superscript .[k + 1] is removed from x, . δx̂ is the gradient of .f (ω, x) with 
respect to .x = x̂, and . η is the learning rate. The quantization process .x̂[k] ← x[k], 
that is, .P j

o(ωj , x
[k]), is equivalent to finding the projection of .ωj ◦ (x + ηδ

[k]
x̂

) onto 
. o as: 

.x̂[k] = argmin
x̂

{||x̂ − ωj ◦ (x + ηδ
[k]
x̂

)||2, x̂ ∈ o}. (2.42) 

Obviously, .x̂[k] is the solution to the problem in (2.42). So, by incorporating 
(2.42) into .f (ω, x), we obtain a new formulation for (2.40) based on the Lagrangian 
method as: 

.min f (ω, x) + λ

2

JΣ
j

||x̂[k] − ωj ◦ (x + ηδ
[k]
x̂

)||2. (2.43) 

The newly added part (right) shown in (2.43) is a quadratic function and is referred 
to as projection loss. 

2.7.4.3 Theoretical Analysis 

We closely examine the projection loss in Eq. 2.43 and have: 

.x̂[k] − ω ◦ (x + ηδ
[k]
x̂

) = x̂[k] − ω ◦ x − ω ◦ ηδ
[k]
x̂

. (2.44) 

We only consider one projection function in this case, so the subscript j of . ωj

is omitted for simplicity. For multiple projections, the analysis is given after that. 
In the forward step, only the discrete values participate in the calculation, so their 
gradients can be obtained by: 

.
∂f (ω, x̂[k])

∂x̂[k] = ω ◦ δ
[k]
x̂

, (2.45) 

as . ω and . x̂ are bilinear with each other as .ω ◦ x̂[k]. In our discrete optimization 
framework, the values of convolutional kernels are updated according to their 
gradients. Taking Eq. 2.45 into consideration, we derive the update rule for .x̂[k+1]

1 Since the kernel parameters x are represented as a matrix, . ωj denotes a matrix as . ω. 
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as: 

.x̂[k+1] = x̂[k] − η
∂f (ω, x̂[k])

∂x̂[k] = x̂[k] − ω ◦ ηδ
[k]
x̂

. (2.46) 

By plugging Eq. 2.46 into Eq. 2.44, we achieve a new objective function or a loss 
function that minimizes: 

.||x̂[k+1] − ω ◦ x||, (2.47) 

to approximate: 

.x̂ = ω ◦ x, x = ω−1 ◦ x̂. (2.48) 

We further discuss multiple projections, based on Eq. 2.48 and projection loss in 
(2.43), and have: 

.min
1

2

JΣ
j

||x − ω−1
j ◦ x̂j ||2. (2.49) 

We set .g(x) = 1
2

ΣJ
j ||x −ω−1

j ◦ x̂j ||2 and calculate its derivative as .g'(x) = 0, and 
we have: 

.x = 1

J

JΣ
j

ω−1
j ◦ x̂j , (2.50) 

which shows that multiple projections can better reconstruct the full kernels based 
on binarized counterparts. 

2.7.4.4 Projection Convolutional Neural Networks 

Projection convolutional neural networks (PCNNs), shown in Fig. 2.9, work using 
DBPP for model quantization. We accomplish this by reformulating our projection 
loss shown in (2.43) into the deep learning paradigm as: 

.Lp = λ

2

L,IΣ
l,i

JΣ
j

||Ĉl,[k]
i,j − -Wl,[k]

j ◦ (C
l,[k]
i + ηδ

Ĉ
l,[k]
i,j

)||2, (2.51)
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where .Cl,[k]
i , .l ∈ {1, . . . , L}, i ∈ {1, . . . , I } denotes the ith kernel tensor of the lth 

convolutional layer in the kth iteration. .Ĉl,[k]
i,j is the quantized kernel of .Cl,[k]

i via 

projection .P
l,j
o , j ∈ {1, . . . , J } as: 

.Ĉ
l,[k]
i,j = P

l,j
o ( -Wl,[k]

j , C
l,[k]
i ), (2.52) 

where . -Wl,[k]
j is a tensor, calculated by duplicating a learned projection matrix . W

l,[k]
j

along the channels, which thus fits the dimension of .Cl,[k]
i . .δ

Ĉ
l,[k]
i,j

is the gradient at 

.Ĉ
l,[k]
i,j calculated based on . LS , that is, .δĈ

l,[k]
i,j

= ∂LS

∂Ĉ
l,[k]
i,j

. The iteration index . [k] is 
omitted for simplicity. 

In PCNNs, both the cross-entropy loss and projection loss are used to build the 
total loss as: 

.L = LS + LP . (2.53) 

The proposed projection loss regularizes the continuous values converging onto . oN

while minimizing the cross-entropy loss, illustrated in Figs. 2.11 and 2.12. 

2.7.4.5 Forward Propagation Based on Projection Convolution Layer 

For each full-precision kernel . Cl
i , the corresponding quantized kernels .Ĉ

l
i,j are 

concatenated to construct the kernel . Dl
i that actually participates in the convolution 

operation as: 

.Dl
i = Ĉl

i,1 ⊕ Ĉl
i,2 ⊕ · · · ⊕ Ĉl

i,J , (2.54) 

where . ⊕ denotes the concatenation operation on the tensors. In PCNNs, the 
projection convolution is implemented based on . Dl and . F l to calculate the next 
layer’s feature map .F l+1: 

.F l+1 = Conv2D(F l,Dl), (2.55) 

where Conv2D is the traditional 2D convolution. Although our convolutional 
kernels are 3D-shaped tensors, we design the following strategy to fit the traditional 
2D convolution as: 

.F l+1
h,j =

Σ
i,h

F l
h ⊗ Dl

i,j , (2.56) 

.F l+1
h = F l

h,1 ⊕ · · · ⊕ F l
h,J , (2.57)
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where . ⊗ denotes the convolutional operation. .F l+1
h,j is the j th channel of the hth 

feature map at the .(l + 1)th convolutional layer and . F l
h denotes the hth feature map 

at the lth convolutional layer. To be more precise, for example, when .h = 1, for  the  
j th channel of an output feature map, .F l+1

1,j is the sum of the convolutions between 
all the h input feature maps and i corresponding quantized kernels. All channels 
of the output feature maps are obtained as .F l+1

h,1 , .., F l+1
h,j , . . . , F l+1

h,J , and they are 

concatenated to construct the hth output feature map .F l+1
h . 

It should be emphasized that we can utilize multiple projections to increase the 
diversity of convolutional kernels . Dl . However, the single projection can perform 
much better than the existing BNNs. The essential use of DBPP differs from [38] 
based on a single quantization scheme. Within our convolutional scheme, there is 
no dimensional disagreement on feature maps and kernels in two successive layers. 
Thus, we can replace the traditional convolutional layers with ours to binarize 
widely used networks, such as VGGs and ResNets. At inference time, we only store 
the set of quantized kernels . Dl

i instead of the full-precision ones; that is, projection 
matrices . Wl

j are not used for inference, achieving a reduction in storage. 

2.7.4.6 Backward Propagation 

According to Eq. 2.53, what should be learned and updated are the full-precision 
kernels . Cl

i and the projection matrix . Wl (. -Wl) using the updated equations described 
below. 

Updating . Cl
i We define . δCi

as the gradient of the full-precision kernel . Ci and have: 

.δCl
i
= ∂L

∂Cl
i

= ∂LS

∂Cl
i

+ ∂LP

∂Cl
i

, (2.58) 

.Cl
i ← Cl

i − η1δCl
i
, (2.59) 

where . η1 is the learning rate for the convolutional kernels. More specifically, for 
each item in Eq. 2.58, we have:  

.

∂LS

∂Cl
i

=
JΣ
j

∂LS

∂Ĉl
i,j

∂P
l,j

oN ( -Wl
j , C

l
i )

∂( -Wl
j ◦ Cl

i )

∂( -Wl
j ◦ Cl

i )

∂Cl
i

=
JΣ
j

∂LS

∂Ĉl
i,j

◦ 1−1≤ -Wl
j ◦Cl

i≤1 ◦ -Wl
j ,

(2.60) 

.
∂LP

∂Cl
i

= λ

JΣ
j

[ -Wl
j ◦

(
Cl

i + ηδ
Ĉl

i,j

)
− Ĉl

i,j

]
◦ -Wl

j , (2.61)
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where . 1 is the indicator function [53] widely used to estimate the gradient of the 
nondifferentiable function. More specifically, the output of the indicator function is 
1 only if the condition is satisfied; otherwise, 0. 

Updating .Wl
j Likewise, the gradient of the projection parameter .δWl

j
consists of 

the following two parts: 

.δWl
j

= ∂L

∂Wl
j

= ∂LS

∂Wl
j

+ ∂LP

∂Wl
j

, (2.62) 

.Wl
j ← Wl

j − η2δWl
j
, (2.63) 

where . η2 is the learning rate for . Wl
j . We also have the following: 

.

∂LS

∂Wl
j

=
JΣ
h

(
∂LS

∂ -Wl
j

)

h

=
JΣ
h

⎛
⎝ IΣ

i

∂LS

∂Ĉl
i,j

∂P
l,j

oN ( -Wl
j , C

l
i )

∂( -Wl
j ◦ Cl

i )

∂( -Wl
j ◦ Cl

i )

∂ -Wl
j

⎞
⎠

h

=
JΣ
h

(
IΣ
i

∂LS

∂Ĉl
i,j

◦ 1−1≤ -Wl
j ◦Cl

i≤1 ◦ Cl
i

)

h

,

(2.64) 

.
∂LP

∂Wl
j

=λ

JΣ
h

(
IΣ
i

[-Wl
j ◦

(
Cl

i +ηδ
Ĉl

i,j

)
−Ĉl

i,j

]
◦
(
Cl

i +ηδ
Ĉl

i,j

))

h

, (2.65) 

where h indicates the hth plane of the tensor along the channels. It shows that the 
proposed algorithm can be trained from end to end, and we summarize the training 
procedure in Algorithm 1. In the implementation, we use the mean of W in the 
forward process but keep the original W in the backward propagation. 

Note that in PCNNs for BNNs, we set U = 2 and . a2 = .−a1. Two binarization 
processes are used in PCNNs. The first is the kernel binarization, which is done 
based on the projection onto . oN , whose elements are calculated based on the mean 
absolute values of all full-precision kernels per layer [53] as:  

.
1

I

IΣ
i

(
||Cl

i||1
)

, (2.66) 

where I is the total number of kernels.
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Algorithm 1: Discrete back propagation via projection 
Input: 

The training dataset; the full-precision kernels C; the projection matrix W ; the learning 
rates η1 and η2. 

Output: 
The binary or ternary PCNNs are based on the updated C and W . 

1: Initialize C and W randomly; 
2: repeat 
3: // Forward propagation 
4: for l = 1 to  L do 
5: Ĉl 

i,j ← P(W,  Cl 
i ); // using Eq. 2.52 (binary) or Eq. 2.68 (ternary) 

6: Dl 
i ← Concatenate(  ̂Ci,j ); // using Eq. 2.54 

7: Perform activation binarization; //using the sign function 
8: Traditional 2D convolution; // using Eqs. 2.55, 2.56 and 2.57 
9: end for 
10: Calculate cross-entropy loss LS ; 
11: // Backward propagation 
12: Compute δ ̂

Cl 
i,j 

= ∂LS 
∂ Ĉl 

i,j 
; 

13: for l = L to 1 do 
14: // Calculate the gradients 
15: calculate δCl 

i 
; // using Eqs. 2.58, 2.60 and 2.61 

16: calculate δWl 
j 
; // using Eqs. 2.62, 2.64 and 2.65 

17: // Update the parameters 
18: Cl 

i ← Cl 
i − η1δCl 

i 
; // Eq. 2.59 

19: Wl 
j ← Wl 

j − η2δWl 
j 
; //Eq. 2.63 

20: end for 
21: Adjust the learning rates η1 and η2. 
22: until the network converges 

2.7.4.7 Progressive Optimization 

Training 1-bit CNNs is a highly non-convex optimization problem, and initialization 
states will significantly impact the convergence. Unlike the method in [44] that a 
real-valued CNN model with the clip function pre-trained on ImageNet initializes 
the 1-bit CNN models, we propose applying a progressive optimization strategy in 
training 1-bit CNNs. However, a real-valued CNN model can achieve pretty high 
classification accuracy, we wonder if the converging states between real-value and 
1-bit CNNs, which may mistakenly guide the converging process of 1-bit CNNs. 

We believe that compressed ternary CNNs such as TTN [79] and TWN [36] 
have better initialization states for binary CNNs. Theoretically, the performance of 
models with ternary weights is slightly better than those with binary weights and far 
worse than those of real-valued ones. Still, they provide an excellent initialization 
state for 1-bit CNNs in our proposed progressive optimization framework. Subse-
quent experiments show that our PCNNs trained from a progressive optimization 
strategy perform better than those from scratch, even better than the ternary PCNNs 
from scratch.
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The discrete set for ternary weights is a special case, defined as .o := {a1, a2, a3}. 
We further require .a1 = −a3 = A as Eq. 2.66 and .a2 = 0 to be hardware friendly 
[36]. Regarding the threshold for ternary weights, we follow the choice made in [58] 
as: 

.Al = σ × E(|Cl |) ≈ σ

I

IΣ
i

(
||Cl

i||1
)

, (2.67) 

where . σ is a constant factor for all layers. Note that [58] applies to Eq. 2.67 on 
convolutional inputs or feature maps; we find it appropriate in convolutional weights 
as well. Consequently, we redefine the projection in Eq. 2.37 as: 

. Po(ω, x) = argmin
ai

||ω ◦ x − 2ai||, i ∈ {1, . . . , U}. (2.68) 

In our proposed progressive optimization framework, the PCNNs with ternary 
weights (ternary PCNNs) are first trained from scratch and then served as pre-trained 
models to progressively fine-tune the PCNNs with binary weights (binary PCNNs). 

To alleviate the disturbance caused by the quantization process, intraclass 
compactness is further deployed based on the center loss function [65] to improve 
performance. Given the input features .xi ∈ Rd or . o and the . yi th class center 
.cyi

∈ Rd or . o of the input features, we have: 

.LC = γ

2

mΣ
i=1

||xi − cyi
||22, (2.69) 

where m denotes the total number of samples or batch size and . γ is a hyperparameter 
to balance the center loss with other losses. More details on center loss can be found 
in [65]. By incorporating Eq. 2.69 into Eq. 2.53, the total loss is updated as: 

.L = LS + LP + LC. (2.70) 

We note that the center loss is successfully deployed to handle feature variations 
in the training and will be omitted in the inference, so there is no additional 
memory storage and computational cost. More intuitive illustrations can be found 
in Fig. 2.10, and a more detailed training procedure is described in Algorithm 2. 

2.7.4.8 Ablation Study 

Parameter As mentioned above, the proposed projection loss, similar to cluster-
ing, can control quantization. We computed the distributions of the full-precision 
kernels and visualized the results in Figs. 2.11 and 2.12. The hyperparameter . λ is 
designed to balance projection loss and cross-entropy loss. We vary it from .1e − 3
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Fig. 2.10 In our proposed progressive optimization framework, the two additional losses, projec-
tion loss, and center loss are simultaneously optimized in continuous and discrete spaces, optimally 
combined by the projection approach in a theoretical framework. The subfigure on the left explains 
the softmax function in the cross-entropy loss. The subfigure in the middle illustrates the process 
of progressively turning ternary kernel weights into binary ones within our projection approach. 
The subfigure on the right shows the function of center loss to force the learned feature maps to 
cluster together, class by class. Best viewed in color 

Fig. 2.11 We visualize the distribution of kernel weights of the first convolution layer of PCNN-
22. The variance increases when the ratio decreases λ, which balances projection loss and cross-
entropy loss. In particular, when λ = 0 (no projection loss), only one group is obtained, where 
the kernel weights are distributed around 0, which could result in instability during binarization. 
In contrast, two Gaussians (with projection loss, λ >  0) are more powerful than the single one 
(without projection loss), which thus results in better BNNs, as also validated in Table 2.4 

to .1e − 5 and finally set it to 0 in Fig. 2.11, where the variance increases as the 
number of . λ. When .λ = 0, only one cluster is obtained, where the kernel weights 
are tightly distributed around the threshold = 0. This could result in instability during
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Algorithm 2: Progressive optimization with center loss 
Input: The training dataset; the full-precision kernels C; the pre-trained kernels tC from 

ternary PCNNs; the projection matrix W ; the learning rates η1 and η2. 
Output: The binary PCNNs are based on the updated C and W . 
1: Initialize W randomly but C from tC; 
2: repeat 
3: // Forward propagation 
4: for l = 1 to  L do 
5: Ĉl

i,j ← P(W, Cl
i ); // using Eq. 2.52 

6: Dl
i ← Concatenate(Ĉi,j ); // using Eq. 2.54 

7: Perform activation binarization; //using the sign function 
8: Traditional 2D convolution; // using Eqs. 2.55, 2.56 and 2.57 
9: end for 
10: Calculate cross-entropy loss LS ; 
11: if using center loss then 
12: L' = LS + LC ; 
13: else 
14: L' = LS ; 
15: end if 
16: // Backward propagation 
17: Compute δ

Ĉl
i,j

= ∂L'
∂Ĉl

i,j

; 

18: for l = L to 1 do 
19: // Calculate the gradients 
20: calculate δCl

i
; // using Eqs. 2.58, 2.60 and 2.61 

21: calculate δWl
j
; // using Eqs. 2.62, 2.64 and 2.65 

22: // Update the parameters 
23: Cl

i ← Cl
i − η1δCl

i
; // Eq. 2.59 

24: Wl
j ← Wl

j − η2δWl
j
; // Eq. 2.63 

25: end for 
26: Adjust the learning rates η1 and η2. 
27: until the network converges 

–0.06 –0.04 –0.02 0.00 0.02 0.04 0.06 –0.03 –0.02 –0.01 0.00 0.01 0.02 0.03 –0.03 –0.02 –0.01 0.00 0.01 0.02 0.03 

epoch=200 
Var=1.09e-05 

epoch=20 
Var=3.24e-05 

epoch=2 
Var=8.32e-05 

Fig. 2.12 With λ fixed to 1e − 4, the variance of the kernel weights decreases from the 2nd epoch 
to the 200th epoch, which confirms that the projection loss does not affect the convergence
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Table 2.4 With different λ, 
the accuracy of PCNN-22 and 
PCNN-40 based on WRN-22 
and WRN-40, respectively, 
on CIFAR10 dataset 

λ 
Model 1e − 3 1e − 4 1e − 5 0 

PCNN-22 91.92 92.79 92.24 91.52 

PCNN-40 92.85 93.78 93.65 92.84 

Fig. 2.13 Training and testing curves of PCNN-22 when λ = 0 and  1e − 4, which shows that the 
projection affects little on the convergence 

binarization because little noise may cause a positive weight to be negative and vice 
versa. 

We also show the evolution of the distribution of how projection loss works in 
the training process in Fig. 2.12. A natural question is: do we always need a large λ? 
As a discrete optimization problem, the answer is no. The experiment in Table 2.4 
can verify it, i.e., both the projection and cross-entropy losses should be considered 
simultaneously with good balance. For example, when λ is set to 1e−4, the accuracy 
is higher than those with other values. Thus, we fix λ to 1e − 4 in the following 
experiments. 

Learning Convergence For PCNN-22 in Table 2.4, the PCNN model is trained for 
200 epochs and then used to perform inference. In Fig. 2.13, we plot training and 
test loss with λ = 0 and λ = 1e − 4, respectively. It clearly shows that PCNNs with 
λ = 1e − 4 (blue curves) converge faster than PCNNs with λ = 0 (yellow curves) 
when the epoch number > 150. 

Diversity Visualization In Fig. 2.14, we visualize four channels of the binary 
kernels Dl 

i in the first row, the feature maps produced by Dl 
i in the second row,
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1 
3  4 

2 

Fig. 2.14 Illustration of binary kernels Dl 
i (first row), feature maps produced by Dl 

i (second row), 
and corresponding feature maps after binarization (third row) when J = 4. This confirms the 
diversity in PCNNs 

and the corresponding feature maps after binarization in the third row when J = 4. 
This way helps illustrate the diversity of kernels and feature maps in PCNNs. Thus, 
multiple projection functions can capture diverse information and perform highly 
based on compressed models. 
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Chapter 3 
Binary Neural Architecture Search 

3.1 Introduction 

Deep convolutional neural networks (DCNNs) have achieved state-of-the-art per-
formance in various computer vision tasks, including image classification, instance 
segmentation, and object detection. The success of DCNNs is attributed to effective 
architecture design. Neural architecture search (NAS) is an emerging approach that 
automates the process of designing neural architectures, replacing manual design. 

NAS has enabled significant improvements in performance across a wide 
range of computer vision tasks. Traditionally, network architectures were manually 
designed, but NAS automates this process by generating sophisticated neural 
architectures. Existing NAS methods can be classified into three main categories: 
evolution-based, reinforcement learning-based, and one-shot-based approaches. 
These methods leverage different optimization strategies to search for the best neural 
architecture for a specific task. NAS has shown promising results in achieving com-
petitive and even superior performance compared to manually designed networks. 

To speed up the architecture search process, researchers have explored methods 
to reduce the evaluation cost of each candidate architecture. One early approach was 
to share weights between searched and newly generated networks [7]. Later, this 
idea evolved into a more efficient framework called one-shot architecture search. 

In one-shot architecture search, an over-parameterized network or super-network 
that includes all candidate operations is trained only once. The final architecture 
is obtained by sampling from this super-network. Different approaches have been 
proposed to implement one-shot architecture search. For example, some methods 
use HyperNet to train the over-parameterized network [4], while others share 
parameters among child models to avoid retraining each candidate architecture from 
scratch [62]. 

Differentiable architecture search (DARTS) is a popular one-shot architecture 
search method that introduces a differentiable framework, combining the search and 
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evaluation stages into one [56]. Despite its simplicity, DARTS has some limitations, 
leading researchers to propose improved approaches like PDARTS, which allows 
the depth of searched architectures to grow gradually during the training procedure, 
reducing search time [15]. 

ProxylessNAS is another notable method that adopts a differentiable framework 
and searches architectures on the target task instead of using a proxy-based 
framework [9]. These approaches have significantly accelerated the architecture 
search process and led to state-of-the-art neural network architectures. 

Binary neural architecture search replaces the real-valued weights and activations 
with binarized ones, which consumes much less memory and computational 
resources to search binary networks and provides a more promising way to find 
network architectures efficiently. These methods can be categorized into direct 
binary architecture search and auxiliary binary architecture search. Direct binary 
architecture search yields binary architectures directly from well-designed binary 
search spaces. As the first art in this field, BNAS. 1 [11] effectively reduces search 
time by channel sampling and search space pruning in the early training stages 
for a differentiable NAS. BNAS. 2 [43] utilizes diversity in the early search to 
learn better performing binary architectures. BMES [63] learns an efficient binary 
MobileNet [40] architecture through evolution-based search. However, the accuracy 
of the direct binary architecture search can be improved by the auxiliary binary 
architecture search [6]. BATS [6] designs a new search space specially tailored for 
the binary network and incorporates it into the DARTS framework. 

Unlike the methods above, our work is driven by the performance discrepancy 
between the 1-bit neural architecture and its real-valued counterpart. We introduce 
tangent propagation to explore the accuracy discrepancy and further accelerate 
the search process by applying the GGN to the Hessian matrix in optimization. 
Furthermore, we introduce a novel decoupled optimization to address asynchronous 
convergence in such a differentiable NAS process, leading to better-performed 1-bit 
CNNs. The overall framework leads to a novel and effective BNAS process. 

To introduce the advances of the NAS area, we separately introduce the 
representative works in the NAS and binary NAS in the following. 

3.2 Neural Architecture Search 

3.2.1 ABanditNAS: Anti-bandit for Neural Architecture 
Search 

Low search efficiency has prevented NAS from its practical use, and the introduction 
of adversarial optimization and a more extensive search space further exacerbates 
the issue. Early work directly regards network architecture search as a black-box 
optimization problem in a discrete search space and takes thousands of GPU days. 
To reduce the search space, a common idea is to adopt a cell-based search space [96].
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However, when searching in a vast and complicated search space, prior cell-based 
works may still suffer from memory issues and are computationally intensive with 
the number of meta-architecture. For example, DARTS [56] can only optimize over 
a small subset of eight cells stacked to form a deep network of 20. To increase 
search efficiency, we reformulate NAS as a multi-armed bandit problem with a vast 
search space. The multi-armed bandit algorithm targets predicting the best arm in 
a sequence of trials to balance the result and its uncertainty. Likewise, NAS aims 
to get the best operation from an operation pool at each edge of the model with 
finite optimization steps, similar to the multi-armed bandit algorithm. They are both 
exploration and exploitation problems. Therefore, we tried to introduce the multi-
armed bandit algorithm into NAS. In addition, the multi-armed bandit algorithm 
avoids the gradient descent process and provides good search speed for NAS. 
Unlike traditional upper confidence bound (UCB) bandit algorithms that prefer to 
sample using UCB and focus on exploration, we propose anti-bandit to exploit 
further both UCB and lower confidence bound (LCB) to balance exploration and 
exploitation. We achieve an accuracy-bias trade-off during the search process for 
the operation performance estimation. Using the test performance to identify the 
optimal architecture quickly is desirable. With the help of the anti-bandit algorithm, 
our anti-bandit NAS (ABanditNAS) [10] can handle the vast and complicated search 
space, where the number of operations that define the space can be 960! 

Specifically, our proposed anti-bandit algorithm uses UCB to reduce search 
space, and LCB guarantees that every arm is thoroughly tested before abandoning 
it, as shown in Fig. 3.1. Based on the observation that the early optimal operation 
is not necessarily the optimal one in the end, and the worst operations in the 
early stage usually have worse performance in the end [89], we pruned the 
operations with the worst UCB, after enough trials selected by the worst LCB. 
This means that the operations we finally reserve are certainly a near-optimal 
solution. The more tests conducted, the closer UCB and LCB are to the average 
value. Therefore, LCB increases, and UCB decreases with increasing sampling 
times. Specifically, operations with poor performance in the early stages, such 
as parameterized operations, will receive more opportunities but are abandoned 
once they are confirmed to be wrong. Meanwhile, weight-free operations will be 
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compared only with parameterized operations when well-trained. On the other hand, 
with the operation pruning process, the search space becomes smaller and smaller, 
leading to an efficient search process. 

3.2.1.1 Anti-Bandit Algorithm 

Our goal is to search for network architectures effectively and efficiently. However, 
a dilemma exists for NAS about maintaining a network structure that offers 
significant rewards (exploitation) or further investigating other network structures 
(exploration). Based on probability theory, the multi-armed bandit can solve the 
aforementioned exploration-versus-exploitation dilemma, which makes decisions 
among competing choices to maximize their expected gain. Specifically, we propose 
an anti-bandit that chooses and discards the arm k in the trial based on: 

.r̃k − δ̃k ≤ rk ≤ r̃k + δ̃k, (3.1) 

where . rk , . ̃rk , and . ̃δk are the true reward, the average reward, and the estimated 
variance obtained from arm k. . ̃rk is the value term that favors actions that historically 
perform well, and . ̃δk is the exploration term that gives actions an exploration bonus. 
.r̃k − δ̃k and .r̃k + δ̃k can be interpreted as the lower and upper bounds of a confidence 
interval. 

The traditional UCB algorithm, which optimistically substitutes .r̃k + δ̃ for . rk , 
emphasizes exploration but ignores exploitation. Unlike the UCB bandit, we further 
exploited the LCB and UCB to balance exploration and exploitation. A smaller LCB 
usually has little expectations but a significant variance and should be given a larger 
chance to be sampled for more trials. Then, based on the observation that the worst 
operations in the early stage usually have worse performance at the end [89], we 
use UCB to prune the operation with the worst performance and reduce the search 
space. In summary, we adopt LCB, .r̃k − δ̃, to sample the arm, which should be 
further optimized, and use UCB, .r̃k + δ̃, to abandon the operation with the minimum 
value. Because the variance is bounded and converges, the operating estimate value 
is always close to the actual value and gradually approaches the true value as the 
number of trials increases. Our anti-bandit algorithm overcomes the limitations 
of an exploration-based strategy, including levels of understanding and suboptimal 
gaps. The definitions of the value and variance terms and the proof of our proposed 
method are shown below. 

Definition 1 If an operation on arm k has been recommended . nk times, .rewardi is 
the reward on arm  k on all trails. The value term of anti-bandit is defined as follows: 

.r̃k =
ε

rewardi

nk

. (3.2) 

The value of selecting an operation . r̃k is the expected reward .
ε

rewardi we receive 
when we take an operation from the possible set of operations. If . nk approaches
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infinity, . r̃k approaches the actual value of the operation . rk . However, the number of 
operations . nk cannot be infinite. Therefore, we should approximate the actual value 
as closely as possible through the variance. 

Definition 2 There exists a difference between the estimated probability . r̃k and the 
actual probability . rk , and we can estimate the variance concerning the value: 

.δ̃k =
/
2 lnN

n
, (3.3) 

where N is the total number of trails. 

Proof Suppose .X ∈ [0, 1] represents the theoretical value of each independently 
distributed operation. n is the number of times the arm has been played up to trial, 
and . pi is the actual value of the operation in the . ith trial. Furthermore, we define 

.p =
ε

i pi

n
and .q = 1 − p. Since the variance boundary of independent operations 

can represent the global variance boundary (see the Appendix), based on Markov’s 
inequality, we can arrive at below: 

.

P [X > p + δ] = P [
ε

i

(Xi − pi) > δ]

= P [eλ
ε

i (Xi−pi) > eλδ]

≤ E[eλ
ε

i (Xi−pi)]
eλδ

.

(3.4) 

Since we can get .1 + x ≤ ex ≤ 1 + x + x2 when .0 ≤ |x| ≤ 1), . E[eλ
ε

i (Xi−pi)]
in Eq. 3.4 can be further approximated as follows: 

.

E[eλ
ε

i (Xi−pi)] =
||

i

E[eλ(Xi−pi)]

≤
||

i

E[1 + λ(Xi − pi) + λ2(Xi − pi)
2]

=
||

i

(1 + λ2v2i )

≤ eλ2v2,

(3.5) 

where v denotes the variance of X. Combining Eqs. 3.4 and 3.5 gives . P [X > p +
δ] ≤ eλ2v2

eλδ . Since . λ is a positive constant, it can be obtained by the transformation of 

the values .P [X > p + δ] ≤ e−2nδ2 . According to the symmetry of the distribution, 
we have .P [X < p − δ] ≤ e−2nδ2 . Finally, we get the following inequality: 

.P [|X − p| ≤ δ] ≥ 1 − 2e−2nδ2 . (3.6)
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We need to decrease . δ as operating recommendations increase. Therefore, we 

choose .

/
2 lnN

n
as . ̃δ. That is to say, .p −

/
2 lnN

n
≤ X ≤ p +

/
2 lnN

n
is implemented 

at least with probability .1 − 2
N4 . The variance value will gradually decrease as the 

trial progresses, and . r̃k will gradually approach . rk . Equation 3.7 shows that we can 
achieve a probability of 0.992 when the number of the trial gets 4: 

.

/

1 − 2

N4
=

⎧
⎪⎪⎨

⎪⎪⎩

0.857 N = 2

0.975 N = 3

0.992 N = 4.

(3.7) 

According to Eq. 3.6, the variance in the anti-bandit algorithm is bounded, and 
the lower/upper confidence bounds can be estimated as: 

.r̃k −
/
2 lnN

n
≤ rk ≤ r̃k +

/
2 lnN

n
. (3.8) 

3.2.1.2 Search Space 

Following [56, 89, 96], we search for computation cells as the building blocks of 
the final architecture. A cell is a fully connected directed acyclic graph (DAG) of 
M nodes, i.e., .{B1, B2, . . . , BM} as shown in Fig. 3.2a. Here, each node is a specific 
tensor (e.g., a feature map in convolutional neural networks), and each directed edge 
.(i, j) between . Bi and . Bj denotes an operation .o(i,j)(.), which is sampled from 

Fig. 3.2 (a) A cell containing four intermediate nodes, namely, . B1, . B2, . B3, . B4, which apply 
sampled operations on the input node . B0. . B0 is from the output of the last cell. The output node 
concatenates the outputs of the four intermediate nodes. (b) Gabor filter. (c) A generic denoising 
block. Following [81], it wraps the denoising operation with a .1 × 1 convolution and an identity 
skip connection [36]
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.o(i,j) = {o(i,j)

1 , . . . , o
(i,j)
K }. .{o(i,j)} is the search space of a cell. Each node . Bj

takes its dependent nodes as input and can be obtained by .Bj = Σi<jo
(i,j)(Bi). 

The constraint .i < j here is to avoid cycles in a cell. Each cell takes the output 
of the last cell as input. For brevity, we denote by . B0 the last node of the previous 
cell and the first node of the current cell. Unlike existing approaches that use only 
normal and reduction cells, we search for v (.v > 2) cells instead. For general NAS 
search, we follow [56] and take seven normal operations, i.e., .3 × 3 max pooling, 
.3×3 average pooling, skip connection (identity), .3×3 convolution with rate 2, . 5×5
convolution with rate 2, .3 × 3 depth-wise separable convolution, and .5 × 5 depth-
wise separable convolution. Considering adversarially robust optimization for NAS, 
we introduce two additional operations, the .3 × 3 Gabor filter and denoising block, 
for model defense. Therefore, the size of the entire search space is .K |EM|×v , where 
.EM is the set of possible edges with M intermediate nodes in the fully connected 
DAG. In the case with .M = 4 and .v = 6, together with the input node, the total 
number of cell structures in the search space is .9(1+2+3+4)×6 = 910×6. Here, we 
briefly introduce the two additional operations. 

Gabor filter Gabor filters [24, 25] containing frequency and orientation rep-
resentations can characterize the spatial frequency structure in images while 
preserving spatial relationships. This operation provides superb robustness for the 

network [64]. Gabor filters are defined as .exp(− x'2+γ 2y'2
2σ 2 ) cos(2π x'

λ
+ ψ). Here, 

.x' = x cos θ + y sin θ and .y' = −x sin θ + y cos θ . . σ , . γ , . λ, . ψ , and . θ are learnable 
parameters. Note that the symbols used here apply only to the Gabor filter and 
are different from the symbols used in the rest of this paper. Figure 3.2b shows  
an example of Gabor filters. 

Denoising block As described in [81], adversarial perturbations on images will 
introduce noise in the features. Therefore, denoising blocks can improve adversarial 
robustness by denoising features. Following this, we add the nonlocal mean 
denoising block [5] as shown in Fig. 3.2c to the search space to denoise the 
features. Calculate a denoised feature map z of an input feature map x by taking 
a weighted mean of the spatial locations of the features in general . L as . zp =
1

C(x)

ε
∀q∈L f (xp, xq) · xq , where .f (xp, xq) is a feature-dependent weighting 

function and .C(x) is a normalization function. 

3.2.1.3 Anti-bandit Strategy for NAS 

As described in [85, 89], the validation accuracy ranking of different network 
architectures is not a reliable indicator of the final quality of the architecture. 
However, the experimental results suggest that if an architecture performs poorly 
at the beginning of training, there is little hope that it can be part of the final 
optimal model [89]. As training progresses, this observation becomes more and 
more specific. Based on this observation, we derive a simple but effective training 
strategy. During training and the increasing epochs, we progressively abandon the
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worst-performing operation and sample the operations with little expectations but a 
significant variance for each edge. Unlike [89], which uses the performance as the 
evaluation metric to decide which operation should be pruned, we use the anti-bandit 
algorithm described in Sect. 3.2.1.1 to decide. 

Following UCB in the bandit algorithm, we obtain the initial performance for 
each operation on every edge. Specifically, we sample one of the K operations in 
.o(i,j) for every edge, and then obtain the validation accuracy a, which is the initial 
performance .m

(i,j)

k,0 by adversarially training the sampled network for one epoch and 
finally assigning this accuracy to all the sampled operations. 

By considering the confidence of the kth operation using Eq. 3.8, the LCB is 
calculated by: 

.sL(o
(i,j)
k ) = m

(i,j)
k,t −

/
2 logN

n
(i,j)
k,t

, (3.9) 

where N is the total number of samples, .n(i,j)
k,t refers to the number of times the 

kth operation of the edge .(i, j) has been selected, and t is the epoch index. The 
first item in Eq. 3.9 is the value term (see Eq. 3.2) which favors the operations 
that look good historically. The second is the exploration term (see Eq. 3.3), which 
allows operations to get an exploration bonus that grows with .logN . The selection 
probability for each operation is defined as: 

.p(o
(i,j)
k ) = exp{−sL(o

(i,j)
k )}

ε
m exp{−sL(o

(i,j)
m )}

. (3.10) 

The minus sign in Eq. 3.10 means we prefer to sample operations with smaller 
confidence. After sampling one operation for every edge based on .p(o

(i,j)
k ), we  

obtain the validation accuracy a by training adversarially the sampled network for 
one epoch and then update the performance .m(i,j)

k,t that historically indicates the 

validation accuracy of all the sampled operations .o
(i,j)
k as: 

.m
(i,j)
k,t = (1 − λ)m

(i,j)

k,t−1 + λ ∗ a, (3.11) 

where . λ is a hyperparameter. 
Finally, after .K ∗ T samples where T is a hyperparameter, we calculate the 

confidence with the UCB according to Eq. 3.8 as: 

.sU (o
(i,j)
k ) = m

(i,j)
k,t +

/
2 logN

n
(i,j)
k,t

. (3.12) 

The operation with minimal UCB for every edge is abandoned. This means that 
operations that are given more opportunities but result in poor performance are
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removed. With this pruning strategy, the search space is significantly reduced from 
.|o(i,j)|10×6 to .(|o(i,j)| − 1)10×6, and the reduced space becomes: 

.o(i,j) ← o(i,j) − {argmin
o
(i,j)
k

sU (o
(i,j)
k )},∀(i, j). (3.13) 

The reduction procedure is repeated until the optimal structure is obtained, where 
only one operation is left on each edge. 

Complexity Analysis There are .O(K |EM|×v) combinations in the search space 
discovery process with v types of different cells. In contrast, ABanditNAS reduces 
the search space for every .K ∗ T epoch. Therefore, the complexity of the proposed 
method is the following: 

.O(T ×
Kε

k=2

k) = O(T K2). (3.14) 

3.2.1.4 Adversarial Optimization 

The goal of adversarial training [58] is to learn networks that are robust to 
adversarial attacks. Given a network . fθ parameterized by . θ , a dataset .(xe, ye), a  
loss function l, and a threat model . A, the learning problem can be formulated as the 
following optimization problem: .minθ

ε
e maxδ∈A l

(
fθ (xe + δ), ye

)
, where . δ is the 

adversarial perturbation. In this paper, we consider the typical . l∞ threat model [58], 
.A = {δ : ||δ||∞ ≤ ε} for some .ε > 0. Here, .|| · ||∞ is the . l∞ norm distance metric 
and . ε is the adversarial manipulation budget. The adversarial training procedure uses 
attacks to approximate inner maximization over . A, followed by some variation of 
gradient descent on model parameters . θ . For example, one of the earliest versions of 
adversarial training uses the fast gradient sign method (FGSM) [29] to approximate 
the inner maximization. This could be seen as a relatively inaccurate approximation 
of inner maximization for . l∞ perturbations, and it has the closed-form solution: 

.θ = ε ·sign
(
∇xl

(
f (x), y

))
. A better approximation of inner maximization is to take 

multiple smaller FGSM steps of size . α instead. However, the number of gradient 
computations caused by the multiple steps is proportional to .O(EF) in a single 
epoch, where E is the size of the dataset and F is the number of steps taken by the 
adversary PGD. This is F times higher than standard training with .O(E) gradient 
computations per epoch, and adversarial training is typically F times slower. To 
accelerate adversarial training, we combine FGSM with random initialization [77] 
for our ABanditNAS. Our ABanditNAS with adversarial training is summarized in 
Algorithm 3.
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Algorithm 3: ABanditNAS with adversarial training 
Input: Training data, validation data, searching hyper-graph, adversarial perturbation δ, 

adversarial manipulation budget ε, K = 9, hyper-parameters α, λ = 0.7, T = 3. 
Output: The remaining optimal structure; 
t = 0; c = 0; 
Get initial performance m (i,j) 

k,0 ; 
while (K > 1) do 

c ← c + 1; 
t ← t + 1; 
Calculate sL(o (i,j) 

k ) using Eq. 3.9; 
Calculate p(o (i,j) 

k ) using Eq. 3.10; 
Select an architecture by sampling one operation based on p(o (i,j) 

k ) from o(i,j) for 
every edge; 
# Train the selected architecture adversarially: 
for e = 1, . . . , E  do 

δ = Uniform(−ε, ε); 

δ ← δ + α· sign
(
∇x l

(
f (xe + δ), ye

))
; 

δ = max
(
min(δ, ε), −ε

)
; 

θ ← θ − ∇θ l
(
fθ (xe + δ), ye

)
. 

end 
Get the accuracy a on the validation data; 
Update the performance m (i,j) 

k,t using Eq. 3.11; 
if c = K ∗ T then 

Calculate sU (o (i,j) 
k ) using Eq. 3.12; 

Update the search space {o(i,j)} using Eq. 3.13; 
c = 0; 
K ← K − 1. 

end 
end 

3.2.1.5 Analysis 

Effect on the hyperparameter . λ The hyperparameter . λ balances the performance 
between the past and the current. Different values of . λ result in similar search costs. 
The performance of the structures searched by ABanditNAS with different values of 
. λ is used to find the best . λ. We train the structures in the same setting. From Fig. 3.3, 
we can see that when .λ = 0.7, ABanditNAS is most robust. 

Effect on the search space We test the performance of ABanditNAS with different 
search spaces. We adopt the same experimental setting as the general NAS in this 
part. The search space of the general NAS has seven operations. We incrementally 
add the Gabor filter, denoising block, 1×1 dilated convolution with rate 2, and 7×7 
dilated convolution with rate 2 until the number of operations in the search space 
reaches 11. In Table 3.1, # Search Space represents the number of operations in the 
search space. Although the search difficulty increases with increasing search space, 
ABanditNAS can effectively select the appropriate operations. Each additional
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Fig. 3.3 Performances of structures searched by ABanditNAS with different hyperparameter 
values λ 

Table 3.1 The performance of ABanditNAS with different search spaces on CIFAR10 

# Search Accuracy # Params Search cost Search 

Architecture space (%) (M) (GPU days) method 

ABanditNAS 7 97.13 3.0 0.09 Anti-bandit 

ABanditNAS 8 97.47 3.3 0.11 Anti-bandit 

ABanditNAS 9 97.52 4.1 0.13 Anti-bandit 

ABanditNAS 10 97.53 2.7 0.15 Anti-bandit 

ABanditNAS 11 97.66 3.7 0.16 Anti-bandit 

operation has little effect on search efficiency, demonstrating the efficiency of 
our search method. When the number of operations in the search space is 9, the 
classification accuracy of the model searched by ABanditNAS exceeds all the 
methods with the same level of search cost. 

3.2.2 IDARTS: Interactive Differentiable Architecture Search 

In part, NAS has significantly impacted computer vision by reducing the need for 
manual work. Recently, Liu et al. [56] proposed differentiable architecture search 
(DARTS) as an alternative that makes architecture search more efficient. DARTS 
relaxes the search space to be continuous and differentiable. DARTS learns the
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weight of each operation with gradient descent so that the architecture can be 
optimized concerning its validation set performance by gradient descent. Despite 
its sophisticated design, DARTS is still subject to an ample yet redundant space 
of network architectures and thus suffers from significant memory and compu-
tation overhead. To address the problems of DARTS, researchers have proposed 
alternative formulations, including PDARTS [16], DARTS+ [49], PC-DARTS [82], 
ProxylessNAS [9], CDARTS [86], Fair DARTS [20], and SGAS [47]. Among them, 
PC-DARTS [82] reduces redundancy in the network space by performing a more 
efficient search without compromising performance. PC-DARTS only samples a 
subset of channels in a super-net during the search to reduce computation and 
introduces edge normalization to stabilize the search for network connectivity by 
explicitly learning an extra set of edge-selection parameters. 

However, these DARTS alternatives need to pay more attention to the intrinsic 
relationship between different parameters, and as a result, the selected architecture 
could be more robust due to an insufficient training process. The reason is that the 
coupling relationship will affect the training of the network architecture to its limit 
before it is selected or left out. To address this issue, we introduce a bilinear model 
into DARTS and develop a new backpropagation method to decouple the hidden 
relationships among variables to facilitate the optimization process. To the best of 
our knowledge, few works have formulated DARTS as a bilinear problem. 

We address these issues by formulating DARTS as a bilinear optimization 
problem and developing the efficient interactive differentiable architecture search. 
Figure 3.4 shows the framework of IDARTS [84]. Figure 3.4b shows that the dotted 
line results are inefficient compared with IDARTS shown in the solid line. . t1, 
. t2 marks the results where the architecture parameter . α is backtracked. IDARTS 
coordinates the training of different parameters and fully explores their interaction 
based on the backtracking method. Our method allows operations to be selected only 

Fig. 3.4 An  overview of IDARTS.  (a) . α and . β are coupled in IDARTS. The edge and operation 
(. βl and . αl) are coupled during the neural architecture search. . xi and . xj represent node 0 and node 
2, respectively. .xj = αl,m · βl · Wl,m ⊗ xi is specifically described in Eq. 3.16. (b) A backtracking 
method is introduced to coordinate the training of different parameters, which can fully explore 
their interaction during training. The dotted line results indicate that the lack of backtracking leads 
to the inadequate training of . α, and the solid line indicates an efficient training of IDARTS
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when they are sufficiently trained. We evaluate our IDARTS on image classification 
and conduct experiments on the CIFAR10 and ImageNet datasets. The experimental 
results show that IDARTS achieves superior performance compared to existing 
DARTS approaches, including PC-DARTS [82], CDARTS [86], and FairDARTS 
[20]. 

3.2.2.1 Bilinear Models for DARTS 

We first show how DARTS can be formulated as a bilinear optimization problem. 
Assume that there are L edges in a cell, and the edge between node . Ni and node . Nj

is the lth edge. Following [56, 82], we take the lth edge, which is formulated as: 

.
fl(Wl,m, xi) =

ε

ol,m∈O(l)

αl,m · ol,m(Wl,m ⊗ xi), (3.15) 

where .Wl,m denotes the kernels of the mth convolution operation. We assume that 
there are M operations on one edge. M refers to the number of all operations. . xi
denotes the feature map of . Ni , . Ol denotes the set of operations, and .αl,m is the 
parameter of operation .ol,m on lth edge processed by softmax operation: 

.

xj =
ε

i<j

{βl} · fl(xi)

=
ε

i<j

ε

ol,m∈Ol

βlαl,m · ol,m(Wl,m ⊗ xi),
(3.16) 

where . βl denotes the parameter of lth edge. To calculate the final architecture, the 
softmax is defined on . β and . α. For each intermediate node, we will choose two 
edges, which are jointly determined by . α and . β. In Fig. 3.4, we see  . α and . β are 
coupled in the inference process as shown in Eq. 3.16. . xj is linearly dependent 
on both . α and . β, a classic bilinear problem. If an improper operation is selected, 
it will affect the selection of the edge and vice versa. It suggests that we should 
consider their relationship for better optimization. A basic bilinear optimization 
problem attempts to optimize the following objective function in the architecture 
search: 

. argmin
β,α

G(W,β,α) = argmin
β,α

(L(W,β,α) + R(β)), (3.17) 

where .α ∈ R
L×M and .β ∈ R

L×1 are variables to be optimized, . α denotes the 
matrix, L is the number of edges, M is the number of operations at each edge, and 
.R(·) represents the constraint, which determines where the backtracking occurs. 
.L(·) denotes the loss function in the original DARTS models.



62 3 Binary Neural Architecture Search

Following [56, 82], the weights of the kernels . W and the architectural parameters 
. α, . β are optimized sequentially. The learning procedure for the architectural 
parameters involves an optimization as: 

.

Wt+1 = argmin
W
Ltrain(Wt, αt , βt ),

αt+1 = argmin
α
Lval(Wt+1, αt , βt ),

βt+1 = argmin
β
Lval(Wt+1, αt , βt ),

(3.18) 

where .αt+1 and .βt+1 denote the parameters of operation and edge in the .(t + 1)th 
step, and .Wt+1 denotes the kernel of the convolution at the .(t + 1)th step. 

In Eq. 3.18, . α and . β are updated independently. However, optimizing . α and . β
independently is improper due to their coupling relationship. We consider the search 
process of differentiable architecture search as a bilinear optimization problem and 
solve the problem using a new backtracking method. The details will be shown in 
Sect. 3.2.2.3. 

3.2.2.2 Search Space 

By simplifying the architecture search to find the best cell structure, cell-based NAS 
methods try to learn a scalable and transferable architecture. Following [56, 82], we 
search for normal and reduction computation cells to build the final architecture. 
The reduction cells are located at .1/3 and .2/3 of the total network depth; the rest 
are normal cells. A normal cell uses operations with a stride of 1 to keep the size 
of the input feature map unchanged. The number of output channels is identical to 
the number of input channels. A reduction cell uses operations with a stride of 2 
to reduce the spatial resolution of feature maps, and the number of output channels 
is twice the number of input channels. The set of operations includes .3 × 3 and 
.5 × 5 separable convolution, .3 × 3 and .5 × 5 dilated separable convolution, . 3 × 3
max pooling, .3 × 3 average pooling, a zero(none), and a skip connection. A cell 
(Fig. 3.5) is a fully connected directed acyclic graph (DAG) of seven nodes. Each 
. xi is a latent representation (e.g., a feature map in convolutional networks). Each 
directed edge .(i, j) between node . Ni and node . Nj denotes the set of operations 
.Ol = {ol,1, . . . , ol,M }. Following [56], there are 2 input nodes, 4 intermediate nodes, 
1 output node, and 14 edges per cell during the search. Each cell takes the outputs 
of the two previous cells as the input. The output node of a cell is the depth-wise 
concatenation of all of the intermediate nodes.
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Fig. 3.5 A cell contains seven nodes, which are two input nodes .N−1 and . N0; four intermediate 
nodes . N1, . N2, . N3, and . N4; and one output node 

3.2.2.3 Backtracking Back Propagation 

We consider the problem from a new perspective where the . β and . α are coupled 
in Eq. 3.17. We note that the calculation of the derivative of . α should consider its 
coupling relationship with . β. Based on the chain rule [61] and its notations, we 
have: 

. α̂
t+1 = αt + η1

(
∂G

∂α
+ η2T r

((
∂G

∂β

)T
∂β

∂α

))

, (3.19) 

where . η1 represents the learning rate, . η2 represents the coefficient of backtracking, 
.α̂t+1 denotes the value backtracked from .αt+1, and .T r(·) represents the trace of 
the matrix. .T r(·) means that each element in the matrix . ∂G

∂α
adds the trace of the 

corresponding matrix related to . α. Here, . W is omitted for simplicity, and only 
structure parameters .α, β are considered during the back propagation process. We 
further define: 

.Ĝ(β,α) =
(

∂G

∂β

)T

/α, (3.20) 

where . Ĝ is defined by considering the bilinear optimization problem as in Eq. 3.17. 
Note that .R(·) is only considered when backtracking. Then we have: 

.
∂G(β, α)

∂α
= T r

[

αĜ
∂β

∂α

]

. (3.21)
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We denote .Ĝ = [ĝ1, . . . , ĝL]. Assuming that . β l and . αm are independent when 
.l /= m, . αm denotes a column vector, and .α1,m denotes an element in matrix . α, we  
have: 

.
∂β

∂α
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . .
∂βm

∂α1,m
. . . 0

. . .

. . .

. . .

