Raymond Lee)

. L
g 2 P -
~) Q
/)iy
Py 5

{ Natural
Language
Processing

A Textbook with Python
Implementation

Second Edition

@ Springer

Natural Language Processing

Raymond Lee

Natural Language Processing

A Textbook with Python Implementation

Second Edition

@ Springer

Raymond Lee

Faculty of Science and Technology

Beijing Normal-Hong Kong Baptist University
Zhuhai, China

ISBN 978-981-96-3207-7 ISBN 978-981-96-3208-4 (eBook)
https://doi.org/10.1007/978-981-96-3208-4

None

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2024, 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-981-96-3208-4

This book is dedicated to all readers and
students taking my undergraduate and
postgraduate courses in natural language
processing; your enthusiasm in seeking
knowledge motivated me to write this book.

Preface

Motivation of This Book

Natural language processing (NLP) and its associated applications have flourished
due to advancements in artificial intelligence (AI) over the past few decades. NLP
applications include information retrieval (IR) systems, text summarization (TS)
systems, question-and-answering (chatbot) systems, as well as recent developments
in large language models (LLMs) and generative Al (GenAl). These topics are prev-
alent in both industry and academia, offering varied routines that significantly
enhance a wide range of everyday services.

The objective of this book is to provide readers with foundational NLP concepts
and knowledge through 14 h of step-by-step workshops. These workshops will
guide participants in practicing various core Python-based NLP tools, including
NLTK, spaCy, TensorFlow, Keras, transformer, and BERT technology, to build their
own Python-based NLP applications.

Organization and Structure of This Book

This book is structured into two main parts: Part [—Concepts and Technology, and
Part [I—Natural Language Processing Workshops with Python Implementation in
14 Hours. In Part I, the first ten chapters lay a solid foundation in natural language
processing (NLP) concepts, exploring key topics such as N-gram language models,
part-of-speech tagging, syntax analysis, semantic representations, and latest
advancements in transfer learning and transformer technology. Each chapter builds
on the preceding one, leading to an understanding of major NLP applications and
the evolution of large language models and generative Al, while also addressing
ethical considerations in AL

Part II consists of seven practical workshops that provide hands-on experience
with Python implementations relevant to the concepts discussed in the first part.

vii

viii Preface

Starting with an introduction to the Natural Language Toolkit (NLTK), the work-
shops guide readers through various NLP tasks such as N-gram modeling, senti-
ment analysis, and use of transformers like BERT. Each workshop offers step-by-step
instructions, empowering readers to apply their knowledge in real-world scenarios,
including the creation and deployment of a chatbot system. This structured approach
balances foundational theory with practical application, making it suitable for learn-
ers eager to advance their skills in NLP.

Major Enhancement in 2nd Edition

The second edition includes the following major updates:

1. An overview of the development of BERT, transformer models, ChatGPT, and
large language models (LLMs) from the 2000s to the present, covered in Sect.
1.5, “A Brief History of NLP,” in Chap. 1

2. A new chapter focusing on the latest advancements in NLP, specifically in LLMs
and generative Al (GenAl), included in Chap. 10

3. Revised and updated NLP workshops (originally Chaps. 10, 11, 12, 13, 14, 15,
and 16, now Chaps. 11, 12, 13, 14, 15, 16, and 17) to align with the latest ver-
sions of Python-based NLP packages and tools

Readers of This Book

This book serves as both an NLP textbook and a practical guide for NLP Python
implementation, tailored for:

* Undergraduates and postgraduates across various disciplines, including Al, com-
puter science, IT, data science, and related fields

* Lecturers and tutors teaching NLP or Al-related courses

e NLP and Al scientists, as well as developers, who wish to learn the fundamental
concepts of NLP and apply them through Python-based workshops

» Readers interested in learning NLP concepts and practicing Python-based NLP
techniques using tools such as NLTK, spaCy, TensorFlow, Keras, BERT, trans-
former technology, and latest developments in LLMs and GenAl

Preface ix
How to Use This Book?

This book can be used as a textbook for undergraduate and postgraduate courses on
natural language processing (NLP) and as a reference for general readers who want
to learn key NLP technologies and implement NLP applications using contempo-
rary tools such as NLTK, spaCy, TensorFlow, BERT, and transformer technology.

Part I (Chaps. 1, 2, 3,4, 5,6, 7, 8,9, and 10) covers the foundational concepts
and key technologies in NLP, including the N-gram language model, part-of-speech
tagging, syntax and parsing, meaning representation, semantic analysis, pragmatic
analysis, transfer learning, and transformer technology. It also discusses major NLP
applications and the latest developments in BERT, ChatGPT, large language models
(LLMs), and generative Al (GenAl).

Part IT (Chaps. 11, 12, 13, 14, 15, 16, and 17) consists of materials for a 14-h,
step-by-step Python-based NLP implementation spread across seven workshops.

For readers and Al scientists, this book serves as a reference for learning NLP
and applying Python-based NLP tools and libraries, using the latest development
tools and platforms.

For the seven NLP workshops in Part II (Chaps. 11, 12, 13, 14, 15, 16, and 17),
readers can download all Jupyter Notebook files and data from my NLP GitHub
directory: https://github.com/raymondshtlee/nlp/. For any queries, please feel free
to contact me via email at raymondshtlee @uic.edu.cn.

Zhuhai, China Raymond Lee

Acknowledgments

April 2025
I would like to express my gratitude:

To my wife, Iris, for her patience, encouragement, and understanding at times spent
on research and writing.

To Ms. Celine Cheng, executive editor of Springer Nature, and her professional
editorial and book production team for their support, advice, and valuable
comments.

To Prof. Zhi Chen, President of Beijing Normal-Hong Kong Baptist University
(BNBU), for the provision of excellent environment for research, teaching, and
writing this book.

To Prof. Jianxin Pan, Vice President (Research and Development) of BNBU, for his
support for R&D of NLP and related Al projects.

To Prof. Terry Huajun Ye, Acting Dean of Faculty of Science and Technology of
BNBU, and Prof. Weifeng Su, Head of Department of Computer Science of
BNBU, for their continuous support for Al and NLP courses.

To research assistant Mr. Zihao Huang for the help of NLP workshop preparation.
To research student Ms. Clarissa Shi and student helpers Ms. Siqi Liu, Mr.
Yingjie Wang, and Ms. Jie Lie for their help with literature review on major NLP
applications and transformer technology and Mr. Zhuohui Chen for help in bug
fixing and version update for the workshop programs.

To Beijing Normal-Hong Kong Baptist University for the prominent support by the
Guangdong Provincial Key Laboratory IRADS (2022B1212010006).

Faculty of Science and Technology Raymond Lee
Beijing Normal-Hong Kong Baptist University
Zhuhai, China

Competing Interests The author has no competing interests to declare that are
relevant to the content of this manuscript.

xi

Contents

PartI Concepts and Technology

1

Natural Language Processing
1.1 Introductiono.ininiini i
1.2 Human Language and Intelligence
1.3 Linguistic Levels of Human Language
1.4 Human Language Ambiguity.
1.5 ABriefHistoryof NLP........
1.5.1 First Stage: Machine Translation (Before the 1960s)
1.5.2 Second Stage: Early AT on NLP (1960s—1970s)
1.5.3 Third Stage: Grammatical Logic on NLP (1970s—1980s). .
1.5.4 Fourth Stage: Al and Machine Learning (1980s—2000s). . .

1.5.5 Fifth Stage: Rise of BERT, Transformer,
ChatGPT, and LLMs (2000s—Present).
1.6 NLPand Al e
1.7 Main Components of NLP.
1.8 Natural Language Understanding (NLU)
1.8.1 Speech Recognition..............,
1.8.2 Syntax AnalysiS............ouiiniiiinnnan..
1.8.3 Semantic Analysis
1.8.4 Pragmatic Analysis.o
1.9 Potential Applicationsof NLP.
1.9.1 Machine Translation MT)..........................
1.9.2 Information Extraction (IE).........................
1.9.3 Information Retrieval (IR)..........................
1.9.4 Sentiment Analysis,
1.9.5 Question-Answering (Q&A) Chatbots
References.o

O O 00 00 00 O\ ~ W W

11
12
12
13
14
14
14
14
14
15
15
16
16
17

Xiii

Xiv

Contents

N-Gram Language Model 19
2.1 Introductiont 19
2.2 N-Gram LanguageModel 21
2.2.1 Basic NLP Terminology. 23
2.2.2 Language Modeling and ChainRule.................. 24

2.3 Markov Chainin N-Gram Model. 26
2.4 Example: The Adventures of Sherlock Holmes................ 27
2.5 Shannon’s Method in N-Gram Model 31
2.6 Language Model Evaluation and Smoothing Techniques 34
2.6.1 Perplexity...... ... 34
2.6.2 Extrinsic Evaluation Scheme. 35

2.6.3 ZeroCounts Problems 36
2.6.4 Smoothing Techniques. 36

2.6.5 Laplace (Add-One) Smoothing 37
2.6.6 Add-k Smoothing. 38

2.6.7 Backoff and Interpolation Smoothing 40
2.6.8 Good Turing Smoothing 41
References. i 42
Part-of-Speech (POS) Tagging. 45
3.1 WhatIs Part of Speech (POS)? 45
3.1.1 Nine Major POS in the English Language. 45

32 POSTag@INg .. .ovitn et e 46
3.2.1 WhatIs POS Tagging in Linguistics? 46

3.2.2 WhatIs POS Taggingin NLP? 46

3.2.3 POS Tags Used in the PENN Treebank Project.......... 47

324 Why Do We Care About POSin NLP?................ 49

3.3 Major Components in NLU 50
3.3.1 Computational Linguisticsand POS 51

3.3.2 POS and Semantic Meaning 52

3.3.3 Morphological and Syntactic Definition of POS....... .. 52

34 Nine Key POSinEnglish.......... 53
34.1 EnglishWord Classes.coouiiiiinnnen... 53

34.2 WhatlIsaPreposition?.......... 54

343 WhatIsaConjunction?, 54

344 WhatlsaPronoun? 55

345 WhatIsaVerb? il 56

3.5 Different Types of POS Tagset. o... 58
35.1 WhatIsTagset? ...t 58

3.5.2 AmbiguousinPOSTags 59

3.5.3 POS Tagging Using Knowledge 59

3.6 Approaches for POS Tagging 60
3.6.1 Rule-Based Approach POS Tagging 60

3.6.2 Example of Rule-Based POS Tagging................. 61

3.6.3 Example of Stochastic-Based POS Tagging 62

Contents

3.6.4 Hybrid Approach for POS Tagging Using Brill’s Taggers. .

3.6.5 WhatIs Transformation-Based Learning?..............

3.6.6 Hybrid POS Tagging: Brill’s Tagger

3.6.7 Learning Brill’s Tagger Transformations.

3.7 Taggers Evaluations...........
3.7.1 How Good Is an POS Tagging Algorithm?
References. i
4 Syntaxand Parsing.............. i
4.1 Introduction and Motivation
4.2 Syntax Analysist
421 WhatIsSyntaxX............iiiiiiininiaa...
422 SyntacticRules.......... i
4.2.3 Common Syntactic Patterns.
4.2.4 Importance of Syntax and Parsingin NLP

4.3 Types of Constituents in Sentencesc....on...
4.3.1 WhatIs Constituent?ou...
4.3.2 Kindsof Constituents.coouvenenenon...

4.3.3 Complexity on Simple Constituents
4.3.4 Verb Phrase Subcategorization
4.3.5 The Role of LexiconinParsing......................
4.3.6 Recursionin Grammar Rules.

4.4 Context-Free Grammar (CFG).
4.4.1 What Is Context Free Language (CFL)?
4.4.2 What Is Context Free Grammar (CFG)?

4.43 Major Componentsof CFG.........................
4.4.4 Derivations UsingCFG

45 CEGParsing.ovniui e
4.5.1 Morphological Parsing.
4.5.2 Phonological Parsing
453 SyntacticParsing i
4.5.4 Parsing as a Kind of Tree Searching
4.5.5 CFG for Fragmentof English
4.5.6 Parse Tree for “Play the Piano” for Prior CFG
457 Top-DownParser.............
458 Bottom-UpParser
459 Controlof Parsing
4.5.10 Pros and Cons of Top-Down vs. Bottom-Up Parsing

4.6 Lexical and Probabilistic Parsing.
4.6.1 Why Using Probabilities in Parsing?..................
4.6.2 Semantics with Parsing
4.63 WhatIsPCFG?
4.6.4 A Simple Example of PCFG
4.6.5 Using Probabilities for Language Modelling.

4.6.6 Limitations for PCFG

XV

Xvi

Contents

4.6.7 The Fix—Lexicalized Parsing 93
References. i 96
Meaning Representation. 99
5.1 Introduction et 99
5.2 WhatIsMeaning? 99
5.3 Meaning Representations., 100
5.4 Semantic Processing 101
5.5 Common Meaning Representation 102
5.5.1 First-Order Predicate Calculus. 102

5.5.2 Semantic Networks 102

5.5.3 Conceptual Dependency Diagram.................... 102
5.5.4 Frame-Based Representation. 103

5.6 Requirements for Meaning Representation................... 104
5.6.1 Verifiability 104
562 Ambiguity 105

5.6.3 VagUeNESS. . . vttt 105
5.6.4 Canonical Forms 105

5.7 Inference 106
5.7.1 WhatlIsInference?........ 106

5.7.2 Example of Inferencing with FOPC 107

5.8 Fillmore’s Theory of Universal Cases 107
5.8.1 What Is Fillmore’s Theory of Universal Cases? 108

5.8.2 Major Case Roles in Fillmore’s Theory................ 109

5.8.3 Complicationsin CaseRoles..................... ... 110

5.9 First-Order Predicate Calculus. 111
5.9.1 FOPC Representation Scheme. 111
5.9.2 Major Elements of FOPC. 111

5.9.3 Predicate-Argument Structure of FOPC 112
5.9.4 Meaning Representation Problems in FOPC............ 114

5.9.5 Inferencing Using FOPC...... 115
References. 117
Semantic Analysis.......... 119
6.1 Introductiont 119
6.1.1 What Is Semantic Analysis?. 119
6.1.2 The Importance of Semantic Analysisin NLP 120

6.1.3 How Human Is Good in Semantic Analysis?. 120

6.2 Lexical vs. Compositional Semantic Analysis. 121
6.2.1 What Is Lexical Semantic Analysis? 121
6.2.2 What Is Compositional Semantic Analysis? 121

6.3 Word Senses and Relations 122
6.3.1 WhatIsWord Sense?.c.o .. 122
6.3.2 Types of Lexical Semanticsc..... 123

6.4 Word Sense Disambiguation 127
6.4.1 What Is Word Sense Disambiguation (WSD)? 127
6.4.2 DifficultiesinWSD i 127

Contents xvii
6.43 MethodforWSD 128
6.5 WordNet and Online Thesauri.............. 129
6.5.1 WhatIsWordNet? 129
6.5.2 What Are Synsets?.ottt 130
6.5.3 Knowledge Structure of WordNet 130

6.5.4 What Are Major Lexical Relations
Captured in WordNet? oo, 131
6.5.5 Applications of WordNet and Thesauri? 132
6.6 Other Online Thesauri: MeSH. 133
6.6.1 WhatIsMeSH? 133
6.6.2 Uses of the MeSH Ontology 134
6.7 Word Similarity and Thesaurus Methods. 134
6.7.1 Introduction 134
6.7.2 Path-Based Similarity 135
6.7.3 Problems with Path-Based Similarity 136
6.7.4 Information Content Similarity 137
6.7.5 The Resnik Method 138
6.7.6 The Dekang LinMethod 138
6.7.7 The (Extended) Lesk Algorithm 139
6.8 Distributed Similarity. 140
6.8.1 Distributional Models of Meaning. 140
6.8.2 Word VECtorsuuiinini i 140
6.8.3 Term-Document Matrix.c.cvuuen.n.. 140
6.8.4 Pointwise Mutual Information. 142

6.8.5 Example of Computing PPMI on a
Term-Context MatriXo, 142
6.8.6 Weighing PMI Techniques. 144
6.8.7 Add-K Smoothing in PMI Computation 144
6.8.8 Context and Word Similarity Measurement. 146
6.8.9 Evaluating Similarity 148
References.o 149
7 Pragmatic Analysis and Discourse 151
7.1 Introductiont 151
7.2 Discourse Phenomena i 151
7.2.1 Coreference Resolution 152
7.22 WhyIsItImportant? 152
7.2.3 Coherence and Coreference. 153
7.2.4 Importance of Coreference Relations 154
7.2.5 Entity-Based Coherence. 155
7.3 Discourse Segmentation. 156
7.3.1 What Is Discourse Segmentation? 156
7.3.2 Unsupervised Discourse Segmentation 156
7.3.3 Hearst’s TextTiling Method 157
7.3.4 TextTiling Algorithm 158

7.3.5 Supervised Discourse Segmentation 159

Xviii

Contents

7.4 Discourse CONEIenceovvin et 160
7.4.1 What Makes a Text Coherent?....................... 160

7.4.2 What Is Coherence Relation?. 160

7.4.3 Types of Coherence Relations 161

7.4.4 Hierarchical Structure of Discourse Coherence. 161

745 Typesof REs 162

7.4.6 Features for Filtering Potential Referents 163

7.4.77 Preferences in Pronoun Interpretation................. 163

7.5 Algorithms for Coreference Resolution. 164
7.5.1 IntroduCtionountvrviin i 164

7.5.2 Hobbs’ Algorithm 164

7.5.3 Centering Algorithm 167

7.5.4 Machine-Learning Method 170

7.6 Evaluation 171
References. 173
Transfer Learning and Transformer Technology. 175
8.1 What Is Transfer Learning? 175
8.2 Motivation of TL 175
8.2.1 Categoriesof TL 176

8.3 Solutionsof TL 177
8.3.1 Instance-Based Method 178

8.3.2 Feature-Based Method. 178

8.3.3 Parameter-Based Method. 178

8.3.4 Relational-Based Method. 179

8.4 Recurrent Neural Network (RNN). 180
84.1 WhatIsRNN? i 180

8.4.2 Motivationofthe RNN 180

8.4.3 RNNArchitecturecoiiiiiiiinnnn.. 181

8.4.4 Long Short-Term Memory (LSTM) Network 182

8.4.5 Gate Recurrent Unit (GRU)......................... 185

8.4.6 Bidirectional Recurrent Neural Networks (BRNNs). 187

8.5 Transformer Technology 188
8.5.1 WhatlIs Transformer? 188

8.5.2 Transformer Architecture. 188

8.5.3 DeepintoEncoder............. 190

8.6 BERT 192
8.6.1 WhatIsBERT?, 192

8.6.2 Architecture of BERT 192

8.6.3 Trainingof BERT. 193

8.7 Other Related Transformer Technology. 194
8.7.1 Transformer-XL........ 194

872 ALBERT 195

References. 196

Contents

10

Major NLP Applications
9.1 Introductiont
9.2 Information Retrieval Systems.
9.2.1 Introductionto IR Systems
9.2.2 Vector Space Model inIR
9.2.3 Term Distribution Models inIR.
9.2.4 Latent Semantic IndexinginIR................... ...
9.2.5 Discourse SegmentationinIR.................... ...
9.3 Text Summarization SyStems.t
9.3.1 Introduction to Text Summarization Systems
9.3.2 Text Summarization Datasets.
9.3.3 Types of Summarization Systems
9.3.4 Query-focused vs. Generic Summarization Systems.
9.3.5 Single and Multiple Document Summarization.
9.3.6 Contemporary Text Summarization Systems.
9.4 Question-and-Answering Systems.
9.4.1 QASystemandAl.............
9.4.2 Overview of Industrial QA Systems
References.o

Large Language Models (LLMs) and Generative
Artificial Intelligence (GenAl).
10.1 Introductionto LLMand GenAI..........................
10.1.1 What Is a Large Language Model (LLM)?
10.1.2 Understanding Generative Artificial Intelligence
(GenAl)
10.1.3 The Intersection of LLM and GenAI................
10.1.4 The Importance of LLMs in Modern AL
10.2 Foundations of LLMSo,
10.2.1 Neural Network Architectures
10.2.2 Attention Mechanisms
10.2.3 The Transformer Architecture
10.2.4 Scaling Up: From BERTtoGPT
10.3 Key Players in the LLM Landscape.
10.3.1 ChatGPT by OpenAl (Current Version: GPT-4)
10.3.2 Pathways Language Model (PaLM) by Google
DeepMind (Current Version: PALM 2).
10.3.3 Large Language Model Meta Al (LLaMA) by
Meta (Current Version: LLaMA 2)
10.3.4 Claude by Anthropic (Current Version: Claude 2).
10.3.5 ERNIE3.0Titanby Baidu........................
10.4 Applicationsof LLMsinGenAl
10.4.1 Creative Writing and Content Generation
10.4.2 Language Translation.
10.4.3 Conversational Al and Chatbots.
10.4.4 Text Summarization and Content Curation

Xix

XX

Contents

10.5 Ethical Considerations and Challenges 260
10.5.1 Detecting and Mitigating Bias. 260
10.5.2 Privacy and Data Securityc..... 261
10.5.3 The Spread of Misinformation. 262
10.5.4 Ethical Guidelines for LLM Deployment 263
10.6 Future Outlook and Research. 264
10.6.1 Current Trends in LLMs and GenAI 264
10.6.2 The Future of Creativity in Al 265
10.6.3 The Role of LLMs in Al Ethics.................... 267
10.6.4 The Path Forward: Research and Development. 268
References. i 271

Part I Natural Language Processing Workshops with Python

11

12

Implementation in 14 Hours

Workshop#1: Basics of Natural Language Toolkit (Hour 1-2). 277
11.1 Introductiont 277
11.2 What Is Natural Language Toolkit (NLTK)?................. 278
11.3 A Simple Text Tokenization Example Using NLTK 279
114 HowtoInstall NLTK? i 280
11.5 Why Using Python for NLP?. 281
11.6 NLTK with Basic Text Processing in NLP 283
11.7 Simple Text Analysis with NLTK 284
11.8 Text Analysis Using Lexical Dispersion Plot 288
11.8.1 What Is a Lexical Dispersion Plot? 288
11.8.2 Lexical Dispersion Plot over Context Using Sense and
Sensibility. 289
11.8.3 Lexical Dispersion Plot Over Time Using Inaugural Address
COIPUS . ettt et e e 290
11.9 Tokenization in NLP with NLTK. 290
11.9.1 What Is Tokenization in NLP?..................... 290
11.9.2 Different Between Tokenize() vs Split() 291
11.9.3 Count Distinct Tokens 292
11.94 Lexical Diversity, 294
11.10 Basic Statistical Tools in NLTK. 296
11.10.1 Frequency Distribution—FreqDist() 296
11.11 Do the Same Plot with Cumulative Mode 298
11.11.1 Rare Words—Hapax. 299
11.11.2 Collocations ovvv et 300
References.o 302
Workshop#2: N-Grams Modeling with
Natural Language Toolkit (Hour3—4).......................... 303
12,1 Introductionttt 303
12.2 WhatIs N-Gram?. e 304

Contents XXi

13

14

12.4 Generation of N-Grams in NLTK 304
12.5 Generation of N-Grams Statisticsc.covnoo... 307
12.6 spaCy in NLP. e 313
12.6.1 WhatIsspaCy? 313
12.7 How to Install spaCy? 314
12.8 Tokenization Using spaCy............vininininnenan... 314
References.o 320
Workshop#3: Part-of-Speech Tagging Using Natural
Language Toolkit (Hour 5-6)................. 323
13.1 Introductionc.iinininiin i 323
13.2 A Revisit on Tokenization with NLTK 324
13.3 Stemming Using NLTKo ... 326
13.3.1 WhatIs Stemming? 327
13.3.2 Why Stemming?. i 327
13.3.3 How to Perform Stemming?....................... 327
13.4 Stop-Words Removal with NLTK 330
13.4.1 What Are Stop-Words?. 330
13.42 NLTK Stop-Words List, 331
1343 TrySome Texts.oovuenininn e 332
13.4.4 Create your Own Stop-Words 333
13.5 TextAnalysiswith NLTK 334
13.6 Integration with WordCloud 336
13.6.1 WhatIsWordCloud? 336
13.7 POS Tagging with NLTK. 338
13.7.1 What Is POS Tagging?.......... oot 338
13.7.2 Universal POS Tagset., 339
13.7.3 PENN Treebank Tagset (English & Chinese) 339
13.7.4 Applications of POS Tagging. 341
13.8 Create Own POS Tagger with NLTK. 344
References.o 350
Workshop#4 Semantic Analysis and Word Vectors
Using spaCy (Hour 7-8) i 353
14.1 Introductionc.iiieniniinin .. 353
142 What Are Word Vectors?, 353
14.3 Understanding Word Vectorso, 354
14.3.1 Example: A Simple Word Vector 354
144 ATasteof Word Vectors., 356
14.5 Analogies and Vector Operations.c........ 359
14.6 How to Create Word Vectors?, 360
14.7 spaCy Pretrained Word Vectors 360
14.8 Similarity Method in Semantic Analysis.................... 363
14.9 Advanced Semantic Similarity Methods with spaCy 366
14.9.1 Understanding Semantic Similarity 366

14.9.2 EuclideanDistance. 366

XXii

15

16

Contents

14.9.3 Cosine Distance and Cosine Similarity
14.9.4 Categorizing Text with Semantic Similarity
14.9.5 Extracting Key Phrases
14.9.6 Extracting and Comparing Named Entities
References. i

Workshop#5: Sentiment Analysis and Text
Classification (Hour 9-10)
15.1 Introductiont
15.2 Text Classification with spaCy and LSTM Technology
15.3 Technical Requirements.,
15.4 Text Classificationina Nutshell
15.4.1 WhatIs Text Classification?.
15.4.2 Text Classification as Al Applications
15.5 Text Classifier with spaCy NLP Pipeline.
15.5.1 TextCategorizer Classc.covuiunenan..
15.5.2 Formatting Training Data for the TextCategorizer.
1553 SystemTraining.............c.coo i,
1554 SystemTesting...........coouiiiiiiiinan..
15.5.5 Training TextCategorizer for Multi-Label Classification.
15.6 Sentiment Analysis withspaCy
15.6.1 IMDB Large Movie Review Dataset
15.6.2 Explorethe Dataseto,
15.6.3 Training the TextClassfier
15.7 Artificial Neural Network in a Nutshell.
15.8 An Overview of TensorFlow and Keras.
15.9 Sequential Modeling with LSTM Technology.
15.10 Keras Tokenizer in NLP.
15.10.1 Embedding Words
15.11 Movie Sentiment Analysis with LTSM Using Keras and spaCy . .
15.11.1 Step 5: Implement the LSTM Layer
15.11.2 Step 6: Implement the Output Layer
15.11.3 Step 7: System Compilation.
References. i

Workshop#6 Transformers with spaCy and
TensorFlow (Hour 11-12).
16.1 Introductionc.iinininiinin ..
16.2 Technical Requirements.,
16.3 Transformers and Transfer Learning in a Nutshell
16.4 Why Transformers?c. ...
16.5 An Overview of BERT Technology........................
16.5.1 WhatIsBERT?,
16.5.2 BERT Architecture.,
1653 BERTInputFormat.............................
1654 HowtoTrain BERT?

413
416
416
417

420

Contents

17

16.6 Transformers with TensorFlow
16.6.1 HuggingFace Transformers
16.6.2 Using the BERT Tokenizer........................
16.6.3 Word Vectors in BERT
16.7 Revisit Text Classification Using BERT
16.7.1 DataPreparation.,
16.7.2 Start the BERT Model Construction
16.8 Transformer Pipeline Technology
16.8.1 Transformer Pipeline for Sentiment Analysis
16.8.2 Transformer Pipeline for QA System.
16.9 Transformerand spaCy,
References.o

Workshop#7 Building Chatbot with TensorFlow

and Transformer Technology (Hour 13-14)

17.1 Introductionttt

17.2 Technical Requirements.,

17.3 AIChatbotinaNutshell
17.3.1 WhatIsaChatbot?...........

17.3.3 NLP Componentsina Chatbot
17.4 Building Movie Chatbot by Using TensorFlow and Transformer
Technology.oi i
17.4.1 The Chatbot Dataset.c. .o,
17.4.2 Movie Dialogue Preprocessing
17.4.3 Tokenization of Movie Conversation.
17.4.4 Filtering and Padding Process
17.4.5 Creation of TensorFlow Movie Dataset Object (mDS) . .
17.4.6 Calculate Attention Learning Weights
17.4.7 Multi-Head-Attention (MHAttention)
17.4.8 System Implementation
17.5 Related Works i
References. i

Abbreviations

Al
ASR
BERT
CDD
CFG
CFL
CNN
CR
DT
FOPC
GenAl
GPT
GRU
HMM
1IE

IR
LLM
LSTM
MEMM
MeSH
ML
NER
NLP
NLTK
NLU
NN
NNP
Nom
NP
PCFG
PMI

Artificial intelligence
Automatic speech recognition

Bidirectional encoder representations from transformers

Conceptual dependency diagram
Context-free grammar
Context-free language
Convolutional neural networks
Coreference resolution
Determiner

First-order predicate calculus
Generative artificial intelligence
Generative pre-trained transformer
Gate recurrent unit

Hidden Markov model
Information extraction
Information retrieval

Large language model

Long short-term memory
Maximum entropy Markov model
Medical Subject Headings
Machine learning

Named entity recognition

Natural language processing
Natural Language Toolkit

Natural language understanding
Noun

Proper noun

Nominal

Noun phrase

Probabilistic context-free grammar
Point-wise mutual information

XXV

XXVi

POS
POST
PPMI
Q&A
RNN
TBL
VB
VP
WSD

Part of speech

Part-of-speech tagging

Positive point-wise mutual information
Question and answering

Recurrent neural network
Transformation-based learning

Verb

Verb phrase

Word sense disambiguation

Abbreviations

Part I
Concepts and Technology

®

Check for
updates

Chapter 1
Natural Language Processing

Consider this scenario: Late in the evening, Jack starts a mobile app and talks with
Al Tutor Max.

1.1 Introduction

There are many chatbots available today that enable humans to communicate with
devices using natural language. Figure 1.1 illustrates a dialogue between a student,
who has returned to the dormitory after a full day of classes, and a mobile applica-
tion called Al Tutor 2.0 (Cui et al. 2020), developed as part of our research on Al
Tutor chatbots. The goal is to allow the user (Jack) not only to learn from reading
books but also to engage in candid conversations with Al Tutor 2.0 (Max), which
provides knowledge-based responses in natural language.

This differs from traditional chatbots that respond only to basic commands.
Instead, it represents human-computer interaction, demonstrating how a student
might converse with a tutor about subject knowledge in the physical world. The
process is dynamic and involves two main components: (1) World Knowledge: This
includes simple handshaking dialogues such as greetings and general discussions.
Developing this is a complex task, as it requires knowledge and common sense to
construct a functional chatbot capable of engaging in everyday dialogues; (2)
Domain Knowledge: This refers to the technical expertise within a specific subject
area. To achieve this, the chatbot must first learn from the author’s book, Al in Daily
Life (Lee 2020), which provides foundational knowledge on the subject. This
knowledge is then organized into a knowledge tree or ontology graph. The goal is to
create a new type of publication and interactive device, facilitating learning between
humans and computers.

Natural Language Processing (NLP) intersects with various disciplines, includ-
ing linguistics, computational linguistics, statistical engineering, Al and machine

© The Author(s), under exclusive license to Springer Nature Singapore Pte 3
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_1&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_1#DOI

4 1 Natural Language Processing

Al Tutor .- @ Max: Good evening, Jack. How are you?

e A TG Jack: Busy day. Just finished dinner after whole af-
ternoon lecture.

oS /i Max: 1 see. Anything I can help?
ol Sty Jack: Yes. Today Dr Lee has talked about data min-
- ing and search engine. Some concepts are not
'}‘ TR Do so clear, might need your help.
P:::::.?;ﬁ:;?mﬁ::: Max: Sure thing. Which part are you not clear?
rdling to similar quory keyword Jack: What is the limitation of search engine?
% Max: Search engines today have one intrinsic prob-
fufry tho hidddon markow model | s lem, that is all the search results are searched
automatically and ranked according to similar
/bt query keywords
oosy to implomont tochnically: Jack: Why Hidden Markov Model is popular?
e Max: The reason why HMM is popular because it
utationally foasible to usa. is: 1) reliable; 2) easy to implement technical-

ly; and 3) the Marko chains can be trained
automatically and computationally feasible to

whal is data mining?

;;., Data mining is the process of use.
4 dizcovering pattesns in large d . : AT
T o Jack: What is Data Mining?
e intersection of maching lea Max: Data mining is the process of discovering pat-
ming, statistics, and databaso . . .
systems. terns in large datasets involving methods at
m the intersection of machine learning, statis-

tics, and database systems.
Jack: I see. Thank you very much. Have a nice even-

ing.
Max: You too. Good night!

Fig. 1.1 A snapshot of the Al Tutor chatbot

learning, data mining, and voice processing and synthesis. Over the past few
decades, many innovative chatbots developed by NLP and Al scientists have become
commercial products. This chapter will introduce the core technology and its com-
ponents, with more detailed discussions of related technologies in the following
chapters.

1.2 Human Language and Intelligence

There is an old saying: Your actions define who you are. It is because we never know
what people think, the only method is to evaluate and judge their actions and
behaviors.

NLP core technologies and methodologies arose from the famous Turing Test
(Eisenstein 2019; Bender 2013; Turing 1936, 1950) proposed by Sir Alan Turing

1.2 Human Language and Intelligence 5

Fig. 1.2 Turing test (Tuchong 2020a)

(1912-1954) the in 1950s, the father of Al Figure 1.2 shows a human judge con-
versing with two individuals in two rooms. One is a human, the other is either a
robot, a chatbot, or an NLP application. During a 20-min conversation, the judge
can ask human/machine technical/non-technical questions and require a response
to every question so that the judge can decide whether the respondent is a human or
a machine. NLP in the Turing Test is to recognize, understand questions, and
respond in human language. It remains a popular topic in Al today because we can’t
see and judge people’s thinking to define intelligence. It is the ultimate chal-
lenge in AL

Human language is a significant component of human behavior and civilization.
Generally, it can be categorized into (1) written and (2) oral aspects. Written lan-
guage undertakes to process, store, and pass human/natural language knowledge to
the next generations. Oral or spoken language acts as a communication medium
among individuals.

NLP has examined the basic effects on philosophy such as meaning and knowl-
edge, psychology in word meanings, linguistics in phrase and sentence formation,
and computational linguistics in language models. Hence, NLP is cross-disciplinary
integration of disciplines such as philosophy in human language ontology models,
psychological behavior between natural and human language, linguistics in mathe-
matical and language models, computational linguistics in agents, and ontology
trees technology as shown in Table 1.1.

6 1 Natural Language Processing

Table 1.1 Various disciplines related to NLP

Discipline Problems to tackle with Solutions and tools

Philosophy What is meaning and knowledge? Ontology and epistemology
How do words and sentences acquire Natural language argumentation
meaning? using intuition
How can we relate ideas and concept Mathematical models such as
into words and meanings logic theory and model theory

Psychology How can we identify the structure of Psychological experiments to
sentences? measure the performance
How the meaning of words can be Statistical analysis of
identified? observations
When does understanding take place?

Linguistics How to form phrases and sentences with | Mathematical model of language
words? structure

How can we represent the meaning of a | Logical model for the
sentence? representation of language
structure and patterns

Computational How to model different types of human | Agent ontology and ontological
linguists and NLP | languages? tree modeling
How to model knowledge and meaning? | NLP techniques discussed in this
chapter

How to use human language for
human-machine direct communication?

1.3 Linguistic Levels of Human Language

Linguistic levels (Hausser 2014) are regarded as functional analyses of human writ-
ten and spoken languages. There are six levels of linguistics analysis: (1) phonetics,
(2) phonology, (3) morphology, (4) syntax, (5) semantics, and (6) pragmatics (dis-
course) classified in basic sound linguistics. These six levels of linguistics are
shown in Fig. 1.3.

The basic linguistic structure of spoken language includes phonetics and phonol-
0gy. Phonetics refers to the physical aspects of sound, the study of the production
and perception of sounds called phones. Phonetics governs the production of human
speech often without preceding knowledge of spoken language, organizes sounds,
and studies the phonemes of languages that can provide various meanings between
words and phrases.

Direct language structure is related to morphological and syntactic levels.
Morphology is the form and word level determined by grammar and syntax gener-
ally. It refers to the smallest form in linguistic analysis, consisting of sounds, to
combine words with grammatical or lexical functions.

Lexicology is the study of vocabulary from a word form to a derived form. Syntax
represents the primary level of clauses and sentences to organize the meaning of
different words order, that is, addition and subtraction of spoken language, and
deals with related sentence patterns and ambiguous analysis.

The advanced structure deals with actual language meaning at semantic and
pragmatic levels. Semantic level is the domain of meaning that consists of

1.4 Human Language Ambiguity 7

Fig. 1.3 Linguistic levels PRAGMATICg
of human languages e —
SEMANTICS

6-Levels o

Linguistic

Meg, . oy (5®
Fing in context of gisc®”

morphology and syntax but is regarded as a level that requires one’s own learning to
assign correct meaning promptly with vocabulary, terminology form, grammar, sen-
tence, and discourse perspective. Pragmatics is the use of language in definitive
settings. The meaning of discourse does not have to be the same as abstract form in
actual use. It is largely based on the concept of speech acts and the contents of state-
ments with intent and effect analysis of language performance.

1.4 Human Language Ambiguity

In many language models, cultural differences often produce identical utterances
with more than a single meaning in conversation. Ambiguity is the capability to
understand sentence structures in many ways. There are (1) lexical, (2) syntactic, (3)
semantic, and (4) pragmatics ambiguities in NLP.

Lexical ambiguity arises from words where a word’s meaning depends on con-
textual utterance. For instance, the word green is normally a noun for color. But it
can be an adjective or even a verb in different situations.

Syntactic ambiguity arises from sentences and is parsed differently, for example,
Jack watched Helen with a telescope. It can be described as either Jack watched
Helen by using a telescope or Jack watched Helen holding a telescope.

Semantic ambiguity arises from word meaning and can be misinterpreted, or a
sentence has ambiguous words or phrases, for example, The van hits the boar while
it is moving. It can be described as either the van hits the boar while the van is mov-
ing, or the van hits the boar while the boar is moving. It has more than a simple
syntactic meaning and requires to work out the correct interpretation.

8 1 Natural Language Processing

Pragmatic ambiguity arises from a statement and is not clearly defined when the
context of a sentence provides multiple interpretations such as /I like that too. It can
describe what I like that too, others like that too but the description of that is uncertain.

NLP analyzes sentences ambiguity incessantly. If they can be identified earlier,
it will be easier to define proper meanings.

1.5 A Brief History of NLP

There are several major NLP transformation stages in NLP history (Santilal 2020).

1.5.1 First Stage: Machine Translation (Before the 1960s)

The concept of NLP was introduced in seventeenth century by philosopher and
mathematician Gottfried Wilhelm Leibniz (1646-1716) and polymath René
Descartes (1596—-1650). Their studies of the relationships between words and lan-
guages formed the basis for language translation engine development (Santilal 2020).

The first patent for an invention related to machine translation was filed by inven-
tor and engineer Georges Artsrouni in 1933, but formal study and research was
rendered by Sir Alan Turing from his remarkable article Computing Machinery and
Intelligence published in 1950 (Turing 1936, 1950) and his famous Turing Test offi-
cially used as an evaluation criterion for machine intelligence since NLP research
and development were mainly focused on language translation at that time.

The first and second International Conference on Machine Translation held in
1952 and 1956 used basic rule-based and stochastic techniques. The 1954 Georgetown-
IBM experiment engaged in wholly automatic machine translation of more than 60
Russian sentences into English and was over-optimistic that the whole machine trans-
lation problem could be solved within a few years. However, a breakthrough in NLP
was achieved by Emeritus Professor Noam Chomsky on universal grammar for lin-
guistics in 1957, but the ALPAC report published in 1966 revealed deficient progress
for AI and machine translation in the past 10 years signifying the first winter of Al

1.5.2 Second Stage: Early AI on NLP (1960s-1970s)

NLP’s major development was focused on how it can be used in different areas such
as knowledge engineering called agent ontology (Climiano et al. 2014) to shape
meaning representations following Al grew popular over time. The BASEBALL sys-
tem (Green et al. 1961) was a typical example of a Q&A-based domain expert system
of human and computer interaction developed in the 1960s, but inputs were restrictive
and language processing techniques remained in basic language processing.

1.5 A Brief History of NLP 9

In 1968, Professor Marvin Minsky (1927-2016) developed a more powerful
NLP system. This advanced system used an Al-based question-answering inference
engine between humans and computers to provide knowledge-based interpretations
of questions and answers. Further, Professor William A. Woods proposed an aug-
mented translation network (ATN) to represent natural language input in 1970.
During this period, many programmers started to transcribe codes in different Al
languages to conceptualize natural language ontology knowledge of real-world
structural information into human understanding mode status. Yet these expert
systems were unable to meet expectations signified the second winter of Al

1.5.3 Third Stage: Grammatical Logic on NLP (1970s-1980s)

NLP research turned to knowledge representation, programming logic, and reason-
ing in AL This period was regarded as the grammatical logic phase of NLP in which
powerful sentence processing techniques such as SRI’s core language engine and
discourse representation theory emerged. These innovations introduced new prag-
matic representations and discourse interpretation with practical resources and tools
such as parsers and Q&A chatbots. Although R&D was hampered by computational
power, the lexicon in 1980s aimed to expand NLP.

1.5.4 Fourth Stage: AI and Machine Learning (1980s-2000s)

The revolutionary success of the Hopfield Network in the field of machine learning
proposed by Professor Emeritus John Hopfield activated a new era of NLP research
using machine learning techniques as an alternative to complex rule-based and sto-
chastic methods in the past decades.

Computational technology upgrades in computational power and memory comple-
mented Chomsky’s theory of linguistics had augmented language processing from
machine learning methods of corpus linguistics. This development stage was also
known as NLP lexical, and corpus referred to grammar emergence in lexicalization
method in the late 1980s, which signified the IBM DeepQA project led by Dr. David
Ferrucci for their remarkable question-answering system developed in 2006.

1.5.5 Fifth Stage: Rise of BERT, Transformer, ChatGP1T,
and LLMs (2000s—Present)

NLP has significant advancements over the past two decades fueled by innovations
in neural networks, especially deep learning architectures. The timeline of this evo-
lution began in the early 2000s with the rise of Recurrent Neural Networks (RNNs).

10 1 Natural Language Processing

RNNs were designed to handle sequential data by maintaining a hidden state that
could “remember” past information. This allowed them to model temporal depen-
dencies in tasks like speech recognition, translation, and text generation (Hochreiter
and Schmidhuber 1997). However, RNNs had limitations in retaining information
across long sequences leading to performance degradation (Mikolov et al. 2010).

To address this, Long Short-Term Memory (LSTM) networks were introduced as
a specialized type of RNN. LSTMs incorporated a memory mechanism to retain
information over longer periods, which significantly improved performance in
tasks requiring long-range context such as machine translation and time-series
prediction (Hochreiter and Schmidhuber 1997). They were more effective than
basic RNNs regardless of scalability and computational efficiency (LeCun
et al. 2015).

The real breakthrough in NLP came with the introduction of the Transformer
architecture in 2017 outlined in the landmark paper “Attention is All You Need”
(Vaswani et al. 2017). Transformers replaced the sequential processing of RNNs
and LSTMs with a self-attention mechanism to weigh the importance of different
words in a sentence relative to each other in a parallel fashion. This design not only
improved the speed and accuracy but also paved the way for Large Language
Models (LLMs) by enabling scalable architectures to handle vast amounts of text
(Devlin et al. 2018).

BERT (Bidirectional Encoder Representations from Transformers) developed by
Google in 2018 took it further by introducing a bidirectional approach to under-
standing context. BERT read text in both directions simultaneously unlike previous
models that processed text in one direction. This innovation allowed the model to
achieve state-of-the-art results in tasks like question-answering, sentiment analysis,
and natural language understanding (Devlin et al. 2018).

Generative Pre-trained Transformers (GPT) by OpenAl was a major leap in
NLP. This technological evolution has demonstrated significant model size scaling
development for other robust LLMs. GPT-I released in 2018 had 117 million
parameters focused on understanding unsupervised learning. GPT-2 released in
2019 had 1.5 billion parameters that validated the large-scale unsupervised learn-
ing capability to generate coherent and contextually relevant text across a wide
range of tasks (Radford et al. 2019). However, it raised concerns about the poten-
tial for Al misuse to generate misinformation and deepfake text (Solaiman
et al. 2019).

GPT-3 released in 2020 had 175 billion parameters and was 100 times more
vigorous than GPT-2 significantly increasing the size of the language model. This
extension excelled in few-shot and zero-shot learning to perform tasks with minimal
examples that have not been explicitly trained (Brown et al. 2020). Its sheer size
could mimic human-like reasoning and perform complex tasks such as program-
ming, writing essays, and engaging in sophisticated dialogue (Floridi and
Chiriatti 2020).

OpenAl released ChatGPT based on GPT-4 in 2023 was the next LLM evolution.
While OpenAl did not disclose the precise parameters number, GPT-4 advanced in

1.6 NLPand Al 11

coherence, reasoning, and factual accuracy realizing it a versatile tool for conversa-
tional Al, content generation, and real-time problem-solving (OpenAl 2023).

The progression from GPT-1 to GPT-4 has demonstrated exponential growth in
parameters and computational power, bringing Al closer to human-like language
understanding and generation. Each GPT generation has expanded the boundaries
of what AI models could achieve to challenge traditional notions of human intel-
ligence (Marcus and Davis 2020). LLMs continued to exert AI’s capability limits
to perform tasks that were once considered uniquely human but raised important
ethical and societal questions about usage and impact on the future (Bender
et al. 2021).

1.6 NLP and Al

NLP can be regarded as automatic or semi-automatic processing of human language
(Eisenstein 2019). It requires extensive knowledge of linguistics and logical theory
in theoretical mathematics, also known as computational linguistics. It is a multidis-
ciplinary study of epistemology, philosophy, psychology, cognitive science, and
agent ontology.

NLP is an Al area in which computer machines can analyze and interpret
human speech for human-computer interaction (HCI) to generate structural knowl-
edge for information retrieval operations, text and automatic text summarization,
sentiment and speech recognition analysis, data mining, deep learning, and
machine translation agent ontologies at different levels of Q& A chatbots, as shown
in Fig. 1.4.

Fig. 1.4 NLP and Al (Tuchong 2020b)

12 1 Natural Language Processing

Fig. 1.5 NLP main
components

cquis on &
Inferencing

1.7 Main Components of NLP

NLP consists of (1) Natural Language Understanding (NLU), (2) Knowledge
Acquisition and Inferencing (KAI), (3) Natural Language Generation (NLG) com-
ponents as shown in Fig. 1.5.

NLU is a technique and method devised to understand the meanings of human-
spoken languages by syntax, semantic, and pragmatic analyses.

KALI is a system to generate proper responses after spoken languages are fully
recognized by NLU. It is an unresolved knowledge acquisition and inferencing
problem in machine learning and Al by the conventional rule-based system due to
the intricacies of natural language and conversation, that is, an if-then-else type of
query-response used in expert systems. Most KAI systems strive to regulate knowl-
edge domain at a specific industry for resolution, that is, customer service knowl-
edge for insurance, medical, etc. Further, agent ontology has achieved a favorable
outcome.

NLG includes answer, response, and feedback generation in human-machine
dialogue. It is a multi-facet machine translation process that converts responses into
text and sentences to perform text-to-speech synthesis from the target language and
produce near-human speech responses.

1.8 Natural Language Understanding (NLU)

Natural Language Understanding (NLU) is a process of recognizing and under-
standing spoken language in four stages (Allen 1994): (1) speech recognition, (2)
syntactic (syntax) analysis, (3) semantic analysis, and (4) pragmatic analysis as
shown in Fig. 1.6.

1.8 Natural Language Understanding (NLU) 13

Spoken
)) Language

Speech
Recognition

Syntax
Analysis

Grammar

Semantic Semantic
Rules Analysis

Contextual Pragmatic
Information Analysis

Target Meaning
Representation

Fig. 1.6 NLU systematic diagram
1.8.1 Speech Recognition

Speech recognition (Li et al. 2015) is the first stage in NLU that performs phonetic,
phonological, and morphological processing to analyze spoken language. The task
involves breaking down the stems of spoken words called utterances, into distinct
tokens representing paragraphs, sentences, and words in different parts. Current
speech recognition models apply spectrogram analysis to extract distinct frequen-
cies, for example, the word uncanny can be split into two-word tokens un and canny.
Different languages have different spectrogram analyses.

14 1 Natural Language Processing
1.8.2 Syntax Analysis

Syntax analysis (Sportier et al. 2013) is the second stage of NLU direct response
speech recognition to analyze the structural meaning of spoken sentences. This task
has two purposes: (1) check syntax correctness of the sentence/utterance and (2)
break down spoken sentences into syntactic structures to reflect syntactic relation-
ship between words. For instance, the utterance oranges to the boys will be rejected
by syntax parser because of syntactic errors.

1.8.3 Semantic Analysis

Semantic analysis (Goddard 1998) is the third stage in NLU and corresponds to
syntax analysis. This task is to extract the precise meaning of a sentence/utterance,
or dictionary meanings defined by the text and reject meaningless, for example,
semantic analyzer rejects word phrase like hot snowflakes despite correct syntactic
words meaning but incorrect semantic meaning.

1.8.4 Pragmatic Analysis

Pragmatic analysis (Ibileye 2018) is the fourth stage in NLU and stringent spoken
language analysis involving high level or expert knowledge with common sense, for
example, will you crack open the door? I'm getting hot. This sentence/utterance
requires extra knowledge in the second clause to understand crack is to break in
semantic meaning, but it should be interpreted as to open in pragmatic meaning.

1.9 Potential Applications of NLP

After years of R&D from machine translation and rule-based systems to data min-
ing and deep networks, NLP technology has a wide range of applications in every-
day activities such as machine translation, information retrieval, sentiment analysis,
information extraction, and question-answering chatbots as in Fig. 1.7.

1.9.1 Machine Translation (MT)

Machine translation (Koehn, 2009; Scott 2018) is the earliest application in NLP
since 1950s. Although it is not difficult to translate one language to another yet
there are dilemmas for (1) naturalness (or fluency) means different languages

1.9 Potential Applications of NLP 15

Fig. 1.7 Potential NLP
applications

Information Aetrieval

Natural
Language
Processing

have different styles and usages and (2) adequacy (or accuracy) means different
languages may present independent ideas in different languages. Experienced
human translators address this trade-off in creative ways such as statistical meth-
ods, or case-by-case rule-based systems in the past but since there have been
many ambiguous scenarios in language translation, the goal of machine transla-
tion R&D nowadays strive for several Al techniques applications for recurrent
networks, or deep networks backbox systems to enhance machine learning
capabilities.

1.9.2 Information Extraction (IE)

Information extraction (Hemdev 2011) is an application task to extract key lan-
guage information from texts or utterances automatically. It can be structural,
semi-structural machine-readable documents or from users’ languages of NLP in
most cases. The recent activities in complex formats such as audio, video, and even
interactive dialogue can be extracted from multiple media. Hence, many commer-
cial IE programs become domain-specific such as medical science, law or Al
Tutor-specified Al knowledge in our case. By doing so, it is easier to set up an
ontology graph and ontology knowledge base to contain all the retrieved informa-
tion that can be referenced to these domain knowledge graphs to extract useful
knowledge.

1.9.3 Information Retrieval (IR)

Information retrieval (Peters et al. 2012) is an application for organizing, retrieving,
storing, and evaluating information from documents, source repositories, especially
textual information, and multimedia such as video and audio knowledge bases. It
helps users to locate relevant documents without answering any questions explicitly.
The user must request the IR system to retrieve the relevant output and respond in
document form.

16 1 Natural Language Processing

Fig. 1.8 NLP on sentiment analysis

1.9.4 Sentiment Analysis

Sentiment analysis (Liu 2012) is a kind of data mining system in NLP to analyze
user sentiment toward products, people, and ideas from social media, forums, and
online platforms. It is an important application for data extraction from messages,
comments, and conversations published on these platforms and assigns a labeled
sentiment classification as in Fig. 1.8 to interpret natural language and utterances.
Deep networks are ways to analyze large amounts of data. In Part 2, the NLP
Implementation Workshop will explore how to implement sentiment analysis in
detail using Python spaCy and Transformer Technology.

1.9.5 Question-Answering (Q&A) Chatbots

Q&A systems is the objective in NLP (Raj 2018). A process flow is necessary to
implement a Q&A chatbot. It includes voice recognition to convert into a list of
tokens in sentences/utterances, syntactic grammatical analysis, semantic meaning
analysis of whole sentences, and pragmatic analysis for embedded or complex
meanings. When an enquirer’s utterance meaning is generated, it is necessary to
search from knowledgebase for the most appropriate answer or response through
inferencing either by a rule-based system, statistical system, or deep network, for
example, Google BERT system. Once a response is available, reverse engineering is
required to generate a natural voice from a verbal language called voice synthesis.
Hence, the Q&A system in NLP is an important technology that can be applied to

References 17

daily activities such as human-computer interaction in auto-driving, customer ser-
vices support, and language skills improvement.

The final workshop will discuss how to integrate various Python NLP implemen-
tation tools including NLTK, spaCy, TensorFlow Keras, and Transformer Technology
to implement a Q&A movies chatbot system.

References

Allen, J. (1994) Natural Language Understanding (2™ edition). Pearson

Bender, E. M. (2013) Linguistic Fundamentals for Natural Language Processing: 100 Essentials
from Morphology and Syntax (Synthesis Lectures on Human Language Technologies). Morgan
& Claypool Publishers

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers
of Stochastic Parrots: Can Language Models Be Too Big? Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, 610-623. https://doi.
org/10.1145/3442188.3445922

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,
P, Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D. M., Wu, J., ... & Amodei, D. (2020). Language Models are Few-Shot
Learners. arXiv preprint arXiv:2005.14165.

Climiano et al. (2014). Advancements in agent ontology for knowledge engineering. Journal of
Natural Language Processing, 10(2), 123-145.

Cui, Y., Huang, C., Lee, Raymond (2020). AI Tutor: A Computer Science Domain Knowledge
Graph-Based QA System on JADE platform. World Academy of Science, Engineering and
Technology, Open Science Index 168, International Journal of Industrial and Manufacturing
Engineering, 14(12), 543 - 553.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.
Eisenstein, J. (2019) Introduction to Natural Language Processing (Adaptive Computation and

Machine Learning series). The MIT Press.

Floridi, L., & Chiriatti, M. (2020). GPT-3: Its Nature, Scope, Limits, and Consequences. Minds
and Machines, 30(4), 681-694. https://doi.org/10.1007/s11023-020-09548-1

Goddard, C. (1998) Semantic Analysis: A Practical Introduction (Oxford Textbooks in Linguistics).
Oxford University Press.

Green, B., Wolf, A., Chomsky, C. and Laughery, K. (1961). BASEBALL: an automatic question-
answerer. In Papers presented at the May 9-11, 1961, western joint IRE-AIEE-ACM com-
puter conference (IRE-AIEE-ACM’61 (Western)). Association for Computing Machinery,
New York, NY, USA, 219-224.

Hausser, R. (2014) Foundations of Computational Linguistics: Human-Computer Communication
in Natural Language (3 edition). Springer.

Hemdev, P. (2011) Information Extraction: A Smart Calendar Application: Using NLP,
Computational Linguistics, Machine Learning and Information Retrieval Techniques. VDM
Verlag Dr. Miiller.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8),
1735-1780.

Ibileye, G. (2018) Discourse Analysis and Pragmatics: Issues in Theory and Practice.
Malthouse Press.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://
doi.org/10.1038/nature 14539

Lee, R. S. T. (2020). Al in Daily Life. Springer.

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539

18 1 Natural Language Processing

Li, J. et al. (2015) Robust Automatic Speech Recognition: A Bridge to Practical Applications.
Academic Press.

Liu, B. (2012) Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers.

Marcus, G., & Davis, E. (2020). GPT-3, Bloviator: OpenAI’s Language Generator Has No
Idea What It’s Talking About. MIT Technology Review. https://www.technologyreview.
com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., & Khudanpur, S. (2010). Recurrent neural
network-based language model. In Eleventh Annual Conference of the International Speech
Communication Association.

OpenAl. (2023). GPT-4 Technical Report. https://openai.com/research/gpt-4

Peters, C. et al. (2012) Multilingual Information Retrieval: From Research To Practice. Springer.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, 1., & OpenAl. (2019). Language
Models are Unsupervised Multitask Learners. OpenAl Blog, 1(8), 9.

Raj, S. (2018) Building Chatbots with Python: Using Natural Language Processing and Machine
Learning. Apress.

Santilal, U. (2020) Natural Language Processing: NLP & its History (Kindle edition). Amazon.com.

Scott, B. (2018) Translation, Brains and the Computer: A Neurolinguistic Solution to Ambiguity
and Complexity in Machine Translation (Machine Translation: Technologies and Applications
Book 2). Springer.

Solaiman, I., Brundage, M., Clark, J., Askell, A., Herbert-Voss, A., Wu, J., ... & Krueger,
G. (2019). Release Strategies and the Social Impacts of Language Models. arXiv preprint
arXiv:1908.09203.

Sportier, D. et al. (2013) An Introduction to Syntactic Analysis and Theory. Wiley-Blackwell.

Tuchong (2020a) The Turing Test. https:/stock.tuchong.com/image/detail 7imag
eld=921224657742331926. Accessed 17 Dec 2024.

Tuchong (2020b) NLP and Al https://stock.tuchong.com/image/detail 7imag
eld=1069700818174345308. Accessed 17 Dec 2024.

Turing, A. (1936) On computable numbers, with an application to the Entscheidungsproblem. In:
Proc. London Mathematical Society, Series 2, 42:230-26

Turing, A. (1950) Computing Machinery and Intelligence. Mind, LIX (236): 433-460.

https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
https://openai.com/research/gpt-4
http://amazon.com
https://stock.tuchong.com/image/detail?imageId=921224657742331926
https://stock.tuchong.com/image/detail?imageId=921224657742331926
https://stock.tuchong.com/image/detail?imageId=1069700818174345308
https://stock.tuchong.com/image/detail?imageId=1069700818174345308

Chapter 2)
N-Gram Language Model s

2.1 Introduction

NLP entities like word-to-word tokenization using NTLK and spaCy technologies
in Workshop 1 (Chap. 11) analyzed words in insolation, but the relationship between
words is important in NLP. This chapter will focus on word sequences, their model-
ing, and analyses.

In many NLP applications, there are noises and disruptions affecting incorrect
word pronunciation regularly in applications like speech recognition, text classifica-
tion, text generation, machine translation, Q&A chatbots, Q&A conversation
machines, or agents being used in auto-driving.

Humans experience mental confusion about spelling errors as in Fig. 2.1 often
caused by pronunciations, typing speeds, and keystroke’s location. These errors can
be corrected by looking up a dictionary, a spell checker, and grammar usage.

Word prediction in a word sequence can provide automatic spell-check correc-
tions, and its corresponding concept terminology can model words relationships,
estimate occurrence frequency to generate new texts with classification, and apply
in machine translation to correct errors.

Probability or word counting method can work on a large databank called a cor-
pus (Pustejovsky and Stubbs 2012), which can be the collection of text documents,
literatures, public speeches, conversations, and other online comments or opinions.

Figure 2.2 shows the text with spelling and grammatical errors highlighted in
yellow and blue. This method can calculate the probability of word occurrence and
provide alternatives with higher frequency probability, but it cannot always provide
accurate options.

Figure 2.3 illustrates a simple scenario of next-word prediction in sample utter-
ances [like photography, I like science, and I love mathematics. The probability of
1 like is 0.67 (2/3) compared with I love is 0.33 (1/3), the probability of like photog-
raphy and like science are similar at 0.5 (1/2). Assigning probability to scenarios, /

© The Author(s), under exclusive license to Springer Nature Singapore Pte 19
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_2&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_2#DOI

20

Fig. 2.1 Common spelling
errors

Fig. 2.2 Spelling and
grammar checking tools

Fig. 2.3 Next word
prediction in simple
utterances

2 N-Gram Language Model

" COMMON SPELLING ERRORS

1. It's “calendar”, not “calender”.

2. It's “definitely”, not “definately”.

3. It’s “tomorrow”, not “tommorrow”.
4, It's “noticeable”, not “noticable”.
5. It's “convenient”, not “convinient”.

Grammar Check

This tool can be use to find spelling, gramar or stylistic errors in english texts. .
paste some text in the the box and click submit button, Additionally, their are
many different dalects that you can chosen from. Additionally, you can hover you
mouse over a error 1o see it's deescription and an useful list of posible corrections.
You don’t need to wm'yfor your writing skills any more, improving you're text
has never be more easieq!|

Photography

2.2 N-Gram Language Model 21

like photography and I like science are both 0.67 x 0.5 = 0.335, and I love mathe-
matics is 0.33 x I = 0.33.

When applying probability to language models, it must always note (1) domain-
specific verity of keywords togetherness and terminology knowledge varies accord-
ing to domains, for example, medical science, Al, etc., (2) syntactic knowledge
attributes to syntax and lexical knowledge, (3) common sense or world knowledge
attributes to the collection of habitual behaviors from past experiences, and (4) lan-
guages usage significance in high-level NLP.

When applying probability to word prediction in an utterance, there are words
often proposed by rank and frequency to provide a sequential optimum estimation.

For example:

[2.1] I notice three children standing on the??? (ground, bench ...).
[2.2] I just bought some oranges from the??? (supermarket, shop ...)
[2.3] She stopped the car and then opened the??? (door, window ...)

The structure of [2.3] is perplexed because the word counting method with a
sizeable knowledge domain is adequate but common sense, world knowledge or
specific domain knowledge are among the sources. It involves scenario syntactic
knowledge that attributes to do something with the superior level at the scene such
as descriptive knowledge to help the guesswork. Although it is plain and mundane
to study preceding and word tracking, it is one the most useful techniques for word
prediction. Let’s begin with some simple word-counting methods in NLP, the
N-gram language model.

2.2 N-Gram Language Model

It was learned that the motivations for word prediction can apply to voice recogni-
tion, text generation, and Q&A chatbot. The N-gram language model, also called
N-gram model or N-gram (Sidorov 2019; Liu et al. 2020), is a fundamental method
to formalize word prediction using probability calculation. An N-gram is a statisti-
cal model consisting of a word sequence in N number, commonly used N-grams
include:

» Unigram refers to a single word, that is, N = 1. It is seldomly used in practice
because it contains only one word in N-gram. However, it is important to serve
as the base for higher-order N-gram probability normalization.

* Bigram refers to a collection of two words, that is, N = 2. For example: I have, 1
do, he thinks, she knows, etc. It is used in many applications because its occur-
rence frequency is high and easy to count.

e Trigram refers to a collection of three words, that is, N = 3. For example: /
noticed that, noticed three children, children standing on, standing on the. It is
useful because it contains more meaning and is not lengthy. Given a count knowl-

22 2 N-Gram Language Model

edge of the first three words can easily guess the next word in a sequence.
However, its occurrence frequency is low in a moderate corpus.

* Quadrigram refers to a collection of four words, that is, N = 4. For example: /
noticed that three, noticed that three children, three children standing on. It is
useful with literature or large corpus like Brown Corpus because of their exten-
sive words’ combinations.

A sizeable N-gram can present more central knowledge but can pose a problem.
If it is too large, it means that the probability and occurrence of a word sequence are
infrequent and even O in terms of probability counts.

Corpus volume and other factors also affect performance. N-gram model training
is based on an extensive knowledgebase (KB) or databank from specific domains
such as public speeches, literature, and topic articles like news, finance, medical,
science, or chat messages from social media platforms. Hence, a moderate N-gram
is the balance by frequency and proportions.

The knowledge of counts acquired by a N-gram can assess to conditional prob-
ability of candidate words as the next word in a sequence, e.g., It is not difficult. It
is a bigram which means to count the occurrence of is given that it has already been
mentioned from a large corpus, or the conditional probability of it is given that if has
already been mentioned or can be applied one by one to calculate the conditional
probability of an entire words sequence. It is like words and sentences formation of
day-to-day conversations which is a psychological interpretation in logical thinking.
N-gram progresses in this orderly fashion.

It serves to rank the likelihood of a sequence consisting of various alternative
hypotheses in a sentence/utterance for an application like automatic speech recogni-
tion (ASR), for example, [2.4] The cinema staff told me that popcorn/amelcorn
sales have doubled. Tt is understood that it refers to popcorn and not amelcorn
because the concept of popcorn is always attributed to conversations about cinema.
Since the occurrence of popcorn in a sentence/utterance has a higher rank than
amelcorn, it is natural to select popcorn as the best answer.

Another purpose is to assess the likelihood of a sentence/utterance for text gen-
eration or machine translation, for example, [2.5] The doctor recommended a cat
scan to the patient. It may be difficult to understand what a cat scan is or how can a
scan be related to a cat without any domain knowledge. Since the word “doctor” is
attributed to the medical field, it is natural that by searching articles, literature, and
websites about medical knowledge, we will learn that cat scan refers to a computer
axial tomography scanner as shown in Fig. 2.4, not a cat. This type of word predic-
tion is usually domain-specific and works together with previous words as a guide
to choosing an appropriate expression.

2.2 N-Gram Language Model 23

Fig. 2.4 Computerized
axial tomography scanner
(aka. CAT scan) (Tuchong

2022)

Table 2.1 Stemming vs. Word Stemming Lemmatization

lemmatization - . . B :
information inform information
informative inform information
computers comput computer
feet feet foot

2.2.1 Basic NLP Terminology

Here is alist of common terminologies in NLP (Jurafsky etal. 1999; Eisenstein 2019):

Sentence is a unit of written language. It is a basic entity in a conversation or
utterance.

Utterance is a unit of spoken language. Different from the concept of sentence,
utterance is usually domain and culture specific, which means it varies according
to countries and even within country.

Word Form is an inflected form that occurs in a corpus. It is another basic entity
in a corpus.

Types/Word Types are distinct words in a corpus.

Tokens are generic entities or objects of a passage. It is different from word form
as tokens can be meaningful words or symbols, punctuations, or simple and dis-
tinct character(s).

Stem is a root form of words. Stemming is the process of reducing inflected, or
derived words from their word stem.

Lemma is an abstract form shared by word forms in the same stem, part of speech,
and word sense. Lemmatization is the process of grouping together the inflected
forms of a word so that they can be analyzed as a single item, which can be iden-
tified by the word’s lemma or dictionary form.

An example to demonstrate meaning representations between lemma and stem is

shown in Table 2.1. Lemmatization is the abstract form to generate a concept. It
indicated that stem or root word can be a meaningful word, or meaningless, or a

24 2 N-Gram Language Model

symbol such as inform or comput to formulate meaningful words such as informa-
tion, informative, computer, or computers.

There are several corpora frequently used in NLP applications.

Google (2022) is one of the largest corpora as it contains words and texts from
its search engine and the internet. It has over trillion English tokens with over mil-
lion meaningful wordform types sufficient to generate sentences/utterances for
daily use.

Brown Corpus is an important and well-known corpus because it is the first well-
organized corpus in human history founded by Brown University in 1961 with con-
tinuous updates. At present, it has over 583 million tokens, 293,181 wordform types
and words in foreign languages. It is one of the most comprehensive corpora for
daily use, and a KB used in many N-grams-related NLP models and applications.

The Wall Street Journal is one of the earliest domain-specific corpora to discover
knowledge from financial news, the Associated Press focuses on news and interna-
tional events, Hansard is a famous corpus of British parliamentary speeches; Boston
University Broadcast News Corpus; NLTK Corpus, etc. (Bird et al. 2009; Eisenstein
2019; Pustejovsky and Stubbs 2012).

A language model is a traditional word counting model to count and calculate
conditional probability to predict the probability based on a word sequence, e.g.,
applying utterance it is difficult to... that with a sizeable corpus like Brown Corpus.
This traditional word counting method may suggest either say/tell/guess based on
occurrence frequency for predictions and forecasts at advanced computer systems
and research in specialized deep networks and AI models. Although there has been
a technology shift, a statistical model is always the fundamental model in many
cases (Jurafsky et al. 1999; Eisenstein 2019).

2.2.2 Language Modeling and Chain Rule

Conditional probability calculation is to study the definition of conditional proba-
bilities and look for counts, given by:

P(ANB)

P(AIB)= P(5)

2.1)

For example, to evaluate conditional probability: The garden is so beautiful that
given by the word sequence “The garden is so beautiful” will be:

P (The garden isso beautiful that)
P(The garden isso beautiful)

P(that/The garden issobeautiful) =

(2.2)
Count (The garden is so beautiful that)

Count(The garden isso beautiful)

2.2 N-Gram Language Model 25

Although the calculation is straightforward but if the corpus or text collection is
moderate, this conditional probability (counts) will probably be zero.

The Chain Rule of probability can be used as an independent hypothesis to cor-
rect this problem.

By rewriting the conditional probability equation (2.1), it will be:

P(ANB)=P(AB)P(B) (23)
For a sequence of events, A, B, C, and D, the Chain Rule formulation will become:
P(AB.C.D)=P(A)P(BA)P(CIA B)P(DIALBI.C) (2.4)

In general:
P(x,.x,.%,...x,) = P(x) P(x,1x,) P(x,0x,,x,). P(x, I x,) (25)

If the sequence of words from position 1 to n is defined as w;', then the Chain
Rule applied to word sequences becomes:

P(wl”) = P(w1)P(wzlw1)P(w3|w,2)...P(wn|wl”")
p (2.6)
= P(wk lek_')

k=1

So, the conditional probability for the previous example will be:

P(the garden isso beautiful that) = P(the) * P(gardenlthe)
P (islthe garden) * P (solthe garden is) * P (beautifullthe garden is so) 2.7
*P(thatlthe garden is so beautiful)

Note: Normally, <s> and </s> are used to denote the start and end of a sentence/
utterance for better formulation.

This approach seems fair and easy to understand, but there are two major prob-
lems. First, it is unlikely to collect correct prefix statistics, which means that the
starting point of the sentence is unknown. Second, the calculation of word order
probabilities is mundane. If the sentence is long, the conditional probability at the
end of this equation is complicated to calculate.

Let’s explore how the genius Markov Chain is applied to solve this problem.

26 2 N-Gram Language Model
2.3 Markov Chain in N-Gram Model

Prof. Andrey Andrevevich Markov (1856—1922) was a renowned Russian mathema-
tician and academician who made a significant contribution to science by studying
the theory of probability, his primary contribution called Markov chains or Markov
process had applied to biology, chemistry, computer science, and statistics (Ching
et al. 2013). Markov chains theory can be applied to speech recognitions, N-gram
language model, internet ranking, information, and queueing theories (Eisenstein
2019). There is a single-dimension domain Markov chain modeling called Hidden
Markov Chain in handwritten characters and human voice recognitions. This model
has an important concept called Markov Assumption which assumes the entire pre-
fix history is not necessary, in other words, an event doesn’t depend on its whole
history; it is only a fixed length nearby history is the essence of Markov chain theory.

A Markov chain is a stochastic process that describes a sequence of possible
events where the probability of each event depends only on the state reached by the
previous event. There are many kinds of Markov chain conventions. An important
convention called descriptive Markov chain is shown in Fig. 2.5. It revealed that an
event of Markov chain can be a list of relationships of every single event. Another
concept is that the previous state is important but not all previous sequences. Hence,
this model can apply in thermodynamics, statistical mechanics, physics, chemistry,
economy, finance, information theory and NLP. A complete Markov Chain event is
like a conversation in a sentence/utterance, each word is equivalent to an object in
Markov chain. Although the whole chain of conditional probability can be calcu-
lated, the last event is the most important one.

By applying the Markov chain model, the conditional probability for N-gram
probability of a word sequence w; will be approximated by (assuming a prefix of
N words):

P(w,lw ™) = P(w,wi),) (2.8)

In general:

{ ! N

- v v

BB 505 B35 o s By) = D21)00 |51 5(Es|2) o . (Bn| By —1)

Fig. 2.5 Markov chain model

2.4 Example: The Adventures of Sherlock Holmes 27

P(w)~ ﬁP(wk w,_,) (2.9)
k=1

In other words, the original complex conditional probability of a word sequence
stated in (2.6) can be easily evaluated by a sequence of bigram probability
calculations.

Let’s look at an N-gram example The big white cat. Unigram probability is
P(cat). Bigram probability is the P(cat | white). Trigram probability is P(cat | big
white) = P(white | big)*P(cat | white) and quadrigram probability is P(cat | the big
white) = P(big | the)*P(white | big)*P(cat | white). All can be easily evaluated by a
simple sequence of bigram probability multiplications applying (2.9).

However, it is cautious to note that the probability of a word formulation given
fixed prefixes may not always be appropriate in many cases. They may be verifiable
events in real-time speeches as words uttered are often correlated to the previous but
in cases with pragmatic or embedded meanings at both right and left contexts, there
is no priori reason adhered to left contexts.

2.4 Example: The Adventures of Sherlock Holmes

N-gram probability calculation usually come from a training corpus or knowledge-
base (KB) in two extremes. One is an overly narrow corpus, and the other one is an
overly general corpus. An overly narrow corpus is a restricted, specific corpus, can
be domain specific on a particular knowledge with significant counts to be found
during conditional probability counting. An overly general corpus cannot reflect a
specific domain but counting can always be found. Hence, a balance between the
two dimensions is required. Another consideration is a separate text corpus applied
to evaluate standard metrics called held out test set, or development test set. Further,
cross-validations and results tested for statistical significance are also required.

Let’s begin with a corpus came frthe om Project Gutenberg website (Gutenberg
2022) on The Adventures of Sherlock Holmes (Doyle 2019), a famous literature by
writer and physician Sir Arthur Conan Doyle (1859-1930). Gutenberg is a website
consisting of primarily copyright clearance, free access, and download western cul-
tural tradition literature available to the public. This literature has 12 outstanding
detective stories of Sherlock Holmes ranging from A Scandal in Bohemia to The
Adventure of the Copper Beeches with other statistics below. It is a domain-specific
corpus with comprehensive detective knowledge to form a meaningful knowledge
base to perform N-gram modeling in NLP.

No. of pages 1 424
No. of characters (exclude spaces) |: |470,119
No. of words . 1110,087

No. of tokens . 1113,749

28 2 N-Gram Language Model

No. of sentences . 16830
No. of word types (V) : 19886

N-gram modeling in this example is to analyze an influential quote of Sherlock
Holmes: I have no doubt that I This quote does not occur often in other literature
but because it is a detective story, the character has a unique aptitude for deducing
hypotheses and notions to solve cases. Applying the Markov chain model can avoid
mundane conditional probability, the N-gram probability is given by:

P(Ihavenodoubt that I) = P(1I<s>) # P (have | 1)* P (no | have)

P(doubt | no) P(that | doubt) * P (11 that) 210
Unigram checking on word counting for I have no doubt is necessary as a basis
to calculate the conditional probability for all bigrams as shown in Table 2.2. So,
given the unigram count of I is 2755, the bigram probability of I have applying
Markov chain method will be 288/2755, which is 0.105 as shown in Table 2.3. It is
a list of all related bigram counts and probabilities for a given bigram such as I have,
I had, I am, I was, I knew, I hear, I don’t up to I should which are common words
found in many literatures. The probability also showed I have is the most frequent
with 0.105 which means that I have no doubt that is quoted by the character regu-
larly. The occurrence of I think is high and general phrases such as I have, I had.

A bigram grammar fragment related to I have no doubt that ... is shown in
Table 2.4 for the counting and probability occurrence frequency beginning with
<s>1I, <s>I'd, <s>The, <s>1It, I have, I had, I can, have no, have to, have been to
compare with several versions or combinations related to, I have no doubt that
means to compare occurrence frequency of I have with I had or I can, which is simi-
lar to compare the occurrence of no doubt, no sign and no harm or that I, that he,
that she, that it. It is noted that the occurrence of I have no doubt that is high and
distinct in this literature.

Counting all conditional bigram probabilities based on unigram count in
Table 2.2 showed I have no doubt that for I is at 0.138 which is very high, but it is
interesting to note that no doubt is even higher at 0.167 but again since it is a detec-
tive story with a restricted domain, doubt that is very high at 0.202 because the
character always involves guesswork and frequent grammar usage. Further, the
probability of bigram that I is much higher than other combinations like that he, that
she and that it. The occurrence frequency in other literature is much lower but
because the character is a self-assured and intelligent expert, he said that I is more

Table 2.2 Unigram counts for words “I have no doubt that” from The Adventures of
Sherlock Holmes

1 have no doubt that
2755 867 276 84 1767

2.4 Example: The Adventures of Sherlock Holmes

Table 2.3 Bigram grammar fragment from The Adventures of Sherlock Holmes

Bigram with “I” (by counts)

I have 288
I had 161
Iam 159
I was 147
I knew 34
I hear 33
Idon’t 14
I saw 42
I think 72
I should 90

I observe 8
I deduce 3
Ican 37
Ican’t 6
I may 23
I must 32
I could 77
I passed 8
I take 4
Isee 32

Bigram with “I” (by probability)

I have

I had
Tam

I was

1 knew
I hear
Idon’t
I saw

1 think
I should

0.105
0.058
0.058
0.053
0.012
0.012
0.005
0.015
0.026
0.033

I observe
I deduce
Ican
Ican’t

I may

I must

I could

I passed
I take

I merely

29

0.003
0.001
0.013
0.002
0.008
0.012
0.028
0.003
0.001
0.012

Table 2.4 Bigram grammar fragment related to utterance “/ have no doubt that I’ from The
Adventures of Sherlock Holmes

Bigram related to “I have no doubt that I’ (by

counts)
<s>[
<s>I'd
<s>The
<s>It

I have

I had

I can
have no
have to
have been

883 no doubt 46
4 no sign 9
164 no harm 4
229 doubt that | 17
288 doubt as 3
161 doubt 2
upon

37 that I 228
35 that he 139
12 that she 61
122 that it 109

Bigram related to “I have no doubt that I”’
(by probability)

<s>[
<s>I'd
<s>The
<s>It

I have

T had

I can
have no
have to
have been

0.138 no doubt | 0.167
0.001 no sign 0.033
0.026 no harm 0.014
0.036 | doubt that | 0.202
0.105 doubt as 0.036
0.058 doubt 0.024
upon
0.013 that I 0.129
0.040 | that he 0.079
0.014 | that she 0.035
0.141 that it 0.062

often than that he or that she. That is the significance of a domain-specific corpus to
check for N-gram probability.

So, let’s look at some N-gram probabilities calculation, e.g., the probability of
P(I have no doubt that I) given by Eq. 2.10:

P(I have no doubt that I) =0.138x0.105x0.040x0.167x0.202x0.129
= 0.000002526

It is compared with P(I have no doubt that he):

P (I have no doubt that he) =0.138%x0.105x0.040%x0.167x0.202x0.079
=0.000001540

This example test results led to several observations. It is noted that all these
probabilities are limited in general. Conditional probability is limited in a long

30 2 N-Gram Language Model

sentence and required for the Markov chain. If applying the traditional method on
conditional probability with complex calculation, most of the time the probability is
diminished. Further, the probability seems to capture both syntactic facts and world
knowledge. Although that I or that he is often used in English grammar, the proba-
bility in this literature that I is more frequent. Hence, it is related to both syntactic
usage, common sense, and specific domain knowledge. It depends on knowledge
domains leading to diverse probability calculation results.

It is also noted that most of the conditional probabilities are limited because the
multiplication of all probability calculations in a long sentence becomes dimin-
ished, so it is important to apply the Markov chain and convert complex conditional
probabilities into bigram probabilities. Although the occurrence of bigram is infre-
quent but still exists. Nevertheless, if it is not a sizeable knowledge base or corpus,
most of the bigrams will be 0. Hence, the selection of a corpus knowledge base is
important. An effective N-gram is related to word counting, conditional probabili-
ties calculation, and normalization.

Another observation is that it showed all these conditional probabilities are lim-
ited and underflows as mentioned. A method is to convert them into natural log.
Applying a natural log will become additions to calculate conditional probability
with Markov chain operation.

Maximum Likelihood Estimates (MLE) is another principal method to calculate
the N-gram model. They are parameters of a model M from a training set T. It is the
estimate that maximizes the likelihood of training set T given the model M. Suppose
the word language occurred 380 times in a corpus with a million words, for exam-
ple, Brown corpus, the probability of a random word from other text forms with the
same distribution will be language, which it will be 380/1,000,000 = 0.00038. This
may be a poor estimate for other corpora, but this type of calculation is domain
specific as mentioned meaning that the calculation varies according to different
corpora.

Let’s return to The Adventures of Sherlock Holmes’ famous quote I have no
doubt that example. This time the counting and probability calculation of these
words are tabulated as shown in Tables 2.5 and 2.6, respectively. It showed that /
have has the most occurrence frequency with 288, that I is the next with 228 occur-
rences, no doubt with surprising high 46 occurrences, doubt that is 17 followed by
that no and so on. Another discovery is that most of the other combinations is 0. It
is intuitive because they are not grammatically or syntactically possible, e.g., no I or
I'I and many are infrequent in English usage.

Table 2.5 Bigram counts for “/ have no doubt that I’ in The Adventures of Sherlock Holmes

1 have no doubt that I
| 0 288 0 1 0 0
have 5 0 35 0 2 5
no 0 0 0 46 0 0
doubt 0 0 0 0 17 0
that 228 1 10 0 7 228

2.5 Shannon’s Method in N-Gram Model 31

Table 2.6 Bigram probability (normalized) for “I have no doubt that I’ in The Adventures of
Sherlock Holmes

I have no doubt that I
| 0.000 0.105 0.000 0.000 0.000 0.000
have 0.006 0.000 0.040 0.000 0.002 0.006
no 0.000 0.000 0.000 0.167 0.000 0.000
doubt 0.000 0.000 0.000 0.000 0.202 0.000
that 0.129 0.001 0.006 0.000 0.004 0.129

Bigram normalization is achieved by the division of each bigram counts by
appropriate unigram counts for w, _ . Here is the bigram normalization result for /
have no doubt that, for example, computing bigram probability of no doubt is the
counting of no doubt which is 46 as shown in Table 2.5 against the counting of no
which is 276 as in Table 2.2 which becomes 46/276 = 0.167. In fact, such bigram
probability P(no doubt) is much higher than P(I have) = 0.105, which is infrequent
in other corpora because not many corpora have a frequency of no doubt as com-
pared with [have as I have is common in English usage. Since it is detective litera-
ture and the character is an expert in his field, it is unsurprised to identify the
occurrence frequency of no doubt is very high.

The overall bigram probability (normalized) findings are: I have is 0.105, no
doubt is 0.167 the highest, that I is 0.129 as shown in Table 2.6. This is special
because the occurrence frequency of [is not high as compared with I have. Doubt
that is 0.202 which is very high, and others are mostly 0. These findings showed
that, first, all conditional probabilities are limited because N-gram calculation char-
acteristics come from an extensive corpus. But it doesn’t mean that there is no com-
parison. It can be compared if they are not 0. Second, O s are meaningful as most of
these words’ combinations are neither syntactically nor grammatically incorrect.
Third, these conditional probabilities and MLE are domain specific, which may not
be the same in other situations.

2.5 Shannon’s Method in N-Gram Model

Shannon’s method (Jurafsky et al. 1999) is another important topic in N-gram
model. Professor Claude Shannon (1916-2001) was a renowned American mathe-
matician, electrical engineer, cryptographer, also known as the father of information
theory and a major founder of contemporary cryptography. He wrote his famous
thesis at age 21, a master’s degree student at MIT demonstrating Boolean algebra
electrical applications to construct any logical numerical relationship with meaning.
One of his most influential papers, A mathematical theory of communications
(Shannon 1948) published in 1948 had defined a mathematical notion by which
information could be quantified and delivered reliably over imperfect communica-
tion channels like phone lines or wireless connections nowadays. His

32 2 N-Gram Language Model

Table 2.7 Algorithm of Shannon’s method on language generation
Shannon’s method for

. 1. Choose a random N-gram (<s>, w) according to its
language generation

probability

2. Now choose a random N-gram (w, x) according to its
probability

3. And so on until we choose </s>

4. Then string the words together into a sentence

Table 2.8 Sentence generation using the Shannon’s method from The Complete Works of
Shakespeare
N-gram Generated sample sentences from The Complete Works of Shakespeare
Unigram | * To him swallowed confess hear both which of save on trail for are ay device and
rote life have
 Every enter now severally so
« Hill he late speaks a more to leg less first you enter
» Are where exeunt and sighs have rise excellency took of sleep knave we near vile
like
Bigram * What means sir I confess she?
* Why dost stand forth thy canopy for sooth
* What we hath got so she I rest and sent to scold and nature bankrupt nor the first
gentlemen?

* Ener Menenius if it so many good direction found thou art a strong upon
command of fear not a liberal largess given away

Trigram » Sweet prince Falstaff shall die
* This shall forbid it should be branded if renown made it empty
* Indeed the duke and had a very good friend
* Fly and will rid me these news of price
Quadri- * King Henry I will go seek the traitor Gloucester
gram * Will you not tell me who I am?
* It cannot be but so
* Indeed the short and the long

groundbreaking innovation had provided the tools for network communications and
internet technologies. This method showed that assigning probabilities to sentences
are well but less informative for language generation in NLP. However, it has a more
interesting task to turn it around by applying N-gram and its probabilities to gener-
ate random sentences like human sentences by which the model is derived.

There are four steps of Shannon’s Method for language generation as shown in
Table 2.7:

An example of four N-gram texts generation methods from The Complete Works
of Shakespeare by William Shakespeare (1564—1616) (Shakespeare 2021) applying
Shannon’s Method is shown in Table 2.8.

2.5 Shannon’s Method in N-Gram Model 33

In summary:

» Unigram results showed that the four random sentences are almost meaningless
because they used a single word to calculate the probability mostly without
relations.

* Bigram results showed that the four random sentences have little meaning
because they used two words to calculate. It reflected its high occurrence prob-
ability frequency but was not grammatically correct.

» Trigram results showed that word relations are coherent because it used three
words to calculate. It reflected the conditional probability ranking had improved
grammar and meanings like human language.

* Quadrigram results showed that the language of sentences is almost perfect per
original sentences since it used four words co-relation to calculate, but its high
occurrence conditional probability frequency are the words encountered with
low-ranking options due to copious information to search. It may not be benefi-
cial to text generation.

Although quadrigrams can provide realistic language, sentences/utterances lack
freedoms to generate new sentences. Hence, trigrams are often a suitable option for
language generation. Again, if corpus is not sizeable enough to accommodate tokens
and words volume like this literature, trigram will be unable to provide the frequent
words for N-gram may need to switch using bigram in this case. Hence, quadrigram
is unsuitable for text generation because it will be too close to the osriginal words
or sentences.

Corpus used in this example is also domain specific from The Complete Works of
Shakespeare. It consists of 884,647 tokens and 29,066 distinct words that are
approximately 10 times more as compared with The Adventures of Sherlock Holmes.
It has approximately 300,000 bigram types out of all these tokens and the number
of bigram combinations will be 844 million possible bigrams. In other words, less
than 1% is used and another 99.96% of possible bigrams are never used. It makes
sense because most of these random bigram generations are grammatic, syntactic or

Table 2.9 Sample sentence generation using Shannon’s method with Wall Street Journal articles

N-gram | Generated sample sentences from Wall Street Journal articles

Unigram | Months the my and issue of year foreign new exchange’s September were recession
exchange new endorsed a acquire to six executes

Bigram | Last December through the way to preserve the Hudson corporation N. B. E. C.
Taylor would seem to complete the major central planners one point five percent of
U. S. E. has already old M. X. corporation of living on information such as more
frequently fishing to keep her

Trigram | They also point to ninety nine point six billion dollars from two hundred four oh six
three percent of the rates of interest stores as Mexico and Brazil on market conditions

Quadri- | Executives from some of the biggest U.S. news organizations check with a British

gram economist last year at Washington’s exclusive Metropolitan Club to strategize with a
mutual obsession of getting their industry out from under the thumb of Google and
Facebook

34 2 N-Gram Language Model

even pragmatic meaningless, but pose a problem in N-gram calculations for text
generation.

For illustration purposes on how domain knowledge affects N-gram generation,
Table 2.9 shows some sample sentences generated by Wall Street Journal (WSJ)
articles as the corpus (Jurafsky et al. 1999). It showed that trigram has the best per-
formance in terms of sentence structure and meaningfulness on text generation.

2.6 Language Model Evaluation and Smoothing Techniques

Language Model Evaluation (LME) (Jurafsky et al. 1999) is a standard method to
train parameters on a training set and to review model performance with new data
constantly. That often occurred in real world to learn how the models perform called
training data (training set) on language model and see whether it works with unseen
information called fest data (test set). A test set is a data set completely different
than the training set model but is drawn from the same source, which is a specific
domain and applies an evaluation metric, for example, perplexity to determine lan-
guage model effectiveness.

Unknown words are words unseen prior looking at test data regardless of how
much training data is available. It can be managed by an open vocabulary task with
steps below:

1. Create an unknown word token <UNK>.
2. Train <UNK> probabilities.

(a) create a fixed lexicon L, of size V from a dictionary or a subset of terms from
the training set.

(b) a subnet of terms from the training set.

(c) at text normalization phase, any training word not in L changed o <UNK>.

(d) now can count that like a normal word.

3. Test.

(a) use <UNK> counts for any word not in training.

2.6.1 Perplexity

Perplexity (PP) is the probability of the test set assigned by the language model,
normalized by the number of words as given by:

1
PP(W)_Nm @2.11)

By applying the Chain rule, it will become:

2.6 Language Model Evaluation and Smoothing Techniques 35

PP(W) = \/H 1 @.12)

Pl P(wklwlw2 "‘Wk—l)

N, (2.13)
H P wklwk 1)

In general, minimizing perplexity is the same as maximizing probability for
model performance, which means the best language model is the one that can best
predict an unseen test set with minimized perplexity rate.

An example of perplexity values for WSJ is shown in Table 2.10 indicating that
trigram with minimized perplexity has performed better than bigram and unigram
supported this principle for text generation (Jurafsky et al. 1999).

For bigrams, it will be given by:

2.6.2 Extrinsic Evaluation Scheme

An extrinsic evaluation is a popular method for N-gram evaluation, its theory is
straightforward as follows:

1. Put model A into an application, for example, a speech recognizer or even a QA
chatbot.

2. Evaluate application performance with model A.

3. Put model B into the application and evaluate.

4. Compare two models’ application performance.

The good thing about extrinsic evaluation is that it can perform exact testing at
two models which is fair and objective, but it is time consuming for system testing
and implementations, i.e., take days to perform experiments if is a sophisticated
system. So, a temporary solution is to use intrinsic evaluation with an approxima-
tion called perplexity to evaluate N-gram. It is easier to implement if the same sys-
tem is used but perplexity is a poor approximation unless the test data looks identical
to the training data. Hence, it is generally useful in pilot experiments.

Table 2.10 Perplexity values for WSJ from unigram to trigram

N-gram order Unigram Bigram Trigram
Perplexity 962 170 109

36 2 N-Gram Language Model
2.6.3 Zero Counts Problems

Next step is to manage zero counts problems. Let’s return to The Adventures of
Sherlock Holmes example, this literature had produced 109,139 bigram types over
100 million possible bigrams as recalled, so there are approximately 99.89% of pos-
sible bigrams never seen that have zero entries in the bigram table. In other words,
most of these zeros conditional probabilities are bigrams that need to be managed,
especially in different NLP applications such as text generation and speech
recognition.

There is a brief synopsis of such zero-count dilemma. Some of these zeros are
truly zeros which means that can’t and shouldn’t occur because they won’t make
grammatical or syntactic sense, on the other hand, some are only rare events which
means they occurred infrequently, for example, with an extensive training corpus.

Further, Zipf’s law (Saichev et al. 2010) states that a long tail phenomenon is a
rare event that occurs in a very high frequency, and large events numbers occur in a
low frequency constantly. These are two extremes, which means some popular
words always occur in a high frequency, and most are bigrams in a low frequency.
Hence, it is clear to collect statistics on high-frequency events and may have to wait
for a long time until a rare event occurs, e.g., a bigram to take a count on this low
occurrence frequency event. In other words, high occurrence frequency events
always dominate the whole corpus. This phenomenon is essential because it always
occurs in website statistics or website counting. These high-frequency websites and
N-grams are usually the top 100 and others with limited visit counts and occurrence,
so the estimate results are sparse as there are neither counts nor rare events that are
required to estimate the likelihood of unseen or 0 count N-grams.

2.6.4 Smoothing Techniques

Every N-gram training matrix is sparse even with large corpora because of Zipf’s
law phenomenon. The solution is to use likelihood estimation for figures on unseen
N-grams or 0 count N-grams to judge the rest of corpus accommodated with these
phantom/shadow N-grams. It will affect the rest of the corpus.

Let’s assume that an N-gram is used, all the words are known and seen before-
hand. When assigning a probability to a sequence where one of these components is
0, the initial process is to search for a low N-gram order and back off from a bigram
to unigram and replace 0 with something else, or a value with several methods to
resolve zero count problems based on this concept; these collective methods are
called smoothing techniques.

This section explores four commonly used smoothing techniques: (1) Laplace
(Add-one) Smoothing, (2) Add-k Smoothing, (3) Backoff and Interpolation
Smoot,hing and (4) Good Turing Smoothing (Chen and Goodman 1999; Eisenstein
2019; Jurafsky et al. 1999).

2.6

Language Model Evaluation and Smoothing Techniques

2.6.5 Laplace (Add-One) Smoothing

37

Laplace (Add-one) Smoothing (Chen and Goodman 1999; Jurafsky et al. 1999)
logic is to consider all zero counts are rare events and add 1 into them. These rare
events are neither occurred nor sampled during corpus training.

For unigram:

. Add 1 to every single word (type) count.

2. Normalize N token/(N (tokens) + V (types)).

. Smooth count ¢ (adjusted for additions to N) given by:

c = (c,. +l)

N+V

. Normalize N to obtain a new unigram probability p*given by:

.+l
N+V

p

For bigram:

. Add 1 into every bigram c(w, _ w,) + 1.
. Increase unigram count by vocabulary size c(w, _) + V.

(2.14)

(2.15)

Table 2.11 shows a bigram count with and without Laplace Method for the previ-
ous example [/ have no doubt that I from The Adventures of Sherlock Holmes. It
indicated that all zeros become 1 so that no I becomes 1, others like I have will come
from 288 to 289, the calculation is simple but effective.

For bigram probability calculation is given by:

C(wn—lwn)

P(wnlwnfl) = Clw

n-1)

So, the bigram probability with the Laplace method will be given by:

Table 2.11 Bigram counts with and without Laplace method

Original bigram table of “I have no doubt

(2.16)

Bigram table of “I have no doubt that I” with

that I Laplace method
(by bigram count) (by bigram count)

I have | no | doubt | that | I I have | no | doubt | that | I
| 0/288 | 0 1 0 01 11289 1| 2 11
have 5/ 01(35 0 2 5| have 6 1136/ 1 316
no 0 0| 0 46 0 0| no 1 1| 147 1|1
doubt 0 0| 0 O 17 0| doubt 1 1 1 1 18 |1
that 228/ 110/ O 7 | 228 that 229 2011} 1 8 229

38 2 N-Gram Language Model

B (ww,)= C(w,_w,)+1 _C(Wn—lwn)+1 2.17)
Lap \Wn Wt _ZW(C(WHW)+1)_ C(wn_1)+V '

Table 2.12 shows the bigram probabilities with and without Laplace Method for
the previous example I have no doubt that I from The Adventures of Sherlock Holmes.

Note: The bigram probability is calculated by the division of unigram originally
but now it will be the division by the count of unigram + total number of word type
(V) which is equal to 9886, e.g., P(have | I) = 288/2755 = 0.105. Applying Laplace
method, it becomes 289/(2755 + 9886) = 0.023. It showed that all zero cases will
become 1 which is simple for text generation, but the problem is, some probabilities
have changed notably such as / have from 0.105 to 0.023, and no doubt has the high-
est change from 0.1667 to only 0.00463.

Although it is adequate to assign a number to all zero events but the one with
high frequency becomes insignificant because of copious word types in corpus base,
indicating that the performance of Laplace Add-one smoothing may not be effective
in many cases and required to look for alternatives.

2.6.6 Add-k Smoothing

Add-k Smoothing (Chen and Goodman 1999; Jurafsky et al. 1999) logic is to assume
that each N-gram is seen in k times, but the occurrence is rare. These zeros are rare
events that are less than 1 and unnoticeable meaning that there is a line between 0
and 1, it can be 0.1, 0.01, 0.2 or even smaller; so, a non-integer count is added
instead of 1 to each count, for example, 0.05, 0.1, 0.2, typically, 0 < k < 1 provided
that k must be a small number less than 1 in practical applications. It is because if k
is too large, it will cause similar problem occurred in Laplace method.
By using the same logical as Add-1 method, Add-k Smoothing is given by:

* C an Wn + k
P (Wn w, |) = C('(WIT)]CV (2.18)

where 0 <k < 1

It is adequate to compare with the Laplace method in that the whole V is not used
if Vis very large such as 9886 in The Adventure of Sherlock Holmes. When the event
is, say 0.05, means that it will be even smaller, but the new number won’t be too
small. Aslthough add-k is useful for many tasks including text classification and
generation, but not for all language modeling, generating counts with poor variance
and often inappropriate discounts (Gale and Church 1994). Another add-k model
consideration is to select an appropriate k number through trial and error but that
will lead to problems in practical applications. Nevertheless, Add-k smoothing usu-
ally provides a better and more viable solution as compared with the Add-1 method.

39

2.6 Language Model Evaluation and Smoothing Techniques

S9610°0 | 690000 | 600000 #6000°0| LI000D0| S9610°0| ¥y | €062I'0| 96£00°0| 000000 99S00°0| LSO000, €06TI0| ey
010000 | [8100°0| 01000°0| 010000 0100070 010000 3AnOP | 00000°0 | 8£TOTO| 000000 | 00000°0| 000000 000000 Iqnop
010000 | 01000°0| €9¥00°0| 010000 00000 | 010000 ou | 00000°0| 000000 | £9991°0 | 000000 | 000000| 000000 ou
950000 | 8T000°0| 600000 | SEEL000| 600000 9S000°0| 2ABY | LLS00°0| [€200°0| 000000 | LEOKO'O| 000000 | LLSOOO| — oAey
800000 80000°0| 910000, 800000 982700 800000 I/ 000000 000000 9€000°0| 000000 #SHOI'0| 000000 I

1 Jey) jqnop ou AARY 1 1 ey jqnop ou ARy 1
(Kirqeqoxd wesdiq £q) (Kiriqeqoxd wesdiq £q)

poyyeur doerde] yim J jey) Jqnop ou aAey [,, Jo 9[qe) weisig

[1211 1qQnOp ou dAeY ,, JO 9[qe) WeISIq [euISuQ

poowr ooe[deT noyim pue Yim sanifiqeqoid weidtg 717 dqeL

40 2 N-Gram Language Model
2.6.7 Backoff and Interpolation Smoothing

Backoff and Interpolation (B&I) Smoothing (Chen and Goodman 1999; Suyanto
2020) logic is to look for a lower dimension N-gram if there is no example of a
particular N-gram. If N — 1 gram has an insufficient number count (or doesn’t exist),
then will switch to N — 2 gram, and so on. Although it is not the perfect option, at
least it can produce some viable counting for word prediction. That is to estimate a
probability with a bigram instead of a trigram if there is none to be found.
Furthermore, it can look up to unigram if no bigram either. This is a kind of backoff
method and by interpolation, can always weigh and combine with quadrigram, tri-
gram, bigram, and unigram probabilities counts, for example, when calculating tri-
gram probability with unigram, bigram, and trigram, each weighted by some A
values. Note the sum of all As must be 1 given by these equations:

Pyes (Wn lwn72wn71) =)“1P(Wn)
+2,P(w,w,_,) (2.19)
+}~3P(W”|W'772W”71)

For a sophisticated version of linear interpolation, each A value can be calculated
by conditioning on the context which means it can be done by using conditional
probabilities as well. In this way, if a particular bigram has accurate numbers, it can
assume that the trigrams numbers are based on this bigram, which will be a robust
method to implement given by the following equation:

Py, (Wnlwn-zwn—l) =4 (Wn—Z:n—l)P(Wn)
+2, (WHWl)P(WHIWH) (2.20)
+)'3 (Wn—Z:n—l)P (Wn |Wn—2wn—l)

It is noted that by comparing with the previous equation (2.19), this equation also
considers conditional probability in all N-gram levels. Hence, both simple interpo-
lation and conditional interpolation methods are learned from a held-out corpus. A
held-out corpus is an additional training corpus to set hyperparameters like 4 values
by choosing A values that can maximize the likelihood of held-out corpus. By
adjusting N-gram probabilities and search for 4 value is to provide the highest prob-
ability of held-out set. In fact, there are numerous approaches to find this optimal set
of 4, a simple way is applying EM algorithm which is an interactive learning algo-
rithm to converge locally optimal A4 (Jelinek and Mercer, 1980).

2.6 Language Model Evaluation and Smoothing Techniques 41

2.6.8 Good Turing Smoothing

Good Turing (GT) Smoothing (Chen and Goodman 1999; Gale and Sampson 1995)
logic is to use the total frequency of events that occurred only once to estimate how
much mass shift to unseen events, e.g., using a bag of green color beans to estimate
the probability of an unseen red color bean.

This technique uses the frequency of N-gram occurrence to reallocate probabil-
ity distribution in two criteria, for example, N-gram statistics of The Adventures of
Sherlock Holmes in Table 2.12. It showed that the probability of have doubt = 0
without smoothing, so by using bigrams frequency that occurred once, i.e., proba-
bility of I doubt to represent the total number of bigrams for unknown bigrams
given by:

_ Count of bigrams that appeared once

[)unknown (W[|W,~71)

- (2.21)
Count of total bigrams

It is an intuitive method because it only considers the conditional probability of
bigrams that occurred once to represent unknown probabilities instead of adding 1
to them. In other words, the conditional probability of an unknown bigram of the
word will be the count for the bigram that occurred once over the count of total
bigrams.

For known bigrams such as no doubt, the frequency of bigrams that occurred
more than one of the current bigram frequency N,.,,, frequency of bigrams that
occurred the same as the current bigram frequency N,, and the total number of big-
ram N are given by:

C*
Pknown (Wilwi—l) = N
* N>+1 . .
wherec” =(c+1) *Tandc = count of input bigram. (2.22)

¢

Exercise: Try to calculate these probabilities from data provided by Table 2.12.

Exercises

2.1. What is a Language Model (LM)? Discuss the roles and importance of lan-
guage models in NLP.

2.2. What is an N-gram? Discuss and explain the importance of N-gram in NLP
and text analysis.

2.3. State the Chain Rule and explain how it works for the formulation of N-gram
probabilities. Use trigram as an example to illustrate.

2.4. What is a Markov Chain? State and explain how it works for the formulation
of N-gram probabilities.

42 2 N-Gram Language Model

2.5. Use The Adventures of Sherlock Holmes as corpus, calculate N-gram proba-
bility the for sentence “I don’t believe in that” with Markov Chain and evalu-
ate all related bigram probabilities.

2.6. Repeat Exercise 2.5 by using another famous literature Little Women by
Louisa May Alcott (1832—1888) (Alcott 2017) to calculate N-gram probabil-
ity of the sentence “I don’t believe in that” and compare it with results in 2.5.
What are the findings?

2.7. Use Shannon’s text generation scheme on The Adventures of Sherlock Holmes
as corpus, generate sample sentences like Table 2.9 using unigram, bigram,
trigram, and quadrigram text generation methods.

2.8. Repeat Exercise 2.7 using the literature Little Women (Alcott 2017) to gener-
ate corresponding sample sentences and compare them with results in 2.7.
What are the findings?

2.9. What is Perplexity (PP) in N-gram model evaluation? Use The Adventures of
Sherlock Holmes as corpus with sample test set, evaluate PP values from uni-
gram to trigram, and compare it with Table 2.10. What are the findings?

2.10. Use Little Women (Alcott 2017) as a corpus and some sample test sets.
Compare the performance of Add-1 smoothing against Add-k (k=0.5). Which
one is better? Why?

2.11. What is Backoff and Interpolation (B&I) method in N-gram smoothing?
Repeat 2.10 using B&I smoothing method with A, =0.4, 1, =0.3 and 2; = 0.3.
Compare the performance with results obtained in 2.10.

2.12. What is Good Turing (GT) Smoothing in N-gram smoothing? Repeat Exercise
2.10 using GT Smoothing and compare performance results obtained in 2.10
and 2.11. Which one is better? Why?

References

Alcott, L. M. (2017) Little Women (AmazonClassics Edition). AmazonClassics.

Bird, S. (2009). Natural language processing with python. O’Reilly Media.

Chen, S. F. and J. Goodman. 1999. An empirical study of smoothing techniques for language mod-
eling. Computer Speech and Language, 13:359-394.

Ching, W. K., Huang, X., Ng, M. K. and Siu, T. K. (2013) Markov Chains: Models, Algorithms
and Applications. Springer.

Doyle, A. C. (2019) The Adventures of Sherlock Holmes (AmazonClassics Edition).
AmazonClassics.

Eisenstein, J. (2019) Introduction to Natural Language Processing (Adaptive Computation and
Machine Learning series). The MIT Press.

Gale, W. A. and Church, K. W. (1994) What is wrong with adding one? In N. Oostdijk and P. de
Haan (eds), Corpus-Based Research into Language, pp. 189-198. Rodopi.

Gale, W. A. and Sampson, G. (1995). Good-Turing frequency estimation without tears. Journal of
Quantitative Linguistics, 2(3), 217-237.

Google (2022) Google official site. http:/google.com. Accessed 12 July 2022.

Gutenberg (2022) Project Gutenberg official site. https://www.gutenberg.org/ Accessed 13
July 2022.

http://google.com
https://www.gutenberg.org/

References 43

Jelinek, F. and Mercer, R. L. (1980) Interpolated estimation of Markov source parameters from
sparse data. In Proceedings of the Workshop on Programming in Natural Language, pp. 1-11.

Jurafsky, D., Marin, J., Kehler, A., Linden, K., Ward, N. (1999). Speech and Language Processing:
An Introduction to Natural Language Processing, Computational Linguistics and Speech
Recognition. Prentice Hall.

Liu, Z., Lin, Y. and Sun, M. (2020) Representation Learning for Natural Language Processing.
Springer.

Pustejovsky, J. and Stubbs, A. (2012) Natural Language Annotation for Machine Learning: A
Guide to Corpus-Building for Applications. O’Reilly Media.

Saichev, A. 1., Malevergne, Y. and Sornette, D. (2010) Theory of Zipf’s Law and Beyond (Lecture
Notes in Economics and Mathematical Systems, 632). Springer.

Shakespeare, W. (2021) The Complete Works of Shakespeare (AmazonClassics Edition).
AmazonClassics.

Shannon, C. (1948). A Mathematical Theory of Communication. Bell System Technical Journal.
27 (3): 379-423.

Sidorov, G. (2019) Syntactic n-grams in Computational Linguistics. Springer.

Suyanto, S. (2020). Phonological similarity-based backoff smoothing to boost a bigram syllable
boundary detection. International Journal of Speech Technology, 23(1), 191-204.

Tuchong (2022) Computerized Axial Tomography Scanner (“Cat scan”). https://stock.tuchong.
com/image/detail 2imageld=902001913134579722. Accessed 17 Dec 2024.

https://stock.tuchong.com/image/detail?imageId=902001913134579722
https://stock.tuchong.com/image/detail?imageId=902001913134579722

Chapter 3)
Part-of-Speech (POS) Tagging s

3.1 What Is Part of Speech (POS)?

Part of Speech (PoS or POS) is a category of words normally in lexical terms that
have similar grammatic behaviors or properties (Bender 2013; Jurafsky et al. 1999).
These are words assigned to the same POS exhibited in syntactic or functional
behaviors and roles in grammatic structure sentences, for example, English verbs
and nouns. They sometimes have similar morphology and can be inflected to pro-
duce similar properties and semantic behavior. To explore how POS works, it is
important to understand the concept of inflection.

Inflection can be considered as the process of word formation in which items are
added to the base form of a word to convey grammatical meanings. The word inflec-
tion comes from the Latin word inflectere, which means to bend, for example, (1)
inflection -s of cats signifies the noun is plural, (2) the same -s inflection of gets
signifies the subject is a third-person singular (e.g., [3.1] He gets the book), and (3)
inflection of -ed often signifies past tense (e.g., arrive — arrived, close — closed,
etc.). Thus, inflections are to express grammatical types such as persons, quantities,
and tenses. There are several types of POS to define inflection characteristics.

3.1.1 Nine Major POS in the English Language

Every word in English sentences falls into nine major POS types. They are (1)
adjectives, (2) verbs, (3) pronouns, (4) conjunctions, (5) prepositions, (6) articles
(determiners), (7) adverbs, (8) nouns, and (9) interjections as shown in Fig. 3.1.
Some linguists include only first eight as major POS and leave interjections as an
individual category.

© The Author(s), under exclusive license to Springer Nature Singapore Pte 45
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_3&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_3#DOI

46 3 Part-of-Speech (POS) Tagging

Adjectives

Parts of

Speech

Conjunctions

Interjections Prepositions

Fig. 3.1 Major POS in the English language

POS is important to study:

1. Word class categorization and usage in linguistics
2. Grammars in English usage

3. Word functions categorization in NLP

4. POS tagging

3.2 POS Tagging

3.2.1 What Is POS Tagging in Linguistics?

Part-of-Speech Tagging (Khanam 2022; Sree and Thottempudi 2011), also called
POS tagging, POST, or grammatical tagging, is the operation of labelling a word in
a text, or corpus according to a particular POS based on definition and contexts in
linguistics. A simplified format is usually learned by students to identify word types
such as adjectives, adverbs, nouns, verbs, etc. Grammars vary in foreign languages
leading to several POS tagging categorizations.

3.2.2 What Is POS Tagging in NLP?

Tagging is a kind of classification process that may be defined as an automatic
description assignment to words or tokens in NLP (Eisenstein 2019). They are
called POS tags or tags to represent one of the POS, semantic information in a

3.2 POS Tagging 47

D BT O 6 B

Fig. 3.2 POS example for utterance “She sells seashells on the seashore”

sentence or utterance. Some words may have different meanings and roles in POS,
for example, book can be used as a noun or booking a table as a verb.

In NLP, POS tagging is the operation of converting a sentence/utterance to forms,
or a list of words and list of tuples, where each fuple has a word or tag form to sig-
nify noun, verb, adjective, pronoun, conjunction, and their subcategories. Figure 3.2
shows how tagging is applied to sample sentence/utterance: [3.2] She sells seashells
on the seashore.

Machine learning and rule-based models can produce POS tags in NLP. They
generally fall into (1) Rule-based POS tagging, (2) Stochastic POS tagging, and (3)
Hybrid POS tagging using advanced technology like Transformation-based tagging
(Jurafsky et al. 1999; Khanam 2022; Pustejovsky and Stubbs 2012). We will study
how they work with NLTK and spaCy technologies at workshops in Part II. First,
let’s look at some realistic POS databanks.

3.2.3 POS Tags Used in the PENN Treebank Project

PENN Treebank is a frequently used POS tag databank provided by the PENN
Treebank corpus (Marcus et al. 1993). Itis an English corpus marked by a TreeTagger
tool developed by Professor Helmut Schmid at the University of Stuttgart in
Germany. It classifies nine major POS into subclasses that have a total of 45 POS
tags with punctuation and examples as shown in Table 3.1, and its English Penn
Treebank (PTB) corpus has a comprehensive section of Wall Street Journal (WSJ)
articles to be used on sequential labeling models’ evaluation as well as characters
and word levels language modeling.

A POS tagging table for sentence [3.3] David has purchased a new laptop from
Apple store in Fig. 3.3 showed that Apple is a proper noun because it can be differ-
entiated by capital letter A as a product brand name.

48

Table 3.1 Penn Treebank POS tags (with punctuation)

3 Part-of-Speech (POS) Tagging

POS POS
No | tag Description Example No | tag Description Example
1 |CC coordinating and, but, or 24 |SYM | Symbol $/[=*
conjunction
2 |CD cardinal number | 1, third 25 | TO infinitive ‘to’ to
3 |DT determiner a, the 26 |UH interjection haha, oops
4 |EX existential there | there is 27 | VB verb—base form | drink
5 |FW foreign word les 28 | VBD | verb—past tense | drank
6 |IN preposition, in, of, by, like |29 | VBG | verb—gerund drinking
sub-conj
7 11 adjective big, wide, 30 | VBN | verb—past drunk
green participle
8 |JIR adjective, bigger, wider, |31 | VBP | verb—non-3sg drink
comparative greener pres
9 |IIS adjective, biggest, 32 | VBZ | verb—3sg pres drinks
superlative wildest,
greenest
10 |LS list marker 1), One, i 33 | WDT | wh-determiner which, that
11 |MD modal can, could, 34 | WP wh-pronoun who, what
shall, will
12 |NN noun, singular or | table, shop 35 | WP$ | possessive whose,
mass wh-pronoun those
13 |[NNS | noun plural tables, shops 36 | WRB | wh-abverb where,
when, how
14 |NNP | proper noun, Samsung 37 | # # #
singular
15 |NNPS | proper noun, Vikings 38 1|% $ $
plural
16 |PDT | predeterminer all/both the 39 |« Left quotation e
students
17 |POS | possessive ending | friend’s 40 |7 Right quotation |’ ”
18 | PP personal pronoun | I, he, it, you 41 | (Opening brackets | ({
19 | PPZ possessive my, his, your, |42 |) Closing brackets |) }
pronoun one’s
20 RB adverb however, 43 |, Comma s
quickly, here
21 |RBR |adverb, better, quicker |44 Sent-final punc 1?
comparative
22 |RBS adverb, best, quickest |45 Mid-sentence I
superlative punc
23 |RP particle of, up (e.g. give

up)

3.2 POS Tagging 49

NP VBZ] VBN 1 N [
David has purchased a new laptop from Apple store

Fig. 3.3 Penn Treebank POS tags of sample sentence “David has purchased a new laptop from
Apple store”

3.2.4 Why Do We Care About POS in NLP?

POS is a fundamental concept to understand the proper use of language, for exam-
ple, English. Without this, we cannot differentiate the usages or roles of different
words in a sentence whether it is a noun, verb, adjective, and determiner. The major
concerns include:

1. Pronunciation often differs from the same word with different roles.

For example [3.4] Here are the students’ records versus [3.5] The teacher
records his lecture.

2. Prediction of the following word, for example, (a) they should use will instead of
shall and (b) the word after fo is not past tense. It is natural in grammar rules as
compared with N-gram solely relied on counting words relationship.

. Stemming is within a restricted tag set, for example, comput for computer.

4. Syntactic parsing base and then meaning extraction.

For example [3.6] Better get going or you will be late.

5. Machine translation for the same word with different POS classes most likely
has a different translation in other languages, for example, translation from
English to French.

(E) book + N — (F) acheter + N (Buy a book — Achete un livre)
(E) book + VB — (F) réserver + VB (Book a room — Réserver une chambre)

(O8]

A proper POS tagging can provide correct translation between foreign languages.
Further, it is to stress different accents and avoid confusion of the same word (word
type) with different POS in a sentence/utterance. There are three types:-

1. Noun vs verb confusion, for example, ABstract (noun) vs. abstRACT (verb).

2. Adjective vs Verb confusion, for example, PERfect (adjective) vs. per-
FECT (verb).

3. Adjective vs Noun confusion, for example, miNUTE (adjective) vs MInute (noun).

Table 3.2 shows some examples of common English words from the CELEX
online dictionary, which have different stresses and meanings to distinguish the role
of each word in the sentence/utterance when dealing with noisy channels. These
problems can be solved by applying statistical probability N-gram methods or sto-
chastic techniques and corpus for fact analysis. Nevertheless, part-of-speech tag-
ging is the first step to solve the problem.

50 3 Part-of-Speech (POS) Tagging

Table 3.2 Common example of same English word with different stress accents

Noun Verb Noun Verb Noun Verb
ABstract abstRACT | ENvelope enVELope REBel reBEL
ACcent acCENT EScort esCORT REcap reCAP
ADdict adDICT EXploit exPLOIT REcall reCALL
ADdress adDRESS EXport exPORT REcord reCORD
ANnex anNEX EXtract exTRACT REfill reFILL
ALly alLY FInance fiNANCE REfund reFUND
ATtribute | atTRIBute |FRAgment |fragMENT REfuse refUSE
COMbat comBAT IMpact imPACT REject reJECT
COMmune |comMUNE | IMprint imPRINT REplay rePLAY
COMpact | comPACT INcrease inCREASE SUBject subJECT
COMpound | comPOUND | INsert inSERT SURvey surVEY
COMpress | comPRESS | INsult inSULT SUSpect susPECT
CONduct | conDUCT MANdate manDATE TORment torMENT
CONfines | conFINES OBject obJECT TRANSfer transFER
CONflict conFLICT OVERcharge | overCHARGE | TRANSplant transPLANT
CONGscript | conSCRIPT | OVERwork |overWORK | TRANSport transPORT
CONsort | conSORT PERmit perMIT UPset upSET
CONtract |conTRACT | PERvert perVERT

CONtrast | conTRAST |PREfix preFIX Adjective Verb
CONverse |conVERSE | PREsent preSENT ABsent abSENT
CONvert conVERT PROceeds proCEEDS FREquent freQUENT
CONvict conVICT PROcess proCESS PERfect perFECT
DEcrease | deCREASE | PROduce proDUCE

DEsert deSERT PROgress proGRESS Adjective Noun
DEtail deTAIL PROject proJECT inVALid INvalid
DIScard disCARD PROtest proTEST miNUTE (my noot) | MInute (min it)
DIScharge | disCHARGE | RAMpage ramPAGE comPLEX COMplex

3.3 Major Components in NLU

Natural Language Understanding (NLU) (Allen 1994; Mitkov 2005) is a critical
component in various NLP applications including text summarization, sentiment
analysis, information retrievals to Q&A chatbot systems. It composes of five basic
modules: (1) morphology, (2) POS tagging, (3) syntax, (4) semantics, and (5) dis-
course integration as shown in Fig. 3.4.

Morphology is the understandings of shapes and patterns for every word of a sen-
tence/utterance.

POS tagging is key process to provide functions and categories of words.

Syntax is syntactic analysis to understand the syntactic role and usage of every word
or word pattern.

3.3 Major Components in NLU 51

Fig. 3.4 Major
components in NLU

Morphology

|
POS Tagging

|

Syntax

Semantics

}

Discourse Integration

Semantics is an analysis to understand semantic meaning of a sentence/utterance
and its overall meaning.

Discourse integration is to understand the relationship between different sentences
and its contents.

3.3.1 Computational Linguistics and POS

Computational linguistics (CL) (Bender 2013; Clark et al. 2012; Mitkov 2005) can
be regarded as understanding written or spoken language from a computational and
scientific perspective. It focuses on building artifacts that process and analyze lan-
guage. Language is like a mirror of the mind that reflects human thoughts.
Computational interpretations of language provide new insights into how human
thinking and intelligence work.

As human language is natural and the most polytropic means of communication
either person-to-person or person-to-machine, linguistically enabled computer sys-
tems provide a new era of NLP applications. There are two major issues to address
in computational linguistics: (1) linguistic itself refers to facts about language and
(2) algorithmic refers to effective computational procedures dealing with these facts.

The major goals of computational linguists include:

1. Construction of grammatical and semantic frameworks/models for language
characterization.

2. Realization of learning models for the exploration of both structural and distri-
butional properties of language, and,

3. Exploration of neuroscience and cognitive-oriented computational models of
how language processing and learning work in our brains.

Thus, POS and POS tagging can be considered as the fundamental process in
computational linguistics to understand and model human languages.

52 3 Part-of-Speech (POS) Tagging
3.3.2 POS and Semantic Meaning

The elementary level of language semantics (Goddard 1998) is to describe actual
meaning of word forms. For example, a noun may be a category of words for people,
locations, and things. Adjectives may be the category of words for properties
of nouns.

Consider: [3.7] green book in which green is an adjective while book is a noun.

In fact, the word book can have two meanings: (1) description of word book from
the dictionary and (2) noun in a sentence, which is an object. For the word green, it
has an in-depth interpretation of (1) an adjective to describe the book in green color
and (2) a semantic meaning to describe the book in green.

Now consider: [3.8] book worm???

[3.9] This green is very smoothing???

Here the word book has the same spelling and pronunciation as [3.8] but it
becomes an adjective instead of a noun because of the semantic meaning of book
worm. In [3.9], green becomes a noun instead of an adjective because of semantic
meaning consideration in the whole sentence/utterance. So, the POS of every word/
word pattern can be varied when considering the role in the overall semantic mean-
ing of a sentence/utterance.

3.3.3 Morphological and Syntactic Definition of POS

According to the structure of morphologically clear grammatical rules, when there
is an adjective to fill in the blank, for example [3.10] I¢’s so , it can be difficult,
expensive, small, etc. This rules’ structure gives shape to appropriate POS tags for
description, for example, when a noun is a word that can be labeled as plural means,
it can be defined in either singular or plural form with s, or the other way round
which is a two-way process. Thus, when a tagger tags a word with s, it gives hints
that the word may contain s or a noun in plural, for example, cat or cats.

On the other hand, when there is a noun that can fill in the blank. For example,
[3.11] the is so pretty, it can be decoration, house, painting, etc. and con-
scious of not using a proper noun, for example, the Tesla.

Consider the following situations, what is the POS for the word purple:

[3.12] It’s so purple.
[3.13] Both purples should be okay for the room.
[3.14] The purple is a bit odd for the white carpet.

In [3.12], it is an adjective. However, in [3.13] it is a particular noun in plural
forms. In [3.14], it is also an indifferent noun to classify as a group against uncount-
able objects in purple.

3.4 Nine Key POS in English 53
3.4 Nine Key POS in English

There are nine key POS in English: (1) pronoun, (2) verb, (3) adjective, (4) interjec-
tion, (5) noun, (6) adverb, (7) conjunction, (8) preposition, and (9) article as shown
in Fig. 3.5. Some linguists consider interjections as separate POS category to
express strong feeling or emotion in a single word or a phrase, for example, [3.15]
Hooray! It’s the last day of school. 1t is distinct compared with other POS.

3.4.1 English Word Classes

There are two types of English word classes: (1) closed class and (2) open class.
Both classes are important to understand proper sentences in different languages.
Closed-class words are also known as functional/grammar words. They are
closed since new words are seldom created in the class. For example, conjunctions,
determiners, pronouns, and prepositions are closed class. On the other hand, new
items are added to open classes regularly. As closed-class words are usually used
with a particular grammatical structure, it cannot be interpreted in isolation, for
example, [3.16] the style of this painting, both the and this have no special meaning
as compared with painting that has a specific meaning in usual knowledge.
Open-class words are also known as lexical/content words. They are open
because the meaning of open-class words can be found in dictionaries and therefore
their meaning can be interpreted individually. For example, nouns, verbs, adjec-
tives, and adverbs are open class made up of the entire sub-class of words. These
connective words are restrictive and used frequently to describe different scenarios

A verb can tell what AR G oI o

action someone or e s e
something is doing. A 5% o

Pronoun
A pronoun is used in place
of a noun in a sentence. A
pronoun may take place of

the name of a person, place werb can also express a I have three colourful
or thing. state of being. crayons in my blue pencil
Richard lsn't at work this Let's sing the Llast case.

| Lse i E's qgone on holiday.

werse again,

Aduerb

An aduerb describes
a verb, an adjective.
or another aduerb.
1 am gften forgetful.
Yestorday, | left my

lnteriects
An interjection
expresses strong feeling
or emotion. An
interjection can be a
single word or a phrase.

Hooray! It's the last backpack gutside.
day of school,
onjunction P il A |i|_
A conjunction joins A preposition combines 1e words "a”, “an” and “the"
together single words or: with a noun or pronoun to belong to a special group of
groups of words ina form a phrase that tells 1j tled articles. An
sentence. something about another article can be used before a
word in a sentence. noun in a sentence.
1 was tived 50 1 went to f
e There is a pen on Stow and steady wins the
a7 the table. roce.

Fig. 3.5 Nine major POS in the English language with description

54 3 Part-of-Speech (POS) Tagging

or meanings about spatial positions of two object nouns, for example, [3.17] The cat
sits by/under/above the piano. Further, there are new types of open-class objects
created from scratch or a combination of the existing words according to contempo-
rary times, for example, fax, telex, internet, iPhone, hub, bitcoin, metaverse, etc.

3.4.2 What Is a Preposition?

Preposition (PP) is POS with a word (group of words) being used before a noun,
pronoun, or noun phrase to indicate direction, location, spatial relationships, time or
to describe an object or information to the recipient. There are approximately
80-100 prepositions in English to generate functional sentences/utterances.

This information can include where something takes place, for example, [3.18]
before dinner, or general descriptive information, for example, [3.19] the girl with
ponytail. The target of the preposition is the noun that followed the preposition. It is
also the ending point for each preposition phrase. For instance, [3.20] o the super-
market. The word fo is a preposition and supermarket is the target of the preposi-
tion, and [3.21] over the rainbow, the word over is the preposition and rainbow is
the target of the preposition. A list of the top 40 prepositions from the CELEX
online dictionary (CELEX 2022) of the COBUILD 16-million-word corpus is
shown in Table 3.3. It showed that of, in, for, to, and with are the top five preposi-
tions to correlate with ideas and additional information of a sentence/utterance.

3.4.3 What Is a Conjunction?

Conjunction (CONJ or CNJ) is POS to connect words, clauses, or phrases that are
known as conjuncts. This definition may sometimes overlap with other POS so that
the constitute of a conjunction must be defined for each foreign language. For
instance, a word in English may have several senses and meanings. It can be consid-
ered as either a conjunction or preposition highly dependable on the syntax of the
sentence/utterance, for example, after is a preposition in [3.22] Jane left after the
show but is a conjunction in [3.23] Jane left after she finished her homework.

Co-ordinating conjunction allows joining words, clauses, or phrases of equal
grammatic rank in a sentence/utterance. Common co-ordinating conjunctions are
and, but, for, nor, or yet which include logical meaning at times.

Subordinating conjunctions join independent and dependent clauses to present a
causation relationship, or some kind of relationship between different words,
clauses, or phrases. Common subordinating conjunctions are as, although, because,
since, though, while, and whereas. A conjunction is a non-inflected grammatical
item in many situations as it may or may not link up the items being conjoined, for
example, [3.24] the book is so difficult that is hard for children to read. That is to
describe about the book to connect two ideas and [3.25] this painting is very

3.4 Nine Key POS in English 55

Table 3.3 Top 40 commonly used prepositions extracted from the CELEX online dictionary

Rank PP Freq. Rank PP Freq.
1 of 540,085 21 above 3056
2 in 331,235 22 near 2026
3 for 142,421 23 off 1695
4 to 125,691 24 past 1575
5 with 124,965 25 worth 1563
6 on 109,129 26 toward 1390
7 at 100,169 27 plus 750
8 by 77,794 28 till 686
9 from 74,843 29 amongst 525
10 about 38,428 30 via 351
11 than 20,210 31 amid 222
12 over 18,071 32 underneath 164
13 through 14,964 33 versus 113
14 after 13,670 34 amidst 67
15 between 13,275 35 sans 20
16 under 9525 36 circa 14
17 per 6515 37 pace 12
18 among 5090 38 nigh 9
19 within 5030 39 re

20 towards 4700 40 mid 3

beautiful but is expensive. In this case but is to explain an initial idea to correlate
with second idea. A list of top 50 commonly used co-ordinating and subordinating
conjunctions from the CELEX online dictionary is shown in Table 3.4. It showed
and, that, or, and as are used frequently to convey more than one concept at the
same time or further explanation.

3.4.4 What Is a Pronoun?

Pronoun (PRN or PN) is POS that can be considered as a word (phrase) to serve as
a substitution for a noun or noun phrase. It is also called the pronoun’s antecedent.
Pronouns usually appear as short words to replace a noun (noun phrase) for the
construction of a sentence/utterance. Commonly used pronouns are I, he, she, you,
me, we, us, this, them, that.

A pronoun can be used as a subject, direct (indirect) object, object of preposition
and more to substitute any person, location, animal, or thing. It can replace a per-
son’s name in a sentence/utterance, for example, [3.26] Jack is sick today, he cannot
attend the evening seminar. Pronoun is also a powerful tool to simplify the contents
of dialogue and conversation by replacing them with simple tokens. A list of the top

56 3 Part-of-Speech (POS) Tagging

Table 3.4 Top 50 commonly used conjunctions extracted from the CELEX online dictionary

Rank CONI. Freq. Rank CONJ. Freq.
1 and 514,946 26 now 1290
2 that 134,773 27 neither 1120
3 but 96,889 28 whenever 913
4 or 76,563 29 whereas 867
5 as 54,608 30 except 864
6 if 53,917 31 till 686
7 when 37,975 32 provided 594
8 because 23,626 33 whilst 351
9 SO 12,933 34 suppose 281
10 before 10,720 35 cos 188
11 though 10,329 36 supposing 185
12 than 9511 37 considering 174
13 while 8144 38 lest 131
14 after 7042 39 albeit 104
15 whether 5978 40 providing 96
16 for 5935 41 whereupon 85
17 although 5424 42 seeing 63
18 until 5072 43 directly 26
19 yet 5040 44 ere 12
20 since 4843 45 notwithstanding 3
21 where 3952 46 according as 0
22 nor 3078 47 as if 0
23 once 2826 48 as long as 0
24 unless 2205 49 as though 0
25 why 1333 50 both and 0

50 commonly used pronouns extracted from the CELEX online dictionary is shown
in Table 3.5. It showed it, I, he, you, and his are used frequently.

The truth is without pronouns, nouns become repetitive and cumbersome in
speech and writing. However, the pronoun may cause ambiguity, for example,
[3.27] Jack blamed Ivan for losing the car key, he felt sorry for that. He normally
refers to the first person which is Jack but makes sense in pragmatic meaning for
Ivan to feel sorry because Jack blamed him for the loss.

3.4.5 WhatIs a Verb?

Verb (VB) can be considered as a word syntax to conduct an action, process, occur-
rence, or state of being. In general, verbs are inflected to encode tense, aspect, mood,
and voice in many languages, but are interchangeable with nouns of a word in some
foreign languages. In English, a verb may also conform with gender, person, or
number of arguments such as its subject or object.

3.4 Nine Key POS in English 57

Table 3.5 Top 50 commonly used pronouns extracted from the CELEX online dictionary

Rank PRN Freq. Rank PRN Freq.

1 it 199,920 26 our 23,029
2 I 198,139 27 these 22,697
3 he 158,366 28 any 22,666
4 you 128,688 29 more 21,873
5 his 99,820 30 many 17,343
6 they 88,416 31 such 16,880
7 this 84,927 32 those 15,819
8 that 82,603 33 own 15,741
9 she 73,966 34 us 15,724
10 her 69,004 35 how 13,137
11 we 64,846 36 another 12,551
12 all 61,767 37 where 11,857
13 which 61,399 38 same 11,841
14 their 51,922 39 something 11,754
15 what 50,116 40 each 11,320
16 my 46,791 41 both 10,930
17 him 45,024 42 last 10,816
18 me 43,071 43 every 9788
19 who 42,881 44 himself 9113
20 them 42,099 45 nothing 9026
21 no 33,458 46 when 8336
22 some 32,863 47 one 7423
23 other 29,391 48 much 7237
24 your 28,923 49 anything 6937
25 its 27,783 50 next 6047

English verbs have tenses consideration: (1) present tense to notify that an action
is being carried out, (2) past tense to notify that an action has been completed, (3)
future tense to notify that an action to be happened in future, and (4) future perfect
tense to notify an action will be completed in future.

A modal verb is a category of verb that contextually indicates a modality such
as ability, advice, capacity, likelihood, order, obligation, permission, request, or
suggestion. It is usually accompanied by the base (infinitive form) of another word
with semantic contents. Common modal verbs are can, could, may, might, shall,
should, will, would, and must. A list of the top 25 commonly used verbs from the
CELEX online dictionary is shown in Table 3.6. It showed can, will, may, would,
and should are used frequently. They also express significance in the subsequent
verb, for example, verb following can and will must use present tense, not
past tense.

58 3 Part-of-Speech (POS) Tagging

Table 3.6 Top 25 commonly used modal verbs extracted from the CELEX online dictionary

Rank VB Freq. Rank VB Freq.
1 can 70,930 14 won’t 3100
2 will 69,206 15 ’d 2299
3 may 25,802 16 ought 1845
4 would 18,448 17 will 862
5 should 17,760 18 shouldn’t 858
6 must 16,520 19 mustn’t 332
7 need 9955 20 1 175
8 can’t 6375 21 needn’t 148
9 have 6320 22 mightn’t 68
10 might 5580 23 oughtn’t 44
11 couldn’t 4265 24 mayn’t 3
12 shall 4118 25 dare 3
13 wouldn’t 3548

3.5 Different Types of POS Tagset

3.5.1 What Is Tagset?

There are nine POS in English—pronoun, verb, adjective, interjection, noun,
adverb, conjunction, preposition, and article learnt as students but there are clearly
more sub-categories that can be further divided. For example, in nouns, the plural,
possessive, and singular forms can be distinguished and further classified.

A Tagset is a batch of POS tags (POS tags or POST) to indicate the part of speech
and sometimes other grammatical categories such as case and tense for the classifi-
cation of each word in a sentence/utterance.

Brown Corpus Tagset (Brown 2022), PENN Treebank Tagset (Treebank 2022),
and CLAWS (CLAWST7 2022) are commonly used. Brown Corpus was the first well-
organized corpus of English for NLP analysis developed by Profs Emeritus Henry
Kucera (1925-2010) and W. Nelson Francis (1910-2002) at Brown University,
United States, in mid-1960s. It consists of over one million English words extracted
from over 500 samples of randomly chosen publications. Each sample consists of
over 2000 words with 87 tags defined (Brown 2022).

The English PENN Treebank Tagset originated by English corpora is annotated
with the TreeTagger tool. PENN Treebank Tagset developed by Professor Helmud
Schmid in the University of Stuttgart, Germany, consists of 45 distinct tags (Abeillé
2003; Treebank 2022).

English CLAWS part-of-speech Tagset version 7, also called C7 Tagset, is avail-
able in English corpora annotated with tools using CLAWS (Constituent Likelihood
Automatic Word-tagging System). C7 Tagset developed by the University Centre
for Computer Corpus Research on Language at Lancaster University was based on
the Hidden Markov model to determine the likelihood of sentences and sequences
of words in anticipating each POS label. It consists of 146 distinct tags
(CLAWS7 2022).

3.5 Different Types of POS Tagset 59
3.5.2 Ambiguous in POS Tags

It may be the necessity of tagset databank against the dictionary to check out POS. A
reason is that there are ambiguities in POS tags for many words:

1. Noun-verb ambiguity.
For example, record: [3.28] records the lecture vs [3.29] play CD records.
2. Adjective-verb ambiguity.
For example, perfect: [3.30] a perfect plan vs [3.31] Jack perfects the
invention.
3. Adjective-noun ambiguity.
For example, complex: [3.32] a complex case vs [3.33] a shopping complex.

Table 3.7 shows an ambiguous analysis of words in Brown corpus (DeRose
1988). One tag refers to a word tagged with a single POS type; 2—7 tags refer to a
word tagged with several POS types. For example, a 3 POS ambiguous tag for
green: (a) [3.34] color green (noun), (b) [3.35] a green apple (adjective), and (c)
[3.36] the roof was greening with leaves (verb). A 7 POS ambiguous tag for still: (a)
[3.37] the still status (adjective), (b) [3.38] the still of the night (noun), (c) [3.39] it
was still snowing (adverb), and (d) [3.40] Her quiet words stilled the animal (verb).
(Note: As an exercise, find out the other three POS tag usages for still.) Overall,
there is a total of 10.4% ambiguous word types often used in language in which over
40% of ambiguous words are easy to disambiguate.

3.5.3 POS Tagging Using Knowledge

There are four methods to acquire knowledge from POS tagging: (1) dictionary, (2)
morphological rules, (3) N-gram frequencies, and (4) structural relationships
combination.

Dictionary is the basic method for tag usage, but it may not be fully reliable
because there are ambiguous words meaning that the same word can have more than
a single POS tagging in diverse scenarios.

Table 3.7 Ambiguous Unambiguous (1 tag) 35,340
analysis of words in 2 tags 3760
Brown Corpus

3 tags 264

4 tags 61

5 tags 12

6 tags 2

7 tags 1

Ambiguous (2-7 tags) 4100

Ambiguous % 10.40 %

60 3 Part-of-Speech (POS) Tagging

Morphological rules are to identify well-known word shapes and patterns, for
example, the inflection -ed for past tense, verb + -ing for continuous form, -tion for
noun description, -ly for adjective, and capitalization such as New York for
proper noun.

N-gram frequencies checking, also called next word prediction, for example,
grammatic pattern fo ___. When there is a o, if the next word is a verb, it must be
in present and not past tense. If it is a determiner, the next word must be a noun.

Structural relationships combination method means to combine several methods
to acquire tag information, for example, [3.41] She barely heard the foghorns knell-
ing her demise vs. [3.42] The hunter’s horn sounded the final knell. If there is no
understanding on what knell means, there is an -ing pattern to indicate that is a verb
in continuous tense, and final is an adjective description to indicate that knell is
likely a noun.

3.6 Approaches for POS Tagging

There are three basic approaches to POS Tagging: (1) Rule-based, (2) Stochastic-
based, and (3) Hybrid Tagging.

3.6.1 Rule-Based Approach POS Tagging

The rule-based approach is a classical approach in linguistics (Sree and Thottempudi
2011). The grammar knowledge learnt in primary schools is in fact grammatic rules,
which means that the rule-based approach is the transfer of linguistic rule base
usage into POS tagging.

It is a two-stage process: (1) dictionary consists of all possible POS tags for basic
concepts of words as abovementioned and (2) words with more than single tag
ambiguity applied handwritten or grammatic rules to assign the correct tag(s)
according to surrounding words. The obtained rule sets directly affect tagging
results accuracy. The lexicon is used initially for basic segmentation and tagging of
the corpus, listing all possible lexical properties of the object, and combining rule-
base with contextual information to disambiguate and retain the only suitable lexi-
cal properties.

The rule generation can be achieved by (1) hand creation and (2) training from a
corpus with machine learning. The advantages of hand creation are that it is sensible
and explainable to humans, but manual construction of rules is usually labor inten-
sive. Also, if rules are described with too many details, the coverage of rules will be
greatly reduced and difficult to adjust according to the actual situation. On the other
hand, if rules are not based on contexts but rather on the lexical nature of rules,
ambiguity may arise, that is, if the preceding of a word is an article, then the word
must be a noun.

3.6 Approaches for POS Tagging 61

For example, consider [3.43] a book. a is an article as per possible tags that can
be assigned directly, but a book can either be a noun or a verb. If considered a book,
a is an article and follows the rules above, book should be a noun because the article
is often followed by a noun, so a tag of noun is assigned to book. Word structures
are often complex leading to more ambiguities and rules are required for
differentiation.

3.6.2 Example of Rule-Based POS Tagging

Step 1: Assign each word with a list of possible tags based on a dictionary.
Step 2: Work out unknown and ambiguous words with two approaches: rules that
specify what (1) to do and (2) not to do.

Figure 3.6 shows a sample adverbial that rule (Jurafsky et al. 1999):
It showed that:

— The first two statements of this rule verify the word that directly precedes a sen-
tence/utterance’s final adjective, adverb, or quantifier.

— For all other cases, the adverb reading is eliminated.

— The last clause eliminates cases that are preceded by verbs like consider or
believe which can take a noun and an adjective.

— The logic behind this is to avoid tagging the following instance of that as an
adverb such as [3.44] It isn’t that odd.

— The other rule is used to verify if the previous word is a verb that expects a
complement (like think or hope), and if that is followed by the beginning of a
noun phrase, and a finite verb such as [3.45] I consider that a win or more com-
plex structure such as [3.46] I hope that she is confident.

Stochastic-based approach (Dermatas and Kokkinakis 1995) is different from
the rule-based approach in which it is a supervised model using frequencies or
probabilities of tags that appeared in the training corpus to assign a tag to a new
word. This tagging method depends on tag occurrence statistics, that is, probability
of the tags. Stochastic taggers are further categorized into two parts: (1) word fre-
quency and (2) tag sequence frequency to determine a tag.

Example: Adverbial “that” rule
Given input: “that”

If Itisn’t that odd . vs
(+1A/ADV/QUANT)

(+2 SENT-LIM) | consider that a win. vs

(NOT -1SVOC/A)
Then eliminate non-ADV tags
Else eliminate ADV

I hope that she is confident.

Fig. 3.6 Sample rule for adverbial “thar” rule

62 3 Part-of-Speech (POS) Tagging

Word frequency is to identify the tag that has a notable occurrence of the word,
for example, based on the counting from a corpus, the word /ist occurs ten times in
which six times as a noun and four times as a verb, and the word cloud will always
be assigned as a noun since it has a notable occurrence in the training corpus. Hence,
a word frequency approach is not very reliable in certain scenarios.

Tag sequence frequency, also called N-gram approach, is assigned the best tag to
a word evaluated by the probability of N previous words tags. Although it provides
better outcomes than word frequency approach, it may be unable to provide accu-
rately for some rare words and phrases.

Stochastic POS tag model allows features to be non-independent and the addi-
tion of various granularities features. Hidden Markov Model (HMM) Tagger is a
common stochastic-based approach, its Maximum Entropy Markov Model
(MEMM) (Huang and Zhang 2009) is a stochastic POS tagging model that deter-
mine an exponential algorithm for each state as the conditional probability of the
next state given the current state, which has the advantages of a stochastic POS tag-
ging model. However, it also suffers from label bias problems. Unlike MEMM
model, the Conditional Random Field (CRF) model adopts only one model as the
joint probability of the entire label sequence given the observations sequence.
Lafferty et al. (2001) verified that this model can effectively solve the tagging bias
problems.

3.6.3 Example of Stochastic-Based POS Tagging

Let’s use HMM Tagger as example. The rationale of the HMM tagger is applying
N-gram frequencies to determine the best tag for a given word, like the same con-
cept to investigate N-gram with Markov Chain. Mathematically, all is needed to
maximize the conditional probability. The conditional probability w; is tag ¢; in the
context given w; by

P(w,lt, in context) P(z, in context)
P (W,-)

P(1,in contextlw,) = 3.1

In other words, given a sentence/utterance or word sequence, HMM taggers
select tag sequence that maximizes the following formula given by:
P (wordltag) * P (taglprevious n tags) (3.2)

For bigram-HMM tagger, select tag t; for w;, that is most probable given the pre-
vious tag #;_;, and the current word w; in this equation by:

=P (11w,) (3.3)

i

3.6 Approaches for POS Tagging 63

By simplifying Markov assumptions, the previous equation is applied to give a
basic HMM equation for a single tag as follows:

t,="P (1l) P(wl,) (3.4)

i Jji-l1

3.6.4 Hybrid Approach for POS Tagging Using Brill’s Taggers

Hybrid approach is the integration of rule-based and stochastic with high-level
methods including neural networks such as LSTM and other machine learning
related methods often applied in NLP nowadays. Let’s study an important hybrid
approach for POS Tagging—Transformation-based tagging, also called Brill’s
Taggers invented by Dr. Eric Brill in 1995 (Brill 1995). It is a direct Transformation-
Based Learning (TBL) implementation based on the integration of these two
approaches.

3.6.5 What Is Transformation-Based Learning?

There are five steps in TBL by comparison to analog of oil painting with a layering-
and-refinement approach.

1. Start with a background theme such as sky or household background.

2. Paint the background first, for example, if sky is the background scheme, paint
clouds over it.

3. Paint the main theme or object over the background, for example, land-
scape, birds.

4. Refine the main theme or object over the background to make it more precise, for
example, paint a landscape, add trees and animals layer-by-layer.

5. Further refine objects or the main theme until perfect, for example, apply a layer-
ing process or refinement for every single tree and animal (Fig. 3.7).

3.6.6 Hybrid POS Tagging: Brill’s Tagger

Brill’s Tagger is a type of hybrid TBL. Hybrid refers to integrate rule-based and
stochastic-based methods in Brill’s algorithm.

Rule 1: Label each word of the tag that is mostly likely given on contextual informa-
tion, for example.

Race: P(NN|race) =0.98; P(VB|race) =0.02

64 3 Part-of-Speech (POS) Tagging

Fig. 3.7 Oil painting
analog to Brill’s Tagger
transformation technique
(Tuchong 2022)

Rule 2: Apply the transformation rule based on the context established.
Example:

Race: change NN to VB when the previous tag is TO.
[3.47] Secretariat is expected to race tomorrow.—change tag race from NN to VB.
[3.48] The race is already over. —no change, race remains as NN.

For [3.47] race has a higher probability of a noun, it will be treated as such by
applying rule 1 initially. However, when there is a verb prior to, it should apply rule
2 to change into a verb instead of a noun according to grammatical rules.

For [3.48] race again has a high probability of being a noun but due to the gram-
matical rule being invalid, it remains as a noun. Thus, TBL is often applied to iden-
tify stochastic probabilities of tag frequencies for initial guesswork followed by
grammatic rules for refinement.

3.6.7 Learning Brill’s Tagger Transformations

There are three stages to learn Brill’s tagger transformations:

1. Label every word with its best tag with the stochastic method,

2. Examine every possible transformation to select one with the most improved
tagging and,

3. Retag data according to tagging rules.

These three stages are repetitive until a stopping criterion with no more rules to
apply. TBL output is an ordered list of transformations that constitute a POS tagging
procedure to a new corpus. The sample rules of Brill’s TBL model are shown in
Fig. 3.8 (Jurafsky et al. 1999).

Many NLP applications have adopted the Brill’s model because it is a good com-
bination of rule-based models (which provide detailed refinement) and stochastic

3.7 Taggers Evaluations 65

The preceding (following) word is tagged z.
The word two before (after) is tagged z.
One of the two preceding (following) words is tagged z.

One of the three preceding (following) words is tagged z.

The preceding word is tagged z and the following word is tagged w.

The preceding (following) word is tagged z and the word two
before (after) is tagged w.

Fig. 3.8 Sample rules used in Brill’s TBL scheme

models (which provide efficient tagging solutions). In addition, the Brill’s model
can be easily implemented in both the world domain and the knowledge domain
(such as medical knowledge domain), which may have specific rules or terminology
for the corpus.

3.7 Taggers Evaluations

There are several considerations when POS faggers are implemented (Padro and
Marquez 1998):

1.
. Identify error’s origin.
. Repair and solve.

Evaluate algorithm adequacy.

A confusion matrix suggests that current taggers face major problems:

. Noun-single or mass vs. proper noun-singular vs. adjective (NN vs. NNP vs. JJ).

These are hard to distinguish as proper nouns is crucial for information extrac-
tion, retrieval, and machine translation for different languages that have diverse
tagging algorithms or classification schemes.

. Adverb vs. adverb vs. preposition-sub-conjunction (RP vs. RB vs. IN). All of

these can appear in satellite sequences following a verb immediately.

. Verb-base form vs. verb-past participle vs. adjective (VB vs. VBN vs. JJ). They

are crucial to distinguish for partial parsing, i.e., participles to identify passives
and to label the edges of noun phrases correctly.

The confusion matrix from HMM error analysis of The Adventures of Sherlock

Holmes (Doyle 2019) is shown in Table 3.8. For example, the mis-tagging of (1) NN
by JJis 7.56%, (2) NNP by NN is 5.23%, and (3) JJ by NN is 4.35%. Hence, mistak-
ing NN by JJ occurred more often than JJ by NN in English texts but it may vary in
other foreign languages.

66

3 Part-of-Speech (POS) Tagging

Table 3.8 Confusion matrix from HMM of The Adventures of Sherlock Holmes

IN

1y
NN
NNP
RB
VBD
VBN

IN 1 NN NNP RB VBD VBN
0.18 0.56

0.32 4.35 3.21 2.25 0.31 2.54
7.56 0.35

0.31 3.12 5.23 0.15

2.45 3.21 0.43
0.56 0.52 4.31
3.21 2.12

3.7.1 How Good Is an POS Tagging Algorithm?

A satisfactory POS tagging algorithm depends on the maximum performance it can
achieve. It must be realistic and of course the higher the better, but there are limits.
For example, a POS tagging system has more than 90% accuracy should be consid-
ered satisfactory. But how can we define satisfactory? For example, (1) it is satisfac-
tory for a voice dialogue system to give the correct meaning to user input 97% of the

time,

because ambiguity often occurs in noisy backgrounds and incorrect pronun-

ciation or (2) it is satisfactory for an OCR system to correctly determine the word
97% of the time. So, it depends on the scenario, environment, complexity, domain
problem, and application to be implemented.

Exercises

3.1

3.2

33

34
35

3.6

3.7

3.8

39

What is Part-of-Speech (POS)? How is it critical for NLP systems/applica-
tions implementation?
State and explain NINE basic types of POS in the English Language. For each
POS type, give an example for illustration.
What is POS Tagging in NLP? How is it important to NLP systems/applica-
tions implementation? Give two examples of NLP systems/applications for
illustration.
State and explain THREE types of POS Tagging methods in NLP.
What is PENN Treebank tagset? Perform POS Tagging for the following sen-
tences/utterances using the PENN Treebank tagset.

[3.47] POS tagging is a very interesting topic.

[3.48] It is not difficult to learn PENN Treebank tagset provided that we
have sufficient examples.
What is Natural Language Understanding (NLU)? State and explain FIVE
major components of NLU in NLP.
Why semantic meaning is an important factor in POS tagging? Give two
examples to support your answer.
What is ambiguous in POS tags? Give two examples of words with three and
four ambiguous POS tags.
What is the rule-based approach in POS tagging? Give an example of the POS
tagging rule to illustrate how it works.

References 67

3.10 What is a stochastic-based approach in POS tagging? Give an example to
explain how word frequency and tag sequence frequency are applied for POS

tagging.
3.11 State and explain transformation-based learning (TBL). Give an example to
support your answer.

References

Abeillé, A. (ed) (2003) Treebanks: Building and Using Parsed Corpora (Text, Speech and Language
Technology Book 20). Springer.

Allen, J. (1994) Natural Language Understanding (2™ edition). Pearson

Bender, E. M. (2013) Linguistic Fundamentals for Natural Language Processing: 100 Essentials
from Morphology and Syntax (Synthesis Lectures on Human Language Technologies). Morgan
& Claypool Publishers

Brill, E. (1995). Transformation-based error-driven learning and natural language processing: A
case study in part-of-speech tagging. Computational Linguistics, 21(4), 543-566.

Brown (2022) Brown corpus tagset. https://web.archive.org/web/20080706074336/http://www.
scs.leeds.ac.uk/ccalas/tagsets/brown.html. Accessed 15 July 2022.

CELEX (2022) CELEX corpus official site. https://catalog.ldc.upenn.edu/LDC96L14. Accessed
15 July 2022.

Clark, A., Fox, C. and Lappin, S. (2012) The Handbook of Computational Linguistics and Natural
Language Processing. Wiley-Blackwell.

CLAWS7 (2022) UCREL CLAWS7 Tagset. https://ucrel.lancs.ac.uk/claws7tags.html. Accessed
15 July 2022.

DeRose, S. J. (1988). Grammatical category disambiguation by statistical optimization.
Computational Linguistics, 14, 31-39.

Dermatas, E. and Kokkinakis, G. (1995). Automatic stochastic tagging of natural language texts.
Computational Linguistics, 21(2), 137-164.

Doyle, A. C. (2019) The Adventures of Sherlock Holmes (AmazonClassics Edition).
AmazonClassics.

Eisenstein, J. (2019) Introduction to Natural Language Processing (Adaptive Computation and
Machine Learning series). The MIT Press.

Goddard, C. (1998) Semantic Analysis: A Practical Introduction (Oxford Textbooks in Linguistics).
Oxford University Press.

Huang H, Zhang X. (2009) Part-of-speech tagger based on maximum entropy model. 2009 2nd
IEEE International Conference on Computer Science and Information Technology. IEEE;
pp 26-29. https://doi.org/10.1109/ICCSIT.2009.5234787.

Jurafsky, D., Marin, J., Kehler, A., Linden, K., Ward, N. (1999). Speech and Language Processing:
An Introduction to Natural Language Processing, Computational Linguistics and Speech
Recognition. Prentice Hall.

Khanam, H. M. (2022) Natural Language Processing Applications: Part of Speech Tagging.
Scholars’ Press.

Lafferty, J., McCallum, A. and Pereira, F. (2001). Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. Proc. 18th International Conf. on Machine
Learning. Morgan Kaufmann. pp. 282-289.

Marcus, M., Santorini, B. and Marcinkiewicz, M. A. (1993). Building a large, annotated corpus of
English: The Penn Treebank. In Computational Linguistics, volume 19, number 2, pp. 313-330.

Mitkov, R. (2005) The Oxford Handbook of Computational Linguistics. Oxford University Press.

Padro, L. and Marquez, L. (1998). On the evaluation and comparison of taggers: The effect of noise
in testing corpora. Cornell University Library, arXiv.org. https://arxiv.org/abs/cs/9809112.

https://web.archive.org/web/20080706074336/http://www.scs.leeds.ac.uk/ccalas/tagsets/brown.html
https://web.archive.org/web/20080706074336/http://www.scs.leeds.ac.uk/ccalas/tagsets/brown.html
https://catalog.ldc.upenn.edu/LDC96L14
https://ucrel.lancs.ac.uk/claws7tags.html
https://doi.org/10.1109/ICCSIT.2009.5234787
http://arxiv.org
https://arxiv.org/abs/cs/9809112

68 3 Part-of-Speech (POS) Tagging

Pustejovsky, J. and Stubbs, A. (2012) Natural Language Annotation for Machine Learning: A
Guide to Corpus-Building for Applications. O’Reilly Media.

Sree, R. and Thottempudi, S. G. (2011) Parts-of-Speech Tagging: A hybrid approach with rule
based and machine learning techniques. LAP Lambert Academic Publishing.

Treebank (2022) Penn Treebank Tagset. https://www.ling.upenn.edu/courses/Fall_2003/ling001/
penn_treebank_pos.html. Accessed 15 July 2022.

Tuchong (2022) Oil painting analog to Brill Tagger transformation technique. https:/stock.
tuchong.com/image/detail ?imageld=965034062997356555. Accessed 17 Dec 2024.

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://stock.tuchong.com/image/detail?imageId=965034062997356555
https://stock.tuchong.com/image/detail?imageId=965034062997356555

Chapter 4)
Syntax and Parsing s

4.1 Introduction and Motivation

This chapter will explore syntax analysis and introduce different types of constitu-
ents in the English language followed by the main concept of context-free grammar
(CFG) and CFG parsing. We will also study major parsing techniques including
lexical and probabilistic parsing with examples.

Linguistic and grammatical aspects are addressed in NLP to identify patterns
that govern the creation of language sentences like English. They include the inves-
tigation of Part-of-Speech (POS) mentioned in Chap. 3, and grammatic rules to
create sentences or utterances with syntactic rules. These syntactic rules relied on
effective computational procedures such as rule-based, stochastic-based, tech-
niques and machine learning to deal with language syntax (Bender 2013;
Gorrell 2006).

Another motivation is to study syntax and parsing methods or algorithms so that
they can fall into an automatic system like forming a parser to understand syntactic
structure during the construction process. Figure 4.1 illustrates the relationship
between grammar, syntax, and the corresponding parse tree of a sentence/utterance
with four tokens: Tom pushed the car. Syntax-level analysis is to analyze the struc-
ture and the relationship between tokens to create a parse tree accordingly.

© The Author(s), under exclusive license to Springer Nature Singapore Pte 69
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_4&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_4#DOI

70 4 Syntax and Parsing

Grammar

sentence

nouri phrase verb phrase
noun phrase

noun determiner noun

Tom puv.;.'}:ed the car

Fig. 4.1 Grammar, syntax, and parse tree

4.2 Syntax Analysis

4.2.1 What Is Syntax

Syntax refers to the set of rules that govern how groups of words are combined to
form phrases, clauses, and sentences or utterances in linguistics (Bender 2013;
Brown and Miller 2020). The term syntax is derived from the Greek word covraéy,
which means arrangement of words.

Syntax provides a structured and organized way to create meaningful phrases and
sentences. It is an essential tool in technical writing and sentence construction. The
fact is all native speakers learn proper syntax from their mother languages by nature.
The complex sentences by a writer or speaker create formal or informal level, or
phrases and clauses presentation to audiences. Syntax can be defined as the correct
arrangement of word tokens in written or spoken sentences and utterances, enabling
computer systems to process these tokens without requiring an understanding of
their precise meaning from an NLP perspective.

4.2.2 Syntactic Rules

POS in English often follows patterns order in sentences and clauses (Khanam
2022; Jurafsky et al. 1999). For instance, compound sentences are combined by
conjunctions like and, or, with or multiple adjectives transformation of the same
noun based on order(s) according to their classes, for example, [4.1] The big
black dog.

Syntactic rules also described to assist language parts make sense. For example,
sentences/utterances in English usually begin with a subject followed by a predicate
(i.e. a verb in the simplest form) and an object or a complement to show what’s

4.2 Syntax Analysis 71

acted upon, for example, [4.2] Jack chased the dog is a typical sentence with a
subject-verb-object pattern of syntactic rule in English. However, [4.3] Jack quickly
chased the dog at lush green field contains adverbs and adjectives to take their
places in front of the sentence transformation (quickly chased, lush green field) with
informative description.

4.2.3 Common Syntactic Patterns

There are seven common syntactic patterns:

1. Subject — Verb

For example, [4.4] The cat meowed.

This syntactic pattern is a standardized pattern containing only minimum subject
and verb requirements. The topic always comes first in usual situations.

2. Subject — Verb — Direct Object.

For example, [4.5] The cat plays the ball.

When the verb is transitive with a direct object, the direct object usually goes after
the verb in this syntactic pattern.

3. Subject — Verb — Subject Complement.

For example, [4.6] The cat is playful.

Subject complement usually goes after the verb in this syntactic pattern. Linking
verbs such as be, is, like, or seem are usually used with subject complement.

4. Subject — Verb — Adverbial Complement.

For example, [4.7] The cat paced slowly.

Adverbial complement usually goes after the verb like the previous case (3).

5. Subject — Verb — Indirect Object — Direct Object

For example, [4.8] The cat gave me the ball.

This syntactic pattern contains direct and indirect objects. The direct object usually
goes after the indirect object and the indirect object usually goes right after the
verb. For example, [4.8] can be rephrased as [4.9] The cat gave the ball to me.

6. Subject — Verb — Direct Object — Direct Complement

For example, [4.10] The cat made the ball dirty.

Object complement usually goes after the direct object and the direct object is usu-
ally followed by a verb in this syntactic pattern.

7. Subject — Verb — Direct Object — Adverbial Complement

For example, [4.11] The cat perked its ears up.

up is the adverbial complement to describe how the cat behaves. Direct complement
is replaced by adverbial complement like in the previous case (6).

The main purpose of syntactic parsing is a study to formulate rules with POS tags
to perform automatic, or semi-automatic sentence parsing.

72 4 Syntax and Parsing
4.2.4 Importance of Syntax and Parsing in NLP

There are five major components in Natural Language Understanding (NLU) as
shown in Fig. 4.2. Among these, the synfax and parsing components play central
roles in linking natural language with its syntactic structure before understanding its
semantic or embedded (pragmatic) meanings in NLP (Allen 1994; Eisenstein 2019).
These components form the first layer of analysis to determine whether sentences or
utterances are logically sound. In other words, if a sentence or utterance contains a
syntactic error, such as Jack buys (buys what?), it will be nonsensical, making it
impossible to proceed to semantic analysis.
Syntax and parsing are sole processes beneficial to:

1. Check grammar by word-processing applications such as Microsoft Word.
2. Speechrecognizer at human speech real-time syntactic level in noisy environment.

It has significance in high-level NLP applications such as machine translation
and Q&A chatbot systems.

4.3 Types of Constituents in Sentences

4.3.1 What Is Constituent?

A constituent is considered as the linguistic component of a language (Bender 2013;
Brown and Miller 2020). For example, words or phrases that combine into a sen-
tence or utterance are constituents. It can be a word, morpheme, clause, or phrase.
Parsing is a kind of sentence analysis to identify the subject or predicate with differ-
ent POS, and parse sentences/utterances into corresponding constituents e.g. There
are several ways to describe the cat in Fig. 4.3.

[4.12] The milky cat with long tail (as a constituent of a clause) is meowing.

Fig. 4.2 Major
components in NLU

Morphology

|
POS Tagging

}

Semantics

}

Discourse Integration

4.3 Types of Constituents in Sentences 73

Fig. 4.3 The milky cat
with long tail is meowing
(Tuchong 2022)

A single pronoun if to replace the identified constituent. This makes sense as it
described the milky cat with long tail is meowing, if is meowing, or a name to the
cat Coco, like:

[4.13] Coco is meowing or
[4.14] Coco with long tail is meowing

which means a word or phrase form can be replaced by a simple token, or complex
constituents with additional description:

[4.15] The milky cat with long tail is meowing in the late afternoon.
[4.16] The milky cat with long tail is meowing the late afternoon while Jack is asleep.

Constituents can also be a time unit with usage variations instead of an object
unit in noun phrase (NP), they are syntactically acceptable, but some are not:

[4.17] Jane wants to go to Greece late this winter.
[4.18] Late this winter Jane wants to go to Greece.
[4.19] Jane wants late this winter to go to Greece.

It makes sense wherever the location of late this winter as it is a constituent
describing a particular time in syntax, but there are syntactic errors as below:

[4.20] Late Jane wants to go to Greece this winter.

74 4 Syntax and Parsing

— Cannot separate time unit into two parts.
[4.21] Jane wants late to go to Greece this winter.
— Senseless meaning
[4.22] The late this winter Jane wants to Greece.
— Incorrect syntactic pattern

4.3.2 Kinds of Constituents

Constituents are present in every sentence, phrase, and clause. In other words, each
sentence is formed by combining these elements into meaningful constructions or
utterances (Bender 2013; Brown and Miller 2020). The commonly used constituent
types include (1) noun-phrase, (2) verb-phrase, and (3) preposition-phrase. For
1nstance:

[4.23] My cat Coco scratches the UPS courier on the table.
— These constituents are made up of noun phrase (my cat Coco), predicate, and
verb phrase (scratches the UPS courier on the table).

4.3.2.1 Noun Phrase (NP)

A noun phrase (NP) consists of a noun and its modifiers. Modifiers that precede the

noun include adjectives, articles, participles, possessive nouns, and possessive pro-

nouns, while those that follow the noun include adjective clauses, participial

phrases, and prepositional phrases. For example, in [4.23] My cat Coco is an NP

consisting of determiner (DT) My + noun (NN) cat + proper noun (NNP) Coco.
There are other NPs appear as objects of prepositions or objects of verbs:

[4.24
[4.25
[4.26
[4.27
[4.28
[4.29

The milky cat with long tail is meowing.

Very few cats wore a collar.

The long tail is brought to room.

Many places hear meowing.

A cat with a long tail and a collar is meowing.
Jane saw so many cats in the room.

— e e e e b

4.3.2.2 Verb Phrase (VP)

A Verb Phrase (VP) consists of a main verb accompanied by linking verbs or modi-
fiers that function as the verb of the sentence. Modifiers in a VP are words that can
alter, specify, limit, or elaborate on the main verb. They typically include auxiliary

verbs such as “is,” “has,” “am,” and “are,” which work in conjunction with the main
verb. The main verb in a VP conveys information about the event or activity being

4.3 Types of Constituents in Sentences 75

discussed, while the auxiliary verbs provide additional meaning by indicating the
tense or aspect of the phrase.
There are nine common VP types:

1. Singular main verb.

[4.30] Jack catches a deer.

2. Auxiliary verb (to be) + main verb -ing form

When the main verb is used in -ing form, e.g., walking, talking, it expresses a con-
tinuous aspect to show whether is in the past, present, or future.

[4.31] Jack is singing.

3. Auxiliary verb (have) + main verb (past participle form).

When the verb fo have (i.e., have, has, had) and the main verb in past participle form.

[4.32] Jack has broken the vase.

4. Modal verb + main verb.

When a modal verb is combinedly used with a main verb, it includes things such as
possibility, probability, ability, permission, and obligation. Examples of modal
words include must, shall, will, should, would, can, could, may and might.

[4.33] Jack will leave.

5. Auxiliary verb (have + been) + main verb (-ing form).

When both continuous and perfect aspects are expressed, the continuous aspect
comes from -ing verb and the perfect aspect comes from the auxiliary verb
have been.

[4.34] Jack has been washing the car.

6. Auxiliary verb (to be) + main verb (past participle form).

When a verb to be is combined with the main verb in past participle form to express
a passive voice. The passive voice is used to indicate an action is happening to
the subject of a sentence than the subject performing the action.

[4.35] The lunch was served.

7. Negative and interrogative verb phrases.

VP gets separated when sentences have a negative or interrogative nature.

[4.36] Jack is not answering the exam questions.

8. Emphasize verb phrases.

Use auxiliary verbs, for example, do, does, did to emphasize a sentence.

[4.37] Jack did enjoy the vacation.

9. Composite VP.

When it consists of other VP or NP.

[4.38] My cat Coco scratches the UPS courier on the table.

— scratch is the main verb in VP to describe an action/event that happens to object
UPS courier, on the table is auxiliary information to further explain the event. It
still makes sense with/without it. It includes scratch VP + UPS courier NP + on
the table PP.

76 4 Syntax and Parsing
4.3.3 Complexity on Simple Constituents

Single-word constituents are parts of speech (POS) discussed in Chap. 3, where the
types of single-word constituents vary based on tagset sizes. Additionally, there are
several complex design considerations:

[4.39] Jane bought the big red handbag 1 vs.
[4.40] Jane bought the red big handbag

Although there are two parts of speech that can be syntactically correct, such as
the placement of “red” before “big,” the arrangement can result in incorrect syntax.
Additionally, there may be incomplete simple constituent types.

[4.41] The cat with a long tail meowing a collar.
— Doesn’t make sense although NP is correct, collar is an incorrect description.
[4.42] Jane imagined a cat with a long tail.
[4.43] Jane decided to go.
— Both make sense without further description in syntactic structure.
[4.44] Jane decided a cat with a long tail.
— Doesn’t make sense again in syntactic correctness.
[4.45] Jane decided a cat with a long tail should be her next pet.
— Syntactic correct although the sentence structure is slightly complex.
[4.46] Jane gave Lily some food.
— Syntactic correct although most of the time it describes food.
[4.47] Jane decided Lily some food.
— Although the syntactic structure is the same, they have different designs to fur-
ther describe food types and purposes.

4.3.4 Verb Phrase Subcategorization

There is a universal pattern or structure for classifying verbs in verb phrases (VPs).
Subcategories reflect the ability of lexical items (typically verbs) to recognize the
existence and types of syntactic arguments they can co-occur within linguistics
(Brown and Miller 2020; Gorrell 2006). While traditional English grammar classi-
fies verbs into transitive and intransitive subcategories, modern English grammars
identify more than 100 subcategories. Subcategorization frames can be viewed as a
set of rules that generate syntactic structures from the base form. Five major frame
rules are illustrated in Table 4.1.

1. VP with a single verb as member

[4.48] He talks. (VP — VB)

[4.49] I laugh. (VP — VB)

2. Verbal phrase requires a noun phrase (NP) as a specifier (VS)—intransitive verbs
[4.50] He finds a clue. (VP — VB + NP)

4.3 Types of Constituents in Sentences

77

Table 4.1 Examples of verbs with different frames of subcategorization in VP syntax

Frame rule Description Examples
¢ VP with single verb as member talk, sleep, eat,
laugh, etc.
VS(NP) The verbal phrase requires a noun phrase (NP) as a find, see, leave,
specifier (VS)—intransitive verbs get, etc.
VS(NP)VC(NP) | The verbal phrase requires a noun phrase (NP) as a show, make,
specifier (VS) and a noun phrase (NP) as a complement read, write, etc.
(VC) (direct transitive verbs)—direct transitive verbs
VS(NP) The verbal phrase requires a noun phrase (NP) as a depend, insist,
VC(PH([on])) specifier (VS) and a prepositional phrase (PP) headed by | operate, suggest
“on” as a complement (VC)—indirect transitive verbs etc.
governing “on”
VS(NP)VC(NP) | The verbal phrase requires a noun phrase as a specifier give, mean,
VC(PH([to])) (VS), a noun phrase as a complement (VC), and a think, etc.

prepositional phrase headed by “to” as a complement
(VC)—ditransitive verbs

[4.51] She sees Jack. (VP — VB + NP)

3. Verbal phrase requires a noun phrase (NP) as a specifier (VS) and a noun phrase
(NP) as a complement (VC)—direct transitive verbs

[4.52] Please show me the map. (VP — VB + NP + NP)

4. Verbal phrase requires a noun phrase (NP) as a specifier (VS) and a prepositional
phrase (PP) headed by on as a complement (VC)—indirect transitive verbs gov-
erning on:

[4.53] This ingredient can make six muffins depending on size

(VP - VB + PP + NP)

5. Verbal phrase requires a noun phrase (NP) as a specifier (VS), as a complement
(VC) and a prepositional phrase headed by o as a complement (VC)—ditransi-
tive verbs:

[4.54] Do you mean that I need to attend the exam? (VP-VB + S)

4.3.5 The Role of Lexicon in Parsing

A lexicon is the vocabulary of a language or a specific field of knowledge, such as
medicine or computer science (Bender 2013; Brown and Miller 2020). It serves as
an inventory of lexemes in linguistics. The term “lexicon” is derived from the Greek
word Aeiov, which means “of or for words.”

Linguists believe that all human languages are composed of two major compo-
nents: (1) lexicon as the list of a language’s words and vocabulary and (2) grammar
as the set of rules to allow word combinations into meaningful sentences.

Items within a lexicon are called lexemes, and groups of lexemes are called lem-
mas, often used to describe the size of a lexicon.

78 4 Syntax and Parsing

Lexical analysis is the process to understand what words mean, intuit contexts,
and note the relationship of one word to others. It analyses and converts the sequence
of words into a list of lexical tokens. A program that performs such lexical analysis
is called rokenizer, lexer, or scanner. A lexer is combined with a parser generally to
analyze the syntax of sentences, texts, or dialogues.

The roles of lexicon in parsing are to:

1. Treat as the starting point for POS tagging.
2. Provide extra information such as subcategorization with frames and syntac-
tic rules.

For verbs, lexicon refers to several types of subcategorizations such as think
versus laugh.
For adjectives:

[4.55] Jack is angry with Sophia vs. [4.56] Jack is angry at Sophia.
[4.57] Jack is mad at Sophia vs. [4.58] Jack is mad with Sophia.

There are patterns and rules. Both are correct for [4.55] and [4.56], but for the
verb mad, [4.57] is correct while incorrect for [4.58] which means subcategoriza-
tion is acceptable for some pattern but not only on syntax.

For nouns: [4.59] Janet has a passion for classical music vs. [4.60] Janet has an
interest in classical music.

They have different patterns of syntactic rules.

4.3.6 Recursion in Grammar Rules

English sentences can be structurally complex. A concise sentence typically con-
sists of a limited set of constituent types, such as NP (Noun Phrase), VP (Verb
Phrase), and PP (Prepositional Phrase), which can recursively combine to form
more intricate structures according to specific grammatical rules.

S — NP VP [4.61] My good friend Jack buys a flat.

VP — V NP [4.62] buys a flat.

NP — NP PP [4.63] My good friend.

NP — NP S [4.64] The boy who come early today won the game.
PP — prep NP [4.65] The cupcake with sprinkles is yours.

4.4 Context-Free Grammar (CFG) 79

4.4 Context-Free Grammar (CFG)

4.4.1 What Is Context Free Language (CFL)?

Context-free language (CFL) is a superset of Regular Language (RL) generated by
context-free grammar (CFG) which means every RL is a CFL but not all CFL is a
RL (Eisenstein 2019; Jurafsky et al. 1999). In short, CFL is:

1. Recursively enumerable language as a superset of language model.
2. Context-sensitive language, a subset of recursively enumerable language.
3. Subsets of context-sensitive language.

The four levels of human language are shown in Fig. 4.4.

The set of all Context-Free Languages (CFLs) is identical to the set of languages
accepted by pushdown automata, and regular languages (RL) form a subset of
CFLs. An input language is accepted by a computational model if it passes through
the model and ends in an acceptable final state. Most arithmetic expressions gener-
ated by a Context-Free Grammar (CFG) are CFLs.

A CFL is closed under specific operations, meaning that applying these opera-
tions to a CFL results in another CFL. These operations include union, concatena-
tion, Kleene closure, substitution, prefix, cycle, reversal, quotient, intersection,
difference with RL, and homomorphism. CFLs and CFGs play a significant role in
both NLP and computer language design in computer science and linguistics.

4.4.2 What Is Context Free Grammar (CFG)?

CFG is to describe CFL as a set of recursive rules for generating string patterns,
because the application of production rules in grammar is context-independent,
meaning they do not depend on other symbols with the rules (Bender 2013; Brown
and Miller 2020).

CFG is commonly applied in linguists and compiler design to describe program-
ming languages and parsers that can be created automatically.

Fig. 4.4 Level of
languages

recursively enumerable

context-sensitive

context-free

80 4 Syntax and Parsing
4.4.3 Major Components of CFG

CFG consists of four major components (Bender 2013; Jurafsky et al. 1999):

1. A set of non-terminal symbols N are placeholders for patterns of terminal sym-
bols created by nonterminal symbols. These symbols are usually located at the
LHS (left-hand-side) of production rules (P). The strings generated by CFG usu-
ally consist of symbols only from nonterminal symbols.

2. A set of terminal symbols X (disjoint from N) are characters appear in strings
generated by grammar. Terminal symbols usually located only at RHS (right-
hand-side) of production rules (P).

3. A set of production rules P: A — a,where A is a non-terminal symbol and « is a
string of symbols from the infinite set of strings (£ U N).

4. The designated start symbol S is a start symbol of the sentence/utterance.

X is a set of POS and N is the set of constituent types, that is, NP, VP, and PP
mentioned in Chap. 3 and previous section, respectively.

4.4.4 Derivations Using CFG

The standard formulation of CFG is given by:
Assume Lg generated by grammar G is a set of strings composed of terminal
symbols, which is generated from S:

L, ={w|wis inE*andS:w} 4.1)

Let X be the set of POS, so CFG in (4.1) can create grammar like this:

NVdetN 4.2)
The definition of CFG is given by:

_ JslwisinX" and § = wand s can be derived from w by
S | substituting words for POSas licensed by the lexicon

(4.3)

Based on this definition can generate numerous productions like this format:

S — NP VP (4.4
Equation 4.4 is the most basic grammar rule where a sentence is generated from
an NP and a VP that can be further decomposed recursively as shown in Fig. 4.5.
It shows CFG rules and its corresponding parse tree for sentence/utterance [4.66]
Jane plays the piano. There are four tokens in this sentence/utterance to form a

4.5 CFG Parsing 81

CFG Production Rule
S—>NPVP Parse Tree
NP — Name

v vae /\
o /\

Name
(S (NP (INAME Jane)) Jane plays
(VP (V plays))
(NP (ART the) ‘ |
(N piano)))) the piano

Fig. 4.5 CFG rules and corresponding parse tree for sentence [4.66] Jane plays the piano

well-defined syntactic structure generated by NP and VP. NP can be designated to a
name pointed to token Jane, and for VP, is decomposed into a verb or NP as shown
in four production rules shown in the top left corner of Fig. 4.5. In this case, the verb
is pointed to plays, NP can be decomposed into a determiner and a noun pointed to
the and piano, respectively.

4.5 CFG Parsing

There are three CFG parsing levels: (1) morphological, (2) phonological, and (3)
syntactic (Grune and Jacob 2007; Jurafsky et al. 1999).

4.5.1 Morphological Parsing

Morphological parsing is the initial level to determine the morphemes of a word
being constructed. For example, a morphological parser can reveal that the word
mice is the plural form of the noun stem mouse, while cats are the plural form of the
noun stem cat. Given the string cats as input, the morphological parser will interpret
cats as cat N PL. By using FSA (Finite State Automata), FST (Finite State
Transducer), a morphological parser can produce an output with their stems and
modifiers.

Originally, FST was generated by algorithmic parsing of word sources such as a
complete dictionary with modifier markups but can be realized by recurrent neural

82 4 Syntax and Parsing

networks with training corpus upon advancement in machine learning and artificial
neural networks.

4.5.2 Phonological Parsing

Phonological parsing is the second level using the sounds of a language, that is,
phonemes to process sentences or utterances (Wagner and Torgesen 1987).

Phonological processing includes (1) awareness, (2) working memory, and (3)
phonological retrieval. All three components are important to speech production
and written language skills development. Hence, it is necessary to observe chil-
dren’s spoken and written language development with phonological processing
difficulties.

Phonological parsing is to interpret sounds into words and phrases to gener-
ate parser.

4.5.3 Syntactic Parsing

Syntactic parsing is the third level to identify relevant components and correct
grammar of a sentence. Abstract meaning representation is assigned to define legal
strings of a language like CFG without recognizing the structure.

Parsing algorithms are applied to analyze sentences or utterances within lan-
guage and assign appropriate syntactic structures into them. Parse trees are useful
to study grammar, semantic analysis, machine translation, speech recognition, and
Q&A chatbots in NLP.

4.5.4 Parsing as a Kind of Tree Searching

Syntactic parsing can be considered as search within a set of parse trees, its main
purpose is to identify the right path and space through automation in an FSA system
structure.

CFG is a process to determine the right parse tree among all possible options. If
there is more than one possible parse tree, stochastic method (or other machine
learning methods) will be applied to locate a probable one. In other words, it is a
process to identify search space defined by grammatical rules so that their con-
straints can become inputs to perform automatic parsing and study grammar.

4.5 CFG Parsing 83
4.5.5 CFG for Fragment of English

English grammar and lexicon simplified domains are applied to reveal CFG rules in
an example of musical instruments as shown in Table 4.2. It consists of production
rules from several categories S — NP VP, S — Aux NP VP, S — VP as well as pro-
duction rules for NP, Nom, and VP with components Det, N, V, Prep, and PropN.

4.5.6 Parse Tree for “Play the Piano” for Prior CFG

A parse tree of sentence/utterance [4.67] play the piano is shown in Fig. 4.6. It has
three tokens play—Verb, the—Det and piano—Noun to construct a parse tree from
the top node S to generate VP, VP to generate Verb and NP, and NP to decompose
into Det Nom, and Nom to generate Noun.

4.5.7 Top-Down Parser

There are (1) top-down and (2) bottom-up parser approaches to construct a parse
tree. Top-down parser constructs from root-node S down to leave-nodes (words in
the sentence or utterance). The first step is to identify all trees with root S, the next
step is to expand all constituents in these trees based on the given production rules.
The whole process is operated level-by-level process until parse trees reach the
leaves i.e. POS tokens of the sentence/utterance. For candidate parse trees that can-
not match the leave nodes, that is, POS tokens are discarded and considered as
failed parse tree(s). Figure 4.7 shows the first three-level construction of all possible
parse trees applying a Top-Down parser.

It showed that the parse tree construction started from the base level with S tag
(root node). The second level has generated an additional layer with three possible
production rules: S — NP & VP, S — Aux & NP & VP, and S — VP. The third level
is complex because it has decomposed into three levels, S — NP & VP is the first

Table 4.2 A simplified S - NP VP VP >V
example on English grammar S — Aux NP VP

; Det — this | that | the | a
and lexicon

S —> VP N — play | piano | guitar | flute

NP — Det Nom |V — play | include | prefer

NP — PropN Aux — does, do

Nom — N Nom | Prep — on | from | to

Nom — N PropN — Germany | Italy | Yamaha
Nom — Nom PP

VP - V NP

84 4 Syntax and Parsing

Fig. 4.6 Parse tree for the S
simple sentence “Play the ;
piano” ‘

a

é
/ 4
Verb Det Noun
Play the piano
Base level: S

Second level: //S\ /SI\
NP VP

Aux NP VP VP

\VP /\ Aj A‘\IP\VP A /\]EP\V'P

@/
7% | X\ |

Det Nom PropN Det Nom PropN

Third level:

e Wi

Fig. 4.7 A three-level expansion of parse tree generation using a top-down approach

variation to decompose into Det and Nom. NP is the second variation to decompose
into PropN. It is noted that LHS is the expanded part for demonstration purposes,
but both LHS and RHS require expansion. S - Aux & NP & VP are the second
variation where NP decomposes into Det & Nom, and an NP decomposes into
PropN. VP decomposition in the first four parse tree is not shown as they all failed
to match the leave nodes except only the fifth case is correct to form a complete play
the piano parse tree.

The top-down approach by CFG on terminals and non-terminals is shown in
Table 4.3. It showed rule 3 as the first one to apply and rule 2 for VP decomposed
into V NP and V to decompose play and then NP to Det and Nom, rule 4 and rule 5

4.5 CFG Parsing 85

Table 4.3 CFG rules and S — NP VP VP>V

terminal/non-terminal nodes S — AuxNPVP | Det this | that | the (5) | a

being used with top-down . ;

approach parsing S — VP (1) N - play | piano (7) | guitar | flute
NP — Det Nom (4) | V — play (3) | include | prefer
NP — PropN Aux — does, do
Nom — N Nom Prep — on | from | to
Nom — N (6) PropN — Germany | Italy | Yamaha
Nom — Nom PP
VP - VNP (2)

are Det points to the, and rule 6 Nom points to an and final rule points to end, and
rule 7 points to piano. This will complete a top-down approach parsing with the fifth
parse tree end-up as valid solution. Readers can apply these seven-step processes to
complete the construction of parse tree for the fifth case as an exercise.

4.5.8 Bottom-Up Parser

Bottom-up parser on the other hand starts from token words of the sentences/utter-
ances to construct a parser tree upward by applying the same set of production rules
and try to generate from right-hand-side (RHS) of the production rule in reverse
order. In example [4.67] play the piano has two variations to start in which the word
play can be considered either as a noun (N) or a verb (V). So, there are two options:
one with the play the piano as N Det or as V Det N. Since this approach cannot
indicate which one is the correct option so the parsing operation will continue to
grow until they can reach the root node S, and if they cannot match the root node,
the tree(s) will be discarded.

Figure 4.8 shows the first three-level expansion of a parse tree using bottom-up
approach. So, in this case play the piano has two variations either play is N or
V. There are two parts one is play consider as N and other as V from base level. So,
at second level is to further expand the line pointed to play and tried to expand N
pointed to play into N in the first case. In second case is to further expand N pointed
to Nom in second layer. In the third level, second case is further expanded into two
options, one is Nom — V and the other is VP — V & NP, NP — Det & Nom, and
further up to S — VP to complete the whole parsing, in which other two parse tree
options ended-up with invalid parsing as shown in Fig. 4.8.

Table 4.4 shows CFG rules for terminal and non-terminal nodes applying bot-
tom-up approach parsing. Again, it consists of seven steps. Rule 1 is V pointed to
play, rule 2 is Det pointed to the, rule 3 is N pointed to piano, rule 4 is Nom pointed
to N, rule 5 is NP pointed to Det & Nom, rule 6 is VP pointed to NP and rule 7 is S
point to VP to complete the whole parse tree until it can finally match the root/
source node S.

86

NP

Third Level:

piano

Nom

Noun

Second Level:

Play

Noun

Base Level:

Play

4 Syntax and Parsing

[|
| |
| : |
| |
| VP |
| |
| |
| NP |
| |
NTn NT“ | Nom |
| |
\-‘Tb Det erm : Verb Det -.\’|otm |
| |
Play the piano : Pll}r ﬁL pi!mo '
Nom = —\:ru _____ .
| |
D|et N]oun Verb D[et Nrm
l
the piano Play the piano
D|et ';\’Tun \'e|rb Dler \run
the piano Play the piano
Play the piano

Fig. 4.8 A three-level expansion of parse tree generation using bottom-up approach

Table 4.4 CFG rules and
terminal/non-terminal nodes
being used with bottom-up
approach parsing

S - NP VP VP>V

S — Aux NP VP Det — this | that | the (2) | a

S = VP (7) N — play | piano (3) | guitar | flute
NP — Det Nom (5) | V — play (1) | include | prefer

NP — PropN Aux — does, do

Nom — N Nom Prep — on | from | to

Nom — N (4) PropN — Germany | Italy | Yamaha
Nom — Nom PP

VP — V NP (6)

4.5.9 Control of Parsing

Although both fop-down and bottom-up parsing are straightforward, the control of
parsing is required to consider (1) which node to expand first and (2) select gram-
matical rules sequence wisely to save time as most of the parse tree generation are
dead-end and wastage of resources.

4.5 CFG Parsing 87

4.5.10 Pros and Cons of Top-Down vs. Bottom-Up Parsing
4.5.10.1 Top-Down Parsing Approach
Pros

Since it starts from root/source node S, it can always generate a correct parse tree
unless the sentence has a syntactic error. In other words, it never explores the parse
that won’t end up in root/source node S, which means it will always find a solution.

Cons

This approach doesn’t consider final word/token tags during parsing from the very
beginning, it will waste a lot of time to generate tree(s) that may be totally unrelated
to the correct result. Play should parse as V instead of N as shown in Fig. 4.7, this
approach showed that all first and fourth parts of the parse tree using play as N are
invalid and a waste of time to parse tree generation.

4.5.10.2 Bottom-Up Parsing Approach
Pros

Since it starts from sentence tokens/POS, it can always generate a parse tree with all
tokens/POS in the sentence considered and reduced time on rules unrelated to these
tokens which means it can sort out problems that occur in the top-down approach
for all production rules without POS tags.

Cons

This approach may often end up with broken tree(s) that cannot match the root node
S to complete parse tree as it starts from leave node instead of root/source node S. It
makes sense because although there are many ways to match production rules, the
variations of most parse trees are syntactic incorrect so they cannot match the root/
source node S. All parse trees in Fig. 4.8 showed that except the last one (also the
correct one), others ended up with broken trees and failed to match the root/source
node S again wasted time to parse tree generation.
Let’s look at lexicalized and probabilistic parsing as alternatives.

88 4 Syntax and Parsing

4.6 Lexical and Probabilistic Parsing

4.6.1 Why Using Probabilities in Parsing?

There are two reasons for using probabilities parsing (Eisenstein 2019; Jurafsky
etal. 1999): (1) resolve ambiguity and (2) word prediction in voice recognition. For
instance:

[4.68] I saw Jane with the telescope. (Jane with telescope or I use telescope to
see Jane?)

[4.69] I saw the Great Pyramid flying over Giza plateau vs.

[4.70] I saw UFO flying over Giza plateau

Although both situations have pragmatic problems in which [4.69] is incorrect
because the Great Pyramid is an unmovable architecture. It can be solved using
probabilities in parsing from a large corpus and knowledgebase (KB) to identify the
frequencies of a particular term or constituent is used correctly without pragmatical
analysis.

For example, in voice recognition:

[4.71] Jack has to go vs.
[4.72] Jack half to go vs.
[4.73] If way thought Jack wood go

Note: when analyzing N-gram probabilities in Chap. 2 on the N-gram Language
Model, I have, I should, I would usage and bigram probabilities from The Adventures
of Sherlock Holmes, they provided directions for one that is more probable and used
frequently instead of understanding their exact semantic or pragmatic meanings. So,
such a probabilistic method can also be applied to parsing.

4.6.2 Semantics with Parsing

The following examples show how semantic meanings (Bunt et al. 2013; Goddard
1998) affect/determine the validness of sentence/utterance in parsing:

[4.74] Jack drew one card from a desk [?] vs.

[4.75] Jack drew one card from a deck.

Note: drew — deck is clearly a semantic concern.

[4.76] I saw the Great Pyramid flying over Giza plateau. [?] vs.
[4.77] I saw a UFO flying over Giza plateau.

Note: movable vs. unmovable objects.

[4.78] The workers dumped sacks into a pin. [?] vs.

[4.79] The workers dumped sacks into a bin.

Note: dump looks for a locative complement.

4.6 Lexical and Probabilistic Parsing 89

[4.80] Tom hit the ball with the pen. [?] vs.
[4.81] Tom hit the ball with the bat.

Note: which object can use to hit the ball?
[4.82] Visiting relatives can be boring. [?] vs.
[4.83] Visiting museums can be boring.

Note: Visiting relatives is genuinely ambiguous. Visiting museums is evident as
only animate bodies can visit. There is no need for abstraction with enough data, in
other words, sufficient large corpus, databank or dialogue databank can sort out
ambiguity problems to work out correct syntax with semantic meaning in many cases.

There are two classical approaches to add semantics into parsing: (1) cascade
systems to construct all parses and use semantics for rating tedious and complex; (2)
do semantics incrementally.

A modern approach is to forget the meaning and only based on KB and corpus.
If a corpus contains sufficient sentences and knowledge, facts about meaning
emerge in the probability of observed sentences themselves. It is modern because
constructing world models is harder than early researchers realized but there are
huge text corpora to construct useful statistics. Here comes the lexical and probabi-
listic approach of parsing.

4.6.3 WhatIs PCFG?

A probabilistic context-free grammar (PCFG) is a context-free grammar that asso-
ciates each of its production rules with a probability. It creates the same set of parses
for a test that traditional CFG performs but assigns a probability value to each parse.
In other words, the probability of a parse generated by a PCFG is the product of
probability’s rules.

The general format of PCFG production rule is given by:

A= Blpl 4.5)
Another way to interpret it is.

P(A— BlA) “6)

Note: the sum of all probabilities of rules with LHS A must be 1.

PCFG extends CFG like how Markov models extend regular grammars. Each
production rule is assigned with probability. The probability of a parse is the prod-
uct of probabilities of productions used in that derivation. These probabilities can be
regarded as parameters of the model, and for large NLP problems, it is convenient
to learn these parameters via machine learning methods. A probabilistic grammar’s
validity is constrained by the context of its training dataset.

90 4 Syntax and Parsing

An efficient PCFG design must weigh scalability, generality factors and issues
such as grammar ambiguity must be resolved to improve system performance.

4.6.4 A Simple Example of PCFG

This section used sentences/utterances [4.84] buy coffee from Starbucks as example
to illustrate how PCFG works. It has simple CFG rules and probabilities in a seg-
ment of an Al chatbot dialogue for food ordering at campus as shown in Table 4.5.

The probability of each production rule type must sum up to 1 is one of the most
important basic criteria of PCFG as shown. For instance, three production rules of
S: S — NP VP (0.82), S - Aux NP VP (0.12) and S — VP (0.06) must sum-up to
1. It is the same as other production rules for NP, Nom, VP, Det, N, V, Aux, Proper-N,
and Pronoun. Of course, if the corpus is very large, some of these probability values
will be very small, just like N-gram probability evaluation discussed in Chap. 2.

It can apply either a top-down parser or bottom-up parser approach to generate a
parse tree with the following PCFG probability evaluation scheme:

P =TTo(r(1) .

where p(r(n)) is the probability that rule » will be applied to expand the non-
terminal 7.

Table 4.5 Sample CFG rules CFG rules [Prob] CFG rules [Prob]
and their probabilities in Al S NPVP[082] | Det— a[0.12] I that[0.03] | the[0.75]
chatbf)t dialogues (food | this[0.10]
ordering at campus) S — Aux NP VP N — coffee [0.75]
[0.12]
S — VP [0.06] N — tea [0.13]
NP — Det Nom N — food [0.12]
[0.21]
NP — Proper-N V — buy [0.41]
[0.37]

NP — Nom [0.06] V — pay [0.27]
NP — Pronoun [0.36] | V — order [0.32]
Nom — Noun [0.72] | Aux — do [0.31]

Nom — N Nom Aux — does [0.26]

[0.23]

Nom — Proper-N Aux — can [0.43]

Nom [0.05]

VP — V [0.58] Proper-N — Starbucks [0.63]
VP - V NP [0.36] Proper-N — KFC [0.37]

VP — V NP NP Pronoun — 1[0.42]lyou[0.36]|

[0.06] he[0.12]Ishe[0.10]

4.6 Lexical and Probabilistic Parsing 91

So, what required to achieve is

7(5)= arimaxZ(T)
ct(5) (4.8)

where 7(S) denotes the set of all possible parses for S.

Figure 4.9 depicts different meanings and two parse trees for utterances [4.85]
can you buy Starbucks coffee? The first interpretation regards Starbucks and coffee
are two standalone NPs with equal significance. The second interpretation is to
combine Starbucks and coffee into a single NP constituent which is a brand name,
in this case, can you buy Starbucks coffee can interpret to buy coffee or non-coffee
items. Hence, parse tree probability calculation is also different.

Table 4.6 shows all CFG rules and associated probabilities of these two parse
trees. So, PCFG probabilities for parse trees 1 and 2 are

P(PT]) =0.120.36"0.06"0.06"0.3770.72"0.43°0.36°0.41°0.63°0.75
=1.242x10°

P(PT,) =0.12"0.36"0.36"0.06"0.05°0.72°0.43"0.36°0.41°0.63"0.75
=1.007x10°°

PT1: Can you buy Starbucks coffee? PT2: Canvyou buy Starbucks coffee?

S
- ~
7 8
o),r \\ ,/ / =
Aux NP VP Aux NP VP
P ﬂ', | // 1||
1 1
/'/ I'. : P \
A" NP NP N NP
| |
Nom
Nom Nom
Pro PNoun Noun Pro PNoun Noun
Can you 5“}" Starbucks coffee Can you buy Starbucks coffee

Fig. 4.9 Two possible parse trees for the utterance “Can you buy Starbucks coffee”?

92

Table 4.6 CFG rules and
associated probabilities for
two possible parse trees
PT1 vs. PT2

CFG rules for TP1 [Prob]
S — Aux NP VP [0.12]
NP — Pronoun [0.36]
VP - V NP NP [0.06]
NP — Nom [0.06]

NP — Proper-N [0.37]
Nom — Noun [0.72]
Aux — can [0.43]
Pronoun — you [0.36]

V = buy [0.41]
Proper-N — Starbucks [0.63]
N — coffee [0.75]

4 Syntax and Parsing

CFG rules for TP2 [Prob]

S — Aux NP VP [0.12]

NP — Pronoun [0.36]

VP = V NP [0.36]

NP — Nom [0.06]

Nom — Proper-N Nom [0.05]
Nom — Noun [0.72]

Aux — can [0.43]

Pronoun — you [0.36]

V — buy [0.41]

Proper-N — Starbucks [0.63]
N — coffee [0.75]

CFG probability algorithm parse tree 1 has a high probability. In other words, it

is more possible the meaning is to buy coffee rather than buy other things from
Starbucks. It also shows an efficient solution to differentiate which parse tree is
more probable, when there are ambiguities in two or more parse trees provided with
sufficient lexical probabilities and a corpus to calculate probabilities.

4.6.5 Using Probabilities for Language Modelling

Probability parsing can be considered as the integration of the N-gram probability
concept with parse tree formation. Since there are fewer grammar rules than word
sequences for N-gram generation, applying this calculation method one can calcu-
late results efficiently instead of N-gram frequencies regardless of syntactic mean-
ing and rules.

Based on this method, the probability of S is the sum of probabilities of all pos-
sible parses given by:

TEZ(S) (49)

against N-gram probability calculation with the Markov model.

P(S)=P(w,)*P(w,lw,)*P(w;lww,) * P(w,lww,w,)... 4.10)

4.6.6 Limitations for PCFG

In many situations, it is adequate to know that one rule is used more frequently than
another e.g.

4.6 Lexical and Probabilistic Parsing 93

[4.86] Can you buy Starbucks coffee? versus [4.87] Can you buy KFC coffee?
But often it matters what the context is
For example:

S—> NPVP
NP — Pronoun [0.80]

NP — LexNP [0.20] @.11)

For example, when NP is the subject, the probability of a pronoun may be higher
at 0.91. When NP is the direct object, the probability of a pronoun may be lower at
0.34 which means it depends on the NP position in a sentence/utterance. In other
words, the probabilities also often depend on lexical options as shown in the follow-
ing examples:

[4.88
[4.89
[4.90
[4.91
[4.92
[4.93
[4.94
[4.95
[4.96
[4.97

I saw the Great Pyramid flying over Giza Plateau. vs.
I saw a UFO flying over Giza Plateau.

Farmer dumped sacks in the bin. vs.

Farmer dumped sacks of apples.

Jack hit the ball with the bag. vs.

Jack hit the ball with the bat.

Visiting relatives can be boring. vs.

Visiting museums can be boring.

There were boys in park and girls vs.

There were boys in park and shops.

e e e b e e e e e)

For instance, there are two interpretations of utterances [4.98] boys in park and
girls as shown in Fig. 4.10 showing their syntax ambiguities.

Figure 4.10 shows two possible parse trees for utterance [4.98]. The first is boys
in park is a noun clause with conjunction NP girls. The second is park and girls
belong to a single NP with boys as single NP. Although structures are different but
the mathematization result for two parse trees are identical which means CFG prob-
ability calculation can’t differentiate which is better or popular. How to fix this
problem?

4.6.7 The Fix-Lexicalized Parsing

The lexicon can be considered as an estimation of a knowledgebase (KB) a possible
solution to the above ambiguous problem.

Figure 4.11 shows [4.90] applying lexical parsing as an example. Each constitu-
ent is a head word i.e. S using dumped as Head word. NP and VP are signified by
farmer and the other signified by head word dumped at second tier. From farmer it
comes up with NNS farmer. VP from dumped because will come up with VBD, NP,
and PP, and VDB is signified by dumped as head word and NP is sack and PP is into.

94 4 Syntax and Parsing

PT1: (boys in park) NP and gitls PT2: boys in (park and girls) NP
NP NP
/'/\\K—\\‘. /\
NP Conj NP NP FP
y / \ /\
NP FP Noun Noun prep NP
/\ ﬂ\
Noun Prep NP NP Conj N"P
Noun Noun Noun

boys in park and girls boys in park and girls

Fig. 4.10 Two interpretations of the utterance “boys in park and girls”

So, sack further decomposes in NNS which points to sacks, for PP to further decom-
poses into P and NP into bin. This will provide information to further decomposi-
tion by combining keywords. So, for the NP bin it will further decompose into the
and the bin as head words for DT and NN respectively.

By adding lexical items with production rules:

VP (dumped) —> VBD(dumped) NP (sacks) PP (into) = 8x 10" 4.12)

VP (dumped) — VBD (dumped) NP (cats) PP (into) = 1x 107" 4.13)

S (dumped)
NP (farmer) VP (dumped)
\ .
NNS (farmer) VBD(dumped) NP(sacks) PP (into)
o
| P

NNS(sacks) P (into) NP (bin)

DT (the) NN (bin)
farmer dumped sacks into the bin

Fig. 4.11 Lexical tree for the utterance “workers dumped sacks into a bin”

4.6 Lexical and Probabilistic Parsing 95

VP (dumped) — VBD (dumped) NP(stoneS) PP (into) =2x107" (4.14)

VP (dumped) - VBD(dumped)NP (sacks) PP (above) =1x10" (4.15)

with lower probabilities means infrequency appeared in the corpus.
This determination method is more efficient as compared with N-gram probabil-
ity calculation, sample sentences/utterances such as:

[4.99] The farmer dumped sacks of apples into a bin. vs.
[4.100] The farmer dumped sacks of peaches into a bin. vs.
[4.101] The farmer dumped all the sacks of apples into a bin.

But there will be situations that many lexical probabilities come-up with O values
like N-gram probability evaluation.

A short-cut by considering the following lexical rule as replacement instead of
considering the whole lexical rule such as (4.12) can sort out this problem:

VP (dumped) - VBDNP PP p(r(n)|n,h(n)) (4.16)

By doing so, the lexical probability of certain nodes n with heads % is considered
based on two conditions: (1) syntactic type of node n and (2) head of node’s mother
h(m(n)), so lexical rule of (4.16) is split into the following:

Given P(h(n) = word,Lnlh(m(n)))
VP (dumped) — PP (into), p = pl
VP(dumped) - PP(of), p=p2
NP (sacks) — PP (of), p=p3 @.17)
Now the original lexical probability (4.7) becomes:
P(T) = Hp(r(n)l,nl,h(n)) * p(h(n)l,nl,h(m(n)))

nel (4.18)
Using Brown corpus as an example, the probability of:
VP - VBDNP PPI,VPI,dumped) =0.67
VP) — VBD NP# VP, dumped) = 0.0
intoI,PPI,dumped) =0.22

p(
p(
p(
p(intol,PPl,sacks) =0

(4.19)

parse contribution of this part to the total scores for two candidates will be:

96

4 Syntax and Parsing

[dumped int0]0.67x 0.22 = 0.147
[sacks into]0x0 =0

(4.20)
So, we should consider dumped into instead of sacks into in this case.
Exercises
4.1. What are the syntax and parsing in linguistics? Discuss why they are impor-

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

tant in NLP.

What is the syntactic rule? State and explain SEVEN commonly used syntac-
tic patterns in English language, with an example each to illustrate.

Answer (4.2) by applying to other languages such as Chinese, French or
Spanish. What is (are) the difference(s) of the syntactic rules between these
two languages with examples to illustrate.

What are constituents in the English language? State and explain three com-
monly used English constituents, with an example each to illustrate how
it works.

What is Context-Free Grammar (CFG)? State and explain the importance of
CFG in NLP.

State and explain FOUR major CFG components in NLP. Use an example
sentence/utterance to illustrate.

What are TWO major types of CFG parsing scheme? Use an example sen-
tence/utterance [4.102] Jack just brought an iPhone from Apple store to illus-
trate how these parsers work.

What is PCFG in NLP parsing? Use same example [4.102] Jack just brought
an iPhone from Apple store to illustrate how it works. Compare with parsers
used in (4.7), which one is better?

What are the advantages and limitations of PCFG in NLP parsing? Use some
sample sentences/utterances to support your answers.

What is lexical parsing in NLP parsing? Discuss and explain how it works by
using sample sentence [4.102] Jack just brought an iPhone from Apple store
for illustration.

References

Allen, J. (1994) Natural Language Understanding (2™ edition). Pearson

Bender, E. M. (2013) Linguistic Fundamentals for Natural Language Processing: 100 Essentials
from Morphology and Syntax (Synthesis Lectures on Human Language Technologies). Morgan
& Claypool Publishers

Brown, K. and Miller, J. (2020) Syntax: A Linguistic Introduction to Sentence Structure. Routledge.

Bunt, H. et al. (2013) Computing Meaning: Volume 4 (Text, Speech and Language Technology
Book 47). Springer.

Eisenstein, J. (2019) Introduction to Natural Language Processing (Adaptive Computation and
Machine Learning series). The MIT Press.

References 97

Goddard, C. (1998) Semantic Analysis: A Practical Introduction (Oxford Textbooks in Linguistics).
Oxford University Press.

Gorrell, P. (2006) Syntax and Parsing (Cambridge Studies in Linguistics, Series Number 76).
Cambridge University Press.

Grune, D. and Jacob, C. (2007) Parsing Techniques: A Practical Guide (Monographs in Computer
Science). Springer.

Khanam, H. M. (2022) Natural Language Processing Applications: Part of Speech Tagging.
Scholars’ Press.

Jurafsky, D., Marin, J., Kehler, A., Linden, K., Ward, N. (1999). Speech and Language Processing:
An Introduction to Natural Language Processing, Computational Linguistics and Speech
Recognition. Prentice Hall.

Tuchong (2022 The milky cat with long tail meowing. https://stock.tuchong.com/image/detail 7im
ageld=896801601105166424. Accessed 17 Dec 2024.

Wagner, R. K., & Torgesen, J. K. (1987). The nature of phonological processing and its causal
role in the acquisition of reading skills. Psychological Bulletin, 101(2), 192-212. https://doi.
0rg/10.1037/0033-2909.101.2.192.

https://stock.tuchong.com/image/detail?imageId=896801601105166424
https://stock.tuchong.com/image/detail?imageId=896801601105166424
https://doi.org/10.1037/0033-2909.101.2.192
https://doi.org/10.1037/0033-2909.101.2.192

Chapter 5)
Meaning Representation s

5.1 Introduction

While the understanding of sentences and utterances in terms of structure, grammar,
and the relationships between words by using N-gram models or simple syntactic
rules has been extensively studied, the actual meaning of sentences or the meanings
of individual words within a sentence have not been thoroughly explored. This
chapter will focus on how to interpret meaning, introducing scientific and logical
methods for processing meaning, known as meaning representation. Without this
foundational understanding, it would be challenging to interpret advanced NLP
analyses involving semantic meaning, pragmatic meaning, and discourse in the fol-
lowing chapters. We will begin by exploring meaning representations, which inte-
grate linguistic knowledge of the real world with the world of linguistics.

5.2 What Is Meaning?

Language is prodigious in recognizing humans that encode or decode world descrip-
tion from experiences to ideas and interpret others’ opinions. It is natural but diffi-
cult to utter word strings that match the world into expressions. A way to enrich this
activity is to transform essences that wish to convey into meaningful words, clauses,
phrases, or sentences/utterances in verbal or written forms for others to listen,
understand, inference, and even respond.

In linguistics, meaning refers to the message conveyed by words, phrases, and
sentences or utterances within a given context. It is often referred to as lexical or
semantic meaning. Professor W. Tecumseh Fitch described semantic meaning in
The Evolution of Language (Fitch 2010) as a branch of language study that is closely
linked to philosophy. This connection exists because the study of semantic meaning

© The Author(s), under exclusive license to Springer Nature Singapore Pte 99
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_5&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_5#DOI

100 5 Meaning Representation

raises numerous fundamental philosophical questions that demand resolution and
explanation from philosophers.

A good dictionary provides meaning explanation of a single word in detail and
many dictionaries on concept/language translation. Nevertheless, the meanings of
sentences or utterances are not simply the combination of individual word’s mean-
ing, but usually appeared as phrasal words with specific meanings at the pragmatic
level, e.g., [5.1] off the wagon.

Semantic meaning is the study of meaning assignment to minimal meaning-
bearing elements to form complex and meaningful ideas. Some basic word groups
may be aggregated in content relationship called thematic groups, and lexical or
semantic fields related to common sense or world knowledge, e.g., the concept of
doctor in English constitutes the lexical-semantic field in two senses: a medical doc-
tor, or a person with PhD title. Once the meaning of a word (word group) is decrypted
or analyzed, a reaction is formed as a response to the event it represents. Words and
their meanings are significant informational cues to understand languages. Further,
a person’s life experience and cultural difference are relevant to linguistic meaning
development in the communication process.

5.3 Meaning Representations

This chapter will adopt a similar approach to syntax and morphology analysis
(Bender 2013) to build linguistic input representations and capture their meaning.
These linguistic representations are meaning representations of sentences and states
of affairs in the real world.

Unlike parse trees, these representations are not primarily a description of the
input structure, but a representation of how humans understand, represent anything
(such as actions, events, objects, etc.), and try to understand it in our environment—
the meaning of everything.

There are five types of meaning representation: (1) categories, (2) events, (3)
time, (4) aspect, and (5) beliefs, desires, and intentions.

1. Categories refer to specific objects and entities, e.g., company names, locations,
objects.
2. Events refer to actions or phenomena experienced, e.g., eating lunch, watching a
movie. They are relevant to verbs or verb phrases (VPs) expressed in POS.
. Time refers to the exact or reference moment, e.g., 9:30 am, next week, 2025.
4. Aspects refer to.

(O8]

(a) Stative—to state facts.
For example, [5.2] Jane knows how to run.

(b) Activity—to describe action.
For example, [5.3] Jane is running.

(c) Accomplishment—to describe completed action without ending terms.
For example, [5.4] Jane booked the room.

5.4 Semantic Processing 101

(d) Achievement—to describe terminated action.
For example, [5.5] Jane found the book.
5. Beliefs, desire, and intention refer to principles such as:
[5.6] I think what you are saying is totally correct.
[5.7] Jane wants to know why she failed in the test.
[5.8] I believe everything happens for a reason.

These principles are complex because they involve a variety of ideas in philoso-
phy. However, it is important to design appropriate, logical, and computational rep-
resentations in NLP to facilitate semantic processing and express ideas in sentences/
utterances.

5.4 Semantic Processing

Semantic processing (Bender 2013; Best et al. 2000; Goddard 1998) performs
meaning representation to encode and interpret meaning. These representations
allow the following:

1. Reason relations with the environment.

For example, [5.9] Is Jack inside the classroom?
2. Answer questions based on contents.

For example, [5.10] Who got the highest grade in the test?

3. Perform inference based on knowledge and determine the verity of unknown
fact(s), thing(s), or event(s).

For example, [5.11] If Jack is in the classroom, and Mary is sitting next to him,

then Mary is also in the classroom.

Semantic processing is applied in typical applications, including question-and-
answer chatbot systems, where it is necessary to understand meaning, i.e., the abil-
ity to answer questions about the context or utterance with knowledge, literal
meaning, or even embedded meaning. Examples from our Al Tutor chatbot (Cui
et al. 2020) are shown below, involving varying degrees of semantic processing:

[5.12] What is the meaning of NLP?
— Basic level of semantic processing for the meaning of certain concept.
[5.13] How does N-gram model work?
— Requires understanding of facts and meanings to respond.
[5.14] Is the Turing test still exist?
— Involves high-level query and inference from previous knowledge.
[5.15] Why do we need to study self-awareness in AI?
— Involves high-level information such as world knowledge or common sense
aside from Al terminology knowledge base (KB) to respond.
[5.16] Should I study AI?
— Involves the highest level information about user’s common sense and world
knowledge aside from Al concepts learnt by the book.

102 5 Meaning Representation
5.5 Common Meaning Representation

There are four common methods of meaning representation scheme: (1) first-order
predicate calculus (FOPC); (2) semantic networks (semantic net), (3) conceptual
dependency diagram (CDD), and (4) frame-based representation. A sample sen-
tence [5.17] Jack drives a Mercedes is used to illustrate how they perform.

5.5.1 First-Order Predicate Calculus

First-Order Predicate Logic (FOPL) (Dijkstra and Scholten 1989; Goldrei 2005) is
also known as predicate logic or FOPC. It is a robust language representation
scheme to express the relationship between information objects as predicates. For
example, FOPC meaning for [5.17] is given by:

3x, y Driving (x) A Driver (Jack, x) A DriveThing(y, x)
ACarBrand (Mercedes,) 3.1

This FOPC formulation consists of four predicate calculus segments (predicates)
in logical terms.

5.5.2 Semantic Networks

Semantic networks (semantic nets) (Jackson 2019; Sowa 1991) are knowledge rep-
resentation techniques used for propositional information. They convey knowledge
meanings in a two-dimensional representation. A semantic net can be represented as
a labeled directed graph. The logic behind this is that a concept meaning is con-
nected to other concepts and can be represented as a graph. The information in
semantic net is characterized as a set of concept nodes to link up with each other by
a set of labeled arcs which characterized the relationship as illustrated in Fig. 5.1 for
example sentence [5.17].

Driving is the core concept connected to two nodes (concepts):. Driver and
DriveThing, which links to Jack as the Driver and Mercedes as DriveThing,
respectively.

5.5.3 Conceptual Dependency Diagram

CDD is a theory that describes how sentence/utterance meaning is represented for
reasoning. It has been argued that CDD represents an independent representation of
the language in which the sentence was originally stated.

5.5 Common Meaning Representation 103

Fig. 5.1 Semantic net for

example sentence [5.17] Dﬂ\!ll‘lg

Driver DriveThing

Jack Mercedes

Fig. 5.2 Conceptual
dependency diagram for M erce d es

example sentence [5.17]

Drive-by

Jack

Schank (1972) proposed conceptual dependency (CD) theory as a part of a natu-
ral language comprehension project. Sentences/utterances applying CD can trans-
late and express basic concepts as a small set of semantic primitives, which can be
integrated to represent complex meanings—conceptualizations. Figure 5.2 shows a
CD diagram for example sentence [5.17].

Mercedes and Jack are two concepts linked up by the main concept Drive-by
using CD representation.

5.5.4 Frame-Based Representation

Frame-based systems use frames and notions as basic components to characterize
domain knowledge introduced by Prof. Marvin Minsky in his remarkable work A
framework for representing knowledge published in 1975 (Minsky 1975).

A frame is a knowledge configuration to characterize a concept such as a car or
driving a car attached to certain definitional and descriptive information. There are
several constructed knowledge representation systems based on the original model.
The vital successor of frame-based representation schemes is description logs that
encode the declarative part of frames using semantic logics. Most of these semantic

104 5 Meaning Representation

logics are components in the first-order logic that are related to feature logics. A
frame-based representation for [5.17] is shown in Fig. 5.3.

The frame-based representation is also invariance to language(s) being used like
other meaning representation models.

In summary, these meaning representations indicated that the linguistic meaning
for [5.17] describes certain state-of-affairs happened in a real world. Different
meaning representation models are just different ways to represent the same sce-
nario. For example, FOPC is a kind of mathematical and logical representation of
meanings, while semantic nets are graphical representation of such meaning in the
form of directed graphs.

5.6 Requirements for Meaning Representation

There are three factors to fulfill a meaning representation (Bunt 2013; Butler 2015;
Potts 1994): (1) verifiability, (2) ambiguity, and (3) vagueness considerations.

5.6.1 Verifiability

Verifiability refers to determining whether a sentence/utterance has a literal meaning
(it expresses a proposition) and whether it is analyzable or empirically verifiable,
which means it must provide a link between the meaning representation and facts
with the KB, world knowledge, or common-sense comparison methods:

For example, [5.18] Does Jack drive a Mercedes?

A verifiable meaning representation asserts to prove the correctness of this state-
ment with comparison, matching or inferencing operations.

The answer is yes according to statement [5.17].

Fig. 5.3 Frame-based
diagram for example Dl‘i\lil‘lg
sentence [5.17]
Driver: Jack

DriveThing: Mercedes

5.6 Requirements for Meaning Representation 105
5.6.2 Ambiguity

Ambiguity is a word, statement, or phrase that consists of more than one meaning.
Ambiguous words or phrases can cause confusion, misunderstanding, or even
humor situations.

For example, [5.19] Jack rode a horse in brown outfit.

This clause may drive readers to wonder whether the horse wore a brown outfit
instead of the rider. Likewise, the same words with different meanings induce ambi-
guity, e.g., Jack took off his gun at the bank. It is diverting to confuse the meaning
of bank that refers to a building or the land alongside of a river or lake. Context
meaning is important to resolve ambiguity.

5.6.3 Vagueness

Vagueness is to describe borderline cases, e.g., tall is a vague term in the sense that
a person who is 1.6 m in height is neither fall nor short since there is no amount of
conceptual analysis or empirical investigation can settle whether a 1.6-m person is
tall or not without any frame of reference. Here is another example:

[5.20] He lives somewhere in the south of US,
which is also vague as to the meaning of location.

Ambiguity and vagueness are two varieties of uncertainty which are often dis-
cussed together but are distinct in essential features and significances in semantic
theory. Ambiguity involves uncertainty about mapping between representation lev-
els which have more than a single meaning with different structural characteristics,
while vagueness involves uncertainty about the actual meaning of terms. Hence, a
good meaning representation system should resolve vagueness and avoid ambiguity.

5.6.4 Canonical Forms
5.6.4.1 What Is Canonical Form?

A canonical form refers to entities of resources which can be determined in more
than one way, and one of them can be considered as a favorable canonical (stan-
dard) form.

The canonical form of a mathematical entity is a standard way of determining
that quantity in mathematical expression. For example, the canonical form of a posi-
tive integer in decimal form is a number sequence that does not start from zero. It is
a class of entity in which an equivalence relation is defined. For example, a Row

106 5 Meaning Representation

Echelon Form (REF) and Jordan Normal Form are typical canonical forms for
matrix interpretation in Linear Algebra.

There are many methods to represent the canonical form of the same entity in
computer science, for instance, (1) computer algebra, which represents mathemati-
cal objects and (2) path concept in a hierarchical file system, where a single file can
be referenced in several ways.