0 . . .
∂βm

∂αL,m
. . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.22) 

and 

.αĜ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α1ĝ1 . . . α1ĝl . . . α1ĝL

. . .

. . .

. . .

αLĝ1 . . . αLĝl . . . αLĝL

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.23) 

We combine Eqs. 3.22 and 3.23 and get: 

.αĜ
∂β

∂α
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . . α1
εL

l=1 ĝl
∂βm

∂αl,m
. . . 0

. . .

. . .

. . .

0 . . . αL

εL
l=1 ĝl

∂βm

∂αl,m
. . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.24) 

After that, the trace of Eq. 3.19 is then calculated by: 

.T r

[

αt Ĝ
∂β

∂αm

]

= αm

Lε

l=1

ĝl

∂βm

∂αl,m

. (3.25)
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Remembering that .αt+1 = αt + η1
∂G(β,α)

∂α
, IDARTS combines Eqs. 3.19 and 3.25: 

.

α̂
t+1 = αt+1 + η

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

εL
l=1 ĝl

∂β1
∂αl,1

.

.

.
εL

l=1 ĝl
∂βL

∂αl,L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

O

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α1

.

.

.

αL

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= αt+1 + η

⎡

⎢
⎢
⎢
⎢
⎢
⎣

< Ĝ,
∂β1
∂α1

>

.

.

.

< Ĝ,
∂βL

∂αL
>

⎤

⎥
⎥
⎥
⎥
⎥
⎦

O

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α1

.

.

.

αL

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= αt+1 + ηγ O αt ,

(3.26) 

where . O represents the Hadamard product and .η = η1η2. To simplify the 
calculation, . ∂β

∂α
can be approximated by . Aβ

Aα
. Equation 3.26 shows our method 

is based on a projection function to solve the coupling problem of the bilinear 
optimization by . γ . In this method, we consider the influence of . αt and backtrack 
the optimized state at the .(t + 1)th step to form .α̂t+1. We first decide when the 
optimization should be backtracked, and the update rule of the proposed IDARTS is 
defined as: 

.α̂
t+1 =

{
P(αt+1,αt ) if R(β) < ζ,

αt+1 otherwise,
(3.27) 

where .P(αt+1,αt ) = αt+1 + ηγ O αt . .R(β) represents the ranking of .|βl | and . ζ
represents the threshold. We then have: 

.ζ = L(S − T ) · λ · L|, (3.28) 

where T and S denote the beginning and ending epoch of backtracking, . λ denotes 
the coefficient, and L denotes the number of edges in a cell. As shown in Eq. 3.28. , ζ
will be increased during searching. By doing so, . α will be backtracked, according 
to . β. 

3.2.2.4 Comparison of Searching Methods 

Figure 3.6 illustrates the comparison of . α for IDARTS and PC-DARTS in the 
shallowest edge. The label of the x-axis is the epoch in searching, and the label 
of the y-axis is the value of . α. We freeze the hyperparameters, . α and . β, in the first
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Algorithm 4: IDARTS interactive differentiable architecture search 
Input: Training data, validation data, searching hyper-graph, hyper-parameters K = 0, 

T = 25, S = 50; 
Create architectural parameters α = αl , edge level parameters β = βl and supernet weights W 
Create a mixed operation ol parameterized by αl and βl for each edge l; 
Output: The structure; 
Search for an architecture for S epochs; while (K ≤ S) do 

Update parameters α and β; 
if (K ≥ T )  then 

According to Eq. 3.27, we select α that should be backtracked; 
backtracking α by Eq. 3.26; 

end 
Update weights W ; 
K ← K + 1; 
Find the final architecture based on the learned α and β; 

end 

Fig. 3.6 Comparison of . α values in the shallowest edge of IDARTS and PC-DARTS on CIFAR10 

15 epochs (only network parameters are updated), . α remains unchanged. As the 
shortage of interaction between . α and . β in PC-DARTS, . α and . β might easily fall 
into the local minima. However, we backtrack the insufficiently trained operations 
on this edge to escape from the local minima to select a better operation and, thus, a 
better architecture by considering the intrinsic relationship between . α and . β. Due  to  
the backtracking of . α, the competition between different operations is intensified in 
the IDARTS search process, as shown in Fig. 3.6. As a result, it is more conducive 
to choosing the most valuable operation than PC-DARTS. In Fig. 3.7, the label of 
y-axis is .Lval . We also show that the convergence of IDARTS is similar to that 
of PC-DARTS. Although the two have the same convergence rate, we can see that 
the final loss of IDARTS converges to a smaller value. The main reason is that 
IDARTS has explored the relationship between different parameters and used our 
backtracking method to train the architecture parameter . α entirely. We theoretically



3.2 Neural Architecture Search 67

Fig. 3.7 Comparison of searching loss on CIFAR10 with IDARTS and PC-DARTS 

derive our method under the framework of gradient descent, which provides a solid 
foundation for the convergence analysis of our method. 

3.2.3 Fast and Unsupervised Neural Architecture Evolution for 
Visual Representation Learning 

Learning high-level representations from labeled data and deep learning models 
in an end-to-end manner is one of the biggest successes in computer vision in 
recent history. These techniques make manually specified features redundant and 
significantly improve the state of the art for many real-world applications. Many 
challenges remain, however, such as the cost of annotating large datasets and an 
insufficient ability to generalize the model. For example, a learned representation 
from supervised learning for image classification may lack information such as 
texture, which matters little for classification but can be more relevant for later tasks. 
Yet adding it makes the representation less general and might be irrelevant for tasks 
such as image captioning. Thus, improving representation learning requires features 
to be focused on solving a specific task. Unsupervised learning is an important 
stepping stone towards robust and generic representation learning [34]. The main 
challenge is a significant performance gap compared with supervised learning. 

In a scenario where we cannot obtain sufficient annotation, self-supervised 
learning is a popular approach to leverage the mutual information of unlabeled 
data for training. However, its performance still needs improvement compared 
with the supervised methods. One obstacle is that only parameters are learned 
in conventional self-supervised methods. To break the performance bottleneck, a 
natural idea is to explore NAE to optimize the architectures along with parameter
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training. Specifically, we can initialize with an architecture found using NAS on 
a small supervised dataset and then evolve the architecture on a larger dataset 
using unsupervised learning. Currently, existing architecture evolution methods 
[7, 94] could be more efficient and cannot deal effectively with the challenging 
unsupervised representation learning. Our approach is highly efficient with a 
complexity of .O(n2) where n is the size of the operation space. 

Here we propose our fast and unsupervised neural architecture evolution (FaU-
NAE) [83] method to search architectures for representation learning. Although 
UnNAS [54] discusses the value of a label and discovers that labels are not 
necessary for NAS, it cannot solve the problems above because it is computationally 
expensive and is trained using supervised learning for real applications. FaUNAE is 
introduced to evolve an architecture from an existing architecture manually designed 
or searched from one small-scale dataset on another large-scale dataset. This partial 
optimization can utilize the existing models to reduce the search cost and improve 
search efficiency. The strategy is more practical for real applications, as it can 
efficiently adapt to new scenarios with minimal requirements for data labeling. 

First, we adopt a trial-and-test method to evolve the initial architecture, which 
is more efficient than the traditional evolution methods, which are computationally 
expensive and require large amounts of labeled data. Second, we note that the quality 
of the architecture could be better estimated due to the absence of labeled data. 
To address this, we explore contrastive loss [34] as the evaluation metric for the 
operation evaluation. Although our method is built based on contrastive loss [34], 
we model our method on the teacher-student framework to mimic the supervised 
learning and then estimate the operation performance even without annotations. 
Then the architecture can be evolved based on the estimated performance. Third, 
we address that one bottleneck in NAS is its explosive search space of up to 
. 148. The search space issue is even more challenging for unsupervised NAS built 
on an ambiguous performance estimation that further deteriorates the training 
process. To address this issue, we follow the principle of survival of the fittest and 
eliminating the inferior to build our search algorithm. This significantly improves 
search efficiency. Our framework is shown in Fig. 3.8. 
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Fig. 3.8 The main framework of the proposed teacher-student search strategy
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Fig. 3.9 (a) The main framework of teacher-student model, which focuses on both the unsuper-
vised neural architecture evolution (left) and contrastive learning (right). (b) Compared with the 
original bottleneck (1) in ResNet, a new search block is designed for FaUNAE (2) 

3.2.3.1 Search Space 

We have experimentally determined that for unsupervised learning, ResNet [36] 
is better than cell-based methods for building an architectural space. We denote 
this space as .{oi}, where i represents given block. Rather than repeating the 
bottleneck (building block in ResNet) with various operations, however, we allow a 
set of search blocks shown in Fig. 3.9b with various operations including traditional 
convolution with kernel sizes .{3, 5} and split-attention convolution [87] with kernel 
sizes .{3, 5} and radixes .{2, 4}. This reduces the model size by sharing the . 1 × 1
convolution to improve the efficiency. To enable a direct trade-off between depth 
and block size (indicated by the parameters of the selected operations), we initiate 
a deeper over-parameterized network and allow a block to be skipped by adding 
the identity operation to the candidate set of its mixed operation. So the set of the 
operations . oi in the ith block consists of .M = 7 operations. With a limited model 
size, the network can either be shallower by skipping more blocks and using larger
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ones or choose to be deeper by keeping smaller ones. To accelerate the evolution 
process and make use of prior knowledge, the initial structure . α0 is first manually 
designed (e.g., ResNet-50, without weight parameters) or searched for by another 
NAS (e.g., ProxylessNAS [9]) on different datasets in supervised manner1 , which 
are then remapping to the search space. 

3.2.3.2 Evolution 

The evolutionary strategy is summarized in Algorithm 5. Unlike AmoebaNet [66] 
that evaluates the performance of sub-networks sampled from the search space in 
a population, our method targets evolving the operation in each block using a trial-
and-test manner. We first mutate the operation based on its mutation probability, 
followed by an evaluation step to make sure the mutation is ultimately used. 

Mutation An initial structure . α0 is manually designed (e.g., ResNet-50)2 or 
searched by another NAS (e.g., ProxylessNAS [9]) on a different dataset using 
supervised learning. The initial sub-network . fθs , which is generated by searching 
over-parameterized network based on . α0, is then trained using Eq. 3.34 for k steps 
to obtain the evaluation metric .l(oi

k). A new architecture . αn (. ok,n) is then constructed 
from the old architecture .αn−1 (.ok,n−1) by a transformation or a mutation. The 
mutation probability .pmt is defined as: 

.pmt(o
i
k,n) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − ε, oi
k,n = oi

k,n−1

1

K − 1
(1 − sai

kε
k' sai

k'
)ε, otherwise

(3.29) 

where . sai
k represent the sampling times of the operation . oi

k . In general, the operation 
in each block is kept constant with a probability .1 − ε in the beginning. For the 
mutation with the probability of . ε, younger (less sample time) operations are more 
likely to be selected. Intuitively, keeping the operation constant can be considered 
to provide exploitation, while mutations provide exploration [66]. We use two main 
mutations, the depth mutation and the op mutation, as in AmoebaNet [66], to modify 
the structure generated by the search space described above. 

The operation mutation pays attention to the selection of operations in each 
block. Once the operation in a block is chosen to mutate, the mutation picks one 
of the other operations based on Eq. 3.29. The depth mutation can change the depth 
of the sub-network from the over-parameterized network by setting the operation 
of one block to the “Identity” operation. We limit the model size as a restriction 
metric to search more efficiently and evaluate more reasonable operations. The

1 The evolution is based on unsupervised learning. 
2 No weight parameters 
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structure can then evolve into a sub-network with the same computational burden. 
The probability of the restriction metric .pi

rm is defined as: 

.prm(oi
k,n) = − expMS(oi

k,n)
ε

k' expMS(oi
k',n)

, (3.30) 

where .MS(oi
k,n) represents number of parameters of the kth operation in the ith 

block. The final evolution probability p that combines .pmt and .prm is defined as: 

.p(oi
k,n) = λ1 ∗ pmt(o

i
k,n) + (1 − λ1) ∗ prm(oi

k,n), (3.31) 

where . λ1 is hyperparameter. 

Mutation validation After each evolution, the sub-network is trained using 
Eq. 3.34, and the loss is used as the evaluation metric. We observe the current 
validation loss a and accordingly update the loss .l(oi

k,n), which historically indicates 

the validation loss of all the sampled operations .o
(i,j)
k as: 

.l(oi
k,n) = λ2 ∗ l(oi

k,n−1) + (1 − λ2) ∗ a, (3.32) 

where . λ2 is a hyperparameter. If the operation which is mutated performs better (less 
loss), we apply it as the base of the next evolution; otherwise, we use the original 
operation as the base of the next evolution: 

.oi
k,n =

⎧
⎨

⎩

oi
k,n, l(o

i
k,n) > l(oi

k,n−1)

oi
k,n−1, else

(3.33) 

3.2.3.3 Contrastive Learning 

Contrastive learning [31] can significantly improve the performance of unsupervised 
visual representation learning. The goal is to make positive sample pairs close 
and negative sample pairs far away in the latent space. Prior works [34, 74] 
usually investigate contrastive learning by exploring the sample pairs calculated 
from the encoder and the momentum encoder [34]. Based on the investigation, we 
reformulate the unsupervised/self-supervised NAS as a teacher-student model, as 
shown in Fig. 3.9a. Following [34], we build dynamic dictionaries, and the “keys” 
(e.g., tokens) t in the dictionary are sampled from data (e.g., images or patches) 
and are represented by the teacher network. In general, the keys representation is 
.t = fθt (xt ), where .fθt (.) = f (oi

k,n; θt ; .) is a teacher network and . xt is a key sample. 

Likewise, the “query” . xs is represented by .s = fθs (xs), where . fθs = f (oi
k,n; θs; .)

is a student network. Unsupervised learning trains the student network to perform
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Algorithm 5: FaUNAE 
Input: Training data, Validation data, initial structure α0 
Parameter: Searching hyper-graph 
Output: Optimal structure α 
1: Let n = 1. 
2: while (K > 1) do 
3: for t = 1, . . . , T  epoch do 
4: Evolve architecture αn from the old architecture αn−1 based on the evolution 

probability p using Eq. 3.31; 
5: Construct the Teacher model and the Student model with the same architecture αn, 

and then train Student models by gradient descent and update the Teacher model by 
EMA using Eq. 3.35; 

6: Get the evaluation loss on the validation data using Eq. 3.34; 
Use Eq. 3.32 to compute the performance and assign that to all the sampled 
operations; 
Update αn using Eq. 3.33; 

7: end for 
8: if t == K ∗ E then 
9: Update w(oi 

k,n) using Eq. 3.36; 
10: Reduce the search space: oi ← oi − argmax 

k 
w(oi 

k,n) ; 

11: K ← K − 1; 
12: end if 
13: end while 
14: return α 

dictionary lookups. An encoded “query” s should be similar to its matching key and 
dissimilar to others. The student and teacher models are NAE sub-networks from 
the over-parameterized network described in Sect. 3.2.3.1. 

Using a contrastive loss, we train a visual representation student model by 
matching an encoded query s to a dictionary of encoded keys. The value of the 
contrastive loss is lower when s and t are from the same (positive) sample and 
higher when s and t are from different (negative) samples. The contrastive loss 
is also deployed in FaUNAE to guide structure evolution to obtain the optimal 
structure based on the unlabeled dataset. InfoNCE [60] shown in Fig. 3.9a measures 
the similarity using the dot product and is used as our evaluation metric: 

.L = − log
exp(s · t+/τ)

εN
n=0 exp(s · tn/τ )

, (3.34) 

where . τ is a temperature hyperparameter per [80] and . t+ represents the feature 
calculated from the same sample with s. InfoNCE is over one positive and M 
negative sample. Intuitively, it is a log loss of a .(M+1)-way softmax-based classifier 
that tries to classify s as . t+. Our method is general and can be based on other 
contrastive loss functions [31, 39, 76, 80], such as margin-based losses and variants 
of NCE losses.
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Following [34, 72], the teacher model is updated as an exponential moving 
average (EMA) of the student model: 

.θt = m ∗ θt + (1 − m) ∗ θs, (3.35) 

where . θs and . θt are the weight of the student model and teacher model, respectively, 
updated by back propagation in contrastive learning, and .m ∈ [0, 1) is a smoothing 
coefficient hyperparameter. 

3.2.3.4 Fast Evolution by Eliminating Operations 

One of the most challenging aspects of NAS lies in the inefficient search process, 
and we address this issue by eliminating the least potential operations. After . |oi |∗E

epochs, we remove the operations in each block based on performances (loss) and 
the sampling times. We define the combination of the two as: 

.w(oi
k,n) = l(oi

k,n) −
/
2 logN

sai
k

, (3.36) 

where N is the total number of evolutions and mutations and . sai
k refers to the number 

of times the kth operation of the ith block has been selected. The first item .l(oi
k,n) in 

Eq. 3.36 is calculated based on an accumulation of the validation loss, which favors 
the operations that look good historically, and the second term is the exploration 
term which allows operations to get an exploration bonus that grows as .logN . The  
operation with the minimal w for every block is abandoned. This means that the 
operations that are given more opportunities, but result in poor performance, are 
removed. With this strategy, the search space which has v blocks is significantly 
reduced from .|oi |v to .(|oi | − 1)v , and the reduced space becomes: 

.oi ← oi − {argmax
k

w(oi
k,n)}. (3.37) 

The reduction procedure is repeated until the optimal structure is obtained when 
only one operation is left in each block. 

3.2.3.5 Experiments 

This section compares FaUNAE with human-designed networks and state-of-the-
art NAS methods for classification on the ImageNet and CIFAR10 datasets. The 
evolved architecture on ImageNet is also applied as the backbone of object detection 
on the PASCAL VOC and COCO datasets. Due to page limitations, the experimental 
results on CIFAR10 and PASCAL VOC are shown in the supplemental material.
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Evolution and Training Protocol The evolution and training protocol used in 
our experiments is described in this section. We first set global average pooling 
and a two-layer MLP [14] head (hidden layer 2048-d, with ReLU) which has a 
fixed-dimensional output (128-d [80]) after the hypernet and searched network. The 
output vector is normalized by its L2 norm [80], representing the query or key. 
The temperature . τ in Eq. 3.34 is set as .0.2 [80], and the smoothing coefficient 
hyperparameter m in Eq. 3.35 is set as .0.999. The data augmentation setting 
follows MoCoV2 [17]. A .224 × 224-pixel cropped patch is taken from a randomly 
resized image and is then subjected to random color jittering, random horizontal 
flip, random grayscale conversion, and blur augmentation [14]. We use the SGD 
optimizer with an initial learning rate of .0.03 (annealed down to zero following a 
cosine schedule without restart), a momentum of . 0.9, a weight decay of .0.0001, and 
batch size of 256 in 8 GPUs. 

In experiments, we first evolve the initial structure . α0 on an over-parameterized 
network that uses ResNet50 as the backbone to build the architecture space (details 
can be found in Sect. 3.2.3.1) on ImageNet. We set initial structure . α0 as a 
random structure, ResNet50, and structure searched by Proexyless on ImageNet100, 
respectively, to show the importance of prior knowledge. During the architecture 
search, the 128M training samples of ImageNet are divided into two subsets, . 80%
for the training set for training the network weights and the remainder as a validation 
set for mutation validation and search space reduction. We set the channel as half 
of that of ResNet50 for efficiency and attention to the evolution of operation rather 
than the channel. So the model size of search space can be reduced to a quarter, 
and we set hyperparameter .E = 3, so the total number of epochs is .

εM
m=2 k ∗ E. 

The hyperparameter . λ1 and . λ2 are set to . 0.9 and . 0.3. After evolution, we train the 
searched network on ImageNet unsupervised for 200 epochs. We run the experiment 
multiple times and find that the resulting architectures only show slight variation in 
performance, demonstrating the proposed method’s stability. 

Results for Classification Following a common protocol, we verify our method by 
linearly classifying frozen features. In this subsection, we perform unsupervised pre-
training on ImageNet, and then we freeze the features and train a supervised linear 
classifier (a fully connected layer followed by softmax). We train this classifier 
on the global average pooling features of the evaluated network for 100 epochs. 
We report Top-1 classification accuracy on the ImageNet validation set. For this 
experiment, we set the initial learning rate as 30 and weight decay 0 same with [34]. 

The results for different architectures on ImageNet are summarized in Table 3.2. 
We use 8 Tesla V100 GPUs to search for about 46 hours. Table 3.2 shows that 
FaUNAE outperforms ResNet50, ResNet101, ResNet170, and . AMDIMsmall/large
with higher accuracy. FaUNAE also performs better than the structure sampled 
randomly from the search space described in Sect. 3.2.3.1 on Top-1 accuracy (. 68.3
vs. .66.2), demonstrating our method’s effectiveness. When compared with other 
NAS methods like Proxyless, which uses the same search space as FaUNAE, our
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Table 3.2 Comparisons under the linear classification protocol on ImageNet 

Params Search cost Search 

Architecture Method Accuracy (%) (M) (GPU days) method 

ResNet50 InstDisc [80] 54.0 24 – Manual 

ResNet50 LocalAgg [93] 58.8 24 – Manual 

ResNet101 CPC v1 [39] 48.7 28 – Manual 

.ResNet170wider CPC v2 [37] 65.9 303 – Manual 

.ResNet50L+ab CMC [73] 64.1 47 – Manual 

.AMDIMsmall AMDIM [3] 63.5 194 – Manual 

.AMDIMlarge AMDIM [3] 68.1 626 – Manual 

ResNet50 MoCo v1 [34] 60.6 24 – Manual 

ResNet50 MoCo v2 [17] 67.5 24 – Manual 

ResNet50 SimCLR [14] 66.6 24 – Manual 

Random MoCo v2 66.2 23 – Random 

Proxyless MoCo v2 67.8 23 23.1 Gradient-base 

FaUNAE (Random) MoCo v2 67.4 24 15.3 Evolution 

FaUNAE (ResNet50) MoCo v2 67.8 24 15.3 Evolution 

FaUNAE (Proxyless) MoCo v2 68.3 30 15.3 Evolution 
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Fig. 3.10 Detailed structures of the best structure discovered on ImageNet. “SAConv2” and 
“SAConv4” denote split-attention bottleneck convolution layer with radixes of 2 and 4, respectively 

method obtains a better performance with higher accuracy (.67.8 vs. .68.3) and with 
a much faster search speed (.23.1 vs. .15.3 GPU days). 

We also set different initial structures . α0 including random structure, ResNet50, 
and structure searched by Proxyless on ImageNet100. As shown in Table 3.2, 
we find that the better the initial structure, the better the performance, which 
shows the importance of prior knowledge. For the structure (Fig. 3.10) obtained 
by ABanditNAS on ImageNet, we find that the structure on unsupervised learning 
prefers a small kernel size and a split-attention convolution [87], which also shows 
the effective of split-attention convolution and the rationality of FaUNAE. 

Results on Object Detection and Segmentation Learning transferable features is 
the primary goal of unsupervised learning. ImageNet supervised pre-training is most 
influential when initializing fine-tuning in object detection and segmentation (e.g., 
[26, 27, 67]). Next, we compare FaUNAE with ImageNet supervised pre-training, 
transferred to various tasks including PASCAL VOC [22] (in the attached files), 
COCO [52].
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Table 3.3 Object detection and instance segmentation results on COCO with Mask R-CNN. . APbb

means bounding-box AP and .APmk means mask AP 

Architecture Method .AP bb .AP bb
50 .AP bb

75 .APmk .APmk
50 . APmk

75

ResNet50 super. 40.0 59.9 43.1 34.7 56.5 36.9 

ResNet50 MoCo v1[34] 40.7 60.5 44.1 35.4 57.3 37.6 

FaUNAE MoCo v2 43.1 63.0 47.2 37.7 60.2 40.6 

We apply Mask R-CNN [35] with the C4 backbone as the detector, with batch 
normalization tuned and implemented as in [79]. All layers are fine-tuned end-to-
end, and the image scale is 480x800 pixels during training and 800x800 at inference. 
We fine-tune all layers end-to-end. We fine-tune on the train2017 set (.∼ 118k 
images) and evaluate it on val2017. The schedule is the default . 2× [28]. 

Table 3.3 shows the results on the COCO dataset with the C4 backbones. With 
the . 2× schedule, FaUNAE is better than its ImageNet-supervised counterpart on all 
metrics. Due to the absent result of MoCo v2 [17], we do not compare it with our 
FaUNAE. We run their code for this comparison, which is even worse than v1. Also, 
FaUNAE is better than ResNet50 trained with unsupervised MoCo v1 [34]. 

3.3 Binary Neural Architecture Search 

3.3.1 BNAS: Binarized Neural Architecture Search for 
Efficient Object Recognition 

Efficient computing has become one of the hottest topics in academia and industry. 
It will be vital for the 5G networks to provide hardware-friendly and efficient 
solutions for practical and wild applications [59]. Edge computing is computing 
resources that are closer to the end user. This makes applications faster and more 
user-friendly [13]. It enables mobile or embedded devices to provide real-time 
intelligent analysis of big data, reducing the pressure on the cloud computing center 
and improving availability [33]. However, edge computing is still challenged by its 
limited computational ability, memory and storage, and severe performance loss, 
making edge computing models inefficient for feature calculation and inference 
[46]. 

A possible solution for efficient edge computing can be achieved based on 
compressed deep models, which fall mainly into network pruning, knowledge 
distillation, and model quantization. Network pruning [32] aims to remove network 
connections with less significance, and knowledge distillation [38] introduces 
a teacher-student model, which uses the soft targets generated by the teacher 
model to guide the student model with a much smaller model size, to achieve 
knowledge transfer. Differently, model quantization [42] calculates neural networks 
with low-bit weights and activations to compress a model more efficiently, which
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is also orthogonal to the other two. The binarized model is widely considered 
one of the most efficient ways to perform computing on embedded devices with 
extremely low computational cost. Binarized filters have been used in traditional 
convolutional neural networks (CNNs) to compress deep models [42, 57, 65], 
showing up to 58-time speedup and 32-time memory saving. In [65], the XNOR 
network is presented where the weights and inputs attached to the convolution 
are approximated with binary values. This efficiently implements convolutional 
operations by reconstructing the unbinarized filters with a single scaling factor. 
[92] introduces .2∼ 4-bit quantization based on a two-stage approach to quantizing 
weights and activations, significantly improving the efficiency and performance 
of quantized models. Furthermore, WAGE [78] is proposed to discretize both the 
training and inference processes and quantizes not only weights and activations 
but also gradients and errors. In [30], a projection convolutional neural network 
(PCNN) is proposed to realize binarized neural networks (BNNs) based on a 
simple back propagation algorithm. In our previous work [88], we propose a 
novel approach called Bayesian-optimized 1-bit CNNs (denoted BONNs), taking 
advantage of Bayesian learning to significantly improve the performance of extreme 
1-bit CNNs. Other practices in [1, 21, 71] with improvements over previous work. 
Binarized models show the advantages of computational cost reduction and memory 
savings but, unfortunately, suffer from performance loss when handling wild data 
in practical applications. The main reasons are twofold. On the one hand, there is 
still a gap between low-bit weights/activations and full-precision weights/activations 
on feature representation, which should be investigated from new perspectives. On 
the other hand, traditional binarized networks are based on the neural architecture 
manually designed for full-precision networks, which means that the design of 
binarized architecture still needs to be explored. 

Traditional neural architecture search (NAS) has attracted significant atten-
tion with remarkable performance in various deep learning tasks. For example, 
impressive results have been shown for reinforcement learning (RL)-based methods 
[95, 96], which train and evaluate more than .20,000 neural networks across 500 
GPUs over 4 days. Recent methods like differentiable architecture search (DARTS) 
reduce search time by formulating the task differently [56]. DARTS relaxes the 
search space to be continuous so that the architecture can be optimized concerning 
its validation set performance by gradient descent, which provides a fast solution 
for an effective network architecture search. To reduce redundancy in the network 
space, partially connected DARTS (PC-DARTS) was recently introduced to perform 
a more efficient search without compromising the performance of DARTS [82]. 

Although DARTS or its variants have a smaller model size than traditional 
light models, the searched network still needs to improve its inference process 
due to the complicated architectures generated by multiple stacked full-precision 
convolution operations. Consequently, the searched network for embedded devices 
must still be more computationally expensive and efficient. At the same time, 
existing gradient-based approaches select operations without meaningful guidance. 
The search process is inefficient, and the selected operation might exhibit significant
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Fig. 3.11 The proposed binarized neural architecture search (BNAS) framework. In BNAS, the 
search cell is a fully connected directed acyclic graph with four nodes calculated based on PC-
DARTS and a performance-based method. We also reformulate the optimization of binarization of 
CNNs in the same framework 

vulnerability to model attacks based on gradient information [29, 58], also for wild 
data. These problems require further exploration to overcome these challenges. 

To address these challenges, we transfer the NAS to a binarized neural architec-
ture search (BNAS) [12], exploring the advantages of binarized neural networks 
(BNNs) on memory saving and computational cost reduction. In our BNAS 
framework, as shown in Fig. 3.11, we use PC-DARTS as a warm-up step, followed 
by the performance-based method to improve the robustness of the resulting BNNs 
for the wild data. Furthermore, based on observation, the early optimal operation is 
not necessarily optimal at the end, and the worst operation at the early stage usually 
performs worse at the end [90]. We take advantage of PC-DARTS and performance 
evaluation to reduce operating space. This means that the operations we finally 
reserve are certainly a near-optimal solution. On the other hand, with the operation 
pruning process, the search space becomes smaller and smaller, leading to an 
efficient search process. We show that the BNNs obtained by BNAS can outperform 
conventional BNN models by a large margin. It is a significant contribution to the 
field of BNNs considering that the performance of conventional BNNs is not yet 
comparable with those of their corresponding full-precision models in terms of 
accuracy. To further validate the performance of our method, we also implemented a 
1-bit BNAS in the same framework. Unlike BNNs (only kernels are binarized), 1-bit 
CNNs suffer from a poor performance evaluation problem for binarized operations 
with binarized activations in the beginning due to insufficient training. We assume 
BNAS as a multi-armed bandit problem and introduce an exploration term based on 
the upper confidence bound (UCB) [2] to improve the search performance. 

The exploration term handles the exploration-exploitation dilemma in the multi-
armed bandit problem. We lead a new performance measure based on UCB by
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Fig. 3.12 The main steps of our BNAS: (1) Search for an architecture based on O(i,j) using PC-
DARTS. (2) Select half of the operations with less potential from O(i,j) for each edge, resulting in 
O(i,j)

smaller . (3) Select an architecture by sampling (without replacement) one operation from O(i,j)
smaller

for every edge and then train the selected architecture. (4) Update the likelihood of selection of the 
operation s(o

(i,j)
k ) based on the accuracy obtained from the selected architecture on the validation 

data. (5) Abandon the operation with the minimal likelihood of selection of the search space {O(i,j)}
for every edge 

considering both the performance evaluation and the number of trials for operation 
pruning in the same framework. This means the operation is ultimately abandoned 
only when sufficiently evaluated (Fig. 3.12). 

The search process for our BNAS consists of two steps. One is the potential oper-
ation ordering based on partially connected DARTS (PC-DARTS) [82], which also 
serves as a baseline for our BNAS. It is further improved with a second operation 
reduction step guided by a performance-based strategy. In the operation reduction 
step, we prune one operation at each iteration from one-half of the operations with 
less potential, as calculated by PC-DARTS. As such, the optimization of the two 
steps becomes faster and faster because the search space is reduced due to the 
operation pruning. We can take advantage of the differential framework of DARTS, 
where search and performance evaluation are in the same setting. We also enrich 
the DARTS search strategy. The gradient is used to determine which operation is 
better, and the proposed performance evaluation is included to reduce the search 
space further. 

3.3.1.1 Search Space 

Following [56, 95, 96], we search for a computing cell as the building block of 
the final architecture. A network consists of a predefined number of cells [95], 
which can be normal cells or reduction cells. Each cell takes the outputs of the two 
previous cells as input. A cell is a fully connected directed acyclic graph (DAG) of 
M nodes, i.e., {B1, B2, . . . , BM }, as illustrated in Fig. 3.13a. Each node Bi takes
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Fig. 3.13 (a) A cell contains seven nodes; two input nodes .B−1 and . B0; four intermediate nodes 
. B1, . B2, . B3, . B4 that apply sampled operations on the input nodes and upper nodes; and an output 
node that concatenates the outputs of the four intermediate nodes. (b) The set of operations . O(i,j)

between . Bi and . Bj , including binarized convolutions 

its dependent nodes as input and generates an output through a sum operation 
.Bj = ε

i<j o(i,j)(Bi). Here each node is a specific tensor. 
Unlike conventional convolutions, our BNAS is achieved by transforming all 

convolutions in . O into binarized convolutions. We denote the full-precision and 
binarized kernels as X and . X̂, respectively. A convolution operation in . O is 
represented as .Bj = Bi ⊗ X̂ as shown in Fig. 3.13b, where . ⊗ denotes convolution. 
To build BNAS, one critical step is how to binarize the kernels from X to . X̂, which 
can be implemented based on state-of-the-art BNNs, such as XNOR or PCNN. 
Optimizing BNNs is more challenging than conventional CNNs [30, 65], adding an 
additional burden to NAS. To solve it, we introduce channel sampling and reduction 
in operating space in differentiable NAS to significantly reduce the cost of GPU 
hours, leading to efficient BNAS.
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3.3.1.2 Binarized Optimization for BNAS 

The inference process of a BNN model is based on binarized kernels, which means 
that the kernels must be binarized in the forward step (corresponding to inference) 
during training. Contrary to the forward process, the resulting kernels are not 
binarized during back propagation and can be full-precision. 

To achieve binarized weights, we first divide each convolutional kernel into two 
parts (amplitude and direction) and formulate the current binarized methods in a 
unified framework. We elaborate D, A, and . Â: . Dl

i are the directions of the full-
precision kernels . Xl

i of the . lth convolutional layer, .l ∈ {1, · · · , N}; . Al shared by 

all . Dl
i represents the amplitude of the . lth convolutional layer; . Âl and . Al are of the 

same size; and all elements of . Âl are equal to the average of the elements of . Al . 
In the forward pass, . Âl is used instead of the full-precision . Al . In this case, . Âl can 
be considered a scalar. Full-precision . Al is only used for back propagation during 
training. Note that our formulation can represent both XNOR based on the scalar 
and simplified PCNN [30] whose scalar is learnable as a projection matrix. 

We represent . X̂ by the amplitude and direction as 

.X̂ = Â O D, (3.38) 

where . O denotes the element-wise multiplication between matrices. We then define 
an amplitude loss function to reconstruct the full-precision kernels as: 

.L
Â

= θ

2

ε

i,l

||Xl
i − X̂l

i||2 = θ

2

ε

i,l

||Xl
i − Âl O Dl

i||2, (3.39) 

where .Dl
i = sign(Xl

i) represents the binarized kernel. . X
l
i is the full-precision model 

updated during the backpropagation process in PCNNs, while . Âl is calculated 
based on a closed-form solution in XNOR. Element-wise multiplication combines 
binarized kernels and amplitude matrices to approximate full-precision kernels. The 
final loss function is defined by considering: 

.LS = 1

2S

ε

s

||Ŷs − Ys||22, (3.40) 

where . Ŷs is the label of the . sth example and . Ys is the corresponding classification 
results. Finally, the overall loss function L is applied to supervise the training of 
BNAS in back propagation as: 

.L = LS + L
Â
. (3.41) 

Binarized optimization is used to optimize neural architecture search, leading 
to our binarized neural architecture search (BNAS). To this end, we use partially
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connected DARTS (PC-DARTS) to achieve operation potential ordering, which 
serves as a warm-up step for our BNAS. Denote by .Ltrain and .Lval the training 
and validation losses, respectively. Both losses are determined by the architecture 
. α and the binarized weights . X̂ in the network. The goal of the warm-up step is to 
find . X̂∗ and . α∗ that minimize the validation loss .Lval(X̂

∗, α∗), where the weights 
. X̂∗ associated with the architecture are obtained by minimizing the training loss 
.X̂∗ = argmin

X̂

Ltrain(X̂, α∗). 

This implies a bilevel optimization problem with . α as the upper-level variable 
and . X̂ as the lower-level variable: 

.

argmin
α

Lval(X̂
∗, α)

s.t. X̂∗ = argmin
X̂

Ltrain(X̂, α).
(3.42) 

To better understand our method, we also review the core idea of PC-DARTS, 
which can take advantage of partial channel connections to improve memory 
efficiency. For example, the connection from . Bi to . Bj involves defining a channel 
sampling mask .S(i,j), which assigns 1 to selected channels and 0 to masked ones. 
The selected channels are sent to a mixed computation of .|O(i,j)| operations, while 
the masked ones bypass these operations. They are copied directly to the output, 
which is formulated as: 

.

f (i,j)(Bi, S
(i,j))

=
ε

o
i,j
k ∈O(i,j)

exp{α
o
(i,j)
k

}
ε

o
(i,j)

k' ∈O(i,j) exp{α
o
(i,j)

k'
} · o

(i,j)
k (S(i,j) ∗ Bi)

+ (1 − S(i,j)) ∗ Bi,

(3.43) 

where .S(i,j) ∗ Bi and .(1 − S(i,j)) ∗ Bi denote the selected and masked channels, 
respectively, and .α

o
(i,j)
k

is the parameter of operation .o
(i,j)
k between . Bi and . Bj . 

PC-DARTS sets the proportion of selected channels to .1/C by considering C as a 
hyperparameter. In this case, the computational cost can be reduced by C. However, 
the size of the entire search space is .2×K |EM|, where .EM is the set of possible edges 
with M intermediate nodes in the fully connected DAG, and the “2” comes from the 
two types of cells. In our case with .M = 4, together with the two input nodes, the 
total number of cell structures in the search space is .2 × 82+3+4+5 = 2 × 814. This  
is a vast space to search for binarized neural architectures, which need more time 
than a full-precision NAS. Therefore, efficient optimization strategies are required 
for BNAS.
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3.3.1.3 Performance-Based Strategy for BNAS 

Reinforcement learning could be more efficient in architecture search due to delayed 
rewards in network training. That is, the evaluation of a structure is usually done 
after the network training converges. On the other hand, we can evaluate a cell 
when training the network. Inspired by [85], we use a performance-based strategy 
to increase search efficiency by a large margin. [85] did a series of experiments 
showing that in the early stage of training, the validation accuracy ranking of 
different network architectures is not a reliable indicator of the quality of the 
final architecture. However, we observe that the results of the experiments suggest 
that if an architecture performs poorly at the beginning of training, there is little 
hope that it can be part of the final optimal model. As training progresses, this 
observation shows less uncertainty. Based on this observation, we derive a simple 
yet effective operation-abandoning process. We progressively abandon the worst-
performing operation on each edge during training and increasing epochs. 

To this end, we reduce the search space .{O(i,j)} after the warm-up step achieved 
by PC-DARTS to increase search efficiency. According to .{α

o
(i,j)
k

}, we can select 
half of the operations with less potential than .O(i,j) for each edge, resulting in 
.O(i,j)

smaller . After that, we randomly sample one operation from the .K/2 operations in 

.O(i,j)
smaller for every edge, then obtain the validation accuracy by training the sampled 

network for one epoch, and finally assign this accuracy to all the sampled operations. 
These three steps are performed .K/2 times by sampling without replacement, giving 
each operation exactly one accuracy for every edge. 

We repeat it T times. Thus, each operation for every edge has T accuracies 
.{y(i,j)

k,1 , y
(i,j)

k,2 , . . . , y
(i,j)
k,T }. Then we define the selection likelihood of the kth oper-

ation in .O(i,j)
smaller for each edge as: 

.ssmaller (o
(i,j)
k ) = exp{ȳ(i,j)

k }
ε

m exp{ȳ(i,j)
m }

, (3.44) 

where .ȳ(i,j)
k = 1

T

ε
t y

(i,j)
k,t . And the selection likelihoods of the other operations 

not in .O(i,j)
smaller are defined as: 

. 
slarger (o

(i,j)
k ) = 1

2
(max
o
(i,j)
k

{ssmaller (o
(i,j)
k )} + 1

|K/2|
ε

o
(i,j)
k

ssmaller (o
(i,j)
k )),

(3.45) 

where .|K/2| denotes the smallest integer .≥ K/2. It is used because K can be 
an odd integer during iteration in the proposed Algorithm 6. Equation 3.45 is an
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estimate for the remaining operations using a value balanced between the maximum 
and the average of .ssmaller (o

(i,j)
k ). Then, .s(o(i,j)

k ) is updated by: 

. s(o
(i,j)
k ) ←1

2
s(o

(i,j)
k ) + q

(i,j)
k ssmaller (o

(i,j)
k )+ (1 − q

(i,j)
k )slarger (o

(i,j)
k ),

(3.46) 

where .q
(i,j)
k is a mask, which is 1 for the operations in .O(i,j)

smaller and 0 for the others. 
When searching for BNAS, we do not use PC-DARTS as a warm-up to 

consider efficiency because quantizing feature maps is slower. Therefore, . O(i,j)
smaller

is .O(i,j). Also, we introduce an exploration term into Eq. 3.46 based on bandit [2]. 
In machine learning, the multi-armed bandit problem is a classic reinforcement 
learning problem that exemplifies the exploration-exploitation trade-off dilemma: 
shall we stick to an arm that has given high reward so far (exploitation) or rather 
probe other arms further (exploration)? The upper confidence bound (UCB) is 
widely used for dealing with the exploration-exploitation dilemma in the multi-
armed bandit problem. Then, with the above analysis, Eq. 3.46 becomes: 

.s(o
(i,j)
k ) ← s(o

(i,j)
k ) + δ ∗

/
2 logN

n
(i,j)
k,t

(3.47) 

where N is the total number of samples, .n(i,j)
k,t refers to the number of times the kth 

operation of the edge .(i, j) has been selected, and t is the epoch index. The first item 
in Eq. 3.47 is the value term, which favors historically good operations. The second 
is the exploration term, which allows operations to get an exploration bonus that 
grows with .logN . And this work uses .δ = 2 to balance the value and exploration 
terms. We also test other values, which achieve slightly worse results. Thus, 1-bit 
convolutions, which misbehave in sufficient trials, are prone to be abandoned. 

Finally, we abandon the operation with a minimal likelihood of selection for 
each edge. The size of the search space is significantly reduced from . 2 × |O(i,j)|14
to .2 × (|O(i,j)| − 1)14. We have the following: 

.O(i,j) ← O(i,j) − {argmin
o
(i,j)
k

s(o
(i,j)
k )}. (3.48) 

The optimal structure is obtained when only one operation is left on each edge. 
Our performance-based search algorithm is presented in Algorithm 6. Note that 
in line 1, PC-DARTS is performed for L epochs as a warm-up to find an initial 
architecture, and line 14 is used to update the architecture parameters .α

o
(i,j)
k

for all 

edges due to reduction of the search space .{O(i,j)}.
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Algorithm 6: Performance-based search 
Input:Training data, Validation data, Searching hyper-graph: G, K = 8, T = 3, V = 1, 
L = 5, s(o (i,j) 

k ) = 0 for all edges 
Output: Optimal structure α 
1: Search an architecture for L epochs based on O(i,j) using PC-DARTS 
2: while (K > 1) do 
3: Select O(i,j) 

smaller consisting of |K/2| operations with smallest α
o (i,j) 
k 

from O(i,j) for 

every edge; 
4: for t = 1, . . . , T  epoch do 
5: O'(i,j) 

smaller ← O(i,j) 
smaller ; 

6: for e = 1, . . . , |K/2| epoch do 
7: Select an architecture by sampling (without replacement) one operation from 

O'(i,j) 
smaller for every edge 

8: Train the selected architecture and get the accuracy on the validation data 
9: Assign this accuracy to all the sampled operations; 
10: end for 
11: end for 
12: Update s(o (i,j) 

k ) using Eq. 3.46; 
13: if 1 bit  then 
14: Update s(o (i,j) 

k ) using Eq. 3.47; 
15: end if 
16: Update the search space {O(i,j)} using Eq. 3.48; 
17: Search the architecture for V epochs based on O(i,j) using PC-DARTS; 
18: K = K − 1; 
19: end while 

3.3.1.4 Gradient Update for BNAS 

In BNAS, . X̂l in the . lth layer is used to calculate the output feature maps .F l+1 as: 

.F l+1 = ACconv(F l, X̂l), (3.49) 

where ACconv denotes the amplitude convolution operation designed in Eq. 3.50. 
In ACconv, the output feature map channels are generated as follows: 

.F l+1
h =

ε

i,g

F l
g ⊗ X̂l

i , (3.50) 

where . ⊗ denotes the convolution operation; .F l+1
h is the .hth feature map in the 

.(l + 1)th convolutional layer; and . F l
g denotes the .gth feature map in the . lth

convolutional layer. Note that the BNAS kernels are binarized, whereas for 1-bit 
BNAS, both the kernels and the activations are binarized. Similar to previous work 
[30, 57, 65], the 1-bit BNAS is obtained by binarizing the kernels and activations 
simultaneously. In addition, we replace ReLU with PReLU to reserve harmful 
elements generated by a 1-bit convolution.
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In BNAS, full-precision kernels . Xi and amplitude matrices A need to be learned 
and updated. The kernels and the matrices are jointly learned. BNAS updates the 
full-precision kernels and amplitude matrices in each convolutional layer. In what 
follows, the layer index l is omitted for simplicity. 

We denote . δXi
as the gradient of the full-precision kernel . Xi , and we have: 

.δXi
= ∂L

∂Xi

= ∂LS

∂Xi

+ ∂L
Â

∂Xi

, (3.51) 

.Xi ← Xi − η1δXi
, (3.52) 

where . η1 is a learning rate. Then we have: 

.
∂LS

∂Xi

= ∂LS

∂X̂i

· ∂X̂i

∂Xi

= ∂LS

∂X̂i

· Â · 1, (3.53) 

.
∂L

Â

∂Xi

= θ · (Xi − Â O Di), (3.54) 

where . Xi is the full-precision convolutional kernel corresponding to . Di and . 1 is the 
indicator function [65] widely used to estimate the gradient of the nondifferentiable 
function. 

After updating X, we update the amplitude matrix A. Let  . δA be the gradient of 
. A. According to Eq. 3.41, we have:  

.δA = ∂L

∂A
= ∂LS

∂A
+ ∂L

Â

∂A
, (3.55) 

.A ← |A − η2δA|, (3.56) 

where . η2 is another learning rate. Note that the amplitudes are always set to be 
nonnegative. Then we have: 

.
∂LS

∂A
=

ε

i

∂LS

∂X̂i

· ∂X̂i

∂Â
· ∂Â

∂A
=

ε

i

∂LS

∂X̂i

· Di, (3.57) 

.
∂L

Â

∂A
= ∂L

Â

∂Â
· ∂Â

∂A
= −θ · (Xi − Â O Di) · Di, (3.58) 

where . ∂Â
∂A

is set to 1 for an easy implementation of the algorithm. Note that . Â and 
A are used in the forward-pass and back propagation asynchronously. The above 
derivations show that BNAS is learnable with the new BP algorithm.
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3.3.1.5 Ablation Study 

We use the same datasets and evaluation metrics as the existing NAS works 
[8, 55, 56, 96]. First, most experiments are conducted on CIFAR-10 [44], and the 
color intensities of all images are normalized to .[−1,+1]. During the architecture 
search, the 50K training samples of CIFAR-10 are divided into two subsets of 
equal size, one to train the network weights and the other to search the architecture 
hyperparameters. When reducing the search space, we randomly select 5K images 
from the training set as a validation set (used on line 8 of Algorithm 6). Especially 
for 1-bit BNAS, we replace ReLU with PReLU to avoid the disappearance of 
negative numbers generated by a 1-bit convolution. The bandit strategy is introduced 
to solve the insufficient training problem caused by the binarization of both kernels 
and activations. To further show the efficiency of our method, we also search for the 
architecture on ImageNet directly. 

In the search process, we consider a total of six cells in the network, where 
the reduction cell is inserted in the second and fourth layers, and the others are 
normal cells. There are .M = 4 intermediate nodes in each cell. Our experiments 
follow PC-DARTS. We set the hyperparameter C in PC-DARTS to 2 for CIFAR-
10 so that only .1/2 features are sampled for each edge. The batch size is set to 
128 during the search for an architecture for .L = 5 epochs based on .O(i,j) (line 
1 of Algorithm 6). Note that for .5 ≤ L ≤ 10, a larger L has little effect on the 
final performance but costs more search time, as shown in Table 3.4. We freeze 
network hyperparameters, such as . α, and allow only network parameters, such as 
filter weights, to be tuned in the first three  epochs. Then in the next two epochs, we 
train both the network hyperparameters and the network parameters. This is done to 
provide initialization for the network parameters, thus alleviating the drawback of 
parameterized operations compared to free-parameter operations. We also set . T = 3
(line 4 in Algorithm 6) and .V = 1 (line 14), so the network is trained in fewer than 
60 epochs, with a larger batch size of 400 (due to few operation samplings) during 
the reduction of the search space. The initial number of channels is 16. We use 
momentum-based SGD to optimize network weights, with an initial learning rate 
of .0.025 (annealed to zero following a cosine schedule), a momentum of 0.9, and 
a weight decay of .5 × 10−4. The learning rate to find the hyperparameters is set to 
.0.01. When we search for the architecture directly on ImageNet, we use the same 
parameters as when searching on CIFAR-10, except that the initial learning rate is 
set to . 0.05

Table 3.4 With different L, the accuracy and search cost of BNAS based on PCNN on the 
CIFAR10 dataset 

L 
Model 3 5 7 9 11 

Accuracy (%) 95.8 96.06 95.94 96.01 96.03 

Search cost 0.0664 0.09375 0.1109 0.1321 0.1687



88 3 Binary Neural Architecture Search

3.3.2 BDetNAS: A Fast Binarized Detection Neural 
Architecture Search 

3.3.2.1 Search Space 

We follow the same settings as previous NAS works [56, 91] to search for a 
computation cell as the building block of the final architecture. As plotted in 
Fig. 3.14, the search space is related to three main elements: node, cell, and network. 
We will describe the binarized architecture search space and the method to build the 
binarized network as below. 

Node As the fundamental elements that compose cells, each node Fi is a set of 
specific feature maps. To formulate a directed acyclic graph (DAG), each node has 
its connections. Possible operation set between nodes (i, j) is denoted asOi,j , where 
a practicable operation is selected to transform Fi to Fj as shown in Fig. 3.14c. 

In a cell, nodes can be divided into three categories: input node, intermediate 
node, and output node. Each cell takes the output of previous two cells as the input 
node. And each intermediate node takes the input node and previous intermediate 
nodes as the input. Then we concatenate all intermediate nodes to formulate the 
final output node. Following this guideline as [56], we form a possible operation 
set, denoted as O, consisting of |O| = 8 operations: (1) 3 × 3 max pooling, (2) no 

Fig. 3.14 (a) The Faster R-CNN detector with searched network consisting of stacked cell. (b) A  
cell contains seven nodes; two input nodes F−1, F0; four intermediate nodes F1, F2, F3, F4 that 
apply sampled operations on the input nodes and upper nodes; and an output node that concatenates 
the outputs of the four intermediate nodes. © denotes the concatenating operation. (c) The search 
space of BDetNAS, link operation between input, and intermediate nodes will be selected among 
the possible operations Oi,j
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connection (zero), (3) .3×3 average pooling, (4) skip connection (identity), (5) . 3×3
dilated convolution with rate 2, (6) .5 × 5 dilated convolution with rate 2, (7) . 3 × 3
depth-wise separable convolution, and (8) .5 × 5 depth-wise separable convolution. 
Moreover, a binarized NAS is achieved by transforming all the convolutions in . O to 
binarized convolutions as shown in Fig. 3.14c. 

Cell A cell is defined as a tiny convolutional network with complex connections 
and multiple operation layers. Cells can be categorized into two classes, i.e., normal 
cell and reduction cell. We define the input shape of cells as .K × W × C. A normal 
cell uses the operations with stride 1, so its input and output shape are identical, i.e., 
.K × W × C. Following the guideline of common heuristic in most human designed 
convolutional neural networks [36, 41, 70], C is doubled when the stride is 2. Hence, 
a reduction cell uses the operations with the stride set to 2, and the output shape is 
.K/2 × W/2 × 2C. 

We set the cell according to [56], which is formed by seven nodes and 
correspondingly .2+3+4+5 = 14 possible connections as illustrated in Fig. 3.14b. 
The edge between two nodes denotes a possible operation which will be selected 
according to the performance-based strategy. In training, we form an architecture 
every epoch by sampling operations without replacement. And we optimize the 
search space according to our search space reduction algorithm. In addition, we 
should cut the 14 possible connections down to 8. Thus, we select the top eight 
probabilities to generate the final cells in testing. Therefore, the size of the whole 
search space is .2×82+3+4+5 = 2×814, which is an extremely large space to search. 
Hence, efficient optimization methods are required. 

Network A backbone network consists of a predefined number of stacked cells, 
which take the output of two previous cells as the input. Among the cells, there 
are either normal cells with stride set as 1 or reduction cells with the stride set 
as 2. Following [56], we employ two stem cells with the total stride set as 8 to 
preprocess the raw image. Hence, only two kinds of cells are generated. Based on 
the performance ranking hypothesis [91], we train a small stacked network with six 
cells (two  reduction cells and f our  normal cells) for search. And then we employ 
the corresponding 20-cell network of the optimal 6-cell network for pre-training and 
fine-tuning. A Faster R-CNN detector [68] with the searched backbone is plotted as 
shown in Fig. 3.14a. 

3.3.2.2 Performance-Based Strategy for BDetNAS 

The core idea of our search algorithm is to sample randomly and reduce the search 
space step by step according to the testing accuracy. In general, we select an edge 
between specific nodes .(i, j) from operation sets and test the network compose of 
the selected edges without replacement. We record the performance information 
according to the test accuracy and accordingly optimize the search space.
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To accomplish this, we implement the operation sampling on . Oi,j . We randomly 
sample an edge .ok

i,j from .Oi,j to form a network for test. After that, we update the 
performance of each operation between nodes i and j as: 

.s(ok
i,j ) =

εN
e=1 ye · m

k,e
i,j

εN
e=1 m

k,e
i,j

, (3.59) 

where N denotes the current training epoch and .1 ≤ e ≤ N . . ye denotes the test 
accuracy of the e-th epoch. And .m

k,e
i,j denotes an indicative variable defined as: 

.m
k,e
i,j =

{
1, ok

i,j is selected in e−th epoch

0, else
(3.60) 

Equation 3.59 indicates taking the average test accuracy of the epochs, where .ok
i,j is 

selected, as the performance of .s(ok
i,j ). 

We define the iteration times .T = 3 for sampling without replacement. We first 
repeat sampling .|Oi,j | × T = 8 × 3 = 24 epochs and then reduce the search space 
as: 

.Oi,j ← Oi,j − argmin
ok
i,j

s(ok
i,j ). (3.61) 

After Eq. 3.61, the search space size of every edge is reduced to .|Oi,j | − 1 for 
one cell. As a result, the whole search space size is significantly reduced from 
.2 × (|Oi,j |)L to .2 × (|Oi,j | − 1)L, where L is the number of cells. Then we repeat 
the search space reduction process until .|Oi,j | = 1 to achieve the final architecture. 
The number of total epochs is .(8 + 7 + · · · + 2) ∗ 3 = 108, which is efficient. 

3.3.2.3 Optimization for BDetNAS 

To achieve a binarized NAS, kernel weights are binarized by decomposing the full-
precision kernel X into amplitude and direction as: 

.X̂ = A · D, (3.62) 

where A and D respectively denote the amplitude and the direction of X. D is the 
.l1-normalized matrix, which is element-wisely calculated by .sign(X) as . −1

|X| for 

negative X and . 1|X| for positive X. . |X| denotes the number of elements in X. A is a 
scalar. Then a binarized convolution can be formulated as: 

.Fj = Fi ◦ X̂i,j , (3.63) 

where . ◦ denotes convolution.
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Algorithm 7: BDetNAS framework 

Input: Training data, validation data, Oi,j and s(ok 
i,j ) = 0 for all edges, supernet and e = 0; 

Output: Optimal backbone architecture a∗, optimal w∗
D for object detection; 

1: Initialize w randomly; 
2: repeat 
3: Sample ok 

i,j randomly with no replacement. 
4: for t = 1 to  T do 
5: Train the selected architecture according to Eq. 3.65. 
6: end for 
7: Test the trained network and calculate the test accuracy ye. 
8: Update the s(ok 

i,j ) via Eq. 3.59. 
9: if e == |Oi,j | × T then 
10: Update Oi,j via Eq. 3.61. 
11: end if 
12: e ← e + 1 
13: until |Oi,j | = 1 
14: Pre-train searched a∗ and get w∗

P on ImageNet. 
15: Initialize w ← w∗

P and fine-tune on VOC/COCO. 
16: Get a∗ and w∗

D . 

We then define an amplitude loss function to reconstruct the full-precision 
kernels as: 

. LA =
Lε

l

ε

Fi,Fj ∈Cl

||Xi,j − X̂i,j||22

=
Lε

l

ε

Fi,Fj ∈Cl

||Xi,j − Ai,j · Di,j||22, (3.64) 

where . Cl denotes the l-th cell. .Xi,j denotes the full-precision kernel and . X̂i,j

denotes a reconstructed one. The total loss for optimization in search process is: 

.L = LCls + α

2
LA, (3.65) 

where .LCls is the conventional loss function, e.g., cross entropy. . α is a hyperparam-
eter. 

3.3.2.4 Experiments 

In this section, we compare our BDetNAS with state-of-the-art manually designed 
and other NAS object detectors. Moreover, we also compare the BNNs obtained by 
our BDetNAS based on XNOR [65] to validate effectiveness of our method. More
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experimental results are also provided in the supplementary material. GPU days are 
counted according to NVIDIA GTX 1080Ti, which is the same as DetNAS [18]. All 
the experiments and models are implemented with PyTorch. 

Experimental Settings 

Search on ImageNet+VOC/COCO For search process, we use the commonly 
used .1.28M ImageNet ILSVRC2012 [45] and Cropped&Resized detection 
dataset for training images, as plotted in Fig. 5.5. The Cropped&Resized VOC 
trainval07+12 [23] has .46.9k images over 20 classes. Likewise, the 
Cropped&Resized COCO trainval35k [53] has .0.86M images over 80 classes. 
Hence, we get an augmented dataset of .1.33M images for search on VOC 
trainval07+12 and of .2.14M images for search on COCO trainval35k. 
When calculating the accuracy, we randomly select 5K images from the training 
set as a validation set (in line 7 of Algorithm 7). As illustrated in Sect. 3.3.2.2, 108 
epochs are needed for search. And we use a batch size of 512 on 4 NVIDIA 
GTX 1080Ti GPUs for 280k iterations for ImageNet ILSVRC2012 + VOC  
trainval07+12 and 450k iterations on ImageNet ILSVRC2012 + COCO  
trainval35k. 

Pre-training on ImageNet For ImageNet classification dataset, we use the com-
monly used .1.28M ImageNet ILSVRC2012 [45]. To get a pre-trained backbone on 
ImageNet, the network is trained from scratch for 250 epochs with a batch size of 
512. We use the SGD optimizer with a momentum of . 0.9, an initial learning rate 
of .0.05 (decayed down to zero following a cosine schedule), and a weight decay of 
.3 × 10−5. Additional enhancements are adopted including label smoothing and an 
auxiliary loss tower during training. 

Fine-tuning on VOC/COCO We validate our method with Faster R-CNN [68] 
detector. The training images are randomly flipped for augmentation. Then a 
superposition of the original data and the augmented data is used for training. 40k 
input images are employed for VOC trainval07+12 and 230k input images are 
employed for COCO trainval35k. Note that COCO trainval35k used here 
is the left part with 5k COCO minival taken away. We train on 4 GPUs with a 
total of 4 images per mini-batch for 27k iterations on VOC and 150k iterations on 
COCO. The weights of backbone are initialized with ImageNet pre-training. The 
parameters of region proposal network (RPN) are randomly initialized. We set the 
weight decay as .1 × 10−4 and momentum as . 0.9. Initial learning rate is . 4 × 10−3

and we decay the rate at the 8th epoch of the total ten  epochs. 

Results on VOC test2007 
Hyperparameter . α is set as .2 × 10−5 for search on VOC trainval07+12. 
Relevant ablation study is attached in supplementary material. We compare our 
method with manually designed networks with a similar model size, state-of-the-
art quantization methods, and networks searched by NAS. The manually designed 
backbones include ResNet [36] and VGG [70]. Binarized ResNet-34 implemented
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Table 3.5 Comparison with the state-of-the-art object detectors on VOC test2007 

Backbone Params Search Cost 

Detector Backbone mAP (M) (GPU days) 

Faster R-CNN [68] ResNet-18 [36] 73.2 10.67 (32 bits) – 

Faster R-CNN [68] ResNet-34[36] 75.6 20.27 (32 bits) – 

Faster R-CNN [68] VGG-16 [70] 73.5 15.21 (32 bits) – 

Faster R-CNN [68] ResNet-34 [75] 59.0 20.27 (1 bit) – 

Faster R-CNN [68] ResNet-34 [65] 54.7 20.27 (1 bit) – 

FPN [50] DetNAS [18] 81.5 4.34 (32 bits) 35 

RetinaNet [51] DetNAS [18] 80.1 5.07 (32 bits) 35 

Faster R-CNN [68] FairNAS [19] 67.3 6.72 (1 bit) 8.1 

Faster R-CNN [68] BDetNAS (XNOR[65]) 68.8 6.23 (1 bit) 8.3 
Faster R-CNN[68] BDetNAS 70.8 6.51 (1 bit) 8.1 

by TBN [75] and XNOR [65] are considered in our comparison. In addition, we 
compare our BDetNAS with state-of-the-art DetNAS [18]. 

As illustrated in Table 3.5, Faster R-CNN  [68] with full-precision ResNet-18, 
VGG-16 and ResNet-34 achieves .73.2, .73.5, and.75.6 mAP on VOC test2007, 
respectively, while BDetNAS incurs only .1.4%, .1.7%, and .4.8% mAP loss with 
a compressed model size by .52×, .74×, and .99×. For binarized ResNet-34 
implemented via XNOR [65] and TBN [75], our BDetNAS achieve .16.1% and 
.11.8% mAP higher as well as compress the memory usage by .3.2×. 

Compared with the full-precision detectors obtained by DetNAS [18], the 
binarized networks with our BDetNAS have acceptable mAP loss but with much 
more compressed models. Note that the numbers of parameters of backbones 
searched by DetNAS [18] are less than 5M. However, the binarized networks only 
need 1 bit to save one parameter, while the full-precision networks need 32 bits. 
Hence, our BDetNAS saves about .21× and .25× memory, which is an obviously 
superior trade-off for real applications. In terms of search efficiency, our framework 
searches directly on image classification task from scratch and needs no advanced 
pre-training or fine-tuning compared to DetNAS. Hence, our BDetNAS is more than 
.4× faster compared with DetNAS. The superiority is attributed to the proposed 
scheme of search space reduction and novel search framework. 

In addition, we reimplement FairNAS [19], i.e., random search under the same 
setup as ours for fair comparison. As illustrated in the last rows of Table 3.5, 
BDetNAS outperforms FairNAS [19] with .3.5% mAP higher after searching for 
same epochs. This demonstrates that our BDetNAS can effectively improve the 
performance of the backbone. Compared to BDetNAS implemented by XNOR [65], 
the BDetNAS with our novel quantization method achieves higher mAP with similar 
memory usage. This demonstrates our novel quantization framework is of great 
effect (Fig. 3.15).
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Fig. 3.15 Detailed structures of the best cells discovered using BDetNAS based on our quantiza-
tion methods. In the normal cell, the stride of the operations on two input nodes is 1, and in the 
reduction cell, the stride is 2. (a) Normal cell on VOC. (b) Reduction cell on VOC. (c) Normal cell 
on COCO. (d) Reduction cell on COCO 

Results on COCO minival 
We further compare BDetNAS with other state of the arts on COCO minival. 
Hyperparameter α is set as 1×10−5 for search on COCO trainval35k. Relevant 
ablation study is attached in supplementary material. The backbones for comparison
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Table 3.6 Comparison with the state-of-the-art object detectors on COCO minival 

mAP Backbone params Search cost 

Detector Backbone AP AP.0.5 AP.0.75 (M) (GPU days) 

Faster R-CNN 
[68] 

ResNet-18 [36] 32.2 53.8 34.0 10.67 (32 bits) – 

Faster R-CNN 
[68] 

MobileNetV2 [69] 29.0 49.7 29.5 3.4(32 bits) – 

Faster R-CNN 
[68] 

ResNet-18 [48] 28.1 48.4 29.3 10.67 (1 bit) – 

Faster R-CNN 
[68] 

MobleNetV2 [48] 25.5 45.3 25.7 3.4 (1 bit) – 

RetinaNet [51] DetNAS [18] 34.1 – – 5.07 (32 bits) 44 

Faster R-CNN 
[68] 

BDetNAS 29.0 49.2 29.7 6.30 (1 bit) 13.4 

consist of manually designed full-precision ones such as MobileNetV2 [69] and 
ResNet-18 [36], binarized one such as FQN [48], and searched one by DetNAS [18]. 
From the results in Table 3.6, we have the following observations: (1) BDetNAS 
performs equally to human-designed light full-precision networks MobileNetV2 
(.29.0 vs. .29.0) as well as save memory usage by .17× on the same detector. (2) 
Compared with binarized ResNet-18 by FQN [48], BDetNAS achieves .0.4% mAP 
higher as well as compress the model by .1.7×. And BDetNAS achieves 3.5. %
mAP higher compared with binarized MobileNetV2 by FQN[48]. (3) BDetNAS 
saves memory usage by .26× with only .5.1%mAP lower (.29.0 vs. .34.1) compared 
with DetNAS [18] on RetinaNet [51]. Moreover, our search cost is only .30.4% of 
DetNAS. 

References 

1. Milad Alizadeh, Javier Fernández-Marqués, Nicholas D Lane, and Yarin Gal. An empirical 
study of binary neural networks’ optimisation. In Proceedings of the International Conference 
on Learning Representations, 2018. 

2. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit 
problem. In Machine learning, 2002. 

3. Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by 
maximizing mutual information across views. In NeurIPS, 2019. 

4. Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model 
architecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017. 

5. A. Buades, B. Coll, and J. Morel. A non-local algorithm for image denoising. In CVPR, 2005. 
6. Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. Bats: Binary architecture search. 

In Proc. of ECCV, pages 309–325, 2020. 
7. Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search 

by network transformation. In AAAI, 2018. 
8. Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-level network 

transformation for efficient architecture search. In International Conference on Machine 
Learning, pages 678–687. PMLR, 2018.



96 3 Binary Neural Architecture Search

9. Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on 
target task and hardware. In ICLR, 2019. 

10. Hanlin Chen, Baochang Zhang, Shenjun Xue, Xuan Gong, Hong Liu, Rongrong Ji, and 
David S. Doermann. Anti-bandit neural architecture search for model defense. ArXiv, 
abs/2008.00698, 2020. 

11. Hanlin Chen, Li’an Zhuo, Baochang Zhang, Xiawu Zheng, Jianzhuang Liu, Rongrong Ji, 
David Doermann, and Guodong Guo. Binarized neural architecture search for efficient object 
recognition. International Journal of Computer Vision, 129(2):501–516, 2021. 

12. Hanlin Chen, Li’an Zhuo, Baochang Zhang, Xiawu Zheng, Jianzhuang Liu, Rongrong Ji, 
David S. Doermann, and Guodong Guo. Binarized neural architecture search for efficient 
object recognition. International Journal of Computer Vision, 129:501–516, 2020. 

13. Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review. In Proceedings of 
the IEEE, 2019. 

14. Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework 
for contrastive learning of visual representations. arXiv:2002.05709, 2020. 

15. Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: 
Bridging the depth gap between search and evaluation. In Proceedings of the IEEE/CVF 
international conference on computer vision, pages 1294–1303, 2019. 

16. Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: 
Bridging the depth gap between search and evaluation. In Proc. of ICCV, 2019. 

17. Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum 
contrastive learning. arXiv:2003.04297, 2020. 

18. Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng, Xinyu Xiao, and Jian Sun. Detnas: 
Backbone search for object detection. In NIPS, pages 6638–6648, 2019. 

19. Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fairnas: Rethinking evaluation fairness 
of weight sharing neural architecture search. arXiv preprint arXiv:1907.01845, 2019. 

20. Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. Fair darts: Eliminating unfair 
advantages in differentiable architecture search. In Proc. of ECCV, 2020. 

21. Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Marculescu. Regularizing activation 
distribution for training binarized deep networks. In Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition, pages 11408–11417, 2019. 

22. Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisser-
man. The pascal visual object classes (voc) challenge. IJCV, 2010. 

23. Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisser-
man. The pascal visual object classes (voc) challenge. International Journal of Computer 
Vision, 2010. 

24. D. Gabor. Electrical engineers part iii: Radio and communication engineering, j. Journal 
of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering 
1945-1948, 1946. 

25. D. Gabor. Theory of communication. part 1: The analysis of information. Journal of the 
Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 1946. 

26. Ross Girshick. Fast r-cnn. In ICCV, 2015. 
27. Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for 

accurate object detection and semantic segmentation. In CVPR, 2014. 
28. Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr Dollár, and Kaiming He. Detectron. 

https://github.com/facebookresearch/detectron, 2018. 
29. I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. 

arXiv, 2014. 
30. Jiaxin Gu, Ce Li, Baochang Zhang, Jungong Han, Xianbin Cao, Jianzhuang Liu, and David 

Doermann. Projection convolutional neural networks for 1-bit cnns via discrete back 
propagation. In Proceedings of the AAAI Conference on Artificial Intelligence, 2019. 

31. Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an 
invariant mapping. In CVPR, 2006.

https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron


References 97

32. Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections 
for efficient neural network. In NIPS, pages 1135–1143, 2015. 

33. Yiwen Han, Xiaofei Wang, Victor Leung, Dusit Niyato, Xueqiang Yan, and Xu Chen. 
Convergence of edge computing and deep learning: A comprehensive survey. In arXiv, 2019. 

34. Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for 
unsupervised visual representation learning. In CVPR, 2020. 

35. Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017. 
36. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for 

image recognition. In Proceedings of the IEEE conference on computer vision and pattern 
recognition, pages 770–778, 2016. 

37. Olivier J Hénaff, Ali Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord. Data-efficient 
image recognition with contrastive predictive coding. arXiv:1905.09272, 2019. 

38. Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. 
Computer Science, 14(7):38–39, 2015. 

39. R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, 
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information 
estimation and maximization. In ICLR, 2019. 

40. Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias 
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural 
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017. 

41. Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias 
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural 
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017. 

42. Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 
Binarized neural networks. In Advances in neural information processing systems, pages 4107– 
4115, 2016. 

43. Dahyun Kim, Kunal Pratap Singh, and Jonghyun Choi. Learning architectures for binary 
networks. In Proc. of ECCV, pages 575–591, 2020. 

44. Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 
2009. 

45. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep 
convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS), 
pages 1097–1105, 2012. 

46. En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. Edge ai: On-demand accelerating deep neural 
network inference via edge computing. In IEEE Transactions on Wireless Communications, 
2019. 

47. Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias Muller, Ali Thabet, and Bernard 
Ghanem. Sgas: Sequential greedy architecture search. In Proc. of CVPR, 2020. 

48. Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Junjie Yan, and Rui Fan. Fully quantized 
network for object detection. In The IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), June 2019. 

49. Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He, Weiran Huang, Kechen Zhuang, 
and Zhenguo Li. DARTS+: improved differentiable architecture search with early stopping. 
arXiv, 2019. 

50. Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge 
Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE 
conference on computer vision and pattern recognition, pages 2117–2125, 2017. 

51. Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense 
object detection. In Proceedings of the IEEE international conference on computer vision, 
pages 2980–2988, 2017. 

52. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, 
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 
2014.



98 3 Binary Neural Architecture Search

53. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, 
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In 
European Conference on Computer Vision (ECCV), pages 740–755, 2014. 

54. Chenxi Liu, Piotr Dollár, Kaiming He, Ross Girshick, Alan Yuille, and Saining Xie. Are labels 
necessary for neural architecture search? arXiv:2003.12056, 2020. 

55. Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, 
Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In 
Proceedings of the European Conference on Computer Vision, pages 19–34, 2018. 

56. H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. In ICLR, 2019. 
57. Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real 

net: Enhancing the performance of 1-bit cnns with improved representational capability and 
advanced training algorithm. In Proceedings of the European conference on computer vision 
(ECCV), pages 722–737, 2018. 

58. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models 
resistant to adversarial attacks. In ICLR, 2017. 

59. Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief. Mobile edge 
computing: Survey and research outlook. In arXiv, 2017. 

60. Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive 
predictive coding. arXiv:1807.03748, 2018. 

61. Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical 
University of Denmark, 7(15):510, 2008. 

62. Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural 
architecture search via parameter sharing. In ICML, 2018. 

63. Hai Phan, Zechun Liu, Dang Huynh, Marios Savvides, Kwang-Ting Cheng, and Zhiqiang 
Shen. Binarizing mobilenet via evolution-based searching. In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, pages 13420–13429, 2020. 

64. Juan C. Pérez, Motasem Alfarra, Guillaume Jeanneret, Adel Bibi, Ali Kassem Thabet, Bernard 
Ghanem, and Pablo Arbeláez. Robust gabor networks. arXiv, 2019. 

65. Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet 
classification using binary convolutional neural networks. In European Conference on 
Computer Vision, pages 525–542. Springer, 2016. 

66. Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for 
image classifier architecture search. In AAAI, 2019. 

67. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time 
object detection with region proposal networks. In NeurIPS, 2015. 

68. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time 
object detection with region proposal networks. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 2016. 

69. Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 
Mobilenetv2: Inverted residuals and linear bottlenecks. In The IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), June 2018. 

70. Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale 
image recognition. arXiv preprint arXiv:1409.1556, 2014. 

71. Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary neural network with 
high accuracy? In Thirty-First AAAI conference on artificial intelligence, 2017. 

72. Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged 
consistency targets improve semi-supervised deep learning results. In NIPS, 2017. 

73. Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. 
arXiv:1906.05849, 2019. 

74. Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In 
ICLR, 2020. 

75. Diwen Wan, Fumin Shen, Li Liu, Fan Zhu, Jie Qin, Ling Shao, and Heng Tao Shen. Tbn: 
Convolutional neural network with ternary inputs and binary weights. In Proceedings of the 
European Conference on Computer Vision (ECCV), pages 315–332, 2018.



References 99

76. Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using 
videos. In CVPR, 2015. 

77. Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial 
training. In ICLR, 2020. 

78. Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and inference with integers 
in deep neural networks. In Proceedings of the International Conference on Learning 
Representationss, pages 1–14, 2018. 

79. Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2. 
https://github.com/facebookresearch/detectron2, 2019. 

80. Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via 
non-parametric instance discrimination. In CVPR, 2018. 

81. C. Xie, Y. Wu, L. V. D. Maaten, A. L. Yuille, and K. He. Feature denoising for improving 
adversarial robustness. In CVPR, 2019. 

82. Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. 
Pc-darts: Partial channel connections for memory-efficient architecture search. arXiv preprint 
arXiv:1907.05737, 2019. 

83. Shenjun Xue, Hanlin Chen, Chunyu Xie, Baochang Zhang, Xuan Gong, and David S. 
Doermann. Fast and unsupervised neural architecture evolution for visual representation 
learning. IEEE Computational Intelligence Magazine, 16:22–32, 2021. 

84. Shenjun Xue, Runqi Wang, Baochang Zhang, Tian Wang, Guodong Guo, and David S. 
Doermann. Idarts: Interactive differentiable architecture search. 2021 IEEE/CVF International 
Conference on Computer Vision (ICCV), pages 1143–1152, 2021. 

85. C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, and F. Hutter. Nas-bench-101: Towards 
reproducible neural architecture search. In ICML, 2019. 

86. Hongyuan Yu and Houwen Peng. Cyclic differentiable architecture search. arXiv, 2020. 
87. Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong 

He, Jonas Mueller, R Manmatha, et al. Resnest: Split-attention networks. arXiv:2004.08955, 
2020. 

88. Junhe Zhao, Sheng Xu, Baochang Zhang, Jiaxin Gu, David Doermann, and Guodong Guo. 
Towards compact 1-bit cnns via bayesian learning. International Journal of Computer Vision, 
pages 1–25, 2022. 

89. Xiawu Zheng, Rongrong Ji, Lang Tang, Yan Wan, Baochang Zhang, Yongjian Wu, Yunsheng 
Wu, and Ling Shao. Dynamic distribution pruning for efficient network architecture search. 
arXiv preprint arXiv:1905.13543, 2019. 

90. Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang Zhang, Jianzhuang Liu, and Qi Tian. 
Multinomial distribution learning for effective neural architecture search. In CVPR, 2019. 

91. Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang Zhang, Jianzhuang Liu, and Qi Tian. 
Multinomial distribution learning for effective neural architecture search. In ICCV, October 
2019. 

92. Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Towards effective 
low-bitwidth convolutional neural networks. In Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, pages 7920–7928, 2018. 

93. Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local aggregation for unsupervised 
learning of visual embeddings. In ICCV, 2019. 

94. B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable 
image recognition. In CVPR, 2018. 

95. Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In 
International Conference on Learning Representations (ICLR), pages 1–16, 2017. 

96. Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable 
architectures for scalable image recognition. In Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition, pages 8697–8710, 2018.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2


Chapter 4 
Quantization of Neural Networks 

4.1 Introduction 

Quantization has emerged as a highly successful strategy for both training and infer-
ence of neural networks (NN). While the challenges of numerical representation 
and quantization have been long-standing in digital computing, NNs offer unique 
opportunities for advancements in this area. Although this survey primarily focuses 
on quantization for inference, it is important to acknowledge that quantization has 
also shown promise in NN training [2, 7, 15, 25]. 

In particular, innovations in half-precision and mixed precision training have 
played a crucial role in achieving higher throughput in AI accelerators [9, 20]. 
However, pushing beyond half-precision without extensive tuning has proven to be 
a significant challenge, and recent research on quantization has mainly centered 
around the inference stage of neural networks. 

4.2 Quantitative Arithmetic Principles 

Given a neural network (NN) model with N layers, we represent the set of weights 
as .W = wnn = 1N and the set of input features as .A = aninn = 1N . Here, . wn is the 
convolutional weight matrix for the n-th layer, with dimensions .Cnout ×Cn

in, where 
.Cn

in and .Cn
out are the input and output channel numbers, respectively. Similarly, . an

in

is the input feature map for the n-th layer, with dimensions . Cn
in. 

The output feature map .an
out of the n-th layer can be technically formulated as: 

.an
out = wn · an

in, (4.1) 
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where . · represents matrix multiplication. For simplicity, we omit the nonlinear 
activation function in this formulation. Following the prior works [24], quantized 
neural network (QNN) intends to represent . wn and . an in a low-bit format as: 

. Q : = {q1, · · · , qU },

where . qi , .i = 1, · · · , U satisfying .q1 < · · · < qU , are defined as quantized values 
of the original variable. Note that x can be the input feature . an or the weights . wn. In  
this way, .qw

n ∈ Q
Cn

out×Cn
in and .qa

n
in ∈ Q

Cn
in such that the float-point convolutional 

outputs can be approximated by the efficient XNOR and bit-count instructions as: 

.an
out ≈ qw

n ⊙ qa
n
in . (4.2) 

The key challenge in QNNs is how to define the quantization set . Q, and the methods 
to achieve this are further described in the following sections. 

4.3 Uniform and Nonuniform Quantization 

In quantized neural networks (QNNs), we need to define a function that can quantize 
the weights and activations of the neural network to a finite set of values. One 
popular choice for this quantization function is the uniform quantization function, 
which is defined as follows: 

.qx = INT
(x

S

)
− Z, (4.3) 

where x is a real-valued input (activation or weight), S is a real-valued scaling 
factor, and Z is an integer zero point. The function .INT converts a real number 
to an integer value using a rounding technique such as rounding to the nearest 
integer or truncation. In other words, the quantization function maps real values x 
to some integer value, allowing us to represent the original continuous values with 
a finite set of discrete values. This method of quantization is also known as uniform 
quantization. 

Besides, nonuniform quantization methods produce quantized values that are not 
necessarily uniformly spaced. The formal definition of nonuniform quantization is 
shown as: 

.qx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q1, if x ≤ ∆1,

. . .

qi, if ∆i−1 < x ≤ ∆i,

. . .

qU , if x > ∆U.

(4.4)
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where . qi represents the discrete quantization levels and . ∆i denotes the quantization 
steps. When the value of a real number x falls between the quantization steps . ∆i −1
and .i+1, the quantizer Q projects it to the associated quantization level . qi . It should 
be noted that neither . qi nor . ∆i are evenly spaced. 

Nonuniform quantization techniques offer the potential to achieve higher accu-
racy for a fixed bit width compared to uniform quantization. This is because 
nonuniform quantization allows for better representation of data distributions by 
focusing on essential value regions and determining appropriate dynamic ranges. 
One common scenario where nonuniform quantization is beneficial is when dealing 
with bell-shaped distributions of weights and activations, which often have long 
tails. In such cases, various nonuniform quantization methods have been developed 
to accommodate these specific distributions. One popular approach is the rule-
based nonuniform quantization using a logarithmic distribution. In this method, the 
quantization steps and levels are increased exponentially instead of linearly. 

Recent advances in quantization techniques have treated quantization as an 
optimization problem to enhance performance. The objective is to minimize the 
difference between the original tensor and its quantized version by adjusting the 
quantization steps or levels in the quantizer . qx . This can be formulated as an 
optimization problem: 

.min
q

|qx − x|22 (4.5) 

Nonuniform quantization can also benefit from learnable quantizers, where the 
quantization steps are optimized through an iterative process or gradient descent 
along with the model parameters. 

Overall, nonuniform quantization offers the advantage of better representing 
data by distributing bits and discretizing the parameter range unevenly. However, 
implementing nonuniform quantization effectively on standard computer hardware, 
such as GPUs and CPUs, can be challenging. As a result, uniform quantization 
remains the predominant method due to its straightforward implementation and 
efficient mapping to hardware, making it more suitable for practical deployment 
in various computing platforms. 

4.4 Symmetric and Asymmetric Quantization 

The choice of the scaling factor, S, in uniform quantization (Eq. 4.2) is critical as 
it determines the granularity of quantization and ultimately impacts the accuracy of 
the quantized representation. The value of S affects how the range of real values, x, 
is divided into a specified number of segments, and it directly influences the size of 
each partition. The clip range .[α, β] defines the range of real values that should be
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quantized, and the bit width b determines the number of bits used for quantization. 
The formula for S is given by: 

.S = β − α

2b − 1
, (4.6) 

where .[α, β] is the clip range and b is the bit width. Choosing an appropriate clip 
range is crucial as it directly affects the quantization precision and the overall quality 
of the quantized model. This process is known as calibration, an essential step in 
uniform quantization. 

Asymmetric quantization may use a tighter clip range compared to symmetric 
quantization. This is especially useful for signals with imbalanced values, such as 
activations after ReLU, which always have nonnegative values. 

Symmetric quantization, on the other hand, simplifies the quantization function 
by centering the zero point at .Z = 0, resulting in the following expression: 

.qx = INT
(x

S

)
. (4.7) 

In practice, using the whole-range approach often leads to greater accuracy. 
Symmetric quantization is commonly employed for quantizing weights due to 
its simplicity and reduced computational cost during inference. However, for 
quantizing activations, asymmetric quantization may be more effective as the offset 
in asymmetric activations can be absorbed into the bias or used to initialize the 
accumulator, leading to improved performance. 

4.5 Comparison of Different Quantization Methods 

4.5.1 LSQ: Learned Step Size Quantization 

Fixed quantization methods that rely on user-defined settings do not guarantee 
optimal network performance and may still produce suboptimal results even if they 
minimize quantization error. An alternative approach is learning the quantization 
mapping by minimizing task loss, directly improving the desired metric. However, 
this method is challenging because the quantizer is discontinuous and requires 
an accurate approximation of its gradient, which existing methods [8] have done 
roughly that overlooks the effects of transitions between quantized states. 

This section introduces a new method for learning the quantization mapping for 
each layer in a deep network called learned step size quantization (LSQ) [13]. LSQ 
improves on previous methods with two key innovations. First, we offer a simple 
way to estimate the gradient of the quantizer step size, considering the impact of 
transitions between quantized states. This results in more advanced optimization 
when learning the step size as a model parameter. Second, we introduce a heuristic to
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balance the magnitude of step size updates with weight updates, leading to improved 
convergence. Our approach can be used to quantize both activations and weights and 
is compatible with existing techniques for back propagation and stochastic gradient 
descent. 

4.5.1.1 Notations 

The goal of quantization in deep networks is to reduce the precision of the weights 
and the activations during the inference time to increase computational efficiency. 
Given the data to quantize v, the quantizer step size s, and the number of positive 
and negative quantization levels (.QP and . QN ), a quantizer is used to compute 
. ̂v, a quantized representation on the whole scale of the data, and . ̂v, a quantized 
representation of the data at the same scale as v: 

.v̄ = ⎿clip(v/s,−QN,QP )⏌ (4.8) 

.v̂ = v̄ × s (4.9) 

This technique uses low-precision inputs, represented by . w̄ and . x̄, in matrix  
multiplication units for convolutional or fully connected layers in deep learning 
networks. The low-precision integer matrix multiplication units can be computed 
efficiently, and a step size then scale the output with a relatively low-cost high-
precision scalar-tensor multiplication. This scaling step has the potential to be 
combined with other operations, such as batch normalization, through algebraic 
merging, as shown in Fig. 4.1. This approach aims to minimize the memory and 
computational costs associated with matrix multiplication. 

Fig. 4.1 Computation of a low-precision convolution or fully connected layer, as envisioned here
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4.5.1.2 Step Size Gradient 

LSQ offers a way of determining s based on the training loss through the incorpora-
tion of a gradient into the step size parameter of the quantizer as: 

∂v̂

∂s
=

⎧
⎨
⎩

−v/s + ⎿v/s⏌, if − QN < v/s < Qp,

−QN, if v/s ≤ x,

QP , if v/s ≥ Qp.

(4.10) 

The gradient is calculated using the straight-through estimator, as proposed by 
[4], to approximate the gradient through the round function as a direct pass. The 
round function remains unchanged to differentiate downstream operations, while all 
other operations are differentiated conventionally. 

The gradient calculated by LSQ is different from other similar approximations 
(Fig. 4.2) in that it does not transform the data before quantization (Jung et al., 
2018) or estimate the gradient by algebraically canceling terms after removing 
the round operation from the forward equation, resulting in ∂v̂/∂s = 0 when 
−QN < v/s < QP [8]. In these previous methods, the proximity of v to 
the transition point between quantized states does not impact the gradient of the 
quantization parameters. However, it is intuitive that the closer a value of v is to a 
quantization transition point, the more likely it is to change its quantization bin v̂
with a slight change in s, resulting in a significant jump in v̂. This means that ∂v̂/∂s

should increase as the distance from v to a transition point decreases, as observed in 
the LSQ gradient. Notably, this gradient emerges naturally from the simple quantizer 
formulation and the use of the straight-through estimator for the round function. 

In LSQ, each layer of weights and each layer of activations have their unique 
step size represented as a 32-bit floating point value. These step sizes are initialized 
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Fig. 4.2 Given s = 1,QN = 0,QP = 3, (a) quantizer output and (b) gradients of the quantizer 
output concerning step size, s, for LSQ, or a related parameter controlling the width of the 
quantized domain (equal to s(QP + QN)) for  QIL [26] and  PACT  [8]. The gradient employed by 
LSQ is sensitive to the distance between v and each transition point, whereas the gradient employed 
by QIL [26] is sensitive only to the distance from quantizer clip points and the gradient employed 
by PACT [8] is zero everywhere below the clip point. Here, we demonstrate that networks trained 
with the LSQ gradient reach a higher accuracy than those trained with the QIL or PACT gradients 
in prior work
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to .2|v|/√QP and calculated from the initial weight values or the first batch of 
activations, respectively. 

4.5.1.3 Step Size Gradient Scale 

It has been demonstrated that good convergence during training can be achieved 
when the ratio of average update magnitude to average parameter magnitude is 
consistent across all weight layers in a network. Setting the learning rate correctly 
helps prevent updates from being too large and causing repeated overshooting of 
local minima or too small, leading to a slow convergence time. Based on this 
reasoning, it is reasonable to assume that each step size should also have its 
update magnitude proportional to its parameter magnitude, similarly to the weights. 
Therefore, for a network trained on a loss function L, the ratio 

.R = ∇sL

s
/
‖∇wL‖
‖w‖ , (4.11) 

should be close to 1, where .‖x‖ denotes the l2-norm of z. However, as precision 
increases, the step size parameter is expected to be smaller (due to finer quantiza-
tion), and the step size updates are expected to be larger (due to the accumulation 
of updates from more quantized items when computing its gradient). A gradient 
scale g is multiplied by the step size loss to address this. For the weight step size, 
g is calculated as .1/

√
NWQP , and for the activation step size, g is calculated as 

.1/
√

NWQP , where .NW is the number of weights in a layer and . Nf is the number 
of features in a layer. 

4.5.1.4 Training 

LSQ trains the model quantizers by making the step sizes learnable parameters, 
with the loss gradient computed using the quantizer gradient mentioned earlier. 
In contrast, other model parameters can be trained with conventional techniques. 
A common method of training quantized networks [10] is employed where full-
precision weights are stored and updated, while quantized weights and activations 
are used for forward and backward passes. The gradient through the quantizer round 
function is calculated using the straight-through estimator [4] so that: 

.
∂v̂

∂v
=

{
1, if − QN < v/s < Qp,

0, otherwise,
(4.12) 

and stochastic gradient descent is used to update parameters. 
For ease of training, the input to the matrix multiplication layers is set to . ̂v, 

mathematically equivalent to the inference operations described above. The input 
activations and weights are set to 2, 3, 4, or 8 bits for all matrix multiplication layers
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except the first and last, which are always set to 8 bits. This standard practice in 
quantized networks has been shown to improve performance significantly. All other 
parameters are represented using FP32. Quantized networks are initialized using 
weights from a trained full-precision model with a similar architecture before being 
fine-tuned in the quantized space. 

4.5.2 TRQ: Ternary Neural Networks with Residual 
Quantization 

4.5.2.1 Preliminary 

The main operation in deep neural networks is expressed as 

.z = w⏉a, (4.13) 

where .w ∈ R
n indicates the weight vector and .a ∈ R

n indicates the input activation 
vector computed by the previous network layer. 

A ternary neural network means representing the floating-point weights and/or 
activations with ternary values. Formally, the quantization can be expressed as: 

.Qx(x) = βxTx, (4.14) 

where . x indicates floating-point parameters including weights . w and activations . a
and . Tx denotes ternary values after the quantization on . x. . βx is a scalar used to 
scale the ternary values, which can be computed from the floating-point parameters 
or learned via back propagation. . Tx is usually obtained by thresholding function: 

.Tx =

⎧⎪⎪⎨
⎪⎪⎩

+1 if x > ∆

0 if |x| ⩽ ∆,

−1 if x < −∆

(4.15) 

where . ∆ denotes a fixed threshold used for quantization. With the ternary weights 
and activations, the vector multiplications in the forward propagation can be 
reformulated as: 

.z = Qw(w)⏉Qa(a) = βwβa(Tw ⊙ Ta), (4.16) 

where . ⊙ represents the inner product for vectors with bitwise operations. 
In general, the derivative of quantization function .Qx(x) is non-differentiable and 

thus unpractical to directly apply the back propagation to perform the training phase.
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For this issue, we follow the now widely adopted “straight-through estimator (STE)” 
[23] to approximate the partial gradient calculation, which is formally expressed as: 

.
∂Qx (x)

∂x
≈ β1|x|⩽1. (4.17) 

TNNs with Residual Quantization (TRQ) 
Existing TNNs are based on directly thresholding method for ternary implemen-
tation, inevitably causing performance degradation due to an inaccurate mapping 
of full-precision values to ternary counterparts. To deal with the issue, residual 
quantization (TRQ) [29] is introduced to learn TNNs. TRQ can extract binarized 
stem and residual, respectively, by performing recursive quantization on full-
precision weights, which are combined to generate refined ternary representation, 
leading to the stem-residual framework for TNNs. 

In our stem-residual ternarization framework, the stem is first extracted as a 
coarse fitting for full-precision weight . w, which is calculated by performing . sign(·)
on . w as: 

.Sw = αsign(w), (4.18) 

where . α is a learnable coefficient, which avoids a very careful tuning to seek the 
optimal quantization scale compared with the previous methods. Then, we further 
calculate the quantization error as: 

.R = w − Sw (4.19) 

Furthermore, we calculate the residual .Rw from . R by performing .sign(·) on the 
quantization error . R: 

.Rw = αsign(R). (4.20) 

Based on Eqs. 4.18 and 4.20, we finally obtain our ternary weight designed for 
more accurate approximation as: 

.Tw = Sw + Rw. (4.21) 

Up to now, we achieve the ternary quantization in a stem framework, with the full-
precision weights quantized to ternary values, i.e., .{−2α, 0, 2α}. Obviously, seeking 
a better coefficient . α is significantly important for the effectiveness of quantizer, 
which would be elaborated in the following section. 

Backward Propagation of TRQ 
In the backward propagation, what need to be learned and updated are the full-
precision weight . w and the learnable coefficient . α. For the stem-residual framework,



110 4 Quantization of Neural Networks

the two kinds of parameters are jointly learned. And in each layer, TRQ updates the 
. w first and then the . α. 

Update . w: For . w updating, the gradient through the quantizer to weights are 
estimated by a STE that pass the gradient whose weight value is in the range of 
(-2. α, 2. α): 

.
∂Tw

∂w
= 1|x|⩽2α. (4.22) 

Then, we can obtain the updating process of . w: 

. δw = ∂L

∂Tw

∂Tw

∂w
, (4.23) 

.w ← w − ηδw, (4.24) 

where L is the loss function and . η is the learning rate. 

Update . α: The coefficient . α determines the scale of binarized stem and residual, 
which is directly related to the quality of the ternary weights. Moreover, we also 
empirically find the recognition performance is quite sensitive to the . α. Thus, rather 
than a coarse gradient acquired like . w, we disassemble the quantizer to calculate a 
finer gradient of . α: 

.
∂Tw

∂α
= sign(w) + sign(R) + α

∂sign(R)

∂α
(4.25) 

where 

.

∂sign(R)

∂α
= ∂sign(R)

∂R
∂R
∂α

= 1|R|⩽1 (−sign(w)) .

(4.26) 

Then, we can obtain the updating process of . α: 

. δα =
∑ ∂L

∂Tw

∂Tw

∂α
, (4.27) 

. α ← α − ηδα. (4.28) 

4.5.2.2 Generalization to n-Bit Quantization 

We focus on ternary quantization in this paper, while it does not mean that TRQ is 
limited to ternary applications. Actually, TRQ could also be generalized to multiple
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bits by recursively encoding residual. In this section, we propose a feasible scheme 
for TRQ expansion, which is not the only way and could be further explored in the 
future work. 

We obtain the subtly quantized weights by recursively performing quantization 
on full-precision weights. In this process, residual at different quantization levels 
is generated for refining the quantized weights. Here for n-bit (.n = 2, 3, 4, . . .) 
quantization, we define the residual at level .i (i = 1, 2, . . . , 2n − 3) as . Ri

w, which 
could be computed as: 

.Ri
w = αsign(w − Ti−1

w ), (4.29) 

where .Ti−1
w denotes the quantized weights at (.i − 1)th level, and we recursively 

acquire the quantized weights at level i as: 

.Ti
w = Ti−1

w + Ri
w. (4.30) 

Here we regard the ternary quantization as the initial state for recursive quantization 
as: 

.T0
w = Sw + αsign(w − Sw). (4.31) 

Based on such recursive quantization, we could easily obtain the residual at different 
levels, thus refining the residual and reducing the approximation error with the full-
precision counterparts. 

For the updating of . α in backward propagation, due to the complexity of recursive 
process, we just roughly estimate the gradient . α by regarding it as the coefficient of 
. Sw and . Ri

w: 

.
∂Tw

∂α
= Sw +

2n−3∑
i=0

Ri
w. (4.32) 

4.5.2.3 Complexity Analysis 

A comprehensive comparison on computational complexity is shown in Table 4.1. 
We assume that the input number of the neuron is N , i.e., N inputs and one neuron 
output. For computational complexity of TNNs, we follow the setting of GXNOR-
Net [11] for a comparison. As described in GXNOR-Net, with the event-driven 
paradigm, the resting computation would occur when the weight or activation of 
TNNs is zero, and the exception cases are achieved by XNOR operations. As 
a result, the computational complexity of TNNs is similar to BNNs, half of the 
network with 1-bit weights and 2-bit activations. Noted that for TRQ, the stem-
residual framework is only employed on weights; thus, it also enjoys the low 
complexity .O(N) as normal TNNs.
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Table 4.1 Operation overhead comparisons with different computing bit width 

Operations 

Bit width(A/W) Multiplication Accumulation XNOR BitCount Complexity 

32/32 N N 0 0 – 

1/1 0 0 N 1 O(N) 

2/1 0 0 2N 1 O(2N) 

ter/ter 0 0 0. ∼N 0/1 O(N) 

4.5.2.4 Differences of TRQ from Existing Residual Quantization Methods 

Residual quantization has been first proposed in high-order residual quantization 
(HORQ) [32] to enhance the performance of BNNs, further being explored by 
[16, 18] to be encoded into low-bit width CNNs. All above works compute residual 
error and recursively approximate it by a series of binary maps. However, limited 
by the residual scales, they can be just applied to n-bit quantization, with no 
generalization ability to arbitrary value quantization even parameter changes, such 
as the TNNs emphasized in this paper. Instead, our TRQ enjoys the flexibility 
by the skillful combination of the binarized stem and residual, thus enabling 
ternary quantization and even arbitrary value quantization by recursively refining 
the residual. Moreover, a key feature of the prior residual schemes is the use of 
analytically calculated scaling coefficients, which can be suboptimal. In contrast, 
our TRQ employs learnable coefficient . α to minimize the training loss, thus 
fully utilizing the strength of back propagation algorithm to seek for the suitable 
quantization scale automatically. 

4.5.2.5 Implementation Details 

Data Preprocessing 
For CIFAR-10/100, all the images are padded with 4 pixels on each side, and then 
a random 32 × 32 crop is applied, followed by a random horizontal flip. During 
inference, the scaled images are used without any augmentation. For ImageNet, 
training images are randomly cropped into the resolution of 224 × 224. After that, 
the images are normalized using the mean and standard deviation. No additional 
augmentations are performed except the random horizontal flip. However, for 
validation images, we use center crop instead of random crop and no flip is applied 
(Fig. 4.3). 

Training Procedure 
We conduct experiments mainly on ResNet [21] backbones, including ResNet-18 
and ResNet-34. VGG-Small [38] is also leveraged for the CIFAR-10 and CIFAR-
100 experiments. Similar with previous works [17, 28, 34], we do not quantize 
the first and last layers. For experiments on CIFAR-10/100, we run the training 
algorithm for 200 epochs with a batch size of 256. Besides, a linear learning rate
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Fig. 4.3 The Top-1 accuracy (%) on CIFAR-10 and CIFAR-100 with different initial α

decay scheduler is used, and the initial learning rate is set to 0.01. For experiments 
on ImageNet, we train the models for up to 100 epochs with a batch size of 256. 
The learning rate starts from 0.001 and is decayed twice by multiplying 0.1 at 75th 
and 95th epoch. For all settings, Adam with momentum of 0.9 is adopted as the 
optimizer. 

4.5.2.6 Ablation Study on CIFAR 

In this section, we first perform hyperparameter sweeps to determine the value of 
initial α to use. Following this we analyze the necessity of α, then show TRQ’s 
generalization to multiple bits, and finally evaluate the effectiveness of TRQ on 
CIFAR datasets. 

Initial Value of α

The initiation of parameters is always important for network training. Thus, we 
set different initial values 0.10, 0.3, 0.5, 0.8, 1,  1.5, and 2 to α, to explore their 
influence on classification. The experiments are performed on the CIFAR-10/100 
with ResNet-18 backbone. From the results on CIFAR-10 in Fig. 4.4, we can 
observe that the performance is similar when the initial values of α are set between 
0.8 and 1.5, and the best performance can be obtained at 1.5. Meanwhile, from the 
results on CIFAR-100, the good performance plateau appears when initial α is at the
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Fig. 4.4 Evolution of α values in different layers during training with ResNet-18 backbone on 
CIFAR-100 

Table 4.2 The accuracy (%) 
of TRQ with and without α
(TRQ and TRQ-wo) and with 
fixed α = 0.6 (TRQ-0.6) on  
CIFAR-100 

Width TRQ-wo TRQ TRQ-0.6

ResNet-18 16-16-32-64 52.1 54.9 53.9 

ResNet-18 32-32-64-128 60.5 62.7 61.3 

VGG-Small – 62.6 65.4 60.5 

range between 0.8 and 1, and the performance of initial value 1 performs slightly 
better than that of 0.8. For both CIFAR-10 and CIFAR-100, the performance of 
initial values outside the 0.5 to 1.5 is fairly worse, which shows the importance 
of setting the initial value of α carefully. Based on the above discoveries, we set 
the initial value of α as 1 in the following experiments, which shows a stably high 
classification performance on both two datasets. 

Analysis of α

α is introduced in stem-residual framework to automatically seek for a reasonable 
quantization scale. To valid the necessity of α, we provide the experiments with and 
without α on CIFAR-100 with the backbone ResNet-18. As shown in Table 4.2, 
compared with the TRQ without α (TRQ-wo), TRQ achieves better performance by 
a large margin (more than 2%), thus indicating that α is quite important for training 
TRQ.
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Simultaneously, as illustrated in Fig. 4.4, we explore how the value of . α changes 
during training. It can be observed that . α converges to around . 0.6 with training. 
However, this doesn’t mean that . α should be fixed and not optimized. As shown in 
Table 4.2, we compare the results in two cases, i.e., . α is fixed to . 0.6 (TRQ-0.6) and 
. α is optimized by back propagation. As we can see, when fixed . α as . 0.6, a greater 
performance decrease happens. When employed with VGG-Small backbone, the 
accuracy even drops nearly . 5% compared with the learnable . α, thus validating the 
superiority of the learnable . α. We conjecture that is because with the learnable . α
in stem-residual framework, the quantizer could be automatically fine-tuned to find 
the best quantization mapping for each layer, thus yielding better performance than 
the fixed case. 

Quantization Error 
In order to better understand our TRQ, which achieves more accurate mapping 
between ternary weights and their full-precision counterparts, we adopt mean square 
error (MSE) [14] to calculate the quantization error between . w and . Tw: 

.E = 1

M

∑ (
w − Tw

w

)2

, (4.33) 

where M denotes the total number of weights in each layer. In Fig. 4.5, we plot  
the quantization error for the 2th–17th layer of ResNet-18. The results show our 
methods (the red histogram) have lower quantization error compared with baseline 
(the gray histogram) which achieved with the method in Section 3.1 in most layers. 
In particular, the quantization error can be reduced by more than .25% (. 0.8 vs . 0.6) 
in the 9th layer. 