5.6.4.2 Canonical Form in Meaning Representation

The canonical form of meaning representation in NLP refers to the phenomena of a
single sentence/utterance that can be assigned with multiple meanings leading to the
same meaning representation. For example:

[5.21] Jack eats KitKat.

[5.22] KitKat, Jack likes to eat.
[5.23] What Jack eats is KitKat?
[5.24] It’s KitKat at that Jack eats.

All these sentences/utterances have similar meanings with minor variations in
tones and thematic issues.

FOPC, semantic net, CDD, and frame-based representation are good elabora-
tions of how canonical form performs and stores such representations in a KB.

5.6.4.3 Canonical Forms: Pros and Cons
Advantages
1. Simplify reasoning and storage operations.

2. Needless to generate inference rules for all different variations with the same
meaning.

Disadvantages
Nevertheless, it may complicate semantic analysis for sentences/utterances with

similar meanings, but each has variance in phonemes or high-level semantic mean-
ings like examples [5.21-5.24].

5.7 Inference

5.7.1 What Is Inference?

Inference (Blackburn and Bos 2005) is divided into deduction and induction with
origin dated back to Ancient Greece from Aristotle, 300s BCE. Deduction refers to
using available information to guess or draw conclusions about facts such as

5.8 Fillmore’s Theory of Universal Cases 107

legendary Sherlock Holmes® deductive reasoning methods (Doyle 2019). Examples
of inference by deduction reasoning are as follows:

[5.25] Jack is a pilot; he travels a lot.

[5.26] Jane’s hair is totally soaked; it might be raining outside.

[5.27] Mary has been very busy at work and may not be able to come for a gathering
this evening.

Induction is inference from evidence to a universal conclusion. An important fact
is that the conclusions may be correct or incorrect.
Examples of inference by inductive reasoning are as follows:

[5.28] The sun rose in the morning every day for the past 30 years. The sun rises
every day (in human history).

[5.29] The first two kids I met at my new school were kind to me. The students at this
school are kind.

[5.30] Our teacher allows us to pick a piece of object out of a box. The first four
students got candies. The box must be full of candies.

An inference is valid in general if it is conformed to sound evidence(s), and the
conclusion follows logically from related premises.

5.7.2 Example of Inferencing with FOPC

Inferencing with FOPC is to come up with valid conclusions which leaned on inputs
meaning representation and KB. For example:

[5.31] Does Jack eat KitKat?

It consists of two FOPC statements:
Thing (KitKat) (5.2)
Eat (Jack,x) AThing x) (5.3)

Given the above two FOPC statements are true, it can infer the saying [5.31] as
yes by using inductive or deductive reasoning.

5.8 Fillmore’s Theory of Universal Cases

Case grammar (Fillmore 2020; Mazarweh 2010) is a linguistic system that focuses
on the connection between the quantity such as the subject, object, or valence of a
verb and the grammatical context used in language analysis. This theory was pro-
posed by American linguistic professor Charles J. Fillmore (1929-2014) in his
famous book The Case for Case in Semantic Analysis published in 1968, also known

108 5 Meaning Representation

as Fillmore’s Theory of Universal Cases (Fillmore 1968). He believed that only a
limited number of semantic roles, called case roles, occur in every sentence/utter-
ance constructed with verbs.

5.8.1 What Is Fillmore’s Theory of Universal Cases?

The Fillmore’s Theory of Universal Cases (Fillmore 2020; Mazarweh 2010) ana-
lyzes the fundamental syntactic structure of sentences/utterances by exploring the
association of semantic roles such as agent, benefactor, location, object, or instru-
ment, which are required by the verb in sentence/utterance. For instance, the verb
pay consists of semantic roles such as agent (A), beneficiary (B), and object (O) for
sentence construction. For example:

[5.32] Jane (A) pays cash (O) to Jack (B).

According to Fillmore’s Case Theory, each verb needs a certain number of case
roles to form a case-frame. Thus, case-frame determines the vital aspects of seman-
tic valency of verbs, adjectives, and nouns. Case-frames are conformed to certain
limitations, i.e., a particular case role can appear only once per sentence. There are
mandatory and optional cases. Mandatory cases cannot be deleted; otherwise, it
will produce ungrammatical sentences. For example:

[5.33] This form is used to provide you.

This sentence/utterance makes no sense without an additional role that explains
provide you to or with what matter or notion. One possible solution is as follows:

[5.34] This form is used to provide you with the necessary information.

The association between nouns and their structures contain both syntactic and
semantic importance. The syntactic positional relationship between forms in a sen-
tence varies from language to language, so grammarians can observe, examine
semantic values in these nouns, and provide information to consider case role in a
specific language.

One of the major tasks of semantic analysis in Fillmore’s Theory is to offer a
possible mapping between syntactic constituents of a parsed clause and their seman-
tic roles associated with the verb. The term case role is widely used for purely
semantic relations, including theta and thematic roles. The theta role (6-role) refers
to a formal device for representing syntactic argument structure required syntacti-
cally by a particular verb. For instance:

[5.35] Jack gives the toy to Ben.

Statement [5.35] shows the verb give has three arguments, whereas Jack is deter-
mined as the external theta role of agent, toy is determined as the theme role, and to
Ben is determined as the goal role.

Thematic role, also called semantic role, refers to case role that a noun phrase
(NP) may deploy with respect to action or state used by the main verb. For example:

5.8 Fillmore’s Theory of Universal Cases 109

[5.36] Jack gets a prize.

Statement [5.36] shows Jack is the agent as he is doer to get, the prize is the
object being received, so it is a patient.

5.8.2 Major Case Roles in Fillmore’s Theory

There are six major roles in Fillmore’s Theory:

. Agent—doer of action, attribute intention.

. Experiencer—doer of action without intention.

. Theme—thing that undergoes change or being acted upon with

. Instrument—tool being used to perform the action.

. Beneficiary—person or thing for which the action being acted on or performed to.
. To/At/From Loc/Poss/Time—to possess thing(s), place, location, or time.

AN AW =

For example:

[5.37
[5.38
[5.39
[5.40

Jack cut the meat with a knife.
The meat was cut by Jack.
The meat was cut with a knife.
A knife cut the meat.

[5.41] The meat is cut.

[5.42] Jack lent Jane the CD.

[5.43] Jack lent the CD to Jane.

— e e e e

These examples can conclude that:

1. Agent—Jack is the doer revealed in [5.37, 5.38, 5.42 and 5.43] that performs
the action.

2. Theme—meat and CD are things (objects) being acted upon or undergoing
change as revealed in [5.38-5.43] accordingly

3. Instrument—¥knife is the fool to complete an action as revealed in [5.37, 5.39
and 5.40].

4. To-Poss—Jane is the one that possesses the CD as revealed in [5.42 and 5.43]
driven by Jack, the giver.

Syntactic choices intuition is largely a reflection of underlying semantic relation-
ships, which means that identical meanings can descend to articles, e.g., [5.37] can
also be presented in [5.38 and 5.39], or simplified versions can also be presented in
[5.40 and 5.41]. Syntax can have several syntactic options that are related to same
meanings in semantic meanings. Semantic analysis is a major task to offer a suitable
linkage between constituent of a parsed clause and associated semantic roles related
to the main verb.

110 5 Meaning Representation
5.8.3 Complications in Case Roles

There are four types of complications in case role analysis:

1. Syntactic constituents’ ability to indicate semantic roles in several cases, e.g.,
subject position: agent vs. instrument vs. theme:
[5.44] Jack cut the fish.
[5.45] The knife cut the fish.
[5.46] The fish is cut.
2. Syntactic expression option availability, e.g., agent and theme in different
configurations:
[5.47] Jack cut the fish.
[5.48] It was the fish that Jack cut.
[5.49] The fish was cut by Jack.
3. Prepositional ambiguity not always introduces the same role, e.g., proposition by
may indicate either agent or instrument:
[5.50] The meat was cut by Jack.
[5.51] The meat was cut by a knife.
4. Role options in a sentence:
[5.52] Jack cut the fish with a knife.
[5.53] The fish was cut by Jack.
[5.54] The fish was cut with a knife.
[5.55] A knife cut the fish.
[5.56] The fish was cut.

— e e

It seems that semantic roles act like a musical conductor in an orchestra with old
syntactic constituents and leave them out at times, but it isn’t as bad as it seems.
There are regularities to consider sets of rules which are the beauty of human lan-
guages to describe the same idea in different styles and configurations.

There are possible rules in case role, such as:

If 3 Agent,itbecomes Subject
Elseif 3 Instrument it becomes Subject
Elseif 3 Themeit becomes Subject 5.4)
Agent preposition isBY
Instrument preposition is BY if no agent, else WITH

Note that:

1. They are general rules; some verbs may have exceptions.

2. Every syntactic constituent can only fill-in one case at a time.
3. No case role can appear twice in the same rule.

4. Only NPs of the same case role can be cojoined in the rule.

5.9 First-Order Predicate Calculus 111

5.8.3.1 Selectional Restrictions

Selectional restrictions are methods to restrict types of certain roles to be used for
semantic consideration. For instance:

1. Agents must be animate objects, i.e., a living thing such as a person, Jack.

2. Instruments must be inanimate objects, i.e., nonliving things such as rock.

3. Themes are types that may be dependent on verbs e.g. window relates to the
verb break.

Such constraints can be applied to the following examples to check whether they
make sense or not:

[5.57] Someone assassinated the President vs
[5.58] The spider assassinated the fly.

Nevertheless, additional rules can be deployed to state that assassinate has inten-
tional or political killing such that [5.58] may be incorrect. In fact, such a method is
usually applied for semantic analysis to be discussed in Chap. 6.

5.9 First-Order Predicate Calculus

5.9.1 FOPC Representation Scheme

FOPC (Dijkstra and Scholten 1989; Goldrei 2005) can be used as a framework to
derive semantic representation of a sentence/utterance. Although it is imperfect, it is
still the most straightforward mechanism to interpret meanings as other alternatives
are finite and complex for implementation. In most cases, they become notational
variants in which the quintessential parts are the same regardless of the variant
to select.

FOPC supports:

1. Reasoning in truth condition analysis to respond yes or no questions.
2. Variables in general cases through variable binding at responses and storage.
3. Inference to respond beyond KB storage on new knowledge.

This choice is neither arbitrary nor determined by practical application. FOPC
reflects natural language semantics as it was designed by humans.

5.9.2 Major Elements of FOPC

FOPC consists of four major elements: (1) terms, (2) predicates, (3) connectives,
and (4) quantifiers.

112 5 Meaning Representation

1. Terms

Terms are object names with three representations: (a) constants, (b) functions,
and (c) variables.

Constants refer to the specific object described in sentence/utterance, e.g.,
Jack, IBM.

Functions refer to concepts expressed as genitives such as brand name, location,
e.g., Brandname(Mercedes), LocationOffKFC) can be regarded as single-
argument predicate.

Variables refer to objects without reference which object is referred to, like vari-
ables x, y, and z used in a mathematical equationx + y =z (e.g.,a, b, ¢, x, y,
7) They are frequently used in FOPC for query and inferencing operations.

2. Predicates

Predicates (Epstein 2012) refer to a predicate notion in traditional grammar that
traces back to Aristotelian logic (Parry and Hacker 1991). A predicate is
regarded as the property of a subject that has or is characterized by. It can be
considered as the expression of fact to the relations that link up some fixed
number of objects in a specific domain, e.g., he talks, she cries, Jack plays
football, etc. Predicates are often represented with capital letters like Buy or
Play in FOPC and combine with object names to form a proposition, e.g.,
Drive(Mercedes), Drive(Mercedes, Jack), Drive(Mercedes, X),
Drive(Mercedes, Jack, UIC, Starbucks), Drive(car, x, org, dest).

3. Connectives

Connectives refer to proposition combinations. Conjunctions (and as in English,
written as & or A), disjunctions (or as in English, written as V), and implica-
tions (if-then as in English, written as — or D). Negation (not as in English,
written as — or ~) is also regarded as a connective, even though it operates on
a single proposition.

4. Quantifiers

Quantifiers refer to generalizations. There are two major kinds of quantifiers:
universal (all as in English, written as V) and existential (some as in English,
written as 3). The term first-order in FOPC means that this logic only uses
quantifiers to generalize objects, but never onto predicates.

A FOPC context-free grammar (CFG) specification is shown in Fig. 5.4.

5.9.3 Predicate-Argument Structure of FOPC

The semantics of human languages usually exhibit certain predicate-argument
structure by variables, e.g., indefinites in generic cases and inferencing. It also uses
quantifiers, e.g., every, some to create FOPC flexibility for sentence structures and
partial compositional semantics, e.g., sort of.

Predicate-argument structure refers to actions, events, and relations that can be
determined and represented by predicates and arguments. Languages exhibit a cer-
tain division-of-labor in which words/constituents are served as predicates and

5.9 First-Order Predicate Calculus 113

Formula — AtomicFormula

| Formula Connective Formula

| Quantifier Variable;: : : Formula
| = Formula

| (Formula)

AtomicFormula = Predicate(Term, ...)

Term — Function(Term, ...
| Constant
| Variable

Connective > A |V —

Quantifier = V|3

Constant — IBM |Tesla |USA |Jack |A]...
Variable — x|y|z]..

Predicate — Drive | Buy | Find |...
Function — LocationOf | Brandname | ...

Fig. 5.4 Context-free grammar (CFG) specification of FOPC

arguments, e.g., predicates to manifest verb, and arguments to manifest different
cases of the verb.

Predicates are primarily verbs (V), VPs, prepositions, adjectives, and sentences/
utterances, and sometimes can be nouns and even NPs. For instance:

[5.59
[5.60
[5.61
[5.62

Helen cries.

Helen speaks to Mary.

Helen speaks loudly.

Helen speaks loudly in the classroom.

e e

Arguments are primarily nouns, nominals, and NPs, but can be other constituents
which rely upon the actual context of sentence/utterance. For instance:

[5.63] Jack goes to the bank vs.
[5.64] He goes to the bank.

The following shows an FOPC formulation example:

[5.65] Jack gave a pen to Jane.

Giving (Jack, Jane, Pen) (5.5)

114 5 Meaning Representation

Note that the corresponding FOPC formulation (5.5) is precisely in Fillmore’s
case role theory that give conveys a three-argument predicate: (1) Agent which is
Jack as the giver; (2) Possess which is Jane as the recipient; and (3) Theme which is
the pen as the direct object.

It can have other configurations to describe the same predicate logic; for example:

Giving (Jack,Pen,Jane) (5.6)
Gave(Jack,Pen,Jane) 5.7

Here are some complex cases with additional constituents:

[5.66] Jack gave Jane a pen for Susan.
Giving (J ack,Jane,Pen, Susan) (5.8)
[5.67] Jack gave Jane a pen for Susan on Monday.
Giving (J ack,J ane,Pen,Susan,Monday) 5.9
[5.68] Jack gave Jane a pen for Susan in class on Monday.
Giving(J ack,Jane,Pen,Susan,in class,Monday) (5.10)

Note that all these predicates should be treated individually as their arguments
have different overall meanings.

5.9.4 Meaning Representation Problems in FOPC

A predicate that represents a verb meaning, e.g., give, has the same argument num-
bers present as its syntactic categorization frame. It is still difficult to (1) determine
the correct role numbers for an event, (2) manifest facts about case role(s) associ-
ated with the event, and (3) ensure correct inference(s) is/are derived from meaning
representation.

According to the above considerations, the FOPC formulation stated in (5.5) is
not as useful as it seems it would be preferable if roles or cases are separated and
flexible when deciding the whole FOPC statement like this:

dx, y Borrowing (x) A Borrower (Jack, x) A Borrowed (¥, x)
ABorrow _to(Jane, x) Alsa(y, Pen) (5.11)

5.9 First-Order Predicate Calculus 115

Note: Corresponding to Fillmore’s case role theory, Borrower = Agent,
Borrowed = Theme, Borrow_to = To-Poss.

Although the notion of predicate relation becomes complicated, it allows more
flexibility for sentence/utterance construction.

It may further generalize (5.11) into the following formulation:

3x, y, z Borrowing (x) A Borrower (w, x)
ABorrowed (y, x) A Borrow _to(z, x) (5.12)

By doing so, it can generate other complicated clauses by applying different
predicate combinations. The semantics of NPs and PPS in a sentence plug into slots
provided by the template which can allow flexibility to variable argument number
associated with an event (predicate).

Event has many roles to cement input with specific category (e.g., pen) on cate-
gories and instances declaration. For example:

Isa (MobyDick, Novel, AKO (Novel,Literature)) (5.13)

Note: Just like Isa() to serve as predicate Is a, AKO() is a useful predicate to serve
as the meaning a kind of. In fact, FOPC materializes events so that they can be quan-
tified, and related to other events and objects through a defined set of relationships,
and logical connections between closely related instances without meaning
assumptions.

5.9.5 Inferencing Using FOPC

Inference is an important process in FOPC which has the capability to validate or
prove whether a proposition is true or false from a KB. Modus Ponens (MP) is a
fundamental inferencing method used in FOPC.

MP is a mode of reasoning from a hypothetical proposition. If the antecedent is
true, then the consequent should be also true. In other words, MP is a kind of deduc-
tive reasoning in the form of: P implies Q, i.e., If P is true, then Q must also be true.
Its rule may be written in sequent notation as:

P—>Q or Pl-0Q (5.14)
where P, Q, and P — Q are statements or propositions in a formal language, and |—
is a metalogical symbol, meaning that Q is a syntactic consequence of P and P — Q
in a logical system. MP rule justification in a classical two-valued logic is given by
a truth table as shown in Table 5.1

The following example uses a Tesla car to demonstrate how FOPC works in
logic inference. It has three statements to process:

116 5 Meaning Representation

Table 5.1 Truth table of MP P Q P->Q
in two-valued logic T T T
T F F
F T T
F F T
ElectricCar (Tesla)
Vx ElectricCar (x) — Fuel (x,Electricity) (5.15)

Fuel (Tesla,Electricity)

Note: The first statement says Zesla is an electric car, the second statement says
for all electric cars x, if a car is an electric car, the fuel being used must be electricity.

The above predicate ElectricCar (Tesla) matches the antecedent of the rule, so
based on simple MP deduction to conclude that Fuel(Tesla, Electricity) is a True
statement.

In fact, MP can be applied in Forward and Backward Reasoning modes.

Forward Reasoning (FR), also called normal mode, is used in normal situations
by adding all facts into a KB to invoke all applicable implication rules to examine
clause correctness or new knowledge addition.

Backward Reasoning (BR) is MP that operates in reverse mode to prove specific
proposition or called query in computer science, i.e., to examine whether the query
formula is true by its presence in KB, or without negative implication or facts on
return query results.

Exercises

5.1. What is meaning representation? Explain why meaning representation is
important in NLP. Give one or two examples to support your answer.

5.2. State and explain five major categories of meaning representation. Give an
example to support your answer.

5.3. State and explain four common types of meaning representation in NLP. For
each type, use the following sample sentence/utterance [5.70] [5.69] Jack
buys a new flat in London to illustrate how they work for meaning
representation.

5.4. What are the three basic requirements for meaning representation? Give two
examples for each requirement to support your answer.

5.5. What is canonical form? How canonical form is applied to meaning represen-
tation. For sample sentence/utterance [5.70] [5.69] Jack buys a new flat in
London, give five variations of this sentence and work out the canonical form
in the forms of FOPC and semantic net.

5.6. What is inference? Explain why inference is vital to NLP and the implemen-
tation of NLP applications such as Q&A chatbot.

References 117

5.7. What is Fillmore’s Theory of universal cases? State and explain six major
case roles of Fillmore’s Theory in meaning representation. Use an example to
illustrate.

5.8. What is the complication of Fillmore’s Theory in meaning representation by
using several examples? Explain how it can be solved.

5.9. What are the four basic components of FOPC? State and explain their roles
and function in FOPC formulation.

5.10. What is MP in inferencing? In addition to MP, state and explain other possi-
ble inferencing methods that can be applied to FOPC in meaning
representation.

References

Bender, E. M. (2013) Linguistic Fundamentals for Natural Language Processing: 100 Essentials
from Morphology and Syntax (Synthesis Lectures on Human Language Technologies). Morgan
& Claypool Publishers

Best, W., Bryan, K. and Maxim, J. (2000) Semantic Processing: Theory and Practice. Wiley.

Blackburn, P and Bos, J. (2005) Representation and Inference for Natural Language: A First
Course in Computational Semantics (Studies in Computational Linguistics). Center for the
Study of Language and Information.

Bunt, H. (2013) Computing Meaning: Volume 4 (Text, Speech and Language Technology Book
47). Springer.

Butler, A. (2015) Linguistic Expressions and Semantic Processing: A Practical Approach. Springer.

Cui, Y., Huang, C., Lee, Raymond (2020). AI Tutor: A Computer Science Domain Knowledge
Graph-Based QA System on JADE platform. World Academy of Science, Engineering and
Technology, Open Science Index 168, International Journal of Industrial and Manufacturing
Engineering, 14(12), 543 - 553.

Dijkstra, E. W. and Scholten, C. S. (1989) Predicate Calculus and Program Semantics (Monographs
in Computer Science). Springer. Advanced Reasoning Forum.

Doyle, A. C. (2019) The Adventures of Sherlock Holmes (AmazonClassics Edition).
AmazonClassics.

Epstein, R. (2012) Predicate Logic. Advanced Reasoning Forum.

Fillmore, C. J. (1968) The Case for Case. In Bach and Harms (Ed.): Universals in Linguistic
Theory. New York: Holt, Rinehart, and Winston, 1-88.

Fillmore, C. J. (2020) Form and Meaning in Language, Volume III: Papers on Linguistic Theory
and Constructions (Volume 3). Center for the Study of Language and Information.

Fitch, W. T. (2010). The evolution of language. Cambridge University Press.

Goddard, C. (1998) Semantic Analysis: A Practical Introduction (Oxford Textbooks in Linguistics).
Oxford University Press.

Goldrei, D. (2005) Propositional and Predicate Calculus: A Model of Argument. Springer.

Jackson, P. C. (2019) Toward Human-Level Artificial Intelligence: Representation and Computation
of Meaning in Natural Language (Dover Books on Mathematics). Dover Publications.

Mazarweh, S. (2010) Fillmore Case Grammar: Introduction to the Theory. GRIN Verlag.

Minsky, M. (1975). A framework for representing knowledge. In P. Winston, Ed., The Psychology
of Computer Vision. New York: McGraw-Hill, pp. 211-277.

118 5 Meaning Representation

Parry, W. T. and Hacker, E. A. (1991) Aristotelian logic. Suny Press.

Potts, T. C. (1994) Structures and Categories for the Representation of Meaning. Cambridge
University Press.

Schank, R. C. (1972). Conceptual dependency: A theory of natural language processing. Cognitive
Psychology, 3, 552-631.

Sowa, J. (1991) Principles of Semantic Networks: Explorations in the Representation of Knowledge
(Morgan Kaufmann Series in Representation and Reasoning). Morgan Kaufmann Publication.

Chapter 6
Semantic Analysis

Check for
updates

6.1 Introduction

6.1.1 What Is Semantic Analysis?

Semantic analysis (Cruse 2011; Goddard 1998; Kroeger 2019) can be considered as
the process of identifying meanings from texts and utterances by analyzing gram-
matical structure relationships between words, tokens of written texts, or verbal
communications in NLP.

Semantic analysis tools can assist organizations to extract meaningful informa-
tion from unstructured data automatically such as emails, conversations, and cus-
tomers’ feedback. There are many ways ranging from complete ad-hoc
domain-oriented techniques to some theoretical but impractical methods. It is a
sophisticated task for a machine to perform interpretation due to complexity and
subjectivity involved in human languages. Semantic analysis of natural language
captures text meaning with contexts, sentences, and grammar logical structures
(Bender and Lascarides 2019; Butler 2015).

Semantic analysis is a process to transform linguistic inputs to meaning repre-
sentation and stamina for machine-learning tools like text analysis, search engines,
and chatbots. From the computer science perspective, semantics can be considered
as a group of words, phrases, or clauses that provide concern-specific context to
language, or clues to word meanings and relationships. For instance, a successful
semantic analysis will base on quantity methods such as word frequency and con-
text on location to generate cognitive connection between the clause giant panda is
a portly folivore found in China and its semantic meaning instead of just the name
panda it stands for.

© The Author(s), under exclusive license to Springer Nature Singapore Pte 119
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_6&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_6#DOI

120 6 Semantic Analysis
6.1.2 The Importance of Semantic Analysis in NLP

Semantic analysis (Goddard 1998; Sowa 1991) is important to conscious of knowl-
edge relevance and information about meaning, e.g., giant panda characteristics,
comparisons with other panda species, evolution history, related news and
information.

It ensures that the contents are relevant to the understanding of (1) user, (2) con-
tent, and (3) context presence in NLP. The problem with establishing relationships
between contents and context is that most data-driven technology cannot compre-
hend contextual message of the sentence (phrase or clause) it conveys. If the under-
standing of context and user’s behavior has a deep semantic level, it can produce
content relevance and resonant experience.

There are many automatic classification systems today with a purely bag-of-
words approach to identify relevant features and determine document meanings.
Few use correlation and collocation to account for words that have several mean-
ings based on the context. Nevertheless, none uses full semantic analysis for words’
meanings. But this is markedly required to interpret a document correctness because
language, especially English language, is ambiguous. English nouns have an aver-
age of five to eight synonyms; e.g., run has more than 100 common meanings like
running toward the finish line, run to a meeting, run a company, the machine is
running, tears ran down her face, ran for president, run him a couple thousand dol-
lars, etc. If a bag of words is used as features, the software will never be able to
distinguish between important facts and irrelevant information leading to imprecise
classification results and ambiguities.

6.1.3 How Human Is Good in Semantic Analysis?

Humans extract abstract ideas and notions like breathing without awareness. Take
the meaning of apple as an example, when discussing the concept of apple, they
referred to fruit consumed regularly. But now, a majority refer to the brand name
Apple that dominates mobile phone and computer industry. In other words, humans
are competent to extract context surrounding words, phrases, objects, scenarios and
compare information with prior experience, common sense, and world knowledge
to construct overall meanings in a text or conversation. These analyses outputs will
be used to predict outcome with incredible accuracy, but algorithm and computer
capacity upgrades had modified habitual practices to fit in with machine learning
and NLP allowing machine-driven semantic analysis becomes reality. Such
machine-learning-based semantic analysis schemes can assist in revealing the
meanings in online messages and conversations and determine answers to questions
without manually extracting relevant information from large volumes of unstruc-
tured data. The truth is semantic analysis aims to make sense of everything from
words to languages in daily life.

6.2 Lexical vs. Compositional Semantic Analysis 121

6.2 Lexical vs. Compositional Semantic Analysis

6.2.1 What Is Lexical Semantic Analysis?

Lexical semantic analysis (Cruse 1986) is a subfield of linguistic semantics to study
word’s compositionality, grammar, structure mechanisms, and the relationships
between word senses and their usages.

The analytical unit in lexical semantics is called lexical unit, which includes not
only words, but also partial words, affixes (subunits), compound words, and phrases,
collectively referred to as lexical terms. Lexical units are catalog of words called
lexicon of a language. Lexical semantics can be interpreted as the relationship
between lexical terms, sentence/utterance syntax, and its meaning.

Lexical semantics analyzes the meaning of lexical items in relation to language
and syntactic structure. This field of study involves the following:

1. Classifying and decomposing lexical terms and tokens.

2. Examining the similarities and differences in lexical semantic structures across
languages.

3. Reviewing the correlation between a sentence's lexical and syntactic meaning
with its semantic meaning.

Lexical relation in lexical semantic involves the analysis of meaning or word
relevance in lexical level and includes homonymy, polysemy, metonymy, synonyms,
antonyms, and hyponymy and hypernymy to be studied in word sense and relation
section.

6.2.2 What Is Compositional Semantic Analysis?

Compositionality is a concept in the philosophy of language that posits the meaning
of a complex expression in a sentence or utterance depends not only on the mean-
ings of individual words but also on their syntactic structure and arrangement. From
a linguistic perspective, a sentence or utterance can be considered compositional if
its meaning arises from both the meaning of its constituent words and how those
words are syntactically linked together.

In a compositional language, the meaning of a sentence or utterance is derived
solely from the meanings of the words that comprise it and their syntactic relationships.
Thus, compositional semantics focuses on investigating the meaning of a sentence or
utterance as a whole, rather than analyzing the individual words in isolation. The
underlying logic is that words collectively create the overall meaning of the sentence or
utterance, rather than merely combining their individual meanings. For example:

[6.1] Andrew likes Jane = > likes (Andrew, Jane) vs.
[6.2] Jane likes Andrew = > likes (Jane, Andrew)

Although individual meaning of every single word in these sentences/utterances
is the same due to different words’ arrangement, their meanings and predicate logics
can be different.

122 6 Semantic Analysis

Compositional semantics is to study the meaning of complex language units such
as sentences, paragraphs, or documents. It is vital to transform the information rep-
resented by language units into a formal representation which consists of (1) sym-
bolic and (2) vectorial representations.

Symbolic representations are meanings expressed as a logical formula by infer-
ential mechanisms, or graph-based representations expressed by graphical
transformation.

Vectorial representations are methods based on distributional semantics such
as word embeddings to represent meaning as word vectors in multidimen-
sional space.

Currently, only vectorial representations are widely used, as it is challenging to
ensure the consistency of large sets of logical propositions based on textual input
due to problematic inferential mechanisms. Moreover, there is no consensus on suit-
able graph-based representations, such as semantic networks, for expressing the
meanings of linguistic entities, nor are there appropriate operations for applying
these representations.

6.3 Word Senses and Relations

6.3.1 What Is Word Sense?

Word sense is a crucial concept for interpreting the meanings of words in linguistics.
For example, the word “bank” can have over 20 different word senses in a diction-
ary, each with a distinct meaning depending on the context and syntactic structure
in which it is used. Some of these senses include the following:

1. Financial organizations that accept deposits and use funds for lending opera-
tions (noun).
[6.3] Jack goes to the bank and withdraws some money.

2. Inventory or stock that keeps for emergencies (noun).
[6.4] Jack goes to the food bank to acquire some food.

3. A container with an opening on top to store money (noun).
[6.5] His coin bank was empty.

4. A sloping land besides a slope or body of water (noun).
[6.6] Jack stands beside the bank of a river (noun).

5. A long plie or ridge (noun).
[6.7] Jack digs a bank of earth.

6. Enclose with a bank (verb).
[6.8] bank roads.

7. Cover with ashes to control the flames (verb).
[6.9] Bank a fire.

6.3 Word Senses and Relations 123

8. Tip laterally (verb).
[6.10] The pilot had to bank the aircraft.
9. A fighter maneuvers the aircraft to tip laterally (noun).
[6.11] F19 fighter went into a steep bank.
10. Similar objects are arranged in a row (noun).
[6.12] He operated a bank of switches.

6.3.2 Types of Lexical Semantics

There are six types of commonly used lexical semantics: (1) homonymy, (2) poly-
semy, (3) metonymy, (4) synonyms, (5) antonyms, and (6) hyponymy and
hypernymy.

6.3.2.1 Homonymy

Homophones are words that are spelled and pronounced the same but have different
meanings. The word homonym comes from prefix homo- that stands for same and
suffix -nym that stands for name.

Example 1: bank;: financial institution vs. bank,: slopping land:

[6.13] He went to the bank and withdrew some cash.

[6.14] He was standing at the bank of the lake in the forest.

Example 2: bat;: a sporting club for ball hitting vs. bat,: a kind of flying mammal:

[6.15] He handles his bat skillfully during the game.

[6.16] Bats live the longest as compared with other species of similar size.

Example 3: play,: light-hearted recreational activity for amusement vs. play,: the
activity of doing something in an agreed succession:

[6.17] This Shakespeare play is excellent.

[6.18] It is still my play.

There are two related concepts with homonymy: (1) homographs are usually
defined as words that have the same spelling with different pronunciations and (2)
homophones are words that share same pronunciation regardless of spellings as
examples above. Further, homographs are words with the same spellings, and het-
erographs are words that share the same pronunciation but different spellings, e.g.,
chart vs. chat, peace vs. piece, right vs. write.

Homonymy often causes problems in the following NLP applications:

1. Information retrieval confusion, e.g., cat scan.

2. Machine translation confuses foreign languages’ meanings:

e.g., bank;,—financial institution; bank (English) — la banque (French).
[6.19] He goes to the bank and withdraws some cash. (English)

[6.20] Il va a la banque et retire de I’argent. (French)

124 6 Semantic Analysis

e.g., bank,—sloping land, bank (English) — la rive (French)
[6.21] He lived by the bank of the lake. (English)

[6.22] Il habitait au bord du lac. (French)

3. text-to-speech confusion:

e.g., bass (string instrument) vs. bass (fish).

6.3.2.2 Polysemy

Polysemy are words with the same spellings but different in meanings and context.
The difference between homonymy and polysemy is delicate and subjective.

For example, bank

[6.23] The bank was built in 1866. (financial building)

[6.24] He withdrew some money from the bank early this morning. (financial
organization)

In fact, many commonly used words are polysemy with multiple contexts and
meanings in different sentence situations.

For example, get is a commonly used word that has at least three distinct meanings.
[6.25] I get an apple from the basket. (have something)

[6.26] I get it. (understand)

[6.27] She gets thinner. (reach or cause to a specified state or condition)

6.3.2.3 Metonymy

Metonymy is a kind of figure-of-speech in which one word or phrase is replaced by
another association.

It is also a rhetorical strategy to describe the periphery of nucleus indirectly, as
in describing someone’s outfit to individual’s characteristics. It is regarded as a sys-
tematic relationship between senses, or systematic polysemy, e.g., college, hospital,
and museum can all stand for building with semantic relationship between that
building and an institution.

Metonymy and metaphor have fundamental differences in functions. Metonymy
is about referring a method of designation or component identification or symbolic
linkage with association, e.g., crown for monarchy or royalty. Metaphor is about
understanding and interpretation in contract. It is a means to understand or explain
a phenomenon by another description. For instance:

[6.28] Her business rises like phoenix.

6.3.2.4 Zeugma Test

Zeugma is the usage of a word(s) that make(s) sense in one way but not the other.
Examples of zeugma that caused conflicts in semantics:

6.3 Word Senses and Relations 125

[6.29] Wage neither war nor peace.
— There is a term to wage war but is literally incorrect to say to wage peace.
[6.30] He watched the brightness of lightning and the pounding of thunderstorm.
— He can only watch lightning but not thunder.

The zeugma test in semantic analysis consists of using a putatively ambiguous
expression in a sentence in which several of its putative meanings are crowded
together, whether it makes sense or not. Let’s use the word serve as example:

[6.31] Which United Airlines flights serve dinner?
[6.32] Does Jack serve the Army?
[6.33] Do United Airlines flights serve dinner and the Army?

It showed that there are two different senses of serve though [6.33] may
sound odd.

6.3.2.5 Synonyms

Synonyms are words with the same meaning in some or all contexts. They usually
appear in language in different contexts, such as formal and informal language,
daily conversations, and business correspondence. Synonyms have modest meaning
when used, although they have the same meaning, e.g., create/make, start/begin,
big/huge, attempt/try, house/mansion, pretty/beauty. Synonyms have two lexemes if
they are interchangeable in all cases and retain the same meaning.

However, there are very few truths synonymy in the real-world situation as to
whether two words are truly synonyms. The logic behind this is if they are different
words, then they must mean something else or have some context differences in
usage and cannot be the same in all situations. In many cases, two words are not
exactly interchangeable when they appear, even though many aspects of the mean-
ing are the same. These words are used and mean differently due to concepts of
politeness, slang, register, genre, etc.

For example, large vs. big (are they exactly the same?)
[6.34] This building is very big vs.

[6.35] This building is very large.

[6.36] Janet is her big sister vs.

[6.37] Janet is her large sister.

Although both words have same meanings in the description of size, the word big
has an additional notion of older in terms of seniority description.

6.3.2.6 Antonyms

Antonyms are the word sense between words with opposite context meanings. It is
a place which other sense relations do not occupy synonym regardless of human
tendency to categorize experience in dichotomous contrast that is not easily judged.

126 6 Semantic Analysis

However, the notion of antonyms is immeasurable. Humans understand the con-
cept of opposite from childhood, encounter them in daily life, and even use ant-
onyms as akind of a cognitive method to organize notions, concepts, and experiences,
e.g., big vs. small, dark vs. bright, hot vs. cold, in vs. out. Antonyms can also use to
interpret binary, scale, or position opposition such as long vs. short, fast vs. slow,
and up vs. down.

6.3.2.7 Hyponymy and Hypernymy

Hyponym is a word sense of another word if the first word sense is specific, denoting
a subclass of the other sense in linguistics, e.g., truck is a hyponym of vehicle,
mango is a hyponym of fruit, and chair is a hyponym of furniture; or conversely
hypernym/superordinate (hyper is super), e.g., vehicle is a hypernym of truck, fruit
is a hypernym of mango, and furniture is hypernym of chair.

It is interesting to know that hyponymy is not only limited to nouns, but it can
also be found in verbs, e.g., gaze, glimpse, and stare are all regarded to specific
moment of seeing.

Hyponymy and hypernymy relationship between word sense and relation is
regarded as the relationship between class and subclass concepts in object-oriented
programming (OOP) from the computer science perspective, e.g., the class of vehi-
cle has three subclasses: car, lorry, and bus, while the class of fruit can have numer-
ous subclasses such as apple, orange, and mango; or in reverse manner, the concept
vehicle is the superclass of car, and the concept fruit is the superclass of mango.

Further, words that have hyponyms of the same broader term are hypernym
known as co-hyponyms. The semantic relationship between each of the more spe-
cific words, e.g., daisy and rose, and the broader term, e.g., flower, is called hypon-
ymy or inclusion, which has the same situation for word sense relation of
co-hypernymy.

Hyponymy has (1) extensional, (2) entailment, (3) transitive, and (4) IS-A hierar-
chy characteristics:

1. Extensional is the class represented by the parent extension, including the class
represented by hyponym, e.g., the relations between vehicle and truck.

2. Entailment is a hyponym sense A of sense B if A entails B.

3. Transitive means if A entails B and B entails C, then A entails C, e.g., truck,
vehicle, transport where truck is a hyponymy of vehicle and vehicle is a hypon-
ymy of transport, so truck is a hyponymy of transport.

4. IS-A hierarchy where A IS-A B (or A IsA B), and B subsumes A in OOP.

6.3.2.8 Hyponyms and Instances

Hyponyms have notions of instance and class. In linguistics, an instance can be
considered as a proper noun with a unique entity. For example, New York is an
instance of city; USA is an instance of country. It is regarded as the relationship
between class vs. object in object programming.

6.4 Word Sense Disambiguation 127

In short, class is the notion of things and objects, whereas object is the instance
of class, e.g., person is a class concept to describe an individual person, while Jack
is an object, which is an instance of that class concept.

A simple test: the relationship between car and Tesla, are they class-object rela-
tionship or class-subclass relationship?

6.4 Word Sense Disambiguation

6.4.1 What Is Word Sense Disambiguation (WSD)?

Word sense disambiguation (WSD) (Agirre and Edmonds 2007) is a well-known
challenge in computational linguistics that involves the identification for correct
semantic meaning of words used in sentences/utterances. WSD is the ability to
determine which meaning of a word is activated when a word is used in a specific
context of NLP.

Lexical ambiguity is one of the initial problems that any NLP system may
encounter. In summary, POS tagging is applied to resolve syntactic ambiguity,
while WSD is applied to resolve semantic ambiguity. However, it is always difficult
to resolve semantic rather than syntactic ambiguity. Consider distinct sense for the
word bass examples:

[6.38] Jane hates to hear the bass sound.
[6.39] Jack is eating fried bass.

It has completely different word sense in which [6.38] represents a musical
instrument and [6.39] represents a type of fish. So, by using WSD the two sentences
can be interpreted as follows:

[6.40] Jane hates to hear the bass/instrument sound.
[6.41] Jack is eating fried bass/fish.

6.4.2 Difficulties in WSD

There are five major concerns in WSD: (1) difference meaning across dictionaries,
(2) POS tagging, (3) inter-judge variance, (4) pragmatics (discourse), and (5) sense
discreteness.

1. Difference meaning across dictionaries.

A problem with WSD is sense decision as dictionaries and thesauri offer several
word divisions into senses. Many WSD research papers have commonly used
WordNet (WordNet 2022a) as the reference word sense corpus for English. It
can be considered as a comprehensive lexicon that is composed of word con-
cepts and their semantic relations with other concepts (e.g., synonyms). For
example, the concept of car is interpreted as {car, auto, automobile, machine,

128 6 Semantic Analysis

motorcar}. BabelNet (2022) is a recent multilingual encyclopedic dictionary
with multilingual WSD.

2. POS tagging.

WSD and POS tagging involve disambiguation or tagging with words. However,
algorithms used for one tend not to work well for the other, mainly because a
word’s POS is primarily determined by adjacent one to three words versus word
sense determined by more distant words in many cases. For example, the success
rate of POS tagging algorithms is around 96% versus 75% in WSD with super-
vised learning (SL) current research and findings (Agirre and Edmonds 2007).

3. Inter-judge variance.

WSD system test results on a task are usually compared to ones by humans. While
it is easy to attribute POS to texts, it is difficult in training to mark word senses.
Since human performance serves as the standard, it is an upper limit for com-
puter performance. However, humans fared much better at coarse-grained dis-
crimination than at fine-grained discrimination and it is the reason for the
research of the former to put the test in recent WSD evaluation exercises.

4. Pragmatics (discourse).

Pragmatics and discourse are complex problems in NLP. Many Al researchers
believe that one cannot analyze meanings of words without some form of sen-
sible ontology analysis and world knowledge at a pragmatic level. Also, common
sense is sometimes required to distinguish words such as pronouns in anaphors
or cataphors of the text.

5. Sense discreteness.

The notion of word sense is sometimes unpredictable and controversial. Most can
agree on semantic interpretation at the level of coarse-grained homographs, but
going down to fine-grained polysemy can lead to disagreement. For example,
Senseval-2 (Preiss 2006) uses fine-grained sensory distinctions, with only 85%
of the annotated words that can agree with. Word meanings are infinitely vari-
able, in principle are dependent on context, and cannot be easily broken down
into distinct or separate submeanings.

6.4.3 Method for WSD

WSD commonly used methods include (1) knowledge base (KB), (2) SL, (3) semi-
supervised learning, and (4) unsupervised learning (UL) (Agirre and Edmonds
2007; Preiss 20006).

1. KB is a method mainly based on dictionaries, thesauri, and lexical knowledge
databases. They don’t need corpus evidence for disambiguation. The Lesk
method (Lesk 1986) is a pioneering dictionary-based method introduced by
Prof. Michael Lesk in 1986. The Lesk definition and its algorithm aim to mea-
sure the overlap between the meaning definitions of all words in a context.
Kilgarriff and Rosenzweig (2000) simplified the Lesk definition to measure the

6.5 WordNet and Online Thesauri 129

overlap between meaning definition of a word and current context, meaning the
correctness of identifying one word at a time, the current context being the set of
words in surrounding sentence/utterance or paragraph (Ayetiran and
Agbele 2016).

2. SL methods are standard machine-learning techniques applying semantically
annotated corpora to train disambiguation. These methods assume that context
alone can provide sufficient evidence to clarify meaning, so verbal knowledge
and reasoning are considered unnecessary. A context is interpreted as a set of
word features that contains information about surrounding words. Support
Vector Machines (SVMs) and memory-based learning are commonly used SL
methods for WSD. However, they are usually computationally intensive and
require large manually labeled corpora to produce satisfactory results.

3. Since many WSD problems lack training corpora, semi-supervised methods are
applied on both labeled and unlabeled data, which require only amount of anno-
tated text and a large amount of plain unannotated text, as well as bootstrapping
from starting data. The bootstrapping method starts with a small amount of start-
ing data for each word, either with manually labeled training examples or with a
small set of triggering decision rules. The seed value is intended to train an initial
classifier with some supervised method. This classifier is then applied on the
unlabeled portion of corpus to extract a larger training set with the safest classi-
fication. This process is repeated to train each new classifier until the entire cor-
pus is exhausted or the maximum number of iterations is reached. Other
semi-supervised techniques apply large unlabeled corpora to provide co-
occurrence information to complement labeled corpus perspectives to help
supervised models adapt to different domains.

4. UL methods assume that similar meanings appear in similar contexts, that is why
perceptions can be induced from texts by clustering word occurrences using a
similarity measure of context. This task is called word sense induction or dis-
crimination. UL methods can overcome knowledge acquisition bottlenecks due
to their independence from manual work. Although the performance is lower
than other methods mentioned above, fair comparison is hard as the induced
senses should link up to a known word sense dictionary.

6.5 WordNet and Online Thesauri

6.5.1 What Is WordNet?

WordNet (WordNet 2022a) is a lexical corpus of words with over 200 languages
with adjectives, adverbs, nouns, and verbs grouped into a set of synonyms where
each word in WordNet has a distinct concept. It is organized by concepts and mean-
ings against a dictionary in alphabets. Since traditional dictionaries were created by
humans, a lexical resource is required for computers effecting WordNet that is

130 6 Semantic Analysis

Table 6.1 WordNet basic statistical information

Category Unique strings
Noun 117,798
Verb 11,529
Adjective 22,479
Adverb 4481

applicable in NLP. It is available for public access and free download with statistical
information as shown in Table 6.1.

WordNet’s structure is an integral tool for computational linguistics and NLP
implementations. It resembles a thesaurus and group words by meanings. However,
they have basic differences: (a) WordNet indicates word senses in addition to word
forms. As aresult, words that are found near one another in the network are semanti-
cally related or even synonym with each other. (b) WordNet encodes semantic rela-
tions among words, whereas words in a thesaurus do not follow a distinct pattern
other than the similarity in surface meaning.

6.5.2 What Are Synsets?

WordNet can be considered as a network of words connected by lexical and seman-
tic relations. Nouns, verbs, adjectives, and adverbs are combined into a group of
cognitive synonyms called synsets with each expressing a specific concept. Synsets
are associated with conceptual semantics and lexical relationships such as hypo-
nyms and antonyms. WordNet contains over 117,000 synsets. Each of these synsets
is associated with other in a small number of conceptual relationships.

A synset contains a short definition called a gloss, and one or more short sen-
tences describing how members of synset are used in most contexts. Word forms
with many different meanings are represented in different synsets. This is the form
of each form-meaning pair in WordNet. Each synonym group is a synset within a
WordNet term, and synonyms that are part of a synset are lexical variants of that
concept. Figure 6.1 shows a synset tree for the synset concept book and all concept
relationships with all other related synsets. Meaningful related words and concepts
inthe generated network can be browsed from the WordNet browser (WordNet 2022b).

6.5.3 Knowledge Structure of WordNet

A WordNet structure is concepts of word relationship in a WordNet network to
arrange same concepts in similar interchange contexts in Fig. 6.2. These words are
unordered sets grouped into synsets and linked with small conceptual relations. An
example of synset structure benefit arrayed synonyms profit with definitions and

6.5 WordNet and Online Thesauri 131

publization
accumulation ‘Yord of God
aggregaton account baok Viorg
beok of scdount : | /senpture
assemblage
2 r ledger | playsenpt Hely'wint
L s
® seripl Holy Seniplure
collecon leger—— °
o P Gaod Baok
[] / Crastian Bible
1ecotd Dook
Edile
rule BOOK ° yotume
L -,
section book Bk
L ' °
o
subdivision
[al
® - L] uran
\ record
] ® o Koran
(] L}
proguct akQui'an
® 1eserve
0 o
produchon / B Tegister
schedule ul cown

anlor

Fig. 6.1 Synset concept of book in WordNet

examples as shown in Fig. 6.3. Benefit(profit) is defined as an advantage or profit
gain from something. For example, He receives benefits of computers trade.

6.5.4 What Are Major Lexical Relations Captured in WordNet?

Super-subordinate relation, also called hypernymy, hyponymy, or IS-A relation is a
frequently used relation among synsets. It links generic synsets such as {furniture,
piece_of _furniture} to subconcepts like {chair} and {armchair}. Thus, WordNet
indicates that synset furniture consists of synset chair, which in turn includes synset
armchair; conversely, synsets like chair or armchair make up the synset furniture.
In fact, the synset tree goes up to root-node {entity}.

As said, such hyponym relation is transitive in nature, e.g., if an armchair is a
kind of chair and if a chair is a kind of furniture, then an armchair is a kind of fur-
niture. WordNet distinguishes between types (general nouns) and instances (spe-
cific people, countries, and geographic entities), e.g., book is a type of publication,

132 6 Semantic Analysis

Fig. 6.2 Basic knowledge
structure of WordNet [L

synset - synset - synset

WordNET

I Y

synset synset synset

synonyms

and Abraham Lincoln is an instance of President. Instances are always denoted as
leaves (terminal nodes) in synset tree hierarchies.
Major lexical relations include the following:

* Synonymy: words with similar meaning.

e Polysemy: words with more than single sense.

* Hyponymy/Hypernymy: IS-A relation between words.

* Meronymy/Holonymy: part-whole relation between words.

e Antonymy: opposite meanings between words.

e Troponymy: applicable for verbs, e.g., whisper is troponym of speak.

Table 6.2 shows the major lexical relation capture in WordNet with examples.

6.5.5 Applications of WordNet and Thesauri?

WordNet and Thesauri applications include information extraction, information
retrieval, question answering, medical informatics, and machine translation.
WordNet has another common usage to determine word similarity with algorithms
proposed, including to measure the distance(s) among words in WordNet synset
graphs (trees), e.g., counting the number of edges among synsets. Intuitive words
or synonyms are close to meaning. Many WordNet-based world similarity algo-
rithms are implemented in a Perl package called WordNet::Similarity and a Python
package using NLTK and SpaCy will be explored in the second part of NLP
workshops.

6.6 Other Online Thesauri: MeSH 133

arr =
synsets('henefit)

—

profit revenue yield
arr[0].definition() arr{0].lemma_names()
an advantage I
or profit N
gained from profit
some thing

r———

arr[0].example()

Y
he receives
benefits of

computers
trade

Fig. 6.3 Example of knowledge structure of synset benefit

Table 6.2 Major lexical relations captured in WordNet with examples

Semantic relation Syntactic category | Examples

Synonymy (similar) N, V, Aj, Av pipe, tube rise, ascend sad, unhappy rapidly,
speedily

Antonymy (opposite) Aj, Av, (N, V) wet, dry powerful, powerless friendly,

unfriendly rapidly, slowly
sugar maple, maple maple, tree tree, plant

Hyponymy (subordinate) | N
Meronymy (part) N brim, hat gin, martini ship, fleet
\%

Troponomy (manner) march, walk whisper, speak

Entailment A\ drive, ride divorce, marry
Note: N = Nouns, Adj = Adjectives, V = Verbs, Av = Adverbs

6.6 Other Online Thesauri: MeSH

6.6.1 WhatIs MeSH?

Medical Subject Thesaurus, aka. MeSH (MeSH 2022) is a hierarchically organized
vocabulary for indexing, cataloging, and searching biomedical- and health-related
information created by the US National Library of Medicine (NLM). MeSH

134 6 Semantic Analysis

contains subject headings that appear in MEDLINE/PubMed, NLM catalog, and
other NLM databases. It consists of 177,000 entries and 26,142 biomedical titles,
and continues to soar as the literature expands. The 2020 edition contains more than
25,000 subject headings, 4400 approximately more since its launch in 1960. These
headings are organized into an 11-level hierarchy with 83 subheadings. MeSH can
be freely used via US NLM'’s online MeSH browser (MeSH 2022). MeSH headings
are organized in a knowledge tree with 16 major branches:

A. Anatomy, B. Organisms, C. Diseases, D. Chemicals and Drugs,
E. Analytical Diagnostics and Therapeutic Techniques and Equipment,
F. Psychiatry and Psychology, G. Phenomena and Processes, H. Disciplines
and Occupations, I. Anthropology, Education, Sociology and Social
Phenomena, J. Technology, Industry, Agriculture, K. Humanities,
L. Information Science, M. Named Groups, N. Health Care, V. Publication
Characteristics, and Z. Geographicals.

MeSH glossary contains several entry terms intended to be synonyms for canoni-
cal title terms in addition to a hierarchical set of canonical terms.

6.6.2 Uses of the MeSH Ontology

MeSH ontology usage includes the following:

1. Synonyms as entry terms, e.g., sucrose and saccharose.

2. Hypernyms from hierarchy, e.g., sucrose is a glycosyl glycoside.

3. Index in MEDLINE/PubMed databases such as bibliographic database NLM
contains 20 million journal articles with 10-20 MeSH terms manually assigned
to each article.

6.7 Word Similarity and Thesaurus Methods

6.7.1 Introduction

A synonym can be considered as a binary relationship between two synonyms or
non-synonyms. Similarity or distance is a looser measure when two words share
more semantic features with each other. Similarity is a relationship between sensa-
tions, e.g., bank is usually not like slope, but in some cases, they may have the same
meaning, e.g., bank; is similar to fund;, and bank, is similar to slopes, in which the
similarity can be calculated by word sense relationship in a sentence.

6.7 Word Similarity and Thesaurus Methods 135

12

| object I

artifact

10

instrumentality ‘ article ‘

transport l l ware I

wheeled vehicle jr

automotive l | motorcyle

truck ‘ I minibike]

Fig. 6.4 Path-based similarity for a concept related to car

Word similarity is important because a good measure can be used in information
retrieval, question answering, machine translation, natural language generation, lan-
guage modeling, automatic paper scoring, and even plagiarism detection.

The difference between word similarity and word relation is that similar words
are almost synonyms, e.g., car, bicycle are similar in concept but not a kind of Is-A
relation, whereas related words can be related in any way, e.g., car, gasoline are
highly related but not similar in semantic meaning.

There are two types of similarity algorithms: (1) thesaurus-based algorithms and
(2) distributional algorithms. Thesaurus-based algorithms are designed to examine
adjacent words in a hypernym hierarchy with similar annotations or definitions.
Distribution algorithms are designed to examine words with similar distributional
contexts.

6.7.2 Path-Based Similarity

Path-based similarity aims to examine two concepts in general. The two concepts
are similar if they are in the vicinity of thesaurus hierarchy. Synset tree (graph), the
distance (path) between two synset nodes, can provide a good indication of seman-
tic similarity between two concepts. This evaluation method is known as path-based

136 6 Semantic Analysis

similarity measurement. Figure 6.4 shows an example of path-based similarity for
the concept car. Note that all concepts have a path value of 1 point to themselves.

For example:

pathlen(car, car) = 1
pathlen(car, automotive) = 2
pathlen(car, truck) = 3
pathlen(car, minibike) = 5
pathlen(car, transport) = 5
pathlen(car, artifact) =7
pathlen(care, tableware) = 10
pathlen(car, fork) = 12

In general:

pathlen(c,,c,) = 1 +nos.of edges in the shortest
pathat hypernym graph between sense nodes cland c2 (6.1

where pathlen(c,, ¢,) ranges from O to 1.
The path-based similarity simpath(cy,c,) of two nodes (concepts) is given by:

1
i h(c.c,)=—F"—— 6.2
simpath (c,.c,) pathen (c,.c1) (6.2)
wordsim (w,,w,) = max (simpath c,.c,))
Ve, esenses(w,), ¢, senses(w,) (6.3)

Using car concept as example:
simpath(car, car) = 1/1 = 1.0.
simpath(car, automotive) = 1/2 = 0.50.
simpath(car, truck) = 1/3 = 0.33.
simpath(car, minibike) = 1/5 = 0.20.
simpath(car, transport) = 1/5 = 0.20.
simpath(car, artifact) = 1/7 = 0.14.
simpath(car, tableware) = 1/10 = 0.10.
pathlen(car, fork) = 1/12 = 0.08.

6.7.3 Problems with Path-Based Similarity

Let’s assume every link denotes a uniform distance. It seems that car to minibike is
closer than car to transport because higher synsets are more abstract in synset tree,
e.g., object is abstract than artifact, transport is abstract than vehicle.

6.7 Word Similarity and Thesaurus Methods 137

Although simpath(car, minibike) and simpath(car, transport) have identical val-
ues, their semantic relationship between each other is different; naturally, synsets in
other branch of the synset tree are less related in concept, e.g., car vs. tableware or
even fork.

Hence, it is suggested to have a metric that can represent the cost of each edge
independently so that words associated with abstract nodes should have less similar-
ity scores.

6.7.4 Information Content Similarity

The information content similarity metric uses information content (IC) to assess
semantic similarity in taxonomy that was first proposed by Prof. Philip Resnik,
whose distinguished work Using information content to evaluate sematic similarity
in taxonomy was published in 1995 (Resnik 1995).

Let’s define P(c) as the probability of a random word in corpus for an instance of
concept c¢. There is a unique random variable ranging from words formally associ-
ated with each concept in the hierarchy. For a given concept, each observed noun is
either a member of the concept with probability P(c) or is not a member of the
concept with probability / — P(c). All words are members of the root node entity,
i.e., P(root) = I; lower nodes in the hierarchy have lower probability.

Information content similarity is generally determined by counting against the
corpus. When applying to car concept example, each instance of car counts toward
frequency of automotive, wheeled vehicle, vehicle, etc. So given word(c) is the col-
lection of all words that are children of node c, the probability of information con-
tent similarity P(c) in a corpus is given by Eq. 6.4:

z count (w)
P(C) _ wewords(c)N (64)

Thus, (1) words(transport) = {transport, wheeled vehicle, automotive, car, truck,
motorcycle, minibike} and (2) words(automotive) = {car, truckj.

A synset tree of car associated with P(c) up to transport level in each corpus is
shown in Fig. 6.5.

IC is given by:

IC(c):—logP(c) (6.5)
where the lowest common subsume (LCS) is given by:

LCS(c,.c,) = the lowest common subsumer (6.6)

138 6 Semantic Analysis

Fig. 6.5 Synset tree of

“car” with associated P(c)

(up to transport level in the

corpus)
wheeled vehicle 0.102

00172 | automotve | [motoryle | 000249
| car l [truck | | minibike l
0.00872 0.00117 0.000537

That is, the lower node in hierarchy that subsumes (is a hypernym of) both ¢, and
¢, is ready to apply IC as a similarity metric.

6.7.5 The Resnik Method

The Resnik method (Resnik 1995, 1999) refers to the similarity between two words
that are in the vicinity of their common information. It is defined to measure the
most informative common ICs, i.e., (lowest) subsumer (MIS/LCS) of two nodes,
given by:

SiM gy (1.,) = —log P(LCS(C,.C,)) (6.7)

6.7.6 The Dekang Lin Method

The Dekang Lin method was proposed by Prof. Dekang Lin with his work
Information-Theoretic Definition of Similarity at ICML in 1998 (Lin 1998). It deter-
mines not only the similarity between concepts A and B what they have in common
but also the differences between them. It concerns (1) commonality and (2) differ-
ence. Commonality, denoted by IC(common(A,B)), means A and B are more in
common that has more similarity. Difference, denoted by IC(description(A,B) — IC
(common(A,B)), means more differences between A and B that has less similarity.

Similarity theorem is similarity between A and B measured by the ratio between
amount of information required to state commonality of A and B, and the informa-
tion required to describe what A and B are:

simLin (A,B)—log P (common (A,B)) /log P (description (A,B)) (6.8)

6.7 Word Similarity and Thesaurus Methods 139

He further modified the Resnik method demonstrating that information in com-
mon is twice the LCS IC given by:

2xlog P(LCS(C1 ,Cy))
logP(c1)+ logP(c,)

SimLin(c,,c,) = (6.9)

Using car concept as example:

2xlog P (wheeled vehicle)
log P(car)+log P (minibike)
_ 2x10gP(0.102)
~ logP(0.00872)+logP(0.000537)

SimLin (car,minibike) =

=0.372

2xlog P (automotive)
logP (car) +logP (truck)
2xlogP(0.0172)
- logP(0.00872)+1logP(0.00117)

SimLin (car,truck) =

=0.707

This calculation showed that car is related to truck than minibike at hierarchy
tree in Table 6.5

6.7.7 The (Extended) Lesk Algorithm

The (extended) Lesk algorithm uses a thesaurus-based algorithm to measure glosses
which contain similar words for concept similarity. For instance, drawing paper is
a type of paper for drafting, including the art of transferring designs from specially
prepared paper to a glass, wood, or even metal surface.

For all n-word phrases which appear in two glosses:

1. Add a score of n*

2. Paper and specially prepare for 1 + 22 = 5.

3. Evaluate the overlaps for other relations which define glosses of hypernyms and
hyponyms.

The extended Lesk for similarity (sim,.g) is given by:

simg . (¢6,)= Y] overlap(gloss(r(c,)),gloss(q(cz))) (6.10)

r,qeRELS

140 6 Semantic Analysis

6.8 Distributed Similarity

6.8.1 Distributional Models of Meaning

Distributional models of meaning can be considered as a kind of vector-space mod-
els of meaning. Prof. Zellig Harris (1909-1992) claimed that oculist and eye-doc-
tor... occur in almost the same environments... (Harris 1954), which means A & B
is synonym if A and B have almost identical environments. Sir John R Firth
(1890-1960) also stated that you shall know a word by the company it keeps!
(Firth 1957):

[6.41
[6.42
[6.43
[6.44

A bottle of Baileys is on the table.

Many coffee drinkers like Baileys.

Baileys will make you drunk.

We make Baileys out of Irish whiskey and cream.

e e

Humans can guess Baileys from context words is an alcoholic coffee beverage
flavored with cream and Irish whiskey. This means that two words are semantically
similar if they are similar in the context of the word being used for algorithm
interpretation.

6.8.2 Word Vectors

Word vector is a vector of weights. In a simple /-of-N encoding, every element in the
vector is associated with a word in vocabulary. Word encoding is vector where the
corresponding element is set to one, and other elements are zero.

Given a target word w, assume there is a binary feature f; for each N word in lexi-
con v;, the word vector is given by:

W =(fifofsnSy) (6.11)

Apply to above Baileys’ example, if w = Baileys, f; = coffee, >, = whiskey,
fs = beer, f; = cream, ...

w=(LL0.L...) (6.12)

6.8.3 Term-Document Matrix

Text data is denoted as a matrix in this method. The rows represent sentences from
the data to be analyzed, and columns represent words of the matrix. Each cell is the
counting of term ¢ in a document d:f; 4, and each document is a counter vector in N¥.

6.8 Distributed Similarity

141

Table 6.3 shows a term-document matrix to investigate the relationships of four
important words: battle, soldier, fool, and trick from six famous literatures: As You
Like It, Henry V, Julius Caesar, and Twelfth Night extracted from The Complete
Works of Shakespeare by William Shakespeare (1564—1616) (Shakespeare 2021),
The Adventures of Sherlock Holmes (Doyle 2019) and Moby Dick by Herman
Melville (1819-1891) (Melville 2012).

It showed that:

1. Two documents Julius Caesar and Henry V are similar if their term-document
vectors are similar as in Table 6.4.
2. Each word is a count vector in NP as a row. Table 6.5 shows row vector for the
word fool across these six documents.
3. Two words are semantically similar if their word vectors are similar, e.g., fool
and rrick. It makes sense because they are related to each other semantically as

compared to battle and soldier as shown in Table 6.6.

Table 6.3 Term-document matrix of six famous English literature

As You Like | Twelfth

It Night
battle 1 1
soldier 2 2
fool 37 58
trick 1 3

Table 6.4 Term-document matrix comparison by document vectors

As You Like | Twelfth

It Night
battle 1 1
soldier 2 2
fool 37 58
trick 1 3

Julius
Caesar

8
12
1
1

Julius
Caesar

8
12
1
1

Henry V
15
36

5

Henry V
15
36

5

1

Table 6.5 Illustration of count vector for six document domain

As You Like | Twelfth

It Night
battle 1 1
soldier 2 2
fool 37 58
trick 1 3

Julius
Caesar

8
12
1
1

Henry V
15
36

5

Adv of
Sherlock
Holmes

1

0
3
3

Adv of
Sherlock
Holmes

1

0
3
3

Adv of
Sherlock
Holmes

1

0
3
3

Moby Dick
20
4

Moby Dick
20

Moby Dick
20

142 6 Semantic Analysis

Table 6.6 Sample of two similar words by vector comparison across six documents

Adv of
As You Like | Twelfth Julius Sherlock
It Night Caesar Henry V Holmes Moby Dick
battle 1 1 8 15 1 20
soldier 2 2 12 36 0 4
fool 37 58 1 5 3 7
trick 1 3 1 3 3

A term-context matrix can be formed using smaller context, e.g., a set of ten suc-
cessive words from a paragraph or search engine. A word is now defined by a vec-
tor over the number of context words, which can be an entire document, literature,
or a list of words in a search engine, etc.

There is an argument as to whether raw counts can be used. tf-idf (term-frequency
and inverse document-frequency) are commonly used in place of raw term counts
for term-document matrix, whereas Positive Pointwise Mutual Information (PPMI)
method is used in place of raw term counts for ferm-context matrix.

6.8.4 Pointwise Mutual Information

Pointwise Mutual Information (PMI) is to evaluate whether events x and y co-occur
more if they are independent, which is given by:

PMI(X,Y) = log, _Plw) (6.13)

P(x)P(y)

For word similarity measurement application, Church and Hanks (1990) pro-
posed PMI between two words which is given by:

P(word,,word,)

PMI(word,,word,) = log, P(word,) P(word,)
1 2

(6.14)

Niwa and Nitta (1994) proposed Positive PMI (or PPMI) by replacing all PMI
values less than zero into zero values, which is now commonly used in PMI calcula-
tions for document similarity comparison.

6.8.5 Example of Computing PPMI on a Term-Context Matrix

Given matrix F' with C columns (contexts) and W rows (words) and f;; is the number
of times w; occurs in context ¢;, Positive PMI(PPMI) between word, and word, is
given by:

6.8 Distributed Similarity

where

in which

PPMI(word, ,word,) = max £log2

p(W.C)

P(word,,word,)

P(word,) P(word,

{ PMI(W,C), if PMI(W,C)>0

fy

Zivilzjilfij

143

ol ©15
)

0, if PMI(W,C)<0 (10
X '

W)= V=== (617

cop(W)==0 p(C)==0T @)

e p(W, C) is the probability of considering target word W and context word C
together.

e p(W) and p(C) are the probability of occurring target word W and context word
C, if they are independent, f ; is the number of times W, occurs in context C;.

Let’s use the previous document term matrix of six English literatures as exam-
ple to calculate word and context of total counts and probabilities as shown in Tables
6.7 and 6.8.

P(W =fool,C = As YouLikeIt) = 37/225=0.164

Table 6.7 Term-context matrix of six contexts with word and context total counts

battle
soldier
fool
trick
Context

As You
Like It

1
2
37
1
41

Twelfth
Night
1
2
58
3
64

Julius
Caesar

8
12
1
1
22

Henry V
15
36
5
1
57

Adv of

Sherlock | Moby
Holmes Dick
1 20

0 4

3 7

3 3

7 34

Word
46
56

111
12

225

Table 6.8 Term-context matrix of six contexts with word and context total probabilities

Context
battle
soldier
fool
trick
Context

As You
Like It

1

2
37

1
0.182

Twelfth
Night
1

58
3
0.284

Julius
Caesar

8

1
1
0.098

Henry V
15
36
5
1
0.253

Adv of
Sherlock | Moby
Holmes Dick
1 20
0 4
3 7
3 3
0.031 0.151

Word
0.204
0.249
0.493
0.053

144 6 Semantic Analysis

Table 6.9 Term-context matrix of six contexts with PPMI values

Adv of
As You Like | Twelfth Julius Sherlock
It Night Caesar Henry V Holmes Moby Dick
battle 0.000 0.000 0.576 0.252 0.000 1.057
soldier 0.000 0.000 0.785 0.931 - 0.000
fool 0.604 0.608 0.000 0.000 0.000 0.000
trick 0.000 0.000 0.000 0.000 2.084 0.503

P(W =fool) =111/225=0.493
P(C=AsYouLikelt)=41/225=0.182

Let’s calculate PMI score for the word fool co-occurred with context from
C1 = As You Like It based on the above information from Table 6.8.

. W,
Using PMI(W,C) = log p(W.C)
p

(W)p(C)

PMI(fool,C1) =1lo 0.164

——=0.604 6.18
g0.493*0.182 (6.18)

Similarly, the rest of PMI values for this term-context matrix are calculated as
follows in Table 6.9:

PMI(W,C),if PMI(W.,C)>0

Note that: PPMI(W,C) = { 0 'fPMI(W C) <0
51 ’

} from (6.16).

6.8.6 Weighing PMI Techniques

It is noted that PMI is biased toward infrequent events from above matrix, e.g., rare
words have high PMI values. There are two possible methods to improve PMI val-
ues: (1) apply add-k smoothing, e.g., add-1 smoothing and (2) assign rare words
with higher probabilities.

6.8.7 Add-K Smoothing in PMI Computation

Since PMI is usually biased with infrequent events, add-K smoothing method can
be solution. For example, apply add-2 smoothing (i.e., set k = 2) in every cell of co-
occurrence matrix as in Table 6.10 and see how it works.

The corresponding probability matrix after add-2 smoothing is shown in
Table 6.11.

6.8 Distributed Similarity 145

Table 6.10 Term-context matrix of six contexts with word and context total count with add-2
smoothing

Adv of

As You Twelfth Julius Sherlock | Moby

Like It Night Caesar Henry V| Holmes Dick Word
battle 3 3 10 17 3 22 58
soldier 4 4 14 38 2 6 68
fool 39 60 3 7 5 9 123
trick 3 5 3 3 5 5 24
Context | 49 72 30 65 15 42 273

Table 6.11 Term-context matrix of six contexts with word and context total prob. with add-2
smoothing

Adv of

As You Twelfth Julius Sherlock | Moby

Like It Night Caesar Henry V| Holmes Dick Word
battle 0.011 0.011 0.037 0.062 0.011 0.081 0.212
soldier 0.015 0.015 0.051 0.139 0.007 0.022 0.249
fool 0.143 0.220 0.011 0.026 0.018 0.033 0.451
trick 0.011 0.018 0.011 0.011 0.018 0.018 0.088
Context | 0.179 0.264 0.110 0.238 0.055 0.154 1.000

Table 6.12 Term-context matrix of six contexts with PPMI values with add-2 smoothing

Adv of
As You Like | Twelfth Julius Sherlock
It Night Caesar Henry V Holmes Moby Dick
battle 0.000 0.000 0.450 0.208 0.000 0.902
soldier 0.000 0.000 0.628 0.853 0.000 0.000
fool 0.569 0.615 0.000 0.000 0.000 0.000
trick 0.000 0.000 0.129 0.000 1.333 0.303

The term-context matrix with PPMI values after applying add-2 smoothing is
shown in Table 6.12.

It may have certain improvement in PPMI values giving the rate context words
theoretically.

However, there were not many improvements in this case.

Another method to achieve this is by raising context probabilities to a certain
factor a, say 0.8.

PPMI,, (w,c) = max| lo Mo 6.19
AT ngP c)’ (6.19)

where P, (c) = count (c)

- chount (c)a

146 6 Semantic Analysis

Table 6.13 Term-context matrix of six contexts with PPMI values with a = 0.80

Adv of
As You Like | Twelfth Julius Sherlock
It Night Caesar Henry V Holmes Moby Dick
battle 0.000 0.000 0.144 0.000 0.000 0.625
soldier 0.000 0.000 0.435 0.581 - 0.000
fool 0.369 0.373 0.000 0.000 0.000 0.000
trick 0.000 0.000 0.000 0.000 1.315 0.000

Table 6.14 Term-context matrix of six contexts with PPMI values with a = 0.90

Adv of
As You Like | Twelfth Julius Sherlock
It Night Caesar Henry V Holmes Moby Dick
battle 0.000 0.000 0.460 0.137 0.000 0.941
soldier 0.000 0.000 0.711 0.858 - 0.000
fool 0.587 0.592 0.000 0.000 0.000 0.000
trick 0.000 0.000 0.000 0.000 1.798 0.217
For example: say P(a) = 0.95 and P(b) = 0.05:
0.95%¢ 0.05%8
P, (a) = s = 0913, P, (b) = o = 0.083. (6.20)
0.95™° +0.05 0.95™ +0.05"

Results using @ = 0.8 and 0.9 are shown in Tables 6.13 and 6.14 respectively.

6.8.8 Context and Word Similarity Measurement

When applying context and world similarity measurement against context and word
vector, remember that cosine for computing similarity is given by:

. _v W Z VAT
cos(v | ||w| ,— ,72 -

where v; is PPMI value for word v in context i; w; is PPMI value for word w in con-
text I; and cos(v,w) is the cosine similarity of v and w.

Context and word similarity measurement of six literatures is shown in Table 6.15.

For context comparison, cosine similarity measurement is performed between
C1 As You Like It and other five literatures, in which cosine (C1, C2) have the high-
est 0.453 as compared to others ranging from 0.044 (C3:Julius Caesar) to 0.157
(C6:Moby Dick). It showed that it makes sense as the context of As You Like It has
theme similarity with Twelfth Night than other literatures.

6.21)

147

6.8 Distributed Similarity

LS1°0 7800 £60°0 vh00 £57°0 (xD ‘1D)uIs
06C Sil €LT 0L ¥S1T XD« 1D
Ly 61 L¥S1 01z 8LE€E SLET XD % XD
T € € I I € I Jounp
vT10 L¥T 1161 L € S I 8¢S Lg [00J:E M
€00 89 vl v 0 9¢ 4 z z I01PIOSITA
LLOO 06 769 0z I N 8 I I ARG T M
(XM CPAWIS | XM« bM | XM s XM Yo1q SOWOH | A AIUSHP:D Tesae)) WSIN T
£qoIN:9D Yoouays SUNLED | UPIPMLITD | NOASVID
JO APY:GD

sornye1oN| ofdwes XIs woiy AJLIR[IWIS PIOM PUR JXU0D) ST°9 d[qBL

148 6 Semantic Analysis

For word comparison, comparison is performed at W4: trick with three other
words across six literatures, in which cosine W4:trick, W3:fool have the highest
similarities among other two words W1:battle and W2:Solder which in fact they are
related in meanings and English usage.

It also showed other possible similarity measurements including Jaccard, Dice,
and JSs methods given by:

zzlmin(v,.,wi)

sim,___, (v.7) = (6.22)
e (77) > max(v,w,)
225" min(v,, w.

sim,,. (7.9 = xz";’mm(v’ v.) (6.23)
> irw)

sim, (7 w)=D(§|V;Wj+D[W|§;WJ (6.24)

6.8.9 Evaluating Similarity

Like N-grams, similarity methods have (1) intrinsic and (2) extrinsic evaluation
schemes. Intrinsic evaluation refers to the correlation between similarity scores of
algorithms and human words. Extrinsic evaluation, also called task-based or end-
to-end evaluation, refers to detect misspellings, WSD, and use in grading essays or
TOEFL multiple-choice vocabulary tests.

Exercises

6.1. What is semantic analysis? State and explain the importance of semantic
analysis in NLP. Give two examples to illustrate.

6.2. State and explain how humans are good in semantic analysis. Give two exam-
ples to support your answers.

6.3. What is the difference between lexical vs. compositional semantic analysis?
Give two examples for each to support your answers.

6.4. What is word sense in linguistic? State and explain any five basic types of
lexical semantics and their word senses. Give two examples for each to
illustrate.

6.5. What is zeugma is linguistic and why is important in NLP? Give two exam-
ples to illustrate how zeugma test is used for testing semantic correctness of
sentences/utterances.

6.6. What are the major concerns and difficulties encountered in WSD. Give an
example for each concern to support your answers.

References 149

6.7. State and explain four major methods to tackle WSD. Which one(s) is(are)
commonly used in NLP application nowadays to tackle WSD? Why?

6.8. What are synsets in WordNet framework? Give two examples on how it works
to support your answers.

6.9. What is path-based similarity in semantic analysis? Use book as the basic
synset to construct a synset tree like Table 6.4 and calculate all the related
path-based similarity between different concepts related to book.

6.10. Based on the synset tree created in question 6.9, calculate the similarity val-
ues by using: (1) the Resnik method and (2) the Dekang Lin method, and
compare them with the ones calculated in 6.9.

6.11. What is distributed similarity? State and explain methods used for distributed
similarity measurement.

6.12. Use four famous literatures: (1) Moby Dick (Melville 2012), (2) Little Women
by Louisa Mary Alcott (1832-1888) (Alcott 2017), (3) The Adventures of
Sherlock Holmes (Doyle 2019), and (4) War and Peace by Leo Tolstoy
(1828-1910) (Tolstoy 2019) as context documents, and select any four words
(wisely) to illustrate how term-context matrix, PMI, and PPMI are used for
document and word similarity measurement in semantic analysis.

6.13. Repeat question 6.12 by using the add-K smoothing method for PMI/PPMI
calculations (with £ = 1 and 2) and different values of a and compare them
with results found in 6.12. Explain why it can/cannot be improved.

References

Agirre, E. and Edmonds, P. (Eds) (2007) Word Sense Disambiguation: Algorithms and Applications
(Text, Speech and Language Technology Book 33). Springer.

Alcott, L. M. (2017) Little Women. AmazonClassics.

Ayetiran, E. F., & Agbele, K. (2016). An optimized Lesk-based algorithm for word sense disam-
biguation. Open Computer Science, 8(1), 165-172.

BabelNet (2022) BabelNet official site. https://babelnet.org/. Accessed 25 July 2022.

Bender, E. M. and Lascarides, A. (2019) Linguistic Fundamentals for Natural Language Processing
II: 100 Essentials from Semantics and Pragmatics (Synthesis Lectures on Human Language
Technologies). Springer.

Butler, A. (2015) Linguistic Expressions and Semantic Processing: A Practical Approach. Springer.

Church, K. W., & Hanks, P. (1990). Word association norms, mutual information, and lexicog-
raphy. Computational Linguistics - Association for Computational Linguistics, 16(1), 22-29.

Cruse, A. (2011) Meaning in Language: An Introduction to Semantics and Pragmatics (Oxford
Textbooks in Linguistics). Oxford University Press

Cruse, A. (1986) Lexical Semantics (Cambridge Textbooks in Linguistics). Cambridge
University Press.

Doyle, A. C. (2019) The Adventures of Sherlock Holmes (AmazonClassics Edition).
AmazonClassics.

Firth, J. R. (1957). Papers in Linguistics 1934-1951. London: Oxford.

Goddard, C. (1998) Semantic Analysis: A Practical Introduction (Oxford Textbooks in Linguistics).
Oxford University Press.

https://babelnet.org/

150 6 Semantic Analysis

Harris, Z. S. (1954). Distributional structure. Word (Worcester), 10(2-3), 146-162. https://doi.org/1
0.1080/00437956.1954.11659520.

Kilgarriff, A. and Rosenzweig, J. (2000). Framework and results for english SENSEVAL. Computers
and the Humanities, 34(1/2), 15-48.

Kroeger, P. (2019) Analyzing meaning: An introduction to semantics and pragmatics (Textbooks in
Language Sciences). Freie Universitit Berlin.

Lesk, M. (1986). Automatic sense disambiguation using machine readable dictionaries: How
to tell a pine cone from an ice cream cone. ACM Special Interest Group for Design of
Communication: Proceedings of the 5th annual international conference on Systems documen-
tation. ACM; 24-26. https://doi.org/10.1145/318723.318728.

Lin, D. K. (1998) An Information-Theoretic Definition of Similarity. In Proceedings of the Fifteenth
International Conference on Machine Learning (ICML’98). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 296-304.

Melville, H. (2012). Moby-dick. Penguin English Library.

MESH (2022) MeSH browser official site. https://www.nim.nih.gov/mesh/meshome.html.
Accessed 25 July 2022.

Niwa, Y. and Nitta. Y. (1994). Co-Occurrence Vectors From Corpora vs. Distance Vectors From
Dictionaries. In COLING 1994 Volume 1: The 15th International Conference on Computational
Linguistics, Kyoto, Japan. https://aclanthology.org/C94-1049.pdf.

Preiss, J. (2006). A detailed comparison of WSD systems: An analysis of the system answers for
the SENSEVAL-2 english all words task. Natural Language Engineering, 12(3), 209-228.

Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy.
Cornell University Library. https://arxiv.org/abs/cmp-1g/9511007.

Resnik, P. (1999). Semantic Similarity in a Taxonomy: An Information-Based Measure and its
Application to Problems of Ambiguity in Natural Language. JAIR 11, 95-130.

Shakespeare, W. (2021) The Complete Works of Shakespeare (AmazonClassics Edition).
AmazonClassics.

Sowa, J. (1991) Principles of Semantic Networks: Explorations in the Representation of Knowledge
(Morgan Kaufmann Series in Representation and Reasoning). Morgan Kaufmann Publication.

Tolstoy, L. (2019) War and Peace. AmazonClassics.

WordNet (2022a) WordNet official site. https://wordnet.princeton.edu/. Accessed 25 July 2022.

WordNet (2022b) WordNet browser official site: http://wordnetweb.princeton.edu/parl/webwn.
Accessed 25 July 2022.

https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1145/318723.318728
https://www.nim.nih.gov/mesh/meshome.html
https://aclanthology.org/C94-1049.pdf
https://arxiv.org/abs/cmp-lg/9511007
https://wordnet.princeton.edu/
http://wordnetweb.princeton.edu/parl/webwn

Chapter 7)
Pragmatic Analysis and Discourse s

7.1 Introduction

Pragmatics and discourse analysis (Bender and Lascarides 2019; Cruse 2011;
Goddard 1998; Kroeger 2019) focus on the study of language in its contextual
meaning, distinguishing it from earlier discussions on word-level semantics, syntax,
grammatical relations, meaning representation, and semantic analysis.

Pragmatics analysis focuses on context meaning. Discourse analysis studies
social context in written and spoken language. They consist of structured, coherent,
and cohesive sets of sentences or utterances to reflect what constitutes an utterance
versus a set of unrelated sentences and how the text is related.

There are two types of discourse in daily life: (1) monologue and (2) dialogue. A
monologue is a one-way communication between a speaker (writer) and an audi-
ence (reader), e.g., read or write a book, watch a TV show or a play, listen to a
speech, attend a presentation or a lecture that depends on the deposition of dialogue.
Dialogue refers to participation in turn to speaker and hearer. It has a two-way or
multiple ways of communications.

There are also two types of dialogue (1) human-to-human, e.g., daily conversa-
tions, group discussions, and (2) (a) human-to-computer interaction (HCI), e.g.,
conversational agent, chatbot in NLP, and (b) computer-to-computer interaction
(CCI), e.g., cross-machine verbal communication in smart city and intelligent trans-
portation system, multi-agent-based bargain and negotiation systems.

7.2 Discourse Phenomena

There are many discourse phenomena that can be solved naturally by humans, but
some like coreference resolutions (CR) require a lot of effort by machines to solve.

© The Author(s), under exclusive license to Springer Nature Singapore Pte 151
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_7&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_7#DOI

152 7 Pragmatic Analysis and Discourse
7.2.1 Coreference Resolution

CR (Bender and Lascarides 2019; Goddard 1998) is the task of identifying all lin-
guistic expressions, also known as mentions, that correspond to real-world entities
described in a text. These mentions are assembled and replaced with the correct
pronouns and noun phrases (NPs). It’s simple for humans, but machines make mis-
takes all the time. For example:

[7.1] Jack saw Andrew in the examination hall. He looked nervous.
[7.2] Jack saw the student in the examination hall. He looked nervous.

Humans and machine will likely consider the first subject mentioned in forego-
ing sentence or utterance as reference to pronoun of the following sentence. For
instance, He in [7.1] will refer to Jack. However, coreference resolution from human
perspective in [7.2] will consider He may not refer to Jack but the student as it is
natural and logical to relate student with examination.

Example below is more obvious:

[7.3] Jane talked to Amy about her examination result. She looked worried.
[7.4] Jane talked to Amy about her examination result. She felt sorry about it.

She in [7.3] should refer probably to Amy who is worried as she participated in
the examination instead of Jane.

She in [7.4] should probably refer to Jane instead of Amy participating in the
examination but Jane is more likely to feel sorry as empathy to Amy.

Humans can discern the above naturally by context, common sense, or world
knowledge but confound computers to develop judgment.

7.2.2 Why Is It Important?

Let’s look at some standard situations prior to complex coreference resolution cases:

[7.5] Jack gives lan 1000 dollars. He is generous. (original sentence).

[7.6] Jack gives lan 1000 dollars. Jack is generous. (with coreference resolution)

or compact cases handled by computer satisfactorily:

[7.7] Ivoted for Jack as he is more aligned to my values, lan said. (original sentence).

[7.8] lan voted for Jack as Jack is more aligned to lan’s values, lan said. (with core-
ference resolution)

From The Adventures of Sherlock Holmes (Doyle 2019):

[7.9] I was seized with a keen desire to see Holmes again, and to know how was
employing his extraordinary powers. (original sentence).

[7.10] Watson was seized with a keen desire to see Holmes again, and to know how
Holmes was employing Holmes’ extraordinary powers. (with coreference
resolution)

7.2 Discourse Phenomena 153

or more challenging sentences of famous discourse from A Scandal in Bohemia:

[7.11] To Sherlock Holmes, she is always “the woman.” I have seldom heard him
mention her under any other name. (original sentence).

[7.12] To Sherlock Holmes, Irene Adler is always “the woman.” Watson has seldom
heard Holmes mention Irene Adler under any other name. (with coreference
resolution)

[7.11] is more challenging as the reference name Irene Adler for she did not
occur, but after two sentences, there is no emotion akin to affection for Irene Adler.

This phenomenon is called cataphor to acquire meaning from a subsequent word
or phrase in linguistics.

The subsequent phrase (or word group) is called antecedent or a referent against
anaphora, a rhetorical term for a phrase (or word group) repetition at the start of
consecutive sentences/utterances used in many English sentences’ construction;
i.e., [7.5], [7.7], [7.9] are reference terms mentioned repetitively prior to pronoun
replacement.

CR is a versatile tool suitable for many NLP applications, including fext under-
standing and analysis, information retrieval and extraction, text summarization,
machine translation, and even sentiment analysis. This is a great way to get unam-
biguous sentences that computers can understand.

7.2.3 Coherence and Coreference
7.2.3.1 What Is Coherence?

In linguistics, coherence (Bender and Lascarides 2019; Goddard 1998) refers to
meaning relationships between individual units, which can be sentences (dis-
courses) or textual statements. Texts appear to have logical and semantical consis-
tency for reader or hearer due to these relations.

Coherence-oriented text analysis is primarily concerned with the construction
and configuration of meaning in a text; that is, how various components are con-
nected to make the text meaningful to recipient as a random sequence of disjointed
phrases and clauses.

In other words, if a text has coherence, its parts are well connected and head for
the same direction. Without coherence, a discussion or utterance may neither make
sense nor be followed by the audience. It has both verbal and written language
significance.

Here are some coherence examples:

[7.13] History reveals that humans have come a long way from birth. They have
invented many new_technologies that improve the standard of living. However,
technologies that are supposed to provide us a better world sometimes end-up to

154 7 Pragmatic Analysis and Discourse

disaster, such as the invention of nuclear weapons, environmental pollution, and
the extinction of some animal species.

In [7.13], coherence terms History — humans — They — technolo-
gies — nuclear weapons with repetitive terms and concepts provide a stream of idea
flow and knowledge for hearer or reader to understand the message conveyed in this
passage.

7.2.3.2 What Is Coreference?

Coreference (coreference) appears when two (or group of) terms refer to the same
person or thing with a unified reference to achieve linguistic coherence. For example:

[7.14] Jack said Helen would arrive soon, and she did.
— Helen and she refer to the same person.

Conference is not always trivial to determine, e.g.:

[7.15] Jack said he would join the term vs.
[7.16] Jack told Ian to come, he smiled.

When comparing [7.15] vs. [7.16], [7.15] is trivial as there is only one subject
(noun) that he can refer to (i.e., Jack), while he in [7.16] can refer to either Jack or Ian.

Determining coreferential expressions is important in many NLP applications,
such as information retrieval and extraction, text summarization, and conversation
understanding in question-and-answer chatbot systems.

7.2.4 Importance of Coreference Relations

To understand the meaning of a coreference relationship, let’s look at how to extract
key information or summarize the following text:

[7.17] XYZ bank is continuing to struggle with severe financial problems. According
to the finance news report, their CEO Charles Smith will announce to step-down
at the press conference tomorrow morning.

The texts in [7.17] are coherent with well-structured coreference in a typical
news article. Coherence concept terms are also used to extract information:

[XYZ bank] — [financial problem] — [CEO] — [Charles Smith] — [step
down] — [press conference] — [tomorrow morning].

A reasonable text summary may be:

[7.18] The CEO of XYZ bank Charles Smith will announce his step-down at tomor-
row morning’s press conference.

This example shows the coherent relationships between text segments, where the
first sentence provides context weights of the second sentence.

7.2 Discourse Phenomena 155

Remarks: A well-structured text summarization/information extraction case will
and should match with Fillmore’s case role theory with well-defined agent, patient,
location, time, purpose, beneficiary, possessor, instrument, etc.; in other words, a
well coherence text message and utterance regard the first sentence as the opening
of a speech followed by elaboration of an open statement in coreference relation
with a thematic relation like watching a movie or a TV show.

Further to elaboration and thematic relation, coreference relation has another
type called inference type. It regards the first sentence/utterance as claims followed
by explanation of claims sentence. For inference argument, the first sentence is the
effect followed by cause(s) of the following sentences:

[7.19] Jack keeps lan’s car key. He was drunk last night. (coherence) vs.
[7.20] Jack keeps Ian’s car key. He wants to see a movie tonight. (without coherence)

Coherence occurred in [7.19] as the first statement has relevance to the second
statement with pragmatic meaning, whereas the second statement is probably an
explanation, or a cause of the event where Jack keeps Ian’s car key because lan was
drunk by common sense/world knowledge. Thus, He should be Ian instead of Jack
by inference.

While two statements in [7.20] have neither coherence nor logic cause-effect
relationship between them, it is difficult to judge whether He in the second state-
ment should refer to Jack or Ian. Thus, Jack regards as the subject and the referent
He in usage of English although it may be incorrect.

7.2.5 Entity-Based Coherence

Let’s look at the following examples:

[7.21
[7.22
[7.23
[7.24
[7.25
[7.26
[7.27
[7.28

Helen went to the superstore to buy a cello.

She had frequented the store for a long time.

She was delighted to buy the cello finally.

She just discovered that the store is closed.

It was the store Helen had frequented for a long time.
She was delighted to buy that cello.

The music generated by it is beautiful.

It was closed when Helen arrived.

e e o e e e b e

Entity-based coherence models measure coherence to track salient central enti-
ties across utterances. Centralization theory (Grosz et al. 1995) is a remarkable
entity-based coherence theory for tracking whether entities (so-called Central
Entity, CE) are prominent at each point in a discourse model. For cases from [7.21]
to [7.23] is Helen who will be the reference for she in these statements naturally.
While CE in [7.25] is shifted from the superstore to cello in [7.26] and [7.27], CE is
shifted back to the store in [7.28] to make it more complex.

156 7 Pragmatic Analysis and Discourse

7.3 Discourse Segmentation

7.3.1 What Is Discourse Segmentation?

Discourse segmentation is the task of determining the smallest nonoverlapping dis-
course units, known as elementary discourse units (EDUs), which can be further
categorized into (1) sentence segmentation and (2) sentence-level discourse seg-
mentation. The main purpose of discourse segmentation is to divide a text document
(set of utterances) into a list of subtopics. This is often a higher level simplification
structure of a discourse. For example, an academic article is usually segmented into
abstract, introduction, methodology, implementation, results, discussion, conclu-
sion, etc., to comprehend.

There are (1) unsupervised and (2) supervised discourse segmentation methods.
The applications of automatic discourse segmentation include (1) information
extraction or retrieval and (2) text summarization on each segment separately.

7.3.2 Unsupervised Discourse Segmentation

Unsupervised discourse segmentation is a class usually presented as a linear seg-
mentation of raw data and segmentation into multiple paragraph subtopics.
Unsupervised means that the task is not given training data as examples to under-
stand linear segmentation task. These examples involve splitting the text into multi-
paragraph units to represent paragraphs of the original text. These algorithms rely
on cohesion, which can be defined as the linguistic means of linking units of text
together.

Cohesion-based approach involves dividing text into subtopics, where sentences
or paragraphs cohere to each other, and reveal the relationship between two or more
words in two units like synonyms.

Cohesion is the linking of text units based on linguistic means. Lexical cohesion
is the use of similar words to link units of text with the same word, synonym, or
hypernym. For instance:

[7.29] Yesterday was Jane’s birthday. Betty and Mary went to buy a present from the
gift shop. Mary intended to buy a purse. “Don’t do that,” mentioned Betty. “Jane
already got one. She will ask you to return it.”

The non-lexical cohesion approach is the use of anaphora.

[7.30] Peel, core and slice peaches and pineapples, then place these fruits in the
skillet.

Unsupervised discourse segmentation was proposed by Prof. Marti Hearst in her
classical works on TextTiling in early 1990.

7.3 Discourse Segmentation 157
7.3.3 Hearst’s TextTiling Method

Hearst’s TextTiling (Hearst 1997) is a typical discourse segmentation algorithm to
subdivide explanatory text into multiple paragraphs or automatically grouped sub-
topic segments representing in the original text.

Hearst’s TextTiling method is a typical unsupervised method that no training
dataset and prior knowledge base are required. Hearst’s original work used articles
from Stargazers, a science magazine with a TextTiling method to characterize article
text messages into subtopics.

For example, consider a 21-paragraph science news article extracted from the
magazine with a topic focused on reports of life on Earth and other plants; its con-
tents are characterized into the following subtopic discussions (Hearst 1997):

[Para 1-3] Introduction—the search of life in space

[Para 4-5] The moon’s chemical composition

[Para 6-8] How early earth-moon proximity shaped the moon
[Para 9-12] How the moon helped life evolve on earth

[Para 13] Improbability of the earth-moon system

[Para 14-16] Binary/trinary star systems make life unlikely
[Para 17-18] The low probability of nonbinary/trinary systems
[Para 19-20] Properties of earth’s sun that facilitate life

[Para 21] Summary

TextTiling is a technique to divide a full-length text document into coherent
multi-paragraph units that correspond to a series of subtopic paragraphs as shown in
the example above. The algorithm assumes that during a subtopic discussion, a set
of words is used, and subtopics change significant parts of vocabulary accordingly.

The distribution of terms extracted from the Stargazers text is assigned with a
single-digit frequency for each sentence number, with spaces for zero frequencies
(Hearst 1997) as shown in Fig. 7.1. It revealed that terms:

1. Occurred frequently throughout the text; e.g., moon and planet are often indica-
tive of main topic(s) of the text.

2. Occurred less common but evenly distributed; e.g., scientists and form are both
generic to create a subtopic title.

3. Like space and star occurred more frequent from sentences 5 to 20 and 60 to 90,
while term life to planet occurred more frequently from sentences 58 to 78 which
may create two distinct clusters of subtopic discussion.

4. Like life to species have similar phenomena occurred to create a natural cluster
between sentences 35-55 and conform with human judgment as subtopic discus-
sion of How the moon helped life evolve on earth.

These results suggested that the logic behind sentences or paragraphs in subtop-
ics are consistent with each other but not with paragraphs in adjacent topics.

158 7 Pragmatic Analysis and Discourse

Sentence: 05 10 15 20 25 30 35 40 45 G50 55 B0 65 TO V5 g0 85 90 95

form i 111 1 1 11 1 1 1 1 1)
scientist 1 1 1 § 1 -

spacef 11 i 1 1
st 1 1] 11 22 3111112 11 1 11 1111 1

binary 11 1 1 1
trinary 1 i 1 i
astronomer 1 1 11 1 1 11
orbit 1 1 12 11
pull 2 11 1 4
planet 1 1 11 1 1 21 11111 1 1
galaxy 1 1 1 11 1 1
lunar 11 1 1
life 1 1 1 1 231 31 1 1 3 1 i1t 4 4
maon 13 1111 112221 21 21 11 1
move 1 1 1
continent 21121
shoreline 12
time 1 1 131 1 1
water 11 1
say 1 1 11 1
species 1-% 1

Moo

"

-

B e
Wl W W W B~

Sentence: 05 10 15 20 26 30 35 40 45 50 55 €0 65 TO 75 80 85 90 95

Fig. 7.1 Distribution of selected terms in the Stargazers text (blanks mean zero frequency)
7.3.4 TextTiling Algorithm

TextTiling algorithm (Hearst 1997) for discourse segmentation and subtopic struc-
ture characterization using term repetition consists of three processes: (1) fokeniza-
tion, (2) lexical score determination, and (3) boundary identification.

Tokenization includes converting words to lowercase, removing stop words and
root words, and converting words into pseudo-sentences with the same length such
as 15 words.

Lexical score determination includes calculating lexical cohesion scores for
each gap between pseudo-sentences. This lexical cohesion score represents word
similarity. For instance, take ten pseudo-sentences each before and after gap, fol-
lowed by the computation of cosine similarity between word vectors which is
given by:

b-a_ Y. bxa

Pl B

Boundary identification involves assigning a boundary distance to identify a new
segment. Similarity is first created, and the depth value of similarity valley
(a — b) + (c — b) is calculated as shown in Fig. 7.2; then, segmentation is performed
if the depth score value is greater than the threshold as shown in Fig. 7.3.

sim,,. (6, d) (7.1)

7.3 Discourse Segmentation 159

Similarity Valleys

LT

Fig. 7.2 Lexical score determination with similarity valleys

_——— Discourse Segments _

} i

Lol

Fig. 7.3 Boundary identification with discourse segments

7.3.5 Supervised Discourse Segmentation

It is relatively easy to collect bounded training data using supervised discourse seg-
mentation such as news reports from TV shows, paragraph segmentation in text, or
dialogue to find paragraphs in speech recognition output.

Several classifiers can be used to achieve supervised segmentation, one is called
feature set which is a superset for unsupervised segmentation with often domain-
specific utterance tokens and keywords.

Supervised discourse segmentation is also a model. It is (1) a classification task
that uses one of the supervised classifier methods, such as SVM, naive Bayer, and
maximum entropy to distinguish whether sentence boundaries have paragraph
boundaries, or (2) a sequence labeling task to label sentences with or without para-
graph borders. It uses cohesive features including word overlap, word cosine simi-
larity, anaphora, and additional features such as discourse markers or keywords.

Discourse tokens or keywords/phrases indicate discourse structure, e.g., good
evening, join our broadcast news now, or join the company at the beginning/end of
the segment. They can be manual codes or automatically determined by feature
selection.

However, measuring precision, recall, and F-measure is not always good evalu-
ation ideas as they are insensitive to near misses. Pevzner and Hearst (2002) pro-
posed a good and effective evaluation metric for text segmentation called the
WindowDiff method.

160 7 Pragmatic Analysis and Discourse

7.4 Discourse Coherence

7.4.1 What Makes a Text Coherent?

A text coherent refers to the application of:

1. A coherent relationship between a subfield of discourse called rhetorical struc-
ture and a whole theory called rhetorical structure theory (RST). It is a text
organization theory that describes the relationships that exist between parts of a
text. It was proposed by Mann and Thompson (1988) in their remarkable paper
Rhetorical structure theory: toward a functional theory of text organization,
published in 1988. The theory was developed as part of research on computer-
aided text generation in text summarization and applications used by NLP
researchers.

2. The ordering of subsections of discourse called discourse topic structure. It is
the key to discourse cohesion and embodies the essence of discourse analysis. It
has been extensively adopted in the past decades and has become a key compo-
nent in text analysis. Linearly segmenting text into appropriate topic structures
can reveal valuable information such as the overall topic structure of the text,
which can be used for text analysis tasks such as text summarization, informa-
tion retrieval, and discourse analysis.

3. A Referring Expression (RE) is any NP or a substitute for an NP whose function
in spoken, and signed or written text is to single out a single person, place,
object, or group of people, places, objects, etc.

7.4.2 What Is Coherence Relation?

Coherence relation refers to discourse properties that make each discourse mean-
ingful (or have appropriate meaning) in the context. It refers to common denomina-
tor to identify possible connections between utterances in a series of statements or
discourses about the same topic.

These sense relations in discourse analysis named Coherence Relations by Prof.
Jerry R. Hobbs in his works Coherence and Coreference published by Cognitive
Science in 1979 (Hobbs 1979) had been further developed by other linguistics
including Sanders et al. (1992) and Kehler (2002) into a well-defined theory.

These meaning relationships, called propositional relations defined by Mann
and Thompson (1986), are encoded in text recognized by the reader trying to under-
stand the text and its components, and to see why the speaker or author added the
sentence. Coherent relationships are sometimes referred to as types of thematic
development such as the narrative of a movie or TV show involving cause-and-
effect story type in sense relations development.

7.4 Discourse Coherence 161
7.4.3 Types of Coherence Relations

There are five major types of coherence relations: (1) parallel, (2) elaboration, (3)
cause-and-effect, (4) contrast, and (5) occasion.

1. Parallel infers p(a,, a,, ...) from the assertion of S, and p(b,, b,...) from the

assertion of S|, where a; and b, are similar for all i.

[7.31] Rich man wants more power. Poor man wants more food.

They are frequently used in describing two sense relations with similar situation
(meaning) but different in object, reference, and scenario.

2. Elaboration infers the same proposition P from the assertions of S, and .

[7.32] Dorothy was from Kansas. She lived in the great Kansas prairies.

[7.33] Nicola Tesla was a genius. He invented over hundreds of things in his life.

They are frequently used in discourse construction; the successive sentences/
utterances are further elaboration of the previous one.

3. Cause-and-effect are Sy and S, if S, infers Sy, i.e., S|, = S.
[7.34] Jack cannot afford to buy the car. He lost his job.
[7.35] Nicola Tesla invented over hundreds of things in his life. He was a genius.
Cause-and-effect discourse relation that can refer to animate or inanimate subjects
in [7.35] is the reverse of elaboration statement [7.33] but does not always occur.
4. Contrast infers Sy and S, if Py and P, infer from S, and S| with one pair of ele-
ments that are contrast with each other, where other elements are similar in
context.

[7.36] Hope for the best. Prepare for the worst.

[7.37] Jack is meticulous while Bob is sloppy.

Contrast coherence relations can exist within a sentence or in successive sen-
tences/utterances. It often refers to two subjects, or events with contrast sense
relations.

5. Occasion is the alteration of state that can infer from the assertion of S,, where
final state can infer from S, or the alteration of state can infer from the assertion

of S, whose initial state can infer from S,,.

[7.38] Jane put the books into a schoolbag, she left the classroom with Helen.

[7.39] Jack failed the exam. He started to work hard.

State change invokes new action.

7.4.4 Hierarchical Structure of Discourse Coherence

Discourse coherence can also be revealed by the hierarchy between coherent rela-
tions. For example:

[7.40
[7.41
[7.42
[7.43

Jack went to town to buy a toy.

He took a bus to the shopping mall.
He needed to buy a toy for his child.
It is Jane’s birthday.

— e —

162 7 Pragmatic Analysis and Discourse

[7.44] He also wanted to buy some books for weekend reading.

A hierarchical structure of discourse coherence is shown in Fig. 7.4. [7.40]-
[7.44] can be organized in a hierarchy tree structure; e.g., occasion consists of two
expressions, one is expression e; (statement [7.40]), and the other is an explanatory
clause which in turn consists of expression e, (statement [7.41]) and a parallel clause
which consists of two entities, one is explanatory expression e; and the other is
expression es (statement [7.44]); e; is further divided into statements [7.42] and
[7.43], respectively.

7.4.5 Types of REs

RE is a surrogate for any NP or NP whose function in utterance is to identify some
discrete objects. There are five frequently used REs in discourse coherence: (1)
indefinite NPs, (2) definite NPs, (3) pronouns, (4) demonstratives, and (5) names.

1. Indefinite NPs introduce entities into context that are new to listener, e.g., a
policeman, some apples, a new iPad.

[7.45] I go to the electronic store to buy a new notebook computer.

2. Definite NPs refer to entities recognizable by listener such as abovementioned
combination of beliefs about the world, e.g., a furry white cat, and the cat.
[7.46] Don’t look at the sun directly with bare eyes, it will hurt yourself.

3. Pronouns are another form of definite designation, usually with stronger restric-
tions than standard designation, e.g., s/he, it, they.

[7.47] 1 go to the electronic store to buy a new notebook computer. This computer
is rather light and fast.

4. Demonstratives are pronouns that can act alone or as determiners, e.g., this, that.
[7.48] That book seems to be very interesting and worth buying it.

5. Names are common methods to refer to people, organizations, and locations.
[7.49] I bought lunch at KFC today.

Fig. 7.4 Hierarchical Dccasion (es] &)

structures in discourse IR

coherence - o

[7.40] (e4) Explanation (e;)
i x\
(7.41] (e1) Parallel (es; e5)
Explana-tior& (ea) [};._44] {es)
™

(7.42] (es) (7.43] (e2)

7.4 Discourse Coherence 163
7.4.6 Features for Filtering Potential Referents

There are four common features to filter potential references in discourse coher-
ence: (1) number agreement, (2) person agreement, (3) gender agreement, and (4)
binding theory constraints.

1. Number agreement refers to pronouns, and references must agree in number,
e.g., single or plural.

[7.50] The children are playing in the park. They look happy.

2. Person agreement refers to the first, second, or third person.

[7.51] Jane and Helen got up early. They needed to take an exam this morning.

3. Gender agreement refers to male, female, or nonperson, e.g., he, she or it.
[7.52] Jack looked tired. He didn’t sleep last night.

4. Binding theory constraints refer to constraints imposed by syntactic relations
between denotative expressions and possible preceding NPs in the same sentence.
[7.53] Jane purchased herself an iPad. (herself should be Jane)

[7.54] Jane purchased her an iPad. (her may not be Jane)
[7.55] She claimed that she purchased Mary an iPad. (She and she may not
be Mary)

7.4.7 Preferences in Pronoun Interpretation

There are six types of preferences in pronoun interpretation: (1) recency, (2) gram-
matical role, (3) repeated mention, (4) parallelism, (5) verb semantics, and (6)
selectional restrictions.

1. Recency refers to entities from recent utterances:
[7.56] Tim went to see a doctor at the clinic. He felt sick. It might be influenza.
2. Grammatical role is to emphasize the hierarchy of entities according to gram-
matical position of the terms that represent them, e.g., subject and object.
[7.57] Jane went to Starbucks to meet Jackie. She ordered a hot mocha. (She
should be Jane)
[7.58] Jane discussed with Jackie about her exam results. She felt so nervous
about it. (She should be Jackie instead of Jane)
[7.59] Jane discussed with Jackie about her exam results. She felt so sorry about
it. (She should be Jane instead of Jackie)
3. Repeated mention refers to mentioning about the same thing.
[7.60] Jane went to supermarket to buy some food. It turned out it was closed.
4. Parallelism refers to subject-to-subject or object-to-object kind of expression:
[7.61] Mary went with Jane to Starbucks. lan went with her to the bookstore
afterward. (her should probably be Jane instead of Mary)
5. Verb semantics are verbs seem to emphasize one of their argument positions:
[7.62] Jane warned Mary. She might fail the test.
[7.63] Jane blamed Mary. She lost the watch.

164 7 Pragmatic Analysis and Discourse

In [7.62], She should be Mary as Mary is the one being warned about failing the
test. For [7.63], She should be Jane who suffered. It is a pragmatic phenomenon
because it involves common sense by word meaning blamed to understand cor-
rect coreference in the second statement.

6. Selectional restrictions refer to another semantic knowledge playing a role:
[7.64] Mary lost her iPhone in the shopping mall after carrying it the whole

afternoon.
Note that [7.64] involves high-level semantics or common sense understanding
of it can mean iPhone or shopping mall but it has been carried for the whole after-
noon, so it cannot be an unmovable object except iPhone.

7.5 Algorithms for Coreference Resolution

7.5.1 Introduction

CR is the task of finding all linguistic expressions (called mentions) in any text
involving real-world entities. After finding these mentions and grouping them, they
can be resolved by replacing pronouns with NPs.

There are three fundamental algorithms for conference resolution: (1) Hobbs’
algorithm, (2) centering algorithm, and (3) log-linear model.

7.5.2 Hobbs’ Algorithm
7.5.2.1 What Is Hobbs’ Algorithm?

Hobbs’ algorithm was one of the early approaches to pronoun resolution proposed
by Prof. Jerry R. Hobbs in 1978 (Hobbs 1978) and further consolidated as well-
known algorithm for coreference resolution in his remarkable work Coherence and
Coreference published in Cognitive Science, 1979 (Hobbs 1979).

The original work proposed two CR algorithms, a simple algorithm based purely
on grammar, and a complex algorithm that incorporated semantics into parsing
methods (Hobbs 1978, 1979).

Unlike other algorithms, Hobbs’ algorithm does not turn to a discourse model for
parsing because its parse tree and grammar rules are the only information used in
pronoun parsing. Let’s look at how it works.

7.5.2.2 Hobbs’ Algorithm

Hobbs’ algorithm assumes a parse tree where each NP node has an N-type node
below it as the parent of a lexical object. It operates as follows:

7.5 Algorithms for Coreference Resolution 165

Start with the node of noun phrase (NP) that directly dominates the pronoun.
Go up the tree to the first NP or sentence (S) node visited; denote this node as X
and name the path being applied to reach it as p.

Visit all branches under node X to the left of path p, breadth first, from left to
right, taking any NP node found as an antecedent; there is an NP or S node
between it and X.

If node X is the highest S node in sentence, visit the surface parse trees of previ-
ous sentences in the text with the most recent first; each tree is then visited in a
left-to-right and breadth-first manner. When an NP node is encountered, it is
recommended as an antecedent. If X is not the first S node in the set, go to step 5.

. Climb up from node X to the first NP or S node encountered; denote this new

node as X and name the path as p.
If X is an NP vertex, and if the path p to X does not pass through a nominal ver-
tex immediately dominated by X, then denote X as an antecedent.

. Visit all branches under node X to the left of path p, breadth-first manner, from

left to right, denoting each NP node encountered as an antecedent.

. If X'is an S node, visit all branches of node X to the right of path p from left-to-

right and breadth-first manner, but do not visit below any NP or S being encoun-
tered as the antecedent.

. Return to step 4.

7.5.2.3 Example of Using Hobbs’ Algorithm

Statement [7.65] is a classic paper (Hobbs 1978) to demonstrate how Hobbs’ algo-
rithm works as shown in Fig. 7.5.

[7.65] The castle in Camelot remained the residence of the king until 536 when

he moved it to London.

[, I SO I NS I

Example—What does it stand for?

. Start with node NP, step 2 climbs up to node S;.

. Step 3 searches the left part of S;’s tree but fails to locate any eligible NP node.
. Step 4 fails to apply.

. Step 5 climbs up to NP, which step 6 proposes 536 as antecedent of it.

. The algorithm can be further improved by applying simple selectional con-

straints, such as

Date can’t move.

Places can’t move.

Large or fixed objects can’t move.

. After NP, is rejected, steps 7 and 8 turn up nothing, and control is returned to

step 4 which fails to apply.

. Step 5 climbs up to S, which step 6 fails to apply.
. In step 7, the breadth-first search recommends the NP; where the castle is

rejected by the constraint number 3.

166 7 Pragmatic Analysis and Discourse

NP, VP
f/fﬁ 1~”“mmh fy'“/wlf ——
Det] pp remained MNP, — TER
P b ’ [i_I/ ;
the castle in NP5 Det N N NP_
N the residence PP N Rf‘:'
P | .
! 536 when 5
Camelot of NPs - 1 5
sl Mg N Ve
| e S
;) he moved NPy PP
the king | N
it to MNP
N

London

Fig. 7.5 Parse tree for statement [7.65]

9. The algorithm continues to visit NP, where it correctly recommends the resi-
dence as antecedent.

Exercise: How to check coreference resolution of he as the king?

7.5.2.4 Performance of Hobbs’ Algorithm

In the original work, Hobbs manually analyzed 100 consecutive examples from 3
different texts, assuming correct parsing was available, and the algorithm was
72.7% correct (Hobbs 1978); which is quite impressive for such simple algorithm.
If the algorithm is integrated with syntactic constraints when resolving pronouns as
shown in Fig. 7.5, the performance can be even higher.

However, Hobbs’ algorithm experiences two major problems.

1. When looking for the antecedent of a pronoun within a sentence, it goes sequen-
tially further up the tree to the left of pronoun such an error is looked for in the
previous sentence.

2. This algorithm does not assume a discourse segmentation structure and may
revert to arbitrarily far of the text to find an antecedent.

Nevertheless, as he concluded in his original paper, naive-based approach on
coreference resolution did provide a high baseline and works in many usual situa-
tions in discourse analysis, and is still being used as a benchmark in related CR
research nowadays (Cornish 2009; Kehler et al. 2008; Lata et al. 2022; Wolna
et al. 2022).

7.5 Algorithms for Coreference Resolution 167
7.5.3 Centering Algorithm

Centering theory (CT) was proposed by Profs Barbara J. Grosz and Candace

L. Sidner in their distinguished work Attention, Intentions, and the Structure of Dis-

Course, as part of its main theory of discourse analysis (Grosz and Sidner 1986). It

is a theory of discourse structure that models the interrelationships between foci or

centers as the choice of reference terms and the perceived coherence of discourse.
The basic idea is as follows:

1. A discourse has a focus, or center.
2. The center typically remains the same for a few sentences, then shifts to a
new object.
. The center of a sentence is typically pronominalized.
4. Once a center is determined, there is a strong inclination for subsequent pro-
nouns to continue referring to it.

W

In centering algorithm, utterances from a discourse have a backward-looking
center (C,) and a set of forward-looking centers (C;). The C; set of an utterance U,
is the set of utterance units elicited by that utterance. C; set is ranked by discourse
emphasis, the most accepted ranking is by grammatical role. The highest-ranked
element in this list is called the preferred center (C,), which represents the highest-
ranked element among previous utterances found in the current utterance and serves
as a link between these utterances. Any sudden shifts in the topic of utterances are
reflected in changes in C, between utterances.

7.5.3.1 What Is Centering Algorithm?

Centering algorithm (Grosz and Sidner 1986; Tetreault 2001) consists of three parts:
(1) initial settings, (2) constraints, and (3) rules and algorithm.

7.5.3.2 Part I: Initial Setting

— LetU,, U,,, be 2 successive utterances.

— Backward-looking center of U,, written as Cy,(U,), denotes focus after U, is
interpreted.

— Forward-looking centers of U,, written as C{(U,), form an ordered list of entities
in U, that can serve as Cy(U,,;).

— Cy(Uy,y,) is the highest-ranking element of C{(U,) mentioned in U,,,;.

— Order of entities in C¢(U,): in which subject > existential predicate nominal >
object > indirect object > demarcated adverbial PP.

— Let Cy(U,,,) be the highest-ranked forward-looking center.

168 7 Pragmatic Analysis and Discourse

7.5.3.3 Part II: Constraints

For each utterance U; (i = ...m) in a discourse segment D:

— There is precisely one C,,.
— Every element of C-list for U; must be realized in U,.
— The center, C,, (U;, D), is the highest-ranked element of C; (U, ;, D) realized by U..

7.5.3.4 Part III: Rules and Algorithm

For each utterance U; (i = ...m) in a discourse segment D:

Rule 1: If some elements of C; (U,_;, D) are realized as a pronoun in U;, then so is
C, (U, D).

Rule 2: Transition states, defined as follows, are ordered such that the sequence of
Continue is preferred over the sequence of Retains, which are preferred over
Smooth-Shift and then Rough-Shift.

The relationship between C, and C, of two utterances determines coherence
between words. CT ranks the coherence of adjacent utterances with transitions
determined by:

1. C, is the same from U,_, to U, or not.
2. This entity coincides with C, of U, or not.

Table 7.1 shows the criteria for each transition in the centering algorithm.
The algorithm based on these rules and conditions is defined as follows:

1. Create all possible C,-C; combinations.
2. Filter these combinations by constraints and centering rules.
3. Rank remaining combinations by transitions.

7.5.3.5 Example of Centering Algorithm

U,: Jane heard some beautiful music at the CD store.
U,: Jane played it to Mary.
Us: She bought it.

By applying grammatical role hierarchy to construct C;. So, for U, will have:

Table 7.1 Criteria for each transition in centering algorithm
Cy(Uns1) = Co(U,) or undefined Cy(U,) Co(Un) # Co(Uw)

Cp(Upar) = Cp(Upar) Continue Smooth-shift
Co(Upi1) # Cy(Upyr) Retain Rough-shift

7.5 Algorithms for Coreference Resolution 169

C«U)): {Jane, music, CD store}.
C,(U)): Jane.
Cy(U)): Undefined.

U2 has two pronouns: She and it. She is compatible (in syntax) with Jane, while
it is compatible with either music or CD store.

Since Jane is the highest C{U,;) ranked member, Cy,(U,) should be referred to
Jane by comparing result transitions for every possible referent of ir.

If it is assumed to music, the result will be:

Ci(Uy): {Jane, music, Mary).
C,(U,): Jane.
Cy(Uy): Jane.

Result: Continue (since C,(U,) = C,(U,) and C,(U,) is undefined).
On the other hand, if it is assumed to CD store, the result will be:

Ci(Uy,): {Jane, CD store, Mary).
C,(U,): Jane.
Cy(Uy): Jane.

Result: Continue (since Cy(U,) = C,(U,) and C,(U,) is undefined).

As both are Continue, it will be set referring to music instead of CD store.

Next, let’s look at Us.

For U, She is compatible with either Jane or Mary, while it is compatible with
music. So, if she refers to Jane, i.e., C,(Us) = Jane, the result will be:

Ci(Us): {Mary, music}.
C,(U5): Mary.
Cb(U3): Mal’y

Result: Smooth-Shlﬁ (Since CP(U3) = Cb(U3) but Cb(U3) ?é Cb(Uz))
Since Continue is preferred to Smooth-shift using Rule 2, Jane should be assigned
as the referent, so centering algorithm works in this situation.

7.5.3.6 Performance of Centering Algorithm

Clearly, the centering algorithm implicitly accounts for grammatical roles, recency,
and repeated-mention preference in pronoun interpretation.

However, the grammatical role hierarchy affects emphasis indirectly because the
final conversion type specifically determines the final reference assignment.
Confusion can arise if the former leads to a high-level transformation in this case,
where a referent in a low-level grammatical role prefers a referent in a high-level
role. For instance:

U,: Jane opened a new music store in the city.
U,: Mary entered the store and looked at some CDs.
Us: She finally bought some.

170 7 Pragmatic Analysis and Discourse

In this example, common sense indicates that She in U; should refer to Mary
instead of Jane. However, by applying the centering algorithm in this case, it will
assign she to Jane incorrectly because Cy(U,) = Jane becomes Continue while Mary
becomes a Smooth-shift. While applying Hobbs’ algorithm, Mary will still be
assigned as the referent.

Obviously, such situation occurs usually depending on situation and thematic
scenario, as Prof. Marilyn A. Walker in her work “A corpus-based evaluation of
centering and pronoun resolution” (Walker 1989) compared a version of centering
to Hobbs on 281 examples from 3 genres of text in 1989 with 77.6% and 81.8%
accuracy, respectively.

7.5.4 Machine-Learning Method
7.5.4.1 What Is Machine-Learning Method?

Machine-learning (ML) method is a simple supervised ML by using either stochas-
tic or Al approach. It trains classifier by using manual labeled corpus markers: (1)
positive samples are antecedents marked with each pronoun and (2) negative
(derived) samples are pairing pronouns with non-antecedent NPs.

In a typical supervised ML scenario, the ML system trains on a set of features
and produces a pro-antecedent pair to predict / if they corefer and 0 otherwise. A
typical example by applying the log-linear model for pronominal anaphora resolu-
tion is introduced with the following features:

e Strict number [true or false].

¢ Compatible number [true or false].

 Strict gender [true or false].

* Compatible gender [true or false].

» Sentence distance [0, 1, 2, 3, ...] from pronoun.

* Hobbs’ distance [0, 1, 2, 3, ...] (non-groups).

* Grammatical role [subject, object, PP] (taken by potential antecedent).
» Linguistic form [definite, indefinite and proper pronouns).

Example for Pronominal Anaphora Resolution:

U,: Jack saw a beautiful Mercedes GLB300 at a used car dealership.
U,: He showed it to Jim.
Us: He bought it.

A table of feature vector values for sentence U, is shown in Table 7.2.

7.6 Evaluation 171

Table 7.2 Table of feature vector values for sentence U,: He showed it to Jim
Feature He(U2) it(U2) Jim(U2) Jack(U1)

Strict number 1 1 1
Compatible number 1 1 1 1
Strict gender 1 0 1 1
Compatible gender 1 0 1 1
Sentence distance 1 1 1 2
Hobbs distance 2 1 0 3
Grammatical role Subject Subject PP Subject
Linguistic form Pronoun Pronoun Proper Proper

7.5.4.2 Performance of the Log-Linear Model

A log-linear model trains on vectors and filters out pleonastic if as in it is raining. It
results in weights for each and the combination of features. Most of the time, it is
rigid and harder and must decide if any two NPs corefer.

New features can be added to improve model performance such as:

¢ Anaphor edits distance.

* Antecedent edits distance.

e Alias [true or false] (based on the named entity tagger).
* Appositive [true or false].

* Linguistic form [proper, definite, indefinite, pronoun].

7.5.4.3 Other Advanced ML Models

Big data and Al offer advancement for current ML models. CR research focuses on
convolutional neural networks (CNN) (Auliarachman and Purwarianti 2019), recur-
rent neural networks (RNN) (Afsharizadeh et al. 2021), long short-term memory
networks (LSTM) (Li et al. 2021), transformers, and BERT models (Joshi et al.
2019), which will be discussed in Chap. 9.

7.6 Evaluation

From performance perspective, commonly used methods emphasize on coreference
chain evaluation as forming a set of facts A, B, and C that are assigned with A, B,
and C classes. They consist of two data types: (1) reference/true chain is correct or
true coreference chain occurred in an entity and (2) hypothesis chain/class is
assigned with the entity by a coreference algorithm.

For instance, precision of the system can be evaluated according to:

172 7 Pragmatic Analysis and Discourse

weighted sum of correct elments in hypothesis chain

7.2
Number of elements in hypothesis chain 72
and recall can be evaluated according to:
Number of correct elements in hypothesis chain (7.3)

Number of elements in reference chain

Like previous chapters on N-gram and semantic analysis, CR model evaluation
can be achieved by using: (1) intrinsic (using prototype and model itself) vs. (2)
extrinsic (task-based, end-to-end) evaluation schemes.

Exercises

7.1. What is pragmatic analysis and discourse in linguistics? Discuss their roles
and importance in NLP.

7.2. What is the difference between pragmatic analysis and semantic analysis in
terms of their functions and roles in natural language understanding (NLU)?

7.3. What is CR in linguistics? Why it is important in NLP? Use two examples to
illustrate and support your answer.

7.4. State and explain the differences between the concept of coherence vs. core-
ference in pragmatic analysis. Give two examples to support your answer.

7.5. What is discourse segmentation? State and explain why it is vital to prag-
matic analysis and the implementation of NLP application such Q&A chat-
bot. Give two examples to support your answer.

7.6. State and explain Hearst’s TextTiling technique on discourse segmentation.
How can it be further improved by using nowadays’ Al and ML technology?

7.7. What is coherence relation? State and explain five basic types of coherence
relations. For each type, give an example to illustrate.

7.8. What is referencing expression in pragmatic analysis? State and explain five
basic types of referencing expressions. For each type, give an example to
illustrate.

7.9. State and explain Hobbs’ algorithm for coreference resolution. Use a sample
sentence/utterance (other than the one given in the book) to illustrate how
it works.

7.10. State and explain the pros and cons of Hobbs’ algorithms for CR. Use
example(s) to support your answer.

7.11. State and explain centering algorithm for coreference resolution. Use a sam-
ple sentence/utterance (other than the one given in the book) to illustrate how
it works.

7.12. Compare pros and cons between Hobbs’ algorithm vs. centering algorithm.
Use example(s) to support your answer.

7.13. What is ML? State and explain how ML can be used for coreference resolu-
tion. Use example(s) to support your answer.

7.14. Name any three types of ML models for CR. State and explain how they work.

References 173

7.15. Name any two types of evaluation method/metrics for CR model in pragmatic
analysis. State and explain how they work.

References

Afsharizadeh, M., Ebrahimpour-Komleh, H., and Bagheri, A. (2021). Automatic text summariza-
tion of COVID-19 research articles using recurrent neural networks and coreference resolution.
Frontiers in Biomedical Technologies. https://doi.org/10.18502/fbt.v7i4.5321

Auliarachman, T., & Purwarianti, A. (2019). Coreference resolution system for Indonesian text
with mention pair method and singleton exclusion using convolutional neural network. Paper
presented at the 1-5. https://doi.org/10.1109/ICAICTA.2019.8904261

Bender, E. M. and Lascarides, A. (2019) Linguistic Fundamentals for Natural Language Processing
II: 100 Essentials from Semantics and Pragmatics (Synthesis Lectures on Human Language
Technologies). Springer.

Cornish, F. (2009). Inter-sentential anaphora and coherence relations in discourse: A perfect
match. Language Sciences (Oxford), 31(5), 572-592.

Cruse, A. (2011) Meaning in Language: An Introduction to Semantics and Pragmatics (Oxford
Textbooks in Linguistics). Oxford University Press

Doyle, A. C. (2019) The Adventures of Sherlock Holmes (AmazonClassics Edition).
AmazonClassics.

Goddard, C. (1998) Semantic Analysis: A Practical Introduction (Oxford Textbooks in Linguistics).
Oxford University Press.

Grosz, B. J., Joshi, A. K., and Weinstein, S. (1995). Centering: A framework for modeling the
local coherence of discourse. Computational Linguistics - Association for Computational
Linguistics, 21(2), 203-225.

Grosz, B. J., and Sidner, C. L. (1986). Attention, intentions, and the structure of discourse.
Computational Linguistics - Association for Computational Linguistics, 12(3), 175-204.

Hearst, M. A. (1997). TextTiling: Segmenting text into multi-paragraph subtopic passages.
Computational Linguistics - Association for Computational Linguistics, 23(1), 33-64.

Hobbs, J. R. (1979) Coherence and Coreference. Cognitive Science 3, 67-90.

Hobbs, J. R. (1978) Resolving pronoun references. Lingua, 44:311-338.

Joshi, M., Levy, O., Weld, D.S., and Zettlemoyer, L. (2019) BERT for Coreference Resolution:
Baselines and Analysis. In Proc. of Empirical Methods in Natural Language Processing
(EMNLP) 2019. https://doi.org/10.48550/arXiv.1908.09091

Kehler, A. (2002) Coherence, Reference, and the Theory of Grammar. Stanford, Calif.: CSLI
Publishers.

Kehler, A., Kertz, L., Rohde, H., and Elman, J. L. (2008). Coherence and coreference revisited.
Journal of Semantics (Nijmegen), 25(1), 1-44.

Kroeger, P. (2019) Analyzing meaning: An introduction to semantics and pragmatics (Textbooks in
Language Sciences). Freie Universitit Berlin.

Lata, K., Singh, P, & Dutta, K. (2022). Mention detection in coreference resolution: Survey.
Applied Intelligence (Dordrecht, Netherlands), 52(9), 9816-9860.

Li, Y., Ma, X., Zhou, X., Cheng, P, He, K. and Li, C. (2021). Knowledge enhanced LSTM for
coreference resolution on biomedical texts. Bioinformatics, 37(17), 2699-2705. https://doi.
org/10.1093/bioinformatics/btab153

Mann, W. C. and Thompson, S. A. (1988) Rhetorical Structure Theory: Toward a functional theory
of text organization. Text & Talk, 8, 243 - 281.

Mann, W. C. and Thompson S. A. (1986) Relational Propositions in Discourse. Discourse
Processes 9: 57-90.

https://doi.org/10.18502/fbt.v7i4.5321
https://doi.org/10.1109/ICAICTA.2019.8904261
https://doi.org/10.48550/arXiv.1908.09091
https://doi.org/10.1093/bioinformatics/btab153
https://doi.org/10.1093/bioinformatics/btab153

174 7 Pragmatic Analysis and Discourse

Pevzner, L., and Hearst, M. A. (2002). A critique and improvement of an evaluation metric for
text segmentation. Computational Linguistics - Association for Computational Linguistics,
28(1), 19-36.

Sanders, T., Spooren, W. and Noordman, L.G. (1992). Toward a taxonomy of coherence relations.
Discourse Processes, 15, 1-35.

Tetreault, J. R. (2001). A corpus-based evaluation of centering and pronoun resolution.
Computational Linguistics. Association for Computational Linguistics, 27(4), 507-520.

Walker, Marilyn A. (1989). Evaluating discourse processing algorithms. In Proceedings of the 27th
Annual Meeting of the Association for Computational Linguistics, pp. 251-261.

Wolna, A., Durlik, J., and Wodniecka, Z. (2022). Pronominal anaphora resolution in pol-
ish: Investigating online sentence interpretation using eye-tracking. PloS One, 17(1),
€0262459-e0262459.

Chapter 8)
Transfer Learning and Transformer s
Technology

8.1 What Is Transfer Learning?

Transfer learning (TL) involves solving a problem by leveraging acquired knowl-
edge and applying that knowledge to address another related problem (Pan and
Yang 2009; Weiss et al. 2016; Zhuang et al. 2020). It can be likened to two students
learning to play the guitar, where one already has musical knowledge while the
other does not. Naturally, the student with a background in music can apply that
knowledge to the new learning process. In traditional machine learning (ML), each
task is associated with its own isolated dataset and trained model. In contrast, TL
allows for the learning of a new task by building on the knowledge gained from
previously learned tasks, often utilizing larger datasets, as illustrated in Fig. 8.1.

8.2 Motivation of TL

Traditional ML datasets and trained model parameters cannot be reused. They
involve enormous, rare, inaccessible, time-consuming, and costly training processes
in NLP tasks and computer vision. For example, if a task is text sentiment review
predictions on laptops, there are large amounts of labeled data, target data, and
training data from these reviews.

Traditional ML can work well on correlated domains, but when there are large
amounts of target data like food reviews, the inference results will be unsatisfactory
due to domain differences. Nevertheless, these domains are correlated in some
sense to bear same domain reviews as language characteristics and terminology
expressions, which makes TL possible to apply in a high-level approach to the pre-
diction task. This approach enables source domains to become a target domain and
determine its subdomain correlations as shown in Fig. 8.2.

© The Author(s), under exclusive license to Springer Nature Singapore Pte 175
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_8&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_8#DOI

176 8 Transfer Learning and Transformer Technology

- - -
Traditional ML VS Transfer Learning
e |solated, single task learning: M e Learning of a new tasks relies on
@ Knowledge is not retained or the previous learned tasks:
accumula'tec}._!.earnmg is performed > Learning process can be faster, more
w.0. considering past learned accurate and/or need less training data

knowledge in other tasks

il

g

Fig. 8.1 Traditional machine learning vs. transfer learning

Source Labels Target label N

{\
[N "\ \
/ A i \
' U Transfer Learned |
| knowledge s y

1_ x N L Transfer
arge amount s [Old Model Learning

of data/labels / |
_ ' |

\ P > /)
\ e — e
(Large Dataset) Target Data
E.g. ImageNet | (E.g. Grouper Sound data)
— e — i

Fig. 8.2 Transfer learning

TL has been implemented to several ML applications such as image and text
sentiment classifications.

8.2.1 Categories of TL

The domain is to be assigned with a definition by feature space X and marginal
probability distribution P(X) where X = {x;, x,, x3, ..., x,} € X.

If a feature space X and distribution P(X) between two domains are different,
they are different domains.

8.3 Solutions of TL 177

Heterogeneous Homogeneous
Transfer Learning Transfer Learning

@O

Fig. 8.3 Two categories of transfer learning

Xs = Xt

If a task is defined by a label space Y with a predictive function f{.), f(-) is repre-
sented by a conditional probability distribution given by (8.1):

f(x)=P(ykx) (8.1)

If a function f{-) and label space Y between two tasks are different, they are dif-
ferent tasks.

Now TL can give a new representation by above definitions that have D; as
source domain and 7, as source learning task. D, represents target domain, and T,
represents target learning task. Given two domains are unidentical or have two dif-
ferent tasks, TL aim is to improve the results P(Y,1X,) of D, when T, and D, knowl-
edge can be obtained. There are two types of TL: (1) heterogeneous and (2)
homogeneous as shown in Fig. 8.3.

Heterogeneous TL: when source feature space and feature space are different
which means that Y, # Y, and/or X, # X,. Under the condition of same domain distri-
butions, the strategy of resolution is to adjust feature space smaller and transform it
to homogeneous so that the differences between marginal or conditional of source,
and target domains will be reduced.

Homogeneous TL: when there are conditions X, = X, and Y, = Y|, the difference
between two domains lies in data distributions. Three strategies are commonly used
to tackle homogeneous TL problems: (1) reduction in the differences of P(X,) # P(X),
(2) reduction in the differences of P(Y,|X,) # P(YlX,), and (3) the combination of
strategies (1) and (2).

8.3 Solutions of TL

There are four methods to solve problems produced by homogeneous and heteroge-
neous TL: (1) instance-based, (2) feature-based, (3) parameter-based, and (4)
relational-based methods.

178 8 Transfer Learning and Transformer Technology
8.3.1 Instance-Based Method

This method reweights samples from source domains and uses them as target
domain data to bridge the gap of marginal distribution differences which works best
when conditional distributions of two tasks are equal.

8.3.2 Feature-Based Method

This method works for both heterogeneous and homogeneous TL problems. For
homogeneous types, it is to bridge the gap between conditional and marginal distri-
butions of target and source domains. For heterogeneous types, it is to reduce the
differences between source and target feature spaces. It has two approaches (a)
asymmetric and (b) symmetric.

(a) Asymmetric feature transformation aims to modify the source domain and
reduce the gap between source and target instances by transforming one of the
source and target domains to the other as shown in Fig. 8.4. It can be applied
when Y, and Y, are identical.

(b) Symmetric feature transformation aims to transform source and target domains
into their shared feature space, starting from the idea of discovering meaningful
structures between domains. The feature space they share is usually low-
dimensional. The purpose of this approach is to reduce the marginal distribution
distance between destination and source. The difference between symmetric
and asymmetric feature transformation is shown in Fig. 8.5.

8.3.3 Parameter-Based Method

This method transfers learned knowledge by sharing parameters common to the
models of source and target learners. It applies to the idea that two related tasks have
similarity in model structure. The trained model is transferred from source domain

a VG -3 v
») w . X |
u@ W - W »

Q-) “m -1)

Fig. 8.4 Asymmetric feature transformation

8.3 Solutions of TL 179

Symmetric Asymmetric
Transformation Transformation

-@ __J&

Ps(Xs)

Fig. 8.5 Symmetric feature transformation (left) and asymmetric feature transformation (right)

Source Domain Target Domain

Transferring the learned structure
(Weights of the network)

—)

Learned Weights on Learned Weights on Fine Tuned Weights on
Random Weights Source Samples Source Samples Target Samples

to target domain with parameters. This approach has a huge advantage because the
parameters are usually trained from randomly initialized parameters as the training
process can be time-consuming for models trained from the beginning. This
approach can train more than one model on the source data and combine parameters
learned from all models to improve results of the target learner. It is often used in
deep learning applications as shown in Fig. 8.6.

Trilnmg

Fig. 8.6 Parameter-based methods

8.3.4 Relational-Based Method

This method transfers learned knowledge by sharing its learned relations between
different sample parts of source and target domains as shown in Fig. 8.7. Food and
movie domains are a related domain example. Although the review texts are differ-
ent, sentence structures are similar. It aims to transfer learned relations of different
review sentence parts from these domains to improve text sentiment analysis results.

180 8 Transfer Learning and Transformer Technology

Domain Reviews

The food is delicious.
Food | ! highly recommend thispasta.
This is very amazing meal.

The movie is great.

iaiia I love this movie.
Godfather was the most
amazing movie. Camera Domain Movie Domain
Reviews in movie and food domains. Boldfaces Dependency tree structure.

are topic words and Italics are sentiment words.

Fig. 8.7 Relational-based approaches: an example of learning sentence structure of food reviews
to help with movie reviews’ sentiment analysis

ol

/\._-‘_ : O / ;
% O 3

Fig. 8.8 Recurrent neural network (left) vs. feedforward neural network (right)
8.4 Recurrent Neural Network (RNN)

8.4.1 WhatIs RNN?

Recurrent neural network (RNN) is a class of artificial neural networks (ANNS) to
consider time series or sequential data as input and use them as prior inputs to pro-
duce current input and output (Cho et al. 2014; Sherstinsky 2020; Yin et al. 2017).
The RNN has memory which means its output is influenced by prior elements of the
sequence against traditional feedforward neural network (FNN) with independent
inputs and outputs as shown in Fig. 8.8.

8.4.2 Motivation of the RNN

Many learning tasks require sequential data processing, including speech recogni-
tion, image captioning, and synchronized sequences in video classification. While
sentiment analysis and machine translation generate sequence-based outputs, the

8.4 Recurrent Neural Network (RNN) 181

LI A L
] OOO0 OO0 00000 OO
] 0 oo don oo

Fig. 8.9 Five major types of RNNs

Fig. 8.10 Basic
architecture of the RNN ’
Qutput Layer i

Hidden Layer (:’

Input Layer ‘

inputs for these tasks are time- or space-dependent, which cannot be effectively
modeled by traditional neural networks that assume test and training data are
independent.

For example, a language translation task aims to translate a phrase that feel under
the weather means unwell. This phrase makes sense only when it is expressed in
that specific order. Thus, the positions of each word in sentence must be considered
when model predicts the next word.

There are five major categories of RNN architecture corresponding to different
tasks: (1) simple one-to-one model for image classification task, (2) one-to-many
model for image captioning tasks, (3) many-to-one model for sentiment analysis
tasks, (4) many-to-many models for machine translation, and (5) complex many-to-
many models for video classification tasks as shown in Fig. 8.9.

|

1

|
—
—
||
—
|
|+

8.4.3 RNN Architecture

The RNN like standard neural networks consists of input, hidden, and output layers
as shown in Fig. 8.10.

An unfolded RNN architecture is narrated by x, as the input at time step ¢, s, stores
the values of hidden units/states at time ¢, and o, is the output of the network at time
step . U are weights of inputs, Ws are weights of hidden units, and V is the bias as
shown in Fig. 8.11.

182 8 Transfer Learning and Transformer Technology

Fig. 8.11 Unfolded RNN 4 5
architecture O t-1

i S

Unfold
U
xr

-1 t t+1

e <

<

X

With the activation function f, the hidden states s, are calculated by equation:

s, = f(Ux, +Ws,_)) 8.2)
The output of each recurrent layer o, is calculated by equation:

o, = softmax (Vs,) (8.3)

The hidden states s, are considered as network memory units which consist of
hidden states from several former layers. Each layer’s output is only related to hid-
den states of the current layer. A significant difference between RNN and traditional
neural networks is that weights and bias U, W, and V are shared among layers.

There will be an output at each step of the network but unnecessary. For instance,
if inference is applied for sentiment expressed by a sentence, only an output is
required when the last word is input, and none after each word for input. The key to
RNNs is the hidden layer to capture sequence information.

For RNN feedforward process, if the number of time steps is &, then hidden unit
values and output will be computed after k + 1 time steps. For backward process, the
RNN applies an algorithm called backpropagation through time (BPTT).

RNN topologies range from partly to fully recurrent. Partly recurrent is a layered
network with distinct output and input layers where recurrence is limited to the hid-
den layer. Fully connected recurrent neural network (FRNN) connects all neurons’
outputs to inputs as shown in Fig. 8.12.

8.4.4 Long Short-Term Memory (LSTM) Network
8.4.4.1 WhatIs LSTM?

Long short-term memory (LSTM) network (Staudemeyer and Morris 2019; Yu et al.
2019) is a type of the RNN with special hidden layers to deal with gradient explo-
sion and disappearance problems during long sequence training process proposed
by Hochreiter and Schmidhuber (1997). LSTM has better performance with train-
ing longer sequences against naive RNNs.

LSTM and naive RNN structure frameworks are shown in Fig. 8.13.

8.4 Recurrent Neural Network (RNN) 183

Fig. 8.12 Simple recurrent neural network (left) and fully connected recurrent neural net-
work (right)

Fig. 8.13 Standard RNNs t
(left) and LSTM (right)

i

LSTM has two hidden layers as the RNN where a memory cell in the layer is to
replace the hidden node. The RNN has only one transfer state 4’ as compared to the
RNN. There are two transfer states, ¢’ (cell state) and A’ (hidden state), in
LSTM. RNN’s k' corresponds to LSTM’s ¢'. ¢’ passed down information among
them, and output ¢’ is produced by adding ¢'~! passed from state and values of the
previous step. RNN’s 4’ has larger difference among nodes usually.

8.4.4.2 LSTM Architecture

x" and A'~! are concatenated inputs from the state of the previous step to train with
activations for four states as shown in Fig. 8.14.

z is input calculated by nated vector with weights w and converted into values
0-1 through activation function tanh. zf z z° are calculated by multiplying the con-
catenated vector with corresponding weights and converting to values 0—I by a

184 8 Transfer Learning and Transformer Technology

Fig. 8.14 Four states

f LSTM X x
.

X X!
n”(“m) =“(ﬂ)

Fig. 8.15 Calculations in n

memory cell of LSTM
;—p. -
tanh
L ;\z

L/

sigmoid function ¢ to generate gate states. z’ represents the forget gate, z’ represents
the input gate, and z° represents output gate. A memory cell of LSTM calculation is
shown in Fig. 8.15.

Memory cells ¢/ b’ y* are calculated by gate states as equations below: (© is the
Hadamard product)

ct-l !

|

=20+ 0z
W=z0 tanh(c’) (8.4)
V' =G(W7z’)

LSTM has (1) forget, (2) memory select, and (3) output stages.

1. Forget stage
This stage retains important information passed in by previous node ct—1 (the
previous cell state) and discards unimportant ones. The calculated z is used
as a forget gate to control what type of ¢! information should be retained or
discarded.
2. Memory selection stage
This stage remembers input x* selectively to record important information. z
refers to present input. z' is the input gate to control gating signals.
3. Output stage

8.4 Recurrent Neural Network (RNN) 185

Fig. 8.16 General
architecture of the GRU

xt

This stage determines what is considered as k' (the current state) to be passed
down to the next layer. z° is the output gate to control this process before ¢’ is
scaled from the memory select stage (convert through a tanh function).

Each layer output y* is calculated by multiplying weights with A’ and converting

the product through an activation function like the RNN; the cell state ¢’ is passed to
the next layer at the end of each layer.

8.4.5 Gate Recurrent Unit (GRU)
8.4.5.1 What Is GRU?

Gate Recurrent Unit (GRU) can be considered as a kind of the RNN like LSTM but
to manage backpropagation gradient problems (Chung et al. 2014; Dey and Salem
2017). GRU proposed in 2014, and LSTM proposed in 1997 had similar perfor-
mances in many cases, but the former is often exercised due to simple calculation
with comparable results than the latter.

GRU’s input and output structures are like the RNN. There are inputs x* and h'!
to contain relevant information of the prior node. Current outputs y* and h’ are cal-
culated by combining x’ and h*1. A GRU architecture is shown in Fig. 8.16.

8.4.5.2 GRU Inner Architecture

r is the reset gate, and z is the update gate. They are concatenated with input x* and
hidden state h*~! from the prior node and multiply results with weights as shown in
Fig. 8.17.

When a gate control signal is available, apply r reset gate to obtain data
h'~1 = b1 © r after reset, h*"! is concatenated with x’ Apply a tanh function to gener-
ate data that lies within range (—1,1) as shown in Fig. 8.18.

At this point, i’ contains current input x’; its selection memory stage is like LSTM.

186 8 Transfer Learning and Transformer Technology

i--3C8 E)

Fig. 8.17 Reset and
update gates of GRU

xt

g’=a()

Fig. 8.18 Computation of h

xt
- o I

Finally, update memory stage is the most critical step where forget and remem-
ber steps are performed simultaneously. The gate z obtained earlier is applied as:

h = (l—z) Oh_ +z0OH (8.5)

where z (gate signal) is within the range 0~1. If it is close to 1 or 0, it signifies more
data has remained or forgotten, respectively.

(1 — z) ® h*! represents the calculation to forget the original hidden state
selectively. (I — z) is considered as a forget gate to forget h'~! unimportant
information.

z © h' represents ' memory selective information of the present node. Like
(I - z), it will forget h' unimportant information or is considered as selective i’
information.

h'=(1 —z) © k"' + 7 © h' is the calculation to forget h"~! information from
passed down and add information from the current node.

It is noted that forget z and select (I — z) factors are linked, which means it will
forget the passed in information selectively. When weights (z) are forgotten, it will
apply weights in A’ to configurate (1 — z) at a constant state.

GRU’s input and output structures are like the RNN, and its internal concept is
like LSTM. GRU has one less internal gate as compared to LSTM and fewer param-
eters but can achieve comparable satisfactory results with reduced time and compu-
tational resources. A GRU computation module is shown in Fig. 8.19.

8.4 Recurrent Neural Network (RNN) 187

Fig. 8.19 Computation

module of GRU hh.‘.“

F 9
® -

reset] update

,

L 2 i '-ii'...'.- xt L LLEET xt

\ 4
©
+
I
:

v

SUS SN NS S NSNS EEEEEEEEEE

8.4.6 Bidirectional Recurrent Neural Networks (BRNNs)
8.4.6.1 What Is BRNN?

Bidirectional Recurrent Neural Network (BRNN) is a type with RNN layers in two
directions (Singh et al. 2016). It links with previous and subsequent information
outputs to perform inference against both RNN and LSTM to possess information
from the previous one. For example, in text summarization, it is insufficient to con-
sider the information from the previous content; sometimes, it also requires subse-
quent text information for word prediction of a sentence. The BRNN is proposed to
deal with these circumstances.

The BRNN consists of two RNNs superimposed on top of each other. The output
is mutually generated by two RNN states. A BRNN structure is shown in Fig. 8.20.

BRNN training process is as follows:

1. Begin forward propagation from time step / to time step 7 to calculate hidden
layer’s output and save at each time step.

2. Proceed from time step 7 to time step ¢ to calculate backward hidden layer output
and save at each time step.

3. Obtain each moment final output according to forward and backward hidden
layers after calculating all input moments from both forward and backward
directions.

188 8 Transfer Learning and Transformer Technology

Output Layer

Backward Layer <

Forward Layer

Input Layer

Fig. 8.20 Structure of the BRNN

8.5 Transformer Technology

8.5.1 What Is Transformer?

The Transformer is a network architecture based on the attention mechanism, with-
out relying on recurrent or convolutional units (Vaswani et al. 2017). Transformer
and LSTM models differ in their training processes. LSTM models are serial and
iterative, which means they cannot proceed to the next word until the previous one
has been processed. In contrast, the Transformer processes all words in parallel,
allowing for simultaneous processing, which enhances computational efficiency.
The structure of a Transformer system is illustrated in Fig. 8.21.

8.5.2 Transformer Architecture

A transformer model has two parts: (1) encoder and (2) decoder. Language sequence
extracts as input, encoder maps it into a hidden layer, and decoder maps the hidden
layer inversely to a sequence as output.

8.5 Transformer Technology 189

Fig. 8.21 Transformer Output
architecture Probabilities

Forward

Add & Norm =

r—>| Add & Norm |

Multi-Head
Feed Attention
Forward T MNx
—
Nix Add & Norm
l_.‘l Add & Norm] VeEreE
Multi-Head Muilti-Head
Attention Attention
At LV
> J . —)
Paositional Positional
Encodi 2 & '
ncoding Encoding
Input Qutput
Embedding Embedding
Inputs Qutputs
(shifted right)

8.5.2.1 Encoder

There are six identical encoder layers in the transformer with two sublayers: (1)
self-attention and (2) feedforward in each encoder layer. The self-attention layer is
the first sublayer to exercise attention mechanism, and a simple fully connected
feedforward network is the second sublayer. There follow a residual connection and
layer normalization from each of the sublayers. An encoder layer architecture is
shown in Fig. 8.22.

8.5.2.2 Decoder

There are six identical encoder layers in the transformer. In addition to identical two
sublayers as each encoding layer, a third sublayer is added to the decoder to perform
multi-head attention, taking the output of last encoder layer as input. Residual con-
nections and layer normalization are used sequentially for all sublayers, which is the

190 8 Transfer Learning and Transformer Technology

Fig. 8.22 Architecture of # 4
an encoder layer (_.(Add & Normalize) \1
: 4 A
i (FeedForward) (FeedForward)
N i i e T 4
EAN i 0 z[17M
L S 4
% ’ G HEE _l__ =
:-v! LayerNorm(||_|_|_| ol
=1 7Y Y
Of s [l...l.l. | [Ll]
= E (Self-Attention)
! 3

POSITIONAL
ENCODING

x [T X2 [EIEIE]

same as the encoder. The decoder’s self-awareness is modified by the mask to ensure
that inference of the position can only use information from a known position, or in
other words, its previous position.

8.5.3 Deep into Encoder
8.5.3.1 Positional Encoding

Since transformer has no iterative process, each word’s position information must
be provided to ensure that it can recognize the position relationship in language.
Linear transformation of sin and cos functions is applied to provide model position
information as equation:

PE (pos,2i) =sin (pos /10,0002 s)
| (8.6)
PE (pos,2i+1) = cos (pos /10,0002 s)

where pos represents a word’s position in a sentence, i represents word vector’s
dimension number, and d,,.q. represents embedded dimension’s value. There is a set
of formulas such as sets of 0, 1, or 2, 3 processed with the above sum function,
respectively. As the dimension number increases, the period changes moderately to
generate a texture containing position information.

8.5 Transformer Technology 191

8.5.3.2 Self-Attention Mechanism

For input sentence, the word vector of each word is obtained through word embed-
ding, and the position vector of all words is obtained in same dimensions through
positional encoding that can be added directly to obtain the true vector representa-
tion. ith word’s vector is written as x; X is the input matrix combined by all word
vectors. ith row refers to the ith word vector.

Wy, Wi, Wy, are matrices defined to perform three linear transformations with X
to generate three matrices Q (queries), K (keys), and V (values), respectively.

0=X-W,
K=X-W, 8.7)
V=X-W,

Attention mechanism computation can be described as:

T
Attention (Q,K , V) = softmax [oK) V (8.8)

Ja

The dot products are calculated by multiplying query Q by keys K, dividing the
result by /d, , and applying a softmax function to obtain value scores V.

8.5.3.3 Multi-head Attention

The previously defined set of O, K, V allows a word to use the information of related
words. Multiple Q, K, V defined groups can enable a word to represent subspaces at
different positions with identical calculation process, except that the matrix of linear
transformation has changed from one group (W, Wy, Wy) to multiple groups (W, ,
W,? s W,,0), (WQI, W,; s WV1) ... as equation:

MultiHead (Q,K V) = Concat (headl, ...,head/)- WO

. ; ; ; (8.9)
where headi = Attention (X7, XW, XW})
where W, is the weights of concatenated results.

Adding input with a sublayer (self-attention layer for example) to generate resid-
ual connections as equation:

=X

embedding

+ Attention (Q,K,V) (8.10)

attention

192 8 Transfer Learning and Transformer Technology

8.5.3.4 Layer Normalization of Attention Sublayer

Layer normalization is to standardize the distribution of hidden layers indepen-
dently to improve convergence and training processes effectively.

X sention = LayerNorm (X ion) (8.11)
8.5.3.5 Feedforward Layer
It is a two-layer linear map with an activation function, i.e., ReLU.
X,igeen = Linear (ReLU (Linear (X sention)))
followed by residual connection and layer normalization scheme:
Xyidgen = Xaention + X hiaden (8.12)

Xhiggen = LayerNorm (X hidden)

8.6 BERT

8.6.1 What Is BERT?

BERT is a pretrained model of language representation called Bidirectional Encoder
Representation from Transformers (Devlin et al. 2018). It uses masked language
model (MLM) to generate deep bidirectional linguistic representation instead of the
traditional one-direction model or concatenated two one-direction models to pre-
train language.

8.6.2 Architecture of BERT

BERT models are pretrained either by left-to-right or right-to-left language models
previously; this unidirectional property restricts model structure to obtain unidirec-
tional context information only and propensity for representation. BERT adopted
MLM in pretraining stage and a bidirectional transformer with deep layers to build
the entire model; the representation generated integrates both left and right content
information. A BERT system architecture is shown in Fig. 8.23.

8.6 BERT 193

K& Mask LM Maz LM \ /@/‘%“D StartiEnd SDaN

= =

(=) % EIC=) Qg]
Paragraph
\ -
Unilabeled Senlete Aand B Pair / \ \\ Question Answer Pair /

Masked Sentence A Masked Senlence B

Pre-training Fine-Tuning

Fig. 8.23 System architecture of BERT

8.6.3 Training of BERT

BERT has two training process steps: (1) pretraining and (2) fine-tuning.

8.6.3.1 Pretraining BERT

BERT is not constrained by a one-way language model because it randomly replaces
tokens in each training sequence with mask tokens ((MASK]) with 15% probability
to predict the original word at position [MASK]. [MASK] do not appear in fine-
tuning of downstream tasks, leading to differences in pretraining and fine-tuning
stages, because the pretraining objective improves language representation, being
sensitive to [MASK] and to other insensitive tokens. BERT applies the following
strategies:

First, in each training sequence, a token position is randomly selected for predic-
tion with a probability of 15%. If ith token is selected, it will be replaced by one of
the following tokens:

1. 80% is [MASK]. For instance, the cat is adorable — the cat is [MASK].

2. 10% is a random token. For instance, the cat is adorable — the cat is ginger.

3. 10% is the original token (no change). For instance, his cat is adorable — his cat
is adorable.

Second, apply T; corresponding to the position, predict the original token through
full connection, then apply softmax to output the probability of each token, and
finally apply cross-entropy to evaluate loss.

This method causes BERT sensitive to [MASK] and all tokens to extract repre-
sentative information.

194 8 Transfer Learning and Transformer Technology

8.6.3.2 Next Sentence Prediction (NSP)

There are tasks such as question answering and natural language reasoning to
understand the relationship between two sentences. Sentence-level representations
cannot be captured directly, as MLM tasks tend to extract token-level representa-
tions. BERT applies NSP pretraining task to let the model understand the relation-
ships between sentences and predict whether they are connected.

For every training sample, select Set A and B from corpus to create a sample,
where Set A is 50% of Set B (labeled “IsNext”), and Set B is 50% random. Next,
training examples are put into the BERT model to generate binary classification
predictions.

8.6.3.3 Fine-Tuning BERT

It is necessary to add an additional output layer to fine-tune downstream tasks for
satisfactory performance. It does not require task-specific structural modification in
this process.

8.7 Other Related Transformer Technology

8.7.1 Transformer-XL
8.7.1.1 Motivation

Transformers are widely used as a feature extractor in NLP but required to set a
fixed length input sequence, i.e., the default length for BERT is 512. If text sequence
length is shorter than fixed length, it must be solved by padding. If text sequence
length exceeds fixed length, it can be divided into multiple segments. Each segment
is processed at training separately as shown in Fig. 8.24.

Nevertheless, there are two problems: (1) segments are trained independently,
the largest dependency between different tokens depends on the segment length; (2)
segments are separated according to a fixed length without sentences’ natural

o
=]

Q

A N A W ¥ &|R = CO W L S TR S " n kR K

|:> S > |_>
a 8 & 9 e 8 8 7 o i o © o :/ L] L o 0O & o £
a & o @ s a e @ [o 0O (=] * o (2] 0 e @

Segment 1 Segment 2 Limited Contait Limfied Context Limited Context

Training Phase Evaluation Phase

Fig. 8.24 Segment training of standard transformer

Fixed (No Grad| Hew Segment Fixed {No Grad) Hew Segment Extended Context

Other Related Transformer Technology 195

o o o o o plo o B 00 6 0 0 8 O @
<l
a o ¢ 0 o el o o & 6 0 0 o _gaTE O
& g
o o o o O el 0 £ O O 000 O O O O

0|l 0 2 c © © @ O @ @ @

l: o—o—or

Training Phase Evaluation Phase

Fig. 8.25 Segment training of Transformer-XL

boundary consideration to produce semantically incomplete segments. Thus, trans-
former-XL (Dai et al. 2019) is proposed.

8.7.1.2 Transformer-XL Technology

. Segment-level recurrence: When processing the current segment,

Transformer-XL caches and applies hidden vector sequence to all layers from
the previous segment. These sequences only participate in forward calculation
without backpropagation called segment-level recurrence. Figure 8.25 shows the
segment training of Transformer-XL.

Relative position encodings: Each token has an embedding position to repre-
sent position relationship in standard transformer. This embedding position
encoding is either generated by sin/cos function or learning, but it is impractical
in Transformer-XL because positional relationship of different segments is
unidentified if the same positional code is added to each segment. Transformer-XL
applies relative position encoding instead of absolute position encoding, so when
calculating the hidden vector of current position, it considers tokens’ relative
position relationships to calculate attention score.

8.7.2 ALBERT

BERT model has many parameters, but it is limited by GPU/TPU memory size as
model size increases. Google proposed A Lite BERT (ALBERT) to solve this prob-
lem (Lan et al. 2019). ALBERT applies two techniques to reduce parameters and
improve NSP pretraining task, which include:

Sl o

Parameter sharing—apply same weights to all 12 layers.

Factorize embeddings—shorten initial embeddings to 128 features.

Pretrain by LAMB Optimizer—replace ADAM Optimizer.

Sentence order prediction (SOP)—replace BERT’s next sentence prediction
(NSP) task.

N-gram masking—modify MLM task to mask out words’ N-grams instead of
single words.

196 8 Transfer Learning and Transformer Technology

Exercises

8.1. What is TL? Compare the major differences between TL and traditional
ML in AL

8.2. Describe and explain how TL can be applied to NLP. Give two NLP applica-
tions as examples to support your answer.

8.3. Compare the major differences between heterogeneous vs. homogeneous
TL. Give two NLP applications/systems as examples to illustrate.

8.4. What is RNN? State and explain why RNN is important for the building of
NLP applications. Give two NLP applications as examples to support
your answer.

8.5. State and explain five major categories of RNNs. For each type, give an exam-
ple to illustrate.

8.6. What is the LSTM network? State and explain how it works by using NLP
applications such as text summarization.

8.7. What is GRU? Using an NLP application as examples, state and explain the
major differences between the GRU and standard RNN.

8.8. State and explain the key functions and architecture of Transformer technol-
ogy. Using NLP application as examples, state briefly how it works.

8.9. What is the BERT model? Using NLP application such as Q&A chatbot as
examples, state and explain briefly how it works.

References

Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio,
Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., & Salakhutdinov, R. (2019). Transformer-xI:
Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860.

Devlin, J., Chang, M. W, Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.

Dey, R., & Salem, F. M. (2017, August). Gate-variants of gated recurrent unit (GRU) neu-
ral networks. In 2017 IEEE 60th international midwest symposium on circuits and systems
(MWSCAS) (pp. 1597-1600). IEEE.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),
1735-1780.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert
for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.
Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and

data engineering, 22(10), 1345-1359.

Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term
memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306.

Singh, B., Marks, T. K., Jones, M., Tuzel, O., & Shao, M. (2016). A multi-stream bi-directional
recurrent neural network for fine-grained action detection. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition (pp. 1961-1970).

References 197

Staudemeyer, R. C., & Morris, E. R. (2019). Understanding LSTM--a tutorial into long short-term
memory recurrent neural networks. arXiv preprint arXiv:1909.09586.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N, ... & Polosukhin,
1. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big
data, 3(1), 1-40.

Yin, W., Kann, K., Yu, M., & Schiitze, H. (2017). Comparative study of CNN and RNN for natural
language processing. arXiv preprint arXiv:1702.01923.

Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and
network architectures. Neural computation, 31(7), 1235-1270.

Zhuang, F.,, Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H,, ... & He, Q. (2020). A comprehensive survey
on transfer learning. Proceedings of the IEEE, 109(1), 43-76.

Chapter 9)
Major NLP Applications s

9.1 Introduction

This chapter will study three major NLP applications: (1) Information Retrieval
Systems (IR), (2) TS, and (3) Question-&-Answering Chatbot System (QA Chatbot).

IR is the process of obtaining the required information from large-scale unstruc-
tured data relative to traditional structured database records from texts, images,
audios, and videos. IR systems are not only common search engines but recommen-
dation systems like e-commerce sites, question and answer, or interactive systems.

Text Summarization is the process of diminishing a set of data computationally,
creating a subset or summary to represent relevant information for NLP tasks such
as text classification, question-answering, legal texts, news summarization, and
headlines generation.

QA system represents human-machine interaction system with human natural
language is the communication medium. It is a task-oriented system to deal with
objectives or answer specific questions through dialogues with sentiment analysis.

9.2 Information Retrieval Systems

9.2.1 Introduction to IR Systems

NLP employs Al techniques such as N-grams, rule-based approaches, and Word2Vec
to retrieve information but faces computational limitations when processing large
volumes of corpus data. Challenges include defining text and model frameworks for
domain-specific applications, utilizing GPU clusters, and incurring high costs to
maintain rule sets due to standard modifications.

© The Author(s), under exclusive license to Springer Nature Singapore Pte 199
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_9&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_9#DOI

200 9 Major NLP Applications

Corpora that support /R in open, machine-readable formats have grown exponen-
tially due to advancements in pre-trained models. IR models designed for generic
language combine general terms with domain-specific terms; for example, “lease”
can refer to a place or a leasehold. The objectives can be organized by abstract,
formal, or colloquial language within a large narrative component, depending on the
document type, to enhance retrieval results.

In IR research, text or document classification and clustering focus on two key
aspects: (1) text representation and (2) clustering algorithms. Text representation
involves converting unstructured text into a computer-processable data format. This
process necessitates extracting and mining textual information. Semantic similarity
computation serves as the link between text modeling and representation, with
applications for potential information layers in the text. Clustering algorithms are
used to extract semantic information, facilitating similarity calculations for effec-
tive text classification and clustering.

9.2.2 Vector Space Model in IR

Vector Space Model (Salton et al. 1975) was a leading IR method from 1960 to
1970. Queries and retrieved documents are represented as vectors with dimen-
sionality related to word list size in this model. A retrieved document D can be
represented as a vector of lexical items: D; = (d,, d,, ..., d,), where d;, is the
weight of a ith lexical item in D,. Query Q is expressed as a lexical item vector:
0 =(q1 g2 ---» g,) Where g, is the weight of ith lexical item in query term. The
relevance is determined by computing the distance between lexical item vectors
of the retrieved document and query based on this representation. Although it
cannot prove cosine relevance is superior to other similarity methods, it achieved
satisfactory performance according to search engines evaluation results. Cosine
similarity for angle between retrieved document and query calculation is
expressed as

d-g "d -q,
sim(Dl_,Q)_ d,-q Z_/:l i "4

al<lal [y gy e

Equation 9.1 is the weights for dot or inner product of all word terms in query
matching documents. There are many words item weights for vector space models.
Most of the weighting methods are based on Term-Frequency (TF) variation.
Inverted document frequency (IDF) (Aizawa 2003) represents the number of term
occurrences in retrieved document and reveals lexical term significance in the entire

0.1

9.2 Information Retrieval Systems 201

document data set. A lexical item is insignificant with high occurrence frequency in
multiple retrieved documents.

There are other text representation methods in addition to vector space model,
e.g., phrase or concept representations. Although phrase representation can improve
semantic contents, the reduced statistical quality of feature vector become sparse
and difficult to extract statistical properties applying machine learning algorithms.
Figures 9.1 and 9.2 show a text encoded by Sentence Transformers (Reimers and
Gurevych 2019) to demonstrate and compute cosine similarity between embed-
dings. It uses a pre-trained model to encode two sentences and outperform other
pre-train model like BERT (Vaswani et al. 2017).

It is natural to identify the combination with the highest cosine similarity score.
By doing so, an intense ranking scheme is used as shown in Fig. 9.3 to identify the
highest scoring pair with a secondary complexity. However, it may not work for
long lists of sentences.

A chunking concept to divide corpus into smaller parts is shown in Figs. 9.4
and 9.5. For example, parse 1000 sentences at a time to search the rest (all other
sentences) of the corpus or search a list of 20k sentences to divide into 20 x 1000
sentences. Each query is compared with 0—10k sentences first, and 10k-20k sen-
tences to reduce memory storage. The increases of these two values intensified
speed and memory storage and then identified the pair with the highest similarity
to extract top-K scores for each query as opposed to extract and sort scores for all
n? pairs.

Such method is faster than brute force methods due to fewer samples. In prac-
tical industrial scenarios, more attention is paid to the speed of pre-trained mod-
els, encoding methods, and data retrieval. For example, two-tower model (Yang
et al. 2020), Wide&Deep model (Cheng et al. 2016), etc. are shown in Figs. 9.6
and 9.7.

Softmax classifier 1.1
4 4
(u, v, |u-vl|) cosine-sim(u, v)
u v u \'
[) 4 4 [)
pooling pooling pooling pooling
% 4 + 4
BERT BERT BERT BERT
Sentence A Sentence B Sentence A Sentence B

Fig. 9.1 Sentence transformers frame

202 9 Major NLP Applications

- et =

/nse Mask LM Mask LM _ /"‘"u/‘g‘ SQuAD StartEnd Span N

[& ® * (' \
- Gl &) - G-

BERT P BERT

@@@Q = =) . @Eg__.].@

Masked Sentence A Masked Sentence B \ 1 Question * Paragraph |
\\ Unlabeled Senlmceﬁann B Pair / \x \\ Question Answer Pair /
Pre-training Fine-Tuning

Fig. 9.2 BERT frame

from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('all-MinilM-L6-v2')

Two lists of sentences

sentences] = ['The cat sits cutside',
‘A man 1s playing guitar’®,
'The new movie is awesome']

sentences2 = ['The dog plays in the garden’,
‘A woman watches TV',
‘The new movie is so great’]

#Compute embedding for both lists
embeddingsl = model.encode{sentences], convert_to_tensor=True)
embeddings? = model.encode(sentences?, convert_to_tensor=True)

#Clompute cosine-similarits
cosine_scores = util.cos_sim(embeddingsl, embeddings2)

#0utput the pairs with their score

for 1 in range(len{sentencesl)):
print("{} \tit {} \t\t Score: {:.4f}".format(sentences1[i], sentences2[i], cosine_scores[i][i])})

Batches: 1007 [1/ (00:00<00:00, 20,9017
Batches: 1007 [/1 (00:00<00:00, 21 67175

The cat sits outside The dog plays in the garden Score: @.2838
A man is playing guitar A woman watches TV Score: -8.8327
The new movie is awesome The new movie is so great Score: @.893%

Fig. 9.3 The singer example of vector space model

9.2.3 Term Distribution Models in IR

Probabilistic Ranking Principle (PRP) models firstly proposed by Croft and Harper
in 1979 (Croft and Harper 1979) to compute query relevance degrees and retrieval.
PRP regards IR as a process of statistical inference, where an IR system predicts
query relevance from retrieved documents and sorts in descending order based on
predicted relevance scores. This approach is like Bayesian model machine learning.
A PRP model combines relevant feedback information with IDF and estimates each
item’s probabilities to optimize search engine retrieval performance. However, it is

9.2 Information Retrieval Systems

Stime
from sentence_transformers import SentenceTransformer, util

model = SentenceTransformer('all-MinilM-L6-v2')

Single list of sentences

sentences = ['The cat sits outside’',
‘A man is playing guitar',
‘I love pasta’,
‘The new movie is awesome’,
‘The cat plays in the garden’,
‘A woman watches TV',
"The new movie 1s so great',
‘Do you like pizza?']

#ompute embeddings
embeddings = model.encode(sentences, convert_to_tensor=True)

#Compute cosine-similarities for each sentence with each other sentence

cosine_scores = utll.cos_sim(embeddings, embeddings)

#Find the pairs with the highest cosine similarity scores
pairs = []
for i in range(len(cosine_scores)-1):

for j in range(i+1, len(cosine_scores)):

pairs.append({'index': [1, j], ‘score’: cosine_scores{i][j]})

#Sort scores 1n decreasing order

pairs = sorted(pairs, key=lambda x: x['score'], reverse=True)

for pair in pairs[@:18]:
i, j = pair['index']

203

print(“{} \t\t {} \t\t Score: {:.4f}".format(sentences|[i], sentences[j], pair['score']))

CPU times: user 3 ps, sys: 1 ps, total: 4 ps
Wall time: 7.87 ps

Batches: 1005 | /' [00-00<00.00, 16:88its]

The new movie is awesome The new movie is so great

The cat sits outside The cat plays in the garden Score:
I love pasta Do you like pizza? Score: 9.5096

I love pasta The new movie is so great Score: 8.2560
I love pasta The new movie is awesome Score: @.2448
A man is playing guitar The cat plays in the garden

The new movie is awesome Do you like pizza? Score:
The new movie is so great Do you like pizza? Score:
The cat sits outside A woman watches TV Score: ©.1310
The cat plays in the garden Do you like pizza? Score:

Fig. 9.4 Multiple examples of vector space model

Score:

0.6788

Score:

8.1969
0.1692

9.0929

8.8939

8.2185

a difficult task to estimate each probability accurately in practical applications.
Okapi BM25 (Whissell and Clarke 2011) retrieval model had solved the difficulties
encountered by the PRP model with satisfactory performance in TREC retrieval
experiments and commercial search engines. Many IR researchers had modifica-
tions based on the BM25 model resulting in many variations, the most common

form is as follows:

sim QD ZIOg r+0.5)/(R—ri+0.5)
s n—r+05)/(N—nl.—R+rl.+0.5)

. (kl +1)f; . (kz +1)qﬁ (92)
K+f

k, +af;

204 9 Major NLP Applications

%time
from sentence_transformers import SentenceTransformer, util

model = SentenceTransformer(all-MinilM-L6-v2')

Single list of sentences - Possible tens of thousands of sentences
sentences = ['The cat sits outside',

‘A man is playing guitar’,

‘T love pasta’,

‘The new movie is awesome',

‘The cat plays in the garden’,

‘A woman watches TV',

'The new movie 1is so great’,

'Do you like pizza?']

paraphrases = util.paraphrase_mining(model, sentences)
for paraphrase in paraphrases[8:18]:
score, i, j = paraphrase

print("{} \vt\t {} \t\t Score: {:.4f}".format(sentences[i], sentences[j], score))

CPU times: user 3 ps, sys: @ ns, total: 3 ps
Wall time: 7.15 ps

The new movie is awesome The new movie is so great Score: 8.8939
The cat sits outside The cat plays in the garden Score: ©9.6788

I love pasta Do you like pizza? Score: ©.5096

1 love pasta The new movie is so great Score: @,2568

I love pasta The new movie is awesome Score: ©.2448

A man is playing guitar The cat plays in the garden Score: 8.2105
The new movie is awesome Do you like pizza? Score: ©.1969

The new movie is so great Do you like pizza? Score: @.1692

The cat sits outside A woman watches TV Score: ©.131@

The cat plays in the garden Do you like pizza? Score: 9.0908

Fig. 9.5 Chunk multiple examples of vector space model

similarity score
5(Q.0)

Similarity

A

Query Document
Encoder Encoder
f g

Ibglrlsoddlib:ﬁon]-é i’uﬁl[w]l@mh

! searcher and context 1

Query Q Document D

Fig. 9.6 Two-tower model (Yang et al. 2020)

9.2 Information Retrieval Systems 205

4 4 Output Units r
o & @ 9
Hidden Layers
= - -
Dense
L o® Embedaings @ @ L N
Sparse Foatures
Wige Modeis Wide & Dewp Models Deap Models

Fig. 9.7 Wide&Deep model (Cheng et al. 2016)

There are two approaches to consider which is the best BM25 method:

1. BM25 + Word2Vec embedding across all documents.
2. BM25 + BERT + Word2Vec embedding for each top-k documents, select the
most similar sentence embedding across top-k paragraphs.

Word2vec (Church 2017) is about word occurrences proportions in relations
holding in general over large text corpora and combines vectors of similar words
into a vector space called distributional hypothesis. Word2vec embeddings are to
compare query with sentence embeddings to select the one with higher cosine
similarity.

Transformer-based neural network models are popular NLP research areas on
enhanced parallelized processing capabilities. BERT is among those that use
transformer-based deep bidirectional encoders to learn contextual semantic rela-
tionships between lexical items and performed satisfactory in many NLP tasks.

It began to retrieve documents with the most relevant document followed by
paragraphs and extract sentences from selected paragraphs. BERT embeddings are
used to compare query with paragraphs and select the one with higher cosine simi-
larity. Once relevant paragraphs are available, select sentence with answer by com-
paring sentence embeddings based on Word2Vec embeddings trained on the whole
dataset, then average word embeddings in the paragraph with BM25 score calcula-
tion as shown in Fig. 9.8.

Common word queries occurred rarely in documents with a higher number of
occurrences produce sparse distribution. Contrarily, there will be similar scores at
many documents if common words with same frequency occurred across docu-
ments. Documents distribution with scores and codes are shown in Figs. 9.9
and 9.10.

Since word2vec relies heavily on each occurrence frequency, thus, it may pro-
duce satisfactory performance on specific queries while the same for BERT on gen-
eral queries.

The results of two selected queries showed that query (Sentence 1) achieved
satisfactory performance on specific/rare terminology while the second query
(Sentence 2) achieved satisfactory performance on normal terminology. They
depend on words specification level in the query. Queries have specific/rare termi-
nology performed satisfactorily with the most similar sentences across all docu-
ments. Queries have general terms, e.g., age, human, and climate performed
satisfactorily with the most relevant documents instead of embeddings comparison

206 9 Major NLP Applications

from get_result import filtered_query, remove_punct
from ranking import Ranking

We can calculate and plot the scores of the documents talking about COVID19
ranking = Ranking()
covid_documents = df[(df.after_dec == True) & (df.tag_disease_covid == True))].paper_id

queryl = filtered_query(queryl)
scoresl = ranking.get_bm25_scores{gqueryl, covid_documents)

query2 = filtered_query(query2)

scores2 = ranking.get_bm25_scores{query?, covid_documents)

Plot the results

fig, axs = plt.subplots(1,2, sharey=True, tight_layout=False, figsize =(15,5))
axs[8].hist(scoresl.values(), bins=28, color="g")

axs[8].set_xlabel(' Scores’)

axs|0].set_ylabel('Number of documents')

axs[8)].set_title('Incubation period’)

axs[1].hist(scores2.values(), bins=28, color="g")

axs|1].set_xlabel('Scores’)

axs[1].set_ylabel('Number of documents')

axs[1].set_title('Prevalence of asymptomatic shedding and transmission')

plt.show()

[nltk_data] Downloading package stopwords to /usr/share/nltk_data...
[nltk_data] Package stopwords is already up-to-date

Fig. 9.8 Sample code for Word2vec embeddings with BM25 score calculation

Incubation penod lence of ic shedding and

z
s

Numiber of documents
g

Number of documents

=
8

Scores Scores

Fig. 9.9 Documents distribution with scores and codes

9.2 Information Retrieval Systems 207

Sentence 1: B.6235944271838706

A comparison to the estimated incubation period distribution for MERS (Table 3 and Figure 3)
shows that the incubation period values are remarkably similar, with mean values differing a
t most 1 day and 95th percentiles differing at most 2 days.

Sentence 2: 8.6043468033864764
The estimated mean incubation periods for SARS are more variable between studies, including

values shorter and longer than those presented here for 2819-nCoV.

Sentence 3: 8.5978659753848486

These findings imply that the findings of previous studies that have assumed incubation peri
od distributions similar to MERS or SARS will not have to be adapted because of a shorter or
longer incubation period.

Fig. 9.10 BM25 results

across all of them. Thus, it is reasonable to compare each time the results of two
approaches and select the appropriate one based on words distribution for each query.

9.2.4 Latent Semantic Indexing in IR

Term Distribution Models in IR is a rapid and effective model. It uses topics to
express the implicit semantics of a document as index to replace incomplete, unreli-
able search terms with reliable indicants based on two assumptions:

1. Words have common topics in document.
2. Words not in document less likely to be related

Topic is filtered out by keywords in the Doc. Thus, P = (w/Doc) probability dis-
tribution table is introduced: the statistics of word frequency (frequency) in the
document, i.e., the law of large numbers.

P(wITopicD) ~ P(wlD) = tf(w,D) / len(D) 9.3)

Topic is regarded as a language model, and P = (w/Doc) is the probability of
word generation in this language model so the word not only occur in topic, but has
probability generated.

There are two sorting methods according to statistical language model when
query Q is given, which are (1) Query-likelihood and (2) Document-likelihood
methods.

208 9 Major NLP Applications

9.2.4.1 Query-Likelihood

Determine M), corresponding to each Doc, user’s Query is denoted as Q = (g,
G, ---» q,). Query probability will be generated under the language model of each
document can be calculated as follows (Zhuang and Zuccon 2021):

k

P(q,...qM,)=]1]P(q.M),) 9.4)

i=1

Search results are obtained by sorting all computed results. However, this method
calculates the probability for each Doc independently from other Docs, and the
relevant documents are not utilized.

9.2.4.2 Document-Likelihood

Determine each Query corresponding M,,. Calculate the probability that any given
document will be generated under the query’s language model (Zhuang and
Zuccon 2021):

P(DIM,)=[]P(wiM,) 9.5)

weD

The object of one-mode factor analysis traditionally is a matrix composed of
identical object-pair types of relationships. An example is a document-document
matrix. The matrix elements may be evaluated for similarity between documents
manually. This symmetric square matrix is decomposed into two matrices by eigen-
analysis. The decomposed matrix is composed of linearly independent factors.
Many of the factors are tiny that can be ignored usually producing an original matrix
approximation.

Two-mode factor analysis object is a matrix consisting of object-pair relation-
ships. This matrix can be decomposed into term-term, document-document, and
term-document matrices using singular-value decomposition (SVD) (Aharon et al.
2006). SVD reconstructs spatial response to the main patterns association between
data by ignoring less significant effects. Thus, a term that does not occur in a docu-
ment may be immediately adjacent to that document in semantic space based on
identified association patterns. The information location in semantic space has a
role in semantic index. SVD model test and lean with results in Latent Semantic
Indexing in IR is shown in Fig. 9.11.

SVD and corresponding validation results are shown in Figs. 9.12 and 9.13.

9.2 Information Retrieval Systems 209

I:}_|

(m < n)

|||||||| ::: |||||“|||||‘||||:=<

Fig. 9.11 SVD frame

import numpy as np
import matplotlib.pyplot as plt
la = np.linalg
words = ["I", "like", "enjoy", "deep", "learning”, "NLP","flying","."]
X = np.array([[@,2,1,08,8,0,08,0],
[2,8,68,1,8,1,8,0],
[1,0,06,0,68,8,1,0],
[e,1,0,0,1,0,0,0],
[6,0,0,1,8,08,8,1],
[8,1,0,0,8,0,08,1],
[e,0,1,0,0,0,0,1],
[e,8,8,0,1,1,1,8]])
U,s,Vh=la.svd(X, full_matrices=False)
for i in range(len(words)):
print(U[i,1],U[i,1],words[i])
plt.text(U[i,8],U[i,1],words[i])
plt.x1lim(-1,1)
plt.ylim(=1,1)
plt.show()

Fig. 9.12 Example of SVD
9.2.5 Discourse Segmentation in IR

Document contents combine with articulated parts such as paragraphs exalt auto-
matic documents segmentation according to meanings using machine learning
methods to compare two adjacent sentences similarity in turn, and generate

210 9 Major NLP Applications

-0.5728591445369984 -0.5728591445369984 I
0.6301206635626871 ©.6301206635626871 like
©.27401753321708033 ©.27401753321708033 enjoy
-9.2479121303794708 -0.2479121303794708 deep
©.033849504755904036 0.033849504755904036 learning
-0.2939889899169304 -0.29398898991693084 NLP
-0.1610277668211104 -0.1610277668211104 flying
©.15725476183570436 ©.15725476183570436 .

100

0.75 - g
like

050 1
025 1 oy
learning

fiying
p

0.00 1
-0.25 -
-0.50 - |

-0.75 -

- 0 L) L) L) L) L L L
-100 -0.75 -050 -025 000 0.25 0.50 0.75 100
Fig. 9.13 Validation results

segmentation point with the lowest similarity. This unsupervised method is called
Text Tiling (Hearst 1997) as shown in Fig. 9.14. Further, supervised learning meth-
ods can also be used such as classifiers constructions (Florian 2002) or sequence
models (Keneshloo et al. 2019) to detect segmentation point.

Rhetorical Structure Theory (RST) framework (Taboada and Mann 2006) is a
commonly used framework for parsing discourse as shown in Fig. 9.15. RST com-
mon relations in English are conjunction, justify, concession, elaboration, etc. as
shown in Figs. 9.16 and 9.17.

There are two approaches to identify relationships: (1) rule-based on iconic
words such as but, so, for example, and (2) machine learning with commonly fea-
tures such as bag of words (BoW) (Zhang et al. 2010), Discourse markers (Fraser
1999), Starting/ending N-grams (Robertson and Willett 1998), Location in the text
(Rothkopf 1971), Syntax features (Sadler and Spencer 2001), Lexical and distribu-
tional similarities (Weeds et al. 2004).

Discourse segmentation task is a significant evaluation indicator for NLP devel-
opment directions. From application perspective, discourse segmentation can assist
users rely on intelligence to improve productivity, its technology core value can
convert semi-structured and unstructured data to specific description structured in
turn to support substantial downstream applications.

9.2 Information Retrieval Systems 211

He walked 15 to the tram stop.

Then he waited for another 20 , but

the tram didn't come.
d=(0.9-0.7)+(0.1-0.7)=-04 sim: 0.7

The tram drivers were on strike that

d=0.7-0.9=-02 sim:0.9

morning.
d=(0.7-0.1)+(0.5-0.1)=1.0 sim: 0.1 —
So he walked home and got his bike out of
- the garage.
Rt s sim: 0.
0401051080801 He started riding but quickly discovered he
e had a flat tire
=(0.1-0.5)+(0.8-0.5)=-0. 5im: 0.8)
L SIM-98 " L1 walked his bike back |

d=0.8-0.5=0.3 im: 0.5
= He looked around but his wife had cleaned
the garage and he couldn't find the bike
pump.

deprh(gap!.) = (sim;_; — sim;) + (sim;y, — sim;) ,

Fig. 9.14 Examples of discourse segmentation

Fig. 9.15 Example of

rhetorical structure theory 1-3
Elaboration
-
Concern 2.3
that this Concession
material is = —— :
harmful o Although it evidence is
health or is toxicto lacking that
the certain it has any
environme 2nimals, serious
nt may be long-term
misplaced. effect on
human

beings.

212 9 Major NLP Applications

CONCESSION

1H
JusTigy

CONJURCTION

ELABORATION 1D | [s—

1F 1G

[It could have been a great movie]'! [It does have beautiful scenery,]'” [some of
the best since Lord of the Rings.]'“" [The acting is well done,]'” land I really liked
the son of the leader of the Samurai.]'¥ [He was a likable chap,]'” [and | hated to

see him die.]'“ [But, other than all that, thﬁ movie is nothing more than hidden

offs.]!

Fig. 9.16 Examples of relations

o)
Lisaa

When they did . his commanders did n't have the mitistive to do more than block a couple of roads

Lo R B4 80 5 93 93 -104 -l0s 113 92 G
03 38 06 16 03 23 -51 -4.3.-5,1 55 B0 B2 98 50 .

=13.4 -13.6 =143 -13.6 -165 -164 -186 -132

Fig. 9.17 Attention map

9.3 Text Summarization Systems 213

9.3 Text Summarization Systems

9.3.1 Introduction to Text Summarization Systems
9.3.1.1 Motivation

There is excess information from copious sources to obtain the latest information
daily. Although automatic and accurate summarization systems can assist users in
simplifying, identifying, and understanding key information quickly, the process
remains laborious. This is due to the constant emergence of new words and complex
text structures in documents.

9.3.1.2 Task Definition

Text summarization process generates text (document or document) summaries by
rewriting and summarizing long text into short form (Mahalakshmi and Fatima
2022). It refers to extract or refine text or text set key points through technologies to
display original text or text set main contents or general idea. Text generation task
is an information compression technique whereas a summarization process is con-
sidered as a function where input is a document or documents, and output is an input
texts summary. Hence, input and output are quintessential types to classify sum-
mary tasks.

9.3.1.3 Basic Approach

Summarization approaches are mainly divided into extractive and abstractive (Chen
and Zhuge 2018).

Extractive methods select important phrases from input text and combine them
to form a summary like a copy and paste process. Many traditional text summariza-
tion methods use Extractive Text Summary (ETS) because it is simple to generate
sentences without grammatical errors but cannot reflect exact sentences meanings.
They are inflexible to apply novel expressions, words, or connectors outside text
descriptions.

Abstractive Text Summary (ATS) methods apply language generation methods to
re-organize contents, generate new words, and conclude the implied information as
compared with ETS. They paraphrase text meanings composed of new words with
original words summary (Agrawal 2020), and mimic human understanding to
develop contents which may not be contained in actual document text (Malki
et al. 2020).

214 9 Major NLP Applications

9.3.1.4 Task Goals

Summarization task objectives are to assist users to understand raw text within a
short period as shown in Fig. 9.18.

9.3.1.5 Task Sub-processes

Summarization tasks are divided into the following modules as shown in Fig. 9.19.
Input document or documents are first combined and preprocessed from continu-
ous text form to split sentences. The sentences will be encoded into vectors form
data to fit into a matrix for similarity scores calculation to obtain sentence rankings,
followed by a summary with the highest possibility according to the ranking list.

Highlight Central Theme Compress Large Information
Easy to Implement | Active Reading
Decision Making Save Time

Fig. 9.18 Summarization tasks objectives

CE—
Multiple Documents Similarity Matrix
| Combine !
Text Similarity Scores
Split !
Sentences ‘Sentences Rankings
Vectors Summary
P

Fig. 9.19 Summarization tasks sub-processes

9.3 Text Summarization Systems 215
9.3.2 Text Summarization Datasets

Text summarization datasets commonly used include DUC (2022), New York Times
(NYT 2022), CNN/Daily Mail (CNN-DailyMail 2022), Gigaword (2022), and
LCSTS datasets (LCSTS 2022).

DUC datasets (DUC 2022) are the most fundamental text summarization datas-
ets developed and used for testing purposes only. They consist of 500 news articles,
each with 4 human-written summaries.

NYT datasets (NYT 2022) contain articles published in the New York Times
between 1996 and 2007 with abstracts compiled by experts. The abstract datasets
are sometimes incomplete and sporadic short sentences with an average of 40 words.

CNN/Daily Mail datasets (CNN-DailyMail 2022) are widely used multi-sentence
summary datasets often trained by generative summary system. They have (a) ano-
nymized version to include entity names and (b) non-anonymized version to replace
entities with specific indexes.

Gigaword datasets (Gigaword 2022) are abstracts comprising the first sentence
and article title with heuristic rules of approximately four million articles.

LCSTS datasets (LCSTS 2022) are Chinese short texts abstract datasets con-
structed by Sina Weibo (2022).

9.3.3 Types of Summarization Systems

Text summarization task for input documents can be divided into two types:

1. Single document summarization considers each input as one document.
2. Multiple document summarization considers input has several documents

Text summarization task viewpoint can be divided into three classes:

1. Query-focused summarization adds viewpoint to query.
2. Generic summarization is generic.
3. Update summarization is a special type which sets difference (update) viewpoint

Summarization systems based on contents can be divided into four types:

1. Indicative Summarization describes contexts without revealing details especially
the endings, it contains partial information only.

2. Informative Summarization contains all information in a document or documents.

3. Keyword Summarization reveals output generation is sporadic text which con-
tains phrases or words of input documents.

4. Headline Summarization is usually a single line summary.

These summarization systems can be divided according to summary languages
such as Arabic (Elsaid et al. 2022), Chinese (Yang et al. 2012), English and Spanish
summarization systems, etc.

216 9 Major NLP Applications
9.3.4 Query-focused vs. Generic Summarization Systems

Text summarization can be query-focused or generic. Summary associated with query
shows that document contents are relative to initial search query. A query-related
summary generation is a process of retrieving query-related sentences/paragraphs
from a document that has a strong similarity to text retrieval process. Hence, abstracts
relevant searches are often undertaken by extending traditional IR techniques with
many text abstracts in the literature fall into this category. A general summary, on the
other hand, provides an overall sense of the document’s contents. A proper general
summary should cover the main topics and minimize redundancy. Since there are no
queries or topics to feed into summarization process, it is difficult to develop a high-
quality general summarization method for evaluation (Gong and Liu 2001).

9.3.4.1 Query-Focused Summarization Systems

Query-focused Summarization (QFS) is primarily addressed using extractive meth-
ods to produce text that lacks coherence. QFS applied abstractive methods can over-
come these limitations and improve incoherent texts availability. A Relevance
Sensitive Abstractive QFS (RSA-QFS) framework (Baumel et al. 2018) is shown in
Fig. 9.20.

This model assumes that a trained abstractive model includes reusable language
knowledge to accomplish QFS tasks. Methods of enhancing this pre-trained single
document abstraction model with explicit modeling of query dependencies are stud-
ied to improve multiple input documents operating ability and adjust generated
abstractions lengths accordingly.

out,
,
(Decoder‘\ A €0€1 - €n mul Attention
sr s:vl
[SoftMax]
Relyx | Rel, x|
.

= (v)
(] :

VYl Attent

RelVector

Fig. 9.20 RSA-QFS framework

9.3 Text Summarization Systems 217

Generic
Document Refrieve Relevamt |Summarization s ary
Set P| Passages ¥
7 I

Query

Fig. 9.21 Two stages of QFS

Further, a sequence-to-sequence (seq2seq) architecture is applied to obtain sum via
an iterative extraction or abstraction pairs process: identify relevant content batches
from multiple documents and abstract into a coherent text segments sequence.

QFS task includes two stages as shown in Fig. 9.21:

1. A relevance model to determine passages relevance to input query from source
documents and

2. A generic summarization method to combine relevant passages into a coher-
ent summary

Query-related text summarization is practical for answering questions such as
whether a whole or partial document has relevance to a user’s query. Query-related
summaries do not provide an overall sense of the document’s content; they have
query bias and are unsuitable for content summaries to answer questions such as
document category, key points, and text summary.

9.3.4.2 Generic Summarization Systems

A proper generic summarization should cover main topics as many as possible and
minimize redundancy leading to fractious system generation and evaluation. It often
lacks consensus on summary output and performance judgments without query pro-
visions and topics to summary task.

Typical generic summarization ranking models and selected sentences are based
on relevance similarity values and other semantic analyses (Gong and Liu 2001).

9.3.5 Single and Multiple Document Summarization

Single document extraction in journalism has developed to multi-document extrac-
tion since 1990. A variety of news articles, such as Google News (Google 2022),
Columbia News Blaster (Columbia 2022), and News Essence (NewsInEssence

218 9 Major NLP Applications

2022) are inspired by multi-document summaries. The reason is that individual
documents always produce contradictory results through overlapping information
from multiple documents (Alami et al. 2015) may affect the performance of sum-
marization results.

Single document summarization research method gradually faded in past decades
(Svore et al. 2007) as mainstream research focused on multi-document summariza-
tion which could reduce text size, gather ideas, compare documents, and maintain
syntactic and semantic relationships (Pervin and Haque 2013).

9.3.5.1 Single Document Summarization

Single document summarization’s challenge is to identify or generate informative
sentences significance of the document because it often has inconsistent and inter-
mittent information.

Salient features like sentence placement are early research (Baxendale 1958)
where 200 paragraphs selected and identified paragraphs have topic sentences at the
beginning and end of paragraphs with 85% and 7%, respectively.

A single document structure and a corpus with around 400 technical documents
research focusing on word frequency and word position, and cue words and skele-
ton were proposed in 1969 (Edmundson 1969). Results showed that extracted sum-
mary to actual summary accuracy rate was about 44%.

Further, lexical indicators (Rath et al. 1961), cohesion (Hasan 1984), semantic
relationships (Halliday and Hasan 1976), and algebraic methods such as naive-
Bayes classifier processed features like uppercase words, lengths, words position
(Kupiec et al. 1995), symbolic word knowledge (Hovy and Lin 1999), and human
abstraction concept (Jing 2000) are research areas in this field.

9.3.5.2 Multiple Document Summarization

Multiple document summarization similarity measures and extractive techniques
are comparable to single document summarization.

It used clustering to identify common themes (Erkan and Radev 2004), compos-
ite sentences from clusters (Barzilay et al. 1999), maximal marginal relevance
(MMR) (Carbonell and Goldstein 1998) and concatenated to multilingual environ-
ment (Evans 2005).

Further, TFI X IDFI techniques (Salton 1989), TF/IDF (Fukumoto 2004), word
hierarchical technique for frequent terms (You et al. 2009), graph-based methods
(Mani and Bloedorn 1997; Wan 2008), sentence co-relation method (Hariharan
et al. 2013), logical closeness (Zhu and Zhao 2012) and query-oriented approach
(Agarwal et al. 2011) are well developed.

9.3 Text Summarization Systems 219

9.3.6 Contemporary Text Summarization Systems
9.3.6.1 Contemporary Extractive Text Summarization (ETS) System

Text summarization research methods aim to (Dong 2018):

1. Acquire important sentences.
2. Predict sentence option according to ranking sentences.

The extractive summarization for proper sentences selection from original source
text is required to:

1. Include logical and consistent summary information from original text.
2. Reduce similar and unimportant sentences information redundancy.

Lead 3 is a commonly used and effective method to extract the first three sen-
tences as topic titles of an article. When dealing with important sentences, docu-
ment equivalence to document topic and relevant sentences position characteristics
are considered. Topic modeling, frequency-based models LSA, and Bayesian are
methods applied (Farsi et al. 2021).

Extractive summarization produces incoherent summaries compared with man-
ual ones, its shortcomings include unresolved anaphora, unreadable sentence order,
lacks textual cohesion to extract salient information from long sentences. When the
system focuses on a sentence, it extracts the entire sentence (Nallapati et al. 2017).

9.3.6.2 Graph-Based Method

Graph-based ranking algorithms are successfully used in citation analysis, link
social networks’ structure analysis, and the World Wide Web.

They generate graphs from input document and summary by considering the
relationships between nodes (units of text) (Chi and Hu 2021). TextRank (Mihalcea
and Tarau 2004) is a typical graph-based approach that has developed many models.
A summarization of TextRank system to extract keywords from a sample text and
graph is shown in Figs. 9.22 and 9.23.

r("mnpaubxlny of systems of linear constraints over the set of natural numbers.
Cnitena of compatibility of a system of linear Diophantine equations, strict
inequations, and nonstrict inequations are considered. Upper bounds for
components of a minimal set of solutions and algorithms of construction of
minimal generating sets of solutions for all types of systems are given.
These criteria and the corresponding algorithms for constructing a minimal
supporting set of solutions can be used in solving all the considered types
(systems and systems of mixed types.

Fig. 9.22 Sample text

220 9 Major NLP Applications

=
systems Compatibility ~\

‘)’P(\ Eitcria .\

lipear = system numbers

/ \ nalural_/
diophantine

constraints
uppcr\
squations nonstrict
/ / bounds
snct ____oequations components —)
- algorithms .
solutions construction
\SL‘lS
T mininl

Irl\'c_v\mrds assigned by TextRank:
linear constraints; linear diophantine equations; natural numbers; nonstrict
inequations; strict inequations; upper bounds
Keywords assigned by human annotators:
linear constraints; linear diophantine equations; minimal generating sets; non—
| strict inequations; set of natural numbers; strict inequations; upper bounds

Fig. 9.23 Sample graph for key phrase extraction in TextRank

This kind of system is based on PageRank algorithm (Langville and Meyer 2006)
applied by Google’s search engine, its algorithm principle is linked pages are good,
and even better if they come from multiple linked pages. Links between pages are
represented by matrices like circular tables. This matrix can be converted to a transi-
tion probability matrix divided by the sum of links per page, and the page will be
moved by the page viewer following a feature matrix in Fig. 9.24.

TextRank processes words and sentences as pages in PageRank, its algorithm
defines text units and adds them as nodes in a graph with relations are defined
between text units and added as edges in the graph. Generally, the weights of edges
are set by similarity or score values.

Then, PageRank algorithm is used to solve the graph. There are other similar
systems such as LexRank (Erkan and Radev 2004) to consider sentences as nodes
and similarity as relations or weights, i.e., IDF-modified cosine similarity to calcu-
late similarity.

9.3 Text Summarization Systems 221

Page ABCODE ABCODE Page Surfe
A | Al T 1] 3] A [Tuwalvalalva) A [0.2]
B CE g | |1 El B[| [w2 |we . & B ?JA1I
c D » [E1 ‘ cl |] 4 c o3
D B,D,E D 11 |1 1 D e I e) D _'.ll
E A, C El1 1 E [v2] |ua E| 03]
1
Transition Matrix Transition Probability Page Surfer State
Matrix (=M) (=P)
Solution
1. Solve Eigenvalue Problem of MP = P. | when t-> o
2. Repeal the transition until convergence(MP - P < threshold)
I | —d) +de MTF, The page surfers randomiy click the page with a probability
S (P -P threshold of 1-d. (d = usually 0.85)

Fig. 9.24 Page Rank algorithm process

9.3.6.3 Feature-Based Method

Feature-based model extracts sentences feature and evaluates their significances.
There are many representative studies including Luhn’s Algorithm (Luhn 1958),
TextTeaser, and SummaRuNNer (Nallapati et al. 2017).

Luhn’s Algorithm is used to evaluate input words significance calculated by
frequency. TextTeaser is an automatic feature-based summarization algorithm.
SummaRuNNer is implemented by Deep Neural Networks (DNN) structure as
shown in Fig. 9.25.

SummaRuNNer generates sentence feature (vector) by two layers bidirectional
Gate Recurrent Unit-Recurrent Neural Network (GRU-RNN) from word embedding
vectors. The lowest level classifies each sentence word level, while the highest level
classifies sentence level. Double arrows indicate two-way RNN. The top layer num-
bered with 1s and Os is a classification layer based on sigmoid activation to deter-
mine whether each sentence is a summary. Each sentence decision depends on
substantial sentence contents, sentences to document relevance, sentences to cumu-
lative summary representation originality, and other positional characteristics.

9.3.6.4 Topic-Based Method

Topic-based model considers document’s topic features and input sentences’ scores
according to topic types contained as a major topic would obtain a high rate when
scoring sentences.

Latent Semantic Analysis (LSA) is based on SVD to detect topics (Ozsoy et al.
2011). An LSA-based sentence selection process is shown in Fig. 9.26 by topics
represented by eigenvectors or principal axes with corresponding scores.

222 9 Major NLP Applications

Layer

Classification

Sentence layer

Word layer

Input Layer

Sentence 1 Sentence 2 Sentence 3

Fig. 9.25 Network structure of SummaRuNNer

H
Topici ® Lantoiical Topicl Topic2

Sentl 0.9 0.25

Sent2 0.7 0.7

& el Sent3 0.45 0.4

® Sentence3 Sent4 0.3 0.6

® Sentences Sent5 0.4 0.9

@ Sentenced
Topic2

Fig. 9.26 LSA-based sentence selection sample
9.3.6.5 Grammar-Based Method

Grammar-based model parses text and constructs a syntax structure, selects, or reor-
ders the substructure. A representation framework is shown in Fig. 9.27.

Grammar pattern can produce significant paraphrases based on grammatical
structures. The above example in Fig. 9.27 showed how paraphrase extraction and
replacement can be achieved by using such method. Analyzing grammatical struc-
ture feature is useful for semantic phrases reconstruction.

9.3 Text Summarization Systems 223

A

NNP/nn JJ/amod NNP/nn NNP/nn NNP/ NNP/nn NNP/
ABC dissident Jack Norman Smith -_“_I_l;:)—rman Smith
PP/Prep_in PP/Prep_in
IN/ DT/det JJ/amod NN/- PP/prep_of iN/ NNP/nn NNP/

S
, in GHI ,,//Island

/ -

IN/- NNP/nn NNP/=—""""""

in the disputed territory

of GHI Island
NP/dobj PP/Prep_in
DT/det NN/ PP/prep_of \NP/poss I\]N/-

N | |

the extradition IN/- NNP/nn NN/nn NNP/- DFG’s extradition

of XYZ leader Jones

Fig. 9.27 Grammar-based method sample network (Ozsoy et al. 2011)
9.3.6.6 Contemporary Abstractive Text Summarization (ATS) System

Abstractive summarization often generates summary that maintains original intent
completed by humans.

This process can generate words that are not in original input representations but
to facilitate summaries characteristics and fluency. However, it is complex to gener-
ate coherent phrases and connectors.

Abstractive summarization systems applying deep learning methods,
Reinforcement Learning (RL), Transfer Learning (TL), and Pre-Trained Language
Models (PTLMs) had developed rapidly (Alomari et al. 2022) in recent years. These
models use rules-based frameworks to consider significant events and summaries.
Tree methods are ontology-related methods for abstractions (Jain et al. 2020).

9.3.6.7 Aided Summarization Method

This method combines automatic computer model or algorithm to provide signifi-
cant document information for human decision.

224 9 Major NLP Applications

Context Vector

L
t— — %
——
uolINguIs g
Kiejngeaop,

P — 1

Distribution
/—‘k—\
8
=
]
=
-~
8
g
i
.
-
i
'
-5

Hidden
States

Encoder

v v
Source Text Partial Summary

Fig. 9.28 Network framework of point generator baseline model

Machine translation model to text summarization was proposed (Banko et al.
2000) applying encoder-decoder framework as neural network model mainstream
and used in abstractive summarization systems (Chopra et al. 2016).

9.3.6.8 Contemporary Combined Text Summarization System

Pointer-Generator Networks (See et al. 2017) is a frequently used baseline network.
It focuses on keywords and sentences with Attention technique (Vaswani et al.
2017), to lever generator and pointer network according to calculated probability.
Vocabulary and attention with different weights distribution are then combined. A
baseline pointer-generator network framework is depicted in Fig. 9.28.

It noted that article tokens are fed into an encoder layer, which is a single-layer
bidirectional long short-term memory (LSTM) with encoder hidden states provided.
Decoder consists of a single-layer unidirectional LSTM, processes word embedding
of previous words on each step and output decoder state with attention
distribution.

9.4 Question-and-Answering Systems

9.4.1 QA System and Al

A QA system is an impressive way to emulate human-to-human interaction through
cutting-edge technological advancements. Unlike other classification or prediction
tasks, a QA system is interdisciplinary, merging traditional linguistics with com-
puter science, computational linguistics, statistics, pattern recognition, data mining,
machine learning, and deep learning methods to create an effective communication

9.4 Question-and-Answering Systems 225

Natural
Language

Automatic Natural
Speech Language

Dialogue
WELET-E]

ent (DM) Generatio

n (NLG)

Recognitio Understan
n (ASR) ding (NLU)

Fig. 9.29 Flowchart of a typical QA system

system. It plays a vital role in applications such as autoresponders, personal assis-
tants, and sentiment chatbots today.

QA systems are a popular research topic in NLP and typically incorporate open
domain common sense knowledge or specialized domain knowledge to function as
qualified conversation partners. Dialogue realization depends on several compo-
nents, including automatic speech recognition (ASR), NLU, dialogue management
(DM), NLG, and speech synthesis (SS). A flowchart illustrating the components of
a QA system is shown in Fig. 9.29.

It is an integral part of system acumen. DM is the communication policy or dia-
logue strategy applied to large corpus for content organization. After transferring
natural language to computer language in sequence-sequence data with character,
word, or sentence level in NLU, machine intelligence selects suitable contents for
language generation. Back-end technology with generated candidate answers is
combined and re-ranked for optimization response in NLG. Apart from text aspect,
ASR and TTS are procedures that resemble machine by human voice recognition
and generation.

QA system research is divided into two categories: (1) pattern matching with
rule-based and (2) language generated-based on IR and neural network. However,
the back-end is equipped with more than one method to generate meaningful com-
munication and provide meaningful feedback. A QA system in a chatbot includes an
open domain focus on (1) common sense/world knowledge and (2) task-oriented for
special domain knowledge databases resemble expert system involving in-depth
knowledge base to support appropriate responses.

First rule-based human-computer interaction as in Fig. 9.30 pattern recognition
system challenged the Turing test in 1950s, reaching a milestone where humans
could not recognize whether the opposite was a machine or human. After a long
period of data collection, database used for dialogue pattern matching is large
enough to rank appropriate feedbacks and give the highest scoring answers, which
is a process of selection from a database of human answers regardless of the
machine. After decades of development, search engines and data crawlers have sup-
ported sources for building knowledge bases, including IR, enabling search engines
to retrieve relevant and up-to-date data for structured processing to form answers
from QA systems. The advent of Al era enhanced QA systems mainstream can
focus on cognitive science than big data feeds of neural networks on systems gen-
erations. Gradually, traditional QA system is replaced by Al machine communica-
tion as rule-based matching RNN training to realize large knowledge base to support
the Al brain to imitate human reasoning called NLU.

226 9 Major NLP Applications

N\ #

Fig. 9.30 Human and machine interaction via QA system

The main source of knowledge base in a typical QA system comes from: (1)
human-human dialogue collection with handcraft is the answer from human lan-
guage in linguistic and meaning where database consist of pairs dialogues. Without
any imitation or learning ability, this first version rule-based QA system relies on
pattern matching to measure the distance between proposed question and question-
answer pattern stored pair in database. For example, artificial intelligence markup
language (AIML) can answer most of daily or even professional dialogues based on
large and classified handcraft database without intelligence; (2) building database
focus on search engine for IR-based knowledge base. The feature of IR-based QA
system is the combination of knowledge building from up-to-date knowledge bases.
An IR-based QA system uses domain knowledge such as expert system to extract
and generate knowledge. The procedure of unstructured data extraction and reorga-
nization depends on NLU for reasoning. NLG includes knowledge engineering
analysis for reasoning and rerank candidates’ answers optimization.

The latest database used big data for data-driven model to realize machine intel-
ligence. When neural network had fed with sufficient data, sequence-to-sequence
model like RNN and its related Long-Short-Term Memory naturally model as in
Fig. 9.31 skilled in sequential data processing (Cho et al. 2014). A neural network
model is considered as the black box producing learning ability with accuracy but
cannot be comprehended by humans. Prior to preprocessing data was fed to neural
model, and they were required to transform data format from natural word to vector
for data training (Mikolov et al. 2013). Tokenization has three levels: (1) character,
(2) word, and (3) sentence. The input format decides output outcomes in encoder-
decoder framework. RNN generated words may not be meaningful in the English

9.4 Question-and-Answering Systems 227

O¢
E - (@) Z
=
o, » T > o B
g x @ h, E

Fig. 9.31 LSTM structure

dictionary because the character level training lacked enough corpus for a well-
trained model. Further, TL with enormous data pre-trained Transformer model
required to select the intended decoder for training target. For example, Dialogue
GPT from OpenAl focuses on formatted dialogue training to generate responses.

Neural network system transformed natural language to word vectors for math-
ematical computation to acquire response in NLP. Neural network can generate
their own natural language as compared with traditional techniques.

Traditional RNN of seq2seq language model response generation performed
lesser than big data-oriented TL such as Google’s BERT and Open AI's GPT.

Pre-trained unsupervised learning language model achieved satisfactory perfor-
mance in fine-tuning with small dataset than traditional ones, their performances
were attributed to self-attention mechanism (Vaswani et al. 2017) and identified
relations in sequences with fluent and syntactic response for task execution based on
GPT with fine-tuned model (Wolf et al. 2018).

9.4.1.1 Rule-Based QA Systems

Rule-based QA systems were proposed at the same time as Turing test in 1950s.
However, original QA systems only followed rules set by humans without self-
improvement capabilities like machine learning; number of dialogue pairs is stored
in database prior to the system provided a concrete answer. The simplest but most
efficient way to measure similarity of two groups is the cosine distance of two vec-
tors. It is undeniable that rule-based systems have collected huge dialogue corpora
over decades, giving system confidence when relying on new problems with high
vector similarity. To date, mature rule-based systems are quintessential for all com-
mercial QA systems, as the accumulation of corpora can avoid meaningless
responses that compensate for insufficient domain knowledge with appropriate and
specific human feedback.

228 9 Major NLP Applications

9.4.1.2 Information Retrieval (IR)-Based QA Systems

The knowledge base for IR is typically an unstructured data source, obtained through
data mining methods from websites, WordNet, and other sources, which differ from
paired dialogue systems. The Question-Answering System based on Knowledge
Base (KBQA) is a significant branch of IR-based QA systems. Its effectiveness
depends on the size of the unstructured data knowledge base used for storage. This
is closely related to the process of knowledge base construction, which aims to
extract useful knowledge from large datasets. There are two primary methods for
processing natural language: (1) property-based and (2) relation-based methods.
Property refers to the definition or concept of one thing in an English-English dic-
tionary, used to explain another concept.

Relations refers to the relationship between two entities, where a Name Entity
Recognition (NER) and idea from Ontology with Subject-Predicate-Object (SPO)
triple must be used to extract relation. KBQA extension is ontology or knowledge
graph (KG) in research. When entities are linked, the knowledge for one entity can
be extracted according to questions during Natural Language Understanding
(NLU). A typical KBQA with domain knowledge about ontology is shown in
Fig. 9.32, its fundamental question is about who and what corresponds to name and
relations entities (Cui et al. 2020).

9.4.1.3 Neural Network-Based QA Systems

Neural Network structure in a QA-generated-based system is considered as machine
brain imitated by human. Encoder-Decoder framework is a sequence-to-sequence
model like RNN has natural memory recalling priority and context with an attention
mechanism. Dialogue system has identical requirements to represent dialogue his-
tory and avoid meaningless responses to improve users’ experiences.

Deep learning frameworks such as TensorFlow and Pytorch, RNN is easy to
implement for text generation as language model. Google proposed masked lan-
guage model to generate language representation called BERT), focusing on encoder
part trained by magnitude unlabeled data in 2017. Neural network feeds data for
training according to network advantages due to different NLP tasks in long

& Chhal Winnduo

Christopher:

My pleasure to serve for you

Usaer

What s the definition of knowledge?

Christopher:

knowledge Is @ meaningful resource that makes us know about the world
inan topic in pl wphy.

Usar

What is the meaning of Ontelogy?

Christopher:

Ontology defines a set of representational primitives with which to model a domaln of or In purter 1
Ontology refers to & system of categories to describe the existerice of the real word, or the classification of being

Ontelogy is a relevant logical and hical madel for g rep tion, and It Is also sald 1o be a catagol
Ontology defines the kinds of existence in a domain of interest.

il

Fig. 9.32 KBQA system demo

9.4 Question-and-Answering Systems 229

sentences. BERT can solve such problem because it deals with 11 common NLP
tasks initially. Language model pre-trained by magnitude data to understand com-
mon knowledge in NLP. Fine-tuned should be applied to training specific NLP tasks
based on fundamental ability (Vaswani et al. 2017).

Open Al released another Transformer framework with unsupervised learning
for pre-trained model directing decoder scheme based on GPT, Open AI GPT-2, and
GPT-3 (Brown et al. 2020). GPT with masked self-attention focuses on known text
so that the word preceding is predicated as different from BERT context self-
attention. GPT-3 can do inference and synonym replacement in addition to normal
function for bilingual translation, text generation, and question-answer. It seems
that BERT can handle more NLP tasks than GPT, but GPT text generation prowess
for pre-trained model is widely used in many commercial QA systems and text
summarization.

9.4.2 Overview of Industrial QA Systems

An industrial QA system contains an automatic dialogue system assembling chatbot
internal technologies. They have several back-end composited control system
responses to equip them with the necessary knowledge. Meanwhile, QA system
evaluation is proposed during the training period for language model performance
(Chen et al. 2017) and on system design sufficient for both language generations.

Since the encoder-decoder framework is proposed as an end-to-end system and a
sequential language model, RNN is a popular generated-based model in commer-
cial and academics. However, its applications are mainly focused on casual scenar-
ios at open domain without proposed question details. Thus, the response from a
generated-based QA system is appropriate in pairs but lacks contents due to the
data-driven model considered basic linguistic and excluded facts from knowledge
base which are identical to traditional dialogue system with meaningless answers. A
knowledge-grounded neural conversation model (Ghazvininejad et al. 2018) is pro-
posed based on the sequence-to-sequence RNN model and combined dialogue his-
tory with facts related to current contexts as shown in Fig. 9.33.

Microsoft extended its industrial conversation system to achieve useful conver-
sational applications on knowledge grounded with conversation history and external
facts in 2018. It has significant progress in real situations according to conversation
history in Dialog-Encoder, word, and contextually relevant facts in Facts Encoder to
responses as compared with baseline seq2seq model.

The data-driven model of QA system divided source data into conversation data
and non-conversational text which means the conversation pairs are used to training
system in linguistic, on the other hand, non-conversational text is the knowledge
base to be filled including real-world information related to system target usage.

The performance of versatility and scalability in open domain with external
information knowledge combined with textual and structured data of QA system is
shown in Table 9.1. Datasets like Wikipedia, IMDB, and TripAdvisor are used to

230 9 Major NLP Applications

CONVERSATION HISTORY RESPONSE

Going to DIALDG |, (o e i
Kusa knbf T (ENCODER S ymee e
s g W best in town
FACTS
ENCODER

— Consistently the best omakase

p—

— Amazing sushi tasting [...|

f— PRI They were out of kaisui |...

: \ 4 :

— :
WORLD CONTEXTUALLY

FACTS RELEVANT FACTS

Fig. 9.33 Architecture of knowledge-grounded model

Table 9.1 Response from conversation model knowledge grounded (Ghazvininejad et al. 2018)

A: Looking forward to trying @pizzalibretto tonight! my expectations are high

B: Get the rocco salad. Can you eat calamari?

A: Anyone in Chi have a dentist office they recommend? I’m never going back to /.../ and
would love a reco!

B: Really looved Ora in Wicker Park
A: I’m at California Academy of Sciences

B: Make sure you catch the show at the Planetarium. Tickets are usually limited

A: I’m at New Wave Cafe

B: Try to get to Dmitri’s for dinner. Their pan fried scallops and shrimp scampi are to die for
A: I just bought: [...] 4.3-in. portable GPS navigator for my wife, shh, don’t tell her

B: I heard this brand loses battery power

generate conversation with real-world information and include a recommendation
system function.

After fact-based encoder, the response from this system becomes more meaning-
ful with related information and logical content. Based on this framework, 23 mil-
lion open domains Twitter conversations and 1.1 million Foursquare tips are used to
achieve a significant improvement over the previous seq2seq model, and different
from the traditional content filling which add the predefined content and fill the
space in sentences.

It is well known that industrial QA systems are not limited to one model, many
models have been assembled into a language model for end-to-end dialogue. In this
architecture, the dialogue encoder is independent of fact encoder in the system, but
it is complementary to fact encoder when applied because facts require information
from dialogue history, especially to match context-dependent information bands.
There is intentional information as part of the response. From implementation per-
spective, multi-task learning is used to handle factual, non-factual, and autoencoder
tasks depending on the intended work of the system. Multi-task learning can

9.4 Question-and-Answering Systems 231

separate two encoders independently while training the model, and after training on
the dialogue dataset, the factual encoder part uses IR to expand knowledge base for
more meaningful answers. In a way, a fact encoder is like a memory network, which
uses a store of relevant facts relevant to a particular problem. Once the query con-
tains a specific entity in the sentence, the sentence has been assigned a specific name
entity, the name entity recognizes (NER) by matching keywords or linked entities,
or even named entities and calculates its weight on input and dialogue history to
generate a response. The original storage network model uses a BoW, but in this
model, the encoder directly converts input set to a vector unlike storage net-
work model.

Since the system is a fully neural-based data-driven model, they created an end-
to-end RNN system using a traditional seq2seq model, including (LSTM) and Gate
Recurrent Unit (GRU) model. For ensemble structures such as two-class RNNs,
constructing a simple GRU is usually faster than LSTM model. The implementation
of GRU means that the system does not have Transformer’s attention mechanism or
other invariants for neural network computation.