Fig. 4.5 Quantization error of TRQ and baseline based on ResNet-18 backbone
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Fig. 4.6 The results of TRQ with multi-bits expansion on CIFAR-100 

Generalization to n-Bit Quantization 
We illustrate that our TRQ can not only improve the performance on ternary 
quantization but also could be generalized to multiple bits. Here we adopt the 
expansion method described in Sect. 3.4 and perform the experiments on CIFAR-
100 with the backbone of ResNet-18. The baseline model is implemented in a 
similar way as DoReFa-Net [45]. As shown in Fig. 4.6, we can see that the accuracy 
of TRQ increases (.56.2% → 58.3% → 58.5%) as the bit width increases from 
2bit to 4bit, indicating that the compound residual at multi-levels could refine the 
quantized weights, thus improving the recognition accuracy. Moreover, our TRQ 
consistently surpasses the baseline on each bit width (.0.4%, 1.1%, 1.0% on 2bit, 
3bit, and 4bit, respectively), which demonstrates the superiority and potential of the 
residual quantization on multiple bits. 

Evaluation on CIFAR 
To validate the effectiveness of TRQ, here we perform ablation evaluation on 
CIFAR datasets. Three backbones are used in this experiment, including VGG-
Small, ResNet-18 with the width of 16-16-32-64 and 32-32-64-128. We report the 
performance of baseline and TRQ on both CIFAR-10 and CIFAR-100 in Table 4.3. 
As shown in Table 4.3, for ResNet-18, TRQ achieves stable improvement on both 
CIFAR-10 and CIFAR-100 datasets compared with the corresponding baseline. 
Moreover, TRQ with the backbone ResNet-18 whose width is 32-32-64-128 even
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Table 4.3 The experimental comparison of baseline and TRQ on CIFAR datasets 

CIFAR-10/% CIFAR-100/% 

ResNet-18 Full-precision 87.7 58.2 

16-16-32-64 Baseline 85.2 54.8 

TRQ 85.5 54.9 

ResNet-18 Full-precision 90.9 63.0 

32-32-64-128 Baseline 87.5 60.6 

TRQ 89.3 62.7 

VGG-Small Full-precision 92.6 66.8 

Baseline 89.1 61.8 

TRQ 91.2 65.4 

realizes nearly lossless ternarization on CIFAR-100 (only with a .0.3% performance 
drop). All these demonstrate the effectiveness of TRQ on ResNet. For VGG-
Small, our TRQ consistently surpasses the baseline by a margin of .2.1% and 
.3.5% on CIFAR-10 and CIFAR-100, respectively, which further shows the general 
improvement brought by TRQ. 

Comparison on ImageNet 
We further analyze the effectiveness of TRQ on the large-scale dataset ImageNet. 
Since the dataset is challenged for network optimization, we use multi-batch 
normalization (multi-bn) strategy on ResNet architecture to alleviate optimization 
problems, which is termed as TRQ-bn in the experiment. For a basic block in 
TRQ-bn, three batch normalization layers are employed: the first is a pre-bn [43] 
before quantization, the second is a normal bn following the ternary convolutional 
layer, and the last is an additional bn following the shortcut. Such multi-bn can 
significantly improve the network performance by improving the distribution of 
feature maps with only small additional memory and computation. 

We illustrate the training and validation accuracy curves of baseline, TRQ, and 
TRQ-bn in Fig. 4.7, which are based on a ResNet-18 backbone. From Fig. 4.7, 
we can observe that TRQ greatly improves the convergence speed of TNNs. 
Simultaneously, from the results in Table 4.4, TRQ improves baseline by .1.0% on 
both ResNet-18 and ResNet-34 Top-1 accuracy, which validates the effectiveness 
of our TRQ on large-scale dataset. Moreover, TRQ-bn could further obtain an 
improvement of about .2% on both the two networks, which finally achieves 
approximately .93% of the accuracy of their full-precision counterparts. 

To evaluate the overall performance of TRQ, we further compare TRQ with 
four state-of-the-art quantization on ImageNet, i.e., XNOR-Net [36], BiReal-Net 
[34], LQ-Net [43], HWGQ [6], and RTN [30]. To perform fair comparison with 
RTN whose quantization procedure of weight and activation are both improved, we 
apply residual quantization to activation as well, leading to TRQ-a. The results are 
reported in Table 4.4. From Table 4.4, by comparing with the state-of-the-art BNNs 
including XNOR-Net and BiReal-Net, we can significantly boost the performance.
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Fig. 4.7 Accuracy curves of baseline, TRQ, and TRQ-bn with ResNet-18 backbone on ImageNet. 
(a) Training accuracy curves on ImageNet. (b) Validation accuracy curves on ImageNet 

For example, TRQ outperforms XNOR-Net and BiReal-Net by .11% and .6% on 
ResNet-18, respectively. It is because that ternary values .{−1, 0, 1} have stronger 
representational capability than binary values .{−1, 1}, while the complexity of the 
two methods is the same because of the event-driven paradigm in TNNs. Moreover, 
our TRQ can even achieve better performance than the methods with . O(2N)

complexity, including the “A/W = 2/1” cases in LQ-Net and HWGQ. Besides,
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Table 4.4 Comparison of Top-1 and Top-5 accuracy on ImageNet 

Network Method A/W Top-1/% Top-5/% Complexity 

ResNet-18 Full-precision 32/32 69.3 89.2 – 

Baseline ter/ter 61.6 82.7 O(N) 

TRQ(ours) ter/ter 62.6 83.7 O(N) 

TRQ-bn(ours) ter/ter 64.4 85.1 O(N) 

TRQ-a(ours) ter/ter 65.7 85.9 O(N) 

RTN ter/ter 64.5 – O(N) 

XNOR-Net 1/1 51.2 73.2 O(N) 

BiReal-Net 1/1 56.4 79.5 O(N) 

LQ-Net 2/1 62.6 84.3 O(2N) 

ResNet-34 Full-precision 32/32 73.3 91.3 – 

Baseline ter/ter 65.2 85.7 O(N) 

TRQ(ours) ter/ter 66.2 86.3 O(N) 

TRQ-bn(ours) ter/ter 68.2 87.7 O(N) 

BiReal-Net 1/1 62.2 83.9 O(N) 

LQ-Net 2/1 66.6 86.9 O(2N) 

HWGQ 2/1 64.3 85.7 O(2N) 

our TRQ-a surpasses RTN 1.2% in accuracy, demonstrating the advantage of the 
effective residual quantization scheme. 

4.5.3 OMPQ: Orthogonal Mixed Precision Quantization 

Recently, we have seen a noticeable trend in deep learning, that models have 
a rapidly increasing complexity [21, 22, 37–39, 44]. Due to practical limitations 
such as latency, battery, and temperature, the host hardware where the models 
are deployed cannot keep up with this trend. It results in a large, ever-increasing 
gap between computational demands and resources. To address this issue, network 
quantization [3, 23, 27, 33, 36], which maps single-precision floating-point weights 
or activations to lower bit integers for compression and acceleration, has attracted 
considerable research attention. Network quantization can be naturally formulated 
as an optimization problem, and a straightforward approach is to relax the con-
straints to make it a tractable optimization problem at the cost of an approximated 
solution. e.g. straight-through estimation (STE) [4]. 

With the recent development of inference hardware, arithmetic operations with 
variable bit width have become possible, bringing further flexibility to network 
quantization. To take full advantage of hardware capabilities, mixed precision 
quantization [12, 31, 41, 42] aims to quantize different network layers to different 
bit widths to achieve a better trade-off between compression ratio and accuracy. 
While benefiting from the extra flexibility, mixed precision quantization also needs
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a more complicated and challenging optimization problem with a non-differentiable 
and extremely nonconvex objective function. Therefore, existing approaches [12, 
31, 41, 42] often require numerous data and computing resources to search for the 
optimal bit configuration. 

For example, FracBits [42] approximates bit width by performing a first-order 
Taylor expansion on the adjacent integer, making the bit variable differentiable. 
This allows it to integrate the search process into training to obtain the optimal 
bit configuration. However, the search and training process still requires many 
computation resources to derive a decent solution. To resolve the significant demand 
for training data, Dong et al. [12] use the average eigenvalue of the Hessian matrix 
of each layer as the metric for bit allocation. However, the matrix-free Hutchinson 
algorithm to implicitly calculate the average of the eigenvalues of the Hessian matrix 
still needs 50 iterations for each network layer. Another direction is black-box 
optimization. For example, Wang et al. [41] use reinforcement learning to allocate 
the bits of each layer. Li et al. [31] use an evolutionary search algorithm [19] to  
derive the optimal bit configuration, together with a block reconstruction strategy 
to optimize the quantized model efficiently. But the population evolution process 
requires input data .1, 024 and iterations 100, which are time-consuming. 

Different from the existing approaches of black-box optimization or constraint 
relaxation, we propose constructing a proxy metric, which could have a substantially 
different form, but be highly correlated with the objective function of the original 
linear programming. In general, we propose to obtain the optimal bit configuration 
by using the orthogonality of the neural network. Specifically, we deconstruct the 
neural network model into a set of functions and define the orthogonality of the 
model by extending its definition from a function .f : R → R to the entire 
network .f : Rm → R

n. Orthogonality measurement could be performed efficiently 
with Monte Carlo sampling and the Cauchy-Schwarz inequality, based on which 
we propose an efficient metric named ORthogonality Metric (ORM) as the proxy 
metric. As illustrated in Fig. 4.8, we only need a single-pass search process on a 
small amount of data with ORM. In addition, we derive an equivalent form of ORM 
to accelerate the computation. 

On the other hand, model orthogonality and quantization accuracy are positively 
correlated on different networks. Therefore, maximizing model orthogonality is 
taken as our objective function. Meanwhile, our experiments show that layer 
orthogonality and bit width are positively correlated. We assign a more significant 
bit width to the layer with larger orthogonality while combining specific constraints 
to construct a linear programming problem. The optimal bit configuration can be 
obtained simply by solving the linear programming problem (Fig. 4.9). 

4.5.3.1 Network Orthogonality 

A neural network can be naturally decomposed into a set of layers or functions. 
Formally, for the given input .x ∈ R

1×(C×H×W), we decompose a neural network 
into .F = {f1, f2, · · · , fL}, where . fi represents the transformation from the input x
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Fig. 4.8 Comparison of the resources used to obtain the optimal bit configuration between our 
algorithm and other mixed precision algorithms (FracBits [42], HAWQ [12], BRECQ [31]) on 
ResNet-18. “Search Data” is the number of input images 
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Fig. 4.9 Overview. Left: Deconstruct the model into a set of functionsF. Middle: ORM symmetric 
matrix calculated from F. Right: Linear programming problem constructed by the importance 
factor θ to derive optimal bit configuration 

to the result of the i-th layer. In other words, if gi represents the function of of the 

i-th layer, then fi(x) = gi

(
fi−1(x)

) = gi

(
gi−1

( · · · g1(x)
))
. Here, we introduce 

the inner product [1] between the functions fi and fj , which is formally defined as: 

〈
fi, fj

〉
P(x)

=
∫

D
fi(x)P (x)fj (x)T dx, (4.34)
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where .fi(x) ∈ R
1×(Ci×Hi×Wi), .fj (x) ∈ R

1×(Cj ×Hj ×Wj ) are known functions 

when the model is given and . D is the domain of x. If we set  .f (m)
i (x) to be the 

m-th element of .fi(x), then .P(x) ∈ R
(Ci×Hi×Wi)×(Cj ×Hj ×Wj ) is the probability 

density matrix between .fi(x) and .fj (x), where .Pm,n(x) is the probability density 

function of the random variable .f (m)
i (x) · f

(n)
j (x). According to the definition in 

[1], .
〈
fi, fj

〉
P(x)

= 0 means that . fi and . fj are weighted orthogonal. In other 

words, .
〈
fi, fj

〉
P(x)

is negatively correlated with the orthogonality between . fi and 

. fj . When we have a known set of functions to quantify .F = {fi}Li=1, to approximate 
an arbitrary function . h∗, the quantization error can be expressed as the mean 
square error: .ξ

∫
D |h∗(x) − ∑

i ψifi(x)|2dx, where . ξ and . ψi are the combination 
coefficient. According to the Parseval equality [40], if . F is an orthogonal basis 
function set, the mean square error could reach 0. Furthermore, the orthogonality 
between the basis functions is more substantial; the mean square error is smaller, 
i.e., and the model corresponding to the linear combination of basis functions has 
a more robust representation capability. Here, we further introduce this insight to 
network quantization. The larger the bit, the greater the representational capability 
of the corresponding model [34]. Specifically, we propose to assign a larger bit 
width to the layer with stronger orthogonality against all other layers to maximize 
the representation capability of the model. However, Eq. 4.34 has the integral of a 
continuous function, which is untractable in practice. Therefore, we derive a novel 
metric to efficiently approximate the orthogonality of each layer in Sect. 4.5.3.2. 

4.5.3.2 Efficient Orthogonality Metric 

To avoid the intractable integral, we propose using Monte Carlo sampling to 
approximate the orthogonality of the layers. Specifically, from the Monte Carlo 
integration perspective in [5], Eq. 4.34 can be rewritten as: 

.

〈
fi, fj

〉
P(x)

=
∫

D
fi(x)P (x)fj (x)T dx

=
∥∥∥EP(x)[fj (x)T fi(x)]

∥∥∥
F
.

(4.35) 

We randomly obtain N samples .x1, x2, . . . , xN from a training dataset with the 
probability density matrix .P(x), which allows the expectation . EP(x)[fj (x)T fi(x)]
to be further approximated as: 

.

∥∥∥EP(x)[fj (x)T fi(x)]
∥∥∥

F
≈ 1

N

∥∥∥∥∥
N∑

n=1

fj (xn)
T fi(xn)

∥∥∥∥∥
F

= 1

N

∥∥∥fj (X)T fi(X)

∥∥∥
F
,

(4.36)
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where .fi(X) ∈ R
N×(Ci×Hi×Wi) represents the output of the i-th layer, . fj (X) ∈

R
N×(Cj ×Hj ×Wj ) represents the output of the j -th layer, and .|| · ||F is the Frobenius 

norm. From Eqs. 4.35–4.36, we have:  

.N

∫

D
fi(x)P (x)fj (x)T dx ≈

∥∥∥fj (X)T fi(X)

∥∥∥
F
. (4.37) 

However, the comparison of orthogonality between different layers is difficult due 
to differences in dimensionality. To this end, we use the Cauchy-Schwarz inequality 
to normalize it to .[0, 1] for the different layers. Applying the Cauchy-Schwarz 
inequality to the left side of Eq. 4.37, we have:  

.

0 ≤
(

N

∫

D
fi(x)P (x)fj (x)T dx

)2

≤
∫

D
Nfi(x)Pi(x)fi(x)T dx

∫

D
Nfj (x)Pj (x)fj (x)T dx.

(4.38) 

We substitute Eq. 4.37 into Eq. 4.38 and perform some simplifications to derive our 
ORthogonality Metric (ORM):1 

.ORM(X, fi, fj ) = ||fj (X)T fi(X)||2
F

||fi(X)T fi(X)||F ||fj (X)T fj (X)||F , (4.39) 

where ORM .∈ [0, 1]. . fi and . fj are orthogonal when .ORM = 0. On the contrary, 
. fi and . fj depend on .ORM = 1. Therefore, ORM is negatively correlated with 
orthogonality. 

Calculation Acceleration Given a specific model, calculating Eq. 4.39 involves 
huge matrices. Suppose that .fi(X) ∈ R

N×(Ci×Hi×Wi), .fj (X) ∈ R
N×(Cj ×Hj ×Wj ), 

and that the dimension of the features in the j -th layer is larger than that of 
the i-th layer. Furthermore, the time complexity of computing .ORM(X, fi, fj ) is 
.O(NC2

j H 2
j W 2

j ). The huge matrix occupies a lot of memory resources and increases 
the entire algorithm’s time complexity by several orders of magnitude. Therefore, 
we derive an equivalent form to accelerate the calculation. If we take .Y = fi(X), 
.Z = fj (X) as an example, then .YYT , ZZT ∈ R

N×N . We have the following: 

.||ZT Y ||2F =
〈
vec(YY T ), vec(ZZT )

〉
, (4.40)

1 ORM is formally consistent with CKA. However, we pioneered discovering its relationship with 
quantized model accuracy. We confirmed its validity in mixed precision quantization from the 
perspective of function orthogonality, and CKA explores the relationship between hidden layers 
from the perspective of similarity. In other words, CKA implicitly verifies the validity of ORM 
further. 
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where vec(. ·) represents the operation of flattening matrix into vector. From Eq. 4.40, 
the time complexity of calculating .ORM(X, fi, fj ) becomes . O(N2CjHjWj )

through the inner product of vectors. When the number of samples N is larger than 
the dimension of features .C × H × W , the norm form is faster to calculate due to 
the lower time complexity and vice versa. 

4.5.3.3 Mixed Precision Quantization 

Effectiveness of ORM on Mixed Precision Quantization ORM directly indicates 
the importance of the layer in the network, which can eventually be used to 
decide the bit width configuration. We conducted extensive experiments to provide 
sufficient and reliable evidence for this claim. Specifically, we first sample different 
quantization configurations for ResNet-18 and MobileNetV2. We were then fine-
tuning to obtain the performance. Meanwhile, the overall orthogonality of the 
sampled models is calculated separately. Interestingly, we find that the orthogonality 
and performance of the model are positively correlated with the sum of ORM in 
Fig. 4.10. Naturally, inspired by this finding, maximizing orthogonality is taken as 
our objective function, which is employed to integrate the model size constraints 
and construct a linear programming problem to obtain the final bit configuration. 

For a specific neural network, we can calculate an orthogonality matrix K , where 
kij = ORM(X, fi, fj ). K is a symmetric matrix, and the diagonal elements are 1. 
We add the non-diagonal elements of each row of the matrix: 

.γi =
L∑

j=1

kij − 1. (4.41) 

Fig. 4.10 Relationship between orthogonality and accuracy for different quantization configura-
tions on ResNet-18 and MobileNetV2
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The smaller γi means stronger orthogonality between fi and other functions in the 
set of functions F, and it also means that the former i layers of the neural network 
are more independent. Thus, we use the monotonically decreasing function e−x to 
model this relationship: 

.θi = e−βγi , (4.42) 

where β is a hyperparameter to control the bit width difference between different 
layers; we also investigate the other monotonically decreasing functions (for details, 
refer to Sect. 4.5.3.5). θi is used as the important factor for the former i layers of the 
network, and then we define a linear programming problem as follows: 

.

Objective: max
b

L∑
i=1

⎛
⎝ bi

L − i + 1

L∑
j=i

θj

⎞
⎠ ,

Constraints:
L∑
i

M(bi) ≤ T.

(4.43) 

M(bi) is the model size of the i-th layer under bi bit quantization and T represents 
the target model size. b is the optimal bit configuration. Maximizing the objective 
function means assigning the larger bit width to a more independent layer, which 
implicitly maximizes the model’s representation capability. 

Solving the linear programming problem in Eq. 4.43 is highly efficient which 
only takes a few seconds on a single CPU. In other words, our method is highly 
efficient (9s on MobileNetV2) compared to previous methods [12, 31, 42], which 
require a lot of data or iterations to search. In addition, our algorithm can be 
combined as a plug-and-play module with quantization-aware training or post-
training quantization schemes due to the high efficiency and low data requirements. 

4.5.3.4 Experiment 

The ImageNet dataset includes 1.2M training data and 50,000 validation data. We 
randomly obtain 64 training data samples for ResNet-18/50 and 32 training data 
samples for MobileNetV2 following similar data preprocessing [21] to derive the 
set of functions . F. For the models with many parameters, we directly adopt the 
round function to convert the bit width into an integer after linear programming. 
Meanwhile, we adopt a depth-first search (DFS) to find the bit configuration that 
strictly meets the different constraints for a small model, e.g. ResNet-18. The 
processes above are highly efficient and only take a few seconds on these devices. 
Additionally, OMPQ [35] is flexible and can leverage different search spaces with 
QAT and PTQ under different requirements. The fine-tuning implementation details 
are listed below.
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For the experiments on the QAT quantization scheme, we use two NVIDIA 
Tesla V100 GPUs. Our quantization framework does not contain integer division 
or floating-point numbers in the network. In the training process, the initial learning 
rate is set to .1e − 4, and the batch size is set to 128. We use the cosine learning 
rate scheduler and the SGD optimizer with weight decay .1e − 4 during 90 epochs 
without distillation. Following the previous work, we fix the weight and activation 
values of the first and last layers at 8 bits, where the search space is 4–8 bits. 

4.5.3.5 Ablation Study 

Monotonically Decreasing Function We then investigate the monotonically 
decreasing function in Eq. 4.42. The second-order derivatives of monotonically 
decreasing functions in Eq. 4.42 influence the changing rate of orthogonality 
differences. In other words, the variance of the orthogonality between different 
layers becomes larger as the rate increases. We test the accuracy of five different 
monotonically decreasing functions on quantization-aware training of ResNet-18 
(6.7Mb) and post-training quantization of MobileNetV2 (0.9Mb). We fixed the 
activation to 8 bit. 

It can be seen from Table 4.5 that accuracy gradually decreases while the 
change rate increases. We also observe that a more significant change rate for the 
corresponding bit configuration means a more aggressive bit allocation strategy. 
In other words, OMPQ tends to assign more different bits between layers at 
a high rate of change, leading to worse performance in network quantization. 
Another interesting observation is the accuracy of ResNet-18 and MobileNetV2. 
Specifically, quantization-aware training on ResNet-18 requires numerous data, 
making the accuracy change insignificant. In contrast, post-training quantization on 
MobileNetV2 cannot assign bit configuration that meets the model constraints when 
the functions are set to −x3 or −ex . To this end, we select e−x as our monotonically 
decreasing function in the following experiments. 

Deconstruction Granularity We study the impact of different granularities of 
deconstruction on the model’s accuracy. Specifically, we tested four different granu-
larities, including layer-wise, block-wise, stage-wise, and net-wise, in the quantized-
aware training of ResNet-18 and the post-training quantization of MobileNetV2. 

Table 4.5 The Top-1 
accuracy (%) with different 
monotonically decreasing 
functions on ResNet-18 and 
MobileNetV2 

Decreasing ResNet-18 MobileNetV2 Changing 

Function (. %) (. %) Rate 

.e−x .72.30 63.51 . e−x

.−logx .72.26 .63.20 . x−2

.−x 72.36 .63.0 0 

.−x3 .71.71 – . 6x

.−ex – – .ex
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Table 4.6 Top-1 accuracy (%) of different deconstruction granularity. The activation bit widths 
of MobileNetV2 and ResNet-18 are both 8. ∗ means a mixed bit 

Model W bit Layer Block Stage Net 

ResNet-18 5∗ 72.51 72.52 72.47 72.31 

MobileNetV2 3∗ 69.37 69.10 68.86 63.99 

As reported in Table 4.6, the accuracy of the two models increases with finer 
granularities. This difference is more significant in MobileNetV2 due to the different 
sensitiveness between point-wise and depth-wise convolutions. Thus, we employ 
layer-wise granularity in the following experiments. 
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Chapter 5 
Network Pruning 

5.1 Introduction 

Network pruning is a technique used in deep learning to reduce the size and 
complexity of neural networks by eliminating unnecessary connections or param-
eters. Pruning aims to create more efficient and streamlined models that maintain 
or improve performance while reducing computational requirements and memory 
footprint. 

Pruning involves identifying and removing unimportant connections or param-
eters from the neural network. Importance criteria are used to determine the 
significance of each connection or parameter. Some standard criteria include: 

Magnitude-based criteria Connections or parameters with small magnitudes are 
considered less important and are pruned. This can be done by setting a threshold 
below which connections are removed or keeping the top-k connections with the 
highest magnitudes. 

Sensitivity-based criteria Connections or parameters that have the most negligible 
impact on the model’s performance are pruned. This is typically determined by 
calculating the gradients or sensitivities of the output concerning each connection 
or parameter. 

Once the important criteria are defined, pruning methods remove the connections 
or parameters identified as unimportant. Pruning can be categorized into different 
techniques: 

Weight pruning Weight pruning eliminates individual connections or parameters 
based on their importance. This can result in a sparse model where some connections 
have zero values. 

Structured pruning Structured pruning removes entire filters, channels, or layers 
instead of individual connections. This approach can lead to more efficient and 
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regular network structures and may require specialized hardware support for 
practical inference. 

Unit pruning Unit pruning involves removing entire neurons or units from the 
network. This can be based on their importance or by analyzing their impact on the 
network’s performance. 

Network pruning is often performed iteratively to achieve higher levels of 
sparsity (the proportion of pruned connections in the network). The process involves 
multiple pruning iterations, where the least essential connections are successively 
removed. Pruning can be applied layer-wise or globally across the entire network. 

Pruning can be integrated into the training process itself. This approach, known 
as “structured sparsity training” or “learning with sparsity,” involves introducing 
regularization techniques that naturally encourage the network to sparsify during 
training. This leads to a more efficient model, eliminating the need for post-training 
pruning. 

One of the primary advantages of network pruning is the reduction in model size. 
Pruning creates a more compact model by eliminating unnecessary connections and 
parameters from the neural network. This size reduction has practical implications, 
especially in limited storage or memory capacity. Smaller models are easier to store, 
transmit, and deploy, making them more feasible for real-world applications. 

Pruning also leads to improved computational efficiency. By removing unim-
portant connections, the computational workload during inference is reduced. This 
results in faster inference times, which is crucial for real-time applications or 
situations requiring low-latency responses. The streamlined model can also leverage 
efficient sparse matrix operations and specialized hardware accelerators, further 
enhancing computational efficiency. 

Another benefit of network pruning is the reduction in memory footprint. The 
memory requirements for storing and processing the model are reduced by prun-
ing sparse connections. This is particularly advantageous in resource-constrained 
environments like mobile devices or embedded systems. It allows for the efficient 
execution of deep learning models in memory-limited scenarios. 

Network pruning facilitates the compression and deployment of models. The 
reduced size and complexity of pruned models make them easier to compress and 
deploy. They require less storage space and bandwidth, making them suitable for 
scenarios with limited resources or low-bandwidth networks. Pruned models can be 
efficiently deployed on edge devices, IoT devices, or cloud platforms, enabling the 
scalable and resource-efficient deployment of deep learning models. 

It’s important to note that the degree of pruning should be carefully balanced 
to achieve the desired benefits without significantly sacrificing model performance. 
Aggressive pruning may lead to accuracy degradation, so a trade-off between model 
size reduction and performance should be considered during the pruning process.
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5.2 Structured Pruning 

Structured pruning reduces model size and complexity by pruning entire structured 
components, such as channels, layers, or blocks, rather than individual weights or 
filters. Structured pruning methods aim to maintain the inherent structure of the 
network while achieving model compression. By removing entire structured com-
ponents, rather than randomly selecting individual parameters, structured pruning 
preserves the architectural characteristics of the network. This allows for more 
efficient hardware acceleration, reduced memory footprint, and simplified model 
deployment. 

There are different types of structured pruning techniques commonly used: 

Channel Pruning Channel pruning involves removing entire channels or feature 
maps from convolutional layers. Channels represent specific patterns or feature 
detectors learned by the network. Channel pruning reduces the model’s complexity 
and computational requirements by eliminating redundant or less important chan-
nels. 

Layer Pruning Layer pruning focuses on pruning entire layers from the network 
architecture. Less critical or contributing layers are identified and removed, resulting 
in a shallower model. This reduces the number of parameters and simplifies the 
overall structure of the network. 

Block Pruning Block pruning targets the removal of entire blocks or modules 
within the network. Blocks often represent repeated structures or groups of layers. 
The network’s complexity is reduced by pruning these blocks while maintaining 
the essential architectural characteristics. This can be particularly effective in deep 
networks with complex architectures. 

Structured Sparsity Structured sparsity techniques enforce structured sparsity 
patterns within the network. Instead of pruning individual weights or filters, specific 
structured patterns or structures within the network must be sparse. This can involve 
enforcing sparsity in specific rows, columns, or other structured patterns of weight 
matrices. 

The benefits of structured pruning are numerous. Structured pruning enables 
efficient hardware acceleration by leveraging specialized hardware accelerators 
to exploit structured sparsity patterns. This results in faster inference times and 
improved energy efficiency. Secondly, it significantly reduces the memory footprint 
of neural networks, making them more suitable for deployment on memory-
constrained devices or in scenarios with limited storage capacity. Structured pruning 
simplifies model deployment by reducing complexity and facilitating the model 
transfer, compression, and integration into production systems.
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5.3 Unstructured Pruning 

Unstructured pruning is a technique used in deep learning to reduce the size 
and complexity of neural networks by selectively removing individual weights or 
filters without considering their structural relationships. Unlike structured pruning, 
which prunes entire structured components, unstructured pruning focuses on the 
fine-grained elimination of individual parameters based on their importance or 
redundancy. This approach offers flexibility in achieving model compression but 
may result in irregular and unstructured sparsity patterns. 

Unstructured pruning offers flexibility in achieving model compression since 
individual parameters can be selectively pruned. This allows for fine-grained control 
over the sparsity level and significantly reduces model size. Targeting and removing 
redundant or less important weights can also achieve high compression rates. The 
model’s size and memory requirements can be significantly reduced by eliminating 
these parameters. 

Unstructured pruning does not disrupt the structural integrity of the network 
since individual weights or filters are pruned independently. This means the model’s 
architecture remains unchanged, allowing for easier integration and transfer of 
pruned models. 

However, the irregular and unstructured sparsity patterns introduced by this 
technique may need to be more efficiently utilized by hardware accelerators 
designed for structured sparsity. Additionally, unstructured pruning may require 
careful fine-tuning to recover performance, as removing individual parameters can 
lead to a more significant performance drop than structured pruning. 

5.4 Network Pruning 

5.4.1 Efficient Structured Pruning Based on Deep Feature 
Stabilization 

Conventional filter pruning methods generally rely on the important criteria such as 
the .l1-norm value [40] and .l2-norm value [21] of filters. Two central problems 
may lie in the existing methods. Firstly, the important criterion can only be 
employed on filter selection, i.e., a block cannot be evaluated by criteria such 
as norm criterion. Secondly, the importance of each filter seems too simple and 
inefficient due to the existence of batch normalization (BN) [30] and nonlinear 
activation functions, e.g., rectifier linear unit (ReLU) [13]. To overcome these 
two shortcomings, the reconstruction-based method is introduced. He et al. [23] 
propose a channel pruning method based on the local reconstruction error of every 
block and optimized the reconstruction loss via most minor absolute shrinkage 
and selection operator (LASSO) [59] regression. Likewise, accelerated proximal 
gradient (APG) [73] and Taylor expansion [42] are employed to optimize the
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Fig. 5.1 An illustration of EPFS. From left to right lies the training process. The yellow and green 
square sets denote feature maps and filters, respectively. As represented in the middle, our EPFS 
can be effectively implemented in block or filter selection by setting the specific full-precision 
soft masks after specific layers. The soft mask and other parameters will be updated via FISTA and 
SGD, respectively. When the mask element is zero, the corresponding filter or block is equivalent to 
being pruned. . LM , . LC and . LS are employed to supervise mask sparsity, deep feature stabilization, 
and network output, respectively 

reconstruction loss. However, the small reconstruction error might be magnified and 
propagated in the deep networks, leading to large reconstruction errors in the global 
outputs. 

We propose an end-to-end efficient pruning method based on feature stability 
(EPFS) [68]. The framework of EPFS is shown in Fig. 5.1. For block pruning, 
we introduce a mask on the output of the layers and use the sparsity supervision, 
i.e., .l1-norm, to supervise the updating of the mask. We introduce a novel .l2-
regularization term for filter pruning to supervise mask updating. The sparsity 
supervision and cross-entropy make up a couple of adversaries between sparsity 
and accuracy. The center loss [64] is employed to further stabilize the deep feature 
during learning. However, using conventional stochastic gradient descent (SGD) 
to optimize the mask tends to obtain lower performance. Thus, we introduce a 
fast iterative shrinkage-thresholding algorithm (FISTA) [3, 14] to optimize the 
learning process, achieving a faster and more reliable pruning process of the 
mask. 

5.4.1.1 Preliminaries 

Consider a CNN model consisting of L layers (convolutional and fully connected 
layers) interlaced with rectifier linear units (ReLU) and pooling. We can formulate 
the convolutional layer’s output size as .Kl × Wl × Cl . Hence, we define a 
convolution-batch normalization (Conv-BN) operation transforming the input tensor
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.xl−1 ∈ R
Kl−1×Wl−1×Cl−1

to the output tensor .xl ∈ R
Kl×Wl×Cl

as: 

. xl
j = f l(xl−1,F l ,π l ,β l , τ l , γ l )

= γ l
j

ΣCl−1

i=1 xl−1
i ∗ F l

i,j − πl
j

τ l
j

+ βl
j , (5.1) 

where . Cl represents the number of channels in the l-th layer. . xl
j and .xl−1

i are the 
j -th output feature map and the i-th input feature map at the l-th layer. . ∗ denotes 
the convolutional operation. .(πl

j , τ
l
j , β

l
j , γ

l
j ) are the corresponding BN parameters 

of the j -th channel. .F l
i,j is the i-th kernel of the j -th filter of the l-th layer. 

5.4.1.2 Sparse Supervision for Block Pruning 

As shown in Fig. 5.1, different soft masks should be deployed for different pruning 
tasks. We will state this subsection in three parts, i.e., mask setups for block and 
filter pruning, respectively, and loss formulation. 

We first modify the denotation in Eq. 5.1 block-wise for block selection. As 
plotted in Fig. 5.1, we introduce a scalar . mk for selecting the k-th block. Considering 
the k-th block containing . kN layers, we formulate it as: 

. xk = mk · Fk(xk−1,F k,πk,βk, τ k, γ k) + S(xk−1)

= mk · f k1 ◦ f k2 ◦ f k3 ◦ · · · f kN + S(xk−1) (5.2) 

where .f 1 ◦ f 2 = f 2(f 1). . f ki denotes the .kn-th layer in the k-th block in sequence, 
i.e., .f kn(xkn−1,F kn,πkn,βkn, τ kn, γ kn). .S() denotes the shortcut transformation. 
We introduce a learnable mask .m = [m1, · · · ,mL] to scale the output. To guarantee 
the input of the following blocks is not 0, we only implement the mask to the blocks 
having residual connections, rather than blocks in generalized meaning such as [26, 
54]. For the convergence of mask, we use .l1-regularization to punish . m to optimize 
the elements to 0. Therefore, . m is learned by: 

.LM = μ

KΣ

k=1

|mk|, (5.3) 

where . mk represents the mask scalar for every block.
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5.4.1.3 Constrained Sparse Supervision for Filter Pruning 

For filter pruning, we introduce a vector . ml sized .1 × 1 × Cl to scale the output of 
l-th Conv-BN layer. We formulate the filter selection process as: 

. xl
j = f l(ml−1 ⊗ xl−1, F l

j , π
l
j , β

l
j , τ

l
j , γ

l
j )

= γ l
j

ΣCl−1

i=1 (ml−1
i · xl−1

i ) ∗ F l
i,j − πl

j

τ l
j

+ βl
j , (5.4) 

where . ⊗ denotes element-wise multiplication. Equation 5.4 denotes scaling the 
output of .(l − 1)-th Conv-BN layer by soft mask .ml−1. 

Unlike the prior work [23, 43], we introduce a novel constraint for sparse 
supervision deployed on filter pruning as: 

.LM = μ

LΣ

l=1

||ml||1 + α

LΣ

l=1

Cl
Σ

j=1

||ml
j − ||F l

j||2||22, (5.5) 

where we introduce a strong constraint to guarantee the safe convergence of . m. 
As we observe that the .l1-regularization may cause damage to the architecture, we 
introduce the .l2-regularization to consider the magnitude of filters. We only zero . ml

j

when the filter magnitude .||F l
j||2 is close to zero. In Eq. 5.5, .LM represents the loss 

function to update the mask. K and L denote the network’s total blocks and layers. 
. μ and . α are hyperparameters to control the proportion of sparsity and constraint. 
Note that the constraint .||ml

j − ||F l
j||2||22 is only employed in updating . m. 

5.4.1.4 Loss Function 

Cross-entropy is still employed in the learning process to improve image classifica-
tion accuracy. It is formulated as: 

.LS = −
QΣ

q=1

log
e
WL

yq
xL−1

(q)
+bL

yq

ΣP
p=1 e

WL
p xL−1

(q)
+bL

p

, (5.6) 

where .xL−1
(q) denotes the deep feature of the q-th input in mini-batch. Q denotes the 

mini-batch size. For .q ∈ Q, . yq denotes the network’s forecast of the .yq -th class in 
P .
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Furthermore, we introduce center loss [64] to maintain the feature stabilization 
of the pruned networks. The center loss function is defined as: 

.LC = λ

2

QΣ

q=1

||xL−1
(q) − cyq ||22. (5.7) 

In Eq. 5.7, .xL−1
(q) is the deep feature of q-th input image in batch. .g(x) ∈ R

CL−1×CL
. 

.CL−1 and . CL are the channels of input and output, respectively. . cyq is the feature 
center of the ground truth label of q-th input, which denotes the feature center of 
every class. And . λ is the hyperparameter for balancing the proportion of center loss 
and two others. SGD updates c. We will give a more detailed description in the next 
subsection. 

We use joint supervision through cross-entropy and center loss [64] to achieve 
discriminative feature learning. The formulation is given as: 

.L = LS +LC +LM . (5.8) 

= −  
QΣ

q=1 

log 
e W

L 
yq x

L−1+bL 
yq

ΣP 
p=1 e

WL 
p x

L−1+bL 
p 

+ 
λ 
2 

QΣ

q=1

||xL−1 
(q) − cyq ||2 2 +LM. (5.9) 

The joint loss well supervises the output and deep feature. 

5.4.1.5 Optimization 

SGD can be directly introduced to update the feature center . cp and model 
parameters . W to solve the optimization problem in Eq. 5.9. We update . W and . cp

as 

.ct+1
p = ct − βδcp (5.10) 

.Wt+1 = ct − ηδW (5.11) 

.δcp =
ΣP

p=1 I(yq = p) · (cp − xL−1)

1 + ΣP
p=1 I(yq = p)

(5.12)
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. δW = ∂LS

∂W
+ λ

∂LC

∂W

= ∂LS

∂W
+ λ

∂LC

∂xL−1
· ∂xL−1

∂W

= ∂LS

∂W
+ λ

∂xL−1

∂W
· (xL−1 − cyq ) (5.13) 

In Eq. 5.12, .I(yq = p) is the indicative function, defined as: 

.I(yq = p) =
{
0, yq /= p

1, yq = p
(5.14) 

Then every simple weight in convolution or BN layer can be updated as Eq. 5.13. 
However, it is unreliable to implement SGD to solve the optimization problem in 
Eq. 5.3. Because the SGD may bring the vibration of . LM , affecting the convergence 
of the mask learning. The misleading mask may remove the necessary structures and 
decrease the accuracy. Thus, a threshold is required to limit the vibration. Under this 
guiding ideology, we introduce FISTA [14] to optimize . LM . 

We first use SGD to optimize the .Wp and c. The whole procedure relies on the 
original forward-backward pass. Then, we introduce FISTA to solve . m as: 

. argmin
m
LM + R(m) (5.15) 

The mask . m can be updated by FISTA with the initial .τ 1 = 1: 

. τ 1 = 1

τ t+1 = 1 +
√
1 + 4[τ t+1]2

2
. (5.16) 

yt+1 = mt + 
τ t − 1 
τ t+1 [mt − mt−1]. (5.17) 

wt+1 = yt+1 − ηt+1 · ∂G[mt+1] 
∂mt+1 . (5.18) 

mt+1 = sign(wt+1) ◦ max
{
|wt+1| − ηt+1 · μ

}
. (5.19) 

. η is an iterative learning rate. The whole optimization procedure is shown in 
Algorithm 8.
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Algorithm 8: The updating algorithm of EPFS 

Input: Training data x0 = {x0 
(1), . . . , x

0 
(Q)} with a mini-batch size Q, mask factor μ, number 

of steps t , maximum iterations T , mask step iteration number S. 
Output: The weights W and mask m 

1 Initialize W , m ∼ N(0, 1) and k = 1 
2 repeat 
3 For  t steps do 
4 Forward pass masked network in a sample mini-batch of Q examples get

{
xL−1 

(1) , . . . ,  xL−1 
(Q)

}
and

{
xL 

(1), . . . ,  xL 
(Q)

}
. 

5 Update theWp by Eqs. 5.10 and 5.12 
6 Update the each cj by Eqs. 5.11 and 5.13 
7 If t == S, then it is the mask step: 
8 Update the m with FISTA from Eqs. 5.15 to 5.19. 
9 end  for  

10 until convergence or t reaches the maximum iterations T 

5.4.1.6 Pruning on ResNet 

Unlike VGGNets [55] or AlexNets [35], in ResNets, each residual block contains 
two or three convolutional layers (followed by both BN and ReLU) and shortcut 
connections. For the consistency of two parts for the sum operation, the number 
of output feature maps in the last convolutional layer must be consistent with that 
of the projection shortcut layer. In particular, when the dimensions of input/output 
channels are mismatched in a residual block, the shortcut connections perform a 
linear projection. 

This work implements our EPFS method on ResNet-18 (two convolutional layers 
in each block) for filter pruning. We focus on pruning the first layer in each residual 
block, as illustrated in Fig. 5.2c. And no pruning operation is conducted in the last 
convolutional layer of each residual block. About . 128−76

128 = 40.2% parameters are 

Fig. 5.2 Illustration of pruning ResNet-18. The red value is the number of remaining fil-
ters/channels. (a) Original block of ResNet-18. (b) Block pruning for ResNet-18. (c) Filter pruning 
for ResNet-18
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pruned as illustrated in Fig. 5.2c, which make up a large proportion in the residual 
block. 

For block pruning, the parameters of shortcut connection are far less than those 
of residual mapping. And the shortcut provides the chance to scale the mapping 
out to 0 without breaking the shape of the output. So, the strategy to set masks is 
clear. We add the mask before the comprehensive point of mapping and shortcut. 
The pruned ResNet-18 can be viewed as Fig. 5.2b. 

5.4.1.7 Experiments 

We implement extensive experiments to validate the effectiveness of our EPFS 
on filter pruning and block pruning. For filter pruning, we use six convolutional 
networks on two datasets, i.e., ResNet-20, ResNet-56 [21], VGGNet [56], and 
MobileNetV3-Large/Small [26] on CIFAR-10 [34] and ResNet-18 [19] on Ima-
geNet ILSVRC2012 [35]. For block pruning, we also use six convolutional networks 
on two datasets, i.e., ResNet-20, ResNet-56, MobileNetV3-Large/Small on CIFAR-
10, ResNet-18, and MobileNetV3-Small on ImageNet ILSVRC2012. Furthermore, 
we implement the comprehensive pruning (pruning block and filter sequentially), 
using three models on two datasets, i.e., ResNet-20, ResNet-56 on CIFAR-10, and 
ResNet-18 on ImageNet ILSVRC2012. 

We use PyTorch [51] to implement our EPFS method. We use four NVIDIA GTX 
2080 Ti GPUs with 128GB of RAM to compute the above learning process. The 
hyperparameter . μ is selected in the .[0.001, 1] range after cross-validation. And . λ
is set to .0.0003. The weight decay is set to .0.0001, and the momentum is . 0.9. The  
initial learning rate of . LS , . LM , i.e., . η is set as . 0.1. And it will be scaled by a factor 
of . 0.1 every 20 epochs. The learning rate of feature center, i.e., . β, is set as . 0.5. Total 
epochs are 60. 

We evaluate the performance of EPFS on CIFAR-10 for five networks, ResNet-
20/ResNet-56, MobileNetV3-Large/MobileNetV3-Small, and VGGNet. For block 
pruning, ResNet-20 and ResNet-56 have 9 and 27 blocks for pruning, respectively. 
In MobileNetV3, there are no shortcuts in the downsampling blocks. Therefore, 
MobileNetV3-Large has 15 blocks, in which only 10 have residual connections 
that can be pruned. Likewise, MobileNetV3-Small has 7 of 11 blocks that can be 
pruned. For filter pruning, we implement it on ResNet-20/ResNet-56 and VGGNet. 
Moreover, we implement the comprehensive pruning on ResNet-20/ResNet-56 and 
compare its performance with the ones using block/filter pruning alone. P.S., we  
use EPFS-B/F-. μ denoting implementing block/filter pruning via EPFS with special 
hyperparameter . μ. EPFS-C-.μ1-. μ2 denotes the comprehensive pruning, i.e., block 
and filter pruning sequentially. . μ1 and . μ2 denote the hyperparameters used for block 
and filter pruning, respectively. . α is set to .1 × 10−4. 

ResNet-20 To evaluate the effectiveness of our method, we prune ResNet-20, 
where the mask’s effectiveness can be examined subtly. The pruning results are 
shown in Table 5.1. For ResNet-20, when . μ is set to . 0.6, three  out of nine



142 5 Network Pruning

Table 5.1 Filter/block/comprehensive pruning for ResNet-20 on CIFAR-10 

Model Top-1/+FT% Params(PR%) FLOPs(PR%) Speedup 

ResNet-20 [19] .92.17 .0.27M .40.55M – 

MIL [9] –/.91.43 – .32.31M(.20.3%) . 1.26×
SFP [21] .90.83/– – .23.44M(.42.2%) . 1.73×
EPFS-B-.0.6 .91.51/.91.91 .0.20M(.24.6%) .30.83M(.24.0%) . 1.32×
EPFS-B-.0.8 .91.31/.91.50 .0.17M(.36.9%) .22.72M(.44.0%) . 1.79×
EPFS-F-.0.05 .90.20/.90.83 .0.14M(.51.1%) .20.84M(.48.6%) . 1.94×
EPFS-C-.0.6-.0.05 .90.01/.90.98 .0.12M(.56.0%) .18.98M(.53.2%) . 2.14×

Table 5.2 Filter/block/comprehensive pruning for ResNet-56 on CIFAR-10 

Model Top-1/+FT% Params(PR%) FLOPs(PR%) Speedup 

ResNet-56 [19] .93.26 .0.85M .125.49M – 

PFEC [40] –/.93.06 – .90.9M(.27.6%) . 1.21×
CP [23] .90.80/.91.80 – 62M(.50.6%) . 2.02×
NISP [71] –/.93.01 – 81M(.35.5%) . 1.55×
EPFS-B-.0.6 .91.16/.92.89 .0.61M(.27.7%) .75.91M(.39.5%) . 1.65×
EPFS-B-.0.8 .90.91/.92.34 .0.35M(.58.6%) .65.32M(.47.9%) . 1.92×
EPFS-F-.0.01 .92.10/.92.96 .0.68M(.20.0%) .89.60M(.28.6%) . 1.40×
EPFS-F-.0.05 .90.92/.92.09 .0.34M(.40.1%) .64.50M(.44.7%) . 1.81×
EPFS-C-.0.6-.0.05 .91.71/.92.53 .0.28M(.67.1%) .56.47M(.55.0%) . 2.22×

residual blocks are pruned with .24.0% FLOPs pruned rate, and we only have . 0.26%
accuracy decrease. This indicates that there are redundant blocks for ResNet-20. 
Compared with SFP [21], our method achieves a much better performance. As for 
filter pruning, when . μ is set to .0.05, .48.6% FLOPs are removed with .1.34% absolute 
accuracy drop. Moreover, the comprehensive pruning can remove .53.2% FLOPs 
with only a .1.19% performance decrease, demonstrating that we have achieved a 
new state-of-the-art result. 

ResNet-56 For ResNet-56, the pruning results are shown in Table 5.2. For block 
pruning, when . μ is set to . 0.6, 11 out of 27 residual blocks are pruned, thus 
realizing .39.5% FLOPs pruned rate with a decrease of .0.37% accuracy. Compared 
with CP [23], PFEC [40], and NISP [71], our method achieves a much better 
trade-off between accuracy and compression rate. As for filter pruning, when . μ
is set to .0.01, .28.6% FLOPs are removed with .0.30% absolute accuracy drop. 
Moreover, comprehensive pruning can lead to a .55.0% pruning rate with only a 
.0.73% performance decrease. It gains a higher accuracy and pruning rate than EPFS-
B-. 0.8 and EPFS-F-.0.05, demonstrating the structured redundancy accounting for a 
large proportion in both width and depth aspects. 

MobileNetV3-Large/MobileNetV3-Small MobileNetV3 is the state-of-the-art 
model. It was obtained by neural architecture search (NAS) [77]. We implement 
the block pruning for MobileNetV3 to validate our method’s effectiveness and
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Table 5.3 Block pruning for MobileNetV3-Large/MobileNetV3-Small on CIFAR-10 

Model Top-1/+FT% Params(PR%) FLOPs(PR%) Speedup 

MobileNetV3-Large [26] .94.05 .4.18M .227.74M – 

EPFS-B-.0.2 .93.71/.93.81 .3.41M(.18.4%) .179.50M(.21.2%) . 1.26×
EPFS-B-.0.6 .93.83/.94.07 .2.95M(.29.4%) .140.03M(.38.5%) . 1.62×
EPFS-B-.0.8 .93.22/.93.32 .3.01M(.27.9%) .146.97M(.35.5%) . 1.55×
MobileNetV3-Small [26] .93.14 .2.93M .66.17M – 

EPFS-B-.0.2 .92.81/.92.90 .2.79M(.4.64%) .45.00M(.32.0%) . 1.47×
EPFS-B-.0.6 .92.79/.92.82 .2.55M(.12.9%) .38.18M(.42.3%) . 1.73×
EPFS-B-.0.8 .90.99/.91.13 .2.55M(.27.9%) .37.51M(.43.3%) . 1.77×

Table 5.4 Filter pruning for VGGNet on CIFAR-10 

Model Top-1/+FT% Params(PR%) FLOPs(PR%) Speedup 

VGGNet [55] .93.50 .14.98M .313.73M – 

PFEC [40] .93.40 .5.40(.64.0%) .206.00M(.34.3%) . 1.21×
EPFS-F-.0.001 .91.37/.93.61 .6.49M(.56.7%) .200.2M(.36.2%) . 1.57×
EPFS-F-.0.005 .92.57/.94.67 .4.41M(.69.1%) .156.87M(.47.5%) . 1.90×

generalization ability. Results are shown in Table 5.3. For MobileNetV3-Large, 
when . μ is set to . 0.6, 4 out of 11 blocks are pruned with .38.5% FLOPs pruned 
rate, and we achieve a .0.02% accuracy increase. For MobileNetV3-Small, when . μ
is set to . 0.6, two  out of seven blocks are pruned with .42.3% FLOPs pruned rate, 
and we achieve only .0.28% accuracy decrease. Finally, the pruned model has about 
.93% accuracy and only .36.91M FLOPs on CIFAR-10, resulting in new state-of-
the-art results. The experiments on MobileNetV3 demonstrate that the searched 
architectures by NAS still have redundancy, while our EPFS can efficiently reduce 
it. 

VGGNet For VGGNet, there are no blocks. Hence, we deploy filter pruning via 
EPFS on VGGNet, whose results are shown in Table 5.4. We set the hyperparameter 
. μ in .[0.001, 0.01], for  a small . μ that is needed to balance the .LM produced by 4736 
channels in VGGNet. When . μ is set to .0.005, 2022 out of 4736 channels are pruned, 
thus removing .47.5% FLOPs. Compared with PFEC [40], our method achieves a 
much better accuracy and compression rate performance (Fig. 5.3). 

We further evaluate the performance of EPFS on large-scale ImageNet and 
ILSVRC2012 in two networks, ResNet-18 and MobileNetV3-Small. ResNet-18 and 
MobileNetV3-Small have eight and six blocks to prune for the block pruning, 
respectively. We then implement filter pruning on ResNet-18. Moreover, we imple-
ment the comprehensive pruning on ResNet-18 and compare its performance with 
the ones using block/filter pruning alone. And . α is set to .1 × 10−4. 