9.4.2.1 AliMe QA System

AliMe is a module of Taobao app commercial QA product. The answer consists of
IR and sequence-to-sequence-based generation models (Qiu et al. 2017). The sys-
tem reorders candidate’s response and uses attention mechanism with context to
select the best feedback to users. Using AliMe to replace online human customer
service for most known questions become a trend since it released the first version.
AliMe is a typical customer service QA system in e-commerce industry that answers
millions of questions automatically per day. According to a survey of daily ques-
tions suggested by Taobao app users on shopping problems, statistical data revealed
that except most are business questions, 5% of the remaining questions are chitchat.
The 5% questions on genuine demands motivate Al/iMe to add a common sense
open-domain chat function. It has satisfactory performance as both IR and
generation-based system since the pre-trained seq2seq model is used twice for
response generation and re-ranked with attention to a set of responses from IR with
knowledge originate based and seq2seq previously generated. Figure 9.34 shows
the Seq2Seq model with attention learning.

Since AliMe has two parts in generation that use different formats to obtain infor-
mation as abovementioned. IR-based models use a natural language word matching
knowledge base, Seq2seq generative model, and a scoring model to re-score output
responses as they are generated is word embeddings with vectors. The IR-based
dataset consists of 9,164,834 QA pairs conversations by real customers from busi-
ness domain. Researchers used an inverted index to match these nine million con-
versations with input sentences containing the same words and used BM25 to
measure the similarity between input sentences and the selected questions to obtain
answers to the most similar questions as answers to input questions. Traditional

232 9 Major NLP Applications

HF <EOS>
(I) have been busy

) & b
Hey » that’s OK

R4F& %

Sorry
Decoding the word “;& ¥ 49"
Fig. 9.34 Seq2Seq model with attention

IR-based systems avoid problems where the system cannot answer common sense-
type questions.

Microsoft used GRU to reduce computational power and response time span as
well as AliMe selected RNN GRU to improve response efficiency. During optimiza-
tion, beam search in decoder assisted to identify the highest conditional probability
to obtain optimizer response sentence within parameters. The performance showed
that IR + generation + rerank approach by seq2seq model and mean probability
scoring function evaluation obtained the highest score as compared with other
methods.

9.4.2.2 Xiao Ice QA System

Xiao Ice (Zhou et al. 2020) is an Al companion sentient chatbot with more than 660
million users worldwide, which takes intelligent quotient (IQ) and emotional quo-
tient (EQ) in system design as shown in Fig. 9.36. It focused on chitchat compared
with other commonly used QA systems. According to conversation-turns per ses-
sion (CPS) evaluation score, its grade is 23 higher than most chatbots. Figure 9.35
shows a system architecture of Xiao Ice.

Xiao Ice exists on 11 social media platforms including WeChat, Tencent QQ,
Weibo, and Facebook as an industrial application. It has equipped with two-way
text-to-speech voice and can process text, images, voice, and video clips for
message-based conversations. Also, its core chat function can distinguish common
or specific domain topic chat types so that it can change topics easily and automati-
cally provide users with deeper domain knowledge. A dialogue manager is like an
NLP general pipeline with dialogue management to path conversation states such as
core chat contents for open or special domains to process data from different sources
that are tractable. The Global State Tracker is a vector of Xiao Ice’s responses to

9.4 Question-and-Answering Systems

User Experience Layer

&
Lo
et Cowr
Full Duplex
steam based
B vy 4 lons
@
We
S Meipai
[oF 3s]

!

Fig. 9.35 Xiao Ice system architecture

Source RNN

233
Conversation Engine Layer Data Layer
Core Chat sklls
| | [|| veep ||
Chat Chat i : Xiaoice
14 bmage Content H ‘
\. . /| Dastasets Datasets
L 14 |m.mm (eat)
i Topic | | nm-
Global Dislogue * Top level policy for skill selection | | Index Graphs
State Tracker | | Policy * Topic manager for Core Chat] |
........................ ot rrchr. + AR
Why not ? EOS
Target RNN t 1 *

|oo:o|n -{co‘to] -{u:o{ -{to‘u] ﬁoo‘ooi

-{oo‘u] '-i oo‘oo f h,

'{..‘.l] ’{..".}

v
[esss] [svee]| [eses] [esse] [svee]| [eeee] [sses]| [ssee] [ssss] [sess] e
You like Ashin that much EOS Why not ?
Tople miusie, Ashin Topic maic, Ashin
Intent request Intent itarm
Sentiment sad, norves <> neural Sentiment happy
Opinlon naural Opinion positive
€4 .l'l zs Age [T} €q
Gender male Gender female
Interests singing, music Interests Fasic, games, movie, singing
Occupation | salesman Occupation | A chatbot
Personality | quite, serious .. iy refiabile, vy

Fig. 9.36 RNN-based neural response generator

analyze text strings for entities and empathy. It is vacant and gradually filled with
rounds of conversations. Dialogue strategies are primarily designed for long-term
users, based on their feedbacks to enhance interactions engagement, optimize per-
sonality with two or three levels of achievements. A trigger mechanism is to change
a topic when the chatbot repeats or answers information that are always valid, or
when a user’s feedback is mundane within three words. Once the user’s input has a
predefined format, a skill selection part is activated to process different inputs. For
example, images can be categorized into different task-oriented scenarios. If an
image is food related, the user will be taken to a restaurant display, like a task
completion by personal assistants in advising weather information or making reser-

vations, etc.

234 9 Major NLP Applications

Xiao Ice has a few KGs in the data layer as its original datasets come from popu-
lar forums such as Instagram in English or Douban in Chinese. These datasets are
categorized as multiple topics with a small knowledge base as possible answers. It
also follows the rules of updating the knowledge base through machine learning
when new topics emerge. It is noted that not all new entities or topics are collected
unless the entity is contextually relevant, or a topic has higher popularity or fresh-
ness in the news for rankings. User’s personal interests can be adjusted
individually.

However, with so many features that can include the core part Empathetic
Computing as an add-on, it is not a mandatory part of a full chatbot, but a functional
and compelling feature to compete with the industry. The core of Xiao Ice is an
RNN language model that creates open and special domain knowledge. Figures 9.36
and 9.37 show an RNN-based neural response generator with examples of inconsis-
tent responses generated by seq2seq model in Xiao Ice QA system, respectively.

In general, response generation in AliMe uses seq2seq model to generate natural
language and rerank the optimizer for user’s answer whereas Xiao Ice also has a
candidate generator and candidate ranking list. For the generator, one is a sequential
model trained by a pair of datasets learning the dialogue format, the other is query-
ing the knowledge graph to obtain entities for related information stored in knowl-
edge base. Candidate ranking includes semantic computation and Xiao Ice
personality for answer optimization with IR, neural model, and KG selection.

9.4.2.3 TransferTransfo Conversational Agents

A QA system consisted of traditional and current mainstream methods, the above
systems used Seq2Seq model responsible for both language model and candidate
response optimizer. Since neural network is a data-driven model, its performance
relies on huge amount of big data. Transformer is a model architecture forgone
recurrence but entrusted in attention mechanism entirely to draw global dependen-
cies between input and output based on attention mechanism.

Open AI GPT-2 TL architecture has an outstanding feature to include decoder
part layers advantages for response generation. The masked self-attention imple-
mented on GPT-2 can generate the next word based on acquired information, under-
stand the known text, predict, or use experience to fill up the blank for next word to
match with the whole article meaning.

[Human] How old are you? [Human] How old are you?
[525-Bot] 16 and you? [Xiaoice] | am 18, of course.
[Human] What's your age? [Human] You age?
[525-Bot] 18. [Xiaolce] 18. Why?

[Human] Were you 18 last year?
[Xiaoice] | made a wish to stay 18 forever. Oh, my wish has come true.

Fig. 9.37 Examples of inconsistent responses generated using a seq2seq model

9.4 Question-and-Answering Systems 235

GPT-2 fine-tune 40G pure text to learn natural language semantics, syntax with
target usage, and suitable dataset scalability for specific NLP tasks. TransferTransfo
(Wolf et al. 2018) is a GBP-2 variant using persona-chat dataset to fine-tune the
original model, its generated utterance changes from long text to dialogue format.
TransferTransfo prototype is a pre-trained model on document-level continuous
sequence and paragraphs with a wide range of information. After that, fine-tune
strengthen input representation and use a multi-task learning scheme for adjust-
ments. Every input token included word and position embedding during input
representation.

For TL system dialogue example as in Fig. 9.38, personal-chat datasets in the
real world can define users’ backgrounds and their interests as topics during com-
munications. The contexts contained are meaningful conversation that can reveal
empirical improvements in discriminative language understanding tasks. Thus,
Transformer is an evolutional system to imitate human behavior and promote neural
network model.

Exercises

9.1. What is IR in NLP? State and explain why IR is vital for the implementation
of NLP applications. Give two NLP applications to illustrate.

9.2. In terms of implementation technology of IR systems, what are the major dif-
ference between traditional and latest IR systems. Give one IR system imple-
mentation example to support your answer.

9.3. What is Discourse Segmentation? State and explain why Discourse
Segmentation is critical for the implementation of IR systems.

9.4. What is Text Summarization (TS) in NLP? State and explain the relationship
and differences between TS system and IR systems.

Persona 1 Persona 2

1 like to ski I am an artist

My wife does not like me anymore I have four children

I have went to Mexico 4 times this year | I recently got a cat

I hate Mexican food I enjoy walking for exercise

I like to eat cheetos I love watching Game of Thrones
[PERSON 1:] Hi

[PERSON 2:] Hello ! How are you today ?

[PERSON 1:] I am good thank you , how are you.

[PERSON 2:] Great, thanks ! My children and I were just about to watch Game of Thrones.
[PERSON 1:] Nice ! How old are your children?

[PERSON 2:] I have four that range in age from 10 to 21. You?

[PERSON 1:] I do not have children at the moment.

[PERSON 2:] That just means you get to keep all the popcorn for yourself.
[PERSON 1:] And Cheetos at the moment!

[PERSON 2:] Good choice. Do you watch Game of Thrones?

[PERSON 1:] No, I do not have much time for TV.

[PERSON 2:] I usually spend my time painting: but, I love the show.

Fig. 9.38 Example dialogue from PERSONA-CHAT dataset

236 9 Major NLP Applications

9.5. What are two basic approaches of Text Summarization (TS)? Give examples
of TS systems to discuss how they work by using these two approaches.

9.6. What are the major differences between Single vs. Multiple documentation
summarization systems? State and explain briefly the related technologies
being used in these TS systems.

9.7. What are the major characteristics of contemporary Text Summarization (TS)
systems as compared with traditional TS systems in the past century? Give
example(s) to support your answer.

9.8. What is a QA system in NLP? State and explain why QA system is critical to
NLP. Give two examples to support your answer.

9.9. Choose any two industrial used QA systems and compare their pros and cons
in terms of functionality and system performance.

9.10. What is Transformer technology? State and explain how it can be used for the
implementation of QA system. Give an example to support your answer.

References

Agarwal, N., Kiran, G., Reddy, R. S. and Rosé, C. P. (2011) Towards Multi-Document
Summarization of Scientific Articles: Making Interesting Comparisons with SciSumm. In Proc.
of the Workshop on Automatic Summarization for Different Genres, Media, and Languages,
Portland, Oregon, pp. 8-15.

Agrawal, K. (2020) Legal case summarization: An application for text summarization. In Proc. Int.
Conf. Comput. Commun. Informat. (ICCCI), pp. 1-6.

Aharon, M., Elad, M. and Bruckstein, A. (2006). K-SVD: An algorithm for designing overcom-
plete dictionaries for sparse representation. IEEE Transactions on signal processing, 54(11):
4311-4322.

AizawaA. (2003). An information-theoretic perspective of tf—idf measures. Information Processing
& Management, 39(1): 45-65.

Alami, N., Meknassi, M and Rais, N. (2015). Automatic texts summarization: Current state of the
art. Journal of Asian Scientific Research, 5(1), 1-15.

Alomari, A., Idris, N., Sabri, A., and Alsmadi, I. (2022) Deep reinforcement and transfer learning
for abstractive text summarization: A review. Comput. Speech Lang. 71: 101276.

Banko, M., Mittal, V. O. and Witbrock, M. J. (2000) Headline Generation Based on Statistical
Translation. ACL 2000, pp. 318-325.

Baumel, T., Eyal, M. and Elhadad, M. (2018) Query Focused Abstractive Summarization:
Incorporating Query Relevance, Multi-Document Coverage, and Summary Length Constraints
into seq2seq Models. CoRR abs/1801.07704.

Barzilay, R., McKeown, K. and Elhadad, M. (1999) Information fusion in the context of multi-
document summarization. In Proceedings of ACL’99, pp. 550-557.

Baxendale, P. (1958) Machine-made index for technical literature - an experiment. IBM Journal of
Research Development, 2(4):354-361.

Brown TB, Mann B, Ryder N, et al (2020) Language models are few-shot learners. Adv Neural Inf
Process Syst 2020-Decem:pp.3—-63

Carbonell, J. and Goldstein, J. (1998) The use of MMR, diversity-based reranking for reordering
documents and producing summaries. In Proceedings of SIGIR’98, pp. 335-336, NY, USA.

Chen, J. and Zhuge H. (2018) Abstractive text-image summarization using multi-modal atten-
tional hierarchical RNN. In Proc. Conf. Empirical Methods Natural Lang. Process., Brussels,
Belgium, pp. 4046-4056.

References 237

Chen H, Liu X, Yin D, Tang J (2017) A Survey on Dialogue Systems. ACM SIGKDD Explor
Newsl 19:25-35. https://doi.org/10.1145/3166054.3166058

Cheng, H. T. et al. (2016). Wide & deep learning for recommender systems. In Proceedings of the
1st workshop on deep learning for recommender systems, pp. 7-10.

Chi, L. and Hu, L. (2021) ISKE: An unsupervised automatic keyphrase extraction approach using
the iterated sentences based on graph method. Knowl. Based Syst. 223: 107014.

Chopra, S., Auli, M. and Rush, A. M. (2016) Abstractive Sentence Summarization with Attentive
Recurrent Neural Networks. HLT-NAACL 2016, pp. 93-98.

Cho K, Van Merriénboer B, Gulcehre C, et al (2014) Learning phrase representations using RNN
encoder-decoder for statistical machine translation. EMNLP 2014 - 2014 Conf Empir Methods
Nat Lang Process Proc Conf 1724-1734. https://doi.org/10.3115/v1/d14-1179

Church, K. W. (2017). Word2Vec. Natural Language Engineering, 23(1): 155-162.

CNN-DailyMail (2022) CNN/Daily-Mail Datasets. https://www.kaggle.com/datasets/gowrishan-
karp/newspaper-text-summarization-cnn-dailymail. Accessed 9 Aug 2022.

Columbia (2022). Columbia Newsblaster. http://newsblaster.cs.columbia.edu. Accessed 14
June 2022.

Croft, W. B. & Harper, D. J. (1979). Using probabilistic models of document retrieval without
relevance information. Journal of documentation, 35(4): 285-295.

Cui Y, Huang C, Lee R (2020) Al Tutor: A Computer Science Domain Knowledge Graph-Based
QA System on JADE platform. Int J Ind Manuf Eng 14:603-613

Dong, Y. (2018) A Survey on Neural Network-Based Summarization Methods. CoRR
abs/1804.04589.

DUC (2022) DUC Dataset. https://paperswithcode.com/dataset/duc-2004. Accessed 9 Aug 2022.

Edmundson, H. P. (1969) New Methods in Automatic Extracting. Journal of ACM 16(2): 264-285.

Elsaid, A., Mohammed, A., Ibrahim, L. F., Mohammed and Sakre, M. (2022) A Comprehensive
Review of Arabic Text Summarization. IEEE Access 10: 38012-38030.

Erkan, G. and Radev. D. R. (2004) LexRank: Graph-based Lexical Centrality as Salience in Text
Summarization. J. Artificial Intelligent Research 22: 457-479.

Evans, D. K. (2005) Similarity-based multilingual multidocument summarization. Technical
Report CUCS-014- 05, Columbia University.

Farsi, M., Hosahalli, D., Manjunatha, B., Gad, I., Atlam, E., Ahmed, A., Elmarhomy, G.,
Elmarhoumy and Ghoneim, O. (2021) Parallel genetic algorithms for optimizing the SARIMA
model for better forecasting of the NCDC weather data, Alexandria Eng. J., 60(1): 1299-1316.

Florian, R. (2002). Named entity recognition as a house of cards: Classifier stacking. In
Proceedings of the 6th conference on Natural language learning (COLING-02). https://doi.
org/10.3115/1118853.1118863.

Fraser, B. (1999). What are discourse markers? Journal of pragmatics, 31(7): 931-952.

Fukumoto, J. (2004) Multi-Document Summarization Using Document Set Type Classification. In
Proc. of NTCIR-4, Tokyo, pp. 412-416.

Ghazvininejad M, Brockett C, Chang MW, et al (2018) A knowledge-grounded neural conversa-
tion model. 32nd AAAI Conf Artif Intell AAAI 2018 5110-5117

Gigaword (2022) Gigaword Datasets. https://huggingface.co/datasets/gigaword. Accessed 9
Aug 2022.

Gong, Y. and Liu, X. (2001) Generic Text Summarization Using Relevance Measure and Latent
Semantic Analysis. SIGIR 2001, pp. 19-25.

Google (2022) Google News. http://news.google.com. Accessed 14 June 2022.

Jain, D., Borah, M. D. and Biswas, A. (2020) Fine-tuning textrank for legal document summari-
zation: A Bayesian optimization-based approach. In Proc. Forum Inf. Retr. Eval., Hyderabad
India, pp. 41-48.

Jing, H. (2000) Sentence Reduction for Automatic Text Summarization. In Proceedings of the 6th
Applied Natural Language Processing Conference, Seattle, USA, pp. 310-315.

Halliday, M. A. K. and Hasan, R. (1976) Cohesion in English, Longman, London.

https://doi.org/10.1145/3166054.3166058
https://doi.org/10.3115/v1/d14-1179
https://www.kaggle.com/datasets/gowrishankarp/newspaper-text-summarization-cnn-dailymail
https://www.kaggle.com/datasets/gowrishankarp/newspaper-text-summarization-cnn-dailymail
http://newsblaster.cs.columbia.edu
https://paperswithcode.com/dataset/duc-2004
https://doi.org/10.3115/1118853.1118863
https://doi.org/10.3115/1118853.1118863
https://huggingface.co/datasets/gigaword
http://news.google.com

238 9 Major NLP Applications

Hariharan, S., Ramkumar, T., Srinivasan, R. (2013) Enhanced Graph Based Approach for Multi
Document Summarization,” The International Arab Journal of Information Technology, 10 (4):
334-341.

Hasan, R. (1984) Coherence and Cohesive Harmony. In: Flood James (Ed.), Understanding
Reading Comprehension: Cognition, Language and the Structure of Prose. Newark, Delaware:
International Reading Association, pp. 181-219.

Hearst, M. A. (1997). Text tiling: Segmenting text into multi-paragraph subtopic passages.
Computational linguistics, 23(1): 33-64.

Hovy, E., and Lin, C. Y. (1999) Automated Text Summarization in SUMMARIST, In: Inderjeet
Mani and Mark T. Maybury (Eds.). Advances in Automatic Text Summarization, MIT Press,
pp. 18-24.

Keneshloo, Y., Shi, T., Ramakrishnan, N. and Reddy, C. K. (2019). Deep reinforcement learning
for sequence-to-sequence models. IEEE transactions on neural networks and learning systems,
31(7): 2469-2489.

Kupiec, J., Pedersen, J. and Chen, F. (1995) A Trainable Document Summarizer. In Proc. of the
18th annual international ACM SIGIR conference on Research and development in informa-
tion retrieval, pp. 68-73.

Langyville, A. N. and Meyer, C. D. (2006) Google’s PageRank and beyond - the science of search
engine rankings. Princeton University Press 2006, ISBN 978-0-691-12202-1, pp. I-VIIL, 1-224.

LCSTS (2022) LCSTS Dataset. https://www.kaggle.com/xuguojin/lcsts-dataset. Accessed 9
Aug 2022.

Luhn, H. P. (1958) The Automatic Creation of Literature Abstracts. IBM J. Res. Dev. 2(2): 159-165.

Mahalakshmi, P. and Fatima, N. S. (2022) Summarization of Text and Image Captioning in
Information Retrieval Using Deep Learning Techniques. IEEE Access 10: 18289-18297.

Malki, Z., Atlam, E., Dagnew, G., Alzighaibi, A., Ghada, E. and Gad I. (2020) Bidirectional resid-
ual LSTM-based human activity recognition, Comput. Inf. Sci., 13(3):1-40.

Mani I. and Bloedorn, E. (1997) Multi-document summarization by graph search and matching.
AAAI/TAAL vol. cmplg/ 9712004, pp. 622-628, 1997.

Mihalcea, R. and Tarau, P. (2004) TextRank: Bringing Order into Text. EMNLP 2004: 404-411

Nallapati, R., Zhai, F. and Zhou. B. (2017) Summarunner: A recurrent neural network-based
sequence model for extractive summarization of documents. AAAI 2017: 3075-3081.
arXiv:1611.04230

NewsInEssence (2022). NewsInEssence News. http://NewsInEssence.com. Accessed 14 June 2022.

NYT (2022) NYT Dataset. https://www.kaggle.com/datasets/manueldesiretaira/dataset-for-text-
summarization. Accessed 9 Aug 2022.

Mikolov T, Sutskever I, Chen K, et al (2013) Distributed representations of words and phrases and
their compositionality. Adv Neural Inf Process Syst 1-9

Ozsoy, M. G., Alpaslan, F. N. and Cicekli, I. (2011) Text summarization using Latent Semantic
Analysis. J. Inf. Sci. 37(4): 405-417.

Pervin S. and Haque M. (2013) Literature Review of Automatic Multiple Documents Text
Summarization, International Journal of Innovation and Applied Studies, 3(1) 121-129.

QiuM, LiF-L, Wang S, et al (2017) AliMe Chat: A Sequence to Sequence and Rerank based Chatbot
Engine. In: Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Association for Computational Linguistics, Stroudsburg,
PA, USA, pp. 498-503

Rath, G. J., Resnick A. and Savage, T. R. (1961) Comparisons of four types of lexical indicators
of content. Journal of the American Society for Information Science and Technology, 12(2):
126-130.

Reimers, N., and Gurevych, 1. (2019). Sentence-bert: Sentence embeddings using siamese bert-
networks, arXiv preprint arXiv:1908.10084.

Robertson, A. M. & Willett, P. (1998). Applications of n-grams in textual information systems.
Journal of Documentation, 54(1): 8-67.

https://www.kaggle.com/xuguojin/lcsts-dataset
http://newsinessence.com
https://www.kaggle.com/datasets/manueldesiretaira/dataset-for-text-summarization
https://www.kaggle.com/datasets/manueldesiretaira/dataset-for-text-summarization

References 239

Rothkopf, E. Z. (1971). Incidental memory for location of information in text. Journal of verbal
learning and verbal behavior, 10(6), 608-613.

Sadler, L. & Spencer, A. (2001). Syntax as an exponent of morphological features. In Yearbook of
morphology 2000, pp. 71-96. Springer.

Salton, G. (1989) Automatic Text Processing: the transformation, analysis, and retrieval of infor-
mation by computer. Addison-Wesley Publishing Company, USA.

Salton G, Wong A and Yang C S. (1975) A vector space model for automatic indexing.
Communications of the ACM, 18(11): 613-620.

See, A., Liu, P. J. and Manning, C. D. (2017) Get To The Point: Summarization with Pointer-
Generator Networks. ACL (1) 2017: 1073-1083.

Svore, K. M., Vanderwende L. and Burges, J.C. (2007) Enhancing Single document Summarization
by Combining RankNet and Third-party Sources. In Proc. of the Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning,
pp. 448-457.

Taboada, M. & Mann, W. C. (2006). Applications of rhetorical structure theory. Discourse studies,
8(4): 567-588.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., Polosukhin,
1. (2017) Attention is All you Need. NIPS 2017: 5998-6008. arXiv:1706.03762.

Wan, X. (2008) An Exploration of Document Impact on Graph-Based Multi-Document
Summarization. Proc. of the Conference on Empirical Methods in Natural Language
Processing, Association for Computational Linguistics, pp. 755-762.

Weeds, J., Weir, D. and McCarthy, D. (2004). Characterising measures of lexical distributional sim-
ilarity. In COLING 2004: Proceedings of the 20th international conference on Computational
Linguistics, pp. 1015-1021.

Weibo (2022) Sina Weibo official site. https://weibo.com. Accessed 29 Sept 2022.

Whissell, J. S. & Clarke, C. L. (2011). Improving document clustering using Okapi BM25 feature
weighting. Information retrieval, 14(5): 466-487.

Wolf T, Sanh V, Chaumond J, Delangue C (2018) TransferTransfo: A Transfer Learning Approach
for Neural Network Based Conversational Agents

Yang, R., Bu, Z. and Xia, Z. (2012) Automatic Summarization for Chinese Text Using Affinity
Propagation Clustering and Latent Semantic Analysis. WISM 2012, pp. 543-550

Yang, J., Yi, X., Cheng, D. Z., Hong, L., Li, Y. and Wong, S. (2020). Mixed negative sampling
for learning two-tower neural networks in recommendations. In Proceedings of the Web
Conference 2020, pp. 441-447.

You O., Li W. and Lu, Q. (2009) An Integrated Multi-document Summarization Approach based
on Word Hierarchical Representation. In Proc. of the ACL-IICNLP Conference, Singapore,
pp. 113-116.

Zhang, Y., Jin, R. and Zhou, Z. H. (2010). Understanding bag-of-words model: a statistical frame-
work. International Journal of Machine Learning and Cybernetics, 1(1): 43-52.

Zhou L, Gao J, Li D, Shum H-Y (2020) The Design and Implementation of Xiaolce, an Empathetic
Social Chatbot. Comput Linguist 46:53-93. https://doi.org/10.1162/coli_a_00368

Zhuang, S. & Zuccon, G. (2021). TILDE: Term independent likelihood moDEI for passage re-
ranking. In Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 1483-1492.

Zhu T. and Zhao, X. (2012) An Improved Approach to Sentence Ordering For Multi-document
Summarization. IACSIT Hong Kong Conferences, IACSIT Press, Singapore, vol. 25, pp. 29-33.

https://weibo.com
https://doi.org/10.1162/coli_a_00368

Chapter 10)
Large Language Models (LLMs) et
and Generative Artificial Intelligence

(GenAl)

10.1 Introduction to LLM and GenAl

10.1.1 What Is a Large Language Model (LLM)?

Large Language Models (LLMs) are innovative machine learning models designed
to learn from textual data, understand language patterns such as grammar, syntax,
context, semantics; and process by models’ sophisticated architectures to generate
relevant coherent and contextual text; translate languages; summarize content and
answer questions in NLP.

They are derived from advancements in neural networks, with the Transformer
architecture now dominating the field, having surpassed recurrent neural networks
(RNNs) and long short-term memory (LSTM) networks. However, RNNs have
limitations to process long text sequences and often incur vanishing gradients prob-
lems to capture long-term dependencies in language (Choi et al. 2017).

The Transformer model proposed by Vaswani et al. (2017) has revolutionized
language models’ training and deployment techniques. Transformers use self-
attention mechanisms to weigh the importance of different words in a sentence
regardless of their positions to overcome RNNs’ and LSTMs’ limitations. This
breakthrough has guided the subsequent foundational models’ innovations such as
BERT and Generative Pretrained Transformers (GPT) in the LLM domain (Devlin
et al. 2019).

For example, Generative Pretrained Transformer 3 (GPT-3) by OpenAI (OpenAl
2024) was proposed by Brown et al. (2020). It generates human-like text ranging
from essays composition to code snippets creation with over 175 billion parameters
to capture intricate linguistic nuances than lesser models’ endeavors. Other promi-
nent LLMs such as BERT were proposed by Devlin et al. (2019) for language
understanding rather than generation, and its deep bidirectional training has achieved

© The Author(s), under exclusive license to Springer Nature Singapore Pte 241
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_10&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_10#DOI

242 10 Large Language Models (LLMs) and Generative Artificial Intelligence (GenAl)

exceptional results including question answering and sentence prediction tasks on
various NLP benchmarks.

LLMs’ generalization abilities can be fine-tuned with minimal additional data
once trained, making them versatile and applicable to a wide range of tasks across
industries. Pretrained models such as BERT (BERT 2024) and GPT (ChatGPT
2024) have significantly reduced the computational cost and development time for
language-based Al systems to become central in today’s Al ecosystem (Kocijan and
Djuric 2020).

Figure 10.1 shows a timeline of LLM evolution from RNNs, LSTM networks,
Transformers, BERT, and GPT to ChatGPT.

10.1.2 Understanding Generative Artificial
Intelligence (GenAl)

GenAl refers to Al systems that can generate new content regardless of text, images,
music, or other forms of media based on the learnt patterns from vast datasets.
Unlike traditional Al systems perform classification, regression, or decision-making
tasks based on given data, GenAl systems can create original outputs that resemble
human-generated content.

Generative Adversarial Network (GAN) proposed by Goodfellow et al. (2014) is
a foundational technique that underpinned many GenAl systems. It consists of two
neural networks (1) a generator to create new data instances and (2) a discriminator
to evaluate them against real-world data. This adversarial process complemented

Timeline of LLM Evolution

fftention Mechanism

2010 2011 2012 2013 2014 2015 2016 2017 2018 2018 2020 2021 2022 2023
Year

Fig. 10.1 Timeline for the evolution of LLMs (2010-2024)

10.1 Introduction to LLM and GenAl 243

the generator to learn and create realistic new content outputs progressively
(Creswell et al. 2018). Figure 10.2 shows a GAN schematic diagram for image
generation.

In NLP, GenAl manifests language models to generate human-like text. GPT-3 is
a prime example of how GenAl produces coherent text that can engage in conversa-
tions, write stories, or even simulate different personas (Brown et al. 2020). It relies
on vast amounts of training data and robust neural networks to generate content in
alignment with human linguistic and cognitive patterns.

Generative Al (GenAl) extends beyond text generation. The DALL-E system
developed by OpenAl, is a model that generates detailed images from textual
descriptions by determining the intersection between vision and language. Similarly,
tools like StyleGAN are used to generate highly realistic human faces, artworks,
and other types of media, showcasing the creative potentiality of GenAl (Elgammal
et al. 2017).

10.1.3 The Intersection of LLM and GenAl

The convergence of LLMs and GenAl represents a fascinating area in modern Al,
as LLMs provide the necessary linguistic and contextual understanding for genera-
tive models, enabling them to train on massive datasets and produce human-like text
(Liu and Lapata 2019). These models serve as the foundation of many GenAl sys-
tems, particularly in natural language generation (NLG). GPT-3, for example, has
demonstrated remarkable potential to interpret complex texts and summarize them
to generate highly coherent and contextually relevant responses. This dual capabil-
ity reflects the synergy between LLMs and GenAl (Yang et al. 2019).

Multimodal models represent another area of intersection to combine textual,
visual, and auditory data. Contrastive Language—Image Pretraining (CLIP) by
OpenAl in addition to DALL-E, further emphasizes the growing intersection
between language and vision. CLIP enables language models to interpret and

—
e
—r S REALWORLD IMAGE | sy
D
TRAINING SET
DISCRIMINATOR .

- GENERATOR
FAKE

NOISE

Fig. 10.2 GAN for image generation

244 10 Large Language Models (LLMs) and Generative Artificial Intelligence (GenAl)

generate visual content based on textual descriptions, highlighting the potential of
language models can extend beyond text-based tasks into vision (Lu and Tzu 2020).

10.1.4 The Importance of LLMs in Modern Al

LLMs capabilities to generate coherent text, interpret complex language structures,
and integrate contextual information are imperative to many modern Al-powered
systems by their widespread applications, transformative impacts, and potentiality.

1. Applications Across Industries: LLMs can automate complex tasks required by
human expertise previously. In healthcare, LLMs are adopted to analyze medical
texts, summarize patient records, and assist in drug discovery (Choi et al. 2017).
In finance, they support sentiment analysis, fraud detection, and report automa-
tion. In legal, they support contract analysis and documents research for rapid
summarization and interpretation. These applications have underscored the
LLMs’ significance to enhance productivity and decision-making across differ-
ent domains (Raghavan et al. 2020).

2. Conversational Al and Customer Service: Conversational Al systems such as
chatbots and virtual assistants are visible LLMs applications. They adopt LLMs
to understand, generate human-like responses in real-time conversations, and
provide personalized assistance to users. Siri, Alexa, and Google Assistant are
examples to interact with users in natural language (Brown et al. 2020).

3. Enhancing Creativity and Content Generation: LLMSs have driven a surge of Al-
enhanced creativity. In media and entertainment industries, OpenAI’s GPT mod-
els are adopted to generate articles, scripts, and stories by writers, marketers, and
content creators to brainstorm ideas, generate drafts, and create engaging con-
tent (Ghazvinian et al. 2021).

4. Multilingual and Cross-Cultural Communication: LLMs have advanced in
machine translation for accurate and nuanced translations between languages
(Zhang and Chai 2020). Google Translate and Microsoft Translator adopted
LLMs to interpret and translate text in real time to remove language barriers.
This has profound implications for business, diplomacy, education, and tourism.

5. The Future of Human-Machine Interaction: LLMs have the potentiality of trans-
forming human-machine interaction. As they become sophisticated, they enable
machines to engage in deeper, meaningful conversations with humans
(Summerville et al. 2018). This can lead to intuitive interfaces interaction devel-
opment for Al systems accessible and user-friendly.

LLMs are not without challenges. The computational training cost and models
deployment require vast amounts of data and processing power (Khan et al. 2021).
They can also sometimes generate biased or harmful content and reflect them in the
training data. Hence, ongoing research is focused on ethical and societal implica-
tions improvements (Blasi et al. 2021).

10.2 Foundations of LLMs 245

10.2 Foundations of LLMs

10.2.1 Neural Network Architectures

Neural networks are the foundation of machine learning and NLP in LLMs develop-
ment to mimic the cognitive functions of the human brain. Artificial neural net-
works (ANNs) have layers of nodes (neurons), where each node in a layer is
connected to nodes in the subsequent layer. These neural networks aim to process
and interpret input data such as text, images, or sounds through multiple abstrac-
tion stages.

Multi-Layer Perceptron (MLP) is one of the earliest neural networks restrained
by capturing temporal dependencies in data for language tasks. RNNs have extended
loops advancement in the network to handle data sequences for NLP tasks such as
text generation, translation, and sentiment analysis to understand context over time.
However, they contend with learning long-term dependencies due to vanishing or
exploding gradients and limited scalability for large-scale language modeling tasks
(Hochreiter and Schmidhuber 1997).

To address these issues, LSTM networks and Gated Recurrent Units (GRUs) are
developed. LSTMs introduced memory cells to store information over longer time
spans, promoting the models’ capabilities to retain and adopt contextual informa-
tion from an earlier sequence (Hochreiter and Schmidhuber 1997). GRUs simplified
LSTM by merging certain gates, making them computationally efficient while
maintaining performance (Cho et al. 2014). These architectures have formulated
modern language models’ progression to exercise sequential data but are still
restrained by scalability and parallelization.

Convolutional Neural Networks (CNNs) primarily used in computer vision tasks
have accessed to NLP through sentence classification and character-level modeling
applications. CNNs extracted hierarchical features from input data to capture local
dependencies and promote efficiency (Kim 2014). However, their fixed-size recep-
tive fields have insufficient long-term dependencies recognition in text.

Despite the contributions of RNNs, LSTMs, GRUs, and CNNs, none of these
architectures can prove ideal in handling large-scale sequential data or learning
global dependencies across long sequences that are crucial for machine translation,
summarization, and text generation tasks leading to the attention mechanisms and
the Transformer architecture development.

10.2.2 Attention Mechanisms

Attention mechanisms have revolutionized NLP by allowing models to selectively
focus on relevant parts of the input sequence when making predictions. They weigh
the importance of different input tokens dynamically and process longer texts

246 10 Large Language Models (LLMs) and Generative Artificial Intelligence (GenAl)

without disregarding earlier parts of the sequence to solve the limitations of earlier
neural network models.

The seminal paper by Bahdanau et al. (2014) proposed the attention concept in
machine translation. The encoder, in traditional sequence-to-sequence models, pro-
cesses the input sequence into a fixed-size representation, and the decoder generates
the output sequence. It compels the entire input sequence to a fixed-size vector in
dealing with long sentences complications, allowing the decoder “attends” to differ-
ent parts of the input sequence at each step during the decoding process to assign
different weights on each input token. This dynamic approach has significantly
improved machine translation and other NLP tasks.

It computes a weighted sum of all input vectors (hidden states), where these
weights represent the importance of each token relative to others in the sequence.
These weights are determined by a scoring function such as dot-product or additive
attention to assess the similarity between the current decoder state and each encoder
state (Luong et al. 2015). This method allowed models to capture more global infor-
mation in the sequence, adapt dynamically based on the context, mitigate the van-
ishing gradient problem, and handle long-range dependencies.

Self-attention is a variant of attention mechanisms to expand NLP models’ capa-
bilities. Unlike traditional attention mechanisms that required separate encoder and
decoder layers, self-attention allowed each token in the sequence attends to every
other token in the same sequence. This concept is crucial for building models that
can parallelize computation to process long sequences (Vaswani et al. 2017).

10.2.3 The Transformer Architecture

The Transformer architecture proposed by Vaswani et al. (2017) has signified a
fundamental shift in LLMs design by building upon the self-attention concept and
discarded RNNs’ sequential processing nature for fully parallelizable training and
inference. This shift is crucial for scaling up language models to handle larger data-
sets and longer sequences to models’ creation capable of human-like text genera-
tion. Figure 10.3 shows the original Transformer architecture.

The Transformer’s core component is a multi-head self-attention mechanism
focusing on different parts of the input sequence simultaneously. Each attention
head processes a different sequence representation to capture diverse aspects of the
information. The outputs of all attention heads are then concatenated and traversed
in a feed-forward network to generate the final output (Vaswani et al. 2017). This
architecture can learn both local and global dependencies in text for translation,
summarization, and text generation tasks.

It has other key components. The position encoding compensates for the lack of
sequential structure as self-attention is order-agnostic. They inject information
about the tokens order into the model to understand the relative position of words in
a sentence (Vaswani et al. 2017). The residual connections and layer normalization

10.2 Foundations of LLMs 247

Output
Probabilities

Linear

(CEmme)

A
F
Forward
/ \ Aao&Norm
Multi-Head
Feed
Attention
Forward [I] Nx
;3
-~
Ny
Multi-Head Masked
Attention Multi-Head
Aftention
—
\ J .)/
Positional Positional
Encoding c Encoding

Input Outut
Embedding Embedding

Inputs Output
(shifted right)

Fig. 10.3 Transformer architecture

248 10 Large Language Models (LLMs) and Generative Artificial Intelligence (GenAl)

improve training stability and large models’ performance without vanishing gradi-
ent problem (He et al. 2016).

It also uses its attention’s stacked layers and feed-forward networks for hierar-
chical learning representations. This layered structure can capture abstract features
rigorously as the data traverse the network to its robust language modeling
capabilities.

The Transformer architecture has led to widespread adoption in NLP and beyond
with variations and improvements over the years. It is the foundation for successful
LLMs such as BERT, GPT, and T5 are the new benchmarks in various language tasks.

10.2.4 Scaling Up: From BERT to GPT

The Transformer architecture has inspired researchers to explore the potentiality of
scaling up language models to new heights. BERT and GPT are two landmark mod-
els to represent different approaches for language tasks.

BERT is a Transformer-based model proposed by Devlin et al. (2018) to under-
stand the contextual relationships between words in a sentence. Unlike previous
models that processed text either from left to right or right to left, BERT proposed
bidirectional training to learn from both directions simultaneously. This approach
allowed BERT to capture abundant contextual information and improve perfor-
mance on a wide range of NLP tasks such as question answering and sentence clas-
sification (Devlin et al. 2018).

BERTs training process consists of two major steps: pretraining and fine-tuning.
During pretraining, the model is trained on a large corpus using two unsupervised
tasks—masked language modeling (MLM) and next sentence prediction (NSP). In
MLM, random words in a sentence are masked, and the model is tasked with pre-
dicting the missing words. NSP, on the other hand, trains the model to understand
relationships between sentences. Once pretrained, BERT can be fine-tuned on spe-
cific downstream tasks using relatively small task-specific datasets making it highly
versatile and efficient.

GPT is another proposed by Radford et al. (2021). It took a different approach by
focusing on generative tasks. GPT is a unidirectional model that processed text from
left to right effective for language generation tasks such as text completion, story
generation, and dialogue systems. Unlike BERT, GPT is trained by an auto-
regressive approach to predict the next word in a sequence based on the previous
words. This generative capability has become the foundation for GPT-2 and GPT-3
models to demonstrate remarkable coherent and contextually text generation
(Radford et al. 2021).

As researchers scaled up the size of GPT models, they discovered that larger
models not only improve performance on language tasks but also exhibit emergent
capabilities that are absent in smaller models. GPT-3, with its 175 billion parame-
ters, is one of the largest language models to perform a wide range of tasks with
little to no task-specific training (Brown et al. 2020). This phenomenon, known as

10.3 Key Players in the LLM Landscape 249

few-shot learning, allows GPT-3 to generalize across tasks and generate human-like
text with impressive fluency.

The scaling of language models from BERT to GPT-3 has uplifted the boundar-
ies of what was possible with Al and NLP. As these models continued to grow, they
raised important questions about the ethical implications of large-scale language
generation such as the potentiality of generating misinformation, reinforcing biases,
and the environmental impact of training massive models (Bender et al. 2021).

10.3 Key Players in the LLM Landscape

10.3.1 ChatGPT by OpenAlI (Current Version: GPT-4)

The GPT (ChatGPT 2024) series by OpenAl (OpenAl 2024) represented a break-
through in LLMs and NLP. These models are designed to generate human-like text
by leveraging a Transformer-based architecture and vast datasets. Each generation
from GPT-1 to recent GPT-4 has demonstrated increasing complexity, performance,
and applicability levels.

10.3.1.1 Evolution of GPT Models

GPT models have evolved from GPT-1 (117 M parameters), GPT-2 (1.5B parame-
ters), and GPT-3 (175B parameters) to GPT-4, with each iteration has improved in
size, performance, and training strategies. They pretrained on a diverse corpus of
internet data including articles, books, websites, and other content available for
public, and fine-tuned for specific tasks to optimize accuracy.

10.3.1.2 System Architecture

The GPT series’ core system architecture is based on the Transformer model by
Vaswani et al. (2017). It consists of an encoder-decoder mechanism, though GPT
used only the decoder part to focus on language generation tasks. The main compo-
nents of GPT’s architecture include:

1. Multi-Head Attention Mechanism: This allowed the model to focus on different
parts of a sentence simultaneously and improve its understanding of linguistic
patterns, contexts, and relationships within the input text.

2. Layer Normalization and Residual Connections: These techniques stabilized the
training process to ensure that the gradient can traverse the network smoothly
and reduce vanishing or exploding gradients problems in deeper layers.

250 10 Large Language Models (LLMs) and Generative Artificial Intelligence (GenAl)

3. Feed-Forward Neural Networks: Each transformer block contains a feed-forward
neural network (FFN) that processed the output of the multi-head attention to
capture nonlinear dependencies.

4. Positional Encoding: Since transformers lack inherent sequence awareness,
GPT is incorporated with positional encodings to understand word order within
input sequences.

10.3.1.3 Applications and Usage

GPT models undergo a two-stage training process: pretraining and fine-tuning. It
learnt language representations from a large corpus by predicting the next token in
a sequence to pre-train the model and fine-tune it with task-specific datasets to spe-
cialize in targeted applications such as answering questions, summarizing text, or
generating creative content.

The GPT series have revolutionized NLP for seamless interaction through chat-
bots, translation, creative writing, and more. However, bias mitigation, computa-
tional costs, and responsible deployment are areas for research and development.

10.3.2 Pathways Language Model (PalLM) by Google
DeepMind (Current Version: Pal.M 2)

The Pathways Language Model (PaLM) by Google DeepMind (Google 2024) is a
next-generation LLM. It is built on Google’s Pathways framework to demonstrate
exceptional performance across various tasks such as reasoning, natural language
understanding, translation, question answering, and code generation. PaLM empha-
sized on scale and efficiency leveraging billions of parameters to overcome earlier
models’ limitations.

PalM is introduced as a large-scale multitask learning solution to improve
energy efficiency, its Pathways framework enabled a single model to process mul-
tiple tasks simultaneously instead of being restrained by a narrow domain. The
model incorporated sparsity and dense training techniques to focus on scaling and
balance between performance and resources consumption.

It is trained on a massive, multilingual corpus containing diverse sources from
books, Wikipedia, online articles, and code repositories to handle complex linguis-
tic nuances across languages and specialized domains including programming.

10.3.2.1 System Architecture

PalM’s architecture is built on the Transformer model but with Pathways approach
extension. The main components include:

10.3 Key Players in the LLM Landscape 251

1. Sparse Activation Mechanism: Unlike dense models where all neurons are acti-
vated for every input, PaLM uses sparsity through Mixture of Experts (MoE)
layers. These layers selectively activate only a subset of neurons to scale billions
of parameters without increasing computational costs.

2. Multitask Pathways Framework: The Pathways architecture allowed to route
data dynamically through network’s specific parts based on the task at hand so
that the model is adaptive to perform diverse tasks such as text generation, sum-
marization, and translation efficiently.

3. Multi-Head Attention and Positional Encoding: Like other Transformer models,
PalLM used multi-head self-attention to understand the relationships between
tokens in a sequence. Positional encodings provided the model to track word
order and context for accurate text generation.

4. Layer Normalization and Residual Connections: These features maintain the
model’s stability during training to facilitate convergence in large networks with
many layers.

10.3.2.2 Applications and Usage

PalM training involves supervised and self-supervised learning on massive datasets
to generalize across languages, domains, and tasks, its Pathways framework allowed
the model to scale for high-stakes applications like medical diagnosis, complex cod-
ing problems, and advanced conversational agents.

PaLM has progressed scalable, multitask Al and aligned with Google DeepMind’s
vision to create efficient, versatile models for broad ranges of real-world solutions.
However, challenges related to bias, interpretability, and ethical deployment remain
ongoing research.

10.3.3 Large Language Model Meta AI (LLaMA) by Meta
(Current Version: LLaMA 2)

The Large Language Model Meta Al (LLaMA) (LLaMa 2024) developed by Meta
(Meta 2024) is an advanced LLM to provide efficient and scalable natural language
processing capabilities.

LLaMA has flexible parameter sizes ranging from 7B to 65B for task require-
ments and resources. One of its motivations is to develop a model that can match or
exceed performance like GPT-3’s with lower computational overheads cost. Meta
encourages open research and analysis in NLP and Al ethics by making the models
accessible for non-commercial use.

252 10 Large Language Models (LLMs) and Generative Artificial Intelligence (GenAl)

10.3.3.1 System Architecture

LLaMA’s architecture is based on the Transformer model by Vaswani et al. (2017)
but incorporated several optimizations for training efficiency. LLaMA models focus
on architectural efficiency showing that larger datasets and well-tuned training strat-
egies can be achieved with fewer parameters. The main components include:

1. Tokenization and Positional Encoding: It uses Byte pair encoding (BPE) to split
input text into tokens, improve the handling of diverse languages, and Positional
Encoding to recognize word order within input sequences.

2. Multi-Head Self-Attention Mechanism: This core Transformer component cap-
tures the relationships across words and phrases within a context window essen-
tial for coherent and contextually appropriate text generation.

3. Layer Normalization and Residual Connections: These architectural features
stabilize training to ensure the model’s deep layers maintain effective in large
networks.

4. Training on Diverse Datasets: The model is pretrained on a diverse corpus
including books, research articles, and open-source web content for generaliza-
tion across multiple languages and domains.

10.3.3.2 Applications and Usage

Meta designed LLaMA model for efficiency and accessibility by leveraging data
quality with better pretraining strategies than model size increment excessively,
making it viable to operate on modest hardware, and foster research in fine-tuning,
transfer learning, and multilingual NLP.

LLaMA represented an upsurge in scalable, efficient, and open-access
Al However, like LLMs, it also has bias, misuse of information, and responsible
deployment challenges in real-world applications.

10.3.4 Claude by Anthropic (Current Version: Claude 2)

Claude (Claude 2024), developed by Anthropic (Anthropic 2024) is an LLM
designed for safety, alignment, and usability. The model is named after Prof. Claude
Shannon (1916-2001), a pioneer in information theory. Claude represents
Anthropic’s commitment to prioritize ethical considerations in its Al systems design.

Claude is built to perform a variety of NLP tasks including conversational Al,
text summarization, translation, question answering, and content generation. What
distinguished Claude from other models is its emphasis on alignment with human
intent through reinforcement learning from human feedback (RLHF). Anthropic
leverages Constitutional Al is an innovative approach where the model can learn

10.3 Key Players in the LLM Landscape 253

and adhere to safety and fairness principles without constant human supervision to
minimize harmful behaviors and improve performance.

10.3.4.1 System Architecture

Claude is based on a Transformer architecture like other LLMs but incorporates
unique enhancements to reflect Anthropic’s focuses. The main components include:

1. Transformer Layers with Self-Attention: Claude uses multi-head self-attention
mechanisms to process text sequences on modeling complex relationships within
the language and generate coherent responses.

2. Constitutional AI Framework: This approach embeds ethical constraints into the
model’s learning process. Claude is trained using a set of guiding principles (a
“constitution”) to evaluate and correct responses without extensive post-
deployment modification.

3. RLHF: Claude undergoes fine-tuning through human feedback are in alignment
with user intent to avoid toxic or biased content generation, making it reliable for
tasks where safety is critical, i.e., customer service or education.

4. Layer Normalization and Residual Connections: These are standard components
in Transformer models to maintain stability during training for smoother gradi-
ents and performance consistency across deeper networks.

10.3.4.2 Applications and Usage

Claude is trained on large-scale, multi-domain datasets like other LLMs, but empha-
sis on filtering harmful or biased content, its architecture is optimized for safety and
adaptability, making it suitable for applications in business, education, and public
discourse. Claude exemplifies a forward-thinking approach to responsible LLM
design and prioritizes ethical principles in high-quality generative Al systems
development.

10.3.5 ERNIE 3.0 Titan by Baidu

ERNIE 3.0 Titan (Ernie 2024) developed by Baidu (Baidu 2024) is a flagship LLM
in natural language understanding, generation, and machine translation. It is one
of the largest models in China boasting 260 billion parameters competitive with
other global LLMs such as GPT-4. It attempts to progress pretraining techniques
and knowledge graphs integration.

ERNIE 3.0 Titan is designed to outperform traditional language models by com-
bining auto-regressive and auto-encoding architectures to capture the structure and
meaning of language. It uses multilingual capabilities in English and Chinese

254 10 Large Language Models (LLMs) and Generative Artificial Intelligence (GenAl)

benchmarks to provide applications in education, finance, and customer service
industries.

10.3.5.1 System Architecture

ERNIE 3.0 Titan’s architecture is based on the Transformer framework with several
innovations to improve performance and efficiency. The main components include:

1. Hybrid Model Design: Unlike many LLMs that follow either an auto-regressive
(like GPT) or auto-encoding (like BERT) architecture, ERNIE 3.0 Titan com-
bines both approaches. This enables it to handle a broader range of tasks, includ-
ing generation and understanding tasks.

2. Knowledge-Enhanced Pretraining: One of its defining features is the integration
of knowledge graphs, which provide structural information to enhance semantic
understanding. This is particularly useful for tasks like machine translation and
question answering.

3. Layer Normalization and Residual Connections: Like other Transformer-based
models, ERNIE 3.0 Titan uses layer normalization and residual connections to
stabilize training and facilitate gradient propagation across multiple layers.

4. Parallel Training: The model adopts progressive distributed training techniques
across multiple GPUs, allowing it to scale effectively without sacrificing speed
or accuracy.

10.3.5.2 Applications and Usage

ERNIE 3.0 Titan is optimized for tasks such as text summarization, machine transla-
tion, knowledge-based question answering, and chatbots. It has multilingual envi-
ronments to provide solutions in a variety of services including search engines,
virtual assistants, and enterprise Al platforms. It is a dynamic tool for business and
research applications beyond traditional NLP tasks in domains that require sophis-
ticated reasoning and multilingual understanding.

10.4 Applications of LLLMs in GenAl

GenAl has significant advancements due to LLMs development and deployment.
This section will explore its key LLMs applications to creative writing, content
generation, language translation, conversational AI, chatbots, and text
summarization.

10.4 Applications of LLMs in GenAl 255
10.4.1 Creative Writing and Content Generation

Creative writing and content generation are some of the prominent LLMs applica-
tions in GenAl, i.e., GPT-3 and its successors have demonstrated remarkable profi-
ciency in producing high-quality creative text ranging from poetry, short stories to
full-length novels. These models have been trained on vast corpora to understand
diverse genres and styles for creative output (Brown et al. 2020). Figure 10.4 shows
a mind map automatically generated by ChatGPT-40 on how LLMs are used on
content generation.

LLMs facilitate the content creation process by providing writers with prompts,
completing sentences, or drafting the entire text sections. Authors and content cre-
ators can use these models to overcome writer’s block, brainstorm new ideas, or
generate large content volumes rapidly. For instance, OpenAI’s GPT-3 has been
used to co-author blog posts and even screenplays. This text generation capability

L !E !AFW

&WB\TF LAEED: INFAT 0%, .;""b
gLt e

RN AR

ETICUNION PROCESW«N o’

LUNTEN
CRALATION

Fig. 10.4 Mind map of how LLMs used for content generation

256 10 Large Language Models (LLMs) and Generative Artificial Intelligence (GenAl)

adheres to various tones and themes for LLMs facilitation in diverse creative indus-
tries (Ghazvinian et al. 2021).

It also expands avenues for interactive storytelling, where users can collaborate
with Al to co-create stories in real time, making the creative process a dynamic
engagement by responding to user input and progressing the narrative. However,
challenges persist to maintain narrative coherence over extended text, and the gen-
erated content is aligned with ethical standards (Bender et al. 2021).

LLMs are used for automated content creation areas such as digital marketing
where personalized product descriptions and advertisements are generated based on
customers’ preferences. These applications streamline content production, reduce
costs, and improve efficiency in content-rich industries (Khan et al. 2021).

10.4.2 Language Translation

Language translation has been revolutionized by LLLMs to translate text between
numerous languages with high accuracy and fluency. Traditional machine transla-
tion models relied on rule-based systems or statistical models often resulted in rigid
and unnatural translations. LLMs, on the other hand, leverage their vast training
data and attention mechanisms to produce translations that are contextually appro-
priate and grammatically sound (Vaswani et al. 2017).

Transformer-based models, i.e., Google’s BERT and OpenAl’s GPT are break-
throughs in this domain using attention mechanisms to focus on relevant parts of the
input text when generating translations to capture the nuances of language including
idiomatic expressions, cultural references, and subtle shifts in tone often missed by
earlier systems (Brown et al. 2020).

LLMs allow multilingual models to perform translation tasks across a wide
range of languages without the separation of each language pair. This has significant
implications for global communication and information access. For example,
Google Translate is benefited by these models to provide users with higher transla-
tions accuracy across diverse languages. Additionally, LLMs facilitate real-time
translation like video conferencing and cross-border customer service to remove
language barriers in global business and collaboration (Khan et al. 2021).

However, challenges persist to languages translation with limited available train-
ing data. Efforts are being made to train LLMs on multilingual datasets to include
underrepresented languages, but progress is still required for equitable access to
high-quality machine translation across all linguistic communities (Vaswani
et al. 2017).

Figure 10.5 shows the performance comparison of LLM-based models in trans-
lating different languages to earlier models, i.e., statistical and neural net-
work models.

10.4 Applications of LLMs in GenAl 257

Accuracy Comparison of Translation Models

I Statistical Models
Em Neural Models
LLM-based Models

English-5 panléh English-French English-German English-Chinese English-Ara bic
Language Pairs

80r

60

Accuracy (%)

20¢

Fig. 10.5 Performance comparison of LLM-based models in translating different languages to
earlier models such as statistical and neural network models

10.4.3 Conversational AI and Chatbots

Conversational Al powered by LLMs has transformed to natural, coherent, and con-
textually aware interactions between humans and machines in recent years. LLMs
such as GPT-3, Google’s LaMDA, and Facebook’s BlenderBot have set new stan-
dards for chatbot capabilities for deeper understanding and more fluid conversations
(Brown et al. 2020).

LLM-powered chatbots in customer service have become indispensable tools to
handle a wide range of queries, troubleshoot issues, and provide information in real
time. These chatbots use LLMs to understand the intent behind user messages for
more personalized and accurate responses compared to rule-based chatbots. They
also allow systems to engage in follow-up questions, handle ambiguous queries, and
maintain context over long interactions (Summerville et al. 2018).

The versatility of LLMs in conversational Al extends beyond customer service.
These models are now used at Siri and Google Assistant, therapy bots, and even as
companion’s applications. Conversational agent’s LLMs in therapy and well-being
contexts offer emotional support by empathetic responses, mindfulness practices, or
motivational dialogue (Bender et al. 2021).

Despite these advancements, ethical concerns persist. The possibility that the
models can generate bias or inappropriate responses is a significant issue as they
learn from large datasets that may contain such content. To ensure transparency,
fairness, and safety in conversational Al is a critical challenge for developers must
address moving forward (Ghazvinian et al. 2021).

258 10 Large Language Models (LLMs) and Generative Artificial Intelligence (GenAl)

Figure 10.6 shows a mind map automatically generated by ChatGPT-4.0, illus-
trating a typical conversational Al model including input text, LLM processing, and
response generation.

10.4.4 Text Summarization and Content Curation

Text summarization is another domain where LLMs have proven to be highly effec-
tive. LLMs enable users to quickly digest information by condensing lengthy docu-
ments, articles, or reports into concise summaries without sacrificing important
content. The ability to generate both extractive (selecting key sentences from the
text) and abstractive (creating new sentences that summarize the content)

Conversatlonal Language Model intet
pT——

* LARGE
LANGUAGE

-~ _
- e

< © LARGE -
CONGUAGE | Aar
/9™ —0 0 e .
e—_— ;

™ LARGE *
At LANGUAGE
* ¢ > MODELS

’HH_‘O .

" HIIGE

LAPERS P
) ou‘

H'-DD"' ED

‘"ﬁ' LAYERS VostRepires

VRRRLQQ
PRYPPYY

Jo'enio &wms mwam 5

<

LARGE
LANGUAGE
MODELS

Hil’JO:D LA\"EE

Hidded Layers

Fig. 10.6 A typical conversational Al model, showing input text, LLM processing, and response
generation

10.4 Applications of LLMs in GenAl 259

summaries makes LLMs particularly robust in this application (Liu and Lapata
2019). Figure 10.7 shows a mind map automatically generated by ChatGPT-4.0 on
the visual representation of text summarization using LLMs.

Text summarization tools powered by LLMs in the news and media industries
facilitate editors and journalists by providing summaries of long articles, news
briefs, or even scientific papers instantaneously. They enhance productivity by auto-
mating the initial steps on content curation and summarization for professionals to
focus on in-depth analysis and reporting (Raghavan et al. 2020).

Content curation is closely related to text summarization as LLMs are to filter
and organize vast amounts of information. Platforms that aggregate news or research
data use LLMs to automatically curate relevant articles, reports, or posts based on
user’s preferences. This capability also exists in recommendation systems which

ORIGINAL TEXT LARGE LANGUAGE MODELS

s

xka-
—e P

[*] , e @
/o o @ ORGINAL ‘
TEXT " NERGE
= e i:-\ STEDEL
® 'Q «<p

NETIHAL NOTD'OK

-1'[‘t Th e

¥ 94 & iclu procesing
* 9 & tuiuices new

s a8 \I' sentence stectures
= § =

SUMMRIZED QUTRUT 3
0-16100+L0111£51060/-1
0-10885ZA0 0T A0-F0 1L
Lar| BBl =Rt eac-101—010x
00=e.000-10-00-701124
Ol 0t1808-1811=UIPOLOL

porial10=10-101L-1al12
vF s Beor 1100 pe Ty ==11h0s o0

0V1000L.0/240/04~7-01-=|
007~ I3 fi-] 2§42-18==0=10

SUMMARLIZED OUTPUT

SENGENLCE
STRUDUCES

Fig. 10.7 A visual representation of text summarization using LLMs

260 10 Large Language Models (LLMs) and Generative Artificial Intelligence (GenAl)

suggests that content is based on past behavior or stated interests to improve user
engagement and personalization (Zhang and Chai 2020).

The challenge on text summarization is to ensure that the generated summaries
can accurately reflect the original text’s meaning on complex or technical docu-
ments. While LLMs can handle general summarization tasks well, domain-specific
content may require additional training or fine-tuning for accuracy (Khanetal. 2021).

10.5 Ethical Considerations and Challenges

The advent of LLMs and GenAl has revolutionized various industries, but the rapid
proliferation of these technologies also raised substantial ethical challenges. This
section delves into the key ethical issues including bias detection and mitigation,
privacy and data security, the spread of misinformation, and the establishment of
ethical guidelines for responsible LLM deployment.

10.5.1 Detecting and Mitigating Bias

LLMs train on vast datasets from a multitude of sources across the Internet often
including biased, discriminatory, or harmful content leading to LLMs can inadver-
tently generate outputs to reflect bias and ethical concerns.

10.5.1.1 Origins of Bias in LLLMs

The bias in LLMs can arise at multiple stages including data collection, algorithmic
design, and human oversight. Data collection is often the original source. LLMs are
trained on data scraped from the Internet including social media posts, news arti-
cles, and blogs, many of which may contain gender, racial, and cultural biases
(Bender et al. 2021). For instance, if a model is trained on a dataset that overrepre-
sents a particular viewpoint, it may marginalize the perspectives of other viewpoints
leading to biased outputs.

Algorithmic bias is another critical issue. Even if the training data is relatively
balanced, the design of machine learning algorithms can skew results. For instance,
the use of certain optimization techniques can reinforce existing biases in the data
to prioritize popular or majority viewpoints (Buolamwini and Gebru 2018). Human
oversight during fine-tuning and LLMs development may intensify the potentiality
of unintentional bias especially if the team lacks diversity.

10.5 Ethical Considerations and Challenges 261

10.5.1.2 Mitigation Strategies

Mitigating bias in LLMs is a multi-faceted endeavor. It begins with conscientious
curation of training data. Companies such as OpenAl and Google have incorporated
more diverse datasets to balance different viewpoints with filters to exclude explic-
itly harmful or biased content (Solaiman et al. 2019).

Another approach involves algorithmic fairness techniques such as adversarial
training, where a secondary model is used to detect and correct biased outputs from
the primary model (Zhao et al. 2019). Post-processing techniques include debiasing
can also modify or flag biased outputs after generation.

Human-in-the-loop systems are increasingly used to mitigate bias where human
experts review and adjust outputs for fairness, accuracy, and inclusiveness. Despite
these efforts, mitigating bias persists particularly given the subjective nature of fair-
ness across different cultures and societies.

10.5.2 Privacy and Data Security

LLMs raise significant privacy and data security concerns about how they collect,
store, and use data. Since these models are trained on vast data amounts including
personal information from public and sometimes private sources, questions about
consent, ownership, and security naturally arise.

10.5.2.1 Data Collection and Consent

LLMs have fundamental issues in the ways they collect data. GPT-4 and BERT
models are trained on publicly available data from the internet, but much of this
information are not explicitly provided for training AI models (Hoffmann et al.
2022). Users whose data information is included in these datasets often have no
knowledge of them being used without consent.

The regulatory frameworks such as the General Data Protection Regulation
(GDPR) in Europe mandate that individuals have control over their personal data
and how they are used. LLMs’ deployment, particularly when training datasets with
personal information must navigate to these regulations accordingly. However, data
anonymity to comply with privacy laws is often insufficient as LLMs can some-
times “memorize” specific pieces of information and unintentionally reproduce sen-
sitive data during inference (Carlini et al. 2021).

262 10 Large Language Models (LLMs) and Generative Artificial Intelligence (GenAl)

10.5.2.2 Data Security Risks

LLMs pose security risks especially when integrated into platforms that have access
to sensitive data such as customer service bots or healthcare applications. These
models can be targets by adversarial attacks designed to manipulate outputs or
extract confidential information (Brown et al. 2020).

Model inversion attacks are an example where an attacker uses the model’s out-
put to reverse-engineer sensitive data for training. Data protection measures for sys-
tems that use LLMs include encryption and regular audits are critical. Organizations
that deploy LLMs must also use privacy-preserving techniques like differential pri-
vacy which adds noise to the data to prevent individual data points distinguishable
(Dwork 2008).

10.5.3 The Spread of Misinformation

The spread of misinformation is one of the most pressing ethical challenges associ-
ated with LLMs. Since these models generate text based on patterns learnt from
data, they can produce convincing yet factually incorrect or misleading information.
This poses significant risks, particularly when LLMs are used in high-stakes
domains such as journalism, politics, and healthcare.

10.5.3.1 Challenges of Verifying Information

Unlike humans, LLMs lack an inherent understanding of truth or facts. For exam-
ple, GPT-3 has been shown to generate plausible-sounding medical advice that
could be harmful if followed without proper verification (Marcus and Davis 2020).
Additionally, LLMs can generate content at scale, which may inadvertently contrib-
ute to the proliferation of fake news, conspiracy theories, and propaganda (Zellers
et al. 2019).

Verifying information generated by LLMs is particularly challenging because
they do not provide sources for their outputs. This “black-box” nature makes it dif-
ficult for users to assess whether the information is trustworthy, thereby increasing
the risk of misinformation.

10.5.3.2 Combating Misinformation

Addressing misinformation generated by LLMs requires both technological and
regulatory solutions. Researchers are developing models that can cite sources and
distinguish between factual and opinion-based content. For instance, Google’s T5
model is designed to improve factuality in text generation (Raffel et al. 2020).

10.5 Ethical Considerations and Challenges 263

Fact-checking systems integrated with LLMs can also flag or correct misleading
outputs in real time.

Additionally, governments and organizations are exploring policies to hold Al
developers accountable for the spread of misinformation. These measures include
imposing fines on platforms that allow unchecked Al-generated misinformation to
disseminate and developing transparency standards for Al-generated content.
Transparency initiatives would require LLM-generated content to be clearly labeled,
allowing users to scrutinize the information more effectively.

10.5.4 Ethical Guidelines for LLM Deployment

Ethical guidelines for deployment are critical as LLMs become increasingly inte-
grated into the society. They should address the abovementioned ethical challenges
to ensure that LLMs are developed for benefits and minimize harm.

10.5.4.1 Principles of Responsible AI

There are several organizations including the European Union and major tech com-
panies such as Google and Microsoft have published ethical principles for AI. These
principles typically include guidelines for fairness, transparency, accountability,
and human oversight (Floridi and Cowls 2019). A central principle is to ensure that
LLMs are designed to respect human rights including privacy, freedom from dis-
crimination, and access to reliable information.

10.5.4.2 Human Oversight and Accountability

Human oversight is critical in LLM deployment particularly in sensitive domains
such as healthcare, law, and education. Human experts are involved to review, con-
trol LLMs outputs to mitigate bias, misinformation, and privacy violations risks
(Whittlestone et al. 2019). The human-in-the-loop (HITL) systems principle ensures
that LLMs serve as tools for human decision-making rather than autonomous sys-
tems that operate without oversight.

Accountability is another key aspect of ethical LLM deployment. Developers and
organizations that deploy LLMs should be held accountable for usage consequences.
This includes establishing clear reporting and addressing harms measures caused by
LLM:s and providing users with recourse when Al-generated content leads to nega-
tive outcomes (Jobin et al. 2019).

264 10 Large Language Models (LLMs) and Generative Artificial Intelligence (GenAl)

10.5.4.3 Transparency and Explainability

Transparency in Al refers to making LLMs’ processes, data, and decision-making
mechanisms clear and understandable to users. This is particularly important where
outputs affect human rights such as legal judgments or medical advice. However,
one of the trials is that they are often opaque, meaning users cannot easily trace how
a particular output is generated (Lipton 2018).

LLMs’ explainability is an emerging research focus on making Al systems inter-
pretable. Techniques such as attention mechanisms highlight which parts of the
input data are influential in generating a particular output is promising to improve
transparency. However, it remains a conundrum due to their complex architecture.

Hence, detect and mitigate bias, safeguard privacy and data security, withstand
misinformation, and establish ethical guidelines for deployment are necessary plus
ongoing research, regulation, and public discourse will be critical to navigate these
challenges effectively.

10.6 Future Outlook and Research

LLMs and GenAlI have been instrumental in driving a wide range of applications in
recent years. As Al continues to evolve, it brings with immense possibilities and
significant challenges. This section explores the current trends in LLMs and GenAl,
the creative potential of Al, the ethical considerations of LLMs along with key
research and development.

10.6.1 Current Trends in LLMs and GenAl

LLMs and GenAl advancements have led to transformative applications across vari-
ous industries. However, it is equally important to examine the underlying trends
driving this progress.

10.6.1.1 Multimodal Models

Multimodal models are designed to integrate text, images, audio, video, and prog-
ress beyond just textual data. Projects such as OpenAl’s GPT-4 and Google’s
Pathways exemplify how LLMs are evolving to handle a broader range of inputs
and outputs (Ramesh et al. 2021). These capabilities allow LLMs to tackle complex
real-world problems such as generating images from text prompts or interpreting
visual and audio cues with written language.

10.6 Future Outlook and Research 265

10.6.1.2 Increasing Model Sizes and Capabilities

LLMs have advanced significantly from GPT-2 with 1.5 billion parameters to GPT-4
with hundreds of billions of parameters. However, this rapid growth raises sustain-
ability concerns due to the high energy consumption and environmental impact of
training these models (Patterson et al. 2021). The current research is focused on
improving efficiency in terms of computation and energy usage.

10.6.1.3 Specialized LLMs for Domain-Specific Applications

Specialized LLMs are domain-specific models that can be fine-tuned for industries
such as medicine, law, or finance. For example, BioGPT is designed to process bio-
medical data (Luo et al. 2022), demonstrating how LLMs can be tailored to solve
specialized tasks in expert fields more efficiently.

10.6.1.4 Few-Shot and Zero-Shot Learning

Few-shot and zero-shot learning refer to LLMs’ capabilities to perform tasks with
minimal or no task-specific data. These have advanced significantly in recent mod-
els with profound implications for AI’s flexibility and adaptability (Brown et al.
2020). These models no longer require massive datasets for every new task; instead,
they generalize learning across various tasks and reduce the cost and time to deploy
Al in new applications. Figure 10.8 illustrates the relationship between LLM model
sizes (e.g., parameter count) and performance across various tasks.

10.6.2 The Future of Creativity in Al

Generative Al has exceeded traditional creativity notions to produce content rang-
ing from visual art, poetry, and music, to even full-length novels. AI’s creativity will
likely expand in the future, but it raises opportunities and existential questions about
the nature of human creativity.

10.6.2.1 Collaborative Creativity

Collaborative creativity has become one of the most promising AI’s creative arena.
OpenAl’s DALL-E, DeepMind’s AlphaFold, and AI music generators have already
demonstrated that Al can serve as a creative partner rather than merely a tool
(Ramesh et al. 2021). It is plausible that writers, artists, and musicians will regularly
co-create with Al to augment their work beyond simple automation in the future.

266 10 Large Language Models (LLMs) and Generative Artificial Intelligence (GenAl)

Relationship Between LLM Model Size and Performance on Various Tasks

Tasks
Text Completion e
—e— Text Summarization e
—e— Language Translation e e
—e— Conversational Al — P

Performance Score (%)
o ~ -~ w o -] r=]
v o w o w (=] v

=i
o

w
wn
(S

GPT-2 GPT-3 GPT-4
Model Size (Parameter Count in Billions)

Fig. 10.8 A graph showing the relationship between LLM model size (e.g., parameter count) and
their performance on various tasks

This could democratize access to creative expression for individuals to produce
high-quality creative work without traditional artistic training.

10.6.2.2 The Blurring Line Between Human and Machine Creativity

Since Al is increasingly proficient in generating human-like content, the distinction
between human-created and Al-generated works may become blurred. Al-generated
content has entered the mainstream of digital art and design. The rise of NFTs (Non-
Fungible Tokens) has Al-generated artwork sold for millions of dollars, further
complicates the discussion about what constitutes authentic creativity (Bommasani
et al. 2021).

10.6.2.3 Challenges of Authorship and Ownership

Authorship and intellectual property are a critical issue with Al-driven creativity. If
a machine generates a piece of art or music, who owns it? The current legal frame-
works are not well equipped to handle these complexities leading to new conun-
drums for copyright laws. Future discussions around creativity in Al will need to
establish clear guidelines on how to attribute authorship and handle intellectual
property when humans and machines work together (Floridi and Cowls 2019).

10.6 Future Outlook and Research 267
10.6.3 The Role of LLMs in Al Ethics

LLMs thrive in Al are inclined to be the spotlight for Al ethics discussions on bias,
misinformation, privacy, and accountability.

10.6.3.1 Addressing Bias in LLMs

LLMs train on large datasets derived from internet sources often have incorporated
racial, gender, ideological biases, and among others in their training data. The cur-
rent research and development are actively working to mitigate these biases by fil-
tering data, training ethical Al, and implementing bias detection tools (Metzinger
2022). However, eliminating bias entirely seems to be elusive. Future research will
need to focus on creating more transparent and explainable models for continuous
monitoring and corrections.

10.6.3.2 Al in Decision-Making

LLMs are increasingly involved in decision-making process, whether through chat-
bots in customer service or algorithms to assess loan applications or job candidates.
These raise ethical questions about accountability. Who is responsible if an LLM
makes a biased or erroneous decision? There is also an over-reliance risk on these
systems potentially leading to decisions that may not align with human values.
Establishing ethical guidelines and regulatory frameworks that govern LLMs
deployment in decision-making roles will be a critical step for the future (Floridi
and Cowls 2019).

10.6.3.3 Combating Misinformation

LLMs’ capabilities to generate convincing and coherent text can have malicious
effects of spreading misinformation and creating fake news. There are concerns
about how generative models can be misused to create deepfakes or misleading
articles indistinguishable from legitimate content. Withstanding misinformation is
an acute ethical issue that will require model transparency advancements and stron-
ger detection systems to flag misleading content (Thoppilan et al. 2021).

268 10 Large Language Models (LLMs) and Generative Artificial Intelligence (GenAl)

10.6.3.4 Privacy

LLMs operate on vast amounts of sensitive personal data present significant ethical
concerns. Future LLMs will need to adopt more stringent data privacy measures,
potentially incorporating decentralized training methods that do not depend on large
and centralized datasets vulnerable to data breaches (Metzinger 2022).

10.6.4 The Path Forward: Research and Development

Explore model interpretability, efficiency, ethical frameworks, and new applications
are some of the key research and development to shape the future of LLMs
and GenAL

10.6.4.1 Model Interpretability and Explainability

Dynamic LLMs can generate complex outputs for interpretability and explainability
improvements. The current research on LLMs is more transparent for users to inter-
pret the formation of a particular output (Gunning and Aha 2019) in addition to
developing models that can offer insights into decision-making processes without
performance concession.

10.6.4.2 Energy Efficiency

Training LLMs are highly resource-intensive and energy-efficient initiatives. A
competent models’ development and sustainable Al practices implementation are
prime focuses for future research. These include greater efficiency algorithms opti-
mization, lesser specialized models, and computational power to sustain high per-
formance (Patterson et al. 2021).

Figures 10.9 and 10.10 show the energy consumption and carbon footprint of
GPT-3 and GPT-4 with environmental impact reduction strategies. They indicated
that GPT-4 consumed energy at 4560 megawatt-hours (MWh), nearly four times
more than GPT-3’s at 1287 MWh resulting in 2100 tons carbon footprint compared
to GPT-3’s 552 tons. This intensified the environmental costs of dynamic models’
development.

To mitigate this impact, several strategies offer substantial reductions. The most
effective solution is to use renewable energy which can cut emissions by 40%. This
approach directly undertakes carbon footprint consumption during training. Other
techniques include optimizing model efficiency by efficient algorithms (30% reduc-
tion), data pruning (20% reduction), and model compression (25% reduction). They
streamline processes and reduce the computational workload without performance
concession.

10.6 Future Outlook and Research 269

Energy Consumption and Carbon Footprint of GPT-3 and GPT-4

mm Energy Consumption (MWh)
mm= Carbon Footprint (tons of CO2)

40001

3000}

20001

Energy / Carbon Footprint

1000}

Models

Fig. 10.9 Energy consumption and carbon footprint of GPT3 vs. GPT4

Strategies for Reducing Energy Consumption and Carbon Footprint

Use of Renewable Energy

Model Compression

Data Pruning

Efficient Algorithms

0 5 10 15 20 25 30 35 40
Percentage Reduction (%)

Fig. 10.10 Strategies for reducing energy consumption and carbon footprint

270 10 Large Language Models (LLMs) and Generative Artificial Intelligence (GenAl)

Dynamic models such as GPT-4 deliver remarkable advancements, but carbon
footprint must be addressed. Hence, renewable energy, algorithmic efficiency, and
model optimization are the combined strategies for continual innovation and
sustainability.

10.6.4.3 Exploring New Applications

The swift versatility of LLMs means that new applications constantly emerged.
Healthcare, education, and entertainment are among industries that can benefit con-
siderably. For example, in healthcare it can be used for accurate diagnostics and
personalized medicine. In education, they can offer tailor-made learning experi-
ences, and in entertainment, they can produce Al-generated movies, video games,
and virtual worlds. The potential is vast, and research is an integral part to open new
opportunities (Bommasani et al. 2021).

Exercises

10.1. What are LLMs? How do they differ from traditional NLP models?

10.2. Explain the significance of the Transformer architecture in LLMs develop-
ment. How did it improve on RNNs and LSTM networks?

10.3. Describe the key components of GANs. How can they contribute to
Generative Al success in producing realistic content?

10.4. What are the main applications of LLMs in creative writing and content
generation? How can LLMs assist to overcome writer’s block and enhance
creativity?

10.5. How can LLMs handle language translation tasks? Discuss how attention
mechanisms contribute to translation accuracy and fluency.

10.6. Explain LLMs’ role in conversational Al and chatbots. What advantages do
they provide compared to traditional rule-based systems?

10.7. What are the primary ethical concerns associated with the deployment of
LLMs in real-world applications? Discuss bias, privacy, and misinformation
challenges.

10.8. How can bias arise in LLMs during data collection and training? What strat-
egies can be used to detect and mitigate bias in these models?

10.9. Discuss LLMs’ impact of spreading misinformation. What measures can be
taken to ensure the Al-generated content accuracy and trustworthiness?

10.10. What are “few-shot” and “zero-shot” learning? How can they make LLMs
adaptable to new tasks with minimal training data?

10.11. Describe the importance of text summarization in LLMs. How can these
models balance extractive and abstractive summarization techniques?

10.12. What are the privacy and data security risks posed by LLMs, especially
when they access sensitive data? How can organizations mitigate these risks?

10.13. Explain the concept of multimodal models LLMs and Generative AI. How
can they integrate text, images, and other forms of media to generate content?

References 271

10.14. How can LLMs role in human-machine interaction contribute to intuitive Al
systems development? What challenges remain in this domain?

10.15. What are the potential future research directions for LLMs and Generative
AI? Discuss trends such as increasing model size, energy efficiency, and
ethical Al frameworks.

References

Anthropic (2024). Anthropic official site. https://www.anthropic.com. Accessed 28 Oct 2024.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to
align and translate. arXiv:1409.0473.

Baidu (2024). Baidu Al official site. https://ai.baidu.com/. Accessed 28 Oct 2024.

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of sto-
chastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference
on Fairness, Accountability, and Transparency (pp. 610-623).

BERT (2024). Google BERT GitHub Repository. https://github.com/google-research/bert.
Accessed 28 Oct 2024.

Blasi, A., Dimakopoulou, A., & Vasilakos, A.V. (2021). Mitigating algorithmic bias: A survey.
IEEE Transactions on Neural Networks and Learning Systems.

Bommasani, R., et al. (2021) “On the Opportunities and Risks of Foundation Models.”
arXiv:2108.07258.

Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., & Amodei, D. (2020).
Language models are few-shot learners. arXiv preprint arXiv:2005.14165.

Buolamwini, J., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities
in Commercial Gender Classification. Proceedings of the Ist Conference on Fairness,
Accountability, and Transparency.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., ... & Song, D. (2021).
Extracting Training Data from Large Language Models. arXiv:2012.07805.

ChatGPT (2024). ChatGPT official site. https://chatgpt.com/. Accessed 28 Oct 2024.

Cho, K., van Merriénboer, B., Gulcehre, C., et al. (2014). Learning phrase representations using
RNN encoder-decoder for statistical machine translation. arXiv:1406.1078.

Choi, E., Schuetz, A., Stewart, W.F., & Kuan, P. (2017). Using recurrent neural networks for early
detection of heart failure. Journal of the American Medical Informatics Association, 24(5),
1000-1005.

Claude (2024). Claude official site. https://claude.ai. Accessed 28 Oct 2024.

Creswell, A., White, T., Dumoulin, V., et al. (2018). Generative adversarial networks: An overview.
IEEE Signal Processing Magazine, 35(1), 53-65.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv:1810.04805.

Dwork, C. (2008). Differential privacy: A survey of results. In International Conference on Theory
and Applications of Models of Computation (pp. 1-19). Springer.

Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Elgammal, A., Liu, B., Elhoseiny, M., & Mazzone, M. (2017). CAN: Creative adversarial networks,
generating “art” by learning about styles and deviating from style norms. arXiv:1706.07068.

Ernie (2024). ERNIE 3.0 Titan official site. https://yiyan.baidu.com/. Accessed 28 Oct 2024.

Floridi, L., & Cowls, J. (2019). A unified framework of five principles for Al in society. Harvard
Data Science Review. vol. 1, no. 1, 2019.

Ghazvinian, A., Banjade, R., & Gallo, M. (2021). The role of generative models in creative writ-
ing: A study of Al-powered content creation. Artificial Intelligence Review, 54(4), 1-21.

https://www.anthropic.com
https://ai.baidu.com/
https://github.com/google-research/bert
https://chatgpt.com/
https://claude.ai
https://yiyan.baidu.com/

272 10 Large Language Models (LLMs) and Generative Artificial Intelligence (GenAl)

Goodfellow et al. (2014). Generative adversarial networks. Advances in Neural Information
Processing Systems, 27, 2672-2680.

Google (2024). Google PaLM2 official site. https://ai.google/discover/palm2. Accessed 28
Oct 2024.

Gunning, D., and Aha, D.W. (2019). “DARPA’s Explainable Artificial Intelligence (XAI) Program.”
Al Magazine, vol. 40, no. 2, pp. 44-58.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recogni-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(pp. 770-778).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8),
1735-1780.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., ... & Irving,
G. (2022). Training Compute-Optimal Large Language Models. arXiv:2203.15556.

Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of Al ethics guidelines. Nature
Machine Intelligence, 1(9), 389-399.

Khan, S., Zhang, X., & Yao, J. (2021). A comprehensive review on transformer models in
NLP. Journal of Artificial Intelligence Research, 70, 1-30.

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv:1408.5882.

Kocijan, J., & Djuric, N. (2020). Fine-tuning pre-trained language models: Weighting methods and
training strategies. arXiv:2011.13235.

Lipton, Z. C. (2018). The mythos of model interpretability. Communications of the ACM,
61(10), 36-43.

Liu, Y., & Lapata, M. (2019). Text generation with pre-trained language models. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics.

LLaMa (2024) LLaMa official site. https://www.llama.com/. Accessed 28 Oct 2024.

Lu,J., & Tzu, J. (2020). Multimodal machine learning: A survey and taxonomy. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 43(2), 486-503.

Luo, R., et al. (2022) “BioGPT: A Generative Pre-trained Transformer for Biomedical Text
Generation and Mining.” bioRxiv, 2022.

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural
machine translation. arXiv:1508.04025.

Marcus, G., & Davis, E. (2020). GPT-3, Bloviator: OpenAlI’s language generator has no idea what
it’s talking about. MIT Technology Review.

Meta (2024). Meta official site. https://www.meta.com/. Accessed 17 Dec 2024.

Metzinger, T. (2022). “Ethics of Artificial Intelligence and Robotics.” The Stanford Encyclopedia
of Philosophy, 2022.

OpenAl (2024) OpenAl official site. https://openai.com Accessed 17 Dec 2024.

Patterson, D., et al. (2021) “The Carbon Footprint of Machine Learning.” Communications of the
ACM, vol. 64, no. 11, pp. 56-63.

Raffel et al. (2020) “Exploring the limits of transfer learning with a unified text-to-text trans-
former.” Journal of Machine Learning Research 21, no. 140 (2020): 1-67.

Radford, A., et al. (2021). “Learning Transferable Visual Models from Natural Language
Supervision.” Proceedings of the International Conference on Machine Learning.

Raghavan, M., Awan, 1., & Yoon, J. (2020). Privacy-preserving generative models in healthcare. In
Proceedings of the 2020 IEEE International Conference on Healthcare Informatics.

Ramesh, A., et al. (2021). “Zero-Shot Text-to-Image Generation.” Proceedings of the International
Conference on Machine Learning, 2021.

Solaiman, I., Brundage, M., Clark, J., Askell, A., Herbert-Voss, A., Wu, J., ... & Amodei, D. (2019).
Release strategies and the social impacts of language models. arXiv:1908.09203.

Summerville, A., Snodgrass, S., & Mateas, M. (2018). The role of Al in video game design. In
Proceedings of the 2018 International Conference on Interactive Digital Storytelling.

Thoppilan, R., et al. (2021) “LaMDA: Language Models for Dialog Applications.” Proceedings of
the Annual Conference on Neural Information Processing Systems.

https://ai.google/discover/palm2
https://www.llama.com/
https://www.meta.com/
https://openai.com

References 273

Vaswani, A., Shard, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., & Polosukhin,
1. (2017). Attention is all you need. In Advances in Neural Information Processing Systems
(Vol. 30).

Whittlestone, J., Nyrup, R., Horne, E., & Bachelard, J. (2019). The Ethics of Al in Health Care:
A Mapping Review of Literature. Health Informatics Journal, 25(2), 247-256. https://doi.
org/10.1177/1460458216663546.

Yang, Z., Yang, D., Dyer, C., He, X., & Gao, J. (2019). XLNet: Generalized autoregressive pre-
training for language understanding. arXiv:1906.08237.

Zellers, R., Holtzman, A., Rashkin, H., Balandat, M., & Choi, Y. (2019). Defeating NLP’s Worst
Enemy: Noise. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 1236—1249. https://doi.org/10.18653/v1/P19-1121.

Zhao et al. (2019). Gender bias in coreference resolution: Evaluation and debiasing methods.
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 1, 15-24.

Zhang, Y., & Chai, Z. (2020). Exploring the interpretability of BERT: A case study on attention

visualization. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics.

https://doi.org/10.1177/1460458216663546
https://doi.org/10.1177/1460458216663546
https://doi.org/10.18653/v1/P19-1121

Part 11
Natural Language Processing Workshops
with Python Implementation in 14 Hours

Chapter 11)
Workshop#1: Basics of Natural Language <o
Toolkit (Hour 1-2)

11.1 Introduction

Part II of this book will provide seven Python programming workshops on how each

NLP core component operates and integrates with Python-based NLP tools includ-

ing NLTK, spaCy, BERT and Transformer Technology to construct a Q&A chatbot.
Workshop 1 will explore NLP basics including:

. Concepts and installation procedures

. Text processing function with examples using NLTK
. Text analysis lexical dispersion plot in Python

. Tokenization in text analysis

. Statistical tools for text analysis

[I SO T NI

Note: To ensure all NLP-based Python tools compatibility for all workshops can
run smoothly, please check the list of requirements shown in Table 11.1.

In this workshop, all demonstrations use Python 3.11.9 as the running environ-
ment. It is highly recommended to create an independent virtual environment for
these workshops in the book. The command for setting up a virtual environment
with any version of pre-installed Anaconda is:

conda create -n your virtual environment name python=3.11

Please ensure the following Python packages are installed before starting the
workshop:

* python (demo version 3.11.9)
¢ tensorflow (demo version 2.17.0)
¢ nltk (demo version 3.9.1)

© The Author(s), under exclusive license to Springer Nature Singapore Pte 277
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_11&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_11#DOI

278

11 Workshop#1: Basics of Natural Language Toolkit (Hour 1-2)

Table 11.1 Requirement list for all NLP workshops

#python 3.11.9 (Release Date: 2.4.2024) with all latest version
test in Sep 2024.

#Workshop 1

tensorflow==2.17.0

nltk==3.9.1
#Workshop 2

spacy model
spacy==3.4.4

#Workshop 3

(sm) offline package already existed in zip

matplotlib==3.9.2
wordcloud==1.9.3
svgling==0.5.0
svgwrite==1.4.3
scikit-learn==1.5.1

#Workshop 4

spacy model

(md) offiine package can be found as zip file in

the file folder

#Workshop 5

pandas==2.2.2

#Workshop 6

#spacy model

(trf) offiine package can be found as zip file in

the file folder
transformers==4.44.2
tf-keras==2.17.0

torch==2.4.1

torchvision==0.19.1
spacy-transformers==1.3.5

#Workshop 7
keras=3.3.3

transformers==4.44.2
tensorflow==2.17.0
tensorflow datasets==4.9.6

pydot==3.0.1

graphviz==0.20.3
pydot-ng==2.0.0

If these packages are not installed on PC/laptop, use pip install xxx command.
The detailed requirements list and Python package version used in this workshop
can be found in the requirements.txt file stored in the NLP GitHub repository
(NLPGitHub 2024).

11.2 What Is Natural Language Toolkit (NLTK)?

NLTK (Natural Language Toolkit 2024) is one of the earliest Python-based NLP
development tools invented by Prof. Steven Bird and Dr. Edward Loper in the
Department of Computer and Information Science of the University of Pennsylvania
with their classical book Natural Language Processing with Python published by
O’Reilly Media Inc. in 2009 (Bird et al. 2009). There are over 30 universities in the
US and 25 countries using NLTK for NLP-related courses until present. This book

11.3 A Simple Text Tokenization Example Using NLTK 279

is considered as bible for anyone who wishes to learn and implement NLP applica-
tions using Python.

NLTK offers user-oriented interfaces with over 50 corpora and lexical resources
such as WordNet (2024), a large lexical database of English. Nouns, verbs, adjec-
tives, and adverbs are grouped into sets of cognitive synonyms (synsets); each
expresses a distinct concept which is an important lexical database in NLP devel-
oped by Princeton University since 1980.

Other lexical databases and corpora are Penn Treebank Corpus, Open Multilingual
Wordnet, Problem Report Corpus, and Lin’s Dependency Thesaurus.

NLTK contains statistical-based text processing libraries of five fundamental
NLP enabling technologies and basic semantic reasoning tools including (Albrecht
et al. 2020; Antic 2021; Arumugam and Shanmugamani 2018; Hardeniya et al.
2016; Kedia and Rasu 2020; Perkins 2014):

* Word tokenization.
* Stemming.

* POS tagging.

» Text classification.
e Semantic analysis.

11.3 A Simple Text Tokenization Example Using NLTK

Let’s look at NLTK text tokenization using Jupyter Notebook (Jupyter 2024;
Wintjen and Vlahutin 2020) as below:

[1] # Import NLTK package
import nltk

2] # Create a sample utterance 1 (uttl)
uttl = "At every weekend, early in the morning. I drive
my car to the car center for car washing. Like
clock-work."

[3] # Display uttl
uttl
'At every weekend, early in the morning. I drive my car to the car center for car
washing. Like clock-work.'

[4] # Create utterance tokens (utokens)
utokens = nltk.word tokenize (uttl)

280 11 Workshop#1: Basics of Natural Language Toolkit (Hour 1-2)

[5] # Display utokens
utokens
['At, 'every', 'weekend', '), 'early’, 'in', 'the', 'morning', ', T, 'drive’, 'my’, 'car’, 'to/,

'the', 'car’, 'center’, 'for', 'car', 'washing', '.", 'Like', 'clock-work’, "."]

11.4 How to Install NLTK?

Step 1 Install Python 3.11.9
Step 2 Install NLTK

2.1 Start CMD or other command line tool
2.2 Type pip install nltk

Figure 11.1 shows a screenshot of NLTK installation process.
Step 3 Install NLTK Data

Once NLTK is installed into Python, download NLTK data.

3.1 Run Python
3.2 Type the following to activate an NLTK downloader

* import nitk
e nltk.download()

Note: nltk.downloader() will invoke NLTK downloader automatically, a separate
window-based downloading module for users to download four NLP databanks into
their Python machines. They include (1) Collection libraries, (2) Corpora, (3) Modules,
and (4) other NLP packages. Figures 11.2, 11.3 and 11.4 show screenshots of the
NTLK downloader for Collection, Corpora, and NTLK models installations.

Fig. 11.1 Screenshot of NLTK installation process

11.5 Why Using Python for NLP? 281

Fig. 11.2 Screenshot of NTLK downloader of collection library

W Drarkaser - B
e e

Fig. 11.3 Screenshot of NTLK downloader of Corpora library

¥ WO Dearkcacer = o =
B e v pole

Fig. 11.4 Screenshot of NTLK downloader of NLTK models

11.5 Why Using Python for NLP?

Python toolkit and packages overtook C, C++, Java especially in data science, Al,
and NLP software development since 2000 (Albrecht et al. 2020; Kedia and Rasu
2020). There are several reasons to drive the changes because:

1. It is a generic language without a specific area unlike other languages such as
Java and JavaScript specifically designed for web applications and website
development.

282 11 Workshop#1: Basics of Natural Language Toolkit (Hour 1-2)

2. It is easier to learn and user-friendly compared with C and C++ especially for
non-computer science students and scientists.
3. Its lists and list-processing datatypes provide an ideal environment for NLP

modeling and text analysis.

A Python program performs a tokenization task to process text as shown below:

[6] # Define utterance 2 (utt2)
utt2 = "Hello world. How are you?"

[7] # Using split() method to split it into word tokens
utt2.split ()

['Hello', 'world.', 'How', 'are', 'you?']

[8] # Check the no of word tokens
nwords = len(utt2.split())
print ("'Hello world. How are you?' contains ",nwords,"
words.")

'Hello world. How are you?' contains 5 words.

Python codes perform word number counts from literature Alice’s Adventures in
Wonderland by Lewis Carroll (1832-1898) as below:

[9] # Define method to count the number of word tokens in
text file (cwords)
def cwords (literature) :
try:
with open(literature, encoding='utf-8') as f lit:
c lit = £ lit.read()
except FileNotFoundError:
err = "Sorry, the literature " + literature + " does
not exist."
print (err)

else:
w 1lit = c_lit.split()
nwords = len(w 1lit)
print ("The literature " + literature + " contains "
+ str(nwords) + " words.")
literature = 'alice.txt'

cwords (literature)
The literature alice.txt contains 29465 words

11.6 NLTK with Basic Text Processing in NLP 283

This workshop has extracted four famous literatures from Project Gutenberg
(Gutenberg 2024):
\ | | 1. Alice’s Adventures in Wonderland by Lewis Carroll (1832-1898) (alice.txt)
2. Little Women by Louisa May Alcott (1832-1888) (little_women.txt)
3. Moby Dick by Herman Melville (1819-1891) (moby_dick.txt)
4. The Adventures of Sherlock Holmes by Sir Arthur Conan Doyle (1859-1930)
(Adventures_Holmes.txt)

[10] cwords ('Adventures Holmes.txt')
The literature Adventures_Holmes.txt contains 107411 words.

11.6 NLTK with Basic Text Processing in NLP

NLTK are Python tools and methods to learn and practice starting from basic text
processing in NLP. They include:

» Text processing as lists of words.
 Statistics on text processing.
¢ Simple text analysis.

NLTK provides 9 different types of text documents from classic literatures, Bible
texts, famous public speeches, news, and articles with personal corpus for text pro-
cessing. Let’s start and load these text documents.

[11] # Let's load some sample books from the nltk databank
importnltk
fromnltk.book import *
*%% Introductory Examples for the NLTK Book **%*
Loading textl, ..., text9 and sentl, ..., sent9
Type the name of the text or sentence to view it.
Type: 'texts()' or 'sents()' to list the materials.
textl: Moby Dick by Herman Melville 1851
text2: Sense and Sensibility by Jane Austen 1811
text3: The Book of Genesis
text4: Inaugural Address Corpus
text5: Chat Corpus
text6: Monty Python and the Holy Grail
text7: Wall Street Journal
text8: Personals Corpus
text9: The Man Who Was Thursday by G. K. Chesterton 1908

[12] # Display the list of sample books
texts ()

284

[13]

[14]

[15]

11 Workshop#1: Basics of Natural Language Toolkit (Hour 1-2)

textl: Moby Dick by Herman Melville 1851

text2: Sense and Sensibility by Jane Austen 1811

text3: The Book of Genesis

text4: Inaugural Address Corpus

text5: Chat Corpus

text6: Monty Python and the Holy Grail

text7: Wall Street Journal

text8: Personals Corpus

text9: The Man Who Was Thursday by G. K. Chesterton 1908

Check textl
textl

<Text: Moby Dick by Herman Melville 1851>

To know more about textl, check this

textl?

Import word tokenize as wtoken
fromnltk.tokenize import word tokenize

Open Adventures Holmes.txt and performs tokenization

fholmes = open ("Adventures_ Holmes.
txt","r",encoding="utf-8") .read()
wtokens = word tokenize (fholmes)

tholmes=nltk.text.Text (wtokens)

11.7 Simple Text Analysis with NLTK

Text analysis is used to study a particular word or phrase that occurs in a text docu-
ment such as literature or public speeches. NLTK has a “concordance()” function
different from the ordinary search function. It does not only indicate occurrence but
also reveal neighboring words and phrases. Let’s try text examples from The
Adventures of Sherlock Holmes (Doyle 2019).

[16]

Check concordance of word "Sherlock "
tholmes.concordance ("Sherlock")

11.7 Simple Text Analysis with NLTK 285

Displaying 25 of 98 matches:

The Adventures of Sherlock Holmes by Arthur Conan Doyle Conte

esI.A SCANDAL IN BOHEMIA I. To Sherlock Holmes she is always _the_
woman.

ust such as I had pictured it from Sherlock Holmes * succinct description , bu
ssing said : “ Good-night , Mister Sherlock Holmes. ” There were several peopl
lly got it ! ” he cried , grasping Sherlock Holmes by either shoulder and look
stepped from the brougham . “ Mr . Sherlock Holmes , I believe ? ” said she .

ss for the Continent. ” “ What ! ” Sherlock Holmes staggered back , white with

, the letter was superscribed to *“ Sherlock Holmes , Esq . To be left till cal

nd ran in this way : “ MY DEAR MR. SHERLOCK HOLMES , —You really did it
very w

of interest to the celebrated Mr. Sherlock Holmes . Then I, rather imprudent
possess ; and I remain , dear Mr. Sherlock Holmes , *“ Very truly yours , ““ IR

ia , and how the best plans of Mr. Sherlock Holmes were beaten by a woman ’ s

I had called upon my friend , Mr. Sherlock Holmes , one day in the autumn of
and discontent upon his features . Sherlock Holmes ’ quick eye took in my occu

t as I have been telling you , Mr. Sherlock Holmes , ” said Jabez Wilson , mop

e of this obliging youth ? ” asked Sherlock Holmes . *“ His name is Vincent Spa
IS DISSOLVED . October 9, 1890. ” Sherlock Holmes and I surveyed this curt an
d client carried on his business . Sherlock Holmes stopped in front of it with

own stupidity in my dealings with Sherlock Holmes . Here I had heard what he
1 think you will find , ” said Sherlock Holmes , “ that you will play for

and I will follow in the second. ” Sherlock Holmes was not very communicative
jump , and I’ 11 swing for it ! ” Sherlock Holmes had sprung out and seized t
IDENTITY “ My dear fellow , ” said Sherlock Holmes as we sat on either side of
ant-man behind a tiny pilot boat . Sherlock Holmes welcomed her with the easy
nsult me in such a hurry ? ” asked Sherlock Holmes , with his finger-tips toge

The above example shows all Sherlock occurrences indicating that Sherlock is a
special word linked with the surname Holmes in the text document

Let’s look at the word usage of extreme from the same literature:

[17]

Check concordance of word "extreme"
tholmes.concordance ("extreme")

Displaying 9 of 9 matches:

may trust with a matter of the most extreme importance . If not , I should much
ng red head , and the expression of extreme chagrin and discontent upon his fea
ternately asserted itself , and his extreme exactness and astuteness represente

e swing of his nature took him from extreme languor to devouring energy ; and ,
olice reports realism pushed to its extreme limits , and yet the result is , it

of an English provincial town . His extreme love of solitude in England suggest
ion , and that in his haste and the extreme darkness he missed his path and wal
for my coming at midnight , and his extreme anxiety lest I should tell anyone o
like one who has been driven to the extreme limits of his reason . Then , sudde

286 11 Workshop#1: Basics of Natural Language Toolkit (Hour 1-2)
Concordance techniques are means to learn grammars, words or phrases called Use
i of English, also called Learn by Examples. In this example, we learnt how to use
' the word extreme in various situations and scenarios.
[18] tholmes.similar ("extreme")
dense gathering
[19] # Check concordance of word "extreme" in text2
text2.concordance ("extreme")
Displaying 4 of 4 matches:
n another day or two perhaps ; this extreme mildness can hardly last longer --
ng her that he was kept away by the extreme affection for herself , which he co
of his brother , and lamenting the extreme GAUCHERIE which he really believed
y which had been leading her to the extreme of languid indolence and selfish re
[20] # Check similar word "extreme" in text2
text2.similar ("extreme")
family centre good opinion life death loss house society children
attachment wishes interest goodness heart comfort cheerfulness
existence marriage son
[21] # Check concordance word "extreme" in text4
text4d.concordance ("extreme")
Displaying 3 of 3 matches:
vigilance no Administration by any extreme of wickedness or folly can very ser
ent , and communication between the extreme limits of the country made easier t
the politics of petty bickering and extreme partisanship they plainly deplore .
[22] # Check similar word "extreme" in text4

textd.similar ("extreme")

one other just hope motives act people agency system right form loss
length knowledge science portion quarter narrowest requisite member

11.7 Simple Text Analysis with NLTK 287

It shows that word usage of extreme varies by authors and text types, e.g., it has

different styles in The Adventures of Sherlock Holmes as compared with usage in
\ | | Sense and Sensibility by Jane Austin (1775-1817) which is more vivid but has
standard and fixed usage in /naugural Address Corpus.

The common_contexts() method is to examine contexts shared by two or more
words. The Adventures of Sherlock Holmes is used with common contexts of two
words extreme and huge.

First, call common contexts() function from object tholmes.

[23] # Check common contexts on tholmes
tholmes.common contexts (["extreme","huge"])

No common contexts were found

which means after analyzing extreme and huge in The Adventures of Sherlock
Holmes, no common context meaning can be found.

Call concordance() function of these two words and check against the extracted
patterns as shown below:

[24] # Check concordance word "extreme" in tholmes
tholmes.concordance ("extreme")

Displaying 9 of 9 matches:

may trust with a matter of the most extreme importance . If not , I should much
ng red head , and the expression of extreme chagrin and discontent upon his fea
ternately asserted itself , and his extreme exactness and astuteness represente

e swing of his nature took him from extreme languor to devouring energy ; and ,
olice reports realism pushed to its extreme limits , and yet the result is , it

of an English provincial town . His extreme love of solitude in England suggest
ion , and that in his haste and the extreme darkness he missed his path and wal
for my coming at midnight , and his extreme anxiety lest I should tell anyone o
like one who has been driven to the extreme limits of his reason . Then , sudde

[25] # Check concordance word "huge" in tholmes
tholmes.concordance ("huge")

288 11 Workshop#1: Basics of Natural Language Toolkit (Hour 1-2)

Displaying 11 of 11 matches:

used and refreshed his memory with a huge pinch of snuff . “ Pray continue you
after opening a third door , into a huge vault or cellar , which was piled al

ed . All will come well . There is a huge error which it may take some little

a small , office-like room , with a huge ledger upon the table , and a teleph

en suddenly dashed open , and that a huge man had framed himself in the apertu
, and bent it into a curve with his huge brown hands . “ See that you keep yo

r. Grimesby Roylott drive past , his huge form looming up beside the little fi
side and lay listless , watching the huge crest and monogram upon the envelope
, ” said I ruefully , pointing to a huge bundle in the corner . *“ I have had

th hanging jowl , black muzzle , and huge projecting bones . It walked slowly

r hurrying behind us . There was the huge famished brute , its black muzzle bu

Can you see how important it is in
1. NLP?
\ / 2. Use of English and technical writing?

Workshop 1.1 Simple Text Processing using NLTK

1. Try to use concordance(), similar(), and common_contexts() functions to look
for two more frequently used words usage.

2. Compare their usages from four sources: Moby Dick, Sense and Sensibility,
WORKSHOP | [naugural Address Corpus, and Wall Street Journal.

3. Are there any pattern(s)?

4. What are their differences in the Use of English?

11.8 Text Analysis Using Lexical Dispersion Plot

Text analysis was learnt to study word patterns and common contexts in the previ-
ous workshop.

Dispersion Plot in Python NLTK is to identify occurrence frequencies of key-
words from the whole document.

11.8.1 What Is a Lexical Dispersion Plot?

Dispersion is the quantification of each point deviation from the mean value in basic
statistics.

NLTK Dispersion Plot produces a plot showing words distribution throughout
the text. Lexical dispersion is used to indicate homogeneity of words (word tokens)
that occurred in the corpus (text document) achieved by the dispersion_plot()
in NLTK.

11.8 Text Analysis Using Lexical Dispersion Plot 289

To start, let’s use NLTK book object to call function dispersion_plot().

Note: requires pylab installation prior to this function.

The following example uses textl to verify basic information about
dispersion_plot().

[26] textl.dispersion plot?

Signature: textl.dispersion_plot(words)

Docstring:

Produce a plot showing the distribution of the words through the text.
Requires pylab to be installed.

:param words: The words to be plotted

‘type words: list(str)

:seealso: nltk.draw.dispersion_plot()

File: d:\anaconda3\envs\py31 Inlp\lib\site-packages\nltk\text.py
Type: method

11.8.2 Lexical Dispersion Plot over Context Using Sense
and Sensibility

Are there any lexical patterns for positive words such as good, happy, and strong
versus negative words such as bad, sad, or weak in literature?

Workshop 1.2 Lexical Dispersion Plot over Context using Sense and
Sensibility

Use dispersion_plot to plot Lexical Dispersion Plot keywords: good, happy,
strong, bad, sad, and weak from Sense and Sensibility.

WORKSHop | |- Study any lexical pattern between positive and negative keywords.

2. Check these patterns against Moby Dick to see if this pattern occurs and
explain.

3. Choose two other sentiment keywords to see if this pattern remains valid.

[27] text2.dispersion plot(["good", "happy", "strong",
"bad", "Sad", "weakll1)

Lexical Dispersion Plot

good | VURL NBIRN OO OMRRNRREOIIE LIRS R O DD BRI | R e
happy 1 LT T T T U T T NN (T (T TN
strong { 1 oo Wi me non 1

bad 4 1 | " {55 |
sad 1 | o

weak 1 | |

0 20000 40000 60000 80000 100000 120000 140000
Word Offset

290 11 Workshop#1: Basics of Natural Language Toolkit (Hour 1-2)

11.8.3 Lexical Dispersion Plot Over Time Using Inaugural
Address Corpus

Lexical usage is to analyze word pattern changes in written English over time. The
Inaugural Address Corpus addressed by US presidents of the past 220 years is a text
document in NLTK book library to study lexical dispersion plot patterns changes on
keywords war, peace, freedom, and united for this workshop.

Workshop 1.3 Lexical Dispersion Plot over Time using Inaugural Address
Corpus

1. Use dispersion_plot to invoke Lexical Dispersion Plot for Inaugural Address
Corpus.

WORKSHOP | 2 Study and explain lexical pattern changes for keywords America, citizens,
democracy, freedom, war, peace, equal, united.