ResNet-18 We also evaluated our method on ImageNet using ResNet-18. We train 
the pruned network with a mini-batch size of 128 for 60 epochs. As shown in 
Table 5.5, our method can obtain .1.41× and .1.86× speedup by setting . μ to .0.2
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Fig. 5.3 ImageNet ILSVRC2012 dataset 

Table 5.5 Filter/block/comprehensive pruning for ResNet-18 on ImageNet ILSVRC2012 

Model Top-1/+FT% Top-5/+FT% Params (PR%) FLOPs (PR%) Speed Up 

ResNet-18 [19] .69.75 .89.24 .10.67M .1.81B – 

MIL [9] –/.66.33 –/.86.94 – .1.18B(.34.6%) . 1.54×
SFP [21] –/.67.10 –/.87.78 – .1.05B(.41.8%) . 1.72×
FPGM [22] .67.78/.68.34 .88.01/.88.53 – .1.05B(.41.8%) . 1.72×
EPFS-B-.0.2 .67.91/.68.21 .87.80/.88.20 .8.13M(.23.8%) .1.28B(.29.3%) . 1.41×
EPFS-B-.0.6 .66.79/.67.53 .86.91/.87.83 .7.12M(.33.3%) .0.98B(.46.0%) . 1.86×
EPFS-F-.0.05 .67.21/.67.81 .87.12/.88.37 .6.98M(.34.6%) .1.05B(.42.1%) . 1.72×
EPFS-C-.0.6-.0.05 .67.41/.68.12 .87.30/.88.29 .5.65M(.47.0%) .0.81B(.55.2%) . 2.23×

and . 0.5 for block pruning, with the decrease of .1.56%/.1.04% and .2.23%/. 1.41%
in Top-1/Top-5 accuracy, respectively. For filter pruning, our EPFS obtained the 
.67.81% Top-1 accuracy with .34.6% FLOPs removed. Furthermore, we implement 
comprehensive pruning for ResNet-18 on ImageNet ILSVRC2012. We set the 
hyperparameter . μ as .0.6 and .0.05 for block and filter pruning, respectively. 
Our EPFS can obtain .68.12% Top-1 and .88.29% Top-5 accuracy with . 2.23×
acceleration, largely outperforming the state of the art. 

MobileNetV3-Small We implement the block pruning in MobileNetV3-Small on 
ImageNet ILSVRC2012 to validate the effectiveness of our method. Results are 
shown in Table 5.6. When . μ is set to . 0.2, three  out of seven blocks are pruned with 
.31.8% FLOPs pruned rate, and we achieve only .1.30% accuracy drop. And when .μ
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Table 5.6 Block pruning for MobileNetV3-Small on ImageNet ILSVRC2012 

Model Top-1/+FT% Top-5/+FT% Params (PR%) FLOPs (PR%) Speed Up 
MobileNetV3-
Small[26] .67.4 .87.1 .2.93M .66.17M – 

EPFS-B-.0.2 .64.82/.66.10 .85.45/.86.15 .1.92M(.34.5%) .45.12M(.31.8%) . 1.41×
EPFS-B-.0.6 .64.51/.65.81 .84.78/.85.91 .1.71M(.41.6%) .37.10M(.43.9%) . 1.86×

Table 5.7 Controlled block pruning experiments for different optimizers on CIFAR-10. . μ is set 
as . 0.6 and . 0.2 for MobileNetV3-Small and ResNet-20, respectively 

Model Top-1/+FT% Params(PR%) FLOPs(PR%) 

ResNet-20 [19] .92.17 .0.27M .40.55M 

EPFS-FISTA .91.51/.91.91 .0.20M(.24.6%) .30.83M(.24.0%) 

EPFS-SGD .91.51/.91.55 .0.21M(.22.2%) .32.34M(.20.2%) 

EPFS-LASSO .90.13/.90.99 .0.19M(.29.6%) .28.31M(.30.2%) 

MobileNetV3-Small .93.14 .2.93M .66.17M 

EPFS-FISTA .92.81/.92.90 .2.79M(.4.64%) .45.00M(.32.0%) 

EPFS-SGD .91.82/.91.88 .2.62M(.10.6%) .43.11M(.34.8%) 

EPFS-LASSO .90.12/.90.45 .2.37M(.19.1%) .38.12M(.42.4%) 

is set to . 0.6, f our  out of seven blocks are pruned with .41.6% FLOPs pruned rate, 
and we lead to .1.59% accuracy decrease and new state-of-the-art results. 

5.4.1.8 Ablation Study 

The effectiveness of our method comes from FISTA and center loss. To examine 
how they affect the final performance, we select ResNet-20 and MobileNetV3-
Large/MobileNetV3-Small for an ablation study. 

FISTA In our ablation, we use ResNet-20 and MobileNetV3-Small to prune 
networks based on FISTA, SGD, and LASSO. The results are presented in Table 5.7. 
Compared to SGD, FISTA achieves a higher accuracy and better pruning rate in 
the same experimental settings. Compared to LASSO, FISTA achieves a higher 
accuracy with a lower pruning rate. However, these results also demonstrate that 
the pruned network via FISTA achieves a better trade-off than LASSO. The SGD 
optimizer can provide better initial parameters to prune a network, but its fine-tuning 
performance is worse than FISTA. Generally, EPFS with FISTA can fast and steadily 
prune the network and achieve better accuracy than SGD and LASSO. As plotted 
in Fig. 5.4, . LM , . LS , and .LC can converge pretty well. .LM is updated on specific 
iterations via FISTA so that the loss curve descends discretely.
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(a) (b) 

(c) 

Fig. 5.4 Loss curve of LM , LS , and LC

Table 5.8 Controlled block pruning experiments for center loss on CIFAR-10. μ is set as 0.6. 
EPFS∗ denotes the control group without center loss 

Model Top-1/+FT% Params(PR%) FLOPs(PR%) 

MobileNetV3-Large [26] 94.05 4.18M 227.74M 

EPFS 93.83/94.07 2.95M(29.4%) 140.03M(38.5%) 

EPFS∗ 93.54/93.65 2.72M(22.2%) 128.76M(43.5%) 

MobileNetV3-Small [26] 93.14 2.93M 66.17M 

EPFS 92.79/92.82 2.55M(12.9%) 38.18M(42.3%) 

EPFS∗ 91.60/91.86 2.51M(14.3%) 29.48M(55.4%) 

Center Loss To find out whether the center loss works, we used MobileNetV3-
Large/MobileNetV3-Small to prune in two situations distinguished by the existence 
of center loss. The results are presented in Table 5.8. For MobileNetV3-Large, 
the EPFS without center loss got the decrease of 0.38% accuracy. Also, the EPFS 
without center loss achieves a decrease of 0.96% accuracy for MobileNetV3-Small. 
We conclude that center loss is vital in optimizing masks and stabilizing deep 
features.
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5.4.2 Toward Compact and Sparse CNNs via 
Expectation-Maximization 

Among structured pruning, filter pruning has attracted the most attention for its 
ability to slim the network, making it a thinner architecture without specific 
hardware support for accelerating. Similarly, block pruning can reduce the FLOPs 
of networks by shortening the network architecture. We produce a thinner and 
shorter architecture after pruning using the two methods. Most previous filter 
pruning methods [21, 22, 40] were based on the information of filters, such as 
the value of filter norm. They use the norm information to evaluate the filter and 
then hard prune or zero the filters which fail the criterion. Other methods are 
based on various techniques to zero out the filters, including generative adversarial 
learning [43], greedy search [46], Taylor expansion [42], etc.. These methods have 
achieved a high pruning rate with an acceptable performance drop. However, prior 
methods have three main areas for improvement. The first one is that filter pruning 
criterion based only on filter information remains insufficient, which resulted from 
the existence of nonlinear activation functions (e.g., rectifier linear unit (ReLU)), 
and other complex operations (e.g., batch normalization (BN)). For example, 
computing the convolution of vector .a = (0, 1)T by vector .b = (5, 1)T and 
.c = (1, 4)T , we have  .ReLU(a ∗ b) < ReLU(a ∗ c), while .||c||1 < ||b||1 and 
.||c||2 < ||b||2. The second one is that prior work devoted to zeroing the output 
of filters may cause permanent structured damage in training. For instance, a full-
precision mask is employed to sparse the output feature maps under the supervision 
of . l1 regularization while lacking an efficient backtracking mechanism. Once the 
damage is caused to structured, i.e., an unsatisfactory element is updated to zero, 
it will never be repaired for the sparsity supervision of .l1-norm. Moreover, fine-
tuning always demands zeroing out the pruning pattern for the damage caused in 
training. However, the fine-tuning process may cause additional redundancy for 
pruned architecture, which causes less sparsity of remaining filters and more or less 
performance drop for prior pruning methods. 

We focus on training a network with less redundancy and higher sparsity. The 
intention is to employ the expectation-maximization (EM) algorithm in the training 
process, as illustrated in Fig. 5.5. First, we analyze the distribution of filters in 
hyperspace, i.e., employ the Gaussian mixture models (GMM) to analyze the filters 
and EM algorithm to solve the GMM. The expectation step (E-step) is deployed to 
cluster the filters into the maximum likelihood distribution group. The maximization 
step (M-step) is employed in calculating the maximum likelihood distribution 
parameters and formulating a well-defined loss function to monitor the filters with 
similar distribution to converge to be consistent. Dynamic clustering method is 
implemented to reanalyze and re-cluster the filters to improve the distribution 
diversity. After a certain number of epochs, the distribution loss can converge to 
zero, which means the current network is identical to the pruned one. We fine-tune 
the clustered networks to optimal inter-cluster sparsity and then we can prune the 
network with the optimal weights.
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Fig. 5.5 Illustration of SPEM scheme. (a) The process includes warming up the EM algorithm, 
clustering the filters via the expectation step, averaging the output feature maps of every cluster, 
calculating the loss, optimizing parameters, and pruning the well-trained model. (b) Detailed 
illustration of training via EM, including clustering the filters with different distributions in 
hyperspace, averaging the output of the same cluster. For instance, the first layer’s 1-st and 2-
nd filters are clustered together. (c) Pruning two layers with filters of the same cluster sharing the 
consistent distribution. For instance, trim the filters sharing the same distribution to one such as 
the 2-nd filter in the first layer and 2-nd and 3-rd filters in the second layer. In particular, the 2-nd 
kernels of every filter in the second layer should be pruned by adding the second kernels to their 
corresponding 1-st ones 

5.4.2.1 Preliminaries 

As  shown in Fig. 5.5, we analyze the l-th layer, and we should categorize the filters 
into distributions. In modern CNNs, the BN is always followed after convolutions. 
For the consistency of pruned networks, we regard the possible subsequent BN and 
scaling layers as part of the convolutional layer. First, denote the output of the j -th 
filter in l-th layer as: 

xl
j = γ l

j

ΣCl−1

i=1 xl−1
i ∗ F l

i,j − πl
j

τ l
j

+ βl
j , (5.20) 

where Cl represents the number of channels in l-th layer. xl
j and xl−1

i are the 

j output feature map and i-th input feature map at the l-th layer. F l
i,j denotes 

the i-th kernel of j -th filter at l-th layer. ∗ denotes the convolutional operation. 
(πl

j , τ
l
j , β

l
j , γ

l
j ) are the corresponding BN parameters of j -th channel. Hence, the 

parameter set of j -th channel at i-th layer is formulated as: 

Wl
j =

{
F l
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j , τ l

j

}
. (5.21)
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To analyze the distribution, we propose the hypothesis that every filter in a 
pre-trained network approximately satisfies multidimensional Gaussian distribution, 
i.e., .F l

j ∼ N(μl
j , Σ

l
j ). And the filters satisfy the individual hypothesis for the 

linearity of convolution. The clustering process can be simplified by categorizing the 
filters with similar distributions into the same cluster. To simplify the computation, 
we reshape the matrix .F l

j ∈ R
kl×wl×Cl−1

to a vector .F l
j ∈ R

(kl ·wl ·Cl−1)×1 during 
cluster process, which also satisfies the individual hypothesis. 

5.4.2.2 Distribution-Aware Forward and Loss Function 

Based on the hypothesis above, the l-th layer satisfies the GMM. The pruning ratio 
can define the GMM’s dimension . Kl . Then we have: 

. Kl =< Cl × (1 − E) >

P(F l |Ol ) = αl
k

Kl
Σ

k=1

0(F l |Ol
k), (5.22) 

where . E is a pre-defined pruning ratio to supervise the clustering process. . < a >

represents rounding the float a to its integer approximation. . αl
k represents the ratio 

of k-th distribution accounting. . Cl is the dimension of l-th layer. Hence, . Kl is the 
number of clusters and the dimension of GMM. . Ol

k denote the parameter of k-th 
distribution, i.e., .(μl

k,Σ
l
k). . O

l denotes the assembly of . Ol
k . . F

l denotes the assembly 
of filters at l-th layer as well as the observed data. Then we introduce the hidden 
variable . ξ l

jk to formulate the maximum likelihood estimation (MLE) of GMM as: 

.ξ l
jk =

{
1, F l

j ∈ Dl
k

0, else
(5.23) 

In Eq. 5.23, . ξ l
jk is the hidden variable describing the affiliation between j -th filter 

and k-th cluster at l-th layer. . Dl
k denotes the k-th distribution at l-th layer. 

Based on the multi-dim Gaussian distribution hypothesis and the preliminaries 
above, we formulate MLE as: 
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(5.24) 

where .|Dl
k| = ΣCl

j=1 ξjk and .Cl = ΣKl

k=1 |Dl
k|. d represents the dimension of filter, 

i.e., .kl · wl · Cl−1. Next, we introduce the EM algorithm.
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Expectation step First, we formulate the . Q function as: 

. 
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where e denotes the current epoch number since we only cluster the filter once at the 
beginning of every epoch. Then compute the MLE of . ξ l

jk , i.e., .E(ξ l
jk|F l ,Ol ) via: 

. E(ξ l
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We denote .E(ξ l
jk|F l ,Ol ) as .ξ̂ l

jk for simplification. .ξ̂ l
jk represents the relativity 

between k-th and j -th filter. Then we can modify the Q function by substituting 
.Eξ l

jk by the estimation . ̂ξ l
jk , so we have:  
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(5.26) 

In this way, we finish the E-step. 

Then we find the coordinations of the max value of every row in . ̂ξ
l
. For instance, 

if . ̂ξ l
jk is the maximum one in j -th row, the j -th filter will be categorized into the 

k-th distribution cluster, as well as the corresponding BN parameter. Thus, we finish 
the clustering process by the E-step. Now the filters with similar distributions have 
been sorted out; we can define the forward and update the rule of filters. Take the 
k-th cluster, including the j -th filter at l-th layer, for example. We define the forward 
function as: 

.xl∗
k = 1

|Dl
k|

Σ

F l
j ∈Dl

k

ΣCl−1

i=1 xl−1∗
i ∗ F l

i,j − πl
j

τ l
j

+ βl
j . (5.27)
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Equation 5.27 represents the procedure in that we average the output of parameters 
in the same cluster. . xl∗

k represents the averaged output feature map of k-th cluster. 
Due to the distribution of filters in the same cluster being similar and the linearity 
of convolution, the outputs should also be similar. Consequently, the average 
conduction will not dramatically influence the network accuracy. In this way, we 
have formulated the forward propagation of the network successfully. 

Maximization step We formulate the optimization problem as: 

.Ol,e+1 = arg max
Ol
Q(Ol ,Ol,e) (5.28) 

As mentioned above, . Ol
k represents .(μl

k,Σ
l
k), and we can compute .μl

k,Σ
l
k and . αl

k

by enforcing their corresponding partial derivatives toward . Q to 0. Then we have: 
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To supervise filters in the same cluster to converge to the same distribution, the 
loss function of i-th layer during e-th epoch can be formulated as: 
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In Eqs. 5.32 and 5.33, we formulate the supervision to constrain the constraint of 
filters. We denote .Ll,e

D as . Ll
D for simplification. Likewise, the . LD of BN parameters 

can be solved according to single-dimensional GMM. Hence, we can formulate . LD

as: 

.LD =
LΣ

l=1

Ll
Dμ

+Ll
DΣ

, (5.34)
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where L denotes the number of total layers of the network. The total loss supervising 
the parameters is formulated as: 

.L = LS + λLD. (5.35) 

In Eq. 5.35, the  loss . L consists of . LS and . LD , i.e., cross-entropy and the distribution 
loss defined above. 

5.4.2.3 Optimization and Analysis 

We use the stochastic gradient descent (SGD) to optimize the . F l
j . Since we average 

some parameter output, the gradient derived from . LS should satisfy the chain rule. 
In contrast, the .LD comprises the parameters themselves, and the gradient can be 
computed straightforwardly. Hence, we formulate the optimization of the filter in 
k-th cluster as: 

.F
l,t+1
j ← F

l,t
j − ηAF

l,t
j , (5.36) 

where . η is the learning rate. Then the gradient .AF
l,t
j can be solved as: 

. AF
l,t
j = ∂L

∂F l
j

=∂LS

∂F l
j

+ λ
∂LD

∂F l
j

=
Kl
Σ

k=1

ˆξ l
jk

|Dl
k|

· ∂LS

∂xl∗
k

· ∂xl
j

∂F l
j

+ λ

(
∂Ll

Dμ

∂F l
j

+ δ · λ
∂Ll

Dσ

∂F l
j

)

. (5.37) 

Based on Eq. 5.37, all the gradients become solvable. And the optimization of . F l
j

becomes easy. Likewise, the parameter of BN can be solved similarly. Then the 
general train algorithm is shown in Algorithm 1. 

5.4.2.4 Filter Modification 

After training, the well-trained . W is outputted. The filters of k-th cluster follow the 
same distribution, so we can leave the first one and trim others. Then we use . F l

k to 
denote the left one. So the l-th layer parameter set after filter pruning is: 

. F l =
{
F l

k ∈ Dl
k|1 ≤ k ≤ Kl

}

(5.38)
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Algorithm 9: Algorithm of FEM-BP 

Input: Training data x0 = {
x0 
1 , · · ·  , x0 

m

}
and the corresponding ground truth labels, 

hyperparameter λ, learning rate η, and filter pruning ratio E. 
Output: The trained parameterW. 
Initialize W=Wbaseline and e = 1. Warm up the EM algorithm for rounds and get a set 
of

{
μ0,Σ0, α0

}

for e ≤ MaxEpoch do 
if Le−1 

D /= 0 then 
Compute and select the maximum expectation clusters from Eqs. 5.22 to 5.26. 
Compute the GMM distribution center via Eqs. 5.27 to 5.31. 

end if 
for t ≤ MaxIter do 

Forward the training data x0 = {
x0 
1 , · · ·  , x0 

m

}
via through the network. 

Calculate the network loss from Eqs. 5.32 to 5.35. 
Update W from Eqs. 5.36 to 5.37. 

end for 
end forObtain the sparse and compact W∗ from W 
return: W∗ 

As the output dimension of the l-th layer drops to .Kl =< Cl × (1 − E) > after 
pruning, the input dimension .(l + 1)-th layer changes correspondingly. In the same 
way, the input dimension of l-th layer changes to .Kl−1. Hence, we sum the kernels 
corresponding to the same input to make the dimension identical, as illustrated 
in Fig. 5.5c. Then k-th filter in l-th layer changes to .F l∗

k ∈ R
kl×wl×Kl−1

, and BN 
parameters obey the existence of their filters. 

5.4.2.5 Experiments 

Models and datasets We evaluated our SPEM method by conducting compre-
hensive experiments using eight convolutional neural networks on two datasets, 
i.e., ResNet-20/ResNet-32/ResNet-56 and VGGNet on CIFAR-10 [34] and ResNet-
18/ResNet-34/ResNet-50 [19] VGGNet on ImageNet ILSVRC2012 [35]. CIFAR-
10 is a dataset consisting of 50,000 training images and 10,000 test images with 
a size of  .32 × 32 from 10 classes. And ImageNet ILSVRC2012 is the large-scale 
dataset with 1.28M training images and 50,000 validation images with a size of 
.224 × 224 from 1000 classes. 

Implementations We implement the ResNets for experiments conducted on 
CIFAR-10 and according to [19] for experiments conducted on ImageNet 
ILSVRC2012. We implemented our training process on 1 NVIDIA 2080TI GPU 
with 11GB and 128G RAM for experiments conducted on CIFAR-10. And for 
experiments conducted on ImageNet ILSVRC2012, we implemented our training 
process on 3 NVIDIA TITANV GPUs with 12GB and 96GB RAM. The weight 
decay is set as 1 × 10−4, and momentum is 0.9. The hyperparameter λ is set as 
1× 10−4 and 5× 10−6 for experiments on CIFAR-10 and ImageNet ILSVRC2012,
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respectively. P.S., we use SPEM-E to present the setting of the pruning rate in 
experiments. 

We evaluate SPEM’s performance on CIFAR-10 using ResNet-20/ResNet-
32/ResNet-56 and VGGNet. The initial learning rate η is set to 0.1, and the learning 
strategy is to scale the η by a factor of 0.1 at the 100-th and 150-th epoch. The 
total number of epochs is 200. And batch size is 128. Table 5.9 shows the accuracy 
of the base and pruned model and their absolute disparity. FLOPs of the pruned 
model and the pruning rate of FLOPs are also shown. We only display the results 
with filter pruning rate set as 30% and 40% in Table 5.9, which can achieve about 
1 − (1 − 30%)2 = 51% and 1 − (1 − 40%)2 = 64% FLOPs pruning rate. Prior 
works mostly prune the FLOPs at a ratio from 30% to 65%. So we show these two 
kinds of results for fair comparison. More results with a filter pruning rate set from 
10% to 90% will be displayed in efficiency analysis. 

ResNets As  shown in Table  5.9, we present the experimental results with hyperpa-
rameter E set as 30% and 40%. Hence, the corresponding architecture after pruning 
is 11-22-45 and 10-19-38, respectively. Our SPEM achieved the state-of-the-art 
trade-off between acceleration and accuracy. For example, FPEM-40% achieves 
an 11.8% higher pruning rate on ResNet-20 compared to FPGM with fine-tuning, 
with only 0.08% Top-1 accuracy lower. Likewise, FPEM-30% achieves only a 1.5% 
lower pruning rate on ResNet-20 compared to FPGM while having 0.36% Top-1 
accuracy higher. To conclude, SPEM achieves a better trade-off between accuracy 
and acceleration than FPGM. Similarly, SPEM far outperforms MIL and SFP. 

On ResNet-32, situations are similar to the ones on ResNet-20. Compared to 
FPGM, SPEM-30% can achieve a comparable pruning rate with 0.19% accuracy 
higher. And SPEM-40% achieves 1.05% and 1.71% accuracy higher than MIL/SFP 
with muck higher pruning rate. In conclusion, SPEM advances the state of the art 
on pruning ResNet-32. 

On ResNet-56, we observe three phenomena: (1) FPEM-30% outperforms all 
the listed work with the lower pruning rate on Top-1 accuracy. (2) FPEM-40% 
outperforms C-SGD with a higher accuracy by 0.13% and higher pruning rate by 
13.3%. (3) FPEM achieves a higher Top-1 accuracy than the baseline as well as 
accelerating the base ResNet-56 by a factor of 2.11× and 2.83×, which indicates 
that SPEM can achieve an architecture with fewer redundancy as well as higher 
capability to extracting features. 

VGGNet We further validate our SPEM on the single-branch network such as 
VGGNet. Results are listed at the bottom of Table 5.9. As our work can prune 
without fine-tuning for the particular pruning method based on consistency, we 
selected the fine-tuned results of prior works for a fair comparison. Compared 
to PFEC, GAL, and FPGM, SPEM-30% can achieve a higher pruning rate with 
the Top-1 accuracy 1.01%, 0.99%, and 0.41% higher. Moreover, SPEM-40% can 
achieve 63.9% pruning rate, i.e., 2.77× acceleration, with only 0.05% accuracy 
drop, which is the best pruning result.
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Table 5.9 Results on CIFAR-10. The “Acc. ↓” is the accuracy drop between the pruned model and 
the baseline model; the smaller, the better. And the “FLOPs ↓” is the rate describing how much the 
pruned FLOPs count in the baseline model; the higher, the better 

Model Method Base Top-1% Pruned Top-1% Top-1 Acc. ↓ % FLOPs FLOPs ↓ % 

ResNet-20 MIL [9] – 91.68 – 2.60E7 20.3 

ResNet-20 SFP [21] 92.20 90.83 1.37 2.43E7 42.2 

ResNet-20 FPGM [22] 92.20 91.99 0.21 1.87E7 54.0 

ResNet-20 SPEM-30% 92.17 92.35 −0.18 1.92E7 52.5 
ResNet-20 SPEM-40% 92.17 91.91 0.26 1.38E7 65.8 
ResNet-32 MIL [9] 92.33 90.74 1.59 4.70E7 31.2 

ResNet-32 SFP [21] 92.63 92.08 0.55 4.03E7 41.5 

ResNet-32 FPGM [22] 92.63 92.82 −0.19 3.23E7 53.2 

ResNet-32 SPEM-30% 92.63 93.03 −0.43 3.26E7 52.6 
ResNet-32 SPEM-40% 92.63 92.79 −0.13 2.35E7 65.9 
ResNet-56 PFEC [40] 93.04 93.06 −0.02 9.09E7 27.6 

ResNet-56 CP [23] 92.80 91.80 1.00 – 50.0 

ResNet-56 SFP [21] 93.59 92.26 1.33 5.94E7 52.6 

ResNet-56 FPGM [22] 93.59 93.49 0.10 5.94E7 52.6 

ResNet-56 C-SGD [8] 93.39 93.44 −0.05 4.91E7 60.9 

ResNet-56 SPEM-30% 93.26 93.76 −0.50 5.94E7 52.7 
ResNet-56 SPEM-40% 93.26 93.57 −0.31 4.28E7 65.9 
VGGNet PFEC [40] 93.58 93.40 0.56 2.16E8 34.3 

VGGNet GAL [43] 93.96 93.42 0.54 1.80E8 45.2 

VGGNet FPGM [22] 93.58 94.00 −0.42 – 34.2 

VGGNet SPEM-30% 93.96 94.41 −0.45 1.54E8 50.9 
VGGNet SPEM-40% 93.96 93.91 0.05 1.13E8 63.9 

SPEM is further evaluated on ImageNet ILSVRC2012 with ResNet-18/ResNet-
34/ResNet-50 and VGGNet. We train the pruning network for 100 epochs with an 
initial learning rate η set as 0.1 and scaled by a factor of 0.1 at the 40-th, 60-th, 
and 80-th epoch. We implement the process on three GPUs with a mini-batch size 
of 128 for ResNet-18/ResNet-34 and VGGNet and 64 for ResNet-50, respectively. 
We plan to prune about 40%–60% FLOPs for models implemented on ImageNet 
ILSVRC2012. Hence, we will set E as 30% and 40$ for comparison. 

ResNets As shown in Table 5.10, SPEM outperforms the prior works on ILSVRC-
2012 dataset again. On ResNet-18, SPEM achieves the higher inference speedup, 
but its Top-1 accuracy exceeds by 1.99% and 1.22%, respectively. Compared to 
FPGM, SPEM-40% achieves higher accuracy by 21.1% with only an accuracy lower 
by 0.09%.



156 5 Network Pruning

Ta
bl
e 
5.
10
 
R
es
ul
t o

n 
Im

ag
eN

et
 I
L
SV

R
C
20
12
 

M
od
el

M
et
ho
d 

B
as
e 

To
p-
1%

 
Pr
un
ed
 

To
p-
1%

 
To

p-
1 

A
cc
.↓

%
 

B
as
e 

To
p-
5%

 
Pr
un
ed
 

To
p-
5%

 
To

p-
5 

A
cc
.↓

%
 

FL
O
Ps
 

↓ %
 

R
es
N
et
-1
8

M
IL
 [
9]

69
.9
8

66
.3
3

3.
65

89
.2
4

86
.9
4

2.
30

34
.6
 

R
es
N
et
-1
8

SF
P 
[2
1]

70
.2
8

67
.1
0

3.
18

89
.6
3

87
.7
8

1.
85

41
.8
 

R
es
N
et
-1
8

FP
G
M
 [
22
]

70
.2
8

68
.4
1

1.
87

89
.6
3

88
.4
8

1.
15

41
.8
 

R
es
N
et
-1
8

SP
E
M
-4
0%

69
.7
0

68
.3
2

1.
58

89
.3
9

88
.1
6

1.
22

62
.9
 

R
es
N
et
-3
4

SF
P[
21

]
73
.9
2

71
.8
3

2.
09

91
.6
2

90
.3
3

1.
29

41
.1
 

R
es
N
et
-3
4

FP
G
M
[2
2]

73
.9
2

72
.6
3

1.
29

91
.6
2

91
.0
8

0.
54

41
.1
 

R
es
N
et
-3
4

SP
E
M
-4
0%

73
.9
2

91
.6
2 

R
es
N
et
-5
0

T
hi
N
et
[4
6]

72
.8
8

72
.0
4

0.
84

91
.1
4

90
.6
7

0.
47

36
.8
 

R
es
N
et
-5
0

G
D
P[
42

]
75
.1
3

71
.8
9

1.
39

92
.3
0

90
.7
1

1.
59

51
.3
 

R
es
N
et
-5
0

SF
P[
21

]
76
.1
5

74
.6
1

1.
54

92
.8
7

92
.0
6

0.
81

41
.8
 

R
es
N
et
-5
0

FP
G
M
[2
2]

76
.1
5

74
.8
3

1.
32

92
.8
7

92
.3
2

0.
55

53
.5
 

R
es
N
et
-5
0

C
-S
G
D
[8
]

75
.3
3

74
.9
3

0.
40

92
.5
6

90
.2
7

0.
29

46
.2
 

R
es
N
et
-5
0

M
et
aP
ru
ni
ng
[8
]

76
.6
0

75
.4
0

1.
20

-
-

-
51
.2
 

R
es
N
et
-5
0

SP
E
M
-3
0%

75
.2
2

74
.9
6

0.
26

92
.4
1

91
.9
8

0.
43

50
.2
 

V
G
G
N
et

SF
P[
21

]
73
.9
2

71
.8
3

2.
09

91
.6
2

90
.3
3

1.
29

41
.1
 

V
G
G
N
et

FP
G
M
[2
2]

73
.9
2

72
.6
3

1.
29

91
.6
2

91
.0
8

0.
54

41
.1
 

V
G
G
N
et

SP
E
M
-4
0%

73
.9
2

91
.6
2



5.4 Network Pruning 157

5.4.2.6 Efficiency Analysis 

Model Sparsity with Pruning Rate Inspired by the linearity of convolution, the 
amount of feature information extracted by convolutions relies much on the sparsity 
of filters. Hence, we define the sparsity of the filter . F l

j as .||F l
j − F l

GM||2, where 
.F l

GM is the geometric median of filters at l-th layer as defined in [22]. We plot the 
layer-wise sparsity of ResNet-20, ResNet-32, ResNet-56, and VGGNet in Fig. 5.6. 
For example, we can observe that the sparsity of pruned ResNet-32 with a pruning 
rate set from .10% to .40% can achieve comparable or higher layer-wise sparsity than 
baseline ResNet-32, which can subtly clarify the reason why the pruned ResNet-32 
via SPEM can achieve even higher accuracy as well as satisfying acceleration rate 
compared to the baseline. In addition, we analyze the source of sparsity. It is derived 
from the strong constraint set in Eq. 5.27. For the outputs of filters in one cluster to 
be averaged, one cluster can only extract the same amount of features as just one 
filter. Then the gradient derived from cross-entropy forces the cluster to optimize 
for a sparser distribution. Hence, our main motivation can be proved theoretically 
and experimentally. 

Another phenomenon that should be paid attention to is that the deeper network 
gains lower sparsity. Hence, the deeper network can accept the higher pruning 
rate while maintaining accuracy. For instance, pruning .40% filters on ResNet-
20 and ResNet-32 will achieve .0.26% and .−0.13% accuracy drop. This subtly 
demonstrates our viewpoint. Moreover, based on this viewpoint, we can further 
consider pruning the blocks and filtering for deep redundant networks such as 
ResNets and MoblieNets. 

Joint Pruning Cooperated with Block Pruning Inspired by the GAL [43] and 
the model sparsity analysis, we conduct some additional experiments on pruning 
cooperated with block pruning set as [43] to analyze the efficiency on ResNet-56. 
As illustrated in Table 5.11, SPEM can work jointly with the block pruning methods. 
In particular, training via SPEM can effectively substitute the fine-tuning process. 
SPEM+GAL can achieve 3.75× and 4.69× theoretical acceleration rates. 

5.4.3 Pruning Multi-view Stereo Net for Efficient 3D 
Reconstruction 

Recent improvements in compatibility enable a fast 3D reconstruction with better 
accuracy and completeness, which have a wide range of applications, ranging from 
mapping, photogrammetry, autonomous driving, and robot planning to augmented 
reality and virtual reality, among many other scenarios [31, 48, 69]. To model a 
3D space, depth information has to be inferred when reconstructing 3D scenarios. 
The most common approaches for depth inference are based on cameras with depth 
sensors such as Kinect, which restricts the accessibility for the outdoor environment.
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(a) (b) 

(c) (d) 

Fig. 5.6 Layer-wise sparsity analysis on various models and accuracy analysis. (a) Sparsity  
analysis on ResNet-20. (b) Sparsity analysis on ResNet-32. (c) Sparsity analysis on ResNet-56. 
(d) Accuracy of pruned model 

Table 5.11 Comparison on GAL, SPEM, and SPEM+GAL. Accele. Denotes the theoretical 
acceleration rate 

Method Base Top-1% Pruned Top-1% Top-1 Acc. ↓ % FLOPs FLOPs ↓ % Accele. 

SPEM-30% 93.26 93.76 −0.50 5.94E7 52.7 2.09× 
GAL-0.6 [43] 93.26 93.38 −0.12 8.21E7 37.6 1.60× 
SPEM-
30%+GAL-
0.6 
[43] 

93.26 93.26 0.00 3.35E7 73.3 3.75× 

SPEM-40% 93.26 93.57 −0.31 4.28E7 65.9 2.93× 
SPEM-
40%+GAL-
0.6 
[43] 

93.26 93.07 0.19 2.80E7 78.7 4.69×
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Also, such methods usually exert other forms of influence on the surface, which 
may cause other problems. In such a scenario, reconstructing from visible images is 
a practical choice. The stereo reconstruction problem was initially solved based on 
two visible images, while real-time multi-view processing could be more practical 
due to high computational cost [31, 48]. 

We are particularly interested in multi-view stereo (MVS). It is a more popular 
option in applications since more than two views improve accuracy and complete-
ness, especially in occlusion cases. In terms of application scenarios, if multiple 
views are from a single moving camera and the camera captures an object from 
different views, a slightly different scene, or a moving object over time, then the 
sequence of multi-view stereo settings can be used to solve the problems of 3D 
reconstruction [12], structure from motion [61, 65, 66], visual SLAM [38] and visual 
odometry [25], and so on. 

5.4.3.1 Channel Pruning for 2D CNNs 

To speed up the reconstruction, we introduce PruMVS [67], which adds a soft mask 
to the 2D CNNs for feature extraction to prune the redundant channels and train a 
dense encoder-decoder structure to help prune the 3D CNNs. We first focus on filter 
pruning (a.k.a., channel pruning) and aim to zero out some unnecessary filters by 
learning a soft mask. More specifically, we warp masks on each channel on the 2D 
part to mark the importance of the according to filter (Fig. 5.7b). The approach has 
several advantages. Firstly, such a technique could significantly reduce the model’s 
size by exploiting the redundancy among filters since it has been observed that some 
filters are unimportant in a common CNN structure [43, 63]. Secondly, without 
customizing other structures in the network, pruning filters can handle many other 
similar MVS learning models with similar architectures. Lastly, we can produce 
desired redundancy by adding regularization terms on loss according to the mask 
and training the network. The value of the related mask could indicate the less 
important information. By eliminating the channel of the 2D network, the data fed 
into the 3D part would be significantly reduced. 

5.4.3.2 Optimization Based on a Mixed Back Propagation 

The soft mask removes the corresponding channels and filters for 2D CNNs. We 
define the weights in 2D CNNs as . W, the soft mask as . m, and . λ as the parameter 
controlling L1 regularization term and denote the loss function as .L(W,m), which 
will be detailed in the next section. The model parameters . W, . m are learned by 
solving: 

. argmin
W,m

L(W,m) + λ||m||1. (5.39)
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Fig. 5.7 PruMVS overview. (a) is a general description of our network, (b) corresponds to the 
mask, and (c) corresponds to refinement in (a). Detailed description: (a) The architecture of 
PruMVS. Reference and source images go through an eight-layer 2D CNN with a mask attached to 
the last layer to generate feature maps and sort out the redundant filters. Differentiable homography 
is used to warp the 2D images to 3D volumes and operate a variance-based algorithm to aggregate 
all the volumes into a single cost volume. The output depth map is generated from a 3D CNN 
similar to U-Net. (b) The illustration of channel pruning. The yellow channel in the figure denotes 
the redundant filter, of which the corresponding mask would be trained to zero. (c) Depth map 
refinement 

Our pruning approach is simple yet principled [1, 2], and we just use . m as a soft 
mask added on each filter as: 

.F l+1
h = mgf (

Σ

g

F l
g ∗Wl

h,g), (5.40) 

where . F l
g and .F l+1

h are the .h-th input feature map and the .g-th output feature 
map at the .l-th layer. . ∗ and .f (·) refer to the convolutional operator and activation, 
respectively. The mask . m can be learned end-to-end in the mixed backpropagation 
process, which will be detailed later. In particular, the fast iterative shrinkage-
thresholding algorithm (FISTA) [3, 43] is used to optimize . m, which leads to a 
sparse solution of the soft mask and is built based on the L1-norm minimization. 

Stochastic gradient descent (SGD) or RMSprop can be directly introduced to 
solve the optimization problem in Eq. 5.39. However, they are less efficient in 
convergence, and by using RMSprop, we have observed non-convergence scaling 
factors in the soft mask . m. Also, most factors are of the same order of magnitude, 
i.e., which does not create enough sparsity in the soft mask layer. Therefore, we need 
a threshold to remove the corresponding structures whose scaling factors are lower 
than the threshold. By doing so, the accuracy of the pruned network is significantly 
lower than the baseline. To solve this problem, we use the proximal operator,
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a.k.a., the proximal gradient optimization, where the SGD and the constraint are 
updated separately [1, 2]. We introduce FISTA into the model to effectively solve 
the optimization via two alternating steps updating . W and . m. 

1. Fixing . m, we use RMSprop to update . W by descending its gradient. 
2. Fixing . W, then . m is updated by FISTA with the initialization of .α(1) = 1: 

.n(k+1) = m(k) + α(k) − 1

α(k+1)

(
m(k) − m(k−1)

)
, (5.41) 

.α(k+1) = 1

2

(

1 +
/
1 + 4α2

(k)

)

, (5.42) 

.m(k+1) = proxγ(k+1)λ||·||1

(

n(k+1) − γ(k+1)
∂L(·,n(k+1))

∂n(k+1)

)

, (5.43) 

where .γ(k+1) is the learning rate at the iteration .k + 1 and . proxγ(k+1)λ||·||1(xi ) =
sign(xi ) ◦ (|xi | − γ(k+1)λ)+. We can learn desirable zero and sparsity in soft mask 
. m with an appropriate learning rate (Fig. 5.8). 

5.4.3.3 3D CNN Pruning 

As mentioned in our motivation, 3D CNNs are vital to an MVS system. For 
a UNet-like architecture, simply pruning channels based on existing pruning 
techniques are impractical for 3D CNN architecture, considering skip connections, 
and deconvolutions prevent us from using the most regular pruning strategies. 

We have made several attempts to prune the 3D CNNs by adding soft masks, 
a frequently used method, yet the result could have been better. The many soft 
masks trained are of the same magnitude and don’t show a specific pattern, i.e., 
zeroing out a specific channel. When a threshold filters out channels, the resulting 
reconstruction quality slumps significantly. This is likely caused by the fact that 
(1) the 3D channels in the 3D CNNs relate to each other closely and (2) the 3D 
CNNs are of the UNet-like architecture, which contains many skip connections 
and deconvolutions. The feature maps from the decoder are combined with those 
from the encoder sub-network via skip connections. Therefore, removing a specific 
feature map may lead to the information being lost in both the decoder and encoder. 

To address it, we propose a novel pruning technique by training a hierarchical 
architecture and simply adopting its more minor part in our proposed PruMVS 
model. As shown in the network architecture (see Fig. 5.9), we add nested and dense 
skip connections, which is similar to U-Net++ [76], a deeply supervised encoder-
decoder network where the encoder and decoder sub-networks are connected 
through a series of nested, dense skip pathways. When trained in deep supervision, 
the convolutional layers we add to the skip pathway can be pruned; thus, only level 
0 is left. By adding convolutional blocks in the skipping connections and training
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Fig. 5.8 Illustration of different levels in the 3D nested U-Net. The first level consists of two 
convolutional operations, while the other levels are shown in the picture above. Every level has an 
output, and we pick everyone to evaluate the final result, which helps pruning 

the extensive network altogether, the model integrates features of different levels, 
and at last, we prune all the upper levels out, which helps prevent the interference 
of the connections between levels. 

Every level could be regarded as a smaller version of the higher level and could 
generate its result. The re-designed skip pathways aim at reducing the semantic 
gap between the feature maps of the encoder and decoder sub-networks. The 
underlying hypothesis behind our architecture is that the model can more effectively 
capture fine-grained details of the foreground objects when high-resolution feature 
maps from the encoder network are gradually enriched before fusion with the 
corresponding semantically rich feature maps from the decoder network. Moreover, 
the network would have a more accessible learning task when the feature maps from 
the decoder and encoder networks are semantically similar. Higher-level results 
could help lower-level weights to train better through back propagation, i.e., to 
improve gradient flow through the skip connections. To help training converge more 
efficiently and prevent the deep model from gradients vanishing or exploding, we
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Fig. 5.9 A hierarchal architecture for 3D regularization. The 3D network shapes like a nested U-
Net and has four levels. It consists of an encoder and decoder whose sub-network is connected by 
skip pathways represented by arrows 

also adopt the deep supervision idea [37] by adding loss from different levels’ 
results. 

Now, we formulate the volume as follows: 

.V ij =

⎧
⎪⎨

⎪⎩

C2(V
i−1,j ), j = 0

C1(V
i,0), j = 1

Σj−1
0 C1(V

i,k) + D(V i+1,j−1), j > 1
(5.44) 

.V ij denotes the volume at the location .(i, j) where i indexes the de-convolutional 
layer along the encoder; j denotes the sequential volume at the same ith level. . C2(·)
is a two-stride convolutional operation with a batch normalization to downsample 
the input, and .C1(·) is a one-stride convolutional layer. .D(·) denotes an up-
sampling layer through a two-stride de-convolutional operation. Figure 5.9 shows 
the overview of the proposed architecture. To be more specific, volumes at level 
.j = 0 only receive an input from the previous downsampling convolutional layer, 
and volumes at level .j = 1 receive an input from a common convolutional layer. 
Volumes at level .j > 1 receive two inputs from the neighboring two volumes from 
the .j − 1 level, generating one from the convolutional layer and the other from the 
up-sampling de-convolutional operation. We obtain the output of .j −1 level volume 
by adding these two inputs.
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Our new investigation shows that training a hierarchical architecture improves 
the performance of a low-level network compared to simply training a low-level 
network. As a result, a lower-level network can obtain performance close to the 
whole net with a smaller model size. The completeness of the proposed network is 
better than other networks, mainly because the redundant parameters are pruned out, 
and only the nonredundant parameters remain. Due to the reduction of parameters, 
the model is not only more efficient but also more generalizable. The result is shown 
in the Experiments section. 

5.4.3.4 Loss Function 

Following MVSNet [69], we let .pvalid denote the set that contains valid ground 
truth pixels, .d(p) denote the ground truth depth value of pixel p, .di(p) denote the 
initial depth estimation, and .dr(p) denote the refined depth estimation, and then we 
define the loss function as: 

.Loss =
Σ

p∈pvalid

||d(p) − d̂i (p)||
' '' '

Loss0

+σ · ||d(p) − d̂r (p)||
' '' '

Loss1

(5.45) 

Here Loss0 came from the distance between the initial depth estimation and 
the ground truth depth, and Loss1 came from the distance between refined depth 
estimation and the ground truth depth. . σ leverages the two losses in the loss 
function. The total loss function will be modified in the following due to pruning. 

Taking advantage of the nested skip connections, all the semantic level creates 
feature maps of the same size. As we enabled deep supervision in the new 
architecture, results from different levels will all be considered in the loss function. 
Thus, we obtain a new loss function as follows: 

.L =
3Σ

l=0

Σ

p∈pvalid

||d(p) − d̂
j
i (p)||l

' '' '
Loss0

+σ · ||d(p) − d̂
j
r (p)||l' '' '

Loss1

(5.46) 

The parameter . σ is set to . 1.0 in the experiment. l denotes the level of the network. 
The model can infer two modes through deep supervision: improved performance 
by taking the average of different level outputs and a pruned mode by adopting the 
single network level. 

5.4.3.5 Implementation of 2D/3D MVS Net 

Feature extraction The input . Ii includes selected source images and a reference 
image. An eight-layer 2D CNN is applied, where the strides of layers 3 and 6 are 
set to 2 to divide the feature pyramids into three scales. Two convolutional layers
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are applied to extract the higher-level image representation within each scale. Each 
convolutional layer is followed by a rectified linear unit (ReLU) except for the last 
layer. Also, similar to common matching tasks, parameters are shared among all 
feature pyramids for efficiency. The outputs of the 2D CNNs are N 32-channel 
feature maps downsized by four in each dimension compared with input images. 
Compared with simply performing dense matching on original images, the extracted 
feature maps significantly boost the reconstruction quality. 

Finally, we will obtain N feature maps according to N different views, each 
of which is the size of .H4 × W

4 × C, where H and W is the height and width 
of the input image and C indicates the number of channels. It is noteworthy 
that though the image frame is downsized after feature extraction, the original 
neighboring information of each remaining pixel has already been encoded into 
the 32-channel pixel descriptor, which prevents dense matching from losing helpful 
context information. 

2D to 3D Next, a 3D volume is built from the extracted feature maps and input 
cameras. While previous works [32] divide the space using regular grids, for our task 
of depth map inference, we construct the cost volume upon the reference viewing 
frustum. All feature maps are warped into different frontal-parallel planes of the 
reference camera to form N feature volumes {Vi}N 

i=1. 
In the 3D vision, a homography matrix H is used to relate a plane from one 

camera view into another and is subject to the rotation and translation of both views. 
As captured by a perspective transformation, 3D points are mapped onto image 
planes using the transformation matrix as x(i) = K[R|T]X, where K represents the 
camera intrinsic, R is the rotation matrix, and T denotes the translation. Formally, 
let {Ki ,Ri ,Ti} be the camera parameters of image ith and ni be the principal axis of 
the reference camera, and the homography for the ith feature map and the reference 
feature map at depth d could be expressed as a 3 × 3 matrix  Hi (d) [69]: 

.Hi (d) = Ki · Ri · (I − (t1 − ti ) · nT
1

d
) · RT

1 · KT
1 (5.47) 

Without loss of generality, the homography for reference feature map F1 itself is 
a 3 × 3 identity matrix. The warping process is similar to that of the classical plane 
sweeping stereo [7], except that the differentiable bilinear interpolation is used to 
sample pixels from feature maps{Fi}N 

i=1 rather than images {Ii}N 
i=1. As the core step 

to bridge the 2D feature extraction and the 3D regularized networks, the warping 
operation is implemented differently, enabling end-to-end training. 

Cost volume As we obtain the feature volumes Vi(d) of multiple angles, including 
reference image and source images numbered i, the next step is to fuse the multiple 
features into one cost volume in the 3D space, representing the extent of which each 
point in the 3D space matches among different angles. Note that the size of each 
feature volume is W 

4 × H 
4 × D × C, where H, W, D, C are the input image height, 

width, depth sample number, and the channel number of the feature map. The cost 
volume should be of the same size to represent every point in the 3D space. We
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then adapt variance among all feature volumes and define the cost volume as such 
variance, i.e.: 

.C = Var(V) =
ΣN

i=1(Vi − V)2

N
(5.48) 

where N means the number of feature volumes, the same as the number of input 
images. As the squared deviation of a random variable from its mean, the variance 
measures the extent to which the value deviated from their mean, i.e., a point 
holding a relatively low variance shows that its value matches from various angles, 
explaining that the point in the 3D space is more probable to exist as a frontier in the 
real world since it also shows that various viewing rays should intersect at that point. 
On the other hand, a point having a high variance indicates that it is less probable to 
represent a point in the real-world 3D space. 

Regularization As shown in some other research, particularly researches involving 
learning approaches [27, 32, 33], the raw cost volume generated by directly 
matching between different angles could be noisy and thus need refinement. Such 
a step is also known as cost volume regularization. It should consider smoothness 
constraints and depth information to refine the cost-volume point representation. 

As described above, the cost volume C represents the matching extent of each 
3D point. Therefore, the regularization step takes in cost volume C, which contains 
complete information of the agreement on each point from various angles, refines 
it, and outputs the probability volume P, which indicates the probability distribution 
for the depth inference, i.e., the probability of each point as the boundary of the 3D 
object in the real world. 

Notably, such a process is usually accomplished by a 3D CNN regularization 
network, which we replaced with the multi-scale 3D CNNs in our proposed 
architecture, as shown in Fig. 5.7a. 

Refinement While the depth map retrieved from the probability volume is a 
qualified output, the reconstruction boundaries may suffer from over-smoothing due 
to the large receptive field involved in the regularization, similar to the problems 
in semantic segmentation and image matting. Since the reference image contains 
boundary cues, the initial depth map is refined using the reference image as a 
supplement whose boundary information is complete, as shown in Fig. 5.7c. 

The initial depth map and the resized reference image are concatenated as a 4-
channel input. This is then passed through three 32-channel 2D convolutional layers 
and one 1-channel convolutional layer to learn the depth residual. The initial depth 
map is then added back to generate the refined depth map. Also, to prevent bias at 
a particular depth scale, we pre-scale the initial depth magnitude to the range [0, 1] 
and convert it back after the refinement. The last layer does not contain the BN layer 
and the ReLU unit to learn the negative residual. 

Filtering and depth map fusion The original depth maps are inaccurate, and those 
outliers must be filtered out. Photometric and geometric consistency are the criteria
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we propose to filter out the outliers. Photometric consistency measures the matching 
quality, while geometric consistency measures the consistency of the maps among 
various views, and the pixels should be visible in at least three viewpoints. As 
is shown in the network, cost volume will go through a softmax layer to get a 
probability volume, and we filter out the pixel whose probability is lower than a 
threshold of 0.8. 

Referring to many other MVS approaches, we choose to operate a fusion step to 
aggregate every depth map, which use different reference images in various views 
to decrease the error of the reconstructed model. We use the fusion algorithm of 
Gipuma [11] in our model, which differs from [69], and obtain different results in 
our comparison. 

The mismatches mainly occur in untextured and shaded areas outside the 
camera’s viewing frustum. Many of these cases can be found because depth maps 
estimated from different viewpoints differ. To detect those mismatches, we again 
declare that each image, in turn, the reference view, converts its depth map into a 
dense set of 3D points and re-projects them onto each of the N − 1 other views, 
producing a 2D coordinate pi and a parallax d̂i for each view. If d̂i is equal to the 
relating di , which is kept in the depth map, the match is considered to be correct with 
a threshold fε which is based on the scale of the reconstructed figure. The depth is 
accepted if consistent in more than fε . The parameters that filter out some pixels are 
unreliable and must be set under a trade-off between accuracy and completeness. 
Different applications require different settings. In our work, we apply the same 
setting on every model to estimate their performance impartially. 

5.4.3.6 Performance Comparison 

To show how our proposed PruMVS balance the reconstruction performance and the 
model size pretty well, we examine our approach on the evaluation set consisting of 
22 scenes and compare it with the other state-of-the-art methods, including not only 
the baseline MVSNet [69] but also Gipuma [11], Camp [6], Tola [60], SurfaceNet 
[32], and Furu [10] which is called PMVS in [69]. 