3. Choose any two meaningful keywords and check for lexical pattern changes.

[28] text4.dispersion plot (["America" ,"citizens"
, "democracy", "freedom", "war", "peace", "equal",
"united"])
Lexical Dispersion Plot
America{ W o | | 1 BEID IE 0
ctizens | DEESEEES VS BEOWUEIRL I REI0 @O0 00 B0 L LR URE) i e
democracy 1 [B | om0 mne nm
freedom A m m ommow (IR T RO L I T (]
war< L UemEI L L0 D SO e RE 0 R nen

peace | UMD DEIEN 0 IRED W NOBUNE INEE UIONIDIOERENWIROIEE IR
equal { (L ImmoE b noremneomd (R I A R

united 4 0 1 U] I (N [B weww

0 20000 40000 60000 80000 100000 120000 140000 160000
Word Offset

11.9 Tokenization in NLP with NLTK

11.9.1 What Is Tokenization in NLP?

A token can be words, part of a word, characters, numbers, punctuations, or sym-
bols. It is a principal constituent and complex NLP task due to every language has
its own grammatical constructions to generate grammatic and syntactic rules.

11.9 Tokenization in NLP with NLTK 291

lane lent 5100 to Peter early this morning.

1 Tokenization
oooDooDoDEm

Fig. 11.5 Tokenization example of a sample utterance “Jane lent $100 to Peter early this morning”

Tokenization is an NLP process of dividing sentences/utterances from a text,
document, or speech into chunks called tokens. By using tokenization, vocabulary
from a document or corpus can be formed. Tokenization for sentence/utterances
Jane lent $100 to Peter early this morning is shown in Fig. 11.5.

NLTK provides flexibility to tokenize any string of text using fokenize() function
as shown below:

[29] # Create utterance 3 (utt3) and performs tokenization
utt3 = 'Jane lent $100 to Peter early this morning.'
wtokens = nltk.word tokenize (utt3)

wtokens

[Jane', lent', '$', '100', 'to', 'Peter’, 'early’, 'this', 'morning', '."]

11.9.2 Different Between Tokenize() vs Split()

Python provides spli#() function to split a sentence of text into words as recalled in
Sect. 11.1. Let’s see how it works with Tokenize() function.

[30] # Use split() to perform word tokenization
words = utt3.split()
words

[Jane', lent, '$100', 'to', Peter’, 'early’, 'this', 'morning.']

Why are they different?
How is it important in
1. NLP?

A 2. Meanings?

292 11 Workshop#1: Basics of Natural Language Toolkit (Hour 1-2)

Workshop 1.4 Tokenization on The Adventures of Sherlock Holmes with
NLTK

1. Read Adventures_Holmes.txt text file.

2. Save contents into a string object "holmes_doc".

WORKSHOP | 3. Use split() to cut it into list object "holmes".

4. Count total number of words in the document.

5. Tokenize document using NLTK tokenize() function.

6. Count total number of tokens.

7. Compare the two figures.

(The file open part is provided to start with.)

[31] # Workshop 1.4 Solution
with open ('Adventures Holmes.txt', encoding='utf-8') as
f lit:

dholmes = £ lit.read()
Count number of words in the literature

NLTK provides a simple way to count total number of tokens in a Text Document
using len() in NLTK package.
[/| Try len(tholmes) will notice:

[32] len (tholmes)
128367

11.9.3 Count Distinct Tokens

Text analysis is to study distinct words or vocabulary that occurs in a text document.

When text document is tokenized as token objects, Python can group them easily
into a set of distinct objects using Set() method.

Set() in Python is to extract distinct objects of any type from a list of objects with
repeated instances.

Try the following using The Adventures of Sherlock Holmes will notice:

[33] tholmes?

11.9 Tokenization in NLP with NLTK 293

Type: Text

String form: <Text: The Adventures of Sherlock Holmes by Arthur Conan...>
Length: 128367

File: d:\anaconda3\envs\py31 Inlp\lib\site-packages\nltk\text.py
Docstring:

A wrapper around a sequence of simple (string) tokens, which is
intended to support initial exploration of texts (via the

interactive console). Its methods perform a variety of analyses

on the text's contexts (e.g., counting, concordancing, collocation
discovery), and display the results. If you wish to write a

program which makes use of these analyses, then you should bypass
the "Text" class, and use the appropriate analysis function or

class directly instead.

A "Text" is typically initialized from a given document or

corpus. E.g.:

>>> import nltk.corpus

>>> from nltk.text import Text

>>> moby = Text(nltk.corpus.gutenberg.words(‘melville-moby_dick.txt'))
Init docstring:

Create a Text object.

:param tokens: The source text.

‘type tokens: sequence of str

[34] set (tholmes)
{'madness', 'thirty-nine', 'inches', 'fuss', 'dense’, 'exchange', 'swim', 'alive.',
'geese.’, 'straw’, 'whipcord', 'ill-kempt', 'ungrateful’, 'law’, 'distorted',
‘chemical', 'autumn’, 'landscape’, 'discontent’, 'Atkinson', 'acts', 'snakish’,
‘start', 'words.', 'brothers', 'handle', 'green-room’, 'ruffians', 's—your', 'trip’,
'briefly’', 'ladies.’, 'tragedy’, 'Spaulding', 'tailing', 'bearded', 'when', ...}

[35] len (set (tholmes))
10047

This example shows that The Adventures of Sherlock Holmes contains 128,366
tokens i.e. words and punctuations, and 10,048 distinct tokens, or types. Try other
\ /| literatures and see vocabulary can be learnt from these great literatures.

The following example shows how to sort distinct tokens using sorted() function.

[36] sorted (set (tholmes)

294 11 Workshop#1: Basics of Natural Language Toolkit (Hour 1-2)

(1,8, %', &, ", ", MASIS”, s,), L, S the-wisp,
'','1','1,100, '1.A",'LB', '1.C’, 'L.D", 'LE, 'L.E.I','LE.2, 'LE3', 'L.E4,
'L.E5','LE.6,'1.E.7,'LE8, 'L.E9, 'L.F, 'LE.I','LE2', '1.E3', 'L.F4',
'L.E5','LE6,'10','100', '1000','10_s_", '10_s_.", '10th’, '117',]

S-

Since books are tokenized in NLTK as a list book object, contents can be accessed
by using list indexing method as below:

[37] # Access the First 20 tokens
tholmes[1:20]
['Adventures', 'of', 'Sherlock’, 'Holmes', 'by', 'Arthur’, 'Conan', 'Doyle’,
'‘Contents’, 'T', ", 'A", 'Scandal’, 'in', 'Bohemia’, 'II', '.", 'The', 'Red-Headed']

[38] # Access the MIDDLE content
tholmes[100:150]
['IN', ' BOHEMIA', T, ', 'To', 'Sherlock', 'Holmes', 'she’, 'is', 'always',
'_the_', 'woman', ., T, 'have', 'seldom’, 'heard', 'him', 'mention’, 'her,
'under’, 'any', 'other’, 'name’, ", 'In’, 'his’, 'eyes', 'she’, 'eclipses’, 'and’,
‘predominates’, 'the', 'whole', 'of', 'her’, 'sex’, ".", 'It', 'was', 'not', 'that’,
'he’', 'felt’, 'any', 'emotion’, 'akin', 'to’, 'love', 'for']

[39] # Aceess from the END
tholmes[-20:]
['the', 'main', PG', 'search’, 'facility', "', 'www.gutenberg.org', 'This',
'website', 'includes’, 'information’, 'about’, 'Project’, 'Gutenberg-tm', ',',
'including’, 'how', 'to’, 'make’, 'donations', 'to’, 'the', 'Project’, 'Gutenberg',
'Literary', 'Archive', 'Foundation', ', 'how', 'to', 'help', 'produce’, 'our’,
‘new’, 'eBooks']

11.9.4 Lexical Diversity

11.9.4.1 Token Usage Frequency (Lexical Diversity)

Token usage frequency, also called Lexical Diversity is to divide the total number of
tokens by total number of token types as shown:

[40] len (textl) /len(set (textl))
13.502044830977896
[41] len (text2) /len (set (text2))

20.719449729255086

http://www.gutenberg.org

11.9 Tokenization in NLP with NLTK 295

[42] len (text3) /len(set (text3))
16.050197203298673

[43] len (textd) /len (set (textd))
15.251970074812968

Python codes above analyze token usage frequency of four literatures: Moby Dick,
Sense and Sensibility, Book of Genesis, and Inaugural Address Corpus. It has
usage frequency range from 13.5 to 20.7. What are the implications?

11.9.4.2 Word Usage Frequency

There are many commonly used words in English. The following example shows
the pattern of word usage frequency for the from above literatures.

[44] textl.count ('the')
13721

[45] textl.count ('the')/len (textl)*100
5.260736372733581

[46] text2.count ('the') /len (text2) *100
2.7271571452788606

[47] text3.count ('the') /len (text3)*100
5.386024483960325

[48] text4d.count ('the') /len (text4) *100
6.2491416014283745

296 11 Workshop#1: Basics of Natural Language Toolkit (Hour 1-2)

1. Are there any patterns found from these literatures?
2. Use other words of, a, I to study if there exists other pattern(s).

11.10 Basic Statistical Tools in NLTK

11.10.1 Frequency Distribution—FreqDist()

Text analysis is an NTLK tool that can tokenize a string or a book of text document.
Frequency Distribution—FreqDist() is an initial built-in method in NLTK to ana-
lyze the frequency distribution of every token type in a text document.
Inaugural Address Corpus is used as an example to show how it works.

[49] text4
<Text: Inaugural Address Corpus>

[50] FregDist?
Init signature: FreqDist(samples=None)
Docstring:
A frequency distribution for the outcomes of an experiment. A
frequency distribution records the number of times each outcome of
an experiment has occurred. For example, a frequency distribution
could be used to record the frequency of each word type in a
document. Formally, a frequency distribution can be defined as a
function mapping from each sample to the number of times that
sample occurred as an outcome.

[51] fd4 = FregDist (text4)

[52] fd4
FreqDist({'the': 9555, ",": 7275, 'of": 7169, 'and": 5226, ".": 5011, 'to": 4477, 'in": 2604,
'a': 2229, 'our": 2062, 'that": 1769, ...})

11.10 Basic Statistical Tools in NLTK 297

11.10.1.1 FregDist() as Dictionary Object

It is noted that FregDist() will return key-value pairs from Dictionary object to
reflect the Key that store Token Type name and the Value which are corresponding
frequency of occurrence in a text. Since FreqDist() returns a Dictionary object,
keys() can be used to return the list of all Token Types as shown below.

[53] tokend = fd4.keys|()
token4
dict_keys(['Fellow', -, 'Citizens', 'of', 'the', 'Senate', 'and', 'House', 'Representatives',

"', '"Among', 'vicissitudes', 'incident’, 'to', 'life', 'no’, 'event’, 'could’, 'have’, 'filled’,
'me', 'with', 'greater’, 'anxieties', 'than’, 'that', 'which', 'notification', 'was',
‘transmitted’, 'by’, 'your', 'order’, ',', 'received’, 'on’, '14th’, 'day’, 'present’, 'month’, ',
'On’, 'one', 'hand’, T, 'summoned', 'my', 'Country', 'whose', 'voice', 'can’, 'never’,
'hear', 'but', 'veneration', 'love', 'from', 'a', 'retreat’, 'had’, 'chosen’, 'fondest’,
‘predilection’, 'in’, 'flattering’, 'hopes', 'an', 'immutable’, 'decision’, 'as’, 'asylum',
‘declining'. ' o' 'rendered". ' Vo o csary'. 'well'. 'dear'. 'addition’

eclining', 'years', --', 'rendered’, 'every', 'more’, 'necessary’, 'well', 'dear’, 'addition',
'habit', 'inclination', 'frequent’, 'interruptions', 'health’, 'gradual’, 'waste', 'committed',
'it', 'time’, 'other’, 'magnitude’, 'difficulty’, 'trust’, 'country’, 'called’, 'being',

g y y g

‘sufficient’, 'awaken', 'wisest', 'most’, 'experienced’, 'her’, ...])

11.10.1.2 Access FreqDist of Any Token Type

Use list item access method to obtain frequency distribution of any token type. FD
value of token type for the is shown below.

[54] fd4['the']
9555

1. What are the five common word types (token types without punctuation) in any
text document?
2. Use FreqDist() to verify.

11.10.1.3 Frequency Distribution Plot from NLTK

NLTK is a useful tool to study the top frequency distribution token types for any
document using plot() function with FreqDist() method. FreqDist.plot() can also
plot the top XX frequently used token types in a text document.

Use fd3 to study FregDist.plot() documentation using fd3.plot().

298 11 Workshop#1: Basics of Natural Language Toolkit (Hour 1-2)

Plot top 30 frequently used token types from the Book of Genesis (Non-
Cumulative mode).

11.11 Do the Same Plot with Cumulative Mode

[55] fdd.plot?

Signature:

fd4.plot (
*args,
title="",
cumulative=False,
percents=False,
show=False,
**kwargs,

)

Docstring:

Plot samples from the frequency distribution

displaying the most frequent sample first. If an integer
parameter is supplied, stop after this many samples
have been

plotted. For a cumulative plot, specify cumulative=True.
Additional

''"**kwargs'' are passed to matplotlib's plot function.
(Requires Matplotlib to be installed.)

[56] fd4.plot (30,cumulative=False)
10000

8000 4

€000 4

Counts

4000 4

2000 1

g °F Betggsesasty

Samples

§38E LI5S

which A
vill 4
their
people 4

11.11 Do the Same Plot with Cumulative Mode 299

[57]

fd4.plot (30,cumulative=True)

60000 1

50000 4

40000 A

30000

Cumulative Counts

20000 A

10000 A

WORKSHOP

Workshop 1.5 Frequency Distribution Analysis on Classics Literatures

1. What are the top 5 frequently used word types in the Book of Genesis (ignore
punctuations)?

2. Will it be the same with other great literatures?

3. Verity against (1) Moby Dick, (2) Sense and Sensibility, and (3) Inaugural
Address Corpus to see if they have the same patterns. Why or why not?

4. Why the study of common word types is also important in cryptography?

11.11.1

Rare Words—Hapax

Hapaxes are words that occur only once in a body of work whether it is a publication
or an entire language.

Ancient texts are full of hapaxes. For instance, in Shakespeare’s Love’s Labour’s
Lost contains hapax honorificabilitudinitatibus which means able to achieve honors.

NLTK provides method hapaxes() under FreqDist object to list out all word types
that occurred once in text document.

Try FreqDist() with The Adventures of Sherlock Holmes and see how useful it is.

[58] tholmes
<Text: The Adventures of Sherlock Holmes by Arthur Conan...>
[59] ‘ fd = FregDist (tholmes)

300 11 Workshop#1: Basics of Natural Language Toolkit (Hour 1-2)

[60] hap = fd.hapaxes/()
hap[1:50]
['Adventures', 'Conan', 'Doyle’, 'Contents', 'Red-Headed', 'Case’, 'Identity’,
'Mystery', 'Orange’, 'Pips', "Twisted', 'Lip', '‘Blue', 'Carbuncle’, 'Speckled',
'‘Band', 'Engineer’, "Thumb', 'Noble', 'Bachelor','SCANDAL', BOHEMIA',
‘eclipses', 'predominates’, 'sex’, 'emotions', 'abhorrent’, 'balanced’, 'softer’,
'passions', 'gibe', 'observer—excellent', 'intrusions’, 'finely’, 'temperament’,
'distracting’, 'mental’, 'Grit', 'sensitive', 'instrument’, 'high-power’, 'lenses’,
'disturbing’, 'dubious’, 'home-centred', 'establishment’, 'absorb’, 'loathed',
'alternating']

Workshop 1.6 Learn Vocabulary using Hapaxes

Hapaxes are helpful to learn vocabulary containing more than 12 characters. The
following example uses hapaxes() with Python in-line function to implement [w
for w in hapl if len(w) > 12]:

woORKSHoP | 1. Run Python script and extract vocabulary containing more than 12 characters
from Moby Dick.

2. Select five meaningful vocabularies with their meanings.

3. Check with The Adventures of Sherlock Holmes to learn another five
vocabularies.

(Python script to generate vocabulary with over 12 characters is given.)

[61] # Workshop 1.6 Solutions
vocl?2 [wforwinhapif len(w) > 12]
vocl2

['observer—excellent', 'establishment’, 'well-remembered’, 'boot-slitting',
'Peculiar—that', 'Eglonitz—here’, 'German-speaking', 'glass-factories',
'authoritative', 'double-breasted’, 'Cassel-Felstein', 'staff-commander’,
'Contralto—hum', 'indiscretion.', 'reproachfully’, 'Saxe-Meningen',
‘drunken-looking', 'side-whiskered', 'half-and-half', 'moustached—evidently"',
‘expostulating', 'arrangements.', 'co-operation.', 'unpleasantness',
‘self-lighting', 'simple-minded', 'Nonconformist', 'ill—gentlemen’, ...]

11.11.2 Collocations
11.11.2.1 What Are Collocations?

A collocation is a work grouping for a set of words usually appeared together to
convey semantic meanings. The word collocation is originated from the Latin word
meaning place together and was first introduced by Prof. John R Firth (1890-1960)
with his famous quote “You shall know a word by the company it keeps.”

There are many collocations cases in English where strong collocations are word
pairings always appear together such as make and do, e.g., You make a cup of cof-
fee, but you do your work.

11.11 Do the Same Plot with Cumulative Mode 301

Collocations are frequently used in business settings when nouns are combined
with verbs or adjectives, e.g., setup an appointment, conduct a meeting, set the
price, etc.

11.11.2.2 Collocations in NLTK

NLTK also provides a build-in method to handle collocations using NLTK
method—collocations().

The following example is to generate collocations lists from Moby Dick, Sense
and Sensibility, Book of Genesis, and Inaugural Address Corpus.

Let’s look at some extracted collocation terms:

[62] textl.collocations ()
Sperm Whale; Moby Dick; White Whale; old man; Captain Ahab; sperm
whale; Right Whale; Captain Peleg; New Bedford; Cape Horn; cried Ahab;
years ago; lower jaw; never mind; Father Mapple; cried Stubb; chief
mate; white whale; ivory leg; one hand

[63] text2.collocations ()
Colonel Brandon; Sir John; Lady Middleton; Miss Dashwood; every thing;
thousand pounds; dare say; Miss Steeles; said Elinor; Miss Steele;
every body; John Dashwood; great deal; Harley Street; Berkeley Street;
Miss Dashwoods; young man; Combe Magna; every day; next morning

[64] text3.collocations ()
said unto; pray thee; thou shalt; thou hast; thy seed; years old;
spake unto; thou art; LORD God; every living; God hath; begat sons;
7 years; shalt thou; little ones; living creature; creeping thing;
savoury meat; 30 years; every beast

[65] text4.collocations ()
United States; fellow citizens; years ago; 4 years; Federal
Government; General Government; American people; Vice President; God
bless; Chief Justice; one another; fellow Americans; Old World;
Almighty God; Fellow citizens; Chief Magistrate; every citizen; Indian
tribes; public debt; foreign nations

302 11 Workshop#1: Basics of Natural Language Toolkit (Hour 1-2)

References

Albrecht, J., Ramachandran, S. and Winkler, C. (2020) Blueprints for Text Analytics Using
Python: Machine Learning-Based Solutions for Common Real World (NLP) Applications.
O’Reilly Media.

Antic, Z. (2021) Python Natural Language Processing Cookbook: Over 50 recipes to understand,
analyze, and generate text for implementing language processing tasks. Packt Publishing.

Arumugam, R. and Shanmugamani, R. (2018) Hands-On Natural Language Processing with
Python: A practical guide to applying deep learning architectures to your NLP applications.
Packt Publishing.

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with python. O’Reilly.

Doyle, A. C. (2019) The Adventures of Sherlock Holmes (AmazonClassics Edition).
AmazonClassics.

Gutenberg (2024) Project Gutenberg official site. https://www.gutenberg.org/ Accessed 17
Dec 2024.

Hardeniya, N., Perkins, J. and Chopra, D. (2016) Natural Language Processing: Python and
NLTK. Packt Publishing.

Jupyter (2024) Jupyter official site. https://jupyter.org/. Accessed 17 Dec 2024.

Kedia, A. and Rasu, M. (2020) Hands-On Python Natural Language Processing: Explore tools and
techniques to analyze and process text with a view to building real-world NLP applications.
Packt Publishing.

NLPGitHub (2024) URL: https://github.com/raymondshtlee/NLP/. Accessed 17 Dec 2024.

NLTK (2024) NLTK official site. https://www.nltk.org/. Accessed 17 Dec 2024.

Perkins, J. (2014). Python 3 text processing with NLTK 3 cookbook. Packt Publishing Ltd.

Wintjen, M. and Vlahutin, A. (2020) Practical Data Analysis Using Jupyter Notebook: Learn how
to speak the language of data by extracting useful and actionable insights using Python. Packt
Publishing.

WordNet (2024) WordNet official site. https://wordnet.princeton.edu/. Accessed 17 Dec 2024.

https://www.gutenberg.org/
https://jupyter.org/
https://github.com/raymondshtlee/NLP/
https://www.nltk.org/
https://wordnet.princeton.edu/

Chaper 12)
Workshop#2: N-Grams Modeling s
with Natural Language Toolkit (Hour 3—4)

12.1 Introduction

Workshop 2 consists of two parts:

Part I will introduce N-gram language model using NLTK in Python and N-grams
class to generate N-gram statistics on any sentence, text objects, whole document,
literature to provide a foundation technique for text analysis, parsing, and semantic
analysis in subsequent workshops.

Part IT will introduce spaCy, the second important NLP Python implementation
tools not only for teaching and learning (like NLTK), but widely used for NLP
applications including text summarization, information extraction, and Q&A chat-
bot. It is a critical mass to integrate with Transformer technology in subsequent
workshops.

Please ensure that the following Python packages are installed before starting the
workshop:

* Python (demo version 3.11.9)

¢ tensorflow (demo version 2.17.0)
¢ NLTK (demo version 3.9.1)

* spacy (demo version 3.4.4)

If these packages are not installed on PC/laptop, use pip install xxx command.
The detailed requirements list and Python package version used in this workshop
can be found in the requirements.txt file stored in the NLP GitHub repository
(NLPGitHub 2024).

© The Author(s), under exclusive license to Springer Nature Singapore Pte 303
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_12&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_12#DOI

304 12 Workshop#2: N-Grams Modeling with Natural Language Toolkit (Hour 3—4)
12.2 What Is N-Gram?

N-gram is an algorithm based on a statistical language model (Bird et al. 2009;
Perkins 2014; Arumugam and Shanmugamani 2018), its basic idea is that contents
such as phonemes, syllables, letters, words, or base pairs in texts are operated by a
sliding window of size N to form a byte fragments sequence of length N
(Sidorov 2019).

N can be 1, 2, or another positive integer, although usually large N is not consid-
ered because they rarely occur.

Each byte fragment is called a gram, and the frequency of all grams is counted
and filtered according to a pre-set threshold to form a list of key grams, which is the
text’s vector feature space, and each kind of gram in the list is a feature vector
dimension.

12.3 Applications of N-Grams in NLP

N-gram models are widely used (Albrechtet al. 2020; Arumugam and Shanmugamani
2018; Hardeniya et al. 2016; Kedia and Rasu 2020) in:

* Speech recognition where phonemes and sequences of phonemes are modeled
using an N-gram distribution.

» Parsing on words is modeled so that each N-gram is composed of N words. For
language identification, sequences of characters/graphemes (e.g., letters of the
alphabet) are modeled for different languages.

¢ Auto sentences completion.

* Auto spell-check.

e Semantic analysis.

12.4 Generation of N-Grams in NLTK

NLTK (NLTK 2024; Bird et al. 2009; Perkins 2014) offers useful tools in NLP
processing.

Ngrams() function in NLTK facilitates N-gram operation.

Python code uses N-grams in NLTK to generate N-grams for any text string. Try
it and study how it works.

12.4 Generation of N-Grams in NLTK 305

The following example is the first sentence of A Scandal in Bohemia from The
Adventures of Sherlock Holmes (Doyle 2019): To Sherlock Holmes she is always
The Woman. I have seldom heard him mention her under any other name.
Demonstrating how N-gram generator works in NLTK.

[1] importnltk
fromnltk import ngrams
sentence = input("Enter the sentence: ")
n = int (input ("Enter the value of n: "))
n_grams = ngrams (sentence. split (), n)
forgrams inn grams:
print (grams)
Enter the sentence: To Sherlock Holmes she is always "The Woman". I have seldom
heard him mention her under any other name.
Enter the value of n: 2
('To', 'Sherlock")
(‘Sherlock’, 'Holmes')
('Holmes', 'she")
('she’, 'is")
('is', 'always')
(‘always', ""The")
(""The', 'Woman".")
("Woman".", T")
('T, 'have')
('have', 'seldom")
('seldom’, 'heard')
('heard', 'him")
('him', 'mention")
(‘'mention’, 'her")
('her', 'under")
(‘under’, 'any")
(‘any', 'other")
(‘other’, 'name.")

Here are the Bigrams. Let’s try Trigrams N = 3.

[2] importnltk
fromnltk import ngrams
sentence = input("Enter the sentence: ")
n = int (input ("Enter the value of n: "))
n_grams = ngrams (sentence.split(), n)
for grams inn grams:
print (grams)

306 12 Workshop#2: N-Grams Modeling with Natural Language Toolkit (Hour 3—4)

Enter the sentence: To Sherlock Holmes she is always "The Woman". I have seldom
heard him mention her under any other name.
Enter the value of n: 3

('To', 'Sherlock’, 'Holmes")

(‘Sherlock’, 'Holmes', 'she")

('Holmes', 'she’, 'is")

(‘she’, 'is', 'always")

('is', 'always', ""The')

(‘always', ""The', "Woman".")

(""The', 'Woman".", T')

("‘Woman".", 'T', 'have')

(T, 'have’, 'seldom")

('have', 'seldom’, 'heard")

('seldom’, 'heard', 'him'")

('heard', 'him', 'mention")

('him', 'mention’, 'her")

(‘'mention’, 'her’, 'under")

(‘her’, 'under’, 'any")

(‘under’, 'any', 'other")

(‘any', 'other', 'name.")

How about Quadrigram N =47 Let’s use the same sentence.

[3] import nltk
fromnltk import ngrams
sentence = input("Enter the sentence: ")
n = int (input("Enter the value of n: "))
n_grams = ngrams (sentence.split (), n)

forgrams inn grams:
print (grams)
Enter the sentence: To Sherlock Holmes she is always "The Woman". I have seldom
heard him mention her under any other name.
Enter the value of n: 4
('To", 'Sherlock’, 'Holmes', 'she")
('Sherlock’, 'Holmes', 'she’, 'is")
('Holmes', 'she’, 'is', 'always')
('she', 'is', 'always', ""The")
('is', 'always', ""The', 'Woman".")
(‘always', ""The', 'Woman".", 'T')
(""The', 'Woman".'", 'T', 'have')
("Woman".", 'T', 'have', 'seldom")
('T', 'have’, 'seldom’, 'heard’)
('have', 'seldom’, 'heard', 'him")
('seldom’, 'heard', 'him', 'mention")
('heard', 'him', 'mention’, 'her’)
('him', 'mention’, 'her', 'under")
('mention’, 'her’, 'under’, 'any")
('her', 'under’, 'any', 'other")
('under’, 'any', 'other’, 'name.")

12.5 Generation of N-Grams Statistics 307

NLTK offers an easy solution to generate N-gram of any N-number which
are useful in N-gram probability calculations and text analysis

Workshop 2.1 N-Grams on The Adventures of Sherlock Holmes
1. Read Adventures_Holmes.txt text file.

2. Save contents into a string object "holmes_doc."

3. Extract favorite paragraph from "holmes_doc" into "holmes_para."

WORKSHOP 4. Use above Python code to generate N-grams for N=3, N=4 and N=5.

12.5 Generation of N-Grams Statistics

Once N-grams are generated, the next step is to calculate the term frequency (TF)
of each N-gram from a document to list out top items.

NLTK-based Python codes extend previous example to create N-grams statistics
to list out top 10 N-grams.

Let’s try first two sentences of A Scandal in Bohemia from The Adventures of
Sherlock Holmes.

[4]

sentence

"To Sherlock Holmes she is always "The Woman". I have seldom heard him mention her
under any other name.'

Import RE package to do some simple text pre-processing:

[5]

import re, string

get rid of all the XML markup

sentence = re.sub ('<.*>', ' ', sentence)

get rid of punctuation (except periods!)
punctuationNoPeriod = "[" + re.sub("\.","",string.
punctuation) + "1"

sentence = re.sub (punctuationNoPeriod, "", sentence)
first get individual words

tokenized = sentence.split ()

and get a list of all the bi-grams

Bigrams = ngrams (tokenized, 2)

308 12 Workshop#2: N-Grams Modeling with Natural Language Toolkit (Hour 3—4)

Review N-grams to see how they work:

[6] ngrams?
Signature: ngrams(sequence, n, **kwargs)
Docstring:
Return the ngrams generated from a sequence of items, as an iterator.
For example:
>>> from nltk.util import ngrams
>>> list(ngrams([1,2,3,4,5], 3))
[(1,2,3),(2,3,4),(3,4,5)]
Wrap with list for a list version of this function. Set pad_left
or pad_right to true in order to get additional ngrams:
>>> list(ngrams([1,2,3,4,5], 2, pad_right=True))
[(1,2),(2,3),(3,4), (4,5), (5 None)]
>>> list(ngrams([1,2,3,4,5], 2, pad_right=True, right_pad_symbol='</s>"))
[(1,2),(2,3),(3,4),(4,5), (5, '</s>)]
>>> list(ngrams([1,2,3,4,5], 2, pad_left=True, left_pad_symbol='<s>"))
[(<s>', 1), (1,2),(2,3),(3,4), (4,5)]
>>> list(ngrams([1,2,3,4,5], 2, pad_left=True, pad_right=True, left_pad_
symbol='<s>', right_pad_symbol='</s>"))
[(<s>', 1), (1,2),(2,3),3,4), (4,5), (5, '</s>)]

To generate N-gram statistics, first import “collections” class and invoke
Counter() method over Bigrams.

[71 import collections
get the frequency of each bigram in our corpus
BigramFreq = collections.Counter (Bigrams)
what are the ten most popular ngrams in this corpus?
BigramFreg.most common (10)

[(('To', 'Sherlock"), 1),
(('Sherlock’, 'Holmes"), 1),
(('Holmes', 'she'), 1),
(('she', 'is"), 1),

(('is', 'always"), 1),
((always', 'The'), 1),
(('The', "Woman'"), 1),
((Woman', T, 1),

((T, 'have"), 1),

(('have', 'seldom’), 1)]

It is noted that the top 10 bigram frequency are all with count 1.
This is because the sample sentence is short and doesn’t contain any bigram(s)
\ / with a frequent bigram statistic. To sort out this problem, let's try a longer text.
v The following example uses the whole first paragraph of A Scandal in Bohemia
- from The Adventures of Sherlock Holmes and see whether it has a preferable
result.

12.5

Generation of N-Grams Statistics 309

The first paragraph looks like this:

[8]

first para = "To Sherlock Holmes she is always the woman I
have seldom heard him mention her under any other name In
his eyes she eclipses and predominates the whole of her sex
It was not that he felt any emotion akin to love for Irene
Adler All emotions and that one particularlywere abhorrent
to his cold precise but admirably balanced mind He was I
take it the most perfect reasoning and observing machine
that the world has seen but as a lover he would have placed
himself in a false position He never spoke of the softer
passions save with a gibe and a sneer They were admirable
things for the observer—excellent for drawing the veil from
men’s motives and actions But for the trained reasoner to
admit such intrusions into his own delicate and finely
adjusted temperament was to introduce a distracting factor
which might throw a doubt upon all his mental results Grit
in a sensitive instrument or a crack in one of his own
highpower lenses would not be more disturbing than a strong
emotion in a nature such as his And yet there was but one
woman to him and that woman was the late Irene Adler of
dubious and questionable memory."

Let’s review this first paragraph:

[9]

first para

"To Sherlock Holmes she is always the woman I have seldom heard him mention her under
any other name In his eyes she eclipses and predominates the whole of her sex It was not
that he felt any emotion akin to love for Irene Adler All emotions and that one
particularlywere abhorrent to his cold precise but admirably balanced mind He was I take
it the most perfect reasoning and observing machine that the world has seen but as a lover
he would have placed himself in a false position He never spoke of the softer passions save
with a gibe and a sneer They were admirable things for the observer—excellent for
drawing the veil from men’s motives and actions But for the trained reasoner to admit such
intrusions into his own delicate and finely adjusted temperament was to introduce a
distracting factor which might throw a doubt upon all his mental results Grit in a sensitive
instrument or a crack in one of his own highpower lenses would not be more disturbing
than a strong emotion in a nature such as his And yet there was but one woman to him and
that woman was the late Irene Adler of dubious and questionable memory.'

Use Python script to remove punctuation marks and tokenize the first_para object:

[10]

import re, string

get rid of all the XML markup

first para = re.sub ('<.*>', ' ', first para)

get rid of punctuation (except periods!)
punctuationNoPeriod = "[" + re.sub("\.","",string.
punctuation) + "]1"

first para = re.sub(punctuationNoPeriod, "", first para)
first get individual words

tokenized = first para.split()

and get a list of all the bi-grams

Bigrams = ngrams (tokenized, 2)

310

Use Co
first_para:

[11]

WORKSHOP

Bigram

12 Workshop#2: N-Grams Modeling with Natural Language Toolkit (Hour 3—4)

unter() method of collections class to calculate bigram statistics of

import collections

get the frequency of each bigram in our corpus
BigramFreq = collections.Counter (Bigrams)

what are the ten most popular ngrams in this corpus?
BigramFreq.most_common (10)

[((in', "a"), 3),

(('Irene’, 'Adler"), 2),

(('and', 'that'), 2),

((for', 'the"), 2),

(Chis', 'own'), 2),

(('To', 'Sherlock’), 1),

(('Sherlock’, 'Holmes"), 1),

(('Holmes', 'she'), 1),

(('she', 'is"), 1),

(('is', 'always"), 1)]

The results are satisfactory. It is noted that bigram in a has the most occurrence
frequency, i.e., three times while four other bigrams: Irene Adler, and that, for
the, his own have occurred twice each within the paragraph. Bigram in a, and that
and for the are frequently used English phrases which occurred in almost every
text document. How about to Sherlock and Irene Adler? There are two N-gram
types frequently used in N-gram language model studied in Chap. 2. One is the
frequently used N-gram phrase in English like in a, and that and for that in our
case. These bigrams are common phrases in other documents and literature
writings. Another is domain-specific N-grams. These types are only frequently
used in specific domain, documents, and genre of literatures. Hence, to Sherlock
and Irene Adler are frequently used related to this story only and not in other
situations

Workshop 2.2 N-grams Statistics on The Adventures of Sherlock Holmes
1. Read Adventures_Holmes.txt text file.

2. Save contents into a string object "holmes_doc."

3. Generate a representative N-gram statistic using the whole holmes_doc.

4. Generate a top 10 N-grams summary for N=3, N=4 and N=5.

5. Review results and comments on pattern(s) found.

analysis is required to examine which bigrams are commonly used not

only in a single paragraph but for the whole document or literature. Remember in

Workshop

1 NLTK has a built-in list of tokenized sample literatures in nltk.book.

Let’s refer to them first by using the nltk.book import statement.

12.5 Generation of N-Grams Statistics 311

[12] # Let's load some sample books from the nltk databank
import nltk
fromnltk.book import *
%* Introductory Examples for the NLTK Book *
Loading textl, ..., text9 and sentl, ..., sent9
Type the name of the text or sentence to view it.
Type: 'texts()' or 'sents()' to list the materials.
textl: Moby Dick by Herman Melville 1851
text2: Sense and Sensibility by Jane Austen 1811
text3: The Book of Genesis
text4: Inaugural Address Corpus
text5: Chat Corpus
text6: Monty Python and the Holy Grail
text7: Wall Street Journal
text8: Personals Corpus
text9: The Man Who Was Thursday by G. K. Chesterton 1908

Check with textl to see what they are:

[13] textl
<Text: Moby Dick by Herman Melville 1851>

or download using nltk.corpus.gutenberg.words() from Project Gutenberg of
copyright clearance classic literature (Gutenberg 2024). Let’s use this method to
download Moby Dick (Melville 2006).

[14] |importnltk.corpus
fromnltk.text import Text
moby = Text (nltk.corpus.gutenberg.words('melville-moby
dick.txt'))

[15] |moby
<Text: Moby Dick by Herman Melville 1851>

Review the first 50 elements of Moby Dick text object to see whether they are
tokenized.

[16] moby [1:50]
['Moby', 'Dick’, 'by', 'Herman', 'Melville', '1851", '], 'ETYMOLOGY", ., '(,
'Supplied’, 'by', 'a', 'Late', 'Consumptive', 'Usher’, 'to', 'a’, 'Grammar', 'School’,
")', 'The', 'pale’, 'Usher’, '--', 'threadbare’, 'in’, 'coat', ',', 'heart’, ',', 'body’, ',', 'and’,
‘brain’, ;', 'T', 'see’, 'him', 'now', ".", 'He', 'was', 'ever’, 'dusting', 'his', 'old', 'lexicons', 'and']

Use collections class and ngrams() method for bigram statistics to identify the
top 20 most frequently bigrams occurred for the entire Moby Dick literature.

312

[17]

WORKSHOP

12 Workshop#2: N-Grams Modeling with Natural Language Toolkit (Hour 3—4)

import collections

and get a list of all the bi-grams

Bigrams = ngrams (moby, 2)

get the frequency of each bigram in our corpus
BigramFreq = collections.Counter (Bigrams)

what are the 20 most popular ngrams in this corpus?
BigramFreq.most common (20)

[((,', 'and"), 2607),

((of', 'the"), 1847),

(", 'sH, 1737),

((in', 'the"), 1120),

((,', 'the"), 908),

((;', 'and'), 853),

(('to', 'the'), 712),

(C.", 'But'), 596),

((,', 'that"), 584),

(«.,"™), 557),

('), 'as"), 523),

(€)', 'T), 461),

((',), 'he"), 446),
(('from', 'the"), 428),
((',,'in"), 402),

((of', 'his"), 371),
(('the', 'whale'), 369),
(('.", 'The"), 369),
((and', 'the"), 357),
((5', 'but"), 340)]

Workshop 2.3 N-grams Statistics with removal of unnecessary
punctuations

The results are average and unsatisfactory. It is noted that and, of the, s and in
the are the top 4 bigrams occurred in the entire Moby Dick literature. It is
average since these bigrams are common English usage but original bigram
statistics in simple sentences required to remove all punctuations by:

1. List out all punctuations required to remove.

2. Revise the above Python script to remove these punctuation symbols from
the token list.

3. Generate a top 20 bigram summary for Moby Dick without punctuations.
4. Use sample method to generate (cleaned) bigram statistics from Moby
Dick, Adventures of Sherlock Holmes, Sense and Sensibility, Book of Genesis,
Inaugural Address Corpus, and Wall Street Journal.

5. Verify results and comments of any pattern(s) found.

6. Try the same analysis for Trigram (N=3) and Quadrigram (N=4) to find
any pattern(s).

12.6 spaCy in NLP 313

12.6 spaCy in NLP

12.6.1 What Is spaCy?

SpaCy (spaCy 2024) is a free, open-source library for advanced NLP written in
Python and Cython programming languages.

The library is published under an MIT license developed by Dr. Matthew
Honnibal and Dr. Ines Montani, founders of the software company Explosion.

SpaCly is designed specifically for production use and build NLP applications to
process large volumes of text (Altinok 2021; Srinivasa-Desikan 2018; Vasiliev
2020) different from NLTK focused on teaching and learning perspective.

It also provides workflow pipelines for machine learning and deep learning tools
that can integrate with common platforms such as PyTorch, MXNet, and TensorFlow
with its machine learning library called Thinc. spaCy provides recurrent neural
models such as convolution neural networks (CNN) by adopting Thinc for NLP
implementation such as dependency parsing (DP), named entity recognition (NER),
POS tagging and text classification, and other advanced NLP applications such as
natural language understanding (NLU) systems, information retrieval (IR), infor-
mation extraction (IE) systems, and question-and-answer chatbot systems.

A spaCy system architecture is shown in Fig. 12.1, its major features support:

* NLP-based statistical models for over 19 commonly used languages.

* tokenization tools implementation for over 60 international languages.

e NLP pipeline components include NER, POS Tagging, DP, text classification,
and chatbot implementation.

* integration with common Python platforms such as TensorFlow, PyTorch, and
other high-level frameworks.

* integration with the latest Transformer and BERT technologies.

* user-friendly modular system packaging, evaluation, and deployment tools.

—
O © f- \
Assets & Data Remote Storage
| assets | [push) [pull
Fone) M spaCy s L 3
..__c!one.- b Lrun =3 TRANNG 4
REWLT
‘

Local Project

Fig. 12.1 System architecture of spaCy

314 12 Workshop#2: N-Grams Modeling with Natural Language Toolkit (Hour 3—4)

Dperating system macOs / 05X m Linux
Platform u ARM / M1

Package manager u conda from source
Hardware cPu m CUDANM3 v

Configuration virtual env () train models

Trained pipelines Gtalan Chinese Danish Dutch [English French German Greek
Italian Japanese Lith Muiti
Norwegian Bokmal Polish Portuguese Romanian Russian Spanish

Select pipeline for accuracy §

pip install -U pip setuptools wheel

pip install -U ‘spacy[cudall3]’

python -m spacy download en_core_web_sm

Fig. 12.2 Screenshot of spaCy configuration selection

12.7 How to Install spaCy?

SpaCy can be installed in MacOS/OSX, MS Windows, and Linux platforms (spaCy
2024) as per other Python-based development tools like NLTK.

spaCy.io provides a one-stop-process for users to select their own spaCy (1)
language(s) as trained pipelines, (2) optimal target in system efficiency vs. accuracy
for NLP applications development based a large dataset and lexical database, and
(3) download appropriate APIs and modules to maximize efficiency under CPU and
GPU hardware configuration. Figure 12.2 shows a Windows-based PIP download
environment using CUDA 11.3 GPU in English as trained pipelines and target for
speed efficiency over accuracy.

12.8 Tokenization Using spaCy

Tokenization is an operation in NLP. spaCy provides an easy-to-use scheme to
tokenize any text document into sentences like NLTK, and further tokenize sen-
tences into words.

This section uses Adventures_Holmes.txt as example to demonstrate tokeniza-
tion in spaCy.

12.8 Tokenization Using spaCy 315

Step 1: Import spaCy module

Step 2: Load spaCy module "en_core_web_sm"'

[18] import spacy

Use en_core_web_md-3.2.0 package for English pipeline optimized for CPU in
the current platform with components include: tok2vec, tagger, parser, senter, ner,
attribute_ruler, lemmatizer.

[19] nlp = spacy.load("en core web sm")

Step 3: Open and read text file ''Adventures_Holmes.txt'" into file_handler
""fholmes"’

Note: Since text file already exists, skip the try-except module to save program-
ming steps

[20] fholmes = open("Adventures Holmes.txt", "r",
encoding="utf-8")

Step 4: Read Adventures of Sherlock Holmes

Use read() method to read whole text document as a complex string object
"holmes."

[21] |holmes = fholmes.read()
holmes
"\ufeffThe Adventures of Sherlock Holmes\n\nby Arthur Conan Doyle\n\n\nContents\n\n
I. A Scandal in Bohemia\n II. The Red-Headed League\n III. A Case of Identity\n IV. The
Boscombe Valley Mystery\n V. The Five Orange Pips\n VI. The Man with the Twisted
Lip\n VIIL. The Adventure of the Blue Carbuncle\n VIII. The Adventure of the Speckled
Band\n IX. The Adventure of the Engineer’s Thumb\n X. The Adventure of the Noble
Bachelor\n XI. The Adventure of the Beryl Coronet\n XII. The Adventure of the Copper
Beeches\n\n\n\n\nl. A SCANDAL IN BOHEMIA\n\n\nl.\n\nTo Sherlock Holmes she is
always _the_ woman. I have seldom heard him\nmention her under any other name. In his
eyes she eclipses and\npredominates the whole of her sex. It was not that he felt any
emotion\nakin to love for Irene Adler. All emotions, and that one particularly,\nwere
abhorrent to his cold, precise but admirably balanced mind. He\nwas, I take it, the most
perfect reasoning and observing machine that\nthe world has seen, but as a lover he would
have placed himself in a\nfalse position. ...

Step 5: Replace all newline symbols

Replace all newline characters "\n" into space characters.

[22] holmes = holmes.replace("\n", " ")

316

12 Workshop#2: N-Grams Modeling with Natural Language Toolkit (Hour 3—4)

Step 6: Simple counting

Review total number of characters in The Adventures of Sherlock Holmes and
examine the result document.

[23]

[24]

len (holmes)
580632

holmes

"ufeffThe Adventures of Sherlock Holmes by Arthur Conan Doyle Contents I. A Scandal
in Bohemia II. The Red-Headed League III. A Case of Identity IV. The Boscombe Valley
Mystery V. The Five Orange Pips VI. The Man with the Twisted Lip VII. The Adventure
of the Blue Carbuncle VIII. The Adventure of the Speckled Band IX. The Adventure of
the Engineer’s Thumb X. The Adventure of the Noble Bachelor XI. The Adventure of the
Beryl Coronet XII. The Adventure of the Copper Beeches I. A SCANDAL IN BOHEMIA
1. To Sherlock Holmes she is always _the_ woman. I have seldom heard him mention her
under any other name. In his eyes she eclipses and predominates the whole of her sex. It
was not that he felt any emotion akin to love for Irene Adler. All emotions, and that one
particularly, were abhorrent to his cold, precise but admirably balanced mind. He was, I
take it, the most perfect reasoning and observing machine that the world has seen, but as a
lover he would have placed himself in a false position. ...

Step 7: Invoke nlp() method in spaCy

SpaCy nlp() method is an important Text Processing Pipeline to initialize nlp
object (English in our case) for NLP processing such as tokenization. It will convert
any text string object into an NLP object.

Study nlp() docstring to see how it works.

[25]

nlp?
Signature:
nlp(
text: Union[str, spacy.tokens.doc.Doc],
&
disable: Iterable[str] =[],
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
) -> spacy.tokens.doc.Doc
Type: English
String form: <spacy.lang.en.English object at 0x000001A70F4CCDDO>
File: d:\anaconda3\envs\py3 1 1nlp\lib\site-packages\spacy\lang\en\ _init__.py
Docstring: <no docstring>
Class docstring:
A text-processing pipeline. Usually you'll load this once per process,
and pass the instance around your application.

12.8

[26]

[27]

Tokenization Using spaCy 317

holmes doc = nlp(holmes)

holmes doc

The Adventures of Sherlock Holmes by Arthur Conan Doyle Contents I. A Scandal in
Bohemia II. The Red-Headed League III. A Case of Identity IV. The Boscombe Valley
Mystery V. The Five Orange Pips VI. The Man with the Twisted Lip VII. The Adventure
of the Blue Carbuncle VIII. The Adventure of the Speckled Band IX. The Adventure of
the Engineer’s Thumb X. The Adventure of the Noble Bachelor XI. The Adventure of the
Beryl Coronet XII. The Adventure of the Copper Beeches I. A SCANDAL IN BOHEMIA
I. To Sherlock Holmes she is always _the_ woman. I have seldom heard him mention her
under any other name. In his eyes she eclipses and predominates the whole of her sex. It
was not that he felt any emotion akin to love for Irene Adler. All emotions, and that one
particularly, were abhorrent to his cold, precise but admirably balanced mind. He was, I
take it, the most perfect reasoning and observing machine that the world has seen, but as a
lover he would have placed himself in a false position. He never spoke of the softer
passions, save with a gibe and a sneer. They were admirable things for the observer—
excellent for drawing the veil from men’s motives and actions. But for the trained reasoner
to admit such intrusions into his own delicate and finely adjusted temperament was to
introduce a distracting factor which might throw a doubt upon all his mental results. Grit
in a sensitive instrument, or a crack in one of his own high-power lenses, would not be
more disturbing than a strong emotion in a nature such as his. And yet there was but one
woman to him, and that woman was the late Irene Adler, of dubious and questionable
memory.

Step 8: Convert text document into sentence object

SpaCy is practical for text document tokenization to convert text document
object into (1) sentence objects and (2) tokens.

This example uses for-in statement to convert the whole Sherlock Holmes docu-
ment into holmes_sentences.

[28]

holmes sentences = [sentence.text for sentence in holmes doc.
sents]

holmes sentences

[\ufeffThe Adventures of Sherlock Holmes by Arthur Conan Doyle Contents I. A Scandal
in Bohemia II. ',

'The Red-Headed League III. ',

'A Case of Identity IV. ',

'The Boscombe Valley Mystery V. The Five Orange Pips VI. ',

'"The Man with the Twisted Lip VIL. ',

'The Adventure of the Blue Carbuncle VIII. ',

'The Adventure of the Speckled Band IX. ',

'The Adventure of the Engineer’s Thumb X. The Adventure of the Noble Bachelor XI. ',
'The Adventure of the Beryl Coronet XII. ',

'The Adventure of the Copper Beeches I. A SCANDAL IN BOHEMIA 1. To Sherlock
Holmes',

'she is always _the_ woman.', ...

318 12 Workshop#2: N-Grams Modeling with Natural Language Toolkit (Hour 3—4)

Examine the structure of spaCy sentences and see what can be found.

[29] |holmes sentences?
Type: list
String form: [\ufeffThe Adventures of Sherlock Holmes by Arthur Conan Doyle
Contents I. A Scandal <...> oduce our new eBooks, and how to subscribe to our email
newsletter to hear about new eBooks.']
Length: 6625
Docstring:
Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
Check how many sentences Adventures of Sherlock Holmes contains.

Study the number of sentences contained in The Adventures of Sherlock Holmes.

[30] |len (holmes sentences)
6625

List out sentence numbers 50th—59th to review.

[31] |lholmes sentences[50:60]
[“My dear Holmes,” said I, “this is too much.',
"You would certainly have been burned, had you lived a few centuries ago.',
Tt is true that I had a country walk on Thursday and came home in a dreadful mess, but as
I have changed my clothes I can’t imagine how you deduce it.',
'As to Mary Jane, she is incorrigible, and my wife has given her notice, but there, again, I
fail to see how you work it out.”” ',
'He chuckled to himself and rubbed his long, nervous hands together. ',
"“It is simplicity itself,” said he; “my eyes tell me that on the inside of your left shoe, just
where the firelight strikes it, the leather is scored by six almost parallel cuts.',
'Obviously they have been caused by someone who has very carelessly scraped round the
edges of the sole in order to remove crusted mud from it.',
'Hence, you see, my double deduction that you had been out in vile weather, and that you
had a particularly malignant boot-slitting specimen of the London slavey.',
'As to your practice, if a gentleman walks into my rooms smelling of iodoform, with a
black mark of nitrate of silver upon his right forefinger, and a bulge on the right side of his
top-hat to show where he has secreted his stethoscope, I must be dull, indeed, if I do not
pronounce him to be an active member of the medical profession.” ',
'I could not help laughing at the ease with which he explained his process of deduction.']

Step 9: Directly tokenize text document

Tokenize text document into word tokens by using “token” object in spaCy
instead of text document object extraction into sentence list object. Study how it
operates.

12.8 Tokenization Using spaCy 319

[32] |holmes words = [token.text for tokeninholmes doc]
holmes words [130:180]

['To', 'Sherlock’, 'Holmes', 'she', 'is', 'always', '_', 'the',"_', 'woman', "', 'T',
'have', 'seldom’, 'heard', 'him', 'mention’, 'her', 'under', 'any’, 'other', 'name’,
", 'In', 'his', 'eyes’, 'she’, 'eclipses', 'and', 'predominates’, 'the', 'whole', 'of’,
'her’, 'sex’, ", 'It', 'was', 'not', 'that', 'he’, 'felt’, 'any’, 'emotion’, 'akin’, 'to',
'love', 'for', 'Irene’, 'Adler']

[33] |lholmes words?

Type: list

String form: [\ufeffThe', 'Adventures', 'of', 'Sherlock’, 'Holmes', ' ', 'by', 'Arthur', 'Conan’,
'Doyle’, '<...> ubscribe', 'to', 'our', 'email', newsletter’, 'to', 'hear’, 'about’, 'new', 'eBooks', ".",
"

Length: 133749

Docstring:

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list.

The argument must be an iterable if specified.

[34] |1len (holmes words)
133749

[35] ‘nltk_homles_tokens = nltk.word tokenize (holmes)

[36] nltk homles tokens [104:153]

['To', 'Sherlock’, 'Holmes', 'she’, 'is', 'always', '_the_', 'woman', "', 'T', 'have',
'seldom’, 'heard’, 'him', 'mention’, 'her’, 'under’, 'any’, 'other’, 'name’, '.", 'In’,
'his', 'eyes', 'she’, 'eclipses’, 'and’, 'predominates’, 'the', 'whole', 'of’, 'her’, 'sex’,
", It 'was', 'not', 'that', 'he', 'felt', 'any’, 'emotion’, 'akin', 'to’, 'love', 'for', 'Irene’,
'Adler, "]

According to the extracted tokens, they seem to be identical
1. Are they 100% identical?

2. What is/are the difference(s)?

v 3. Which one is better?

320 12 Workshop#2: N-Grams Modeling with Natural Language Toolkit (Hour 3—4)

Workshop 2.4 SpaCy or NLTK - Which one is Faster?

In many applications, especially in Al and NLP applications, speed (i.e.,
efficiency) is one of the most important considerations because:

1. Many Al and NLP applications involve a huge data/database/databank for
WORKSHOP system training with a huge population size, e.g., Lexical database of English
and Chinese. So, whether an NLP engine/application is fast enough in every
NLP operation such as tokenization, tagging, POS tagging, and parsing is an
important factor.

2. In many Al-based related NLP applications such as Deep Learning for
real-time information extraction, it involves tedious network training and
learning process, how efficient of every NLP operation is a critical process to
decide whether NLP application can be used in real-world scenario.

This workshop studies how efficient NLTK vs. spaCy in terms of text document
Tokenization.

To achieve this, integrate Python codes of NTLK/spaCy document tokenization
with Timer object-time.

1. Implement tokenization codes in NTLK and spaCy to time tokenization time
by using a time object, the following codes can be used as reference.

2. Examine time taken for Tokenization process of "Adventures_Holmes.txt"
using NTLK vs. spaCy methods.

3. Which one is faster? or are they similar? Why?

4. How about Document— Text efficiency? Compare NTLK vs. spaCy on
Doc—Text efficiency.

Hint: Like spaCy, NLTK can also implement Document— Text by two simple
codes:

nltk_tokenizer = nltk.data.load("tokenizers/punkt/english.pickle")
nltk_sentences = tokenizer.tokenize(holmes) # holmes is the text document
string object

[37] | # Sample code for Efficiency Performance of the NLP Engine
import nltk # or spacy
import time

start = time.time ()

#

YOUR NTLK or spaCy Tokenization codes

#

print ("Time taken: %s s" % (time.time() - start))

Time taken: 0.0 s

References

Albrecht, J., Ramachandran, S. and Winkler, C. (2020) Blueprints for Text Analytics Using
Python: Machine Learning-Based Solutions for Common Real World (NLP) Applications.
O’Reilly Media.

Altinok, D. (2021) Mastering spaCy: An end-to-end practical guide to implementing NLP applica-
tions using the Python ecosystem. Packt Publishing.

Arumugam, R., & Shanmugamani, R. (2018). Hands-on natural language processing with python.
Packt Publishing.

References 321

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with python. O’Reilly.

Doyle, A. C. (2019) The Adventures of Sherlock Holmes (AmazonClassics Edition).
AmazonClassics.

Gutenberg (2024) Project Gutenberg official site. https://www.gutenberg.org/ Accessed 17
Dec 2024.

Hardeniya, N., Perkins, J. and Chopra, D. (2016) Natural Language Processing: Python and
NLTK. Packt Publishing.

Melville, H. (2006) Moby Dick. Hard Press.

Kedia, A. and Rasu, M. (2020) Hands-On Python Natural Language Processing: Explore tools and
techniques to analyze and process text with a view to building real-world NLP applications.
Packt Publishing.

NLPGitHub (2024) URL: https://github.com/raymondshtlee/NLP/. Accessed 17 Dec 2024.

NLTK (2024) NLTK official site. https://www.nltk.org/. Accessed 17 Dec 2024.

Perkins, J. (2014). Python 3 text processing with NLTK 3 cookbook. Packt Publishing Ltd.

SpaCy (2024) spaCy official site. https://spacy.io/. Accessed 17 Dec 2024.

Sidorov, G. (2019) Syntactic n-grams in Computational Linguistics (SpringerBriefs in Computer
Science). Springer.

Srinivasa-Desikan, B. (2018). Natural language processing and computational linguistics: A prac-
tical guide to text analysis with python, gensim, SpaCy, and keras. Packt Publishing, Limited.

Vasiliev, Y. (2020) Natural Language Processing with Python and spaCy: A Practical Introduction.
No Starch Press.

https://www.gutenberg.org/
https://github.com/raymondshtlee/NLP/
https://www.nltk.org/
https://spacy.io/

Chapter 13)
Workshop#3: Part-of-Speech Tagging s
Using Natural Language Toolkit

(Hour 5-6)

13.1 Introduction

In Chap. 3, we studied basic concepts and theories related to Part-of-Speech (POS)
and various POS tagging techniques. This workshop will explore how to implement
POS tagging using NLTK by starting from a simple recap on tokenization tech-
niques and two fundamental processes in word-level progressing: stemming and
stop-word removal. There are two types of stemming techniques: Porter Stemmer
and Snowball Stemmer that can be integrated with WordCloud commonly used in
data visualization followed by the main theme of this workshop, and introduce
PENN Treebank Tagset to create your own POS tagger.

Please ensure that the following Python packages are installed before starting the
workshop:

* Python (demo version 3.11.9)

¢ NLTK (demo version 3.9.1)

* matplotlib (demo version 3.9.2)
¢ WordCloud (demo version 1.9.3)
* svgling (demo version 0.5.0)

* svgwrite (demo version 1.4.3)

¢ scikit-learn (demo version 1.5.1)
* spacy (demo version 3.4.4)

If these packages are not installed on PC/laptop, use pip install xxx command.
The detailed requirements list and Python package version used in this workshop
can be found in the requirements.txt file stored in the NLP GitHub repository
(NLPGitHub 2024).

© The Author(s), under exclusive license to Springer Nature Singapore Pte 323
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_13&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_13#DOI

324 13 Workshop#3: Part-of-Speech Tagging Using Natural Language Toolkit (Hour 5-6)
13.2 A Revisit on Tokenization with NLTK

Text sentences are divided into subunits first and map into vectors in most NLP
tasks. These vectors are fed into a model to encode where output is sent to a down-
stream task for results. NLTK (2024) provides methods to divide text into subunits
as tokenizers. Twitter sample corpus is extracted from NLTK to perform tokeniza-
tion (Hardeniya et al. 2016; Kedia and Rasu 2020; Perkins 2014) in procedures
below (Albrechit et al. 2020; Antic 2021, Bird et al. 2009):

. Import NLTK package

. Import twitter sample data
. List out fields

. Get Twitter string list

. List out first 15 Twitters

. Tokenize the twitter

AN A W=

Let’s start with the import of NLTK package and download twitter samples pro-
vided by NLTK platform.

[1] # Import NLTK
importnltk
Download twitter samples
nltk.download('twitter samples')

Import twitter samples dataset as twir and check file id using fileids() method:

2] # Import twitter samples from NTLK corpus (twtr)
fromnltk.corpus import twitter samples as twtr

[3] # Display Field IDs
twtr.fileids ()

['negative_tweets.json','positive_tweets.json', 'tweets.20150430-23406.json']

Review first 5 twitter messages:
[4] # Assign sample twitters (stwtr)

stwtr = twtr.strings ('tweets.20150430-223406.73son")

[5] # Display the first 5 sample twitters
stwtr[:5]

13.2 A Revisit on Tokenization with NLTK 325

['RT @KirkKus: Indirect cost of the UK being in the EU is estimated to be costing
Britain £170 billion per year! #BetterOffOut #UKIP',

'VIDEO: Sturgeon on post-election deals http://t.co/BTJwrpbmOY",

'RT @LabourEoin: The economy was growing 3 times faster on the day David
Cameron became Prime Minister than it is today.. #BBCqt http://t.co...",

'RT @GregLauder: the UKIP east lothian candidate looks about 16 and still has an
msn addy http://t.co/7eIU0cSFm1',

"RT @thesundaypeople: UKIP's housing spokesman rakes in £800k in housing
benefit from migrants. http://t.co/GVwb9Rcb4w http://t.co/cl AZxcLh..."]

Import word_tokenize method from NLTK, name as w_tok to perform tokeniza-
tion on 5th twitter message:

[6] # Import NLTK word tokenizer
from nltk.tokenize import word tokenize as w tok
[71 # tokenize stwtr[4]

w_tok(stwtr([4])

[RT','@', 'thesundaypeople', "', "'UKIP', "'s", 'housing', 'spokesman’, rakes',
'in', '"£800k’, 'in', 'housing’, 'benefit', 'from’, 'migrants', ., 'http', ":', //t.co/
GVwb9Rcb4w', 'http', ', '//t.co/c1 AZxcLh..."]

NLTK offers tokenization for punctuation and spaces wordpunct_tokenize. Let’s
use the 5th twitter message to see how it works.

[8]

fromnltk.tokenize import wordpunct tokenize aswp tok
wp tok (stwtr[4])

[RT','@', 'thesundaypeople', ', 'UKIP', """, 's', 'housing', 'spokesman’, 'rakes',

'in', '£', '800K', 'in’', 'housing', 'benefit', 'from’, 'migrants’, ", 'http', "/, 't', ",
'co', /', 'GVwWb9Rcb4w', 'http', /', 't,, "', 'co', /', 'c1AZxcLh',"..."]

It can also tokenize words between hyphens and other punctuations. Further,
NLTK ‘s regular expression (RegEx) tokenizer can build custom tokenizers:

http://t.co/BTJwrpbmOY
http://t.co
http://t.co/7eIU0c5Fm1
http://t.co/GVwb9Rcb4w
http://t.co/c1AZxcLh…

326

13

Workshop#3: Part-of-Speech Tagging Using Natural Language Toolkit (Hour 5-6)

[9]

Import the RegEx tokenizer

from nltk import regexp tokenize as rx tok
rx patternl = '\w+'

rx tok(stwtr[4],rx patternl)

['RT", 'thesundaypeople', "'UKIP', 's', 'housing', 'spokesman’, 'rakes', 'in', '800k’,
'in’, 'housing', 'benefit', 'from', 'migrants’, 'http, 't', 'co’, 'GVwb9Rcb4w',
'http', 't', 'co', 'c1AZxcLh']

A simple regular expression filtered out words with alphanumeric characters only,
but not punctuations in previous code. Another regular expression can detect and
filter out both words containing alphanumeric characters and punctuation marks in
the following code:

[10]

Create Rx pattern2 and perform the RX tokenize again
rx_pattern2 = "\w+|[!,\-,]"'
rx tok(stwtr[4],rx pattern2)

['RT', 'thesundaypeople', 'UKIP', 's', 'housing', 'spokesman', 'rakes', 'in’, '‘800k’,
'in’, 'housing', 'benefit', 'from', 'migrants’, 'http', 't', 'co', 'GVwb9Rcb4w', 'http', 't',
'co', 'c1AZxcLh']

13.3 Stemming Using NLTK

After tokenization has sentences divided into words, stemming is a procedure to
unify words and extract the root, base form of each word, e.g., stemming of word
compute is shown in Fig. 13.1.

P

&

-' : Stemmer
gomputenz!- Algorithm -‘ Compute

‘Computer

Fig. 13.1 Stemming of Compute

13.3 Stemming Using NLTK 327
13.3.1 What Is Stemming?

Stemming usually removes prefixes or suffixes such as -er, -ion, -ization from words
to extract the base or root form of a word, e.g., computers, computation, and com-
puterization. Although these words are spelled differently but share identical con-
cepts related to compute, so compute is the stem of these words.

13.3.2 Why Stemming?

It is needless to extract every single word in a document but only the concept or
notion they represent such as information extraction and topic summarization in
NLP applications. It can save computational capacity and preserve the overall
meaning of the passage. The stemming technique is to extract the overall meaning
or words’ base form instead of distinct words.

Let’s look at how to perform stemming on text data.

13.3.3 How to Perform Stemming?

NLTK provides a practical solution to implement stemming without sophisticated
programming. Let’s try two commonly used methods (1) Porter Stemmer and (2)
Snowball Stemmer in NLP.

13.3.3.1 Porter Stemmer

Porter Stemmer is the earliest stemming technique used in 1980s, its key procedure
is to remove words common endings and parse into generic forms. This method is
simple and used in many NLP applications effectively.

Import Porter Stemmer from NLTK library:

[11] # Import PorterStemmer as p stem
fromnltk.stem.porter import PorterStemmer asp stem

Try to stem words like computer.

[12] p_stem() .stem("computer")
‘comput’
PorterStemmer simply removes suffix -er when processing computer to acquire
compute which is incorrect. Hence this stemmer is basic.

328

13 Workshop#3: Part-of-Speech Tagging Using Natural Language Toolkit (Hour 5-6)

Next, try to stem dogs to see what happens.

[13]

p_stem() .stem("dogs")

'dog’

For the above code, dogs are converted from plural to singular, remove suffix -s
and convert to dog

Let’s try more, say traditional.

[14]

p _stem().stem("traditional")

"tradit’

Stemmer may output an invalid word when dealing with special words, e.g., tradit
is acquired if suffix -ional is removed. Tradit is not a word in English, it is a root
form.

Let’s work on words in plural form. There are 26 words extracted from a to z in
plural form to perform PorterStemming:

[15]

Define some plural words

w_plu = ['apes', 'bags', 'computers', 'dogs', 'egos', 'fresc
oes', 'generous', 'hats', 'igloos', 'jungles', 'kites', 'lea
rners', 'mice', 'natives', 'openings', 'photos', 'queries’', '

rats', 'scenes', 'trees',6 'utensils','veins', 'wells', 'xyl
ophones', 'yoyos"', 'zens']

[16]

fromnltk.stem.porter import PorterStemmer asp stem
w sgl = [p stem().stem(wplu) forwpluinw plu]
print (' '.join(w_sgl))

ape bag comput dog ego fresco gener hat igloo jungl kite learner mice nativ open
photo queri rat scene tree utensil vein well xylophon yoyo zen

13.3 Stemming Using NLTK 329

Porter stemming will remove suffixes -s or -es to extract root form, that may result
in single form such as apes, bags, dogs, etc. but in some cases, it will generate
[' | non-English words such as gener, jungl and queri.

Workshop 3.1 Try to stem a paragraph from The Adventures of Sherlock
Holmes

1. Read Adventures_Holmes.txt text file from The Adventures of Sherlock Holmes
(Doyle 2019; Gutenberg 2024).

WORKSHOP | 2. Save contents into a string object "holmes_doc."

3. Extract a paragraph and tokenize it.

4. Use porter stemming and output a list of stemmed words.

13.3.3.2 Snowball Stemmer

Snowball Stemmer provides improvement in stemming results as compared with
Porter Stemmer and provides multi-language stemming solution. One can check
languages using languages() method. Import from NLTK package to invoke
Snowball Stemmer:

[17] # Import Snowball Stemmer as s stem
fromnltk.stem.snowball import SnowballStemmer as s stem

Review what languages Snowball Stemmer can support:

[18] # Display the s stem language set
print (s_stem.languages)
(‘arabic', 'danish’, 'dutch’, 'english’, 'finnish’, 'french’, 'german’, 'hungarian', 'italian’,
‘norwegian', 'porter’, 'portuguese’, romanian', russian’, 'spanish’, 'swedish')

Snowball Stemmer provides a variety of solutions in commonly used languages
from Arabic to Swedish.

330

[19]

13 Workshop#3: Part-of-Speech Tagging Using Natural Language Toolkit (Hour 5-6)

Import Snowball Stemmer as s _stem and assign to
English language

fromnltk.stem.snowball import SnowballStemmer as s _stem
s _stem ENG = s stem(language="english")

Use same list of plural words (w_plu) to check how it works in Snowball
Stemmer for comparison:

[20]

[21]

Display the list of plural words

w plu

['apes', 'bags', 'computers', 'dogs', 'egos', 'frescoes', 'generous', 'hats',
'igloos’, 'jungles’, 'kites', 'learners', 'mice’, 'natives', 'openings', ‘photos’,
'queries’, 'rats', 'scenes’, 'trees', 'utensils’, 'veins', 'wells', 'xylophones',
'yoyos', 'zens']

Apply Snowball Stemmer onto the plural words

sgls = [s_stem ENG.stem(wplu) for wplu in w_plu]

print (' '.join(sgls))

Ape bag comput dog ego fresco generous hat igloo jungl kite learner mice nativ
open photo queri rat scene tree utensil vein well xylophon yoyo zen

Try to compare with previous stemmer. What are the differences?

1. Snowball Stemmer achieved similar results as porter Stemmer in most cases
except in generously where snowball stemmer came up with a meaningful root
form generous instead of gener in porter stemmer.

2. Try some plural words to compare performance between porter Stemmer vs

snowball stemmer.

13.4 Stop-Words Removal with NLTK

13.4.1 What Are Stop-Words?

There are input words and utterances to filter out impractical stop-words in NLP

preprocessing such as a, is, the, of, etc.
NLTK already provides a built-in stop-words package for this function. Let’s see

how it works.

13.4 Stop-Words Removal with NLTK 331

13.4.2 NLTK Stop-Words List

Import stop-words module and call stopwords.words() method to list out all stop-
words in English.

[22]

Import NLTK stop-words as wstops

from nltk.corpus import stopwords as wstops

print (wstops.words ('english'))

['', 'me', 'my', 'myself', 'we', 'our’, 'ours', 'ourselves', 'you', "you're", "you've",
"you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', himself’,
'she’, "she's", 'her’, 'hers', 'herself, 'it', "it's", "its', 'itself’, 'they', 'them’, 'their’,
'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that’, "that'll", 'these',
‘those’, 'am', 'is', 'are’, 'was', 'were', 'be', 'been’, 'being', 'have’, 'has', 'had’, 'having',
'do', 'does', 'did', 'doing', 'a', 'an’, 'the’, 'and', 'but’, 'if', 'or', 'because’, 'as', 'until’,
'while', 'of', 'at', 'by’, 'for', 'with', 'about', 'against', 'between’, 'into’, 'through’,
'during’, 'before’, 'after', 'above’, 'below', 'to', 'from’, 'up', 'down’, 'in’, 'out’, 'on’, 'off’,
‘over', 'under', 'again’, 'further’, 'then’, 'once', 'here’, 'there', 'when', 'where', 'why',
'how', 'all', 'any', 'both’, 'each’, 'few', 'more', 'most’, 'other’, 'some’, 'such’, 'no', 'nor',
‘not’, 'only’, 'own', 'same’, 'so', 'than', 'too’, 'very', 's', 't', 'can’, 'will', 'just, 'don’,
"don't", 'should’, "should've", 'now', 'd', 'II', 'm', '0', 're', 've', 'y', 'ain’, 'aren’, "aren't",
'couldn’, "couldn't", 'didn’, "didn't", 'doesn', "doesn't", 'hadn’, "hadn't", 'hasn',
"hasn't", 'haven', "haven't", 'isn’, "isn't", 'ma’, 'mightn’, "mightn't", 'mustn’,

"mustn't", 'needn’, "needn't", 'shan’, "shan't", 'shouldn’, "shouldn't", 'wasn',

"o ron "o "o "o

"wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"]

1. Stop-words corpus size is not large.

2. All stop-words are commonly used in many documents. They affect storage and
system efficiency in NLP applications if they are not removed.

3. This stop-word corpus is incomplete and subjective. There may be words
considered as stop-words not included in this databank.

Use stopwords.fileids() function to review how many languages library of stop-
words NLTK contains.

[23]

Import NLTK stop-words as wstops and display the
FILE IDs

fromnltk.corpus import stopwords as wstops

print (wstops.fileids ())

['arabic', 'azerbaijani', 'basque’, 'bengali', 'catalan’, 'chinese', 'danish’, 'dutch’,
‘english’, 'finnish’, 'french’, 'german’, 'greek’, 'hebrew', 'hinglish’, 'hungarian',
'indonesian’, 'italian’', 'kazakh', 'nepali', 'norwegian', 'portuguese’, 'romanian’,
'russian’, 'slovene', 'spanish’, 'swedish', 'tajik’, 'turkish']

332 13 Workshop#3: Part-of-Speech Tagging Using Natural Language Toolkit (Hour 5-6)

13.4.3 Try Some Texts

The above list shows all stop-words. Let’s use a simple utterance:

[24] # Import NLTK stop-words as wstops
fromnltk.corpus import stopwords as wstops
wstops ENG = wstops.words ('english')
utterance = "Try to test for the stop word remove
function to see how it works."
utterance clean =[w for w in utterance.split()

if w not in wstops ENG]

Review results:

[25] # Display the cleaned utterance
utterance clean
[Try', 'test’, 'stop', 'word', 'remove’', 'function’, 'see’, 'works.']

1. All commonly used stop-words such as to, for, the, it, are removed as shown in

the example.
2. It has little effect on the overall meaning of the utterance.
3. It requires the same computational time and effort.

The following example uses Hamlet from The Complete Works of Shakespeare to
demonstrate how stop-words are removed from text processing in NLP.

[26] # Import the Gutenberg library fromNLTK
fromnltk.corpus import gutenberg as gub
hamlet = gub.words ('shakespeare-hamlet.txt')

hamlet clean = [wforwinhamlet if wnot inwstops ENG]
[27] len (hamlet clean)*100.0/len (hamlet)
69.26124197002142

This classic literature contains deactivated words. Nevertheless, these stop-words
are unmeaningful in many NLP tasks that may affect results, so most of them are
removed during preprocessing

13.4 Stop-Words Removal with NLTK 333
13.4.4 Create your Own Stop-Words

Stop-word corpus can extract a list of strings that can add any stop-words with

simple append() function, but it is advisable to create a new stop-word library object
name to begin.

Step 1: Create own stop-word library list.

Step 2: Check object type and just see it has a simple list

[28] My sws = wstops.words('english')

[29] My sws?
Type: list
String form: ['i', 'me', 'my', 'myself’, 'we', 'our’, 'ours', 'ourselves', 'you', "you're",
"you've", "you'll" <...> houldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't",
'won', "won't", 'wouldn', "wouldn't"]
Length: 179
Docstring:
Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list.

The argument must be an iterable if specified.

Step 3: Study stop-word list
Step 4: Add new stop-word "sampleSW'' using append()

[30] My sws
['i', 'me', 'my', 'myself’, 'we', 'our’, 'ours', 'ourselves', 'you', "you're", "you've",
"you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself’,
'she’, "she's", 'her’, 'hers', 'herself’, 'it', "it's", 'its', 'itself’, 'they’, 'them’,
'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', ...

[31] My sws.append('sampleSW')
My sws[160:]

['ma’, 'mightn’, "mightn't", 'mustn’, "mustn't", 'needn’, "needn't", 'shan’,

s

"shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won',

>
no o

"won't", 'wouldn', "wouldn't", 'sampleSW']

334 13 Workshop#3: Part-of-Speech Tagging Using Natural Language Toolkit (Hour 5-6)

Try this to see how it works.

[32]

WORKSHOP

Import word tokenize as w_tok
fromnltk.tokenize import word tokenize asw tok
Create the sample utterance

utterance = "This is a sample utterance which consits
of eg as stop word sampleSwW."

Tokenize the utterance

utt toks = w_tok(utterance)

Stop word removal

utt nosw = [wforwinutt toksif not winMy sws]
Display utterance without My stopwords
print (utt nosw)

['This', 'sample’, 'utterance', 'consits', 'eg', 'stop’, 'word', ".']

Workshop 3.2 Stop-word Filtering on The Adventures of Sherlock Holmes
Use stop-word filtering technique for The Adventures of Sherlock Holmes:

1. Read Adventures_Holmes.txt text file.

2. Save contents into a string object "holmes_doc."

3. Use stop-word technique just learnt to tokenize holmes_doc.

4. Generate a list of word tokens with stop-words removed.

5. Check any 3 possible stop-words to add into own stop-word list.

6. Regenerate a new token list with additional stop-word removed.

13.5 Text Analysis with NLTK

When text data has been processed and tokenized, basic analysis is required to cal-
culate words or tokens, their distribution and usage frequency in NLP tasks. This
allows understanding of main contents and topics accuracy in the document. Import
a sample web text (Firefox.txt) from NLTK library.

(33]

Import webtext as wbtxt
fromnltk.corpus import webtext as wbtxt

Create sample webtext

wbtxt s = wbtxt.sents('firefox.txt")

wbtxt w = wbtxt.words ('firefox.txt')

Display total nos of webtext sentences in firefox.txt
len (wbtxt s)

1144

Review the number of words as well.

[34]

Display total nos of webtext words in firefox.txt
len (wbtxt w)
102457

13.5 Text Analysis with NLTK 335

FireFox.Txt contains sample texts extracted from the Firefox discussion forum to
serve as a useful dataset for basic text-level analysis in NLP.

It can also obtain vocabulary size by passing through a set as shown in the fol-
lowing code:

[35]

Define vocabulary object (vocab)
vocab = set (wbtxt w)

Display the size of Vocab

len (vocab)

8296

nltk. FreqDist() function is used to generate words frequency distribution occurred
in the whole text as shown:

[36] # Define Frequency Distribution object
fdist = nltk.FregDist (wbtxt w)
[37] sorted(fdist, key=fdist. getitem ,reverse=True)

[0:30]

[|.-’ 'in', 'tO', -m’ 'the‘, ||m’ ‘IlOt', v_|’ ‘when‘, 'OII‘, ‘a', 'iS', 't', 'and', 'Of', 1(1’ 'page',
o

'for', 'with', ')', 'window', 'Firefox', 'does', 'from', 'open’, "', 'menu’, 'should',
'bar’, 'tab']

The above code generates the top 30 frequently used words and punctuations in
the whole text. In, fo and the are top 3 on the list like other literatures as Firefox.
Txt text is the collection of users’ discussion messages and contents about Firefox
browser like conversations.

To exclude stop-words such as the, and not, use the following code to see f words
frequency distribution longer than 3.

[38]

Import Matplotlib pyplot object
importmatplotlib.pyplot as pyplt

pyplt.figure (figsize=(20, 8))

lwords = dict ([(k,v) fork,vinfdist.items () if len (k)>3])
fdist = nltk.FregDist (1lwords)

fdist.plot (50, cumulative=False)

336 13 Workshop#3: Part-of-Speech Tagging Using Natural Language Toolkit (Hour 5-6)

<{AxesSubplot:xlabel="Samples’, ylabel="Counts’>

Exclude stop-words such as the, and, is, and create a tuple dictionary to record
words frequency. Visualize and transform them into an NLTK frequency
distribution graph based on this dictionary as shown above

Workshop 3.3 Text Analysis on The Adventures of Sherlock Holmes

1. Read Adventures_Holmes.txt text file.

2. Save contents into a string object "holmes_doc."

3. Use stop-word technique from tokenize holmes_doc.

WORKSHOP | 4. Generate a word tokens list with stop-words removed.

5. Use the technique learnt to plot the first 30 frequently occurred words from this
literature.

6. Identify any special pattern related to word distribution. If not, try the first 50
ranking words.

13.6 Integration with WordCloud

13.6.1 What Is WordCloud?

Wordcloud, also known as tag cloud, is a data visualization method commonly used
in many web statistics and data analysis scenarios. It is a graphical representation of
all words and keywords in sizes and colors. A word has the largest and bold in word
cloud means it occurs frequently in the text (dataset), as illustrated in Fig. 13.2.

To generate frequency distribution of all words that occur in a text document, the
most natural way is to generate statistics in a WordCloud.

Python provides a built-in WordCloud package "WordCloud."

13.6 Integration with WordCloud 337

Al
behavior
intel
g
F
machine
software
2
-
=

- E
&
artificial psychology Gyber § § intelligent machinee= S 9 teghnnln
SEE. epe o Epf. | -

¢ sii=artificiallintelligence
—S i E%E-Ia"!" nation = jcommunigation. = = pamine .o

eggf_,;;,g er§P§Q§8I£|E|§ru'E'-[.ElE-i§E_Il_t‘lllie_g’

=elgEsorgugnls fH BB EE S
S lvirate 182 = 815 B S
= g .Eimlﬁg%mm E

Fig. 13.2 A sample WordCloud (Tuchong 2024)

It can obtain an intuitive visualization of words used in the text from the fre-
quency distribution.
Install WordCloud package first using the pip install command:

pip install WordCloud
Once WordCloud package is installed, import WordCloud package using import

command and invoke the frequency generator with generate_from frequen-
cies() method:

[39] # Import WordCloudas wCloud
fromwordcloud import WordCloud as wCloud

[40] ‘wcld = wCloud() .generate from frequencies (fdist)

[41] Importmatplotlib.pyplot as pyplt

pyplt.figure (figsize=(20, 8))

pyplt.imshow (wcld, interpolation='bilinear')
pyplt.axis ("off")

pyplt.show ()

338 13 Workshop#3: Part-of-Speech Tagging Using Natural Language Toolkit (Hour 5-6)

bookmark

:doesV\,

p a g golba r

Workshop 3.4 WordCloud for The Adventures of Sherlock Holmes
1. Read Adventures_Holmes.txt text file.

2. Save contents into a string object "holmes_doc."

3. Use stop-word technique from tokenize holmes_doc.

WORKSHOP | 4. Generate word tokens list with stop-words removed.

5. Extract the top 100 frequent words that occurred from this literature.
6. Generate WordCloud for this literature.

13.7 POS Tagging with NLTK

The earlier part of this workshop had studied several NLP preprocessing tasks:
tokenization, stemming, stop-word removal, word distribution in text corpus, and
data visualization using WordCloud. This section will explore POS tagging
in NLTK.

13.7.1 What Is POS Tagging?

POS refers to the process of classifying words in a sentence/utterance into specific
syntactic or grammatical functions.

There are nine major POS in English: Nouns, Pronouns, Adjectives, Verbs,
Prepositions, Adverbs, Determiners, Conjunctions and Interjections. POS tagging is
to assign POS tags into each word token in the sentence/utterance.

NTLK supports commonly used tagset such as PENN Treebank (Treebank 2024)
and Brown Corpus to create own tags used for specific NLP applications.

13.7 POS Tagging with NLTK 339

Table 13.1 Table of Universal POS Tagset in English

Tag Meaning English Examples

ADJ adjective new, good, high, special, big, local
ADP adposition on, of, at, with, by, into, under
ADV adverb really, already, still, early, now
CONJ conjunction and, or, but, if, while, although
DET determiner, article the, a, some, most, every, no, which
NOUN noun year, home, costs, time, Africa
NUM numeral twenty-four, fourth, 1991, 14:24
PRT particle at, on, out, over, per, that, up, with
PRON pronoun he, their, her, its, my, I, us

VERB verb is, say, told, given, playing, would

punctuation marks 0!

X other ersatz, esprit, dunno, qrS, university

13.7.2 Universal POS Tagset

A tagset consists of 12 universal POS categories and is constructed to facilitate
future requirements for unsupervised induction of syntactic structure. When com-
bined with original treebank data, this universal tagset and mapping produce a data-
set consisting of common POS in 22 languages (Albrechit et al. 2020; Antic 2021,
Bird et al. 2009).

Table 13.1 shows a table of universal POS tagset in English.

13.7.3 PENN Treebank Tagset (English & Chinese)

English PENN Treebank Tagset is used with English corpora developed by Prof.
Helmut Schmid in TC project at the Institute for Computational Linguistics of the
University of Stuttgart (TreeBank 2024). Table 13.2 shows an original 45 used
PENN Treebank Tagset.

A recent version of this English POS Tagset can be found at Sketchengine.eu
(Sketchengine 2024a), and Chinese POS Tagset (Sketchengine 2024b).

NLTK provides direct mapping from tagged corpus such as Brown Corpus
(NLTK 2024) to universal tags for implementation, e.g., tags VBD (for past tense
verb) and VB (for base form verb) map to VERB only in universal tag set.

[42] # Import Brown Corpus as bwn
fromnltk.corpus import brown as bwn

340

Table 13.2 Original 45 used PENN Treebank Tagset

13 Workshop#3: Part-of-Speech Tagging Using Natural Language Toolkit (Hour 5-6)

No | POS Tag | Description Example No | POS Tag | Description Example
1 |CC coordinating and, but, or 24 |SYM Symbol $/[=*
conjunction
2 |CD cardinal number | 1, third 25 | TO infinitive ‘to’ to
3 |DT determiner a, the 26 | UH interjection haha, oops
4 EX existential there | there is 27 | VB verb - base form | drink
5 |FW foreign word les 28 | VBD verb - past tense | drank
6 |IN preposition, in, of, by, like |29 | VBG verb - gerund drinking
sub-conj
7 |1 adjective big, wide, 30 | VBN verb - past drunk
green participle
8 |JIR adjective, bigger, wider, |31 | VBP verb - non-3sg drink
comparative greener pres
9 |IIS adjective, biggest, 32 | VBZ verb - 3sg pres | drinks
superlative wildest,
greenest
10 |LS list marker 1), One, i 33 | WDT wh-determiner which, that
11 'MD modal can, could, 34 | WP wh-pronoun who, what
shall, will
12 |NN noun, singular or | table, shop 35 | WP$ possessive whose,
mass wh-pronoun those
13 | NNS noun plural tables, shops |36 | WRB wh-abverb where,
when, how
14 | NNP proper noun, Samsung 37 | # # #
singular
15 |NNPS | proper noun, Vikings 38 |$ $ $
plural
16 |PDT predeterminer all/both the 39 " Left quotation e
students
17 | POS possessive friend’s 40 | right quotation e
ending
18 | PP personal pronoun | I, he, it, you |41 | (Opening ({
brackets
19 | PPZ possessive my, his, your, |42 |) Closing brackets |) }
pronoun one's
20 RB adverb however, 43 |, Comma)
quickly, here
21 |RBR adverb, better, quicker | 44 Sent-final punc 1?
comparative
22 |RBS adverb, best, quickest |45 Mid-sentence S -
superlative punc
23 ' RP particle of, up (e.g.
give up)

13.7 POS Tagging with NLTK 341

[43]

bwn.tagged words () [0:30]

[('The', 'AT"), ('Fulton', 'NP-TL"), ('‘County', 'NN-TL'), ('Grand', 'JJ-TL"),
(Jury', 'NN-TL"), ('said’, 'VBD'), ('Friday', 'NR"), (‘an', 'AT"),
('investigation', 'NN"), ('of', 'IN"), ("Atlanta's", 'NP$"), ('recent’, 'JJ'),
(‘primary’, 'NN'), (‘election’, 'NN'), (‘produced', 'VBD"), ("*',"™"),

('no', 'AT"), (‘evidence', ' NN"), (""", """), ('that', 'CS"), (‘any', 'DTT'),
(‘irregularities’, 'NNS'), (‘took’, 'VBD'), (‘place’, 'NN"), ('.", "."), (‘'The', 'AT"),
(jury’, 'NN"), (‘further', 'RBR"), ('said’, 'VBD"), (‘in', 'IN")]

Fulton is tagged as NP-TL in example code above, a proper noun (NP) appears in
a title (TL) context in Brown corpus that mapped to noun in universal tag set.
These sub-categories are to be considered instead of generalized universal tags in
NLP application

13.7.4 Applications of POS Tagging

POS tagging is commonly used in many NLP applications ranging from IE and
NER to sentiment analysis and question-&-answering systems.
Try the following and see how it works:

[44]

Import word tokenize and pos tag as w_tok and p tag
fromnltk.tokenize import word tokenizeasw tok
fromnltk import pos tagasp_ tag

Create and tokenizer two sample utterances uttl and
utt2

uttl = w_tok("Give me a call")

utt2 = w_tok("Call me later")

Review these two utterances’ POS tags:

[45]

[46]

p_tag(uttl, tagset='universal')
[('Give', 'VERB'), ('me', PRON'), (‘a', ' DET"), (‘call', ' NOUN")]

p_tag(utt2, tagset='universal')
[('Call', 'VERB'), ('me', 'PRON"), ('later', 'ADV")]

342 13 Workshop#3: Part-of-Speech Tagging Using Natural Language Toolkit (Hour 5-6)

1. The word call is a noun in text 1 and a verb in text 2.

2. POS tagging is used to identify a person, a place, or a location, based on the
tags in NER.

» 3. NLTK also provides a classifier to identify such entities in text as shown in the
following code:

[47] utt untag = w_tok("My dad was born in South America")
utt_untag

['My', 'dad’, 'was', 'born’, 'in', 'South', 'America']

[48] utt tagged = p tag(utt untag)
utt tagged

[(My', 'PRPS$"),

('dad', 'NN"),

(‘was', 'VBD'),

('born’, 'VBN'),

('in’, 'IN"),

('South', 'NNP"),

('America’, 'NNP")]

[49] # Import svgling package
import svgling

Import NLTK.ne chunk as chunk
fromnltk import ne chunk as chunk
Display POS Tags chunk
chunk (utt tagged)

N
My dad was bom in GPE

L N

PRPS NN VBD VBN IN South America

|

NNP NNP

13.7 POS Tagging with NLTK

343

NLTK chunk() function is applied to NER to identify the chunker South America

as a geopolitical entity (GPE) in this example. So far, there are examples using

NLTK’s built-in taggers. The next section will look at how to develop own POS

tagger

[50] # Try another example
utt tok = w_tok("Can you please buy me Haagen-Dazs
Icecream? It's $30.8."™)
print ("Tokens are: ", utt tok)
Tokens are: ['Can’, 'you', 'please’, 'buy’, 'me', 'Haagen-Dazs', 'Icecream’, '?', 'It', "'s",
'$','30.8', "]

[51] utt tagged = p tag(utt tok)

chunk (utt tagged)

Can you please buy me Haagen-Dazs Icecream 7 It

s S
O L]
s

MD PRF VB VB PRP I NNP . PRP VBZ CD

30|_8

|

1. The system treats '$', '30.8', and '." as separate tokens in this example. It is
crucial because contractions have their own semantic meanings and own POS
leading to the ensuing part of NLTK library POS tagger.

2. POS tagger in NLTK library outputs specific tags for certain words.

3. However, it makes a mistake in this example. Where is it?

4. Compare POS Tagging for the following sentence to identify problem. Explain.

[52]

Try one more example

utt tok = w_tok("Can you please buy me New-Zealand
Icecream? It's $30.8.™)

print ("Tokens are: ", utt tok)

utt tagged = nltk.pos_ tag(utt tok)
chunk (utt_ tagged)

"s",'$', '30.8', "]

S
Can you please btln nie .\'e\\‘-Zl,ealand Iceal'enm 'j’ Ill |s T 30|.8
MD PRP VB VB PRP NNP NNP PRP VBZ § CD

Tokens are: ['Can', 'you', 'please’, 'buy’, 'me', 'New-Zealand', 'Icecream’, '?", 'It',

WORKSHOP

Workshop#3: Part-of-Speech Tagging Using Natural Language Toolkit (Hour 5-6)

Workshop 3.5 POS Tagging on The Adventures of Sherlock Holmes

1. Read Adventures_Holmes.txt text file.

2. Save contents into a string object "holmes_doc."

3. Extract three typical sentences from three stories of this literature.

4. Use POS Tagging to these sentences.

5. Use ne_chunk function to display POS tagging tree for these three sentences.
6. Compare POS Tags among these example sentences and examine on how they
work.

13.8 Create Own POS Tagger with NLTK

This section will create own POS tagger using NLTK’s tagged set corpora and
sklearn Random Forest machine learning model.

The following example demonstrates a classification task to predict POS tag for
a word in a sentence using NLTK treebank dataset for POS tagging, and extract
word prefixes, suffixes, previous and neighboring words as features for system

training.

Import all necessary Python packages as below:

[53]

Import all necessary Python packages

import nltk

import numpy as np

fromnltk import word tokenizeasw tok
importmatplotlib.pyplot as pyplt

$matplotlib inline

fromsklearn.feature extraction import DictVectorizer as
DVect

from sklearn.model selection import train test splitas
tt split

from sklearn.ensemble import RandomForestClassifier as
RFClassifier

fromsklearn.metrics import accuracy scoreasa_score
fromsklearn.metrics import confusion matrixasc matrix

13.8 Create Own POS Tagger with NLTK 345

[54] # Define the ufeatures () class
def ufeatures (utt, idx):
ftdist = {}
ftdist['word'] = utt[idx]
ftdist['dist from first'] = idx - 0
ftdist['dist from last'] = len(utt) - idx
ftdist['capitalized'] = utt[idx] [0].upper() ==
utt[idx] [0]
ftdist['prefixl'] = utt[idx] [0]
ftdist['prefix2'] = utt[idx][:2]
ftdist['prefix3'] = utt[idx][:3]
ftdist['suffixl'] = utt[idx] [-1]
ftdist['suffix2'] = utt[idx][-2:]
ftdist['suffix3'] = utt[idx][-3:]
ftdist['prev word'] = ''if idx==0elseutt[idx-1]
ftdist['next word'] = ''if idx==(len(utt)-1) else
utt [idx+1]
ftdist['numeric'] = utt[idx].isdigit ()
return ftdist

[55] # Define the Retreive Untagged Utterance (RUutterance)
class
def RUutterance (utt tagged) :

[utt,t] = zip(*utt tagged)

return list (utt)

Function ufeatures() converts input text into a dict object of features, whereas
each utterance is passed with corresponding index of current token word from
which features are extracted. Let’s use treebank tagged utterances with universal
tags to label and train data:

[56] utt tagged = nltk.corpus.treebank.tagged
sents (tagset="'universal')

[57] utt tagged

[[('Pierre', 'NOUN"), ('Vinken', 'NOUN"), (',',"."), ('61', NUM"), ('years', NOUN"),
(‘'old', 'ADI"), (., "), (will', 'VERB'), (join', 'VERB"), (‘the', 'DET"), ('board',
'NOUN"), (‘as', 'ADP"), (‘a’, 'DET"), ('nonexecutive', 'ADIJ"), (‘'director', 'NOUN"),
('Nov.", 'NOUN"), ('29', 'NUM"), ('.", '."], [(Mr.", 'NOUN"), ('"Vinken', ' NOUN"), ('is',
'VERB'), (‘chairman’, 'NOUN"), (‘of', 'ADP"), (‘Elsevier', ' NOUN"), (N.V.,
'NOUN"), (',', "), ('the', 'DET"), (‘Dutch’, NOUN"), ('publishing', 'VERB'), (‘group’,
'NOUN", ('.,'"], ...]

346

13 Workshop#3: Part-of-Speech Tagging Using Natural Language Toolkit (Hour 5-6)

1. In this example, universal tags are used for simplicity.

2. Of course, one can also use fine-grained treebank POS tags for implementation.
3. Once do so, can now extract the features for each tagged utterance in corpus
with training labels.

Use the following code to extract the features:

[58]

Define Extract Feature class (exfeatures)
def exfeatures (utt tag):
utt, tag = [], []
forut inutt tag:
for idx in range (len(ut)) :
utt.append (ufeatures (RUutterance (ut), idx))
tag.append (ut[idx] [1])

returnutt, tag

[59]

‘ X,y = exfeatures (utt tagged)

This example uses DVect to convert feature-value dictionary into training vectors.
If the number of possible values for suffix3 feature is 40, there will be 40 features
in output. Use following code to DVect:

[60]

Define sample size

nsize = 10000

Invoke Dict Vectorizer

dvect = DVect (sparse=False)

Xtran = dvect.fit transform(X[O:nsize])
ysap = y[0:nsize]

This example has a sample size of 10,000 utterances which 80% of the dataset is
used for training and the other 20% is used for testing. Random forecast (RF)
classifier is used as POS tagger model as shown:

[61]

Xtrain,Xtest,ytrain,ytest = tt split(Xtran, ysap,
test size=0.2,
random state=123)

13.8 Create Own POS Tagger with NLTK 347

[62] rfclassifier = RFClassifier (n_jobs=4)
rfclassifier.fit (Xtrain, ytrain)

* RandomForestClassifier

RandomForestClassifier(n_jobs=4)

After system training, can perform POS Tagger validation by using some sample
utterances. But before passing to ptag_predict() method, extract features are
required by ufeatures() method as shown:

[63] # Define the POS Tags Predictor class (ptag predict)
def ptag predict (utt):
utt tagged = []
fts = [ufeatures(utt, idx) for idx in range (len (utt))]
fts = dvect.transform(fts)
tgs = rfclassifier.predict (fts)
return zip (utt, tgs)

Convert utterance into corresponding features with ufeatures() method. The
features dictionary extracted from this method is vectorized using previously
trained dvect:

[64] # Test with a sample utterance (utt3)

utt3 = "It is an example for POS tagger"

forutt taggedinptag predict (utt3.split()):
print (utt tagged)

('It', 'PRON")

(is', 'VERB"

(‘an', 'DET")
(‘example’, NOUN")
('for', '"ADP")

('POS', 'NOUN")
('tagger', ' NOUN")

348

13 Workshop#3: Part-of-Speech Tagging Using Natural Language Toolkit (Hour 5-6)

Use a sample utterance “utt3” and invoke ptag_predict() method to output tags for
each word token inside utt3 and review for accuracy afterward.

[65]

‘ predict = rfclassifier.predict (Xtest)

[66]

a score (ytest,predict)

0.9365

The overall a_score has approximately 93.6% accuracy rate and satisfactory. Next,
let’s look at confusion matrix (c-mat) to check how well can POS tagger perform

[67]

‘c_mat = c matrix(ytest,predict)

[68]

pyplt.figure (figsize=(10,10))
pyplt.xticks (np.arange (len(rfclassifier.
classes_)),rfclassifier.classes_)
pyplt.yticks (np.arange (len(rfclassifier.
classes)),rfclassifier.classes_)
pyplt.imshow(c_mat, cmap=pyplt.cm.Blues)
pyplt.colorbar ()

13.8 Create Own POS Tagger with NLTK 349

<matplotlib. colorbar.Colorbar at Ox1aTbf178ac0>

600
500
AD)
ADP
ADV 400
CON|
DET
00
NUM
PRON L 200
PRT
VERB
100
X
. - - - - - - - . T v T
AD] ADP ADV (CON] DET NOUN NUM PRON PRT VERB X
Lo

Use classes from RF classifier as x and y labels to create a c-mat (confusion
matrix). These labels are POS tags used for system training. The plot that follows
shows a pictorial representation of the confusion matrix

Use classes from Random Forest classifier as x and y labels in the code for plot-
ting confusion matrix.

It looks like the tagger performs relatively well for nouns, verbs, and determiners
in sentences reflected in dark regions of the plot. Let’s look at some top features of
the model from the following code:

[69]

flist = zip(dvect.get feature names out(),
rfclassifier.feature importances)

sfeatures = sorted(flist, key=lambda x: x[1],
reverse=True)

print (sfeatures[0:20])

350 13 Workshop#3: Part-of-Speech Tagging Using Natural Language Toolkit (Hour 5-6)

[(prefix1=*, 0.018027666774656427), (‘capitalized', 0.014560536843271387),
(dist_from_last, 0.013067122358738224), (‘prefix2=th’,
0.011508009921371423), (‘suffix2=he’, 0.010995137232578216), (‘prefix2=,’,
0.010843292840402313), ('suffix2=ed’, 0.01065544048464163), (prefix1=.,
0.010442335119192925), (‘suffix 1=d', 0.010042966512875777), (‘dist_from_
first, 0.010020085126011984), (word=the', 0.009518771614554129), (numeric',
0.008902146191801517), (‘prefix1=t,, 0.008316132993197207), (‘suffix1=s',
0.008264535100812235), (‘word=,, 0.00802534859280316), (‘suffix3=,,
0.007825258495661055), (‘prefix3=the’, 0.007328831604325926), (‘prefix2=.,
0.007323771203933977), ('suffix3=the', 0.006992438126037274), (‘prefix1=,,
0.006974723571575362)]

1. The RF feature importance is stored in the python feature_importances list.
Some of the suffix features have higher importance scores than others.
\ /| 2. For instances, words ending with -ed are usually verbs in past tense which
. make sense in many situations, and punctuations like commas may affect POS
tagging performance in some situations.

Workshop 3.6 Revisit POS Tagging on The Adventures of Sherlock Holmes
with Additional Tagger

1. Read Adventures_Holmes.txt text file.

2. Save contents into a string object "holmes_doc."

woRrksHop | 3. Extract three typical sentences from three stories of this literature.

4. Use method learnt to create own POS taggers. What are the new POS tags to
add or use?

5. Try new POS taggers for these three typical sentences and compare results with
previous workshop.

References

Albrechit, J., Ramachandran, S. and Winkler, C. (2020) Blueprints for Text Analytics Using
Python: Machine Learning-Based Solutions for Common Real World (NLP) Applications.
O’Reilly Media.

Antic, Z. (2021) Python Natural Language Processing Cookbook: Over 50 recipes to understand,
analyze, and generate text for implementing language processing tasks. Packt Publishing.

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with python. O’Reilly.

Doyle, A. C. (2019) The Adventures of Sherlock Holmes (AmazonClassics Edition).
AmazonClassics.

Gutenberg (2024) Project Gutenberg official site. https://www.gutenberg.org/ Accessed 17
Dec 2024.

Hardeniya, N., Perkins, J. and Chopra, D. (2016) Natural Language Processing: Python and
NLTK. Packt Publishing.

https://www.gutenberg.org/

References 351

Kedia, A. and Rasu, M. (2020) Hands-On Python Natural Language Processing: Explore tools and
techniques to analyze and process text with a view to building real-world NLP applications.
Packt Publishing.

NLTK (2024) NLTK official site. https://www.nltk.org/. Accessed 17 Dec 2024.

NLPGitHub (2024) URL: https://github.com/raymondshtlee/NLP/. Accessed 17 Dec 2024.

Perkins, J. (2014). Python 3 text processing with NLTK 3 cookbook. Packt Publishing Ltd.

Sketchengine (2024a) Recent version of English POS Tagset by Sketchengine. https://www.
sketchengine.eu/english-treetagger-pipeline-2/. Accessed 17 Dec 2024.

Sketchengine (2024b) Recent version of Chinese POS Tagset by Sketchengine. https:/www.
sketchengine.eu/chinese-penn-treebank-part-of-speech-tagset/. Accessed 17 Dec 2024.

Treebank (2024) Penn TreeBank Release 2 official site. https://catalog.ldc.upenn.edu/docs/
LDC95T7/treebank2.index.html. Accessed 17 Dec 2024.

Tuchong (2024) A sample WordCloud. URL: https://stock.tuchong.com/image/detail ?imag
eld=920077068255363088. Accessed 28 Dec 2024

https://www.nltk.org/
https://github.com/raymondshtlee/NLP/
https://www.sketchengine.eu/english-treetagger-pipeline-2/
https://www.sketchengine.eu/english-treetagger-pipeline-2/
https://www.sketchengine.eu/chinese-penn-treebank-part-of-speech-tagset/
https://www.sketchengine.eu/chinese-penn-treebank-part-of-speech-tagset/
https://catalog.ldc.upenn.edu/docs/LDC95T7/treebank2.index.html
https://catalog.ldc.upenn.edu/docs/LDC95T7/treebank2.index.html
https://stock.tuchong.com/image/detail?imageId=920077068255363088
https://stock.tuchong.com/image/detail?imageId=920077068255363088

Chapter 14)
Workshop#4 Semantic Analysis and Word <
Vectors Using spaCy (Hour 7-8)

14.1 Introduction

In Chaps. 5 and 6, we studied the basic concepts and theories related to meaning
representation and semantic analysis. This workshop will explore how to use spaCy
technology to perform semantic analysis starting from a revisit on word vectors
concept, implement and pretrain them followed by the study of similarity method
and other advanced semantic analysis.

Please ensure that the following Python packages are installed before starting the
workshop:

* Python (demo version 3.11.9)

¢ NLTK (demo version 3.9.1)

* matplotlib (demo version 3.9.2)
¢ scikit-learn (demo version 1.5.1)
e spacy (demo version 3.4.4)

If these packages are not installed on PC/laptop, use pip install xxx command.
The detailed requirements list and Python package version used in this workshop
can be found in the requirements.txt file stored in the NLP GitHub repository
(NLPGitHub 2024).

14.2 What Are Word Vectors?

Word vectors (Albrecht et al. 2020; Bird et al. 2009; Hardeniya et al. 2016; Kedia
and Rasu 2020; NLTK 2024) are practical tools in NLP.

A word vector is a dense representation of a word. Word vectors are important
for semantic similarity applications like similarity calculations between words,

© The Author(s), under exclusive license to Springer Nature Singapore Pte 353
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_14&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_14#DOI

354 14 Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7-8)

phrases, sentences, and documents, e.g., they provide information about synonym-
ity, semantic analogies at word level.

Word vectors are produced by algorithms to reflect similar words that appear in
similar contexts. This paradigm captures target word meaning by collecting infor-
mation from surrounding words is called distributional semantics.

They are accompanied by associative semantic similarity methods including
word vector computations such as distance, analogy calculations, and visualization
to solve NLP problems.

This workshop will cover the following topics (Altinok 2021; Arumugam and
Shanmugamani 2018; Perkins 2014; spaCy 2024; Srinivasa-Desikan 2018;
Vasilev 2020):

* Understanding word vectors
» Using spaCy’s pretrained vectors
* Advanced semantic similarity methods

14.3 Understanding Word Vectors

Word vectors, or word2vec are important quantity units in statistical methods to
represent text in statistical NLP algorithms. There are several ways of text vector-
ization to provide words semantic representation.

14.3.1 Example: A Simple Word Vector

Let’s look at a basic way to assign words vectors:

* Assign an index value to each word in vocabulary and encode this value into a
sparse vector.

» Consider tennis as vocabulary and assign an index to each word according to
vocabulary order as in Table 14.1.

Table 14.1 A basic word

1 a
vector example consists of 5
. g0
nine words
3 I
4 tennis
5 play
6 outside
7 hot
8 swim
9 rest

14.3 Understanding Word Vectors 355

Table 14.2 Word Vectors corresponding index value consists of nine words

word
a 1 0 0 0 0 0 0 0 0
go 0 1 0 0 0 0 0 0 0
I 0 0 1 0 0 0 0 0 0
tennis 0 0 0 1 0 0 0 0 0
play 0 0 0 0 1 0 0 0 0
outside 0 0 0 0 0 1 0 0 0
hot 0 0 0 0 0 0 1 0 0
swim 0 0 0 0 0 0 0 1 0
today 0 0 0 0 0 0 0 0 1
Table 14.3 Word Vector matrix for I play tennis today
word
I 0 0 1 0 0 0 0 0 0
play 0 0 0 0 1 0 0 0 0
tennis 0 0 0 1 0 0 0 0 0
today 0 0 0 0 0 0 0 0 1

Vocabulary word vector will be 0, except for word corresponding index value
position as in Table 14.2.

Since each row corresponds to one word, a sentence represents a matrix, e.g., /
play tennis today is represented by a matrix as in Table 14.3.

Vectors length is equal to word numbers in vocabulary as shown above. Each
dimension is apportioned to one word explicitly. When applying this encoding vec-
torization to text, each word is replaced by its vector, and the sentence is trans-
formed into a (N, V) matrix, where N is words number in sentence and V is
vocabulary size.

This text representation is easy to compute, debug, and interpret. It looks good so
far but there are potential problems:

* Vectors are sparse. Each vector contains many O s but has one 1. If words have
similar meanings and can group to share dimensions, this vector will deplete
space. Also, numerical algorithms don’t accept high dimension and sparse vec-
tors in general.

356 14 Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7-8)

* A sizeable vocabulary is comparable to high dimensions vectors are impractical
for memory storage and computation.

* Similar words do not assign with similar vectors resulting unmeaningful vectors,
e.g., cheese, topping, salami, and pizza have related meanings but have unrelated
vectors. These vectors depend on corresponding word’s index and assign ran-
domly in vocabulary, indicating that one-hot encoded vectors are incapable to
capture semantic relationships and against word vectors’ purpose to answer pre-
ceding list concerns.