To ensure the methods are all evaluated similarly, we utilized the same depth 
fusion algorithm with the same settings on our network. For other models that 
reconstruct from grids and point clouds with only steps similar to depth fusion and 
filtering, we experiment on the best settings they proposed with their techniques, 
which is fair to them. Notably, due to the variety of 3D reconstruction approaches 
(point cloud, depth map, grids, voxels), such post-processing and refinement steps 
(fusion and filtering) may vary significantly. But we have controlled varying factors 
as much as possible in the evaluation. 

Table 5.12 compares the quantitative evaluations: PruMVS maintains good 
accuracy and completeness, which is comparable to the best ones. Even the smallest 
model outperforms most other approaches, and the 32-channel level 0 model 
obtained the best completeness. It is noticeable that the objective of our model is 
to accelerate the reconstruction, which is very useful for practical applications.
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Table 5.12 Comparison with 
other methods 

Methods Error Comp.(err) Overall(err) 

Furu (PMVS) 0.613 0.941 0.777 

Gipuma 0.283 0.873 0.578 

Camp 0.834 0.554 0.694 

Tola 0.342 1.190 0.766 

Colmap 0.400 0.664 0.532 

SurfaceNet 0.454 1.354 0.904 

MVSNet 0.569 0.609 0.589 

PruMVS level 0 0.495 0.433 0.464 
PruMVS level 0 16C 0.510 0.451 0.481 

Fig. 5.10 Qualitative comparison to ground truth in DTU dataset and the reconstruction model 
generated by other networks 

Figure 5.10 summarizes the qualitative comparison against the ground truth and 
the baseline MVSNet and Furu, SurfaceNet, and Tola. 

5.4.4 Cogradient Descent for Dependable Learning 

5.4.4.1 Gradient Descent 

A basic bilinear optimization problem attempts to optimize the following objective 
function as: 

. argmin
A,x

G(A, x) = ||b − Ax||22 + λ||x||1 + R(A), (5.49) 

where .b ∈ R
M×1 is an observation that can be characterized by .A ∈ R

M×N and 
.x ∈ R

N×1. .R(·) represents the regularization, typically the . l1 or . l2 norm. . ||b−Ax||22
can be replaced by any function with the form . Ax. Bilinear models generally have 
one variable with a sparsity constraint such as . l1 regularization with the aim of 
avoiding overfitting.
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Assuming . A and . x are independent, the conventional gradient descent method can 
be used to solve the bilinear optimization problem as: 

.At+1 = At + η1
∂G

∂A
, (5.50) 

where 

.(
∂G

∂A
)T = xt (Axt − b)T = xt Ĝ(A, x). (5.51) 

The function . Ĝ is defined by considering the bilinear optimization problem as in 
Eq. 5.49, and we have: 

.Ĝ(A, x) = (Axt − b)T . (5.52) 

Equation 5.51 shows that the gradient for . A tends to vanish, when . x approaches 
zero due to the sparsity regularization term .||x||1. Although it has a chance to 
be corrected in some tasks, more likely, the update will cause an asynchronous 
convergence. Note that for simplicity, the regularization term on A is not considered. 
Similarly, for . x, we have:  

.xt+1 = xt + η2
∂G

∂x
. (5.53) 

. η1 and . η2 are the learning rates. The conventional gradient descent algorithm for 
bilinear models iteratively optimizes one variable while keeping the other fixed. This 
unfortunately ignores the relationship of the two hidden variables in optimization. 

5.4.4.2 Cogradient Descent for Dependable Learning 

We consider the problem from a new perspective such that . A and . x are coupled. 
Firstly, based on the chain rule [52] and its notations, we have: 

. x̂t+1
j = xt

j + η2

(
∂G

∂xj

+ T r

((
∂G

∂A

)T
∂A
∂xj

))

, (5.54) 

where .( ∂G
∂A )T = xt Ĝ(A, x) as shown in Eq. 5.51. .T r(·) represents the trace of 

the matrix, which means that each element in the matrix . ∂G
∂xj

adds the trace of the 
corresponding matrix related to . xj . Considering: 

.
∂G

∂A
= AxtxT ,t − bxT ,t , (5.55)
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we have: 

.

∂G(A)

∂xj

= T r[(AxtxT ,t − bxT ,t )T
∂A
∂xj

]

= T r[((Axt − b)xT ,t )T ] ∂A
∂xj

= T r[xt Ĝ
∂A
∂xj

],

(5.56) 

where .Ĝ = (Axt − b)T = [ĝ1, . . . , ĝM ]. Supposing that . Ai and . xj are independent 
when .i /= j , we have:  

.
∂A
∂xj

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . .
∂A1j
∂xj

. . . 0

. . .

. . .

. . .

0 . . .
∂AMj

∂xj
. . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.57) 

and: 

.xĜ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1ĝ1 . . . x1ĝj . . . x1ĝM

. . .

. . .

. . .

xN ĝ1 . . . xN ĝj . . . xN ĝM

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (5.58) 

Combining Eqs. 5.57 and 5.58, we have:  

.xĜ
∂A
∂xj

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . . x1
ΣM

i ĝi
∂Aij

∂xj
. . . 0

. . .

. . .

. . .

0 . . . xN

ΣM
i ĝi

∂Aij

∂xj
. . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.59) 

The trace of Eq. 5.59 is then calculated by: 

.T r[xt Ĝ
∂A
∂xj

] = xj

MΣ

i

ĝi

∂Aij

∂xj

. (5.60)
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Remembering that .xt+1 = xt + η2
∂G
∂x , CoGD is established by combining Eqs. 5.54 

and 5.60: 

.

x̂t+1 = xt+1 + η2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ΣM
i ĝi

∂Ai1
∂x1

.

.

.
ΣM

i ĝi
∂AiN

∂xN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

O

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

.

.

.

xN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= xt+1 + η2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

< Ĝ, ∂A1
∂x1

>

.

.

.

< Ĝ,
∂AN

∂xN
>

⎤

⎥
⎥
⎥
⎥
⎥
⎦

O

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

.

.

.

xN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= xt+1 + η2c O xt .

(5.61) 

We further define the kernelized version of . c and have: 

. c =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

K̂(Ĝ, ∂A1
∂x1

)

.

.

.

K̂(Ĝ,
∂AN

∂xN
)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (5.62) 

where .K̂(., .) is a kernel function.1 Remembering that Eq. 5.53, .xt+1 = xt + η2
∂G
∂x , 

Eq. 5.54 then becomes: 

.x̂t+1 = xt+1 + η2ct O xt , (5.63) 

where . O represents the Hadamard product. It is then reformulated as a projection 
function as: 

.x̂t+1 = P(xt+1, xt ) = xt+1 + β O xt , (5.64) 

which shows the rationality of our method, . i.e., it is based on a projection function 
to solve the asynchronous problem of the bilinear optimization by controlling . β. 

We first judge when an asynchronous convergence happens in the optimization 
based on a form of logical operation as: 

.(¬s(x)) ∧ (s(A)) = 1, (5.65)

1 .K̂(x1, x2) = (x1 · x2)k . 
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and 

.s(∗) =
{
1 if R(∗) ≥ α,

0 otherwise,
(5.66) 

where . α represents the threshold which changes for different applications. Equa-
tion 5.65 describes an assumption that an asynchronous convergence happens for . A
and . x when their norms become significantly different. Accordingly, the update rule 
of the proposed CoGD [62] is defined as: 

.x̂t+1 =
{

P(xt+1, xt ) if (¬s(x)) ∧ (s(A)) = 1,

xt+1 otherwise,
(5.67) 

which leads to a synchronous convergence and generalizes the conventional gradient 
descent method. CoGD is then established. 

Note that c in Eq. 5.61 is calculated based on . Ĝ, which differs for applications. 

.
∂Aj

∂xj
≈ AAj

Axj
, where . A denotes the difference of the variable over the epoch related 

to the convergence speed. .
∂Aj

∂xj
= 1, if  .Axj or . xj approaches to zero. With above 

derivation, we define CoGD within the gradient descent framework, providing a 
solid foundation for the convergence analysis of CoGD. Based on CoGD, the 
variables are sufficiently trained and decoupled, which can enhance the causality 
of the learning system [74]. 

5.4.4.3 Applications 

We apply the proposed algorithm on convolutional sparse coding (CSC) and deep 
learning to validate its general applicability to bilinear problems including image 
inpainting, image reconstruction, network pruning, and CNN model training. 

Convolutional Sparse Coding 
CSC operates on the whole image, decomposing a global dictionary and set of 
features. The CSC problem is theoretically more challenging than the patch-
based sparse coding [47] and requires more sophisticated optimization model. The 
reconstruction process is usually based on a bilinear optimization model formulated 
as: 

.

argmin
A,x

1

2
||b − Ax||2F + λ ||x||1

s.t. ||Ak||22 ≤ 1 ∀k ∈ {1, . . . , K},
(5.68) 

where . b denotes input images.
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.x = [xT
1 , . . . , xT

K ]T denotes coefficients under sparsity regularization. . λ is the 
sparsity regularization factor. .A = [A1, . . . ,AK ] is a concatenation of Toeplitz 
matrices representing the convolution with the kernel filters . Ak , where K is the 
number of the kernels. 

In Eq. 5.68, the optimized objectives or models are influenced by two or more 
hidden factors that interact to produce the observations. Existing solution tends to 
decompose the bilinear optimization problem into manageable subproblems [24, 
50]. Without considering the relationship between two hidden factors, however, 
existing methods suffer from suboptimal solutions caused by an asynchronous 
convergence speed of the hidden variables. We attempt to purse an optimized 
solution based on the proposed CoGD. 

Specifically, we introduce a diagonal or block-diagonal matrix . m to the sparse 
coding framework defined in [17] and reformulate Eq. 5.68 as: 

. argmin
A,x

f1(Ax) +
KΣ

k=1

(f2(xk) + f3(Ak)), (5.69) 

where 

.

f1(v) = 1

2
||b − mv||2F ,

f2(v) = λ ||v||1 ,

f3(v) = indc(v).

(5.70) 

In Eq. 5.70, .indc(·) is an indicator function defined on the convex set of the 
constraints .C = {x| ||Sx||22 ≤ 1}. Similar to Eq. 5.67, we have:  

. x̂k =
{

P(xt+1
k , xt

k) if (¬s(xk)) ∧ (s(Ak)) = 1

xt+1
k otherwise

, (5.71) 

which solve the two coupled variables iteratively. .P(xt+1
k , xt

k) is calculated based 
on .Ĝ(A, x), which is defined in Eq. 5.52. 

5.4.4.4 Network Pruning 

Network pruning, particularly convolutional channel pruning, has received 
increased attention for compressing CNNs. Early works in this area tended 
to directly prune the kernel based on simple criteria like the norm of kernel 
weights [40] or use a greedy algorithm [46]. Recent approaches have formulated 
network pruning as a bilinear optimization problem with soft masks and sparsity 
regularization [23, 28, 43, 70]. 

Based on the framework of channel pruning [23, 28, 43, 70], we apply the 
proposed CoGD for network pruning. To prune a channel of the network, the soft
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Fig. 5.11 The forward process with the soft mask 

mask m is introduced after the convolutional layer to guide the output channel 
pruning. This is defined as a bilinear model as: 

F l+1
j = f (

Σ

i

F l
i ⊗ (W l

i,jmj )), (5.72) 

where F l
j and F l+1

j are the i-th input and the j -th output feature maps at the l-th 

and (l +1)-th layer. Wl
i,j are convolutional filters corresponding to the soft maskm. 

⊗ and f (·) respectively refer to convolutional operator and activation. 
In this framework shown in Fig. 5.11, the soft mask m is learned end-to-end in 

the back propagation process. To be consistent with other pruning works, we use W
andm instead of A and x. A general optimization function for network pruning with 
a soft mask is defined as: 

argmin
W,m

L(W,m) + λ||m||1 + R(W), (5.73) 

where L(W,m) is the loss function, described in details below. With the sparsity 
constraint on m, the convolutional filters with zero value in the corresponding 
soft mask are regarded as useless filters. This means that these filters and their 
corresponding channels in the feature maps have no significant contribution to the 
network predictions and should be pruned. There is, however, a dilemma in the 
pruning-aware training in that the pruned filters are not evaluated well before they 
are pruned, which leads to suboptimal pruning. In particular, the soft mask m and 
the corresponding kernels are not sparse in a synchronous manner, which can prune 
the kernels still of potentials. To address this problem, we apply the proposed CoGD 
to calculate the soft maskm, by reformulating Eq. 5.67 as: 

m̂l,t+1
j =

{
P(mj

l,t+1,mj
l,t ) if (¬s(ml,t

j )) ∧ s(
Σ

i W l
i,j )=1

ml,t+1
j otherwise,

(5.74)
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where .Wi,j represents the 2D kernel of the i-th input channel of the j -th filter. . β, 
. αW , and . αm are detailed in experiments. The form of . Ĝ is specific for different 
applications. For CNN pruning, based on Eq. 5.51, we simplify the calculation of . Ĝ

as: 

.Ĝ = ∂L
∂Wi,j

/mj . (5.75) 

Note that the autograd package in deep learning frameworks such as PyTorch [51] 
can automatically calculate . ∂L

∂Wi,j
. We then substitute Eq. 5.75 into Eq. 5.62 to train 

our network and prune CNNs based on the new mask . m̂ in Eq. 5.74. 
To examine how our CoGD works for network pruning, we use GAL [43] as  

an example to describe our CoGD for CNN pruning. A pruned network obtained 
through GAL with .l1-regularization on the soft mask is used to approximate the 
pre-trained network by aligning their outputs. The discriminator D with weights 
.WD is introduced to discriminate between the output of the pre-trained network 
and the pruned network. The pruned network generator G with weights .WG and 
soft mask . m is learned together with D by using the knowledge from supervised 
features of the baseline. Accordingly, the soft mask . m, the new mask . m̂, the pruned 
network weights . WG, and the discriminator weights .WD are simultaneously learned 
by solving the optimization problem as follows: 

.

arg min
WG,m

max
WD,m̂

LAdv(WG, m̂,WD) +Ldata(WG, m̂)

+Lreg(WG,m,WD).

(5.76) 

where .L(W,m) = LAdv(WG, m̂,WD)+Ldata(WG, m̂) and .Lreg(WG,m,WD) are 
related to .λ||m||1 + R(W) in Eq. 5.73. .LAdv(WG, m̂,WD) is the adversarial loss to 
train the two-player game between the pre-trained network and the pruned network 
that compete with each other. 

The advantages of CoGD in network pruning are threefold. First, CoGD that 
optimizes the bilinear pruning model leads to a synchronous gradient convergence. 
Second, the process is controllable by a threshold, which makes the pruning rate 
easy to adjust. Third, the CoGD method for network pruning is scalable, . i.e., it can 
be built upon other state-of-the-art networks for better performance. 

CNN Training 
The last but not the least, CoGD can be fused with the batch normalization (BN) 
layer and improve the performance of CNN models. As is known, the BN layer 
can redistribute the features, resulting in the convergence of the feature and kernel 
learning in an asynchronous manner. CoGD is then introduced to synchronize their 
learning speeds to sufficiently train CNN models. Specifically, we backtrack sparse 
convolutional kernels through evaluating the sparsity of the BN layer, leading to 
an efficient training process. An interesting application of CoGD is studied in CNN 
learning. Considering the linearity of the convolutional operation, CNN training can
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also be considered as a bilinear optimization task as: 

.F l+1
j = f (BN(

Σ

i

F l
i ⊗ Wl

i,j )), (5.77) 

where . F l
j and .F l+1

j are the .i-th input and the .j -th output feature maps at the l-th 

and .(l + 1)-th layer, .Wl
i,j are convolutional filters, and . ⊗, .BN(·), and .f (·) refer to 

convolutional operator, batch normalization, and activation, respectively. However, 
the convolutional operation is not as efficient as a traditional bilinear model. We 
instead consider a batch normalization (BN) layer to validate our method, which can 
be formulated as a bilinear optimization problem as detailed in Sect. 4.2. We use  the  
CoGD to replace SGD to efficiently learn the CNN, with the aim of validating the 
effectiveness of the proposed method. 

To ease presentation, we first copy Eq. 5.77 as: 

.F l+1
j = f (BN(

Σ

i

F l
i ⊗ Wl

i,j )), and (5.78) 

then redefine the BN model as: 

.

BN(x) = γ
x − μB√
σB + ε

+ β,

μB = 1

m

mΣ

i=1

xi,

σB = 1

m

mΣ

i=1

(xi − μB)2,

(5.79) 

where m is the mini-batch size, .μB and . σB are mean and variance obtained by 
feature calculation in the BN layer. . γ and . β are the learnable parameters, and . ε is a 
small number to avoid dividing by zero. 

According to Eqs. 5.78 and 5.79, we can easily know that . γ and W are 
bilinear. We use the sparsity of . γ instead of the whole convolutional features for 
kernel backtracking, which simplifies the operation and improves the backtracking 
efficiency. Similar to network pruning, we also use . γ and W instead of . A and . x in 
this part. A general optimization for CNN training with the BN layer is: 

. argmin
W,γ

L(W, γ ) + λ||W||1, (5.80)
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where .L(W, γ ) is the loss function defined on Eqs. 5.78 and 5.79. CoGD is then 
applied to train CNNs, by reformulating Eq. 5.67 as: 

. Ŵ
l,t+1
i,j =

{
P(Wi,j

l,t+1,Wi,j
l,t ) if (¬s(γ l

j )) ∧ s(
Σ

i W l
i,j )=1

Wi,j
l,t otherwise,

(5.81) 

where . γ l
j is the j -th learnable parameter in the l-th BN layer. .Wi,j represents the 

2D kernel of the i-th input channel of the j -th filter. Similar to network pruning, we 
define: 

.Ĝ = ∂L
∂Wi,j

/γ j , (5.82) 

where .
∂L

∂Wi,j
is obtained based on the autograd package in deep learning frameworks 

such as PyTorch [51]. Similar to network pruning, we substitute Eq. 5.82 into 
Eq. 5.62, to use CoGD for CNN training. 

5.4.4.5 Experiments 

In this section, CoGD is first analyzed and compared with classical optimization 
methods on a baseline problem. It is then validated on the problems of CSC, network 
pruning, and CNN model training. 

Baseline Problem 
A baseline problem is first used as an example to illustrate the superiority of our 
algorithm. The problem is the optimization of Beale function2 under constraint of 
.F(x1, x2) = beale(x1, x2) + ||x1|| + x2

2 . The Beale function has the same form 
as Eq. 5.49 and can be regraded as a bilinear optimization problem with respect to 
variables .x1x2. During optimization, the learning rate . η2 is set as .0.001, .0.005, and 
. 0.1 for “SGD,” “momentum,” and “Adam,” respectively. The thresholds . αx1 and . αx2

for CoGD are set to 1 and . 0.5. .β = 0.001η2ct with .
∂x2
∂x1

≈ Ax2
Ax1

, where . A denotes the 

difference of variable over the epoch. .Ax2
Ax1

= 1, when .Ax2 or . x2 approaches zero. 
The total number of iterations is 200. 

In Fig. 5.12, we compare the optimization paths of CoGD with those of the three 
widely used optimization methods – “SGD,” “momentum,” and “Adam.” It can be 
seen that algorithms equipped with CoGD have shorter optimization paths than their 
counterparts. Particularly, the ADAM-CoGD algorithm has a much shorter path than 
ADAM, demonstrating the fast convergence of the proposed CoGD algorithm. The 
similar convergence with shorter paths means that CoGD facilitates efficient and 
sufficient training.

2 .beale(x1, x2) = (1.5 − x1 + x1x2)
2 + (2.25 − x1 + x1x

2
2 )

2 + (2.62 − x1 + x1x
3
2 )

2. 
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x1
-3.6 -2.7 -1.8 -0.9 0 0.9 1.8 2.7 3.6 4.5 

x2

-3.6

-2.7

-1.8

-0.9 

0 

0.9 

1.8 

2.7 

3.6 

4.5 

SGD 
SGD+CoGD 
Momentum 
Momentum+CoGD 
Adam 
Adam+CoGD 

Fig. 5.12 Comparison of classical gradient algorithm with CoGD.The background is the contour 
map of Beale functions. The algorithms with CoGD have short optimization paths compared with 
their counterparts, which shows that CoGD facilitates efficient and sufficient training 

Convolutional Sparse Coding 

Experimental Setting The CoGD for convolutional sparse coding (CSC) is evalu-
ated on two public datasets: the fruit dataset [72] and the city dataset [24, 72], each 
of which consists of ten images with 100 × 100 resolution. To evaluate the quality 
of the reconstructed images, we use two standard metrics, the peak signal-to-noise 
ratio (PSNR, unit: dB), and the structural similarity (SSIM). The higher the PSNR 
and the SSIM values are, the better the visual quality of the reconstructed image is. 
The evaluation metrics are defined as: 

PSNR = 10 × log10(
MAX2

MSR
), (5.83) 

where MSE is the mean square error of clean image and noisy image. MAX is the 
maximum pixel value of the image: 

SSIM(x, y) = (2μxμy + C1)(2σxy + C2)

(mu2x + μ2
y + C1)(σ 2

x + σ 2
y + C2)

, (5.84) 

where μ is the mean of samples. σ is the variance of samples. σxy is the covariance 
of the samples. C is a constant, C1 = (0.01 × MAX)2, C2 = (0.03 × MAX)2
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Implementation Details The reconstruction model is implemented based on the 
conventional CSC method [17], while we introduce the CoGD with the kernelized 
projection function to achieve a better convergence and higher reconstruction 
accuracy. One hundred of filters with size 11. ×11 are set as model parameters. . αx
is set to the mean of .||xk||1. . αA is calculated as the median of the sorted results 
of . βk . As shown  in  Eq. 5.62, linear and polynomial kernel functions are used in 
the experiment, which can both improve the performance of our method. For a fair 
comparison, we use the same hyperparameters (. η2) in both our method and [17]. We 
also test .β = 0.1η2ct , which achieves a similar performance as the linear kernel. 

Results The CSC with the proposed CoGD algorithm is evaluated with two tasks 
including image reconstruction and image inpainting. 

For image inpainting, we randomly sample the data with a 75% subsampling rate, 
to obtain the incomplete data. Like [24], we test our method on contrast-normalized 
images. We first learn filters from all the incomplete data under the guidance of 
the soft mask . m and then reconstruct the incomplete data by fixing the learned 
filters. We show inpainting results of the normalized data in Fig. 5.13. Moreover, to 

Image 

Incomplete 
Observations 

Ours 

FFCSC 

Fig. 5.13 Inpainting for the normalized city dataset. From top to bottom: the original images, 
incomplete observations, reconstructions with FFCSC [24], and reconstructions with our proposed 
algorithm
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compare with FFCSC, inpainting results on the fruit and city datasets are shown in 
Table 5.13. It can be seen that our method achieves a better PSNR and SSIM in all 
cases, while the average PSNR and SSIM improvements are impressively 1.78 and 
0.017 db. 

For image reconstruction, we reconstruct the images on the fruit and city 
datasets. One hundred of 11. ×11 filters are trained and compared with those of 
FFCSC [24]. Figure 5.14 shows the resulting filters after convergence within the 
same 20 iterations. It can be seen that the proposed reconstruction method, driven 
with CoGD, converges with a lower loss. When comparing the PSNR and the SSIM 
of our method with FFCSC in Table 5.14, we can see that in most cases, our method 
achieves higher PSNR and SSIM. The average PSNR and SSIM improvements are 
respectively .1.27 db and .0.005. 

Considering that PSNR is calculated with a .log function, the performance 
improvement shown in Tables 5.13 and 5.14 is significant. Such improvements show 
that the kernelized projection function improves the performance of the algorithm 
and reveal the nonlinear interaction of the variables. 

Network Pruning We have evaluated the proposed CoGD algorithm on network 
pruning using the CIFAR-10 and ILSVRC12 ImageNet datasets for the image 
classification tasks. The commonly used ResNets and MobileNetV2 are used as 
the backbone networks to get the pruned network models. 

Experimental Setting 

Datasets CIFAR-10 is a natural image classification dataset containing a training 
set of .50,000 and a testing set of .10,000 .32 × 32 color images distributed over 
ten classes, including airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, 
ships, and trucks. The ImageNet classification dataset is more challenging due to 
the significant increase of image categories, image samples, and sample diversity. 
For the 1000 categories of images, there are . 1.2 million images for training and 
50k images for validation. The large data divergence set a ground challenge for the 
optimization algorithms when pruning network models. 

Implementation We use PyTorch to implement our method with 3 NVIDIA 
TITAN V and 2 Tesla V100 GPUs. The weight decay and the momentum are set 
to .0.0002 and . 0.9, respectively. The hyperparameter . λm is selected through cross-
validation in the range .[0.01, 0.1] for ResNet and MobileNetv2. The drop rate is set 
to . 0.1. The other training parameters are described on a per experiment basis. 

To better demonstrate our method, we denote CoGD-a as an approximated 
pruning rate of .(1 − a)% for corresponding channels. a is associated with the 
threshold . αW , which is given by its sorted result. For example, if .a = 0.5, . αW is the 
median of the sorted result. . αm is set to be . 0.5 for easy implementation. Similarly, 
.β = 0.001η2ct with . ∂W

∂mj
≈ AW

Amj
. Note that our training cost is similar to that of 

[43], since we use our method once per epoch without additional cost.
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Fig. 5.14 Filters learned on fruit and city datasets. Thumbnails of the datasets along with filters 
learned with FFCSC [24] (left) and with CoGD (right) are shown. The proposed reconstruction 
method reports lower objectives. (Best viewed in color with zoom) 

CIFAR-10 
We evaluated the proposed network pruning method on CIFAR-10 for two popular 
networks, ResNets and MobileNetV2. The stage kernels are set to 64-128-256-512 
for ResNet-18 and 16-32-64 for ResNet-110. For all networks, we add a soft mask 
only after the first convolutional layer within each block to simultaneously prune 
the output channel of the current convolutional layer and input channel of the next 
convolutional layer. The mini-batch size is set to be 128 for 100 epochs, and the 
initial learning rate is set to .0.01, scaled by . 0.1 over 30 epochs. 

Fine-tuning In the network fine-tuning after pruning, we only reserve the student 
model. According to the “zeros” in each soft mask, we remove the corresponding 
output channels of the current convolutional layer and corresponding input channels 
of the next convolutional layer. We then obtain a pruned network with fewer
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Table 5.15 Pruning results of ResNet-18/ResNet-110 and MobilenetV2 on CIFAR-10. M = 
million (. 106) 

Model FLOPs (M) Reduction Accuracy/+FT (%) 

ResNet-18 [20] 555.42 – 95.31 

CoGD-0.5 274.74 0.51.× 95.11/95.30 

CoGD-0.8 423.87 0.24.× 95.19/95.41 
ResNet-56 [20] 125.49 – 93.26 

GAL-0.6 [43] 78.30 0.38.× 92.98/93.38 

GAL-0.8 [43] 49.99 0.60.× 90.36/91.58 

CoGD-0.5 48.90 0.61.× 92.38/92.95 

CoGD-0.8 82.85 0.34.× 93.16/93.59 
ResNet-110 [20] 252.89 – 93.68 

GAL-0.1 [43] 205.70 0.20.× 92.65/93.59 

GAL-0.5 [43] 130.20 0.49.× 92.65/92.74 

CoGD-0.5 95.03 0.62.× 93.31/93.45 

CoGD-0.8 135.76 0.46.× 93.42/93.66 

MobileNet-V2 [54] 91.15 – 94.43 

CoGD-0.5 50.10 0.45.× 94.25/– 

parameters and that requires fewer FLOPs. We use the same batch size of 256 for 
60 epochs as in training. The initial learning rate is changed to . 0.1 and scaled by . 0.1
over 15 epochs. Note that a similar fine-tuning strategy was used in GAL [43]. 

Results Two kinds of networks are tested on the CIFAR-10 database – ResNets 
and MobileNet-V2. In this section, we only test the linear kernel, which achieves a 
similar performance as the full-precision model. 

Results for ResNets are shown in Table 5.15. Compared to the pre-trained 
network for ResNet-18 with .95.31% accuracy, CoGD-. 0.5 achieves a .0.51× FLOP 
reduction with negligible accuracy drop .0.01%. Among other structured pruning 
methods for ResNet-110, CoGD-. 0.5 has a larger FLOP reduction than GAL-. 0.1
(.95.03M vs. .205.70M), but with similar accuracy (.93.45% vs.  .93.59%). These 
results demonstrate that our method can prune the network efficiently and generate 
a more compressed model with higher performance. 

For MobileNetV2, the pruning results are summarized in Table 5.15. Compared 
to the pre-trained network, CoGD-.0.5 achieves a .0.45× FLOP reduction with 
a .0.18% accuracy drop. The results indicate that CoGD is easily employed on 
efficient networks with depth-wise separable convolution, which is worth exploring 
in practical applications. 

ImageNet 
For ILSVRC12 ImageNet, we test our CoGD based on ResNet-50. We train the 
network with a batch size of 256 for 60 epochs. The initial learning rate is set to 
.0.01 and scaled by . 0.1 over 15 epochs. Other hyperparameters follow the settings
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Table 5.16 Pruning results of ResNet-50 on ImageNet. B means billion (. 109) 

Model FLOPs (B) Reduction Accuracy/+FT (%) 

ResNet-50 [20] 4.09 – 76.24 

ThiNet-50 [46] 1.71 0.58.× 71.01 

ThiNet-30 [46] 1.10 0.73.× 68.42 

CP[23] 2.73 0.33.× 72.30 

GDP-0.5 [42] 1.57 0.62.× 69.58 

GDP-0.6 [42] 1.88 0.54.× 71.19 

SSS-26 [29] 2.33 0.43.× 71.82 

SSS-32 [29] 2.82 0.31.× 74.18 

RBP [75] 1.78 0.56.× 71.50 

RRBP [75] 1.86 0.55.× 73.00 

GAL-0.1 [43] 2.33 0.43.× –/71.95 

GAL-0.5 [43] 1.58 0.61.× –/69.88 

CoGD-0.5 2.67 0.35.× 75.15/75.62 

used on CIFAR-10. The fine-tuning process follows the setting on CIFAR-10 with 
the initial learning rate .0.00001. 

Table 5.16 shows that CoGD achieves state-of-the-art performance on the 
ILSVRC12 ImageNet. For ResNet-50, CoGD-.0.5 further shows a .0.35× FLOP 
reduction while achieving only a .0.62% drop in accuracy. 

5.4.4.6 Ablation Study 

We use ResNet-18 on CIFAR-10 for an ablation study to evaluate the effectiveness 
of our method. 

Effect on CoGD We train the pruned network with and without CoGD by using 
the same parameters. As shown in Table 5.17, we obtain an error rate of .4.70% and 
a .0.51× FLOP reduction with CoGD, compared to the error rate of .5.19% and a 
.0.32× FLOP reduction without CoGD, validating the effectiveness of CoGD. 

Synchronous convergence In Fig. 5.15, the training curve shows that the conver-
gence of CoGD is similar to that of GAL with SGD-based optimization within 
an epoch, especially for the last epochs when converging in a similar speed. We 
theoretically derive CoGD within the gradient descent framework, which provides 
a theoretical foundation for the convergence, which is validated by the experiments. 
As a summary, the main differences between SGD and CoGD are twofold. First, we 
change the initial point for each epoch. Second, we explore the coupling relationship 
between the hidden factors to improve a bilinear model within the gradient descent 
framework. Such differences do not change the convergence of CoGD compared 
with the SGD method.
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Table 5.17 Pruning results 
on CIFAR-10 with CoGD or 
SGD. M means million (106) 

Optimizer Accuracy (%) FLOPs/Baseline (M) 

SGD 94.81 376.12/555.43 

CoGD 95.30 274.74/555.43 

Fig. 5.15 Comparison of training loss on CIFAR-10 with CoGD and SGD 

In Fig. 5.16, we show the convergence in a synchronous manner of the 4th layer’s 
variables when pruning CNNs. For better visualization, the learning rate of m
is enlarged by 100x. On the curves, we observe that the two variables converge 
synchronously and that neither variable gets stuck into a local minimum. This 
validates that CoGD avoids vanishing gradient for the coupled variables. 

CNN Training 
Similar to network pruning, we have further evaluated CoGD algorithm for CNN 
model training on CIFAR-10 and ILSVRC12 ImageNet datasets. Specifically, we 
use ResNet-18 as the backbone CNN to test our algorithm. The network stages are 
64-128-256-512. The learning rate is optimized by a cosine updating schedule with 
an initial learning rate 0.1. The algorithm iterates 200 epochs. The weight decay 
and momentum are respectively set to 0.0001 and 0.9. The model is trained on 2 
GPUs (Titan V) with a mini-batch size of 128. We follow the similar augmentation 
strategy in [20] and add the cutout method for training. When training the model, 
horizontal flipping and 32 × 32 crop are used as data augmentation. The cutout 
size is set to 16. Similar to CNN pruning, a is set to 0.95 to compute αγ and αW . 
To improve the efficiency, we directly backtrack the corresponding weights. For
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(a) 

(b) 

Fig. 5.16 Convergence comparison of the variables in the fourth convolutional layer when pruning 
CNNs. The curves are obtained using SGD and CoGD-. 0.5 on CIFAR-10. With CoGD, the two 
variables converge synchronously while avoiding either variable gets stuck in a local convergence 
(local minimum of the objective function), which validates that CoGD can avoid vanishing gradient 
for the coupled variables 

ILSVRC12 ImageNet, the initial learning rate is set to .0.01, and the total epochs are 
120. 

With ResNet-18 backbone, we simply replace the SGD algorithm with the pro-
posed CoGD for model training. In Table 5.18, it can be seen that the performance 
is improved by .1.25% (70.75% vs. 69.50%) on the large-scale ImageNet dataset. In 
addition, the improvement is also observed on CIFAR-10. We report the results for 
different kernels, which show that the performance are relatively stable for .k = 1
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Table 5.18 Results for CNN 
training on CIFAR-10 and 
ImageNet 

Accuracy(%) 

Models CIFAR-10 ImageNet 

ResNet-18 (SGD)[20] 95.31 69.50 

ResNet-18 (CoGD with k = 1) 95.80 70.30 

ResNet-18 (CoGD with k = 2) 96.10 70.75 

and .k = 2. These results validate the effectiveness and generality of the proposed 
CoGD algorithm. 

5.5 Network Pruning on BNNs 

5.5.1 Rectified Binary Convolutional Networks with Generative 
Adversarial Learning 

Quantization techniques involve representing network weights and activations using 
low-bit fixed-point integers, enabling efficient computation with bitwise operations. 

Binarization, as proposed in [45, 53], takes quantization to the extreme by using 
only a single bit to represent both weights and activations, where they are assigned 
values of either . +1 or . −1. This work focuses on creating compact binary neural 
networks (BNNs) by combining quantization and network pruning strategies. 

Despite advancements in 1-bit quantization and network pruning, only a few 
studies have merged these methods into a cohesive framework to enhance their syn-
ergy. Introducing pruning techniques into 1-bit CNNs becomes necessary because 
not all filters and kernels have equal significance or warrant identical quantization. 
One potential solution involves pruning the network first and then applying 1-bit 
quantization to the remaining weights, resulting in a more compressed network. 
However, this approach must consider the disparities between binarized and full-
precision parameters during pruning. As a promising alternative, one can prune the 
quantized network directly. Nevertheless, devising a unified framework to combine 
quantization and pruning remains an open question. 

To tackle these challenges, we propose a novel approach called rectified binary 
convolutional network (RBCN) [44] to train a binary neural network (BNN) using 
a generative adversarial network (GAN) framework. Our motivation stems from 
GANs’ ability to match two data distributions, namely, the full-precision and 1-bit 
networks. This can be seen as distilling or exploiting the knowledge from the full-
precision model to benefit its 1-bit counterpart. 

In the training process of RBCN, the key binarization steps are depicted in 
Fig. 5.17. Here, the full-precision model and the 1-bit model (generator) generate 
“real” and “fake” feature maps, respectively, which are then fed to the discrimina-
tors. The discriminators aim to distinguish between the “real” and “fake” samples, 
while the generator attempts to deceive the discriminators. This process results
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Fig. 5.17 This figure shows the framework for integrating the rectified binary convolutional 
network (RBCN) with generative adversarial network (GAN) learning. The full-precision model 
provides “real” feature maps, while the 1-bit model (as a generator) provides “fake” feature maps to 
discriminators trying to distinguish “real” from “fake.” Meanwhile, the generator tries to make the 
discriminators work improperly. When this process is repeated, both the full-precision feature maps 
and kernels (across all convolutional layers) are sufficiently employed to enhance the capacity of 
the 1-bit model. Note that (1) the full-precision model is used only in learning but not in inference; 
(2) after training, the full-precision learned filters W are discarded, and only the binarized filters 
. Ŵ and the shared learnable matrices C are kept in RBCN for the calculation of the feature maps 
in inference 

in a rectified operation and a unique architecture that provides a more accurate 
estimation of the full-precision model. 

Furthermore, we explore the application of pruning to enhance the practical 
usability of the 1-bit model within the GAN framework. To achieve this goal, we 
seamlessly integrate quantization and pruning into a unified framework. 

5.5.1.1 Loss Function 

The rectification process involves combining full-precision kernels and feature 
maps to improve the binarization process. It includes two main components: kernel 
approximation and adversarial learning. 

The learnable kernel approximation results in a unique architecture that provides 
a precise estimation of the convolutional filters by minimizing the kernel loss. This 
allows the RBCN to achieve better performance and more accurate representations. 

To accomplish this, discriminators denoted as .D(·) with filters Y are introduced. 
Their purpose is to distinguish between feature maps R obtained from the full-
precision model and feature maps T generated by the RBCN. The RBCN generator, 
equipped with filters W and matrices C, is trained using knowledge from the 
supervised feature maps R.
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In summary, the optimization problem involves learning the parameters W , C, 
and Y by solving the following optimization problem: 

. arg min
W,Ŵ,C

max
Y

L = LAdv(W, Ŵ , C, Y ) + LS(W, Ŵ , C) + LKernel(W, Ŵ , C),

(5.85) 

where .LAdv(W, Ŵ , C, Y ) is the adversarial loss as: 

. LAdv(W, Ŵ , C, Y ) = log(D(R;Y )) + log(1 − D(T ;Y )), (5.86) 

where .D(·) consists of a series of basic blocks, each containing linear and 
LeakyRelu layers. We also have multiple discriminators to rectify the binarization 
training process. 

In addition, .LKernel(W, Ŵ , C) denotes the kernel loss between the learned full-
precision filters W and the binarized filters . Ŵ and is defined as: 

. LKernel(W, Ŵ , C) = λ1/2||W − CŴ ||2, (5.87) 

where . λ1 is a balance parameter. Finally, . LS is a traditional problem-dependent loss, 
such as softmax loss. The adversarial, kernel, and softmax loss are regularizations 
on . L . 

We also have omitted .log(·) and rewritten the optimization in Eq. 5.85 as in 
Eq. 5.88 for simplicity: 

. min
W,Ŵ ,C

LS(W, Ŵ , C) + λ1/2
Σ

l

Σ

i

||Wl
i − ClŴ l

i ||2 +
Σ

l

Σ

i

||1 − D(T l
i ;Y )||2.
(5.88) 

where i represents the . ith channel and l represents the . lth layer. In Eq. 5.88, the  
objective is to obtain W , . Ŵ and C with Y fixed, which is why the term .D(R;Y ) in 
Eq. 5.85 can be ignored. The advantage of our formulation in Eq. 5.88 lies in that 
the loss function is trainable, which means it can be easily incorporated into existing 
learning frameworks. 

5.5.1.2 Learning RBCNs 

In RBCNs, convolution is implemented using . Wl , . Cl , and .F l
in to calculate output 

feature maps .F l
out as: 

. F l
out = RBConv(F l

in; Ŵ l, Cl) = Conv(F l
in, Ŵ

l O Cl), (5.89)
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where RBConv denotes the convolution operation implemented as a new module, 
. F l

in and .F l
out are the feature maps before and after convolution, respectively. . Wl are 

full-precision filters, the values of . Ŵ l are 1 or  . −1, and . O is the operation of the 
element-by-element product. 

During the backward propagation process of RBCNs, the full-precision filters 
W and the learnable matrices C must be learned and updated. These two sets of 
parameters are jointly learned. We update W first and then C in each convolutional 
layer. 

Update W Let .δWl
i
be the gradient of the full-precision filter . Wl

i . During back 

propagation, the gradients are first passed to . Ŵ l
i and then to . Wl

i . Thus: 

.δWl
i

= ∂L

∂Wl
i

= ∂L

∂Ŵ l
i

∂Ŵ l
i

∂W l
i

, (5.90) 

where 

.
∂Ŵ l

i

∂W l
i

=
⎧
⎨

⎩

1.2 + 2Wl
i , −1 ≤ Wl

i < 0,
2 − 2Wl

i , 0 ≤ Wl
i < 1,

10, otherwise,
(5.91) 

which is an approximation of . 2× the Dirac delta function [45]. Furthermore: 

.
∂L

∂Ŵ l
i

= ∂LS

∂Ŵ l
i

+ ∂LKernel

∂Ŵ l
i

+ ∂LAdv

∂Ŵ l
i

, (5.92) 

and: 

.Wl
i ← Wl

i − η1δWl
i
, (5.93) 

where . η1 is the learning rate. Then: 

.
∂LKernel

∂Ŵ l
i

= −λ1(W
l
i − ClŴ l

i )C
l, (5.94) 

.
∂LAdv

∂Ŵ l
i

= −2(1 − D(T l
i ;Y ))

∂D

∂Ŵ l
i

. (5.95) 

Update C We further update the learnable matrix . Cl with . Wl fixed. Let . δCl be the 
gradient of . Cl . Then we have: 

.δCl = ∂LS

∂Cl
+ ∂LKernel

∂Cl
+ ∂LAdv

∂Cl
, (5.96)
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and: 

.Cl ← Cl − η2δCl , (5.97) 

where . η2 is another learning rate. Furthermore: 

.

∂LKernel

∂Cl
= −λ1

Σ

i

(W l
i − ClŴ l

i )Ŵ
l
i , (5.98) 

.
∂LAdv

∂Cl
= −

Σ

i

2(1 − D(T l
i ;Y ))

∂D

∂Cl
. (5.99) 

The derivations presented demonstrate that the rectified process is trainable in an 
end-to-end manner. During training, we update the other parameters independently 
while keeping the convolutional layer’s parameters fixed. This approach helps 
to enhance the variety of feature maps in each layer, which accelerates training 
convergence and fully explores the potential of 1-bit networks. 

In our implementation, we replace all the values of . Cl with their average 
during the forward process. This simplification reduces the matrix calculations 
to scalar operations, leading to faster computation during inference. By utilizing 
this approach, we achieve a significant speedup in the model’s execution without 
compromising its performance. 

5.5.1.3 Network Pruning 

After binarizing the CNNs, we further prune the resulting 1-bit CNNs to increase 
model efficiency and improve the flexibility of RBCNs in practical scenarios. The 
optimization pruning process is performed under the generative adversarial learning 
framework using the method described in [43]. 

To achieve this, we employ a soft mask that allows us to remove specific 
structures, such as filters, while maintaining performance close to the baseline 
accuracy. The discriminator .Dp(·) with weights . Yp is introduced to distinguish 
between the output of the baseline network . Rp and that of the pruned 1-bit network 
. Tp. 

The pruned network is denoted by parameters . Wp, . Ŵp, . Cp, and a soft mask . Mp. 
These parameters are learned together with . Yp using knowledge from the supervised 
features of the baseline network.
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We jointly optimize the parameters . Wp, . Ŵp, . Cp, . Mp, and . Yp by solving the 
following optimization problem: 

. 

arg min
Wp,Ŵp,Cp,Mp

max
Yp

Lp = LAdv_p(Wp, Ŵp, Cp,Mp, Yp)

+ LKernel_p(Wp, Ŵp, Cp)

LS_p(Wp, Ŵp, Cp) + LData_p(Wp, Ŵp, Cp,Mp) + LReg_p(Mp, Yp),

(5.100) 

where .Lp is the pruning loss function, and the forms of . LAdv_p(Wp, Ŵp, Cp,

Mp, Yp) and .LKernel_p(Wp, Ŵp, Cp) are: 

. LAdv_p(Wp, Ŵp, Cp,Mp, Yp) = log(Dp(Rp;Yp)) + log(1 − Dp(Tp;Yp)),

(5.101) 
. LKernel_p(Wp, Ŵp, Cp) = λ1/2||Wp − CpŴp||2. (5.102) 

.LS_p is a traditional problem-dependent loss such as softmax loss. .LData_p is the 
data loss between the output features of the baseline and the pruned network and is 
used to align the output of these two networks. The data loss can then be expressed 
as the MSE loss: 

. LData_p(Wp, Ŵp, Cp,Mp) = 1

2n

||
||Rp − Tp

||
||2, (5.103) 

where n is the size of the mini-batch. 
.LReg_p(Mp, Yp) is a regularizer on . Wp,. Ŵp,. Mp, and . Yp, which can be split into 

two parts as follows: 

.LReg_p(Mp, Yp) = Rλ(Mp) + R(Yp), (5.104) 

where .R(Yp) = log(Dp(Tp;Yp)), .Rλ(Mp) is a sparsity regularizer form with 
parameters . λ and .Rλ(Mp) = λ||Mp||l1 . 

As with the process in binarization, the update of the discriminators is omitted in 
the following description. We have also omitted .log(·) for simplicity and rewritten 
the optimization of Eq. 5.100 as: 

. 

min
Wp,Ŵp,Cp,Mp

λ1/2
Σ

l

Σ

i

||Wl
p,i − ClŴ l

p,i ||2 +
Σ

l

Σ

i

||1 − D(T l
p,i;Y )||2

+ LS_p(Wp, Ŵp, Cp) + 1

2n

||
||Rp − Tp

||
||2 + λ||Mp||l1 .

(5.105)
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5.5.1.4 Learning Pruned RBCNs 

In pruned RBCNs, the convolution is implemented as: 

. F l
out,p = RBConv(F l

in,p; Ŵ l
p ◦ Ml

p,Cl
p) = Conv(F l

in,p, (Ŵp ◦ Ml
p) O Cl

p),

(5.106) 

where . ◦ is an operator that obtains the pruned weight with mask . Mp. The other part 
of the forward propagation in the pruned RBCNs is the same as in the RBCNs. 

In pruned RBCNs, what needs to be learned and updated are full-precision filters 
. Wp, learnable matrices . Cp, and soft mask . Mp. In each convolutional layer, these 
three sets of parameters are jointly learned. 

Update .Mp .Mp is updated by FISTA [42] with the initialization of .α(1) = 1. Then 
we obtain the following: 

. α(k+1) = 1

2
(1 +

/
1 + 4α2

(k)), (5.107) 

. y(k+1) = Mp,(k) + a(k) − 1

a(k+1)
(Mp,(k) − Mp,(k−1)), (5.108) 

. Mp,(k+1) = proxη(k+1)λ||·||1 (y(k+1) − ηk+1
∂(LAdv_p + LData_p)

∂(y(k+1))
), (5.109) 

where .ηk+1 is the learning rate in iteration .k+1 and . proxη(k+1)λ||·||1 (zi) = sign(zi)·
(|zi | − η0λ)+; more details can be found in [43]. 

Update .Wp Let .δWl
p,i

be the gradient of the full-precision filter .Wl
p,i . During back 

propagation, the gradients pass to .Ŵ l
p,i first and then to .Wl

p,i . Furthermore: 

. δWl
p,i

= ∂Lp

∂Ŵ l
p,i

= ∂LS_p

∂Ŵ l
p,i

+ ∂LAdv_p

∂Ŵ l
p,i

+ ∂LKernel_p

∂Ŵ l
p,i

+ ∂LData_p

∂Ŵ l
p,i

, (5.110) 

and: 

.Wl
p,i ← Wl

p,i − ηp,1δWl
p,i

, (5.111) 

where .ηp,1 is the learning rate, .
∂LKernel_p

∂Ŵ l
p,i

and .
∂LAdv_p

∂Ŵ l
p,i

are: 

.

∂LKernel_p

∂Ŵ l
p,i

= −λ1(W
l
p,i − Cl

pŴ l
p,i)C

l
p, (5.112)
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.
∂LAdv_p

∂Ŵ l
p,i

= −2(1 − D(T l
p,i;Yp))

∂Dp

∂Ŵ l
p,i

. (5.113) 

And: 

.

∂LData_p

∂Ŵ l
p,i

= −1

n
(Rp − Tp)

∂Tp

∂Ŵ l
p,i

, (5.114) 

Update .Cp We further update the learnable matrix . Cl
p with . Wl

p and .Ml
p fixed. Let 

.δCl
p
be the gradient of . Cl

p. Then we have: 

.δCl
p

= ∂Lp

∂Ĉl
p

= ∂LS_p

∂Ĉl
p

+ ∂LAdv_p

∂Ĉl
p

+ ∂LKernel_p

∂Ĉl
p

+ ∂LData_p

∂Ĉl
p

, (5.115) 

and: 

.Cl
p ← Cl

p − ηp,2δCl
p
. (5.116) 

and.
∂LKernel_p

∂Cl
p

and .
∂LAdv_p

∂Cl
p

are: 

.

∂LKernel_p

∂Cl
p

= −λ1
Σ

i

(W l
p,i − Cl

pŴ l
p,i)Ŵ

l
p,i , (5.117) 

.
∂LAdv_p

∂Cl
p

= −
Σ

i

2(1 − Dp(T l
p,i;Yp))

∂Dp

∂Cl
p

. (5.118) 

Furthermore: 

.

∂LData_p

∂Cl
p

= 1

n

Σ

i

(Rp − Tp)
∂Tp

∂Cl
p

. (5.119) 

The complete training process is summarized in Algorithm 10, including the update 
of the discriminators. 

5.5.1.5 Ablation Study 

This section investigates the contributions of kernel approximation, GAN, and the 
update strategy in improving the performance of RBCNs, using CIFAR-100 dataset 
and ResNet-18 with different kernel stages.
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Algorithm 10: Pruned RBCN 
Input: The training dataset, the pre-trained 1-bit CNNs model, the feature maps Rp from the 

pre-trained model, the pruning rate, and the hyper-parameters, including the initial learning 
rate, weight decay, convolution stride, and padding size. 

Output: The pruned RBCN with updated parameters Wp , Ŵp , Mp and Cp . 
1: repeat 
2: Randomly sample a mini-batch; 
3: // Forward propagation 
4: Training a pruned architecture // Using Eqs. 5.17–5.22 
5: for all l = 1 to  L convolutional layer do 
6: F l 

out,p = Conv(F l 
in,p, (  ̂Wl 

p ◦ Mp) O Cl 
p); 

7: end for 
8: // Backward propagation 
9: for all l = L to 1 do 
10: Update the discriminators Dl 

p(·) by ascending their stochastic gradients: 
11: ∇Dl 

p 
(log(Dl 

p(Rl 
p; Yp)) + log(1 − Dl 

p(T l p; Yp)) + log(Dl 
p(Tp; Yp))); 

12: Update soft mask Mp by FISTA // Using Eqs. 5.24–5.26 
13: Calculate the gradients δWl 

p 
; // Using Eqs. 5.27–5.31 

14: Wl 
p ← Wl 

p − ηp,1δWl 
p 
; // Update the weights 

15: Calculate the gradient δCl 
p 
; // Using Eqs. 5.32–5.36 

16: Cl 
p ← Cl 

p − ηp,2δCl 
p 
; // Update the learnable matrix 

17: end for 
18: until the maximum epoch 
19: Ŵ = sign(W). 

Table 5.19 Performance (accuracy, %) contributions of the components in RBCNs on CIFAR-
100, where Bi =Bi-Real Net, R = RBConv, G =GAN, and B = update strategy. The numbers in 
bold represent the best results 

Kernel stage Bi R R+G R+G+B 

RBCN 32-32-64-128 54.92 56.54 59.13 61.64 
RBCN 32-64-128-256 63.11 63.49 64.93 65.38 
RBCN 64-64-128-256 63.81 64.13 65.02 66.27 

1. We replace the convolution in Bi-Real Net with our kernel approximation 
(RBConv) and compare the results. The comparison is shown in the “Bi” and 
“R” columns of Table 5.19. RBCN achieves an accuracy improvement of . 1.62%
over Bi-Real Net (.56.54% vs. .54.92%) using the same network structure as 
in ResNet-18. This substantial improvement validates the effectiveness of the 
learnable matrices. 

2. Incorporating GAN into RBCN results in a further performance boost of . 2.59%
(.59.13% vs. .56.54%) with the kernel stage of 32-32-64-128. This demonstrates 
that GAN helps to mitigate the problem of getting stuck in poor local minima 
during training, leading to better overall performance. 

3. We enhance RBCNs by updating the batch normalization (BN) layers with fixed 
W and C after each epoch. This strategy further increases the accuracy by
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.2.51% (.61.64% vs. .59.13%) in CIFAR-100 with 32-32-64-128 kernel stage. This 
improvement shows the effectiveness of the update strategy and its ability to 
contribute to the model’s performance. 

In summary, the kernel approximation, GAN, and the update strategy play crucial 
roles in enhancing the accuracy of RBCNs, and their combined effect results in 
significant improvements over the baseline Bi-Real Net, making RBCNs a powerful 
choice for image classification tasks on CIFAR-100 dataset. 

5.5.2 BONN: Bayesian Optimized Binary Neural Network 

Bayesian learning is a statistical modeling paradigm based on Bayes’ theorem. It 
provides practical learning algorithms and facilitates understanding of other learn-
ing methods. Bayesian learning is particularly advantageous in solving probabilistic 
graphical models, enabling information exchange between perception and inference 
tasks, handling conditional dependencies in high-dimensional data, and effective 
uncertainty modeling. Bayesian neural networks (BayesNNs) have been extensively 
studied, with recent developments in their efficacy [4, 36, 41, 57]. 

Estimating the posterior distribution is essential in Bayesian inference as it 
represents uncertainties for both data and parameters. However, obtaining an exact 
analytical solution for the posterior distribution is challenging due to the large 
number of parameters in neural networks. To address this, various approaches have 
been proposed, including optimization-based techniques like variational inference 
(VI) and sampling-based methods such as Markov chain Monte Carlo (MCMC). 
MCMC provides sampling-based estimates of the posterior distribution but is com-
putationally expensive for large datasets. On the other hand, VI tends to converge 
faster and has been applied to various Bayesian models, including BayesNNs [5, 58]. 

Despite the progress in 1-bit quantization and network pruning, few works have 
integrated both in a unified framework to enhance each other. However, introducing 
pruning techniques into 1-bit CNNs is crucial. Not all filters and kernels are equally 
important or suitable for quantization, as verified in subsequent experiments. 

One potential approach is to perform pruning first, removing less important filters 
or parameters from the network, and then apply 1-bit quantization to the remaining 
network to achieve further compression. 

However, pruning a 1-bit CNN requires special considerations due to the 
difference between binarized and full-precision parameters. While 1-bit CNNs 
tend to be more redundant before and after binarization, the pruning process must 
carefully account for the impact of quantization on the remaining parameters. 

Alternatively, conducting pruning over Bayesian neural networks (BNNs) is 
a promising alternative. BNNs have been shown to provide better uncertainty 
modeling and representation ability, making them suitable candidates for pruning 
while preserving performance.
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However, developing a unified framework to first calculate a 1-bit network and 
then prune it remains an open challenge. The representation ability of 1-bit networks 
may deteriorate due to quantization, affecting the backpropagation process and 
rendering existing optimization schemes ineffective. 

To tackle the challenge of designing a unified framework for pruning 1-bit 
CNNs, Bayesian learning, a well-established global optimization scheme [5, 49], 
is leveraged to prune 1-bit CNNs [16]. 

The Bayesian learning approach begins by binarizing the full-precision kernels 
to two quantization values (centers), resulting in 1-bit CNNs. The quantization error 
is minimized by modeling the full-precision kernels as a Gaussian mixture, where 
each Gaussian is centered on its corresponding quantization value. 

Using the two centers for 1-bit CNNs, a mixture model is constructed to 
represent the full-precision kernels. Subsequently, the Bayesian learning framework 
introduces a novel pruning operation for 1-bit CNNs. Filters are divided into two 
groups, with the assumption that filters within each group follow the same Gaussian 
distribution. The weights of filters in one group are then replaced with their average, 
effectively pruning the network and reducing its complexity. 

The general framework for this approach is illustrated in Fig. 5.18, and it 
incorporates three innovative elements in the learning procedure of 1-bit CNNs with 
compression: (1) minimizing the reconstruction error of the parameters before and 
after quantization, (2) modeling the parameter distribution as a Gaussian mixture 
with two modes centered on the binarized values, and (3) pruning the quantized 
network by maximizing a posterior probability. 

Further analysis leads to the development of three new losses and their corre-
sponding learning algorithms, namely, the Bayesian kernel loss, Bayesian feature 
loss, and Bayesian pruning loss. These losses are jointly applied with the con-
ventional cross-entropy loss within the same back propagation pipeline, inheriting 
the advantages of Bayesian learning during model quantization and pruning. 
Additionally, the proposed losses comprehensively supervise the 1-bit CNN training 
process concerning kernel and feature distributions. 

In conclusion, the application of Bayesian learning in pruning 1-bit CNNs 
presents a promising direction for improving the compressed model’s applicability 
in practical applications. 

5.5.2.1 Bayesian Formulation for Compact 1-Bit CNNs 

The state-of-the-art methods for learning 1-bit CNNs, such as [15, 39, 53], involve 
optimization in both continuous and discrete spaces. Training a 1-bit CNN typically 
comprises three steps: a forward pass (inference) using binarized weights (. ̂x), a 
backward pass involving gradient calculations, and a parameter update that leads to 
full-precision weights (. x). 

The crucial factor influencing the performance of a quantized network, as 
demonstrated in [15, 39, 53], is how to connect the binarized weights . ̂x with 
the full-precision weights . x. This connection determines the effectiveness of the
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Fig. 5.18 The evolution of the prior .p(x), the distribution of the observation . y, and the posterior 
.p(x|y) during learning, where . x is the latent variable representing the full-precision parameters 
and . y is the quantization error. Initially, the parameters . x are initialized according to a single-
mode Gaussian distribution. When our learning algorithm converges, the ideal case is that (i) . p(y)

becomes a Gaussian distribution .N(0, ν), which corresponds to the minimum reconstruction error, 
and (ii) .p(x|y) = p(x) is a Gaussian mixture distribution with two modes where the binarized 
values . ̂x and . −x̂ are located 

quantized model. In this paper, the authors propose to address this challenge using 
a probabilistic framework to learn optimal 1-bit CNNs. 

5.5.2.2 Bayesian Learning Losses 

Bayesian kernel loss Given a network weight parameter . x, its quantized code 
should be as close to its original (full-precision) code as possible so that the 
quantization error is minimized. We then define: 

.y = w−1 ◦ x̂ − x, (5.120) 

where .x, x̂ ∈ Rn are the full-precision and quantized vectors, respectively, . w ∈ Rn

denotes the learned vector to reconstruct . x, . ◦ represents the Hadamard product, and 
.y ∼ G(0, ν) is the reconstruction error that is assumed to obey a Gaussian prior 
with zero mean and variance . ν. Under the most probable . y (corresponding to . y = 0
and .x = w−1 ◦ x̂, i.e., the minimum reconstruction error), we maximize .p(x|y) to 
optimize . x for quantization (e.g., 1-bit CNNs) as: 

.maxp(x|y), (5.121)
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Fig. 5.19 By considering the prior distributions of the kernels and features in the Bayesian 
framework, we achieve three new Bayesian losses to optimize the 1-bit CNNs. The Bayesian 
kernel loss improves the layer-wise kernel distribution of each convolutional layer, the Bayesian 
feature loss introduces the intraclass compactness to alleviate the disturbance induced by the 
quantization process, and the Bayesian pruning loss centralizes channels following the same 
Gaussian distribution for pruning. The Bayesian feature loss is applied only to the fully connected 
layer 

which can be solved based on Bayesian learning that uses Bayes’ theorem to 
determine the conditional probability of a hypothesis given limited observations. 
We note that the calculation of BNNs is still based on optimizing . x, as shown  
in Fig. 5.19, where the binarization is performed based on the sign function. 
Equation 5.121 is complicated and difficult to solve due to the unknown .w−1 as 
shown in Eq. 5.120. From a Bayesian learning perspective, we resolve this problem 
via maximum a posteriori (MAP): 

.

maxp(x|y) = maxp(y|x)p(x)

= min ||x̂ − w ◦ x||22 − 2ν log
(
p(x)

)
,

(5.122) 

where 

.p(y|x) ∝ exp(− 1

2ν
||y||22) ∝ exp(− 1

2ν
||x̂ − w ◦ x||22). (5.123) 

In Eq. 5.123, we assume that all components of the quantization error y are i.i.d., 
thus resulting in a simplified form. As shown in Fig. 5.19, for 1-bit CNNs, x is 
usually quantized to two numbers with the same absolute value. We neglect the 
overlap between the two numbers, and thus p(x) is modeled as a Gaussian mixture
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with two modes: 

.

p(x)= 1

2
(2π)−

N
2 det(ψ)−

1
2

{

exp
( − (x − μ)T ψ−1(x − μ)

2

)

+ exp
( − (x + μ)T ψ−1(x + μ)

2

)
}

≈ 1

2
(2π)−

N
2 det(ψ)−

1
2

{

exp
( − (x+−μ+)Tψ+−1(x+ − μ+)

2

)

+ exp
( − (x− + μ−)T ψ−−1(x− + μ−)

2

)
}

,

(5.124) 

where x is divided into x+ and x− according to the signs of the elements in x, and 
N is the dimension of x. Accordingly, Eq. 5.122 can be rewritten as: 

.

min||x̂ − w ◦ x||22 + ν(x+ − μ+)T ψ−1+ (x+ − μ+)

+ ν(x− + μ−)T ψ−1− (x− + μ−) + ν log
(
det(ψ)

)
,

(5.125) 

where μ− and μ+ are solved independently. det(ψ) is accordingly set to be the 
determinant of the matrix ψ− or ψ+. We call Eq. 5.125 the Bayesian kernel loss. 

Bayesian feature loss We also design a Bayesian feature loss to alleviate the 
disturbance caused by the extreme quantization process in 1-bit CNNs. Considering 
the intraclass compactness, the features f m of the m-th class supposedly follow a 
Gaussian distribution with the mean cm as revealed in the center loss [64]. Similarly 
to the Bayesian kernel loss, we define ym 

f = f m − cm and ym 
f ∼ N(0, σm), and we 

have: 

.min||f m − cm||22+
NfΣ

n=1

[

σ−2
m,n(fm,n−cm,n)

2+log(σ 2
m,n)

]

, (5.126) 

which is called the Bayesian feature loss. In Eq. 5.126, σm,n, fm,n and cm,n are the 
n-th elements of σm, f m and cm, respectively. We take the latent distributions of 
kernel weights and features into consideration in the same framework and introduce 
Bayesian losses to improve the capacity of 1-bit CNNs. 

5.5.2.3 Bayesian Pruning 

After binarizing CNNs, we prune the 1-bit CNNs using a Bayesian learning 
framework. The idea is to group similar channels together and then replace filters 
within each group with their average during optimization. The representation of the 
kernel weights of the l-th layer is a tensor . K l with dimensions .Cl

o × Cl
i × Hl × Wl ,
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where . Cl
o and . Cl

i are the numbers of output and input channels, respectively, and . Hl

and . Wl represent the height and width of the kernels. 
To simplify the notation, we define . K l as a concatenation of individual filters 

. K l
i for .i = 1, 2, . . . , Cl

o, where . K
l
i is a three-dimensional filter with dimensions 

.Cl
i × Hl × Wl . 
The pruning process begins by using the K-means algorithm to divide the filters 

into different groups based on similarity. The assumption is that filters within each 
group follow the same Gaussian distribution during training. The goal is to find 
the average . K that can replace all . K i’s within the same group, which effectively 
assimilates similar filters into a single one. 

This pruning problem leads to a similar formulation as in Eq. 5.122, and it 
involves learning the average filter . K with a Gaussian distribution constraint. This 
type of learning process with a Gaussian distribution constraint has been widely 
considered in other works [18]. 

Accordingly, Bayesian learning is used to prune 1-bit CNNs. We denote . ε as the 
difference between a filter and its mean, i.e., .ε = K − K , following a Gaussian 
distribution for simplicity. To calculate . K , we minimize . ε based on MAP in our 
Bayesian framework, and we have: 

.K = argmax
K

p(K|ε) = argmax
K

p(ε|K)p(K), (5.127) 

.p(ε|K) ∝ exp(− 1

2ν
||ε||22) ∝ exp(− 1

2ν
||K − K||22), (5.128) 

and .p(K) is similar to Eq. 5.124 but with one mode. Thus, we have: 

.
min||K − K||22 + ν(K − K)T ψ−1(K − K)

+ ν log
(
det(ψ)

)
,

(5.129) 

which is called the Bayesian pruning loss. In summary, the proposed Bayesian 
pruning approach is more general, assuming that similar kernels follow a Gaussian 
distribution and are represented by their centers for pruning. This results in a 
more flexible and suitable pruning method for binary neural networks compared 
to existing techniques. We introduce Bayesian losses and Bayesian pruning within 
the same framework, considering the latent distributions of kernel weights, features, 
and filters. This enhances the capacity of 1-bit CNNs and captures uncertainties, 
leading to improved performance. Experimental results demonstrate that the pro-
posed Bayesian optimization-based neural networks (BONNs) outperform existing 
pruning methods.
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5.5.2.4 BONNs 

We employ the three Bayesian losses to optimize 1-bit CNNs, which form our 
Bayesian optimized 1-bit CNNs (BONNs). To do this, we reformulate the first two 
Bayesian losses for 1-bit CNNs as: 

.

LB = λ

2

LΣ

l=1

Cl
oΣ

i=1

Cl
iΣ

n=1

{||k̂l,i

n − wl ◦ kl,i
n ||22

+ ν(kl,i
n + − μl

i+)T (ψ l
i+)−1(kl,i

n + − μl
i+)

+ ν(kl,i
n − + μl

i−)T (ψ l
i−)−1(kl,i

n − + μl
i−)

+ ν log(det(ψ l ))
} + θ

2

MΣ

m=1

{||f m − cm||22

+
NfΣ

n=1

[
σ−2

m,n(fm,n − cm,n)
2 + log(σ 2

m,n)
] }

,

(5.130) 

where .kl,i
n , l ∈ {1, . . . , L}, i ∈ {1, . . . , Cl

o}, n ∈ {1, . . . , Cl
i }, is the vectorization 

of the i-th kernel matrix at the l-th convolutional layer, . wl is a vector used to 
modulate . kl,i

n , and . μl
i and . ψ

l
i are the mean and covariance of the i-th kernel vector 

at the l-th layer, respectively. And we term .LB the Bayesian optimization loss. 
Furthermore, we assume that the parameters in the same kernel are independent. 
Thus, . ψ l

i becomes a diagonal matrix with the identical value .(σ l
i )

2, where .(σ l
i )

2 is 
the variance of the i-th kernel of the l-th layer. 

In order to speed up the calculation of the inverse of . ψ l
i , all elements of . μl

i

are made identical and equal to . μl
i . Additionally, during the forward process in the 

implementation, all elements of . wl are replaced by their average. This optimization 
results in only a scalar instead of a matrix being involved in the inference, leading 
to significantly accelerated computation. 

After training 1-bit CNNs, the Bayesian pruning loss .LP is utilized for the 
optimization of feature channels. The expression for . LP is given by: 

.

LP =
LΣ

l=1

JlΣ

j=1

IjΣ

i=1

{||K l
i,j − K

l

j ||22

+ ν(K l
i,j − K

l

j )
T (ψ l

j )
−1(K l

i,j − K
l

j ) + ν log
(
det(ψ l

j )
)}

,

(5.131) 

where . Jl is the number of Gaussian clusters (groups) of the l-th layer, and .K l
i,j for 

.i = 1, 2, . . . , Ij , are  the  . K l
i’s that belong to the j -th group. In the implementation,
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. Jl is defined as .int(Cl
o × ε), where . ε is a predefined pruning rate, and one . ε is used 

for all layers. 

Notably, when the j -th Gaussian has only one sample .K l
i,j , .K

l

j = K l
i,j , and . ψj

becomes a unit matrix. 
In the BONN framework, the total loss L is a combination of three individual 

losses: the cross-entropy loss . LS , the Bayesian optimization loss . LB , and the 
Bayesian pruning loss . LP . The expression for the total loss is given as: 

.L = LS + LB + ζLP , (5.132) 

where . ζ is a hyperparameter that is set to 0 during binarization training and 1 
during pruning. The Bayesian optimization loss . LB constrains the distribution of 
the convolution kernels to a symmetric Gaussian mixture with two modes. It ensures 

that the quantization error is minimized through the term .||k̂l,i

n − wl ◦ kl,i
n ||22, where 

. ̂k
l,i

n is the quantized kernel and . wl is the learnable vector used to reconstruct the full-
precision kernel . kl,i

n . The Bayesian feature loss works to modify the distribution of 
the features, reducing intraclass variation for improved classification performance. 
Finally, the Bayesian pruning loss drives the kernels toward their means, effectively 
compressing the 1-bit CNNs further by assimilating similar filters into single ones. 

5.5.2.5 Forward Propagation 

During forward propagation in BONNs, the binarized kernels and activations 
significantly accelerate the convolution computation. The reconstruction vector, 
denoted as . w in Eq. 5.120, plays a crucial role in 1-bit CNNs. . wl becomes a scalar . wl

in each layer, where . wl is the mean of . wl and is calculated online. The convolution 
process can be represented as: 

.O l+1 = ((wl)−1K̂
l
) ∗ Ô

l = (wl)−1(K̂
l ∗ Ô

l
), (5.133) 

where . Ô
l
denotes the binarized feature map of the l-th layer, and .Ol+1 is the feature 

map of the .(l + 1)-th layer. As shown in Eq. 5.133, the actual convolution is still 
binary, and .Ol+1 is obtained by simply multiplying .(wl)−1 and the binarization 
convolution. For each layer, only one floating-point multiplication is added, which 
is negligible for BONNs. 

In addition, we consider the Gaussian distribution in the forward process of 
Bayesian pruning, which updates every filter in one group based on its mean. 

Specifically, we replace each filter .K l
i,j = (1 − γ )K l

i,j + γK
l

j during pruning.
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Algorithm 11: Optimizing 1-bit CNNs with Bayesian learning 
Input: 

The full-precision kernels k, the reconstruction vector w, the learning rate η, 
regularization parameters λ, θ and variance ν, and the training dataset. 

Output: 
The BONN with the updated k, w, μ, σ , cm, σm. 

1: Initialize k and w randomly, and then estimate μ, σ based on the average and variance of 
k, respectively; 

2: repeat 
3: // Forward propagation 
4: for l = 1 to  L do 
5: k̂ 

l 
i = wl ◦ sign(kl 

i ), ∀i; // Each element of wl is replaced by the average of all 
elements wl . 

6: Perform activation binarization; // Using the sign function 

7: Perform 2D convolution with k̂ 
l 
i , ∀i; 

8: end for 
9: // Backward propagation 
10: Compute δ

k̂ 
l 
i 
= ∂Ls 

∂ ̂k 
l 
i 
,∀l, i; 

11: for l = L to 1 do 
12: Calculate δkl 

i 
, δwl , δμl 

i 
, δσ l 

i 
; // using Eqs. 5.134∼5.141 

13: Update parameters kl 
i , wl , μl 

i , σ
l 
i using SGD; 

14: end for 
15: Update cm, σm; 
16: until convergence 

5.5.2.6 Asynchronous Backward Propagation 

To minimize Eq. 5.130, we update . kl,i
n , . wl , . μl

i , . σ
l
i , . cm, and .σm using stochastic 

gradient descent (SGD) in an asynchronous manner, which updates . w instead of . w
as elaborated below. 

Updating .kl,i
n We define .δkl,i

n
as the gradient of the full-precision kernel . kl,i

n , and 
we have: 

.δkl,i
n

= ∂L

∂kl,i
n

= ∂LS

∂kl,i
n

+ ∂LB

∂kl,i
n

. (5.134) 

For each term in Eq. 5.134, we have:  

.

∂LS

∂kl,i
n

= ∂LS

∂ k̂
l,i

n

∂ k̂
l,i

n

∂(wl ◦ kl,i
n )

∂(wl ◦ kl,i
n )

∂kl,i
n

= ∂LS

∂ k̂
l,i

n

◦ 1−1≤wl◦kl,i
n ≤1 ◦ wl ,

(5.135)
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.

∂LB

∂kl,i
n

= λ{wl ◦
[
wl ◦ kl,i

n − k̂
l,i

n

]

+ ν[(σ l
i )

−2 ◦ (kl
i+ − μl

i+)

+ (σ l
i )

−2 ◦ (kl
i− + μl

i−)],

(5.136) 

where . 1 is the indicator function that is widely used to estimate the gradient of 
nondifferentiable parameters [53], and .(σ l

i )
−2 is a vector whose elements are all 

equal to .(σ l
i )

−2. 

Updating . wl Unlike the forward process, . w is used in back propagation to 
calculate the gradients. This process is similar to the way to calculate . x̂ from . x
asynchronously. Specifically, . δwl is composed of the following two parts: 

.δwl = ∂L

∂wl
= ∂LS

∂wl
+ ∂LB

∂wl
. (5.137) 

For each term in Eq. 5.137, we have:  

.

∂LS

∂wl
=

IlΣ

i=1

NIlΣ

n=1

∂LS

∂ k̂
l,i

n

∂ k̂
l,i

n

∂(wl ◦ kl,i
n )

∂(wl ◦ kl,i
n )

∂wl

=
IlΣ

i=1

NILΣ

n=1

∂LS

∂ k̂
l,i

n

◦ 1−1≤wl◦kl,i
n ≤1 ◦ kl,i

n ,

(5.138) 

.
∂LB

∂wl
= λ

IlΣ

i=1

NIlΣ

n=1

(wl ◦ kl,i
n − k̂

l,i

n ) ◦ kl,i
n . (5.139) 

Updating . μl
i and . σ

l
i Note that we use the same . μl

i and . σ
l
i for each kernel (see 

Sect. 3.2). So, the gradients here are scalars. The gradients . δμl
i
and . δσ l

i
are calculated 

as: 

.

δμl
i
= ∂L

∂μl
i

= ∂LB

∂μl
i

= λν

Cl
i ×Hl×Wl

Cl
iΣ

n=1

Hl×Wl
Σ

p=1

⎧
⎨

⎩

(σ l
i )

−2(μl
i − kl,i

n,p), kl,i
n,p ≥ 0,

(σ l
i )

−2(μl
i + kl,i

n,p), kl,i
n,p < 0,

(5.140)
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.

δσ l
i

= ∂L

∂σ l
i

= ∂LB

∂σ l
i

= λν

Cl
i×Hl×Wl

Cl
iΣ

n=1

Hl×Wl
Σ

p=1

⎧
⎨

⎩

−(σ l
i )

−3(kl,i
n,p−μl

i)
2+(σ l

i )
−1,kl,i

n,p ≥0,

−(σ l
i )

−3(kl,i
n,p+μl

i)
2+(σ l

i )
−1,kl,i

n,p <0,

(5.141) 

where .kl,i
n,p, p ∈ {1, . . . , H l × Wl}, denotes the p-th element of . kl,i

n . In the fine-
tuning process, we update . cm using the same strategy as center loss [64]. The update 
of .σm,n based on . LB is straightforward and is not elaborated here for brevity. 

Updating .K l
i,j In pruning, we aim to converge the filters to their mean gradually. 

So we replace each filter .K l
i,j with its corresponding mean .K

l

i,j . The gradient of the 
mean is represented as follows: 

.

∂L

∂K l
i,j

= ∂LS
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∂K l
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= 1

Ij

( ∂LS

∂K
l

j

+ ∂LB

∂K
l

j

) + 2(K l
i,j −Kj )

+ 2ν(ψ l
j )

−1(K l
i,j −Kj ),

(5.142) 

where .K
l

j = 1
Ij

ΣIj

i=1 K l
i,j that is used to update the filters in a group by mean 

. K
l

j . We leave the first filter in each group to prune redundant filters and remove the 
others. However, such an operation changes the distribution of the input channel of 
the batch norm layer, resulting in a dimension mismatch for the next convolutional 
layer. To solve the problem, we keep the size of the batch norm layer, whose values 
correspond to the removed filters, set to zero. In this way, the removed information 
is retained to the greatest extent. In summary, we show that the proposed method 
is trainable from end to end. The learning procedure is detailed in Algorithms 11 
and 12 (Figs. 5.20 and 5.21). 

5.5.2.7 Ablation Study 

Hyperparameter Selection In this section, we conduct evaluations to study the 
effects of hyperparameters on the performance of BONNs, specifically focusing on 
. λ and . θ . These hyperparameters are used to balance the Bayesian kernel loss and the 
Bayesian feature loss, respectively, and are crucial in adjusting the distributions of
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Algorithm 12: Pruning 1-bit CNNs with Bayesian learning 
Input: 

The pre-trained 1-bit CNN model with parameters K , the reconstruction vector w, the  
learning rate η, regularization parameters λ, θ , variance  ν and convergence rate γ and 
the training dataset. 

Output: 
The pruned BONN with updated K , w, μ, σ , cm, σm. 

1: repeat 
2: // Forward propagation 
3: for l = 1 to  L do 
4: K l 

i,j = (1 − γ )K l 
i,j + γ K l j ; 

5: k̂ 
l 
i = wl ◦ sign(kl 

i ), ∀i; // Each element of wl is replaced by the average of all 
elements wl . 

6: Perform activation binarization; // Using the sign function 

7: Perform 2D convolution with k̂ 
l 
i , ∀i; 

8: end for 
9: // Backward propagation 
10: Compute δ

k̂ 
l 
i 
= ∂Ls 

∂ ̂k 
l 
i 
,∀l, i; 

11: for l = L to 1 do 
12: Calculate δkl 

i 
, δwl , δμl 

i 
, δσ l 

i 
; // using Eqs. 5.137∼5.142 

13: Update parameters kl 
i , wl , μl 

i , σ
l 
i using SGD; 

14: end for 
15: Update cm, σm; 
16: until Filters in the same group are similar enough 

kernels and features for better performance.We use wide residual networks (WRN-
22 and WRN-40) for our evaluations. The implementation details are provided 
below. 

In Table 5.20, we vary . λ while setting . θ to zero to understand the influence of the 
Bayesian kernel loss on the kernel distribution. The results show that incorporating 
the Bayesian kernel loss effectively improves the accuracy on CIFAR-10. However, 
simply increasing . λ does not lead to higher accuracy. Instead, finding an appropriate 
value of . λ is essential to strike the right balance between the cross-entropy loss and 
the Bayesian kernel loss. For instance, when . λ is set to .1e − 4, we achieve the best 
classification accuracy, indicating an optimal balance. 

Next, we study the effect of the hyperparameter . θ on the intraclass variations 
of features using different values of . θ . Similar to the observations with . λ, the  
classification accuracy varies with . θ , demonstrating that the Bayesian feature loss 
can contribute to better classification accuracy when an appropriate value of . θ is 
chosen. 

Furthermore, we evaluate the convergence performance of our method in com-
parison to other methods using ResNet-18 on ImageNet ILSVRC12. The training 
curve of XNOR-Net shows vigorous oscillations, which suggests suboptimal learn-
ing. In contrast, our BONN achieves better training and test accuracy, indicating 
improved convergence performance.
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Fig. 5.20 The images on the left are the input images chosen from the ImageNet ILSVRC12 
dataset. Right images are feature maps and binary feature maps from different layers of BONNs. 
The first and third rows are feature maps for each group, while the second and fourth rows are 
corresponding binary feature maps. Although binarization of the feature map causes information 
loss, BONNs could extract essential features for accurate classification 

Effectiveness of Bayesian Binarization on ImageNet ILSVRC12 We experi-
mented with examining how each loss affects performance better to understand 
Bayesian losses on the large-scale ImageNet ILSVRC12 dataset. Based on the 
experiments described above, we set . λ to .1e − 4 and . θ to .1e − 3 if they are used. 
As shown in Table 5.21, both the Bayesian kernel loss and Bayesian feature loss 
can independently improve the accuracy on ImageNet. When applied together, the 
Top-1 accuracy reaches the highest value of 59.3%. 

Weight Distribution Figure 5.22 further illustrates the distribution of the kernel 
weights, with . λ fixed to .1e − 4. During the training process, the distribution 
gradually approaches the two-mode GMM, as assumed previously, confirming 
the effectiveness of the Bayesian kernel loss in a more intuitive way. We also 
compare the kernel weight distribution between XNOR-Net and BONN. As shown 
in Fig. 5.23, the kernel weights learned in XNOR-Net are tightly distributed around
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Fig. 5.21 Training and test accuracies on ImageNet when λ = 1e − 4 shows the superiority of the 
proposed BONN over XNOR-Net. The backbone of the two networks is ResNet-18 

Table 5.20 With different λ and θ , we evaluate the accuracies of BONNs based on WRN-22 
and WRN-40 on CIFAR-10/CIFAR-100. When varying λ, the Bayesian feature loss is not used 
(θ = 0). However, when varying θ , we choose the optimal loss weight (λ = 1e − 4) for  the  
Bayesian kernel loss 

WRN-22 (BONN) WRN-40 (BONN) 

Hyper-param. CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 

λ 1e − 3 85.82 59.32 85.79 58.84 

1e − 4 86.23 59.77 87.12 60.32 
1e − 5 85.74 57.73 86.22 59.93 

0 84.97 55.38 84.61 56.03 

θ 1e − 2 87.34 60.31 87.23 60.83 

1e − 3 86.49 60.37 87.18 61.25 
1e − 4 86.27 60.91 87.41 61.03 

0 86.23 59.77 87.12 60.32 

Table 5.21 Effect of 
Bayesian losses on the 
ImageNet dataset. The 
backbone is ResNet-18 

Bayesian kernel loss x Y x Y

Bayesian feature loss x x Y Y

Accuracy Top-1 56.3 58.3 58.4 59.3 
Top-5 79.8 80.8 80.8 81.6 

the threshold value, but those in BONN are regularized in a two-mode GMM style. 
Figure 5.24 shows the evolution of the binarized values during the training process 
of XNOR-Net and BONN. The two different patterns indicate that the binarized 
values learned in BONN are more diverse.
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Fig. 5.22 We demonstrate the kernel weight distribution of the first binarized convolutional layer 
of BONNs. Before training, we initialize the kernels as a single-mode Gaussian distribution. From 
the 2-th epoch to the 200-th epoch, with . λ fixed to .1e − 4, the distribution of the kernel weights 
becomes more and more compact with two modes, which confirms that the Bayesian kernel loss 
can regularize the kernels into a promising distribution for binarization 

Fig. 5.23 The weight distributions of XNOR and BONN are based on WRN-22 (2nd, 8th, and 
14th convolutional layers) after 200 epochs. The weight distribution difference between XNOR and 
BONN indicates that the kernels are regularized across the convolutional layers with the proposed 
Bayesian kernel loss
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Fig. 5.24 Evolution of the binarized values, |x|s, during the XNOR and BONN training process. 
They are both based on WRN-22 (2nd, 3rd, 8th, and 14th convolutional layers), and the curves 
do not share the same y-axis. The binarized values of XNOR-Net tend to converge to small and 
similar values, but these of BONN are learned diversely 

Table 5.22 Effect of 
Bayesian feature loss on the 
ImageNet dataset. The core is 
ResNet-18 and ResNet-50 
with real value 

Model ResNet-18 ResNet-50 

Bayesian feature loss x Y x Y

Accuracy Top-1 69.3 69.9 76.6 77.0 
Top-5 89.2 89.8 92.4 92.7 

Effectiveness of Bayesian Feature Loss on Real-Valued Models 
We have applied our Bayesian feature loss on real-valued models, specifically 
ResNet-18 and ResNet-50 [19]. During retraining, we incorporated our Bayesian 
feature loss for 70 epochs, setting the hyperparameter θ to 1e − 3. The SGD 
optimizer was used with an initial learning rate of 0.1, and a learning rate schedule 
that decreases to 10% every 30 epochs. 

The results, as shown in Table 5.22, demonstrate that our Bayesian feature loss 
significantly improves the performance of models with real values. Specifically, 
the Top-1 accuracies of ResNet-18 and ResNet-50 are boosted by 0.6% and 0.4%, 
respectively. 
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Chapter 6 
Applications 

6.1 Introduction 

The success of binary neural networks makes it possible to apply deep learning 
models to edge computing. Neural network models have been used in various real 
tasks with the help of these binary methods, including image classification, image 
classification, speech recognition, and object detection and tracking. In this section, 
we introduce the applications of binary neural networks in these fields. 

In this chapter, we introduce the applications of binary neural networks in com-
puter vision. Specifically, we introduce the vision tasks, including object detection, 
speech recognition, person reidentification, and 3D point cloud processing. 

6.2 Image Classification 

Image classification aims to group images into different semantic classes together. 
Many works regard the completion of image classification as the criterion for 
the success of binary neural networks. Five datasets are commonly used for 
image classification tasks: MNIST [42], SVHN, CIFAR-10 [26], CIFAR-100, and 
ImageNet [52]. Among them, ImageNet is the most difficult to train and consists of 
100 classes of images. Table 2.1 shows the experimental results of some of the most 
popular binary methods on ImageNet. 
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6.3 Speech Recognition 

Speech recognition is a technique or capability that enables a program or system to 
process human speech. We can use binary methods to complete speech recognition 
tasks in edge computing devices. 

Xiang et al. [67] applied binary DNNs to speech recognition tasks. Experiments 
on TIMIT phone recognition and 50-hour Switchboard speech recognition show that 
binary DNNs can run about four times faster than standard DNNs during inference, 
with roughly 10.0% relative accuracy reduction. 

Zheng et al. [74] and Yin et al. [71] also implement binarized convolutional 
neural network-based speech recognition tasks. 

6.3.1 1-Bit WaveNet: Compression of a Generative Neural 
Network in Speech Recognition with Two Binarized 
Methods 

Instead of traditional speech recognition applications on remote servers, speech 
recognition is gradually becoming popular on mobile devices. However, significant 
memory and computational resource requirements restrict full-precision neural 
networks. Before solving the hardware deployment problem on mobile devices, we 
needed more parameters to run or store these DCNNs. To resolve these challenges, 
Rastegari et al. [47] use binary operations to approximate convolutions using 
binarized kernel weights and input. In recent years, Zhou et al. presented DoReFa-
Net [76] that could speed training and inference with 1-bit convolution filters with 
low bit width parameter gradients. Lin et al. [33] binarized multiple activations 
and weights to approximately replace the weights of real value. Consequently, the 
degradation of prediction accuracy is decreased. Zhuang et al. proposed a two-
stage optimization method to quantize weights and activations and then train a 
4-bit model. This results in no performance reduction compared to its real value 
counterpart at the baseline. McDonnell [39] achieves equivalent binarized results 
compared to the basic baseline by applying scaling factors to balance each layer 
with constant unlearned values and standard deviations specific to the initial layer. 
In contrast to baseline models, Wang et al. [61] proposed MCNs that only substitute 
full-precision kernels with binarized parameters and obtain excellent performance. 

Although these BNNs save considerable memory and computational power, 
the accuracy of vision or speech tasks is reduced. The main explanations are as 
follows: (1) In previous work, they rarely resolved the process of CNN binarization 
by discrete optimization [10]. (2) Considering binarized and filter losses, existing 
approaches could not trade them off well. 

In this work, considering the outstanding achievements of BNNs in computer 
vision and existing binary RNN research in speech recognition [46], we propose 
a new binarization application through two technologies (Bi-Real Net [37] and
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PCNN [15]) on WaveNet to accomplish our speech keyword recognition mission 
and acquire the closest-to-baseline accuracy with subtle numerical error. We 
demonstrate the principle of our new 1-bit WaveNet via extraordinary dilated causal 
convolutions and residual blocks, which compress the baseline up to a third of its 
original size with similar accuracy. Three technical novelties of our work include 
the following: (1) the entire framework of our new 1-bit WaveNet [11] based on 
binary dilated causal convolutions, which enlarge receptive fields, is presented in 
our speech keyword recognition tasks to save memory and computational resources; 
(2) a new application in speech recognition is proposed by binarization of 1D 
convolution; and (3) an audio keywords dataset that could be tested by our model 
and prepared to facilitate future research is collected and labeled. 

6.3.1.1 Network Architecture 

In this work, we propose a 1-bit neural network model [23] based on WaveNet that 
has achieved exceptional performance on the raw audio waveform. WaveNet is a 
deep autoregressive neural network with a point-by-point sampling method, and it 
could achieve high-quality audio via a conditional probability formula as follows: 

.P(X) =
N||

n=1

P (xn | x1, . . . , xn−1) (6.1) 

where past speech samples from previous steps generate each . xn. 
Figure 6.1 shows the 1-bit WaveNet architecture, which contains a preprocessing 

data module that converts raw clear keyword spectrogram data into Mel frequency 
cepstrum coefficient (MFCC) and then inputs these data into the main network, the 
principal part of this WaveNet, which is composed of several residual blocks, and 
a DenseNet that ensures that the outputs could be distributed as a categorical form 
to facilitate the calculation, and, meanwhile, it could solve the overflow problem in 
the model. 

Dilated Causal Convolutions This WaveNet model is based on PixelCNN [56], 
which discarded the pooling layers in the architecture but used a unique 1D 
convolution many times, called the causal convolution. The modeling process could 
certainly be in the correct time sequence, that is, the output . P (xn+1 | x1, . . . , xn)

produced by the model can only be generated from the present steps, but not from 
the predictions of the future. After predicting each audio sample, the model receives 
and applies it to the next prediction. Causal convolution-trained complicated 
sequences save more time than traditional RNNs such as LSTMs or GRUs [44] 
due to cutoff recurrent connections. Furthermore, convolutions with holes (dilated 
convolutions) include a new hyperparameter named the dilation rate to increase 
kernels’ reception field efficiently. Similarly to subsampled layers, the output and 
the input of dilated convolutions have an equivalent size. Our model could use 
only several layers to enlarge the receptive fields with considerable input resolution
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Spectogram MFCC 

Residual 
Block 

Labels 
CTC 

Loss 
DensNet 

Fig. 6.1 In the 1-bit WaveNet, a new binarized application via Bi-Real Net and PCNN is used to 
compress the speech recognition model. This flowchart illustrates the network architecture with all 
techniques in this work. See the text for a detailed description of the model 

and reasonable computational resources. In our work, we apply five layers with the 
dilation from . 20 to . 24. 

Gated Activation Units and Residual Blocks We used the same gated activation 
unit as the original WaveNet [44]: 

.z = tanh
(
Wf,k ∗ x

) O σ
(
Wg,k ∗ x

)
(6.2) 

where x is the output of dilated causal convolutions, W is a trainable convolution 
kernel, . O denotes the Hadamard product, . ∗ denotes the convolutional operation, 
and .σ(·) is a sigmoid function whose nonlinearity works better than other activation 
functions in speech recognition tasks [41]. 

This model uses three residual blocks to accelerate the convergence process when 
training deep convolutional neural networks. Figure 6.2 illustrates more details 
about one of our residual blocks.
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Fig. 6.2 The proposed residual block modified from WaveNet [44], which adds some of the 
BatchNorm layers and our new 1-bit causal convolution.. ⊗ denotes the element-wise multiplication 
operator 

6.3.1.2 Bi-Real Net Binarization 

In our neural network, we binarized weights through a sign function in 1-bit dilated 
causal convolutions: 

.wb = Sign (wr) =
{−1 if wr < 0

+1 otherwise
(6.3) 

where . wr denotes the real weight. In the backward propagation of the training 
process, we will use the real weight to update the binary weights called the 
magnitude-aware gradient regarding the weights [37] to update the binary weights, 
i.e., .Wl

b ∈ {−1,+1}. Because convolutions are one-dimensional in our 1-bit 
WaveNet, .Wl

b in the following equations is a one-dimensional vector. Traditional 
gradient descent is too small to update binary weights, so Courbariaux proposed 
a training approach that used a full-precision weight and a sign function [5]. 
Therefore, . Wl

r will be changed in the back propagation as follows: 

.Wl,t+1
r = Wl,t

r − η
∂L

∂Wl,t
r

= Wl,t
r − η

∂L
∂Wl,t

b

∂Wl,t
b

∂Wl,t
r

(6.4)
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.
∂Wl,t

b (i, j)

∂Wl,t
r (i, j)

=
{
1 ifWl,t

r (i, j) ∈ [−1, 1]
0 otherwise

(6.5) 

where .
∂Wl,t

b (i,j)

∂Wl,t
r (i,j)

denotes the element-wise derivative and . ∂L
∂Wl,t

b

is derived from the 

chain rule. Given that, we proposed a new magnitude-aware function to substitute 
the sign function as follows: 

.W
l,t

b =

||||||Wl,t
r

||||||
1,1|||Wl,t

r

|||
Sign

(
Wl,t

r

)
(6.6) 

Hence, . Wl
r updates to: 

.Wl,t+1
r = Wl,t

r − η
∂L

∂W
l,t

b

∂W
l,t

b

∂Wl,t
r

(6.7) 

where 

.
∂W

l,t

b

∂Wl,t
r

≈

||||||Wl,t
r

||||||
1,1|||Wl,t

r

|||
(6.8) 

.

∂ Sign
(
Wl,t

r

)

∂Wl,t
r

≈ 1|||Wl,t
r

|||<1
(6.9) 

and . θ̄ l,t is related to the magnitude of .Wl,t
b . Eventually, as we show in Fig. 6.3, this  

magnitude-aware function changes the weight’s sign obviously so that the stochastic 
gradient descent (SGD) could not achieve this significant effect [37]. 

6.3.1.3 Projection Convolutional Neural Network Binarization 

Projection Loss Figure 6.4 shows the projection convolutional neural network 
(PCNN) strategy that uses a discrete back propagation via projection [15] to  
compress our model. The projection loss obtained by optimization is as follows: 

.Lp = λ

2

L,IΣ

l,i

JΣ

j

||||||Ĉ
l,[k]
i,j − -Wl,[k]

j ⊗
(
C

l,[k]
i + ηδ

Ĉl
i,j ,[k]

)||||||
2

(6.10)
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Fig. 6.3 Illustration of the 
training architecture of 1-bit 
WaveNet by Bi-Real Net. 
Note that W is weighted; the 
superscript l means the lth 
block, which includes 
magnitude-aware sign, 1-bit 
causal convolution, and 
BatchNorm; and the subscript 
r and b denote real values and 
binary values, respectively 

where . ⊗ denotes the element-wise multiplication operator, J is the total number 
of projections, l denotes the layer index, . [k] is the iteration index, and i, j is the 
kernel index. The projection index and . λ, respectively, denote a trade-off scaler 
for the projection loss. In speech recognition, W is generally a 1D projection 
vector. Specifically, in the kth iteration, .Cl,[k]

i means the ith filter vector of the 

lth convolutional layer and .Ĉl,[k]
i,j = P

l,j
O

(
-Wl,[k]

j ⊗ C
l,[k]
i

)
denotes the binarized 

kernel of .Cl,[k]
i that includes a duplicated dimensional-corresponding projection 

vector . -Wl,[k]
j . .ηδ

Ĉl
i,j ,[k] means the gradient of .Ĉl,[k]

i,j from the loss of CTC at the 

beginning [14]. Figure 6.4 shows the principle of projection loss. We omit . [k] in the 
following content for convenience. In our 1-bit WaveNets, we should calculate both 
the CTC loss and projection loss as the total loss as follows: 

.L = LC + LP (6.11) 

Forward Propagation In PCNNs, we concatenate each Ĉl 
i,j that is binarized from 

the relevant real value filter Cl 
i,j to define the kernel D

l 
i . 

.Dl
i = Ĉl

i,1 ⊕ Ĉl
i,2 ⊕ · · · ⊕ Ĉl

i,J (6.12) 

Note that ⊕ is the convolutional concatenating operation. From Dl and F l , we  
achieve the projection convolution and then calculate the feature map F l+1 of the 
next layer: 

.F l+1 = Conv 1D
(
F l,Dl

)
(6.13)
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Fig. 6.4 In one-dimensional PCNNs, we propose a discrete back propagation through projection 
to binarize our WaveNet end-to-end [15]. By using the projection, we binarize the convolutional 
filters of real value . Cl

i to the binary counterpart .hatCl
i,j . Solid and dashed lines indicate the paths 

of . LC and . LP . Note that . ⊕ is the convolutional concatenation operation in the network 

where Conv 1D is the ordinary 1D convolution. We use this method to fit the 
dimensional difference between 1D convolutions and 2D convolutional filters: 

.F l+1
h,j =

Σ

i,h

F l
h ◦ Dl

i,j (6.14) 

.F l+1
h = F l

h,1 ⊕ · · · ⊕ F l
h,J (6.15) 

where ◦ denotes the convolutional operation and h is the index of the feature map.
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Backward Propagation Taking into account projection loss, we should train and 
update the real value filters Cl 

i and the projection matrix Wl by these formulas as 
follows: 

.δCl
i
= ∂L

∂Cl
i

= ∂LS

∂Cl
i

+ ∂LP

∂Cl
i

(6.16) 

.Cl
i ← Cl

i − η1δCl
i

(6.17) 

.δWl
j

= ∂L

∂Wl
j

= ∂LS

∂Wl
j

+ ∂LP

∂Wl
j

(6.18) 

.Wl
j ← Wl

j − η2δWl
j

(6.19) 

Note that η1, η2 is the learning rate of the convolutional filters and Wl 
j . We could 

substitute PCNNs for ordinary convolutions due to the dimensional consistency of 
two continuous layers [15]. 1-bit WaveNets achieve a decrease in computational 
resources using this method. 

6.4 Object Detection and Tracking 

Object detection is the process of finding a target from a scene, while object 
tracking is the follow-up of a target in consecutive frames in a video. Deep learning-
based object detection can generally be classified into two categories: two-stage 
and single-stage object detection. Two-stage detectors, for example, Faster R-
CNN [49], FPN [29], and Cascade R-CNN [4], generate region proposals in the 
first stage and refine them in the second. In localization, R-CNN [13] utilizes the L2 
norm between predicted and target offsets as the object function, which can cause 
gradient explosions when errors are significant. Fast R-CNN [12] and Faster R-
CNN [49] proposed a smooth loss of L1 that keeps the gradient of large prediction 
errors consistent. One-stage detectors, e.g., RetinaNet [30] and YOLO [48], classify 
and regress objects concurrently, which are highly efficient but suffer from lower 
accuracy. Recent methods [51, 72] have been used to improve localization accuracy 
using IoU-related values (insertion over union) as regression targets. IoU loss [72] 
utilized the negative log of IoU as object functions directly, which incorporates the 
dependency between box coordinates and adapts to multi-scale training. GIoU [51] 
extends the IoU loss to nonoverlapping cases by considering the shape properties of 
the compared objects. CIoU loss [75] incorporates more geometric measurements, 
that is, overlap area, central point distance, and aspect ratio, and achieves better 
convergence.
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Table 6.1 Results reported 
in Liu et al. [34] 

Dataset Index SiamFC XNOR RB-SF 

GOT-10K AO 0.348 0.251 0.327 

SR 0.383 0.230 0.343 

OTB50 Precision 0.761 0.457 0.706 

SR 0.556 0.323 0.496 

OTB100 Precision 0.808 0.541 0.786 

SR 0.602 0.394 0.572 

UAV123 Precision 0.745 0.547 0.688 

SR 0.528 0.374 0.497 

Sun et al. [54] propose a fast object detection algorithm based on BNNs. 
Compared to full-precision convolution, this new method results in 62 times faster 
convolutional operations and 32 times memory saving in theory. 

Liu et al. [34] experiment on object tracking after proposing RBCNs. They used 
the SiamFC network as the backbone for object tracking and binarized the SiamFC 
as the rectified binary convolutional SiamFC network (RB-SF). They evaluated 
RBSF in four datasets, GOT-10K [22], OTB50 [65], OTB100 [66], and UAV123 
[40], using accuracy occupy (AO) and success rate (SR). The results are shown in 
Table 6.1. 

Yang et al. [69] propose a new method to optimize a deep neural network based 
on YOLO-based object tracking simultaneously using approximate weight bina-
rization, trainable threshold group binarization activation function, and separable 
convolution methods according to depth, significantly reducing the complexity of 
computation and model size. 

6.4.1 Data-Adaptive Binary Neural Networks for Efficient 
Object Detection and Recognition 

One of the ugliest aspects of 1-bit CNNs lies in the gap between full-precision 
weights and their quantization counterpart. The focus of the existing methods is to 
minimize the gap. To this end, the convolutional kernel is usually divided into two 
parts, the amplitude and direction, while the feature maps are only in the direction 
for efficient calculation. The existing binarization methods can be formulated in a 
unified framework where (1) . Dl

i are the directions of the full-precision kernels . W
l
i

of the ith channel in the lth convolutional layer, .i ∈ {1, · · · , I }, .l ∈ {1, · · · , N}; 
(2) . Al is shared by all . Dl

i represents the amplitude of the lth convolutional layer; 

and (3) . Âl
i and . A

l
i are of the same size and all the elements of . Âl

i are equal to the 

average of the elements of . Al
i . . X̂

l
i denotes the direction of input . X

l
i . In the forward 

pass, . Âl is used instead of the full-precision weights . Al . The full-precision weights 
. Al are only used for back propagation during training. Note that the formulation 
can represent XNOR based on a scalar [47], and also simplified PCNN [15] whose
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scalar is learnable as a projection matrix, or even XNOR++, which decomposes 
tensor . Â into vectors in the three directions of the channel, height, and width [3]. 
We represent . Ŵ by the amplitude and direction as: 

.Ŵ = D O Â, (6.20) 

where . O denotes the element-wise multiplication between matrices. We can calcu-
late the binary convolution output . Ô as: 

.Ô = X̂ ∗ Ŵ = (X̂ * D) O Â, (6.21) 

where . ∗ and . * denote convolution (floating-point multiplication and addition) and 
bit convolution (bitwise XNOR and pop-count operations), respectively. 

6.4.1.1 Data-Adaptive Amplitude Method 

Existing methods fail to calculate the data-adaptive amplitude to better approx-
imate the full-precision feature maps. This explains the primary reason for the 
performance gap between 1-bit CNNs and their full-precision counterpart. Without 
considering the amplitude of X, there is an inevitable gap between . Ô and O because 
the fixed . Â is irrelevant to input X. To address this issue, an intuitive idea is to let 
. Â become a function .Â(X) with X as the input. In 1-bit CNNs, we use .X̂ * D to 
substitute for X because .X̂ * D contains the information of both X and W , which 
will have a better representation capacity. Because the amplitude . Â is not fixed but 
adaptive to the input data, we call our method data-adaptive binary neural network 
(DA-BNN) [73].  And we have:  

.Ô = (X̂ * D) O Â(X̂ * D), (6.22) 

where .Â(.) is related to the input and will burden the computation of CNNs. To 
address this problem, we use attention-based methods [60, 64] and introduce a 
lightweight module to implement .Â(.). The module is designed by considering both 
channel and spatial (height . × width) levels. For simplicity, we denote .X̂ * D as . M̂

in the following sections. To solve the problem, we introduce the attention method 
to calculate a data-adaptive amplitude for better performance. We lead two data-
adaptive amplitude methods: channel-based and spatial-based. 