14.4 A Taste of Word Vectors

A word vector is a fixed-size, dense, and real-valued vector. It is a learnt representa-
tion of text where semantic similar words correspond to similar vectors and a solu-
tion to preceding problems.

the 0.418 0.24968 -0.41242 0.1217 0.34527 -0.044457 -0.49688 -
.17862 -0.00066023 -0.6566 0.27843 -0.14767 -0.55677 0.14658 -
.0095095 0.011658 0.10204 -0.12792 -0.8443 -0.12181 -0.016801 -
.33279 -0.1552 -0.23131 -0.19181 -1.8823 -0.76746 0.099051 -
.42125 -0.19526 4.0071 -0.18594 -0.52287 -0.31681 0.00059213
.0074449 0.17778 -0.15897 0.012041 -0.054223 -0.29871 -0.15749 -
.34758 -0.045637 -0.44251 0.18785 0.0027849 -0.18411 -0.11514 -
.78581

O O O O O O O

This is a 50-dimensional vector for word the, these dimensions have floating points

1. What do dimensions represent?

2. These individual dimensions don’t have inherent meanings typically but instead
v they represent vector space locations, and the distance between these vectors

indicates the similarity of corresponding words’ meanings.

3. Hence, a word’s meaning is distributed across dimensions.

4. This type of word’s meaning representation is called distributional semantics.

Use word vector visualizer for TensorFlow from (TensorFlow 2024) Google
offers word vectors for 10,000 words. Each vector is 200-dimensional and projected
into three dimensions for visualization. Let’s look at the representation of fennis as
in Fig. 14.4.

14.4 A Taste of Word Vectors

357

skatin
9 indoor
kart
fAcaa manufacturer
golf
fc v
fifa sswimming
gda
ahockey @soccer EhaneoHhinS sdoubles ‘tournaments
.= stournament
rugby finals “SUP sports
- - uchess sball
wimbledon slatm
stennis
sfootball champions players
tballet @runner wnba ssingers
@coach . economist i 9
rapper swinner ‘masters
ebasketball
wrestler inisE
cathlete ghoxer plofessinna_!
manuel
bassist y ‘player
champion
o baseball
pianist it
“guitarist youngest girls
‘songwriter
fcomposer
politician

Fig. 14.4 Vector representation of tennis and semantic similar words

tennis is semantically grouped with other sports i.e. hockey, basketball, chess etc.
Words in proximity are calculated by their cosine distances as shown in Fig. 14.5

Word vectors are trained on a large corpus such as Wikipedia which included to
learn proper nouns representations, e.g., Alice is a proper noun represented by vec-

tor as in Fig. 14.6.

358 14 Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7-8)

Fig. 14.5 tennis proximity Search by
words in three-dimensional tennis * word ~
space
neighbors @ -@ 10C
distance COSINE EUCLIDEAN

Nearest points in the original space:

It showed that all vocabulary input words are in lower cases to avoid multiple
representations of the same word. Alice and Bob are person names to be listed. In
addition, lewis and carroll have relevance to Alice because of the famous literature
Alice’s Adventures in Wonderland written by Lewis Carroll. Further, it also showed
syntactic category of all neighboring words are nouns but not verbs.

Word vectors can capture synonyms, antonyms, and semantic categories such as
animals, places, plants, names, and abstract concepts.

14.5 Analogies and Vector Operations

dodo

cowboy
presley

zelvis nash “annotated
khazar bell

janet

’ adventures
4 sinatra
hamilton

basil booth
‘ellis

Kim gardner

«alice

pseudonym
morris

Idancer lucy

; ccarrollukate
linda

nancy princess .helen
campbell

i robinson
wrlg.r::t walker

russell . 8000

‘ann
patrick joan ' cooper
harold slady sy

stewart pd lewis

anne harry margaret CMrs

Fig. 14.6 Vector representation of alice

14.5 Analogies and Vector Operations

sQuares

illustrations

359

Word vectors capture semantics, support vector addition, subtraction, and analo-
gies. A word analogy is a semantic relationship between a pair of words. There are
many relationship types such as synonymity, anonymity, and whole-part relation.
Some example pairs are (King—man, Queen—woman), (airplane—air, ship - sea),
(fish—sea, bird - air), (branch—tree, arm—human), (forward—backward, absent—

present), etc.

For example, gender mapping represents Queen and King as Queen—
Woman + Man = King. If woman is subtracted by Queen and add Man instead to
obtain King. Then, this analogy interprets queen is attributed to king as woman is
attributed to man. Embeddings can generate analogies such as gender, tense, and

capital city as shown in Fig. 14.7.

360 14 Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7-8)

4 Canada
Spain / Japan

/ y
Ottawa

-
Madrid
Germany
.

/| e

s A—p
o

Male-Female Verb Tense Country-Capital

Fig. 14.7 Analogies created by word vectors

14.6 How to Create Word Vectors?

There are many ways to produce and pretrained word vectors:

1. word2vec is a name of statistical algorithm created by Google to produce word
vectors. Word vectors are trained with a neural network architecture to process
windows of words and predict each word vector depending on surrounding
words. These pretrained word vectors can be downloaded from Synthetic (2024).

2. Glove vectors are invented by Stanford NLP group. This method depends on
singular value decomposition used in word co-occurrences matrix. The pre-
trained vectors are available at nlp.stanford.edu (Stanford 2024).

3. fastText (FastText 2024) was created by Facebook Research like word2vec.
word2vec predicts words based on their surrounding context, while fastText pre-
dicts subwords, i.e., character N-grams. For example, the word chair generates
the following subwords:

ch, ha, ai, ir, cha, hai, air

14.7 spaCy Pretrained Word Vectors

Word vectors are part of many spaCy language models. For instance, en_core_web_
md model ships with 300-dimensional vectors for 20,000 words, while en_core_
web_lg model ships with 300-dimensional vectors with a 685,000 words vocabulary.

Typically, small models (names end with sm) do not include any word vectors
but context-sensitive tensors. Semantic similarity calculations can perform but
results will not be as accurate as word vector computations.

147 spaCy Pretrained Word Vectors 361

A word’s vector is via token.vector method. Let’s look at this method using code
query word vector for banana:

[1] # Import spaCy and load the en core web md model
import spacy

nlp = spacy.load("en core web md")

Create a sample utterance (uttl)

uttl = nlp("I ate a banana.")

[2] import en core web md
nlp = en core web md.load()

Use the following script to show Word Vector for banana:

[3] uttl[3] .vector

array([0.20778, —2.4151, 0.36605, 2.0139, —0.23752, —3.1952,
—0.2952, 1.2272, —3.4129, —0.54969, 0.32634, —1.0813,
0.55626, 1.5195, 0.97797, —3.1816, —0.37207, —0.86093,
2.1509, —4.0845, 0.035405, 3.5702, —0.79413, —1.7025,
—1.6371, =3.198, —1.9387, 0.91166, 0.85409, 1.8039,
—1.103, —2.5274, 1.6365, —0.82082, 1.0278, —1.705,
1.5511, —0.95633, —1.4702, —1.865, —0.19324, —0.49123,
2.2361,2.2119, 3.6654, 1.7943, —0.20601, 1.5483,
—1.3964, —0.50819, 2.1288, —2.332, 1.3539, —2.1917,

—1.354,2.6261, 1.9156, —1.5651, 1.8315, —1.4257,
—1.6861, —0.51953, 1.7635, —0.50722, 1.388, —1.1012],
dtype=float32)

In this example, foken.vector returns a NumPy ndarray.
Use the following command to call NumPy methods for result.

[4] | type (uttl[3].vector)
‘ numpy.ndarray

362 14 Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7-8)

[5] uttl[3].vector.shape
(300,)

Query Python type of word vector in this code segment. Then, invoke shape()
method of NumPy array on the vector.

Doc and Span object also have vectors. A sentence vector or a span is the average
of words’ vectors. Run the following code and see results:

[6] # Create second utterance (utt2)
utt2 = nlp("I like a banana,")
utt2.vector

utt2[1:3].vector

array([—5.84815, 3.9533, —4.2019, 1.851645,
4.2339, —3.74201, 2.1273, 6.0418997,
2.7598, 0.40665, 11.029249, 2.792575,
—5.2807, —0.47160006, 2.38658, 2.2019,
4.65584, 0.33210003, 0.76987505, 0.72405005,
1.9154, 2.24705, —0.748515, —1.29685,
1.0118049, —5.3013496, —5.97755, —1.618835,
—0.23785007, —2.2115, —0.61186, —3.56615,

—1.32008, —4.63445, —2.8069, 1.747215,
7.172359, —2.6399, 1.54486, —1.320575,
—5.26095, 5.7922, —5.7227497, —0.20825005,
0.47510207, 2.4512, —1.01646, 4.55843,
1.4716, 4.96085, —4.954, 1.50534],
dtype=float32)

Only words in model’s vocabulary have vectors, words that are not in vocabulary
are called out-of-vocabulary (OOV) words. token.is_oov and token.has_vector
are two methods to query whether a token is in the model’s vocabulary and has a
i word vector:

[7] # Create the utterance 3
utt3 = nlp("You went there afskfsd.")

14.8 Similarity Method in Semantic Analysis 363

(8]

for token inutt3:
print ("Token is: ", token, "OOV: ", token.is oov,
"Token has vector:", token.has vector)
Token is: You OOV: False Token has vector: True
Token is: went OOV: False Token has vector: True
Token is: there OOV: False Token has vector: True
Token is: afskfsd OOV: True Token has vector: False
Token is: OOV: False Token has vector: True

This is basically how to use spaCy’s pretrained word vectors. Next, discover how
to invoke spaCy’s semantic similarity method on Doc, Span, and Token objects.

14.8 Similarity Method in Semantic Analysis

Every container type object has a similarity method to calculate the semantic simi-
larity of other container objects by comparing word vectors in spaCy. Semantic
similarity between two container objects is different container types. For instance, a
Token object to a Doc object and a Doc object to a Span object.

The following example computes two Span objects similarity:

[9]

Create utt4 and utt5 and measure the similarity
utt4 = nlp ("I visited England.")

uttb = nlp ("I went to London.")
uttd[1:3].similarity(utt5[(1:41])

0.45464012026786804

Compare two Token objects, London and England:

[10]

[11]

utt4[2]
England

uttd[2] .similarity (utt5[3])
0.6339874267578125

364 14 Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7-8)
The sentence’s similarity is computed by calling similarity() on Doc objects:

[12] uttd.similarity (uttb)
0.8206949942253569

1. The preceding code segment calculates semantic similarity between two
sentences [visited England and I went to London.
\ /| 2. Similarity score is high enough to consider both sentences are similar
(similarity degree ranges from O to 1, O represents unrelated and 1 represents
identical).

similarity() method returns 1 compare an object to itself unsurprisingly:

[13] uttd.similarity (uttd)
1.0

Judge the distance with numbers is complex but review vectors on paper can
understand how vocabulary word groups are formed.

Code snippet below visualizes a vocabulary of two graphical semantic classes.
The first word class is for animals and the second class is for food.

[14] importmatplotlib.pyplot asplt
from sklearn.decomposition import PCA
import numpy as np
import spacy
nlp = spacy.load("en core web md")
vocab = nlp("cat dog tiger elephant bird monkey lion
cheetah burger pizza food cheese wine salad noodles
macaroni fruit vegetable")
words = [word.text for word in vocab]

Create Word Vector vecs:

[15] vecs = np.vstack([word.vector for word in vocab if word.
has vector])

14.8 Similarity Method in Semantic Analysis 365

Use principal component analysis (PCA) similarity analysis and plot similarity
results with plt class.

[16] pca = PCA(n_components=2)
vecs_transformed = pca.fit_transform(vecs)
plt.figure (figsize=(20,15))
plt.
scatter (vecs_transformed[:,0], vecs transformed[:,1])
forword, coordinzip(words, vecs transformed):
x,y = coord
plt.text (x,y,word, size=15)

plt.show ()
Sruipinge
bird segetable
Jood
dephant
abaetah dmankey Awisa
lad
diger " L =
. -
dracangni
surger dizza
doodies

1. Import matplotlib library to create a graph.

2. Next two imports are for vectors calculation.

3. Import spaCy and create a nlp object.

- 4. Create a Doc object from vocabulary.

5. Stack word vectors vertically by calling np.vstack.

6. Project vectors into a two-dimensional space for visualization since they are
300-dimensional. Extract two principal components via PCA for projection.

7. Create a scatter plot for rest of the code to deal with matplotlib function calls.

It shows that spaCy word vectors can visualize two semantic classes are grouped.
The distance between animals is reduced and uniformly distributed, while food
class formed groups within the group.

366 14 Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7-8)

Workshop 4.1 Word Vector Analysis on The Adventures of Sherlock Holmes
In this workshop, we have just learnt how to use spaCy to produce word vector to
compare the similarity of two text objects/document. Try to use The Adventures of
Sherlock Holmes (Doyle 2019; Gutenberg 2024) to select two "presentative" texts
WORKSHoOP | from this detective story:

1. Read Adventures_Holmes.txt text file.

2. Save contents into a string object "holmes_doc."

3. Plot Semantic Graphs for these two texts.

4. Perform Similarity text for these two documents. See what can be found.

14.9 Advanced Semantic Similarity Methods with spaCy

It has learnt that spaCy‘s similarity method can calculate semantic similarity to
obtain scores but there are advanced semantic similarity methods to calculate words,
phrases, and sentences similarity.

14.9.1 Understanding Semantic Similarity

It is necessary to identify examples characteristics when collecting data or text data
(any sort of data), i.e., calculate two text similarity scores. Semantic similarity is a
metric to define the distance between texts based on semantics texts.

Metrics in mathematics are basically distance functions. Each metric produces a
topology on the vector space. Word vectors are vectors that can be used to calculate
the distance between them as a similarity score.

There are two commonly used distance functions (1) Euclidian distance and (2)
cosine distance.

14.9.2 Euclidean Distance

Euclidian distance counts on vector magnitude and disregards orientation. If a vec-
tor is drawn from an origin, let’s call it a dog vector to another point, call a cat vector
and subtract one vector from and other, the distance represents the magnitude of
vectors is shown in Fig. 14.8.

If two more semantically similar words (canine, terrier) to dog and make it a text
of three words, i.e., dog canine terrier. Obviously, the dog vector will now grow in
magnitude, possibly in the same direction. This time, the distance will be much big-
ger due to geometry, although the semantics of first piece of text (now dog canine
terrier) remain the same.

149 Advanced Semantic Similarity Methods with spaCy 367

A

dog
>
Fig. 14.8 Euclidian distance between two vectors: dog and cat

A dog canine

.terrler

A
dog
dist 2
dist 1
cat

>

Fig. 14.9 Distance between dog and cat, as well as the distance between dog canine terrier and cat

This is the main drawback of using Euclidian distance for semantic similarity as
the orientation of two vectors in the space is not considered. Figure 14.9 illustrates
the distance between dog and cat, and the distance between dog canine terrier
and cat.

How can we fix this problem? There’s another way of calculating similarity
called cosine similarity to address this problem.

368 14 Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7-8)

A

dog

e cat

>

Fig. 14.10 The angle between dog and cat vectors. Here, the semantic similarity is calculated
by cos(0)

14.9.3 Cosine Distance and Cosine Similarity

Contrary to Euclidian distance, cosine distance is more concerned with the orienta-
tion of two vectors in the space. The cosine similarity of two vectors is basically the
cosine angle created by these two vectors. Figure 14.10 shows the angle between

I purchased a science fiction book last week.

I loved everything related to this fragrance: Light, floral and feminine ...

I purchased a bottle of wine.

dog and cat vectors.

The maximum similarity score that’s allowed by cosine similarity is 1. This is
obtained when the angle between two vectors is O degree (hence, the vectors coin-
cide). The similarity between two vectors is 0 when the angle between them is 90
degrees.

Cosine similarity provides scalability when vectors grow in magnitude. If one of
the input vectors is expanded as in Fig. 14.10, the angle between them remains the
same and so is the cosine similarity score.

149 Advanced Semantic Similarity Methods with spaCy 369

Note that here is to calculate semantic similarity score and not distance. The highest
possible value is 1 when vectors coincide, while the lowest score is 0 when two vectors
are perpendicular. The cosine distance is 1—cos(8) which is a distance function.

spaCy uses cosine similarity to calculate semantic similarity. Hence, calling the
similarity method helps to perform cosine similarity calculations.

So far, we’ve learnt to calculate similarity scores, but still haven’t discovered
words meaning. Obviously, not all words in a sentence have the same impact on the
semantics of sentence. The similarity method will only calculate the semantic simi-
larity score, but the right keywords are required for calculation results comparison.

Consider the following text snippet:

Blue whales are the biggest mammals in the world. They’re observed in
California coast during spring.

If interested in finding the biggest mammals on the planet, the phrases biggest
mammals and in the world will be keywords. Comparing these phrases with the
search phrases largest mammals and on the planet should give a high similarity
score. But if is interested in finding out about places in the world, California will be
a keyword. California is semantically like word geography and more suitably, the
entity type is a geographical noun.

Since we have learnt how to calculate similarity score, the next section will learn
about where to look for the meaning. It will cover a case study on text categorization
before improving task results via key phrase extraction with similarity score
calculations.

A dog

My dog

My beautiful dog

A beautiful dog

A beautiful and happy dog

My happy and cute dog

370 14 Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7-8)
14.9.4 Categorizing Text with Semantic Similarity

Determining two sentences’ semantic similarity can categorize texts into predefined
categories or spot only the relevant texts. This case study will filter users’ comments
in an e-commerce website related to the word perfume. Suppose to evaluate the fol-
lowing comments:

Here, it is noted that only the second sentence is related. This is because it contains
the word fragrance and adjectives describing scents. To understand which sentences
are related, can try several comparison strategies.

To start, compare perfume to each sentence. Recall that spaCy generates a word
vector for a sentence by averaging the word vector of its tokens. The following code
snippet compares preceding sentences to perfume search key:

[17] utt6 = nlp("I purchased a science fiction book last
week. I loved everything related to this fragrance:
light, floral and feminine.. I purchased a bottle of
wine. ")
key = nlp("perfume")
for utt inutté6.sents:

print (utt.similarity (key))
0.2950337433100861
0.4292321445243577
0.4216416633742172

The following steps are performed:

Create a Doc object with three preceding sentences. For each sentence, calculate
similarity score with perfume and print the score by invoking similarity() method on
the sentence. The degree of similarity between perfume and the first sentence is
minute, indicating that this sentence is irrelevant to the search key. The second sen-
tence looks relevant which means that semantic similarity is correctly identified.

How about the third sentence? The script identified that the third sentence is
relevant somehow, most probably because it includes the word bottle, and perfumes
are sold in bottles. The word bottle appears in similar contexts with the word per-
fume. For this reason, the similarity score of this sentence and search key is not
small enough; also, the scores of second and third sentences are not distant enough
to make the second sentence significant.

In practice, long texts such as web documents can be dealt with but averaging
over them diminishes the importance of keywords.

Let’s look at how to identify key phrases in a sentence to improve performance.

149 Advanced Semantic Similarity Methods with spaCy 371
14.9.5 Extracting Key Phrases

Semantic categorization is effective to extract important words phrases and compare
them to the search key. Instead of comparing the key to different parts of speech, we
can compare the key to noun phrases. Noun phrases are subjects, direct objects, and
indirect objects of sentences that convey high percentages of sentences semantics.

For example, in sentence Blue whales live in California, focuses will likely be on
blue whales, whales, California, or whales in California.

Similarly, in the preceding sentence about perfume, the focus is to pick out fra-
grance as the noun. Different semantic tasks may need other context words such as
verbs to decide what the sentence is about, but for semantic similarity, noun phrases
convey significant weights.

What is a noun phrase? A noun phrase (NP) is a group of words that consist of a
noun and its modifiers. Modifiers are usually pronouns, adjectives, and determiners.
The following phrases are noun phrases:

spaCy extracts noun phases by parsing the output of the dependency parser. It can
identify noun phrases of a sentence by using doc.noun_chunks method:

[18] utt7 = nlp("My beautiful and cute dog jumped over
the fence")

[19] utt7.noun_chunks
<generator at 0x1be166595a0>

[20] list (utt7.noun_chunks)
[My beautiful and cute dog, the fence]

Let’s modify the preceding code snippet. Instead of comparing the search key
perfume to the entire sentence, this time will only compare it with sentence’s
noun chunks:

[21] forutt inutt7.sents:
nchunks = [nchunk.text for nchunk inutt.noun chunks]
nchunk utt = nlp(" ".join(nchunks))

print (nchunk utt.similarity (key))
0.28984869889342174

372 14 Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7-8)

The following is performed for the preceding code:
1. Iterate over sentences.

/| 2. Extract noun chunks and store them in a python list for each sentence.
- 3. Join noun chunks in the list into a python string and convert it into a doc object.
4. Compare this doc object of noun chunks to search key perfume to determine
semantic similarity scores.

If these scores are compared with previous scores, it is noted that the first sen-
tence remains irrelevant, so its score decreased marginally but the second sentence’s
score increased significantly. Also, the second and third sentences scores are distant
from each other to reflect that second sentence is the most related sentence.

14.9.6 Extracting and Comparing Named Entities

In some cases, it can focus on extracting proper nouns instead of every noun. Hence,
it is required to extract named entities. Let’s compare the following paragraphs:

“Google Search, often referred as Google, is the most popular search engine nowadays. It
answers a huge volume of queries every day.”

“Microsoft Bing is another popular search engine. Microsoft iz known by its star product
Microsoft Windows, a popular operating system sold over the world.”

“The Dead Sea iz the lowest lake in the world, located in the Jordan Valley of Israel. It
is also the saltiest lake in the world.”

The codes should be able to recognize that first two paragraphs are about large
technology companies and their products whereas the third paragraph is about a
geographic location.

Comparing all noun phrases in these sentences may not be helpful because many
of them such as volume are irrelevant to categorization. The topics of these para-
graphs are determined by phrases within them, that is, Google Search, Google,
Microsoft Bing, Microsoft, Windows, Dead Sea, Jordan Valley, and Israel. spaCy
can identify these entities:

[22] utt8 = nlp("Google Search, often referred as Google,
is the most popular search engine nowadays. It answers
a huge volume of queries every day.")

utt9 = nlp("Microsoft Bing is another popular search
engine. Microsoft is known by its star product
Microsoft Windows, a popular operating system sold over
the world.")

uttl0 = nlp("The Dead Sea is the lowest lake in the
world, located in the Jordan Valley of Israel. It is
also the saltiest lake in the world.")

149 Advanced Semantic Similarity Methods with spaCy 373

[23] utt8.ents

(Google Search, Google, every day)
[24] utt9.ents

(Microsoft Bing, Microsoft, Microsoft Windows)
[25] uttlO.ents

(The Dead Sea, the Jordan Valley, Israel)

Since words are extracted for comparison, let’s calculate similarity scores:

[26]

entsl = [ent.text forent inutt8.ents]
ents?2 = [ent.text forent inutt9.ents]
ents3 = [ent.text forent inuttlO.ents]
entsl = nlp(" ".join(entsl))
ents2 = nlp(" ".join(ents2))
ents3 = nlp(" ".join(ents3))

[27]

entsl.similarity (ents?2)

0.5618316156902609

[28]

entsl.similarity(ents3)

0.12924407611214866

[29]

ents2.similarity(ents3)

0.11911278371814159

These figures revealed that the highest level of similarity exists between first and
second paragraphs, which are both about large tech companies. The third
paragraph is unlike other paragraphs. How can this calculation be obtained by
using word vectors only? It is probably because words Google and Microsoft often
appear together in news and other social media text corpora, hence producing
similar word vectors

This is the conclusion of advanced semantic similarity methods section with dif-
ferent ways to combine word vectors with linguistic features such as key phrases
and named entities.

374 14 Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7-8)

Workshop 4.2 Further Semantic Analysis on The Adventures of Sherlock
Holmes

It has learnt to further improve Semantic Analysis results on document similarity
comparison by extracting (1) key phrases; (2) and comparing names entities. Try
WORKSHOP | to use these techniques on The Adventures of Sherlock Holmes:

1. Extract three "representative texts" from this novel.

2. Perform key phrases extraction to improve the similarity rate as compared with
Workshop 4.1 results.

3. Extract and compare name entities to identify significant name entities from
this literature to further improve semantic analysis performance.

4. Remember to plot semantic diagram to show how these entities and keywords
are related.

5. Discuss and explain what can be found.

References

Albrecht, J., Ramachandran, S. and Winkler, C. (2020) Blueprints for Text Analytics Using
Python: Machine Learning-Based Solutions for Common Real World (NLP) Applications.
O’Reilly Media.

Altinok, D. (2021) Mastering spaCy: An end-to-end practical guide to implementing NLP applica-
tions using the Python ecosystem. Packt Publishing.

Arumugam, R., & Shanmugamani, R. (2018). Hands-on natural language processing with python.
Packt Publishing.

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with python. O’Reilly.

Doyle, A. C. (2019) The Adventures of Sherlock Holmes (AmazonClassics Edition).
AmazonClassics.

FastText (2024) FastText official site. https:/fasttext.cc/. Accessed 17 Dec 2024.

Gutenberg (2024) Project Gutenberg official site. https://www.gutenberg.org/. Accessed 17
Dec 2024.

Hardeniya, N., Perkins, J. and Chopra, D. (2016) Natural Language Processing: Python and
NLTK. Packt Publishing.

Kedia, A. and Rasu, M. (2020) Hands-On Python Natural Language Processing: Explore tools and
techniques to analyze and process text with a view to building real-world NLP applications.
Packt Publishing.

NLTK (2024) NLTK official site. https://www.nltk.org/. Accessed 17 Dec 2024.

NLPGitHub (2024) URL.: https://github.com/raymondshtlee/NLP/. Accessed 17 Dec 2024.

Perkins, J. (2014). Python 3 text processing with NLTK 3 cookbook. Packt Publishing Ltd.

SpaCy (2024) spaCy official site. https://spacy.io/. Accessed 17 Dec 2024.

Srinivasa-Desikan, B. (2018). Natural language processing and computational linguistics: A prac-
tical guide to text analysis with python, gensim, SpaCy, and keras. Packt Publishing, Limited.

Stanford (2024) NLP.stanford.edu Glove official site. https://nlp.stanford.edu/projects/glove/.
Accessed 17 Dec 2024.

Synthetic (2024) Synthetic Intelligent Network site on Word2Vec Model. https://developer.syn.
co.in/tutorial/bot/oscova/pretrained-vectors.html#word2vec-and-glove-models. Accessed 17
Dec 2024.

TensorFlow (2024) TensorFlow official site. https://projector.tensorflow.org/. Accessed 17
Dec 2024.

Vasiliev, Y. (2020) Natural Language Processing with Python and spaCy: A Practical Introduction.
No Starch Press.

https://fasttext.cc/
https://www.gutenberg.org/
https://www.nltk.org/
https://github.com/raymondshtlee/NLP/
https://spacy.io/
https://nlp.stanford.edu/projects/glove/
https://developer.syn.co.in/tutorial/bot/oscova/pretrained-vectors.html#word2vec-and-glove-models
https://developer.syn.co.in/tutorial/bot/oscova/pretrained-vectors.html#word2vec-and-glove-models
https://projector.tensorflow.org/

Chapter 15)
Workshop#5: Sentiment Analysis and Text <o
Classification (Hour 9-10)

15.1 Introduction

NLTK and spaCy are two major NLP Python implementation tools for basic text

processing, N-gram modeling, POS tagging, and semantic analysis introduced in

the last four workshops. Workshop 5 will explore how to position these NLP imple-

mentation techniques into two important NLP applications: text classification and

sentiment analysis. TensorFlow and Kera are two vital components to implement

LSTM, acommonly used RNN on machine learning, especially in NLP applications.
This workshop will:

1. Study text classification concepts in NLP and how spaCy NLP pipeline works on
text classifier training.

2. Use movie reviews as a problem domain to demonstrate how to implement senti-
ment analysis with spaCy.

3. Introduce Artificial Neural Networks (ANN) concepts, TensorFlow, and Kera
technologies.

4. Introduce sequential modeling scheme with LSTM technology using movie
reviews domain as example to integrate these technologies for text classification
and movie sentiment analysis.

15.2 Text Classification with spaCy and LSTM Technology

Text classification is a vital component in sentiment analysis application.

TextCategorizer is a spaCy ‘s text classifier component applied in dataset for sen-
timent analysis to perform text classification with two vital Python frameworks (1)
TensorFlow Keras API and (2) spaCy technology.

© The Author(s), under exclusive license to Springer Nature Singapore Pte 375
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_15&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_15#DOI

376 15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

Neural networks basics, sequential data modeling with LSTM technology to pro-
cess text for machine learning tasks with Keras‘s text preprocessing module and
implement a neural network with tf.keras.

This workshop will cover the following topics:

* Basic concept and knowledge of text classification
* Model training of spaCy text classifier

* Sentiment Analysis with spaCy

* Sequential modeling with LSTM Technology

15.3 Technical Requirements

Please ensure that the following Python packages are installed before starting the
workshop:

e Python (demo version 3.11.9)

* spacy (demo version 3.4.4)

* keras (demo version 3.5.0)

* tensorflow (demo version 2.17.0)
e numPy (demo version 1.26.4)

* pandas (demo version 2.2.2)

* matplotlib (demo version 3.9.2)

If these packages are not installed on PC/laptop, use pip install xxx command.
The detailed requirements list and Python package version used in this workshop
can be found in the requirements.txt file stored in the NLP GitHub repository
(NLPGitHub 2024).

15.4 Text Classification in a Nutshell

15.4.1 What Is Text Classification?

Text Classification (Albrecht et al. 2020; Bird et al. 2009; George 2022; Sarkar
2019; Siahaan and Sianipar 2022; Srinivasa-Desikan 2018) is the task of assigning
a set of predefined labels to text.

They are classified by manual tagging, but machine learning techniques are
applied progressively to train classification system with known examples, or train
samples to classify unseen cases. It is a fundamental task of NLP (Perkins 2014,
Sarkar 2019) using various machine learning method such as LSTM technology
(Arumugam and Shanmugamani 2018; Géron 2019; Kedia and Rasu 2020).

Text classification types are (Agarwal 2020; George 2022; Pozzi et al. 2016):

15.4 Text Classification in a Nutshell 377

w w lost-item refund

didn't arrive Classifier Return-item track-parcel

Categories

Fig. 15.1 Example of top detection for customer complaint in customer service automation sys-
tem (CSAS)

* Language detection is the first step of many NLP systems, i.e., machine
translation.

» Topic generation and detection are the process of summarization, or classifica-
tion of a batch of sentences, paragraphs, or texts into certain topic of interest
(TOI) or topic titles, e.g., customers’ email request refund or complaints about
products or services.

* Sentiment analysis to classify or analyze users’ responses, comments, and mes-
sages on a particular topic attribute to positive, neutral, or negative sentiments. It
is an essential task in e-commerce and social media platforms.

Text classifiers can emphasize overall text sentiments, text language detection,
and words levels, i.e., verbs. A text classifier of a customer service automation sys-
tem is shown in Fig. 15.1.

15.4.2 Text Classification as Al Applications

Text classification is considered as supervised-learning (SL) task in Al which means
that the classifier can predict the class label of a text based on sample input text-
class label pairs. It must require sufficient input (text)-output (classified labels) pairs
databank for network training, testing, and validation. Hence, a labeled dataset is a
list of text-label pairs required to train a text classifier. An example dataset of five
training sentences with sentiment labels is shown in Table 15.1.

When a classifier encounters a new text not in the training text, it predicts a class
label of this unseen text based on examples during the training phase to induce a text
classifier output is always a class label.

Text classification can also be divided into (1) binary, (2) multi-class, and (3)
multi-label categories:

1. Binary text classification refers to categorizing text into two classes.

2. Multi-class text classification refers to categorizing texts with more than two
classes. Each class is mutually exclusive where one text is associated with a
single class, e.g., rating customer reviews are represented by a 1-5 stars category
single class label.

378 15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

Table 15.1 Sample input This TV has brought me so much joy. Pos
texts and their corresponding .
This is the best soccer game I have ever Pos
output class labels seen
This dress is so ordinary not worth this Neg
expensive selling price.
Mom makes the best dinners. Pos
Shut up, you can't talk to me like that. Neg

3. Multi-label text classification system is to generalize its multi-class counterpart
assigned to each example text, e.g., foxic, severe toxic, insult, threat, obscenity
levels of negative sentiment. What are Labels in Text Classification?

Labels are class names for output. A class label can be categorical (string) or
numerical (a number).
Text classification has the following class labels:

» Sentiment analysis has positive and negative class labels abbreviated by pos and
neg where 0 represents negative sentiment and 1 represents positive sentiment.
Binary class labels are popular as well.

* The identical numeric representation applies to binary classification problems,
i.e., use 01 for class labels.

* Class labeled with a meaningful name for multi-class and multi-label problems,
e.g., movie genre classifier has labels action, scifi, weekend, Sunday movie, etc.
Numbers are labels for a five-class classification problem, i.e., 1-5.

15.5 Text Classifier with spaCy NLP Pipeline

TextCategorizer (tCategorizer) is spaCy ‘s text classifier component (Altinok 2021;
SpaCy 2024; Vasiliev 2020). It required class labels and examples in NLP pipeline
to perform training procedure as shown in Fig. 15.2.

TextCategorizer provides user-friendly and end-to-end approaches to train clas-
sifier so that it does not need to deal with neural network architecture directly.

15.5.1 TextCategorizer Class

Import spaCy and load nlp component from "en_core_web_md":

[1] # Load and import spacy package
import spacy
Load the en core web md module
nlp = spacy.load("en core web md")

15.5 Text Classifier with spaCy NLP Pipeline 379

This TV has brought me so much joy. Pos
This is the best soccer game | have ever seen. Pos
This dress is so ordinary not worth this expensive selling price. Neg
Mom makes the best dinners. Pos
Shut up, you can't talk to me like that. Neg

Fig. 15.2 TextCategorizer in the spaCy NLP pipeline
Import TextCategorizer from spaCy pipeline components:

[2] # Import the Single Text Categorizer Model
from spacy.pipeline.textcat import
DEFAULT SINGLE TEXTCAT MODEL

TextCategorizer consists of (1) single-label and (2) multi-label classifiers.

A multi-label classifier can predict more than a single class. A single-label clas-
sifier predicts an individual class for each example and classes are mutually
exclusive.

The preceding import line imports single-label classifier, and the following code
imports multi-label classifier:

[3] # Import the Multiple Text Categorizer Model
fromspacy.pipeline.textcat multilabel import
DEFAULT MULTI TEXTCAT MODEL

There are two parameters (1) a threshold value and (2) a model name (either
Single or Multi depends on classification task) required for a TextCategorizer com-
ponent configuration.

TextCategorizer generates a probability for each class and a class is assigned to
text if the probability of this class is higher than the threshold value.

A traditional threshold value for text classification is 0.5, however, if prediction
is required for a higher confidence, it can adjust threshold to 0.6-0.8.

A single-label TextCategorizer (tCategorizer) component is added to nlp pipe-
line as follows:

[4] # Import the Single Text Categorizer Model
Define the model parameters: threshold and model
from spacy.pipeline.textcat import
DEFAULT SINGLE TEXTCAT MODEL
config = {
"threshold": 0.5,
"model": DEFAULT SINGLE TEXTCAT MODEL

380 15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

[5] # Define the Text Categorizer object (tCategorizer)
tCategorizer = nlp.add pipe ("textcat", config=config)

Let’s look at Text Categorizer object (tCategorizer):

[6] tCategorizer
<spacy.pipeline.textcat. TextCategorizer at 0x278850c0830>

Add a multilabel component to nlp pipeline:

[7] # Import the Multiple Text Categorizer Model
Define the model parameters: threshold and model
from spacy.pipeline.textcat multilabel import
DEFAULT MULTI TEXTCAT MODEL
config = {
"threshold": 0.5,
"model": DEFAULT MULTI TEXTCAT MODEL

[8] tCategorizer = nlp.add pipe("textcat multilabel",
config=config)

[9] tCategorizer
<spacy.pipeline.textcat_multilabel. MultiLabel_TextCategorizer at 0x278850c26£0>

Add a TextCategorizer pipeline component to nlp pipeline object at the last line of
each preceding code blocks. The newly created TextCategorizer component is
[/| captured by textcat variable and set for training

15.5.2 Formatting Training Data for the TextCategorizer

Let’s prepare a customer sentiment dataset for binary text classification.

The label (category) will be called sentiment to obtain two possible values, 0 and
1 corresponding to negative and positive sentiments.

There are six examples from IMDB with three each of positive and negative
as below:

15.5 Text Classifier with spaCy NLP Pipeline 381

[10]

movie commentl = [

("This movie is perfect and worth watching. ",
{"cats": {"Positive Sentiment": 1}}),

("This movie is great, the performance of Al Pacino
is brilliant.", {"cats": {"Positive Sentiment": 1}}),

("A very good and funny movie. It should be the best
this year!", {"cats": {"Positive Sentiment": 1}}),

("This movie is so bad that I really want to leave
after the first hour watching.", {"cats": {"Positive
Sentiment": 0}1}),

("Even free I won't see this movie again. Totally
failure!",

{"cats": {"Positive Sentiment": 0}}),

("I think it is the worst movie I saw so far this
year.",
{"cats": {"Positive Sentiment": 0}})

1]

Check on any movie comment! element:

[11]

movie commentl [1]

('This movie is great, the performance of Al Pacino is brilliant.",
{'cats": {'Positive Sentiment": 1}})

* Each training example (movie_comentl) is a tuple object consists of a text and a
nested dictionary.

 The dictionary contains a class category in a format recognized by spaCy.

* The cats field means categories.

* Include class category sentiment and its value. The value should always be a
floating-point number.

The code will introduce a class category selected for TextCategorizer component.

[12]

import random

import spacy

from spacy.training import Example
from spacy.pipeline.textcat import
DEFAULT SINGLE TEXTCAT MODEL

* Import a built-in library random to shuffle dataset.

* Import spaCy as usual, then import example to prepare training samples in spaCy
format.

* Import TextCategorizer model in the final statement.

382 15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

Initialize pipeline and TextCategorizer component.

When a new TextCategorizer component tCategorizer is created, use calling
add_label method to introduce category sentiment to TextCategorizer component
with examples.

The following code adds label to TextCategorizer component and initializes
TextCategorizer model’s weights with training samples:

[13] import random
import spacy
from spacy.training import Example
from spacy.pipeline.textcat import
DEFAULT SINGLE TEXTCAT MODEL
Load the spaCy NLP model

nlp = spacy.load('en core web md'")
Set the threshold and model
config = {

"threshold": 0.5,

"model": DEFAULT SINGLE TEXTCAT MODEL
}
Define TextCategorizer object (tCategorizer)
tCategorizer = nlp.add pipe ("textcat", config=config)

Let’s look at pipe_names:

[14] nlp.pipe names
['tok2vec',
'tagger’,
'parser’,
'attribute_ruler’,
'lemmatizer’,
'ner’,
'textcat']

When a new TextCategorizer component textcat is created, use calling add_label
method to introduce label sentiment to the TextCategorizer component and initialize
this component with examples.

The following code adds a label to TextCategorizer component and initializes
TextCategorizer model’s weights with training samples (movie_comment_exp):

[15] # Create the two sentiment categories
tCategorizer.add label ("Positive Sentiment")
tCategorizer.add label ("Negative Sentiment")

Create the movie comment samples

movie comment exp = [Example.from dict (nlp.make
doc (comments), category) for comments,category in
movie commentl]

tCategorizer.initialize (lambda: movie comment exp,
nlp=nlp)

15.5 Text Classifier with spaCy NLP Pipeline 383
Let’s look at movie_comment_exp:

[16] movie comment exp
[{'doc_annotation": {'cats": {'Positive Sentiment": 1}, 'entities": ['O', 'O', 'O, 'O, 'O',
'0,'0', 'O'], 'spans": {}, 'links": {}}, 'token_annotation": {'ORTH'": ['This', 'movie',
'is', 'perfect’, 'and’, 'worth', 'watching', "."], 'SPACY": [True, True, True, True, True,
True, False, True], ' TAG" [",",",",",",", "], LEMMA" ", ",",",",",", "], POS"
- ", MORPH: [, Y], 'HEAD: [0, 1, 2, 3,4, 5,6, 7],
'DEP": [",",",",",",","], 'SENT_START" [1, 0,0, 0,0,0,0,0]}},
{'doc_annotation": {'cats": {'Positive Sentiment': 1}, 'entities": ['O’, 'O', 'O, 'O', 'O',
'0,'0,'0,'0,'0,'0,'0','O'], 'spans": {}, 'links": {}}, 'token_annotation':
{'ORTH": ['This', 'movie', 'is', 'great', ',', 'the', 'performance’, 'of', 'Al', 'Pacino’, 'is',
‘brilliant’, '."], 'SPACY": [True, True, True, False, True, True, True, True, True, True,
True, False, False], "TAG": [",",",",",",",",",",",", "], LEMMA" [",",",",",","

o poST) L s S L s ", ' MORPH : [,
""" "],'HEAD" [0, 1,2,3,4,5,6,7,8,9, 10, 11, 12], 'DEP" [",",",",",",",",", ",
""", 'SENT_START": [1, 0, 0, 0,0, 0,0,0,0,0,0,0,0]}},

{'doc_annotation': {'cats": {'Positive Sentiment': 1}, 'entities: ['O’, 'O', 'O, 'O', 'O,
'0,'0,'0,'0,'0,'0,'0','0','0','0", 'spans": {}, 'links": {}}, 'token_annotation":
{'ORTH" ['A', 'very', 'good', 'and, 'funny', 'movie', ', 'It', 'should’, ...

15.5.3 System Training

Training loop is all set to be defined.

First, disable other pipe components to allow only textcat to be trained.

Second, create an optimizer object by calling resume_training to keep the
weights of existing statistical models.

Examine each epoch training example one by one and update the weights of
textcat. Examine data for 20 epochs.

Try the whole program with training loop:

[17] movie commentl

[('This movie is perfect and worth watching. ',

{'cats": {'Positive Sentiment": 1}}),

('This movie is great, the performance of Al Pacino is brilliant.,
{'cats": {'Positive Sentiment': 1}}),

(‘A very good and funny movie. It should be the best this year!',
{'cats": {'Positive Sentiment": 1}}),

('This movie is so bad that I really want to leave after the first hour watching.',
{'cats": {'Positive Sentiment: 0} }),

("Even free I won't see this movie again. Totally failure!",
{'cats": {'Positive Sentiment: 0}}),

(' think it is the worst movie I saw so far this year.',

{'cats": {'Positive Sentiment": 0} })]

384 15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

[18] # Full implementation of the Movie Sentiment Analysis
System

import random

import spacy

from spacy.training import Example

from spacy.pipeline.textcat import

DEFAULT SINGLE TEXTCAT MODEL

Load the spaCy NLP model

nlp = spacy.load('en core web md'")
Set the threshold and model
config = {

"threshold": 0.5,
"model": DEFAULT SINGLE TEXTCAT MODEL
}
Create the TextCategorizer object (tCategorizer)
tCategorizer = nlp.add pipe ("textcat", config=config)
Add the two movie sentiment categories
tCategorizer.add label ("Positive Sentiment")
tCategorizer.add label ("Negative Sentiment")
Create the movie sample comments
movie comment exp = [Example.from dict (nlp.make
doc (comments), category) for comments,category in
movie commentl]
tCategorizer.initialize (lambda: movie comment exp,
nlp=nlp)
Set the training epochs and loss values
epochs=20
losses = {}
Main program loop
withnlp.select pipes(enable="textcat"):
optimizer = nlp.resume training/()
for i in range (epochs) :
random. shuffle (movie commentl)
for comments, categoryinmovie commentl:
mdoc = nlp.make doc (comments)
exp = Example.from dict (mdoc, category)
nlp.update ([exp], sgd=optimizer,
losses=losses)
print ("Epoch #",1i, "Losses: ",losses)

15.5 Text Classifier with spaCy NLP Pipeline

Epoch # 0 Losses: {'textcat": 1.4457833915948868}
Epoch # 1 Losses: {'textcat": 2.6075984984636307}
Epoch # 2 Losses: {'textcat': 3.502597125247121}
Epoch # 3 Losses: {'textcat': 4.506776508176699}
Epoch # 4 Losses: {'textcat': 5.337087038293248}
Epoch # 5 Losses: {'textcat': 6.35534223607101}
Epoch # 6 Losses: {'textcat': 7.171283801217214}
Epoch # 7 Losses: {'textcat': 8.18715655813412}
Epoch # 8 Losses: {'textcat': 8.992988994691586}
Epoch # 9 Losses: {'textcat': 10.04922488262389}
Epoch # 10 Losses: {'textcat": 10.843044139094673}
Epoch # 11 Losses: {'textcat: 11.831995705193918}
Epoch # 12 Losses: {'textcat": 12.701028650988377}
Epoch # 13 Losses: {'textcat": 13.476843157594317}
Epoch # 14 Losses: {'textcat": 14.474409362490363}
Epoch # 15 Losses: {'textcat": 15.255843693623234}
Epoch # 16 Losses: {'textcat': 16.088656657451878}
Epoch # 17 Losses: {'textcat': 16.996663642346313}
Epoch # 18 Losses: {'textcat': 17.76832411575554}
Epoch # 19 Losses: {'textcat': 18.6191813947854}

15.5.4 System Testing

385

Let’s test a new text categorizer component, doc.cats property holds the class labels:

[19]

[20]

Test 1: This movie sucks

testl = nlp("This movie sucks and the worst I ever
saw.")
testl.cats

{'Positive Sentiment': 0.8156227469444275,
'Negative Sentiment': 0.18437722325325012}

Test 2: I'll watch it again, how amazing.
test2 = nlp("This movie really very great!")
test2.cats

{'Positive Sentiment': 0.8716222047805786,

'Negative Sentiment': 0.1283777952194214}

The small dataset trained spaCy text classifier successfully for a binary text
classification problem to perform correct sentiment analysis. Now, let’s perform
multi-label classification

386 15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)
15.5.5 Training TextCategorizer for Multi-Label Classification

Multi-label classification means the classifier can predict more than single-label for
an example text. Naturally, the classes are not mutually exclusive.

Provide training samples with at least more than two categories to train a multi-
ple labeled classifier.

Construct a small training set to train spaCy‘s TextCategorizer for multi-label
classification. This time will form a set of movie reviews, where the multi-
category is:

* ACTION
e SCIFI
« WEEKEND

Here is a small sample dataset (movie_comment2):

[21] movie comment2 = [
("This movie is great for weekend watching.",
{"cats": {"WEEKEND": True}}),
("This a 100% action movie, I enjoy it.",
{"cats": {"ACTION": True}}),
("Avatar is the best Scifi movie I ever seen!",
{"cats": {"SCIFI": True}}),
("Such a good Scifi movie to watch during the
weekend!",
{"cats": {"WEEKEND": True, "SCIFI": True}}),
("Matrix a great Scifi movie with a lot of action.
Pure action, great!", {"cats": {"SCIFI": True,
"ACTION": True}})

Check dataset first:

[22] movie comment?2
[('This movie is great for weekend watching.', {'cats": {' WEEKEND": True}}),
('This a 100% action movie, I enjoy it.', {'cats": {'ACTION": True}}),
(‘Avatar is the best Scifi movie I ever seen!', {'cats": {'SCIFI'": True}}),
('Such a good Scifi movie to watch during the weekend!',
{'cats": {'WEEKEND": True, 'SCIFI': True}}),
('Matrix a great Scifi movie with a lot of action. Pure action, great!',
{'cats: {'"SCIFI'": True, 'ACTION": True}})]

[23] movie comment2[1]
('This a 100% action movie, I enjoy it., {'cats": {'ACTION": True} })

15.5 Text Classifier with spaCy NLP Pipeline 387

Provide examples with a single-label, such as first example (the first sentence of
movie_comment2, the second line of preceding code block), and examples with
more than single-label, such as fourth example of movie_comment2.

Import after the training set is formed.

[24] import random
import spacy
from spacy.training import Example
fromspacy.pipeline.textcat multilabel import
DEFAULT MULTI TEXTCAT MODEL
Load spaCy NLP model
nlp = spacy.load('en core web md')

Note that the last line has different code than the previous section. Import multi-
label model instead of single-label model.

Next, add multi-label classifier component to nlp pipeline.

Also note that pipeline component name is textcat_multilabel as compared with
previous section’s textcat:

[25] # Set the threshold and model
config = {
"threshold": 0.5,
"model": DEFAULT MULTI TEXTCAT MODEL
}
Create the TextCategorizer object (tCategorizer)
tCategorizer = nlp.add pipe("textcat multilabel",
config=config)

Add categories to TextCategorizer component and initialize model like previous
text classifier section.
Add three labels instead of one:

[26] # Create the categorizer object with 3 categories
categories = ["SCIFI", "ACTION", "WEEKEND"]
Using For Loop to add the 3 categories
for category in categories:

tCategorizer.add label (category)

Create the movie comment sample for training
movie comment exp = [Example.from dict (nlp.make
doc (comments), category) for comments,category in
movie comment2]
Initializer the tCategorizer
tCategorizer.initialize (lambda: movie comment exp,
nlp=nlp)

Training loop is all set to be defined.
Code functions are like previous section’s code, the only difference is component
name textcat_multilabel in the first line:

388 15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

[27] # Set the training epochs and loss values
epochs=20
losses = {}
Main Loop of the program
withnlp.select pipes(enable="textcat multilabel"):
optimizer = nlp.resume training/()
for i in range (epochs) :
random. shuffle (movie comment2)
for comments, category in movie comment2:
mdoc = nlp.make doc (comments)
exp = Example.from dict (mdoc, category)
nlp.update ([exp], sgd=optimizer,
losses=losses)
print (losses)

{'textcat_multilabel': 0.6435152161866426}
{'textcat_multilabel': 0.6444572633295138}
{'textcat_multilabel': 0.644508911859063}
{'textcat_multilabel': 0.6445386177332972}
{'textcat_multilabel': 0.6445531247200567}
{'textcat_multilabel': 0.6445633990291366}
{'textcat_multilabel': 0.6445710929335524}
{'textcat_multilabel': 0.6445779604009196}
{'textcat_multilabel': 0.6445835611851201}
{'textcat_multilabel': 0.644588678256226}
{'textcat_multilabel': 0.6445934303342438}
{'textcat_multilabel': 0.6445977886109024 }
{'textcat_multilabel': 0.6446017611581358}
{'textcat_multilabel': 0.644605454090792}
{'textcat_multilabel': 0.6446089753232687}
{'textcat_multilabel': 0.6446123319626418}
{'textcat_multilabel': 0.6446155674397027}
{'textcat_multilabel': 0.6446186350310477}
{'textcat_multilabel': 0.6446215542191567}
{'textcat_multilabel': 0.644624413417668

The output should look like the output of the previous section but use multiple
categories for system training. Let’s test the new multi-label classifier:

[28] test3 = nlp("Definitely in my weekend scifi movie night
list")
test3.cats

{'SCIFI": 0.9721231460571289,
'ACTION': 0.6180852055549622,
'WEEKEND'": 0.9213110208511353}

[29] testd = nlp("Go to watch action scifi movie this
weekend.")
testd.cats

15.6 Sentiment Analysis with spaCy 389

{'SCIFI": 0.9883644580841064,
'ACTION': 0.9022844433784485,
'WEEKEND': 0.9972347617149353}

Although sample size is small, the multiple text categorizer can classify two IMDB
user comments correctly into three categories: SCIFI, ACTION, and

WEEKEND. Note that over thousands of IMDB, user comments are required to
perform satisfactory sentiment analysis in real situations

This section has learnt how to train a spaCy’s TextCategorizer component for
binary and multi-label text classifications.

Now, TextCategorizer will be trained on a real-world dataset for a sentiment
analysis using IMDB user comments dataset.

WORKSHOP

Workshop 5.1 Movie comments from IMDB.com

Movie comments is a significant classification in social media. This workshop
constructs a simple movie comment classification with millions of user comments
from IMDB.com, the world biggest movie social media platform

1. Try to collect 900 comments with 300 Good, 300 Average, and 300 Bad
comments to train the system. Make sure they make sense or the system won’t
function.

2. Construct a Multi-label Classification System to create three movie comments:
Good, average, or bad.

3. Train system with at least 100 epochs.

4. Use 10 examples to test and see whether it works.

15.6 Sentiment Analysis with spaCy

15.6.1 IMDB Large Movie Review Dataset

This section will work on a real-world dataset using IMDB (2024) Large Movie
Reviews Dataset from Kaggle (2024).

The original imdb_sup.csv dataset has 50,000 rows. They need to down-size and
select the first 5000 records into datafile imdb_5000.csv to speed up training. This
movie reviews dataset consists of movie reviews, reviews sizes, IMDB Ratings
(1-10), and Sentiment Ratings (0 or 1).

The dataset can be downloaded from workshop directory namely: imdb_sup.csv
(complete dataset) or imdb_5000.csv (5000 records).

390 15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

15.6.2 Explore the Dataset

Let’s have some understanding from dataset prior to sentiment analysis.

1. First, import to read and visualize dataset:

[30] import pandas as pd
importmatplotlib.pyplot asplt
$matplotlib inline

2. Read imdb_5000.csv datafile into a pandas DataFrame (mcommentDF) and out-
put the shape of DataFrame:

[31] ‘ mcommentDF=pd.read csv('imdb 5000.csv')
[32] mcommentDF . shape
(5000, 3)

Note: This IMDB movie reviews dataset contains 5000 records, each record has
three fields’ attributes: Review, Rating, and Sentiment

3. Examine rows and columns of dataset by printing the first few rows using
head() method:

[33] mcommentDF.head ()
Review Rating Sentiment
0 **Possible Spoilers** 1 0
1 Read the book, forget the movie! 2 0
2 **Possible Spoilers Ahead** 2 0
3 What a script, what a story, what a mess! 2 0
4 | hope this group of film-makers never re-unites. 1 0

4. Use Review and Sentiment columns only in this workshop. Hence, drop other
columns that won't use, and call dropna() method to drop the rows with miss-
ing values:

[34] mcommentDF clean = mcommentDF[['Review', 'Sentiment'
1] .dropna ()

15.6 Sentiment Analysis with spaCy 391

(35] mcommentDF clean.head ()
Review Sentiment
0 **Possible Spoilers** 0
1 Read the book, forget the movie! 0
2 **Possible Spoilers Ahead** 0
3 What a script, what a story, what a mess! 0
4 | hope this group of film-makers never re-unites. 0

5. Let’s look at how review scores are distributed:

[36] axplot=mcommentDF.Rating.value counts().plot

(kind="bar', colormap='Paired')
plt.show ()
1400 ~
1200 A
1000 A

800 A

600 1

400 ~

200 A

0 T T T T T T T T
o — w o m < ~ ™~
=
Rating
1. Users prefer to give a high rating, i.e., 8 or above, and 10 is the highest as
shown.
2. It is better to select a sample set with an even distribution to balance sample data
A rating.

3. Check system performance first. If it is not as good as predicted, can use
fine-tune sampling method to improve system performance.

392 15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

Here use the sentiments already labeled.

6. Plot ratings distribution:

[37] axplot=mcommentDF.Sentiment.value counts().plot (kind=
'bar', colormap='Paired')
plt.show ()

2500 A

2000 A

1500 -

1000 -

500 -

Sentiment

Note that rating distribution has better results than the previous one, it has higher
number of positive reviews, but negative reviews is also significant as shown

After the dataset is processed, it can be reduced to a two-column dataset with
negative and positive ratings. So, call mcommentDF. head() again and the following
result is obtained:

[38] |mcommer1tDF .head ()

15.6 Sentiment Analysis with spaCy 393

Review Rating Sentiment

0 **Possible Spoilers** 1 0
1 Read the book, forget the movie! 2 0
2 **Possible Spoilers Ahead** 2 0
3 What a script, what a story, what a mess! 2 0
4 | hope this group of film-makers never re-unites. 1 0

Complete dataset exploration and display review scores with class categories
distribution. The dataset is ready to be processed. Drop unused columns and
convert review scores to binary class labels. Let’s begin with the training procedure

15.6.3 Training the TextClassfier

Use a multi-label classifier to train a binary text classifier this time.

1. Import spaCy classes as follows:

[39] import spacy

import random

from spacy.training import Example
fromspacy.pipeline.textcat multilabel import
DEFAULT MULTI TEXTCAT MODEL

2. Create a pipeline object nlp, define classifier configuration, and add
TextCategorizer component to nlp with the following configuration:

[40] # Load the spaCy NLP model
nlp = spacy.load("en core web md")
Set the threshold and model
config = {

"threshold": 0.5,

"model": DEFAULT MULTI TEXTCAT MODEL
}
Create the TextCategorizer object (tCategorizer)
tCategorizer = nlp.add pipe("textcat multilabel",
config=config)

394 15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

3. When TextCategorizer object is available, create movie comment sample object
as a list and load all user comments and categories into it.

[41] # Create the IMDBmovie comment sample object
movie comment exp = []
Load all the IMDBuser comments and categories
for idx, rwinmcommentDF.iterrows () :

comments = rw["Review"]

rating = rw["Sentiment"]

category = {"POS": True, "NEG": False} if rating == 1
else

{"NEG": True, "POS": False!}
movie comment exp.append (Example.from dict (nlp.
make doc (comments), {"cats": category}))

4. Let’s check movie_comment_exp:

[42] movie comment exp[0]
{'doc_annotation": {'cats’: {'NEG": True, 'POS'": False}, 'entities": ['O', 'O, 'O', 'O’,
'0','0'], 'spans": {}, 'links": {}}, 'token_annotation: {'ORTH'": ['*', *', 'Possible',
'Spoilers', '*', "*'], 'SPACY": [False, False, True, False, False, False], ' TAG" [",",", ",
" "], ' LEMMA" [",",",", ", "], 'POS" [",",",",", "], MORPH" [",",",",","],

'HEAD" [0, 1, 2, 3, 4, 5], DEP" [",",",",", "], 'SENT_START" [1, 0, 0, 0, 0, 0]} }

5. Use POS and NEG labels for positive and negative sentiment respectively.
Introduce these labels to the new component and initialize it with examples.

[43] # Add the two sentiment categories into tCategorizer
tCategorizer.add label ("POS")
tCategorizer.add label ("NEG")
tCategorizer.initialize (lambda: movie comment exp,
nlp=nlp)

[44] tCategorizer
<spacy.pipeline.textcat_multilabel. MultiLabel_TextCategorizer at 0x2791f978d70>

6. Define training loop by examining the training set for two epochs but can exam-
ine further if necessary. The following code snippet will train the new text cate-
gorizer component:

15.6 Sentiment Analysis with spaCy 395

[45]

Set the training epochs to 2 to save time
epochs = 2
Main program loop
withnlp.select pipes(enable="textcat multilabel"):
optimizer = nlp.resume training/()
for i in range (epochs) :
random. shuffle (movie comment exp)
for exp inmovie comment exp:
nlp.update ([exp], sgd=optimizer)

7. Test how text classifier component works for two example sentences:

[46] test5 = nlp("This is the best movie that I have ever
watched")

[47] test5.cats
{'POS': 0.9747582674026489, 'NEG': 0.017647745087742805}

[48] ‘test6 = nlp("This movie is so bad")

[49] test6.cats

{'POS': 0.11307813227176666, 'NEG'": 0.8834090828895569}

Note both NEG and POS labels appeared in prediction results because it used a
multi-label classifier. The results are satisfactory, but it can improve if the numbers
for training epochs are increased. The first sentence has a high positive probability
output, and the second sentence has predicted as negative with a high probability

SpaCy’s text classifier component training is completed.

The next section will explore Kera, a popular deep leaning library, and how to
write Keras code for text classification with another machine learning library—
TensorFlow ‘s Keras API.

396 15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

Fig. 15.3 System
architecture of ANN

15.7 Artificial Neural Network in a Nutshell

This workshop section will learn how to incorporate spaCy technology with ANN
technology using TensorFlow and its Keras package (Géron 2019; Kedia and Rasu
2020; TensorFlow 2024).

A typical ANN has:

1. Input layer consists of input neurons, or nodes
2. Hidden layer consists of hidden neurons, or nodes
3. Output layer consists of output neurons, or nodes

ANN will learn knowledge by its network weights update through network train-
ing with sufficient sample inputs and target outputs pairs. The network can predict
or match unseen inputs to corresponding output result after it had sufficient training
to a predefined accuracy. A typical ANN architecture is shown in Fig. 15.3.

15.8 An Overview of TensorFlow and Keras

TensorFlow (Géron 2019; TensorFlow 2024) is a popular Python tool widely used
for machine learning. It has huge community support and great documentation
available at TensorFlow official site (TensorFlow 2024), while Keras (2024) is a
Python-based deep learning tool that can be integrated with Python platforms such
as TensorFlow, Theano, and CNTK.

TensorFlow 1 was disagreeable to symbolic graph computations and other low-
level computations, but TensorFlow 2 initiated great changes in machine learning
methods allowing developers to use Keras‘with TensorFlow’s low-level methods.
Keras is popular in R&D because it supports rapid prototyping and user-friendly
API to neural network architectures (Kedia and Rasu 2020; Srinivasa-Desikan 2018).

Neural networks are commonly used for computer vision and NLP tasks includ-
ing object detection, image classification, scene understanding, text classification,
POS tagging, text summarization, and natural language generation.

15.9 Sequential Modeling with LSTM Technology 397

TensorFlow 2 will be used to study the details of a neural network architecture
for text classification with tf.keras implementation throughout this section.

15.9 Sequential Modeling with LSTM Technology

LSTM is one of the significant recurrent networks used in various machine learning
applications such as NLP applications nowadays (Ekman 2021; Korstanje 2021).

RNNS are special neural networks that can process sequential data in steps.

All inputs and outputs are independent but not for text data in neural networks.
Every word’s presence depends on neighboring words, e.g., a word is predicted by
considering all preceding predicted words and stored the past sequence token of
words within an LTSM cell in a machine translation task. An LSTM is showed in
Fig. 15.4.

An LSTM cell is moderately complex than an RNN cell, but computation logic
is identical. A diagram of an LSTM cell is shown in Fig. 15.5. Note that input and
output steps are identical to RNN counterparts:

® (f%)@ ®

A A
Fig. 15.4 RNN with LSTM technology

ha @

v

v

v

™ (s = it 4
i ; (tanh) i
A Q O A
| [0 [0l fem] [o]
A TR A

® ©

Fig. 15.5 Architecture of LSTM cell

398 15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

Keras has extensive support for RNN variations GRU, LSTM and simple API for
training RNNs. RNN variations are crucial for NLP tasks as language data’s nature
is sequential, i.e., text is a sequence of words, speech is a sequence of sounds,
and so on.

Since the type of statistical model has been identified in the design, it can trans-
form a sequence of words into a word IDs sequence and build vocabulary with
Keras preprocessing module simultaneously.

15.10 Keras Tokenizer in NLP

Text is a sequence of words or characters data. A sentence can be fed by a tokens
sequence. Hence, tokens are to be vectorized first by the following steps:

1. Tokenize each utterance and turn these utterances into a sequence of tokens.

2. Build a vocabulary from set of tokens presented in Step 1. These are tokens to be
recognized by neural network design.

. Create a vocabulary and assign ID to each token.

4. Map token vectors with corresponding token-IDs.

(O8]

Let’s look at a short example of a corpus for three sentences:

[50] testD = ["I am going to buy a gift for Christmas
tomorrow morning.",
"Yesterday my mom cooked a wonderful meal.",
"Jack promised he would remember to turn off the
lights." 1]

[51] testD
['Tam going to buy a gift for Christmas tomorrow morning.',
'Yesterday my mom cooked a wonderful meal.',
'Jack promised he would remember to turn off the lights.']

Let’s tokenize words into utterances:

[52] import spacy
Load the NLP model
nlp = spacy.load("en core web md")
Create the utterances object
utterances = [[token.text for tokeninnlp (utterance)] for
utterance in testD]
for utterance inutterances:
utterance

15.10 Keras Tokenizer in NLP 399

All tokens of Doc object generated by calling nlp(sentence) are iterated in the
preceding code. Note that punctuation marks have not been filtered as this filtering
depends on the task, e.g., punctuation marks such as '!', correlate to the result in
sentiment analysis, they are preserved in this example

Build vocabulary and token sequences into token-ID sequences using Tokenizer

as shown:

[53]

[54]

[55]

Import Tokenizer

from tensorflow. keras.preprocessing. text import Tokenizer
Create tokenizer object (ktoken)

ktoken = Tokenizer (lower=True)

ktoken.fit on texts (testD)
ktoken

<keras.src.legacy.preprocessing.text. Tokenizer at 0x278fbd58c90>

ktoken.word index

{'to": 1,'i": 2, 'am": 3, 'going": 4, 'buy": 5, 'some": 6, 'gift": 7, 'for": 8, 'christmas": 9,
'tomorrow": 10, 'morning": 11, 'yesterday': 12, 'my": 13, 'mom": 14,

'cooked": 15, 'a": 16, 'wonderful": 17, 'meal": 18, 'john": 19, 'promised': 20,

'he': 21, 'would": 22, 'remember': 23, 'turn": 24, 'off': 25, 'the": 26, 'lights": 27}

The following are performed in the above codes:

1. Import tokenizer from Keras text preprocessing module.

2. Create a tokenizer object (ktoken) with parameter lower = true, which means
tokenizer should lower all words for vocabulary formation.

3. Call ktoken.fit_on_texts on data to form vocabulary. fit_on_text work on a tokens
sequence; input should always be a list of tokens.

4. Examine vocabulary by printing ktoken.word_index. Word_index is a dictionary
where keys are vocabulary tokens and values are token-IDs.

Call ktoken.texts_to_sequences() method to retrieve a token-ID.

Notice that the input to this method should always be a list, even if a single
token is fed.

Feed one-word input as a list (notice list brackets) in the following code segment:

[56]

ktoken.texts to sequences (["Christmas"])

(o1

400 15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

[57] ktoken.texts to sequences(["cooked", "meal"])

[[15], [18]]

1. Note token-IDs start from 1 and not 0. O is a reserved value, which means a
padding value with specific meaning.
\ ' | 2. Keras cannot process utterances of different lengths, hence need to pad all
< utterances.
; 3. Pad each sentence of dataset to a maximum length by adding padding utterances

either at the start or end of utterances.

4. Keras inserts O for the padding which means it’s a padding value without a
token.

Let’s understand how padding works with a simple example.

[58] # Import the pad sequences package
from tensorflow. keras.preprocessing.sequence import
pad sequences
Create the utterance sequences

seq_utterance = [[7], [8,1], [9,11,12,14]]
Define Maximum Length (MLEN)
MLEN=4

Pad the utterance sequences.
pad sequences (seq utterance, MLEN, padding="post")
array([[7, 0, 0, 0],

[8,1,0,0],

[9, 11,12, 14]])

[59] pad sequences (seq utterance, MLEN, padding="pre")

array([[0, 0, 0, 7],
[0,0,8,1],
[9,11, 12, 14])

Call pad_sequences on this sequences list and every sequence is padded with
zeros so that its length reaches MAX_LEN = 4 which is the length of the longest
sequence. Then pad sequences from the right or left with post and pre options.
Sentences with post option are padded in the preceding code, hence the sentences
are padded from the right.

When these sequences are organized, the complete text preprocessing steps are
as follows:

15.10 Keras Tokenizer in NLP 401

[60] # Import the Tokenizer and pad sequences package

from tensorflow. keras.preprocessing. text import Tokenizer
from tensorflow. keras.preprocessing.sequence import
pad_sequences
Create the token object
ktoken = Tokenizer (lower=True)
ktoken.fit on texts (testD)
Create the sequence utterance object
sutterance = ktoken.texts to sequences (testD)
MLEN=7
Pad the utterance sequences
pseq utterance = pad sequences (sutterance, MLEN,
padding="post")
pseq utterance
array([[5, 6,7, 8,9, 10, 11],

[12, 13, 14, 15, 16, 17, 18],

[22,23, 1, 24, 25, 26, 27]])

Transform utterances into a token-IDs sequence for tokens vectorization so that
utterances will be ready to feed into neural network

15.10.1 Embedding Words

Tokens can be transformed into token vectors. Embedding tokens into vectors
occurred via a lookup embedding table. Each row holds a token vector indexed by
token-IDs, hence the flow of obtaining a token vector is as follows:

1.

N =

token->token-ID: A token-ID is assigned with each token with Keras ‘Tokenizer
in previous section. Tokenizer holds all vocabularies and maps each vocabulary
token to an ID.

. token-ID->token vector: A token-ID is an integer that can be used as an index to

embed table’s rows. Each token-ID corresponds to one row and when a token
vector is required, first obtain its token-ID and lookup in the embedding table
rows with this token-ID.

A sample of embedding words into token vectors is shown in Fig. 15.6.
Remember when a list of utterances began in the previous section:

. Eachutterance is divided into tokens and built a vocabulary with Keras “Tokenizer.
. The Tokenizer object held a token index with a token->token-ID mapping.
. When a token-ID is obtained, lookup to embedding table rows with this token-

ID to acquire a token vector.

402 15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

Embedding

Tok Token-ID
oken oken Table

row 1 Token-vector

row 2 “food”

—

Fig. 15.6 A sample of embedding words into token vectors

4. This token vector is fed to neural network.

There are several steps to transform sentences into vectors as training a neural
network is complex.

An LSTM neural network architecture can be designed to perform model train-
ing after these preliminary steps.

15.11 Movie Sentiment Analysis with LTSM Using Keras
and spaCy

This section will demonstrate the design of LSTM-based RNN text classifier for
sentiment analysis with steps below:

. Data retrieval and preprocessing.

. Tokenize review utterances with padding.

. Create utterances pad sequence and put it into input layer.

. Vectorize each token and verify by token-ID in embedding layer.
. Input token vectors into LSTM.

. Train LSTM network.

AN AW =

Let’s start by recalling the dataset again.
Step 1: Dataset

IMDB movie reviews identical dataset from sentiment analysis with spaCy sec-
tion will be used. They had already been processed with pandas and condensed into
two columns with binary labels.

Reload reviews table and perform data preprocessing as done in previous section
to ensure the data is up to date:

15.11 Movie Sentiment Analysis with LTSM Using Keras and spaCy 403

[61] import pandas as pd
importmatplotlib.pyplot asplt
$matplotlib inline
Create the movie comment DataFrame and display the
statistics
mcommentDF=pd.read csv('imdb 5000.csv")
mcommentDF = mcommentDF[['Review', 'Sentiment']].
dropna ()
axplot=mcommentDF.Sentiment.value counts() .
plot (kind='bar', colormap='Paired')
plt.show ()
2500 A
2000 1
1500
1000 4
500 4
n B
-
Sentiment

Here is how mcommentDF dataset should look:

[62] mcommentDF .head ()

Review Sentiment

0 **Possible Spoilers**
1 Read the book, forget the movie!
2 **Possible Spoilers Ahead**
3 What a script, what a story, what a mess!
4

o ©o ©o © o

I hope this group of film-makers never re-unites.

Next, extract review text and review label from each dataset row and add them
into Python lists:

404 15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

[63] # Import spaCy

import spacy

Load the spaCy NLP model

nlp = spacy.load("en core web md")

[64] # Create movie comment sample and categories objects
movie comment exp = []
categories = []
Perform Tokenization
for idx, rwinmcommentDF.iterrows() :
comments = rw["Review"]
rating = rw["Sentiment"]
categories.append(rating)
mtoks = [token.text for tokeninnlp (comments)]
movie comment exp.append (mtoks)

[65] movie comment exp[0]
['*', "*', 'Possible', 'Spoilers', "*', '*']

Note that a list of words to movie_comment_exp has been added, hence each
element of this list is a list of tokens. Next, invoke Keras‘tokenizer on this tokens
list to build vocabulary

Step 2: Data and vocabulary preparation

Since the dataset had already been processed, tokenize dataset sentences and
build a vocabulary.

1. Import necessary Python packages.

[66] # Import Tokenizer, pad sequences

from tensorflow. keras.preprocessing. text import Tokenizer
from tensorflow. keras.preprocessing.sequence import
pad_sequences

import numpy as np

15.11 Movie Sentiment Analysis with LTSM Using Keras and spaCy 405

2. Feed ktoken into token list and convert them into IDs by calling

texts_to_sequences:.

[67] # Create ktoken and perform tokenization

ktoken = Tokenizer (lower=True)
ktoken.fit_on_texts(movie_ comment_exp)

Create utterance sequences object

seq utterance = ktoken.texts to sequences (movie

comment exp)

3. Pad short utterance sequences to a maximum length of 50. This will truncate
long reviews to 50 words:

[68] # Set the max length to 50
MLEN = 50
Create pad utterance sequence object
ps_utterance = pad sequences (seq utterance, MLEN,
padding="post")

4. Convert this list of reviews and labels to numpy arrays:

[69] # Convert the ps utterance into numpy arrays
ps_utterance = np.array(ps_utterance)

Create the category list (catlist)

catlist = np.array(categories)

[70] ‘catlist = catlist.reshape(catlist.shape([0], 1)
[71] catlist.shape
(5000, 1)

All basic preparation works are completed at present to create an LSTM network

and input data.
Load TensorFlow Keras related modules:

[72] # Import the LSTMmodel and the optimizers

from tensorflow. keras.models import Model

from tensorflow. keras.layers import Input, LSTM, Dense,
Embedding

from tensorflow. keras import optimizers

406

15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

Step 3: Implement the Input Layer

[73]

‘ utterance input = Input (shape=(None,))

Don’t confuse None as input shape. Here, None means that the dimension can be
any scalar number. So, use this expression when Keras infers the input shape

Step 4: Implement the Embedding Layer

Create an Embedding Layer as follows:

[74]

Create the Embedding Layer
embedding = Embedding (input dim = len(ktoken.word
index)+1, output dim = 100) (utterance input)

1. When defining embedding layer, input dimension should always be tokens
number in the vocabulary (+1 because the indices start from 1 and not 0. Index 0 is
reserved for padding value).

2. Here, 100 is selected as the output shape, hence token vectors for vocabulary
tokens will be 100-dimensional. Popular numbers for token vector dimensions are
50, 100, and 200 depending on task complexity.

15.11.1 Step 5: Implement the LSTM Layer

Create LSTM_Layer:

[75]

Create the LSTM Layer
LSTM layer = LSTM(units=256) (embedding)

Here, units = 256 is the dimension of hidden state. LSTM output shape and hidden
state shape are identical due to LSTM architecture.

15.11

Movie Sentiment Analysis with LTSM Using Keras and spaCy 407

15.11.2 Step 6: Implement the Output Layer

When a 256-dimensional vector from LSTM layer has obtained, it will be con-
densed into a 1-dimensional vector (possible values of this vector are 0 and 1, which
are class labels):

[76]

Create the Output Layer
outlayer = Dense(l, activation='sigmoid') (LSTM layer)

A sigmoid function is an S-shaped function used as an activation function to map
its input to a [0—1] range in output layer. It is commonly used in many neural
networks

15.11.3 Step 7: System Compilation

After the model has defined, it is required to compile with an optimizer, a loss func-
tion, and an evaluation metric:

(77

Create the IMDB User Review LSTMModel (imdb mdl)
imdb_mdl = Model (inputs=[utterance
input], outputs=[outlayer])

Let’s look at an imdb_mdl model setup:

[78]

imdb mdl.summary ()

Model: “functional”

Layer (type) Output Shape Param #
input_layer (InputLayer) (MNone, None)]
embedding (Embedding) (None, None, 188) 1,874,400
1stm (LSTM) (None, 256) 365,568
dense (Dense) (Hone, 1) 257

Total params: 2,248,225 (8.55 MB)
Trainable params: 2,248,225 (B8.55 MB)
Non-trainable params: @ (@.ee B)

408

15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

Next, invoke model compilation:

[79]

imdb mdl.compile (optimizer="adam", loss="binary
crossentropy", metrics=["accuracy"])

1. Use adaptive moment estimation (ADAM) as optimizer for LSTM training for
imdb_mdl LSTM model.

2. Use binary cross-entropy as loss function.

3. A list of supported performance metrics can be found in Keras official site
(Keras 2024).

Step 8: Model Fitting and Experiment Evaluation

Feed imdb_mdl model to data with 5 epochs to reduce time:

[80]

Model fitting by using 5 epochs
imdb_mdl.fit (x=ps_utterance,

y=catlist,
batch size=64,
epochs=5,
validation split=0.3)
Epoch 1/5
55/55 5s 63ms/step - accuracy: 0.5956 - loss:
0.6616 - val_accuracy: 0.7520 - val_loss: 0.5091
Epoch 2/5
55/55 3s 60ms/step - accuracy: 0.8932 - loss:
0.2779 - val_accuracy: 0.7907 - val_loss: 0.4508
Epoch 3/5
55/55 3s 60ms/step - accuracy: 0.9634 - loss:
0.1304 - val_accuracy: 0.7953 - val_loss: 0.4469
Epoch 4/5
55/55 3s 61ms/step - accuracy: 0.9791 - loss:
0.0845 - val_accuracy: 0.7587 - val_loss: 0.7780
Epoch 5/5
55/55 3s 61ms/step - accuracy: 0.9955 - loss:

0.0204 - val_accuracy: 0.7507 - val_loss: 0.9288
[51]:
<keras.src.callbacks.history.History at Ox1e7345f4690>

References 409

1. x is a list of ps_utterance for network training and y is the list of categories
(catlist). The epochs parameter is set to 5 to process 5 passes over the data,
\ /| 2. Data has been processed 5 times in parameter batch_size = 64 means a batch of
v 64 training utterances are fed into the memory at a time due to memory limitations.

- 3. The validation_split = 0.3 means 70% of the dataset is used for training and 30%
is used for system validation.
4. An experiment validation accuracy rate of 0.7793 is acceptable for a basic LSTM
network training for 5 epochs only.

Workshop 5.2 Further Exploration of LSTM model on Movie Sentiment
Analysis

1. Follow Workshop 15.1 logic and use rating (0-10) field of IMDB movie
reviews dataset to reconstruct an LSTM for sentiment analysis into three
WORKSHOP | categories: Positive, neutral, and negative.

2. Verify training performance.

3. Experiment with the code further by placing dropout layers at different
locations such as after embedding layer or, after LSTM layer.

4. Try different values for embedding dimensions such as 50, 150, and 200 to
observe change in accuracy.

5. Experiment with different values instead of 256 at LSTM layer’s hidden
dimension. Try different parameters for each to perform simulations and see
whether the best configuration can be found.

References

Agarwal, B. (2020) Deep Learning-Based Approaches for Sentiment Analysis (Algorithms for
Intelligent Systems). Springer.

Albrecht, J., Ramachandran, S. and Winkler, C. (2020) Blueprints for Text Analytics Using
Python: Machine Learning-Based Solutions for Common Real World (NLP) Applications.
O’Reilly Media.

Altinok, D. (2021) Mastering spaCy: An end-to-end practical guide to implementing NLP applica-
tions using the Python ecosystem. Packt Publishing.

Arumugam, R., & Shanmugamani, R. (2018). Hands-on natural language processing with python.
Packt Publishing.

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with python. O’Reilly.

Ekman, M. (2021) Learning Deep Learning: Theory and Practice of Neural Networks, Computer
Vision, Natural Language Processing, and Transformers Using TensorFlow. Addison-Wesley
Professional.

George, A. (2022) Python Text Mining: Perform Text Processing, Word Embedding, Text
Classification and Machine Translation. BPB Publications.

Géron, A. (2019) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media.

IMDB (2024) IMDB official site. http://imdb.com. Accessed 17 Dec 2024.

Kaggle (2024) IMDB Large Movie Review Dataset from Kaggle. https://www.kaggle.com/code/
nisargchodavadiya/movie-review-analytics-sentiment-ratings/data. Accessed 17 Dec 2024.

http://imdb.com
https://www.kaggle.com/code/nisargchodavadiya/movie-review-analytics-sentiment-ratings/data
https://www.kaggle.com/code/nisargchodavadiya/movie-review-analytics-sentiment-ratings/data

410 15 Workshop#5: Sentiment Analysis and Text Classification (Hour 9-10)

Kedia, A. and Rasu, M. (2020) Hands-On Python Natural Language Processing: Explore tools and
techniques to analyze and process text with a view to building real-world NLP applications.
Packt Publishing.

Keras (2024) Keras official site performance metrics. https://keras.io/api/metrics. Accessed 17
Dec 2024.

Korstanje, J. (2021) Advanced Forecasting with Python: With State-of-the-Art-Models Including
LSTM:s, Facebook’s Prophet, and Amazon’s DeepAR. Apress.

NLPGitHub (2024) URL: https://github.com/raymondshtlee/NLP/. Accessed 17 Dec 2024.

Perkins, J. (2014). Python 3 text processing with NLTK 3 cookbook. Packt Publishing Ltd.

Pozzi, F.,, Fersini, E., Messina, E. and Liu, B. (2016) Sentiment Analysis in Social Networks.
Morgan Kaufmann.

SpaCy (2024) spaCy official site. https://spacy.io/. Accessed 17 Dec 2024.

Sarkar, D. (2019) Text Analytics with Python: A Practitioner’s Guide to Natural Language
Processing. Apress.

Siahaan, V. and Sianipar, R. H. (2022) Text Processing and Sentiment Analysis using Machine
Learning and Deep Learning with Python GUI. Balige Publishing.

Srinivasa-Desikan, B. (2018). Natural language processing and computational linguistics: A prac-
tical guide to text analysis with python, gensim, SpaCy, and keras. Packt Publishing, Limited.

TensorFlow (2024) TensorFlow official site. https://tensorflow.org/. Accessed 17 Dec 2024.

Vasiliev, Y. (2020) Natural Language Processing with Python and spaCy: A Practical Introduction.
No Starch Press.

https://keras.io/api/metrics
https://github.com/raymondshtlee/NLP/
https://spacy.io/
https://tensorflow.org/

Chapter 16)
Workshop#6 Transformers with spaCy s
and TensorFlow (Hour 11-12)

16.1 Introduction

In Chap. 8, the basic concept about transfer learning, its motivation, and related
background knowledge such as RNN with Transformer Technology and BERT
model are introduced.

This workshop will learn about the latest topic Transformers in NLP, and how to
use them with TensorFlow and spaCy. First, will learn about Transformers and
Transfer learning. Second, will learn about a commonly used Transformer architec-
ture—Bidirectional Encoder Representations from Transformers (BERT) as well as
how BERT Tokenizer and WordPiece algorithms work.

Further, will learn how to start with pre-trained transformer models of
HuggingFace library (HuggingFace 2024) and practice to fine-tune HuggingFace
Transformers with TensorFlow and Keras (TensorFlow 2024; Keras 2024) followed
by how spaCy v3.0 (spaCy 2024) integrates transformer models as pre-trained pipe-
lines. These techniques and tools will be used in the last workshop for building a
Q&A chatbot.

Hence, this workshop will cover the following topics:

» Transformers and Transfer Learning
* Understanding BERT

» Transformers and TensorFlow

e Transformers and spaCy

© The Author(s), under exclusive license to Springer Nature Singapore Pte 411
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_16&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_16#DOI

412 16 Workshop#6 Transformers with spaCy and TensorFlow (Hour 11-12)
16.2 Technical Requirements

In this workshop, Transformers, TensorFlow, and spaCy (TensorFlow 2024; spaCy
2024) are to be installed in own PC/notebook computer. Please ensure that the fol-
lowing Python packages are installed before starting the workshop:

¢ Python (demo version 3.11.9)

* spacy (demo version 3.4.4)

¢ keras (demo version 3.3.3)

¢ transformers (demo version 4.44.2)
¢ tensorflow (demo version 2.17.0)

e tf-keras (demo version 2.17.0)

¢ torch (demo version 2.4.1)

¢ torchvision (demo version 0.19.1)
¢ spacy-transformers (demo version 1.3.5)
¢ numPy (demo version 1.26.4)

¢ pandas (demo version 2.2.2)

* matplotlib (demo version 3.9.2)

If these packages are not installed on PC/laptop, use pip install xxx command.
The detailed requirements list and Python package version used in this workshop
can be found in the requirements.txt file stored in the NLP GitHub repository
(NLPGitHub 2024).

16.3 Transformers and Transfer Learning in a Nutshell

Transformer in NLP is an innovative idea which aims to solve sequential modeling
tasks and target problems introduced by Long-Short-Term-Memory (LSTM) archi-
tecture (Ekman 2021; Korstanje 2021).

It is a contemporary machine learning concept and architecture introduced by
Vaswani et al. (2017) in a research paper Attention Is All You Need. It explained that
“The Transformer is the first transduction model relying entirely on self-attention to
compute representations of its input and output without using sequence-aligned
RNNs or convolution.”

Transduction in this context means transforming input words to output words by
transforming input words and sentences into vectors. A transformer is trained on a
large corpus such as Wiki or news. These vectors will be used to convey information
regarding word semantics, sentence structures, and sentence semantics for down-
stream tasks.

Word vectors like Glove and FastText are already trained on Wikipedia corpus
that can be used in semantic similarity calculations, hence, Transfer Learning means
to import knowledge from pre-trained word vectors or pre-trained statistical models.

16.4 Why Transformers? 413

| Hugging Face Search models, datasets, user # Models D
Tasks Models 2788

B Fill-Mask §9 QuestionAnswering T Summarization

Table Question Answering Text Classification distlll.:ext-base-unl:a.sed ol

Text Generation ¥ Text2Text Generation

@

¥ TolenClassification %y, Translation @ cl-tohoku/bert-base- japanese-whole-word-masking

Zero-Shot Classification

Libraries roberta-large
) PyTorch ¥ Tensorflow iz Bt
Datasets roberta-base

common_volce wikipedia deep europarijre-acquis squad

L 4 CLUECorp parsinlu =,
Languages Fill-biaz) AR
en e fr sv de f pmuiltifingual zh hert.base_nultilingual_cased
Licenses 24 Fill-Mask Hdated Mar A

aspache20 mit gpl30 -1 t5-small

& elastic/distilbert-base-cased-finetuned-conll@3-.

Fig. 16.1 Sample Input Texts and their corresponding Output Class Labels

Transformers offer many pre-trained models to perform NLP tasks such as text
classification, text summarization, question answering, machine translation, and
natural language generation in over 100 languages. It aims to make state-of-the-art
NLP accessible to everyone (Bansal 2021; Rothman 2022; Tunstall et al. 2022;
Yildirim and Asgari-Chenaghlu 2021).

A list of Transformer models provided by HuggingFace (2024) is shown in
Fig. 16.1. Each model is named with a combination of architecture names such as
BERT or DistilBert, possibly a language code, i.e., en, de, multilingual, which is
located at the left side of the figure, and information regarding whether the model is
cased or uncased, i.e., distinguish between uppercase and lowercase characters.

Task names are also listed on the left-hand side. Each model is labeled with a
task name such as text classification or machine translation for the Q&A chatbot.

16.4 Why Transformers?

Let’s review text classification with spaCy in LSTM architecture.
LSTMs work for modeling text effectively, but there are shortcomings:

414 16 Workshop#6 Transformers with spaCy and TensorFlow (Hour 11-12)

e LSTM architecture has difficulties in learning long texts sometimes. Statistical
dependencies in a long text have problems represented by LSTM because it can
fail to recall words processed earlier as time steps progress.

* LSTMs are sequential which means that a single word can process at each time
step but is impossible to parallelize learning process causing bottleneck.

Transformers address these problems by not using recurrent layers at all; their
architecture is different from LSTM architecture (Bansal 2021; Rothman 2022;
Tunstall et al. 2022; Y1ildirim and Asgari-Chenaghlu 2021). A Transformer architec-
ture has an input encoder block at the left, called encoder, and an output decoder at
the right, called decoder as shown in Fig. 16.2.

The architecture is catered for a machine translation task, input is a sequence of
words from source language, and output is a sequence of words in the target lan-
guage. Encoder generates a vector representation of input words and passes them to
decoder where the word vector transfer is represented by an arrow from encoder

Qutput
Probabilities

| Add & Norm :
> Add & Norm } Mott-Head
Feed Attention
Forward I) Nx
—
Nix Add & Norm
Add & Norm T
Muiti-Head Muiti-Head
Attention Attention
A=) ==,

L\._ Y 2 e’)
Positional D d Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Fig. 16.2 Transformer architecture

16.4 Why Transformers? 415

block to decoder block direction. The decoder extracts input word vectors, trans-
forms output words into word vectors, and generates the probability of each out-
put word.

There are feedforward layers, which are dense layers in encoder and decoder
blocks used for text classification with spaCy. The innovative transformers can
place in a Multi-Head Attention block to create a dense representation for each word
with self-attention mechanism. This mechanism relates each word in input sentence
to other words in the input sentence. Word embedding is calculated by taking a
weighted average of other words’ embeddings, and each word significance can be
calculated in input sentence to enable the architecture focus on each input word
sequentially.

A self-attention mechanism of how input words at the left-hand side attend input
word it at the right-hand side is shown in Fig. 16.3. Dark colors represented

Layer: 5 §| Attention: Input-Input %

The_ The_
animal_ animal_
didn_ didn_
.
Cross_ Cross_
the the_
street_ street_
because_ because_
it_ it_
was was
too_ too
tire tire

Fig. 16.3 Illustration of the self-attention mechanism

416 16 Workshop#6 Transformers with spaCy and TensorFlow (Hour 11-12)

relevance, phrase the animal are related to if than other words in the sentence. This
signified transformer can resolve many semantic dependencies in a sentence and is
used in different tasks such as text classification and machine translation since they
have several architectures depending on tasks. BERT is a popular architecture to
be used.

16.5 An Overview of BERT Technology

16.5.1 What Is BERT?

BERT is introduced in a Google’s original research paper published by Devlin et al.
(2019), the complete Google BERT model can be downloaded from Google’s
GitHub archive (GoogleBert 2024).

It has the following output features (Bansal 2021; Rothman 2022; Tunstall et al.
2022; Yildirim and Asgari-Chenaghlu 2021):

* Bidirectional: Each input sentence text data training is processed from left to
right and from right to left.

* Encoder: An encoder encodes input sentence.

* Representations: A representation is a word vector.

* Transformers: A transformer-based architecture.

BERT is a trained transformer encoder stack. The input is a sentence, and the
output is a sequence of word vectors. Word vectors are contextual which means that
a word vector is assigned to a word based on an input sentence. In short, BERT
outputs contextual word representations as shown in Fig. 16.4.

It is noted that word bank has different meanings in these two sentences, word
vectors are the same because Glove and FastText are static. Each word has only one
vector and vectors are saved to a file after training. Then, these pre-trained vectors
can be downloaded to our application. BERT word vectors are dynamic on the con-
trary. It can generate different word vectors for the same word depending on input
sentence. Word vectors generated by BERT are shown in Fig. 16.5 against the coun-
terpart shown in Fig. 16.4.

open a bank account sit on a bank

[0.1,-0.4,08,..1

Fig. 16.4 Word vector for the word “bank”

16.5 An Overview of BERT Technology 417

open a bank account sit on a bank
[0.9,-0.4,0.1,...1] [1.6, 0.7, 0%,]

Fig. 16.5 Two distinct word vectors generated by BERT for the same word bank in two different
contexts

24 ENCODER

12 ENCODER

3 ENCODER

2 | | ENCODER 2| | ENCODER

1 | | ENCODER 1| | ENCODER
BERT BASE BERT LARGE

Fig. 16.6 BERT Base and Large architectures (having 12 and 24 encoder layers respectively)

16.5.2 BERT Architecture

BERT is a transformer encoder stack, which means several encoder layers are
stacked on top of each other. The first layer initializes word vectors randomly, and
then each encoder layer transforms output of the previous encoder layer. Figure 16.6
illustrates two BERT model sizes: BERT Base and BERT Large.

BERT Base and BERT Large have 12 and 24 encoder layers to generate word
vectors sizes of 768 and 1024 comparatively.

BERT outputs word vectors for each input word. A high-level overview of BERT
inputs and outputs is illustrated in Fig. 16.7. It showed that BERT input should be
in a special format to include special tokens such as CLS.

418 16 Workshop#6 Transformers with spaCy and TensorFlow (Hour 11-12)

L]

12 ENCODER
ENCODER
2
1 ENCODER
CLS Prime Minister Johnson

Fig. 16.7 BERT model input word and output word vectors

16.5.3 BERT Input Format

After learning BERT basic architecture, let’s look at how to generate output vectors
using BERT.

BERT input format can represent a single sentence and a pair of sentences in a
single sequence of tokens (for tasks such as question answering and semantic simi-
larity, we input two sentences to the model).

BERT works with a special tokens class and a special tokenization algorithm
called WordPiece.

There are several types of special tokens [CLS], [SEP], and [PAD]:

e [CLS] is the first special token type for every input sequence. This token is a
quantity of input sentences for classification tasks but disregard non-
classification tasks.

16.5 An Overview of BERT Technology 419

* [SEP] is a sentence separator. If the input is a single sentence, this token will be
placed at the end of sentence, i.e., [CLS] sentence [SEP], or to separate two sen-
tences, i.e., [CLS] sentencel [SEP] sentence2 [SEP].

» [PAD] is a special token for padding. The padding values can generate sentences
from dataset with equal length. BERT receives sentences with fixed length only,
hence, padding short sentences is required prior feeding to BERT. The tokens
maximum length can feed to BERT is 512.

It was learnt that a sentence can feed to Keras model one word at a time, input
sentences can be tokenized into words using spaCy tokenizer, but BERT works dif-
ferently as it uses WordPiece tokenization. A word piece is literally a piece of a word.

WordPiece algorithm breaks down words into several subwords, its logic behind
is to break down complex/long tokens into tokens, e.g., the word playing is tokenized
as play + ##ing. A ## character is placed before every word piece to indicate that
this token is not a word from language’s vocabulary but is a word piece.

Let’s look at some examples:

playing play, ##ing

played play, ##ed

going go, ##ing

vocabulary = [play,go, ##ing, ##ed]

It can concise language vocabulary as WordPiece groups common subwords.
WordPiece tokenization can divide rare/unseen words into their subwords.
After input sentence is tokenized and special tokens are added, each token is

converted to its ID and feed token ID sequences to BERT.

An input sentence transformed into BERT input format is illustrated in Fig. 16.8.
BERT Tokenizer has several methods to perform above tasks, but it has an encod-
ing method that combines these steps into a single step.

420 16 Workshop#6 Transformers with spaCy and TensorFlow (Hour 11-12)

101 7987 2716 9588 102

replace tokens with their IPs

CLs characteristic ##ally confident SEP

add special tokens

characteristic ##ally confident

break words into tokens

characteristically confident

Fig. 16.8 Transforming an input sentence into BERT input format

16.5.4 How to Train BERT?

BERT originators stated that “We then train a large model (12-layers to 24-layers
Transformer) on a large corpus (Wikipedia + BookCorpus) for a long time (1 M
update steps), and that’s BERT.” in Google Research’s BERT GitHub repository
(GoogleBert 2024).

BERT is trained by masked language model (MLM) and NSP.

Language modeling is the task of predicting the next token given the sequence of
previous tokens. For example, given the sequence of words Yesterday I visited, a
language model can predict the next token as one of the tokens church, hospital,
school, and so on.

MLM is different. A percentage of tokens are masked randomly to replace a
[MASK] token and presume MLM predicts the masked words.

BERT’s MLM is implemented as follows:

. Select 15 input tokens randomly.

. About 80% of selected tokens are replaced by [MASK].

. About 10% of selected tokens are replaced by another token from vocabulary.
. About 10% remain unchanged.

AW =

16.6 Transformers with TensorFlow 421

A training sentence to LMM example is as follows:

[CLS] Yesterday I [MASK] my friend at [MASK] house [SEP]

NSP is the task of predicting the next sentence given by an input sentence. There
are two sentences fed to BERT and presume BERT predicts sentences order if sec-
ond sentence is followed by first sentence.

An input of two sentences separated by a [SEP] token to NSP example is as
follows:

[CLS] A man robbed a [MASK] yesterday [MASK] 8 o'clock [SEP] He
[MASK] the bank with 6 million dollars [SEP]

Label = IsNext

It showed that the second sentence can follow the first sentence; hence, the pre-
dicted label is IsNext.
Here is another example:

[CLS] Rabbits like to [MASK] carrots and [MASK] leaves [SEP] [MASK]
Schwarzenegger is elected as the governor of [MASK] [SEP]

Label= NotNext

This example showed that the pair of sentences generate a NotNext label without
contextual or semantical relevance.

16.6 Transformers with TensorFlow

Pre-trained transformer models are provided to program developers in open sources
by many organizations including Google (GoogleBert 2024), Facebook (Facebook-
transformer 2024), and HuggingFace (HuggingFace-transformer 2024).
HuggingFace is an Al company that focuses on NLP apportioned to open source.
These pre-trained models and agreeable interfaces can integrate transformers
into Python code, as interfaces are compatible with either PyTorch or TensorFlow

422 16 Workshop#6 Transformers with spaCy and TensorFlow (Hour 11-12)

or both. HuggingFace‘s pre-trained transformers and their TensorFlow interface to
transformer models will be used in this workshop.

16.6.1 HuggingFace Transformers

This section will explore HuggingFace‘s pre-trained models, TensorFlow interface,
and its conventions. HuggingFace offers several models as in Fig. 16.1. Each model
is dedicated to tasks such as text classification, question answering, and sequence-
to-sequence modeling.

A HuggingFace documentation of a distilbert-base-uncased-distilled-squad
model is shown in Fig. 16.9. A Question Answering task tag is assigned to the upper
left corner in the documentation followed by supporting deep learning libraries
PyTorch, TensorFlow, TFLite, TFSavedModel, training dataset, e.g., squad, model
language, e.g., en for English; the license and base model’s name, e.g., DistilBERT.

Some models are trained with similar algorithms that belong to an identical
model family. For example, the DistilBERT family has many models such as
distilbert-base-uncased and distilbert-multilingual-cased. Each model name
includes information such as casing to distinguish uppercase/lowercase or model
language such as en, de, or multilingual.

HuggingFace documentation provides information about each model family
with individual model’s API in detail. Lists of available models and BERT model
architecture variations are shown in Fig. 16.10.

BERT model has many task variations such as text classification, question
answering, and NSP.

Each of these models is obtained by placing extra layers atop of BERT output as
these outputs are a sequence of word vectors for each word of input sentences.

@ hugginglace.co/distiibert-base-uncased-distilled-squad
= Hugging Face
distilbert-base-uncased-distilled-squad

5 Question Answering O PyTorch ¥ TensorFlow TF Lite TF SavedModel squad en apache-2.0 distillbert

Model card Files and versions

DistilBERT base uncased distilled SQuAD

This model is a fine-tune checkpoint of DistilBERT-base-uncased. fine-tuned using (a second step of)
knowledge distillation on SQuAD v1.1. This model reaches a F1 score of 86.9 on the dev set (for

comparison, Bert bert-base-uncased version reaches a Fl score of 88.5).

Fig. 16.9 Documentation of the distilbert-base-uncased-distilled-squad model

16.6 Transformers with TensorFlow 423

Fig. 16.10 Lists of the available models (left-hand side) and BERT model variations (right-
hand side)

For example, a BERTForSequenceClassification model is obtained by placing a
dense layer atop of BERT word vectors.

16.6.2 Using the BERT Tokenizer

BERT uses the WordPiece algorithm for tokenization to ensure that each input word
is divided into subwords.
Let’s look at how to prepare input data with HuggingFace library.

[1] # Import transformer package

from transformers import BertTokenizer

Create bert_tokenizer and sample utterance (uttl) and
tokens (tokl)

btokenizer

= BertTokenizer.from_pretrained('bert—base—uncased')
uttl = "He lived characteristically idle and romantic."
uttl = "[CLS] " + uttl + " [SEP]"

tokl = btokenizer.tokenize (uttl)

[2] # Display bert tokens
tokl

424

(3]

16 Workshop#6 Transformers with spaCy and TensorFlow (Hour 11-12)

['[CLST,

'he’,

lived',
'characteristic',
‘H##ally',

'idle',

'and’,
'romantic',

[SEP]]

Convert bert tokens to ids (idl)

idl = btokenizer.convert tokens to ids(tokl)
idl

[101, 2002, 2973, 8281, 3973, 18,373, 1998, 6298, 1012, 102]

1. Import BertTokenizer. Note that different models have different tokenizers, e.g.,
XLNet model’s tokenizer is called XLNetTokenizer.

2. Call from_pretrained method on tokenizer object and provide model’s name.
Needless to download pre-trained bert-base-uncased (or model) as this method
downloads model by itself.

3. Call tokenize method. It tokenizes sentences by dividing all words into subwords.
4. Print tokens to examine subwords. The words he, lived, idle, exist in Tokenizer’s
vocabulary are to be remained. Characteristically is a rare word that does not exist
in Tokenizer’s vocabulary. Thus, tokenizer splits this word into subwords
characteristic and ##ally. Notice that ##ally starts with characters ## to emphasize
that this is a piece of word.

5. Call convert_tokens_to_ids.

Since [CLS] and [SEP] tokens must add to the beginning and end of input sen-

tence, it is required to add them manually for the preceding code, but these prepro-
cessing steps can perform in a single step.
BERT provides a method called encode that can:

add CLS and SEP tokens to input sentence
tokenize sentence by dividing tokens into subwords
converts tokens to their token IDs

16.6 Transformers with TensorFlow 425

[4]

Call encode method on input sentence directly as follows:

from transformers import BertTokenizer

btokenizer

= BertTokenizer.from pretrained('bert-base-uncased')
utt2 = "He lived characteristically idle and romantic."
id2 = btokenizer.encode (utt2?)

print (1id2)

[101, 2002, 2973, 8281, 3973, 18,373, 1998, 6298, 1012, 102]

This code segment outputs token IDs in a single step instead of step-by-step. The
result is a python list

Since all input sentences in a dataset must have equal length because BERT can-

not process variable-length sentences, padding the longest sentence from dataset

into short sentences is required using the parameter "padding="longest"".

m

Writeup conversion codes are also required if a TensorFlow tensor is used instead
of a plain list. HuggingFace library provides encode_plus to combine all these steps
into the single method as follows:

[5]

from transformers import BertTokenizer
btokenizer
= BertTokenizer.from pretrained('bert-base-uncased')
utt3 = "He lived characteristically idle and romantic."
encoded = btokenizer.encode plus/(
text=utt3,
add special tokens=True,
padding='longest',
return tensors="tf"
)
id3 = encoded["input ids"]
print (1d3)
tf. Tensor([[101 2002 2973 8281 3973 18373 1998 6298 1012 102]], shape=(1,
10), dtype=int32)

426 16 Workshop#6 Transformers with spaCy and TensorFlow (Hour 11-12)

Call encode_plus to input sentence directly. It is padded to a length of 10 includ-
ing special tokens [CLS] and [SEP]. The output is a direct TensorFlow tensor with
token IDs.

Verify parameter list of encode_plus() by:

[6] btokenizer.encode plus?

Signature:

btokenizer.encode_plus(
text: Union[str, List[str], List[int]],
text_pair: Union[str, List[str], List[int], NoneType] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, transformers.utils.generic.PaddingStrategy] = False,
truncation: Union[bool, str, transformers.tokenization_utils_

base.TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
is_split_into_words: bool = False,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Union[str, transformers.utils.generic.TensorType, NoneType]
= None,

return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,

) -> transformers.tokenization_utils_base.BatchEncoding

BERT tokenizer provides several methods on input sentences. Data preparation is
not straightforward, but practice makes perfect. Try out code examples with own
\ | text

It is ready to process transformed input sentences to BERT model and obtain
BERT word vectors.

16.6 Transformers with TensorFlow 427

16.6.3 Word Vectors in BERT

This section will examine BERT model output as they are a sequence of word vec-
tors assigned by one vector per input word. BERT has a special output format. Let’s
look at the code first.

(7]

from transformers import BertTokenizer, TFBertModel
btokenizer
= BertTokenizer.from pretrained('bert-base-uncased')
bmodel
= TFBertModel.from pretrained("bert-base-uncased")
utt4 = "He was idle."
encoded = btokenizer.encode plus(
text=utt4,
add_special tokens=True,
padding="'longest',
max_ length=10,
return attention mask=True,
return tensors="tf"
)
id4 = encoded["input ids"]
outputs = bmodel (id4)

* Import TFBertModel.

« Initialize BERT model with a BERT-base-uncased pre-trained model.

* Transform input sentence to BERT input format with encode_plus, and capture
result tf. Tensor in the input variable.

* Feed sentence to BERT model and capture output with the output’s variables.

BERT model output is a tuple of two elements. Let’s print the shapes of out-

put pair:

(8]

[9]

print (outputs[0] .shape)
(1, 6,768)

print (outputs[1l].shape)
(1, 768)

428

16 Workshop#6 Transformers with spaCy and TensorFlow (Hour 11-12)

1. Shape, i.e., batch size, sequence length, and hidden size is the first element of
output. A batch size is the number of sentences that can feed to model instantly.
When one sentence is fed, the batch size is 1. The sequence length is 10 because
sentence is fed max_length=10 to the tokenizer and padded to length of 10.
hidden_size is a BERT parameter. BERT architecture has 768 hidden layers size to
produce word vectors with 768 dimensions. Hence, the first output element
contains 768-dimensional vectors per word means it contains 10 words x
768-dimensional vectors.

2. The second output is only one vector of 768-dimension. This vector is the word
embedding of [CLS] token. Since [CLS] token is an aggregate of the whole
sentence, this token embedding is regarded as embeddings pooled version of all
words in the sentence. The shape of output tuple is always the batch size, hidden_
size. It is to collect [CLS] token's embedding per input sentence basically.

When BERT embeddings are extracted, they can be used to train text classifica-
tion model with TensorFlow and tf keras.

16.7 Revisit Text Classification Using BERT

Some of the codes will be used from the previous workshop, but this time the code
is shorter because the embedding and LSTM layers will be replaced by BERT to
train a binary text classifier and tf keras.

This section will use an email log dataset emails.csv for spam mail classification
found in the NLP Workshop6 GitHub repository (NLPGitHub 2024).

16.7.1 Data Preparation

Before Text Classification model using BERT is created, let’s prepare the data first
just like being learnt in the previous workshop:

1. Import related modules:

[10]

import pandas as pd

import numpy as np

import tensorflow

from tensorflow. keras.layers import Dense, Input
from tensorflow. keras.models import Model

2. Read eamils.csv datafile.

[11]

emails=pd.read csv("emails.csv",encoding='IS0-8859-1")
emails.head()

16.7 Revisit Text Classification Using BERT 429

text spam
0 Subject: naturally irresistible your corporate... 1
1 Subject: the stock trading gunslinger fanny i... 1
2 Subject: unbelievable new homes made easy im ... 1
3 Subject: 4 color printing special request add... 1
4 Subject: do not have money, get software cds ... 1

3. Use dropna() to remove records with missing contents.

[12] emails=emails.dropna ()

emails=emails.reset index (drop=True)

emails.columns = ['text',6 'label']

emails.head()

text label

0 Subject: naturally irresistible your corporate... 1
1 Subject: the stock trading gunslinger fanny i... 1
2 Subject: unbelievable new homes made easy im ... 1
3 Subject: 4 color printing special request add... 1
4 Subject: do not have money, get software cds ... 1

16.7.2 Start the BERT Model Construction

4. Import BERT models and tokenizer:

[13] from transformers import BertTokenizer, TFBertModel,
BertConfig, TFBertForSequenceClassification

bert tokenizer = BertTokenizer.from pretrained
("bert-base-uncased")

bmodel

= TFBertModel.from pretrained("bert-base-uncased")

430 16 Workshop#6 Transformers with spaCy and TensorFlow (Hour 11-12)

1. Import BertTokenizer and BERT model, TFBertModel.

2. Initialize both tokenizer and BERT model with a pre-trained bert-base-uncased
model. Note that model’s name starts with TF as names of all HuggingFace

i3 pre-trained models for TensorFlow start with TF. Please pay attention to this when
using other transformer models.

5. Process input data with BertTokenizer:

[14] emails.head()
text label
0 Subject: naturally irresistible your corporate... 1
1 Subject: the stock trading gunslinger fanny i... 1
2 Subject: unbelievable new homes made easy im ... 1
3 Subject: 4 color printing special request add... 1
4 Subject: do not have money, get software cds ... 1

6. Double check databank to see whether data has:

[15] messages=emails['text"']
labels=emails|['label']
len (messages), len(labels)

(5728, 5728)

7. Use BERT Tokenizer:

[16] |input_ids =[]
attention_masks = []
for msg in messages:
bert_inp = bert_tokenizer.encode_plus(
msg,
add_special_tokens=True,
max_length=64,
padding="max_length',
truncation=True,
max_length
return_attention_mask=True
)
input_ids.append(bert_inp['input_ids'])
attention_masks.append(bert_inp['attention_mask'])
input_ids = np.asarray(input_ids)
attention_masks = np.array(attention_masks)
labels = np.array(labels)

16.7 Revisit Text Classification Using BERT 431

Note: This snippet will generate token IDs for each input sentence of the dataset
and append them to a list. Tags are a list of category labels, consisting of 0 and 1.
We then convert the python lists, input_ids, and labels into numpy arrays to feed
them to the Keras model

8. Define Keras model using the following lines:

[17]

Custom BERT Layer to handle input/output properly
class Bertlayer (Layer) :
def init (self, bert model):
super (BertLayer, self). init ()
self.bert model = bert model
def call(self, inputs):
input ids, attention mask = inputs
return self.bert model (input ids=input ids,
attention mask=attention mask) [1] # Pooled output
(CLS token)
Define the model architecture
input ids_ layer = Input (shape=(64,), dtype=tf.int32,
name="input ids")
attention mask layer = Input (shape=(64,), dtype=tf.
int32, name="attention mask")
Pass inputs to the custom BERT layer
bert outputs = BertLayer (bmodel) ([input ids layer,
attention mask layer])
Add a classification layer
outputs
= Dense (units=1, activation="sigmoid") (bert outputs)
Create the model
model = Model (inputs=[input ids layer, attention mask
layer], outputs=outputs)
Compile the model
adam = tf.keras.optimizers.Adam(learning rate=2e-5,
epsilon=1e-08)
model.compile (loss="binary crossentropy",
metrics=["accuracy"], optimizer=adam)

9. Perform model fitting and use 1 epoch to save time:

[18]

Summary of the model

model.summary ()

Train the model

model.fit ([input ids, attention masks], labels,
epochs=1, batch size=1)

432 16 Workshop#6 Transformers with spaCy and TensorFlow (Hour 11-12)

Model: “functional™

Layer (type) Output Shape Param ¢ | Connected to
[input_ids {InputLayer) | (None, 64) @ [
attention mask (Inputlayer) | (L, 84)] =
bert_layer (BertLayer) (tione, 768) o | input_tds[e][e],
attention_mask[a][e]
dense (Dense) (hone, 1) 769 | bert_layer(6][8]

Total params: 769 {3.88 KB)

769 (3.80 KB)

Trainable params:
Non-trainable params: @ (8.0@ 8)
5728/5718 —————— 2235 38ms/step - accuracy: 0.7612 - loss: 9.3341

ckeras.sro.callbacks. history.History at @xledesh59440s

A BERT-based text classifier using less than 10 lines of code is to:
1. Define input layer to input sentences to model. The shape is 64 because each
input sentence has 64 tokens in length. Pad each sentence to 64 tokens when

- encode_plus method is called.
2. Feed input sentences to BERT model.
3. Extract second output of BERT output at the third line. Since BERT model’s
output is a tuple, the first element of output tuple is a sequence of word vectors,
and the second element is a single vector that represents the whole sentence called
pooled output vector. Bert[1] extracts pooled output vector which is a vector of
shape (1, 768).
4. Squash pooled output vector to a vector of shape 1 by a sigmoid function which
is the class label.
5. Define Keras model with inputs and outputs.
6. Compile model.
7. Fit Keras model.

BERT model accepts one line only but can transfer enormous knowledge of Wiki
corpus to model. This model obtains an accuracy of 0.96 at the end of the training.
A single epoch is usually fitted to the model due to BERT overfits a moderate
size corpus.

The rest of the code handles compiling and fitting Keras model as BERT has a
huge memory requirement as can be seen by RAM requirements of Google
Research’s GitHub archive (GoogleBert-Memory, 2024).

The training code operates for about an hour on a local machine, where bigger
datasets require more time even for one epoch.

This section will learn how to train a Keras model with BERT from scratch.

16.8 Transformer Pipeline Technology

HuggingFace Transformers library provides pipelines to assist program developers
and benefit from transformer code immediately without custom training. A pipeline
is a combination of a tokenizer and a pre-trained model.

16.8 Transformer Pipeline Technology 433

HuggingFace provides models for various NLP tasks, its HuggingFace pipe-
lines offer:

* Sentiment analysis (Agarwal 2020; Siahaan and Sianipar 2022).
* Question answering (Rothman 2022; Tunstall et al. 2022).

e Text summarization (Albrecht et al. 2020; Kedia and Rasu 2020).
* Translation (Arumugam and Shanmugamani 2018; Géron 2019).

This section will explore pipelines for sentiment analysis and question answering.

16.8.1 Transformer Pipeline for Sentiment Analysis

Let’s start examples on sentiment analysis:

[19] from transformers import pipeline
nlp = pipeline("sentiment-analysis")
utt5 = "I hate I am being a worker in the desert."
utte = "I like you who are beautiful and kind."

resultl = nlp(utth)
result2 = nlp(utt6)

The following steps are taken in the preceding code snippet:
1. Import pipeline function from transformers’ library. This function creates
\ /| pipeline objects with task name given as a parameter. Hence, a sentiment analysis
v pipeline object nlp is created by calling this function on the second line.
. 2. Define two example sentences with negative and positive sentiments. Then feed
these sentences to the pipeline object nlp.

Check outputs:

[20] resultl
[{'label": 'NEGATIVE, 'score": 0.9276903867721558}]

[21] result?2
[{'label': 'POSITIVE!, 'score: 0.9998767375946045}]

16.8.2 Transformer Pipeline for QA System

Next, will perform a question answering. Let’s see the code:

434 16 Workshop#6 Transformers with spaCy and TensorFlow (Hour 11-12)

[22] from transformers import pipeline
nlp = pipeline ("question-answering")
res = nlp({
'question': 'What is the name of this book ?',
'context': "I'll publish my new book Natural

Language Processing soon."
1)
print (res)
{'score": 0.9857430458068848, 'start": 25, 'end": 52, 'answer": 'Natural Language
Processing'}

Again, import pipeline function to create a pipeline object nlp. A context which has
identical background information for the model is required for question-answering
tasks to the model

- * Request the model about this book’s name after giving information of this new
publication will be available soon.
* The answer is natural language processing, as expected.
* Try your own examples as simple exercise.

HuggingFace transformers studies are completed. Let’s move on to the final sec-
tion to see what spaCy offers on transformers.

Workshop 6.1 Revisit Sentiment Analysis using Transformer Technology
1. Use either previous workshop databank or another to import databank for
sentiment analysis.

2. Try to implement sentiment analysis using previous and Transformer
WORKSHOP | technology learnt in this workshop.

3. Compare performances and analysis (bonus).

16.9 Transformer and spaCy

SpaCy v3.0 had released new features and components. It has integrated transform-
ers into spaCy NLP pipeline to introduce one more pipeline component called
Transformer. This component allows users to use all HuggingFace models with
spaCy pipelines. A spaCy NLP pipeline without transformers is illustrated in
Fig. 16.11.

Fig. 16.11 Vector-based spaCy pipeline components

16.9 Transformer and spaCy 435

Text —» transformer > ner >toxtcat> > —» Doc

Fig. 16.12 Transformed-based spaCy pipeline components

en_core_web_trf

English transformer pipeline (roberta-base). Components: ransformer, lagger, parser, ner, attribute_ruler, b
LANGUAGE @) Engiish

TYPE G Vocabulary, syntax, enties, vectors

GENRE D written text (blogs. news, comments)

SIZE €D 438 M8

COMPONENTS @ transformer , tagger, parser, ner, attribute_ruler, lesmatizer
PIPELINE (p transforser . tagger, parser, ner, attribute_ruler, lemmatizer
VECTORS (© 0 keys, 0 unique vectors (0 dimensions)

SOURCES @ OntoNotes 5

AUTHOR Explosion

LICENSE MIT

Fig. 16.13 spaCy English transformer-based language models

A transformer-based pipeline component is illustrated in Fig. 16.12.

Transformer-based models and v2 style models are listed under Models page of
the documentation (spaCy-model 2024) in English model for each supported lan-
guage. Transformer-based models have various sizes and pipeline components like
v2 style models. Also, each model has corpus and genre information like v2 style
models. An example of an English transformer-based language model from Models
page is shown in Fig. 16.13.

It showed that the first pipeline component is a transformer that generates word
representations and deals with WordPiece algorithm to tokenize words into sub-
words. Word vectors are fed to the rest of the pipeline.

Downloading, loading, and using transformer-based models are identical to v2
style models.

436 16 Workshop#6 Transformers with spaCy and TensorFlow (Hour 11-12)

English has two pre-trained transformer-based models, en_core_web_trf and
en_core_web_lg currently. Let’s start by downloading the en_core_web_trf model:

python3 -m spacy download en core web trf

Import spaCy module and transformer-based model:

[23] import spacy
import torch
import spacy transformers
nlp = spacy.load("en core web trf")

After loading model and initializing pipeline, use this model the same way as in
v2 style models:

[24] utt7 = nlp ("I visited my friend Betty at her house.")
utt7.ents

(Betty,)

[25] forword inutt7:
print (word.pos , word.lemma)

PRON I
VERB visit
PRON my
NOUN friend
PROPN Betty
ADP at
PRON her
NOUN house
PUNCT .

These features related to the transformer component can be accessed by ._trf_
data.trf_data which contain word pieces, input ids, and vectors generated by the
transformer.

Let’s examine the features one by one:

[26] utt8 = nlp ("It went there unwillingly.")

16.9 Transformer and spaCy 437

[27] utt8. .trf data.wordpieces
WordpieceBatch(strings=[['<s>', 'It', 'Gwent', 'Gthere', 'Gunw', 'ill', 'ingly’, ., '</
s>']], input_ids=array([[0, 243, 439, 89, 10963, 1873, 7790, 4, 2]]), attention_
mask=array([[1.,
1.,1.,1,1, 1,1, 1., 1.]], dtype=float32), lengths=[9], token_type_ids=None)

There are five elements: word pieces, input IDs, attention masks, lengths, and
token type IDs in the preceding output.

Word pieces are subwords generated by WordPiece algorithm. The word pieces
of this sentence are as follows:

<s>

It
Gwent
Gthere
Gunw
I11
ingly

</s>

The first and last tokens are special tokens used at the beginning and end of the
sentence. The word unwillingly is divided into three subwords—unw, ill, and
ingly. A G character is used to mark word boundaries. Tokens without G are
subwords, such as ill and ingly in the preceding word piece list, except first word
in the sentence marked by <‘s” > .

Input IDs have identical meanings which are subword IDs assigned by the trans-
former’s tokenizer.

The attention mask is a list of 0 s and 1 s for pointing the transformer to tokens
it should notice. O corresponds to PAD tokens, while all other tokens should have a
corresponding 1.

Lengths refer to the length of sentence after dividing it into subwords. Here is 9
but notice that len(doc) outputs is 5, while spaCy always operates on linguis-
tic words.

token_type_ids are used by transformer tokenizers to mark sentence boundaries
of two sentences input tasks such as question and answering. Since there is only one
text provided, this feature is inapplicable.

Token vectors are generated by transformer, doc._.trf_data.tensors which contain
transformer output, a sequence of word vectors per word, and the pooled output
vector. Please refer to Obtaining BERT word vectors section if necessary.

[28] utt8. .trf data.tensors[0].shape
(1,9, 768)

438 16 Workshop#6 Transformers with spaCy and TensorFlow (Hour 11-12)

[29] utt8. .trf data.tensors[l].shape
(1,768)

The first element of tuple is the vectors for tokens. Each vector is 768-dimensional;
hence 9 words produce 9 x 768-dimensional vectors. The second element of tuple
\ /| is the pooled output vector which is an aggregate representation for input sentence,
v and the shape is 1 x 768

spaCy provides user-friendly API and packaging for complicated models such as
transformers. Transformer integration is a validation of using spaCy for NLP.

References

Agarwal, B. (2020) Deep Learning-Based Approaches for Sentiment Analysis (Algorithms for
Intelligent Systems). Springer.

Albrecht, J., Ramachandran, S. and Winkler, C. (2020) Blueprints for Text Analytics Using
Python: Machine Learning-Based Solutions for Common Real World (NLP) Applications.
O’Reilly Media.

Arumugam, R., & Shanmugamani, R. (2018). Hands-on natural language processing with python.
Packt Publishing.

Bansal, A. (2021) Advanced Natural Language Processing with TensorFlow 2: Build effective
real-world NLP applications using NER, RNNs, seq2seq models, Transformers, and more.
Packt Publishing.

Devlin, J., Chang, M. W., Lee, K. and Toutanova, K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. Archive: https://arxiv.org/
pdf/1810.04805.pdf.

Ekman, M. (2021) Learning Deep Learning: Theory and Practice of Neural Networks, Computer
Vision, Natural Language Processing, and Transformers Using TensorFlow. Addison-Wesley
Professional.

Facebook-transformer (2024) Facebook Transformer Model archive. https://github.com/pytorch/
fairseq/blob/master/examples/language_model/README.md. Accessed 17 Dec 2024.

Géron, A. (2019) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media.

GoogleBert (2024) Google Bert Model Github archive. https://github.com/google-research/bert.
Accessed 17 Dec 2024.

GoogleBert-Memory (2024) GoogleBert Memory Requirement. https://github.com/google-
research/bert#out-of-memory-issues. Accessed 17 Dec 2024.

HuggingFace (2024) Hugging Face official site. https://huggingface.co/. Accessed 17 Dec 2024.

HuggingFace_transformer (2024) HuggingFace Transformer Model archive. https://github.com/
huggingface/transformers. Accessed 17 Dec 2024.

Kedia, A. and Rasu, M. (2020) Hands-On Python Natural Language Processing: Explore tools and
techniques to analyze and process text with a view to building real-world NLP applications.
Packt Publishing.

Keras (2024) Keras official site. https://keras.io/. Accessed 17 Dec 2024.

https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://github.com/pytorch/fairseq/blob/master/examples/language_model/README.md
https://github.com/pytorch/fairseq/blob/master/examples/language_model/README.md
https://github.com/google-research/bert
https://github.com/google-research/bert#out-of-memory-issues
https://github.com/google-research/bert#out-of-memory-issues
https://huggingface.co/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://keras.io/

References 439

Korstanje, J. (2021) Advanced Forecasting with Python: With State-of-the-Art-Models Including
LSTM:s, Facebook’s Prophet, and Amazon’s DeepAR. Apress.

NLPGitHub (2024) URL: https://github.com/raymondshtlee/NLP/. Accessed 17 Dec 2024.

Rothman, D. (2022) Transformers for Natural Language Processing: Build, train, and fine-tune
deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, and
GPT-3. Packt Publishing.

SpaCy (2024) spaCy official site. https://spacy.io/. Accessed 17 Dec 2024.

SpaCy-model (2024) spaCy English Pipeline Model. https://spacy.io/models/en. Accessed 17
Dec 2024.

Siahaan, V. and Sianipar, R. H. (2022) Text Processing and Sentiment Analysis using Machine
Learning and Deep Learning with Python GUI. Balige Publishing.

TensorFlow (2024) TensorFlow official site. https://tensorflow.org /. Accessed 17 Dec 2024.

Tunstall, L, Werra, L. and Wolf, T. (2022) Natural Language Processing with Transformers:
Building Language Applications with Hugging Face. O’Reilly Media.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin,
1. (2017). Attention is all you need. Advances in neural information processing systems, 30.
https://arxiv.org/abs/1706.03762.

Yildirim, S and Asgari-Chenaghlu, M. (2021) Mastering Transformers: Build state-of-the-art mod-
els from scratch with advanced natural language processing techniques. Packt Publishing.

https://github.com/raymondshtlee/NLP/
https://spacy.io/
https://spacy.io/models/en
https://tensorflow.org
https://arxiv.org/abs/1706.03762

Chapter 17)
Workshop#7 Building Chatbot s
with TensorFlow and Transformer

Technology (Hour 13-14)

17.1 Introduction

In the previous 6 NLP workshops, we studied NLP implementation tools and tech-
niques ranging from tokenization, N-gram generation to semantic and sentiment
analysis with various key NLP Python enabling technologies: NLTK, spaCly,
TensorFlow and contemporary Transformer Technology. This final workshop will
explore how to integrate them for the design and implementation of a domain-based
chatbot system on a movie domain.

This workshop will explore:

1. Technical requirements for chatbot system.

2. Knowledge domain—the Cornell Large Movie Conversation Dataset is a well-
known conversation dataset with over 200,000 movie dialogues of 10,000+
movie characters (Cornell 2024; Cornell_Movie_Corpus 2024).

3. A step-by-step Movie Chatbot system implementation which involve movie dia-
logue preprocessing, model construction, attention learning, system integration
with spaCy, TensorFlow, Keras and Transformer Technology, an important tool
in NLP system implementation (Bansal 2021; Devlin et al. 2019; Géron 2019;
Rothman 2022; Tunstall et al. 2022; Y1ldirim and Asgari-Chenaghlu 2021).

4. Evaluation metrics with real-time chat examples.

17.2 Technical Requirements

In this workshop, transformers, TensorFlow, and spaCy (TensorFlow 2024; spaCy
2024) are to be installed in PC/notebook computer. Please ensure that the following
Python packages are installed before starting the workshop:

© The Author(s), under exclusive license to Springer Nature Singapore Pte 441
Ltd. 2025

R. Lee, Natural Language Processing,

https://doi.org/10.1007/978-981-96-3208-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-3208-4_17&domain=pdf
https://doi.org/10.1007/978-981-96-3208-4_17#DOI

442 17 Workshop#7 Building Chatbot with TensorFlow and Transformer Technology...

e Python (demo version 3.11.9)

* spacy (demo version 3.4.4)

* keras (demo version 3.3.3)
 transformers (demo version 4.44.2)
¢ tensorflow (demo version 2.17.0)

¢ tensorflow_datasets (demo version 4.9.6)
 tf-keras (demo version 2.17.0)

e numPy (demo version 1.26.4)

* pandas (demo version 2.2.2)

* matplotlib (demo version 3.9.2)

* pydot (demo version 3.0.1)
 graphviz (demo version 0.20.3)

* pydot-ng (demo version 2.0.0)

If these packages are not installed on PC/laptop, use pip install xxx command.
The detailed requirements list and Python package version used in this workshop
can be found in the requirements.txt file stored in the NLP GitHub repository
(NLPGitHub 2024).

17.3 AI Chatbot in a Nutshell

17.3.1 What Is a Chatbot?

Conversational artificial intelligence (conversational Al) is a field of machine learn-
ing that aims to create technology and enables users to have text or speech-based
interactions with machines. Chatbots, virtual assistants, and voice assistants are
typical conversational Al products (Batish 2018; Freed 2021; Janarthanam 2017,
Raj 2018).

A chatbot is a software application designed to make conversations with humans.

Chatbots are widely used in human resources, marketing and sales, banking,
healthcare, and non-commercial areas such as personal conversations. They include:

— Amazon Alexa is a voice-based virtual assistant to perform tasks per user re-
quests or inquiries, i.e., play music, podcasts, set alarms, read audiobooks, pro-
vide real-time weather, traffic, other information, etc. Alexa Home can connect
smart home devices to oversee premises, electrical appliances, etc.

— Facebook Messenger and Telegram instant messaging services provide inter-
faces and API documentations (Facebook 2024, Telegram 2024) for developers
to connect bots.

17.3 Al Chatbot in a Nutshell 443

— Google Assistant provides real-time weather, flight, traffic information, send and
receive text messages, email services, device information, set alarms, and inte-
grate with smart home devices, etc. available on Google Maps, Google Search,
and standalone Android and iOS applications.

— IKEA provides customer service chatbot called Anna, AccuWeather, and FAQ
chatbots.

— Sephora has virtual make-up artist and customer service chatbots at Facebook
messenger.

— Siri integrates with iPhone, iPad, iPod, and macOS to initiate, answer calls, send,
receive text messages and WhatsApp messages on iPhone.

Other virtual assistants include AllGenie, Bixby, Celia, Cortana, Duer, and
Xiaowei.

17.3.2 What Is a Wake Word in Chatbot?

A wake word is the gateway between user and user’s digital assistant/Chatbot. Voice
assistants such as Alexa and Siri are powered by Al with word detection abilities to
queries response and commands, as illustrated in Fig. 17.1.

Common wake words include Hey, Google, Alexa, and Hey Siri.

Today’s wake word performance and speech recognition are operated by machine
learning or AI with cloud processing.

Sensory’s wake word and phrase recognition engines use deep neural networks
to provide an embedded or on-device wake word and phrase recognition engine.

———

Fig. 17.1 Wake word to invoke Chatbot (Tuchong 2024)

444 17 Workshop#7 Building Chatbot with TensorFlow and Transformer Technology...

17.3.2.1 Tailor-Made Wake Word

Wake words like Alexa, Siri, and Google are associated with highly valued and
technical products experiences, other companies had created tailor-made wake
word and uniqueness to their products, i.e., Hi Toyota had opened a doorway to
voice user interface to strengthen the relationship between customers and the brand.

17.3.2.2 Why Embedded Word Detection?

Wake word technology has been used in cases beyond mobile applications. Some
battery powered devices like Bluetooth headphones, smart watches, cameras, and
emergency alert devices.

Chatbot allow users to utter commands naturally. Queries like what time is it? or
how many steps have I taken? are phrases examples that a chatbot can process zero
latency with high accuracy.

Wake word technology can integrate with voice recognition applications like
touch screen food ordering, voice-control microwaves, or user identification set-
tings at televisions or vehicles.

17.3.3 NLP Components in a Chatbot

A typical chatbot consists of major components:

1. Speech-to-text converts user speech into text. The input is a wav/mp3 file, and
the output is a text file containing user’s utterance.

2. Conversational NLU performs intent recognition and entity extraction on user’s
utterance text. The output is the user’s intent with a list of entities. Resolving
references in the current to previous utterances is processed by this component.

3. Dialogue manager retains conversation memory to generate a meaningful and
coherent chat. This component is regarded as dialogue memory in conversa-
tional state hitherto entities and intents appeared. Hence, the input is the previ-
ous dialogue state for the current user to parse intent and entities to a new
dialogue state output.

4. Answer generator gives all inputs from previous stages to generate answers to
user’s utterance.

5. Text-to-speech generates a speech file (WAV or mp3) from system’s answers.

Each of these components is trained and evaluated separately, e.g., speech-to-
text training is performed by speech files and corresponding transcriptions on an
annotated speech corpus.

17.4 Building Movie Chatbot by Using TensorFlow and Transformer Technology 445

17.4 Building Movie Chatbot by Using TensorFlow
and Transformer Technology

This workshop will integrate the learnt technologies including: TensorFlow (Bansal
2021; Ekman 2021; TensorFlow 2024), Keras (Géron 2019; Keras 2024a),
Transformer technology with Attention Learning Scheme (Ekman 2021; Kedia and
Rasu 2020; Rothman 2022; Tunstall et al. 2022; Vaswani et al. 2017; Yildirim and
Asgari-Chenaghlu 2021) to build a domain-based chatbot system. The Cornell
Large Movie Dialog Corpus (Cornell 2024) will be used as conversation dataset for
system training. The movie dataset can be downloaded from either Cornell data-
bank (2024) or Kaggle’s Cornell Movie Corpus archive (2024).
Use pip install command to invoke TensorFlow package and install its dataset:

[1] import tensorflow as tflow
tflow.random.set seed(1234)
!pip install tensorflow-datasets==1.2.0
import tensorflow datasets as tflowDS
import re
importmatplotlib.pyplot as pyplt

1. Install and import tensorflow-datasets in addition to TensorFlow package. Please
use pip install command as script if not installed already.

\ 2. Use random.set_seed() method to set all random seeds required to replicate
TensorFlow codes.

17.4.1 The Chatbot Dataset

The Cornell Movie Dialogues corpus is used in this project. This dataset, movie_
conversations.txt contains lists of conversation IDs and movie_lines.txt associative
conversation ID. It has generated 220,579 conversations and 10,292 movie charac-
ters among movies.

17.4.2 Movie Dialogue Preprocessing

The maximum numbers of conversations (MAX_CONYV) and the maximum length
of utterance (MLEN) are set for 50,000 and 40 for system training respectively.
Preprocessing data procedure (PP) involves the following steps:

446

AN AW =

[2]

17 Workshop#7 Building Chatbot with TensorFlow and Transformer Technology...

. Obtain 50,000 movie dialogue pairs from dataset.

. PP each utterance by special and control characters removal.
. Construct tokenizer.

. Tokenize each utterance.

. Cap the max utterance length to MLEN.

. Filter and pad utterances.

Set the maximum number of training conversation
MAX CONV = 50000

Preprocess all utterances

def pp utterance (utterance):

utterance = utterance.lower () .strip()

Add a space to the following special characters
utterance = re.sub(r"([?.!,]1)", r" \1 ", utterance)
Delete extrac spaces

utterance = re.sub(r'[" "]+', " ", utterance)

Other than below characters, the other character
replace by spaces

utterance = re.sub(r"["a-zA-Z?2.,!]+", " ",
utterance)

utterance = utterance.strip()

return utterance

def get dialogs():

Create the dialog object (dlogs)

id2dlogs = {}

Open the movie lines text file

withopen('data/movie_lines.txt', encoding = 'utf-8"',
errors = 'ignore') as f dlogs:

dlogs = f dlogs.readlines|()
for dlogindlogs:

sections = dlog.replace('\n', '').split (' +++S$+++
")
id2dlogs[sections[0]] = sections[4]
query, ans = [], []
with open ('data/movie conversations.txt',
encoding = 'utf-8', errors = 'ignore') as
f conv:
convs = f conv.readlines()
for conv in convs:
sections = conv.replace('\n', '').split (' +++S$+++

")

Create movie conservation object m conv as a list

m conv = [conv[l:-1] for convinsections[3]([1:-1].
split (', ")]
for i inrange(len(m conv) - 1):

query.append (pp_utterance (id2dlogs([m conv[i]]))
ans.append (pp_utterance (id2dlogs[m conv([i + 1]1]))
if len(query) >= MAX CONV:
return query, ans
return query, ans
queries, responses = get dialogs()

17.4 Building Movie Chatbot by Using TensorFlow and Transformer Technology 447

Select query 13 and verify response:

[3] print ('Query 13: {}'.format (queries[13]))
print ('Response 13: {}'.format (responses[13]))

Query 13: that s because it s such a nice one.
Response 13: forget french.

Select query 100 and verify response:

[4] print ("Query 100: {}'.format (queries[100]))
print ('Response 100: {}'.format (responses[100]))

Query 100: you set me up.
Response 100: i just wanted

Verify queries (responses) size to see whether it situates within MAX_CONV:

[5] len (queries)
50000

[6] Len (responses)
50000

1. After max 50,000 movie conversations had obtained to perform basic
preprocessing, it is sufficient for model training.

2. Perform tokenization procedure to add START and END tokens using commands
v below.

17.4.3 Tokenization of Movie Conversation

[7] # Define the Movie Token object

m_token =

tflowDS.
deprecated.text.SubwordTextEncoder.build from corpus
(queries + responses, target vocab size = 2**13)

Define the Start and End tokens

START TOKEN, END TOKEN =

[m token.vocab size], [m token.vocab size + 1]

Define the size of Vocab (SVCAB)

SVCAB = m_token.vocab size + 2

448 17 Workshop#7 Building Chatbot with TensorFlow and Transformer Technology...
Verify movie token lists for conv 13 and 100:

[8] print ('The movie token of conv 13: {}'.format (m token.
encode
(queries[13])))

The movie token of conv 13: [15, 8, 151, 12, 8, 354, 10, 347, 188, 1]

9] print ('The movie token of conv 100: {}'.format (m token.
encode
(queries[1001])))

The movie token of conv 100: [5, 539, 36, 119, 1]

17.4.4 Filtering and Padding Process

Cap utterance max length (MLEN) to 40, perform filtering and padding:

[10] # Set the maximum length of each utterance MLEN to 40
MLEN = 40
Performs the filtering and padding of each utterance
def filter pad (qq, aa):
m_token gg, m_token aa = [], []
for (utterancel, utterance?2) inzip(qq, aa):
utterancel = START TOKEN + m token.
encode (utterancel) + END TOKEN
utterance2 = START TOKEN + m_token.
encode (utterance2) + END TOKEN
if len(utterancel) <= MLEN and len (utterance2) <=
MLEN:
m token gqg.append(utterancel)
m_token aa.append(utterance2)
pad tokenized sentences
m_token gg = tflow.keras.preprocessing.sequence.
pad_sequences (m_token gg, maxlen=MLEN, padding =
'post")
m_token aa = tflow.keras.preprocessing.sequence.
pad_sequences (m_token aa, maxlen=MLEN, padding =
'post")
returnm token gg, m token aa
queries, responses = filter pad (queries, responses)

Review the size of movie vocab (SVCAB) and total number of conversa-
tion (conv):

[11] print ('Size of vocab: {}'.format (SVCAB))
print ('Total number of conv: {}'.format (len(queries)))

17.4 Building Movie Chatbot by Using TensorFlow and Transformer Technology 449

Size of vocab: 8333
Total number of conv: 44095

1. Note that the total number of conversations after the filtering and padding
process is 44,095 which is less than the previous max conv size of 50,000 as some
[' | conversations are filtered out.
2. SVCAB size is around 8000 which makes sense as the total numbers of
conversation is around 44,000 lines, and the number of vocabulary used is between
5000 and 10,000.

17.4.5 Creation of TensorFlow Movie Dataset Object (mDS)

TensorFlow dataset object is created by using Dataset.from_tensor_slices() method
of TensorFlow Data class as below:

[12] tflow.data.Dataset.from tensor slices?

[13] # Define the Batch and Buffer size
sBatch = 64
sBuffer = 20000
Create mDS object from TensorFlowclass

mDS

tflow.

data.Dataset.from tensor slices(({'inNodes':queries,
'decNodes':responses[:, :-1]1},{'outNodes':responses]|:,
1:11))

mDS = mDS.cache ()

mDS = mDS.shuffle (sBuffer)

mDS = mDS.batch (sBatch)

mDS = mDS.prefetch (tflow.data.experimental.AUTOTUNE)

1. Create a TensorFlow dataset object first to define batch and buffer size
2. Define three layers of Transformer model:

i ' | a. input node layer (inNodes)—Queries

b. decoder input node layer (decNodes)—Responses

c. output node layer (outNodes)—Responses

3. Define prefetch scheme—AUTOTUNE in our project.

450 17 Workshop#7 Building Chatbot with TensorFlow and Transformer Technology...

Encoder Predictions

| s s s 'l

| | ¥ Y2 Yax Yy

GRU GRU GRU GRU GRU GRU GRU GRU

Encoder state

i 'y i '

%y X3 ¥n-1 Xq |

I

Decoder

Fig. 17.2 Attention learning with transformer technology

17.4.6 Calculate Attention Learning Weights

The main concept of transformer technology is the Attention Learning technique,
which aimed at network capability to focus attention to various parts of the training
sequence during recurrent network learning. Al chatbot corresponds to self-attention
learning on movie dialogs, in which the network has attention ability to different
positions of dialogue token sequences to compute utterances representation. A sys-
tem architecture of the Attention Learning model with Transformer technology is
illustrated in Fig. 17.2. Implement Attention Equation to calculate the attention
weight is given by:

Q T
NA

Attention Equation is a typical scaled-dot-product attention function in trans-
former object Query (Q), K (Key), and V (Value) Value and Python implementation
is given below:

Attention (Q,K,V) = softmax (17.1)

[14] # Calculate the Attention Weight, Query (q), Key(k),
Value (v), Mask (m)
def calc_attention(q, k, v, m):
gk = tflow.matmul (g, k, transpose b =True)
dep = tflow.cast (tflow.shape (k) [-1], tflow.float32)
mlogs = gk / tflow.math.sqgrt (dep)
Use the masking for padding
ifmis not None:
mlogs += (m * -1e9)
Apply softmax on the final axis of the utterance

sequence
att wts = tflow.nn.softmax (mlogs, axis = -1)
Apply matmul () operation
out wts = tflow.matmul (att wts, v)

return out wts

17.4 Building Movie Chatbot by Using TensorFlow and Transformer Technology 451

17.4.7 Multi-Head-Attention (MHAttention)

Multi-Head-Attention (MHAttention) consists of the following steps:

. Construct linear layers

. Perform head-splitting

. Calculate attention weights
. Combine heads

. Condense layers

N AW N =

MHAttention is implemented as follows:

[15] class MHAttention (tflow. keras.layers.Layer) :
def init (self, dm, nhd, name="MHAttention"):
super (MHAttention, self). init (name=name)
self.nhd = nhd
self.dm = dm
assert dm% self.nhd == 0
self.dep = dm// self.nhd
self.qgdes tflow.keras.layers.Dense (units=dm)
self.kdes tflow.keras.layers.Dense (units=dm)
self.vdes tflow.keras.layers.Dense (units=dm)
self.des = tflow.keras.layers.Dense (units=dm)
def sheads (self, inNodes, bsize):
inNodes = tflow.reshape (
inNodes, shape=(bsize, -1, self.nhd, self.dep))
return tflow.transpose (inNodes, perm=[0, 2, 1, 31)
def call (self, inNodes) :
q, k, v, m = inNodes['q'], inNodes['k'],
inNodes['v'], inNodes['m']
bsize = tflow.shape(q) [0]
1. Construct Linear-layers
= self.qgdes (q)
= self.kdes (k)
= self.vdes (v)
2. Perform Head-splitting
= self.sheads (g, bsize)
= self.sheads (k, bsize)
= self.sheads (v, bsize)
3. Calculate Attention Weights
sattention = calc attention(qg, k, v, m)
sattention = tflow.transpose (sattention, perm=[0, 2,
1, 31)
4. Head Combining
cattention = tflow.reshape (sattention,
(bsize, -1, self.dm))
5. Layer Condensation
outNodes = self.des(cattention)
return outNodes

#= <4 ~AQ %< ~Q

452 17 Workshop#7 Building Chatbot with TensorFlow and Transformer Technology...
17.4.8 System Implementation

Step 1. Implement Masking
Implement (1) Padding Mask and (2) Look_ahead Mask to mask token sequences.

[16] # Generate Padding Mask (gen pmask)
def gen pmask (p) :
pmask = tflow.cast (tflow.math.equal (p, 0), tflow.
float32)
return pmask([:, tflow.newaxis, tflow.newaxis, :]

[17] # Generate Look Ahead Mask (gen lamask)
def gen lamask (x) :
slen = tflow.shape(x) [1]
lamask = 1- tflow.linalg.band part (tflow.ones ((slen,
slen)), -1, 0)
pmask = gen pmask (x)
return tflow.maximum (lamask, pmask)

Review lamask with a sample matrix:

[18] print (gen lamask (tflow.constant ([[1, 2, 0, 4, 511)))
tf. Tensor(
[[[0.1.1.1. 1]
[0.0.1.1.1.]
[0.0.1.1.1.]
[0.0.1.0.1.]
[0. 0. 1. 0. 0.]111, shape=(1, 1, 5, 5), dtype=float32)

Step 2. Implement Positional Encoding

The main function of positional encoding is to provide model with information
about the relative position of word tokens within utterance for attention learning
given by the following formula:

PE,,, ., =sin(pos /10000%" ")

(pos,2i)

. (17.2)
PE | =cos (pos 110000)

(pox,2i+1

17.4 Building Movie Chatbot by Using TensorFlow and Transformer Technology

453

[19] # Implementation of Positional Encoding Class
(PEncoding)
class PEncoding (tflow.keras.layers.Layer) :
def init (self, pos, dm):
super (PEncoding, self). init ()
self.pencode = self.pencods(pos, dm)
def gdeg(self, pos, i, dm):
deg = 1 / tflow.pow (10000, (2 * (i // 2))
tflow.cast (dm, tflow.float32))
returnpos * deg
def pencods (self, pos, dm):

dtype=tflow.float32) [tflow.newaxis, :], dm = dm)
m sin = tflow.math.sin(deg rads[:, 1::2])
m _cos = tflow.math.cos(deg rads[:, 1::2])

pencode = pencode[tflow.newaxis,..]
return tflow.cast (pencode, tflow.float32)
def call (self, inNodes):
Convert SparseTensor to DenseTensor if
necessary

inNodes = tflow.sparse.to dense (inNodes)

Add positional encoding to input nodes

return inNodes + self.pencode[:, :tflow.
shape (inNodes) [1], :]

deg rads = self.gdeg(pos = tflow.range (pos,
dtype=tflow.float32) [:, tflow.newaxis], i=tflow.range (dm,

pencode = tflow.concat ([m_sin, m cos], axis

= -1)

if isinstance (inNodes, tflow.sparse.SparseTensor):

Try to plot PositionalEncoding diagram:

[20] # Create PositionalEncoding Sample
pencoding sample = PEncoding (50, 512)

cmap = 'RdBu')
pyplt.xlabel ('Depth'")
pyplt.xlim((0, 512))
pyplt.ylabel ('Position')
pyplt.colorbar ()
pyplt.show ()

pyplt.pcolormesh (pencoding sample.pencode.numpy () [0],

454 17 Workshop#7 Building Chatbot with TensorFlow and Transformer Technology...

50 I 1.00
0.75
40
0.50
30 I 0.25
[=
-
= - 0.00
&
0 - —=0.25
-0.50
10
-0.75
0 T T -1.00
0 100 200 300 400 500
Depth

Step 3. Implement Encoder Layer
Encoder Layer (enclayer) implementation involves:

1 Create MHAttention object
2 Two dense layers

Details as shown below:

17.4 Building Movie Chatbot by Using TensorFlow and Transformer Technology 455

[21]

Implementation of Encoder Layer (enclayer)
def enclayer (i, dm, nhd, drop, name="enclayer"):
inNodes = tflow.keras.Input (shape=(None, dm),
name="inNodes")
pmask = tflow.keras.Input (shape=(1, 1, None),
name="pmask")
att = MHAttention(
dm, nhd, name="att") ({
'q': inNodes,
'k': inNodes,
'v': inNodes,
'm': pmask
B
att = tflow.keras.layers.Dropout (rate=drop) (att)

att = tflow.keras.layers.LayerNormalization (
epsilon=le-6) (inNodes + att)

outNodes = tflow.keras.layers.Dense (units=i,

activation='relu') (att)

outNodes = tflow.keras.layers.Dense (units=dm) (outNodes)

outNodes = tflow.keras.layers.Dropout (rate=drop)

(outNodes)

outNodes = tflow.keras.layers.LayerNormalization (

epsilon=le-6) (att + outNodes)
return tflow. keras.Model (
inputs=[inNodes, pmask], outputs=outNodes,
name=name)

1. An attention learning object is defined and used at encoder layer implementation
class.

2. relu function is used as default setting for encoder layer activation function.
Current research includes the modification (or change) of activation function for
system enhancement.

Try to display a sample encoder layer using Keras plot model():

[22]

Create a sample Encoder Layer and display object
diagram

enclayer sample = enclayer(i = 512, dm = 128, nhd = 4,
drop = 0.3, name = "enclayer sample'")
tflow.keras.utils.plot model (enclayer sample, to file =
'enclayer.png', show shapes = True)

456 17 Workshop#7 Building Chatbot with TensorFlow and Transformer Technology...

InputLayer

Cutpat srape (None, 1. 1, None}

Jutput shape (None, None, 128)

MHAReAtion

Inpat shape [[None. None, 128), (None, 1. 1. None). (None, None, 128), (None. None, 128]] | Output shape [(None, None. 128)

rgut shape (None, None, 128) | Output shape None, Nane, 128)
1L

= 1
Lee Raymond (csstlee@outlook.com) EBR

reut shape. [INone, None, 128), (None, None, 128]] | Output shape (None. None, 128)

Ircut shage. (None, None, 128) | Output shape: (None, None, 128)

rout shape (None, None, 128) | Output shape [None, None, 512)

rout shape: (Noma, None, 512) | Output shape [None, None, 128)

ot shape (None. None, 128) | Cutput shape (Nona, None, 128)

rut shape; [fNone, None, 128), (None, None, 128]] | Cutput shape (None, None, 128)

Irgut shape [None, Mone, 128) | Output shape (Nome, None, 128)

Step 4. Implement Encoder
Encoder implementation involves the following processes:

1. Embed inputs
2. Perform positional encoding scheme
3. Encode Num Layers

17.4 Building Movie Chatbot by Using TensorFlow and Transformer Technology

457

[23] # Implementation of Encoder Class (encoder)
def encoder (svcab,
nlayers,
X,
dm,
nhd,
drop,
name="encoder") :
inNodes = tflow.keras.Input (shape=(None,),

name="inNodes")
pmask = tflow.keras.Input (shape=(1, 1, None),
name="pmask")

name="enclayer {}".format (i),
) ([outNodes, pmask])
return tflow. keras.Model (
inputs=[inNodes, pmask], outputs=outNodes,
name=name)

embeddings = tflow.keras.layers.Embedding (svcab, dm)
(inNodes)
embeddings *= tflow.math.sqgrt (tflow.cast (dm, tflow.float32))
embeddings = PEncoding (svcab, dm) (embeddings)
outNodes = tflow.keras.layers.Dropout (rate=drop)
(embeddings)
for i in range (nlayers) :
outNodes = enclayer (

i=x,

dm=dm,

nhd=nhd,

drop=drop,

Display a sample encoder using Keras plot model:

[24] # Create a sample Encoder Sample and display object

diagram
encoder sample = encoder (svcab = 8192,

nlayers = 2,

x = 512,

dm = 128,

nhd = 4,

drop = 0.3,

name = "encoder sample")
tflow.keras.utils.plot model
(encoder sample, to file='encoder sample.png', show
shapes = True)

458 17 Workshop#7 Building Chatbot with TensorFlow and Transformer Technology...

Output shape: (None, None)

Input shape: (None, None) | Output shape (None, None, 128)

\

Input shape: (None, None, 128) | Output shape: (None, None, 128)

Input shape: (None, None, 128) | Output shape: (None, None, 128)

Input shape: (None, None, 128) | Output shape: (None, None, 128) Cutput shape: (None, 1, 1, None)

Input shape: [[None, None, 128), (None, 1, 1, None]] | Output shape: (None, None, 128)

Input shape: [[None, None, 128), (None, 1, 1, None]] | Output shape: (None, None, 128)

Step 5. Implement Decoder Layer
Decoder Layer implementation involves the following steps:

1. MHAttention
2. 2 Dense Decoder Layers with dropout

17.4 Building Movie Chatbot by Using TensorFlow and Transformer Technology 459

[25] # Implementation of Decoder Layer (declayer)
def declayer (i, dm, nhd, drop, name = "declayer"):
inNodes = tflow.keras.Input (shape=(None, dm), name
="inNodes")
encouts = tflow.keras.Input (shape=(None, dm),

name="encouts")
lamask = tflow.keras.Input (shape=(1, None, None),

name = "lamask")
pmask = tflow.keras.Input (shape=(1, 1, None), name =
"pmask")

attl = MHAttention (dm, nhd, name="attl")
(inNodes={'qg':inNodes,
'k':inNodes,
'v':inNodes,
'm':lamask})

attl = tflow.keras.layers.LayerNormalization (epsilon
=le-6)
(attl + inNodes)
att2 = MHAttention (dm,nhd, name = "att2")

(inNodes={'qg':attl,
'k':encouts,
'v':encouts,
'm':pmask})

att2 = tflow.keras.layers.Dropout (rate=drop) (att2)

att2 = tflow.keras.layers.LayerNormalization (epsilon
= le-6) (att2 + attl)

outNodes = tflow.keras.layers.Dense (units=i,
activation='relu') (att2)

outNodes = tflow.keras.layers.Dense (units=dm)
(outNodes)

outNodes = tflow.keras.layers.Dropout (rate=drop)
(outNodes)

outNodes = tflow.keras.layers.

LayerNormalization (epsilon=le-6) (outNodes + att2)
return tflow. keras.Model (inputs=[inNodes, encouts,
lamask, pmask],
outputs = outNodes,
name = name)

1. Encoder layer implements single attention learning object, and decoder layer
implements two attention learning objects attl and att2 according to transformer
learning model.

- 2. Again, relu function is used as activation function. It can modify or adopt
different activation function to improve network performance as studied in Sect.
17.1.

Display sample decoder layer using Keras plot_model():

460 17 Workshop#7 Building Chatbot with TensorFlow and Transformer Technology...

[26] # Create a decoder layer sample and show object
association diagram
declayer sample = declayer(i = 512, dm = 128, nhd = 4,
drop = 0.3,
name = "declayer sample")
tflow.keras.utils.plot model
(declayer sample, to file='declayer sample.png', show

shapes=True)
| Tupd wape [Mona, 1 mu.l-mql gt vhage ﬂmnmwl

Tt $hope [Nore. Nome, 1781 Sone. 1. Mong, Nones, (Hona. Tlore, 128, (Mone hone. 18 | Ouma shage (Nome. Mone, 1203

Ppasnace |[ane, Hone, 138, (Mone. Nons, 138] | Oud shape Nome, Mona, 138)

| AR wmoe (Nome. Mons, 120) | | Cautput W [N, 1, 1. Nons) | moLt whige (ione. Nome. 1380 | Ot shace (oes. hore, 128

Inpt b (o, N, 128, (o, 1, 1, Noml, (Moe, Nore, 128, (o, Newe, 128 | Ot shte (e, Mane, 128

1
Lee Raymond (csstlee@outlock.com) BEBE
ot ship= fhione, None. 128) I Tutpat whace (None, Mone, 128)

Ingust shepe [iNoee, Mone, (28], (hone, None, 138 | Outps shace (eons, Mors, 128

g e (hons, Nooe 130) | Cupa eepe (Mo bone. 128

nond shigs fhione, None, 138) | Cutnd stice (Mone, Mone, 1)

ot shope: Mone. Nene, 8123 | Cutput srece (one, None. 128

rend sherpe fione, Nono, 128) | Cutput srece (one, kone, 128)

Izt snape (INome, None, 1281 fhone. None. 1) | Cutp snace pione, Mere, 128]

Irgut s (hiomee, Nlorwe, 1230) | Cupas wager (Plone, N, 128

Step 6. Implement Decoder
Decoder implementation involves the following processes:

1. Embed network outputs

17.4 Building Movie Chatbot by Using TensorFlow and Transformer Technology

2. Look ahead and pad masking
3. Positional encoding scheme
4. Perform N-decoder layers

461

[27] | # Implementation of Decoder class (decoder)
def decoder (svcab,

nlayers,

X,

dm,

nhd,

drop,

name="'decoder"') :

encouts = tflow.keras.Input (shape=(None, dm),
name="encouts")

lamask = tflow.keras.Input (shape=(1, None, None),
name="lamask")

pmask = tflow.keras.Input (shape=(1, 1, None),
name="pmask")

encouts, lamask, pmask])
return tflow. keras.Model (inputs=[inNodes, encouts,
lamask, pmask],
outputs = outNodes,
name = name)

inNodes = tflow.keras.Input (shape=(None,), name="inNodes")

embeddings = tflow.keras.layers.Embedding (svcab, dm)
(inNodes)
embeddings *= tflow.math.sqgrt (tflow.cast (dm, tflow.float32))
embeddings = PEncoding (svcab, dm) (embeddings)
outNodes = tflow.keras.layers.Dropout (rate=drop)
(embeddings)
for i in range (nlayers) :
outNodes = declayer (i = x,
dm=dm,
nhd=nhd,
drop=drop,
name = 'declayer {}'.format(i),) (inputs=[outNodes,

Display sample decoder using Keras plot_model:

[28] | # Create a decoder sample and show object association
diagram
decoder sample = decoder (svcab=8192,
nlayers=2,
x = 512,
dm = 128,
nhd = 4,
drop = 0.3,
name = "decoder sample")
tflow.keras.utils.plot model (decoder sample,
to file='decoder sample.png', show shapes =True)

462 17 Workshop#7 Building Chatbot with TensorFlow and Transformer Technology...

it shage {None. Nonej | Cusout shape (None, None, 128)

|] | Ougput shape: (o, None, 138} |

nput shape. (None, Noas, 128)	Dusput shags. [Hore, None, 128}				
it wrape: (None, Noes, 128	Crupast shage (Hone, Mone, 128}	l Cutzas shag: (None, None, 18]	l Diutpun shage: [Mone, 3, None, Hone)		Chtput whag (hioee, 1, 1, Hena)
It shage [[one. Nons, T2, (one, Nome, 138, (None. 1. More. Koned. {1ioms. 1, 1. Hosel]	Cutps whapn one, Noes, 128)				

Step 7. Implement Transformer

Transformer involves implementing encoder, decoder, and the final linear layer.
Transformer decoder output is input to linear layer as a recurrent neural network
(RNN) and output model is returned.

17.4 Building Movie Chatbot by Using TensorFlow and Transformer Technology 463

[29] | # Implementation of Transformer Class
def transformer (svcab, nlayers, x, dm, nhd, drop,
name="transformer") :
queries = tflow.keras.Input (shape=(None,), name="inNodes")
dec_queries = tflow.keras.Input (shape=(None,),
name="decNodes")
enc _pmask = tflow.keras.layers.Lambda (
gen_pmask, output shape=(1, 1, None),
name="enc_pmask")(queries)
Perform Look Ahead Masking for Decoder Input for the
Attl
lamask = tflow.keras.layers.Lambda (gen_ lamask,
output shape= (1, None, None) ,
name = "lamask") (dec_queries)
Perform Padding Masking for Encoder Output for the Att2
dec pmask = tflow.keras.layers.Lambda (gen pmask,
output_ shape=(1, 1, None),
name="dec_pmask")(queries)

encouts = encoder (svcab=svcab,
nlayers = nlayers,
X = x,
dm = dm,
nhd = nhd,
drop = drop,) (inputs = [queries, enc pmask])
decouts = decoder (svcab=svcab,
nlayers = nlayers,
X = x,
dm = dm,
nhd = nhd,

drop=drop,) (inputs=[dec queries, encouts, lamask,
dec pmask])
responses =
tflow.keras.layers.Dense (units=svcab, name="outNodes")

(decouts)
return tflow.keras.Model (inputs=[queries, dec queries],
outputs=responses, name=name)

Display sample transformer object using Keras plot_model:

[30] | # Create a transformer sample and display object diagram
transformer sample = transformer (svcab=8192, nlayers=4,
x=512,

dm=128, nhd = 4, drop=0.3, name="transformer sample")
tflow.keras.utils.plot model (transformer sample,
to file="transformer sample.png", show shapes=True)

464 17 Workshop#7 Building Chatbot with TensorFlow and Transformer Technology...

st [P, Moree, (e, P, 138, i, 1, W, Mses, e, 1.1, S

Step 8. Model Training

Parameters for nLayers, dm and units (x) had reduced to speed up training
process.

[31] # Create Transformer Model
tflow.keras.backend.clear_session()
model = transformer(svcab = SVCAB,

nlayers=2,
x=512,
dm=256,
nhd=8,
drop=0.1)

1. A movie Chatbot Transformer model consists of two layers with 512 units,
data-model size 256, head number 8, and dropout rate 0.1 according to transformer

model as in Fig. 17.2.
2. It is recommended to modify these parameter settings to improve network

performance as discussed in Sect. 17.1.

Step 9. Implement Model Evaluation Function

A loss function is implemented for system evaluation. It is important to use a
padding mask when calculating the loss since target sequences are padded.

17.4 Building Movie Chatbot by Using TensorFlow and Transformer Technology 465

[32] # Implementation of Evaluation Function (Loss Function)
def Eval_function(xtrue, xpred):
Reshape xtrue
xtrue = tflow.reshape(xtrue, shape=(-1, MLEN - 1))
Compute sparse categorical crossentropy loss
loss_val = tflow.keras.losses.SparseCategorical Crossentropy(
from_logits=True, reduction="none")(xtrue, xpred)
Mask padding values (assuming O is the padding value)
mask_val = tflow.cast(tflow.not_equal(xtrue, 0), tlow.float32)
loss_val = tflow.multiply(loss_val, mask_val)
return tflow.reduce_mean(loss_val)

Step 10. Implement Customized Learning Rate

Adam_Optimizer with a customized learning rate is used with the formula below:

I, =d., *min (step _num"?,step _num * warmup _steps) (17.3)
[33] # Implementation of Customized Learning Rate

class CLearning(tflow.keras.optimizers.schedules.LearningRateSchedule):
def __init__ (self, dm, warmup_steps=4000):
super(CLearning, self).__init__ ()
self.dm = dm
self.dm = tflow.cast(self.dm, tflow.float32)
self.warmup_steps = warmup_steps
def __call__(self, step):
argl = tflow.math.rsqrt(step)
argl = tflow.math.rsqrt(tflow.cast(step, tflow.float32))
arg2 = tflow.cast(step, tflow.float32) * (tflow.cast(self.warmup_steps,
tflow.float32)**-1.5)
return tflow.math.rsqrt(self.dm) * tflow.math.minimum(argl, arg2)

Plot customized learning rate:

[34] # Create customized learning rate object and display
performance
CLearning sample = CLearning(dm=128)
pyplt.plot (CLearning sample (tflow.range (200000,
dtype=tflow.float32)))
pyplt.ylabel ("Learning Rate")
pyplt.xlabel ("Train Step")

466 17 Workshop#7 Building Chatbot with TensorFlow and Transformer Technology...

Text(@.5, ®, "Train Step')

0.0014 A

0.0012

0.0010 A

0.0008 A

0.0006 A

Leamning Rate

0.0004 -

0.0002 -

0.0000 A

0 25000 50000 75000 100000 125000 150000 175000 200000
Train Step

Step 11. Compile Chatbot Model
Step 12. System Training (Model Fitting)

[35] # Compile Movie Chatbot Model
Set the Customized Learning Rate
cLRate = CLearning(256)
Set Adam Optimizers
optimizer = tflow.keras.optimizers.Adam(learning
rate=cLRate, beta 1=0.9, beta 2=0.98, epsilon=le-9)
Implement Accuracy Evaluation Scheme
def accuracy(xtrue, xpred):
xtrue = tflow.reshape (xtrue, shape=(-1, MLEN - 1))
xpred = xpred[:, :tflow.shape(xtrue)[1l], :] # Slice
to match time steps
return tflow.keras.metrics.sparse categorical
accuracy (xtrue, xpred)
Compile Chatbot Model
model.compile (optimizer=optimizer, loss=Eval function,
metrics=[accuracy])

Train Chatbot transformer model by calling model.fit() for 20 epochs to save time.

[36] EPOCHS = 20
model.fit (mDS, epochs = EPOCHS)

17.4 Building Movie Chatbot by Using TensorFlow and Transformer Technology

Epoch 1/20

689/689 ___ 211s 299ms/step - accuracy
Epoch 2/20

689/689 ___ 249s 361ms/step - accuracy
Epoch 3/20

689/689 __ 257s 373ms/step - accuracy
Epoch 4/20

689/689 ___ 255s 371ms/step - accuracy
Epoch 5/20

689/689 ___ 161s 233ms/step - accuracy
Epoch 6/20

689/689 __ 162s 235ms/step - accuracy
Epoch 7/20

689/689 ___ 161s 234ms/step - accuracy
Epoch 8/20

689/689 ___ 162s 235ms/step - accuracy
Epoch 9/20

689/689 __ 179s 260ms/step - accuracy
Epoch 10/20

689/689 ___ 180s 261ms/step - accuracy
Epoch 11/20

689/689 ___ 178s 258ms/step - accuracy
Epoch 12/20

689/689 __ 176s 256ms/step - accuracy
Epoch 13/20

689/689 ___ 177s 257ms/step - accuracy
Epoch 14/20

689/689 ___ 177s 256ms/step - accuracy
Epoch 15/20

689/689 __ 176s 256ms/step - accuracy
Epoch 16/20

689/689 ___ 182s 264ms/step - accuracy
Epoch 17/20

689/689 ___ 179s 260ms/step - accuracy
Epoch 18/20

689/689 __ 175s 254ms/step - accuracy
Epoch 19/20

689/689 ___ 174s 253ms/step - accuracy
Epoch 20/20

689/689 ___ 175s 254ms/step - accuracy

:0.0240 - loss: 2.5178

:0.0765 - loss: 1.5446

:0.0857 - loss: 1.4137

:0.0903 - loss: 1.3390

:0.0951 - loss: 1.2668

:0.0986 - loss: 1.2131

:0.1031 - loss: 1.1636

:0.1088 - loss: 1.0969

:0.1148 - loss: 1.0374

:0.1202 - loss: 0.9825

:0.1268 - loss: 0.9476

:0.1326 - loss: 0.9058

:0.1381 - loss: 0.8731

:0.1428 - loss: 0.8378

:0.1476 - loss: 0.8064

1 0.1522 - loss: 0.7809

:0.1556 - loss: 0.7551

:0.1609 - loss: 0.7331

:0.1644 - loss: 0.7117

:0.1663 - loss: 0.6878

[36]: <keras.src.callbacks.history.History at 0x22eeb101b50>

Step 13. System Evaluation and Live Chatting

AN AW =

. Create Mining() method by performing data preprocessing of all utterances.

. Perform tokenization of utterances and padded with START and END tokens.
. Perform LookAhead and Padding Masks.
. Construct Transformer model with attention learning.
. Implement chatting() method by decoder scheme.

. Combine chatted word sequences to decoder input.

467

System evaluation and live chatting implementation involve the following steps:

468 17 Workshop#7 Building Chatbot with TensorFlow and Transformer Technology...

7. Use transformer model for system to predict responses based on previous train-
ing epochs.

[37] # Implementation of Movie Chatting class - mchat
def mchat (utterance) :
Utterance Preprocessing and add START AND END
TOKENS
utterance = pp utterance (utterance)
utterance = tflow.expand dims (START_TOKEN +
m_token.encode (utterance) + END TOKEN, axis = 0)
Create response object
response = tflow.expand dims (START_TOKEN, O0)
for i in range (MLEN) :
chatting = model (inputs = [utterance, response],
training =False)
Choose last word from token sequence
chatting = chatting[:, -1:, :]
chatted id = tflow.cast (tflow.argmax (chatting, axis=-
1), tflow.int32)
Return with chattedID with ENDTOKEN
if tflow.equal (chatted id, END TOKENI[O]) :
break
Combine CHATTEDID with utterance response
response = tflow.concat ([response, chatted id],
axis=-1)
return tflow.squeeze (response, axis = 0)
#
Implementation
of main class for Movie Chatting - mchatting
def mchatting (utterance) :
mchatting = mchat (utterance)
chatted utterance =
m_token.decode ([i for i inmchattingifi < m_token.
vocab sizel)
print ('Query: {}'.format (utterance))
print ('Response: {}'.format (chatted utterance))

return chatted utterance

Try some movie conversations to see whether it works:

[38] output = mchatting ("Where have you been?")

Query: Where have you been?
Response: i m going to see you.

[39] output = mchatting("It's a trap")

Query: It’s a trap
Response: you re not going anywhere !

17.4 Building Movie Chatbot by Using TensorFlow and Transformer Technology 469

[40]

[41]

[42]

WORKSHOP

WORKSHOP

output = mchatting("Do you need help?")

Query: Do you need help?
Response: i don t know.

output = mchatting("What do you think?")

Query: What do you think?
Response: i don t know. i don t know. i m not sure. i just had to see what i m saying.

output = mchatting("Are you happy?")
Query: Are you happy?
Response: yes. i m very happy.

1. Training showed that epochs 1-20 are rather slow but increased in accuracy and
decreased in loss rate.

2. Two chatbots experiments with one used 2 epochs and the other used 20 epochs.
Results showed that performance on 20 epochs has satisfactory performance than
the one with 2 epochs.

3. Increase epochs, say, up to 50 epochs to review whether accuracy has continuous
improvement. It is natural to require more time unless there are sufficient GPUs.

Workshop 7.1 Fine-tune Chatbot Model

TensorFlow and Transformer technology are used to develop a domain-based
Chatbot system

There are rooms to fine-tune model performance like any AI model. It can be
conducted by:

1. Dataset Level

- Enhance preprocessing process.

- Improve data record selection scheme, e.g., sample size, utterance MLEN, etc.
2. Network Model Level

- Fine-tune system parameters, e.g., learning rate and method, etc.

- Fine-tune Transformer Model by modifying Attention Function, etc. Compare
performances (MUST) and analysis (bonus).

Fine-tune Movie Chatbot model and compare with the original version

Workshop 7.2 Mini Project - Build a Semantic-Level AI Chatbot System
Extend character-level and word-level NLU to a semantic-level NLU

1. Modity codes of Al Chatbot learnt in this section to implement a semantic-
level Al Chatbot system.

2. Compare system performance of this revised system with previous character-
level and word-level Al Chatbot system.

470 17 Workshop#7 Building Chatbot with TensorFlow and Transformer Technology...
17.5 Related Works

This workshop had integrated all NLP related implementation techniques including
TensorFlow and Keras with Transformer Technology to design an Al-based NLP
application chatbot system. It is a step-by-step implementation consisting of data
preprocessing, model construction, system training, testing evaluation process; and
Attention Learning and Transformer Technology with TensorFlow and Keras imple-
mentation platform easily applied to other chatbot domain and interactive QA sys-
tems using Cornell Large Movie dataset with over 200,000 movie conversations
with 10,000+ movie characters.

Nevertheless, it is only the dawn of the journey. There are regular new R&D
prevalence and usage in NLP applications. Below are lists of renowned domains and
resources related to chatbot systems for reference.

Datasets for Chatbot Systems

* Taskmaster from Google Research (Google Research 2024a).

¢ Simulated Dialogue dataset from Google Research (GoogleResearch 2024b).
* Dialogue Challenge dataset from Microsoft (MicrosoftDialog 2024).

* Dialogue State Tracking Challenge dataset (DSTC 2024).

Keras Modules and Optimizer

» Keras layers (Keras 2024a).

¢ Keras optimizers (Keras 2024b).

* An overview of optimizers (Ruder 2024).
¢ Adam optimizer (Adam 2024).

Famous Chatbot System

* Amazon Alexa developer blog (Alexa 2024).

* Apple Siri Developer (AppleSiri 2024).

¢ Duer from Baidu (Duer 2024).

* Google Assistant (GoogleAssistant 2024).

¢ Microsoft Cortana Developer (MicrosoftCortana 2024).
¢ Samsung Bixby Developer (SamsungBixby 2024).

¢ Xiaowei from Tencent (Xiaowei 2024).

References

Adam (2024) Adam optimizer: https://arxiv.org/abs/1412.6980. Accessed 17 Dec 2024.

Alexa (2024) Amazon Alexa developer blog: https://developer.amazon.com/blogs/home/tag/
Alexa. Accessed 17 Dec 2024.

AppleSiri (2024) Apple Siri Developer: https://developer.apple.com/siri/. Accessed 17 Dec 2024.

Bansal, A. (2021) Advanced Natural Language Processing with TensorFlow 2: Build effective
real-world NLP applications using NER, RNNs, seq2seq models, Transformers, and more.
Packt Publishing.

https://arxiv.org/abs/1412.6980
https://developer.amazon.com/blogs/home/tag/Alexa
https://developer.amazon.com/blogs/home/tag/Alexa
https://developer.apple.com/siri/

References 471

Batish, R. (2018) Voicebot and Chatbot Design: Flexible conversational interfaces with Amazon
Alexa, Google Home, and Facebook Messenger. Packt Publishing.

Cornell (2024) https://www.cs.cornell.edu/~cristian/Chameleons_in_imagined_conversations.
html. Accessed 17 Dec 2024.

Cornell_Movie_Corpus (2024) Cornell Movie Corpus archive. https://www.kaggle.com/datasets/
Cornell-University/movie-dialog-corpus. Accessed 17 Dec 2024.

Devlin, J., Chang, M. W., Lee, K. and Toutanova, K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. Archive: https://arxiv.org/
pdf/1810.04805.pdf.

Duer (2024) Duer Baidu AI Chatbot. http://duer.baidu.com/en/index.html. Accessed 17 Dec 2024.

DSTC (2024) Dialog State Tracking Challenge dataset: https://github.com/matthen/dstc. Accessed
17 Dec 2024.

Ekman, M. (2021) Learning Deep Learning: Theory and Practice of Neural Networks, Computer
Vision, Natural Language Processing, and Transformers Using TensorFlow. Addison-Wesley
Professional.

Facebook (2024) Facebook Messenger APl documentation. https://developers.facebook.com/
docs/messenger-platform/getting-started/quick-start/. Accessed 17 Dec 2024.

Freed, A. (2021) Conversational Al: Chatbots that work. Manning.

Géron, A. (2019) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media.

GoogleAssistant (2024) Google Assistant: https://assistant.google.com/. Accessed 17 Dec 2024.

GoogleResearch (2024a) Taskmaster from Google Research. https://github.com/google-research-
datasets/Taskmaster/tree/master/TM-1-2019. Accessed 17 Dec 2024.

GoogleResearch (2024b) Simulated Dialogue dataset from Google Research. https://github.com/
google-research-datasets/simulated-dialogue. Accessed 17 Dec 2024.

Janarthanam, S. (2017) Hands-On Chatbots and Conversational UI Development: Build chatbots
and voice user interfaces with Chatfuel, Dialogflow, Microsoft Bot Framework, Twilio, and
Alexa Skills. Packt Publishing.

Kedia, A. and Rasu, M. (2020) Hands-On Python Natural Language Processing: Explore tools and
techniques to analyze and process text with a view to building real-world NLP applications.
Packt Publishing.

Keras (2024a) Keras official sites: https://keras.io. Accessed 17 Dec 2024.

Keras (2024b) Keras optimizers: https://keras.io/api/optimizers/. Accessed 17 Dec 2024.

MicrosoftCortana (2024) Microsoft Cortana Developer: https://www.microsoft.com/en-us/cor-
tana/. Accessed 17 Dec 2024.

MicrosoftDialog (2024) https://github.com/xiul-msr/e2e_dialog_challenge. Accessed 17
Dec 2024.

NLPGitHub (2024) URL: https://github.com/raymondshtlee/NLP/. Accessed 17 Dec 2024.

Raj, S. (2018) Building Chatbots with Python: Using Natural Language Processing and Machine
Learning. Apress.

Rothman, D. (2022) Transformers for Natural Language Processing: Build, train, and fine-tune
deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, and
GPT-3. Packt Publishing.

Ruder (2024) An overview of optimizers: https://ruder.io/optimizing-gradient-descent/. Accessed
17 Dec 2024.

SamsungBixby (2024) Samsung Bixby Developer: https://developer.samsung.com/bixby.
Accessed 17 Dec 2024.

SpaCy (2024) spaCy official site. https://spacy.io/. Accessed 17 Dec 2024.

Telegram (2024) Telegram bot API documentation: (https://core.telegram.org/bots. Accessed 17
Dec 2024.

TensorFlow (2024) TensorFlow official site> https://tensorflow.org /. Accessed 17 Dec 2024.

Tuchong (2024) Wake word to invoke your Chatbot. https://stock.tuchong.com/image/detail 7imag
eld=918495180260638796. Accessed 17 Dec 2024.

https://www.cs.cornell.edu/~cristian/Chameleons_in_imagined_conversations.html
https://www.cs.cornell.edu/~cristian/Chameleons_in_imagined_conversations.html
https://www.kaggle.com/datasets/Cornell-University/movie-dialog-corpus
https://www.kaggle.com/datasets/Cornell-University/movie-dialog-corpus
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
http://duer.baidu.com/en/index.html
https://github.com/matthen/dstc
https://developers.facebook.com/docs/messenger-platform/getting-started/quick-start/
https://developers.facebook.com/docs/messenger-platform/getting-started/quick-start/
https://assistant.google.com/
https://github.com/google-research-datasets/Taskmaster/tree/master/TM-1-2019
https://github.com/google-research-datasets/Taskmaster/tree/master/TM-1-2019
https://github.com/google-research-datasets/simulated-dialogue
https://github.com/google-research-datasets/simulated-dialogue
https://keras.io
https://keras.io/api/optimizers/
https://www.microsoft.com/en-us/cortana/
https://www.microsoft.com/en-us/cortana/
https://github.com/xiul-msr/e2e_dialog_challenge
https://github.com/raymondshtlee/NLP/
https://ruder.io/optimizing-gradient-descent/
https://developer.samsung.com/bixby
https://spacy.io/
https://core.telegram.org/bots
https://tensorflow.org
https://stock.tuchong.com/image/detail?imageId=918495180260638796
https://stock.tuchong.com/image/detail?imageId=918495180260638796

472 17 Workshop#7 Building Chatbot with TensorFlow and Transformer Technology...

Tunstall, L, Werra, L. and Wolf, T. (2022) Natural Language Processing with Transformers:
Building Language Applications with Hugging Face. O’Reilly Media.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin,
1. (2017). Attention is all you need. Advances in neural information processing systems, 30.
https://arxiv.org/abs/1706.03762.

Xiaowei (2024) Xiaowei chatbot system from Tencent. https://xiaowei.tencent.com/. Accessed 17
Dec 2024.

Yildirim, S and Asgari-Chenaghlu, M. (2021) Mastering Transformers: Build state-of-the-art mod-
els from scratch with advanced natural language processing techniques. Packt Publishing.

https://arxiv.org/abs/1706.03762
https://xiaowei.tencent.com/

Index

A

Abstractive Text Summary (ATS), 213

Add-k Smoothing, 36, 38

Adjectives, 45, 46

Adverbs, 45, 46, 53

Al Tutor, 3, 4, 15

Alexa, 442444, 470

AliMe QA System, 231-232

A Lite BERT (ALBERT), 195-196

AllGenie, 443

Anaphora, 153, 156, 159, 170

Antecedent, 153, 165, 166, 170

Antonyms, 125-126

Artificial intelligence markup language
(AIML), 226

Atrtificial neural networks (ANNSs), 180,
375, 396

Attention Equation, 450

Augmented translation network (ATN), 9

B

Backoff and Interpolation (B&I)
Smoothing, 40

BASEBALL system, 8

Bidirectional, 411, 416

Bidirectional Encoder Representations from
Transformers (BERT), 192-196,
201, 202, 205, 227-229, 277, 411,
413,416-432, 437

Bidirectional Recurrent Neural Networks
(BRNNS), 187

Bigrams, 21, 27, 29-31, 33, 37, 39, 305,
307-310, 312

Bixby, 443, 470

© The Editor(s) (if applicable) and The Author(s), under exclusive license to

Springer Nature Singapore Pte Ltd. 2025
R. Lee, Natural Language Processing,
https://doi.org/10.1007/978-981-96-3208-4

Bottom-up parser, 85-86
Brill, E., 63

Brill’s Taggers, 63
Brown Corpus, 22, 24, 58

C

Canonical form, 105, 106, 116

Carroll, L., 282, 283

Case role analysis, 110

Cataphor, 153

CELEX, 54-58

Centering algorithm, 167-170

Centering theory (CT), 167

Central entity (CE), 155

CFG parsing, 69, 81, 96

Chain Rule, 24-25, 41

Chatbots, 9, 11, 14, 441-445, 450, 470

Chomsky, N, 8

COBUILD, 54

Coherence, 153-155, 161-163, 167, 168, 172

Coherence relation, 160

Cohesion, 156

Collocations, 300-302

Common sense, 120, 128

world knowledge, 21, 30

Compositional semantic analysis,
121-122, 148

Compositional semantics, 122

Computational linguistics (CL), 5, 11

Computational linguists, 51

Computer-to-computer interaction (CCI), 151

Conceptual dependency, 102—103

Conceptual dependency diagram
(CDD), 102-103

473

https://doi.org/10.1007/978-981-96-3208-4#DOI

474

Conjunctions, 45, 53-56
Connectives, 112
Constituent, 72-74, 80, 88, 91, 93
Constituent Likelihood Automatic Word-
tagging System (CLAWS), 58
Context free grammar (CFG), 69, 79, 89, 96
Context free language (CFL), 79
Conversational artificial intelligence, 442
Convolutional neural networks (CNNs), 171
Coreference, 152-155, 160, 164-171
Coreference resolution (CR), 164
Cornell Large Movie Conversation
Dataset, 441
Cornell Movie Corpus archive, 445
Cornell Movie Dialogs corpus, 445
Corpus, 19, 22-25, 27, 29-31, 33, 34, 36-38,
40, 42, 46, 47, 54, 58-62, 64, 279,
287, 288, 290, 295, 296, 299, 301
Cortana, 443, 470
Cosine similarity, 368-369

D

Decoder, 189-190

Deep learning, 11

DeepQA, 9

Dekang Lin method, 138

Determiners, 45, 49, 53

Discourse, 51, 127, 128, 151, 153, 155-164,
166-168, 172

Discourse markers, 210

Discourse segmentation, 156, 209-210, 235

Dispersion, 288-290

Distributional models, 140

Document-likelihood, 207-209

Duer, 443, 470

E

Embedding words, 401402
Encoder, 189-192, 411, 414, 416
Extractive Text Summary (ETS), 213
Extrinsic evaluation, 35

F

FastText, 360

Feature-based model, 221

Feedforward neural network (FNN), 180

Fillmore’s case roles theory, 155

Fillmore’s Theory, 107-111, 117

First-order predicate calculus (FOPC), 102,
104, 106, 107, 111-117

Frame-based representation, 102-104

Index

G

Gate Recurrent Unit (GRU), 185-187, 196

Generative Pre-trained Transformers (GPT),
227,229,234, 235

Generic Summarization systems, 217

Glove vectors, 360

Good Turing (GT) Smoothing, 36, 4142

Grammar-based method, 222

H

Hapaxes, 299, 300

Hearst’s TextTiling, 157, 172

Heterogeneous transfer learning, 177

HMM tagger, 62

Hobbs algorithm, 164-166

Hobbs, J.R., 160, 164

Hopfield, J., 9

Homogeneous transfer learning, 177

Homographs, 123, 128

Homonymy, 123-124

Homophones, 123

Hopfield Network, 9

HuggingFace, 411, 413, 421423, 425,
430, 432-434

Human Language Ambiguity, 7-8

Human-to-computer interaction (HCI), 11, 151

Hybrid POS tagging, 47

Hypernymy, 126, 132

Hyponymy, 126, 132

I

IMDB, 380, 389, 390, 394, 402, 407, 409

Inference, 106-107, 115, 116

Inflection, 45, 60

Information content similarity, 137—-138

Information extraction, 15, 313, 320

Information retrieval (IR), 15, 199-210, 226,
228,235,313

Interjections, 45, 53

Inverted document frequency (IDF), 200

J
Jupyter Notebook, 279

K

Kaggle, 389

Keras, 375, 376, 395409, 441, 445, 455, 457,
459, 461, 463, 470

Knowledge-based (KB), 128

Knowledge acquisition and inferencing (KAI), 12

Index

L

Language detection, 377

Language model, 21, 24, 26, 34, 35, 41

Language Model Evaluation (LME), 34-42

Language Modelling, 24-25

Laplace (Add-one) Smoothing, 36-38

Large Movie Reviews Dataset, 389

Latent Semantic Analysis (LSA), 221

Latent Semantic Indexing, 207-209

Lemma, 23

Lesk algorithm, 139-140

Lexical ambiguity, 7, 127

Lexical analysis, 78

Lexical dispersion plot, 288-290

Lexical diversity, 294-296

Lexicalized Parsing, 93-96

Lexical probability, 95

Lexical semantic analysis, 121

Lexical semantics, 121, 123, 148

Lexicology, 6

Lexicon, 77, 78, 83, 93

Linguistic levels, 6, 7

Log-linear model, 171

Long-Short Term Memory (LSTM), 182187,
196, 224, 227, 231, 375-376,
397-398, 402, 405409,
412414, 428

LSTM networks, 171

Luhn’s Algorithm, 221

M

Machine learning method, 170-171

Machine translation, 8, 1415, 19, 22

Markov chain, 25-27, 41, 42

Maximum Entropy Markov Model
(MEMM), 62

Maximum likelihood estimates, 30

Meaning representation, 100, 102, 104-107,
114, 116, 117

MeSH, 133-134

Metaphor, 124

Metonymy, 124

Minsky, M., 103

Modal verb, 57

Morphological parsing, 81

Morphology, 6

Morphology analysis, 100

Movie comments, 389

Multi-head attention, 191-192, 415,
451-452

Multiple document summarization,
217-218

475

N

Named entity recognition (NER), 228, 313

Natural language generation (NLG), 12

Natural language processing (NLP), 3-17

Natural Language Toolkit (NLTK), 277-281,
283-299, 301-307, 310, 313, 314,
320, 323-336, 338-350, 441

Natural language understanding (NLU),
12-14, 50, 66, 72, 313

Next sentence prediction (NSP), 194, 195

N-grams, 21, 22, 26-36, 38, 40-42, 49, 59, 60,
62, 88, 90, 92, 95, 210, 303-305,
307, 308, 310

Noun phrase (NP), 74

Nouns, 45, 46, 52, 54, 56, 58

P

Parsing, 72, 77-78, 81-96, 304, 313

Part-of-Speech (POS), 45-46, 66, 69

Path-based Similarity, 135-137, 149

PENN Treebank, 47-49

PENN Treebank Tagset, 323, 339-341

Perplexity, 34-35, 42

Phonetics, 6

Phonological parsing, 82

Pointer-generator networks, 224

Pointwise Mutual Information (PMI), 142

Polysemy, 124, 132

Porter Stemmer, 323, 327-330

POS tagger, 323, 343, 344, 346-348

POS tagging, 46, 47, 49-51, 59, 60, 62, 64,
66, 67, 128, 279, 323, 338-344, 350

POS Tagset, 339

Positional encoding, 190, 452, 456

Positive point-wise mutual information
(PPMI), 142-146, 149

Pragmatic, 128

Pragmatic ambiguity, 8

Pragmatic analysis, 12, 14, 16, 151

Predicates, 112, 113

Prepositions, 45, 53-55

Probabilistic context-free grammar (PCFG),
89-93, 96

Probabilistic Ranking Principle (PRP), 202

Pronouns, 45, 53, 55-57

Q

Q&A chatbots, 19

Q&A systems, 16, 224-229, 231, 234, 236
Quadrigram, 22, 33, 306, 312

Quantifiers, 112

476

Query-focused summarization
systems, 216-217
Query-likelihood, 207, 208
Question-Answering System based on
Knowledge Base (KBQA), 228

R

Recurrent neural networks (RNNs), 171,
180-187, 196, 411

Referring Expression (RE), 160

Regular language (RL), 79

Resnik method, 138, 149

Rhetorical structure theory (RST), 160,
210, 211

Rule-based POS tagging, 47

Rule-based QA systems, 227

S

Selectional restrictions, 111

Self-attention, 191, 450

Self-attention mechanism, 227

Semantic ambiguity, 7

Semantic analysis, 12, 14, 119, 120, 279, 304,
363-366, 374

Semantic categorization, 371

Semantic level, 6

Semantic networks, 102

Semantic processing, 101

Semantics, 51, 111, 112, 115

Semantic similarity, 360, 363, 366374

Semi-supervised methods, 129

Sentiment analysis, 16, 377, 378, 441

Shannon’s method, 31, 32

Sherlock Holmes, 27-31, 33, 36-38, 41, 42,
283, 284, 287, 292, 293, 299, 300,
305, 307, 308, 310, 312, 315-318

Single document summarization, 218

Smoothing, 144-146

Smoothing techniques, 36

Snowball Stemmer, 323, 327, 329-330

spaCy, 277, 303, 313-320, 353, 354, 360-363,
365-376, 378-396, 402-409,
411-413, 415, 419, 434438, 441

Speech recognition, 11-14, 304

Stem, 23

Stemming, 279, 323, 326, 327, 329, 338

Stochastic POS tagging, 47

Stop Words, 330

Subject-Predicate-Object (SPO), 228

SummaRuNNer, 221, 222

Supervised discourse segmentation, 159

Supervised learning (SL), 129

Index

SVD model, 208

Symbolic representations, 122
Synonyms, 125

Synsets, 130, 149

Syntactic ambiguity, 7
Syntactic levels, 6

Syntactic parsing, 82
Syntactic rules, 70

Syntax, 50, 69-72

Syntax analysis, 14, 69

T

Tag sequence frequency, 62

Taggers Evaluations, 65-67

Tagging, 46-50, 59-67, 375, 376, 396

Tagset, 58—60

Taskmaster, 470

TensorFlow, 356, 375, 395-397, 405, 411,
412, 421-428, 430, 441, 445470

Term-context matrix, 142, 144, 149

Term Distribution Models, 202-207

Term-document Matrix, 140-142

Term-frequency (TF), 200

Text analysis, 277, 284, 288, 292,
296, 334-336

Text classification, 279, 375-378

Text coherent, 160

Text processing, 283284, 288

Text summarization, 213-224, 235, 236

Text Tiling, 210

TextCategorizer, 375, 378-384, 386389,
393,394

TextTeaser, 221

TextTiling algorithm, 158

Thesaurus, 133-140

TL system, 235

Tokenization, 277, 279-280, 290-296,
314-320, 323-326, 338

Tokens, 23

Top-Down parser, 83-85

Topic-based method, 221-222

Topic generation, 377

Transfer learning (TL), 175-180, 196

TransferTransfo Conversational
Agents, 234-236

Transformation-based Learning, 63, 67

Transformers, 171, 188—-192, 194-196, 277,
411-416, 420428, 432-438,
441, 445-470

Trigrams, 21, 27, 33, 305

Turing, A., 4, 8

Turing test, 4

Two-tower model, 201

Index

U

Unigram, 21, 27, 28, 33

Unsupervised discourse segmentation, 156
Utterance, 23

A\

Vagueness, 104, 105

Vectorial representations, 122

Vector space model, 200-204
Verb-phrase (VP), 74-75

Verb phrase subcategorization, 7677
Verbs, 45, 46, 49, 56-58, 61, 65
Verifiability, 104

w

Wake word, 443, 444
Wide&Deep model, 201, 205
William Shakespeare, 32
WordCloud, 323, 336-338
Word Form, 23

477

Word frequency, 62

WordNet, 127, 129-133, 149

Word prediction, 19, 20

Word sense, 127

Word sense disambiguation (WSD), 127-129,
148, 149

Word tokenization, 279

Word usage frequency, 295-296

Word vectors, 140, 353, 354, 357-360

word2vec, 354, 360

World knowledge, 120, 128

X
Xiao Ice QA System, 232-234
Xiaowei, 443, 470

Z
Zeugma Test, 124125, 148
Zipf’s law, 36

	Preface
	Motivation of This Book
	Organization and Structure of This Book
	Major Enhancement in 2nd Edition
	Readers of This Book
	How to Use This Book?

	Acknowledgments
	Contents
	Abbreviations
	Part I: Concepts and Technology
	Chapter 1: Natural Language Processing
	1.1 Introduction
	1.2 Human Language and Intelligence
	1.3 Linguistic Levels of Human Language
	1.4 Human Language Ambiguity
	1.5 A Brief History of NLP
	1.5.1 First Stage: Machine Translation (Before the 1960s)
	1.5.2 Second Stage: Early AI on NLP (1960s–1970s)
	1.5.3 Third Stage: Grammatical Logic on NLP (1970s–1980s)
	1.5.4 Fourth Stage: AI and Machine Learning (1980s–2000s)
	1.5.5 Fifth Stage: Rise of BERT, Transformer, ChatGPT, and LLMs (2000s–Present)

	1.6 NLP and AI
	1.7 Main Components of NLP
	1.8 Natural Language Understanding (NLU)
	1.8.1 Speech Recognition
	1.8.2 Syntax Analysis
	1.8.3 Semantic Analysis
	1.8.4 Pragmatic Analysis

	1.9 Potential Applications of NLP
	1.9.1 Machine Translation (MT)
	1.9.2 Information Extraction (IE)
	1.9.3 Information Retrieval (IR)
	1.9.4 Sentiment Analysis
	1.9.5 Question-Answering (Q&A) Chatbots

	References

	Chapter 2: N-Gram Language Model
	2.1 Introduction
	2.2 N-Gram Language Model
	2.2.1 Basic NLP Terminology
	2.2.2 Language Modeling and Chain Rule

	2.3 Markov Chain in N-Gram Model
	2.4 Example: The Adventures of Sherlock Holmes
	2.5 Shannon’s Method in N-Gram Model
	2.6 Language Model Evaluation and Smoothing Techniques
	2.6.1 Perplexity
	2.6.2 Extrinsic Evaluation Scheme
	2.6.3 Zero Counts Problems
	2.6.4 Smoothing Techniques
	2.6.5 Laplace (Add-One) Smoothing
	2.6.6 Add-k Smoothing
	2.6.7 Backoff and Interpolation Smoothing
	2.6.8 Good Turing Smoothing

	References

	Chapter 3: Part-of-Speech (POS) Tagging
	3.1 What Is Part of Speech (POS)?
	3.1.1 Nine Major POS in the English Language

	3.2 POS Tagging
	3.2.1 What Is POS Tagging in Linguistics?
	3.2.2 What Is POS Tagging in NLP?
	3.2.3 POS Tags Used in the PENN Treebank Project
	3.2.4 Why Do We Care About POS in NLP?

	3.3 Major Components in NLU
	3.3.1 Computational Linguistics and POS
	3.3.2 POS and Semantic Meaning
	3.3.3 Morphological and Syntactic Definition of POS

	3.4 Nine Key POS in English
	3.4.1 English Word Classes
	3.4.2 What Is a Preposition?
	3.4.3 What Is a Conjunction?
	3.4.4 What Is a Pronoun?
	3.4.5 What Is a Verb?

	3.5 Different Types of POS Tagset
	3.5.1 What Is Tagset?
	3.5.2 Ambiguous in POS Tags
	3.5.3 POS Tagging Using Knowledge

	3.6 Approaches for POS Tagging
	3.6.1 Rule-Based Approach POS Tagging
	3.6.2 Example of Rule-Based POS Tagging
	3.6.3 Example of Stochastic-Based POS Tagging
	3.6.4 Hybrid Approach for POS Tagging Using Brill’s Taggers
	3.6.5 What Is Transformation-Based Learning?
	3.6.6 Hybrid POS Tagging: Brill’s Tagger
	3.6.7 Learning Brill’s Tagger Transformations

	3.7 Taggers Evaluations
	3.7.1 How Good Is an POS Tagging Algorithm?

	References

	Chapter 4: Syntax and Parsing
	4.1 Introduction and Motivation
	4.2 Syntax Analysis
	4.2.1 What Is Syntax
	4.2.2 Syntactic Rules
	4.2.3 Common Syntactic Patterns
	4.2.4 Importance of Syntax and Parsing in NLP

	4.3 Types of Constituents in Sentences
	4.3.1 What Is Constituent?
	4.3.2 Kinds of Constituents
	4.3.2.1 Noun Phrase (NP)
	4.3.2.2 Verb Phrase (VP)

	4.3.3 Complexity on Simple Constituents
	4.3.4 Verb Phrase Subcategorization
	4.3.5 The Role of Lexicon in Parsing
	4.3.6 Recursion in Grammar Rules

	4.4 Context-Free Grammar (CFG)
	4.4.1 What Is Context Free Language (CFL)?
	4.4.2 What Is Context Free Grammar (CFG)?
	4.4.3 Major Components of CFG
	4.4.4 Derivations Using CFG

	4.5 CFG Parsing
	4.5.1 Morphological Parsing
	4.5.2 Phonological Parsing
	4.5.3 Syntactic Parsing
	4.5.4 Parsing as a Kind of Tree Searching
	4.5.5 CFG for Fragment of English
	4.5.6 Parse Tree for “Play the Piano” for Prior CFG
	4.5.7 Top-Down Parser
	4.5.8 Bottom-Up Parser
	4.5.9 Control of Parsing
	4.5.10 Pros and Cons of Top-Down vs. Bottom-Up Parsing
	4.5.10.1 Top-Down Parsing Approach
	Pros
	Cons

	4.5.10.2 Bottom-Up Parsing Approach
	Pros
	Cons

	4.6 Lexical and Probabilistic Parsing
	4.6.1 Why Using Probabilities in Parsing?
	4.6.2 Semantics with Parsing
	4.6.3 What Is PCFG?
	4.6.4 A Simple Example of PCFG
	4.6.5 Using Probabilities for Language Modelling
	4.6.6 Limitations for PCFG
	4.6.7 The Fix–Lexicalized Parsing

	References

	Chapter 5: Meaning Representation
	5.1 Introduction
	5.2 What Is Meaning?
	5.3 Meaning Representations
	5.4 Semantic Processing
	5.5 Common Meaning Representation
	5.5.1 First-Order Predicate Calculus
	5.5.2 Semantic Networks
	5.5.3 Conceptual Dependency Diagram
	5.5.4 Frame-Based Representation

	5.6 Requirements for Meaning Representation
	5.6.1 Verifiability
	5.6.2 Ambiguity
	5.6.3 Vagueness
	5.6.4 Canonical Forms
	5.6.4.1 What Is Canonical Form?
	5.6.4.2 Canonical Form in Meaning Representation
	5.6.4.3 Canonical Forms: Pros and Cons
	Advantages
	Disadvantages

	5.7 Inference
	5.7.1 What Is Inference?
	5.7.2 Example of Inferencing with FOPC

	5.8 Fillmore’s Theory of Universal Cases
	5.8.1 What Is Fillmore’s Theory of Universal Cases?
	5.8.2 Major Case Roles in Fillmore’s Theory
	5.8.3 Complications in Case Roles
	5.8.3.1 Selectional Restrictions

	5.9 First-Order Predicate Calculus
	5.9.1 FOPC Representation Scheme
	5.9.2 Major Elements of FOPC
	5.9.3 Predicate-Argument Structure of FOPC
	5.9.4 Meaning Representation Problems in FOPC
	5.9.5 Inferencing Using FOPC

	References

	Chapter 6: Semantic Analysis
	6.1 Introduction
	6.1.1 What Is Semantic Analysis?
	6.1.2 The Importance of Semantic Analysis in NLP
	6.1.3 How Human Is Good in Semantic Analysis?

	6.2 Lexical vs. Compositional Semantic Analysis
	6.2.1 What Is Lexical Semantic Analysis?
	6.2.2 What Is Compositional Semantic Analysis?

	6.3 Word Senses and Relations
	6.3.1 What Is Word Sense?
	6.3.2 Types of Lexical Semantics
	6.3.2.1 Homonymy
	6.3.2.2 Polysemy
	6.3.2.3 Metonymy
	6.3.2.4 Zeugma Test
	6.3.2.5 Synonyms
	6.3.2.6 Antonyms
	6.3.2.7 Hyponymy and Hypernymy
	6.3.2.8 Hyponyms and Instances

	6.4 Word Sense Disambiguation
	6.4.1 What Is Word Sense Disambiguation (WSD)?
	6.4.2 Difficulties in WSD
	6.4.3 Method for WSD

	6.5 WordNet and Online Thesauri
	6.5.1 What Is WordNet?
	6.5.2 What Are Synsets?
	6.5.3 Knowledge Structure of WordNet
	6.5.4 What Are Major Lexical Relations Captured in WordNet?
	6.5.5 Applications of WordNet and Thesauri?

	6.6 Other Online Thesauri: MeSH
	6.6.1 What Is MeSH?
	6.6.2 Uses of the MeSH Ontology

	6.7 Word Similarity and Thesaurus Methods
	6.7.1 Introduction
	6.7.2 Path-Based Similarity
	6.7.3 Problems with Path-Based Similarity
	6.7.4 Information Content Similarity
	6.7.5 The Resnik Method
	6.7.6 The Dekang Lin Method
	6.7.7 The (Extended) Lesk Algorithm

	6.8 Distributed Similarity
	6.8.1 Distributional Models of Meaning
	6.8.2 Word Vectors
	6.8.3 Term-Document Matrix
	6.8.4 Pointwise Mutual Information
	6.8.5 Example of Computing PPMI on a Term-Context Matrix
	6.8.6 Weighing PMI Techniques
	6.8.7 Add-K Smoothing in PMI Computation
	6.8.8 Context and Word Similarity Measurement
	6.8.9 Evaluating Similarity

	References

	Chapter 7: Pragmatic Analysis and Discourse
	7.1 Introduction
	7.2 Discourse Phenomena
	7.2.1 Coreference Resolution
	7.2.2 Why Is It Important?
	7.2.3 Coherence and Coreference
	7.2.3.1 What Is Coherence?
	7.2.3.2 What Is Coreference?

	7.2.4 Importance of Coreference Relations
	7.2.5 Entity-Based Coherence

	7.3 Discourse Segmentation
	7.3.1 What Is Discourse Segmentation?
	7.3.2 Unsupervised Discourse Segmentation
	7.3.3 Hearst’s TextTiling Method
	7.3.4 TextTiling Algorithm
	7.3.5 Supervised Discourse Segmentation

	7.4 Discourse Coherence
	7.4.1 What Makes a Text Coherent?
	7.4.2 What Is Coherence Relation?
	7.4.3 Types of Coherence Relations
	7.4.4 Hierarchical Structure of Discourse Coherence
	7.4.5 Types of REs
	7.4.6 Features for Filtering Potential Referents
	7.4.7 Preferences in Pronoun Interpretation

	7.5 Algorithms for Coreference Resolution
	7.5.1 Introduction
	7.5.2 Hobbs’ Algorithm
	7.5.2.1 What Is Hobbs’ Algorithm?
	7.5.2.2 Hobbs’ Algorithm
	7.5.2.3 Example of Using Hobbs’ Algorithm
	7.5.2.4 Performance of Hobbs’ Algorithm

	7.5.3 Centering Algorithm
	7.5.3.1 What Is Centering Algorithm?
	7.5.3.2 Part I: Initial Setting
	7.5.3.3 Part II: Constraints
	7.5.3.4 Part III: Rules and Algorithm
	7.5.3.5 Example of Centering Algorithm
	7.5.3.6 Performance of Centering Algorithm

	7.5.4 Machine-Learning Method
	7.5.4.1 What Is Machine-Learning Method?
	7.5.4.2 Performance of the Log-Linear Model
	7.5.4.3 Other Advanced ML Models

	7.6 Evaluation
	References

	Chapter 8: Transfer Learning and Transformer Technology
	8.1 What Is Transfer Learning?
	8.2 Motivation of TL
	8.2.1 Categories of TL

	8.3 Solutions of TL
	8.3.1 Instance-Based Method
	8.3.2 Feature-Based Method
	8.3.3 Parameter-Based Method
	8.3.4 Relational-Based Method

	8.4 Recurrent Neural Network (RNN)
	8.4.1 What Is RNN?
	8.4.2 Motivation of the RNN
	8.4.3 RNN Architecture
	8.4.4 Long Short-Term Memory (LSTM) Network
	8.4.4.1 What Is LSTM?
	8.4.4.2 LSTM Architecture

	8.4.5 Gate Recurrent Unit (GRU)
	8.4.5.1 What Is GRU?
	8.4.5.2 GRU Inner Architecture

	8.4.6 Bidirectional Recurrent Neural Networks (BRNNs)
	8.4.6.1 What Is BRNN?

	8.5 Transformer Technology
	8.5.1 What Is Transformer?
	8.5.2 Transformer Architecture
	8.5.2.1 Encoder
	8.5.2.2 Decoder

	8.5.3 Deep into Encoder
	8.5.3.1 Positional Encoding
	8.5.3.2 Self-Attention Mechanism
	8.5.3.3 Multi-head Attention
	8.5.3.4 Layer Normalization of Attention Sublayer
	8.5.3.5 Feedforward Layer

	8.6 BERT
	8.6.1 What Is BERT?
	8.6.2 Architecture of BERT
	8.6.3 Training of BERT
	8.6.3.1 Pretraining BERT
	8.6.3.2 Next Sentence Prediction (NSP)
	8.6.3.3 Fine-Tuning BERT

	8.7 Other Related Transformer Technology
	8.7.1 Transformer-XL
	8.7.1.1 Motivation
	8.7.1.2 Transformer-XL Technology

	8.7.2 ALBERT

	References

	Chapter 9: Major NLP Applications
	9.1 Introduction
	9.2 Information Retrieval Systems
	9.2.1 Introduction to IR Systems
	9.2.2 Vector Space Model in IR
	9.2.3 Term Distribution Models in IR
	9.2.4 Latent Semantic Indexing in IR
	9.2.4.1 Query-Likelihood
	9.2.4.2 Document-Likelihood

	9.2.5 Discourse Segmentation in IR

	9.3 Text Summarization Systems
	9.3.1 Introduction to Text Summarization Systems
	9.3.1.1 Motivation
	9.3.1.2 Task Definition
	9.3.1.3 Basic Approach
	9.3.1.4 Task Goals
	9.3.1.5 Task Sub-processes

	9.3.2 Text Summarization Datasets
	9.3.3 Types of Summarization Systems
	9.3.4 Query-focused vs. Generic Summarization Systems
	9.3.4.1 Query-Focused Summarization Systems
	9.3.4.2 Generic Summarization Systems

	9.3.5 Single and Multiple Document Summarization
	9.3.5.1 Single Document Summarization
	9.3.5.2 Multiple Document Summarization

	9.3.6 Contemporary Text Summarization Systems
	9.3.6.1 Contemporary Extractive Text Summarization (ETS) System
	9.3.6.2 Graph-Based Method
	9.3.6.3 Feature-Based Method
	9.3.6.4 Topic-Based Method
	9.3.6.5 Grammar-Based Method
	9.3.6.6 Contemporary Abstractive Text Summarization (ATS) System
	9.3.6.7 Aided Summarization Method
	9.3.6.8 Contemporary Combined Text Summarization System

	9.4 Question-and-Answering Systems
	9.4.1 QA System and AI
	9.4.1.1 Rule-Based QA Systems
	9.4.1.2 Information Retrieval (IR)-Based QA Systems
	9.4.1.3 Neural Network-Based QA Systems

	9.4.2 Overview of Industrial QA Systems
	9.4.2.1 AliMe QA System
	9.4.2.2 Xiao Ice QA System
	9.4.2.3 TransferTransfo Conversational Agents

	References

	Chapter 10: Large Language Models (LLMs) and Generative Artificial Intelligence (GenAI)
	10.1 Introduction to LLM and GenAI
	10.1.1 What Is a Large Language Model (LLM)?
	10.1.2 Understanding Generative Artificial Intelligence (GenAI)
	10.1.3 The Intersection of LLM and GenAI
	10.1.4 The Importance of LLMs in Modern AI

	10.2 Foundations of LLMs
	10.2.1 Neural Network Architectures
	10.2.2 Attention Mechanisms
	10.2.3 The Transformer Architecture
	10.2.4 Scaling Up: From BERT to GPT

	10.3 Key Players in the LLM Landscape
	10.3.1 ChatGPT by OpenAI (Current Version: GPT-4)
	10.3.1.1 Evolution of GPT Models
	10.3.1.2 System Architecture
	10.3.1.3 Applications and Usage

	10.3.2 Pathways Language Model (PaLM) by Google DeepMind (Current Version: PaLM 2)
	10.3.2.1 System Architecture
	10.3.2.2 Applications and Usage

	10.3.3 Large Language Model Meta AI (LLaMA) by Meta (Current Version: LLaMA 2)
	10.3.3.1 System Architecture
	10.3.3.2 Applications and Usage

	10.3.4 Claude by Anthropic (Current Version: Claude 2)
	10.3.4.1 System Architecture
	10.3.4.2 Applications and Usage

	10.3.5 ERNIE 3.0 Titan by Baidu
	10.3.5.1 System Architecture
	10.3.5.2 Applications and Usage

	10.4 Applications of LLMs in GenAI
	10.4.1 Creative Writing and Content Generation
	10.4.2 Language Translation
	10.4.3 Conversational AI and Chatbots
	10.4.4 Text Summarization and Content Curation

	10.5 Ethical Considerations and Challenges
	10.5.1 Detecting and Mitigating Bias
	10.5.1.1 Origins of Bias in LLMs
	10.5.1.2 Mitigation Strategies

	10.5.2 Privacy and Data Security
	10.5.2.1 Data Collection and Consent
	10.5.2.2 Data Security Risks

	10.5.3 The Spread of Misinformation
	10.5.3.1 Challenges of Verifying Information
	10.5.3.2 Combating Misinformation

	10.5.4 Ethical Guidelines for LLM Deployment
	10.5.4.1 Principles of Responsible AI
	10.5.4.2 Human Oversight and Accountability
	10.5.4.3 Transparency and Explainability

	10.6 Future Outlook and Research
	10.6.1 Current Trends in LLMs and GenAI
	10.6.1.1 Multimodal Models
	10.6.1.2 Increasing Model Sizes and Capabilities
	10.6.1.3 Specialized LLMs for Domain-Specific Applications
	10.6.1.4 Few-Shot and Zero-Shot Learning

	10.6.2 The Future of Creativity in AI
	10.6.2.1 Collaborative Creativity
	10.6.2.2 The Blurring Line Between Human and Machine Creativity
	10.6.2.3 Challenges of Authorship and Ownership

	10.6.3 The Role of LLMs in AI Ethics
	10.6.3.1 Addressing Bias in LLMs
	10.6.3.2 AI in Decision-Making
	10.6.3.3 Combating Misinformation
	10.6.3.4 Privacy

	10.6.4 The Path Forward: Research and Development
	10.6.4.1 Model Interpretability and Explainability
	10.6.4.2 Energy Efficiency
	10.6.4.3 Exploring New Applications

	References

	Part II: Natural Language Processing Workshops with Python Implementation in 14 Hours
	Chapter 11: Workshop#1: Basics of Natural Language Toolkit (Hour 1–2)
	11.1 Introduction
	11.2 What Is Natural Language Toolkit (NLTK)?
	11.3 A Simple Text Tokenization Example Using NLTK
	11.4 How to Install NLTK?
	11.5 Why Using Python for NLP?
	11.6 NLTK with Basic Text Processing in NLP
	11.7 Simple Text Analysis with NLTK
	11.8 Text Analysis Using Lexical Dispersion Plot
	11.8.1 What Is a Lexical Dispersion Plot?
	11.8.2 Lexical Dispersion Plot over Context Using Sense and Sensibility
	11.8.3 Lexical Dispersion Plot Over Time Using Inaugural Address Corpus

	11.9 Tokenization in NLP with NLTK
	11.9.1 What Is Tokenization in NLP?
	11.9.2 Different Between Tokenize() vs Split()
	11.9.3 Count Distinct Tokens
	11.9.4 Lexical Diversity
	11.9.4.1 Token Usage Frequency (Lexical Diversity)
	11.9.4.2 Word Usage Frequency

	11.10 Basic Statistical Tools in NLTK
	11.10.1 Frequency Distribution—FreqDist()
	11.10.1.1 FreqDist() as Dictionary Object
	11.10.1.2 Access FreqDist of Any Token Type
	11.10.1.3 Frequency Distribution Plot from NLTK

	11.11 Do the Same Plot with Cumulative Mode
	11.11.1 Rare Words—Hapax
	11.11.2 Collocations
	11.11.2.1 What Are Collocations?
	11.11.2.2 Collocations in NLTK

	References

	Chaper 12: Workshop#2: N-Grams Modeling with Natural Language Toolkit (Hour 3–4)
	12.1 Introduction
	12.2 What Is N-Gram?
	12.3 Applications of N-Grams in NLP
	12.4 Generation of N-Grams in NLTK
	12.5 Generation of N-Grams Statistics
	12.6 spaCy in NLP
	12.6.1 What Is spaCy?

	12.7 How to Install spaCy?
	12.8 Tokenization Using spaCy
	References

	Chapter 13: Workshop#3: Part-of-Speech Tagging Using Natural Language Toolkit (Hour 5–6)
	13.1 Introduction
	13.2 A Revisit on Tokenization with NLTK
	13.3 Stemming Using NLTK
	13.3.1 What Is Stemming?
	13.3.2 Why Stemming?
	13.3.3 How to Perform Stemming?
	13.3.3.1 Porter Stemmer
	13.3.3.2 Snowball Stemmer

	13.4 Stop-Words Removal with NLTK
	13.4.1 What Are Stop-Words?
	13.4.2 NLTK Stop-Words List
	13.4.3 Try Some Texts
	13.4.4 Create your Own Stop-Words

	13.5 Text Analysis with NLTK
	13.6 Integration with WordCloud
	13.6.1 What Is WordCloud?

	13.7 POS Tagging with NLTK
	13.7.1 What Is POS Tagging?
	13.7.2 Universal POS Tagset
	13.7.3 PENN Treebank Tagset (English & Chinese)
	13.7.4 Applications of POS Tagging

	13.8 Create Own POS Tagger with NLTK
	References

	Chapter 14: Workshop#4 Semantic Analysis and Word Vectors Using spaCy (Hour 7–8)
	14.1 Introduction
	14.2 What Are Word Vectors?
	14.3 Understanding Word Vectors
	14.3.1 Example: A Simple Word Vector

	14.4 A Taste of Word Vectors
	14.5 Analogies and Vector Operations
	14.6 How to Create Word Vectors?
	14.7 spaCy Pretrained Word Vectors
	14.8 Similarity Method in Semantic Analysis
	14.9 Advanced Semantic Similarity Methods with spaCy
	14.9.1 Understanding Semantic Similarity
	14.9.2 Euclidean Distance
	14.9.3 Cosine Distance and Cosine Similarity
	14.9.4 Categorizing Text with Semantic Similarity
	14.9.5 Extracting Key Phrases
	14.9.6 Extracting and Comparing Named Entities

	References

	Chapter 15: Workshop#5: Sentiment Analysis and Text Classification (Hour 9–10)
	15.1 Introduction
	15.2 Text Classification with spaCy and LSTM Technology
	15.3 Technical Requirements
	15.4 Text Classification in a Nutshell
	15.4.1 What Is Text Classification?
	15.4.2 Text Classification as AI Applications

	15.5 Text Classifier with spaCy NLP Pipeline
	15.5.1 TextCategorizer Class
	15.5.2 Formatting Training Data for the TextCategorizer
	15.5.3 System Training
	15.5.4 System Testing
	15.5.5 Training TextCategorizer for Multi-Label Classification

	15.6 Sentiment Analysis with spaCy
	15.6.1 IMDB Large Movie Review Dataset
	15.6.2 Explore the Dataset
	15.6.3 Training the TextClassfier

	15.7 Artificial Neural Network in a Nutshell
	15.8 An Overview of TensorFlow and Keras
	15.9 Sequential Modeling with LSTM Technology
	15.10 Keras Tokenizer in NLP
	15.10.1 Embedding Words

	15.11 Movie Sentiment Analysis with LTSM Using Keras and spaCy
	15.11.1 Step 5: Implement the LSTM Layer
	15.11.2 Step 6: Implement the Output Layer
	15.11.3 Step 7: System Compilation

	References

	Chapter 16: Workshop#6 Transformers with spaCy and TensorFlow (Hour 11–12)
	16.1 Introduction
	16.2 Technical Requirements
	16.3 Transformers and Transfer Learning in a Nutshell
	16.4 Why Transformers?
	16.5 An Overview of BERT Technology
	16.5.1 What Is BERT?
	16.5.2 BERT Architecture
	16.5.3 BERT Input Format
	16.5.4 How to Train BERT?

	16.6 Transformers with TensorFlow
	16.6.1 HuggingFace Transformers
	16.6.2 Using the BERT Tokenizer
	16.6.3 Word Vectors in BERT

	16.7 Revisit Text Classification Using BERT
	16.7.1 Data Preparation
	16.7.2 Start the BERT Model Construction

	16.8 Transformer Pipeline Technology
	16.8.1 Transformer Pipeline for Sentiment Analysis
	16.8.2 Transformer Pipeline for QA System

	16.9 Transformer and spaCy
	References

	Chapter 17: Workshop#7 Building Chatbot with TensorFlow and Transformer Technology (Hour 13–14)
	17.1 Introduction
	17.2 Technical Requirements
	17.3 AI Chatbot in a Nutshell
	17.3.1 What Is a Chatbot?
	17.3.2 What Is a Wake Word in Chatbot?
	17.3.2.1 Tailor-Made Wake Word
	17.3.2.2 Why Embedded Word Detection?

	17.3.3 NLP Components in a Chatbot

	17.4 Building Movie Chatbot by Using TensorFlow and Transformer Technology
	17.4.1 The Chatbot Dataset
	17.4.2 Movie Dialogue Preprocessing
	17.4.3 Tokenization of Movie Conversation
	17.4.4 Filtering and Padding Process
	17.4.5 Creation of TensorFlow Movie Dataset Object (mDS)
	17.4.6 Calculate Attention Learning Weights
	17.4.7 Multi-Head-Attention (MHAttention)
	17.4.8 System Implementation

	17.5 Related Works
	References

	Index