6.4.1.2 Data-Adaptive Channel Amplitude 

To calculate the channel amplitude .ÂC(M̂), we consider the feature maps from 
two perspectives, within and between channels, similar to the attention mechanism 
[21, 60]. We introduce the global average pooling layer to reduce the other two 
dimensions and extract features within channels. Compared with the convolution,
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Fig. 6.5 The calculation of 
the channel amplitude 

the global average pooling layer adds no extra parameters and fewer calculations. 
Considering the cross-channel interaction, a 1D convolution is applied to fuse the 
information of each channel with its neighbors. 

However, because real-valued convolution parameters are often nearly zero, 
easily influenced by the weight decay, the binarization of parameters always 
means an amplification compared with the real-value convolution. The result of 
the binary convolution is usually much more significant when compared with the 
corresponding real-valued convolution [36, 53]. Thus, the amplitude Â(M̂) should 
be a small value, solved by a sigmoid function that maps the amplitude into (0, 1). 
Furthermore, the sigmoid function is also used to guarantee Â(.) merely learns the 
amplitude information, not the direction. By doing so, we represent the channel 
amplitude ÂC(M̂) as: 

ÂC(M̂) = σ(kc ∗ AvgPool(M̂)), (6.23) 

where σ denotes the sigmoid function and kc is the kernel of 1D convolution. A 
specific module is illustrated in Fig. 6.5. 

6.4.1.3 Data-Adaptive Spatial Amplitude 

Similar to calculating the attention network, we use pooling layers and convolution 
to calculate the spatial amplitude. In Fig. 6.6, we demonstrate the corresponding 
structure. We utilize the average and maximum pooling together and then use a
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Fig. 6.6 The calculation of 
spatial amplitude 

.3 × 3 convolution instead of the 1D convolution to deal with the spatial data. We 
calculate the spatial amplitude .ÂS(M̂) as: 

.ÂS(M̂) = σ(ks ∗
[
AvgPool(M̂);MaxPool(M̂)

]
). (6.24) 

However, when the features are binarized in the next block, the amplification 
information will be eliminated, and only the direction information will be retained. 
To keep the amplitude information, we redistribute features using an additional 
BN, added before the binarization of the feature map. By doing so, the amplitude 
will be partially converted into the direction information by improving the feature 
distribution. 

6.4.1.4 Experiment on Object Recognition 

We use ImageNet [8] to train our models. Considering the size of the dataset, we 
apply ResNet-18 [19] on ImageNet for a fair comparison with other quantization 
networks. 

ILSVRC12 ImageNet is a large-scale dataset that contains over 1.2million 
training images and 50K validation images from 1000 categories. To train ResNet-
18 on ImageNet, models are trained in a two-step training method, similar to 
[36–38]. The training process is divided into two stages. In the first stage, we 
train a full-precision network that keeps the weights and activations real-valued 
for 60 epochs. Networks are optimized using stochastic gradient descent (SGD) 
to stabilize the pre-trained model. At this stage, we set the weight decay to 3e. −4, 
the momentum to 0.9, and the learning rate to 0.1. In the second stage, the network
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loads the parameters and binarizes the weights and activations. An Adam optimizer 
is used to sufficiently train the binary model, following the settings of [37]. The 
learning rate is set to 1e−3, and the weight decay is fixed to 0. In both stages, the 
batch size is 360, and the learning rate is adjusted following a cosine schedule until 
annealing down to 0. Following the settings in [38], we use PReLU activations [18] 
instead of the ReLU activations and keep the real-valued downsample and double 
skip connections. 

6.4.1.5 Ablation Study on Object Recognition 

In this section, we evaluate the effects of data-adaptive amplitude on the perfor-
mance of 1-bit CNNs. 

The BN layer in ResNet-18 is set after the convolution. We, however, add an extra 
BN layer in front of the 1-bit convolution to redistribute the features and turn the 
information of amplitude into the direction to cope with the information loss in the 
binarization process. We test the effectiveness of the addition of BN on ImageNet by 
ResNet-18. The channel amplitude and spatial amplitude are used in parallel. The 
specific structure is demonstrated in Fig. 6.7 and the results are shown in Table 6.2: 

Fig. 6.7 Network architectures of ResNet-18, Bi-Real Net on ResNet-18, and DA-BNN on 
ResNet-18. Note that the scale factor is added to the convolution in Bi-Real Net, and we adjust 
its position to make the comparison clear with the same principle 

Table 6.2 Different structures of binary neural networks are tested on ImageNet ILSVRC12. 
“BN” refers to the use of the front batch normalization layer. All the models are based on ResNet-
18 

Binary BN Amplitude Acc. 

× × × 69.30 √ × × 57.60 √ √ × 59.32 √ √ √
63.08

The bolds denote the best results



6.4 Object Detection and Tracking 233

Table 6.3 We apply the channel and spatial adaptive amplitude, respectively, to evaluate their 
effectiveness. All models are trained in a two-step method. The accuracy of step 1 corresponds to 
the real-valued model, while the accuracy of step 2 corresponds to the binarization counterpart 

Method Acc.of step1 Acc. Of step2 

Baseline 67.73 57.60 

Spatial 67.36 60.18 

Channel 69.32 61.63 

Channel+spatial 69.41 62.48 

Channel & spatial 69.29 63.08 

The bolds denote the best results

directly using the additional front BN, an increase of 1.72% in accuracy is observed 
compared to the normal binarization in ResNet-18. If we add the adaptive amplitude, 
the accuracy of networks can be improved by about 4%, which proves that the 
additional BN is helpful for further improving the performance of binary neural 
networks. 

In Eq. 6.22, the data-adaptive amplitude .Â(.) can be calculated using the channel 
amplitude and spatial amplitude in sequence or parallel. To this end, we test 
three data-adaptive amplitude combinations of the channel amplitude and spatial 
amplitude: sequential channel-spatial, sequential spatial-channel, and parallel, using 
both amplitude modules. Scale factor methods are also tested for comparison. 
We evaluate the performance of data-adaptive amplitude on ImageNet, based on 
ResNet-18. Unlike the experiments in Table 6.3, a two-step training method is used 
here. In the first stage, we train the model with real-valued weights and feature maps 
as a pre-training step. In the second step, the model loads the parameters trained in 
the first step and binarizes the weights and features corresponding to the binary 
models. We record the best performance of the model at each stage. 

Figure 6.8 shows the curves for the Top-1 accuracy of different methods. The 
sudden drop of the curves denotes the switch of training stages from full-precision to 
binarized models. The best accuracy of different methods is illustrated in Table 6.3: 
spatial amplitude has little influence on the real-valued model but increases the 
performance of binary neural network by about 2.5%, whereas channel amplitudes 
can improve the accuracy of both full-precision model and binarized model by 
2% and 4%, respectively. Different configurations of adaptive amplitude methods 
influence the performance of full-precision models and binary models differently. 
The sequential channel and spatial method performs better on full-precision models, 
while the one in parallel performs better for binary models. These results verify that 
a proper arrangement of the amplitude methods is essential to further improve the 
performance. 

6.4.1.6 Network Accuracy Comparison on ImageNet 

To evaluate the performance of DA-BNN, we compare its performance with 
other state-of-the-art quantized networks, including BWN [47] DoReFa-Net [76],
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Fig. 6.8 The convergence curves of DA-BNN. The “baseline” label means no extra modules are 
used. We use our proposed modified structure. The “channel” and “spatial” labels denote applying 
the corresponding amplitude modules. The “channel + spatial” label and “channel & spatial” 
represent different combination methods. It should be noted that the sudden drop in 60 epochs 
is caused by switching the training steps when both weights and activations are binarized 

TBN [57], BNN [6], XNOR-Net [47], ABC-Net [33], Bi-Real Net [37], PCNN [15], 
BONN [17], CI-Net [62], BinaryDuo [25], real-to-binary [38], and ReActNet [36] 
and reported Top-1 and Top-5 accuracies in Table 6.4. Note that all models are based 
on ResNet-18 with 69.3% Top-1 accuracy on the full-precision model. 

We first applied our DA-BNN based on Bi-Real Net, achieving outstanding 
performance among neural networks with binary weights and activations. However, 
Bi-Real Net focuses more on optimizing binarization and ignores the significance 
of amplitude in 1-bit convolution, just using the mean of the real-valued weights 
as the scale factor. In contrast, our method focuses on the adaptive amplitude to 
improve the representation capacity, an essential enhancement to Bi-Real Net. By 
applying our DA-BNN on Bi-Real Net, we use our adaptive amplitude instead of the 
scale factor and modify those above. Above 6% improvement is achieved under the 
Bi-Real Net framework, which exceeds most binarization methods. It is also worth 
mentioning that DoReFa-Net and TBN use more than 1-bit to quantify activations, 
yet we still perform better. 

However, our DA-BNN is not limited to a specific quantization method and can 
be combined with other binarization methods for more significant improvement. To 
further evaluate the potential of our DA-BNN, we combine it with ReActNet, which 
achieves the highest binary accuracy based on ResNet-18 on ImageNet, to the best 
of our knowledge. Note that for a fair comparison, we remove the scale factor used 
in ReActNet to ensure the used amplitude is learned in our adaptive methods. Based 
on the ReActNet, it obtains even higher accuracy, with just a 3% gap to the full-
precision model.
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Table 6.4 Accuracy of 
state-of-the-art quantization 
networks and our DA-BNN 
on ImageNet. “W” and “A” 
refer to the weight and 
activation of the bit width, 
respectively. All the models 
are based on ResNet-18 

Model W/A(bit) Top-1 Top-5 

ResNet-18 32/32 69.3 89.2 

BWN 1/32 60.8 83.0 

DoReFa-Net 1/4 59.2 81.5 

TBN 1/2 55.6 79.0 

BNN 1/1 42.2 67.1 

XNOR-Net 1/1 51.2 73.2 

ABC-Net 1/1 42.7 67.6 

Bi-Real Neta 1/1 56.4 79.5 

PCNN 1/1 57.3 80.0 

BONN 1/1 59.3 81.6 

CI-Net 1/1 59.9 84.2 

BinaryDuoa 1/1 60.9 82.6 

DA-BNNa (based on Bi-Real Net) 1/1 63.1 84.3 
Real-to-binarya 1/1 65.4 – 

ReActNeta 1/1 65.5 – 

DA-BNNa (based on ReActNet) 1/1 66.3 86.7 

The bolds denote the best results 
aA real-valued or partly real-valued (just binarized activation) 
model is used for pre-training. Because our method is not specific 
to the quantitative process, we use two different binarization 
frameworks, Bi-Real Net and ReActNet. Note that the first DA-
BNN is based on Bi-Real Net, and the experimental settings refer 
to the description above. As for ReActNet, we keep all the settings 
the same except for the scale factor change with our data-adaptive 
amplitude 

In short, we achieve a new state-of-the-art performance compared to other 
BNNs, and a much closer performance to full-precision models, which validates 
the superiority of DA-BNN for the BNN calculation. 

6.4.1.7 Experiment on Object Detection 

We evaluate our method on the PASCAL VOC dataset, composed of natural images 
from 20 classes. We train our model on the VOC 2007 and VOC 2012 trainval sets, 
which consist of around 16k images, and we evaluate our method on the VOC 2007 
test set, including about 5k images. Following the setting of [9], we use the mean 
average precision (mAP) as the evaluation criterion. 

We train our DA-BNN with the Faster R-CNN [50] detection framework with the 
ResNet-18 backbone [19] aforementioned. Following implementing binary neural 
networks in [37], we remain the first and last layer in the detection networks’ real-
valued. The same pipeline as [50] is utilized when training our DA-BNN with a 
Faster R-CNN detector. For efficient object detection, we binarize all the . 3 × 3
convolution operations in the following models, except the first convolution and
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full-connected layer in Faster R-CNN, following the same settings as XNOR-Net 
[47] and BiDet [63]. We modify the architecture of ResNets following [63]. 

As for the details of training settings, we pre-train the binary backbone network 
in DA-BNN fashion on the ImageNet dataset, as depicted in Sect. 6.4.1.4. Then we 
fine-tune the backbone and detection parts collaboratively for the object detection 
task. The batch size is assigned to be 16, with the SGD optimizer applied. The 
number of epochs is 12, and the learning rate varies according to the framework 
and backbone. A multistep learning rate schedule is employed for the Faster-RCNN, 
which decays twice by multiplying by 0.1 at the 8th and 11th epoch of the 12 epochs 
(Table 6.5 and Fig. 6.9). 

6.4.1.8 Performance Comparison on PASCAL VOC 

In this section, we compare the proposed DA-BNN with state-of-the-art 1-bit neural 
networks, including XNOR-Net [47], Bi-Real Net [37], and BiDet [63] for the task 
of object detection on the PASCAL VOC datasets. 

Table 6.5 Comparison of mAP (. %) with state-of-the-art BNNs in Faster R-CNN frameworks 
with ResNet-18 on VOC test2007. The detector with the real-valued and multi-bit backbone is 
given for reference. Input resolution is set as .600 × 1000. The bold denotes the best result 

Quantization method W/A(bit) mAP(. %) 

Full-precision 32/32 74.5 

XNOR-Net 1/1 48.9 

Bi-Real Net 1/1 58.2 

BiDet 1/1 59.5 

DA-BNN 1/1 63.5 

Fig. 6.9 Qualitative results on PASCAL VOC test2007 (best viewed in color)
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Compared to other 1-bit methods, we observe a significant performance advan-
tage over other state of the arts. With the ResNet-18 backbone, we achieve . 63.5%
mAP, outperforming XNOR-Net, Bi-Real Net, and BiDet by 14.6. %, 5.3. %, and 4.0. %
mAP with the similar memory usage and FLOPs. 

In short, we achieved a new state-of-the-art performance compared to other 
BNNs on PASCAL VOC. We are also much closer in performance to full-precision 
models, as demonstrated in experiments, validating the superiority of DA-BNN. 

6.4.1.9 Computation and Storage Analysis 

Inevitably, using a data-adaptive amplitude will increase the computation and 
storage for a more accurate approximation to real-valued convolution. However, the 
additional structures are lightweight and efficient. The additional part is negligible 
compared to the computation and storage of 1-bit convolution. In detail, the 
additional storage in adaptive amplitude is the weight of the convolution. In channel 
amplitude, we use a simple 1D convolution with a size of three, and thus the number 
of additional parameters is .3× 32 (32 denotes 32 bits). A .3× 3 convolution is used 
in the spatial amplitude with two  input and one output channels. Thus, its storage 
is .9 × 2 × 32. Both are far less than the storage of corresponding 1-bit convolution 
due to the large numbers of convolution channels. The primary source of the extra 
computation comes from the structure modification, where just a few parameters 
are introduced compared to the whole model. So the storage increase has almost no 
influence on the storage of original 1-bit networks. 

We calculate the computational and storage complexity compared to BNN 
networks and full-precision networks to show the ignorable addition of memory 
and speed up during inferences. The memory usage is represented by the storage 
for parameters of networks, which is calculated as the summation of 32-bit times 
real-valued parameters and 1-bit times binary parameters. We use FLOPs to 
measure computational complexity. Referring to [37, 47], the acceleration of 1-bit 
convolution is about 64 times the real-valued convolution. We follow these methods 
and calculate corresponding FLOPs. 

Table 6.6 compares computational complexity, and storage cost, across different 
quantization methods on ResNet-18 and Faster R-CNN frameworks. The proposed 
DA-BNN saves the storage cost by .11.04× and reduces the computation by . 10.80×
in ResNet-18. On Faster R-CNN, as a result of the decrease of full-precision 
parameters in the fully connected layer, better performance of saving the storage and 
computation by .18.62× and .15.77×, respectively, has been achieved, which keeps 
the same level as other 1-bit CNN methods. In summary, our adaptive amplitude 
introduces negligible storage (less than 1%) and little computation (less than 8%) 
but can significantly enhance BNNs’ performance.
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Table 6.6 We show the memory usage as well as the flops of the DA-BNN. The calculation 
method is the same as Bi-Real Net 

Model Method Memory usage Memory saving FLOPs (.×108) 

ResNet-18 Full-precision 374.1 Mbit – 18.26 

XNOR-Net 33.7 Mbit 11.10.× 1.67 

Bi-Real Net 33.6 Mbit 11.14.× 1.63 

Channel 33.9 Mbit 11.04.× 1.65 

Spatial 33.9 Mbit 11.04.× 1.67 

DA-BNN 33.9 Mbit 11.04.× 1.69 

Faster R-CNN Full-precision 379.9 Mbit – 360.14 

XNOR-Net 20.2 Mbit 18.81.× 21.29 

Bi-Real Net 20.1 Mbit 18.90.× 21.27 

BiDet 20.1 Mbit 18.90.× 21.27 

DA-BNN 20.4 Mbit 18.62.× 22.84 

6.4.2 Amplitude Suppression and Direction Activation in 
Networks for Faster Object Detection 

6.4.2.1 Methodology 

In this paper, we propose an amplitude suppression and direction activation in 
the Faster R-CNN framework (ASDA-FRCNN) [68] to compress DCNNs for 
highly efficient object detection. The shared amplitude between full-precision and 
quantized kernels is significantly suppressed during binarization, which can lead to 
a new simple but effective loss. The concept of ASDA is generic and flexible and 
can be easily incorporated into existing DCNNs such WideResNets and ResNets 
and applied to many vision tasks including object classification. 

Problem Formulation 
The inference process of any binary neural network (BNN) model is based on the 
binarized kernels. This means that the kernels must be binarized in the forward 
step (corresponding to the inference) during training, so that the training loss is 
calculated based on the binarized filters. Unlike the forward process, during back 
propagation, the resulting kernels do not need to be binarized and can be full-
precision. In this case, the full-precision kernels are binarized to gradually bridge 
the binarization gap during training. Therefore, the learning of most BNN models 
involves both discrete and continuous spaces, which poses a great challenge in 
practice. 

To address these challenges and improve the optimization of binarizing CNNs, 
we decouple the full-precision kernel X and represent it by the amplitude and 
direction as: 

.X̂ = A · D, (6.25)
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where A and D respectively denote the amplitude and the direction of X. D is the 
.l1-normalized matrix and calculated by .sign(X) as .− 1

size(X)
for negative X and 

.
1

size(X)
for positive X. A is a scalar. 

Corollary 6.1 To obtain an optimized BNN, we solve: 

.X = X̂ = A · D, (6.26) 

based on the assumption that X and . X̂ share similar amplitude. 

This corollary is a bilinear problem, where A and D need to be calculated 
simultaneously. Existing methods tend to split the problem into easily solved 
subproblems, and then solve them using the alternating direction method of 
multipliers (ADMM) [20, 70], which might be less efficient for the BNN calculation. 
To simplify the process, we proposed to calculate the amplitude A based on the 
back propagation algorithm since D can be solved based on the .sign(.) function. 
In addition, due to the shared amplitude between the full-precision kernels and 
binarized kernels, we can easily suppress it and thus lead to a highly efficient 
detector. 

Forward Propagation in ASDA-FRCNN 
In order to achieve binarized weights, we design a new loss function in ASDA-
FRCNN. Note that only the kernels of ASDA-FRCNN are binarized, while for 1-bit 
ASDA-FRCNN, both the kernels and the activations are binarized. These are briefly 
described at the end of Sect. 6.4.2.2. Here we define D, A, and A as follows. .Dl

i,j is 

the direction of the full-precision kernel .Xl
i,j . .X

l
i,j denotes the i-th kernel in the j -th 

filter at l-th convolutional layer, .l ∈ {1, · · · , N}; . Al shared by all .Dl
i,j represents the 

amplitude of the l-th convolutional layer; . Al and . Al are of the same size and all the 
elements of . Al are equal to the average of the elements of . Al . In the forward pass, 
. Al is used instead of the full-precision . Al . In this situation, . Al can be considered a 
scalar. The full-precision . Al is only used for back propagation during training. This 
process is the same as the way of calculating . X̂ from X in an asynchronous manner, 
which is also illustrated in Fig. 5.5. 

Accordingly, Eq. 6.25 is represented for ASDA-FRCNN at l-th layer as: 

.Dl
i,j = sign(Xl

i,j )

size(Xl
i,j )

, (6.27) 

.X̂l
i,j = Al · Dl

i,j , (6.28) 

where .Dl
i,j represents the binarized kernel, .i.e., direction. .size(Xl

i,j ) is the number 

of weights of .size(Xl
i,j ). With the i-th binary kernel in j -th filter at l-th layer
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reconstructed, we can formulate the forward path of feature maps as: 

. F l+1
j = Hl+1

j (F l , Al,Dl )

=
Σ

i

F l
i ⊗ X̂l

i,j

= Al
Σ

i

F l
i ⊗ Dl

i,j , (6.29) 

where we use .Hl+1 to denote the mapping at .l + 1-th layer in the abstract sense and 
.Hl+1

j is the j -th output feature map. . ⊗ denotes the convolution operation; .F l+1
j is 

the j -th feature map in the .(l + 1) aligned convolutional layer. .F l ,Dl denotes the 
aggregate of feature maps and directions at l-th layer, respectively. . F l

i denotes the 
i-th feature map in the lth convolutional layer. 

Loss Function of ASDA-FRCNN 
We then define an amplitude loss function to reconstruct the full-precision kernels 
as: 

. LA =
Σ

l

Σ

j

Σ

i

||Xl
i,j − X̂l

i,j||22

=
Σ

l

Al
Σ

j

Σ

i

||Xl
i,j − Dl

i,j||22, (6.30) 

.Xl
i,j is normalized by dividing .||Xl

i,j||1. Under Corollary 6.1, X and . X̂ share similar 
amplitude, thus formulating a strong supervision to minimize the reconstruction 
error. Then we also need a loss to monitor the detection process as: 

. LS = 1

S

Σ

k

Lcls(pk, p
gt
k ) + λ

1

M

Σ

k

p
gt
k Lreg(tk, t

gt
k )

= 1

S

Σ

k

− log
[
p

gt
k · pk + (1 − p

gt
k ) · (1 − pk)

]

+λ
1

M

Σ

k

p
gt
k smoothl1(tk, t

gt
k ), (6.31) 

where S denotes the mini-batch size and M denotes the anchor locations. .pk, tk , 
are a positive prediction and a vector presenting four coordinates of anchor k. Their 
detailed definitions are: 

.pk = Ps

[
HN(FN−1, AN−1,DN−1)

]
. (6.32) 

tk = Tk

[
HN (FN−1, AN−1, DN−1)

]
, (6.33)
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.p
gt
k and . tgt

k are their ground truth labels, respectively. . Pk and . Tk denote obtaining 
the probability and location information of k-th anchor from last layer. N is the total 
number of layers and the function .smoothl1(x) is defined as: 

.smoothl1(x) =
{
0.5 · x2, if |x| < 1

|x| − 0.5, else
(6.34) 

Finally, the overall loss function L is applied to supervise the training of ASDA-
FRCNN in the back propagation algorithm and is defined as: 

.L = LS + μLA, (6.35) 

6.4.2.2 Back Propagation 

In ASDA-FRCNN, what needs to be learned and updated are the full-precision 
kernels . Xi and the amplitude A. The kernels and the matrices are jointly optimized. 
In each convolutional layer, ASDA-FRCNN updates the full-precision kernels and 
then the amplitude. In what follows, the layer index l is omitted for simplicity. 

Updating X 
We denote . δXi

as the gradient of the full-precision kernel .Xl
i,j and have: 

.Xl
i,j ← Xl

i,j − η1δXl
i,j

, (6.36) 

where . η1 is a learning rate. .δXl
i,j

is calculated as: 

. δXl
i,j

= ∂LS

∂Xl
i,j

+ ∂LA

∂Xl
i,j

= ∂LS

∂X̂l
i,j

· ∂X̂l
i,j

∂Xl
i,j

+ 2 · A(Xl
i,j − Dl

i,j )
∂Xl

i,j

∂Xl
i,j

= A ·
[

∂LS

∂X̂l
i,j

· 1 + 2(Xl
i,j − Dl

i,j )
∂Xl

i,j

∂Xl
i,j

]
, (6.37) 

.Xl
i,j is the full-precision convolutional kernel corresponding to .Dl

i,j , and . 1 is the 
indicator function [47] widely used to estimate the gradient of the non-differentiable 
function.
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6.4.2.3 Amplitude Calculation and Suppression 

After updating X, we update the amplitude A. Let  . δA be the gradient of . A. 
According to Eq. 6.35, we have:  

.Al ← |Al − η2δAl |, (6.38) 

where . η2 is another learning rate. And . δAl is calculated as: 

. δAl = ∂LS

∂Al
+ ∂LA

∂Al

=
Σ

j

Σ

i

[
∂LS

∂X̂l
i,j

· Dl
i,j + ||Xl

i,j − Dl
i,j||22

]
, (6.39) 

Note that the amplitudes are always set to nonnegative. By setting a very small . μ
in Eq. 6.35, we actually suppress amplitude . Al directly. The parameter evaluation is 
extensively explored in the experimental section, which shows that such suppression 
is highly effective. On the contrary, the direction information is always used in the 
forward process. 

Our 1-bit ASDA-FRCNN is also based on binarizing the kernels and activations 
simultaneously as in [7, 47]. These derivations show that ASDA-FRCNN is learn-
able with our BP algorithm. We summarize the training procedure in Algorithm 13. 

Algorithm 13: Optimized ASDA-FRCNN via back propagation 
Input: 

The training dataset; the full-precision kernels X; the amplitude scalar A; the learning 
rates η1 and η2. 

Output: 
The ASDA-FRCNN with the learned X, A. 

1: Initialize X and A randomly; 
2: repeat 
3: // Forward propagation 
4: for l = 1 to  L do 
5: Compute X̂l 

i,j from Eqs. 6.27 to 6.28; 
6: if 1 bit feature maps then 
7: F l 

i,j =sign(F l 
i,j ); 

8: end if 
9: Compute F l+1 

j via Eq. 6.29, ∀i, j ; 
10: end for 
11: // Backward propagation 
12: for l = L to 1 do 
13: Calculate δXl 

i,j 
, δAl ; // using Eqs. 6.36∼6.39 

14: Update parameters Xl 
i,j and A

l using back propagation; 
15: end for 
16: until the algorithm converges. 
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6.4.2.4 Experiments 

Datasets and Implementation Details 
We evaluated our ASDA-FRCNN method on two most widely applied detection 
datasets: PASCAL VOC and MS COCO. PASCAL VOC 2007 [9] dataset consists 
of about 5k train/val images and 5k test images over 20 object categories. We also 
provide results by training on PASCAL VOC 2007+2012 train/val and testing on 
PASCAL VOC 2007 test. More experiments are deployed on MS COCO 2014 [31], 
which consists of 240k train/val images, 5k minival images, and 40k test-dev images 
over 80 object categories. Furthermore, as our approach shows great feasibility, we 
deploy ASDA ResNet-18 on ImageNet ILSVRC2012 [27] in ResNet-18 [19]. 

We implemented the training process plotted in Algorithm 13 on 3 NVIDIA 
TITAN Xp GPUs with 128GB of RAM via PyTorch [45]. The weight decay, 
momentum, and hyperparameter λ are set as 0.0001, 0.9, and 10, respectively. W and 
A are the weight and activation, respectively. Full-precision model is implemented 
with 32-bit weight and 32-bit activation. And 1-bit ASDA Faster is implemented 
with 1-bit weight and 1-bit activation. We modify the architecture of ResNet-18 
and ResNet-34 following [37] by substituting ReLU with PReLU [18], and the final 
results of our ASDA Res-18 are fine-tuned based on the pre-trained models with 
only kernel weights binarized, halving the learning rate during training. NOTE: 1-
bit ASDA-FRCNN is employed in ablation study; thus, W and A are 1-bit. 

6.4.2.5 Ablation Study 

Parameter μ 
As mentioned above, the proposed loss has the ability to control the process of 
quantization. Hyperparameter μ is introduced in Eq. 6.35 to balance the loss and 
suppress the influence of the amplitude. To evaluate the influence of μ, we deploy 

Table 6.7 Test mAP on PASCAL VOC 2007 dataset in ResNet-18 backbone. Training method 
includes VOC2007 only and VOC2007+2012. The bolds represent the best results 

μ 
Model 1e − 4 5e − 5 2e − 5 1e − 5 

1-bit ASDA-FRCNN VOC07 47.4 51.1 54.6 48.6 

1-bit ASDA-FRCNN VOC07+12 56.3 61.5 63.4 61.1 

Table 6.8 Test mAP on PASCAL VOC 2007 dataset in ResNet-34 backbone. Training method is 
VOC2007+2012 

μ 
Model 5e − 5 2e − 5 1e − 5 5e − 6 

1-bit ASDA-FRCNN VOC07+12 54.1 60.2 65.5 61.7

The bolds denote the best results
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Fig. 6.10 Al at first Conv layer in the sixth block with different μ. Training method is 
VOC2007+2012. Model is ResNet-18 

controlled experiments on ResNet-18 on PASCAL VOC 2007. Results are shown in 
Tables 6.7 and 6.8. 

In ResNet-18, it is observed that the network achieve the better performance as 
we suppress μ. Thus, we fix μ to 5e −4 in the following experiments in ResNet-18. 
In addition, we analyze the amplitude of a certain layer in ResNet-18. As plotted 
in Fig. 6.10, Al is suppressed more deeply as the μ becomes smaller, which subtly 
demonstrates our intuition in Sect. 6.4.2.3. 

In ResNet-34, LA increases as the model size expends. And the hyperparameter 
μ should be lower to suppress the amplitude more. As shown in Table 6.8, the  
network obtains the best performance when μ is set to 1e − 5. Thus, we fix μ to 
1e − 5 in the following experiments in ResNet-34. 

Learning Convergence 
Figure 6.11 plots the LS curve with different μ. Obviously, when μ is set to 
2e − 5, LS can converge to a lower level, which shows the network obtains a better 
performance. 

Experimental Verification of Corollary 6.1 
As plotted in Fig. 6.12, l2-norm summation of kernels in the first and second layer 
in 6-th block is similar to the corresponding amplitudes as the scatters distribute 
uniformly around the positive scale curve. This ablation result strongly proves our 
Corollary 6.1 (Fig. 6.13).
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6.4.2.6 Object Detection 

Results on PASCAL VOC Datasets 
We compare the performance of our results with other state-of-the-art binary 
methods such as XNOR [47], TBN [57], and Bi-Real [37]. The comparison results 
for object detection are illustrated in Tables 6.9 and 6.10.
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Fig. 6.13 Detection results on PASCAL VOC 2007 test 

Table 6.9 Test mAP on 
PASCAL VOC 2007 dataset 
in ResNet-18 backbone. 
Training method is VOC2007 
only and VOC2007+2012. 
“W” and “A” refer to the 
weight and activation bit 
width, respectively 

Model W A mAP FPS 

VOC2007 only 

Faster R-CNN-Res18 32 32 67.8 12.26 

Bi-Real [37] 1 1 51.0 12.26a 

ASDA-FRCNN 1 32 56.6 12.26 
1-bit ASDA-FRCNN 1 1 54.6 12.26a 

VOC2007+2012 

Faster R-CNN-Res18 32 32 73.2 12.26 

Bi-Real [37] 1 1 60.6 12.26a 

ASDA-FRCNN 1 32 66.4 12.26 
1-bit ASDA-FRCNN 1 1 63.4 12.26a 

The bolds denote the best results 
aDue to hardware constraints, binary acceleration 
cannot be reflected on the PC, but theoretically it 
can accelerate 58 times. So we estimate FPS as 711 

Table 6.10 Test mAP on 
PASCAL VOC 2007 dataset 
in ResNet-34 backbone. 
Training method is 
VOC2007+2012 

Model W A mAP FPS 

Faster R-CNN-Res34 32 32 75.6 8.01 

XNOR [47] 1 2 54.7 – 

TBN [57] 1 2 59.0 – 

ASDA-FRCNN 1 32 TBD 8.01 
1-bit ASDA-FRCNN 1 1 65.5 8.01a 

The bolds denote the best results 
a Estimated 464 FPS 

It is observed that at least a 6.5% mAP as well as 1.45× acceleration improve-
ment is gained with our 1-bit ASDA-FRCNN over TBN in ResNet-34. When μ is 
set to 2e − 5, the detection performance is the highest. In ResNet-18, we deploy Bi-
Real [37] in the same experimental settings for contrast. Our 1-bit ASDA-FRCNN 
outperforms the other two methods with the same compression ratio.
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We further plot the test AP of every class in the PASCAL VOC 2007 test. As is 
shown in Fig. 6.14, ASDA-FRCNN achieves a higher AP on all 20 classes than Bi-
Real, and 1-bit ASDA-FRCNN outperforms Bi-Real in 16 out of 20 classes. Hence, 
we can conclude that ASDA Faster R-CNN achieves the better performance than 
Bi-Real. 

Results on MS COCO Datasets 
We use the μ value of 2e − 5 empirically. Then we compare the performance of 
our results with other state-of-the-art algorithms including one-stage fast object 
detection methods SSD [35], YOLO [48], RetinaNet [30] and CenterNet [77]. The 
comparison results for object detection are illustrated in Table 6.11. 

aero bike bird boat bottle bus car cat chair cow table dog horse mbik perso plant sheep sofa train tv 
Class 
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Faster R-CNN-Res18 
1-bit ASDA FRCNN 
Bi-Real 
ASDA FRCNN 

Fig. 6.14 APs of every class on PASCAL VOC 2007 test 

Table 6.11 Test mAP@.5 and mAP@[.5, .95] on MS COCO test-dev in ResNet-18 backbone. 
Training method includes MS COCO Train+Val. Note that only ASDA-FRCNN is the binary 
approach 

Model W/A mAP @.5 mAP @[.5, .95] FPS 

SSD321 [35] 32/32 45.4 28.0 61 

YOLOv3-320 [48] 32/32 59.0 28.2 45 

RetinaNet-50-500 [30] 32/32 59.0 32.5 14 

CenterNet-Res18 [77] 32/32 44.9 28.1 142 

Faster R-CNN [50] 32/32 42.7 21.9 6.25 

ASDA-FRCNN 1/32 41.5 21.4 6.25 
1-bit ASDA-FRCNN 1/1 37.5 19.4 6.25a 

The bolds denote the best results 
aEstimated 362 FPS
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It is observed that our 1-bit ASDA-FRCNN is faster than the other one-stage 
detectors. It can process estimated 362 images per second, which is far more than 
other state-of-the-art methods. These results are very meaningful on mobile and 
embedded devices. 

6.4.2.7 Image Classification 

For ImageNet [27], we employ two data augmentation techniques sequentially: (1) 
randomly cropping patches of .224×224 from the original image and (2) horizontally 
flipping the extracted patches in the training. While in the testing, the Top-1 and 
Top-5 accuracies on the validation set with single center crop are measured. 

In Table 6.12, we compare our ASDA ResNet-18 with several other state-of-the-
art models. The first part of the comparison is based on ResNet-18 with 69.3% Top-1 
accuracy on the full-precision model. Although BWN [47] and DoReFa-Net [76] 
achieve Top-1 accuracy with degradation of less than 10%, it should be noted that 
they apply full-precision and 4-bit activations, respectively. With both of the weights 
and activations binarized, the BNN model in [7], ABC-Net [33], and XNOR-Net 
[47] fail to maintain the accuracy and are inferior to our 1-bit ASDA Res-18. For 
example, compared with the result of PCNN [16], 1-bit ASDA Res-18 increases 
the Top-1 accuracy by 2.29%. Note that our algorithm still works very well on the 
classification task, which further validates the significance of our method. In short, 
we achieved a new state-of-the-art performance compared to other BNNs, which 
clearly validate the superiority of our method for the BNN computing. 

Memory Usage and Efficiency Analysis 
Memory use is analyzed by comparing our approach with the state-of-the-art 
XNOR-Net [47] and the corresponding full-precision network. The memory usage 
is computed as the sum of 32 bits multiplied by the number of full-precision kernels 
and 1 bit times the number of the binary kernels in the networks. As shown in 
Table 6.13, our proposed ASDA-FRCNN reduces the memory usage by 10.2. × and 
14.4. × compared with the full-precision Faster R-CNN based on ResNet-18 and 

Table 6.12 Test Top-1 and 
Top-5 accuracy on ImageNet 
ILSVRC2012 in ResNet-18. 
The bolds represent the best 
results 

Model W A Top-1 Top-5 

ResNet-18 [19] 32 32 69.3 89.2 

BWN [47] 1 32 60.8 83.0 

DoReFa-Net [76] 1 4 59.2 81.5 

TBN [57] 1 2 55.6 79.0 

XNOR-Net [47] 1 1 51.2 73.2 

BNN [7] 1 1 42.2 67.1 

ABC-Net [33] 1 1 42.7 67.6 

Bi-Real Net [37] 1 1 56.4 79.5 

PCNN [16] 1 1 57.3 80.0 

1-bit ASDA Res-18 1 1 59.59 82.11
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Table 6.13 Memory usage and efficiency of convolution comparison on detection and classifica-
tion binary and full-precision models 

Model Memory usage Memory saving Speedup 

1-bit ASDA-FRCNN Res-18 35.5 Mbit 10.2.× 58. ×
Faster R-CNN Res-18 361.3 Mbit – – 

1-bit ASDA-FRCNN Res-34 46.5 Mbit 14.4.× 58. ×
TBN Res-34 [57] 46.5 Mbit 14.4.× 40. ×
Faster R-CNN Res-34 669.9 Mbit – – 

1-bit ASDA Res-18 33.7 Mbit 11.1.× 58. ×
XNOR-Net [47] 33.7 Mbit 11.1.× 58. ×
ResNet-18 374.1 Mbit – – 

ResNet-34, respectively. Our proposed ASDA ResNet-18 realizes 11.1. × memory 
saving and 58. × acceleration compared to the full-precision one. The reason is that 
the projection parameters . Wl

j are only used when training for enriching the diversity 
in ASDA-FRCNN, whereas they are not used during inference. For efficiency 
analysis, if all of the operands of the convolutions are binary, then the convolutions 
can be estimated by XNOR and bitcounting operations, which gains .58× speedup 
in CPUs [47]. 

6.4.3 Q-YOLO: Efficient Inference for Real-Time Object 
Detection 

6.4.3.1 Preliminaries 

Network Quantization Process 
We first review the main steps of the post-training quantization (PTQ) process 
and supply the details. Firstly, the network is trained or provided as a pre-trained 
model using full-precision and floating-point arithmetic for weights and activations. 
Subsequently, numerical representations of weights and activations are suitably 
transformed for quantization. Finally, the fully quantized network is either deployed 
on integer arithmetic hardware or simulated on GPUs, enabling efficient inference 
with reduced memory storage and computational requirements while maintaining 
reasonable accuracy levels. 

6.4.3.2 Uniform Quantization 

Assuming the quantization bit width is b, the quantizer .Q(x|b) can be formulated as 
a function that maps a floating-point number .x ∈ R to the nearest quantization bin: 

.Q(x|b) : R → x̂, (6.40)
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.x̂ =
{ {−2b−1, · · · , 2b−1 − 1} Signed,

{0 · · · , 2b − 1} Unsigned.
(6.41) 

There are various quantizers .Q(x|b), where uniform [24] are typically used. Uniform 
quantization is well supported on most hardware platforms. Its unsigned quantizer 
.Q(x|b) can be defined as: 

.Q(x|b) = clip(L x
sx

| + zpx, 0, 2
b − 1), (6.42) 

where . sx (scale) and .zpx (zero-point) are quantization parameters. In Eq. 6.43, u 
(upper) and l (lower) define the quantization grid limits: 

.sx = u − l

2b − 1
, zpx = clip(L− l

s
|, 0, 2b − 1). (6.43) 

The dequantization process can be formulated as follows: 

.x̃ = (x̂ − zpx) × sx. (6.44) 

6.4.3.3 Quantization Range Setting 

The quantization range setting establishes the quantization grid’s upper and lower 
clipping thresholds, denoted as u and l, respectively. The crucial trade-off in range 
setting lies in the balance between two types of errors: clipping error and rounding 
error. Clipping error arises when data is truncated to fit within the predefined 
grid limits, as described in Eq. 6.43. Such truncation leads to information loss 
and decreased precision in the resulting quantized representation. On the other 
hand, rounding error occurs due to the imprecision introduced during the rounding 
operation, as described in Eq. 6.42. This error can accumulate over time and impact 
the overall accuracy of the quantized representation. The following methods provide 
different trade-offs between the two quantities. MinMax In the experiments, we use 
the MinMax method for weight quantization, where clipping thresholds . lx and . ux
are formulated as: 

.lx =min(x), ux = max(x). (6.45) 

This leads to no clipping error. However, this approach is sensitive to outliers, as 
strong outliers may cause excessive rounding errors. Mean Squared Error (MSE) 
One way to mitigate the problem of large outliers is by employing an MSE-based 
range setting. In this method, we determine . lx and . ux that minimize the mean 
squared error (MSE) between the original and quantized tensor: 

.arg min
lx,ux

MSE(x,Qlx,ux), (6.46)
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where . x represents the original tensor and .Qlx,ux denotes the quantized tensor 
produced using the determined clipping thresholds . lx and . ux. The optimization 
problem is commonly solved using grid search, golden section method, or analytical 
approximations with closed-form solutions. 

6.4.3.4 Unilateral Histogram (UH)-Based Activation Quantization 

To address the issue of activation value imbalance, we propose a new approach 
called unilateral histogram (UH)-based activation quantization. We empirically 
study the activation values after forward propagation through the calibration dataset. 
We observe a concentrated distribution of values near the lower bound, accompanied 
by a noticeable decrease in occurrences above zero. Further analysis of the activation 
values reveals that the empirical value of . −0.2785 is the lower bound. This 
phenomenon can be attributed to the frequent utilization of the Swish (SILU) 
activation function in the YOLO series. 

Algorithm 14: Unilateral histogram (UH)-based activation quantization 
1: Input: FP32 Histogram H with 2048 bins 
2: for i in range(128, 2048) do 
3: Reference distribution P ← H [0 : i] 
4: Outliers count c ← Σ2047 

j=i H [j ] 
5: P [i − 1] ←  P [i − 1] + c 
6: P ← PΣ

j (P [j ]) 
7: Candidate distribution C ← Quantize H [0 : i] into 128 levels 
8: Expand C to have i bins 
9: Q ← CΣ

j (C[j ]) 
10: MSE[i] ← Mean Squared Error(P, Q) 
11: end for 
12: Output: Index m for which MSE[m] is minimal. 

Based on the empirical evidence, we introduce an asymmetric quantization 
approach called unilateral histogram (UH)-based activation quantization. In UH, we 
iteratively determine the maximum truncation value that minimizes the quantization 
error while keeping the minimum truncation value fixed at . −0.2785, as illustrated 
in the following: 

.ux = arg min
lx,ux

MSE(x,Qlx,ux), lx = −0.2785. (6.47) 

To evaluate the quantization error during the search for the maximum truncation 
value, we utilize the fp32 floating-point numbers derived from the center values 
of the gathered 2048 bins, as introduced in Algorithm 14. These numbers are 
successively quantized, considering the current maximum truncation value. Through
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this iterative process, we identify the optimal truncation range. The UH activation 
quantization method offers two key advantages. Firstly, it significantly reduces 
calibration time. Secondly, it ensures stable activation quantization by allowing a 
more extensive set of integers to represent the frequently occurring activation values 
between 0 and . −0.2785, thereby improving quantization accuracy. 

6.4.3.5 Experiments 

To assess the performance of the proposed Q-YOLO [59] detectors, we conducted 
a comprehensive series of experiments on the widely recognized COCO 2017 
[32] detection benchmark. As one of the most popular object detection datasets, 
COCO 2017 [32] has become instrumental in benchmarking state-of-the-art object 
detectors, thanks to its rich annotations and challenging scenarios. Throughout our 
experimental analysis, we employed standard COCO metrics on the bounding box 
detection task to evaluate the efficacy of our approach. 

Implementation Details 
We randomly selected 1500 training images from the COCO train2017 dataset 
[32] as the calibration data, which served as the foundation for optimizing the model 
parameters. The performance evaluation occurred on the COCO val2017 dataset 
[32], comprising 5000 images. The image size is set to 640. ×640. 

Unless otherwise noted, our experiments employed symmetric channel-wise 
quantization for weights and asymmetric layer-wise quantization for activations. 
We consistently applied the MinMax approach for quantizing weights to ensure a 
fair and unbiased comparison. The input and output layers of the model are more 
sensitive to the loss of accuracy. To maintain the model’s overall performance, the 
original accuracy of these layers is usually retained. We also follow this practice. 

Main Results 
We apply our proposed Q-YOLO to quantize YOLOv5s [55], YOLOv5m [55], 
YOLOv7 [58], and YOLOv7x [58], which have an increasing number of parameters. 
The results of the full-precision model and the 8-bit and 4-bit quantized models 
using MinMax, percentile, and Q-YOLO methods are all presented in Table 6.14. 

Table 6.14 compares several quantization approaches and detection methods 
in computing complexity and storage cost. Our Q-YOLO significantly accelerates 
computation and reduces storage requirements for various YOLO detectors. Simi-
larly, in terms of detection accuracy, when using Q-YOLO to quantize the YOLOv5 
series models to 8 bits, there is virtually no decline in the average precision (AP) 
value compared to the full-precision model. As the number of model parameters 
increases dramatically, quantizing the YOLOv7 series models to 8 bits results in 
a slight decrease in accuracy. When quantizing models to 4 bits, the accuracy 
experiences a significant loss due to the reduced expressiveness of 4-bit integer 
representation. Particularly, when using the MinMax quantization method, the 
model loses all its accuracy, whereas the percentile method, which roughly truncates 
99.99% of the extreme values, fails to bring notable improvement. Differently, Q-
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YOLO successfully identifies a more appropriate scale for quantization, resulting 
in a considerable enhancement compared to conventional post-training quantization 
(PTQ) methods. 

6.4.3.6 Ablation Study 

Symmetry in Activation Quantization 
Nowadays, quantization schemes are often subject to hardware limitations; for 
instance, NVIDIA [43] only supports symmetric quantization, as it is more 
inference-speed friendly. Therefore, discussing the symmetry in activation value 
quantization is meaningful. Table 6.15 compares results using Q-YOLO for 
symmetric and asymmetric quantization, with the latter exhibiting higher accuracy. 
The range of negative activation values lies between 0 and −0.2785, while the 
range of positive activation values exceeds that of the negative ones. The accuracy 
will naturally decrease if we force equal integer expression bit numbers on both 
positive and negative sides. Moreover, this decline becomes more pronounced as 
the quantization bit number decreases. 

6.4.3.7 Quantization Type 

In Table 6.16, we analyze the impact of different quantization types on the perfor-
mance of the YOLOv5s and YOLOv5m models, considering three cases: quantizing 
only the weights (only weights), quantizing only the activation values (only activa-
tion), and quantizing both weights and activation values (weights+activation). The 
results demonstrate that, compared to quantizing the activation values, quantizing 
the weights consistently induces more considerable performance degradation. Addi-
tionally, the lower the number of bits, the greater the loss incurred by quantization. 

Table 6.15 A comparison of symmetrical analysis of activation value quantization. Asymmetric 
indicates the use of an asymmetric activation value quantization scheme, while symmetric refers to 
the symmetric quantization of activation values 

models Bits Symmetry AP AP.50 AP.75 AP.s AP.m AP. l
YOLOv5s [55] Real-valued – 37.4 57.1 40.1 21.6 42.3 48.9 

6–6 Asymmetric 35.9 55.7 38.3 20.4 41.0 47.6 

Symmetric 34.4 53.9 37.0 19.3 39.8 45.0 

4–4 Asymmetric 14.0 26.2 13.5 7.9 17.6 19.0 

Symmetric 2.7 5.9 2.2 1.3 4.2 4.6 

YOLOv5m [55] Real-valued – 45.1 64.1 49.0 28.1 50.6 57.8 

6–6 Asymmetric 44.0 63.1 47.7 28 49.9 56.8 

Symmetric 42.4 61.1 46.0 25.3 48.3 55.9 

4–4 Asymmetric 28.8 46.0 30.5 15.4 33.8 38.7 

Symmetric 11.3 24.8 8.6 7.5 15.2 14.5
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Table 6.16 A comparison of quantization type. The term only weights signifies that only the 
weights are quantized, only activation indicates that only the activation values are quantized, and 
weights+activation represents the quantization of both activation values and weights 

models Bits Quantization type AP AP50 AP75 APs APm APl 

YOLOv5s [55] Real-valued – 37.4 57.1 40.1 21.6 42.3 48.9 

6–32 Only weights 36.7(−0.7) 56.6 39.3 20.9 41.4 48.4 

32–6 Only activation 36.6(−0.8) 56.2 39.3 21.0 42.0 47.9 

6–6 Weights+activation 35.9 55.7 38.3 20.4 41.0 47.6 

4–32 Only weights 19.6(−16.3) 35.6 19.3 11.3 22.5 25.7 

32–4 Only activation 30.6(−5.3) 49.1 32.6 17.0 36.7 40.7 

4–4 Weights+activation 14.0 26.2 13.5 7.9 17.6 19 

YOLOv5m [55] Real-valued – 45.1 64.1 49.0 28.1 50.6 57.8 

6–32 Only weights 44.7(−0.4) 63.9 48.6 28.0 50.3 57.3 

32–6 Only activation 44.3(−0.8) 63.4 48.1 28.4 50.3 57.2 

6–6 Weights+activation 44 63.1 47.7 28.0 49.9 56.8 

4–32 Only weights 34.6(−9.4) 54.0 37.3 20.0 39.2 45.3 

32–4 Only activation 37.7(−6.3) 57.3 41.8 23.7 44.1 51.0 

4–4 Weights+activation 28.8 46.0 30.5 15.4 33.8 38.7 

In YOLO, the weights learned by a neural network essentially represent the knowl-
edge acquired by the network, making the precision of the weights crucial for model 
performance. In contrast, activation values serve as intermediate representations 
of input data propagating through the network and can tolerate some degree of 
quantization error to a certain extent. 

6.4.3.8 Inference Speed 

To practically verify the acceleration benefits brought about by our quantization 
scheme, we conducted inference speed tests on both GPU and CPU platforms. For 
the GPU, we selected the commonly used desktop GPU NVIDIA RTX 4090 [43] 
and the NVIDIA Tesla T4 [43], often used in computing centers for inference 
tasks. Due to our limited CPU resources, we only tested Intel products, the 
i7-12700H and i9-10900, both of which have . ×86 architecture. We chose 
TensorRT [1] and OpenVINO [2] for deployment tools. The entire process involved 
converting the weights from the torch framework into an ONNX model with QDQ 
nodes and deploying them onto specific inference frameworks. The inference mode 
was set to single-image serial inference, with an image size of .640 × 640. As  
most current inference frameworks only support symmetric quantization and 8-
bit quantization, we had to choose a symmetric 8-bit quantization scheme, which 
resulted in a minimal decrease in accuracy compared to asymmetric schemes. As 
shown in Table 6.17, the acceleration is extremely significant, especially for the 
larger YOLOv7 model, wherein the speedup ratio when using a GPU even exceeded
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Table 6.17 The inference speed of the quantized model is essential. The quantization scheme 
adopts uniform quantization, with single-image inference mode and an image size of 640 . × 640. 
TensorRT [1]is selected as the GPU inference library, while OpenVINO [2] is chosen for the CPU 
inference library 

GPU speed/ms Intel CPU speed/ms 

Models Bits AP RTX 4090 Tesla T4 i7-12700H(. ×86) i9-10900(. ×86) 

YOLOv5s 32–32 37.4 4.9 7.1 48.7 38.7 

8–8 37.3 3.0 4.5 33.6 23.4 

YOLOv7 32–32 50.8 16.8 22.4 269.8 307.8 

8–8 50.6 5.4 7.8 120.4 145.2 

3. × compared to the full-precision model. This demonstrates that quantization in 
real-time detectors can bring about a remarkable acceleration. 
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